
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2009

Coupled Flow Discrete Element Method
Application in Granular Porous Media using Open
Source Codes
Feng Chen
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Chen, Feng, "Coupled Flow Discrete Element Method Application in Granular Porous Media using Open Source Codes. " PhD diss.,
University of Tennessee, 2009.
https://trace.tennessee.edu/utk_graddiss/21

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by Feng Chen entitled "Coupled Flow Discrete Element
Method Application in Granular Porous Media using Open Source Codes." I have examined the final
electronic copy of this dissertation for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Civil Engineering.

Eric C. Drumm, Major Professor

We have read this dissertation and recommend its acceptance:

Georges A. Guiochon, Dayakar Penumadu, Baoshan Huang, Richard Bennett

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council: 

 

I am submitting herewith a dissertation written by Feng Chen entitled “Coupled Flow Discrete 

Element Method Application in Granular Porous Media using Open Source Codes.” I have 

examined the final electronic copy of this dissertation for form and content and recommend that 

it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, 

with a major in Civil Engineering. 

 

 

___________________________ 

Eric C. Drumm, Major Professor 

 

We have read this dissertation  

and recommend its acceptance: 

 

______________________ 

Georges A. Guiochon 

 

______________________ 

Dayakar Penumadu 

 

______________________ 

Baoshan Huang 

 

______________________ 

Richard Bennett  

 

Accepted for the Council: 

           

________________________________         

Carolyn R. Hodges                             

Vice Provost and Dean of the Graduate School 



 

 

 

Coupled Flow Discrete Element Method Application in Granular Porous 

Media using Open Source Codes 

 

 

 

 

 

A Dissertation Presented for 

the Doctor of Philosophy 

Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feng Chen 

August 2009 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2009 by Feng Chen 

All rights reserved. 



iii 

Acknowledgements 

 

I would like to gratefully acknowledge the enthusiastic supervision of Prof. Eric C Drumm and 

Prof. Georges Guiochon for their continuous interest, support and guidance during this PhD 

research. I thank Prof. Baoshan Huang of his help during the 5 year studying and living in 

University of Tennessee, Knoxville. The text of this Thesis has benefited from valuable 

comments from Dr. Penumadu and Dr. Bennett. 

 

I am grateful to all my friends Xiang Shu, Qiao Dong, Hao Wu and Jingsong Chen for their help. 

Finally, I am forever indebted to my wife Yiping Qu’s support, my parents and my sister in 

Shanghai for their understanding, endless patience and encouragement. 

 

 

 

致谢 

余自丁丑年入同济求学，甲申年入美利坚国田纳西大学攻读博士，至公元二零零九年春末

夏初本文定稿，不觉十二载矣，回顾往事，历历在目，依稀昨日。枫生性驽钝，惟勤奋自

勉，徐图渐进，然漫漫长路坎坷荆棘，所幸得助甚多，借此片纸，聊表谢忱。 

 

本文之撰写，自选题至方法，自整体至细节，皆得艾瑞克.壮姆导师悉心指点；亦幸遇乔

治.古笙教授，满腹经纶，高瞻远瞩；更受黄公宝山教授垂教之恩，博我之寡陋，并助我

之急难，惜恩长笔短，不可尽述。 

 

子曰，立身行道，以显父母，若非父母自幼之言传身教，潜移默化，万不敢妄想今日之拙

论。枫不肖，为闻道而远行，令父母挂念在他乡。今双亲不远万里与余在异国重逢，枫跪

而叩谢，不知何以为报。 

 

妻瞿氏奕萍，贤良端淑，与余比翼他乡，不计居所之简陋，不厌生活之艰辛，风雨同舟，

已一又余载，此文之成，妻之功伟矣，枫不胜感激涕零。 



iv 

Abstract 

The flow of fluid through an assembly of particles is of interest to a range of fields such as civil 

engineering, powder technology, and liquid chromatography. The Discrete Element Method 

(DEM) is a numerical approximation used to model the interaction of particles and fluid. This 

study starts with the verification of the open source 3D DEM code (YADE) by investigating 

simple, one and two-particle contact problems, and DEM results are shown to compare very well 

with the classical 1D vibration solutions. 

 

2D and 3D simulations of particles flowing through a hopper were then investigated. The 

stability of the sinkhole repair for a range of rock particle diameters (relative to the sinkhole 

throat diameter) was investigated by presenting a statistical description to describe the gradual 

transition from unstable to stable behavior. 

 

This was followed by an investigation of a fluid-solid two phase flow system. The fluid phase is 

modeled by solving the averaged Navier-Stokes equation using the Finite Volume Method (FVM) 

and the solid phase was modeled using the DEM. A framework was developed to couple two 

open source codes: YADE-OpenDEM for the DEM and OpenFOAM for the computational fluid 

dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship 

proposed by Ergun (1952). 1D solutions for the classic upward seepage flow and consolidation 

were obtained and compared well with the analytical solutions. These verification problems were 

also used to explore the appropriate time step size for both the fluid and mechanical solution 

processes, and the choice of the viscous damping coefficient. 

 

Finally, the coupled DEM-CFD code is used in the solution of a classical 2D seepage problem of 

flow beneath a sheet pile and the slurry packing of a chromatography column. For the sheet pile 

problem, both the quantity of seepage and the pressure gradient leading to the quick condition 

are investigated. The effect of the fluid volume size relative to particle size was also investigated. 

For the packing of a chromatography column, the method was able to reproduce the “wall 

effects” during the axial upward compression procedure, providing a displacement field similar 

to that observed in experiments. 
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1 Introduction 

1.1 Background 

Materials such as soils and rocks, as well as assemblies of particles such as those used to pack 

chromatography columns, are often treated as porous media. “A porous medium or a porous 

material is a solid (often called frame or matrix) permeated by an interconnected network of 

pores (voids) filled with a fluid (liquid or gas)” (Wikipedia 2007). In the field of geotechnical 

engineering, the interaction between soil particles and pore water is encountered in many 

problems. Specifically, the seepage flow problem with the hydraulic gradient and the seepage 

flow velocity tending towards the critical value which leads to a quick condition or liquefaction.  

In high performance liquid chromatography, columns of porous silica are packed by subjecting 

slurry to a large fluid pressure differential to form a dense assembly of particles. The efficiency 

of the column is governed by radial and axial uniformity of the porosity. Improvement in the 

analytical capability of the coupled flow through assemblies of particles can positively impact 

both geotechnical engineering and HPLC, not to mention the field of powder technology. 

Currently three main categories of simulation schemes exist to solve the coupled flow problems, 

including 

• Continuum mechanics approach 

• Lattice Boltzmann method 

• Semi-discrete-continuum method 

The continuum approach averages the physics across many particles and thereby treats the 

material as a continuum on a macro scale level. In the case of solid-like granular behavior as in 

soil mechanics, the continuum approach usually treats the material as elastic or elasto-plastic, in 

the case of liquid-like or gas-like granular flow, the continuum approach may treat the material 

as a fluid and then models it with the finite element method or other methods available from 

continuum mechanics. Such approaches, however, overlook macroscopic system properties 

observed in experimental inquiries, while the microscale particle-fluid interactions have limited 

resolution. 

The lattice Boltzmann method (LBM) is a discrete simulation method for complex fluid 

systems based on the Boltzmann equation on a micro geometrical level (Succi 2001). Traditional 

computational fluid dynamics (CFD) solves the conservation equations of macroscopic 

properties (i.e., mass, momentum, and energy) numerically while LBM tracks a typical volume 

element of fluid which is composed of a limited number of particles that are represented by a 

particle velocity distribution function which displays the particle stream and collision behavior 

for each fluid component at each grid point. 

The semi-discrete-continuum method, which is the topic in this study, is adopted for coupled 

particle-fluid modeling. The fluid phase is modeled at the macroscopic scale by solving the 

momentum and continuity equations using traditional computational fluid dynamics. The solid 

phase, on the other hand, is modeled in microscopic scale using the discrete element method 

(DEM). The semi-implicit finite volume method (FVM) discretization for fluid flow is coupled 

with the explicit discrete element method for particles. 
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1.2 Previous and related studies 

There are analyses of dry soils using DEM (Bathurst and Rothenburg 1988; Dobry and Ng 1992; 

Peron et al. 2009; Thornton and Liu 2000) and also investigations in which pore fluid pressure of 

a soil element is evaluated based on the mean confining stresses required to ensure constant 

volume deformations (Evgin 2000). However, a more realistic approach capable of considering 

coupled formulations including the skeleton deformation, pore fluid flow, and resultant 

interactions is possible with the semi-discrete-continuum approach originally proposed by Tsuji 

et al. (1993). Tanaka et al. (1993), Kawaguchi et al. (1998), and Yuu et al. (2000) continued with 

this approach with fluidized beds in powder technology using the DEM for the particles and the 

FVM for the fluid. However, there has been only limited application of this analysis geotechnical 

engineering: (El Shamy and Zeghal 2005; Suzuki et al. 2007), there is also coupled flow analysis 

using the DEM-FVM coupled approach with the fluid phase simplified into a Darcy flow field 

(Shafipour and  Soroush 2008).  

For the solution of problems of practical interest, with a reasonable number of particles, a fast 

and robust software platform is required. Unlike the finite element method (FEM) for which 

many codes exist, there are very few DEM codes available. Most are developed according the 

developers’ specific requirements, which leads to an investigation of current existing DEM codes. 

Meanwhile, robust CFD codes are also required to complete the coupled flow approach. 

1.2.1 DEM codes 

The Discrete (or Distinct) Element Method (DEM) is a set of numerical methods for computing 

the motion of an assembly of particles. The method was originally applied by Cundall and Strack 

in 1979 (Cundall and Strack 1979) to problems in rock mechanics. In general, the discrete 

element can be of various shapes, e.g. tetrahedral, polyhedral, elliptic etc. However, this study 

only involves spherical particles. 

Discrete element methods are processor intensive and this limits either the length of a simulation 

or the number of particles. A proper software platform is necessary for DEM simulation. 

Commercially available DEM software packages for spherical particles include: 

• PFC2D and PFC3D (Itasca Inc. 2004a) Particle Flow Code in 2/3 Dimensions. 

• Chute Maven (Hustrulid and Mustoe 1996) Spherical Discrete Element Modeling in 3 

Dimensions. 

• EDEM (DEM Solutions 2009) General-purpose DEM simulation with CAD import of particle 

and machine geometry. EDEM is able to couple the commercial fluid code Fluent (Fluent Inc. 

2006) with its own port. 

As in the well known PFC2D/3D code, the use of DEM software is typically “code” based which 

means the input of a specific application is a set of codes from the software end-user. PFC2D/3D 

created its own FISH programming language and a group of commands to describe the user input 

(particle and wall description). The disadvantage is that the kernel of the commercial code 

remained a black box for the end-user and the documentation of the software relies entirely on 

the software company. Limited and incomplete documentation restrict the ability of end-users to 

extend their applications to other fields unless the expected code module has already been 

provided by the software vendor. Such software design seriously limits the application and 

development of the DEM, and limits the ability to fully understand the computation process. 
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Open source is a development method for software that harnesses the power of distributed peer 

review and transparency of process. The promise of open source code is better quality, higher 

reliability, more flexibility, lower cost, and an end to predatory vendor lock-in (Open Source 

Initiative 2007). The source code documentation is written text that accompanies computer 

software. It both explains how it operates or how to use it, and may mean different things to 

people in different roles. Compared to code based DEM software, the documentation of open 

source code is even more important for end-users. The open source codes thus provide a 

transparent process to the end-users such that even a beginner-level programmer can contribute 

to the document which in turn might be very constructive for the DEM development. Currently 

open source and non-commercial 

DEM codes include: 

• BALL and TRUBAL (Cundall 1978): distinct element method (in FORTRAN), originally 

written by P. Cundall and currently maintained by C. Thornton. (Non-commercial) 

• SDEC (Donzé and Magnier 1997): Spherical Discrete Element Code. (Non-commercial) 

• YADE (Kozicki and Donzé 2008): Yet Another Dynamic Engine, some functions are re-

implemented from  SDEC, GPL license. (Open source) 

• Pasimodo (Popp and Schiehlen 2008): Multi-purpose particle-based simulation methods. (Non-

commercial) software. 

In this study, YADE is employed for the discrete element modeling for the solid particles. 

1.2.2 CFD codes 

Computational fluid dynamics (CFD) (J. Anderson 1995) is one of the branches of fluid 

mechanics that uses numerical methods and algorithms to solve and analyze problems that 

involve fluid flows. CFD is also computationally intensive to perform the millions of 

calculations required to simulate the interaction of fluids and gases with the complex structures 

encountered in engineering. 

Currently most CFD software, either commercial or open source, uses the finite volume 

discretization to solve the velocity and pressure field from the Navier-Stokes equations, 

following a pressure correction approach originally proposed by Partankar (1980). The 

fundamental steps are to iteratively solve the momentum equations first for velocity, and then 

enforce the velocity to obey continuity equations by correction of the pressure within each time 

step (transient problem) or iteration (for steady state problem). 

Well known commercial CFD codes include: 

 Fluent (Fluent Inc. 2006): Famous ANSYS suite of CAE simulation solutions. 

 StarCD (CD-adapco Group 2001): Powerful engineering simulation (CAE) solutions for 

fluid flow, heat transfer and stress. 

Open source CFD codes include: 

 OpenFOAM (OpenCFD Ltd 2008): A general purpose open-source CFD code. 

OpenFOAM is written in C++ and uses an object oriented approach for finite volume 

discretization and uses un-structured grids. 

 Overture (Brown et al. 1999): A large object-oriented C++ framework for solving PDE’s 

with overlapping structured grids. 
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 FEniCS (Logg 2009): Organized as a collection of sub projects/components, including 

finite element fluid solver parts. 

In this study, an averaged Navier-Stokes equation (Anderson and Jackson 1967) is used for the 

description of the pore fluid phase, and the fluid field is solved using the finite volume method 

with the PISO algorithm (Issa 1986) using the open source code OpenFOAM. The transient 

PISO solver for incompressible laminar Newtonian fluids provided by OpenFOAM has been 

customized and incorporated into YADE as a dynamically linked library, which constitutes the 

major coding contribution of this dissertation. 

 

1.3 Present contributions 

This study currently makes the following contributions to the application of discrete element 

method in geotechnical engineering and the field of chromatography: 

 

Chapter 1 “Prediction/Verification of Particle Motion in One Dimension with the Discrete-

Element Method” is a paper published as: 

 

Feng Chen, Eric. C. Drumm and Georges Guiochon, Prediction/Verification of particle motion in 

one dimension with the Discrete Element Method, International Journal of Geomechanics, Vol. 7, 

No. 5, 2007 

 

In this paper: 

(1) Instead of using an existing commercial DEM code, open source codes are primarily used 

in this study. This takes advantages of code reuse, the ability to make improvements and learn 

how the computations are actually being performed, and receive community feedback. 

(2) Analytical solutions of two different yet simple particle contact problems with various 

types of damping are obtained. The numerical results from the open source code YADE are 

compared with the analytical solutions and commercial code PFC2D solutions. It is shown that 

the three results agree well with each other, provided the initial conditions in the two codes are 

manipulated to be the same, which provides good verification for YADE. The availability of 

simple verification problems is important to develop confidence in the DEM solutions and 

facilitate growth of the method. 

(3) A customized user-written YADE routine is implemented for viscous damping, which 

has been made available to the YADE user community.   

(4) The routine ConvergenceEstimator using the ratio of maximum unbalanced force over 

maximum contact force is implemented in YADE as the convergence criterion to judge whether 

the whole particle system has reached (or is close to) the equilibrium state. YADE did not have a 

convergence routine previously, and this routine will be made available to the YADE user 

community. 

 

Chapter 2 “Simulation of Graded Rock Fill for Sinkhole Repair in Particle Flow Model” and 

Chapter 3 “3D DEM analysis of Graded Rock Fill Sinkhole Repair: Particle Size Effects on the 

Probability of Stability” were similar papers published as:  
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Feng Chen , Ozgur Alturk , Eric C. Drumm, Simulation of Graded Rock Fill for Sinkhole Repair 

in Particle Flow Model, Geoshanghai 2006 International conference, June 6-8, 2006  

 

and  

 

Feng Chen, Eric. C. Drumm, Georges Guiochon, 3D DEM Analysis Of Graded Rock Fill 

Sinkhole Repair: Particle Size Effects On The Probability Of Stability, 2009 Transportation 

Research Board Conference (Presentation). 

 

In these papers: 

(1) A series of discrete element simulations of the idealized placement of graded rock fill for 

sinkhole repair were conducted both in 2D and 3D. This is essentially the classic “sand in the 

funnel” problem. 

(2) Simulations were performed and stability was investigated for a range of mean particle 

diameters relative to the sinkhole throat diameter.  For a given throat diameter, there is a particle 

size below which a stable arch will not develop over the throat, and there is a larger diameter 

above which a stable arch will consistently develop. Due to random nature of the particle 

simulation, there was an intermediate range of particle diameters for which a stable arch may or 

may not develop, suggesting that stability was not described by a simple stable/not stable 

mechanism. A statistical approach using logistic regression was used to develop a relation for the 

unstable to stable transition. It was determined that the mean particle size for a 95% probability 

of stability was independent of funnel angle, and was about 0.47 times the sinkhole throat 

diameter. This compares favorably with the empirical value of 0.5 recommended in the literature 

for stabilizing sinkholes with graded rock fills.  

(3) It is shown the transition in mean particle size from a stable to an unstable assembly of 

particles is a continuous smooth function rather than a step function from both 2D and 3D 

analysis. 

 

Chapter 4 “Discrete element simulation of particle-fluid interaction using a software coupling 

approach”: 

(1) The basic finite volume discretization for solving the averaged Navier-Stokes equations 

with variable porosity terms included is derived using the PISO (Pressure-Implicit with Splitting 

of Operators) algorithm (reference), following this approach: 

 The transient solver for incompressible laminar Newtonian fluid in the open source code 

OpenFOAM was extended to a customized solver considering the porosity and the fluid-

particle interaction term. 

 A framework of code coupling with YADE and OpenFOAM is then provided. 

(2)  A customized YADE routine FluidDragForceEngine is written to wrap the customized 

fluid solver and incorporate it into the YADE main mechanical loop. Particle information from 

the discrete element code and fluid-particle interaction terms from the fluid solver communicate 

using dynamically linked library technique under the Linux platform. Such a coupling method 

also provides a hint for incorporating other types of open source code and extends the field of 

DEM application. 

Chapter 5 “Coupled Discrete Element and Finite Volume Solution of Two Classical Soil 

Mechanics Problems” is a paper under review in Computers and Geotechnics as: 
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Feng Chen, Eric. C. Drumm, Georges Guiochon, Coupled Discrete Element and Finite Volume 

Solution of Two Classical Soil Mechanics Problems, 2008, Submitted for Computers and 

Geotechnics  

 

(1) The coupled open source codes have been used and the solution process verified through 

the solution of two simple classical soil mechanics problems: one dimensional idealizations of 

the classic upward seepage flow/quick condition problem and the time rate of consolidation 

settlement problem.  It is shown that the coupled DEM solution can produce results very similar 

to the well known analytical solutions for both problems. The results for both problems were 

obtained without the assumption of Darcy’s law, but are based on the basic Navier-Stokes 

equation for the fluid phase and on the particle motion equation for the solid phase. 

(2) In the case of the upward seepage flow problem, the numerical solution also yields results 

for the transient pore water pressure distribution at early stages of the solution, and produces the 

displacement of the uppermost particle in the column under quick conditions. The results were 

shown to agree well with those from the analytical solution and two other DEM solutions.   

(3) For the consolidation problem, the solutions for pressure and particle displacement were 

provided with a range of consolidation times that are typically of interest in practice.  

(4) Although of little practical interest, the DEM was also shown to be able to simulate the 

development of the excess pore water pressure distribution at very early solution times, where 

the classical solution would assume a uniform pore pressure throughout the domain equal to the 

applied stress P0.  

(5) In addition to the solution of the two classical verification problems, two key issues in the 

numerical solution of coupled fluid/solid systems were discussed: the dependence on time step 

size for both the fluid and mechanical solution processes and the choice of viscous damping 

coefficients. The effects of these parameters on the solution was investigated, and while these 

effects are expected to be problem dependent, the paper provides some  insight into how 

sensitive the results may be to the choice of these parameters.   

Chapter 6 “Coupled Discrete Element and Finite Volume Solution for 2D Fluid Flow in Soil 

Mechanics” is a future paper manuscript:   

Feng Chen, Eric. C. Drumm, Georges Guiochon, (2009) “Coupled Discrete Element and Finite 

Volume Solution for 2D Fluid Flow in Soil Mechanics” to be submitted for “International 

Journal of Geomechanics”, ASCE 

(1) A coupled DEM-CFD model is created for the fluid flow under sheet pile similar to 

Lambe and Whitman’s classical problem. 

(2)  An equal pressure gradient scaling law is used to limit the number of particles in the 

simulation yet reproducing the desired problem behavior. The use of large scale particles is 

important if practical scale problems are to be solved in the absence of parallel computation 

environmental.   

(3) The calculated pressure contours and quantity of flow from the model agree well with the 

classical solution from flow net. The finite volume method is able to present the transient 

pressure development during the early stages of the simulation. The particle movements and 

contact forces when the exit gradient approaches the critical condition is also discussed. By 

taking the advantage of DEM, the model is also able to simulate the particle migration and the 

loss of contact forces between particles as the critical gradient is reached, which is not easy to 
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obtain through traditional continuum approach and can be a starting point for future coupled flow 

modeling. 

 

Chapter 7 “Coupled Discrete Element and Finite Volume Solution for Packing of a 

Chromatography Column” is a future paper manuscript:   

 

Feng Chen, Eric. C. Drumm, Georges Guiochon, (2009), “Coupled Discrete Element and Finite 

Volume Solution for Packing of a Chromatography Column” to be submitted for “Journal of 

Chromatography A”.  

 

(1) The coupled DEM-CFD method is used to simulate the slurry packing of a 

chromatography column. The geometry was significantly simplified to conserve computational 

effort. The particle diameter was assumed to be approximately 100 times that typically used for 

silica packing material, and the cylindrical shape was approximated by planar flow. The coupled 

method is able to produce the “wall effects” due to shearing in the packing under the axial 

upward compression procedure, providing a displacement field similar to that observed in 

experiments. These wall effects lead to a heterogeneous column packing and lower column 

efficiency. 

(2) Although the experimentally observed parabolic shaped velocity distribution was not 

repeated, the packing of a very heterogeneous column was simulated in spite of what is likely an 

insufficient number of the particles in the column. This relationship is expected to be different if 

a larger number of particles within the fluid cell were used (at least 1000 particles per fluid cell) 

which would likely need to be performed under a parallel computational environment.   
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2 Prediction/Verification of particle motion in one dimension with 

the discrete element method 
The discrete (or distinct) element method (DEM) is a family of numerical methods for predicting 

the motion of a large number of particles like molecules or particles of soil (Jensen et al. 2001; 

Williams et al. 1985; Yao and Anandarajah 2003). Various DEM codes are available, although it 

has been suggested (Richards et al. 2004) that the basic underpinnings of these codes are similar 

and follow the early work of Cundall and Strack (1979). While the codes may be fundamentally 

the same, different implementations may provide slightly different results due to subtle 

difference in the manner in which the method is implemented. Regardless of the code chosen, 

good practice would suggest that before investigating practical problems involving thousands of 

particles, the DEM analyst should verify the solution process through the investigation of simple 

problems for which an analytical solution is known. However, most of the example problems 

available in the literature or provided by code developers lack closed form solutions. 

This section investigates some simple 1-D vibration problems which can serve as verification 

problems, and compares the solution from the DEM with that from the analytical solution. It is 

demonstrated that identical results can be obtained from the open source 3-D code YADE 

(Galizzi and Kozicki 2005) and the well known commercial 2-D code PFC2D (Itasca Inc. 2004a). 

However, due to subtle differences in the two implementations, in order to get the desired results 

to the closed form verification problems, an understanding is required of the difference in how 

solution timesteps are used, material contact stiffness is specified and damping is controlled. 

These issues are discussed in the paper, and an appendix provides details on some differences in 

the PFC2D and YADE implementations. 

The DEM method was originally applied by Cundall and Strack (1979) to problems in rock 

mechanics. For the solution of vibration systems, the theoretical basis of the method can be 

viewed as an extension of finite difference method (Thomson 1993). The DEM method assumes 

that the particles are rigid, but inter-particle deformation is approximated by overlapping 

between particles using a simple force displacement law. Single rigid particle motion is predicted 

by Newton’s second law of motion. 

The discrete element can be of various shapes, such as disk, tetrahedron or polyhedron, etc. 

However this paper will only focus on spherical particle motion which is restricted to one 

dimension and translational motion only. The translational motion of the particle is described in 

terms of its position y, velocity y , and acceleration y of the sphere center. The concept of one 

dimensional motion described in this paper can be easily extended to two or three dimension 

problems in multiple degrees of freedom with generalized position, velocity and acceleration 

including rotational motion. 
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Figure 2.1 First verification problem: Free fall of a single particle. (a) schematic of single 

particle in free fall; (b) particle boundary contact model; and (c) the single particle free fall 

model in YADE. 

Computational requirements in DEM simulations of practical problems with large numbers of 

particles are inevitably demanding. The method requires efficient algorithms to track the 

positions, velocities and directions of large numbers of particles, to detect the particle pair that 

will create the next collision and to calculate the collision behavior. The algorithms employed in 

DEM codes may differ less than one might expect, since many codes have developed from a 

limited number of original sources. For example, most codes likely follow the original concept 

and the code developed by Cundall that now underpins the PFC2D/3D code (Itasca Inc. 2004a). 

Although there are similar solutions in literature in which various code developers implement the 

method, difference in the codes make the solution and comparison of results for basic linear 

elastic verification problems difficult. This is not the case in the finite element method (FEM), 

for example, for a simple linear elastic problem; every FEM program should yield the same 

result. However, for the discrete element method, even the simplest problem can yield slightly 

different results due to different calculation procedures. This paper will focus on the basic 

parameter input and solution by DEM using an open source code YADE, (Galizzi and Kozicki 

2005) and the commercial code PFC2D (Itasca Inc. 2004a). 

 

2.1 A description of particle system parameters 

In this section we will clarify the geometry and physical parameters of the spherical particle 

systems used in this paper. 

2.1.1 Geometry Parameters 

As shown in Figure 2.1, the geometry parameters of a single spherical particle in 1D space can 

be defined using the particle radius r0 and the particle center position y. The static wall or system 

boundary can be defined using its position yw and thickness ywt. 

2.1.2 Physical Parameters 

The macroscopic elastic properties, including density, Young’s modulus Eab, and Poisson’s ratio 

ν, are considered to be the input parameters for the discrete-element model. Young’s modulus 

and Poisson’s ratio can be converted to the normal and shear stiffness constants Kn and Ks, 
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respectively, used in the calculation process via the “macro–micro” relationship provided by 

Hentz et al. (2004): 

int 1

1 1

ab k
n ab

eq k k k

E A
K

D


 (2.1) 

1

1

k
s nK K  (2.2) 

where: 
2

int min ,a bA r r  

 
ab

eq a bD r r  

a b
ab

a b

E E
E

E E
 

where Ea and Eb=Young’s moduli of the two contacting objects of radius ra and rb, and αk, βk, 

and γk=fitting parameters (Hentz et al. 2004). YADE uses default values of αk=2.65, βk =0.65, 

and γk=1.0 which were used for the particle systems here. Note that when a contact forms, it is 

assumed that the two contacting objects will act in series, and therefore the normal contact 

stiffness will be calculated using: 

, ,

, ,

n a n b

n

n a n b

K K
K

K K
 (2.3) 

where the subscripts a and b refer to the two contact objects (either particle or boundary). The 

previous geometry and physical parameters are considered to be the basic parameters for the 

problem; other parameters including particle mass (m=ρg) can be derived from the basic 

parameters. For the 1D problems investigated here, there is no shear stiffness term Ks, and the 

system stiffness, k=Kn. 

2.2 First Verification Problem: Free Fall and Contact of a Single Particle 

This single degree-of-freedom system will be investigated without damping, and with the two 

types of damping most common in the DEM: Viscous damping and local or nonviscous damping 

(Cundall 1987). 

2.2.1 Undamped Free Fall of a Single Particle 

The problem will start with the single particle free fall under gravity from its initial position y0 as 

shown in Figure 2.1 which will contact a static (fixed) wall and then rebound after the contact. 

When the particle boundary reaches the static wall, the contact procedure is considered purely 

elastic and no energy loss occurs during the contact. The calculation will begin at time t=0 and 

end when the particle returns to its initial position for the first time. 
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2.2.1.1 Free-Fall Stage 

The particle motion for the free-fall stage is easily obtained via 

y g  

 (2.4) 
y ydt gt   

21

2
y ydt gt  

2.2.1.2 Contact Stage 

The end of the free fall stage will be at the time the particle boundary reaches the static wall 

boundary at which time the contact stage begins. The contact with the static wall can be regarded 

as a vibration problem of a single mass-spring system with initial velocity, 

0 0 0 02 2v gh g y r and the spring stiffness is obtained via Eq. (2.3). Therefore, from the 

theory of vibration, the following differential equation can be obtained: 

0 0ck
y g r y

m
  (2.5) 

With the initial boundary condition: 

0 00 0
, 

t t
y v y r  (2.6) 

The solution is a portion of the classical harmonic motion in one period provided in Appendix 

2.A. 

2.2.1.3 Rebound Stage 

The rebound stage, in the absence of damping, is the opposite of the free fall stage where the 

motion equations can be expressed as 

y g  (2.7) 

0 0y v ydt v gt   (2.8) 

2

0 0 0

1

2
y r ydt r v t gt  (2.9) 

2.2.2 Free Fall of a Single Particle under Viscous Damping 

General viscous damping (Bishop and D. C. Johnson 1960) can be applied to the single-particle 

system presented earlier, where the magnitude of the damping force is linearly proportional to 

the velocity with the direction opposite to the particle velocity, and can be expressed as 

_d viscousF cy  (2.10) 
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where the coefficient c=viscous damping constant. In many discrete-element formulations (Itasca 

2004) for the contact model, c is indirectly defined through the viscous damping coefficient β 

(Ginsberg and Genin 1984): 

criticalc c  (2.11) 

The critical damping constant c is given by: 

2criticalc mk  (2.12) 

where k=contact stiffness and m  =equivalent mass of the contacting objects. In the case of 

particle-boundary contact, m  is taken as the particle mass, whereas in the case of particle–

particle contact, m  is taken as the equivalent mass of the two particles which can be taken as 

(Itasca Inc. 2004a). 

1 2

1 2

m m
m

m m
 (2.13) 

Viscous damping is characterized by the critical damping ratio β. When β=1, the system is said 

to be critically damped, meaning that the response decays to zero at the most rapid rate. Also, 

β=1 represents the transition from an oscillatory response, when β<1, to an exponentially 

decaying response when β>1. When β<1, the system is said to be under-damped, or lightly 

damped, and when β>1, the system is said to be over-damped, or heavily damped. 

Note that viscous damping exists only during the particle contact and therefore during the free 

drop and rebound stage, the damping effect does not exist (Itasca Inc. 2004a). The dashpot acts 

in parallel with the contact stiffness as shown in Figure 2.1(b). 

In this subsection we will describe the analytical solution for one calculation cycle with viscous 

damping during the contact stage. 

2.2.2.1 Free-Drop Stage 

The free-drop stage is exactly the same as the undamped case from Eq. (2.4). 

2.2.2.2 Contact Stage 

The contact stage can be described by the differential equation in the following form: 

0 0y k r y mg cy   (2.14) 

where c=damping proportion constant. The initial boundary condition for the contact stage is 

defined as 

0 00 0
, 

t t
y v y r  (2.15) 

The solution for the above-mentioned differential equation in the contact stage is provided in 

Appendix 2.A. 

2.2.2.3 Rebound Stage 

The rebound stage is the opposite procedure of the free fall with initial velocity at the end of the 

contact stage: 
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Figure 2.2 Vertical position of particle center versus time for during various contact 

intervals: local (non-viscous) damping model 

0 cv y  (2.16) 

2.2.3 Free Fall of a Single Particle under Local Damping 

Local damping or nonviscous damping (Cundall 1987) is frequency independent damping 

similar to the hysteretic damping model and can be expressed as: 

_ sgnd local unbalF F y  (2.17) 

Where α is the local damping constant; Funbal is the composite force, which is defined as the 

vector sum of all applied forces on a single object (either particle or boundary) excluding the 

damping force; the term sgn y is defined as +1, 0, or -1, according to the value of y as positive, 

zero, or negative, respectively. In a one-dimensional problem, the vector sum (composite force) 

can be considered as the scalar sum of all applied forces. 

Note that only accelerating motion is damped and the damping constant α is non-dimensional. 

The local damping force is scaled to the resultant composite force (unbalanced force) and always 

opposes the motion. 

Local damping is used to simulate energy loss due to particle interaction (Itasca Inc. 2004a), and 

may not be appropriate for a typical single particle contact problem. However, it is applied to the 

single particle problem here as verification. With local damping, the free fall motion is also 

damped as if the particle was falling through a viscous liquid. 

2.2.3.1 The free fall stage with local damping 

The damped single particle free fall using the local damping mechanism can be expressed as: 

1y g  (2.18) 

1y ydt g t   (2.19) 
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21
1

2
y ydt g t  (2.20) 

2.2.3.2 Contact Stage 

The contact stage using local damping uses the absolute value for the resultant unbalanced force. 

Therefore, the sign of the damping force will change according to the particle position which can 

be described in terms of four time intervals as depicted in Figure 2.2. The differential equation 

for the contact stage is best described in terms of four intervals during the contact: 

Contact Interval 1: From the Initial Contact A, to the Equilibrium Position B (Figure 

2.2): In this interval the gravitational force is larger than the contact force (spring force) in 

which Fcontact<mg, and the damping force is opposite to the velocity with the magnitude: 

0d contactF mg F mg k r y  (2.21) 

The differential equation can be expressed as: 

0

1
0y k r y mg

m
  (2.22) 

With the initial boundary condition: 

0 0 00 0
2 1 , 

t t
y g y r y r  (2.23) 

The solution is provided in Appendix 2.A under “Closed-Form Solution for the Single Ball 

Problem during Contact with Local Damping.” 

The elapsed time corresponding to the equilibrium position yB can be obtained by solving the 

previous equation with: 

0y  (2.24) 

The position at the equilibrium position yB, which is an inflection point on the trajectory in the (y, 

t) space, where the contact force equals the gravitational force is 

0B

mg
y r

k
 (2.25) 

 

Contact Interval 2: From the Equilibrium Position B, to the Maximum Deformation 

Position C (Figure 2.2): In this stage Fcontact<mg and the magnitude of the damping force: 

0d contactF F mg k r y mg  (2.26) 

The damping force acts in the direction opposite to the velocity, and the differential equation can 

be expressed as: 

0

1
0y k r y mg

m
  (2.27) 

With the boundary condition: 
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0
,B Bt

y v y y  (2.28) 

The time corresponding to the maximum deformation position can be obtained by solving: 

0y  (2.29) 

 

Contact Interval 3: From the Maximum Deformation Position C, to the Equilibrium 

Position D (Figure 2.2): In this interval the gravitational force is smaller than the contact force 

with Fcontact>mg, the magnitude of the damping force is the same as in Stage 2, whereas the 

direction of the damping force is opposite to the contact force and therefore the differential 

equation can be obtained as 

0

1
0y k r y mg

m
  (2.30) 

with the initial boundary condition: 

0
0, Ct

y y y  (2.31) 

Similarly, the elapsed time from the maximum deformation position to the equilibrium point D, 

which is the second inflection point on the trajectory in the (y, t) space, can be obtained by 

solving: 

Dy y  (2.32) 

Contact Interval 4: From the Equilibrium Position D, to the End of the Contact E 

(Figure 2.2): The final stage of the contact is described by the similar differential equation as in 

Stage 1, but the damping force will change sign. The magnitude of the damping force is: 

0d contactF mg F mg k r y  (2.33) 

The differential equation for Interval 4 can be expressed as: 

0

1
0y k r y mg

m
  (2.34) 

with the initial boundary condition: 

0
,D Bt

y y y y   (2.35) 

2.2.3.3 Rebound Stage 

The rebound stage with the local damping effect is slightly different from the free fall stage as 

the damping force will change sign, and therefore the equation of motion can be expressed as: 

1y g  (2.36) 

1Ey y gt   (2.37) 
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2

0 0

1
1

2
Ey r ydt r y t g t   (2.38) 

The previous analytical solution can also be defined as one calculation cycle for a single falling 

particle and the next calculation cycle will repeat from Stage 1 to Stage 4 (Figure 2.2), but with a 

change in the initial boundary condition to reflect the conditions at the end of Stage 4 in the 

previous calculation cycle. 

2.3 Calculation Procedure in the Discrete-Element Method 

This section describes the preliminary procedure for the discrete element method in one 

dimension. As noted in the introduction, the DEM uses the law of motion and the law of force–

displacement in its finite difference calculation. The basic steps of the DEM can be summarized 

as follows. 

1. Calculate the basic geometry and physical properties of the particles; 

2. Determine the time step for the current iteration; 

3. For each time step: 

 Calculate the contact force between the particles using the geometry parameters of the 

particles, add the force vector to the unbalanced force vector, based on the force– 

displacement law; 

 Calculate the body force of each particles, for the case described in this paper, the 

gravitational force is then added to the unbalanced force vector; 

 Apply the damping effect (force) to the resultant unbalanced force; 

 Use the resultant unbalanced force in the previous step to calculate the acceleration for 

each particle, which by Newton’s second law of motion: 

, ,

,

,

unbal i t

i t

i t

F
y

m
  (2.39) 

 Perform the time integration to obtain the velocity and position for each time step. The 

open source code YADE uses the leap-frog scheme (Hockney 1970) for time integration 

from acceleration to velocity and position. 

4. Return to Step 2 if variable time steps are employed or Step 3 for fixed time steps. 

As in most numerical approximation schemes, the selection of time step size is very important in 

the discrete-element calculation, as an excessively large time step will lead to numerical 

instability, whereas too small a time step will make the finite difference calculation 

computationally intensive. Cook et al. (Cook et al. 2001) suggested that the critical (maximum 

allowed) timestep tcritical for a single mass–spring system with no rotational stiffness is: 

2critical

trans

m
t

k
 (2.40) 

where ktrans=contact stiffness for translational motion in single degree-of-freedom system and 

m=mass of the single particle. Additional discussion of the time step considering the infinite 

series of point masses and springs in the DEM is provided by Itasca (2004a): 
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critical

trans

m
t

k
 (2.41) 

In any case, the time step must be made short enough to provide adequate precision for the 

response history. Accuracy of any finite difference method is improved by reducing the length of 

the time step which will in turn minimize the amplification of errors from one step to subsequent 

time steps. However, as computational effort is a concern in the DEM solution of practical 

problems, variable time step algorithms are used. From Eq. (2.3) or (2.40), as the stiffness 

decreases (as is the case of the particle–particle or particle–boundary contact) the allowable time 

step size increases. For this reason, solution schemes with variable time steps are often used. 

2.4 Comparison between the Analytical Solution and the DEM for Single 

Degree-of-Freedom System 

A comparison of the analytical solution using the theory of vibration and the numerical solution 

using the discrete-element method is presented in this section. 
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Figure 2.3 Comparison between analytical and discrete-element solution of one particle 

free fall with (a) no damping effect; (b) viscous damping effect β=0.3; and (c) local damping 

effect α=0.3 

 



 

19 

Table 2.1 Basic Particle Parameters for First and Second Verification Problems 

Parameter Value Unit 

Particle radius  0.1 m 

Particle density (Particle 1) 2,600 kg/m
3
 

Particle density (Particle 2) 5,200 kg/m
3
 

Particle Young’s modulus 1.6916 MPa 

Particle Poisson’s ratio 0  

Boundary Young’s modulus 5.0748 MPa 

Boundary Poisson’s ratio 0  

Gravity field -9.81 m/s
2
 

 

The input parameters for Verification Problem 1 are listed in Table 2.1. Note that the values of 

Young’s modulus and Poisson’s ratio in this example were chosen such that the particle–particle 

contact stiffness and the particle-boundary stiffness were equal. 

Three comparisons are made for the particle free fall: 

1. Without damping Figure 2.3(a); 

2. With viscous damping, with the viscous damping coefficient β=0.3 Figure 2.3(b); 

3. With local damping, with the local damping coefficient α=0.3 Figure 2.3(c). 

The time step chosen for the discrete-element solution is t=1.0×10
-3

s, which is less than 1/3 of 

the time step determined from Eq. (2.41) where tcritical=3.33×10
-3

s. A comparison of the particle 

position versus time for the analytical and DEM solutions is shown in Figure 2.3 for the three 

damping cases. Note that with viscous damping Figure 2.3(b), the free fall motion is the same as 

in the solution without damping Figure 2.3(a), but that local damping Figure 2.3(c) reduces the 

time to rebound. The very small difference between the DEM results and analytical results are 

shown in the insets of Figure 2.3(a)–(c). As the time step is reduced the two solutions will 

converge. The results attributed to the DEM shown in Figure 2.3 were obtained with both the 

commercial code PFC2D and the open source code YADE. The results from the two codes are 

not distinguished because the results from the two codes agree to 11 significant digits. However, 

due to differences in the manner in which the DEM is implemented in the two codes, this degree 

of agreement exists only because the YADE solution in the first time step was manipulated to 

produce the results obtained from PFC2D. Appendix 2.C provides details about the differences 

in the two implementations, and how YADE was manipulated. It is suggested that this appendix 

provides insight into the PFC2D time step implementation, supplements the PFC2D user guide, 

and may be of interest to the users of that code. 
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(a)                                                       (b)                           (c) 

Figure 2.4 Second verification problem: compressed two-particle system. (a) Schematic of 

stacked two particles; (b) simplified spring contact model; and (c) the stacked two-particle 

model in YADE. 

2.5 Second Verification Problem: Stacked Two-Particle System Compressed 

between Two Boundaries 

 

The two degree-of-freedom system, as shown in Figure 2.4, can also be solved through analytical 

solution using a similar procedure as for the single degree-of-freedom systems. However, the 

expressions of such solutions can be very complicated unless the boundaries are positioned such 

that the two particles remain in contact at all times (do not separate), which is the case 

investigated here. The idealized 1D model can then be depicted as a pair of mass–spring systems. 

In this section we will give the displacement history of the two degree-of-freedom system for the 

undamped case, the viscous damping case, and the local damping case. The analytical solution 

for the two ball contact problem is provided in Appendix 2.B. 

A system of two stacked particles, both with r0=0.1m but of different density, is placed between 

two static walls or boundaries as shown in Figure 2.4. The lower and upper layer boundaries are 

placed at yw1=0 and yw2=3.6r0, and the initial position of the two particles y1|t=0=0.25yw2, 

y2|t=0=0.75yw2 such that the balls are initially compressed. The initial geometry of the two 

particles is such that during particle movement, the particles and the walls remain in contact at 

all times, i.e., the contact spring will always be in compression, making the problem comparable 

to a two degree-of-freedom vibration problem in one dimension. The physical parameters of the 

particles and the static walls are the same as in the single-particle system investigated previously, 

except that the lower particle has twice the density as the upper particle. This results in the more 

general problem with two balls of differing mass. This produces an equivalent mass (Eq. (2.13)): 

1 2
12

1 2

2 2

2 3

m m m m
m m

m m m m
  

Similar to the response of the previous 1D problems, once released the two particles will start to 

vibrate, and if no damping is applied the vibration will continue, whereas if damping is applied, 

the response will decay to the equilibrium position. 
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(c) 

Figure 2.5 Position history for stacked two particles with (a) no damping effect; (b) viscous 

damping effect β=0.3; and (c) local damping effect α=0.3 

The three cases of damping investigated previously are compared. The early position history for 

the two particles versus time is as shown in Figure 2.5(a) without damping, in Figure 2.5(b) with 

viscous damping β=0.3, and in Figure 2.5(c) with local damping α =0.3. From Figure 2.5(b) and 

(c), it is evident that the two particles are approaching their equilibrium positions. The DEM 

solution is shown to agree well with the classical solution. 

 

2.6 Closure 

The discrete-element method is a powerful tool for investigating the response of assemblies of 

particles. To gain an understanding of the solution process, and assure that the results are 

interpreted properly, it is often useful to solve simple verification problems. This is particularly 

true in view of the nature of code documentation which cannot anticipate all users’ questions. 

Simple one and two-particle contact vibration problems were investigated with the DEM, 

including cases of no damping, viscous damping, and internal damping, the latter being the form 

of damping commonly found in DEM codes. As anticipated, it was found that the results from a 

well known commercial 2D code (PFC2D) and the open source 3D code (YADE) yield excellent 

solutions to these problems. Slight differences between the two DEM solutions were observed, 

and although these differences were minor and not likely to be important in most problems, the 

basis of these differences was explored. It was found that a high level of agreement between the 

results of the two codes was obtained when the YADE solution was manipulated in the first time 

step to change the calculated velocity and omit the effects of damping. It is suggested that the 
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solution of simple problems is good practice when using numerical codes developed by others, 

and a means to answer questions that are not addressed in typical code documentation. 
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Appendix 
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Appendix 2.A Analytical Solutions for the Single-Particle System in the First Verification 

Problem  

2.A.1 Closed-Form Solution for the Single Ball Problem during Contact without Damping 

The closed-form solution for Eq. (2.5) with the initial boundary condition in Eq. (2.6) is listed as: 

0 0 02 sin cos
m k mg k mg

y t g y r t t r
k m k m k

 (2.42) 

The contact time can be obtained by solving the following equation: 

0y t r  (2.43) 

And therefore the contact time is: 

0 0 0 0

0 0 0 0

2 2
arctan ,

2 2
contact

kmg y r k y r mgm
t

k k y r mg k y r mg
 (2.44) 

2.A.2 Closed-Form Solution for the Single Ball Problem during Contact with Viscous 

Damping 

Closed-form solution for Eq. (2.15) is provided as follows: 

2

2 2

0

2

2

2 2

0

2

0

4
exp 4 2 2 4

2
1

2 4

4
exp 4 2 2 4

2
1

2 4

c c km t
m c km gc k gh gc mgk

m

y
k km c

c c km t
m c km gc k gh gc mgk

m

k km c

mg
r

k

 

(2.45) 

Closed-Form Solution for the Single Ball Problem during Contact with Local Damping 

The closed-form solution for Eq. (2.22) during Contact Interval 1, the initial contact to the 

equilibrium position (A-B) in Figure 2.2, with the initial condition provided in Eq. (2.23): 
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0 0

0 0

0

exp 1 2 1 11

2 1

exp 1 2 1 11

2 1

k
m

k
m

t mgk y r mg
y

k

t mgk y r mg

k

mg
r

k

 
(2.46) 

For solution from Contact Interval 2 to Interval 4, a closed-form analytical solution is available 

but the use of numerical methods is probably more appropriate. 

 

Appendix 2.B Analytical Solution for the Closely Stacked Two-Particle System in the 

Second Verification Problem 

2.B.1 Undamped Case 

The analytical solution for the closely stacked two-particle system in the absence of damping can 

be derived in a manner similar to Thomson (1993). The differential equation of motion for the 

system shown in Figure 2.4 becomes: 

1 1 1 12 1wm y m g F F  (2.47) 

2 2 2 12 2wm y m g F F  (2.48) 

where: 

1 0 1 1w wF r y k  (2.49) 

2 0 2 2w w wF r y y k  (2.50) 

12 0 1 2 122F r y y k  (2.51) 

With the initial condition: 

1 2 10 0
0.25 , 0wt t

y y y  (2.52) 

2 2 20 0
0.75 , 0wt t

y y y  (2.53) 

A closed-form solution is practically available if m1=m2=m: 

1

2 3
cos cos

3 3 12

w wr y ymg mg k r k
y t t

k k m m
 (2.54) 
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2

3
cos cos

3 3 12

w wr y ymg mg k r k
y t t

k k m m
 (2.55) 

If m1≠m2, the solution becomes complicated. However a numerical solution using numerical 

methods can be obtained. The solution provided in the second verification problem was obtained 

via the Fehlberg fourth–fifth order Runge-Kutta method as implemented by Maple routines 

(Maplesoft 2005). 

2.B.2 Viscous Damping Case 

Only the differential equation of motion and the initial conditions for the stacked two particles 

with viscous damping will be listed here. The numerical solution method shown in Figure 2.5(b) 

was obtained using Maple (Maplesoft 2005): 

1 1 1 12 1 1 12w dv w dvm y m g F F F F  (2.56) 

2 2 2 12 2 2 12w dv w dvm y m g F F F F  (2.57) 

where: 

1 1 12dv w wF k m  (2.58) 

2 2 22dv w wF k m  (2.59) 

1 2
12 12

1 2

2dv

m m
F k

m m
 (2.60) 

The term F1w, F2w, F12, and the initial conditions are the same as presented in 2.B.1 under 

“Undamped Case.” 

2.B.3 Local (Nonviscous) Damping Case 

As in the case of the viscous damping case, a closed-form solution for the differential equation of 

motion for the local damping case is complex because it involves the nonlinear term, ysgn . 

The results shown in Figure 2.5(c) were obtained using Maple (Maplesoft 2005). 

1 1 1 12 1 1- - w dlm y m g F F F  (2.61) 

2 2 2 12 2 2- w dlm y m g F F F  (2.62) 

where: 

1 1 12 1 1- - sgndl wF m g F F y  (2.63) 

2 2 12 2 2- sgndl wF m g F F y  (2.64) 

The term F1w, F2w, F12, and the initial conditions are the same as presented in 2.B.1 under 

“Undamped Case.” 
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Appendix 2.C  Comparisons of DEM Codes YADE and PFC2D 

Minor differences were found in the solutions from the well known commercial 2D code PFC2D 

(Itasca Inc. 2004a) and the open source 3D code YADE (Galizzi and Kozicki 2005). These 

differences are shown not to be related to the 2D/3D correlations, but to subtle differences in the 

assumptions made in the time step process. 

Consider the example for the free fall of a single particle without damping, with the initial 

parameters as listed in Table 2.1. The time step is set to Δt=2.0×10
-3

s. The exact analytical 

solution for the first step where Δt=2.0×10
-3

s is obtained from Eq. (2.4): 
29.81m/sy g   

21.962 10 m/sy gt   

2 -1

0

1
9.9998038 10 m

2
y y gt   

The PFC2D code yields: 
21.962 10 m/sy g t   

-1

0 9.9996076 10 my y y t   

whereas the open source code YADE (with the default settings) yields: 

39.81 10 m/s
2

t
y g   

-1

0 9.9998038 10 my y y t   

The calculation for the initial time step is thus slightly different for the two DEM solutions. For 

this particular problem, and for many problems, the difference is negligible. However, when the 

gravity field and/or the time step are large, the differences may be greater, or more importantly, 

these differences may cause confusion during the solution of verification or test problems. In the 

case where damping is included, further investigation shows that the PFC2D code starts the first 

time step with only gravity and no damping force applied, regardless of the type of damping that 

is specified. The default settings for YADE, however, start the first time step with both gravity 

and damping effects which causes a subtle difference between the two numerical results. If the 

YADE code is forced to apply only gravitational force during the first calculation step, the 

results of the two DEM code agree to 11 significant digits. Note that the current version of 

YADE does not provide the viscous damping option. The results for viscous damping shown 

here were based on a custom user-written subroutine which will be submitted to the YADE open 

source code. 

It is noted that the slight difference between the two DEM implementations identified here are 

not likely to result in significant differences in response for problems with many particles, 

typical gravitational constants, and appropriate time steps. However, for the sample problems 

likely to be chosen to verify code results and gain confidence in the solutions, minor differences 

may exist. It is for this reason that the response was investigated in detail here. 
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3 Discrete element simulation of particle-fluid interaction using a 

software coupling approach 

3.1 Equations of motion for the particle and fluid field 

3.1.1 Local mean values of point properties of fluid and solid phases 

It is very difficult to implement the algorithm of solving the instantaneous flow field on both a 

small scale as relevant to distances between moving particles in the particle-flow field and on a 

large scale which is of interest in phenomena such as particles in the fluid. It is reasonable to 

make a calculation based on locally averaged quantities following Anderson and Jackson (1967). 

The approach in which the fluid motion is treated in macroscopic scale while the particles are 

treated in microscopic scale by solving the local averaged Navier-Stokes equation is used to 

simulate particle flow interaction. The fluid cell is taken or chosen to be large compared with the 

particle spacing and small compared to the scale of “macroscopic” variations from point to point 

in the fluid system, in other words, the fluid cell should be larger than the particle diameter but 

should be small compared to the whole fluid field domain. It is only in this case that local mean 

variables such as pressure and porosity would be expected to have an unambiguous physical 

significance, and hence to be useful in constructing equations of motion. 

 

3.1.2 Equations of motion for the fluid - the averaged Navier-Stokes equation 

The fluid domain is divided into cells as is common in the finite volume method. The pressure 

and the fluid velocity are treated as the locally averaged quantity over the fluid cell. The equation 

of continuity is given as follows: 

0
n

nU
t

 (3.1) 

where n=porosity; U=fluid velocity; t=time. The momentum equation is given as follows:  

P

f

nU n
nUU U p f

t
 (3.2) 

where µ is the fluid viscosity, ρf is the density of fluid, fP is the interaction force on the fluid per 

unit mass from the particle, p is fluid pressure. 

3.1.3 Interaction term acting on fluid field from the particle  

The interaction term representing the effect of a particle on the fluid, fP, for the averaged Navier-

Stokes equation (T. B. Anderson and Jackson 1967), is given by Ergun (1952): 

P P

f

f U U  (3.3) 

where ŪP is the average particle velocity within a fluid cell, U is the fluid velocity and β is an 

empirical coefficient. For porosity n≤0.8,   
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2

1
150 1 1.75Re

n
n

d n
 (3.4) 

while for n>0.8: 

2.7

2

13
Re

4
D

n
C n

d
 (3.5) 

where d is the particle diameter, and the Reynolds number Re is defined as: 

P fU U nd
Re  (3.6) 

and the drag coefficient CD is:  
0.86724 1 0.15Re Re  if Re 1000

0.43                             if Re>1000    
DC  (3.7) 

 

3.1.4 Equations of motion for the particles 

For a particle in fluid, the equation of motion for a single particle is: 

G B D Cy f f f f m  (3.8) 

where ÿ =acceleration of the particle; fG =gravity force; fB =buoyancy force; fD =drag force; fC 

=contact force; and m=mass of the particle. The inter-particle contact force fC is obtained from 

the standard DEM approach as proposed by Cundall and Strack (1979). The drag force fD is the 

interaction force acting on the particle from the fluid defined below. 

3.1.5 Interaction drag force on the particle from the fluid 

The drag force fD is caused by the pressure gradient within the fluid cell and is obtained from the 

sum of the velocity difference between the particles and fluid, and may be written as:   

1
D P Pf U U p V

n
  (3.9) 

where VP is the volume of a single particle. 

 

3.2 Solution algorithms for averaged Navier-Stokes equations 

Eqs. (3.1) and (3.2) are typically discretized and solved via a pressure-correction process which 

is detailed in Appendix 3.A. Basic steps for two selected algorithms, which are implemented 

either in PFC2D or OpenFOAM are summarized below: 

3.2.1 SIMPLE Solver Algorithm 

The basic steps for the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) 

(Patankar 1980) solution algorithm may be summarized as follows: 
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(1) Set the initial velocity and pressure field U
o
 and p

o
. 

(2) Solve the under-relaxed discretized momentum equation Eqn. (3.A.2) to compute the 

tentative velocity field U
*
. 

(3) Solve the pressure correction equation Eqn. (3.A.10) to update the pressure field 

using under-relaxation factor αp. 

(4) Correct the velocity field using Eqn. (3.A.12). 

(5) Return to step (1) until convergence. 

3.2.2 PISO Solver Algorithm 

The basic steps for the PISO (Pressure-Implicit Split-Operator) solution algorithm (Issa 1986) 

may be summarized as follows: 

(1) Set the initial or old velocity and pressure field U
o
 and p

o
. 

(2) Solve the discretized momentum equation Eqn. (3.A.2) to compute the tentative 

velocity field. 

(3) Corrector step 1: 

(a) Solve the pressure correction equation Eqn. (3.A.10) to update the pressure 

field. 

(b) Correct the velocity field using Eqn. (3.A.12). 

(4) Corrector step 2: 

(a) Repeat corrector step 1 with Eqn. (3.A.21) for the pressure correction equation 

(b) Correct the velocity field using Eqn. (3.A.23). 

(5) Return to step (1) until convergence. 

3.2.3 General comments on SIMPLE and PISO 

In order to solve the fluid field using finite volume method, the framework of SIMPLE and PISO 

algorithms has been illustrated in this section. Both SIMPLE and PISO are based on evaluating 

some initial solutions and then correcting them. Compared with the SIMPLE algorithm, which 

only makes 1 correction while using under-relaxation procedures for pressure and momentum 

equations, PISO requires more than 1 correction step, but no more than 4 (typically 2,(OpenCFD 

Ltd 2008)). 

Tsuji (1993) and PFC2D (Itasca Inc. 2004a) used SIMPLE algorithm to calculate the fluid field 

while the PISO algorithm is used in this study to solve the transient fluid field. In OpenFOAM, 

the PISO algorithm is used for transient problems and SIMPLE for steady state. 

3.3 Solving averaged Navier-Stokes equations using OpenFOAM and YADE 

code coupling 

3.3.1 OpenFOAM: The Open Source CFD Toolbox 

The OpenFOAM (Open Field Operation and Manipulation) CFD tool box can simulate various 

field problems from complex fluid flows involving chemical reactions, turbulence and heat 

transfer, to solid dynamics. Essentially, OpenFOAM is an open source suite of C++ libraries. It 

uses primarily the finite volume method to solve coupled sets of partial differential equations 

(typical of engineering problems) ascribed on any 3D unstructured mesh of cells with an 

arbitrary number of faces that may undergo motion and/or topological changes. OpenFOAM is 
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designed to be a flexible, programmable environment for simulation by having top-level code 

that is a direct representation of the equations being solved. 

3.3.2 Code coupling between YADE and OpenFOAM 

In order to couple YADE and OpenFOAM, a customized YADE routine FluidDragForceEngine 

was developed to wrap and incorporate the OpenFOAM IcoFoam solver into the YADE main 

program as shown in Figure 3.1. 

YADE

Mechanical

Loop

Fluid Drag

Force Engine

OpenFOAM

IcoFoam

Solver

 
Figure 3.1 Relationship between YADE and OpenFOAM solver 
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YADE Start

tFoam = tYade

Law of motion:

G B D Cy f f f f m

ntFoam = dtFoam
Send particle

velocity, diameter

Force-displacement Law:

Convergence Estimator?

Possibility of

liquifaction or other

non-convergence

conditions

End

PISO loop

OpenFOAM

IcoFoam

Start

Update drag force

vector: fD

N

Y

N: dtFoam = dtFoam + 1

Y

,y ydt y ydt  

Fluid Drag Force

Engine

OpenFOAM Fluid

Solver (Dynamic

linked library)

YADE Mechanical Loop

 
Figure 3.2 Data flow chart of YADE-OpenFOAM coupling 
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3.3.2.1 YADE Mechanical Loop 

YADE mechanical loop is a stack of subroutines (called an “Engine” in YADE) which perform 

different calculation tasks including gravitational force, buoyancy force, contact force and 

damping force, for each mechanical time step (iteration). 

3.3.2.2 FluidDragForceEngine 

To include fluid effects on the mechanical behavior of the particles in YADE, the YADE main 

program requires an update of the drag force vector from the fluid field every ntFoam 

mechanical step. In the FluidDragForceEngine developed here, the value of ntFoam is 

determined in a manner similar to PFC2D (Itasca Inc. 2004b). The FluidDragForceEngine acts as 

a wrapper of the OpenFOAM solver which collects the latest information about the fluid step and 

mechanical step and passes the particle information (velocities and diameters) to the IcoFoam 

fluid solver and then returns the updated drag force for each particle as shown in Figure 3.2. 

3.3.2.3 OpenFOAM Fluid Solver 

OpenFOAM provided extensible and flexible solvers for various kinds of applications. IcoFoam, 

the standard transient solver for incompressible laminar flow of Newtonian fluids, is modified as 

a dynamically linked library (Richard  and Rago  2005). The data flow chart of 

FluidDragForceEngine and the IcoFoam solver is as shown in Figure 3.2. 

3.4 Closure 

The basic equations of interaction terms between particle and fluid are presented in this section. 

The Finite Volume discretization for the averaged Navier-Stokes equation including the temporal 

and spatial terms with two solution algorithms: PISO and SIMPLE, are discussed and also serve 

as the theoretical basis for the software implementation. The framework of YADE and 

OpenFOAM coupling is also presented which can be used for verification problems from 

Chapter 6 to Chapter 8. 
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Appendix 3.A Solution of the averaged Navier-Stokes equation using SIMPLE and PISO 

algorithm 

The finite volume method (FVM) is a numerical method for representing and evaluating partial 

differential equations as algebraic equations. Similar to the finite difference method, values are 

calculated at discrete places on a meshed geometry. In contrast to the finite element method, 

which is an approximation to its solution, the finite difference method is an approximation to the 

differential equation. The calculation domain is divided into a number of non-overlapping cells 

such that there is one cell surrounding each grid point. The term “finite volume” (FV) or “control 

volume” (CV) refers to the small cell surrounding each grid point over a mesh. The FVM can 

solve problems with irregular geometries. Furthermore, one advantage of the finite volume 

method over the finite element method is that it can conserve the variables, e.g. the mass 

conservation, on a coarse mesh easily. This is an important characteristic for fluid problems. 

 

Notation of variables: 

n superscript for the new iteration 

o superscript for the old iteration 

ρ fluid density 

ρP fluid density at an arbitrary node P 

 unknown field variable for fluid 

P  unknown field variable for fluid at an arbitrary node P 

f
 unknown field variable for fluid at cell face f 

V volume for a fluid cell 

S outward-pointing surface vector for a fluid cell 

Sf face area vector for a fluid cell 

μ fluid viscosity 

μf fluid viscosity at cell face 

U fluid velocity 

Uf fluid velocity at cell face 

 

Most fluid dynamics codes (e.g. OpenFOAM (OpenCFD Ltd 2008)), Fluent (Fluent Inc. 2006) 

and StarCD (CD-adapco Group 2001)) use the Pressure-Implicit Split-Operator (PISO) or Semi-

Implicit Method for Pressure-Linked Equations (SIMPLE) algorithms to solve the equations for 

the fluid field. These methods follow the general idea proposed by Partankar (1980). These 

algorithms are iterative procedures for solving equations for velocity and pressure. In this study, 

the derivation of equations for SIMPLE and PISO will follow the procedure of Ferziger and 

Peric (2001), but using a similar notation as Jasak (1996). 

3.A.1 Discretization Procedure for the Navier-Stokes System 

Discretization of the solution domain produces a computational mesh on which the governing 

equations a subsequently solved. The L.H.S of Eqn. (3.2) can be discretized according to the 

discretization procedure from OpenFOAM programmer’s guide (OpenCFD Ltd 2008) as: 
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V V V

n o

P P P P

f f f f

f f

nUdV nUU dV U dV
t

n U V n U V
FU S U

t

  (3.A.1) 

The face values with the subscript f are calculated from the cell values on each side of the face, 

i.e. the node values UP, and therefore Eqn. (3.A.1) produces a linear algebra equation of the 

unknown (new) value of U
n
 if the pressure gradient term is not included in the source term of the 

R.H.S of Eqn. (3.2): 
n

P P N N SN
A U a U a U f n p   (3.A.2) 

where A=aP +aN is the discretized momentum coefficient, which is a sparse tri-diagonal matrix, 

aP is the diagonal of the matrix A, P is the index of an arbitrary node, and aN denotes the 

neighbor coefficients of P that appear in the discretized momentum equation. The source term fS, 

contains all of the terms that can be explicitly computed in terms of the velocity in the previous 

(old) iteration U
o
, in our case, the interaction force from particle to fluid fP (U

o
) from Eqn. (3.9). 

3.A.2 Pressure-Velocity coupling 

The iterations within one time step, in which the coefficients and source matrix are updated, are 

called outer iterations to distinguish them from the inner iterations performed on linear systems 

with fixed coefficients. SIMPLE and PISO are both implicit pressure-correction methods, they 

use a pressure (or pressure-correction) equation to enforce mass conservation at each time step or, 

in steady state problem, each outer iteration. 

Due to non-linearity and coupling of the underlying differential equations, Eqn. (3.A.2) cannot 

be solved directly as the coefficient matrix A might depend on the unknown next-step solution 

U
n
, iterative approach has to be applied. For time-dependent transient flow, iteration must be 

continued within each time step until the entire system of non-linear equations is satisfied to 

within a narrow tolerance. For a steady-state flow, the tolerance can be much more generous. 

If we solve Eqn. (3.A.2) using the last known pressure p
o
, we obtain a tentative velocity field U

*
, 

back substitute into Eqn. (3.A.2), we have: 

The velocity at node P, obtained by rearranging Eqn. (3.A.3), can be expressed as: 

Denote: 

Since the pressure used in these iterations was obtained from the previous outer iteration or time 

step, the velocities U
*
 in Eqn. (3.A.3) do not normally satisfy the discretized continuity equation. 

* * o

P P N N SN
a U a U f n p   (3.A.3) 

*

*
o

N N SN
P

P P

a U f n p
U

a a
  (3.A.4) 

* *( ) N N S

N

H U a U f   (3.A.5) 
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To enforce the continuity equation, the velocities need to be corrected, which requires the 

correction of the pressure field. 

3.A.2.1 Derivation of SIMPLE algorithm 

Assume Eqn. (3.A.2) contains the final solution of velocities U
n
 and pressure p

n
 which satisfy 

both the momentum Eqn. (3.2) and continuity Eqn. (3.1), the correction values for velocity and 

pressure can be obtained via Eqn. (3.A.2) Eqn. (3.A.3): 

where: 

From Eqn. (3.A.6) and Eqn. (3.A.7), we obtain the relation between the velocity and pressure 

equations: 

in order to satisfy the continuity Eqn. (3.1). Substitute Eqn. (3.A.7) to Eqn. (3.1) using Eqn. 

(3.A.8), the corrected velocities and pressure are linked by: 

Note that the velocity corrections containing U’N in the R.H.S of Eqn. (3.A.8) and Eqn. (3.A.9) 

are unknown at this point, so it is commonly neglected. In other words, it is effectively assumed 

that the whole velocity error comes from the error in the pressure term (Jasak 1996), and 

therefore the following pressure correction equation is obtained: 

' ' 'P P N N

N

a U a U n p   (3.A.6) 

*' nU U U   

(3.A.7) 

(a) 

' op p p   (b) 

' '
'

N NN

P P

a U n p
U

a a
  (3.A.8) 

*

*

*

0

'

' '

'

P P

n o o
N NN

P P P P

n o n
N NN

P P P

n
nU

t

n
n U U

t

H U a Un n n p n p
n n

t a a a a

H U a Un n n p
n n

t a a a

  (3.A.9) 

*2 * n o

P P

H Un p n n
n

a a t
  (3.A.10) 
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Note that in the L.H.S of Eqn. (3.A.10), the notation p
*
 is used as p

*
=p

o
+p’ to distinguish it from 

the final pressure value p
n
 due to omission of the U’N term in Eqn. (3.A.9). The velocity 

correction U’ is calculated from Eqn. (3.A.8), but without the first U’N term at the R.H.S: 

The velocity for the new iteration, or the second corrector step U
** 

can be obtained from Eqn. 

(3.A.4) and Eqn. (3.A.11): 

Up till now we have obtained the solution of U
**

 and p
*
 for one (the first) corrector step, this is 

known as the SIMPLE algorithm (Patankar 1980). 

For the SIMPLE algorithm, the pressure correction equation Eqn. (3.A.10), however, is subjected 

to divergence unless some under-relaxation is used (Patankar 1980). A general successful 

procedure is to: 

1. Relax U
*
 using an under-relaxation factor αU while solving the momentum equation Eqn. 

(3.A.3); 

2. Relax p’ while obtaining the corrected pressure field p
*
, in other words, instead of directly 

using Eqn. (3.A.7)(b), we add only a portion of p’: 

The recommended values of under-relaxation factors are (Jasak 1996): 

 αP=0.8 for Eqn. (3.A.13); 

 αU=0.2 for solving the momentum equation Eqn. (3.A.3). 

3.A.2.2 Derivation of PISO algorithm 

Instead of using under-relaxation factors, we start from Eqn. (3.A.12). Similar to the first 

corrector step in the SIMPLE algorithm, if we artificially substitute U
**

 and p
*
 into Eqn. (3.A.2), 

we then begin the second corrector step from the discretized momentum equation: 

Rearranging Eqn. (3.A.14) gives: 

Denote: 

Eqn. (3.A.2) minus Eqn. (3.A.14) yields: 

'
'

P

n p
U

a
  (3.A.11) 

* *
** * 'P P

P P

H U n p
U U U

a a
  (3.A.12) 

* 'o

pp p p   (3.A.13) 

** ** *

P P N N S

N

a U a U f n p   (3.A.14) 

** *
** N N SN
P

P P

a U f n p
U

a a
  (3.A.15) 

** **( ) N N S

N

H U a U f   (3.A.16) 
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A similar definition as Eqn. (3.A.7) is made as the second correction field of velocities U” and 

pressure p”: 

And we obtain the second relation between velocities and pressure: 

The continuity equation Eqn. (3.1) is applied the same way as the first corrector step: 

Again the U”N term is neglected in Eqn. (3.A.19) and (3.A.20), which yields the second pressure 

correction equation: 

After solving Eqn. (3.A.21) for the second corrected pressure p
**

 = p
*
 + p”, the second velocity 

correction U”P can be calculated using Eqn. (3.A.19) without the first term containing U”N: 

The second corrected velocity field U
***

 can be obtained from Eqn. (3.A.15) and Eqn. (3.A.22): 

'' '' ''P P N N

N

a U a U n p   (3.A.17) 

**'' nU U U   

(3.A.18) 

'' 'np p p   

'' ''
''

N NN
P

P P

a U n p
U

a a
  (3.A.19) 

**

** *

**

0

''

'' ''

''

P P

n o
N NN

P P P P

n o n
N NN

P P P

n
nU

t

n
n U U

t

H U a Un n n p n p
n n

t a a a a

H U a Un n n p
n n

t a a a

  (3.A.20) 

**2 ** n o

P P

H Un p n n
n

a a t
  (3.A.21) 

''
''

P

n p
U

a
  (3.A.22) 

** **
*** ** ''P P

P P

H U n p
U U U

a a
 (3.A.23) 
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Although further corrector steps can be performed in the same way, this is seldom done. The 

coefficients aN in the “H()” operator of the coefficient matrix A in Eqn (3.A.5) and (3.A.16) can 

be reused. This procedure is an iterative method for solving Eqn. (3.A.2) with the last pressure 

term explicitly treated. It is known as the PISO algorithm (Issa, 1986). In addition, Eqn. (3.A.10) 

and Eqn. (3.A.21) indicate that the porosity of each finite volume can be considered as a constant 

(actually can be included in the source term fS in Eqn. (3.A.2) within each outer iteration. 



 

42 

4 Simulation of Graded Rock Fill for Sinkhole Repair in Particle 

Flow Model 

4.1 Introduction 

4.1.1 Problem statement 
Shallow sinkholes have been successfully repaired or stabilized by placement of graded rock fill 

over the exposed sinkhole. Typically, the sinkhole is excavated and large diameter (0.25 to 0.5 m) 

shot rock aggregate is dumped down the excavated throat of the sinkhole. Through bridging, the 

throat is stabilized, and subsequent layers of finer material are placed to create a graded rock fill. 

This fill provides stability, while still permitting the flow of surface water into the cavity below. 

In practice, the choice of aggregate size is strictly made based on experience. To investigate the 

relative particle size to throat radius necessary for stability, the distinct element method, as 

implemented in the PFC2D code (Itasca Inc. 2004a), is used to simulate the construction of the 

graded rock fill. During the filling procedure, the interaction of the rock fill and surrounding 

material is simulated by interacting disks. 

4.1.2 Particle properties in the Discrete Element Method 
The original application of Discrete Element Method (DEM), which was proposed by Cundall 

(1979), is a tool to investigate the behavior of granular material. The general DEM model 

simulates the mechanical behavior of a system comprised of a collection of arbitrarily-shaped 

particles, which means the particle shape can be any form such as polygonal, or circular. Here 

the term “particle” denotes a body that occupies a finite amount of space. The model is 

composed of discrete particles that displace independently from one another, and interact only at 

contacts or interfaces between the particles. 

The 2-D particle flow model, implemented in PFC2D (Itasca Inc. 2004a), treats the 3-D rock 

particles as disks and incorporates the following main assumptions: 

1. The particles are treated as rigid bodies; 

2. The particle contacts occur over a vanishingly small area (i.e., at a point). 

3. Behavior at the contacts uses a soft-contact approach, wherein the rigid particles are allowed 

slightly to overlap one another at contact points. The magnitude of the overlap is related to the 

contact force via a force-displacement law, and all overlaps are small in relation to particle sizes. 

A representation of the 2-D particle contact is shown in Figure 4.1. 

Coulombian friction

Normal contact force

Shear contact force

 
Figure 4.1 Schematic representation of Cundall’s (1979) contact model for normal and 

shear forces between particles 
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4.1.3 Description of the sinkhole model 
The geometry of the sinkhole throat and the surrounding overburden soil is assumed to be similar 

to a system of balls in a hopper (Figure 4.2).  The residual soil surrounding the sinkhole is 

assumed to be at a slope of 1:1, and is assumed to be stiff for simplicity (analogous to the hopper 

with fixed right and left walls), which means zero displacement across this boundary. While the 

friction between the rock and sloping soil (ball-wall contact) could be assigned a value different 

than that between particles, for simplicity they were assigned to be equal in this parametric study. 

A temporary wall or horizontal support is placed across the middle of the hopper to collect the 

particles; the wall is then removed to allow particles to fall, simulating the dumping of the rock 

fill. The rock fill particles are assumed to have a minimum and maximum radius rmin and rmax, 

respectively. The stability of the rock fill is then investigated for a range of particle radii and 

sinkhole throat radii, R, which was assumed to have values of 0.15, 0.5 and 1.0 m. The particle 

radius used in the simulation has a Gaussian distribution with mean value rmean= ½(rmin+ rmax), 

standard deviation rmax- rmin. Typical properties of the particles are shown in Table 4.1. 

The analysis involves the following sequence containing two major steps: 

Step 1: The assembly of particles are first randomly generated within the upper part of the 

hopper and subjected to gravity; the whole system of particles is cycled to a stable state. This 

state is as shown in Figure 4.3. 

Step 2: The base wall is then removed to simulate the dumping of the rock fill, and the particles 

begin flowing downward by the action of gravity. If the mechanical properties of the particles 

and the radius of the particles and sinkhole throat are such that an arch is successfully formed as 

shown in Figure 4.4, the whole system will come to a stable state; otherwise the particles will 

continuously flow into the sinkhole throat (out of the hopper) as shown in Figure 4.5. 

R

Half 

hopper 

height

Bottom hopper 

width

r

Upper hopper width

1

1

A B

CD

FE Middle wall

Particle 

assembly

Hopper 

height

Rock

Residual 

Soil

Residual 

Soil

Rock throat

 
(a) (Drumm, 1990)               (b) 

Figure 4.2 Schematic of the sinkhole (a) and idealized hopper model (b) 

Table 4.1 Physical properties of the particles in the assembly 

Ball Properties Value Unit 

rmin    0.03 to 0.50 m 

rmax/ rmin 1.1  

2-D porosity 0.16  

Bottom hopper width/radius 1.0/0.5 m 

Density 2000 kg/m
3
 

Friction coefficient 
ball-ball 1.0  

ball-wall 1.0  
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Figure 4.3 Particles holding at the upper part of the hopper, ready to dump. Heavy lines 

indicate the inter-particle forces, with the line width proportional to the force magnitude 
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Figure 4.4 Successfully created arch within the hopper, stable state 
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Figure 4.5 Unsuccessful arch formation 
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(a) rmin/R=0.380, unstable   (b) rmin/R=0.404, stable 
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  (c) rmin/R=0.412, unstable   (d) rmin/R=0.426, unstable 
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(e) rmin/R=0.448, stable    (f) rmin/R=0.478, stable  
Figure 4.6 Final state of hopper with increasing minimum particle radius and throat radius 

R = 1.0m 
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4.2 Discussion of results 
4.2.1 Relationship between normalized particle radius and stable arch formation 
For a given sinkhole throat radius, R, the stability was investigated for a range of rmin from 0.03m 

to 0.50m, with an increment of 0.01m. Several final states are shown in Figure 4.6(a)-(f), for R = 

1.0m. 

Results for R = 1 and a range of rmin values are presented in Figure 4.7, which is typical of the 

analyses at other values of R. As expected, the smaller rmin values are unstable as arching cannot 

develop, while with larger particle radii arching always develops.  It is observed that there is an 

intermediate range of rmin from about 0.4 to 0.5 m which may be either stable or unstable.  
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(a) Complete results for R=1.0m, data points with stable = 0 indicate failure state and data points 

with stable = 1 indicates stable state for minimum particle radius<0.5m 
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(b) Magnified results for outcome of stable state for minimum particle radius between 0.4 and 

0.5m (quasi-stable state) 

Figure 4.7 Analysis results for outcome of stable state 

4.2.2 Probability of stability and critical particle radius 
The results from Figure 4.6 and Figure 4.7 indicate that simply increasing the particle radius 

(relative to throat radius) does not provide a stepwise jump from unstable to stable, or that there 

exists a range of particle radii that may be stable or unstable, depending upon how the particles 

arrange or are dumped. A brief explanation is shown in Figure 4.8 , where the same three 

particles are shown to form both a stable state and an unstable state, depending on their initial 

random positions. 

Increasing the relative particle radius may increase the probability of stability, but does not 

assure stability, suggesting that the analysis of stability should be treated on a statistical basis. A 

logistic regression (Kutner et al. 2004) was performed on the data provided in Figure 4.7, where 

π is defined as the probability of stability with respect to rmin /R, and the natural logarithm of the 

odds (which is referred to as logit) becomes: 

 
                                              (a) Stable state               (b) Unstable state 

Figure 4.8 Stable and unstable particle arrangements for the same rmin /R 

 

 

1
logitlog e   (4.1) 



 

47 

Probablity of forming a stable arch

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

r/R

P
ro

b
a
b

lit
y
 o

f 
s
ta

b
le

R=0.15m

R=0.5m

R=1.0m

 
Figure 4.9 Regression curve for probability of stability 

Table 4.2 Median for rmin/R ratios 

R (m) Median (rmin/R) 

0.15 0.374 

0.5 0.428 

1.0 0.429 

 

The resulting regression curve (Figure 4.9) shows the transition from unstable (probability = 0) 

to stable (probability = 1) as the normalized particle radius rmin /R increases. Results for three 

different throat radii (R = 0.15m, 0.5m, 1.0m) are shown for comparison. The medians (50% 

percentile) for each curve are as shown in Table 2. 

For probability = 0.5, the corresponding rmin/R ratio for R = 0.15m is 0.374, for R=0.5m is 0.428, 

for R=1.0m is 0.429, which means for a given bottom hopper width of R=0.15m, 0.5m and 1.0m, 

it is more likely to reach a final stable state when the rmin/R ratio is greater than 0.374, 0.428 and 

0.429, holding other parameters constant. 

 

4.3 Closure 
Based on the analysis above, the discrete element method may be a reasonable method to 

investigate the stability of graded rock fills for sinkhole repair. Several simplifying assumptions 

were made, and the relationship between the macro properties of the granular assembly and the 

micro properties of the particles should be examined. It is suggested that logistic regression 

analysis may be an appropriate method to describe the probability that a given size rock will 

produce a stable graded rock fill for an anticipated sinkhole throat. 
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5 3D DEM analysis of Graded Rock Fill Sinkhole Repair: Particle 

Size Effects on the Probability of Stability 
 

5.1 Introduction 
5.1.1 Problem statement 
Shallow sinkholes have been successfully repaired or stabilized by placement of graded rock fill 

over the exposed sinkhole. Typically, the sinkhole is excavated and large diameter (0.25 to 0.5 m) 

shot rock aggregate is dumped down the excavated throat of the sinkhole (Kemmerly 1984; 

Moore 1981, 2006; Sowers 1996). Through bridging, the throat is stabilized, and subsequent 

layers of finer material are placed to create a graded rock fill. This fill provides stability, while 

still permitting the flow of surface water into the cavity below. In practice, the choice of 

aggregate size is strictly made based on experience, and Sowers (Sowers 1996) recommends that 

the diameter of the particles in the rock fill be greater than approximately 0.5 the throat width.   

In many respects, the rock placement is to be similar to the classic problem of granular material 

flowing through a hopper or funnel. Particles above a given size will always bridge the throat, 

even if smaller than the throat diameter, while particles below a given size will never bridge or 

arch the throat. However, there is an intermediate range of particles for which stability or 

clogging depends on the order, timing, and how the particles arrange during the filling procedure. 

This intermediate range, termed the semi-stable state here, is investigated in this paper using 3D 

discrete element method (DEM) as formulated in the open source code YADE (Kozicki and 

Donzé 2008). 

A preliminary study of the stability of a graded rock fill using the DEM was described by Chen 

et al. (Chen et al. 2006). A series of 2 dimensional DEM simulations for a range of particle 

diameters demonstrated that a small (relative to the throat diameter) mean particle diameter value 

will lead to an unstable state, while a large particle diameter will always develop a stable arch, 

and investigated the intermediate range of particle diameter which can be either stable or 

unstable depending on the initial random position and diameter of the particles. This paper 

further develops the approach in 3-dimensions, and has two goals:  

      a) Describe the three-dimensional modeling of the placement of shot rock using the Discrete 

Element Method, where it is demonstrated that for a given throat radius, there exists an 

intermediate range of particles sizes for which stability depends upon how the particles arrange 

during the filling procedure, and 

     b) Present a statistical description of this intermediate range of particle sizes for which the 

throat is semi-stable, using logistic regression to describe the gradual transition from the unstable 

to stable behavior. This provides a rational method to determine the mean particle size (relative 

to throat diameter) for a given probability that the repair will be stable.  

It is convenient to discuss the stability in terms of a mean diameter ratio, Dr, mean, where  

throat

m
meanr

d

d
D ,

 

Where       dm = the mean size (diameter) of the shot rock particles 

                  dthroat = the diameter of the sinkhole or funnel throat 

Thus, the empirical practice of using rock fill with a mean particle size greater than about 0.5 the 

sinkhole throat width would correspond to a Dr,mean > 0.5.   
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5.1.2 Basic assumptions in the Discrete Element Method (DEM) 
The Discrete Element Method is a numerical method for computing the motion of a large 

number of particles such as granular material, where the term “particle” denotes a body that 

occupies a finite amount of space. Although the DEM particle can be of various shapes, e.g. 

polyhedral or spherical, in this study, the rock pieces are assumed to be spherical. The DEM was 

originally proposed by Cundall and Strack (1979), and makes the following assumptions:  

(1) All particles are rigid, but inter-particle deformation is approximated by overlapping between 

particles using a simple force displacement law.  

(2) All overlaps occur in a vanishingly small space in relation to particle sizes. 

(3) Single rigid particle motion is predicted by Newton’s second law of motion.  

A representation of the 2-D particle contact is shown in Figure 5.1. 

 

5.1.3 Description of the sinkhole model 
The geometry of the sinkhole throat and the surrounding overburden soil is shown schematically 

in Figure 5.2.  
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Coulombian friction

Normal contact force

Shear contact force

 
Figure 5.1 Schematic representation of the DEM contact model for normal and shear 

forces between particles, after (Cundall and Strack 1979) 
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Residual 
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Rock throat

 

 
Figure 5.2 Schematic of the sinkhole (Drumm et al. 1990) 
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(a) 30

o
 funnel 

 
(b) 45

o
 funnel 

 
(c) 60

o
 funnel 

Figure 5.3 3D funnel with (a) 30
o
, (b) 45

o
 and (c) 70

o
 to the horizontal plane 

Conceptually, the problem is similar to a system of spheres in a funnel. The shape of the funnel 

is approximated by a series of 8 plates (Figure 5.3), and different funnel angles characterized by 

plates at inclined angles of 30
o
, 45

o
 and 70

o
 with respect to the horizontal. For simplicity, the 

friction between surrounding soil and the rock fill is assumed to be equal, although in the real 

case they are rarely the same value. A dumping bin composed of four vertical walls and an 

inclined plate is placed beside the funnel to simulate the unloading of the rock fill from a dump 

truck (Figure 5.4), 
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Figure 5.4 Schematic of 3D DEM simulation of the particles through a funnel 

and the plate is inclined 30
o
. The random diameter particles are randomly placed inside the bin 

without overlap.  

During the simulation, the particles are specified using the mean diameter dm and the ratio of 

maximum diameter to minimum diameter r. Each particle diameter is then randomly generated 

within the maximum and minimum diameter range of dm/(r+1), dm∙r/(r+1). Typical physical and 

geometrical properties for the rock fill are listed in Table 5.1.  
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Table 5.1 Geometrical and Physical Properties of the Particles in the Assembly 

Sphere Properties Value Unit 

Mean diameter    0.2-0.5 m 

Max diameter/Min diameter Ratio 1.5  

Bottom funnel width/radius (hole Size) 1.0/0.5 m 

Density 2650 kg/m
3
 

Friction Angle 
ball-ball 35  

ball-wall 35  

 
 

All analyses were conducted with a throat diameter dthroat= 1.0, such that the diameter ratio, 

Dr,mean  and the mean particle diameter, dm have the same value. 

 

5.2 Simulation procedure 
The simulation included major steps as listed below: 

Step 1: Particle size is specified, and particles are randomly generated and placed inside the 

dumping bin. 

Step 2: The dumping bin is opened and the particles are allowed to fall under gravity into the 

sinkhole.  

Step 3: The stable/unstable condition is recorded. 

The simulation process was then repeated for a different mean particle diameter and random 

particle packing. Depending on the particle size, either a stable state is observed such that the 

particles can successfully form an arch, or an unstable state is observed such that the particles 

will continuously flow into the funnel throat without forming a stable arch. Examples of both the 

stable and unstable states for the 45
o
 funnel are as shown in Figure 5.5.  

 
(a) Unstable state (small mean particle size relative to throat diameter) 
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(b) Stable state (large mean particle size relative to throat diameter) 

Figure 5.5 Examples of Unstable and Stable state 

 

5.3 Discussion of results 
5.3.1 Statistical definition of semi-stable state 
Chen et al, (2006), observed in the 2D simulations that there is an intermediate range of dm, 

within which the dumping of the particles can either be stable or unstable due to their initial 

random position and packing, i.e. there exists an intermediate range of particle diameters, 

relative to the throat diameter, for which arching may or may not develop, depending on the 

random nature of the particle sizes and position in the backfill. Simply increasing the particle 

mean diameter (relative to throat radius) does not provide a stepwise jump from unstable to 

stable, depending upon how the particles arrange or are dumped. A brief explanation in 2D is 

shown in Figure 5.6, where the same three particles are shown to form both a stable state and an 

unstable state, depending on their initial random positions. Such phenomena dictate that the 

prediction of the final stable/unstable state must be based on a statistical analysis, i.e. the 

outcome of the state should be described using a probability function. In structural engineering, a 

5-percentile value is often used for the acceptance of material properties (Zureick et al. 2006), 

which would correspond for a 95-percentile value for stable sinkhole repair. The mean particle 

diameter for a 95% probability of stability is investigated here. 

 
 

  
                                             (a) Stable state  (b) Unstable state 

Figure 5.6 Random stable and unstable particle arrangements for the same radius 
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5.3.2 Determine the semi-stable mean diameter using binary search method 
Chen et al. (2006) performed a similar stability analysis in 2D, and used a constant value step of 

mean diameter Δdm for the next calculation. Such step-by-step or “brute force” method is a time 

consuming approach to investigate the semi-stable range. In this paper, a binary search method 

(Knuth 1997) is applied during the process listed as follows: 

Find a mean diameter value which can guarantee absolute stability, dm1, and a value which is 

absolute unstable, dm2; 

(1)Start with the average of dmi=(dm1+dm2)/2, if dmi value leads to unstable condition, then 

dm1=dmi, if dmi value leads to stable, then dm2=dmi; 

(2)Repeat Step (2) until the search approximately (see criterion below) where dmi value cannot 

guarantee either stable or unstable. 

The criterion for determining statistically stable/unstable: 

For a calculated mean diameter dmi, run the simulation with different random position/diameter N 

(e.g. 6) times, if most simulations (e.g. 5 out of 6) are stable, then the dmi value is considered 

stable, if most simulations (e.g. 5 out of 6) are unstable, then the dmi is considered unstable. 

When around half of the simulations are either stable or unstable, it is indicating dmi is entering 

the semi-stable range. 

The above binary search method greatly speeds up the search approach. As shown in Table 5.2,  

it only takes 7 trials of dmi to find the semi-stable dm value around 0.41. The results in Table 5.2 

also demonstrate how the random nature of the particle assembly and filling process produces 

both stable and unstable configurations for the same value of dm. 

5.3.3 Regression analysis of the probability of the critical particle diameter 
A logistic regression (Kutner et al. 2004) was performed based on the data obtained using the 

binary search as described in Section 8.1 using JMP (SAS Institute Inc. 2006), where π is defined 

as the probability of stability with respect to dm, and the natural logarithm of the odds (which is 

referred to as logit) becomes: 

1
lnlogit  

The resulting regression curves in Figure 5.7 

 

Table 5.2 Example of running cases for stable/unstable for funnel inclined angle 70
o
 

(Stable=1, Unstable =0, each diameter value dmi with 6 runs) 

Trial 
Mean Diameter 

(dmi) 

Run No. 

1 2 3 4 5 6 

1 0.2 0 0 0 0 0 0 

2 0.5 1 1 1 1 1 1 

3 0.35 0 0 0 0 0 0 

4 0.425 1 1 0 0 1 0 

5 0.4625 1 1 1 1 1 1 

6 0.44375 1 0 1 0 1 1 

7 0.453125 1 1 1 0 0 1 
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Figure 5.7 Logistic regression plot for simulation results from various funnel inclined 

angles (a) 30
o
 (b) 45

o
 (c) 70

o
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Figure 5.8 Comparisons of the stable probability curve for three funnel angles 
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show the transition from unstable to stable as the mean particle diameter increases, for funnel 

angles of 30
o
, 45

o
 and 70

o
. The smooth curve is the predicted probability from the logistic 

regression, while the circle symbols   are the probability of stability from the simulation for a 

given mean radius, e. g, From Table 5.2 for dmi=0.44375, there are 4 success runs and 2 failure 

runs for the mean diameter 0.44375, thus the probability for stability is then 4/6=0.667. This 

regression suggests that for a 95% probability of a stable sinkhole repair, the mean particle 

diameter should be 0.468 for the 30
o
 funnel, 0.461 for the 45

o
 funnel and 0.475 for the 70

o
 funnel. 

The mean diameter ratios for the 3 funnel angle are compared in Figure 5.8. 

While additional runs could be performed to better determine the mean diameter as a function of 

the funnel angle, from a practical perspective the stability can be assumed to be independent of 

funnel angle. It can be concluded from Figure 5.8 that to obtain a 95% probability of stable arch, 

the mean particle diameter or diameter ratio for the 3 funnel angles is about 0.47. This 

relationship supports the empirical recommendation by Sowers (Sowers 1996) of using a 

diameter ratio greater than 0.5. 

5.4 Closure 
A series of discrete element simulations of the idealized placement of graded rock fill for 

sinkhole repair were conducted, and the stability was investigated for a range of mean particle 

diameters relative to the sinkhole throat diameter. The rock particles were idealized as spheres, 

with a ratio of maximum diameter to minimum diameter of 1.5, with each simulation using a 

new random assembly of particles. It is shown that there is a large (relative to the throat diameter) 

mean particle diameter that, although smaller than the throat size, will clog the throat or produce 

a stable plug. There is a small mean particle diameter which will not lead the formation of a 

stable plug. The investigation focused on the intermediate range of mean particle diameters 

between these two values which can be either stable or unstable depending on the initial random 

position and particle diameters.  

Six simulations were performed at each mean particle size and the probability of producing a 

stable plug was determined. Three different funnel angles were investigated, and it was 

determined that the mean particle size for a 95% probability of stability was independent of 

funnel angle, and was about 0.47 times the sinkhole throat diameter, which compares favorably 

with the empirical value of 0.5.  

The discrete element method appears to be a reasonable method to investigate the sinkhole repair 

procedure. Since the transition in mean particle size from a stable to an unstable assembly of 

particles is a continuous smooth function rather than a step function, the logistic regression is 

demonstrated as an appropriate means to estimate the mean size such that a stable repair can be 

determined with a 95% probability.  
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6 Coupled Discrete Element and Finite Volume Solution of Two 

Classical Soil Mechanics Problems 
6.1 Introduction 
The seepage flow through an assembly of saturated particles over a range of velocities or 

hydraulic gradients leading to a quick condition is a classic problem with application in soil 

mechanics, powder technology, and liquid chromatography. The one dimensional time rate 

dissipation of pore water pressure in a saturated layer of soil is a classic problem in soil 

mechanics, with a well-known analytical solution. When using numerical methods for problems 

of practical interest, it is helpful to have verification problems such as these for the investigation 

of parameter and mesh sensitivity. This is especially true when using methods such as the 

discrete element method (DEM), where many of the input parameters may not be well related to 

physical constants.  

The discrete element method is an effective tool to simulate the behavior of granular soil 

particles while computational fluid dynamics provides a rational method to describe the fluid 

flow. Commercial codes are available for the analysis of coupled flow problems, however there 

are a number of advantages to open source software. In this paper, solutions are provided using a 

coupled pair of open source codes, YADE-OpenDEM for the discrete element method (Kozicki 

and Donzé 2008) and OpenFOAM for the computational fluid dynamics (OpenCFD Ltd 2008).  

6.2 Theoretical background 
In the solution of the coupled fluid flow and particle interaction, the fluid motion is treated on a 

macroscopic scale, while the particle motion is described on the microscopic scale, as suggested 

by Anderson and Jackson (T. B. Anderson and Jackson 1967). 

6.2.1 Equations of motion for the fluid - the averaged Navier-Stokes equation 
The fluid domain is divided into cells as is common in the finite volume method. The pressure 

and the fluid velocity are treated as the locally averaged quantity over the fluid cell. The equation 

of continuity is given as follows: 

0
n

nU
t

 (6.1) 

where n=porosity; U=fluid velocity; t=time. The momentum equation is given as follows:  

P

f

nU n
nUU U p Q f

t
 (6.2) 

where µ is the fluid viscosity, ρf is the density of fluid, fP is the interaction force on the fluid per 

unit mass from the particle, p is fluid pressure and Q is an artificial viscosity term which is 

investigated subsequently and discussed in Appendix 6.A. 

6.2.1.1 Interaction term acting on fluid field from the particle  

The interaction term representing the effect of a particle on the fluid, fP, for the averaged Navier-

Stokes equation (T. B. Anderson and Jackson 1967), is given by Ergun (1952): 

P P

f

f U U  (6.3) 



 

60 

where ŪP is the average particle velocity within a fluid cell, U is the fluid velocity and β is an 

empirical coefficient. For porosity n≤0.8,   

2

1
150 1 1.75Re

n
n

d n
 (6.4) 

while for n>0.8: 

2.7

2

13
Re

4
D

n
C n

d
 (6.5) 

where d is the particle diameter, and the Reynolds number Re is defined as: 

P fU U nd
Re  (6.6) 

and the drag coefficient CD is:  
0.86724 1 0.15Re Re  if Re 1000

0.43                             if Re>1000    
DC  (6.7) 

 

6.2.2 Equations of motion for the particles: 
For a particle in fluid, the equation of motion for a single particle is: 

G B D Cy f f f f m  (6.8) 

where ÿ =acceleration of the particle; fG =gravity force; fB =buoyancy force; fD =drag force; fC 

=contact force; and m=mass of the particle. The inter-particle contact force fC is obtained from 

the standard DEM approach as proposed by Cundall and Strack (1979). The drag force fD is the 

interaction force acting on the particle from the fluid defined below. 

6.2.2.1 Interaction drag force on the particle from the fluid 

The drag force fD is caused by the pressure gradient within the fluid cell and is obtained from the 

sum of the velocity difference between the particles and fluid, and may be written as:   

1
D P Pf U U p V

n
  (6.9) 

where VP is the volume of a single particle. 

6.3 Coupling between YADE (DEM) and OpenFOAM (FVM) codes 
Following the theory above, the particle phase is solved using the Discrete Element Method 

while the fluid phase is solved using the Finite Volume Method (FVM). The numerical solution 

was obtained by coupling two open source codes: the DEM code YADE (Kozicki and Donzé 

2008) and the FVM computational fluid dynamics code OpenFOAM (OpenCFD Ltd 2008). In 

order to couple YADE and OpenFOAM, a customized YADE routine FluidDragForceEngine 

was written to wrap and incorporate the OpenFOAM fluid solver into the YADE main program 

as depicted in Figure 6.1. 
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Figure 6.1 Framework of YADE and OpenFOAM coupling 
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Figure 6.2 Detailed relationship of YADE-OpenFOAM algorithm 
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Details of the data transfer algorithm are as shown in Figure 6.2. The IcoFoam solver from 

OpenFOAM solves the incompressible laminar Navier-Stokes equations using the PISO 

algorithm (Issa 1986). A routine to check the maximum particle contact forces is added inside 

the convergence estimator. When the contact forces between particles are zero, a quick condition 

is reached within the particle assembly. 

 

6.4 One dimensional fluid-particle model and two verification problems 
6.4.1 Material and geometric properties of the one dimensional model 
Two classical problems are investigated with the coupled DEM-FVM algorithm. Both problems 

are investigated using the same material properties and geometry, which is taken from the critical 

seepage flow problem investigated by Suzuki et al. (2007). The geometrical and physical particle 

properties are as listed in Table 6.1, and the boundary conditions are adjusted to investigate the 

two verification problems.  

According to Terzaghi’s one dimensional consolidation theory, the following assumptions are 

made: 

(1) The soil is homogeneous, isotropic and fully saturated; 

(2) The soil particles and the fluid are incompressible. 

(3) The fluid flow is one dimensional. 

Furthermore, it is assumed that the system can be represented by a series of equal radius 

spherical particles in a column of square cross section. A schematic of the one dimensional 

model configuration is as shown in Figure 6.3. Note that an extra fluid cell which does not 

contain particles is added at the top and bottom of the particle column to ensure continuity at the 

boundaries. 
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Figure 6.3 One dimensional particle column configuration, where Np = 100 = number of 

particles of radius r = 0.5 mm (a) elevation (b) cross section 
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Table 6.1 Physical and geometrical parameters for the 1D column. (Suzuki et al., 2007). 

Parameter Value Unit 

Solid (particle)   

Number, Np 100  

Radius, r 5.0×10
-4

 m 

Density, ρs 2650 kg/m
3
 

Contact stiffness, kn 100 N/m 

Fluid (Water at 20°C, 1atm)   

Density, ρw 1000 kg/m
3
 

Viscosity, μ 0.984×10
-3

 Pa-s 

1D column configuration   

Width 1.0×10
-3

 m 

Height 0.1 m 

Fluid cell size ∆z 2.0×10
-3

 m 

Gravity constant 9.80665 m/s
2
 

Before the boundary velocity conditions are applied, the column undergoes a settling procedure 

so that the hydrostatic state is reached. The initial conditions are established in 2 steps:  

(1) The 100 equal diameter particles are packed sequentially with no space or overlap in the 

vertical (or z) direction, with the water level above the topmost particle.  

(2) The particles then settle to the hydrostatic state under influence of gravity and buoyancy 

forces, i.e. the consolidation under gravity and buoyancy force is completed.  

The simulation will take the state after step (2) as the initial condition for the simulation. 

6.4.2 Analytical solution for the two verification problems 
Using the consolidation theory proposed by Terzaghi (1943), the one dimensional consolidation 

is expressed as:  
2

2v

p p
C

t y
 (6.10) 

where p=excess pore pressure and Cv=coefficient of consolidation which can be determined as 

described below. 

The key parameter to estimate the dissipation of pore pressure lies in the determination of Cv. It 

can be derived using Ergun’s empirical equation (Ergun 1952) in a packed column of height H: 
*

*2

3

11
150 1.75 w

n up n
u

H dn d
 (6.11) 

where u
*
 is the superficial velocity and ρw is the density of water which now replaces the fluid 

density ρf  in Eq. (6.2). 

The hydraulic gradient is: 
*

*2

3

11
150 1.75 w

w w

n uh p n
i u

H gH gdn d
 (6.12) 

The permeability kp can be obtained as:  
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(6.13) 

For the consolidation model, the final superficial velocity for the consolidation model is zero and 

Eq. (6.13) reduces to the Kozeny–Carman equation (Warren et al. 2005) Eq. (6.14):  
2 3

2
150 1

w
p

d n g
k

n
 (6.14) 

Using the particle and fluid parameters listed in Table 3, due to the slightly different porosity 

values in the two problems, the permeability coefficient kp is found to be 0.0248m/s for the 

consolidation model and 0.0224m/s for the upward seepage model (for u*=0.005m/s). The 

coefficient of consolidation is:   

p

v

w v

k
C

gm
 (6.15) 

Where mv is the coefficient of volume change: 

v
v

v

m  (6.16) 

The mv can be determined using the contact spring constant k during the settlement stage for 

gravity and buoyancy force, the vertical strain: 

0 0

1

2

G B

v

N N f f

H H k
 (6.17) 

where δ is the displacement of the topmost particle, N = the number of particles, and H0 is the 

initial length of the column prior  to the application of gravity and buoyant forces.  

The vertical stress: 

01
2

s w

H
n g  (6.18) 

where ρs is the density of the particles. The coefficient of volume change is then determined as 

1.01×10
-5

m
2
/N. The coefficient of consolidation is then 0.25 for the consolidation model and 

0.224 for the upward seepage model (u*=0.005m/s). 

6.4.3 Analytical solution for ground surface (topmost particle) movement 
It is convenient to define the non-dimensional time factor Tv as from Lambe and Whitman (1969): 

2

v
v

C t
T

H
 (6.19) 

The solution for Eq. (6.10) is then taken from literature as listed below: 

 (a) Upward seepage flow: 

The swelling from the ground surface (uplift of the topmost particle for the column assembly) is 

taken from Suzuki (2007): 
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 (b) Consolidation: 

The consolidation settlement due to the applied loading corresponds to the displacement of the 

top particle in the column. The analytical solution for consolidation ratio Uz is (Taylor 1948): 
2 2

2 2
1,3,5,...0

8 1
1 1 exp

4

ct t
z v

mc

S P m
U T

S P m
 (6.21) 

where: Uz is the consolidation ratio, Pt is the excess pore pressure at time t, P0 is the initial 

excess pore pressure, Sct is the surface settlement at time t, Sc is the final settlement. 

6.4.4 Initial and boundary conditions for the two verification problems 
(a) Upward seepage flow: 

For the upward seepage flow problem, the initial conditions for p: 

,0 0p z  (6.22) 

The boundary condition at the top of the column (z = 0) for arbitrary time t:  

0, 0p t , 
*

w

z H

p u

z k
 (6.23) 

 (b) Consolidation: 

For the consolidation problem, the initial conditions for p corresponding to single drainage from 

the top of the layer are: 

0,0p z P  (6.24) 

The boundary condition for arbitrary time t: 

0, 0p t , 0
z H

p

z
 (6.25) 

Solution for Eq. (6.10) can be obtained through a numerical approximation such as the Crank-

Nicolson method (J. Anderson 1995).  

6.5 Numerical Solutions to the Two Verification Problems 
6.5.1 Upward seepage flow problem 
Starting from the initial condition as shown in Figure 6.3, Suzuki et al. (2007) investigated three 

different values of the upward superficial velocity at the bottom of the column: u*=0.005m/s, 

0.01m/sec, and 0.018 m/s (the velocity leading to the quick condition). The displacement of the 

topmost particle for the three velocities and the excess pore water distribution are then 

determined and compared. Below the critical hydraulic gradient, the particle assembly will reach 

a convergent state or steady state. When the critical gradient is reached, although a solution for 

pressure or displacement can be obtained, the particle system will not reach a steady-state. 
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Figure 6.4 Excess pore water pressure distribution for input velocity of 0.005m/s 

6.5.1.1 Early stage excess pore water pressure distribution 

Figure 6.4 shows the excess pore water pressure distribution along the column for various times 

leading to the steady state pressure at t = 0.3 seconds. Both the analytical solution and the 

simulation are shown and are in close agreement. The simulation results were obtained with the 

addition of an artificial viscosity correction to the momentum equation, which is needed to 

stabilize the early stage pressure solution, as described in Appendix 6.A. 

6.5.1.2 Upward displacement of the uppermost particle 

The comparison between the analytical solution and the DEM solution with an input velocity of 

u*=0.005 m/s for times t=0.01s, 0.02s, 0.03s, 0.06s, 0.1s is shown in Figure 6.5. The DEM 

solutions agree well with the analytical solution. 
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Figure 6.5 Comparison of the analytical and DEM solutions for upward displacement 

versus time in the seepage flow problem, input velocity = 0.005 m/s 

6.5.1.3 Steady state displacement of the uppermost particle in the column 

The surface displacement of the top of the column, or uplift of the uppermost particle due to the 

upward flow, is taken as the change in displacement of the uppermost particle between the initial 

hydrostatic conditions and the steady state displacement. Table 6.2 compares the analytical and 

numerical results given by Suzuki et al. (2007), with the numerical results from the coupled open 

source YADE-OpenFOAM for the three levels of input velocity, 0.005m/s, 0.010m/s and 

0.018m/s (critical value). Also shown for comparison are the results from the commercial code 

PFC2D (Itasca Inc. 2004b). The computed excess pore pressures at the bottom of the column are 

also shown. It can be concluded that the three numerical solutions yield very similar results and 

all agree well with the analytical solutions. Note that the input velocity 0.018m/s is the critical 

value leading to a quick condition and therefore the analytical solution for the surface 

displacement is not valid and the DEM solution for bottom excess pore water pressure is just an 

approximation. 

Table 6.2 Comparison of surface displacement and bottom pressure for analytical and 

numerical solutions 

Inlet 

velocity 

(m/s) 

Surface displacement (10
-3

m) Bottom excess pore water pressure (Pa) 

Analytical 
YADE-

OpenFOAM 
PFC2D 

Suzuki et 

al. (2007) 
Analytical 

YADE-

OpenFOAM 
PFC2D 

Suzuki et 

al. (2007) 

0.005 0.1087 0.1070 0.1061 0.1050 217.0 213.2 210.3 212.2 

0.010 0.2381 0.2352 0.2336 0.2320 476.1 465.3 461.5 460.8 

0.018* 0.4870 2.8966 3.1779 3.5300 847.6 898.3 841.6 838.3 

* Critical velocity at which the system becomes quick, computed values may not be valid. 
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6.5.2 Consolidation problem 

6.5.2.1 Early stage excess pore water pressure distribution 

Starting from the same initial hydrostatic conditions as in the first problem, a surcharge load 

P0=200Pa is applied at the top of the column (Note the load is applied to the topmost particle 

with a downward force of F=P0×CrossSectionalArea=2×10
-4

N). The column settles under this 

surcharge load and the pore water pressure distributions are computed for various times. Figure 

6.6 compares the YADE-OpenFOAM and analytical (Eq. (10)) solutions for the excess pore 

water pressure distribution during the consolidation process. Results are shown for times of 

t=0.0055, 0.0155, 0.0255, 0.0355 seconds, which correspond to values of Tv and Uz as shown in 

Table 6.3. The computed results for t = 0.0055 seconds are very early in the solution process and 

are assumed to correspond to conditions at time Tv=0 in the classical solution. The coupled DEM 

solution reflects the general time rate dissipation of pore water pressure very well over the entire 

consolidation process.  

Table 6.3 Selected intermediate consolidation times and consolidation ratios 

Time (sec) Tv Uz 

0.0055 0 0 

0.0155 0.25 0.56 

0.0255 0.5 0.76 

0.0355 0.75 0.87 
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Figure 6.6 Comparison of DEM and analytical solutions for excess pore water pressure 

dissipation during consolidation for time of 0.0055, 0.0155, 0.0255, 0.0355 seconds, 

corresponding to Tv=0, 0.25, 0.5, 0.75, respectively. The excess pore water pressure 

normalized with respect to the initial pore water pressure, P0=200Pa 
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Figure 6.7 Development of excess pore pressure immediately after application of load 

In the classical solution, it is typically assumed that the pore pressure instantaneously increases 

throughout the layer to the value equal to the applied stress in the porous layer. Thus for the 

verification problem, the classical solution would suggest a uniform value of excess pore 

pressure equal to P0=200Pa at all points in the layer, as shown in Figure 6.6 by a normalized 

excess pore pressure equal to 1.0. While not of practical interest, the numerical simulation allows 

the prediction of the pore pressure buildup at very early times to be observed. Figure 6.7 shows 

the computed pore pressure  distributions at times of t=0.0005 seconds through 0.0055 seconds, 

where 0.0055 seconds is the earliest time for which results were shown in Figure 6 

(corresponding to Tv=0). The computed results at these early times show the nearly uniform build 

up of pore pressure at the internal portions of the layer, while the pore pressures remain zero at 

the upper edge consistent with the imposed boundary conditions.   

6.5.2.2 Consolidation settlement calculation 

The comparison between the analytical solution and the DEM solution for the settlement versus 

time is shown in Figure 6.8. The DEM solutions agree well with the analytical solution. Note 

that the DEM solution for “Time=0” seconds in Figure 6.8 corresponds to the Tv=0 in Figure 6.6 

and Figure 6.7, indicating that  there is some computed settlement that takes place during  the 

development of the initial excess pore pressure.  
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Figure 6.8 Comparison of consolidation time-settlement plot between analytical and DEM 

solution 

6.6 Parametric effects on the results 
Several parameters are significant to the transient behavior of the column during the early stages 

of the solution (prior to reaching the final steady state), including: 

(1) Viscous damping coefficient; 

(2) Number of DEM mechanical time step per FVM fluid time step; 

These are discussed below. 

6.6.1 Damping effects 
Damping does not affect the final steady state of the particle assembly. However, it can greatly 

affect the early transient behavior of the fluid-particle system prior to reaching the steady state. 

There are two basic types of damping considered in most DEM formulations (Itasca Inc. 2004a): 

local damping and viscous damping. Local damping is not relevant for the two problems 

investigated here since the particles are in motion under gravity and particle impact. Viscous 

damping is present whenever particles contact (with or without the presence of the fluid). The 

equation of motion for a vibrating system with a viscous dashpot can be expressed as (Tsuji et al. 

1993): 

" ' 0nmy y k y  (6.26) 

Where y, y’, y” are the displacement, velocity and acceleration of the particle, m=particle mass, 

η= viscous damping coefficient, kn = spring stiffness. From the theory of vibrations (Thomson 

1993), the critical damping coefficient is: 

2crit nk m  (6.27) 
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Figure 6.9 Effect of viscous damping coefficient γ on pressure curve for the consolidation 

problem, t = 0.0255s  

The viscous damping coefficient γ is the ratio of the system damping to the critical damping 

coefficient:  

crit  (6.28) 

While γ=1 indicates the critical damping, γ<1 indicates the system is under damped, and γ>1 

indicates the system is over damped.  

Figure 6.9 compares the pressure distribution along the column in the consolidation problem for 

three values of viscous damping coefficient γ for t=0.0255 (Tv=0.5) seconds.  From this graph, it 

can be concluded that a reasonable pressure curve is obtained provided that γ is greater than 1.0. 

Figure 6.10 compares the effect of viscous damping coefficient γ on the pressure curve for the 

upward seepage problem (t=0.01s, u*=0.005m/s). It is observed that γ=3.3 yields a more 

reasonable pressure profile than γ=1.0. To ensure good agreement with the classical solution, a 

large viscous damping coefficient is required. For both verification problems, a value of  γ= 3.3 

was used, which means the motion of the particles is non-periodic and will quickly reach its 

equilibrium state, which is probably appropriate in most geomechanical problems. A damping 

coefficient of γ=3.3 was chosen because that was the greatest damping that could be applied 

without the solution diverging. 
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Figure 6.10 Effect of viscous damping coefficient γ on pressure curve for the upward 

seepage problem, t=0.01s, u*=0.005m/s 

6.6.2 Effect of Number of DEM steps per Fluid step  
For each computational fluid step, there should be a certain number of mechanical time steps to 

ensure the solid phase is relatively “stable” with respect to the fluid phase. The number of time 

steps in the DEM solution relative to the number of time steps in the FVM solution process, is 

abbreviated as NDF.  The appropriate NDF value will be dependent upon characteristics of both 

the solid phase and the fluid phase.  

For the solid phase, the DEM method requires a time step no greater than the critical time step 

(Itasca 2004): 

_crit DEM

m
t

k
 (6.29) 

Any time step larger than the critical time step will quickly lead to numerical instability and the 

particles will “explode” (fly into space). 

For the fluid phase, the time step is restricted by the Courant number, Co:  

1
t U

Co
x

 (6.30) 

Therefore, the critical time step from FVM can be derived as:  

_crit FVM

x
t t

U
 (6.31) 
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Figure 6.11 Comparison of different NDF value of pressure profile for t=0.03s 

corresponding to Tv=0.75 for the upward seepage problem with input velocity of velocity of 

0.005m/s 

For most problems this will lead to a value of NDF ≥  1, which can also provide some 

computational efficiency. For the solutions presented above, a value of NDF = 1 was used. In 

general, small values of NDF (such as the value of NDF = 1 used here) produce oscillations in 

the computed pressure and require the use of the artificial viscosity term as discussed in 

Appendix 6.A. Large values of NDF (e.g. NDF =100 for the problems investigated here) reduces 

these pressure oscillations but tends towards a solution which may not be accurate. 

Figure 6.11 shows a comparison of the computed pressure profile using different NDF values for 

t=0.03s in the upward seepage problem with an input velocity of 0.005m/second. As NDF 

increases above 1, the solution is found to deviate from the result with NDF=1, which agrees 

well with the analytical solution. 

6.6.3 Discussion of different fluid properties 

In this section, the pore water pressure distribution and the particle displacements corresponding 

to the steady state are investigated for different fluid properties. Keeping other parameters 

constant, 12 different fluids (Table 6.4) with a wide range of viscosity are selected for simulation. 

The bottom inlet velocity is fixed at 0.005m/s, and the bottom pressure values and the top 

particle displacement with respect to the hydrostatic position are determined and compared in 

Table 6.5. Note that with the exception of sulfuric acid, which has a density of 1840kg/m
3
, the 

selected fluids all have similar density (ranging from 780-1100kg/m
3
) such that differences in the 

particle displacements and pressures are primarily due to the influence of fluid viscosity. 
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Table 6.4 Selected fluid properties in order of increasing viscosity (after (Lide 1992)). 

Type of fluid Density (kg/m
3
) Viscosity @25

o
C (Pa-s) 

acetone 790.0 0.306×10
−3

 

methanol 791.8 0.544×10
−3

 

benzene 878.6 0.604×10
−3

 

water 1000.0 0.894×10
−3

 

ethanol 789.0 1.074×10
−3

 

nitrobenzene 1199.0 1.863×10
−3

 

propanol 803.4 1.945×10
−3

 

blood* 1060.0 4.000×10
−3

 

ethylene glycol 1113.2 1.610×10
−2

 

sulfuric acid 1840.0 2.420×10
−2

 

cyclohexanol 968.0 4.107×10
−2

 

olive oil 920.0 8.100×10
−2

 

 

Table 6.5 Top particle displacement (m) and bottom pressure of different type of fluids (Pa) 

Type of fluid 

Top particle displacement (m) Bottom pressure (Pa) 

Analytical PFC2D 
YADE-

OpenFOAM 
Analytical  PFC2D 

YADE-

OpenFOAM 

acetone 3.8494×10
-5

 3.7241×10
-5

 3.8421×10
-5

 76.55 73.80 76.34 

methanol 6.1787×10
-5

 6.0021×10
-5

 6.1676×10
-5

 122.86 119.40 122.51 

benzene 6.8596×10
-5

 6.6189×10
-5

 6.8482×10
-5

 136.40 131.01 136.01 

water 1.0867×10
-4

 1.0609×10
-4

 1.0886×10
-4

 216.81 210.27 216.17 

ethanol 1.1358×10
-4

 1.0947×10
-4

 1.1339×10
-4

 225.87 216.61 225.10 

nitrobenzene 1.9519×10
-4

 1.8680×10
-4

 1.9494×10
-4

 388.13 368.20 386.93 

propanol 1.9891×10
-4

 1.9099×10
-4

 1.9859×10
-4

 395.55 377.18 393.95 

blood 4.0265×10
-4

 3.8406×10
-4

 4.0213×10
-4

 800.69 756.01 797.20 

ethylene glycol 1.5865×10
-3

 3.2198×10
-3

 4.0440×10
-3

 3154.73 778.41 805.67 

sulfuric acid 2.3864×10
-3

 3.8145×10
-3

 6.1443×10
-3

 4745.49 414.86 416.22 

cyclohexanol 4.0267×10
-3

 3.8396×10
-3

 4.8331×10
-3

 8007.13 871.98 890.08 

olive oil 7.9308×10
-3

 4.0244×10
-3

 5.0906×10
-3

 15770.65 915.43 916.57 
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(a) Comparison of top particle displacement Comparison of bottom pressure
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(b) Comparison of Bottom pressure. 

Figure 6.12 Comparison between analytical and numerical solutions (DEM) 



 

76 

As shown from the comparison in Figure 6.12, the numerical (DEM) solutions agree well with 

the analytical solutions provided the viscosity is less than about 4.0×10
-3

 Pa-s (from acetone to 

blood). Above this value, (corresponding to sulfuric acid, ethylene glycol, cyclohexanol and 

olive oil) the numerical solutions differ significantly from the analytical solution. Such behavior 

can be explained from Eqn. (6.32), where the drag forces increase with increasing viscosity, 

reducing the particle contact forces. When the contact forces fC approach zero, a quick condition 

results, and the equilibrium state from Eqs (6.8) yields: 

, or,  D B G D G Bf f f f f f  (6.32) 

Substituting Eqn. (6.9) (the drag force at steady state) into Eqn. (6.32) written per particle 

volume, we have: 
*

*2*

2 3

150 11.75
1 1.75150 1

 

f

f

G BD

P P

n uu nd
n un u

df ff

V V d n dn
 

(6.33) 

The above equation can be simplified into the following relationship: 
*2*

2 3 3

1.75150 1
 

f

s f

un u
g

d n dn
 (6.34) 

Eqn. (6.34) indicates that for the single column particle assembly, for a fixed apparent velocity 

u*, when the relationship between fluid density and viscosity satisfies Eqn. (6.34), i.e., the sum 

of fluid drag force and buoyancy force equal the particle gravity force, the particle contact forces 

are zero. Therefore, with the inlet velocity of 0.005m/s, and a fluid density around 1000kg/m
3
, 

when the viscosity exceeds about 0.001058 Pa-s, a quick condition exists. 

 

6.7 Closure 
A two phase flow system composed of fluid and solid particles was simulated using open source 

routines for the finite volume method and discrete element method. The two codes have been 

coupled and the solution process verified through the solution of simple one dimensional 

idealizations of the classical upward seepage flow and the time rate of consolidation problems.  It 

is shown that the coupled DEM solution can produce results very similar to the well known 

analytical solutions for both problems. The results for both problems were obtained without the 

assumption of Darcy’s law but are based on the basic Navier-Stokes equation for fluid phase and 

on the particle motion equation for the solid phase. 

In the case of the upward seepage flow problem, the numerical solution yields results for the 

transient pore water pressure distribution, and the displacement of the uppermost particle in the 

column, and the results were shown to agree well with those from the analytical solution and two 

other DEM solutions.   

For the consolidation problem, the solutions for pressure and particle displacement were 

provided with a range of consolidation times that are typically of interest in practice.  

The DEM was also shown to be able to simulate the development of the excess pore water 

pressure distribution at very early solution times, where the classical solution would assume a 

uniform pore pressure equal to the applied stress P0.  
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In addition to the solution of the two classical verification problems, two key issues in the 

numerical solution of coupled fluid/solid systems were discussed: the dependence on time step 

size for both the fluid and mechanical solution processes and the choice of viscous damping 

coefficients. The effects of these parameters on the solution was investigated, and while these 

effects are expected to be problem dependent, the paper provides some  insight into how 

sensitive the results may be to the choice of these parameters.   

With respect to time step size, it was shown that the number of time steps in the DEM solution 

relative to the number of time steps in the FVM solution process, termed NDF, can affect the 

solution. While smaller NDF leads to greater computational times, it provides better results. 

However, artificial viscosity may be required to reduce spurious oscillations which do not occur 

at larger values of NDF. 
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Appendix 6.A Artificial Viscosity and Upwind Interpolation 

When the central difference method is used for the time integration, the 1D upward seepage flow 

problem may develop a shock condition (Courant and Friedrichs 1948). This is exhibited by 

oscillation in the calculated pressure profiles due to the sudden change of the column 

density/porosity producing results as shown in Figure 6.14 (a). To correct this oscillation, the 

upwind scheme (Patankar 1980) and artificial diffusion (von Neumann and Richtmyer 1950)have 

both been used in the fluid solver to eliminate the oscillation.  

The upwind interpolation or upwind differencing (UD) scheme determines the face flux   from 

the direction of flow: 

, for 0

, for 0

P

f

N

F

F
 (6.35) 

where F=ρfU, and ,P N  are the face fluxes at the finite volume node P, N, f is the face flux at 

the finite volume surface f as shown in Figure 6.13. 

The upwind scheme alone cannot completely remove the pressure oscillation as shown in Figure 

6.14(b). In order to obtain a smooth pressure profile, the tensor artificial viscosity term Q is 

added to the momentum equation as in Eq. (6.10), where Q has a form similar to Stone and 

Norman (1992): 
2 1

3
    if  0

0                           otherwise

l U U U I U
Q  (6.36) 

where I is the unit tensor and l
2
 is a constant. The determination for l

2
 is through trial and error. 

For the particular 1D upward seepage problem in our study, l
2
 is found to be 0.0022.  

Typically, artificial viscosity is expressed in explicit form as in Eq (6.36). However, an implicit 

form of the artificial viscosity may be expressed (the in implicit form) as:  
2n Q c U U  (6.37) 

where the constant c is determined by trial and error. This implicit artificial viscosity may 

display better performance than the explicit form as shown in Figure 6.14(c). Figure 6.14(d) 

shows the comparison of pressure profile using c=0, c=0.04 and c=0.08. The results shown in 

Figure 6.5 and Figure 6.6 were both obtained using the implicit artificial viscosity with the form 

in Eq. (6.37), but the selection of artificial viscosity might be problem dependent and not be 

important in other problems.  

A parametric study of the effect of fluid viscosity solution was provided. A constant inlet 

velocity was applied for a range of fluid viscosities and the response compared. The boundary 

conditions were chosen such that the higher viscosity fluids reached a critical gradient or quick 

condition, at which point the results diverged from the analytical solution. For a given inlet 

velocity, a higher viscosity fluid will more likely lead to the quick condition due to the greater 

drag effect produced by the upward fluid, and  varying the viscosity is a convenient way to 

investigate the conditions leading to a quick condition. 
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Figure 6.13 Upwind differencing scheme (Partankar 1980) 
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(d) 

Figure 6.14 Results using the upwind scheme and artificial diffusion to reduce effects of 

shock on early stage pressure profile (t=0.01s for the upward seepage problem with 

u*=0.005m/s) (a) Central Difference scheme; (b) Upward scheme; (c) Comparison of 

implicit and explicit artificial viscosity; (d) Artificial viscosity constant c=0, c=0.04, c=0.08 
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7 Coupled Discrete Element and Finite Volume Solution for 2D 

Fluid Flow in Soil Mechanics 
 

7.1 2D seepage sheet pile problem description 

The classical sheet pile problem is investigated with the coupled DEM-CFD algorithm. The 

geometry of the sheet pile model is taken from Lambe and Whitman (1969) as depicted in Figure 

7.1. The seepage under the sheet pile wall, pore water pressure, and pressure gradient in the 

subsoil can be obtained from the well established approach based on the flow net. 

7.2 Analytical solution for the sheet pile model 
The flow net is a graphical solution to the Laplace equation describing the total head at any point 

in the flow domain. The solution for the quantity of flow under the sheet pile wall and the 

hydraulic gradient at any portion of the flow domain can be obtained directly from the flow net 

as described in Lambe and Whitman (1969). 

The seepage or quantity of flow under sheet pile wall is: 

f

p L

d

nQ
k h

L n
 (7.1) 

Where kp is the permeability coefficient, hL is the head loss, and nf/nd is the shape factor of the 

flow net. 

The exit gradient is: 

h
i

l
 (7.2) 

Where Δh is the total head loss across any pair of equipotential lines which is equal to H/nd and l 

is the distance between the equipotential lines in the region of interest.  

7.3 Coupled DEM-CFD sheet pile model 
7.3.1 Scaling law for the sheet pile model 
The computational time for a DEM solution can be significant for coupled flow problems with a 

large number of particles. Assuming the particle diameter d=1mm, the number of soil particles in 

the horizontal direction of the above model is Nx = 1 mm x 39 m and is Ny = 1 mm x 18 m in the 

vertical direction, or about Nx×Ny= 39000×18000=7.02×10
8 

total particles. The computation 

demands for this many particles can be significant for even a rather simple problem such as this. 

An alternative approach is to adopt a reduced scale model of the prototype shown in Figure 7.1 

so that the DEM model can contain an acceptable number of particles, yet preserve the desired 

permeability. The dimension for the reduced scale sheet pile model is 1/N=1/660 of the 

dimensions of the prototype as listed in Table 7.1.  
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Figure 7.1 Flow under sheet pile wall (Lambe and Whitman 1969) 

Table 7.1 Scaled dimensions for the sheet pile prototype in Figure 7.1 and the DEM/FVM 

model.  

Length(Figure 7.1) Prototype (ft) Prototype (m) Model (m) 

km 60 18.29 0.028 

mn 130 39.62 0.060 

be 30 9.14 0.014 

7.3.1.1 Equal vertical stress scaling 

From geotechnical centrifuge theory, the basic scaling law derives from the need to ensure stress 

similarity between the model and the prototype, i.e. the vertical stress σvm at an arbitrary depth 

for the model hm should be equal to the vertical stress σvp at the corresponding depth hp for the 

prototype. Therefore: 

'vm vp m pg h gh  (7.3) 

Where ρ is the soil density, g is the Earth’s gravity and g’ is the scaled gravity value, and 

therefore from Eq. (7.3) the scaled gravity should be N times the value in the prototype: 
'g Ng  (7.4) 

Darcy’s permeability constant is treated as a material parameter for both the model and prototype 

which implies: 

pm ppk k  (7.5) 
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Where kpm is the permeability of the model and kpp is the permeability of the prototype. In the 

DEM-CFD model, since the stresses are the same and the flow path are reduced N-fold from 

prototype to model, the pressure gradient should be scaled N-times from the prototype to model: 

m pi Ni  (7.6) 

Where im is the pressure gradient in the model and ip is the pressure gradient in the prototype. 

7.3.1.2 Equal pressure gradient scaling 

In contrast to the traditional geotechnical centrifuge model, since the fluid flow in the soils are 

pressure driven, and the flow behavior is mainly determined by pressure (hydraulic) gradient 

instead of vertical stress within the soil, we can also assume equal hydraulic gradient between the 

model and the prototype, the model and the prototype are composed of the same porous media, 

then:  

,pp pm p mk k p p  (7.7) 

Where pp is the pressure gradient in the prototype, and 
mp  is the pressure gradient in the 

model. The gravity value is kept the same for both model and prototype. 

7.3.2 Coupled DEM-CFD sheet pile model 
The coupled DEM-CFD model is created as shown in Figure 7.2; the model shows the initial 

state of particles and fluid cells, and each fluid cell contains around 23 particles. The sheet pile 

wall is placed between fluid cell 35, 29, 23 and 54, 60, 66, by creating two no-flow boundaries at 

be and eh. The soil and the fluid are considered incompressible, and it is also assumed that the 

soil can be represented by an assembly of particles. It can be regarded as a 2D plane strain 

problem with the thickness of the model taken as the diameter of the particle. The simulation 

results will be calculated both using equal pressure gradient scaling. The particles that are 

slightly above the ground surface at points k and l are simply remnants of the initial hydrostatic 

packing process and could have been artificially restrained if desired. 

7.3.3 Boundary condition for the sheet pile model 
The boundary conditions for the flow under the sheet pile wall corresponding to Figure 7.2 are as 

listed in Table 7.2. 
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Figure 7.2 Fluid mesh and initial particle packing for the 2-D sheet pile wall problem 

Table 7.2 Boundary conditions for the sheet pile model 

Pressure boundary:   

Zero Gradient km, mn, ml  

Fixed Value (Pa) kb: p=ρwgh hl: p=0 

Velocity boundary:   

Zero Gradient kb, hl  

Fixed Value (m/s) km, mn, ml: U=(0, 0)  

Table 7.3 Physical and geometrical parameters for the 2D problem.  

Parameter Value Unit 

Solid (particle)   

Number, Np 1800  

Radius, r 1.0×10
-3

 m 

Density, ρs 2650 kg/m
3
 

Contact stiffness, kn 800 N/m 

Friction angle 10, 20, 30 Degree 

Fluid (Water at 20°C, 1atm)   

Density, ρw 1000 kg/m
3
 

Viscosity, μ 1.004×10
-3

 Pa-s 

Sheet pile configuration   

Width 0.22 m 

Height 0.10 m 

Thickness  1.0×10
-3

 m 

Fluid cell size ∆x×∆y 2.0×2.0 (10
-3

m)
2
 

Gravity constant 9.81 m/s
2
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7.3.4 Determine material properties of the two dimensional model 

The basic physical and geometric properties of the sheet pile model are as listed in Table 7.3, the 

permeability coefficient are then derived from these basic parameters. 

The key parameter to estimate the flow under the sheet pile lies in the determination of the 

permeability coefficient. It can be roughly derived using Ergun’s empirical equation (Ergun 1952) 

in a packed column of height Hcol: 
*

*2

3

11
150 1.75 w

col

n up n
u

H dn d
 (7.8) 

where u
*
 is the superficial velocity and ρw is the density of water which now replaces the fluid 

density ρf  in Eq. (3.2). 

The hydraulic gradient is: 
*

*2

3

11
150 1.75 w

col w col w

n uh p n
i u

H gH gdn d
 (7.9) 

The permeability kp can be obtained as: 
* 2 3*

2* *
*2

3

1 150 1 1.75 11
150 1.75

w w
p

w
w

gu d n gu
k

i n u n d n un
u

dn d

 
(7.10) 

For the consolidation model, the final superficial velocity for the consolidation model is zero and 

Eq. (6.13) reduces to the Kozeny–Carman equation (Warren et al. 2005) Eq. (6.14): 
2 3

2
150 1

w
p

d n g
k

n
 (7.11) 

Using the particle and fluid parameters listed in Table 7.3, due to the slightly different porosity 

values in the two problems, the permeability coefficient kp is found to be 0.0159m/s for the 

consolidation model. 

7.4 Simulation procedure 
7.4.1 Initial hydrostatic state 
Before the boundary pressure conditions are applied, the particle assembly undergoes a settling 

procedure so that the hydrostatic state is approximately reached. The initial conditions are 

established in 2 steps:  

(1) The 1800 equal diameter particles are packed sequentially with no space or overlap with the 

water level above the topmost particle.  

(2) The particles then settle to the hydrostatic state under influence of gravity and buoyancy 

forces, i.e. the consolidation under gravity and buoyancy force is completed.  

The simulation will take the state after step (2) as the initial condition for the simulation. 

7.4.2 Applying the pressure gradient 
Starting from the initial hydrostatic state above, a fluid pressure is then applied to the top left line 

kb of the sheet pile model while the top right line hl is fixed at p=0 so a pressure gradient is 
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created within the saturated soil. The pressure gradient is increased up to that corresponding to a 

quick condition and the response of the model investigated over this range of pressure gradients.   

7.5 Numerical solutions for the sheet pile problem 
7.5.1 Equal pressure gradient scaling 
Starting from the initial condition as shown in Figure 7.2, the coupled DEM-CFD solution will 

be discussed for a range of pressure gradients up to the critical value corresponding to a quick 

condition.  

Transient and steady state pressure distribution for small pressure gradients 

Figure 7.3 shows the computed contours of pore water pressure (which correspond to the 

equipotential lines in the flow net) at different solution times for an applied pressure in the 

model 200mp Pa . This corresponds to an exit gradient ie=0.48 which is well below the critical 

value of ic=1.0. The computed pore water pressures are observed to change over the solutions 

until the system reaches a steady state after 4×10
-3

s (Figure 3d). At this solution time the equal 

potential lines are found to be in close agreement with the classical flow net solution as shown in 

Figure 7.3(d). 

7.5.2 Steady state quantity of flow under sheet pile wall 

The classical solution of quantity of flow per unit width through the prototype is: 

4 34
0.0159 0.0204 1.43 10 (m /s)/m

8

f

d

nQ
q kH

L n
 

(7.12) 

The DEM-CFD solution for quantity of flow is the sum of flux from fluid cells number 66-71 

across the surface on the right side of the flow domain and is shown in Table 7.4, which agree 

closely with the analytical solution, the details for the calculation is as shown in Table 7.4. 

 
(a)       (b)  

 
(c)       (d)  

Figure 7.3 Pressure contour development for applied pressure 200Pa at different time (a) 

t=6×10
-4

s, (b) 8×10
-4

s, (c) t=1.8×10
-3

s, (d) 4×10
-3

s 

 



 

89 

Table 7.4 Quantity of flow under the model sheet pile wall using the DEM-CFD method.  

Cell ID Computed porosity Pressure (Pa) Ux (m/s) Uy (m/s) Uy
*
=Uy× porosity (m/s) 

66 0.5770 1.5435 0.0006 0.0171 0.009879327 

67 0.4434 1.1400 0.0003 0.0073 0.003236165 

68 0.4434 0.9636 -0.0001 0.0062 0.002747864 

69 0.4657 0.8225 0.0001 0.0057 0.00267446 

70 0.4657 0.7069 0.0001 0.0049 0.002271956 

71 0.4657 0.7340 0.0000 0.0048 0.002256888 

 Q/L = 1.15×10
-4

 (m
3
/s/m) 

Uy
*
 is the superficial velocity in the y direction 

7.5.3 Relationship between quantity of flow and pressure gradient  
The pressure gradient applied to the model was increased, and the quantity of flow computed. 

The computed quantity of flow is shown as a function of the exit gradient in Figure 7.4. Also 

shown in Figure 7.4 is the quantity of flow calculated from Eqs. (7.1), where the permeability 

has been determined based on two different values of porosity from Eqs. (7.11). The upper curve 

corresponds to a mean porosity value navg=0.437 (corresponding permeability kp,avg=0.0172m/s) 

obtained by averaging the porosity over the entire flow domain (fluid cells 0-71), while the lower 

bound analytical solution was obtained by using the minimum porosity nmin = 0.359 

(permeability kp,min=0.00738m/s) which corresponds to the minimum value of porosity 

determined from all fluid cells which occurs along the bottom of the flow domain. As expected, 

the computed DEM-CFD seepage obtained with spatially varying porosity is bounded by the two 

analytical solutions.  While the flow as determined from Eqs. (7.1) is a linear function of the 

pressure and thus exit gradient according to Darcy’s law, it is observed that the DEM-CFD 

solution is slightly nonlinear as the seepage forces changes the particle packing and porosity. At 

higher pressures as the exit gradient approaches 1.1, a sharp increase in the flow is observed 

corresponding to the disruption of the particle assembly as the exit gradient becomes critical and 

a quick condition is represented.  While a quick condition is usually associated with exit 

gradients about 1.0, the exit gradient of which a quick condition occurs is actually a function of 

the porosity (Holtz and Kovacs 1981): 

1 1s
c

w

i n

 

(7.13) 

where ic is the critical gradient. The analytical solutions for seepage in Figure 7.4 have been 

marked to indicate the value of the exit gradient at which point a quick condition would be 

expected. 

Figure 7.4 shows that the quantity of flow under the sheet pile approximately consists with 

Darcy’s law when the exit gradient i<1(approximately linear), when the exit gradient i>1, the 

quantity of flow obtained from DEM-CFD starts to deviate from the trend predicted by Darcy’s 

law. 
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Figure 7.4 Quantity of flow with increasing pressure gradient 

7.5.3.1 Pressure distribution for large pressure gradient close to quick 

Figure 7.5 shows the pressure contours for conditions when exit gradient i=1.2. The particles 

close to the sheet pile where the gradient is the maximum start moving upwards and the pressure 

contour differs slightly from the classical flow net due to the porosity change within the model. 

Figure 7.6 shows the contact plot comparison between exit gradient i=0.48 and i=1.2, where the 

width of the band increases with magnitude of the contact force, and  the contact forces are 

scaled with reference to the maximum contact force over all the particle contacts. Figure 6(a) 

indicates that the contact forces on the downstream side of the sheet pile are only slightly less 

than those at the upstream side for low values of the exit gradient, while once a quick condition 

is reached (Figure 7.6(b)), the particle contact forces become very small in the exit region which 

indicates very low effective stresses and a possible quick condition.  
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Figure 7.5. Pressure contour for exit gradient i=1.2. Note that the particles have moved 

above the ground surface in the area near the sheet pile. The particles above the ground 

surface near the edges of the flow domain remain from the initial packing.  

 
(a) 
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(b) 

Figure 7.6 Comparison of contact force plot between particles with different exit gradient 

(the broader the band the higher the contact forces): (a) exit gradient i=0.48 and (b) i=1.2 

7.5.4 Pressure contour and particle contact forces close to critical gradient 
Figure 7.6 compares the contact forces between the steady state i=0.48 system and the exit 

gradient i=1.2 beyond critical, the particle contact forces in Figure 7.6(b) shows the particles are 

losing contact which indicates a possible quick condition. 

7.6 Relationship between fluid mesh size and quantity of flow 

The quantity of flow is calculated and compared using different fluid cell size with respect to the 

particle size, the calculated quantity of flow are summarized in Table 7.5, it is found that using 

the 12×6 mesh (Figure 7.7(b)) yields the closest quantity of flow value with the analytical 

solution, and 16×8 mesh (Figure 7.7(c)) also provide a relative close agreement with the 

analytical solution, the 24×12 mesh (Figure 7.7(d)) and the 8×4 mesh (Figure 7.7(a)) results tend 

to deviate from the analytical solution. This might suggest that the 2D sheet pile model will yield 

the best results when using the 12×6 mesh, which implies each fluid cell contains approximately 

23 particles. 
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(b)

(d)

(a)

(c)  
Figure 7.7 Different finite volume discretization of the fluid domain (a) 8×4 (b) 12×6(c) 

16×8 (d) 24×12 

Table 7.5 Quantity of flow using different finite volume mesh size  

 

FVM mesh 

size 

Number of 

particles per 

cell 

Quantity of flow  

10
-4

 (m
3
/s/m) % error compared 

to flow net solution 
DEM-CFD  Flow net 

(a) 8×4 53 0.81 

1.43 

43.4% 

(b) 12×6 23 1.15 19.6% 

(c) 16×8 13 1.04 27.3% 

(d) 24×12 6 0.97 32.2% 
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7.7 Closure 
A coupled DEM-CFD model was created for the classic fluid flow under sheet pile problem. In 

order to keep the number of particles relatively low to limit the computational demands, an equal 

pressure gradient scaling law is used to scale the problem domain of the model down while 

maintaining the permeability of the prototype. The calculated steady state pressure contours and 

quantity of flow from the model agree well with the classical solution from the flow net. The 

DEM/finite volume method is also able to present the transient pressure development during the 

early stages of the pressure application. The particle movement and contact forces within the 

particles as the exit gradient approaches the critical condition are also discussed. By taking 

advantage of the DEM, the model is also able to simulate the particle migration and the reduction 

of particle contact forces near the exit location as the pressure gradient is increased, which is not 

possible with the traditional continuum/porous media approach. The computed quantity of flow 

is shown to increase abruptly as the crucial gradient is approached, and the critical gradient is 

compared with that obtained from the continuum porous media approach for different uniform 

porosity values. The solution of this classic seepage problem suggests that the coupled 

DEM/finite volume method may have application in geotechnical engineering, particularly when 

the computer code can be cast into a parallel computing framework such that very large numbers 

of particles can be simulated. In the meantime, full scale problems can be approximated using 

the two methods of problem scaling discussed to limit the number particles to more reasonable 

values. 



 

95 

 

8 Coupled Discrete Element and Finite Volume Solution for Packing 

of a Chromatography Column 
 

8.1 2D chromatography problem description 
Band broadening makes the bands of packing material inside the chromatography column wider 

than the injection pulse, hence finally decreases the efficiency of the column (Guiochon et al. 

1994). One of the major reasons for the band-broadening is the result of packing heterogeneity of 

the column. There has been experimental evidence by Knox and Parcher (1969), Knox et al. 

(1976) and Horne et al. (1966) which shows that the beds of the packed columns used in liquid 

chromatography are heterogeneous across the radius. These results have been explained by the 

assumption of a “wall effect” existence which would affect the packing material close to the 

column wall. 

 

8.1.1 Experimental results 
Experimental results by Yun and Guiochon (1997) to investigate the deformation pattern 

corresponding to axial compression in a packed bed due to the injection of the mobile phase 

(methanol) from the bottom of the column which provided a visualization of the packing process. 

The experiment shows a marked curve band toward the column wall and is similar to the 

deformation pattern observed earlier by Train (Train 1956, 1957). This is photographic evidence 

of the so called “wall effect” (Baur et al. 1988; Baur and R M Wightman 1989; Farkas et al. 

1994, 1996). Due to this wall effect, the mobile phase velocity varies across the column 

accordingly, which reduces the efficiency of the column. It is further observed that the velocity is 

the maximum in the central region and lower close to the column wall, which suggests a nearly 

parabolic distribution (Farkas and Guiochon 1997). 

 

8.2 Coupled DEM-CFD chromatography column model 
8.2.1 Coupled DEM-CFD chromatography column model description 

To investigate the conditions in a packed chromatography column and simulate the packing 

process and effects of wall friction, a 2 dimensional DEM analysis was performed. The slurry 

packing procedure of the chromatography column is investigated with the coupled DEM-CFD 

algorithm. The cylindrical column is simplified to a 2D plane model with the annular wall 

replaced by vertical plane wall as shown in Figure 8.2. 
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Figure 8.1 Axial cross-section of two column packed by slurry packing (Yun and Guiochon 

1997) 

 

     
                               (a)                                         (b)                                                      (c)    

Figure 8.2 Fluid mesh and initial particle packing for the 2-D chromatography column (a) 

Fluid mesh (b) Colored initial particles (c) Magnified initial random packing  
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The packing material is divided into 12 color bands in order to reflect the initial particle positions 

and the final particle migration pattern, much like was done in the physical experiment of Figure 

8.1 (Yun and Guiochon 1997). The initial particle packing process will be described in section 

8.3.1.  

8.2.2 Boundary conditions for the chromatography column model 
The boundary conditions for the axial compression of the column corresponding to Figure 8.2 

are as listed in Table 8.1. The mobile phase (methanol) is injected vertically from the bottom of 

the column with a large superficial velocity value of 2.0m/s. The velocity at the inlet is uniform 

across the width or diameter of the column, approximating the flow from the entrance frit in the 

chromatography column which is designed to achieve a near uniform entrance velocity.  A zero 

fixed pressure boundary is specified at the top of the column, from which the methanol 

discharges.  

8.2.3 Material properties of the chromatography column model 

The basic physical and geometric properties of the 2D column model are as listed in Table 8.2. It 

is important to note that the internal particle friction is greater than the particle-wall friction, 

which is consistent with most laboratory investigations of particle solid contacts. The internal 

particle friction angle is assumed to be 30
o
 as from Mihlbachler et al. (1998), while the particle-

wall friction is 22
o
 as from Yew (1999). These parameters are consistent with a silica packing 

material such as Zorbax (Yun and Guiochon 1997), and the contact stiffness is taken as a value 

typically used with sand particles. 

Table 8.1. Boundary conditions for the chromatography column model 

Pressure boundary: (Figure 8.2a)  

Zero Gradient ab, bc, ad  

Fixed Value (Pa) cd: p=0  

Velocity boundary:   

Zero Gradient cd   

Fixed Value (m/s) ad, bc: U=(0, 0) ab: U=(0, 2) 
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 Table 8.2 Physical and geometrical parameters for the 2D problem.  

Parameter Value Unit 

Solid (silica particle)   

Number, Np 6480  

Diameter, d 0.95~1.0 mm 

Density, ρs 2650 kg/m
3
 

Contact stiffness, kn 1.0×10
6
 N/m 

Friction angle 
particle-wall 22 degree 

particle-particle 30 degree 

Fluid (methanol at 20°C, 1 atm)   

Density, ρw 789.1 kg/m
3
 

Viscosity, μ 5.44×10
-4

 Pa-s 

Column configuration   

Width 0.025 m 

Height 0.24 m 

Thickness  1.0×10
-3

 m 

Wall-particle friction angle 22 degree 

Fluid cell size ∆x×∆y 2.5×20 mm
2
 

Gravity constant 9.81 m/s
2
 

 

8.3 Simulation procedure 
8.3.1 Initial hydrostatic state 
Before the mobile phase methanol is injected, the particle assembly undergoes a settling 

procedure so that the hydrostatic state is approximately reached. The initial conditions are 

established in 2 steps:  

(1) The 6480 particles are generated in rectangular space surrounded by the column walls with 

slight pseudo random variation of particle diameter from 0.95-1.0mm.  

(2) The particles then settle to the hydrostatic state under the influence of gravity and buoyancy 

forces, i.e. the consolidation under gravity and buoyancy force is completed at the initial 

hydrostatic state. The simulation will take the state after step (2) as the initial condition for the 

simulation. 

8.3.2 Applying the inlet velocity 
Starting from the initial hydrostatic state above, the methanol is injected at the bottom of the 

column with a fixed superficial velocity U=2.0m/s. The value of U applied is greater than a value 

necessary to cause a quick condition. Because there is a wall (end frit) at the top of the column, 

the injection of flow will finally result in particles piled up at the column frit. The simulation is 

continued until the particles are close to equilibrium state and the pore pressure no longer 

changes with time, which indicates the flow field has reached the steady state.  

8.3.3 Time step and simulation time 
The DEM mechanical time step for the simulation is fixed at 5×10

-7
s, while the fluid time step is 

fixed at 10 times the mechanical time step. The mechanical time step must be smaller than a 

critical step which is typically determined from translational motion and rotational motion of the 

smallest particle within the particle assembly: 



 

99 

,  trans rot

tran rot

m I
t t

k k
 (8.1) 

where ttrans and trot are the critical time step determined from translational motion and rotational 

motion, respectively; ktran and krot are the translational and rotational stiffness, m is the particle 

mass and I is the particle moment of inertia. The actual mechanical time step must be smaller 

than both ttrans and trot calculated from Eqs. (8.1). It took the system around 60000 iterations to 

approximately reach a steady state at a real computation time of 0.03s. The simulation time on a 

Pentium Xeon Dual Core 2.8G Dell Precision workstation (2G memory) is about 25 hours. The 

currently coupled DEM-CFD code is just a serial code and therefore it is strongly expected that 

parallel algorithms will be used in the future to save simulation time. 

8.4 Simulated results for the column packing heterogeneity 
8.4.1  Particle band profile for the packing heterogeneity 
Figure 8.3 shows the band profile for the axial column compression. The particle materials are 

lifted and axially compressed by the upward velocity. The column lost approximately 1/12 of its 

original length (2cm) due to upward compression of the particles. It is evident that the final 

particle assembly shows a curved band toward the wall. In this simulation, the horizontal layer 

perturbed by the DEM wall seems to have a shear layer thickness of approximately 3 particle 

diameters as shown in Figure 8.3(b). In this simulation, the particle diameters (diameter 0.95-

1mm) are about 100 times greater than those actually used in chromatography columns, which is 

typically around 10µm, therefore the wall perturbing thickness does not agree with (or cannot 

reflect) the experimental measurement (around 30 diameters for 10µm particles) by (Baur et al. 

1988; 1989). However, the simulated results agree quite well with the results of limiting shear-

layer thickness corresponding to 2.3-3.0 particle diameters by Johnson and Jackson (1987), 

which used 1.0mm polystyrene beads in friction-collision granular materials subject to plane 

shearing. 

 

8.4.2  Pressure distribution for the final compressed column 
Figure 8.4 shows the pore pressure distribution of the final steady state. The bottom pore 

pressure reaches a value of 5.46×10
6
Pa (about 55atm). From the equal potential lines shown in 

Figure 8.4(b), the pressure drops within the particle-methanol porous media are equally spaced 

which indicates that the flow satisfies Darcy’s law.  
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             (a)                                        (b) 

Figure 8.3 Final particle band profile and magnified particle migration pattern 

 

Wall perturbing 

thickness 
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 (a)                                         (b)           (c) 

Figure 8.4 Pressure contour for final steady state  
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8.4.3  Porosity and velocity distribution for the final compressed column 
In the Finite Volume method, the porosity and thus the flow velocity are taken as a constant 

within any fluid cell.  Figure 8.5 depicts the velocity and porosity plot for the final compressed 

column, where a rectangular grid of 2.5mm by 20 mm fluid cells was used. As seen from the 

plots, the velocity and porosity values are not uniform, resulting from the heterogeneity 

introduced into the column during the packing process. A comparison of the computed porosity 

and velocity (Figure 8.6) across the column diameter are shown for various sections along the 

column as indicated in Figure 8.5. The results from Figure 8.6 suggest the relationship between 

the porosity and the mobile phase velocity value, and demonstrate that the porosity distribution is 

not uniform across the column. The areas with higher porosity tend to have higher velocities, 

since the mobile phase meets less resistance at high porosity cells. 

 

 

 

 

 
Figure 8.5 Velocity and porosity distribution. Cross sections 1-6 identify positions along 

which the computed porosity and velocity results are shown in Figure 6.  
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Experimental evidence from chromatography columns suggests that the mobile phase velocity is 

typically 2-3% higher in the column center than close to the wall (Yun and Guiochon 1997), and 

the variation of velocity across the column in roughly parabolic. This variation of mobile phase 

velocity is generally attributed to the heterogeneity of the column packing and leads to a 

significant reduction of column efficiency.  

The DEM-CFD simulation in Figure 8.6 predicts a variation of velocity across the column of 

roughly more than 10 percent, which is much greater than that observed experimentally. This can 

be attributed to rather coarse nature of the model adopted to limit the number of particles in the 

simulation. In order to better reproduce the experimentally observed variation of flow velocity 

using the DEM-CFD coupled model, the porosity variation between adjacent fluid cells needs to 

be well below 2-3% level. For instance, in the current model, there are 10 fluid cells across the 

column in horizontal direction, which suggests that the porosity variation between adjacent cells 

should be around 2% divided by 10, which equals to 0.2%. This requires the fluid cell volume 

2000 times larger than the particle volume, as opposed to the 100 times larger the particle 

volume in the current simulation. With the particle current model, DEM-CFD model cannot 

sufficiently model the actual porosity variation to simulate the experimental results.  
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Figure 8.6 Variation of porosity and mobile phase velocity in the radial direction for cross 

section 1-6 in Figure 8.2. Left: porosity variation, vertical axis: porosity, horizontal axis: 

Distance from left wall (m);Right: velocity variation, vertical axis: methanol velocity (m/s), 

horizontal axis: Distance from left wall (m) 
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8.4.4  Effect of wall roughness on the band profile 

  
(a)   (b) 

Figure 8.7 Effect of wall roughness of the band profile (a) left and right walls are regular 

DEM walls; (b) left and right walls are static particle walls 
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Figure 8.7(b) shows the same column but replacing the left and right regular DEM walls by static 

wall composed of particle diameters dw=1mm in order to increase the wall roughness. In contrast 

to Figure 8.7(a), which uses the regular DEM wall, the band profile in Figure 8.7(b) showed 

larger curvature toward the column wall for the static particle wall model, which indicates that 

larger wall roughness will lead to more severe heterogeneity for the packing material inside the 

column. 

8.5  Closure 
The coupled DEM-CFD method is used to simulate the slurry packing of a chromatography 

column. The geometry was significantly simplified to conserve computational effort. The 

particle diameter was assumed to be approximately 100 times that typically used for silica 

packing material, and the cylindrical shape was approximated by planar flow.  The coupled 

method is able to produce the shear effect on the packing material from wall during the axial 

upward compression procedure, providing a displacement filed similar to that observed in 

experiments.  

 

Although the experimentally observed parabolic shaped velocity distribution was not repeated, 

the packing of a very heterogeneous column was simulated perhaps without reasonably 

considering the number of the particles in the column. This relationship is expected to be 

different if a larger number of particles within the fluid cell were used (at least 100 particles per 

fluid cell).  The use of high performance parallel computational environment would make the 

solution of real problems possible, once the current DEM-CFD code can be written into a 

parallel framework.  
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9 Summary and Recommendations 
The present study contributes to the field of discrete element method application in the following 

three ways: 

9.1 Open source DEM code verification 
The discrete element method is a highly computation intensive method, the results of which are 

sometimes very difficult to verify when a large number of particles are used. In order to verify 

the results, verification problems with well established analytical solutions must be identified 

and rely on assumptions consistent with the DEM. The verification problems used in this study: 

the 1D particle motion prediction with different damping coefficients, the 1D upward 

seepage/critical gradient problem, and the 1D consolidation problem, are all based on very 

idealistic assumptions. Although they might be of little engineering practice interest, such 

verification models enable the investigation of single parameter effects and the simple 

relationship between particles makes it easier to search and debug the DEM code. These 

problems also provide guidance for selecting the input parameters for larger scale problems, as 

with the discussion of the NDF value and the viscous damping effect in Chapter 6. It is 

recommended that simplified models, typically with a small number of particles be used and 

verified before carrying out large scale calculations. 

9.2 The statistical approach in DEM method 
In Chapter 4 and Chapter 5, a statistical approach using logistic regression is established with the 

2D and 3D modeling of the sinkhole repair problem. While running different initial random 

particle positions and particle diameters, the transition in mean particle size from a stable to an 

unstable assembly of particles is described by a continuous smooth function rather than a step 

wise function. The use of this statistical method can be a useful tool in the future DEM 

application, since determining and changing an input random parameter is relatively easier than 

running different real experiments to collect data and then analyze them using statistical tools. 

9.3 The coupled DEM-CFD model 
The DEM-CFD method was originally proposed by Tsuji (1993) to investigate the fluidization of 

gas bed in powder technology. Chapter 6-8 discussed the application of the DEM-CFD method 

in a simplified 1D seepage/consolidation verification, 2D modeling of seepage flow under a 

sheet pile structure, and band broadening of the packing material inside a chromatography 

column. All of these models, by using the averaged Navier-Stokes equation, comply with 

Darcy’s law when the particles within the fluid mesh are closely packed and the pressure 

gradient is below critical, although no Darcy’s flow assumption is made throughout the 

calculation process. When the flow region is beyond critical, the method is still capable of 

predicting the behavior of fluid-particle assembly (as discussed in the 2D sheet pile analysis and 

slurry packing of chromatography column), where both analyses undergo a quick procedure 

during the simulation and Darcy’s law is no longer capable of predicting the flow behavior.  

Based on these results, the coupled DEM-CFD method can be applied in most geotechnical 

engineering problems where Darcy’s law dominates the fluid region and the discrete inter-

particle behavior is important but difficult to obtain through the traditional continuum mechanics 

approach. It can also be used in cases when the fluid flow field cannot be calculated by Darcy’s 

law, e.g. the behavior of a fluid particle system under large pressure gradient which is beyond 

quick, or the dilute flow when the fluid mesh domain is loosely packed by particles. 
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9.4 Future work 
As seen from the previous chapters, the particle-fluid problem using DEM-CFD method is very 

computational intensive and has a serious limitation imposed by the computational power of the 

computer. Currently, research on the coupled model in this study is limited to relatively small 

scale and the particles are generally limited to several thousand level to adapt to the computation 

environment. For example, the number of particles used in real chromatography column problem 

or soil liquefaction under an earth dam might easily exceed 10
8
, even for a simplified 2D model. 

As seen from the 2D sheet pile problem, although a scaling law provides a possible alternative, 

the large number of particles will still remain a serious issue for real engineering problems.  

The most direct and apparent solution is the parallelization of the code. Based on the current 

YADE-OpenFOAM code coupling structure, it is therefore desirable to conduct research on the 

future framework of CFD-DEM parallelization, which includes: 

(1) Parallel framework between CFD fluid module and DEM solid particle module; 

(2) Parallel framework within the CFD fluid module; 

(3) Parallel framework within the DEM solid particle module; 

There have been a number of previous investigating research studies on issue (2), the parallel 

CFD module. While there is little research on issue (1) and (3), especially (1), the parallel 

relationship between CFD and DEM are seldom discussed, but will have significant effect on the 

parallel model, and the communication of large quantity data between discrete element and the 

finite volume mesh also needs to be carefully optimized. 

Another possible way of solving the computation limit is to change the mathematical nature of 

DEM mechanism for the solid particles, i.e. reducing the duty of the particle motion computation. 

The original DEM proposed by Cundall and Strack (1979) is in fact an explicit integration of 

velocity and hence displacement starting from the Newton’s second law of motion under 

boundary constrains of contact. It is worthwhile to notice the Discontinuous Deformation 

Analysis (DDA) which is another type of discrete element method originally proposed by Shi 

(1993). Instead of traditional DEM which employs the explicit time marching scheme to solve 

the equations of motion directly (Cundall and Hart 1989), the system of equation in DDA is 

derived from minimizing the total potential energy of the particle assembly. This would be an 

implicit displacement method instead of a force method and guarantee that equilibrium is 

satisfied at all times, thus would be able to greatly reduce the computational needs required for 

explicit time integration. There has been previous research from Ke and Bray (1995) that used 

disk shape elements and therefore spherical element DDA analysis can also be extended. 
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