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Abstract

The research in this dissertation addresses the steady evaporation of a capillary pore with a liquid metal

working fluid. First, the interline region of an extended meniscus thin film is considered for the unique

physical case of a liquid metal. A new thin film evaporation model is presented that captures the unsimplified

dispersion force along with an electronic disjoining pressure component that is unique to liquid metals. The

resulting nonlinear 4th-order ODE is solved using an implicit orthogonal collocation technique along with

the Levenberg-Marquardt method. Results show that the electronic component of the disjoining pressure

should be considered when modeling liquid metal extended meniscus evaporation for a wide range of work

function boundary values, which represent physical properties of different liquid metals. For liquid sodium,

as an example test material, variation in the work function produces order-of-magnitude differences in the

film thickness and evaporation profile.

Second, the extended meniscus thin film model is spliced with a CFD model of the evaporating bulk

meniscus. The result is a multiscale model of the total evaporating capillary meniscus with a nonisothermal

interface and non-equilibrium evaporation. Integration of the evaporative mass flux across the total meniscus

surface area produces total capillary evaporative mass flow rates and enables comparisons between electronic

disjoining pressure states. The clear trend from these comparisons is that a larger electronic component of

the disjoining pressure leads towards larger extended meniscus thin film surface area, larger total capillary

meniscus surface area, and larger net evaporative mass flow rate (which corresponds with larger heat flow

rate, as well).

Finally, an outline is presented of the scope of the general problem in the application of nonlinear

stability theory to a liquid metal evaporating thin film.
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Chapter 1

Introduction / Literature Survey

The evaporation of fluids provides an efficient method for heat transfer and passive cooling in devices such

as heat pipes and capillary pumped loops. A liquid metal working fluid enables operation in extremely high

temperature environments with the added benefits of a high latent heat of evaporation and high heat transfer

coefficient. Numerical and experimental studies have applied liquid metal heat pipes and capillary pumped

loops in nuclear [1–3], hypersonic [4–8], and space based [9–14] systems. In the case of aerospace systems,

minimization of system mass calls for a consideration of micro-scale heat pipes and capillary pumped loops.

Micro-scale heat pipes have already found application in the cooling of high performance electronics [15–

21]. In such micro-scale systems using conventional coolant fluids, such as water or refrigerants, the thin

film region has been shown to contribute greatly towards meniscus stability and evaporation [22, 23].

High temperature, liquid metal evaporation on the micro-scale, however, has received little attention in

the literature [24, 25]. One of the main difficulties in analytically studying liquid metal evaporation arises

from the complexity of the disjoining pressure, which renders traditional models and solution schemes

invalid. To address this knowledge gap, this research proposes new models for the extended meniscus

evaporation of alkaline metal, such as liquid sodium, under capillary and dispersion forces as well as a

relatively newly proposed force due to degeneracy of the free electrons in a liquid metal thin film. In the

process, the general extended meniscus model is to be combined with a CFD model of the bulk evaporating

meniscus to create a true multiscale model of the evaporating capillary meniscus.

Finally, Capillary Pumped Loops (CPL) and Loop Heat Pipes (LHP) are “real world” heat transfer de-

vices that utilize the unique physics of capillary evaporation. The research so-far mentioned models the
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Figure 1.1: Schematic of a cylindrical capillary geometry identifying the distinct regions of the extended
evaporating meniscus. The majority of heat and mass transfer occurs in the transition thin film region. For
large enough pore radii, the transition thin film region may be simplified from a cylindrical to Cartesian
domain.

evaporating liquid metal capillary under the important assumption of a constant, steady-state meniscus pro-

file. Experimental investigations of CPLs and LHPs with traditional working fluids, however, have demon-

strated performance degradations due to temporal fluctuations [26]. Thus, this dissertation also seeks to

outline the scope of the general problem in the application of nonlinear stability theory to a liquid metal

evaporating thin film in an effort to direct future research.

1.1 Thin Film Modeling

As shown in Figure 1.1, the interline or contact line region of an evaporating extended meniscus consists

of three subregions. In the adsorbed region, a disjoining pressure dominates the local atomic forces. In

the intrinsic or bulk meniscus region, the interfacial curvature governs the driving physics through surface

tension. The transition or thin-film region exists between the intrinsic meniscus and adsorbed regions where

both the disjoining pressure and the interfacial curvature share a comparable influence.

Previous studies addressed numerical heat and mass transfer solutions for steady extended meniscus

2



evaporation. Here, steady connotes a static interline region continually replenished by fluid from the intrinsic

meniscus [22, 27–35]. Wayner and Schonberg [36] developed a governing equation for the film height of a

symmetric meniscus as a function of distance between two feed ports. Their development draws upon the

pioneering thin film experiments of Derjaguin [37], Schrage’s [38] relationship for net mass flux across a

liquid/vapor interface, and the evaporating extended meniscus models of Wayner et al. [39] and Potash and

Wayner [40]. Later, Chebaro and Hallinan [41], Chebaro et al. [42], and Hallinan et al. [43] introduced

new nondimensional variables, which re-expressed Wayner and Schonberg’s model in a more meaningful

manner. They also created an explicit Runge-Kutta numerical solution procedure, which meets the correct

system boundary conditions by way of the “Shooting Method”.

1.2 Disjoining Pressure

Derjaguin and Kusakov [44, p.27] first coined the term “wedging-apart pressure” (a literal translation from

Russian) to account for pressure differences experimentally obtained between a thin film and its bulk phase.

The more popular English paraphrase “disjoining pressure” is now more popularly used. Davis provides a

lucid description of the concept [45, p.371]:

The concept of “disjoining” is that to squeeze a film to thickness H, an excess pressure of

Π(H) must be applied to offset the tendency of the film phase to separate or disjoin the confining

phases. If Π is negative, the film material wants to retreat from the region between the confining

phase. Thus, if Π > 0, the film material is wetting, and if Π < 0, it is nonwetting.

This work shall adopt the terminology and convention of the Russian school of thought although there do

exist differences of opinion regarding its clarity and usefulness [46, p.268]. As such, the long-range nature

of the disjoining pressure can include ionic-electrostatic, molecular, structural, adsorption, and electronic

components. The ionic-electrostatic component incorporates double-layer interactions. The molecular com-

ponent deals with van der Waals interactions. The structural component includes solvation forces created

by molecules near surface interfaces [46, p.268]. The adsorption component covers interactions of adsorbed

layers of nonionic surfactants and macromolecules [47]. Finally, the electronic component consists of forces

induced by the electron gas in a liquid metal [48]. The present work considers only the molecular and elec-

tronic components of the disjoining pressure as the working fluid is chosen to be a liquid metal.
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1.2.1 van der Waals Component

The van der Waals forces account for long-range atomic forces between neutral atoms and can be subdivided

into three subcategories. Molecules with permanent dipole moments experience Keesom orientation forces

due to dipole-dipole interaction and Debye induction forces due to dipole-induced dipole interactions. All

molecules, both polar and non-polar, experience London dispersion forces as a result of induced dipole-

induced dipole interactions.

Hamaker [49] first described the London dispersion forces between two media acting in a third medium

by considering the microscopic interaction between two molecules and summing under the assumption of

additivity. Hamaker’s theory does not include the Keesom and Debye forces of polar molecules, the effects

of temperature, or time delay effects in the communication of electromagnetic fields between atoms at

larger distances (retardation). Lifshitz [50] later pursued a macroscopic approach which modeled the bulk

interaction between two media in a vacuum by considering the fluctuation of electromagnetic fields between

the two media. Lifshitz’s theory solves the shortcomings of Hamaker’s theory but is limited to interactions

in a vacuum. Finally Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP) used quantum electrodynamics to derive

the first general theory of van der Waals forces [51]. While much more complex mathematically, the DLP

theory successfully includes the interaction of two media in a third medium. The only major restriction is

the assumption of planar geometries.

Since the DLP theory originates from a macroscopic perspective, the van der Waals forces can be de-

scribed using continuum properties of the participating media in the form of their frequency-dependent,

dielectric permittivities. When temperature effects can be neglected and when the film thickness is small

compared to the absorption wavelengths of the participating media, the retardation effects of the time delay

in the communication of electric fields between atoms may be neglected, and the full DLP theory can be

greatly simplified. The resulting nonretarded force is proportional to the inverse cube of the film thickness.

This relationship is the macroscopic analogue of the microscopic Hamaker theory. It is most often used

in the engineering literature in the form of the well known Hamaker constant [52, pp.137-152]. Thus, the

Hamaker constant represents the limiting case of nonretarded dispersion forces. Prevailing convention as-

signs a negative value for the Hamaker constant for the case of spreading films, although the literature can

be confusing [29, 31–34, 53–55].
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At the opposite limit of a thick film, which results in a fully retarded dispersion force, several papers have

mentioned an analytical solution proportional to the inverse forth power of the film thickness [32, 54–56].

These works fail to mention the requirements for this solution, namely dielectric materials, film thicknesses

much greater than “the wavelengths which characterise the absorptions spectra of the given bodies,” and

film thicknesses much less than the temperature requirement H � ~c/kBT [51]. Only a select number of

working fluids and operating temperatures meet these requirements. The case of a high temperature, liquid

metal, evaporating thin film, however, invalidates each of these assumptions.

1.2.2 Electronic Component

The original disjoining pressure concept, first proposed by Derjaguin in the 1930s, addresses the additional

thin film pressure created by van der Waals and electrostatic forces. Almost fifty years later, Derjaguin,

Leonov, and Roldughin [48] and Derjaguin and Roldughin [57] proposed the existence of an additional

form of disjoining pressure in liquid metal films. Inspired by a theoretical prediction of anomalous effects

in nanoscale metallic particles [58], they surmised that the free electrons in a thin metal film, modeled as

a fermion gas, would experience a confinement in their position. According to Heisenberg’s uncertainty

principle, this confinement correlates with an increase in momentum. This electron degeneracy creates an

increase of the energy density in the thin film and produces an effective “electron pressure” (for a good

summary, see Roldughin [59]).

Derjaguin and Roldughin assumed films sufficiently thick such that the dispersion forces could be ne-

glected. In addition, they assumed thick films, negligible exchange, correlation, and electrostatic interac-

tions, a perfectly smooth surface, and a model of the electron as a non-interacting particle. In this way, they

were able to derive a relationship between the change in kinetic energy of free electrons in the thin film

and the disjoining pressure using quantum mechanical theory. The resulting electron degeneracy disjoining

pressure varies in intensity and sign depending upon the work function (energy needed to move an electron

from the liquid metal to the solid surface) of the system.

Derjaguin et al. indirectly proved the existence of the electronic component to the disjoining pressure

by experiment. The DLP Theory of van der Waals forces predicts any two identical media will attract each

other, irregardless of the media in between. Thus, a free liquid metal thin film should experience a negative

disjoining pressure which would render the film unstable. In contrast, Derjaguin et al. demonstrated the
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stability of free films of liquid mercury in certain organic liquids, which could only be possible if a larger,

positive disjoining pressure component was present.

1.2.3 Total Disjoining Pressure

To the author’s knowledge, the only previous attempt to model a liquid metal thin film using both the

London dispersion force and electron degeneracy force as components of a disjoining pressure was by

Ajaev and Willis [60, 61]. They were concerned with “thermocapillary flow and rupture in films of molten

metal on a substrate” when heated by a Gaussian laser beam. Ajaev and Willis correctly identified the

need for both components of the disjoining pressure and, with neither a fundamental physics model nor

experimental measurements available, suggested a linear combination of the two. Their paper presented a

general parametric study that looked at model trends only. No attempt was made to calculate the appropriate

value for either component of the disjoining pressure. In addition, the electronic component was treated as

a constant, positive value under the simplifying assumption of an infinite potential energy well boundary

condition.

1.3 Comprehensive Multiscale Capillary Modeling

Several authors have attempted to model the full capillary evaporating meniscus at steady-state with varying

degrees of complexity and success. Swanson and Herdt [30] attempted to model the entire micro- and

macro-capillary domain using one characteristic set of equations. Chebaro et al. [42] pointed out several

flaws:

“Swanson and Herdt’s analysis inexactly made assumptions pertaining to the curvature of

the interface in the interline region, the radial pressure gradient in the meniscus, and the tan-

gential shear stress boundary condition at the interface in the meniscus.”

Stephan and Busse [62] sought to model a groove heat pipe wall geometry. Their thin film extended

meniscus model only included an isothermal interface and thermocapillary forces were assumed negligible.

The wall temperature in the micro region was assumed and the thin film solution yielded the curvature of

the bulk meniscus, the temperature distribution at the interface, and the total heat transferred in the micro
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region. Heat transfer in the bulk meniscus fluid region and groove walls was solved via a FEM conduction

model that did not consider fluid flow. The capillary surface was considered static and nonevaporative. The

micro and macro region models were iterated until they agreed on the wall temperature and heat flux at their

interface.

Schonberg et al. [34] also modeled the thin film extended meniscus with an isothermal interface and

without thermocapillary forces. The bulk meniscus region was solved via a FEM conduction heat transfer

model only. The curvature was assumed to be constant. Walls were constant temperature. It was assumed

that evaporative heat transfer did not take place in the bulk meniscus which effectively decoupled the mi-

cro and macro models. In fact, the truncation surfaces on the bulk meniscus model were designed to be

insulative.

Khrustalev and Faghri [63, 64] built a multiscale numerical model of an evaporating capillary menis-

cus. Their model included “two-dimensional steady-state momentum conservation and energy equations for

both the vapor and liquid phases, and incorporate[d] the existing simplified one-dimensional model of the

evaporating microfilm.” Thermocapillary effects were not considered. The meniscus was considered to be a

constant shape, and the phase change across the interface was modeled using equilibrium mass and energy

conservation.

Kim [65] and Ji et al. [66] both created numerical models of an evaporating capillary that included

fluid flow and thermocapillary effects. Both models also included an evaporative boundary condition via the

Hertz-Knudsen relationship. Heat transfer occurred via a constant wall temperature boundary condition. Ji et

al. only considered a simplified (an unrealistic) rectangular domain. Kim utilized a constant meniscus profile

that was transformed to a rectangular domain for ease of computation using a boundary fitted coordinate

system. It does not appear that Kim considered the velocity at the evaporative surface to be specified through

the evaporative mass flux. Neither studies considered the effects of thin film extended meniscus evaporation

in the micro region.

1.4 Thesis Statement

This research seeks to model the evaporation of high temperature, liquid metal, thin films and thus distin-

guishes itself from previous thin film evaporation studies of more conventional liquids. The novel aspects
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of this research include:

(i) an accurate model of the retarded dispersion force component of the disjoining pressure,

(ii) the incorporation of the electronic component of the disjoining pressure,

(iii) a parametric study of the thin film solution over a range of pore radii, liquid overheats, and system

work functions.

(iv) integration of the extended meniscus thin film model with a CFD model of the bulk evaporating

meniscus to create a comprehensive multiscale model of a liquid metal evaporating capillary, and

(v) an outline of the scope of the general problem in the application of nonlinear stability theory to a

liquid metal evaporating thin film under thermocapillary effects.
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Chapter 2

Extended Meniscus Evaporation Model

2.1 Interfacial Evaporative Mass Flux

The Hertz-Knudsen-Langmuir (HKL) equation [67, p.341] uses kinetic theory to model the net mass flux of

a liquid/vapor phase interface in the intermediate range between equilibrium and free evaporation. For the

case of net evaporation

ṁ
′′

evp = α

(
M

2πR

)1/2
 Plv

T 1/2
lv

−
Pv

T 1/2
v

 ≈ α (
M

2πRTv

)1/2

(Plv − Pv) (2.1)

where Plv is the saturation pressure of the liquid at the liquid/vapor interface at temperature Tlv while Pv is

the pressure of the vapor at temperature Tv. The HKL relationship depends upon several assumptions, e.g.

1. independence of the two molecular fluxes (ρv � ρl),

2. equivalent evaporation and condensation coefficients (αevap = αcond = α),

3. no temperature jump across the interface (Tl,lv = Tv,lv = Tlv),

4. use of an equilibrium molecular distribution function under nonequilibrium conditions,

5. the vapor modeled as an ideal gas (ρv =
PvM
RTv

), and

6. no molecular backscattering near the liquid surface.
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Figure 2.1: Diagrams of the thermodynamic states of the liquid and vapor which drive the evaporation
process. S , L, and V indicate the solid, liquid, and vapor phases respectively. P, v, and T indicate pressure,
specific volume, and temperature respectively.

Schrage [38, pp.34-36] further generalized the HKL theory when he incorporated nonequilibrium molec-

ular distribution with the model of uniform gas motion at a planar phase interface. To a first approximation,

the nonlinearities introduced by the bulk gas velocities can be linearized, and the net evaporative mass flux

can be re-expressed as

ṁ
′′

evp =

(
2α

2 − α

) (
M

2πRTv

)1/2

(Plv − Pv) ,
Pv

Plv
→ 1 (2.2)

which is referred to as the Hertz-Knudsen-Schrage (HKS) equation [67, p.346]. Thus, the net evaporative

mass flux is driven by the the pressure difference across the fluid interface.

The Clapeyron equation characterizes the phase transition between a liquid and vapor. Assuming that

the phase transition takes place at equilibrium and at constant pressure and temperature, then

dP
dT

=
h f g

T∆v
(2.3)

which describes the coexistence curve on a pressure-temperature diagram, such as Figure 2.1. If the final

state can be modeled as an ideal gas, then integration of the above equation produces

ln
(

Pv

Plv

)
=

Mh f g

R

(
1

Tlv
−

1
Tv

)
(2.4a)
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or

ln
(

Plv

Pv

)
=

Mh f g

RTvTlv
(Tlv − Tv) (2.4b)

which is known as the Clausius-Clapeyron equation.

In addition, the Kelvin equation describes the change of vapor pressure during the liquid/vapor phase

change due to van der Waals intermolecular forces

ln
(

Plv

Pv

)
= −∆P

VM,l

RTlv
(2.5)

where ∆P represents the equilibrium pressure difference sustained across the interface between two static

fluids, such as water and air, due to the intermolecular forces. From this relationship, it is evident that

positive van der Waals forces cause Plv < Pv which acts to inhibit evaporation from the interface. The

Augmented Laplace-Young equation relates the van der Waals intermolecular forces as a combination of

capillary and disjoining pressures

∆P = Pv − Pl = γK + Π (2.6)

where K is the mean curvature of the liquid/vapor interface. The concept of a linear combination of the

disjoining and capillary pressures is not new [68] and has been experimentally validated [54].

The mean curvature for a circular pore is given by Philip [69]

K =


1

r
[
1 +

(
dr
dx

)2
]1/2 −

d2r
dx2[

1 +
(

dr
dx

)2
]3/2

 (2.7a)

where the first and second terms represent the circumferential and axial curvatures, respectively. If only

large pore radii are considered, the circumferential curvature may be neglected and the axial curvature may

be modeled in a 2D Cartesian frame of reference

K ≈
d2H
dx2

1 +

(
dH
dx

)2−3/2

(2.7b)
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using the relationship H = R − r. Finally, it is assumed that the slope is small in the thin-film region

(dH/dx ≈ 0) which reduces the curvature to the second derivative of the film thickness

K ≈
d2H
dx2 . (2.7c)

The effects of the Clausius-Clapeyron and Kelvin relationships on the evaporating thin film are combined

by way of Rusanov’s “surface excess convention” [70, pp.22-34]. The Gibbs-Duhem equations for the bulk

liquid and vapor phases are

dPl = sldT + nldµl (2.8a)

and

dPv = svdT + nvdµv . (2.8b)

These two equations may be combined through the Augmented Laplace-Young relationship [39] seen in

Equation (2.6) to give

dµ = −VM,ld(∆P) +
Mh f g

T
dT (2.9)

where (∆n)−1 ≈ VM,l/ρl and dµl = dµv = dµ according to local equilibrium. This can also be written as

d(ln f ) = −
VM,l

RT
dP +

Mh f g

RT 2 dT (2.10)

using the fugacity concept where dµ = RTd(ln f ). The fugacity can be replaced by the vapor pressure for

small changes in the fugacity. Upon integration the above equation produces

Plv − Pv = −
VM,lPv

RTlv
(γK + Π) +

PvVM,lh f g

RTlvTv
(Tlv − Tv) (2.11)

where the natural logarithm is approximated by the first term of its Taylor series. The above equation is

known as an extended Clapeyron equation and was first used by Wayner et al. [39] and later derived by

Wayner [71]. If the overheat is considered small, T 1/2
lv ≈ T 1/2

v and Equations (2.2) and (2.11) may be
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combined to yield

ṁ
′′

evp =

(
2α

2 − α

) (
M

2πRTv

)1/2 [
PvMh f g

RTvTlv
(Tlv − Tv) −

VlPv

RTlv
(γK + Π)

]
(2.12)

which describes the net evaporative mass flux at the liquid/vapor interface as a function of the liquid overheat

(Clausius-Clapeyron effect) and van der Waals intermolecular forces (Kelvin effect).

If the liquid/vapor interface is considered nonisothermal, then the temperature at the interface (Tlv) is a

function of heat transfer through the thin film. The energy equation may be approximated as

d2T
dy2 = 0 (2.13a)

under the assumptions of negligible heat convection, negligible axial heat conduction, and constant wall

temperature (Tw). At the substrate boundary, the temperature must equal the temperature of the wall

T (0) = Tw (2.13b)

while at the liquid/vapor interface, conduction must equal the net evaporative heat flux

−λ
dT
dy

∣∣∣∣∣
y=H

= ṁ
′′

evph f g . (2.13c)

The solution of Equation (2.13a) with the established boundary conditions gives an equation for temperature

through the thin film

T (y) = Tw −

 ṁ
′′

evph f g

λ

 y (2.14)

which, when evaluated at the thin film height H, then yields the temperature at the liquid/vapor interface

Tlv = Tw −

 ṁ
′′

evph f g

λ

 H + Tw . (2.15)

At this point, we may follow Hallinan et al. [43] and simplify our development with additional appro-

priate nondimensional variables

θ = H/H0 (2.16a)
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η = x/x0 (2.16b)

Π∗ = Π/Π0 (2.16c)

ṁ
′′

0 = ρlu0 (2.16d)

ṁ
′′

0 =

(
2α

2 − α

) (
M

2πRTv

)1/2 (
PvMh f g

RTvTlv

)
(Tw − Tv) (2.16e)

Ca = µlu0/γ (2.16f)

x0 = (γH0/Π0)1/2 (2.16g)

Π0 =
Mh f g∆T

VlTv
(2.16h)

∆T0 = Tw − Tv (2.16i)

T ∗ =
Tlv − Tv

Tw − Tv
(2.16j)

κ =
ṁ
′′

evph f g

(λH0)
(2.16k)

where H0 is defined as the adsorbed film thickness and is determined by solving Equation (2.12) with negli-

gible evaporative mass flux and curvature and assuming that Tlv ≈ Tw. Equations (2.12) and (2.15) combined

with the nondimensionalized definitions of Equation (2.16) produce an expression for the nondimensional-

ized evaporative mass flux

Ṁ
′′

=
ṁ
′′

evp

ṁ′′0
= T ∗ − θ(η)′′ − Π∗ (2.17)

where the nondimensional temperature is

T ∗ =
∆T0 + κ

[
θ(η)θ(η)′′ + θ(η)Π∗

]
∆T0 + κθ(η)

. (2.18)

2.2 An Aside: Interfacial Heat Transfer Resistance Concept

Following Kamotani [72], we observe the extended meniscus evaporation model from a heat transfer frame

of reference. Doing so elucidates the role of the disjoining pressure and liquid/vapor interface. The specific
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heat flux is related to the net evaporative mass flux by

q′′ = h f gṁ
′′

evp (2.19)

which, when combined with Equation (2.12) becomes

q′′ = h f g

(
2α

2 − α

) (
M

2πRTv

)1/2 [
ρvh f g

Tlv
(Tlv − Tv) −

ρv

ρl
(Pv − Pl)

]
. (2.20)

If conduction of heat through the thin film is taken into account, the temperature of the liquid/vapor interface

may be represented as a function of the wall temperature

Tlv = Tw −
q′′H
λ

. (2.21)

Upon combination of the previous two equations and considerable rearrangement, and with Tv readily in-

terchanged with Tlv when necessary, Kamotani obtained the following representation of specific heat flux in

the thin film system

q′′ =

Tw − Tv

[
1 +

(Pv−Pl)
ρlh f g

]
RC + RIHT

(2.22)

where RC and RIHT represent heat transfer resistances due to conduction

RC =
H
λ

(2.23)

and interfacial heat transfer

RIHT =

(
2 − α

2α

) (
2πRTv

M

)1/2
 Tv

ρvh2
f g

 . (2.24)

In this way, we can clearly see that the interfacial evaporative process serves to govern the heat transfer pro-

cess, especially for the case of a liquid metal working fluid for which the conductive resistance is negligible.

Furthermore, the presence of curvature and disjoining pressures are seen to reduce heat transfer in the thin

film system as if the vapor temperature were increased.
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2.3 Fluid Flow

The geometry and scale of the thin film region validate an assumption of incompressible, laminar, parallel,

1D liquid flow. We additionally assume a steady-state source of fluid exists outside the analyzed region such

that the meniscus shape remains constant. Lubrication theory then models fluid flow in the thin film

µl
d2u
dy2 =

dPl

dx
(2.25a)

with a no-slip boundary condition at the substrate

u(0) = 0 (2.25b)

and a negligible surface tension gradient at the liquid-vapor interface

du(H)
dy

= 0 . (2.25c)

The one dimensional, second-order differential equation can be solved by integrating twice and applying the

boundary conditions to yield

u(y) =
1
µl

dPl

dx

(
y2

2
− Hy

)
(2.26)

which represents the liquid velocity profile as a function of the axial pressure gradient in the liquid. Using

the velocity profile, the total thin film mass flow rate per unit width is determined to be

Γ =
ρl

µl

dPl

dx

H∫
y=0

(
y2

2
− Hy

)
dy =

−H3

3νl

dPl

dx
=
−H3

0

3νlx0
θ(η)3 dPl

dη
. (2.27)

If we define a nondimensional mass flow rate Γ∗ = Γ
x0νl

Π0H3
0

and assume a constant vapor pressure across the

thin film interface such that dPv/dη = 0, then Equations (2.6), (2.7), and (2.16) may be combined with

Equation (2.27) to yield

Γ∗ =
1
3
θ(η)3θ(η)′′′ +

1
3
θ(η)3(Π∗)′ . (2.28)

16



2.4 Mass Balance

Conservation of mass along the thin film requires that the reduction in the liquid flow rate equal the net

evaporative mass flux. Thus
dΓ

dx
= −ṁ

′′

evp (2.29a)

or, in nondimensional form
dΓ∗

dη
= −

Ca(
H0Π0
γ

)2 Ṁ
′′

. (2.29b)

Substitution of Equations (2.17) and (2.28) into (2.29b) yields an equation that models the steady extended

meniscus evaporation as a nonlinear, inhomogeneous, fourth-order, ordinary differential equation (ODE)

[
θ(η)3θ(η)′′′ + θ(η)3Π∗(θ)′

]′
=
−3 Ca(
H0Π0
γ

)2

[
T ∗ − θ(η)′′ − Π∗(θ)

]
, η ∈ [0,∞) (2.30a)

where η = 0 represents the adsorbed film and η = ∞ represents the bulk meniscus region. The boundary

conditions chosen to describe the system are

θ(0) = a1 (2.30b)

θ′(0) = a2 (2.30c)

θ′′(∞) = a3 (2.30d)

θ′′′(0) = 0 . (2.30e)

The initial perturbations of the independent variable and its first derivative are necessary to avoid a trivial so-

lution and do correspond to physical realities as described in Hallinan et al. [43] (albeit somewhat tenuously)

where a1 = 1.030 and a2 = 0.0004. The boundary condition on the second derivative of the independent

variable is a3 = K where K is the curvature of the bulk meniscus region. Thus, in practice, η = ∞ is taken

to be a point in the far-field, lmax, where the second derivative approaches an asymptotic value that is the

reciprocal of the pore radius (K = 1/R).
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Chapter 3

Disjoining Pressure Development

3.1 Dispersion Force Component

3.1.1 General Theory

The Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP) General Theory of Van der Waals Forces [51] describes

the dispersion force per unit area between two smooth media with nonpolluted surfaces (1 and 2) while

separated by a gap (H) that is filled with a third medium (3) as illustrated in Figure 3.1. The dispersion

force created by the interactions of the long range atomic forces of the three media is calculated in terms of

macroscopic, frequency-dependent, dielectric permittivities

−ΠA(H) =
kBT
πc3

∞∑′

n=0

ε3/2
3 ω3

n

×

∞∫
p=1

p2


[
(s1 + p)(s2 + p)
(s1 − p)(s2 − p)

exp
(
2pωnH

c
√
ε3

)
− 1

]−1

+

[
(s1 + pε1/ε3)(s2 + pε2/ε3)
(s1 − pε1/ε3)(s2 − pε2/ε3)

exp
(
2pωnH

c
√
ε3

)
− 1

]−1
 dp

(3.1a)
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Figure 3.1: A comparison of the retarded (DLP theory) and nonretarded (Hamaker approximation) London
dispersion component of the disjoining pressure for the case of type 304 stainless steel (Medium 1) and vapor
(Medium 2) interacting across liquid sodium (Medium 3). The retarded disjoining pressure is calculated
from Equation (3.2) while the nonretarded disjoining pressure is calculated from Equation (3.1).

where

s1 =

√
ε1/ε3 − 1 + p2 (3.1b)

s2 =

√
ε2/ε3 − 1 + p2 (3.1c)

ωn = 2πnkBT/~ (3.1d)

ε = ε(iωn) . (3.1e)

The prime notation on the summation symbol in Equation (3.1a) indicates the term with n = 0 is divided by

half. The disjoining pressure of the liquid (3) is interpreted as the negative of the dispersion force per unit

area between the planar surfaces (1 and 2). For the case of an evaporating thin film, medium 1 represents

the solid surface (chosen to be type 304 stainless steel with a smooth, nonpolluted surface), medium 2

symbolizes an inert gas at standard atmospheric pressure (hereafter approximated by ε2 = 1), and medium

3 corresponds to the liquid (chosen to be pure, perfectly wetting sodium). Thus, when the dispersion force

is positive, media 1 and 2 are attractive, the disjoining pressure is negative, and the thin film is unstable.

Conversely, when the dispersion force is negative, media 1 and 2 are repulsive, the disjoining pressure is

positive, and the thin film is stable and spreading.
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3.1.2 Hamaker Approximation

The full DLP theory may be simplified if temperature has little effect on the interactions between the media

(H � c~/kBT ) and if the film thicknesses are small compared to the absorption wavelength of the par-

ticipating media (H � o1,2,3). Under these restrictions, the disjoining pressure approaches an asymptotic

relationship

ΠA(δ) ≈
A

6πH3 =
Ā

H3 (3.2a)

where A stands for the macroscopic analogue to the Hamaker constant

A =
3~
4π

∞∫
ω=ω1

(
ε1(iω) − ε3(iω)
ε1(iω) + ε3(iω)

) (
ε2(iω) − ε3(iω)
ε2(iω) + ε3(iω)

)
dω . (3.2b)

The Hamaker approximation of the dispersion force is said to be nonretarded since any retardation effects

in the time delay in the communication of electric fields between atoms may be neglected.

As stated earlier, the sign convention used with the Hamaker approximation is quite varied in the liter-

ature. Table 3.1 provides a select summary of the chronological variation in the terminology across several

authors. The present work assumes the convention of a negative Hamaker constant resulting in a posi-

tive disjoining pressure for the case of a wetting film. It should be noted that Chebaro and Hallinan [41]

and Chebaro et al. [42] used an incorrect relationship to calculate the Hamaker constant. They quoted an

approximation derived by Israelachvili [52, p.147] to describe two identical metals interacting across a vac-

uum. This incorrect relationship was utilized and mistakenly treated as a positive disjoining pressure to

fortuitously result in stable, thin film solutions.

3.1.3 Complex Dielectric Permittivities

A frequency-dependent electromagnetic field affects the complex dielectric permittivity of a given metal

through the phenomenon of electromagnetic dispersion. In 1902, Drüde [73, pp.396-399] proposed an em-

pirical model of electromagnetic dispersion that is especially suitable for the alkali metals. Drüde assumed

the valence electrons in a metal could be modeled as simple harmonic oscillators. The valence electrons are

considered free and unbound since they are subject to inertia and dampening forces but not a restoring force.
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Table 3.1: A brief literature survey of the sign convention used for the Hamaker approximation of the
dispersion force component of the disjoining pressure for the case of perfectly wetting thin films.

Author(s) Date Disjoining Hamaker Hamaker
Pressure Relationship Constant

Wayner et al. [39] 1976 Pv − Pl = −Π Π ≈ − Ā
H3 Ā > 0

Wayner [53] 1989 Pv − Pl = − Ā
H3 ? Ā < 0

Wayner & Schonberg [36] 1990 Pv − Pl = γK + Π Π ≈ − Ā
H3 Ā < 0

Schonberg & Wayner [28] 1991 Pv − Pl = Π Π ≈ − Ā
H3 Ā < 0

Wayner [71] 1991 Pv − Pl = Π Π ≈ − Ā
H3 ?

DasGupta et al. [31] 1993a Pv − Pl = γK − Π Π ≈ Ā
H3 Ā < 0

DasGupta et al. [32] 1993b Pv − Pl = γK + Π Π ≈ − Ā
H3 Ā < 0

DasGupta et al. [33] 1994 Pv − Pl = γK − Π Π ≈ Ā
H3 Ā < 0

Schonberg et al. [34] 1995 Pv − Pl = γK + Π Π ≈ − Ā
H3 Ā < 0

Wayner [55] 1999 Pv − Pl = γK + Π Π ≈ − Ā
H3 Ā < 0

Wee et al. [22] 2005 Pv − Pl = γK + Π Π ≈ Ā
H3 Ā > 0

As a result, the complex dielectric permittivity is

ε(ω) = ε′(ω) + iε′′(ω) (3.3a)

ε′(ω) = 1 −
ω2

eτ
2

1 + ω2τ2 (3.3b)

ε′′(ω) =
ω2

eτ

ω(1 + ω2τ2)
(3.3c)

where τ represents the relaxation time, which is related to the DC conductivity via the Lorentz-Sommerfeld

relation [74]

τ = meσ0/Neq2
e , (3.3d)

and ωe symbolizes the plasma frequency of the free electron gas

ωe =
(
Neq2

e/ε0me
)1/2

. (3.3e)

21



Hodgson [75, pp.332-337] provides a detailed derivation and explanation of the pertinent simplifying as-

sumptions. Above all, it should be noted that this development ignores the magnetic permeability in accor-

dance with Maxwell’s relation (i.e. ε(ω) ≈ n2(ω)). Inagaki et al. [76] found good correlation between the

Drüde Theory and experimental results for liquid Sodium at 1200C at lower frequencies of excitation. The

discrepancy at higher frequencies arises from the assumption that the dielectric permittivity is independent

of the wavenumber of the incoming electromagnetic wave [77]. It is not modeled in this case for the sake of

simplicity.

In reality, electrons experience influence from the positive ions in the metal as well as other electrons.

The electron mass, me, or free electron density, Ne, are multiplied by an empirical “fudge factor” in an effort

to accommodate these influences and make this extremely simplified model more closely resemble exper-

imental data. The presence of a superscript ∗ indicates the use of an effective value. For liquid Sodium,

Shimoji [78, p.288] reported an effective valence electron number density of N∗e/Ne = 0.85 at 1000C. In-

agaki et al. [76] reported an effective mass m∗e/me = 1.17 at 1200C. These empirical terms are essentially

equivalent since N∗e/Ne = me/m∗e. In the absence of any further experimental results, we assume this value

holds at the melting point of liquid sodium, as well. The plasma frequency for liquid sodium at the melt-

ing point is calculated to be ve,3 = 1.0675 × 1015Hz using Equation (3.3e) with the effective mass and the

properties listed in Table 3.2.

The solid substrate is chosen to be AISI type 304 stainless steel (SS304). To the author’s best knowledge,

no information exists regarding effective electron masses, relaxation times, or correlation with the Drüde

theory for this alloy. In the absence of such information, the simplified Drüde model is used which assumes

no dampening forces

ε(ω) = 1 −
(
ωe

ω

)2
(3.4)

where ωe is the plasma frequency of the electron gas as given in Equation (3.3e). The composition is ap-

proximated as Fe (71%), Cr (19%), Ni (9%) yielding an atomic weight of 54.81 with 1.79 valence electrons

per molecule and a density of 8000 kg/m3. These values yield a plasma frequency for solid SS304 of

ve,1 = 3.5615 × 1015Hz using Equation (3.3e).

It is important to note that the DLP equation requires the three media to be modeled in terms of their

respective dielectric permittivities for imaginary frequencies. This is related to the imaginary part of the
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Table 3.2: Fluidic and thermodynamic properties of liquid sodium at atmospheric pressure. The evaporation
coefficient of sodium was reported by Takens et al [79]. The resistivity was extrapolated from curve fits
summarized by Wilson [80]. All other properties were obtained from the Argonne National Laboratory
International Nuclear Safety Center Material Properties Database as reported by Fink and Leibowitz [81].

Property Symbol Units Value
Vapor Temperature Tv (K) 1154.7
Molecular Weight M (kg/mol) 0.02299
Density ρ (kg/m3) 742.86
Dynamic Viscosity µ (N · s/m2) 1.5856E-04
Surface Tension γ (N/m) 0.1199
dγ/dT k (N/m · K) 0.0001
Thermal Conductivity λ (W/m · K) 48.6562
Latent Heat of Vaporization ∆h f g (KJ/kg) 3881.5
Vapor Pressure Pv (MPa) 0.10133
Conductivity σ (S/m) 25.3605E+05
Evaporation Coefficient α 1.0

dielectric permittivity for real frequencies through the relationship

ε(iω) = 1 +
2
π

∞∫
x=0

xε′′(x)
x2 + ω2 dx (3.5)

which was derived from the Kramers-Kronig relation using contour integrals [82, p.262]. Here, the imagi-

nary part of the complex dielectric permittivity “is always positive and determines the dissipation of energy

in an electromagnetic wave propagated in the medium” [51]. For liquid sodium, substitution of Equation

(3.3c) into Equation (3.5) yields

ε3(iω) = 1 +
ω2

e,3τ(1 − ωτ)

ω(1 − ω2τ2)
. (3.6)

For the solid stainless steel substrate, Equation (3.4) does not contain a complex part. Thus, the dielectric

permittivity for imaginary frequencies is

ε1(iω) = 1 +

(ωe,1

ω

)2
(3.7)

using the substitution of iω for ω. For the sodium vapor, the dielectric permittivity for imaginary frequencies
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is simply unity (i.e. ε2(iω) = 1).

Figure 3.1 plots the retarded dispersion force from Equation (3.1) and nonretarded dispersion force from

Equation (3.2) for a liquid sodium thin film on a type 304 stainless steel plate over a range of film thicknesses

using Equations (3.6) and (3.7). Equation (3.1) was solved numerically using adaptive Lobatto quadrature

in the MATLAB R© programming environment. The summation was carried out until a relative convergence

of 1 × 10−6 was obtained. The Hamaker constant, given in Equation (3.2), was solved numerically as well

using the MapleTM computer algebra environment to yield the value A = −1.0199 × 10−19J. The program

codes are listed in Appendix A for reference.

From Figure 3.1, it is evident that, for expected thin film thicknesses, the liquid sodium system disper-

sion force cannot be modeled by the simplified Hamaker approximation. This is to be expected since the

absorption spectra and elevated temperature of a liquid metal thin film system prohibit any simplifications

to the DLP dispersion force model. Instead, the DLP theory in its full, retarded form must be used. To the

author’s knowledge, this has not been attempted by any research groups to date.

3.1.4 Curve Fit

A variety of numerical methods could be applied to incorporate the full, retarded form of the DLP dispersion

force model into the extended meniscus thin film model. This research expresses the dispersion force curve

of Equation (3.1) with a simpler function via cubic spline interpolation. Cubic spline interpolation fulfills the

requirements of modeling over many orders of magnitude and second-order differentiability. It furthermore

presents a piecewise continuous curve that enables the use of continuous solution schemes to the thin film

equation, such as a projection method.

Consider a set of discrete data points [xi, yi] where i = 0, 1, 2, ...,N that belong to some function y = f (x).

This discrete set consists of N + 1 points with N intervals in between. Cubic spline interpolation furnishes

N cubic equations to model or interpolate in between the known data points. Each segment has a respective

cubic spline equation with four coefficients as

S i(x) = c1,i(x − xi)3 + c2,i(x − xi)2 + c3,i(x − xi) + c4,i, x ∈ [xi, xi+1] . (3.8a)
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Therefore, the total spline model contains 4N unknowns. Continuity through the second derivative,

S i(xi) = yi (3.8b)

S i(xi+1) = yi+1 (3.8c)

S ′i−1(xi) = S ′i (xi) (3.8d)

S ′′i−1(xi) = S ′′i (xi) (3.8e)

provides 4N−2 equations. Either the first or second derivatives at the endpoints supply the final 2 constrain-

ing equations.

A cubic spline interpolation model for the retarded dispersion force is bounded to the left by the thickness

of the adsorbed film region and to the right by computer-limited round-off errors. Experimentation indicates

a good model with negligible error is created when the retarded dispersion force curve for a domain 10nm ≤

H ≤ 771nm is split into 75 piecewise continuous cubic splines described by

ΠA,i(H) = c1,i(H − Hi)3 + c2,i(H − Hi)2 + c3,i(H − Hi) + c4,i, H ∈ [Hi,Hi+1], i = 1, 2, . . . , 75 . (3.9a)

The final two constraining equations are specified in the second derivative

Π′′A,1(H1) =
2A
πH5

0

(3.9b)

Π′′A,75(H75) = 0 (3.9c)

where asymptotic analysis at the limit of a thin film gives the Hamaker approximation which can be used for

the left endpoint and the right endpoint is a so-called ‘natural’ spline. The dispersion force and its derivatives

are treated as negligible for film thicknesses H > 771nm. Figure 3.2 displays the results.

3.2 Electronic Component

Statistical quantum mechanics successfully models the thermodynamic and electrical properties of the

metallic state of matter. The outermost valence electron in a metal can be well approximated as a free
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Figure 3.2: The cubic spline fit of the DLP model of the dispersion force.

electron as the presence of other electrons serves to shield it from the effects of positive ions. According to

quantum mechanics, the valence electron of a metallic atom is restricted to very discrete energy levels. As

more and more metallic atoms are brought together, however, the wave functions of the valence electrons

overlap and the discrete energy levels broaden into apparent bands. The approximation of a continuous en-

ergy band of valence electrons in a metal facilitates the theoretical calculations of the desirable macroscopic

thermodynamic and electrical properties.

We first consider a bulk, alkali metal. The alkali metals are monovalent and have low electronegativities.

It is thus reasonable to assume that each atom contributes one free electron to the system. If the electrons are

modeled as noninteracting particles, then Fermi-Dirac statistics can be used to model the resulting electron

gas in the metal. At the limit of absolute zero temperature, a Fermi gas of free electrons will fill all available

energy levels from the ground state up to the so-called Fermi energy, E0
F . Considering the translational

energy states along with electron spin degeneracy in a continuous energy band, we model the free electron

gas density of states as

ρe(E) =
meV
π~2H

∞∫
n=0

Θ(E − En)dn (3.10)

where Θ(x) represents the Heaviside step function. The energy spectrum of the electrons corresponds to that
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of particles in an infinitely high potential well,

En =
π2~2

2meH2 n2 (3.11)

thus the electrons may not leave the metal system. The value of the Fermi energy is calculated from the free

electron gas density of states

Ne =

E0
F∫

E=0

ρe(E)dE (3.12)

which results in

E0
F = (3π2)2/3

(
~2

2me

) (Ne

V

)2/3
. (3.13)

The Fermi energy is also the chemical potential of the electron system at absolute zero. Thus, the thermo-

dynamic “pressure” caused by the electrons can be described by the derivative of the Gibbs thermodynamic

potential per unit surface area with respect to the system thickness

P(H) = −

(
∂G/SA
∂H

)
T

(3.14)

and, for V = SA · H, yields

P = −
Ne

V
E0

F (3.15)

which, for equilibrium to exist, must be balanced by the“pressure” introduced by the potential of the positive

ion core.

As an aside, the assumption of absolute zero temperature seems quite inapplicable to a liquid metal

evaporation system. The Fermi energy, however, proves quite insensitive to temperature. A procedure to

calculate the correction to the Fermi energy for nonzero temperatures is outlined by Coutts [83, pp.30-32]

and results in a series expansion of the form

EF = E0
F

1 − π2

12

kBT
E0

F

2

−
π4

80

kBT
E0

F

4

+ . . .

 . (3.16)

For a metal, the Fermi energy is of the order of magnitude 105 × kB which justifies the use of the absolute

zero limiting case even at the boiling point of an alkali metal.
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For small dimensions, such as in thin metallic films, the finiteness of the physical domain invalidates

the assumption of a continuous electron energy band [58]. Derjaguin, Leonov, and Roldughin were the first

to consider this effect in liquid metal thin films [48]. They described the electron gas density of states in a

discrete form

ρe(E) =
meV
π2~2H

∑
n

[
πΘ(E − En) + tan−1

(
ζ

En − E

)]
(3.17)

where the last term accounts for a widening of the energy levels due to electron-electron interactions,

electron-ion interactions, and impurities. They neglected higher-order terms to obtain a solution for a

new Fermi energy via Equation (3.12). Now the pressure induced by the free electron gas in the thin

film as defined by Equation (3.14) leads to the bulk pressure component seen in Equation (3.15) along

with monotonous and exponentially decaying oscillatory contributions due to the discrete nature of the thin

film. The monotonous pressure contribution is manifested in the thin film system as an excess or disjoining

pressure,

ΠB(H) ≈
B

H2 ; B =
~2

2me

Ne

V
3π2

16
(3.18)

which is proportional to the square of the film thickness.

Shortly thereafter, Derjaguin and Roldughin [57] derived the electron gas density of state for a more

complicated case where surface effects are considered. The surface effects are manifested in the boundary

conditions for the electronic wave function at the top and bottom boundaries of the liquid metal thin film.

Following the same procedure as outlined above and assuming symmetrical boundary conditions, Derjaguin

and Roldughin derived a more general form of the electronic component of the disjoining pressure

ΠB(H) ≈
B

H2 ; B =
~2

2m
N
V
χ(κn) (3.19)

where the parameter, χ, reflects a dependence upon the boundary conditions of the system. Roldughin [59]

described κn as “the distance by which electrons are ‘allowed’ to go out into the external environment.” In

so doing, they reduce the energy density of the fermion gas and lower the electronic disjoining pressure. As

shown below, κn is closely related to the work function, W, or energy needed to move an electron from the

liquid metal to the solid surface

χ(κn) = Σ1Σ2 −
1
4

Σ2
1 (3.20a)
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Figure 3.3: Dependence of χ(κn) on the work function related parameter, κn, as related via Equation (3.20).
This function determines the boundary condition for Derjaguin’s electronic component of the disjoining
pressure.

where

Σ1 =
π

2
− 2

[
tan−1(κn) + κn − κ

2
ntan−1

(
1
κn

)]
(3.20b)

Σ2 =
π

2
− 2tan−1(κn) (3.20c)

κn ≈

√
1 +

W
EF

. (3.20d)

Figure 3.3 displays this function in graphical form. Depending on the work function of the system, the

electronic disjoining pressure can vary in intensity and even become negative, resulting in an unstable film.

The minimum value χ = −0.066873 occurs at κn = 0.844664. Also, as κn approaches the limits of zero

and infinity, the adjusting parameter χ approaches the same limit of 3π2/16. The infinite limit represents the

simplified assumption of an infinitely deep potential pit at the liquid/surface boundary that prevents electrons

from emerging from the film as seen in Equation (3.18).

Knowledge of the proper work function for a given system proves intractable at the present as this

boundary condition depends heavily on a quantum mechanical description of the system that is intimately

tied to the surface conditions between the solid and liquid. Instead, we seek to define the range of values

which the work function might take in a liquid sodium thin film system. The constant part of B is calculated
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from Equation (3.19) at the melting point of liquid sodium.

B =
~2

2me

Ne

V
χ(κn) = 1.1873 × 10−10 · χ(κn) (3.21)

The boundary condition parameter will vary within a set range (−0.066873 ≤ χ(κn) ≤ 1.850551) as shown

in Figure 3.3. This yields a range of possible values for B (−6.837223×10−12 N ≤ B ≤ 1.892039×10−10 N),

which a parametric study should include.
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Chapter 4

Numerical Analysis Techniques

4.1 Runge-Kutta Method

Chebaro and Hallinan [41] and Chebaro et al. [42] solved the thin film equation with an explicit Runge-

Kutta numerical solution procedure. The one far-field boundary condition, seen in Equation (2.30d), is met

with a shooting method. Since negligible curvature exists in the interline region, the governing equation

reduces to a second-order ODE that is solved with slight perturbations in the independent variable and its

first derivative. The endpoints of this solution then become the boundary conditions for the full, fourth-order

ODE. The missing far-field boundary condition is satisfied with the shooting method whereby the second

derivative near-field boundary condition is iterated upon until the solution approaches an asymptotic value

in the far-field equal to the curvature of the bulk meniscus (the inverse of a simulated pore radius).

4.2 Orthogonal Collocation Method

Orthogonal collocation [84], a subset of the weighted residual method, provides a more favorable numerical

solution scheme for the problem at hand in that it:

(i) is a fully implicit form of the Runge-Kutta method [85, 86] and thereby eliminates the need for the

shooting method,

(ii) results in a continuous approximation to the solution (consisting of a series expansion of a basis
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function operated on by a collocation coefficient) that can later be analytically manipulated for post-

processing needs,

(iii) readily handles the possible stiffness problems associated with the high degrees of nonlinearity inher-

ent in the problem, and

(iv) permits incorporation of the cubic spline interpolation model of the dispersion force.

First we map the domain from η ∈ [0, lmax] to ξ ∈ [−1, 1] which later enables easy implementation

of the Chebyshev polynomial basis function. A linear transformation accomplishes this task by letting

θ̂(ξ) = θ (φ(1 + ξ)) where φ = lmax/2. After applying the chain rule, Equation (2.30) can be rewritten as

3
φ4 θ̂(ξ)

2θ̂(ξ)′θ̂(ξ)′′′ +
1
φ4 θ̂(ξ)

3θ̂(ξ)′′′′ +
3
φ
θ̂(ξ)2θ̂(ξ)′Π∗(θ̂)′ + θ̂(ξ)3Π∗(θ̂)′′

+
3Ca(

H0Π0
γ

)2

[
T ∗ −

1
φ2 θ̂(ξ)

′′ − Π∗(θ̂)
]

= 0, ξ ∈ [−1, 1] (4.1a)

where

θ̂(−1) = a1 (4.1b)

θ̂′(−1) = φa2 (4.1c)

θ̂′′(1) = φ2a3 (4.1d)

θ̂′′′(−1) = 0 (4.1e)

which is amenable to the desired numerical solution scheme.

The disjoining pressure is treated as a linear combination of the dispersion force and electronic compo-

nents. Thus, Equations (3.9) and (3.19) are mapped into the new Chebyshev polynomial friendly domain
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and added to yield

Π∗(θ̂) =
ΠA,i(θ̂)

Π0
+

ΠB(θ̂)
Π0

=
c1,iH3

0

Π0
(θ̂ − θ̂i)3 +

c2,iH2
0

Π0
(θ̂ − θ̂i)2 +

c3,iH0

Π0
(θ̂ − θ̂i) +

c4,i

Π0

+
Bχ(κn)
H2

0Π0

1
θ̂2
,

θ̂ ∈ [θ̂i, θ̂i+1], i = 1, 2, . . . , 75 ,

(4.1f)

which consists of 75 different equations due to the cubic spline interpolation of the dispersion force.

With the problem defined in a Chebyshev polynomial-friendly domain, we seek an analytical solution

using the Ansatz

θ̂(ξ) =

∞∑
m=0

rmTm(ξ), ξ ∈ (−1, 1) (4.2)

where {Tm(ξ)}∞m=0 represents Chebyshev polynomials of the first kind. These were chosen over monomials

as an othogonal basis set due to their demonstrated ability to remain numerically independent at higher

orders [84]. Chebyshev polynomials of the first kind [87, 88] are given with the recursive relationship

T0(ξ) = 1 (4.3)

T1(ξ) = ξ (4.4)

Tm+1(ξ) = 2ξTm(ξ) − Tm−1(ξ) (4.5)

and form an orthogonal basis set per
1∫

ξ=−1

Tm(ξ)Tn(ξ)dξ√
1 − ξ2

(4.6)

where w(x) = 1/
√

1 − ξ2 is the weight function. Thus, the need to utilize the computational domain ξ ∈

(−1, 1) is realized.

The approximate analytical solution is obtained by truncating the infinite series of the Ansatz to N + 3

terms such that

θ̂(ξ) ≈ Θ̂N+3(ξ) =

N+3∑
m=0

rmTm(ξ), ξ ∈ (−1, 1) . (4.7)
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The first four terms in the expansion of Equation (4.7) are obtained explicitly by enforcing the four bound-

ary conditions specified in Equation (4.1). Like terms are gathered, the summation is re-indexed, and we

formally present the approximate analytical solution as a linear combination

θ̂(ξ) ≈ θ̂N(ξ) = Ψ̂(ξ) +

N∑
k=1

qN
k Ψk(ξ), ξ ∈ [−1, 1] (4.8a)

where

Ψ̂(ξ) = a1 + φ(ξ + 1)a2 + φ2
(
ξ2

2
+ ξ +

1
2

)
a3 (4.8b)

satisfies the inhomogeneous, linear, boundary conditions while

Ψ(ξ) = Tk(ξ) − Tk(−1) − (ξ + 1)T ′k(−1)

−

(
ξ2

2
+ ξ +

1
2

)
T ′′k (1) +

1
6

(
−ξ3 + 3ξ2 + 9ξ + 5

)
T ′′′k (−1)

(4.8c)

satisfies the original problem statement with homogeneous boundary conditions. This representation uses a

reformulated subscript such that m = k + 3. Thus the k represents N integers and the reason for the earlier

truncation to N +3 terms becomes clear. Equations for the derivatives of the approximate analytical solution

are found by differentiating Equation (4.8).

Since the series truncation produces an approximate analytical solution, Equation (4.8) will not fully

satisfy Equation (4.1). Instead, we introduce the local residual function RN
(
θ̂N(ξ)

)
to satisfy the problem

statement such that

RN
(
θ̂N(ξ)

)
+ M[θ̂N(ξ)] + g = 0, ξ ∈ [−1, 1] . (4.9)

where M[·] indicates a nonlinear ODE operator and g indicates forcing data as a representation of Equation

(4.1). The definition of the residual function becomes

RN
(
θ̂N(ξ)

)
= −M[θ̂N(ξ)] − g, ξ ∈ [−1, 1] . (4.10)
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The collocation method minimizes the local residual function and determines the expansion coefficients{
qN

k

}N

k=1
by way of the Sifting property [89]

〈
RN

(
θ̂N(ξ)

)
, δ(ξ − ξ j)

〉
1

=
〈
−M[θ̂N(ξ)] − g, δ(ξ − ξ j)

〉
1

= 0, j = 1, 2, 3, . . . ,N (4.11a)

where the brackets follow Dirac’s notation [90, pp.18-22] and denote an inner product of the residual func-

tion with a Dirac delta test function with unity weight. As a result, the residual function is evaluated at each

of the collocation points to produce a series of algebraic equations

RN
(
θ̂N(ξ j)

)
= 0 (4.11b)

or

M[θ̂N(ξ j)] + g = 0 (4.11c)

where the collocation points are defined by the standard Chebyshev-Gauss-Lobatto open rule formula [91]

ξ j = cos
(
2 j − 1

2N
π

)
, j = 1, 2, . . . ,N . (4.12)

The nonlinearities in the residual operator M[·] must be treated before we employ a linear equation solver

to obtain the collocation coefficients
{
qN

k

}N

k=1
.

4.3 Spatial Convergence Accuracy

Spatial convergence is analyzed a posteriori by integrating the approximate analytical solution over the

domain of interest. Thus,

1∫
ξ=−1

θ̂N(ξ)dξ =

1∫
ξ=−1

Ψ̂(ξ)dξ +

N∑
k=1

qN
k

1∫
ξ=−1

Ψk(ξ)dξ, ξ ∈ [−1, 1] (4.13a)

where
1∫

ξ=−1

Ψ̂(ξ)dξ = 2a1 + 2φa2 +
4
3
φ2a3 (4.13b)
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1∫
ξ=−1

Ψk(ξ)dξ =

1∫
ξ=−1

Tk(ξ)dξ − 2Tk(−1) − 2T ′k(−1) −
5
3

T ′′k (1) + 2T ′′′k (−1) (4.13c)

and
1∫

ξ=−1

Tk(ξ)dξ =


0 if k = odd,

−2
(k+1)(k−1) if k = even .

(4.13d)

To observe spatial convergence, we increment the number of terms N in the approximate analytical solution,

integrate the solution over the domain space using Equation (4.13), and observe the relative error between

successive increments.

4.4 Nonlinear Solver: Newton-Raphson Method

The method of orthogonal collocation delivers a set of simultaneous nonlinear equations to solve. The final

step towards a solution linearizes these equations for solution with common linear matrix solution routines.

First, we represent the residual function as a function of the unknown collocation coefficients

f j

({
qN

k

}N

k=1

)
= RN

(
θ̂N(ξ j)

)
= 0 (4.14)

which can be expanded in a linear, multivariable Taylor series polynomial about the roots [84]

f j

({
qN

k

}N

k=1

)
= 0 ≈ f j

({
q̂N

k

}N

k=1

)
+
∂ f j

∂cN
1

({
qN

k

}N

k=1

)∣∣∣∣∣∣∣
{q̂N

k }
N
k=1

(qN
1 − q̂N

1 )

+
∂ f j

∂cN
2

({
qN

k

}N

k=1

)∣∣∣∣∣∣∣
{q̂N

k }
N
k=1

(qN
2 − q̂N

2 )

+ ...

+
∂ f j

∂cN
N

({
qN

k

}N

k=1

)∣∣∣∣∣∣∣
{q̂N

k }
N
k=1

(qN
N − q̂N

N)

+ H.O.T., j = 1, 2, . . . ,N

(4.15)
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where it is understood that the set
{
qN

k

}N

k=1
represents the unknown being resolved at the fixed iterate p and

that the set
{
q̂N

k

}N

k=1
contains known values obtained from the previous iterate, p−1. Here, H.O.T. represents

higher-order terms. The first-order terms of the Taylor series creates a linear matrix equation at each iterate

p, namely

Jq = −F (4.16a)

where q =
[
(qN

1 − q̂N
1 ), (qN

2 − q̂N
2 ), . . . , (qN

N − q̂N
N)

]T
contains the unknown collocation coefficients of interest,

F =

[
f1

({
q̂N

k

}N

k=1

)
, f2

({
q̂N

k

}N

k=1

)
, . . . , fN

({
q̂N

k

}N

k=1

)]T
is a known forcing vector and J represents the Jacobian

matrix whose terms are given by

J jm =
∂ f j

∂cN
m

({
qN

k

}N

k=1

)∣∣∣∣∣∣
{q̂N

k }
N
k=1

,

j = 1, 2, . . . ,N, m = 1, 2, . . . ,N .

(4.16b)

4.5 Iterative Convergence Accuracy

The L2 norm of the residual measures the iterative convergence accuracy of successive solutions, namely

Q = ‖RN‖2 =
√

(Jq + F) · (Jq + F) . (4.17)

An end to the iterative solution process is defined once the relative error between successive residual norms

falls below a desired tolerance threshold of 1 × 10−8.

4.6 Nonlinear Solver: Levenberg-Marquardt Method

The stiffness associated with a highly non-linear ODE can cause the Newton-Raphson approach to flounder

as the Jacobian becomes poorly conditioned. In such a case the method of steepest descent can be used,

albeit with extremely slow convergence. The Levenberg-Marquardt method [92, 93, pp.202-204] performs

an optimum interpolation between the Newton-Raphson method and the method of steepest descent (or

gradient) method

(G + tI)q = −∇Q (4.18)
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where G = 2JT J, t is a scalar step-size parameter, I is the identity matrix, and ∇Q = −2JT F. When

t = 0, Equation (4.18) represents the Newton-Raphson method of Equation (4.16). On the other hand, when

t → ∞, Equation (4.18) resembles the method of steepest descent. The solution procedure to obtain the set

of collocation coefficients is then

(i) initially guess q̄ = {0},

(ii) compute Q(p) using Equation (4.17),

(iii) pick an arbitrary t (e.g., t = 0.001),

(iv) † solve Equation (4.18),

(v) compute new Q(p+1) using Equation (4.17),

(vi) if Q(p+1) ≥ Q(p) then let t = 10t and go to †,

(vii) else, if Q(p+1) < Q(p) then let t = t/10 and go to †,

(viii) stop when Q(p+1) < Q(p) and Q(p+1) < tol.
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Chapter 5

Bulk Meniscus Modeling

5.1 Finite Element CFD Model

This research distinguishes itself from previous works as it models multiscale liquid metal capillary evap-

oration with a nonisothermal interface and non-equilibrium meniscus evaporation. The continuity and mo-

mentum equations for the bulk domain in cylindrical coordinates are

1
r
∂

∂r
(ru) +

∂v
∂z

= 0 (5.1a)

ρ

(
u
∂u
∂r

+ v
∂u
∂z

)
= −

∂p
∂r

+ µ

[
1
r
∂

∂r

(
r
∂u
∂r

)
+
∂2u
∂z2 −

u
r2

]
(5.1b)

ρ

(
u
∂v
∂r

+ v
∂v
∂z

)
= −

∂p
∂z

+ µ

[
1
r
∂

∂r

(
r
∂v
∂r

)
+
∂2v
∂z2

]
(5.1c)

for an incompressible fluid with constant density and viscosity. Buoyancy forces are considered to be neg-

ligible for the micro-geometries to be considered in this research. The energy equation is

ρcp

(
u
∂T
∂r

+ v
∂T
∂z

)
= λ

[
1
r
∂

∂r

(
r
∂T
∂r

)
+
∂2T
∂z2

]
(5.1d)

assumes constant density, specific heat, and thermal conductivity which is consistent with the small temper-

ature overheats used in the thin film solutions.

Figure 5.1 details the full problem geometry and boundary conditions. The right side represents the
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Figure 5.1: A schematic of the bulk evaporating capillary meniscus CFD geometry and boundary conditions.

capillary wall with no-slip velocity and constant temperature boundary conditions. The left side represents

the symmetry line through the center of the capillary. As such, the slip/symmetry boundary conditions

are utilized in the momentum equations, and the energy equation boundary condition is adiabatic. The

top surface represents the outflow boundary, namely the evaporating bulk meniscus. At the surface of the

evaporating bulk meniscus, the velocity and heat flux are specified as functions of surface temperature via

the Hertz-Knudsen-Schrage (HKS) relationship, Equation (2.2) which describes the net evaporative mass

flux under non-equilibrium conditions [67, p.346].

The curvature of the meniscus is considered constant (per previous developments) and inversely propor-

tional to the radius of the capillary tube. The bulk meniscus profile is thus given by

z(r) =
r2

2R
+

(R − Ht f )2

2R
, r ∈ [0,R − Ht f ] (5.2)

where, at the capillary centerline, the meniscus slope is considered to be zero. Instead of approaching the

wall and creating a singularity condition, the bulk meniscus is ended at a point (r = R − Ht f ) that matches

the far-field solution of the thin film, extended meniscus evaporation model presented previously. This
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interface must match with the thin film model in thickness, mass flow, and temperature/heat flux. The mass

flow boundary condition is met by establishing a uniform outflow velocity over the thin film thickness that

equals the total evaporative mass flow of the evaporating thin film. This is consistent with the assumption of

lubrication theory fluid flow that was used to construct the extended meniscus thin film model. Similarly, a

1D conduction model was assumed to model heat transfer through the extended meniscus thin film. Thus,

the temperature is specified using 1D conduction

T (r) = Tw −

 ṁ
′′

evph f g

λ

 (R − r) (5.3)

where x is the distance along the interface between the bulk meniscus and the extended meniscus thin film.

Finally, the bottom surface of the capillary represents the inflow boundary. Fully developed flow is

assumed, thus the velocity profile is that of Stoke’s Flow and the flow temperature is that of the wall. The

velocity profile is scaled to conserve mass according to the specified outflow conditions along the meniscus

interface to ensure that the meniscus boundary remains static in space and time.
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Chapter 6

Results

6.1 High Temperature, Liquid Metal, Extended Meniscus, Evaporation

The liquid metal thin film system described by Equation (4.1) contains five basic parameters:

1. the ODE boundary condition at θ̂(−1),

2. the ODE boundary condition at θ̂′(−1),

3. the ODE boundary condition at θ̂′′(1),

4. the liquid overheat ∆T , and

5. the disjoining pressure electronic component boundary condition χ(κn).

As explained previously, the first two ODE boundary conditions are nonzero to avoid a trivial solution and

are tenuously related to physical characteristics of the system. They are thus considered as constants for

this study, which reduces a parametric study to three variables. The size of the pore drives the second

derivative boundary condition such that θ̂′′(1) = K = 1/R. The applied heat flux to the system controls the

liquid overheat ∆T . Finally, the disjoining pressure electronic component boundary condition χ(κn) sets the

magnitude of the disjoining pressure as well as the relative importance of the dispersion force compared to

the electronic force components.

Figures 6.1, 6.2, and 6.3 demonstrate the spatial [Equation (4.13)] and iterative [Equation (4.17)] con-

vergences of solutions to the steady extended meniscus evaporation model [Equation (4.1)] using an Ansatz
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[Equation (4.8)] with increasing terms via orthogonal collocation as solved by the Levenberg-Marquardt

Method. In Figure 6.1, the electronic component of the disjoining pressure is negligible and Equation (4.1)

is simplified such that only the dispersion force component is included in the numerical solution using cubic

spline interpolation. In Figure 6.2, the disjoining pressure is considered negligible compared to the elec-

tronic component, and Equation (4.1) is simplified such that only the electronic component is included in

the numerical solution. The slight but constant decrease in the spatial convergence after approximately 70

collocation terms is deemed to be the result of numerical round-off due to computational limitations. In

Figure 6.3, both the dispersion force and electronic components of the disjoining pressure are equal in mag-

nitude and Equation (4.1) is unmodified in the numerical solution. All three scenarios reveal that extending

the approximate analytical solution to 100 terms provides an accurate, converged solution.

6.1.1 Effect of Liquid Overheat

Figure 6.4 illustrates the solutions to the extended meniscus evaporation model for varying liquid over-

heats. The boundary condition of the electronic component of the disjoining pressure is modeled at the

limiting condition of an infinite potential energy well (χ(κn) = 3π/16). The dispersion force component is

negligible and removed from the governing equations. The pore radius is 200µm. The liquid overheat varies

from 0.0003K to 0.0007K which is analogous to an increasing, applied heat flux to the substrate.

Hallinan et al. [43] analyzed solutions for increasing heat flux in a similar thin film model. Different

physical constants were used compared to the current study, however, and the disjoining pressure was mod-

eled by the Hamaker approximation. Thus, only a qualitative comparison is available between the two. As

expected, Figure 6.4 shows that increasing the heat flux to the system results in an increased evaporative

mass flux associated with an increased liquid pressure gradient to supply liquid from the bulk meniscus.

Also, both models predict a reduction in the adsorbed film thickness as the heat flux increases. In contrast

the liquid metal extended meniscus evaporation model predicts that increases in the heat flux result in an

associated increase in the film length. This makes sense as an increase in film length, and thus film area,

would accommodate the required increase in net evaporative mass flux.
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Figure 6.1: A sample graph demonstrating spatial and iterative convergence of solutions to the steady
extended meniscus evaporation model [Equation (4.1)] using the Ansatz [Equation (4.8)] with increas-
ing terms via orthogonal collocation with the Levenberg-Marquardt Method. For this case, R = 200µm,
∆T = 0.0005K, and χ(κn) = 0 (Case F: ΠB/ΠA = 0).
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Figure 6.2: A sample graph demonstrating spatial and iterative convergence of solutions to the steady
extended meniscus evaporation model [Equation (4.1)] using the Ansatz [Equation (4.8)] with increas-
ing terms via orthogonal collocation with the Levenberg-Marquardt Method. For this case, R = 200µm,
∆T = 0.0005K, and χ(κn) = 3π/16 (Case A: ΠB/ΠA � 1).
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Figure 6.3: A sample graph demonstrating spatial and iterative convergence of solutions to the steady
extended meniscus evaporation model [Equation (4.1)] using the Ansatz [Equation (4.8)] with increas-
ing terms via orthogonal collocation with the Levenberg-Marquardt Method. For this case, R = 200µm,
∆T = 0.0005K, and χ(κn) = 0.001650 (Case E: ΠB/ΠA = 1.0).
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Figure 6.4: Steady thin-film evaporation solutions for R = 200µm and χ(κn) = 3π/16 over a range of
possible liquid overheats.
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6.1.2 Effect of Pore Radius

To study the effects of the pore radius on the steady liquid metal extended meniscus evaporation model, the

liquid overheat is held constant at 0.0005K. The electronic component of the disjoining pressure is treated

as previously while the dispersion force component is considered negligible and removed from the mathe-

matical model. The pore radius varies from 200µm to 500µm. Figure 6.5 shows the results. As expected, the

pore radius affects the second-order boundary condition through the simplified curvature assumption. Thus,

the adsorbed film thickness stays constant while, for increasing pore radii, the evaporating film lengthens.

The evaporative mass flux correspondingly increases, and the liquid pressure gradient broadens to sustain

the film.

The simplifying assumption of negligible circumferential curvature prohibits consideration of pore radii

less than 200µm. Hallinan et al. [43] previously observed that, for this assumption to hold true, the circum-

ferential curvature must have a negligible effect on both the flow-field in the thin film as well as the adsorbed

film thickness. The latter requirement constrains the most and yields

R >>
γTv

ρh f g∆T
. (6.1)

The smallest liquid overheat ∆T = 0.0003K, corresponds to the largest constraining radius R ≤ 160µm.

6.1.3 Effect of Electronic Disjoining Pressure Component

Table 6.1 lists the parametric variations of the electronic disjoining pressure ΠB resulting from a variation

of the system work function boundary condition χ(κn) for a given liquid overheat, ∆T = 0.0005K, and pore

radius, R = 200µm. In each case, adsorbed film thicknesses, H0, are solved using Equation (2.17) when the

mass flux is zero and curvature is negligible.

Case A represents the upper limit to the electronic disjoining pressure boundary condition (3π2/16) as

previously described. It, along with Cases B-D, result in a system where the electronic disjoining pressure

(ΠB) dominates over the retarded dispersion component (ΠA). The London dispersion component of the dis-

joining pressure is negligible and can be removed from the governing equation. In cases A-D, the electrons

barely penetrate into the substrate which keeps the electron “pressure” high.

In Case E, the system work function boundary condition parameter χ(κn) is chosen such that both com-
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Figure 6.5: Steady thin-film evaporation solutions for ∆T = 0.0005K and χ(κn) = 3π/16 over a range of
possible intrinsic meniscus radii.
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Table 6.1: Possible variations in the boundary condition term of Derjaguin’s electronic component of the
disjoining pressure and its effect on the adsorbed film thickness as well as the scaling of the nondimension-
alized liquid metal thin film equation.

CASE κn χ(κn) B[N] H0[nm] ΠB/ΠA

A 0,∞ 1.850551 2.198E-10 419.59 2.172E+10
B 0.059, 11.366 1.5 1.782E-10 377.76 3.243E+09
C 0.162, 4.249 1.0 1.188E-10 308.44 1.290E+08
D 0.305, 2.291 0.5 5.939E-11 218.10 1.657E+06
E 0.619, 1.150 0.001706 2.026E-13 18.017 1.000
F 0.621, 1.146 0 0 14.591 0
G 0.626, 1.137 -0.002500 -2.970E-13 9.8976 -0.703
H 0.845 -0.066873 -7.943E-12 N/A N/A

ponents of the disjoining pressure are equal in magnitude. In Case F, the electronic disjoining pressure is

zero and the system retains only the dispersion force component of the disjoining pressure. Case G repre-

sents the lowest electronic disjoining pressure boundary condition possible for a stable thin film solution and

was obtained by a trial and error approach. This results in a situation where the positive London dispersion

disjoining pressure is just able to overcome the negative (repulsive) electronic disjoining pressure. In cases

E-G, electrons penetrate into the substrate, effectively lowering the electron “pressure.”

Finally, Case H represents the lower limit to the electronic disjoining pressure boundary condition. It

results in a negative electronic disjoining pressure that overcomes the positive London dispersion disjoining

pressure. As such, no steady thin film solution is possible.

Figure 6.6 shows the corresponding results of a variation in the electronic disjoining pressure boundary

condition parameter, χ(κn), on the (a) liquid metal thin film profile, (b) evaporative mass flux, and (c) liq-

uid pressure gradient. It is interesting to note that the solutions tend to follow two very distinct thin film

profiles. Either the electronic component of the disjoining pressure causes a drastic change in the extended

evaporating meniscus or it doesn’t. As a particular consequence, the adsorbed film thickness tends towards

two distinct ranges of values that are an order of magnitude apart.

For the majority of work function boundary condition values, the electronic component of the disjoining

pressure causes a drastic change in the extended evaporating meniscus (Cases A-D in Fig. 6.1.3) as com-

pared to the case of no electronic component (Case F). Second, work function boundary conditions near
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zero (Case E and G) do not result in drastic deviations from that of Case F in the meniscus profiles. More

importantly, the adsorbed film thickness substantially increases, more than one order of magnitude from ten

nanometers to hundreds of nanometers, with increasing work function boundary conditions for the modeled

range, in other words, with increasing electron degeneracy contribution.

Figure 6.1.3 shows the liquid pressure gradient that is needed to replenish fluid in the thin film from

the bulk meniscus to maintain a steady evaporating thin film profile. Considering Case F (no electronic

component) as the baseline, we see that an increasing work function boundary condition, from Case E to

A, results in an increasing total disjoining pressure which thickens and lengthens the thin film profile. This,

in turn, broadens the evaporative mass flux curve and the liquid pressure gradient is reduced. For Case G,

a negative electronic disjoining pressure component results in a thinner and shorter thin film profile. This

is seen to sharpen the evaporative mass flux curve. The liquid pressure gradient needed to support this is

much higher. Due to the steep thin film profile and elevated liquid pressure gradient, it is unknown if this

evaporating thin film scenario could be stable.

The net evaporative mass flux plot in Figure 6.1.3 shows that all solution curves reach a peak within the

thin film regime and then begin to decrease as the bulk meniscus region is approached. This evaporation

reduction past the peak corresponds to the increasing heat transfer resistance of the thickening film. We see

that substantial evaporation continues to occur at the end of the thin film for liquid sodium. In contrast, the

net evaporative mass flux is practically zero at the beginning of the bulk meniscus regime for the published

results of more traditional coolants. The difference is attributed to the high thermal conductivity of liquid

metal which, in turn, reduces heat transfer resistance for comparable film thicknesses. Clearly, the net

evaporative mass flux in the bulk meniscus region must also be modeled to obtain a true picture of the total

capillary evaporation potential.

Another feature of interest from the net evaporative mass flux plot is the evaporation near the adsorbed

film regime. Technically, x = 0 should correspond to the adsorbed film with no evaporation possible. The

fact that evaporation does occur at x = 0 corresponds to the choice of boundary conditions in the governing

thin film equation, per Section 2.4 (The reader will remember that the independent variable and its first

derivative were perturbed slightly to avoid a trivial solution). This still does not explain the variance in

initial evaporation fluxes for the difference disjoining pressure cases. The answer here lies in the fact that

the net evaporative mass flux, as seen in Equation (2.17), depends in large part upon the second derivative
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of the film thickness (i.e. the curvature). By definition, the boundary condition for the curvature was fixed

at the far-field condition. The curvature value at x = 0 is then not fixed and left to vary with the solution.

Hence, the “initial” net evaporative mass flux at x = 0 is seen to vary for the different thin film solutions.

It is possible to integrate the net evaporative mass flux solutions in Figure 6.1.3 to obtain the total rate

of evaporation for the extended meniscus thin film. The net evaporative mass flux must be integrated along

the surface area (not the substrate area) from the adsorbed film (x = 0) to a point where the bulk meniscus

is reached (x = xt f ), as specified in the far-field boundary condition of Equation (2.30d). Since the net

evaporative mass flux is already normal to the thin film surface, Equation (2.17) may be applied in a line

integration

ṁevp =

"
S

~̇m
′′

evp · n̂ dS ≈ 2πR

xt f∫
x=0

ṁ
′′

evp(x)

√
1 +

(
dy
dx

)2

dx , (6.2)

and this line integral is then extruded around the capillary via the 2πR term. The approximate symbol, ≈,

serves as a reminder of the simplifying curvature assumption in Equation (2.7) under which the governing

equation was constructed.

The results of the total rate of evaporation calculation for the seven disjoining pressure cases are listed

in Table 6.3. The results show that, on the whole, as the electronic component of the disjoining pressure

decreases, the total rate of evaporation in the thin film also decreases. The one exception to this trend is seen

between Cases E and F. In Case E, the electronic and dispersion components of the disjoining pressure are

of equal magnitude. In Case F, the electronic component is negligible, and yet the total rate of evaporation

increases approximately 15%. As before, the culprit of this discrepancy is the second derivative of the

film thickness (i.e. the curvature). Even though the two cases present very similar thin film profiles, the

curvatures at both the adsorbed film and bulk meniscus borders create differences in the net evaporative

mass flux curve and film cut-off point, respectively.

6.1.4 Justification of Assumptions

Pure Substances

The assumption of pure substances and atomically smooth surfaces is a major assumption in our work.

The existence of impurities can significantly alter model assumptions and, therefore, results. Wayner [55]
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discusses an important point regarding the validity of this assumption.

To connect these concepts and the Hamaker constant with experimental observations, we as-

sume (at times) that there is no practical difference between these processes of interfacial for-

mation occurring in a vacuum and an environment saturated with vapor or gas. However, it is

also important to realize that the interfacial free energy values can, in some cases, be substan-

tially different in laboratory air because of the adsorption of foreign vapor molecules like water

and hydrocarbons. At liquid-vapor interfaces, impurities may or may not concentrate at the

surface and thereby affect the value of the interfacial free energy. A further complication can

arise if the environment has a foreign gas which can adsorb on the liquid substrate and change

[the surface tension].

As such, significant departures from simplified mathematical models and actual engineering systems are to

be expected.

The concept of a perfectly wetting system is closely related to the assumption of pure substances. Perfect

wetting and spreading requires the adsorption of a layer of liquid metal atoms onto the solid metal surface.

Foreign matter in the liquid metal can chemically attack the solid surface at high temperatures and leave

behind surface impurities. Several papers have explored the corrosion of stainless steel by impurities in

liquid sodium. Ratz and Brickner observed the adsorption of nitrogen on SS304 pipe that had been exposed

to liquid sodium [94]. Barker and Wood reported the presence of corrosion products NaCrO2 and Na4FeO3

on stainless steel after exposure to liquid sodium [95]. Moberly et al. exposed SS304 to reactor grade

liquid sodium and found evidence of grain attack with precipitates, possibly carbon [96]. Table 6.2 lists

the impurities they reported in the reactor grade sodium. Clearly, care must be taken to remove as many

impurities from liquid sodium samples as possible.

In addition, oxidation of the metal surface and the adsorption of a foreign gas onto the solid surface

are two prominent vehicles for contamination that will drastically alter liquid metal wetting and spreading.

Barlow and Planting measured contact angles of liquid mercury droplets on several metals including iron

and nickel at room temperature [97]. They discovered that mercury would not wet these metals even after

they had been carefully electropolished and degreased. Spreading only occurred during or immediately

after argon ion-bombardment of the metal surface. They surmised the ion-bombardment was necessary to
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Table 6.2: Expected impurities and amounts in nuclear reactor grade sodium as reported by Moberly et
al. [96].

Element ppm Element ppm Element ppm
Fe 3 Cr 1 Sr 1
B 5 Si 15 Ba 3
Co 5 Ti 5 Ca 5
Mn 1 Ni 1 Li 1
Al 2 Mo 5 K 40
Mg 1 V 1 Rb 10
Sn 5 Be 1 O2 10
Cu 2 Ag 1 C 22
Pb 5 Zr 10
Y 5 Bi 5

remove oxidation and gas adsorption on the metal surfaces and enable liquid mercury adsorption. Longson

and Prescott explored the wetting of stainless steel by liquid sodium and found it difficult to obtain a zero

contact angle around 200 − 2500C even after electropolishing [98]. Since wettability is known to increase

with temperature, it seems reasonable to expect liquid sodium will readily wet a properly electropolished,

degreased, and ion-bombarded SS304 surface at temperatures near its melting point.

Ideal Gas

Both the Hertz-Knudsen-Schrage and extended Clapeyron relations, Equations (2.2) and (2.11) respectively,

intrinsically model the alkali vapor as an ideal gas. Hensel and Warren warn that the vapors of alkali metals

cannot be accurately modeled as monatomic gases even at relatively low densities [99, p.98]. According to

these authors, researchers have had some success fitting alkali vapor data to equations of state using virial

expansions that include coefficients for one, two, and three molecule interactions. The departure of liquid

sodium vapor from an ideal gas is gauged by the compressibility factor, Z,

PvM

ρvRTv
= Z (6.3)

Using the data reported by Fink and Leibowitz [81] it is determined that Z = 0.87 at the boiling point of

sodium. Thus, the ideal gas assumption used in this work is expected to result in a 13% error from the true
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vapor properties.

Additivity of Disjoining Pressure Components

Finally, we observe that the simple additivity of the dispersion force and electronic components of the

disjoining pressure remains in the realm of educated conjecture until verified by experimentation.

6.1.5 Identification of Future Work

At this point, it remains an open question as to which of the work function boundary condition cases best

represents an experimental reality. The work function for a liquid sodium thin film on a stainless steel

substrate is unknown. In experiments with mercury films surrounded by organic fluids, Derjaguin and

Roldughin found that organic fluids with approximately the same physical parameters caused extremely

different results in mercury film stability [57]. As such, theoretical knowledge of the work function seems

improbable and must be obtained experimentally. Even if such a measurement could be made, another

rather large obstacle exists as the liquid sodium system must be isolated in a high temperature, low oxygen

environment that is rather inaccessible for delicate and operator intensive operations.

Visualization of a capillary evaporation experiment will also be difficult. Sodium low- and high- pressure

lamps are a mature illumination technology that provide useful insight into the detrimental effects of sodium

vapor. It is known that sodium vapor reacts chemically with silica (including Pyrex glass and Quartz) to

form sodium silicate [100]. As a result, the glass container is chemically etched and develops orange/brown

deposits which preclude visualization [101]. Commercial lighting applications have developed proprietary

coatings of polycrystalline alumina which resist chemical attack but at the expense of transparency [102,

pp.190,199]. Sapphire tubing appears to be the only material available that can provide transparency and

resistance to sodium vapor attack at high temperatures [103, p.234]. The anisotropic nature of this crystalline

material, however, makes it prone to cracks and sealing problems. Truly, experimental visualization of liquid

sodium capillary evaporation will prove difficult.

The present study, however, leads us to propose a somewhat more tractable test. The largest unknown

in this study is the proper magnitude of the electronic component of the disjoining pressure. As Figure 6.6

illustrates, if the adsorbed film thickness of an evaporating extended meniscus could be measured with just

enough accuracy to distinguish between a value that is on the order of tens of nanometers or hundreds of
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nanometers, this could serve to determine the approximate range of work function and resulting magnitude

of the electronic component of the disjoining pressure. Such a work could be regarded as a significant

breakthrough in the study of alkaline liquid metal evaporating thin films.

In light of these previous statements, it would now be worthwhile to shift experimental goals from

visualization of liquid sodium evaporation to visualization of an adsorbed film, which could be performed

on a solidified, room temperature sample. Ahn and Berghezan researched the infiltration of liquid metal

into metal capillaries by cooling the samples and using a Scanning Electron Microscope (SEM) to image

the propagation front [104]. They reported the ubiquitous presence of a “precursor film” in the rise of a

perfectly wetting molten metal in a solid metal capillary for a variety of metal combinations and attributed

the film to chemical adsorption and capillary condensation. Similarly, a prepared SS304 sample could be

wetted with liquid sodium, cooled, and transferred to either a SEM or an Atomic Force Microscope (AFM)

to measure the topology of the adsorbed precursor film. Here, the major technological challenge would be

the transfer of the sample to an SEM or AFM without oxidation of the sample. Either a vacuum would have

to be maintained during the transfer, or an inert gas would have to be used.
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6.2 Comprehensive and Multiscale Modeling of a Liquid Metal Evaporating
Capillary

6.2.1 Effect of Electronic Disjoining Pressure Component

Table 6.3 lists the parameters used to splice the extended meniscus thin film model to the CFD model of the

bulk meniscus. Seven CFD models are needed for the seven representative disjoining pressure conditions

listed in Table 6.1. The “Cutoff Height” parameter represents the vertical distance from the bottom of the

capillary meniscus (located at r = 0) to the top of the thin film boundary. The “Thin Film Evaporation”

parameter is utilized to specify the temperature boundary condition along the thin film interface using Equa-

tion (5.3) and is calculated using Equation (6.2). The “1D Velocity” parameter specifies the normal velocity

boundary condition into the thin film. It is calculated as

v =
ṁevp

ρSA
=

ṁevp

ρπ
[
R2 − (R − Ht f )2

] (6.4)

where both ṁevp (the thin film evaporation) and Ht f (the film thickness at the bulk meniscus interface) are

listed in the table. This velocity boundary condition is uniform due to the approximation of lubrication

theory that was utilized to construct the extended meniscus thin film model.

The seven CFD models of the bulk meniscus were created and solved using the COMSOL R© Finite

Element software package. Figures 6.7-6.14 show these models and their graphical results. In each figure,

the leftmost image details the triangular mesh used for the finite elements. A mesh refinement study was

performed to ensure that the solutions were no longer mesh dependent. The central image depicts an velocity

vector field plot overlaying a surface contour plot of the temperature overheat field. The velocity vector field

shows the flow field correctly changing from fully developed Stoke’s flow to meet the specified evaporation

boundary conditions. The 1D velocity boundary condition at the extended meniscus thin film interface

clearly represents the largest velocity in the model, much larger than the outlet velocities at the evaporating

bulk meniscus. The temperature overheat plot shows clear striation, indicating conduction dominant heat

transfer, and the presence of evaporation at the meniscus appropriately reduces the overheat towards the

capillary centerline. Finally, the rightmost images give a surface contour plot of the velocity field. These

again show the large fluid flow that is needed to replenish the evaporating extended meniscus thin film.
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Table 6.3: Parameters used to splice the extended meniscus thin film model to the CFD model of the bulk
meniscus. The cases represent possible variations in the boundary condition term of Derjaguin’s electronic
component of the disjoining pressure as listed in Table 6.1. The cutoff height represents the vertical distance
from the bottom of the capillary meniscus of Figure 6.7 at which the bulk meniscus is cut off to join with
the extended meniscus thin film model.

CASE Film Thickness Cutoff Height Thin Film 1D Velocity Surface Overheat
Evaporation

(µm) (µm) (kg/s) (µm/s) (K)
A 17.72 83.07 2.949e-11 1.867 3.472e-4
B 13.20 87.23 2.728e-11 2.290 3.661e-4
C 10.25 90.01 2.505e-11 2.688 3.825e-4
D 6.892 93.23 2.163e-11 3.422 4.073e-4
E 1.811 98.20 1.013e-11 6.022 4.670e-4
F 3.019 97.00 1.165e-11 4.169 4.492e-4
G 1.962 98.05 0.862e-11 4.733 4.646e-4

Figure 6.7: A COMSOL R© CFD model of an evaporating capillary meniscus with no extended thin film. The
plots represent (a) element meshing, (b) relative velocity field vectors overlaid against temperature overheat
contours, and (c) velocity field contours [R = 200µm and ∆T = 0.0005K].
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Figure 6.8: A COMSOL R© CFD model of an evaporating capillary meniscus. The blocked-off meniscus is
spliced to extended meniscus thin film Case A as listed in Tables 6.1 and 6.3. The plots represent (a) element
meshing, (b) relative velocity field vectors overlaid against temperature overheat contours, and (c) velocity
field contours [R = 200µm and ∆T = 0.0005K].

Figure 6.9: A COMSOL R© CFD model of an evaporating capillary meniscus. The blocked-off meniscus is
spliced to extended meniscus thin film Case B as listed in Tables 6.1 and 6.3. The plots represent (a) element
meshing, (b) relative velocity field vectors overlaid against temperature overheat contours, and (c) velocity
field contours [R = 200µm and ∆T = 0.0005K].
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Figure 6.10: A COMSOL R© CFD model of an evaporating capillary meniscus. The blocked-off meniscus is
spliced to extended meniscus thin film Case C as listed in Tables 6.1 and 6.3. The plots represent (a) element
meshing, (b) relative velocity field vectors overlaid against temperature overheat contours, and (c) velocity
field contours [R = 200µm and ∆T = 0.0005K].

Figure 6.11: A COMSOL R© CFD model of an evaporating capillary meniscus. The blocked-off meniscus is
spliced to extended meniscus thin film Case D as listed in Tables 6.1 and 6.3. The plots represent (a) element
meshing, (b) relative velocity field vectors overlaid against temperature overheat contours, and (c) velocity
field contours [R = 200µm and ∆T = 0.0005K].
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Figure 6.12: A COMSOL R© CFD model of an evaporating capillary meniscus. The blocked-off meniscus is
spliced to extended meniscus thin film Case E as listed in Tables 6.1 and 6.3. The plots represent (a) element
meshing, (b) relative velocity field vectors overlaid against temperature overheat contours, and (c) velocity
field contours [R = 200µm and ∆T = 0.0005K].

Figure 6.13: A COMSOL R© CFD model of an evaporating capillary meniscus. The blocked-off meniscus is
spliced to extended meniscus thin film Case F as listed in Tables 6.1 and 6.3. The plots represent (a) element
meshing, (b) relative velocity field vectors overlaid against temperature overheat contours, and (c) velocity
field contours [R = 200µm and ∆T = 0.0005K].
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Figure 6.14: A COMSOL R© CFD model of an evaporating capillary meniscus. The blocked-off meniscus is
spliced to extended meniscus thin film Case G as listed in Tables 6.1 and 6.3. The plots represent (a) element
meshing, (b) relative velocity field vectors overlaid against temperature overheat contours, and (c) velocity
field contours [R = 200µm and ∆T = 0.0005K].
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Figure 6.15 splices together the extended meniscus thin film evaporation solutions of Figure 6.6 with

the CFD bulk meniscus solutions of Figures 6.8-6.14. The result is a truly comprehensive multiscale model

of a liquid metal evaporating capillary. The top two plots in Figure 6.15 detail the total capillary meniscus

profile. A slope discontinuity is clearly evident in the transition of each curve from the bulk meniscus model

to the extended meniscus thin film model. This is a direct result of the curvature approximation, seen in

Equation (2.7), upon which the extended meniscus thin film model is built. As a result, the total capillary

meniscus profile and its second derivative (i.e. the curvature) are continuous while slope continuity is not

enforced. This result does not deter us, however, from making the important observation that capillary

meniscus surface area increases along with increasing electronic component of the disjoining pressure.

The bottom plot in Figure 6.15 gives the net evaporative mass flux across the entire capillary meniscus.

A slight discontinuity in the slope is observed where the extended meniscus thin film model abruptly changes

to the CFD model, as is to be expected. In addition, a jump discontinuity is present in the curves for cases

A and B. It is surmised that this jump discontinuity again results from the simplified curvature assumption

present in the extended meniscus thin film model. As can be seen in Table 6.3, the thin film heights at

the far-field for cases A and B are 17.7µm and 13.2µm, respectively. These yield Ht f /R values of 9% and

7%, respectively. Essentially, results from a Cartesian geometry are being combined with the results from

a cylindrical geometry, and the error in this approximation is becoming large enough in the thicker films of

cases A and B to cause a jump discontinuity.

Integration of the evaporative mass flux across the total capillary meniscus surface area yields total

evaporative mass flow rates. To this end, the extended meniscus thin film integrations performed using

Equation (6.2) are added to the following bulk meniscus surface area integration

ṁevp =

"
S

~̇m
′′

evp · n̂ dS =

2π∫
θ=0

dθ

R−Ht f∫
r=0

ṁ
′′

evp(r)r

√
1 +

(
dz
dr

)2

dr , (6.5)

where axial symmetry is assumed using a cylindrical coordinate system. The slope in this calculation comes

from Equation (5.2). Figure 6.16 presents columnstacked bar charts that compare the meniscus surface area,

net evaporative mass flow rate, and total capillary heat flux for the varying cases of thin film disjoining

pressures. It is seen that the bulk meniscus constitutes from 40% to 80% of the total meniscus surface

64



area for Cases A to G respectively. This corresponds with a 3% to 16% bulk meniscus contribution to the

evaporative mass flow rate (and, hence, heat flow rate) for Cases A to G respectively. Finally, the bulk

meniscus region contributes a roughly constant 5% of the total capillary heat flux in each of the disjoining

pressure cases. Clearly, appreciable heat and mass transfer takes place in the bulk meniscus region of an

evaporating liquid metal capillary.

The overall trend from these plots is that a larger electronic component of the disjoining pressure leads

towards larger extended meniscus thin film surface area, larger total capillary meniscus surface area, and

larger net evaporative mass flow rate (which corresponds with larger heat flow rate). Cases A-D are obvi-

ously desirable, while the stability of Cases E-G are questionable due to the higher sustained heat fluxes that

are necessary to support evaporation in the extended meniscus thin film.

The most optimum situation appears to be disjoining pressure case Case A, in which the electron degen-

eracy disjoining pressure is at a maximum. This occurs when the boundary condition parameter χ(κn) is at

the theoretical maximum limit of 3π/16. This indicates that the work function, W, or energy needed to move

an electron from the liquid metal to the solid surface, is at an infinite limit. As first derived in Derjaguin et

al. [48], this infinite limit represents the simplified assumption of an infinitely deep potential pit at the liq-

uid/substrate boundary that prevents electrons from emerging from the film. In light of the presents results,

future research should attempt to identify substrate metallurgies and treatments to induce the desired work

function.

6.2.2 Justification of Assumptions

Negligible Buoyancy Forces

Equations (5.1) model the fluid flow and heat transfer in the capillary. It is noted that the Boussinesq

approximation, typically used to model buoyancy forces, is absent. The nondimensional Bond number

Bo =
g(ρl − ρv)D2

γ
=

g(ρl −
Pv

RTv
)D2

γ
(6.6)

gives the ratio of gravitational to surface tension forces. For the range of capillary pore sizes studied in this

research, Bo = 0.0097 for R = 200µm and Bo = 0.0608 for R = 500µm. Clearly, the buoyancy forces are
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negligible for the micro-pore geometries considered.

Bulk Meniscus Profile

The capillary meniscus profile is found from the curvature equation. As discussed in the extended meniscus

thin film models via Equation (2.7), the curvature equation can be significantly simplified when the slope

is considered small compared to the second derivative. From Equation (5.2), we observe that the second

derivative of the meniscus is on the order of 5,000 (since z′′ ≈ 1/R) while the first derivative is on the order

of unity (since z′ ≈ r/R, 0 ≤ z′(r) ≤ 1). Clearly, this assumption holds for the pore geometries considered.

6.2.3 Identification of Future Work

The curvature equation simplification constrains the solution parameters of this study the most. It would be

beneficial in future work to attempt to incorporate the full meniscus curvature equation into the multiscale

capillary model. Wee et al. [22] achieved this for an extended meniscus thin film model using traditional

coolants. Extension of this to the current system, while not trivial, seems feasible. The main benefit is

removal of the current limits on available liquid overheat and capillary pore size. Equation (6.1), discussed

previously, led to the current solution limits of 0.0003K ≤ ∆T ≤ 0.0007K and 200µm ≤ R ≤ 500µm.

Smaller capillary pore sizes and larger overheats would be possible with the full curvature equation.
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Chapter 7

Liquid Metal Capillary Evaporation
Stability: Future Research

7.1 Liquid Metal Extended Meniscus Stability

Capillary Pumped Loops (CPL) and Loop Heat Pipes (LHP) are “real world,” passive, heat transfer devices

that utilize the unique physics of capillary evaporation. Experimental investigations of CPLs and LHPs with

traditional working fluids have demonstrated performance degradations due to temporal fluctuations [26].

One of the major assumptions used in the research presented in this dissertation (as well as in the majority

of research to date) only considers the case of a static meniscus where the fluid lost by evaporation is

continually replenished by flow from the bulk capillary. In light of this steady-state assumption, it would

seem that future research in liquid metal extended meniscus evaporation should consider temporal stability.

He and Hallinan [35] were the first to explore the role of thermocapillary effects on evaporating extended

meniscus stability. They included thermocapillary forces in a thin film evaporation model. The solution

results were used to anecdotally explain the change in the Hamaker constant for the experimental results

of Wayner. They also used scaling analysis to identify a critical Marangoni number that corresponded with

the thermocapillary limit of an evaporating thin film. Later, Pratt and Hallinan [105] experimentally tested

capillary stability using pentane as the working fluid. They observed degraded meniscus wettability due

to thermocapillary stresses for large wall-temperature gradients in the vicinity of the vapor/thin film/wall

contact line. Finally, Pratt et al. [26] attempted to apply the nonlinear stability theory of planar evaporating

films by Burelbach et al. [106] to the stability of a heated, curved meniscus. Their analysis identified

a critical wall temperature difference per length scale that was compared with experimental results using
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pentane.

The first step in exploring thermocapillary effects on liquid metal thin film stability is to include the

surface tension dependence on temperature. Several authors have attempted this for thin films of conven-

tional coolants. Mirzamoghadam and Catton [29] incorporated thermocapillary effects for the case of an

evaporating meniscus on an inclined plate. Swanson and Herdt [30] included thermocapillary effects in a

circular pore geometry for a traditional coolant. He and Hallinan assumed that circumferential curvature was

negligible and solved the thin film equation to a first approximation by linearizing the dependent variables

to simplify the governing equations. Finally Wee et al. [22] were the first to solve the extended meniscus,

thin film equation for full pore curvatures using a nonisothermal liquid/vapor interface along with surface

tension temperature dependence. They focused on slip/no slip substrate boundary effects, however, using

only traditional coolants for which the Hamaker approximation of the disjoining pressure applied. The main

difficulty with extension of this model for a liquid metal is in the complexity of the cubic spline interpo-

lation of the dispersion component of the disjoining pressure. Formulation of the Jacobian matrix for the

Newton-Raphson method would be quite difficult, but not impossible.

Second, it would be beneficial to explore nonlinear stability theory in a liquid metal evaporating thin

film. The theory of Burelbach et al. [106] was for planar evaporating thin films using the Hamaker approxi-

mation for the disjoining pressure. Pratt et al. [26] applied this theory to curved films which has merits, but

also raises questions. As previously stated, Pratt et al. used Burelbach et al.’s theory to identify a critical

interfacial temperature slope. The theory of Burelbach et al., however, was built upon the assumption of a

constant temperature substrate which might not be valid for liquid metal coolants with high thermal conduc-

tivity. Furthermore, Ma et al. [107] discounted the role of thermocapillary stresses on capillary performance

degradation due to the small temperature gradients existing in the thin-film region.

Pratt et al. derived the following meniscus thermocapillary stability criterion for a curved film

Ma
4 Pr

≥ Π∗ . (7.1)

The nondimensionalizing length scale was chosen to be where the disjoining pressure balances the capillary

pressure. We can model a liquid sodium film disjoining pressure using the electron degeneracy component
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under the boundary condition of an infinite potential energy well. The scaling film thickness then becomes

B
H2

tr
=

2γ
R

=⇒ Htr = ±

√
B · R
2γ

(7.2)

where, based on physical reality, only the positive root is considered. Substitution of the scaling parameters

into Equation (7.1) produces the critical interfacial temperature difference

∆Tc ≥
4
k

√
2Bγ

R
(7.3)

which is over a critical length scale defined by Pratt et al. as xc =
√

RHtr. For the liquid sodium case

specified, using the fluid properties listed in Table 3.2, the critical interfacial temperature slope is calculated

to be 21, 000K/cm. Obviously, under the geometry and assumptions considered by Pratt et al., it would seem

that liquid metal evaporating extended meniscus stability would not be affected by thermocapillary forces.

It would thus seem prudent in a thermocapillary stability analysis to focus upon the more realistic substrate

heating case under a liquid metal scenario. This would require 2D conduction through the substrate to be

included in the analysis for both constant temperature and constant heat flux cases.

7.2 Liquid Metal Evaporating Capillary Boiling Stability

Third, it would be beneficial to consider the relative importance of thermocapillary stability effects in the

extended meniscus thin film compared to possible boiling instabilities in the bulk evaporating capillary. Us-

ing conventional incipience of boiling models, Ruggles [108] showed that “liquid metals can easily achieve

bulk superheat prior to nucleation when micro-channels are used.” Furthermore, Ruggles postulated that,

in such situations, “the bubble departure diameter may be of the same order as the diameter of the first

nucleation site to activate.” In other words, cross sectional changes could serve as nucleation sites for the

rapid boiling incipience of a superheated liquid metal. Indeed, the appearance of rapid boiling has been a

larger problem than meniscus stability in preliminary research with liquid metal capillary evaporation [109].

The best course of action to ensure flow and evaporation stability might be to focus on engineering capillary

surfaces to initiate boiling at desired locations, as Ruggles has suggested.
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Chapter 8

Conclusions

8.1 High Temperature, Liquid Metal, Extended Meniscus, Evaporation

The present study seeks to expand existing extended meniscus evaporation models to properly capture the

unique disjoining pressure characteristics of liquid alkali metals. Where previous studies have only used the

non-retarded dispersion force via Hamaker theory, this research incorporates the full (unsimplified) retarded

dispersion force (ΠA) using the DLP theory and its representation by cubic spline interpolation. Additionally,

this research incorporates an electronic disjoining pressure component (ΠB) that is unique to liquid metals

by performing a parametric study on the work function boundary condition. The results for a liquid sodium

thin film in a 200µm diameter capillary with a 0.0005K overheat indicate that adsorbed film thicknesses can

vary from 8nm (Case G: ΠB/ΠA ≈ 0) to 420nm (Case A: ΠB/ΠA ≈ ∞) depending on the work function

boundary condition. Thin film profiles (and thus meniscus surface areas) exhibit large changes, as well.

The important conceptual results identified from this work include the following:

1. Accurate high temperature, liquid metal, extended meniscus evaporation models should account for

both retarded dispersion force and electronic disjoining pressures.

2. Cubic spline interpolation is an acceptable vehicle to model the retarded dispersion force and can be

implemented within the framework of the orthogonal collocation solution method.

3. Results indicate the electronic component of the disjoining pressure is not negligible for a wide range

of work function boundary values and must be included in models of liquid metal extended meniscus
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evaporation.

4. Numerical solutions to the thin film governing equation for isothermal sodium coolant predicts thin

film thickness profiles, mass flux distributions, and pressure gradient along the substrate of stainless

steel.

5. Continuing studies require greater physical insight into the work function for a liquid sodium thin film

on a stainless steel substrate.

6. A coarse experimental measurement of the adsorbed film thickness could identify a finer range of

electronic disjoining pressure component boundary conditions and result in a refinement of high tem-

perature, liquid sodium, extended meniscus evaporation models.

8.2 Comprehensive and Multiscale Modeling of a Liquid Metal Evaporating

Capillary

When coupled to a CFD model of the evaporating bulk meniscus, the problem as described above also

yields a multiscale numerical model of an evaporating liquid metal in a capillary tube. The model correctly

considers the unique disjoining pressure effects at the near wall region, including the extended meniscus thin

film profile, and captures the heat and fluid transfer through the bulk meniscus region. Multiscale integration

along the total capillary surface area shows a range of heat transfer rates, from 40µW @ 950W/m2 (Case G:

ΠB/ΠA ≈ 0) to 116µW @ 630W/m2 (Case A: ΠB/ΠA ≈ ∞), are possible.

The important conceptual results identified from this work include the following:

1. Integration of the evaporative mass flux across the total meniscus surface area produces total capillary

evaporative mass flow and heat transfer rates and enables comparisons between electronic disjoining

pressure states.

2. Unlike more traditional coolants, evaporative mass and heat flow occurs in the bulk meniscus region

of evaporating micro-capillaries and should be modeled.

3. The clear trend from these comparisons is that a larger electronic component of the disjoining pressure

leads towards larger extended meniscus thin film surface area, larger total capillary meniscus surface
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area, and larger net evaporative mass flow rate (which corresponds with larger heat flow rate).

4. To ensure maximum heat transfer in an evaporating liquid sodium capillary, it is desirable to create a

liquid sodium work function environment that prevents electrons from emerging from the evaporating

thin film.
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Appendix A

Hamaker Constant Calculation

The Hamaker constant is found by numerically solving Equation (3.2). The complex dielectric permittivities

are modeled using classical Drüde theory where the liquid sodium coolant is given as Equation (3.6), the

SS304 substrate is given as Equation (3.7), and the liquid sodium vapor is taken to be completely dielec-

tric with a complex dielectric permittivity of unity. The numerical calculations are performed within the

MapleTM computer algebra system.

# Using Maple v12.0

> restart;

> with(ScientificConstants);

> GetConstant(h);

-34

Planck_constant , symbol = h, value = 6.62606876 10 ,

-41

uncertainty = 5.2 10 , units = J s

> GetConstant(N[A]);

A[r](e) M[u]

Avogadro_constant , symbol = N[A], derive = ------------

m[e]

> GetConstant(epsilon[0]);

1

permittivity_of_vacuum , symbol = epsilon[0], derive = --------

2

mu[0] c

> GetConstant(m[e]);

2 R[infinity] h

electron_mass , symbol = m[e], derive = ---------------

2

c alpha

> GetConstant(e);
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(1/2)

(1/2) /alpha h\

elementary_charge , symbol = e, derive = 2 |-------|

\mu[0] c/

> GetConstant(k);

R

Boltzmann_constant , symbol = k, derive = ----

N[A]

> h := evalf(Constant(h));

-34

6.62606876 10

> N[A] := evalf(Constant(N[A]));

23

6.022141986 10

> epsilon[0] := evalf(Constant(epsilon[0]));

-12

8.854187815 10

> m := evalf(Constant(m[e]));

-31

9.109381882 10

> e := evalf(Constant(e));

-19

1.602176462 10

> k := evalf(Constant(k));

-23

1.380650277 10

# Define electromagnetic wave frequency at the melting point of sodium:

> v[n] := (2*evalf(Pi)*k*1154.7)/h;

14

1.511738871 10

> omega[n] := 2*evalf(Pi)*v[n];

14

9.498535464 10

# Define the dielectric permittivity of the sodium metal using Drude Theory with Relaxation Time:

> A[Na] := 0.2299e-1;

0.02299

> rho[Na] := 742.8591;

742.8591

> Z[Na] := 1;

1

> sigma[Na] := 0.253605e7;

6

2.53605 10

> tau[3] := 1.17*m*sigma[Na]*A[Na]/(.85*N[A]*Z[Na]*rho[Na]*eˆ2);

-15

6.366115225 10

> omega[3] := sqrt(.85*N[A]*Z[Na]*rho[Na]*eˆ2/(1.17*A[Na]*epsilon[0]*m));

15

6.707602118 10

> v[3] := omega[3]/(2*evalf(Pi));

15

1.067548033 10

> epsilon[3] := 1+omega[3]ˆ2*tau[3]*(1-x*tau[3])/(x*(1-xˆ2*tau[3]ˆ2));

17 / -15 \

2.864237862 10 \1 - 6.366115225 10 x/
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1 + ------------------------------------------

/ -29 2\

x \1 - 4.052742306 10 x /

# Define the dielectric permittivity of the SS304 metal using Drude theory without Relaxation Time:

> A[SS] := 0.5481e-1;

0.05481

> rho[SS] := 8000;

8000

> Z[SS] := 1.79;

1.79

> omega[1] := sqrt(N[A]*Z[SS]*rho[SS]*eˆ2/(A[SS]*epsilon[0]*m));

16

2.237734878 10

> v[1] := omega[1]/(2*evalf(Pi));

15

3.561465671 10

> epsilon[1] := 1+(omega[1]/x)ˆ2;

32

5.007457384 10

1 + ----------------

2

x

# Define the dielectric permittivity of the sodium vapor as that of a vacuum:

> epsilon[2] := 1;

1

# Solve for the Hamaker Constant (via Israelachvili)

> freq := (epsilon[1]-epsilon[3])*(epsilon[2]-epsilon[3])/((epsilon[1]+epsilon[3])*(epsilon[2]+epsilon[3]));

/ / 32

| 17 |5.007457384 10

- |2.864237862 10 |----------------

| | 2

\ \ x

17 / -15 \\ \//

2.864237862 10 \1 - 6.366115225 10 x/| / -15 \| |

- ------------------------------------------| \1 - 6.366115225 10 x/| |

/ -29 2\ | | |

x \1 - 4.052742306 10 x / / / \

/ 32 17 / -15 \\

| 5.007457384 10 2.864237862 10 \1 - 6.366115225 10 x/| /

|2 + ---------------- + ------------------------------------------| x \1

| 2 / -29 2\ |

\ x x \1 - 4.052742306 10 x / /

/ 17 / -15 \\\

-29 2\ | 2.864237862 10 \1 - 6.366115225 10 x/||

- 4.052742306 10 x / |2 + ------------------------------------------||

| / -29 2\ ||

\ x \1 - 4.052742306 10 x / //

> A := 3*h*(int(freq, x = omega[n] .. infinity))/(8*evalf(Pi)ˆ2);

-19

-1.015143464 10

>
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Appendix B

Dispersion Force Calculation

The retarded dispersion force curve for a liquid sodium thin film on a stainless steel substrate, shown in

Figure 3.1, is found via solution of Equation (3.1). The complex dielectric permittivities are modeled using

classical Drüde theory where the liquid sodium coolant is given as Equation (3.6), the SS304 substrate is

given as Equation (3.7), and the liquid sodium vapor is taken to be completely dielectric with a complex di-

electric permittivity of unity. The numerical calculations are performed within the MATLAB R© programming

environment using adaptive Lobatto quadrature with a relative convergence of 1 × 10−6.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

3 % File: dispersion_force.m

% Language: MATLAB

5 % Author: jtipton2

% Date: 12/23/2008

7 % Summary: Calculates dispersion force curve using DLP theory for the case of

% liquid sodium thin film on a stainless steel substrate.

9 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 clear all

clc

13 syms p n delta w

%

15 % LOAD PHYSICAL CONSTANTS

%

17 h = 6.62606876e-34; % Planck’s Constant (mˆ2 kg/s)

N_A = 6.022141986e23; % Avogadro’s Number (atoms/mole)

19 epsilon_0 = 8.854187815e-12; % Permittivity of Free Space (sˆ4 Aˆ2 / mˆ3 / kg) NOTE: A = C/s

m = 9.109381882e-31; % Electron Mass (kg)

21 e = 1.602176462e-19; % Electron Charge (C)

k = 1.380650277e-23; % Boltzmann ’s Constant (mˆ2 kg / sˆ2 / K)

23 c = 2.99792458e8; % Speed of Light in Vacuum (m/s)
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R_g = 8.314472; % universal gas constant (N-m/K-mol)

25 %

% DEFINE ELECTROMAGNETIC WAVE FREQUENCY AT SODIUM MELTING POINT

27 %

T = 1154.7; % Melting point of Sodium (K)

29 T_v = T; % vapor temperature (K)

omega_n = 4*piˆ2*n*k*T/h; % frequency of incoming radiation (rad/s)

31 %

% DEFINE DIELECTRIC PERMITTIVITY OF SODIUM

33 % (Drude Model)

%

35 rho_Na = 219.00 + 275.32 * (1 - T/2503.7) + ...

511.58 * sqrt(1 - T/2503.7); % kg/mˆ3 U ˜ 0.4%

37 sigma_Na = 25.3605e+5; % (S/m or 1/Ohm-m or sˆ3 Aˆ2/mˆ3/kg)

M_Na = 22.99/1000; % (kg/mol)

39 NV_Na = 1; % valence electrons/atom

A_Na = 0.02299; % atomic weight (kg/mol)

41 m_eff_Na = 1.17 * m; % effective mass (kg)

edensity_Na = 0.85*N_A*rho_Na/A_Na; % valence electron density (electrons/mˆ3)

43 omega_3 = sqrt(edensity_Na*eˆ2/epsilon_0/m_eff_Na); % plasma frequency of free electron gas (rad/s)

tau_3 = m_eff_Na*sigma_Na/edensity_Na/eˆ2; % relaxation factor (s)

45 epsilon_3 = 1 + omega_3ˆ2 * tau_3 * (1 - omega_n*tau_3) ...

/ omega_n / (1 - omega_nˆ2*tau_3ˆ2); % complex dielectric permittivity of Na

47 %

% DEFINE DIELECTRIC PERMITTIVITY OF SS304

49 % (Drude Model - No Relaxation Time)

%

51 A_SS = 0.05481; % atomic weight kg/mol

rho_SS = 8000; % kg/mˆ3

53 NV_SS = 1.79; % valence electrons/molecule

omega_1 = sqrt(N_A*rho_SS*eˆ2/A_SS/epsilon_0/m); % plasma frequency of free electron gas (rad/s)

55 epsilon_1 = 1 + (omega_1/omega_n)ˆ2; % complex dielectric permittivity of SS304

%

57 % DEFINE DIELECTRIC PERMITTIVITY OF SODIUM VAPOR

%

59 epsilon_2 = 1;

%

61 % HAMAKER "CONSTANT" CALCULATION

% modified Lifshitz theory created by Israelachvili (p. 142, Eq 11.8)

63 % corresponds to DLP asymptotic expression for small delta (p.191, Eq 4.18)

%

65 A = -1.015143464e-19;

%__________________________________________________________________________

67 %

% DLP THEORY CALCULATION FOR DISPERSION FORCE

69 % (force between SS204 and vapor when separated by liquid Na)

%__________________________________________________________________________

71 %

73 s_1 = sqrt(epsilon_1/epsilon_3 - 1 + pˆ2);

s_2 = sqrt(epsilon_2/epsilon_3 - 1 + pˆ2);

75

inside_int = pˆ2 * ((s_1 + p)*(s_2 + p)*exp(2*p*omega_n*sqrt(epsilon_3)*delta/c)/(s_1 - p)/(s_2 - p) - 1)ˆ-1 ...

77 + pˆ2 * ((s_1 + p*epsilon_1/epsilon_3)*(s_2 + p*epsilon_2/epsilon_3)*exp(2*p*omega_n*sqrt(epsilon_3)*delta/c) ...

/(s_1 - p*epsilon_1/epsilon_3)/(s_2 - p*epsilon_2/epsilon_3) - 1)ˆ-1;
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79 inside_int = eval([’@(p,n,delta)’ vectorize(inside_int)]);

81 %l = linspace(1e-9,1e-6,100);

%l = logspace(-8,log10(3)-6,100);

83 l = logspace(-9,log10(7.5)-7,80);

85 warning off all

for i = 1:length(l)

87 F_diff = 1;

F_old = 1;

89 F = 0;

j = 1;

91 while abs(F_diff) > 0.000001

if l(i) <= 2.1e-7

93 tol = 1.e-10;

elseif l(i) > 2.1e-7 & l(i) <= 6.8e-7

95 tol = 1.e-20;

else

97 tol = 1.e-90;

end

99 F = F + (k*T/pi/cˆ3) * subs(epsilon_3 ,n,j)ˆ1.5 * subs(omega_n,n,j)ˆ3 * quad(inside_int ,1,2000,tol,[],j,l(i));

F_diff = (F - F_old)/F_old;

101 F_old = F;

j = j + 1;

103 end

disp(j);

105 F_l(i) = F;

end

107

format long g

109

[l’,-F_l’,-A./6./pi./l’.ˆ3]

111

figure(1)

113 loglog(l,-F_l,’bo’,l,-A./6./pi./l.ˆ3,’r--’)

xlabel(’\delta (m)’);

115 ylabel(’-F(\delta)   (N/mˆ2)’);

xlim([1e-9 1e-6]);

117 legend(’DLP Theory’,’Hamaker Approx.’,’Location’,’NorthEast’)

119 %

% Print data to file for use in FORTRAN program.

121 %

fid = fopen(’DISPERSION_DATA’,’wt’);

123 fprintf(fid,’%15.15E’,-F_l);
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Appendix C

Thin Film Solutions

The following three programs solve Equation (4.1) for the unique case of high temperature, liquid metal,

extended meniscus evaporation on a stainless steel substrate. The first program, Appendix C.1, solves the

thin film governing equation where the electronic component of the disjoining pressure is large enough to

render the dispersion force component negligible. This represents Cases A-D in Table 6.1. The second

program, Appendix C.2, solves the thin film governing equation where the electronic and dispersion force

components of the disjoining pressure are of equal order of magnitude. This represents Cases E and G in

Table 6.1. The third program, Appendix C.3, solves the thin film governing equation where the electronic

component of the disjoining pressure is not present. This represents Case F in Table 6.1. These programs

were written in the FORTRAN 90 programming language and were compiled on a Sun Microsystems Sun

FireTM V880 server running the Solaris R© 10 operating system using quadruple precision. The FORTRAN

modules they require are listed in Appendix D.

C.1 Disjoining Pressure Cases A-D

1 PROGRAM HTLMTF_7B2

!***********************************************************************************************************************

3 !

! File: HTLMTF_7B2.f90

5 ! Language: FORTRAN 90

! Author: jtipton2

7 ! Summary: Thin film model of K.P. Hallinan et al., "Evaporation from an Extended Meniscus for Nonisothermal

! Interfacial Conditions ," Journal of Thermophysics and Heat Transfer , Vol. 8, 1994, pp. 709-716.
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9 ! + LIQUID METAL PROPERTIES

! + LECTRONIC COMPONENT OF THE DISPERSION FORCE **ONLY**

11 ! + WITH NONLINEARITIES SOLVED VIA THE LEVENBURG -MARQUARDT METHOD

!

13 ! Redord of Revision:

! Date Programmer Description of Change

15 ! ==== ========== =====================

! 3/31/08 JBT Initial creation

17 ! 1/02/09 JBT Changed T_V from 1156.09_16 to 1154.7_16

! Moved all subroutines to modules to improve programming

19 ! Changed INDX to an integer to match the subroutine

! Added LABEL parameter and used it to print result headers

21 !***********************************************************************************************************************

USE MATSOLV

23 USE CUBICSPLINE

USE CHEBYSHEV

25 USE LMPROPERTIES

IMPLICIT NONE

27 INTEGER, PARAMETER :: NN_MAX = 200, TERMS = 200

INTEGER :: II, JJ, KK, NN, LOOPNUM, INDX(NN_MAX)

29 REAL*16, PARAMETER :: PI = 3.14159265358979_16

CHARACTER (LEN=*), PARAMETER :: FORM1 = "(// 1X A / 1X, 50(’=’))"

31 CHARACTER (LEN=40), PARAMETER :: LABEL = "(//8(15X,A)/ 1X, 50(’=’))"

REAL*16 :: T_V, R_G, V_L, R, C_L, DT_0, ALPHA, BETA, GAMMA, LAMBDA, COEFF, B_ELEC, CHI, RHO, H_FG, MU, P_V, &

33 SIGMA, K, MW, H_0, PI_0, X_0, M_ID, U_0, CA, KAPPA

REAL*16 :: T_BC(NN_MAX+4), T_I_BC(NN_MAX+4), T_II_BC(NN_MAX+4), T_III_BC(NN_MAX+4), &

35 T(NN_MAX+4), T_I(NN_MAX+4), T_II(NN_MAX+4), T_III(NN_MAX+4), T_IIII(NN_MAX+4), &

U, U_I, U_II, U_III, U_IIII, DU, DU_I, DU_II, DU_III, DU_IIII, PI_STAR, PI_STAR_I , PI_STAR_II

37 REAL*16 :: C_OLD(NN_MAX), C_NEW(NN_MAX), DC(NN_MAX), JACOBIAN(NN_MAX,NN_MAX), F(NN_MAX), Q_OLD, Q_NEW, MARQ

REAL*16 :: JACOBIAN_C_PLUS_F(NN_MAX), G(NN_MAX,NN_MAX), GRADQ(NN_MAX), G_PLUS_MARQ_I(NN_MAX,NN_MAX)

39 REAL*16 :: IDENTITY(NN_MAX,NN_MAX), ERROR, XI, KEY

REAL*16 :: ETA(TERMS), THETA(TERMS,5), X(TERMS), H(TERMS,5), M_EVP(TERMS), DPDX(TERMS)

41 REAL*16 :: Q(NN_MAX), OMEGA(NN_MAX)

REAL*16 :: NONISO_DIFF , NONDTEMP

43

! Program Constants

45 T_V = 1154.7_16 ! sodium temperature of vaporization (K)

CALL LM_PROPS (T_V, RHO, K, H_FG, MU, MW, P_V, SIGMA, B_ELEC)

47 R_G = 8.314472_16 ! universal gas constant (N-m/K-mol)

V_L = MW/RHO ! liquid molar volume (mˆ3/mol)

49 R = 400E-6_16 ! radius or width of pore (m)

C_L = 2._16 ! accomodation coefficient

51 DT_0 = 5E-4_16 ! wall/vapor temperature difference (K)

CHI = 3._16*PI**2._16/16._16 ! electronic disjoining pressure boundary condition term

53

! Nondimensional Variables and Scales:

55 H_0 = SQRT(V_L*T_V*B_ELEC*CHI/MW/H_FG/DT_0) ! reference film thickness of the adsorbed film (m)

PI_0 = MW*H_FG*DT_0/V_L/T_V ! reference disjoining pressure (N/mˆ2)

57 X_0 = SQRT(SIGMA*H_0/PI_0) ! axial length scale (m)

M_ID = C_L * SQRT(MW/2._16/PI/R_G/T_V) * P_V*MW*H_FG*DT_0/(R_G*T_V*(T_V+DT_0)) ! ideal evaporative flux (kg/s/mˆ2)

59 U_0 = M_ID/RHO ! liquid characteristic velocity (m/s)

CA = MU*U_0/SIGMA ! capillary number

61 KAPPA = H_FG*M_ID*H_0/K ! ratio of evaporative interfacial resistance

! to conductive resistance in the thin film

63
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! Normalized problem boundary conditions

65 ALPHA = 1.04_16

BETA = 1E-4_16

67 GAMMA = X_0**2._16/R/H_0

LAMBDA = 20._16

69 COEFF = 3._16 * CA / (H_0*PI_0/SIGMA)**2._16

71 ! Create Chebyshev polynomials of the first kind

! for the boundary conditions

73 CALL CHEBY_T (NN_MAX+4,0,-1._16,T_BC)

CALL CHEBY_T (NN_MAX+4,1,-1._16,T_I_BC)

75 CALL CHEBY_T (NN_MAX+4,2, 1._16,T_II_BC)

CALL CHEBY_T (NN_MAX+4,3,-1._16,T_III_BC)

77

79

DO NN = 1,100,99

81 ERROR = 1._16

LOOPNUM = 0

83 C_NEW = 0._16

Q_NEW = 0._16

85 Q = 0._16

87 DO II = 1,NN

DO JJ = 1,NN

89 IF (II==JJ) THEN

IDENTITY(II,JJ) = 1._16

91 ELSE

IDENTITY(II,JJ) = 0._16

93 END IF

END DO

95 END DO

97 PRINT FORM1,’Q = ’

99 DO WHILE (ERROR >= 1E-8_16 .AND. Q_NEW < 0.1E17_16)

LOOPNUM = LOOPNUM + 1

101 C_OLD = C_NEW

Q_OLD = Q_NEW

103 DO II = 1,NN

!

105 ! The "i" subscript refers to matrix rows which represent the

! functions evaluated at different values of the collocated domain

107 ! variable, "XI".

!

109 XI = COS((2._16*II - 1._16)*PI/2._16/NN)

!

111 ! Create Chebyshev Polynomials of the First Kind

! and Their Derivatives

113 !

CALL CHEBY_T (NN_MAX+4,0,XI,T)

115 CALL CHEBY_T (NN_MAX+4,1,XI,T_I)

CALL CHEBY_T (NN_MAX+4,2,XI,T_II)

117 CALL CHEBY_T (NN_MAX+4,3,XI,T_III)

CALL CHEBY_T (NN_MAX+4,4,XI,T_IIII)
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119 !

! Establish the Approximate Analytical Series Solution

121 ! and It’s Derivatives

!

123 U = ALPHA + LAMBDA*BETA*(XI + 1._16) + (0.5_16*XI**2._16 + XI + 0.5_16)*GAMMA*LAMBDA**2._16 &

+ SUM(C_OLD(1:NN) * (T(5:NN+4) &

125 - T_BC(5:NN+4) &

- (XI + 1._16)*T_I_BC(5:NN+4) &

127 - (0.5_16*XI**2._16 + XI + 0.5_16)*T_II_BC(5:NN+4) &

+ (-XI**3._16 + 3._16*XI**2._16 + 9._16*XI + 5._16)*T_III_BC(5:NN+4)/6._16))

129

U_I = LAMBDA*BETA + (1._16 + XI)*GAMMA*LAMBDA**2._16 &

131 + SUM(C_OLD(1:NN) * (T_I(5:NN+4) &

- T_I_BC(5:NN+4) &

133 - (XI + 1._16)*T_II_BC(5:NN+4) &

+ (-0.5_16*XI**2._16 + XI + 1.5_16)*T_III_BC(5:NN+4)))

135

U_II = GAMMA*LAMBDA**2._16 &

137 + SUM(C_OLD(1:NN) * (T_II(5:NN+4) &

- T_II_BC(5:NN+4) &

139 + (1._16 - XI)*T_III_BC(5:NN+4)))

141 U_III = SUM(C_OLD(1:NN) * (T_III(5:NN+4) - T_III_BC(5:NN+4)))

143 U_IIII = SUM(C_OLD(1:NN) * (T_IIII(5:NN+4)))

145 !

! Create the [F] matrix

147 !

NONISO_DIFF = DT_0 + KAPPA*U

149 NONDTEMP = (DT_0 + KAPPA*(U*U_II/LAMBDA**2._16 + 1._16/U)) / (DT_0 + KAPPA*U)

151 F(II) = 2._16*U_II/LAMBDA**2._16 &

- 3._16*U**2._16*U_I*U_III/LAMBDA**4._16 &

153 - U**3._16*U_IIII/LAMBDA**4._16 &

- COEFF * (NONDTEMP - U_II/LAMBDA**2._16 - 1._16/U**2._16)

155

!

157 ! Create the [E] matrix

!

159 DO JJ = 1,NN

161 DU = T(JJ+4) - T_BC(JJ+4) - (XI + 1._16)*T_I_BC(JJ+4) &

- (0.5_16*XI**2._16 + XI + 0.5_16)*T_II_BC(JJ+4) &

163 + (-XI**3._16 + 3._16*XI**2._16 + 9._16*XI + 5._16)*T_III_BC(JJ+4)/6._16

DU_I = T_I(JJ+4) - T_I_BC(JJ+4) - (XI + 1._16)*T_II_BC(JJ+4) + (-0.5_16*XI**2._16 + XI + 1.5_16) &

165 *T_III_BC(JJ+4)

DU_II = T_II(JJ+4) - T_II_BC(JJ+4) + (1._16 - XI)*T_III_BC(JJ+4)

167 DU_III = T_III(JJ+4) - T_III_BC(JJ+4)

DU_IIII = T_IIII(JJ+4)

169

JACOBIAN(II,JJ) = (6._16*U*U_I*U_III/LAMBDA**4._16) * DU &

171 + (3._16*U**2._16*U_III/LAMBDA**4._16) * DU_I &

+ (3._16*U**2._16*U_I/LAMBDA**4._16) * DU_III &

173
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+ (3._16*U**2._16*U_IIII/LAMBDA**4._16) * DU &

175 + (U**3._16/LAMBDA**4._16) * DU_IIII &

177 - (2._16/LAMBDA**2._16) * DU_II &

179 - (COEFF/LAMBDA**2._16) * DU_II &

181 + (2._16*COEFF/U**3._16) * DU &

183 !

! Nonisothermal interface terms

185 !

+ (COEFF*DT_0*KAPPA/NONISO_DIFF**2._16) * DU &

187

+ (COEFF*KAPPA*U_II/LAMBDA**2._16/NONISO_DIFF) * DU &

189 + (COEFF*KAPPA*U/LAMBDA**2._16/NONISO_DIFF) * DU_II &

+ (COEFF*KAPPA**2._16*U*U_II/LAMBDA**2._16/NONISO_DIFF**2._16) * DU &

191

- (COEFF*KAPPA*B_ELEC/H_0**2._16/PI_0/U**2._16/NONISO_DIFF) * DU &

193 - (COEFF*KAPPA**2._16*B_ELEC/H_0**2._16/PI_0/U/NONISO_DIFF**2._16) * DU

195 END DO

END DO

197

!**LEVENBERG -MARQUARDT METHOD**********************************************

199 !

! Formulation described by:

201 ! Henley and Rosen, "Material and Energy Balance Computations ,"

! John Wiley & Sons, 1969, pp. 171-173, 192-204.

203 !

!

205 ! Solution procedure described by:

! "Numerical Recipes in Fortran: The Art of Scientific Computing"

207 ! 2nd Edition, pp. 679.

!

209 ! (1) compute Q

! (2) pick MARQ = 0.001

211 ! (3) solve linear system (G + MARQ*I) DC = -GRADQ

! (4) compute new Q(C) = SUM (JACOBIAN DC + F)ˆ2

213 ! (4a) if Q_NEW >= Q_OLD then MARQ = MARQ*10 | goto (3)

! (4b) if Q_NEW < Q_OLD then MARQ = MARQ/10 | goto (3)

215 ! (5) if Q_NEW < Q_OLD AND Q_NEW < tol then STOP

!

217 !**************************************************************************

IF (LOOPNUM == 1) THEN

219 Q_NEW = SQRT(DOT_PRODUCT(F,F))

Q_OLD = 1._16

221 MARQ = 0.0001_16

ELSE

223 JACOBIAN_C_PLUS_F = MATMUL(JACOBIAN ,C_OLD) + F

Q_NEW = SQRT(DOT_PRODUCT(JACOBIAN_C_PLUS_F ,JACOBIAN_C_PLUS_F))

225 END IF

227 IF (Q_NEW .GE. Q_OLD) THEN

MARQ = MARQ * 10._16
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229 ELSE

MARQ = MARQ / 10._16

231 END IF

233 G = 2._16 * MATMUL(TRANSPOSE(JACOBIAN),JACOBIAN)

GRADQ = 2._16 * MATMUL(TRANSPOSE(JACOBIAN),F)

235 G_PLUS_MARQ_I = G + MARQ*IDENTITY

CALL LUDCMP (G_PLUS_MARQ_I ,NN,NN_MAX,INDX,KEY)

237 DC = GRADQ

CALL LUBKSB (G_PLUS_MARQ_I ,NN,NN_MAX,INDX,DC)

239 C_NEW = DC + C_OLD

241 ERROR = ABS(Q_NEW-Q_OLD)/Q_OLD

Q(LOOPNUM) = Q_NEW

243 PRINT ’(1G32.16)’, Q(LOOPNUM)

245 END DO

247 !

! SPATIAL CONVERGENCE ACCURACY

249 ! (Integrate approximate analytical solution over the domain space)

!

251 OMEGA(NN) = 2._16*ALPHA + 2._16*LAMBDA*BETA + 4._16*LAMBDA**2._16*GAMMA/3._16

253 DO JJ = 1,NN/2

KK = 2._16*JJ

255 OMEGA(NN) = OMEGA(NN) + C_NEW(KK) * ( -2._16*T_BC(KK) - 2._16*T_I_BC(KK) - 5._16*T_II_BC(KK)/3._16 &

+ 2._16*T_III_BC(KK) - 2._16/(KK+1._16)/(KK-1._16) )

257 END DO

259 END DO

261 PRINT FORM1,’OMEGA = ’

PRINT ’(1G32.16)’, OMEGA(1:NN-1)

263

!

265 ! CONVERT TO ORIGINAL NONDIMENSIONALIZED THIN FILM EVAPORATION EQUATION

!

267 DO II = 1,TERMS

XI = COS((2._16*II - 1._16)*PI/2._16/TERMS)

269 ETA(II) = LAMBDA*(1._16 + XI)

!

271 ! Create Chebyshev Polynomials of the First Kind

! and Their Derivatives

273 !

CALL CHEBY_T (NN_MAX+4,0,XI,T)

275 CALL CHEBY_T (NN_MAX+4,1,XI,T_I)

CALL CHEBY_T (NN_MAX+4,2,XI,T_II)

277 CALL CHEBY_T (NN_MAX+4,3,XI,T_III)

CALL CHEBY_T (NN_MAX+4,4,XI,T_IIII)

279 !

! Establish the Approximate Analytical Series Solution

281 ! and It’s Derivatives

!

283 U = ALPHA + LAMBDA*BETA*(XI + 1._16) + (0.5_16*XI**2._16 + XI + 0.5_16)*GAMMA*LAMBDA**2._16 &
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+ SUM(C_OLD(1:NN) * (T(5:NN+4) &

285 - T_BC(5:NN+4) &

- (XI + 1._16)*T_I_BC(5:NN+4) &

287 - (0.5_16*XI**2._16 + XI + 0.5_16)*T_II_BC(5:NN+4) &

+ (-XI**3._16 + 3._16*XI**2._16 + 9._16*XI + 5._16)*T_III_BC(5:NN+4)/6._16))

289

U_I = LAMBDA*BETA + (1._16 + XI)*GAMMA*LAMBDA**2._16 &

291 + SUM(C_OLD(1:NN) * (T_I(5:NN+4) &

- T_I_BC(5:NN+4) &

293 - (XI + 1._16)*T_II_BC(5:NN+4) &

+ (-0.5_16*XI**2._16 + XI + 1.5_16)*T_III_BC(5:NN+4)))

295

U_II = GAMMA*LAMBDA**2._16 &

297 + SUM(C_OLD(1:NN) * (T_II(5:NN+4) &

- T_II_BC(5:NN+4) &

299 + (1._16 - XI)*T_III_BC(5:NN+4)))

301 U_III = SUM(C_OLD(1:NN) * (T_III(5:NN+4) - T_III_BC(5:NN+4)))

303 U_IIII = SUM(C_OLD(1:NN) * (T_IIII(5:NN+4)))

!

305 ! Convert to from THETA_HAT to THETA

!

307 THETA(II,1) = U

THETA(II,2) = U_I/LAMBDA

309 THETA(II,3) = U_II/LAMBDA**2._16

THETA(II,4) = U_III/LAMBDA**3._16

311 THETA(II,5) = U_IIII/LAMBDA**4._16

!

313 ! Calculate nondimensional disjoining pressures

!

315 PI_STAR = 1._16 / U**2._16

PI_STAR_I = -2._16 * U_I / U**3._16 / LAMBDA

317 !

! Calculate net evaporative mass flux and liquid pressure gradient

319 !

321 NONDTEMP = (DT_0 + KAPPA*(THETA(II,1)*THETA(II,3) + THETA(II,1)*PI_STAR)) / (DT_0 + KAPPA*THETA(II,1))

M_EVP(II) = M_ID * (NONDTEMP - THETA(II,3) - PI_STAR)

323 DPDX(II) = -SIGMA*H_0*THETA(II,4)/X_0**3._16 - PI_0*PI_STAR_I/X_0

325 END DO

327 !

! CONVERT TO ORIGINAL DIMENSIONAL THIN FILM EVAPORATION EQUATION

329 !

X = X_0*ETA

331 H(:,1) = H_0*THETA(:,1)

H(:,2) = H_0*THETA(:,2)/X_0

333 H(:,3) = H_0*THETA(:,3)/X_0**2._16

H(:,4) = H_0*THETA(:,4)/X_0**3._16

335 H(:,5) = H_0*THETA(:,5)/X_0**4._16

337 ! DISPLAY RESULTS

PRINT LABEL,’X’,’H’,’H_I’,’H_II’,’H_III’,’H_IIII’,’M_EVP’,’DPDX’
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339 DO II=1,TERMS

PRINT ’(1X, G16.8, G16.8, G16.8, G16.8, G16.8, G16.8, G16.8, G16.8)’, &

341 X(II), H(II,1), H(II,2), H(II,3), H(II,4), H(II,5), M_EVP(II), DPDX(II)

END DO

343

END
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C.2 Disjoining Pressure Cases E,G

PROGRAM HTLMTF_7AB

2 !***********************************************************************************************************************

!

4 ! File: HTLMTF_7A -B.f90

! Language: FORTRAN 90

6 ! Author: jtipton2

! Summary: Thin film model of K.P. Hallinan et al., "Evaporation from an Extended Meniscus for Nonisothermal

8 ! Interfacial Conditions ," Journal of Thermophysics and Heat Transfer , Vol. 8, 1994, pp. 709-716.

! + LIQUID METAL PROPERTIES

10 ! + GENERAL DGP DISPERSION FORCE MODELED WITH CUBIC SPLINE INTERPOLATION

! + LECTRONIC COMPONENT OF THE DISPERSION FORCE

12 ! + WITH NONLINEARITIES SOLVED VIA THE LEVENBURG -MARQUARDT METHOD

!

14 ! Redord of Revision:

! Date Programmer Description of Change

16 ! ==== ========== =====================

! 1/24/08 JBT Initial creation

18 ! 1/05/09 JBT Changed T_V from 1156.09_16 to 1154.7_16

! Moved all subroutines to modules to improve programming

20 ! Changed INDX to an integer to match the subroutine

! Added LABEL parameter and used it to print result headers

22 ! Changed CS_N from 75 to 80

! Changed LEFT_LIM_EXP from -8._16 to -9._16

24 ! Changed spline BC at X(1) from 5.30344944662574E20_16 to 6.492683078E25_16

!***********************************************************************************************************************

26 USE MATSOLV

USE CUBICSPLINE

28 USE CHEBYSHEV

USE LMPROPERTIES

30 IMPLICIT NONE

REAL*16, PARAMETER :: PI = 3.14159265358979_16

32 INTEGER, PARAMETER :: NN_MAX = 200, CS_N = 80, TERMS = 200

INTEGER :: II, JJ, KK, NN, LOOPNUM, INDX(NN_MAX)

34 CHARACTER (LEN=*), PARAMETER :: FORM1 = "(// 1X A / 1X, 50(’=’))"

CHARACTER (LEN=40), PARAMETER :: LABEL = "(//8(15X,A)/ 1X, 50(’=’))"

36 REAL*16 :: T_V, R_G, V_L, R, C_L, DT_0, ALPHA, BETA, GAMMA, LAMBDA, COEFF, B_ELEC, CHI, RHO, H_FG, MU, P_V, &

SIGMA, K, MW, H_0, PI_0, X_0, M_ID, U_0, CA, HAMAKER, KAPPA

38 REAL*16 :: T_BC(NN_MAX+4), T_I_BC(NN_MAX+4), T_II_BC(NN_MAX+4), T_III_BC(NN_MAX+4), &

T(NN_MAX+4), T_I(NN_MAX+4), T_II(NN_MAX+4), T_III(NN_MAX+4), T_IIII(NN_MAX+4), &

40 U, U_I, U_II, U_III, U_IIII, DU, DU_I, DU_II, DU_III, DU_IIII, PI_STAR, PI_STAR_I , PI_STAR_II

REAL*16 :: C_OLD(NN_MAX), C_NEW(NN_MAX), DC(NN_MAX), JACOBIAN(NN_MAX,NN_MAX), F(NN_MAX), Q_OLD, Q_NEW, MARQ

42 REAL*16 :: JACOBIAN_C_PLUS_F(NN_MAX), G(NN_MAX,NN_MAX), GRADQ(NN_MAX), G_PLUS_MARQ_I(NN_MAX,NN_MAX)

REAL*16 :: ERROR, XI, KEY, IDENTITY(NN_MAX,NN_MAX)

44 REAL*16 :: LEFT_LIM_EXP , RIGHT_LIM_EXP

REAL*16 :: CS_XI(CS_N), CS_PI(CS_N), CS_PI2(CS_N), CS_X_I, CS_A, CS_B, CS_C, CS_D, CS_DIFF

46 REAL*16 :: NONISO_DIFF , NONDTEMP

REAL*16 :: ETA(TERMS), THETA(TERMS,5), X(TERMS), H(TERMS,5), M_EVP(TERMS), DPDX(TERMS)

48 REAL*16 :: Q(NN_MAX), OMEGA(NN_MAX)

50 ! Program Constants

T_V = 1154.7_16 ! sodium temperature of vaporization (K)

52 CALL LM_PROPS (T_V, RHO, K, H_FG, MU, MW, P_V, SIGMA, B_ELEC, HAMAKER)

R_G = 8.314472_16 ! universal gas constant (N-m/K-mol)

102



54 V_L = MW/RHO ! liquid molar volume (mˆ3/mol)

R = 200E-6_16 ! radius or width of pore (m)

56 C_L = 2._16 ! accomodation coefficient

DT_0 = 5E-4_16 ! wall/vapor temperature difference (K)

58 CHI = 0.0017060360_16 ! electronic disjoining pressure boundary condition term

60

!-----------------------------------------------------------------------------------------------------

62 ! Get DLP Dispersion Force Data

!-----------------------------------------------------------------------------------------------------

64

! Load discrete DLP Dispersion Force data from DISP_FORCE.f90

66 OPEN (UNIT = 12, FILE = ’DISPERSION_DATA ’, STATUS = ’OLD’)

READ (12, ’(100E22.15)’) CS_PI

68 CLOSE (12)

70 LEFT_LIM_EXP = -9._16

RIGHT_LIM_EXP = LOG10(7.5_16)-7._16

72 DO II = 1,CS_N

CS_XI(II) = 10._16**(LEFT_LIM_EXP + (II-1._16)*(RIGHT_LIM_EXP - LEFT_LIM_EXP)/(CS_N-1._16))

74 ENDDO

76 CALL SPLINE (CS_XI,CS_PI,CS_N ,6.492683078E25_16 ,0._16,CS_PI2)

! Boundary condition at X(1) --> Calculated from Hamaker Approximation (F’’ = -2A/pi/xˆ5)

78 ! X(N) --> "Natural" spline condition (F’’ = 0)

80 !-----------------------------------------------------------------------------------------------------

82

! Nondimensional Variables and Scales:

84 CALL ADSORBED_THICKNESS_7AB &

(MW, H_FG, DT_0, V_L, T_V, B_ELEC, CHI, HAMAKER, CS_N, CS_XI, CS_PI, CS_PI2, 1E-6_16, 1E-11_16, H_0)

86 PI_0 = MW*H_FG*DT_0/V_L/T_V ! reference disjoining pressure (N/mˆ2)

X_0 = SQRT(SIGMA*H_0/PI_0) ! axial length scale (m)

88 M_ID = C_L * SQRT(MW/2._16/PI/R_G/T_V) * P_V*MW*H_FG*DT_0/(R_G*T_V**2._16) ! ideal evaporative flux (kg/s/mˆ2)

U_0 = M_ID/RHO ! liquid characteristic velocity (m/s)

90 CA = MU*U_0/SIGMA ! capillary number

KAPPA = H_FG*M_ID*H_0/K ! ratio of evaporative interfacial resistance

92 ! to conductive resistance in the thin film

94 ! Normalized problem boundary conditions

ALPHA = 1.04_16

96 BETA = 1E-4_16

GAMMA = X_0**2._16/R/H_0

98 LAMBDA = 5._16

COEFF = 3._16 * CA / (H_0*PI_0/SIGMA)**2._16

100

! Create Chebyshev polynomials of the first kind

102 ! for the boundary conditions

CALL CHEBY_T (NN_MAX+4,0,-1._16,T_BC)

104 CALL CHEBY_T (NN_MAX+4,1,-1._16,T_I_BC)

CALL CHEBY_T (NN_MAX+4,2, 1._16,T_II_BC)

106 CALL CHEBY_T (NN_MAX+4,3,-1._16,T_III_BC)

108
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110 DO NN = 1,100,99

ERROR = 1._16

112 LOOPNUM = 0

C_NEW = 0._16

114 Q_NEW = 0._16

Q = 0._16

116

DO II = 1,NN

118 DO JJ = 1,NN

IF (II==JJ) THEN

120 IDENTITY(II,JJ) = 1._16

ELSE

122 IDENTITY(II,JJ) = 0._16

END IF

124 END DO

END DO

126

PRINT FORM1,’Q = ’

128

DO WHILE (ERROR >= 1E-8_16 .AND. Q_NEW < 0.1E17_16)

130 LOOPNUM = LOOPNUM + 1

C_OLD = C_NEW

132 Q_OLD = Q_NEW

DO II = 1,NN

134 !

! The "i" subscript refers to matrix rows which represent the

136 ! functions evaluated at different values of the collocated domain

! variable, "XI".

138 !

XI = COS((2._16*II - 1._16)*PI/2._16/NN)

140 !

! Create Chebyshev Polynomials of the First Kind

142 ! and Their Derivatives

!

144 CALL CHEBY_T (NN_MAX+4,0,XI,T)

CALL CHEBY_T (NN_MAX+4,1,XI,T_I)

146 CALL CHEBY_T (NN_MAX+4,2,XI,T_II)

CALL CHEBY_T (NN_MAX+4,3,XI,T_III)

148 CALL CHEBY_T (NN_MAX+4,4,XI,T_IIII)

!

150 ! Establish the Approximate Analytical Series Solution

! and It’s Derivatives

152 !

U = ALPHA + LAMBDA*BETA*(XI + 1._16) + (0.5_16*XI**2._16 + XI + 0.5_16)*GAMMA*LAMBDA**2._16 &

154 + SUM(C_OLD(1:NN) * (T(5:NN+4) &

- T_BC(5:NN+4) &

156 - (XI + 1._16)*T_I_BC(5:NN+4) &

- (0.5_16*XI**2._16 + XI + 0.5_16)*T_II_BC(5:NN+4) &

158 + (-XI**3._16 + 3._16*XI**2._16 + 9._16*XI + 5._16)*T_III_BC(5:NN+4)/6._16))

160 U_I = LAMBDA*BETA + (1._16 + XI)*GAMMA*LAMBDA**2._16 &

+ SUM(C_OLD(1:NN) * (T_I(5:NN+4) &

162 - T_I_BC(5:NN+4) &

- (XI + 1._16)*T_II_BC(5:NN+4) &
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164 + (-0.5_16*XI**2._16 + XI + 1.5_16)*T_III_BC(5:NN+4)))

166 U_II = GAMMA*LAMBDA**2._16 &

+ SUM(C_OLD(1:NN) * (T_II(5:NN+4) &

168 - T_II_BC(5:NN+4) &

+ (1._16 - XI)*T_III_BC(5:NN+4)))

170

U_III = SUM(C_OLD(1:NN) * (T_III(5:NN+4) - T_III_BC(5:NN+4)))

172

U_IIII = SUM(C_OLD(1:NN) * (T_IIII(5:NN+4)))

174

NONISO_DIFF = DT_0 + KAPPA*U

176

!

178 ! Create the [F] matrix

!

180 IF (U*H_0 > 7.07493733732976559433421216887514375e-07_16) THEN

PI_STAR = (B_ELEC*CHI/PI_0/H_0**2._16) / U**2._16

182 PI_STAR_I = (-2._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA) * U_I / U**3._16

PI_STAR_II = (6._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA**2._16) * U_I**2._16 / U**4._16 &

184 - (2._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA**2._16) * U_II / U**3._16

CS_A = 0._16

186 CS_B = 0._16

CS_C = 0._16

188 CS_D = 0._16

ELSE

190 CALL SPLINTS (CS_XI,CS_PI,CS_PI2,CS_N,U*H_0,CS_X_I,CS_A,CS_B,CS_C,CS_D)

CS_DIFF = H_0*U - CS_X_I

192

PI_STAR = CS_A*CS_DIFF**3._16/PI_0 + CS_B*CS_DIFF**2._16/PI_0 &

194 + CS_C*CS_DIFF/PI_0 + CS_D/PI_0 &

+ (B_ELEC*CHI/PI_0/H_0**2._16) / U**2._16

196

PI_STAR_I = 3._16*CS_A*H_0*CS_DIFF**2._16*U_I/LAMBDA/PI_0 &

198 + 2._16*CS_B*H_0*CS_DIFF*U_I/LAMBDA/PI_0 &

+ CS_C*H_0*U_I/LAMBDA/PI_0 &

200 - (2._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA) * U_I / U**3._16

202 PI_STAR_II = 6._16*CS_A*H_0**2._16*CS_DIFF*U_I**2._16/LAMBDA**2._16/PI_0 &

+ 3._16*CS_A*H_0*CS_DIFF**2._16*U_II/LAMBDA**2._16/PI_0 &

204 + 2._16*CS_B*H_0**2._16*U_I**2._16/LAMBDA**2._16/PI_0 &

+ 2._16*CS_B*CS_DIFF*H_0*U_II/LAMBDA**2._16/PI_0 + CS_C*H_0*U_II/LAMBDA**2._16/PI_0 &

206 + (6._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA**2._16) * U_I**2._16 / U**4._16 &

- (2._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA**2._16) * U_II / U**3._16

208 ENDIF

210 F(II) = -3._16*U**2._16*U_I*U_III/LAMBDA**4._16 &

- U**3._16*U_IIII/LAMBDA**4._16 &

212 - 3._16*U**2._16*U_I*PI_STAR_I/LAMBDA &

- U**3._16*PI_STAR_II &

214 + COEFF*U_II/LAMBDA**2._16 &

+ COEFF*PI_STAR &

216 ! terms due to nonisothermal interface assumption

- COEFF*DT_0/(DT_0+KAPPA*U) &

218 - COEFF*KAPPA*U*U_II/LAMBDA**2._16/(DT_0+KAPPA*U) &
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- COEFF*KAPPA*U*PI_STAR/(DT_0+KAPPA*U)

220 !

! Create the [E] matrix

222 !

DO JJ = 1,NN

224

DU = T(JJ+4) - T_BC(JJ+4) - (XI + 1._16)*T_I_BC(JJ+4) &

226 - (0.5_16*XI**2._16 + XI + 0.5_16)*T_II_BC(JJ+4)&

+ (-XI**3._16 + 3._16*XI**2._16 + 9._16*XI + 5._16)*T_III_BC(JJ+4)/6._16

228 DU_I = T_I(JJ+4) - T_I_BC(JJ+4) - (XI + 1._16)*T_II_BC(JJ+4) &

+ (-0.5_16*XI**2._16 + XI + 1.5_16)*T_III_BC(JJ+4)

230 DU_II = T_II(JJ+4) - T_II_BC(JJ+4) + (1._16 - XI)*T_III_BC(JJ+4)

DU_III = T_III(JJ+4) - T_III_BC(JJ+4)

232 DU_IIII = T_IIII(JJ+4)

234 JACOBIAN(II,JJ) = (6._16*U*U_I*U_III/LAMBDA**4._16) * DU &

+ (3._16*U**2._16*U_III/LAMBDA**4._16) * DU_I &

236 + (3._16*U**2._16*U_I/LAMBDA**4._16) * DU_III &

238 + (3._16*U**2._16*U_IIII/LAMBDA**4._16) * DU &

+ (U**3._16/LAMBDA**4._16) * DU_IIII &

240

- (COEFF/LAMBDA**2._16) * DU_II &

242

- (3._16*COEFF*CS_A*H_0*CS_DIFF**2._16/PI_0) * DU &

244 - (2._16*COEFF*CS_B*H_0*CS_DIFF/PI_0) * DU &

- (COEFF*CS_C*H_0/PI_0) * DU &

246

+ (18._16*CS_A*H_0**2._16*CS_DIFF*U**2._16*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

248 + (18._16*CS_A*H_0*CS_DIFF**2._16*U*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

+ (18._16*CS_A*H_0*CS_DIFF**2._16*U**2._16*U_I/LAMBDA**2._16/PI_0) * DU_I &

250

+ (6._16*CS_B*H_0**2._16*U**2._16*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

252 + (12._16*CS_B*H_0*CS_DIFF*U*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

+ (12._16*CS_B*H_0*CS_DIFF*U**2._16*U_I/LAMBDA**2._16/PI_0) * DU_I &

254

+ (6._16*CS_C*H_0*U*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

256 + (6._16*CS_C*H_0*U**2._16*U_I/LAMBDA**2._16/PI_0) * DU_I &

258 + (6._16*CS_A*H_0**3._16*U**3._16*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

+ (18._16*CS_A*H_0**2._16*CS_DIFF*U**2._16*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

260 + (12._16*CS_A*H_0**2._16*CS_DIFF*U**3._16*U_I/LAMBDA**2._16/PI_0) * DU_I &

262 + (6._16*CS_A*H_0**2._16*CS_DIFF*U**3._16*U_II/LAMBDA**2._16/PI_0) * DU &

+ (9._16*CS_A*H_0*CS_DIFF**2._16*U**2._16*U_II/LAMBDA**2._16/PI_0) * DU &

264 + (3._16*CS_A*H_0*CS_DIFF**2._16*U**3._16/LAMBDA**2._16/PI_0) * DU_II &

266 + (6._16*CS_B*H_0**2._16*U**2._16*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

+ (4._16*CS_B*H_0**2._16*U**3._16*U_I/LAMBDA**2._16/PI_0) * DU_I &

268

+ (2._16*CS_B*H_0**2._16*U**3._16*U_II/LAMBDA**2._16/PI_0) * DU &

270 + (6._16*CS_B*H_0*CS_DIFF*U**2._16*U_II/LAMBDA**2._16/PI_0) * DU &

+ (2._16*CS_B*H_0*CS_DIFF*U**3._16/LAMBDA**2._16/PI_0) * DU_II &

272

+ (3._16*CS_C*H_0*U**2._16*U_II/LAMBDA**2._16/PI_0) * DU &
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274 + (CS_C*H_0*U**3._16/LAMBDA**2._16/PI_0) * DU_II &

276 !

! Electronic disjoining pressure terms

278 !

- (2._16*B_ELEC*CHI/H_0**2._16/PI_0/LAMBDA**2._16) * DU_II &

280

+ (2._16*COEFF*B_ELEC*CHI/H_0**2._16/PI_0/U**3._16) * DU &

282

!

284 ! Nonisothermal interface terms

!

286 + (COEFF*DT_0*KAPPA/NONISO_DIFF**2._16) * DU &

288 + (COEFF*KAPPA*U_II/LAMBDA**2._16/NONISO_DIFF) * DU &

+ (COEFF*KAPPA*U/LAMBDA**2._16/NONISO_DIFF) * DU_II &

290 + (COEFF*KAPPA**2._16*U*U_II/LAMBDA**2._16/NONISO_DIFF**2._16) * DU &

292 + (COEFF*KAPPA*CS_A*CS_DIFF**3._16/NONISO_DIFF/PI_0) * DU &

+ (3._16*COEFF*KAPPA*CS_A*H_0*U*CS_DIFF**2._16/NONISO_DIFF/PI_0) * DU &

294 - (COEFF*KAPPA**2._16*CS_A*U*CS_DIFF**3._16/NONISO_DIFF**2._16/PI_0) * DU &

296 + (COEFF*KAPPA*CS_B*CS_DIFF**2._16/NONISO_DIFF/PI_0) * DU &

+ (2._16*COEFF*KAPPA*CS_B*H_0*U*CS_DIFF/NONISO_DIFF/PI_0) * DU &

298 - (COEFF*KAPPA**2._16*CS_B*U*CS_DIFF**2._16/NONISO_DIFF**2._16/PI_0) * DU &

300 + (COEFF*KAPPA*CS_C*CS_DIFF/NONISO_DIFF/PI_0) * DU &

+ (COEFF*KAPPA*CS_C*H_0*U/NONISO_DIFF/PI_0) * DU &

302 - (COEFF*KAPPA**2._16*CS_C*U*CS_DIFF/NONISO_DIFF**2._16/PI_0) * DU &

304 + (COEFF*KAPPA*CS_D/NONISO_DIFF/PI_0) * DU &

- (COEFF*KAPPA**2._16*CS_D*U/NONISO_DIFF**2._16/PI_0) * DU &

306

- (COEFF*KAPPA*B_ELEC/H_0**2._16/PI_0/U**2._16/NONISO_DIFF) * DU &

308 - (COEFF*KAPPA**2._16*B_ELEC/H_0**2._16/PI_0/U/NONISO_DIFF**2._16) * DU

END DO

310 END DO

312 !**LEVENBERG -MARQUARDT METHOD**********************************************

!

314 ! Formulation described by:

! Henley and Rosen, "Material and Energy Balance Computations ,"

316 ! John Wiley & Sons, 1969, pp. 171-173, 192-204.

!

318 !

! Solution procedure described by:

320 ! "Numerical Recipes in Fortran: The Art of Scientific Computing"

! 2nd Edition, pp. 679.

322 !

! (1) compute Q

324 ! (2) pick MARQ = 0.001

! (3) solve linear system (G + MARQ*I) DC = -GRADQ

326 ! (4) compute new Q(C) = SUM (JACOBIAN DC + F)ˆ2

! (4a) if Q_NEW >= Q_OLD then MARQ = MARQ*10 | goto (3)

328 ! (4b) if Q_NEW < Q_OLD then MARQ = MARQ/10 | goto (3)
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! (5) if Q_NEW < Q_OLD AND Q_NEW < tol then STOP

330 !

!**************************************************************************

332 IF (LOOPNUM == 1) THEN

Q_NEW = SQRT(DOT_PRODUCT(F,F))

334 Q_OLD = 1._16

MARQ = 0.0001_16

336 ELSE

JACOBIAN_C_PLUS_F = MATMUL(JACOBIAN ,C_OLD) + F

338 Q_NEW = SQRT(DOT_PRODUCT(JACOBIAN_C_PLUS_F ,JACOBIAN_C_PLUS_F))

END IF

340

IF (Q_NEW .GE. Q_OLD) THEN

342 MARQ = MARQ * 10._16

ELSE

344 MARQ = MARQ / 10._16

END IF

346

G = 2._16 * MATMUL(TRANSPOSE(JACOBIAN),JACOBIAN)

348 GRADQ = 2._16 * MATMUL(TRANSPOSE(JACOBIAN),F)

G_PLUS_MARQ_I = G + MARQ*IDENTITY

350 CALL LUDCMP (G_PLUS_MARQ_I ,NN,NN_MAX,INDX,KEY)

DC = GRADQ

352 CALL LUBKSB (G_PLUS_MARQ_I ,NN,NN_MAX,INDX,DC)

C_NEW = DC + C_OLD

354

ERROR = ABS(Q_NEW-Q_OLD)/Q_OLD

356 Q(LOOPNUM) = Q_NEW

PRINT ’(1G32.16)’, Q(LOOPNUM)

358

END DO

360

!

362 ! SPATIAL CONVERGENCE ACCURACY

! (Integrate approximate analytical solution over the domain space)

364 !

OMEGA(NN) = 2._16*ALPHA + 2._16*LAMBDA*BETA + 4._16*LAMBDA**2._16*GAMMA/3._16

366

DO JJ = 1,NN/2

368 KK = 2._16*JJ

OMEGA(NN) = OMEGA(NN) + C_NEW(KK) * ( -2._16*T_BC(KK) - 2._16*T_I_BC(KK) - 5._16*T_II_BC(KK)/3._16 &

370 + 2._16*T_III_BC(KK) - 2._16/(KK+1._16)/(KK-1._16) )

END DO

372

END DO

374

PRINT FORM1,’OMEGA = ’

376 PRINT ’(1G32.16)’, OMEGA(1:NN-1)

378 !

! CONVERT TO ORIGINAL NONDIMENSIONALIZED THIN FILM EVAPORATION EQUATION

380 !

DO II = 1,TERMS

382 XI = COS((2._16*II - 1._16)*PI/2._16/TERMS)

ETA(II) = LAMBDA*(1._16 + XI)
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384 !

! Create Chebyshev Polynomials of the First Kind

386 ! and Their Derivatives

!

388 CALL CHEBY_T (NN_MAX+4,0,XI,T)

CALL CHEBY_T (NN_MAX+4,1,XI,T_I)

390 CALL CHEBY_T (NN_MAX+4,2,XI,T_II)

CALL CHEBY_T (NN_MAX+4,3,XI,T_III)

392 CALL CHEBY_T (NN_MAX+4,4,XI,T_IIII)

!

394 ! Establish the Approximate Analytical Series Solution

! and It’s Derivatives

396 !

U = ALPHA + LAMBDA*BETA*(XI + 1._16) + (0.5_16*XI**2._16 + XI + 0.5_16)*GAMMA*LAMBDA**2._16 &

398 + SUM(C_OLD(1:NN) * (T(5:NN+4) &

- T_BC(5:NN+4) &

400 - (XI + 1._16)*T_I_BC(5:NN+4) &

- (0.5_16*XI**2._16 + XI + 0.5_16)*T_II_BC(5:NN+4) &

402 + (-XI**3._16 + 3._16*XI**2._16 + 9._16*XI + 5._16)*T_III_BC(5:NN+4)/6._16))

404 U_I = LAMBDA*BETA + (1._16 + XI)*GAMMA*LAMBDA**2._16 &

+ SUM(C_OLD(1:NN) * (T_I(5:NN+4) &

406 - T_I_BC(5:NN+4) &

- (XI + 1._16)*T_II_BC(5:NN+4) &

408 + (-0.5_16*XI**2._16 + XI + 1.5_16)*T_III_BC(5:NN+4)))

410 U_II = GAMMA*LAMBDA**2._16 &

+ SUM(C_OLD(1:NN) * (T_II(5:NN+4) &

412 - T_II_BC(5:NN+4) &

+ (1._16 - XI)*T_III_BC(5:NN+4)))

414

U_III = SUM(C_OLD(1:NN) * (T_III(5:NN+4) - T_III_BC(5:NN+4)))

416

U_IIII = SUM(C_OLD(1:NN) * (T_IIII(5:NN+4)))

418 !

! Convert to from THETA_HAT to THETA

420 !

THETA(II,1) = U

422 THETA(II,2) = U_I/LAMBDA

THETA(II,3) = U_II/LAMBDA**2._16

424 THETA(II,4) = U_III/LAMBDA**3._16

THETA(II,5) = U_IIII/LAMBDA**4._16

426 !

! Calculate nondimensional disjoining pressures

428 !

IF (U*H_0 > 7.07493733732976559433421216887514375e-07_16) THEN

430 PI_STAR = (B_ELEC*CHI/PI_0/H_0**2._16) / U**2._16

PI_STAR_I = (-2._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA) * U_I / U**3._16

432 PI_STAR_II = (6._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA**2._16) * U_I**2._16 / U**4._16 &

- (2._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA**2._16) * U_II / U**3._16

434 CS_A = 0._16

CS_B = 0._16

436 CS_C = 0._16

CS_D = 0._16

438 ELSE
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CALL SPLINTS (CS_XI,CS_PI,CS_PI2,CS_N,U*H_0,CS_X_I,CS_A,CS_B,CS_C,CS_D)

440 CS_DIFF = H_0*U - CS_X_I

442 PI_STAR = CS_A*CS_DIFF**3._16/PI_0 + CS_B*CS_DIFF**2._16/PI_0 + CS_C*CS_DIFF/PI_0 + CS_D/PI_0 &

+ (B_ELEC*CHI/PI_0/H_0**2._16) / U**2._16

444

PI_STAR_I = 3._16*CS_A*H_0*CS_DIFF**2._16*U_I/LAMBDA/PI_0 + 2._16*CS_B*H_0*CS_DIFF*U_I/LAMBDA/PI_0 &

446 + CS_C*H_0*U_I/LAMBDA/PI_0 &

- (2._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA) * U_I / U**3._16

448

PI_STAR_II = 6._16*CS_A*H_0**2._16*CS_DIFF*U_I**2._16/LAMBDA**2._16/PI_0 &

450 + 3._16*CS_A*H_0*CS_DIFF**2._16*U_II/LAMBDA**2._16/PI_0 &

+ 2._16*CS_B*H_0**2._16*U_I**2._16/LAMBDA**2._16/PI_0 &

452 + 2._16*CS_B*CS_DIFF*H_0*U_II/LAMBDA**2._16/PI_0 + CS_C*H_0*U_II/LAMBDA**2._16/PI_0 &

+ (6._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA**2._16) * U_I**2._16 / U**4._16 &

454 - (2._16*B_ELEC*CHI/PI_0/H_0**2._16/LAMBDA**2._16) * U_II / U**3._16

ENDIF

456 !

! Calculate net evaporative mass flux and liquid pressure gradient

458 !

NONDTEMP = (DT_0 + KAPPA*(THETA(II,1)*THETA(II,3) + THETA(II,1)*PI_STAR)) / (DT_0 + KAPPA*THETA(II,1))

460 M_EVP(II) = M_ID * (NONDTEMP - THETA(II,3) - PI_STAR)

DPDX(II) = -SIGMA*H_0*THETA(II,4)/X_0**3._16 - PI_0*PI_STAR_I/X_0

462 END DO

464 !

! CONVERT TO ORIGINAL DIMENSIONAL THIN FILM EVAPORATION EQUATION

466 !

X = X_0*ETA

468 H(:,1) = H_0*THETA(:,1)

H(:,2) = H_0*THETA(:,2)/X_0

470 H(:,3) = H_0*THETA(:,3)/X_0**2._16

H(:,4) = H_0*THETA(:,4)/X_0**3._16

472 H(:,5) = H_0*THETA(:,5)/X_0**4._16

474 ! DISPLAY RESULTS

PRINT LABEL,’X’,’H’,’H_I’,’H_II’,’H_III’,’H_IIII’,’M_EVP’,’DPDX’

476 DO II=1,TERMS

PRINT ’(1X, G16.8, G16.8, G16.8, G16.8, G16.8, G16.8, G16.8, G16.8)’, &

478 X(II), H(II,1), H(II,2), H(II,3), H(II,4), H(II,5), M_EVP(II), DPDX(II)

END DO

480

END
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C.3 Disjoining Pressure Case F

1 PROGRAM HTLMTF_7A2

!***********************************************************************************************************************

3 !

! File: HTLMTF_7A2.f90

5 ! Language: FORTRAN 90

! Author: jtipton2

7 ! Summary: Thin film model of K.P. Hallinan et al., "Evaporation from an Extended Meniscus for Nonisothermal

! Interfacial Conditions ," Journal of Thermophysics and Heat Transfer , Vol. 8, 1994, pp. 709-716.

9 ! + LIQUID METAL PROPERTIES

! + GENERAL DGP DISPERSION FORCE MODELED WITH CUBIC SPLINE INTERPOLATION

11 ! + WITH NONLINEARITIES SOLVED VIA THE LEVENBURG -MARQUARDT METHOD

!

13 ! Redord of Revision:

! Date Programmer Description of Change

15 ! ==== ========== =====================

! 1/25/08 JBT Initial creation

17 ! 12/10/08 JBT Changed T_V from 1156.09_16 to 1154.7_16

! 12/22/08 JBT Changed CS_N from 75 to 80

19 ! Changed LEFT_LIM_EXP from -8._16 to -9._16

! Changed spline BC at X(1) from 5.30344944662574E20_16 to 6.492683078E25_16

21 ! Removed "Hammaker" variable from program since it is not used

! Moved all subroutines to modules to improve programming

23 ! 1/02/09 JBT Added Electronic Dispersion Force Constant calculation to LM_Props subroutine

! 1/05/09 JBT Renamed ADSORBED_THICKNESS subroutine to ADSORBED_THICKNESS_7A2

25 !***********************************************************************************************************************

USE MATSOLV

27 USE CUBICSPLINE

USE CHEBYSHEV

29 USE LMPROPERTIES

IMPLICIT NONE

31 INTEGER :: II, JJ, KK, NN, LOOPNUM

REAL*16, PARAMETER :: PI = 3.14159265358979_16

33 INTEGER, PARAMETER :: NN_MAX = 200, CS_N = 80, TERMS = 200

CHARACTER (LEN=40), PARAMETER :: FORM1 = "(// 1X A / 1X, 50(’=’))"

35 CHARACTER (LEN=40), PARAMETER :: LABEL = "(//8(15X,A)/ 1X, 50(’=’))"

REAL*16 :: T_V, R_G, V_L, R, C_L, DT_0, ALPHA, BETA, GAMMA, LAMBDA, COEFF, RHO, H_FG, MU, P_V, SIGMA, K, MW, &

37 H_0, PI_0, X_0, M_ID, U_0, CA, KAPPA

REAL*16 :: T_BC(NN_MAX+4), T_I_BC(NN_MAX+4), T_II_BC(NN_MAX+4), T_III_BC(NN_MAX+4), &

39 T(NN_MAX+4), T_I(NN_MAX+4), T_II(NN_MAX+4), T_III(NN_MAX+4), T_IIII(NN_MAX+4), &

U, U_I, U_II, U_III, U_IIII, DU, DU_I, DU_II, DU_III, DU_IIII, PI_STAR, PI_STAR_I , PI_STAR_II

41 REAL*16 :: C_OLD(NN_MAX), C_NEW(NN_MAX), DC(NN_MAX), JACOBIAN(NN_MAX,NN_MAX), F(NN_MAX), Q_OLD, Q_NEW, MARQ

REAL*16 :: JACOBIAN_C_PLUS_F(NN_MAX), G(NN_MAX,NN_MAX), GRADQ(NN_MAX), G_PLUS_MARQ_I(NN_MAX,NN_MAX)

43 REAL*16 :: IDENTITY(NN_MAX,NN_MAX)

INTEGER :: INDX(NN_MAX)

45 REAL*16 :: ERROR, XI, KEY

REAL*16 :: LEFT_LIM_EXP , RIGHT_LIM_EXP , CS_XI(CS_N), CS_PI(CS_N), CS_PI2(CS_N)

47 REAL*16 :: CS_X_I, CS_A, CS_B, CS_C, CS_D, CS_DIFF

REAL*16 :: ETA(TERMS), THETA(TERMS,5), X(TERMS), H(TERMS,5), M_EVP(TERMS), DPDX(TERMS), PI_STAR_STORE(TERMS)

49 REAL*16 :: Q(NN_MAX), OMEGA(NN_MAX)

REAL*16 :: NONISO_DIFF , NONDTEMP

51

! Program Constants

53 T_V = 1154.7!1156.09_16 ! sodium temperature of vaporization (K)
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CALL LM_PROPS (T_V, RHO, K, H_FG, MU, MW, P_V, SIGMA)

55 R_G = 8.314472_16 ! universal gas constant (N-m/K-mol)

V_L = MW/RHO ! liquid molar volume (mˆ3/mol)

57 R = 200E-6_16 ! radius or width of pore (m)

C_L = 2._16 ! accomodation coefficient

59 DT_0 = 5E-4_16 ! wall/vapor temperature difference (K)

61

!-----------------------------------------------------------------------------------------------------

63 ! Get DLP Dispersion Force Data

!-----------------------------------------------------------------------------------------------------

65

! Load discrete DLP Dispersion Force data from DISPERSION_DATA

67 OPEN (UNIT = 12, FILE = ’DISPERSION_DATA ’, STATUS = ’OLD’)

READ (12, ’(100E22.15)’) CS_PI

69 CLOSE (12)

71 LEFT_LIM_EXP = -9._16

RIGHT_LIM_EXP = LOG10(7.5_16)-7._16

73 DO II = 1,CS_N

CS_XI(II) = 10._16**(LEFT_LIM_EXP + (II-1._16)*(RIGHT_LIM_EXP - LEFT_LIM_EXP)/(CS_N-1._16))

75 ENDDO

77 CALL SPLINE (CS_XI,CS_PI,CS_N ,6.492683078E25_16 ,0._16,CS_PI2)

! Boundary condition at X(1) --> Calculated from Hamaker Approximation (F’’ = -2A/pi/xˆ5)

79 ! X(N) --> "Natural" spline condition (F’’ = 0)

81 !-----------------------------------------------------------------------------------------------------

83

! Nondimensional Variables and Scales:

85 CALL ADSORBED_THICKNESS_7A2 (MW, H_FG, DT_0, V_L, T_V, CS_N, CS_XI, CS_PI, CS_PI2, 1.32E-8_16, 1.42E-8_16, H_0)

PI_0 = MW*H_FG*DT_0/V_L/T_V ! reference disjoining pressure (N/mˆ2)

87 X_0 = SQRT(SIGMA*H_0/PI_0) ! axial length scale (m)

M_ID = C_L * SQRT(MW/2._16/PI/R_G/T_V) * P_V*MW*H_FG*DT_0/(R_G*T_V*(T_V+DT_0)) ! ideal evaporative flux (kg/s/mˆ2)

89 U_0 = M_ID/RHO ! liquid characteristic velocity (m/s)

CA = MU*U_0/SIGMA ! capillary number

91 KAPPA = H_FG*M_ID*H_0/K ! ratio of evaporative interfacial resistance to conductive resistance

93 ! Normalized problem boundary conditions

ALPHA = 1.04_16

95 BETA = 1E-4_16

GAMMA = X_0**2._16/R/H_0

97 LAMBDA = 10._16

COEFF = 3._16 * CA / (H_0*PI_0/SIGMA)**2._16

99

! Create Chebyshev polynomials of the first kind

101 ! for the boundary conditions

CALL CHEBY_T (NN_MAX+4,0,-1._16,T_BC)

103 CALL CHEBY_T (NN_MAX+4,1,-1._16,T_I_BC)

CALL CHEBY_T (NN_MAX+4,2, 1._16,T_II_BC)

105 CALL CHEBY_T (NN_MAX+4,3,-1._16,T_III_BC)

107
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109 DO NN = 1,100,99

ERROR = 1._16

111 LOOPNUM = 0

C_NEW = 0._16

113 Q_NEW = 0._16

Q = 0._16

115

DO II = 1,NN

117 DO JJ = 1,NN

IF (II==JJ) THEN

119 IDENTITY(II,JJ) = 1._16

ELSE

121 IDENTITY(II,JJ) = 0._16

END IF

123 END DO

END DO

125

PRINT FORM1,’Q = ’

127

DO WHILE (ERROR >= 1E-8_16 .AND. Q_NEW < 0.1E17_16)

129 LOOPNUM = LOOPNUM + 1

C_OLD = C_NEW

131 Q_OLD = Q_NEW

DO II = 1,NN

133 !

! The "i" subscript refers to matrix rows which represent the

135 ! functions evaluated at different values of the collocated domain

! variable, "XI".

137 !

XI = COS((2._16*II - 1._16)*PI/2._16/NN)

139 !

! Create Chebyshev Polynomials of the First Kind

141 ! and Their Derivatives

!

143 CALL CHEBY_T (NN_MAX+4,0,XI,T)

CALL CHEBY_T (NN_MAX+4,1,XI,T_I)

145 CALL CHEBY_T (NN_MAX+4,2,XI,T_II)

CALL CHEBY_T (NN_MAX+4,3,XI,T_III)

147 CALL CHEBY_T (NN_MAX+4,4,XI,T_IIII)

!

149 ! Establish the Approximate Analytical Series Solution

! and It’s Derivatives

151 !

U = ALPHA + LAMBDA*BETA*(XI + 1._16) + (0.5_16*XI**2._16 + XI + 0.5_16)*GAMMA*LAMBDA**2._16 &

153 + SUM(C_OLD(1:NN) * (T(5:NN+4) &

- T_BC(5:NN+4) &

155 - (XI + 1._16)*T_I_BC(5:NN+4) &

- (0.5_16*XI**2._16 + XI + 0.5_16)*T_II_BC(5:NN+4) &

157 + (-XI**3._16 + 3._16*XI**2._16 + 9._16*XI + 5._16)*T_III_BC(5:NN+4)/6._16))

159 U_I = LAMBDA*BETA + (1._16 + XI)*GAMMA*LAMBDA**2._16 &

+ SUM(C_OLD(1:NN) * (T_I(5:NN+4) &

161 - T_I_BC(5:NN+4) &

- (XI + 1._16)*T_II_BC(5:NN+4) &

163 + (-0.5_16*XI**2._16 + XI + 1.5_16)*T_III_BC(5:NN+4)))
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165 U_II = GAMMA*LAMBDA**2._16 &

+ SUM(C_OLD(1:NN) * (T_II(5:NN+4) &

167 - T_II_BC(5:NN+4) &

+ (1._16 - XI)*T_III_BC(5:NN+4)))

169

U_III = SUM(C_OLD(1:NN) * (T_III(5:NN+4) - T_III_BC(5:NN+4)))

171

U_IIII = SUM(C_OLD(1:NN) * (T_IIII(5:NN+4)))

173

NONISO_DIFF = DT_0 + KAPPA*U

175

!

177 ! Create the [F] matrix

!

179 IF (U*H_0 > 7.07493733732976559433421216887514375e-07_16) THEN

PI_STAR = 0._16

181 PI_STAR_I = 0._16

PI_STAR_II = 0._16

183 CS_A = 0._16

CS_B = 0._16

185 CS_C = 0._16

CS_D = 0._16

187 ELSE

CALL SPLINTS (CS_XI,CS_PI,CS_PI2,CS_N,U*H_0,CS_X_I,CS_A,CS_B,CS_C,CS_D)

189 CS_DIFF = H_0*U - CS_X_I

191 PI_STAR = CS_A*CS_DIFF**3._16/PI_0 + CS_B*CS_DIFF**2._16/PI_0 + CS_C*CS_DIFF/PI_0 + CS_D/PI_0

193 PI_STAR_I = 3._16*CS_A*H_0*CS_DIFF**2._16*U_I/LAMBDA/PI_0 + 2._16*CS_B*H_0*CS_DIFF*U_I/LAMBDA/PI_0 &

+ CS_C*H_0*U_I/LAMBDA/PI_0

195

PI_STAR_II = 6._16*CS_A*H_0**2._16*CS_DIFF*U_I**2._16/LAMBDA**2._16/PI_0 &

197 + 3._16*CS_A*H_0*CS_DIFF**2._16*U_II/LAMBDA**2._16/PI_0 &

+ 2._16*CS_B*H_0**2._16*U_I**2._16/LAMBDA**2._16/PI_0 &

199 + 2._16*CS_B*CS_DIFF*H_0*U_II/LAMBDA**2._16/PI_0 + CS_C*H_0*U_II/LAMBDA**2._16/PI_0

ENDIF

201

F(II) = -3._16*U**2._16*U_I*U_III/LAMBDA**4._16 &

203 - U**3._16*U_IIII/LAMBDA**4._16 &

- 3._16*U**2._16*U_I*PI_STAR_I/LAMBDA &

205 - U**3._16*PI_STAR_II &

+ COEFF*U_II/LAMBDA**2._16 &

207 + COEFF*PI_STAR &

! terms due to nonisothermal interface assumption

209 - COEFF*DT_0/(DT_0+KAPPA*U) &

- COEFF*KAPPA*U*U_II/LAMBDA**2._16/(DT_0+KAPPA*U) &

211 - COEFF*KAPPA*U*PI_STAR/(DT_0+KAPPA*U)

213 !

! Create the [E] matrix

215 !

DO JJ = 1,NN

217

DU = T(JJ+4) - T_BC(JJ+4) - (XI + 1._16)*T_I_BC(JJ+4) &
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219 - (0.5_16*XI**2._16 + XI + 0.5_16)*T_II_BC(JJ+4)&

+ (-XI**3._16 + 3._16*XI**2._16 + 9._16*XI + 5._16)*T_III_BC(JJ+4)/6._16

221 DU_I = T_I(JJ+4) - T_I_BC(JJ+4) - (XI + 1._16)*T_II_BC(JJ+4) + (-0.5_16*XI**2._16 + XI + 1.5_16) &

*T_III_BC(JJ+4)

223 DU_II = T_II(JJ+4) - T_II_BC(JJ+4) + (1._16 - XI)*T_III_BC(JJ+4)

DU_III = T_III(JJ+4) - T_III_BC(JJ+4)

225 DU_IIII = T_IIII(JJ+4)

227 JACOBIAN(II,JJ) = (6._16*U*U_I*U_III/LAMBDA**4._16) * DU &

+ (3._16*U**2._16*U_III/LAMBDA**4._16) * DU_I &

229 + (3._16*U**2._16*U_I/LAMBDA**4._16) * DU_III &

231 + (3._16*U**2._16*U_IIII/LAMBDA**4._16) * DU &

+ (U**3._16/LAMBDA**4._16) * DU_IIII &

233

- (COEFF/LAMBDA**2._16) * DU_II &

235

- (3._16*COEFF*CS_A*H_0*CS_DIFF**2._16/PI_0) * DU &

237 - (2._16*COEFF*CS_B*H_0*CS_DIFF/PI_0) * DU &

- (COEFF*CS_C*H_0/PI_0) * DU &

239

+ (18._16*CS_A*H_0**2._16*CS_DIFF*U**2._16*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

241 + (18._16*CS_A*H_0*CS_DIFF**2._16*U*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

+ (18._16*CS_A*H_0*CS_DIFF**2._16*U**2._16*U_I/LAMBDA**2._16/PI_0) * DU_I &

243

+ (6._16*CS_B*H_0**2._16*U**2._16*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

245 + (12._16*CS_B*H_0*CS_DIFF*U*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

+ (12._16*CS_B*H_0*CS_DIFF*U**2._16*U_I/LAMBDA**2._16/PI_0) * DU_I &

247

+ (6._16*CS_C*H_0*U*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

249 + (6._16*CS_C*H_0*U**2._16*U_I/LAMBDA**2._16/PI_0) * DU_I &

251 + (6._16*CS_A*H_0**3._16*U**3._16*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

+ (18._16*CS_A*H_0**2._16*CS_DIFF*U**2._16*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

253 + (12._16*CS_A*H_0**2._16*CS_DIFF*U**3._16*U_I/LAMBDA**2._16/PI_0) * DU_I &

255 + (6._16*CS_A*H_0**2._16*CS_DIFF*U**3._16*U_II/LAMBDA**2._16/PI_0) * DU &

+ (9._16*CS_A*H_0*CS_DIFF**2._16*U**2._16*U_II/LAMBDA**2._16/PI_0) * DU &

257 + (3._16*CS_A*H_0*CS_DIFF**2._16*U**3._16/LAMBDA**2._16/PI_0) * DU_II &

259 + (6._16*CS_B*H_0**2._16*U**2._16*U_I**2._16/LAMBDA**2._16/PI_0) * DU &

+ (4._16*CS_B*H_0**2._16*U**3._16*U_I/LAMBDA**2._16/PI_0) * DU_I &

261

+ (2._16*CS_B*H_0**2._16*U**3._16*U_II/LAMBDA**2._16/PI_0) * DU &

263 + (6._16*CS_B*H_0*CS_DIFF*U**2._16*U_II/LAMBDA**2._16/PI_0) * DU &

+ (2._16*CS_B*H_0*CS_DIFF*U**3._16/LAMBDA**2._16/PI_0) * DU_II &

265

+ (3._16*CS_C*H_0*U**2._16*U_II/LAMBDA**2._16/PI_0) * DU &

267 + (CS_C*H_0*U**3._16/LAMBDA**2._16/PI_0) * DU_II &

269 !

! Nonisothermal interface terms

271 !

+ (COEFF*DT_0*KAPPA/NONISO_DIFF**2._16) * DU &

273
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+ (COEFF*KAPPA*U_II/LAMBDA**2._16/NONISO_DIFF) * DU &

275 + (COEFF*KAPPA*U/LAMBDA**2._16/NONISO_DIFF) * DU_II &

+ (COEFF*KAPPA**2._16*U*U_II/LAMBDA**2._16/NONISO_DIFF**2._16) * DU &

277

+ (COEFF*KAPPA*CS_A*CS_DIFF**3._16/NONISO_DIFF/PI_0) * DU &

279 + (3._16*COEFF*KAPPA*CS_A*H_0*U*CS_DIFF**2._16/NONISO_DIFF/PI_0) * DU &

- (COEFF*KAPPA**2._16*CS_A*U*CS_DIFF**3._16/NONISO_DIFF**2._16/PI_0) * DU &

281

+ (COEFF*KAPPA*CS_B*CS_DIFF**2._16/NONISO_DIFF/PI_0) * DU &

283 + (2._16*COEFF*KAPPA*CS_B*H_0*U*CS_DIFF/NONISO_DIFF/PI_0) * DU &

- (COEFF*KAPPA**2._16*CS_B*U*CS_DIFF**2._16/NONISO_DIFF**2._16/PI_0) * DU &

285

+ (COEFF*KAPPA*CS_C*CS_DIFF/NONISO_DIFF/PI_0) * DU &

287 + (COEFF*KAPPA*CS_C*H_0*U/NONISO_DIFF/PI_0) * DU &

- (COEFF*KAPPA**2._16*CS_C*U*CS_DIFF/NONISO_DIFF**2._16/PI_0) * DU &

289

+ (COEFF*KAPPA*CS_D/NONISO_DIFF/PI_0) * DU &

291 - (COEFF*KAPPA**2._16*CS_D*U/NONISO_DIFF**2._16/PI_0) * DU

END DO

293 END DO

295 !**LEVENBERG -MARQUARDT METHOD**********************************************

!

297 ! Formulation described by:

! Henley and Rosen, "Material and Energy Balance Computations ,"

299 ! John Wiley & Sons, 1969, pp. 171-173, 192-204.

!

301 !

! Solution procedure described by:

303 ! "Numerical Recipes in Fortran: The Art of Scientific Computing"

! 2nd Edition, pp. 679.

305 !

! (1) compute Q

307 ! (2) pick MARQ = 0.001

! (3) solve linear system (G + MARQ*I) DC = -GRADQ

309 ! (4) compute new Q(C) = SUM (JACOBIAN DC + F)ˆ2

! (4a) if Q_NEW >= Q_OLD then MARQ = MARQ*10 | goto (3)

311 ! (4b) if Q_NEW < Q_OLD then MARQ = MARQ/10 | goto (3)

! (5) if Q_NEW < Q_OLD AND Q_NEW < tol then STOP

313 !

!**************************************************************************

315 IF (LOOPNUM == 1) THEN

Q_NEW = SQRT(DOT_PRODUCT(F,F))

317 Q_OLD = 1._16

MARQ = 0.0001_16

319 ELSE

JACOBIAN_C_PLUS_F = MATMUL(JACOBIAN ,C_OLD) + F

321 Q_NEW = SQRT(DOT_PRODUCT(JACOBIAN_C_PLUS_F ,JACOBIAN_C_PLUS_F))

END IF

323

IF (Q_NEW .GE. Q_OLD) THEN

325 MARQ = MARQ * 10._16

ELSE

327 MARQ = MARQ / 10._16

END IF
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329

G = 2._16 * MATMUL(TRANSPOSE(JACOBIAN),JACOBIAN)

331 GRADQ = 2._16 * MATMUL(TRANSPOSE(JACOBIAN),F)

G_PLUS_MARQ_I = G + MARQ*IDENTITY

333 CALL LUDCMP (G_PLUS_MARQ_I ,NN,NN_MAX,INDX,KEY)

DC = GRADQ

335 CALL LUBKSB (G_PLUS_MARQ_I ,NN,NN_MAX,INDX,DC)

C_NEW = DC + C_OLD

337

ERROR = ABS(Q_NEW-Q_OLD)/Q_OLD

339 Q(LOOPNUM) = Q_NEW

PRINT ’(1G32.16)’, Q(LOOPNUM)

341

END DO

343

!

345 ! SPATIAL CONVERGENCE ACCURACY

! (Integrate approximate analytical solution over the domain space)

347 !

OMEGA(NN) = 2._16*ALPHA + 2._16*LAMBDA*BETA + 4._16*LAMBDA**2._16*GAMMA/3._16

349

DO JJ = 1,NN/2

351 KK = 2._16*JJ

OMEGA(NN) = OMEGA(NN) + C_NEW(KK) * ( -2._16*T_BC(KK) - 2._16*T_I_BC(KK) - 5._16*T_II_BC(KK)/3._16 &

353 + 2._16*T_III_BC(KK) - 2._16/(KK+1._16)/(KK-1._16) )

END DO

355

END DO

357

PRINT FORM1,’OMEGA = ’

359 PRINT ’(1G32.16)’, OMEGA(1:NN-1)

361 !

! CONVERT TO ORIGINAL NONDIMENSIONALIZED THIN FILM EVAPORATION EQUATION

363 !

DO II = 1,TERMS

365 XI = COS((2._16*II - 1._16)*PI/2._16/TERMS)

ETA(II) = LAMBDA*(1._16 + XI)

367 !

! Create Chebyshev Polynomials of the First Kind

369 ! and Their Derivatives

!

371 CALL CHEBY_T (NN_MAX+4,0,XI,T)

CALL CHEBY_T (NN_MAX+4,1,XI,T_I)

373 CALL CHEBY_T (NN_MAX+4,2,XI,T_II)

CALL CHEBY_T (NN_MAX+4,3,XI,T_III)

375 CALL CHEBY_T (NN_MAX+4,4,XI,T_IIII)

!

377 ! Establish the Approximate Analytical Series Solution

! and It’s Derivatives

379 !

U = ALPHA + LAMBDA*BETA*(XI + 1._16) + (0.5_16*XI**2._16 + XI + 0.5_16)*GAMMA*LAMBDA**2._16 &

381 + SUM(C_OLD(1:NN) * (T(5:NN+4) &

- T_BC(5:NN+4) &

383 - (XI + 1._16)*T_I_BC(5:NN+4) &
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- (0.5_16*XI**2._16 + XI + 0.5_16)*T_II_BC(5:NN+4) &

385 + (-XI**3._16 + 3._16*XI**2._16 + 9._16*XI + 5._16)*T_III_BC(5:NN+4)/6._16))

387 U_I = LAMBDA*BETA + (1._16 + XI)*GAMMA*LAMBDA**2._16 &

+ SUM(C_OLD(1:NN) * (T_I(5:NN+4) &

389 - T_I_BC(5:NN+4) &

- (XI + 1._16)*T_II_BC(5:NN+4) &

391 + (-0.5_16*XI**2._16 + XI + 1.5_16)*T_III_BC(5:NN+4)))

393 U_II = GAMMA*LAMBDA**2._16 &

+ SUM(C_OLD(1:NN) * (T_II(5:NN+4) &

395 - T_II_BC(5:NN+4) &

+ (1._16 - XI)*T_III_BC(5:NN+4)))

397

U_III = SUM(C_OLD(1:NN) * (T_III(5:NN+4) - T_III_BC(5:NN+4)))

399

U_IIII = SUM(C_OLD(1:NN) * (T_IIII(5:NN+4)))

401 !

! Convert to from THETA_HAT to THETA

403 !

THETA(II,1) = U

405 THETA(II,2) = U_I/LAMBDA

THETA(II,3) = U_II/LAMBDA**2._16

407 THETA(II,4) = U_III/LAMBDA**3._16

THETA(II,5) = U_IIII/LAMBDA**4._16

409 !

! Calculate nondimensional disjoining pressures

411 !

IF (U*H_0 > 7.07493733732976559433421216887514375e-07_16) THEN

413 PI_STAR = 0._16

PI_STAR_I = 0._16

415 PI_STAR_II = 0._16

CS_A = 0._16

417 CS_B = 0._16

CS_C = 0._16

419 CS_D = 0._16

ELSE

421 CALL SPLINTS (CS_XI,CS_PI,CS_PI2,CS_N,U*H_0,CS_X_I,CS_A,CS_B,CS_C,CS_D)

CS_DIFF = H_0*U - CS_X_I

423

PI_STAR = CS_A*CS_DIFF**3._16/PI_0 + CS_B*CS_DIFF**2._16/PI_0 + CS_C*CS_DIFF/PI_0 + CS_D/PI_0

425

PI_STAR_I = 3._16*CS_A*H_0*CS_DIFF**2._16*U_I/LAMBDA/PI_0 + 2._16*CS_B*H_0*CS_DIFF*U_I/LAMBDA/PI_0 &

427 + CS_C*H_0*U_I/LAMBDA/PI_0

429 PI_STAR_II = 6._16*CS_A*H_0**2._16*CS_DIFF*U_I**2._16/LAMBDA**2._16/PI_0 &

+ 3._16*CS_A*H_0*CS_DIFF**2._16*U_II/LAMBDA**2._16/PI_0 &

431 + 2._16*CS_B*H_0**2._16*U_I**2._16/LAMBDA**2._16/PI_0 &

+ 2._16*CS_B*CS_DIFF*H_0*U_II/LAMBDA**2._16/PI_0 + CS_C*H_0*U_II/LAMBDA**2._16/PI_0

433 ENDIF

PI_STAR_STORE(II) = PI_STAR

435 !

! Calculate net evaporative mass flux and liquid pressure gradient

437 !

NONDTEMP = (DT_0 + KAPPA*(THETA(II,1)*THETA(II,3) + THETA(II,1)*PI_STAR)) / (DT_0 + KAPPA*THETA(II,1))
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439 M_EVP(II) = M_ID * (NONDTEMP - THETA(II,3) - PI_STAR)

DPDX(II) = -SIGMA*H_0*THETA(II,4)/X_0**3._16 - PI_0*PI_STAR_I/X_0

441 END DO

443 !

! CONVERT TO ORIGINAL DIMENSIONAL THIN FILM EVAPORATION EQUATION

445 !

X = X_0*ETA

447 H(:,1) = H_0*THETA(:,1)

H(:,2) = H_0*THETA(:,2)/X_0

449 H(:,3) = H_0*THETA(:,3)/X_0**2._16

H(:,4) = H_0*THETA(:,4)/X_0**3._16

451 H(:,5) = H_0*THETA(:,5)/X_0**4._16

453 ! DISPLAY RESULTS

PRINT LABEL,’X’,’H’,’H_I’,’H_II’,’H_III’,’H_IIII’,’M_EVP’,’DPDX’

455 DO II=1,TERMS

PRINT ’(1X, G16.8, G16.8, G16.8, G16.8, G16.8, G16.8, G16.8, G16.8, G16.8)’, &

457 X(II), H(II,1), H(II,2), H(II,3), H(II,4), H(II,5), M_EVP(II), DPDX(II), PI_STAR_STORE(II)

END DO

459

END
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Appendix D

Thin Film Solution Modules

The following four programs are FORTRAN modules utilized by the thin film solution programs given in

Appendix C. The first module, Appendix D.1, evaluates the Chebyshev polynomials of the first kind up

to the fourth derivative using recursive functions. The second module, Appendix D.2, uses cubic spline

interpolation to curve-fit the dispersion force curve calculated in Appendix B. The third module, Appendix

D.3, calculates the pertinent physical property values for liquid sodium metal at a specified temperature

using the references presented in Table 3.2. The module also uses the bisection root finding algorithm to

calculate the thickness of the adsorbed film for all of the cases presented in Table 6.1. Finally, the fourth

module, Appendix D.4, contains the linear algebra solvers used during the numerical solution procedure.

This module performs forward and back substitution along with Crout’s Method with partial pivoting. Where

mentioned in the program comments, subroutines have been used with permission from Numerical Recipes

in FORTRAN [110].

D.1 Chebyshev Polynomials

!

2 ! File: CHEBYSHEV.f90

! Author: jtipton2

4 !

! Created on January 5, 2009, 5:41 PM

6 !

8 MODULE CHEBYSHEV

CONTAINS

10 !**CHEBY_T*****************************************************************
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!

12 ! Evaluates the Chebyshev polynomials T(N)(X) of the first kind

! up to the 4th derivative

14 !

! Parameters:

16 !

! Input, integer MM, the highest polynomial to compute.

18 !

! Input, integer DD, the derivative requested.

20 !

! Input, real X, the point at which the polynomials are to be computed.

22 !

! Output, real CX(1:MM), the values of the MM Chebyshev polynomials.

24 !

!**************************************************************************

26 SUBROUTINE CHEBY_T (MM, DD, X, CX)

IMPLICIT NONE

28 INTEGER, INTENT(IN) :: MM, DD

REAL*16, INTENT(IN) :: X

30 REAL*16, INTENT(OUT) :: CX(MM)

REAL*16 :: CX_TEMP(MM,5)

32 INTEGER :: KK

34 IF (MM <= 0) THEN

RETURN

36 END IF

38 CX_TEMP(1,:) = (/1._16, 0._16, 0._16, 0._16, 0._16/)

40 IF (MM == 1) THEN

RETURN

42 END IF

44 CX_TEMP(2,:) = (/X, 1._16, 0._16, 0._16, 0._16/)

46 DO KK = 3,MM

CX_TEMP(KK,1) = 2._16*X*CX_TEMP(KK-1,1) - CX_TEMP(KK-2,1)

48 CX_TEMP(KK,2) = 2._16*CX_TEMP(KK-1,1) + 2._16*X*CX_TEMP(KK-1,2) - CX_TEMP(KK-2,2)

CX_TEMP(KK,3) = 4._16*CX_TEMP(KK-1,2) + 2._16*X*CX_TEMP(KK-1,3) - CX_TEMP(KK-2,3)

50 CX_TEMP(KK,4) = 6._16*CX_TEMP(KK-1,3) + 2._16*X*CX_TEMP(KK-1,4) - CX_TEMP(KK-2,4)

CX_TEMP(KK,5) = 8._16*CX_TEMP(KK-1,4) + 2._16*X*CX_TEMP(KK-1,5) - CX_TEMP(KK-2,5)

52 END DO

54 CX = CX_TEMP(:,DD+1)

END SUBROUTINE CHEBY_T

56 END MODULE CHEBYSHEV
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D.2 Cubic Spline Interpolation

!

2 ! File: CUBICSPLINE.f90

! Author: jtipton2

4 !

! Created on January 5, 2009, 5:41 PM

6 !

8 MODULE CUBICSPLINE

CONTAINS

10 !--SPLINE--------------------------------------------------------------------------------------------

!

12 ! Curve-fit data using cubic spline interpolation.

! For description , see http://www.physics.utah.edu/˜detar/phycs6720/handouts/cubic_spline/cubic_spline/node1.html

14 ! Algorithm from "Numerical Recipes in Fortran: The Art of Scientific Computing" 2nd Ed.

!

16 ! Parameters:

!

18 ! Input, real X(N), domain values of the function.

!

20 ! Input, real Y(N), tabulated function values corresponding to X(N).

!

22 ! Input, integer N, the size of the tabulated function values.

!

24 ! Input, real YPP1, second derivative of the interpolating function at X(1).

!

26 ! Input, real YPP2, second derivative of the interpolating function at X(N).

!

28 ! Output, real Y2(N), second derivatives of the interpolating function at tabulated points X(N).

!

30 !----------------------------------------------------------------------------------------------------

SUBROUTINE SPLINE(X,Y,N,YPP1,YPPN,Y2)

32 IMPLICIT NONE

INTEGER, INTENT (IN) :: N

34 REAL*16, INTENT (IN) :: YPP1, YPPN, X(N), Y(N)

REAL*16, INTENT (OUT) :: Y2(N)

36 INTEGER :: NMAX ! The largest anticipated value of N

PARAMETER (NMAX=500)

38 INTEGER :: J

REAL*16 :: A(N), B(N), C(N), R(N)

40

! Setup the initial boundary condition (i.e. known second derivatives)

42 B(1) = 1._16

C(1) = 0._16

44 R(1) = YPP1

46 ! Construct the tridiagonal matrix (out of 3 vectors) and vector of known data

DO J = 2,N-1

48 A(J) = (X(J) - X(J-1))/6._16

B(J) = (X(J+1) - X(J-1))/3._16

50 C(J) = (X(J+1) - X(J))/6._16

R(J) = (Y(J+1)-Y(J))/(X(J+1)-X(J)) - (Y(J)-Y(J-1))/(X(J)-X(J-1))

52 END DO
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54 ! Setup the final boundary condition

A(N) = 0._16

56 B(N) = 1._16

R(N) = YPPN

58

CALL TRIDAG (A,B,C,R,Y2,N)

60

RETURN

62

END SUBROUTINE SPLINE

64

66 !--TRIDAG--------------------------------------------------------------------------------------------

!

68 ! Tridiagonal equation solution routine.

! Algorithm from "Numerical Recipes in Fortran: The Art of Scientific Computing" 2nd Ed.

70 !

! Parameters:

72 !

! Input, real A(N), Lower diagonal of the coefficient matrix.

74 !

! Input, real B(N), Middle diagonal of the coefficient matrix.

76 !

! Input, real C(N), Upper diagonal of the coefficient matrix.

78 !

! Input, real R(N), Forcing data array.

80 !

! Input, integer N, Array size.

82 !

! Output, real U(N), Matrix solution.

84 !

!----------------------------------------------------------------------------------------------------

86 SUBROUTINE TRIDAG(A,B,C,R,U,N)

IMPLICIT NONE

88 INTEGER, INTENT (IN) :: N

REAL*16, INTENT (IN) :: A(N), B(N), C(N), R(N)

90 REAL*16, INTENT (OUT) :: U(N)

INTEGER :: NMAX ! The largest anticipated value of N

92 PARAMETER (NMAX=500)

INTEGER :: J

94 REAL*16 :: BET, GAM(NMAX) ! One vector of workspace is needed

96 IF (B(1) .EQ. 0._16) PAUSE ’TRIDAG: REWRITE EQUATION ’ ! If this happens this you should rewrite your equations

! as a set of order N-1, with u(2) trivially eliminated.

98 BET = B(1)

U(1) = R(1)/BET

100 DO J = 2,N ! Decomposition and forward substitution

GAM(J) = C(J-1)/BET

102 BET=B(J)-A(J)*GAM(J)

IF (BET .EQ. 0._16) PAUSE ’TRIDAG FAILED’

104 U(J) = (R(J)-A(J)*U(J-1))/BET

END DO

106

DO J=N-1,1,-1 ! Backsubstitution

108 U(J) = U(J) - GAM(J+1)*U(J+1)
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END DO

110

RETURN

112

END SUBROUTINE TRIDAG

114

116 !--SPLINT--------------------------------------------------------------------------------------------

!

118 ! Subroutine to return cubic-spline interpolated value of "y".

! Algorithm from "Numerical Recipes in Fortran: The Art of Scientific Computing" 2nd Ed.

120 !

! Parameters:

122 !

! Input, real XA(N), domain values of the function.

124 !

! Input, real YA(N), tabulated function values corresponding to X(N).

126 !

! Input, real Y2A(N), second derivatives of the interpolating function at tabulated points X(N).

128 !

! Input, integer N, the size of the tabulated function values.

130 !

! Input, real X, desired point in the domain.

132 !

! Output, real Y, cubic-spline interpolated value of the function at X.

134 !

!----------------------------------------------------------------------------------------------------

136 SUBROUTINE SPLINT (XA,YA,Y2A,N,X,Y)

IMPLICIT NONE

138 INTEGER, INTENT (IN) :: N

REAL*16, INTENT (IN) :: X,XA(N),Y2A(N),YA(N)

140 REAL*16, INTENT (OUT) :: Y

INTEGER :: K, KHI, KLO

142 REAL*16 :: A,B,C,D,H

144 KLO = 1

KHI = N

146 ! Find the right place in the table by means of bisection.

DO WHILE (KHI-KLO .GT. 1)

148 K = (KHI+KLO)/2

IF (XA(K) .GT. X) THEN

150 KHI = K

ELSE

152 KLO = K

ENDIF

154 ENDDO ! KLO and KHI now bracket the input value of x.

156 H = XA(KHI) - XA(KLO)

158 IF (H .EQ. 0._16) PAUSE ’BAD XA INPUT IN SPLINT’ ! The XA’s must be distinct

160 ! Now evaluate the cubic spline.

A = (Y2A(KHI) - Y2A(KLO)) / 6._16 / H

162 B = Y2A(KLO) / 2._16

C = (YA(KHI)-YA(KLO))/H - H*Y2A(KLO)/3._16 - H*Y2A(KHI)/6._16
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164 D = YA(KLO)

166 Y = A*(X-XA(KLO))**3._16 + B*(X-XA(KLO))**2._16 + C*(X-XA(KLO)) + D

168 RETURN

END SUBROUTINE SPLINT

170

172 !--SPLINTS--------------------------------------------------------------------------------------------

!

174 ! Subroutine to return cubic-spline interpolated coefficients.

! Algorithm from "Numerical Recipes in Fortran: The Art of Scientific Computing" 2nd Ed.

176 !

! Parameters:

178 !

! Input, real XA(N), domain values of the function.

180 !

! Input, real YA(N), tabulated function values corresponding to X(N).

182 !

! Input, real Y2A(N), second derivatives of the interpolating function at tabulated points X(N).

184 !

! Input, integer N, the size of the tabulated function values.

186 !

! Input, real X, desired point in the domain.

188 !

! Output, real A, first cubic spline coefficient

190 ! Output, real B, second cubic spline coefficient

! Output, real C, third cubic spline coefficient

192 ! Output, real D, fourth cubic spline coefficient

!

194 !----------------------------------------------------------------------------------------------------

SUBROUTINE SPLINTS (XA,YA,Y2A,N,X,XI,A,B,C,D)

196 IMPLICIT NONE

INTEGER, INTENT (IN) :: N

198 REAL*16, INTENT (IN) :: X,XA(N),Y2A(N),YA(N)

REAL*16, INTENT (OUT) :: XI, A, B, C, D

200 INTEGER :: K, KHI, KLO

REAL*16 :: H

202

KLO = 1

204 KHI = N

! Find the right place in the table by means of bisection.

206 DO WHILE (KHI-KLO .GT. 1)

K = (KHI+KLO)/2

208 IF (XA(K) .GT. X) THEN

KHI = K

210 ELSE

KLO = K

212 ENDIF

ENDDO ! KLO and KHI now bracket the input value of x.

214

H = XA(KHI) - XA(KLO)

216

IF (H .EQ. 0._16) PAUSE ’BAD XA INPUT IN SPLINT’ ! The XA’s must be distinct

218
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! Now evaluate the cubic spline coefficients

220 XI = XA(KLO)

A = (Y2A(KHI) - Y2A(KLO)) / 6._16 / H

222 B = Y2A(KLO) / 2._16

C = (YA(KHI)-YA(KLO))/H - H*Y2A(KLO)/3._16 - H*Y2A(KHI)/6._16

224 D = YA(KLO)

226 RETURN

END SUBROUTINE SPLINTS

228 END MODULE CUBICSPLINE
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D.3 Liquid Metal Thermophysical Properties

!

2 ! File: LMPROPERTIES.f90

! Author: jtipton2

4 !

! Created on January 5, 2009, 5:42 PM

6 !

8 MODULE LMPROPERTIES

CONTAINS

10 !**ADSORBED_THICKNESS_7A2***************************************************************

!

12 ! Calculates the thickness of the adsorbed film

! using the bisection root finding algorithm

14 !

!

16 ! Parameters:

!

18 ! Input, real MW, molecular weight

! Input, real H_FG, latent heat of vaporization

20 ! Input, real DT_0, liquid overheat

! Input, real V_L, liquid volume

22 ! Input, real T_V, vapor temperature

! Input, integer N, dispersion force cubic spline array size

24 ! Input, real X(1:N), cubic spline array film thicknesses

! Input, real F(1:N), cubic spline dispersion force values

26 ! Input, real F2(1:N), second derivative of cubic spline dispersion force values

! Input, real GUESS_L, left bound of root

28 ! Input, real GUESS_R, right bound of root

!

30 ! Output, real ANSWER, root

!

32 !**************************************************************************************

SUBROUTINE ADSORBED_THICKNESS_7A2 (MW, H_FG, DT_0, V_L, T_V, N, X, F, F2, GUESS_L, GUESS_R, ANSWER)

34 USE CUBICSPLINE

IMPLICIT NONE

36 INTEGER :: I, J

INTEGER, INTENT(IN) :: N

38 REAL*16, INTENT(IN) :: MW, H_FG, DT_0, V_L, T_V, X(N), F(N), F2(N), GUESS_L, GUESS_R

REAL*16, INTENT(OUT) :: ANSWER

40

REAL*16 :: FX1, FX3, X1, X2, X3

42

X1 = GUESS_L

44 X2 = GUESS_R

46 DO WHILE (ABS(X1-X2)/X1 >= 1E-8_16)

X3 = (X1 + X2)/2._16

48 CALL SPLINT (X,F,F2,N,X1,FX1)

FX1 = MW*H_FG*DT_0/V_L/T_V - FX1

50 CALL SPLINT (X,F,F2,N,X3,FX3)

FX3 = MW*H_FG*DT_0/V_L/T_V - FX3

52 IF (FX3*FX1 < 0._16) THEN

X2 = X3
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54 ELSE

X1 = X3

56 END IF

END DO

58

ANSWER = X3

60

END SUBROUTINE ADSORBED_THICKNESS_7A2

62

64 !**ADSORBED_THICKNESS_7AB***************************************************************

!

66 ! Calculates the thickness of the adsorbed film

! using the bisection root finding algorithm

68 !

!

70 ! Parameters:

!

72 ! Input, real MW, molecular weight

! Input, real H_FG, latent heat of vaporization

74 ! Input, real DT_0, liquid overheat

! Input, real V_L, liquid volume

76 ! Input, real T_V, vapor temperature

! Input, integer N, dispersion force cubic spline array size

78 ! Input, real X(1:N), cubic spline array film thicknesses

! Input, real F(1:N), cubic spline dispersion force values

80 ! Input, real F2(1:N), second derivative of cubic spline dispersion force values

! Input, real GUESS_L, left bound of root

82 ! Input, real GUESS_R, right bound of root

!

84 ! Output, real ANSWER, root

! Output, real RATIO, ratio of electronic to dipsersion disjoining pressures

86 !

!**************************************************************************************

88 SUBROUTINE ADSORBED_THICKNESS_7AB (MW, H_FG, DT_0, V_L, T_V, B, CHI, A, N, X, F, F2, GUESS_L, GUESS_R, ANSWER, RATIO)

USE CUBICSPLINE

90 IMPLICIT NONE

INTEGER :: I, J

92 INTEGER, INTENT(IN) :: N

REAL*16, INTENT(IN) :: MW, H_FG, DT_0, V_L, T_V, B, CHI, A, X(N), F(N), F2(N), GUESS_L, GUESS_R

94 REAL*16, INTENT(OUT) :: ANSWER

REAL*16, OPTIONAL, INTENT(OUT) :: RATIO

96

REAL*16 :: FX1, FX3, X1, X2, X3

98

X1 = GUESS_L

100 X2 = GUESS_R

102 DO WHILE (ABS(X1-X2)/X1 >= 1E-8_16)

X3 = (X1 + X2)/2._16

104

IF (X1 > 6.89712477526423354387130105695148843e-07_16) THEN

106 ! NOTE: The last point of the dispersion curve at 750nm acts a little ’funny’ due to the natural

! spline BC in order to get find a root here, we must assume the second to last data point of CS_XI

108 ! (690nm) is the last point in the dispersion force curve.
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FX1 = 0._16

110 ELSEIF (X1 < 1E-8_16) THEN

FX1 = A/X1**3._16

112 ELSE

CALL SPLINT (X,F,F2,N,X1,FX1)

114 END IF

FX1 = MW*H_FG*DT_0/V_L/T_V - B*CHI/X1**2._16 - FX1

116

IF (X3 > 6.89712477526423354387130105695148843e-07_16) THEN

118 FX3 = 0._16

ELSEIF (X1 < 1E-8_16) THEN

120 FX3 = A/X3**3._16

ELSE

122 CALL SPLINT (X,F,F2,N,X3,FX3)

END IF

124 FX3 = MW*H_FG*DT_0/V_L/T_V - B*CHI/X3**2._16 - FX3

126 IF (FX3*FX1 < 0._16) THEN

X2 = X3

128 ELSE

X1 = X3

130 END IF

END DO

132

ANSWER = X3

134

IF(PRESENT(RATIO))THEN

136 CALL SPLINT (X,F,F2,N,X3,FX3)

RATIO = B*CHI/X3**2._16/FX3

138 ENDIF

140 END SUBROUTINE ADSORBED_THICKNESS_7AB

142

!**LM_PROPS******************************************************

144 !

! Calculates pertinent physical property values for liquid

146 ! sodium metal at the specified temperature.

!

148 ! J.K. Fink and L. Leibowitz. A consistent assessment of the thermophysical

! properties of sodium. High Temp. Mater. Sci., 35:65 1 0 3 , 1996.

150 !

! Parameters:

152 !

! Input, real TEMP, temperature

154 !

! Output, real RHO, density

156 ! Output, real K, thermal conductivity

! Output, real H_FG, latent heat of evaporation

158 ! Output, real MU, dynamic viscosity

! Output, real MW, molecular weight

160 ! Output, real P_V, vapor pressure

! Output, real SIGMA, density

162 ! Output, real B, electronic disjoining pressure constant

! Output, real A, Hamaker constant
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164 !

!****************************************************************

166 SUBROUTINE LM_PROPS (TEMP, RHO, K, H_FG, MU, MW, P_V, SIGMA, B, A)

!

168 ! Load Physical Constants

!

170 IMPLICIT NONE

REAL*16, PARAMETER :: PI = 3.14159265358979_16

172 REAL*16, PARAMETER :: NA = 6.0221415E+23_16 !Avogadro’s Number

REAL*16, PARAMETER :: QE = 1.60217646E-19_16 !Electron Charge (Coulomb = A s)

174 REAL*16, PARAMETER :: EO = 8.85418782E-12_16 !Permittivity of Free Space (A**2 s**4 / m**3 / kg)

REAL*16, PARAMETER :: ME = 9.10938188E-31_16 !Electron Mass (kg)

176 REAL*16, PARAMETER :: BOLTZMANN = 1.3806503E-23_16 !Boltzmann Constant (m**2 kg / s**2 / K)

REAL*16, PARAMETER :: PLANCK = 6.626068E-34_16 !Planck’s Constant (m**2 kg / s)

178 !

! Solid Type 304 Stainless Steel Properties

180 !

REAL*16, PARAMETER :: RHO_SS304 = 8000._16 ! kg/m**3

182 REAL*16, PARAMETER :: M_SS304 = 0.05481_16 ! kg/mol

REAL*16, PARAMETER :: NV_SS304 = 1.79_16 ! # Valence Electrons / molecule

184 !

! Liquid Sodium Properties

186 ! "Thermodynamic and Transport Properties of Sodium Liquid and Vapor" ANL/RE-95/2

!

188 REAL*16, INTENT(IN) :: TEMP

REAL*16, INTENT(OUT) :: RHO, K, MU, SIGMA, P_V, H_FG, MW

190 REAL*16, OPTIONAL , INTENT(OUT) :: A, B

REAL*16 :: CP, NV

192 CP = 1000._16 * &

(1.6582_16 - 8.4790E-4_16 * TEMP + 4.4541E-7_16 * TEMP**2._16 - 2992.6_16 / TEMP**2._16) ! J/kg/K

194 RHO = 219._16 + 275.32_16 * (1._16 - TEMP/2503.7_16) + 511.58_16 * SQRT(1._16 - TEMP/2503.7_16) ! kg/m**3

K = 124.67_16 - 0.11381_16 * TEMP + 5.5226E-5_16 * TEMP**2._16 - 1.1842E-8_16 * TEMP**3._16 ! W/m/K

196 MU = EXP( -6.4406_16 - 0.3958_16 * LOG(TEMP) + 556.835_16/TEMP ) ! Pa-s

SIGMA = 240.5_16 * (1._16 - TEMP/2503.7_16)**1.126_16 / 1000._16 ! N/m

198 P_V = 1E6_16 * EXP( 11.9463_16 - 12633.73_16/TEMP - 0.4672_16*LOG(TEMP) ) ! Pa

H_FG = 393370._16 * (1._16 - TEMP/2503.7_16) + 4398600._16 * (1._16 - TEMP/2503.7_16)**0.29302_16 ! J/kg

200 MW = 0.02299_16 ! kg/mol

NV = 1._16 ! # Valence Electrons / molecule

202 !

! Electronic Dispersion Force Constant

204 !

IF(PRESENT(A))THEN

206 A = -1.015143464E-19_16 ! Hamaker constant calculated from MAPLE (J)

ENDIF

208 IF(PRESENT(B))THEN

B = (1._16/8._16/PI**2._16) * (PLANCK**2._16/ME) * (NA*RHO*NV/MW)

210 ENDIF

END SUBROUTINE LM_PROPS

212 END MODULE LMPROPERTIES
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D.4 Matrix Algebra

!

2 ! File: MATSOLV.f90

! Author: jtipton2

4 !

! Created on January 5, 2009, 5:40 PM

6 !

8 MODULE MATSOLV

CONTAINS

10 !--LUDCMP---------------------------------------------------------------------------------

!

12 ! Crout’s Method with Partial Pivoting

! "Numerical Recipes in Fortran: The Art of Scientific Computing"

14 ! 2nd Edition

!

16 !-----------------------------------------------------------------------------------------

SUBROUTINE LUDCMP(a,n,np,indx,d)

18 IMPLICIT NONE

INTEGER, INTENT(IN) :: n, np

20 INTEGER, INTENT(OUT) :: indx(np)

INTEGER, PARAMETER :: NMAX = 500

22 REAL*16, INTENT(INOUT) :: a(np,np)

REAL*16, INTENT(OUT) :: d

24 INTEGER :: i, imax, j, k

REAL*16 :: aamax, dum, sum, vv(NMAX), TINY

26

TINY = 1E-40_16

28

d=1._16

30 DO i=1,n

aamax=0._16

32 DO j=1,n

IF (abs(a(i,j)) > aamax) aamax=abs(a(i,j))

34 ENDDO

IF (aamax == 0._16) pause ’singular matrix in ludcmp’

36 vv(i)=1._16/aamax

ENDDO

38 DO j=1,n

DO i=1,j-1

40 sum=a(i,j)

DO k=1,i-1

42 sum=sum-a(i,k)*a(k,j)

ENDDO

44 a(i,j)=sum

ENDDO

46 aamax=0._16

DO i=j,n

48 sum=a(i,j)

DO k=1,j-1

50 sum=sum-a(i,k)*a(k,j)

ENDDO

52 a(i,j)=sum

dum=vv(i)*abs(sum)
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54 IF (dum >= aamax) THEN

imax=i

56 aamax=dum

ENDIF

58 ENDDO

IF (j <> imax) THEN

60 DO k=1,n

dum=a(imax,k)

62 a(imax,k)=a(j,k)

a(j,k)=dum

64 ENDDO

d=-d

66 vv(imax)=vv(j)

ENDIF

68 indx(j)=imax

IF(a(j,j) == 0._16)a(j,j)=TINY !In case matrix is singular

70 IF(j.ne.n) THEN

dum=1._16/a(j,j)

72 DO i=j+1,n

a(i,j)=a(i,j)*dum

74 ENDDO

ENDIF

76 ENDDO

RETURN

78 END SUBROUTINE LUDCMP

80 !--LUBKSB---------------------------------------------------------------------------------

!

82 ! Forward substitution and Back Substitution for Use with LU Decomposition

! "Numerical Recipes in Fortran: The Art of Scientific Computing"

84 ! 2nd Edition

!

86 !-----------------------------------------------------------------------------------------

SUBROUTINE LUBKSB (a,n,np,indx,b)

88 IMPLICIT NONE

INTEGER, INTENT(IN) :: n, np, indx(np)

90 REAL*16, INTENT(IN) :: a(np,np)

REAL*16, INTENT(INOUT) :: b(np)

92 INTEGER :: i, ii, j, ll

REAL*16 :: sum

94

ii = 0

96 DO i = 1, n

ll = indx(i)

98 sum = b(ll)

b(ll) = b(i)

100 IF (ii <> 0) THEN

DO j = ii, i-1

102 sum = sum - a(i,j)*b(j)

ENDDO

104 ELSE IF (sum <> 0._16) THEN

ii = i

106 ENDIF

b(i) = sum

108 ENDDO
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110 DO i = n,1,-1

sum = b(i)

112 DO j = i+1,n

sum = sum - a(i,j)*b(j)

114 ENDDO

b(i) = sum/a(i,i)

116 ENDDO

118 RETURN

END SUBROUTINE LUBKSB

120 END MODULE MATSOLV
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