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 Abstract 

There exist many types of harmful bacteria that can contaminate foods and cause 

serious illness, which often have their own best courses of treatment. This requires the 

classification of different types of bacteria. Traditional methods of bacterial identification, 

while able to provide accurate classification, are often very time-consuming processes. 

In the case of a potentially fatal bacterial infection, time is often of the essence. FTIR 

spectroscopy is a faster, more practical alternative that can discriminate different strains 

of bacteria, based on their spectral signatures, with high confidence. 

Bacterial contaminations on food exist as small, localized colonies that must be found 

and identified. As FTIR spectroscopy is a fast technique for one sample location, it is 

advantageous to move towards spectroscopic imaging to do FTIR spectroscopy at many 

locations in parallel. The amount of information obtained at one time from this technique 

is large, thus it can be helpful to visualize this information by means of color images. A 

multivariate image analysis will produce such color images depicting the different 

chemical properties of a material as different colors. This enables the visual 

discrimination of a bacterial colony from its substrate, as they will have different chemical 

properties. Colonies can be found in a larger sample area by merging data cubes as 

presented here. Once a bacterial colony is found in an extended area, it must be 

identified. A method of bacterial identification has been developed here that can identify 

bacterial colonies based on chemical information obtained from spectroscopic imaging. 

While spectroscopic imaging is useful for acquiring chemical information in two spatial 

dimensions, it inherently loses height information, which is important for investigating 

chemical reactions proceeding in three dimensions. This information is of key 

importance in the growth monitoring of bacterial colonies. Thus, novel illumination optics 

have been coupled with a spectroscopic imaging setup to probe the surface topography 

of a 3D sample while being able to acquire spectroscopic information simultaneously. 
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Preface 

Further information on chemometric methods used in this dissertation can be found in 

the supplemental material of a first-author publication in the Journal of Chemical 

Education [1]. The spectroscopic topics discussed in Chapters 2 - 4 are adapted from 

first-author manuscripts in Applied Spectroscopy and Analytical Chemistry, respectively 

[2], [3].  All alterations are implemented in order to reflect the appropriate style of this 

dissertation. 
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Chapter 1 

Introduction: Spectroscopic Imaging for Detection 

and Identification of Bacterial Contaminations 

 

Each year, around 76 million cases of food borne diseases occur in the United States, 

as reported by the World Health Organization (WHO) [4]. While many of these cases are 

not fatal, an estimated five thousand people die as a result of these infections. If the 

infection is caught and treated early enough, these deaths can often be prevented. In 

order to treat effectively, the source of infection must be identified both correctly and 

quickly. If the source is not identified correctly, a wrong course of treatment could be 

prescribed that may not be helpful or could lead to antibiotic resistance. Traditional 

serological methods of bacterial identification, such as polymerase chain reaction [5], [6], 

are able to identify a source correctly, but are lacking when it comes to speed. Thus, 

there is a need for methods that can accomplish this task by meeting both requirements.  

Although different strains of bacteria are composed of similar chemical components, 

there are small chemical differences between strains that can be used to discriminate 

and identify them. In recent years, new detection and identification strategies based on 

analytical instrumentation have been developed, focusing on utilizing these chemical 

differences. These methods have the advantage of being fast, typically providing 

information in hours rather than days. Methods involving electrochemistry, mass 

spectrometry, and spectroscopy have been shown to be useful for the detection and 

identification of various types of bacteria. In this dissertation, a developed method using 

Fourier transform infrared (FTIR) spectroscopy and correlation analysis will be presented 

for the discrimination of three spectroscopically similar strains of E. coli bacteria. 

Karasinski et al. [7] have used dissolved oxygen (DOX) sensors to monitor the 

respiratory activities of different bacteria via oxygen consumption. By investigating five 

different types of bacteria (E. coli, Escherichia adecarboxylata, Comamonas 

acidovorans, Corynebacterium glutamicum, and Staphylococcus epidermis), they have 
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tested a method of differentiation. By adding non-lethal concentrations of broad-

spectrum antibiotics to the growth medium for each type of bacteria, bacterial growth 

and oxygen consumption was partially inhibited. When compared to oxygen 

consumptions in antibiotic-free media, the effect of antibiotic addition was shown to be 

unique for the each type of bacteria investigated, giving rise to unique oxygen 

consumption fingerprints. By building a library of oxygen consumption fingerprints, 

unknown oxygen-consuming bacteria can be identified, provided they are contained in 

the library. Operating conditions such as growth medium and temperature must be 

controlled and consistent, as unknown bacteria grown under conditions that are not 

calibrated for could lead to incorrect identification. 

In order to selectively detect a certain type of bacteria among a mixed bacterial 

population, Neufeld et al. [8] have incorporated a bacteriophage (phage). A phage acts 

as a parasite or virus that will infect certain bacterial species, causing the release of 

specific intracellular enzymes that can be monitored by amperometric measurements. 

This combination of phage used and enzyme released is strain-specific. In this study, 

bacteriophage lambda ( ) has been used to infect E. coli K12, causing the release of β-

D-galactosidase during cell lysis. This enzyme is measured amperometrically by 

monitoring its oxidation at a carbon anode. The authors have shown that, in a mixture of 

E. coli K12 and Klebsiella pneumoniae, the combination of phage used and enzyme 

released is specific for E. coli K12, as K. pneumoniae showed no enzymatic activity. By 

changing the combination of phage used and enzyme monitored, the detection of a wide 

variety of bacteria can be accomplished. Filtering and preincubating the bacterial strains 

before infection with the phage allowed the detection of concentrations of E. coli K12 as 

low as 1 colony-forming unit (cfu)/mL within six to eight hours. The concentration of 

bacteria detected is two orders of magnitude lower than that detected by a method 

involving a fluorescent bacteriophage assay (100 cfu/mL) [9]. This method has the 

advantage of being able to detect certain species of bacteria within a mixture and is not 

limited to oxygen-consuming bacteria, as in [7]. 

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-

TOF-MS) has been used in the discrimination of environmental strains of E. coli as well 

as classifying them according to source [10], identifying clinical isolates of 
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Staphylococcus aureus by comparison with reference strains [11], and for the 

identification of gram-negative bacteria isolated from cystic fibrosis patients [12]. MALDI-

TOF-MS methods of bacterial identification allow a high throughput in a short amount of 

time with minimal sample preparation, which is enticing for clinical applications. 

However, like electrochemical methods, MALDI-TOF-MS is destructive to the sample, 

rendering the sample unfit for further analyses. This can pose a problem if only a small 

amount of sample is available for analysis. Siegrist et al. [10] have focused on using 

MALDI-TOF-MS as a method of bacterial source tracking (BST) in order to identify 

possible sources of surface water contamination by E. coli from fecal input. As the 

source of E. coli is directly related to the health risks associated, the authors have used 

a model system consisting of E. coli isolates from both human and animal sources, 

looking for potential biomarkers that are unique to particular source groups. The animal 

source groups consisted of avian, bovine, and canine. Analysis of the mass spectra led 

to 73% of isolates being correctly grouped by their source, with 100% of the avian, 

bovine, and canine isolates grouped correctly. Of particular interest was the identification 

of five potential avian-specific biomarkers based on mass spectra. Rajakaruna et al. [11] 

have performed MALDI-TOF-MS on intact Staphylococcus aureus cells from 134 field 

isolates. The authors‟ aim was to collect these field isolates and, with minimal sample 

preparation, identify them correctly when compared to a database comprised of mass 

spectra from reference strains. By taking the entire mass spectrum into account, rather 

than focusing on specific mass ions, 130 isolates were successfully identified as S. 

aureus by comparison with the reference mass spectra. The spectral patterns produced 

by species that are closely related to S. aureus were also shown to have a high degree 

of similarity, though genus-specific biomarkers were found. Degand et al. [12] have built 

a reference database consisting of mass spectra from 58 species of gram-negative 

bacteria that lead to infection in cystic fibrosis patients. This database has been used to 

identify 559 clinical isolates of different types of bacteria. By determining the percentage 

of common mass ion peaks between the clinical isolate and the mass spectra contained 

in the database, 549 isolates were identified correctly. In most cases the percentage of 

common peaks averaged 80% or higher. MALDI-TOF-MS techniques, while fast, are 

destructive and require mixing with a protective matrix, thus increasing the amount of 

sample handling needed. 
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Spectroscopic methods such as laser-induced breakdown spectroscopy (LIBS) [13] and 

Raman Spectroscopy [14], [15] have also been used for bacterial identification. LIBS is a 

type of atomic emission spectroscopy that uses a laser pulse as an excitation source, 

ablating a very small amount of material, typically in the range of nanograms or 

picograms. Because such a small amount of material is consumed, the process is 

considered essentially non-destructive. Diedrich et al. [13] have used LIBS to 

discriminate between enterohemorrhagic E. coli O157:H7 (EHEC), which is pathogenic 

to humans, and three nonpathogenic strains of E. coli (two strains of K12 and one strain 

of C). These bacteria have specific outer membrane compositions containing divalent 

cations, such as Mg2+ and Ca2+. The dominating spectral features arise from the ionized 

and neutral forms of Mg and Ca. Emission lines from other trace inorganics such as iron, 

potassium, sodium, manganese and phosphorus, etc. will also be present. The 

differences detected by LIBS analysis are not genetic differences, such as the elements 

comprising DNA or proteins. Rather, the differences between the chemical compositions 

of the outer membranes, which vary between different species of bacteria, are detected. 

By combining LIBS measurements with a discriminant function analysis (DFA), the 

authors have shown that significant differences exist between EHEC and one of the 

nonpathogenic strains (strain C), allowing the discrimination of the two strains. The 

authors have also reported the effects of changing the nutrient media used to culture 

bacteria on the LIBS spectra. The same type of bacteria grown in two different media 

had a higher similarity than did different types grown in the same media, showing that 

LIBS is a practical technique for identifying bacteria grown in a variety of environments. 

Xie et al. [14] have used a combination of laser tweezers and confocal Raman 

spectroscopy (LTRS) to optically trap and identify individual bacteria in an aqueous 

environment. Confocal Raman spectroscopy has the advantage of collecting the Raman 

signal from only the focal region of the objective while any out-of-focus signals, such as 

background signals arising from the environment, are largely suppressed. This provides 

a high spatial resolution, enabling the detection of spectral features from single cells. In 

order to investigate a single cell within an aqueous environment, the cell must be 

immobilized. The authors have used optical trapping, which captures an individual 

moving cell in the focus of the laser beam and levitates it above the substrate, thereby 

maximizing the collection of Raman scattering and minimizing unwanted background 
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signal. This provides a high signal-to-noise ratio. Using six different species of bacteria, 

the authors have investigated the capability of confocal LTRS for the discrimination and 

identification of various species during different growth phases. Using a principal 

component analysis (PCA), cell cultures that were synchronized at the log phase could 

be well-discriminated from one another. Bacterial species taken from unsynchronized 

cell cultures at the stationary phase could also be discriminated using PCA and 

hierarchical cluster analysis (HCA). A general discrimination analysis (GDA) was used to 

classify bacterial species from unsynchronized cell cultures from random growth phases. 

Although the single-cell spectra were shown to fluctuate to some degree among the 

individual cells, the cells from different species during different growth phases could be 

discriminated. 

Patel et al. [15] have used surface enhanced Raman spectroscopy (SERS) to identify 

closely-related members of the Bacillus cereus group of bacteria, including Bacillus 

anthracis (Sterne and Ames), thuringiensis, and cereus. When a molecule is in close 

proximity to a nanostructured metal surface, an enhancement in Raman scattering is 

observed. This signal enhancement permits the investigation of single bacterial cells on 

a very short time scale without the need for sample growth or labeling. PCA and HCA 

were performed on four sets of data: 1) normalized SERS spectra themselves, 2) first 

derivatives of the spectra, 3) second derivative spectra, and 4) binary barcodes based 

on the sign (+/-) of the second derivative spectra. Using the normalized and first 

derivative spectra, the B. anthracis Sterne and B. cereus strains formed distinct clusters 

from one another. However, the B. anthracis Ames and B. thuringiensis clusters 

overlapped and could not be differentiated. When using the second derivative spectra, 

better cluster separation is achieved, though the intragroup distances are large, meaning 

that they are somewhat spread out. The best clustering results were achieved using the 

second derivative-based barcoding approach. Here, barcodes are assigned based on 

the sign of the second derivative (+1 for positive second derivatives, 0 for negative 

second derivatives).The clusters corresponding to the four groups are well defined and 

separated, with smaller intragroup distances and larger intergroup separations. Once it 

was found that these groups could be discriminated well from one another, the authors 

tested the barcoding method for its ability to positively identify in-class unknowns and to 

minimize false positive identification of out-of-class unknowns. Using B. anthracis Sterne 
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and B. anthracis Ames as in-class unknowns, each falls into the correct strain cluster, 

thus providing positive identification. E. coli, B. licheniformis, and a different strain of B. 

anthracis Ames were used as out-of-class unknowns to test for false positive 

identification. In each case, the unknown does not find a match with any of the known 

clusters. 

For the work presented in this dissertation, FTIR spectroscopy will be utilized for 

detecting and identifying small bacterial colonies within extended sample areas in which 

they grow. FTIR spectroscopy has distinct advantages for the field of bioanalysis: unlike 

electrochemical or mass spectrometric techniques, FTIR is nondestructive in nature and 

there is no need to alter the samples, such as mixing with a matrix, before analysis. Like 

other spectroscopic techniques, acquisition times are short, allowing the analysis of 

many samples in a short period of time. FTIR is easily introduced into clinical settings, as 

little sample handling is required, and the use of expensive reagents and extensive 

personnel training is not needed. For these reasons, FTIR spectroscopy has become a 

useful tool within the field of bacteriology, for which it has been shown to work well [16]-

[20]. This dissertation will assess the capability of spectroscopic imaging to enable the 

detection and identification of bacterial contaminations. 

Discrimination or identification of bacterial colonies can be achieved using FTIR 

spectroscopy if the location of such colonies is known. As bacterial colonies are often 

small and localized within a larger sample, it can be a challenge to find them. To 

accomplish this, extended sample areas must be probed with a high spatial resolution. 

FTIR can quickly probe one sample location, so it would be advantageous to utilize FTIR 

spectroscopy in conjunction with sampling many locations at one time. To this end, 

spectroscopic imaging [2], [3], [21], [22] has emerged, replacing a conventional detector 

with an infrared camera. Each pixel of this camera acts as a detector, providing both 

spatial and spectral information, and is capable of performing many FTIR measurements 

at one time with a high spatial resolution. This enables the use of sophisticated 

chemometric methods, potentially in situ, to obtain the spatial distributions of different 

chemical components. This spatial distribution of chemical information can also be 

represented visually by means of a multivariate image analysis (MIA) [23], [24], serving 

as a way to reinforce the chemometrics. A MIA is a visualization technique that displays 
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the spectroscopic signatures of different materials as different colors. This will enable the 

visual discrimination of E. coli bacterial colonies from a substrate by means of visibly 

different colors. This method can be applied to the localization of bacterial colonies 

within an extended area by merging spectroscopic data cubes. 

E. coli is one among many types of bacteria that can contaminate food. To broaden the 

scope, three strains of Bacillus have been included in the investigation, leading to the 

need to find and identify more than one type of bacteria. Localization was shown to work 

well using spectroscopic imaging in the first part of chapter three, thus the second part 

focuses on identifying bacterial colonies. A method of identification has been developed 

that builds on the correlation analysis presented in chapter two by adding a principal 

component analysis [25], [26]. By acquiring data cubes from prepared bacterial samples, 

the identification method will be assessed as to how well it can identify bacterial colonies 

of known types. 

Because chemical reactions can progress in three dimensions, both chemical 

information in an X-Y plane and topographic information (Z-dimension) are needed for 

complete analysis. Spectroscopic imaging, however, inherently loses this Z-dimension 

information, which is important for the growth monitoring of bacterial colonies. Chapter 

four will present an augmentation to a spectroscopic imaging setup in the form of 

external illumination optics, allowing samples having complex surface topographies to be 

investigated while at the same time acquiring chemical information. 
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Chapter 2 

Differentiating Strains of Bacteria Using FTIR 

Spectroscopy 

 

2.1 Introduction 

 

Food contaminations by Escherichia coli bacteria are a major concern for public health 

[27], [28]. Of the different strains of E. coli, there are several harmful strains, some of 

which cause internal hemorrhaging [29]. Infections caused by each of these strains have 

their own optimum medical treatment. Thus, these strains must be able to be detected 

and told apart in order to provide proper treatment, as the wrong treatment may lead to 

more negative effects than the original infection. Methods of bacterial identification 

currently in place [5], [6] can easily discriminate these different strains, but are very time-

consuming. They require expensive equipment, trained personnel, and ultimately render 

the sample unfit for further analyses. Presented here is a method utilizing FTIR 

spectroscopy, as it is fast, equipment is cheaper, requires no extensive personnel 

training, and is a non-destructive technique. Bacteria contain infrared-active components 

[30]-[35] that provide very characteristic peaks, good signal-to-noise, and low limits of 

detection. 

The challenge to using FTIR to discriminate bacterial strains comes in the form of 

selectivity. Because bacteria all contain similar basic components, the spectra of 

different strains will look similar to one another, as can be seen in Figure 1. However, 

because the organization of these components is slightly different for each species, the 

hypothesis presented is here is two-fold: 1) bacteria of the same strain will have the 

same spectroscopic signatures, leading to high similarity between their spectra; 2) 

bacteria belonging to different strains will have different spectroscopic signatures and 

thus there will be a lower similarity between their spectra. 
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Figure 1: (top row) Comparing spectra acquired from 10 different locations of two different E. coli B samples; from these spectra it had to 

be assessed whether samples from the same strain are classified as the same. (bottom row) Spectra acquired from two additional strains 

(C and K12); a successful classification needs to determine that all three different strains have significantly different signatures despite 

their very similar spectroscopic signatures. 



 10 

One way to measure the degree of similarity between two spectra is through the use of 

correlation coefficients [36]. In order to be able to discriminate different strains of 

bacteria, the correlation coefficient between the spectra of two different strains must be 

significantly different (lower) than between two spectra of the same strain. To indicate 

whether the correlation coefficients are significantly different, a t-test [37] is used. It will 

be shown here that, though their spectra are similar, three different strains of bacteria 

can be discriminated. 

 

2.2 Discrimination of Similar Strains of Bacteria by FTIR 
Spectroscopy 

 

In order to provide bacterial samples for analysis, three different strains of E. coli 

bacteria have been used here (B, C, and K12). For safety purposes, these strains are 

non-pathogenic to humans and are thus used as a proof-of-principle to show that 

different strains of the same type of bacteria can be discriminated. Spectra have been 

acquired from ten locations on two independently prepared samples of each strain to 

use for analysis. 

 

2.2.1 Analyzing the Similarity of Spectra 

 

Discrimination must be based on spectroscopic signatures, the general shapes of the 

spectra. This is accomplished by measuring the degree of similarity between spectra of 

the same strain and comparing it to the degree of similarity between the spectra of 

different strains. Thus, the degree of similarity between the spectra of E. coli B should be 

significantly higher than the degree of similarity between the spectra of E. coli B and E. 

coli C. In order to measure the degree of similarity between two spectra 1s  and 2s  

correlation coefficients. are utilized with 2,1s  being the mean values of the two spectra 

respectively. If a correlation coefficient (1) is close to one, the two spectra are very 

similar. If it is considerably smaller than one, the spectra have different signatures. 
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The correlation coefficients calculated between samples of the same strain will be 

compared to those calculated between samples of different strains. In order to 

discriminate two different strains, the correlation coefficient between two spectra 

acquired from different strains must be significantly smaller than the correlation 

coefficient between two spectra from the same strain.  

First, the „equivalency‟ of spectra from the same strain must be determined. Because 

measurement imperfections are unavoidable, correlating spectra from the same strain of 

bacteria will result in correlation coefficients less than one. Thus, this „equivalency‟ 

establishes a threshold of what is considered a high enough correlation coefficient to 

indicate that both spectra are from the same strain of E. coli. Second, the „difference‟ 

between the spectra from different strains must be determined. Due to the high degree 

of similarity between such spectra, the correlation coefficients calculated will be close to 

one. Therefore, the „difference‟ will establish a threshold of what is considered a low 

enough correlation coefficient to indicate two spectra are from different strains. The 

thresholds determined for both „equivalency‟ and „difference‟ are based on experimental 

data obtained. 

For growing E. coli samples, tryptic soy agar (TSA) plates are prepared (Carolina 

Biological Supply Company). All three strains were purchased from the same vendor. 

Plates are streaked with bacteria and incubated at 37 C for a minimum of 24 hours but 

no longer than 48 hours. Using an inoculating loop, a small amount of bacteria is 

removed from a plate and spread thinly on an infrared-transparent calcium fluoride 

(CaF2) slide. Because TSA is highly infrared absorbing, care is taken not to remove any 

TSA from the plate along with the bacteria. Visible images of streaked bacteria can be 

seen in Figure 2. The left column shows images of bacteria streaks acquired at 4X  
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Figure 2: Images of three E. coli strains acquired in the visible at 4x and 15x magnification; the 
squares in the left columns depicts in the 4x images what is seen in the 15x image to its right; the 
dashed squares in the right image column depict the approximate areas sampled by the IR 
detector. For all IR measurements a resolution of 4 cm

-1
 is chosen and 32 scans are averaged. 

Background spectra are acquired from a blank spot on the CaF2 slide. 



 13 

magnification. The dashed squares in the right column of images depict the approximate 

areas that are analyzed at 15X magnification. 

After growing and streaking, the slide containing the sample is placed on the stage of a 

Bruker Optics Hyperion 1000 VIS/IR microscope that is attached to a Vertex 70 FTIR 

spectrometer. This microscope is equipped with camera for the visible and a single pixel 

MCT detector. Mid-infrared (MIR) transmission spectra are measured from ten different 

locations on two samples of each of the three strains, resulting in a total of sixty spectra. 

In all spectra the wavenumber window from 2400 - 2250cm-1 is excluded in order to 

prevent changes in atmospheric CO2 from affecting the similarity of the spectra. 

 

Determining ‘equivalency’ of spectra from the same strain: To determine the degree 

to which the correlation coefficients (1) indicate „equivalency‟, correlation coefficients of 

spectra acquired from the same E. coli sample are calculated. This involves calculating 

the correlation coefficients for all combinations of the ten spectra per sample, i.e. 

spectrum #1 is correlated to the other nine spectra in the set. Thus, there are a total of 

45 different combinations per set, producing 45 correlation coefficients:  

 

21,corr ss 31,corr ss 101,corr ss, , … ,

32 ,corr ss

,
41,corr ss

, 42 ,corr ss , … ,
102 ,corr ss

9 combinations

8 combinations

109 ,corr ss

, … ,

1 combination
 

(2) 

 

Certain combinations are excluded, seeing as they are either redundant, such as in the 

case of 
ikki ,ss,ss corrcorr , or irrelevant, 1c or r ii, ss . Next, it is investigated 

whether two spectra from two independently prepared samples of the same strain result  
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in correlation coefficients close to the ones obtained by means of (2), as well as 

assessing the reproducibility of bacterial preparation. For example, the spectra of 

E. coli B contained in set #1, 
1 ,1 01 Bs  , and set #2, 

2 ,1 01 Bs , are correlated, resulting in a 

total of 100 correlation coefficients:  

 

)2( ,1)1( ,1 ,corr BB ss , 
)2( ,2)1( ,1 ,corr BB ss , ... , 

)2( ,10)1( ,1 ,corr BB ss    10 combinations 

)2( ,1)1( ,2 ,corr BB ss , )2( ,2)1( ,2 ,corr BB ss , ... , )2( ,1 0)1( ,2 ,c o r r BB ss    10 combinations 

, … , 

)2( ,1)1( ,1 0 ,corr BB ss , )2( ,2)1( ,1 0 ,c o r r BB ss , ... , 
)2( ,1 0)1( ,1 0 ,cor r BB ss    10 combinations 

(3) 

 

The procedures (2), (3) are performed for all three strains E. coli B, C and K12. For the 

remainder of this chapter, these sets of correlation coefficients (3) will be referred to as 

(B1, B2), (C1, C2) and (K12_1, K12_2), respectively. 

 

Determining ‘difference’ of spectra from two samples of different strains: In the 

next step, a similar procedure correlates spectra from different strains, providing the 

threshold of „low enough‟ correlation coefficients. If these „inter-strain‟ correlation 

coefficients are found to be significantly different (lower) from the ones obtained from 

spectra from within one strain („intra-strain‟), then it can be concluded that the spectral 

signatures of the strains are different, thus establishing that they are from different 

strains. For example, correlating E. coli B set #1 and E. coli C set #1 (containing ten 

spectra each) derives the following 100 correlation coefficients, indicated by (B1, C1): 
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)1( ,1)1( ,1 ,corr CB ss , )1( ,2)1( ,1 ,co rr CB ss , ... , )1( ,1 0)1( ,1 ,corr CB ss    10 combinations 

)1( ,1)1( ,2 ,co rr CB ss , 
)1( ,2)1( ,2 ,corr CB ss , ... , 

)1( ,10)1( ,2 ,corr CB ss    10 combinations 

, … , 

)1( ,1)1( ,1 0 ,corr CB ss , 
)1( ,2)1( ,10 ,corr CB ss , ... , )1( ,1 0)1( ,1 0 ,c or r CB ss    10 combinations 

 (4) 

 

This (4) is done for all strain combinations, i.e.: 

 

(B1, C1), (B2, C1), (B1, C2), (B2, C2), (C1, K12_1), (C2, K12_1), (C1, K12_2),               

(C2, K12_2), (B1, K12_1), (B2, K12_1), (B1, K12_2) and (B2, K12_2  

(5) 

 

Here B1, C1, K12_1 are the spectra from set #1 of E. coli B, C, and K12, respectively, 

and B2, C2, and K12_2 are the spectra from set #2 of each strain. 

If the mean correlation coefficients of the spectra from different strains are significantly 

different (lower) than from spectra of the same strain, the strains can be discriminated 

based on their spectroscopic signatures. Comparing mean values is done by a t-test 

[37]. However, a t-test requires that the data be normally distributed. Correlation 

coefficients themselves are not normally distributed; the range of correlation coefficients 

r  is restricted to the range from -1 to +1. In some cases, the mean plus one (or more) 

standard deviations reaches beyond a correlation coefficient of one and are thus 

meaningless. For this reason, a Fisher‟s z-transformation [36], [38] is applied to the 

correlation coefficients r  prior to t-testing in order to make them more normally 

distributed. Each correlation coefficient r  is z-transformed via: 
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z
1

2
l n
1 r

1 r
 

(6) 

 

These means are then t-tested instead of the correlation coefficients r  themselves. For 

such a t-test, a certain probability of „acceptable error‟ must be chosen. This is a 

probability that a wrong assessment will be made, i.e. stating two means are equivalent 

when they are not, or stating two means are not equivalent when they are. For this 

study, a confidence level of 95% had been chosen. When t-testing the mean z-values, a 

„significance value‟ will be calculated. Using the confidence level of 95%, a significance 

value greater than 5% will indicate a high probability that both mean z-values are 

equivalent.  

 

2.2.2 Results of Testing for Equivalency or Difference 

 

In determining the „equivalency‟ of spectra from the same strain, it is expected that the 

correlation coefficients produced will be very close to one, indicating that the 

spectroscopic signatures are the same. The threshold of „high enough‟ correlation 

coefficients can be determined by calculating the mean correlation coefficient among the 

spectra of one set. For spectra obtained from the same strain, the mean z -values are 

not expected to be significantly different. In these cases, t-testing the mean z-values 

should produce a high significance value (> 5%), indicating a high probability that both 

mean z -values are equivalent. T-testing the mean z-values obtained from each of the 

two sets of E. coli B, C or K12, i.e. B vs. B, C vs. C, and K12 vs. K12, produced 

significance values above 5% for each case, indicating no significant differences 

between the two. Thus, reproducible spectra did result from the repeated sample 

preparation. The first row of Table 1 summarizes the mean correlation coefficients ± one 

standard deviation acquired from spectra of strain set #1 among themselves; the second 

row gives the same information computed from the strain set #2. Here, the „high enough‟ 
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Table 1: (top part) means and standard deviations (sd) of the correlation (1) of spectra acquired from the same strains; (middle part) each 

correlation coefficient was transformed into z-values (6) by means of a Fisher‟s z-transform in order to obtain more normally distributed 

values; (bottom part) t-test results analyzing the mean z-values among different samples of the same strain; expected is a high significance 

(>5% significance level) demonstrating that the mean correlation coefficients are not significantly different. 

 

correlation coeffs. mean ± sd mean ± sd mean ± sd

B1 (intern) 0.9967 ± 0.0027 C1 (intern) 0.9972 ± 0.0022 K12_1 (intern) 0.9970 ± 0.0035

B2 (intern) 0.9947 ± 0.0086 C2 (intern) 0.9975 ± 0.0017 K12_2 (intern) 0.9967 ± 0.0030

B1 vs B2 = (B1,B2) 0.9956 ± 0.0068 C1 vs C2 = (C1,C2) 0.9961 ± 0.0034 K12_1 vs K12_2 = (K1,K2) 0.9965 ± 0.0031

Fisher's  z values

B1 (intern) 3.3732 ± 0.4433 C1 (intern) 3.4792 ± 0.4853 K12_1 (intern) 3.6556 ± 0.7351

B2 (intern) 3.5614 ± 0.7537 C2 (intern) 3.4832 ± 0.4538 K12_2 (intern) 3.4548 ± 0.5734

significance significance significance

B1 vs B2 15.2% C1 vs C2 96.8% K12_1 vs K12_2 15.1%
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correlation coefficients are at least 0.99 (first and second rows of Table 1), which does 

indicate a high degree of similarity among the spectra of one set of one strain as 

expected. The third row in Table 1 shows that the mean correlation coefficients obtained 

by correlating the spectra in set #1 with the spectra in set #2 are also high and close to 

the ones obtained by correlating the spectra of set #1 and set #2 internally. The fourth 

and fifth row give the mean z-values for each set internally, and the sixth row provides 

the significance value as calculated by t-testing the mean z-values. 

In determining the „difference‟ of spectra from different strains, it is expected that, while 

the correlation coefficients are close to one (Figure 1), they will be significantly lower 

than those obtained between spectra of the same strain. The mean correlation 

coefficients will determine the threshold of „low enough‟ correlation coefficients so as to 

say that two spectra are from different strains. The mean correlation coefficients ± one 

standard deviation, for all combinations of different strains (5) are concluded in the top 

parts of Table 2 and Table 3. Here it can be seen that, while the mean correlation 

coefficients obtained by correlating the spectra of different strains are high, in most 

cases they are lower than the means obtained from the correlation of spectra from the 

same strain. Thus, it must be determined whether or not two different strains can be 

discriminated. It is expected that there will be a significant difference between the 

spectra of different strains. For this purpose, the „intra-strain‟ z-values from spectra of a 

certain strain (e.g. B1 or B2 (intern), middle of Table 1) are t-tested against all z-values 

from „inter-strain‟ correlations (4), (5) (middle of Table 2 and Table 3). For example, the 

z-value from internal B2 is t-tested against the „inter-strain‟ correlation B2 vs. C2. This is 

done to investigate whether the correlation coefficients obtained by correlating the 

spectra of different strains are significantly different (lower) from those obtained by 

correlating the spectra from the same strain. In these cases, the significance is expected 

to be less than 5%. This has been confirmed for all possible combinations except for B1 

versus (B1, C2), showing that the spectra of different strains of E. coli, though similar, 

can be discriminated based on their spectral features. 
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Table 2: (top part) The correlation coefficients ± one standard deviation were obtained from correlating spectra of different strains 
(compare (4) and (5)); (middle part) each correlation coefficient was transformed into z-values (6) by means of a Fisher‟s z-transform; 
(bottom part) t-tests comparing the mean correlation coefficients obtained from the samples: B1 (intern), C1 (intern) and K12 (intern) (see 
Table 1) and from different strains. If spectra from different strains show a lower similarity than spectra obtained from one sample, here, a 
significance value <5% is expected; in only one case this hypothesis was not supported. 

 

correlation coeffs. mean ± sd mean ± sd mean ± sd

(B1,C1) 0.9949 ± 0.0038 (B1,C1) 0.9949 ± 0.0038 (B1,K12_1) 0.9951 ± 0.0038

(B1,C2) 0.9964 ± 0.0023 (B2,C1) 0.9949 ± 0.0046 (B2,K12_1) 0.9927 ± 0.0100

(B1,K12_1) 0.9951 ± 0.0038 (C1,K12_1) 0.9901 ± 0.0058 (C1,K12_1) 0.9901 ± 0.0058

(B1,K12_2) 0.9955 ± 0.0037 (C1,K12_2) 0.9906 ± 0.0058 (C2,K12_1) 0.9947 ± 0.0031

Fisher's  z values

(B1,C1) 3.0883 ± 0.3119 (B1,C1) 3.0883 ± 0.3119 (B1,K12_1) 3.1413 ± 0.3742

(B1,C2) 3.2609 ± 0.3343 (B2,C1) 3.1186 ± 0.3527 (B2,K12_1) 3.0204 ± 0.4125

(B1,K12_1) 3.1413 ± 0.3742 (C1,K12_1) 2.7172 ± 0.2542 (C1,K12_1) 2.7172 ± 0.2542

(B1,K12_2) 3.1902 ± 0.3800 (C1,K12_2) 2.7558 ± 0.2826 (C2,K12_1) 3.0503 ± 0.3077

significance significance significance

B1 vs (B1,C1) 0.0% C1 vs (B1,C1) 0.0% K12_1 vs (B1,K12_1) 0.0%

B1 vs (B1,C2) 9.4% C1 vs (B2,C1) 0.0% K12_1 vs (B1,K12_1) 0.0%

 B1 vs (B1,K12_1) 0.1% C1 vs (C1,K12_1) 0.0% K12_1 vs (C1,K12_1) 0.0%
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Table 3: Similar results as shown in Table 2 - here correlation coefficients derived from sample sets #2 are compared to all combinations 

of „inter-strain‟. 

 

correlation coeff. mean ± sd mean ± sd mean ± sd

(B2,C1) 0.9949 ± 0.0046 (B1,C2) 0.9964 ± 0.0023 (B1,K12_2) 0.9955 ± 0.0037

(B2,C2) 0.9955 ± 0.0065 (B2,C2) 0.9955 ± 0.0065 (B2,K12_2) 0.9933 ± 0.0099

(B2,K12_1) 0.9927 ± 0.0100 (C2,K12_1) 0.9947 ± 0.0031 (C1,K12_2) 0.9906 ± 0.0058

(B2,K12_2) 0.9933 ± 0.0099 (C2,K12_2) 0.9947 ± 0.0032 (C2,K12_2) 0.9947 ± 0.0032

Fisher's  z value

(B2,C1) 3.1186 ± 0.3527 (B1,C2) 3.2609 ± 0.3343 (B1,K12_2) 3.1902 ± 0.3800

(B2,C2) 3.2992. ± 0.4424 (B2,C2) 3.2992 ± 0.4424 (B2,K12_2) 3.1286 ± 0.4678

(B2,K12_1) 3.0204 ± 0.4125 (C2,K12_1) 3.0503 ± 0.3077 (C1,K12_2) 2.7558 ± 0.2826

(B2,K12_2) 3.1286 ± 0.4678 (C2,K12_2) 3.0582 ± 0.3226 (C2,K12_2) 3.0582 ± 0.2256

significance significance significance

B2 vs (B2,C1) 0.0% C2 vs (B1,C2) 0.1% K12_2 vs (B1,K12_2) 0.1%

B2 vs (B2,C2) 0.1% C2 vs (B2,C2) 2.3% K12_2 vs (B2,K12_2) 0.0%

B2 vs (B2,K12_1) 0.0% C2 vs (C2,K12_1) 0.0% K12_2 vs (C1,K12_2) 0.0%

B2 vs (B2,K12_2) 0.0% C2 vs (C2, K12_2) 0.0% K12_2 vs (C2,K12_2) 0.0%  

 



 21 

2.3 Conclusions 

 

Out of many strains of E. coli bacteria, there are several that are pathogenic to humans, 

each having their own best course of medical treatment. In order to treat a bacterial 

infection effectively, E. coli contaminations of food must be identified quickly and 

accurately. Traditional methods of bacterial identification, while able to identify 

contaminations accurately, are severely lacking when it comes to time. Thus, FTIR 

spectroscopy has been used in this study, as it is a faster technique. However, there is a 

challenge to FTIR spectroscopy, as the spectra of different strains of bacteria look very 

similar to one another. Using a correlation analysis, it has been shown here that there 

are statistically significant differences in the spectroscopic signatures of different strains 

of bacteria that allow them to be discriminated. 
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Chapter 3 

Localization & Identification of Bacterial 

Contaminations Using Spectroscopic Imaging 

3.1 Introduction 

 

It has been shown that different strains of E. coli bacteria, while having spectra that are 

similar to one another, can be discriminated based on their spectral features using FTIR 

spectroscopy. Performing such analyses requires knowing the location of such bacteria. 

On food samples, however, bacterial colonies are small and localized within a larger 

sample area. The challenge then becomes finding these colonies. Thus an entire sample 

must be investigated with a high spatial resolution. Probing one sample location using 

FTIR spectroscopy yields chemical information quickly. Therefore, a method combining 

the advantages of FTIR spectroscopy and the ability to sample many locations at one 

time is needed. For this reason, spectroscopic imaging [2], [3], [21], [22] has emerged, 

combining spectroscopy with imaging. This technique can be utilized to both find and 

identify bacterial colonies within an extended area. The first part of this chapter presents 

the localization of bacterial colonies, while the second part focuses on the identification 

of found colonies. 

 

3.2 Localization of Bacterial Colonies 

 

Spectroscopic imaging uses an infrared camera instead of a conventional detector. Each 

pixel of this camera acts as a detector, performing four thousand spectroscopic 

measurements at one time, making the technique fast. Spectroscopic imaging also 

enables the localization of samples, thereby providing information as to where an 

analyte is located within a sample. Because spectroscopic imaging supplies a wealth of 

information at one time, it can become useful to visualize this information. One method 
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of visualization is the depiction of different materials as different colors by relating the 

chemical properties of a material to a certain color. To achieve this relation, a 

characteristic signature within the chemical properties of a material must be found. This 

can be accomplished by utilizing a principal component analysis (PCA) [25], which can 

extract the spectroscopic features from a set of materials and provide a representation of 

the chemical properties; called principal components (PCs). A PCA will also provide 

information as to how much each PC contributes in a given material, called scores. It is 

important to note that the PCs and scores have no direct physical or chemical meaning. 

Instead, they are linear combinations of the physical/chemical properties of the set. As 

mentioned in chapter two, different strains of bacteria are composed of similar chemical 

components, i.e. functional groups, with slightly different mixtures of these components. 

These different mixtures will be represented differently by different linear combinations of 

the PCs. 

Once the characteristic signature within the chemical properties of a material has been 

found, the next step is relating the chemical properties of the material to a certain color, 

thus combining PCA and imaging. One way to achieve this combination is through the 

use of a multivariate image analysis (MIA) [23], [24]. A MIA utilizes the scores produced 

by a PCA, compiling them into images, called score images, which represent the values 

of the scores at each pixel of the infrared camera. By color-coding these values, a color 

image is produced that represents the different chemical properties of a material as 

different colors, allowing the visualization of the information obtained by spectroscopic 

imaging. 

Spectroscopic imaging makes use of a 2D detector array, called a focal plane array or 

FPA [21], containing many detectors, called „pixels‟. Because each pixel acquires a 

spectrum simultaneously, the collection of chemical information from different sample 

locations is enabled. This chemical information is arranged into the form of a „data cube‟ 

of information. This data cube has two spatial dimensions (X- and Y-dimensions), which 

provide information about location (Figure 3). The third dimension of this cube is a 

spectral dimension (Z-dimension), which contains chemical information. Thus, chemical 

information is acquired at many sample locations. For the setup used in this study, the 

FPA contains 4,096 individual pixels, having a 64X64 arrangement, with an infrared 
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Figure 3: Diagram of a data cube produced using spectroscopic imaging. The X- and Y-
dimensions are spatial dimensions, providing information about the location of a sample. The Z-
dimension is a spectral dimension, providing a spectrum at each pixel. The transparent boxes 
indicate data acquired at different wavelength positions. 
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spectrum acquired at each pixel. A diagram of a data cube can be seen in Figure 3. 

Here, the pixel highlighted in green represents a spectrum acquired at a certain location. 

The transparent boxes shown represent wavelength positions contained in a spectrum. 

In this study, the same three strains of E. coli as used in chapter two were used to show 

the feasibility of using spectroscopic imaging to localize bacterial colonies. Bacterial 

streaks were prepared on CaF2 in the same way. Spectroscopic imaging measurements 

were acquired from three E. coli colonies in transmission mode. To show that 

localization of bacterial colonies within an extended sample area is possible, the data 

cubes produced from these three measurements were merged together. It is expected 

that, after performing a MIA on this merged cube, the bacterial colonies will be clearly 

distinguishable from the substrate. Because three different strains have been used, the 

colors of the colonies will be different, though the color should be homogeneous within 

one colony. Finally, it is expected that the substrate will be a uniform color, as it is the 

same in each of the merged data cubes. The top of Figure 4 shows visible images of the 

three colonies investigated. The dashed boxes in each image depict the approximate 

area that is sampled by the infrared camera. The bottom shows these areas after MIA 

has been performed on the merged cube. It can be seen that each bacterial colony is 

distinguishable from the substrate and that each colony is mostly homogeneous in color 

within itself. The colony of E. coli B has been encoded in a yellow-green color, E. coli C 

has been encoded in a dark pink, and E. coli K12 has been encoded in a lighter pink. 

The CaF2 substrate in each of the three merged images is a uniform green color, which 

is expected. 

 

3.3 Conclusions of Localization 

 

Because bacterial colonies are often small and localized within a larger sample area, 

they must be found in order to be identified. Spectroscopic imaging has been shown 

here to be applicable to the localization of these bacterial colonies by visualizing the 

chemical information acquired. Visualization requires the relation of the chemical 

properties of a material to a certain color. 
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Figure 4: (top) Visible images from three E. coli colonies. The dashed boxes indicate the 
approximate area that the infrared camera samples in the acquisition of a data cube (bottom) The 
corresponding color images after a MIA has been performed on data cubes acquired from (top). It 
can be seen that the bacterial colonies in each color image can be clearly distinguished from their 
substrates, and that each is mostly homogeneous in color among itself. It is also important to note 
that the CaF2 substrate in each image is a uniform green color, indicating a good reproducibility. 

 



 27 

This relation necessitates finding a characteristic signature within the chemical 

properties, and can be accomplished by means of a principal component analysis. Once 

the characteristic signature has been found, the chemical properties of a material can be 

related to a certain color by means of a multivariate image analysis. This allows the 

visualization of chemical information by means of a color image. It has been shown here 

that, by performing a MIA on three data cubes of E. coli, bacterial colonies could be 

localized within a larger sample area and were clearly distinguishable from their common 

substrate. 

 

3.4 Identification of Bacterial Colonies 

 

It has been shown that different strains of E. coli can be discriminated from one another 

based on their spectroscopic signatures using FTIR spectroscopy. E. coli bacterial 

colonies can also be localized within a larger sample area through the use of 

spectroscopic imaging and multivariate image analysis. While E. coli is a very common 

food contamination, there are others, such as strains of Bacillus, that are equally as 

harmful [39]. It is important to be able to discriminate these different types of bacteria, as 

well as identify them. To demonstrate that spectroscopic imaging can be used to identify 

a variety of bacterial colonies, three strains of Bacillus are used here along with the 

same three strains of E. coli used previously.  

By including Bacillus in the investigation, there is no longer only one species to account 

for. There are now two species of bacteria, each of which have their own different strains 

that need to be found and identified. A visible image of colonies from each strain can be 

seen in Figure 5. Because localization has been discussed earlier in this chapter, this 

section will focus on how well found colonies can be identified. This will be accomplished 

by acquiring several data cubes from prepared bacterial samples, meaning that the 

species and strain is known. An identification algorithm that builds on the correlation 

analysis presented in chapter two will be applied and how well the method identifies 

these known data cubes will be assessed. Before applying the identification algorithm, 

one thing must be addressed. This is the issue of drifting baselines in the spectra, as 



 28 

E. coli

Bacillus

B C K12

Brevis Coagulans Megaterium

 

Figure 5: Visible images of bacterial streaks on an IR reflecting slide. The bacterial streaks are 
seen as pink areas. The pink color here is due to the reflective coating of the slide. 



 29 

these could affect the outcome of identification. Thus, a method of baseline correction is 

applied to all measured spectra. 

 

3.5 Experimental 

 

Bacteria samples for this study are prepared in much the same way as in Chapter 2. 

Here, six strains of bacteria (E. coli B, C, and K12 and Bacillus brevis, coagulans, and 

megaterium) are prepared and spread thinly on an infrared-reflecting slide (Kevley 

Technologies). Visible images of these colonies can be seen in Figure 5, having a pink 

color as opposed to the white color in chapter 2. This pink color is due to the infrared-

reflective coating on the slide.  

Figure 6a shows ten MCT spectra from E. coli C. Here, it can be seen that there are 

drifting baselines, which cause the spectra to change inconsistently. Therefore, a 

method of baseline correction has been developed in-house [40]-[42] and has been 

utilized here. The hypothesis of the baseline correction method is that the absorbance 

bands in a spectrum are more localized than the baseline drifts and the correction 

method involves two steps: the first step is an initialization; the spectrum is fit by a 

polynomial. However, using a polynomial as the best estimate of the baseline e.g. can 

result in drift over-compensation. Thus, a second optimization step is needed. This 

optimization will correct wavenumber regions where the absorptions distract the fit from 

the true baseline, making the baseline estimate more similar to the spectrum, while 

avoiding that the baseline models the absorbance features. The optimization is an 

iterative approach with two antagonizing criteria: 1) at each wavelength position, the 

difference between the baseline estimation and the drifting spectrum is partially reduced, 

iteratively making the estimation more similar to the spectrum; 2) the estimation is made 

straighter piecewise in order to avoid modeling the absorbance features. This 

combination of criteria will ensure that the baseline estimation follows the general trend 

of the drifting spectrum without modeling the absorbance features. The result of baseline 

correction on the spectra in Figure 6a can be seen in Figure 6b. It is evident that the 
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Figure 6: (a) 10 spectra (out of 100) of E. coli C are shown here, acquired in reflection mode. It 

can be seen that all 10 spectra have similar shapes, though they have drifting baselines, causing 

dissimilarity among spectra of the same strain. (b) The same 10 spectra after applying baseline 

correction. Here, the baseline for each spectrum is centered at zero absorbance units. 
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baseline drifts have been corrected, with the baseline for each spectrum centered at 

zero. 

Representative MCT spectra from each of the six strains after baseline correction can be 

seen in Figure 7. It can be seen in (a) that the spectra from the three strains of E. coli 

look similar to one another, as is expected from the discussion in chapter 2. (b) shows 

spectra from the three strains of Bacillus. There are prominent differences between the 

spectra of these strains, most notably in the region of 1750cm-1, where megaterium has 

a strong absorbance that is not as evident in brevis or coagulans. There are also clear 

spectral differences in the „fingerprint region‟ of these three strains. (c) shows spectra 

from the three strains of E. coli and a spectrum from Bacillus brevis. It is evident that the 

spectrum of brevis is similar to the spectra from the strains of E. coli. 

Looking closer at the MCT spectra (Figure 8), it can be seen that, within the spectra of 

one strain, there are different overall shapes, most notably in the 1650cm-1 region 

(Amide I/protein region [31]). The black and green spectra have a broad shape, while the 

shape clearly changes when looking at the red, blue, and purple spectra. These shape 

differences are hypothesized to arise from differing contributions from a number of 

possible secondary protein structures [43-45], including parallel and anti-parallel β-

sheets, β-turns, α-helix, and random coils. Each type of structure will have a slightly 

different carbonyl stretching frequency, due to the fact that each structure has a distinct 

molecular geometry and hydrogen-bonding pattern. The shape changes in the blue and 

purple spectra are most likely occurring due to a larger contribution from the β-turns at 

1675cm-1. The overall shape of the Amide I peak can be described as a combination of 

these different contributions and can be thought of as overlapping absorbances. These 

differing shapes occur in every set of spectra acquired, meaning that there is no one 

spectrum that can be assigned to each of the different strains. Instead, the set of spectra 

for each strain contain these inherent differences, which must be taken into account. For 

this reason, a principal component analysis (PCA) [25] is utilized in the identification 

method, as it is able to model these differences and incorporate them into a calibration 

model for each species/strain, using several PCs to model these individual changes.
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Figure 7: (a) representative MCT spectra of E. coli strains B, C, and K12 having similarity, (b) 
representative MCT spectra of Bacillus strains brevis, coagulans, and megaterium having 
noticeable differences among themselves, (c) spectra from the three E. coli strains and Bacillus 
brevis, which are similar to one another. 
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Figure 8: Spectral differences in the Amide I region (1650 cm
-1

) leading to different shapes. It is 
hypothesized that these differences arise from varying contributions from protein secondary 
structures. Since the shape differences are present in all sets of spectra acquired, there is no 
single characteristic spectrum that can be assigned to each strain.  
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3.6 Identification Algorithm 

 

A flowchart of the method for the identification of bacterial colonies can be seen in 

Figure 9 and will guide the discussion. The identification method is based on the 

hypothesis that the spectra within a data cube of a certain type of bacteria will have 

spectral features closer to those of a spectrum of the same type than to a spectrum of a 

different type. In order to have a „gold standard‟ to which spectra in a data cube can be 

compared, a set of MCT spectra are used as a calibration set. This calibration set 

contains spectra from known locations of known types. Applying a correlation analysis 

between spectra from a data cube and spectra such as those in Figure 8 at this point in 

the method will yield low correlation coefficients, even if the spectra are of the same type 

of bacteria. For this reason, extra steps must be taken. Performing a PCA on this 

calibration set will determine the representations of chemical properties within that set, 

which, due to the chemical changes (Figure 8) within one set, will require more than one 

PC. Because different types of bacteria have slightly different arrangements of chemical 

components, a PCA will represent them differently; hence the PCs from different types of 

bacteria will be slightly different. Using this calibration set to evaluate the spectra within 

a data cube will produce a set of scores for the data cube, which will describe how much 

each PC from the calibration set contributes to the spectra. It is expected that the PCs 

from a calibration set will model the spectra contained in a data cube best if the 

calibration set and data cube are of the same type of bacteria. In order to determine how 

well a spectrum is modeled, the PCs obtained from the calibration set and the scores 

from that spectrum can be used to construct a second version of this spectrum. This 

second version is referred to as a „reconstructed‟ spectrum. Here a correlation analysis 

can be used to compare the reconstructed spectrum and the original spectrum in the 

data cube. The correlation coefficient produced will indicate how similar the spectrum in 

the data cube is to the spectra contained in the calibration set. It is expected that the 

correlation coefficient between an original spectrum and the reconstructed spectrum will 

be higher if the original spectrum and the spectra in the calibration set are of the same 

type of bacteria than if they are of different types. 
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Figure 9: Flow chart of the data analysis method as described in section 3.6. 

 



 36 

In some cases, a spectrum within the data cube is not reconstructed well, such as in the 

case of a bad pixel on the FPA or in the case of no sample present. In these situations, 

the correlation coefficient produced is low compared to the others. Thus, a threshold for 

the correlation coefficients is set. Here, the threshold is set at 0.9 based on experimental 

data, where the correlation coefficients largely fall between 0.93 and 0.98 and the 

correlation coefficients produced by a bad pixel, noise, or spectra containing a good deal 

of noise generally falling between 0.3 and 0.8. If the correlation coefficient is below this 

threshold, the spectrum will be considered „non-classifiable‟. 

 

3.7 Results and Discussion 

 

3.7.1 Selection of Optimum Number of Principal Components 

 

The number of principal components used to evaluate an FPA data cube is an important 

factor, as these are used to represent the chemical properties of different strains of 

bacteria. If too few PCs are used, small chemical differences that exist between different 

strains may not be taken into account and can result in an incorrect identification., 

However, it can become necessary to restrict the number of PCs used so as to 

sufficiently model relevant chemical information without over-fitting the data [46]. Over-

fitting the data can occur when a model has too many degrees of freedom, resulting in 

poor prediction ability. In this case the noise contained within the spectra of the 

calibration set may be interpreted as an important chemical feature and can result in 

incorrect identifications. However, determining the proper number of PCs to use is often 

difficult. Cross-validation (CV), a technique for assessing the predictive capability of a 

model, is commonly used to achieve this goal, though it requires information about 

sample concentrations. Thus, it cannot be applied when data evaluation is based only on 

a PCA, as is the case here. 

An alternative has been developed in reference [47], and selects the optimum number of 

PCs for each individual spectrum from an unknown sample. This optimum number of 

PCs is found by an iterative procedure. Starting with a „reduced calibration model‟ 
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containing only one PC, each iteration increases stepwise the number of PCs used and 

compares the reduced model to the „full model‟, which contains all PCs. If the reduced 

model and the full model are not significantly different from one another, the reduced 

model contains the minimum number of PCs needed to describe the spectral features 

equally as well as the full model. To determine whether the reduced model and the full 

model have equivalent capabilities, a F-test on the residual variances is performed. The 

residual variances are obtained by: 1) reconstructing the unknown spectrum using both 

the reduced model and full model; 2) subtracting the reconstructions from the unknown 

spectrum, resulting in residual spectra; 3) determining the variances from the elements 

of the two residual spectra. The two residual variances are F-tested for significant 

differences. If both models are equivalent, no significant difference will be found. An F-

test will determine a probability that the variances of two sets of residuals are 

significantly different; the smaller the probability, the more likely they are significantly 

different. A threshold for the probability must be defined, above which it is assumed that 

the models are not significantly different. The method developed in [47] required small 

thresholds (e.g. 10e-5) for experimental data. 

The PC selection method has been modified in this study. Rather than compare a 

reduced model to the full model, a reduced model containing  PCs is compared to 

another reduced model containing  PCs. This will test whether adding one more 

PC significantly improves the model; if the addition of one more PC does not significantly 

improve the ability to model a certain spectrum, the variances between the residuals of 

the two models will not be significantly different. If this is the case,  PCs are optimum; 

able to sufficiently model the spectroscopic features without over-fitting the data. Here, a 

threshold of 10% has been used and is a more reasonable threshold. E.g., if comparing 

a model using 5 PCs and a model using 6 PCs produces a probability value above 10%, 

it can be assumed that the two models are not significantly different, and the model 

using 5 PCs will be able to model a spectrum as well as the model using 6 PCs. The 

optimum number of PCs are determined for every single spectrum inside a FPA data 

cube and thus, the reconstruction of a spectrum is done with this optimum number of 

PCs. 
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3.7.2 Results of Identification 

 

Eighteen data cubes from each species of bacteria have been evaluated by the 

identification algorithm. Each of these data cubes is of known species, and is used to 

assess the capability of the method. The data cubes will be classified by calculating a 

percentage. These percentages represent the number of spectra in the data cube that 

are classified as a certain species. The percentages are calculated based on the number 

of spectra classified as a certain species out of the number of „classifiable spectra‟. 

Recall that non-classifiable spectra are those having correlation coefficients less than 

the set threshold of 0.9. The number of non-classifiable spectra is subtracted from the 

total number of spectra in the data cube, resulting in the number of classifiable spectra. 

Of the six data cubes of E. coli B that were evaluated, two of the data cubes were 

classified as E. coli. Of the six data cubes of E. coli C evaluated, five were classified as 

E. coli. Five out of six data cubes of E. coli K12 were classified as E. coli, with one 

classified as Bacillus. Four data cubes of Bacillus brevis were classified as Bacillus, 

while all six data cubes of Bacillus coagulans were classified as Bacillus. Five out the six 

data cubes of Bacillus megaterium were classified as Bacillus. 

The left side of Table 4 shows the percentage classification as either E. coli or Bacillus 

for the evaluated E. coli data cubes. The first column indicates the data cube, where the 

letter indicates strain, i.e. B0 is the first data cube of E. coli B acquired and evaluated. It 

is expected that all values in the second column are larger than those in the third 

column, as each data cube on the left is known to be E. coli. This expectation is fulfilled 

for twelve of the eighteen data cubes. The right side of Table 4 shows the percentage 

classification as either E. coli or Bacillus for the evaluated Bacillus data cubes. Here it is 

expected that all values in the last column will be higher than those in the fifth column. 

This expectation is fulfilled for fifteen of the eighteen data cubes. Misclassified data 

cubes are shown in italics on each side. It can be seen by looking at the percentages in 

Table 4 that ten of the twenty-seven data cubes classified as the correct species have a 

percentage of classification is less than 60%. 

The left side of Table 5 shows the data cubes that were classified as E. coli in Table 4, 

while the right side shows the data cubes that were classified as Bacillus. Each side also 
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Table 4: Species classification based on percentage of classifiable spectra using E. coli calibration versus Bacillus calibration. Classification 
is based on majority of classifiable spectra. The higher percentages of correct classification are in bold. Incorrect species classifications are 
noted by italics. (B = E. coli B, C = E. coli C, K = E. coli K12, brev = Bacillus brevis, coag = Bacillus coagulans, mega = Bacillus megaterium) 

Data Set 

% E. coli 

Classification 

% Bacillus 

Classification Data Set 

% E. coli 

Classification 

% Bacillus 

Classification 

B0 66.19 33.81 brev0 48.56 51.44 

B1 25.67 74.33 brev1 41.5 58.5 

B2 47.84 52.16 brev2 60.92 39.08 

B3 42.21 57.79 brev3 47.86 52.14 

B4 34.78 65.22 brev4 48.44 51.56 

B5 59.67 40.33 brev5 50.1 49.9 

C0 57.36 42.64 coag0 22.78 77.22 

C1 54.49 45.51 coag1 32.59 67.41 

C2 49.52 50.48 coag2 37.67 62.33 

C3 57.47 42.53 coag3 22.52 77.48 

C4 60.93 39.07 coag4 24.03 75.97 

C5 64.47 35.53 coag5 25.74 74.26 

K0 74.92 25.08 mega0 1.06 98.94 

K1 68.84 31.16 mega1 9.71 90.29 

K2 48.47 51.53 mega2 12.81 87.19 

K3 53.81 46.19 mega3 24.69 75.31 

K4 59.25 40.75 mega4 65.11 34.89 

K5 78.85 21.15 mega5 5.91 94.09 
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Table 5: Results of strain classification using MCT spectra as calibration sets and optimum PC selection algorithm with no adjustment. The 
higher percentages for correct classifications are in bold. Incorrect strain classifications are noted in italics. The data cubes classified as E. 
coli are shown on the left, while the data cubes classified as Bacillus are shown on the right. 

 

 

Classified as E. coli    Classified as Bacillus   

Data Set 
% E coli B 

Classification 

% E coli C 

Classification 

% E coli K12 

Classification 
 Data Set 

% Brevis 

Classification 

% Coagulans 

Classification 

% 

Megaterium 

Classification 

B0 47.23 26.84 25.93  B1 29.06 36.82 34.12 

B5 27.28 31.25 41.47  B2 78.98 15.73 5.29 

C0 41.78 42.88 15.34  B3 21.71 16.17 62.12 

C1 35.65 31.13 33.22  B4 2.11 97.66 0.23 

C3 28.15 39.64 32.21  K2 38.56 49.36 12.08 

C4 31.32 40.77 27.91  brev0 60.71 17.5 21.79 

C5 26.94 35.88 37.18  brev1 44.58 23.97 31.45 

K0 23.08 43.85 33.07  brev3 59.19 17.76 23.05 

K1 38.15 28.58 33.27  brev4 54.92 20.4 24.68 

K3 26.7 46.72 26.58  coag0 13.17 66.41 20.42 

K4 4.33 34.99 60.68  coag1 12.26 66.7 21.04 

K5 4.76 60.09 35.15  coag2 24.93 40.1 34.97 

brev2 26.22 32.54 41.24  coag3 9.32 52.24 38.44 

brev5 24.28 38.59 37.13  coag4 12.98 47.08 39.94 

mega4 44.86 35.9 19.24  coag5 13.59 57.83 28.58 

     mega0 0.84 6.11 93.05 

     mega1 2.97 4.74 92.29 

     mega2 17.53 5.26 77.21 

     mega3 4.29 19.34 76.37 

     mega5 12.76 12.14 75.1 
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shows the percentage of classification as B, C, or K12 from E. coli or brevis, coagulans, 

or megaterium from Bacillus. Of the twelve E. coli data cubes correctly classified by 

species, five were correctly classified by strain. Of the fifteen data cubes correctly 

classified by species as Bacillus, all were correctly classified as their respective strains, 

shown towards the bottom of the right side. Overall, 75% of the data cubes correctly 

classified by species were also correctly classified by strain, though the percentages of 

classification were typically low, as was the case during species classification. These low 

percentages occur primarily in the E. coli and Bacillus brevis data cubes. This is likely 

due to the degree of similarity between the spectra of E. coli and the spectra of Bacillus 

brevis (Figure 7). The percentages are typically lower than 50%, except in the case of 

K4, where the percentage is just above 60%. It is hypothesized that this may also be due 

to the highly varying numbers of PCs selected by the optimum PC selection algorithm. 

Thus, it would be helpful to institute a degree of uniformity to the numbers of PCs used 

to evaluate a given data cube to see how the classification changes accordingly. 

 

3.7.2.1 Instituting a Degree of Uniformity 

 

In order to assess whether the highly varying number of optimum PCs used for each 

spectrum leads to the low percentages encountered, an adjustment was made to the 

optimum PC selection algorithm. This adjustment allows the algorithm to calculate the 

optimum number of PCs for every spectrum within a data cube and calculates the 

average number of PCs for that set. Utilizing the average number of PCs for every 

spectrum in the data cube will introduce a measure of uniformity while still allowing the 

spectroscopic features to be modeled with a minimum amount of over-fitting. It will also 

allow for only one variable, the spectrum, changing at a time. 

The left and right sides of Table 6 show the same information as in Table 4, though here 

the average number of PCs has been used. Overall, of the twenty-seven correctly 

classified data cubes, the percentages of classification have increased, with all but one 

above 60%. It is interesting to note that, while the number of correctly classified data 

cubes has remained the same, some of the identities have changed. Previously, three of 
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Table 6: Species classification based percentage of classifiable spectra using the average number of PCs as calculated by the optimum PC 
selection algorithm. The higher percentages of correct classification are shown in bold. Incorrect species classifications are noted by italics. 
(B = E. coli B, C = E. coli C, K = E. coli K12, brev = Bacillus brevis, coag = Bacillus coagulans, mega = Bacillus megaterium) 

 

 

 

Data Set 

% E. coli 

Classification 

% Bacillus 

Classification Data Set 

% E. coli 

Classification 

% Bacillus 

Classification 

B0 95.68 4.32 brev0 46.93 53.07 

B1 5.25 94.75 brev1 76.28 23.72 

B2 100 0 brev2 67.72 32.28 

B3 81.98 18.02 brev3 62.18 37.82 

B4 0 100 brev4 66.58 33.42 

B5 67.12 32.88 brev5 69.59 30.41 

C0 96.01 3.99 coag0 21.5 78.5 

C1 76.56 23.44 coag1 21.62 78.38 

C2 67.47 32.53 coag2 52.38 47.62 

C3 89.55 10.45 coag3 19.71 80.29 

C4 93.6 6.4 coag4 8.78 91.22 

C5 99.73 0.27 coag5 23.64 76.36 

K0 98.93 1.07 mega0 0 100 

K1 68.22 31.78 mega1 0 100 

K2 95.22 4.78 mega2 0 100 

K3 98.7 1.3 mega3 0 100 

K4 99.8 0.2 mega4 86.9 13.1 

K5 100 0 mega5 0 100 
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the five brevis data cubes were correctly classified as Bacillus. In this section, only one 

of them has been correctly classified as Bacillus. Recall from Figure 7 that the spectra of 

brevis were similar to those of E. coli while being different from coagulans and 

megaterium. It is likely that the spectra contained in the brevis data cubes are being 

reconstructed better using the E. coli calibration set, to which they are more similar, than 

the Bacillus calibration set, to which they are different. Because the numbers of PCs 

used are restricted here, the higher PCs from the Bacillus calibration set which may 

model differences between the general shapes of E. coli and Bacillus brevis are not 

accessible and thus the cubes are misclassified. 

The left side of Table 7 contains the data cubes classified as E. coli using the average 

numbers of PCs. The right side of this table shows the data cubes classified as Bacillus. 

Each side shows the percentage of classification by strain as well, with incorrect 

classifications shown in italics. Here, of the sixteen data cubes correctly classified as E. 

coli, five were correctly classified by strain. In this case, the adjustment to the optimum 

PC selection algorithm may be restricting the numbers of PCs used too much, not 

utilizing higher PCs that contain minor differences between the spectral shapes of the 

three E. coli strains. If the number of PCs used is too few, non-classifiable spectra will 

also result, as the correlation coefficients produced will be below the set threshold. On 

the right side of the table, the data cubes of Bacillus that were correctly classified by 

species have all been correctly classified by strain, except in the case of coag4. The 

percentages of classification have increased as well for each data cube. Megaterium 

again has large percentages, close to 100% for each data cube. 

Overall, the number of data cubes that were correctly classified by strain did decrease, 

likely due to the adjustment to the optimum PC selection algorithm, causing too few PCs 

to be used and not allowing the modeling of small differences by the higher PCs. 

However, as was the case for species classification using this approach, the 

percentages of classification did show an overall increase. Misclassifications do remain, 

particularly among the Bacillus brevis data cubes. Thus, identifying a contamination of 

Bacillus brevis as such would prove difficult, as five of the six evaluated data cubes were 

classified as the wrong species. Thus, it would be advantageous to both increase the 

number of overall correct classifications as well as classify the different species equally 
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Table 7: Results of strain classification using MCT spectra as calibration sets and an adjusted optimum PC selection algorithm using average 
PCs. The higher percentages of correct classification are shown in bold. Incorrect strain classifications are noted in italics. 

 

 

Classified as E. coli    Classified as Bacillus   

Data Set 
% E coli B 

Classification 

% E coli C 

Classification 

% E coli K12 

Classification 
 Data Set 

% Brevis 

Classification 

% 

Coagulans 

Classification 

% 

Megaterium 

Classification 

B0 84.63 4.18 11.19  B1 16.63 10.44 72.92 

B2 21.82 78.18 0  B4 0 100 0 

B3 1.77 97.92 0.31  brev0 97.54 0.05 2.41 

B5 25.66 19.8 54.54  coag0 8.74 90.1 1.15 

C0 87.29 12.54 0.17  coag1 5.25 84.35 10.4 

C1 23.36 43.9 32.74  coag3 0.41 65.32 34.27 

C2 0.25 0 99.75  coag4 2.42 35.16 62.42 

C3 5.22 50.67 44.11  coag5 5.74 66.39 27.87 

C4 45.79 43.17 11.04  mega0 0.08 0.03 99.89 

C5 30.25 28.68 41.07  mega1 0 0 100 

K0 1.82 52.47 47.71  mega2 0 0 100 

K1 6.92 77.79 15.29  mega3 0 0 100 

K2 0 0 100  mega5 0 0 100 

K3 0.22 99.04 0.74      

K4 0 0.02 99.98      

K5 0 99.14 0.86      

brev1 20.24 31.91 47.85      

brev2 13.1 31.5 55.4      

brev3 27.81 35.19 37      

brev4 7.89 37.87 54.24      

brev5 8.35 37 54.65      

coag2 54.18 45.82 0      

mega4 17.33 82.67 0      
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well, meaning that the data cubes belonging to one species are not correctly classified 

significantly better than the other, as in the case of Bacillus brevis. A second adjustment, 

using FPA data cubes rather than MCT spectra as calibration sets, is applied. 

 

3.7.2.2 Using FPA Data Cubes as Calibration Sets 

 

Figure 10 (top) depicts a MCT spectrum and a spectrum from a FPA data cube, both of 

E. coli B. It can be seen that, while the spectra have similar shapes, they do have 

inherent differences. This is evident when looking at the Amide I peak at ~1650cm-1. 

Where the MCT spectrum has a more broad shape, the FPA spectrum does not. What 

looks like noise is also present in the FPA spectrum, though this may be masking other 

spectral features. The same FPA spectrum is shown with the first PCs from the E. coli 

and Bacillus calibration sets in the bottom of Figure 10. As MCT spectra from the 

different species are used in the calibration set, it can be seen that the PCs resemble 

these spectra; more importantly, they do not contain the differences seen in the FPA 

spectrum. The PCs produced from the MCT spectra will model the overall shape of the 

FPA spectrum, but will not be able to model these differences, which may lead to 

misclassifications and must be accounted for. For this reason, FPA data cubes have 

been used as calibration sets in a second adjustment to the classification method. 

The data analysis method using FPA data cubes as calibration sets also uses the 

average numbers of PCs. Here, one data cube from each strain has been removed from 

evaluation, to be used for calibration. Again, for species classification, three data cubes 

from E. coli are combined into one calibration set and three data cubes from Bacillus are 

combined into a second calibration set. The left and right sides of Table 8 contain the 

same information as shown in Table 4 and Table 6, with some key differences. Here, 

cubes B0, C3, K4, brev0, coag0, and mega0 have been used for calibration and thus are 

not evaluated. Data cubes B2 and B4 are marked with a “zero” in bold italics, as they 

were both deemed non-classifiable, meaning that no correlation coefficient produced 

was above the set threshold of 0.9. In fact, for cube B4, the highest correlation 

coefficient obtained from the E. coli calibration was 0.896, while the highest obtained 

from the Bacillus calibration set was 0.623. 
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Figure 10: (top) comparison of MCT spectrum from E. coli B  and a FPA spectrum from E. coli B. 
Though the spectra have a similar overall shape, there are inherent differences between the two. 
(bottom) comparison of FPA spectrum of E. coli B and first PCs from E. coli and Bacillus 
calibration sets. Here the first PCs resemble the MCT spectra they are produced from. 
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Table 8: Species classification results based on percentage of correct classification using FPA data cubes as calibration sets. The higher 
percentages of correct classification are shown in bold. Incorrect species classifications are noted by italics. Data cubes that are non-
classifiable are noted by bold red italics. 

 

Data Set 

% E. coli 

Classification 

% Bacillus 

Classification Data Set 

% E. coli 

Classification 

% Bacillus 

Classification 

B0 USED AS CALIBRATION SET brev0 USED AS CALIBRATION SET 

B1 99.92 0.08 brev1 85.47 14.53 

B2 0 0 brev2 25.6 74.4 

B3 100 0 brev3 0.33 99.67 

B4 0 0 brev4 0.63 99.37 

B5 100 0 brev5 0 100 

C0 2.64 97.36 coag0 USED AS CALIBRATION SET 

C1 100 0 coag1 0 100 

C2 99.41 0.59 coag2 0.21 99.79 

C3 USED AS CALIBRATION SET coag3 0.25 99.75 

C4 98.06 1.94 coag4 0 100 

C5 0.05 99.95 coag5 0 100 

K0 21.23 78.77 mega0 USED AS CALIBRATION SET 

K1 0 100 mega1 0 100 

K2 100 0 mega2 0.02 99.98 

K3 78.93 21.07 mega3 0 100 

K4 USED AS CALIBRATION SET mega4 0.07 99.93 

K5 100 0 mega5 0 100 
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The right side of the table shows the percentages of classification for each of the 

Bacillus cubes, again not counting the cubes used for calibration. Here, fourteen of the 

evaluated data cubes were correctly classified as Bacillus with at least 74% 

classification. Four of the brevis data cubes are now correctly classified as Bacillus, as 

are all of the evaluated coagulans and megaterium data cubes. 

On the left side of Table 9, the data cubes that were classified as E. coli are shown. The 

right side contains the data cubes classified as Bacillus. The percentages of 

classification by strain are shown on each side in the grey/white rows, with incorrect 

classifications noted by italics. Note that the data cubes used as calibration sets are not 

shown here, nor are the two data cubes of E. coli B that were deemed non-classifiable. 

Nine E. coli data cubes, shown on the left, were correctly classified by species as E. coli. 

Of these, seven were correctly classified as their respective strains with percentages 

above 70%. The misclassification of the two E. coli B data cubes may again be due to 

restricting the numbers of PCs used. The Bacillus data cubes shown on the right side 

were also classified well by strain. All fourteen were correctly classified as their 

respective strains, with percentages of classification above 75% in all but brev2. The 

overall percentages of classification remained about the same as for the results 

presented in Table 7. The overall correct strain classification, however, improved a good 

deal. Here, 91% of the classifiable data cubes were correctly classified by strain. 

 

3.8 Conclusions 

 

Bacterial colonies are often small and localized within an extended sample area. Thus, 

they need to be found and identified. The first part of this chapter focused on finding 

such colonies. In order to investigate many locations at one time, spectroscopic imaging 

combines FTIR spectroscopy with an infrared camera, allowing the fast acquisition of 

data. As this produces a great deal of information, it can be useful to visualize this 

information by assigning colors to different materials, thereby relating a color to a 

chemical property. In order to accomplish this, a characteristic signature within the 

chemical properties of a material must be identified. A principal component analysis can  
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Table 9: Results of strain classification using FPA data cubes as calibration sets and a restricted optimum PC selection algorithm using 
average PCs. The higher percentages of correct classification are shown in bold. Incorrect classifications are noted in italics. Cubes B2 
and B4 are not shown, as they were non-classifiable. 

 

 

Classified as E. coli    Classified as Bacillus   

Data Set 
% E coli B 

Classification 

% E coli C 

Classification 

% E coli K12 

Classification 
 Data Set 

% Brevis 

Classification 

% 

Coagulans 

Classification 

% 

Megaterium 

Classification 

B1 87.19 0.84 11.97  C0 97.99 2.01 0 

B3 2.34 6.63 91.03  C5 97.79 2.21 0 

B5 3.62 63.73 32.65  K0 100 0 0 

C1 7.57 72.37 20.06  K1 100 0 0 

C2 2.3 78.49 19.21  brev2 50.56 48.7 0.74 

C4 3.92 93.8 2.28  brev3 98.61 1.39 0 

K2 0 0 100  brev4 97.47 2.53 0 

K3 0 0.02 99.98  brev5 92.38 5.42 2.2 

K5 0 0.91 99.09  coag1 14.87 83.22 1.9 

brev1 0 0 100  coag2 15.62 80.37 4.01 

     coag3 0.89 98.96 0.15 

     coag4 1.32 98.07 0.62 

     coag5 4.96 92.69 2.35 

      mega1 8.45 3.54 88.01 

      mega2 9.98 2.27 87.75 

      mega3 5.33 20.24 74.43 

      mega4 11.81 0.07 88.11 

      mega5 0.99 0.05 98.96 
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extract the spectroscopic features from a set of materials, providing a representation of 

the chemical properties. To combine PCA with imaging, a multivariate image analysis 

has been performed. A MIA produces color images in which different materials are 

displayed as different colors. This approach was applied to three colonies of E. coli. Data 

cubes obtained from these colonies were merged together to show that localization in an 

extended area was possible. It was shown that these colonies could be clearly 

discriminated from a substrate based on different spectroscopic signatures and that 

each of the strains could be discriminated from one another, with each of the colonies 

homogeneous in color within itself and different colonies encoded as different colors. 

The substrate was represented as a uniform green color throughout the merged image.  

The second part of this chapter focused on the identification of found bacterial colonies 

using spectroscopic imaging. Building on the correlation analysis presented in chapter 

two, the identification method presented here was based on a similar hypothesis. The 

spectra contained within a data cube of a certain type should have spectral features that 

are more similar to the features of spectra of the same type than to those of a different 

type. MCT spectra of known type were used as a „gold standard‟ to which the spectra in 

a data cube could be compared. A principal component analysis was applied to this gold 

standard in order to model different spectral shapes shown in Figure 8. This allowed the 

reconstruction of a spectrum within the data cube. A correlation analysis between the 

reconstructed spectrum and the original spectrum provided a measure of the similarity 

between a spectrum in a data cube and the gold standard. It was expected that the 

correlation coefficient would be higher if the spectrum in the data cube and the gold 

standard were of the same species. Using MCT spectra and FPA data cubes of known 

bacteria types, the identification method was assessed as to how well it was able to 

identify bacterial colonies.  

With no adjustments, the identification method correctly classified twenty-seven out of 

thirty-six data cubes as the correct species, with twenty out of those twenty-seven 

identified as the correct strain. Two adjustments were made to the identification in order 

to maximize both the percentages of classification and the overall number of correct 

classifications. The first adjustment placed a restriction on the optimum PC selection 

algorithm, calculating the average number of optimum PCs for a given data cube. The 
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second adjustment utilized acquired FPA data cubes as calibration sets. Application of 

the first adjustment was found to raise the percentages of classification for both species 

and strain classifications, though the number of correct classifications was affected 

adversely. During species classification, the strains of Bacillus brevis were found to be 

classified as E. coli, to which they are spectrally similar. By restricting the numbers of 

PCs used, it is possible that higher PCs modeling the spectral differences between 

Bacillus brevis and E. coli were not utilized, resulting in misclassifications. This same 

situation was seen during strain classification, this time between the three strains of E. 

coli, resulting in an overall lower number of correct strain classifications than did the 

approach without using this adjustment. 

Utilizing FPA data cubes as calibration sets was hypothesized to minimize the number of 

misclassifications due to using PCs from MCT spectra, which are able to model only the 

general shape of the FPA spectra and not inherent differences between the two. 

Applying this second adjustment in conjunction with the first did result in fewer 

misclassifications for both species and strain. Out of the twenty-eight classifiable data 

cubes, twenty-three were correctly classified by species. Of those, twenty-one were 

correctly classified by strain with high percentages of classification. Thus, using 

spectroscopic imaging for the identification of found bacterial colonies has been shown 

to work well. 
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Chapter 4 

Augmenting Spectroscopic Imaging for Analyses 

of Samples with Complex Surface Topographies 

 

4.1 Introduction 

 

Spectroscopic imaging [48]-[61] has become widely used in the analysis of 

heterogeneous sample by incorporating focal plane array detectors into spectrometers. 

This allows the analyses of spatial distributions of chemical information in an X-Y plane 

at high time resolution. However, in the case of reactions proceeding in three spatial 

dimensions (X-Y-Z), the acquisition of spectroscopic information in an X-Y plane plus 

topographic information (Z-dimension) is needed. When capturing visible (2D) images 

from 3D samples, Z-dimension, or height information, is inherently lost. This information 

may become useful for monitoring the growth of bacterial colonies. Therefore, this 

chapter discusses an augmentation to a spectroscopic imaging setup that can acquire 

both types of data, i.e. spatially resolved spectroscopic information and topographic 

information at one time. 

Custom-made illumination optics project a regularly shaped light pattern, i.e. areas of 

illumination and shadow, onto 3D samples (Figure 11, left). This light pattern is 

generated by placing a micromesh into the beam path of a visible light source. If the 

sample is flat or only substrate is present, the light pattern is preserved. If a non-flat 

structure is present, the light pattern is distorted accordingly, as can be seen in Figure 

12. Since height information is encoded in these distortions, the topography can be 

determined by extracting the distortions by means of custom-designed computer 

software.
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Figure 11: (left) Step 1: FTIR spectroscopic imaging in reflection, transmission or ATR mode probes samples at high spatial resolution. 

Step 2: Samples are illuminated with a light pattern in the visible wavelength range; this pattern gets distorted upon projection onto 3D 

samples and topographic information will be gained from these distortions. (right) Picture of the realized external illumination optics setup for 

generating and projecting a light pattern onto samples. 
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illumination from light source

projection is distorted by sample surface

 
 

 

Figure 12: Placing a micromesh into the beam path of a visible light source projects a regular light 
pattern onto a sample. When projected onto a flat substrate the regularity of the pattern is 
retained, as shown by the green lines. When projected onto a sample have a complex surface 
topography, the pattern becomes distorted, as shown by the red curved lines. 
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Because topographic probing must not affect infrared measurements, different 

wavelength ranges are used; spectroscopic information is acquired in the mid-IR while 

the light pattern (topography probe) is generated in the visible. In order to relate 

distortions to physical height structures, the setup must be calibrated. To this end, 

calibration objects of known dimensions have been manufactured and are placed under 

the visible light source. Determining the distortions introduced by objects of known 

heights will derive a calibration between distortions and topographies. Due to 

mechanical restrictions the light pattern can only achieve a certain spatial resolution. In 

order to enhance the spatial resolution, scanning the light pattern in X and Y-directions is 

proposed. 

 

4.2 Experimental Setup and Results 

 

4.2.1 Experimental Setup 

 

The setup used in this study is coupled to a commercial FTIR spectroscopic imager. This 

system features a 64 x 64 pixels focal plane array (FPA) and a CCD camera for the 

visible wavelength region (Sony Exwave HAD Digital Video Camera). An illumination unit 

projecting a light pattern onto samples has been developed in-house and is depicted in 

Figure 11 (right). The diverging light emitted from a blue LED is collimated into a parallel 

beam using a microscope objective, transmitted through a micromesh (Figure 13, left) 

and then focused onto the sample by a second microscope objective to provide sufficient 

sample illumination. This illumination unit operates in the visible wavelength range in 

order to prevent interference with infrared measurements. For this same reason, the 

mesh contained in the illumination unit must be kept outside of the IR beam path; 

otherwise artifacts would be contained in the spectroscopic data obtained. Another 

reason for choosing the visible wavelength range is that CCD cameras usually have 

larger FPAs (here: 370 x 280 pixels), which will facilitate a better resolution of the 

topography than an infrared-FPA.  
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Figure 13: (left) Image of the micromesh used in these studies; the hole dimensions are 100µm x 100µm, wire thickness is 30µm. The 

transmission of such micromeshes typically ranges from 30% to 70%.  (center) This image shows a piece of a pharmaceutical without mesh 

in the illumination path. (right) The mesh placed in the beam path reduces the overall light level but retains sufficient contrast. The white 

dotted line points out (a) distortions of the light pattern or (b, grey) a discontinuity in the pattern. 
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4.2.2 Sufficient Contrast 

 

Since the micromesh (Figure 13, left) acts as a grey filter, it was first determined whether 

the remaining light level still facilitates a good contrast between shadow and illuminated 

areas. If there is insufficient contrast, the light pattern extraction will be difficult at best. In 

Figure 13 (center and right) images of a pharmaceutical sample are shown with and 

without the mesh present. It can be seen that the mesh somewhat reduces the light level 

but enough light is still transmitted through so as to ensure sufficient contrast. Beause 

the mesh is not placed in the IR beam path, the issue of sufficient contrast is of 

importance only to topographic analyses, as insufficient visible contrast will not affect the 

intensity of the IR radiation used for spectroscopic measurements. The micromesh used 

in these studies had a good compromise between light reduction and pronunciation of 

the light pattern. Using a micromesh having thinner wires and larger apertures may 

transmit more light but would also generate a less pronounced pattern. This would make 

the detection and extraction of the light pattern less reliable. Also the mesh shown has a 

limited ruggedness and thinner wires could cause an increased sensitivity to airflow. On 

the other hand thicker wires and smaller apertures would cover too much of the sample 

with shadows and thus would reduce contrast and the spatial resolution of the 

topography. Figure 13 (right) is an example demonstrating the distortions of the light 

pattern due to the sample‟s surface topography; the curved white line highlights the 

pattern of a selected wire. 

 

4.2.3 Extraction of the Light Pattern 

 

Once image acquisition is complete, the distorted light pattern must be extracted. The 

light pattern generated consists of areas of illumination and areas of shadow. Thus, the 

signal generated by this pattern will have areas of higher signal (maxima) and areas of 

lower signal (minima). Figure 14 (left) shows a typical visible image of the light pattern 

produced. Here, the pattern is projected onto a small piece of pharmaceutical tablet. A 

mesh extraction algorithm has been developed that searches this image for local 

minima, indicating that a shadow has been found. The mesh extraction operates as 
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Figure 14: (left) Image of a microscopic sample acquired by the CCD camera (step 2 in 

Figure 11); (right) signal measured along the column indicated by a white arrow in the top left 

image; the locations marked by (1) - (8) correspond to local signal minima and shadow areas 

which receive less light. 
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such: the visible image shown in Figure 14 (left) in bitmap (BMP) form is loaded into a 

matrix, producing rows and columns of signal such as the one seen in Figure 14 (right). 

A window is moved stepwise over this signal, searching for a local minimum at each 

position. If the minimum is found inside the window and not at the edges, it is marked. 

This is done for every row and column of the matrix, thereby covering both the horizontal 

and vertical signals. 

Looking at the white arrow in Figure 14 (left), it can be seen that, starting at the top of 

the image and moving to the bottom, there are eight areas of shadow, marked (1)-(8), 

produced by different mesh wires. These are local minima that the mesh extraction 

algorithm will search for. The signal along this arrow can be seen by the graph in 

Figure 14 (right). The numbers (1)-(8) in the right image correspond to the local minima 

marked (1)-(8) in the left image. In order to search for these local minima the mesh 

extraction algorithm moves a window covering N measurement points stepwise over the 

signal. At each window position, the minimal signal reading inside this window is 

determined.  

In moving a window over such a signal as the one in Figure 14 (right), it can be seen that 

the minimum value inside the window can be found either at one of the borders of the 

window or inside the borders of the window (arrows marked a, b, and c in Figure 15): (a) 

If the minimum signal reading is found at the right border of the window, the window is 

covering a downhill portion of the signal and a local minimum has not yet been reached. 

(b) If the minimum is found at the left border of the window, the window covers an uphill 

portion of the signal and a local minimum has been passed. (c) If the minimum value is 

found inside the window and not at one of the borders, a local minimum is contained 

inside the window. In this case the pixel having the smallest value is marked. It is 

important to adapt the window length to the given data. If the window length is too long, 

it may cover more than one local minima and the detection is ambiguous. Conversely, if 

the window is too narrow, small noise spikes might be misinterpreted as mesh shadow. 

A window length of N = 10 measurement points was found to work well for this 

application. 
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Figure 15: (a) If the minimum value inside the window is found at the right border, the window is 
on a downhill portion of the signal and has not yet reach a true local minimum. (b) if the minimum 
value is found at the left border of the window, the window is on an uphill portion of the signal and 
has passed a true local minimum. (c) if the minimum value is found inside the window, not at the 
either border, the window is covering a portion of the signal containing a true local minimum. 
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In some cases, such as using an airflow-sensitive mesh that produces noisy images, it is 

advantageous to average over several images in order to enhance the signal-to-noise 

ratio. Here, though the light pattern could be extracted well without averaging, twenty 

images have been averaged. As the camera has a frame rate of several tens of Hertz, 

this does not reduce the time resolution of the analysis significantly. 

 

4.2.4 2D FFT Band Pass Filtering 

 

It is evident that the signal in Figure 14 (right) is somewhat noisy. Applying the mesh 

extraction algorithm to such a noisy signal will result in several local minima being found 

in an area of low signal, as can be seen in Figure 16. The several local minima are 

marked by red circles. The results of the extraction in such a case are shown in Figure 

17 (bottom, left). The local minima found by the mesh extraction algorithm have been 

marked with white dots. Obviously, the general shape of the light pattern has been 

derived. However, the white dots do not form a continuous line and many minima have 

been found outside the mesh‟s shadow. Due to the noise level in the signal, minima 

detection is unreliable and leads to discontinuity in the extracted pattern. Looking at the 

raw measurement data in Figure 14 (right), it can be seen that the signal is “sine-

shaped”. While this pattern must be preserved, it is advantageous to remove the noise, 

thus producing a smoother signal that does not have many local minima within one area 

of low signal. 

In order to enhance the signal-to-noise, the raw images have been bandpass filtered in 

the Fourier domain. For this purpose the image has been 2D fast Fourier transformed 

(FFT) [37]. To the transformed image a bandpass filter (fine-tuned for the images 

acquired here) has been applied. This somewhat suppresses DC signal components, as 

DC does not contain information about the mesh shadow. The high frequencies, i.e. 

noise, have also been suppressed. In this way the bandpass filter suppresses signal 

components that have clearly different (spatial) frequencies than the more or less regular 

mesh shadow. This bandpass filter has been empirically fine-tuned to this optical setup. 
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Figure 16: Expanded view of one area of low signal (shadow). It can be seen that, due to the 
noise level of the signal, several local minima are found within one area of low signal. This will 
cause unreliability and discontinuity in the mesh extraction. 
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Figure 17: (top, grey graph) raw measurement signal from Figure 14. (top, black graph) 
measurement signal after apply 2D FFT band pass filtering. The noise level is considerably lower. 
(bottom, left) the extracted light pattern is marked by white dots overlaying the image; no 2D FFT 
band pass filtering had been applied; (bottom, right) extracted light pattern marked by white lines 
overlaying the image after utilizing a 2D FFT band pass filter. 
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In Figure 17 (top) the grey signal after bandpass filtering is shown in black. The 

enhanced signal-to-noise is clearly visible; the signal minima induced by the mesh‟s 

shadow also become better defined. The search for local minima becomes much less 

ambiguous and the extracted light pattern Figure 17 (bottom, right) contains much less 

noise. Furthermore, since the lines of the light pattern are now continuous the 

determination of the surface topography is enhanced. 

 

4.2.5 Enhancing Spatial Resolution 

 

The number of shadow lines projected onto a sample determines the spatial resolution 

with which the topography can be derived. As bacterial contaminations begin as small 

colonies, a good spatial resolution is needed; otherwise only a few mesh lines may cover 

the colony. In Figure 18, the distortion of the light pattern reveals a ridge running across 

the piece of pharmaceutical, however, the spatial resolution is limited because only a 

few lines cover the sample. In order to better probe the topography more shadow lines 

need be projected onto the samples. To achieve this, a finer mesh could be chosen, 

which would introduce mechanical challenges as mentioned before. Alternatively, one 

could choose a large magnification factor of the second microscope objective. The 

resulting, smaller focal depth, however, would require the second microscope objective 

being placed very close to the sample. Both objectives, i.e. IR microscope and 

illumination optics, have typical working distances of only a few millimeters. Bringing 

them close together is often not possible since there is simply not enough space for both 

objectives. Another more feasible solution is to scan the mesh. For this purpose, a U-

shaped holder (Figure 19) of the micromesh is mounted onto an XY translation stage. 

While the mesh is scanned stepwise in Xm- and Ym-direction (Figure 18) images are 

acquired at each position. From each of these images the (distorted) light pattern is 

extracted and combined to a final topographic image having an enhanced spatial 

resolution. In Figure 20, extracted distortions generated by shifting the mesh are shown. 

Dashed white lines are used as markers to visualize the shift of the light pattern to the 

right in the bottom image. The depicted shift has been obtained after five steps to the 

right. Thus, a spatial resolution of the topography on the micrometer scale is feasible. 
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Figure 18: In order to enhance the spatial resolution of the surface structure, the micromesh is 

scanned stepwise over the sample in Xm and Ym-direction; the subscript m(esh) refers to the Xm -Ym 

plane of the mesh (Figure 11, center) which does not coincide with the X-Y plane shown in 

Figure 11 (bottom, center). After extracting the light pattern at each position all extracted patterns 

are combined. This enhances the spatial resolution of the sample‟s topography and allows a 

better assessment of (here) the sample‟s ridge structure.  
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Figure 19: (top) Top and (bottom) side views of U-shaped mesh holder. The mesh holder is 
mounted to an X-Y translation stage that allows is to be scanned in both X- and Y-directions. An 
image is acquired at each position, then are combined into a final image having an enhanced 
spatial resolution. The mesh is simulated in red. 
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Figure 20: Demonstration of enhancing the spatial resolution of the topography probing by 

stepwise scanning the mesh in the Xm -Ym plane. The mesh in bottom image is shifted to the right 

relative to the top image; the white dashed lines serve as markers. The arrow shown at the top 

gives an approximate length scale; spatial resolutions on the micrometer scale are feasible. 
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4.2.6 Height Calibration 

 

Once the light pattern and its distortions have been extracted, these distortions 

measured in pixels can be related to the samples‟ true physical height (i.e. topography) 

in micrometers. This can be useful if height information about a bacterial colony is of 

interest. For this purpose, „calibration objects‟ of known dimensions are placed on the 

microscope stage and are illuminated with the light pattern. For these investigations, 

pillars of different heights (115±2.4 µm, 200±1.3 µm, 211±1.5 µm, 250±2.5 µm, and 

310±1.4 µm) have been milled out of a Teflon slide (Figure 21, right). The footprint and 

the heights of these pillars have been determined under a microscope in topview and 

sideview, respectively. The extraction algorithm determines the induced distortions and 

derives a translation from measured pixel shifts to known heights (Figure 21, left). Using 

a flat substrate as a “baseline” will establish the undisturbed light pattern (no height); 

from this the amount of distortion caused by the calibration objects can be measured 

and related to calibration heights. 

 

4.3 Conclusions 

 

Determining the topography of samples is important for the chemical sensing of 

reactions that proceed in three spatial dimensions, such as the growth of bacterial 

contaminations, and requires the need to collect both spectroscopic information and 

topographic information from a sample. This topographic information is inherently lost 

when using spectroscopic imaging. A spectroscopic imaging setup has been augmented 

in order to gain topographic information from samples along with spectroscopic data. 

This setup is readily applicable to the detection and growth monitoring of small bacterial 

colonies.
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Figure 21: (left) This schematic depicts the use of calibration objects for relating their known 

heights in µm to distortions of the light patterns (compare Figure 14 - Figure 20) induced by them; 

(right) these microscopic calibration objects (only two are shown) have been milled out of a white 

Teflon slide. The footprint (approx. 250 µm x 250µm) and the heights of the pillars have been 

determined under a microscope. After projecting a light pattern onto one or several of these 

pillars the pixel shift-to-height relation can be determined. 
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For topographic investigation, external illumination optics for the visible wavelength 

range have been developed that project a regular light pattern onto the 3D samples. This 

light pattern is generated by placing a micromesh into the illumination beam path. If this 

light pattern is projected onto a flat substrate, it is preserved. If, however, the samples 

have a 3D surface topography, the regular light pattern is distorted. Information about 

surface structures is encoded into these distortions. By means of a novel algorithm the 

(distorted) light patterns are extracted from images acquired with a CCD camera. For 

translating these distortions into physical height information a calibration is required. This 

calibration is derived by means of calibration objects of known dimensions placed under 

the same illumination optics. Since these calibration objects also induce a distortion of 

the light pattern, their known heights can be related to induced shifts. Due to space 

limitations under the microscope objective and due to the fragility of micromeshes used, 

the light patterns are limited to length scales on the order of tens of micrometers. 

Because bacterial contaminations start out as colonies that are small, higher resolutions 

are required. This can be accomplished by scanning the mesh by means of a 

microstage, and has been shown to enhance the topographic spatial resolution. 
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Chapter 5 

Summary and Conclusions 

 

Methods of bacterial identification currently in place involve the collection of numerous 

possible sources of contamination, extraction techniques, culturing, and then finally 

identification. This can take a considerable amount of time, which is not conducive to the 

timely treatment of potentially fatal bacterial infections. Due to its speed, nondestructive 

nature, ease-of-use, and the wealth of information it provides, infrared spectroscopy has 

become a useful analysis technique in the field of bacteriology. FTIR is fast, requires 

little sample handling, no expensive dyes or labels, and yet, can detect infrared-

absorbing components within bacterial samples. These components produce strong 

features with a good signal-to-noise. While the spectroscopic features produced by 

different strains of bacteria may not be visibly different, it has been shown here that, 

using a correlation analysis, three spectroscopically similar strains of E. coli bacteria 

could be differentiated from one another based on statistically significant differences in 

their spectra. 

FTIR spectroscopy can quickly discriminate similar strains of bacteria if their location is 

known. However, bacterial colonies are often small and localized within a larger area. 

The first part of chapter three presented a method of finding such colonies by visualizing 

information obtained by spectroscopic imaging. This method utilized a multivariate image 

analysis to visualize the chemical information obtained from different materials as 

different colors. Due to the spectral differences between a bacterial colony and the 

substrate used here, three bacterial colonies were represented as noticeably different 

colors than the substrate. By merging data cubes, the detection of bacterial 

contaminations within an extended sample area has been shown to be feasible. 

Once a bacterial colony has been found, it is important to correctly identify the 

contamination at the strain level in order to provide correct medical treatment. The 

second part of chapter three expanded the scope by introducing a second species of 

bacteria in order to assess the capability of an identification method. This method utilizes 
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a principal component analysis to model „gold standard‟ spectra of known species and 

strains, evaluates a spectrum from a spectroscopic imaging data cube, and constructs a 

second version of that spectrum. A correlation analysis is performed, calculating the 

degree of similarity between the original spectrum and the reconstructed spectrum, 

providing a measure of how similar the original spectrum is to the „gold standard‟. To 

maximize the number of correct classifications and the percentages of classification, two 

adjustments were made to the method. By making these two adjustments, the 

identification method succeeded in achieving both high percentages of classification as 

well as a large number of correct classifications. 

While spectroscopic imaging is able to determine the spatial distributions of chemical 

information in an X-Y plane, the investigation of chemical reactions proceeding in three 

dimensions (X-Y-Z), such as growing bacterial contaminations, requires the acquisition 

of both chemical information and topographic information. Capturing visible images of a 

three-dimensional object will inherently lose height information. An external optical setup 

for probing the surface topographies of three-dimensional samples has been presented 

in chapter four. This setup uses a micromesh inserted into the beam path of a visible 

illumination unit to project a regular light pattern onto the surface of a sample. If only a 

flat substrate is present, the regularity of the light pattern is retained. However, if a 

sample having a complex surface topography is present, the light pattern becomes 

distorted. Encoded within these distortions is height information, which can be extracted 

by means of a novel method developed here, and related to actual height information 

using calibration objects of known dimensions. The spatial resolution at which a sample 

is probed can be enhanced, if needed, by scanning the micromesh in X and Y, extracting 

the distortions at each position, then recombining all extracted distortions into one image 

having a higher spatial resolution. Because this setup is coupled to a spectroscopic 

imaging setup, the growth monitoring of bacterial colonies can be achieved. 



 73 

List of References 

 



 74 

1 Gilbert, M.; Luttrell, R.; Stout, D.; Vogt, F. J. Chem. Ed. 2008, 85, 135. 

2 Gilbert, M.; Frick, C.; Wodowski, A.; Vogt, F. Appl. Spectrosc. 2009, 63, 6. 

3 Gilbert, M.; Vogt, F. Anal. Chem. 2007, 79, 5424-5428. 

4 World Health Organization, “Food Safety and Foodborne Illness”, 

http://www.who.int/mediacentre/factsheets/fs237/en/, accessed June 9, 2009. 

5 Vaneechoutte, M.; Van Eldere, J. J. Med. Microbio. 1997, 46, 188. 

6 Belgrader, P.; Benett, W.; Hadley, D.; Richards, J.; Stratton, P.; Mariella Jr., R.; 

Milanovich, F. Science, 1999, 284, 449. 

7 Karasinski, J.; White, L.; Zhang, Y.; Wang, E.; Andreescu, S.; Sadik, O.; Lavine, B.; 

Vora, M. Biosens. Bioelectron. 2007, 22, 2643. 

8 Neufeld, T.; Schwartz-Mittlemann, A.; Biran, D.; Ron, E.; Rishpon, J. Anal. Chem. 

2003, 75, 580. 

9 Goodridge, L.; Chen, J.; Griffiths, M. Int. J. Food Microbiol. 1999, 47, 43. 

10 Siegrist, T.; Anderson, P.; Huen, W.; Kleinheinz, G.; McDermott, C.; Sandrin, T. J. 

Microbiol. Methods 2007, 68, 554. 

11 Rajakaruna, L.; Hallas, G.; Molenaar, L.; Dare, D.; Sutton, H.; Encheva, V.; Culak, 

R.; Innes, I.; Ball, G.; Sefton, A.; Eydmann, M.; Kearns, A.; Shah, H. Infect. Genet. 

Evol. 2009, 9, 507. 

12 Degand, N.; Carbonnelle, E.; Dauphin, B.; Beretti, J.; Bourgeois, M.; Sermet-

Gaudelus, I.; Segonds, C.; Berche, P.; Nassif, X.; Ferroni, A. J. Clin. Microbiol. 2008, 

46, 3361. 

13 Diedrich, J.; Rehse, S.; Palchaudhuri, S. J. Appl. Phys. 2007, 102, 014702-1. 

14 Xie, C.; Mace, J.; Dinno, M.; Li, Y.; Tang, W.; Newton, R.; Gemperline, P. Anal. 

Chem. 2005, 77, 4390. 

15 Patel, I.; Premasiri, W.; Moir, D.; Ziegler, L. J. Raman Spectrosc. 2008, 39, 1660. 

16 Sandt, C.; Madoulet, C.; Kohler, A.; Allouch, P.; De Champs, C.; Manfait, M.; 

Sockalingum, G.D. J. Appl. Microbiol. 2006, 101, 785. 



 75 

17 Foster, N.; Thompson, S.; Valentine, N.; Amonette, J.; Johnson, T. Appl. Spectrosc. 

2004, 58, 203. 

18 Erukhimovitch, V.; Pavlov, V.; Talyshinsky, M.; Souprun, Y.; Huleihel, M. J. 

Pharmaceut. Biomed. Anal. 2005, 37, 1105. 

19 Naumann, D.; Keller, S.; Helm, D.; Schultz, C.; Schrader, B. J. Mol. Struct. 1995, 

347, 399. 

20 Samuels, A.; Snyder, A.; Emge, D.; St. Amant, D.; Minter, J.; Campbell, M.; Tripathi, 

A. Appl. Spectrosc. 2009, 63, 14. 

21 Lewis, E.N.; Treado, P.J.; Reeder, R.C.; Story, G.M.; Dowery, A.E.; Marcott, C.; 

Levin, I.W. Anal. Chem. 1995, 67, 3377. 

22 de Juan A.; Tauler R.; Dyson R.; Marcolli C.; Rault M.; Maeder M. Trend Anal. 

Chem. 2004, 23, 70. 

23 Geladi, P.; Grahn, H. Multivariate Image Analysis; John Wiley & Sons: Chichester; 

1996. 

24 Malinowski, E. Factor Analysis in Chemistry, 3rd ed.; John Wiley & Sons: New York; 

2002. 

25 Jolliffe, I. Principal Component Analysis, 2nd ed.; Springer: New York; 2002. 

26 Martens, H.; Næs, T. Multivariate Calibration, 2nd ed.; John Wiley & Sons: New York; 

1991. 

27 Cody, S.; Glynn, M.; Farrar, J.; Cairns, K.; Griffin, P.; Kobayashi, J.; Fyfe, M.; 

Hoffman, R.; King, A.; Lewis, J.; Swaminathan, B.; Bryant, R.; Vugia, D. Ann Intern 

Med. 1999, 130, 202. 

28 Herwaldt, B.; Beach, M. Ann Intern Med. 1999, 130, 210. 

29 Todar, K. “Pathogenic E. coli”, Online Textbook of Bacteriology. University of 

Wisconsin-Madison Department of Bacteriology, accessed June 2008. 

30 Choo-Smith, L.; Maquelin, K.; Van Vreeswijk, T.; Brunning, H.; Puppels, G.; Thi, N.; 

Kirschner, C.; Naumann, D.; Ami, D.; Villa, A.; Orisini, F.; Doglia, S.; Lamfarraj, H.; 



 76 

Sockalingum, G.; Manfait, M.; Allouch, P.; Endtz, H. Appl. Environm. Microbio. 2001, 

67, 1461. 

31 Maquelin, K.; Kirschner, C.; Choo-Smith, L.; van den Braak, N.; Endtz, H.; Naumann, 

D.; Puppels, G. J. Microbiol. Methods 2002, 51, 255. 

32 Al-Holy, M.; Lin, M.; Cavinato, A.; Rasco, B. Food Microbio. 2006, 23, 162. 

33 Al-Qadiri, H.; Lin, M.; Cavinato, A.; Rasco, B. Int. J. Food Microbio. 2006, 111, 73. 

34 Kim, S.; Burgula, Y.; Ojanen-Reuhs, T.; Cousin, M.; Reuhs, B.; Mauer, L. J. Food 

Sci. 2006, 71, M57. 

35 Nadtochenko, V.; Rincon, A.; Stanca, S.; Kiwi, J. J. Photochem. Photobiol., A. 2005, 

169, 131. 

36 http://www2.chass.ncsu.edu/garson/PA765/correl.htm, accessed October 2008 

37 Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. Numerical Recipes in C, 2nd 

ed.; Cambridge University Press: New York; 1992. 

38 Draper, N.; Smith, H. Applied Regression Analysis, John Wiley & Sons, New York, 

1998 (3rd ed.) 

39 http://www.foodsafey.gov/~mow/chap12.html, accessed April 2009. 

40 Vogt, F. unpublished results. 

41 Gilbert, M.; Vogt, F. Spectroscopic Imaging and Chemometric Methods for Detection 

and Discrimination of Different E. coli Strains, Presentation at: PITTCON, Chicago, 

IL, March 2009 

42 Burke, R.; Gilbert, M.; Khandal, D.; Giordano, M.; Vogt, F. Using Microalgae 

Biodiversity along with FTIR and Chemometric Methods to Detect Environmental 

Changes in Marine Ecosystems, Presentation at: PITTCON, Chicago, IL, March 

2009 

43 Susi, H.; Byler, M.; Biochem. Biophys. Res. Comm. 1983, 115, 391. 

44 Susi, H.; Byler, M. Arch. Biochem. Biophys. 1987, 258, 465. 

45 Kong, J.; Yu, S. Acta Bioch. Bioph. Sin. 2007, 39, 549. 



 77 

46 Mandel, J. Am. Statist. 1982, 36, 15. 

47 Vogt, F.; Mizaikoff, B. J. Chemometrics 2003, 17, 346. 

48 Colarusso, P.; Kidder, L.; Levin, I.; Fraser, J.; Arens, J.; Levis, E. Appl. Spectrosc. 

1998, 52, 106A. 

49 Wold, J.; Kvaal, K. Appl. Spectrosc. 2000, 54, 900. 

50 Shaw, G.; Manolakis, D. IEEE Signal Process. Mag. 2002, 19, 12. 

51 Landgrebe, D. IEEE Signal Process. Mag. 2002, 19, 17. 

52 Manolakis, D.; Shaw, G. IEEE Signal Process. Mag. 2002, 19, 29. 

53 Lawrence, K.; Windham, W.; Park, B.; Buhr, R. J. Near Infrared Spectrosc. 2003,11, 

269. 

54 Liu, Y.; Windham, W.; Lawrence, K.; Park, B. Appl. Spectrosc. 2003, 57, 1609. 

55 Tran, C. Appl. Spec. Rev. 2003, 38, 133. 

56 Yu, H.; Macgregor, J. Chemom. Intell. Lab. Syst.  2003, 67, 125. 

57 Vogt, F.; Dable, B.; Cramer, J.; Booksh, K. Analyst. 2004, 129, 492. 

58 Vogt, F.; Cramer, J.; Booksh, K. J. Chemom. 2005, 19, 510.  

59 Beleites, C.; Steiner, G.; Sowa, M.; Baumgartner, R.; Sobottka, S.; Schackert, G.; 

Salzer, R. Vib. Spectrosc. 2005, 38, 143. 

60 Fernandez, D.C.; Bhargava, R.; Hewitt, S.M.; Levin, I.W. Nat. Biotechnol. 2005, 23, 

469. 

61 Romeo, M.J.; Diem, M. Vib. Spectrosc. 2005, 38, 115. 



 78 

Appendix 



 79 

Summary of Graduate School Honors, 
Publications, and Presentations 

 

Honors 

 

1. Eastman Graduate Summer Fellowship, Eastman Chemical Company, 

Kingsport, TN, April 2008 

2. Gleb Mamantov Graduate Chemistry Scholar, Department of Chemistry, 

University of Tennessee, Knoxville, TN, April 2008 

3. C.W. Keenan Outstanding Graduate Teaching Award, Department of Chemistry, 

University of Tennessee, Knoxville, TN, April 2007 

 

Publications 

 

1. M.K. Gilbert, C. Frick, A. Wodowski, F. Vogt  

Spectroscopic Imaging for Detection and Discrimination of Different E. coli 

Strains, Applied Spectroscopy 63(1), 6-13. 

 

2. M.K. Gilbert, R.D. Luttrell, D. Stout, F. Vogt  

Introducing Chemometrics to the Analytical Curriculum—Combining Theory and 

Lab Experience, Journal of Chemical Education, 2008, 85(1), 135-137 (+45 

pages of supplemental material) 

 

3. M.K. Gilbert, F. Vogt 



 80 

Augmenting Spectroscopic Imaging for Analyses of Samples with Complex 

Surface Topographies, Analytical Chemistry, 2007, 79(14), 5424-5428 

 

4. R.D. Luttrell, M.K. Gilbert, F. Vogt 

Composing Hybrid Wavelets for Optimum and Near-Optimum Representation 

and Accelerated Evaluation of N-way Data Sets, Journal of Chemometrics, 2007, 

21(1-2), 65-75 

 

Presentations 

 

1. M.K. Gilbert, F. Vogt 

Spectroscopic Imaging and Chemometric Methods for Detection and 

Discrimination of Different E. coli Strains, Presentation at: PITTCON, Chicago, IL, 

March 2009 

 

2. M.K. Gilbert, F. Vogt 

Spectroscopic Imaging and Chemometric Methods for Detection and 

Discrimination of Different E. coli Strains, Presentation at: Eastman Chemical 

Company, Kingsport, TN, February 2009 

 

3. M.K. Gilbert, C. Frick, A. Wodowski, F. Vogt 

Spectroscopic Imaging for Detection and Discrimination of Different E. Coli 

Strains, Presentation at: FACSS, Reno, NV, October 2008 

 

4. M.K. Gilbert, F. Vogt  

Augmenting Spectroscopic Imaging for Analyses of Samples with Complex 

Surface Topographies, Poster at: Pittcon, New Orleans, LA, March 2008 

 



 81 

5. M.K. Gilbert, F. Vogt 

Augmenting Spectroscopic Imaging for Analyses of Samples with Complex 

Surface Topographies, Presentation at: FACSS, Memphis, TN, October 2007 



 82 

Vita 

 

Michael Gilbert graduated from Shelby County High School in May 2000.  He went on to 

attend Bellarmine University in Louisville, KY and received a B.A. in Chemistry in May 

2005.  Michael entered the University of Tennessee as a graduate student in August 

2005 and joined the research group of Dr. Frank Vogt in December 2005.  He will 

receive a doctorate in Chemistry under Dr. Vogt‟s direction in summer 2009.  After 

graduating, Michael will join the faculty at Texas Wesleyan University in Fort Worth, TX 

as an Assistant Professor of Analytical Chemistry. 

 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2009

	Spectroscopic Imaging for the Detection and Identification of Bacterial Contaminations
	Michael Gilbert
	Recommended Citation


	To the Graduate Council:

