

University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange

Doctoral Dissertations

Graduate School

12-2009

Targeted Proteomics for the Characterization of Enriched Microbial Protein Isolates and Protein Complexes

William Judson Hervey

University of Tennessee-Knoxville/Oak Ridge National Laboratory Graduate School of Genome Science and Technology, judson.hervey@gmail.com

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation

Hervey, William Judson, "Targeted Proteomics for the Characterization of Enriched Microbial Protein Isolates and Protein Complexes. "PhD diss., University of Tennessee, 2009. https://trace.tennessee.edu/utk_graddiss/645

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:

I am submitting herewith a dissertation written by William Judson Hervey entitled "Targeted Proteomics for the Characterization of Enriched Microbial Protein Isolates and Protein Complexes." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences.

Gregory B. Hurst, Major Professor

We have read this dissertation and recommend its acceptance:

Dale A. Pelletier, Robert L. Hettich, Kurt H. Lamour, Frank W. Larimer

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by William Judson Hervey, IV entitled "Targeted Proteomics for the Characterization of Enriched Microbial Protein Isolates and Protein Complexes." I have examined the final electronic copy of this dissertation for form and content and recommended that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences.

Gregory B. Hurst Major Professor

Dale A. Pelletier Major Professor

We have read this dissertation and recommended its acceptance:

Robert L. Hettich

Kurt H. Lamour

Frank W. Larimer

Accepted for the Council:

<u>Carolyn R. Hodges</u> Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Targeted Proteomics for the Characterization of Enriched Microbial Protein Isolates and Protein Complexes

> A Dissertation Presented for the Doctorate of Philosophy Degree The University of Tennessee, Knoxville

> > William Judson Hervey, IV December 2009

Copyright © 2009 by William Judson Hervey, IV All rights reserved.

Dedication

This dissertation is dedicated to my father, William Judson Hervey, III.

Without his selfless sacrifices, steadfast love, and unwavering support throughout my *entire* education, the work presented would not have been possible.

Acknowledgements

It is necessary that I first acknowledge the effort Dr. Gregory B. Hurst has put forth during my mentorship. Throughout fluxes of experimental success and failure, Greg has guided me with upmost professionalism. It is not possible for me to articulate the sense of gratitude I have for Greg's mentorship.

I also acknowledge the members of my doctoral committee for directing my research: Dr. Dale A. Pelletier, Dr. Robert L. Hettich, Dr. Kurt H. Lamour, and Dr. Frank W. Larimer. I thank Dr. Pelletier and members of his laboratory for extending their biological knowledge and facilities to me. It is also necessary to thank Dr. Hettich for his participation in the GST curriculum, which has significantly contributed to my knowledge of mass spectrometry.

I acknowledge the Organic and Biological Mass Spectrometry (OBMS) Group as a whole. I especially thank Becky R. Maggard of the OBMS group for clerical assistance.

I acknowledge Dr. M. Brad Strader (NIH), Dr. Nathan VerBerkmoes (OBMS), Dr. Chongle Pan (ORNL), Dr. David L. Tabb (Vanderbilt), and Dr. W. Hayes McDonald (Vanderbilt) for contributing their expertise in biochemistry and mass spectrometry during my studies. I also acknowledge Mrs. Patricia K. Lankford and Mr. Keiji G. Asano for administering technical assistance while conducting this research.

This research would not have been possible without sponsorship by the Genomics:GTL program of the Office of Biological and Environmental Research, U.S. Department of Energy. I acknowledge the University of Tennessee-Knoxville and Oak Ridge National Laboratory Graduate School of Genome Science and Technology for providing me with this unique opportunity.

Further, I acknowledge numerous professional and personal relationships with fellow GST graduate students throughout the years. If it were not for the GST program, it is unlikely that I would have met my best friend, Mr. Adam M. Tebbe (Transform Pharmaceuticals).

At this time, I would also like to acknowledge the memory of my grandparents for their collective contributions to my education. From a very young age, all four of my grandparents instilled the value of education through their actions and words.

On a more personal note, I acknowledge the support of Karyn L. Massi, D. V. M. over the course of the past 3 years.

I also acknowledge that I may have inadvertently omitted contributions others have made on my behalf. In this event, I apologize in advance.

Abstract

The field of proteomics encompasses the study of identities, interactions, and dynamics of all proteins expressed by a living system. Research in this dissertation blends biochemical and quantitative proteomics techniques to increase the latitude of biological applications for the bottom-up mass spectrometry proteomics approach. Together, isolation of selected protein "targets," such as multiprotein complexes, and quantitative characterization yields information essential for more detailed understanding of microbial cell function.

Often, a challenging aspect of characterizing a variety of biochemically enriched samples is limited protein yield. This dissertation describes an enzymatic proteolysis protocol employing an organic/aqueous solvent that alleviates excessive handling steps to reduce losses during sample preparation for small quantities of protein samples.

Presence of artifactual, non-specific proteins in enriched protein complex isolates complicates biological interpretation of specific protein interactions. Heterologous expression of affinity-tagged bait proteins may also cause unintended collateral effects. A series of local and global protein isotope ratio measurements were performed to differentiate authentic interactions from artifactual interactions among affinity-isolated complexes and assess collateral effects, respectively.

Protein localization provides clues regarding protein function. To infer protein localization, quantitative proteomics techniques were used to estimate protein enrichment of cold osmotic shock periplasmic isolates. Protein isotope ratios indicating enrichment, combined with identification of amino-terminal signal peptide cleavages, increase confidence of periplasmic localization.

V

Collectively, this dissertation provides a framework for tailoring biochemical and quantitative techniques for targeted characterization of microbial protein isolates.

Table of Contents

Dedication	iii
Acknowledgements	iv
Abstract	v
Table of Contents	vii
Chapter 1 Introduction	1
Chapter 2 Experimental Platform for Targeted Characterization of	
Enriched Microbial Protein Isolates and Protein Complexes	15
Chapter 3 Comparison of Digestion Protocols for Microgram Quantities	
of Enriched Protein Samples	
Chapter 4 Evaluation of Affinity-Tagged Protein Expression Strategies	
using Local and Global Isotope Ratio Measurements	50
Chapter 5 Evaluation of Periplasmic Protein Enrichment Protocols	
using Stable Isotope Labeling and Mass Spectrometry	
using Stable Isotope Labeling and Mass Spectrometry Chapter 6 Conclusions	
using Stable Isotope Labeling and Mass Spectrometry Chapter 6 Conclusions List of References	
using Stable Isotope Labeling and Mass Spectrometry Chapter 6 Conclusions List of References Appendices	
using Stable Isotope Labeling and Mass Spectrometry Chapter 6 Conclusions List of References Appendices Appendix A	
using Stable Isotope Labeling and Mass Spectrometry Chapter 6 Conclusions List of References Appendices Appendix A Appendix B	
using Stable Isotope Labeling and Mass Spectrometry Chapter 6 Conclusions List of References Appendices Appendix A Appendix B Appendix C	
using Stable Isotope Labeling and Mass Spectrometry Chapter 6 Conclusions List of References Appendices Appendix A Appendix B Appendix C Appendix D	
using Stable Isotope Labeling and Mass Spectrometry Chapter 6 Conclusions List of References Appendices Appendix A Appendix B Appendix C Appendix D Appendix E	
using Stable Isotope Labeling and Mass Spectrometry Chapter 6 Conclusions List of References Appendices Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F	
using Stable Isotope Labeling and Mass Spectrometry Chapter 6 Conclusions List of References Appendices Appendix A	

Chapter 1 Introduction

1.1 First Sight to Systems Insight

Some of the greatest discoveries in life science have arisen from interdisciplinary technological applications. In the late 17th century, Antonie van Leeuwenhoek placed scrapings from his own mouth on his microscope stage, likely out of curiosity. As a result, van Leeuwenhoek was the first person to see bacteria and fathered the field of microbiology [1]. Though this discovery was over 300 years ago, it represents a reoccurring theme throughout the study of life. Curiosity, combined with cutting-edge technology, the microscope in this case, resulted in a significant stride forward in life science: the discovery of organisms unable to be seen with the naked eye.

More recently, much of the 20th century was spent defining life at the molecular level, probing for the fundamentals upon which life is conducted. Rather than view external features and characteristics of life solely in an observational fashion, the advent of molecular biology opened the study of dynamics among biomolecules that comprise living systems. The central dogma of molecular biology was among the most profound discoveries of this era [2]. This concept states that genetic information, encoded in nucleotides of deoxyribonucleic acid (DNA), is transcribed to messenger ribonucleic acid (RNA), and is translated into the amino acid sequences of proteins. Thus, hereditary information encoded in DNA's smaller units, or genes, is passed from one generation to the next containing an organism's "blueprint." The "building blocks" of the DNA "blueprint" are proteins, the biomolecules that maintain the flow of genetic information and perform an array of functions essential to life.

In the current era, technological advancements have dramatically changed the perspective from which life is viewed, not unlike Antonie van Leeuwenhoek's time. The focus of life science has shifted from studies of single genes, transcripts, or proteins to studies encompassing the entire suite of biomolecules produced by an organism, or living "system." Dubbed Systems Biology, this paradigm transition was initially spurred by acquisition of large amounts of DNA sequences, as reviewed by Ideker et al. [3, 4]. Application of automated DNA sequencing technology allowed measurement of an organism's entire set of genes, or genome. To obtain a more "holistic" view of organisms consistent with the central dogma, the fields of transcriptomics and proteomics have developed for systems study of mRNA transcripts and proteins, respectively. The proteome, or entire component of expressed proteins, could be considered a cast of protein entities performing fundamental life processes [5]. Proteome studies may provide the identities and implicate functional "roles" for each protein, or "cast member," present in a system. In contrast to the other "-omics" fields, proteomics offers a "snapshot" view of proteins performing essential life processes, such as maintaining the flow of genetic information.

Potential knowledge of a global "snapshot" of the proteome has generated considerable interest in this interdisciplinary field of study. However, proteome studies are challenging for several reasons. First, as the most versatile biomolecules of the cell, proteins are remarkably dynamic: their expression, function, and abundance in the cell are not fixed or static. Secondly, the proteome is a very complex, heterogenous mixture of proteins, differing in physical and chemical properties and cellular abundances. Finally, proteins may undergo a wide range of post-translational modifications (PTMs) influencing their function, localization, and/or regulation. Based upon these attributes, characterization of the proteome is more complex than its systems biology counterparts of genomics and transcriptomics. Despite these formidable challenges facing proteomics studies, a number of technological advances have converged to enable protein study on a systems level by mass spectrometry-based approaches [6].

1.2 The "Bottom-up" Mass Spectrometry-based Approach to Proteome Study

Mass spectrometry-based approaches [7] are at the forefront for proteome characterization due to a confluence of technological advancements in analytical instrumentation, multi-dimensional chromatographic separations, and bioinformatics. One widely-used proteomics approach is to perform qualitative analysis of proteolytic peptides by one dimensional (1D) or two dimensional (2D) chromatographic separation coupled via electrospray ionization (ESI) [8] with tandem mass spectrometry (LC-MS-MS), generating peptide fragmentation spectra that are compared to translated genomic databases [9, 10]. The combination of this suite of analytical technologies is commonly referred to as the "bottom-up" or "shotgun" proteomics approach, as reviewed by VerBerkmoes *et al.* [6].

Nominally, the bottom-up approach refers to the characterization of proteolytic peptide mixtures from protein samples, as opposed to the "top-down" approach of directly characterizing intact protein mixtures. The scope of this dissertation focuses on application of the bottom-up approach for proteome study; however, each of these approaches has distinct strengths and weaknesses. For instance, the top-down approach provides valuable information regarding the intact protein molecular mass and potential

post-translational modifications. However, the top-down approach yields fewer protein identifications and is challenging to directly interface with liquid chromatographic separations. Coupling liquid separations for a complex mixture of proteins, expressed at different abundances, physical, and chemical properties is a formidable challenge. Alternatively, the bottom-up approach provides a direct manner to identify the protein content of a sample mixture based upon its constituent tryptic peptides. Though providing limited information regarding intact proteins, the bottom-up approach is straightforwardly coupled to liquid chromatographic separations [6]. Furthermore, this approach has benefitted from numerous software tools to identify peptides and constituent proteins from complex mixtures. At first, increasing the complexity of a protein mixture to a peptide mixture via proteolysis may seem counterintuitive. However, it creates a more uniform mixture of analytes (tryptic peptides) that are more tractable for existing liquid chromatographic separations. In general, complex proteolytic peptide mixtures characterized by the bottom-up approach do not exhibit the diversity of physical and chemical properties that their constituent proteins represent.

The robust bottom-up approach has been applied, for example, to identifying proteins from complex mixtures of one or more organisms [11, 12], less abundant samples obtained from biochemically-enriched multiprotein complexes [13], and affinity isolations of single proteins along with interacting partners [14, 15].

Successful application of the bottom-up approach for proteome characterization would not be possible without technological advancements in mass spectrometry instrumentation. Three essential components of a mass spectrometer are an ionization source, a mass analyzer, and a detector. Over the course of the past 30 years, innovations

in ionization techniques and mass analyzers have benefitted the characterization of biomolecules by mass spectrometry, and, consequently, the bottom-up proteomics approach.

The use of mass spectrometry-based approaches for the characterization of biomolecules would not be possible without development of "soft" ionization techniques. Electrospray ionization (ESI) developed by Fenn *et al.* [8], and matrix assisted laser desorption ionization (MALDI), developed by Hillenkamp *et al.* [16], both generate gas phase ions from biomolecules gently, without destroying or damaging them in the process. In the above described implementation of the bottom-up approach, ESI is used to directly ionize peptides from the solution phase to the gas phase by application of high voltage (2-4 kV). This produces a number of multiply-charged peptide ions which enter the mass spectrometer for further manipulation. The impact of these two ionization techniques was so great that Fenn and Koichi Tanaka were jointly awarded the 2002 Nobel Prize in Chemistry for applying the ionization techniques of ESI and MALDI, respectively, to proteins.

In addition to ionization techniques, developments in analytical instrumentation have contributed significantly to the bottom-up proteomics approach. Specifically, ion trap mass spectrometers, such as the three dimensional (3D) quadrupole ion trap [17] and two dimensional (2D) linear ion trap [18] instruments, have proved robust "workhorses" in the bottom-up proteomics approach. The ion trap mass analyzers of these instruments allow storage, manipulation, and fragmentation of ions by tandem mass spectrometry (MS-MS). Performing MS-MS of peptide ions by collision-induced dissociation (CID) [19] with a neutral gas, such as helium or nitrogen, results in a characteristic

fragmentation pattern of the peptide's amino acid sequence [20, 21]. These properties of ion trap mass spectrometers make them extremely useful for measurement of complex mixtures of peptides, as peptide ions may be collected, sorted by their mass-to-charge ratio (m/z), stored, fragmented to yield their amino acid sequence, and ejected from the ion trap. Programming iterative cycles of these operations and data-dependent MS-MS acquisition are possible under automated control of instrument software.

Two commercially-available ion trap mass spectrometers manufactured by ThermoFinnigan were used for data acquisition in this dissertation: the LCQ DecaXP 3D ion trap mass spectrometer and the 2D LTQ ion trap mass spectrometer. In its own right, the LCQ DecaXP is a robust "workhorse" of an instrument when implemented as part of a bottom-up proteomics approach. During the course of this dissertation, the LTQ instrument was developed [18] and commercially made available. Though analogous to the LCQ DecaXP with respect to electronics and scanning functions, the LTQ instrument provides more comprehensive proteome characterization due to the 2D shape of its ion trap. The linear shape of this mass analyzer permits an increased volume of peptide ions for storage, manipulation, and fragmentation at greater trapping efficiency. The linear shape also permits radial ejection of ions to two electron multiplier detectors, one on either side of the mass analyzer. In comparison to the LCQ DecaXP, these improvements make the LTQ instrument more adept at identifying peptides of lower abundance amid peptides of higher abundance in a given sample, effectively increasing the dynamic range of proteome measurement. The faster scanning rate and two electron multiplier detectors also increase the duty cycle of the LTQ relative to the LCQ DecaXP. Qualitative [22] and quantitative [23] comparisons between these two instruments have shown that the

characteristics of the LTQ result in up to a 5-fold increase in the number of protein identifications among microbial proteomes. Thus, many advancements in analytical instrumentation have made proteome studies by the bottom-up approach possible.

A second advancement contributing to the effectiveness of the bottom-up approach is the relative ease of coupling liquid chromatographic separations directly to mass spectrometer instruments by ESI. A key development in increased sensitivity of the bottom-up approach has been application of multidimensional nanoflow high performance liquid chromatographic (nanoHPLC) separations. In general, nanoHPLC forms smaller liquid droplets more easily desolvated, leading to more efficient ESI. The proteome is expressed at high complexity in very different physical and chemical properties varying from protein to protein. Proteolytic digestion of a protein sample with an enzyme that has predictable cleavage properties, such as trypsin, does yield a peptide sample of even greater complexity; however, a mixture of tryptic peptides is less diverse in its physical and chemical properties than whole proteins. Thus, tryptic peptides are more amenable to liquid chromatographic separation than whole proteins.

Development of the multidimensional protein identification technology (MudPIT) [24-26] by the laboratory of John R. Yates combines online strong cation exchange (SCX) and reverse phase (C_{18}) nanoHPLC separation to identify complex mixtures of proteolytic peptides. The MudPIT technology permits a "gel-free" method to separate peptides in two dimensions: based on affinity to the negatively-charged SCX phase and hydrophobicity to the C_{18} reverse phase. This nanoHPLC separation allows greater sensitivity for characterization of complex peptide mixtures. When MudPIT separations

are coupled to LTQ linear ion trap mass spectrometers for peptide measurement, it is possible to identify up to 2,500 proteins in a microbial proteome [6].

The third advancement permitting efficient proteome characterization by the bottom-up proteomics approach is in bioinformatics. Though the commercially-licensed SEQUEST algorithm [9, 10] was distributed with ThermoFinnigan instruments, several informatics bottlenecks prohibited automated peptide and protein identification in proteomics experiments. The SEQUEST algorithm uses cross-correlation comparisons between theoretical peptide fragmentation patterns from a FASTA-formatted protein sequence database with observed peptide fragmentation patterns from MS-MS spectra in an experiment. SEQUEST results were provided in the form of thousands of output (*.out) text files that listed cross-correlation identification scores, peptide sequences, descriptions of their representative protein, and other spectral data, such as scan number. A significant bottleneck in the informatics workflow was filtering accurate identifications from inaccurate identifications among the SEQUEST output files, organizing accurate peptide identifications by loci (into predicted proteins), and comparing LC-MS-MS experiments with each other.

The development of DTASelect and Contrast programs [27] provided a suite of tools to overcome the above described computational bottleneck. The DTASelect program allows a user to select cross-correlation score thresholds for peptide identification, providing a means to parse thousands of output text files in an automated fashion. DTASelect further organizes peptide identifications passing user-specified thresholds into their constituent proteins and allows further advanced classification options. These data are conveniently displayed in html-formatted output. An additional

useful feature of the program is its ability to output results in tab-delimited format for further manipulation in relational databases, such as Microsoft Access, for further data mining. The Contrast program provides output for visual comparisons between LC-MS-MS experiments in html-formatted output.

Through the use of Perl scripting and more compact output file formats [28], it is possible to automate peptide and protein identification combining SEQUEST and DTASelect. Since the development of DTASelect and Contrast, peptide and protein identification from data-dependent LC-MS-MS experiments has progressively become more automated. In this dissertation, an automated method of peptide and protein identification using these tools is employed. Though numerous open-source algorithms have been developed in recent years, the combination of SEQUEST and DTASelect are acceptable methods to report peptide and protein identifications in primary literature.

1.3 Biological Applications of Proteomics

The bottom-up proteomics approach is remarkably versatile and may be adapted to study different features of the proteome depending upon the biological goal(s) of the study. The approach may be applied in at least five different ways to yield unique biological insight:

a. **Proteome inventory profiling**: the objective of proteome inventory measurement is to identify the entire complement of proteins expressed in an organism under a distinct set of biological conditions. Inventory profiling provides a starting point for subsequent proteome investigations by identifying expressed proteins from predicted genes. Thus, this area is very closely tied to methods of gene prediction [6, 29].

- b. Comparative proteome profiling: the objective of comparative measurement is to detect changes among the proteome profile by qualitative or quantitative methods. In contrast to inventory profiling, comparative profiling may implicate specific proteins in a biological function under a set of biological conditions or between a set of biological conditions.
- c. Protein Interaction Analyses: the objective of interaction analyses is to measure physical protein interactions which may infer membership in a protein complex. These analyses often combine small quantities of biochemically-enriched proteins with either qualitative or quantitative measurement by the bottom-up proteomics approach for identification [30, 31].
- d. Protein Localization: the objective of localization studies is to infer the distribution of a single protein or multiple proteins throughout the cell. This may involve biochemical enrichment of a subcellular protein fraction, organelle, or structure combined with either qualitative or quantitative measurement by the bottom-up proteomics approach for identification [32, 33].
- e. **Post-translational Modification (PTM) Identification**: the objective of PTM analysis is to pinpoint modification of specific amino acid residues among peptide identifications measured by either qualitative or quantitative methods. These measurements, in turn, may implicate the constitutive protein in a specific biological function or cellular location [34-36]

During the course of this dissertation, quantitative proteomics techniques have been applied to the above five areas of proteome study, reviewed in [37, 38]. Quantitative proteomics techniques provide measurement of either absolute [35, 39] or relative protein abundance. Often, experimental designs incorporating quantitative proteomics techniques yield measurement of significant protein changes in abundance from measurement of proteins that do not change. Depending on experimental goals, quantitative measurements may assist with biological understanding and identify potential target proteins for follow-up studies.

For the scope of this dissertation, quantitative proteomics techniques using stable isotope labeling with enriched ¹⁵N were performed in microbial species. In general, these techniques allow relative measurements of abundance between ¹⁵N-labeled peptides and ¹⁴N-labeled peptides. Metabolic labeling with the stable isotope of nitrogen that is relatively low in natural abundance, ¹⁵N, in microbial species is a straightforward established technique, performed by Meselson and Stahl in the 1950s to study the replication of DNA in *Escherichia coli* [40]. Introducing the isotopic label as a salt in minimal growth medium ensures that all amino acids synthesized will contain enriched ¹⁵N. Another consideration is the reduction of potential sources of error between ¹⁵N-labeled and unlabeled samples, as losses between the two samples should be equivalent. In-house development of the ProRata program by Pan *et al* [41] was a principal factor enabling use of ¹⁵N quantitative measurements. This software performs relative abundance measurement of peptide and protein isotope ratios between unlabeled samples, most abundant in ¹⁴N, and samples labeled with ¹⁵N.

1.4 Dissertation Focus

The focus of this dissertation is to demonstrate the utility of the bottom-up proteomics approach to address several selected microbiological questions *beyond* full proteome inventory methods. The bottom-up proteomics approach has proven effective for proteome inventory profiling of microbial species [6]. Rather than being viewed as an end result, the protein inventories from such experiments may be considered a starting point for more detailed proteome investigation *beyond* protein identification. To this end, this dissertation tailors biochemical protein enrichment methods and quantitative proteome techniques with the bottom-up approach to characterize targeted protein isolates.

Measurements of protein samples isolated from a model microbial species, *Escherichia coli*, and an environmental microbial species of interest in the Department of Energy's Genomics:GTL program, *Rhodopseudomonas palustris*, are performed in this dissertation. Chapter 2 highlights the commercial bottom-up proteomics platform used for LC-MS-MS measurements.

The interdisciplinary field of proteomics often involves close collaboration between biochemists and analytical chemists, who perform protein isolation and LC-MS-MS measurements, respectively. An area of technical concern between laboratories engaged in this field of research is sample preparation and proteolytic digestion of the protein sample. A method for proteolytic digestion of affinity-isolated protein complexes, previously developed at ORNL (Appendix A), was adapted for digestion of small protein quantities. In Chapter 3, a comparison of this digestion protocol with other frequently used protocols is performed. In Chapter 4, protein-protein interactions are further examined using a general system for plasmid-encoded bait proteins developed at ORNL (Appendix B). A challenge in the study of protein interactions is distinguishing authentic interactions from background interactions. In addition, any collateral effects arising from bait protein expression should be monitored. Collectively, local and global isotope ratio measurements employed by quantitative proteomics techniques address both of these concerns.

In Chapter 5, protein localization to the periplasm is explored by means of quantitative proteomics techniques. Measurement of periplasmic to whole cell lysate (PP:WCL) protein isotope ratios among protein mixtures provides an estimate of protein enrichment useful for potentially inferring periplasmic localization. In addition, experimental identification of the PTM of amino-terminal signal peptide cleavage positions among enriched proteins implicates protein transit via the general secretory pathway. Taken together, these measurements increase the confidence of periplasmic localization in microbial species. Chapter 6 concludes the dissertation and offers a perspective regarding the future of the field.

In a manner similar to that of van Leeuwenhoek's use of the microscope, the overall goal of this dissertation is to provide unique perspective of life. Both the microscope and mass spectrometry-based proteomics are tools that have changed the way life is studied. Here, the bottom-up approach is extended to proteome studies beyond surveys of all expressed proteins. Tailoring biochemical protein enrichment and quantitative proteome techniques expands the scope of biological questions that may be addressed by the bottom-up proteomics approach. The combination of biochemical and

analytical tools provide different perspectives of the proteome focused on detailed examination of a protein fraction or protein complex.

Chapter 2 Experimental Platform for Targeted Characterization of Enriched Microbial Protein Isolates and Protein Complexes

2.1 Introduction

This chapter briefly outlines the experimental platform for targeted characterization of microbial protein isolates by the "bottom-up" proteomics approach. All experimental measurements were performed on commercial quadrupole ion trap mass spectrometers. Experimental methods of peptide separation by liquid chromatography and analysis by tandem mass spectrometry (MS-MS) are explained in greater detail in the Experimental Procedures section of each chapter.

Different characteristics of microbial protein isolates analyzed by the bottom-up approach in each chapter required that experimental methods be developed for each chapter. Here, a generalized outline of the ORNL proteome analysis platform is provided in Figure 2.1a, with steps of the workflow modified for targeted proteome characterization in this dissertation shown in Figure 2.1b. General steps in the workflow include microbial cell growth, protein isolation, sample preparation, liquid chromatography and tandem mass spectrometry (LC-MS-MS), and proteome informatics. More detailed information regarding protein isolation from different microbial isolates is provided in the Experimental Procedures section of each chapter.

2.2 Microbial Cell Growth

All studies in this dissertation involve growth of bacterial cells from glycerol stocks to larger "production" cultures. In general, glycerol stocks of the desired species and strain were removed from storage at -80°C and streaked on an agar plate. Isolated

Figure 2.1. a. General experimental design for proteomics experiments using the bottom-up proteomics approach. b. Steps of the experimental design modified for targeted characterization of microbial protein isolates which are the focused on in the specified chapters.

colonies grown from agar plates were transferred to small liquid incolum cultures (ranging from 10 - 25 mL) for further growth. The volume of the innoculum culture was transferred to larger production cultures (ranging from 500 mL – 1 L) and growth was conducted to mid-log phase. For production cultures, all growth was conducted in minimal salt medium under optimal growth conditions for each bacterial species. *Rhodopseudomonas palustris* production cultures were grown in specialized bottles designed by Dr. Dale A. Pelletier at ORNL, shown in Figure 2.2. More details regarding the cellular growth of *R. palustris* are provided in Chapter 3 and ¹⁵N-metabolic labeling of this species is described in Chapter 4. *E. coli* production cultures were grown in a similar manner, with further details provided in Chapters 4 and 5 describing ¹⁵N-metabolic labeling.

2.3 Protein Isolation

The studies in this dissertation involve several different methods of protein isolation from microbial cells, each of which is discussed in more detail for each specific chapter. In general, cell cultures were harvested by centrifugation, resuspended in a salt buffer, and transferred to 25 mL Oak Ridge centrifugation tubes. After obtaining this microbial cell pellet, protein isolation steps differ by chapter and are described in more detail in the appropriate Experimental Procedures sections.

In Chapter 3, sucrose density centrifugation is used to enrich the *R. palustris* 70*S* ribosomal protein complex, which has been previously described by Strader *et. al.* [42]. The other protein sample used in Chapter 3, microtubule-associated proteins (MAP), was a gift from the laboratory of Timothy J. Mitchison (Department of Systems Biology, Harvard Medical School).

Figure 2.2. Growth of *R. palustris* cell cultures. To the left, 25 mL tubes containing cultures of *R. palustris* are shown. A larger 1.5 L production culture of *R. palustris* is shown to the right.

In Chapter 4, dual-affinity isolation is used to enrich the RNA polymerase protein complex from *E. coli* and *R. palustris*. The methods used for isolating this protein complex were adapted from Butland *et al.* [15] and described in more detail in Chapter 3. This chapter also features comparative proteome profiling of a whole cell lysate protein fraction. The whole cell lysate fraction was isolated using a standard protocol developed at ORNL and described in VerBerkmoes *et al.* [43].

In Chapter 5, periplasmic isolate was obtained from *E. coli* K12 using cold osmotic shock protocols [44, 45]. A whole cell lysate fraction was isolated using a standard protocol developed at ORNL and described in VerBerkmoes *et al.*[43].

2.4 Sample Preparation

Methods of sample preparation include measurement of protein quantity, proteolytic digestion of protein isolate with trypsin, and solid phase extraction of peptides prior to LC-MS-MS analysis. As Chapter 3 is a comparison of proteolysis protocols itself, the sample preparation steps are described there in more detail. In Chapter 4, affinity-isolated protein complexes were digested according to the 80% CH₃CN protocol described in Chapters 3 and 4. Complex protein mixtures containing whole cell lysate fractions described in Chapters 4 and 5 were prepared using a standard protocol developed at ORNL and described in VerBerkmoes *et al.* [43].

2.5 LC-MS-MS Analysis of Targeted Protein Isolates

In Chapter 3, LC-MS-MS analysis of ribosomal and MAP protein isolates is performed by 1D reverse phase C₁₈ nanoHPLC coupled to a 3D quadrupole ion trap mass spectrometer, the ThermoFinnigan LCQ DecaXP [17]. This specific platform was selected due to the characteristics of the two protein samples studied in this chapter. Both the ribosomal and MAP protein isolates are of low complexity, representing a simpler mixture of proteins relative to the complexity of a proteome. Also, the quantities of sample processed were also small (2.5 μ g protein). Thus, proteolytic digestion of these samples produced peptide mixtures which were adequately separated by 1D reverse phase nanoHPLC. The LCQ DecaXP instrument was adequate for identification, for these samples were of low complexity and did not require measurement of a large dynamic range.

Chapters 4 and 5 feature quantitative LC-MS-MS analyses performed on a linear quadrupole ion trap mass spectrometer, the ThermoFinnigan LTQ [18]. In Chapter 4, measurements of affinity-isolated protein complexes were performed using the 1D reverse phase nanoHPLC (as described above), as these protein samples were of low complexity. The LTQ was used for quantitative measurement of affinity-isolated protein complexes due to the instrument's rapid scanning speed. This allowed acquisition of more full MS scans to detect peptide chromatographic features necessary for quantification by the ProRata program [41]. The quantitative proteome profiles measured in Chapters 4 and 5 were obtained by 2D nanoHPLC (strong cation exchange and reverse phase or MudPIT) [26] coupled to the LTQ instrument. These samples were far more complex peptide mixtures, thus they required more extensive chromatographic separation. This complexity resulted in measurements of an increased dynamic range. By design, the LTQ instrument is more adequately suited for such measurements, as its linear ion trap may accumulate a greater number of ions relative to the LCO [22, 23]. This permits measurement of peptide ions of lower abundance in the sample, likely representing proteins of low abundance. As described above, the rapid full MS scans

performed on the LTQ were important for accurate peptide quantification, permitting collection of chromatographic features (or peaks).

2.6 Proteome Informatics and Data Analysis

Tandem mass spectrometry data were searched with the SEQUEST algorithm [9, 10] for peptide identification. Sources and descriptions of the FASTA-formatted protein sequences (or "databases") used are provided in each chapter. Filtering, sorting, and organization of peptide identifications were performed by the DTASelect program [27] as described in each chapter.

Within the framework of the general experimental design shown in Figure 2.1a, this process is time consuming. In Chapters 4 and 5, the use of ¹⁵N-labeling necessitates a second SEQUEST search of mass spectrometry data for identification of ¹⁵N-labeled peptides. This effectively doubles the computing resources and time required for data analysis. During the course of this dissertation, an automated method of data analysis using SEQUEST and DTASelect was developed by Dr. W. Hayes McDonald at ORNL. This method consisted of a series of Perl scripts (GitRSeq.pl and GitRSeq1.pl) for automation and featured use of a more compact series of data file formats [28]. These series of Perl scripts were modified for use under Unix/Linux (or *nix) operating systems (Appendix C) to decrease search time and reduce use of shared computer resources, such as Windows-based workstations. Peptide and protein quantification was performed by the ProRata program [41] as described in Chapters 4 and 5 in more detail.

In general, all chapters employed further data analysis of tab-delimited output from the DTASelect and ProRata programs. Microsoft Access was used for further data analysis, as described in each specific chapter.

Chapter 3

Comparison of Digestion Protocols for Microgram Quantities of Enriched Protein Samples

All of the data presented in this chapter have been adapted from the following published journal article:

W. Judson Hervey, IV, Michael Brad Strader, and Gregory B. Hurst. Comparison of Digestion Protocols for Microgram Quantities of Enriched Protein Samples. *Journal of Proteome Research.* 2007, 6 (8), 3054-3061.

B. taurus microtubule associated protein (MAP) isolates were a generous gift from the laboratory of Dr. Timothy J. Mitchison, Department of Systems Biology, Harvard Medical School.

R. palustris cell growth and isolation of the 70*S* ribosomal protein complex was conducted in the laboratory of Dr. Dale A. Pelletier by W. Judson Hervey, IV. Sample preparation of all protein isolates, LC-MS-MS measurements, data analysis, and responses to peer review was performed by W. Judson Hervey, IV.

Supplementary Figures S1-S6 referred to in the Results and Discussion section are available freely on the internet at <u>http://pubs.acs.org/doi/abs/10.1021/pr070159b</u>.

Abstract

Standard biochemical techniques that are used for protein enrichments, such as affinity isolation and density gradient centrifugation, frequently yield high nanogram to low microgram quantities at a significant expenditure of resources and time. The characterization of selected protein enrichments by the "shotgun" mass spectrometry approach is often compromised by the lack of effective and efficient in-solution proteolysis protocols specifically tailored for these small quantities of proteins. This study compares the results of five different digestion protocols that were applied to 2.5 µg portions of protein isolates from two disparate sources: *Rhodopseudomonas palustris* 70S ribosomal proteins, and *Bos taurus* microtubule-associated proteins (MAPs). Proteolytic peptides produced according to each protocol in each type of protein isolate were analyzed by one-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effectiveness of each digestion protocol was assessed on the basis of three parameters: number of peptide identifications, number of protein identifications, and sequence coverage. The two protocols using a solvent containing 80% acetonitrile (CH₃CN) for trypsin digestions performed as well as, and in some instances better than, protocols employing other solvents and chaotropes in both types of protein isolates. A primary advantage of the 80% CH₃CN protocol is that it requires fewer sample manipulation steps.

3.1 Introduction

The analysis of protein mixtures by mass spectrometry-based techniques [7] has become possible due to a confluence of advancements in analytical instrumentation, multi-dimensional chromatographic separations, and bioinformatics. One widely-used proteomics strategy is to perform qualitative analysis of proteolytic peptides by one dimensional (1D) or two dimensional (2D) chromatographic separation coupled via electrospray with tandem mass spectrometry (LC-MS-MS), generating peptide fragmentation spectra that are compared to translated genomic databases [7, 46]. This robust approach has been applied, for example, to identifying proteins from complex mixtures [24], less abundant samples obtained from biochemically-enriched multiprotein complexes [13, 42], and affinity isolations of single proteins along with interacting partners [14, 47-51].

The LC-MS-MS analysis of a protein sample from a biochemical enrichment or affinity isolation presents unique challenges to the workflow of "bottom-up" LC-MS-MS proteomics approaches. The limitation imposed by the small amounts of protein typically available from the biological enrichment requires that all aspects of downstream sample processing be as efficient and effective as possible, including enzymatic proteolysis. Improvements in enzyme activity have been reported when enzymatic reactions are conducted in organic media [52, 53], and more significantly, with trypsin directly in reverse-phase HPLC solvents [54, 55]. Recently, our laboratory has demonstrated the effectiveness of conducting trypsin digestions of protein isolates in a solvent containing 80% acetonitrile (CH₃CN), resulting in an increased number of peptide and protein identifications, increased sequence coverage, and more thorough proteolysis for low microgram to high nanogram quantities of standard protein mixtures, ribosomes purified by density gradient centrifugation, and an affinity-isolated protein complex [56].

In the present report, we compare the effectiveness of two digestion protocols performed in 80% CH₃CN [56] with three other protocols commonly used for the digestion of proteins. These protocols include a modified version of the manufacturer's instructions from the sequencing-grade modified trypsin [57, 58], a sequential digestion with Lys-C and trypsin [59, 60], and a protocol utilizing the acid-labile surfactant (ALS) RapiGestTM SF [61, 62]. The enzymatic proteolysis of 2.5 μ g of protein, a yield representative of biochemical protein enrichment or affinity isolation experiments, was performed on two distinct types of protein isolates: the 70*S* ribosome of *Rhodopseudomonas palustris* [42], and microtubule-associated proteins (MAPs) [59, 63] of the cow, *Bos taurus*, using the digestion protocols described above. The two protocols employing the 80% CH₃CN solvent for trypsin digestions performed as well as or better than the other protocols tested in this study. In as little as one hour, trypsin digestions in 80% CH₃CN yielded either comparable or more numerous tryptic peptide identifications and increased sequence coverage in both the 70*S* ribosomal isolates and the MAPs.

3.2 Experimental Procedures

Reagents obtained from Sigma Chemical Company (St. Louis, MO), were: Trizma Hydrochloride, Trizma Base, iodoacetamide (IAA, Ultrapure), hydrochloric acid (molecular biology grade), and urea (Ultrapure). Other materials used in this study include: lyophilized sequencing-grade modified trypsin (Promega, Madison, WI); endoproteinase Lys-C (Roche Applied Science, Penzberg, Germany); formic acid (EM Science SupraPur), calcium chloride (JT Baker, 99% purity), HPLC-grade acetonitrile and water (Burdick and Jackson, Muskegon, MI); tris(2-carboxyethyl)phosphine hydrochloride (TCEP) and micro bicinchoninic acid (BCA) assay reagent (Pierce, Rockford, IL). RapiGest[™] SF was obtained from Waters (Milford, MA). Ultrapure 18 MΩ water used for dialysis of the protein samples was obtained from a Milli-Q system (Millipore, Bedford, MA). HPLC-grade water was used for all sample buffers. Nonstick microcentrifuge tubes were obtained from VWR International (West Chester, PA).

Preparation of protein isolates. The 70*S* ribosomal protein complex was enriched from *R. palustris* CGA010 by sucrose density fractionation, as described previously [42]. Microtubule-associated proteins were a gift from the Mitchison laboratory (Department of Systems Biology, Harvard Medical School) [59]. Protein isolates were dialyzed for 16 h against Ultrapure water in a 3500 MWCO Slide-A-Lyzer dialysis cassette (Pierce, Rockford, IL), quantified using the micro BCA assay (Pierce), aliquotted into 2.5 μ g portions, and concentrated to a volume of approximately 10 μ L by centrifugal evaporation in a SpeedVac (Savant).

Protein Digestion by Enzymatic Proteolysis. Digestions of 2.5 μ g portions of 70*S* ribosomal isolates and 2.5 μ g portions of MAPs were performed in duplicate according to five different protocols (Figure 3.1 and Table 3.1). For all trypsin digestions, trypsin was reconstituted at a concentration of 20 ng/ μ L in 50 mM Trizma-HCl 10 mM CaCl₂ at pH 7.6 and added to each protein isolate at a trypsin to protein ratio of 1:10 (wt/wt) in a

Figure 3.1. Flowchart representing the digestion protocols compared in this study.

Protocol Designation	Solvent/Buffer for Trypsin Digestion	Incubation Time at 37°C
Guan-HCl	1 M guanidine hydrochloride, 50 mM Trizma-HCl, 10 mM CaCl ₂ pH 7.6	16 hours
Lys-C/ trypsin	2 M urea, 100 mM Trizma-HCl pH 8.5	32 hours
CH ₃ CN 1 hr	80% CH ₃ CN, 20% 50 mM Trizma-HCl 10 mM CaCl ₂ pH 7.6 (v/v)	1 hour
CH ₃ CN 16 hr	80% CH ₃ CN, 20% 50 mM Trizma-HCl 10 mM CaCl ₂ pH 7.6 (v/v)	16 hours
RapiGest™	0.1% RapiGest [™] SF, 50 mM NH ₄ HCO ₃ (w/v)	1 hour

Table 3.1. Solvents and Incubation Times for the Digestion Protocols.

nonstick microcentrifuge tube (VWR). Following each trypsin digestion, peptides were concentrated by centrifugal evaporation (SpeedVac) to a volume of \sim 30 µL, diluted HPLC solvent A (95% H₂O 5% CH₃CN 0.1% formic acid) to a volume of 123 µL, and stored at -80°C until LC-MS-MS analysis. Duplicate LC-MS-MS analyses of each duplicate digestion were performed, providing a total of 4 data sets for each combination of sample type and digestion protocol.

Guanidine hydrochloride denaturation and 16 hour trypsin digestion (*Guan-HCl*) [57, 58].

Protein isolates were suspended in 90 μ L of 6 M guanidine hydrochloride dissolved in 50 mM Trizma-HCl, pH 7.6, heated at 60°C for 1 hr, and cooled to laboratory temperature (approximately 25°C). Disulfide bonds were reduced with the addition of TCEP to a concentration of 2 mM and incubated at ambient laboratory temperature (approximately 25°C). Disulfide bonds were reduced with the addition of TCEP to a concentration of 2 mM and incubated at ambient laboratory temperature for 20 min. Cysteine residues were carboxyamidomethylated with the addition of IAA to a concentration of 10 mM and incubated at ambient laboratory temperature for 15 min in the dark. The concentration of guanidine hydrochloride was diluted to 1 M with the addition of 50 mM Trizma-HCl 10 mM CaCl₂ at pH 7.6. Proteolysis was conducted with trypsin for 16 hr at 37°C. Following digestion, samples were concentrated by centrifugal evaporation to a total volume of 100 μ L. Solid phase extraction (SPE) was performed using 100 μ L C18 OMIX Tips (Varian) and extracted peptides were concentrated by centrifugal evaporation and dilution in Solvent A as detailed above. Urea denaturation, 16 hour Lys-C digestion, and 16 hour trypsin digestion (*Lys-C/trypsin*) [59, 60]. Protein isolates were suspended in 35 μ L of 8 M urea dissolved in 100 mM Trizma-HCl, pH 8.5. Disulfide bonds were reduced and cysteine residues alkylated as described in the *Guan-HCl* protocol. In the first proteolysis reaction, 100 ng of Lys-C was added to each protein isolate and incubated at 37°C for 16 hr. Following proteolysis with Lys-C, the urea concentration was diluted to 2 M urea using 100 mM Trizma-HCl at pH 8.5 and proteolysis with trypsin was conducted at 37°C for 16 hr.

Organic solvent and 1 hour trypsin digestion ($CH_3CN \ 1 \ hr$) [56]. Protein isolates were suspended in 80% CH₃CN, 20% 50 mM Trizma-HCl, 10 mM CaCl₂ at pH 7.6 to a volume of 100 µL. Disulfide bonds were reduced and cysteine residues alkylated as described in the *Guan-HCl* protocol. Proteolytic digestion was performed with trypsin at 37°C for 1 hr.

Organic solvent and 16 hour trypsin digestion (*CH*₃*CN* 16 *hr*) [56]. All steps were performed identically to the *CH*₃*CN* 1 *hr* protocol except proteolysis, which was extended to 16 hr at 37° C.

Acid-labile surfactant and 1 hour trypsin digestion (*RapiGest*TM) [61, 62]. Protein isolates were suspended in 90 μ L of 0.1% (w/v) RapiGestTM SF (Waters) 50 mM NH₄HCO₃ and equilibrated at 37°C for 2 min. Disulfide bonds were reduced and cysteine residues alkylated as described in the *Guan-HCl* protocol. Proteolytic digestion was performed with trypsin at 37°C for 1 hr. Protein isolates were acidified by addition of 20 μ L of 500 mM HCl, incubated at 37°C for 45 min, and centrifuged at 13,000 g for 10 min to precipitate the RapiGestTM SF. The supernatant peptides were removed and concentrated as described above.

Liquid Chromatography and Tandem Mass Spectrometry (LC-MS-MS). Mass spectrometry data were collected using an LCQ Deca XP Plus quadrupole ion trap mass spectrometer (ThermoFinnigan, San Jose, CA) equipped with a nanospray source, coupled to a one dimensional reverse phase HPLC system (LCPackings/Dionex), as described previously [56]. Briefly, 50 μ L of each digestion, representing approximately 1.2 µg of digested protein isolate, was loaded onto the reverse phase HPLC system by a Famos autosampler (LCPackings/Dionex), concentrated on a C18 reverse phase trapping cartridge (300 µm x 5 mm, 300 Å PepMap, LCPackings/Dionex), and desalted for 10 min with solvent A at a flow rate of 30 µL/min, pumped by a Switchos II unit (LCPackings/Dionex). By means of a switching valve on the Switchos, a lower solvent flow (see below) was then directed in the opposite direction across the trapping cartridge, backflushing the trapped peptides onto a C18 reverse phase analytical column. The analytical column consisted of an 18 cm length of Jupiter C18 reverse phase resin with 5 micron diameter particles and 300 Å pore size (Phenomenex) packed into a 100 µm ID PicoTip Emitter (New Objective) using a pressure cell (New Objective). Peptides were eluted from the reverse phase column by an Ultimate HPLC pump (LCPackings/Dionex) at a total flow rate of 150 μ L/min, with flow splitting provided by a NAN-75 calibrator, for a column flow rate of ~250 nL/min. The gradient elution consisted of a linear ramp over 130 min from 100% solvent A to 50% solvent A/50% solvent B (30% H₂O 70% CH₃CN 0.1% formic acid), followed by a 1 min ramp to, and 19 min hold at, 100% solvent C (5% H₂O 95% CH₃CN 0.1% formic acid). The mass spectrometer was operated in data dependent mode, in which the four most intense ions in the precursor ion scan within the mass-to-charge range of 400 - 2000 Da were subjected to tandem mass

spectrometry. Dynamic exclusion [64] was enabled on the instrument with the repeat count set at two, as described previously [42, 56].

Peptide Identification and Data Analysis. Identification of peptides from tandem mass spectra was performed using the SEQUEST algorithm (version 27) [65] without enzyme specificity. Databases used in the SEQUEST analysis were the predicted proteomes of *R. palustris* [43, 66] and *B. taurus* [67] for ribosomal and MAP protein isolates, respectively, FASTA protein sequences for *R. palustris* were obtained from the ORNL microbial genome annotation pipeline [68] and the protein sequences for *B. taurus* (IPI Cow 3.09) [67] were obtained from the European Bioinformatics Institute (EBI). FASTA protein sequences of common contaminants (e.g. keratins), protein standard mixture components (e.g. myoglobin, hemoglobin), and proteolytic enzymes (trypsin, lys-c) were concatenated to the predicted proteomes of each organism, resulting in a total of 45,843 proteins for *B. taurus* and 4,890 proteins for *R. palustris*. A dynamic modification of 57.0 Da was specified for carboxyamidomethylation of cysteine residues.

DTASelect (version 2.06) [69] filtered peptide identifications from each search results file [28] according to the default cross-correlation (X_{Corr}) scores (≥ 1.8 , ≥ 2.5 , and ≥ 3.5 for the 1+, 2+, and 3+ charge state, respectively) and $\Delta Cn \geq 0.08$. Peptide identifications above these score thresholds were assembled by locus into protein identifications, requiring a minimum of two peptide identifications per protein for a positive protein identification. Redundant locus information was discarded by DTASelect. Peptide and protein identification data of replicate chromatographic runs were exported from DTASelect with the organizer.pl Perl script [70], modified to use the thresholds quoted above, and organized for further analysis in a relational database (Microsoft Access).

3.3 Results and Discussion

The characterization of protein enrichments by mass spectrometric identification of peptides depends critically on an effective and efficient proteolysis protocol that is specifically tailored for low microgram to high nanogram quantities of protein. This report compares the effectiveness of several protocols for the digestion of protein isolates of this nature. To this end, 2.5 µg portions of two isolates, the *R. palustris* 70*S* ribosomal protein complex and *B. taurus* microtubule-associated proteins (MAPs), were digested according to five different digestion protocols, shown in Figure 1. The five digestion protocols that we studied encompass a variety of protein denaturation methods, digestion solvents (see Table 3.1), proteolytic enzymes, and incubation periods. These parameters were not comprehensively varied, as described in previous studies [71]; rather, we sought to implement the digestion protocols as described in technical or manufacturer's literature directly. The comparison among the various protocols is based on numbers of identified peptides and proteins, and sequence coverage for proteins.

The two sets of proteins chosen for this study are distinct in their biological origin, sample complexity, and physical characteristics. First, the 70*S* bacterial ribosome is isolated from a prokaryote, *R. palustris*, whereas MAP isolates are from the cow, a eukaryotic organism. Figure 3.2 further illustrates the differences between the two sets of proteins with respect to sample complexity and the physical characteristics of molecular

Figure 3.2. Physical characteristics of proteins annotated as *R. palustris* ribosomal proteins or *B. taurus* MAPs.

weight and isoelectric point (p[10]). The more complex MAP isolates cover a wider molecular weight range than ribosomal proteins; isoforms of the lighter tau protein are between 55-62 kDa, while the larger MAPs range from 180 to 350 kDa. Additionally, MAP pIs range from <5 to >10. Most ribosomal proteins are of low molecular weight, and, with the exception of a few acidic proteins, have high pIs, as Figure 2 shows. As the 70*S* ribosome functions within the cytoplasm of the prokaryotic cell, the protein component of the complex is soluble at physiological pH. Thus, the different characteristics of these two protein samples provided a diverse test set for comparing the various digestion protocols.

R. palustris **70***S* **ribosomal isolates.** The ribosome is a ribonucleic acid-protein complex that functions in the synthesis of proteins. This large macromolecular protein complex is readily sedimented away from other cellular components by sucrose density fractionation. With an estimated 20,000 copies per cell [72], the 70*S* ribosome of eubacteria has been chosen to be characterized by LC-MS-MS-based approaches due to its intracellular abundance, relative ease of isolation by existing biochemical techniques, and biological significance [42].

Table 3.2 shows the average number of peptide identifications from digestions of ribosomal protein isolates. The *CH*₃*CN* 1 *hr* protocol produced both the most total peptide identifications and the most tryptic peptide identifications of any protocol tested, followed by the *CH*₃*CN* 16 *hr*, *Guan-HCl*, *RapiGest*, and *Lys-C/trypsin* protocols, in that order. Extension of the digestion in 80% CH₃CN to 16 hours resulted in a number of peptide identifications similar to the 1 hour digestion. In accord with other studies [60],

Digestion Protocol	Tryptic ^a Peptides	Semi- tryptic Peptides ^b	Non- Specific Peptides ^c	Total Peptide Identifications ^d	Percent Tryptic ^e	3-4 Missed Cleavages ^f
Guan-HCl	293 ± 19	37 ± 2	0.3 ± 0.5	331 ± 21	88.3 - 89.0	3 ± 1
Lys-C/ trypsin	203 ± 16	36 ± 16	6.5 ± 1.3	245 ± 29	78.8 - 89.3	14 ± 3
CH3CN 1 hour	391 ± 33	66 ± 9	1.3 ± 1.3	458 ± 26	81.5 - 87.4	40 ± 8
CH3CN 16 hours	380 ± 49	71 ± 23	2.5 ± 1.7	453 ± 47	75.7 – 88.1	0
RapiGest	261 ± 27	46 ± 5	0.3 ± 0.5	307 ± 32	84.9 - 85.4	6 ± 1

Table 3.2. Average Peptide Identifications from *R. palustris* 70*S* Ribosomal Protein Isolates by Digestion Protocol^a

Average values with standard deviation are shown from replicate experiments (see text for details). ^aPeptides with two termini resulting from cleavage C-terminal to lysine or arginine residues. ^bPeptides with one terminus resulting from cleavage C-terminal to a lysine or arginine residue. ^cPeptides with neither terminus resulting from cleavage C-terminal to a lysine or arginine residue. ^dTotal peptide identifications regardless of enzyme specificity. ^ePercentage of total peptide identifications with two tryptic termini. ^fTryptic peptides containing either three or four missed trypsin cleavage sites.

the extension of digestion times beyond 1 hour provided no increase in the number of peptide identifications. In fact, the *Lys-C/trypsin* protocol, in which proteolysis was conducted for the longest total time (32 hours), produced the fewest peptide identifications in this sample. Although the *Guan-HCl* and *CH₃CN 16 hr* protocols each had incubation periods of 16 hours, approximately 100 more tryptic peptides were detected in the latter (Table 2). It is possible that the *Guan-HCl* and *Lys-C/trypsin* protocols did not yield as many peptides as the *CH₃CN 16 hr* protocol due to the combined effects of protein or peptide losses to sample tube surfaces from the chaotrope dilution. Furthermore, it is also possible that SPE was an additional source of peptide loss for the *Guan-HCl* protocol. Base peak chromatograms for one run from each digestion protocol are shown in Figure S1 (Supporting Information).

An examination of the physical characteristics of tryptic peptide identifications from each digestion protocol revealed that the majority of peptide identifications were distributed over a range of 800-1800 Da with p*I* values ranging from 3 to 12, regardless of digestion protocol (Figure S2, <u>Supporting Information</u>).

Table 3.3 lists the number of ribosomal and non-ribosomal protein identifications from each digestion protocol. ANOVA indicates that a null hypothesis that the five digestion protocols yield similar numbers of protein identifications can be rejected at a >99% confidence level; the *CH*₃*CN* 1 *hr* protocol led on average to identification of the largest number of ribosomal proteins, and the *Lys-C/trypsin* protocol led to the smallest. The 40 to 49 ribosomal protein identifications, along with a low number of co-sedimenting nonribosomal proteins, are typical of LC-MS-MS analysis of tryptic digests of ribosomal

Table 3.3.	Protein	Identifications	from	<i>R</i> .	palustris	70 S	Ribosomal	Protein	Isolates	by
Digestion P	rotocol									

Digestion Protocol	Ribosomal / Non-Ribosomal ^a
	46 / 2
Guan-HCl	49 / 1
	46 / 2
	46 / 2
	41 / 1
Lys-C/trypsin	44 / 0
	40 / 1
	40 / 0
	47 / 3
CH ₃ CN	48 / 3
1 nour	49 / 4
	49 / 3
	45 / 1
CH ₃ CN	45 / 6
16 nours	47 / 4
	47 / 5
	44 / 2
RapiGest TM	40 / 2
	45 / 3
	44 / 4

^aBased on functional annotation of the protein.

proteins isolated by sucrose density fractionation. In our previous report, a single 110minute capillary one dimensional reverse phase LC-MS-MS separation of 10 μ g trypsin digestions of ribosomal isolates yielded the identification of 186 peptides matching 41 *R*. *palustris* proteins [42].

Figure 3.3 compares the digestion protocols in terms of the proportion of identifications from 70S ribosomal protein isolates with average sequence coverage greater than 30%. The *CH*₃*CN* 1 *hr* protocol produced the largest proportion of protein identifications with greater than 30% coverage, followed by the *Guan-HCl*, *CH*₃*CN* 16 *hr*, *RapiGest*, and *Lys-C/trypsin* protocols, in that order. The *RapiGest* and *Lys-C/trypsin* protocols resulted in \geq 30% sequence coverage for less than half of the identified proteins. Figure S4 in Supporting Information summarizes sequence coverage and physical characteristics for a total of 53 70S ribosomal protein identifications with the highest sequence coverage followed by the *CH*₃*CN* 1 *hr* protocol; together, these two protocols provided the highest sequence coverage for 46 of the 53 proteins. Figures S5 and S6 (Supporting Information) show the distribution of sequence coverage values of proteins over 4 p*I* ranges and 3 molecular weight ranges.

For the 70*S* ribosomal isolates, the $CH_3CN \ 1 \ hr$ protocol produced the highest number of peptide identifications and ribosomal protein identifications, and resulted in the highest

Digestion Protocol

Figure 3.3. Proportion of Identifications from *R. palustris* 70*S* Ribosomal Protein Isolates with average sequence coverage greater than 30% by digestion protocol. The height of each bar indicates the total number of protein identifications from tryptic peptides by digestion protocol. The solid portion of each bar indicates the number of proteins with an average sequence greater than 30%; the proportional value is indicated at the top of each bar. Numbers of total protein identifications accumulate all proteins identified in any replicate measurement, and therefore appear larger than suggested by Table 3.

proportion of protein identifications with sequence coverage values greater than 30%. The effectiveness of this protocol on this sample may be due to one or more of the following factors. First, the 80% acetonitrile solvent need not be diluted prior to trypsin digestion, while dilution of the chaotrope in the *Guan-HCl* and *Lys-C/trypsin* protocols is required to avoid inactivating trypsin. Such an increase in reaction volume for the digestion results in more solvent assessable tube surface area, which increases the potential for adsorptive loss of proteins or peptides along the inside of a centrifuge tube. Second, it is plausible that trypsin activity is affected in different ways by the various solvents used in these protocols, which span a range of chaotropes, pH values, and water concentrations. The 80% acetonitrile solvent may promote protease activity, as demonstrated in other mixed aqueous-organic solvents [53, 73]. Finally, different sample treatments for downstream compatibility with liquid chromatography are required. While the 80% acetonitrile solvent may easily be removed by centrifugal evaporation, the Guan-HCl and RapiGest protocols that we followed [42, 57, 58],[61, 62] both specify additional sample processing steps (SPE and acid precipitation, respectively) to remove the chaotrope, presenting an additional potential mechanism for loss of peptides.

B. taurus microtubule-associated protein (MAP) isolates. As a subset of microtubule-binding proteins, MAPs govern the structural dynamics of the cytoskeleton by assembling and stabilizing tubulin heterodimers into microtubules, facilitating essential cellular processes such as mitosis [72]. The subset of characterized MAPs includes the lower molecular weight tau protein and the larger MAP1, MAP2, and MAP3 proteins, with each subspecies present in distinct isoforms as a result of alternative mRNA splicing. The tau and MAP2 proteins are principally expressed in neuronal tissue,

while other MAPs have been identified and are distributed throughout other tissues and cell types in the body [74]. The subset of neuronal MAPs are of considerable biological interest, as these proteins have been linked to the formation of cytoskeletal neurofibrillary tangles, a defining characteristic of Alzheimer's disease [63]. The methodology to isolate MAPs from mammalian brain tissue involves at least two cycles of temperature-dependent depolymerization of tubulin proteins followed by phosphocellulose chromatography of the resulting tubulin-enriched fraction, yielding enriched amounts of the higher molecular weight MAPs and some residual amounts of tubulins [74, 75].

Table 3.4 shows the average number of peptide identifications from digestions of 2.5 μ g of MAPs according to the five digestion protocols. The *CH*₃*CN* 16 hour protocol yielded the highest number of both tryptic peptide and total peptide identifications, followed by the *Lys-C/trypsin*, the *CH*₃*CN* 1 hour, *RapiGest*, and *Guan-HCl* protocols. (It should be noted that we observed a 20 minute delay in detection of major chromatographic peaks during one technical replicate of the *CH*₃*CN* 1 hour protocol,

Digestion Protocol	Tryptic ^a Peptides	Semi- tryptic Peptides ^b	Non- Specific Peptides ^c	Total Peptide Identifications ^d	Percent Tryptic ^e	3-4 Missed Cleavages ^f
Guan-HCl	60 ± 23	5 ± 2	3.0 ± 1.4	67 ± 24	83.7 - 91.4	8 ± 4
Lys-C/ trypsin	296 ± 44	71 ± 18	10.0 ± 4.1	377 ± 65	76.0 - 81.0	1 ± 1
CH3CN 1 hour	283 ± 137	51 ± 19	5.5 ± 3.0	339 ± 156	72.6 - 81.0	16 ± 3
CH3CN 16 hours	427 ± 48	75 ± 16	3.3 ± 1.5	505 ± 64	83.1 - 87.0	4 ± 4
RapiGest	281 ± 73	65 ± 25	0.0 ± 0.0	346 ± 97	79.4 - 86.3	13 ± 5

Table 3.4. Average Peptide Identifications from *B. taurus* MAP Isolates by Digestion $Protocol^{a}$

Average values with standard deviation are shown from replicate experiments (see text for details). ^aPeptides with two termini resulting from cleavage C-terminal to lysine or arginine residues. ^bPeptides with one terminus resulting from cleavage C-terminal to a lysine or arginine residue. ^cPeptides with neither terminus resulting from cleavage C-terminal to a lysine or arginine residue. ^dTotal peptide identifications regardless of enzyme specificity. ^ePercentage of total peptide identifications with two tryptic termini. ^fTryptic peptides containing either three or four missed trypsin cleavage sites.

Leading to the large standard deviation in the number of peptide identifications.) The numbers of peptide identifications covered a larger range for the 5 digestion protocols applied to the MAPs than for the ribosomal proteins, perhaps reflecting the greater dynamic range and the total number of proteins of the MAPs. There was no clear trend relating digestion time and number of peptide identifications; the two 16-hour digestions had the highest and lowest number of peptide identifications, while the *RapiGest*, *CH*₃*CN 1 hr*, and *Lys-C/trypsin* protocols all yielded similar numbers of peptide identifications. Incubation times of 16 hours or longer resulted in fewer missed cleavage sites within peptide identifications relative to those protocols where incubation was conducted for only 1 hour. This is significant, as the *Lys-C/trypsin* protocol requires more digestion time and total number of reagents. Digestion of the MAPs according to the *Guan-HCl* protocol resulted in by far the fewest peptide identifications, perhaps due to protein or peptide losses caused by dilution of the guanidine hydrochloride, and SPE, as described above.

Table 3.5 lists the numbers of MAP and non-MAP protein identifications from each digestion protocol. ANOVA indicates that a null hypothesis that the five digestion protocols yield similar numbers of protein identifications can be rejected at a >99% confidence level. The various digestion protocols resulted in the identification of 8 to 19 neuronal MAPs. The *Lys-C/trypsin, CH₃CN 1 hour, CH₃CN 16 hours*, and *RapiGest* protocols produced comparable numbers of MAP identifications, ranging from 14 to 19, while the number of identifications for the *Guan-HCl* protocol ranged from 8 to 14. The difference in number of identifications of non-MAP proteins differed more drastically by

Table 3.5. Protein Identifications from <i>B. taurus</i> MAP Isolates by	^v Digestion Protocol
--	---------------------------------

Digestion Protocol	MAP / Non-MAP ^a
	9 / 11
Guan-HCl	8 / 9
	14 / 13
	13 / 16
	18 / 78
Lys-C/trypsin	18 / 80
	18 / 61
	17 / 77
	18 / 59
CH ₃ CN	18 / 56
l hour	19/3
	14 / 55
	19 / 87
CH ₃ CN	19 / 88
16 hours	18 / 80
	18 / 74
	16 / 43
RapiGest TM	19 / 65
	17 / 42
	17 / 52

^aBased on functional annotation of the protein.

Digestion Protocol

Figure 3.4. Proportion of Identifications from *B. taurus* MAP isolates with average sequence coverage values greater than 30% by digestion protocol. The height of each bar indicates the total number of protein identifications from tryptic peptides by digestion protocol. The solid portion of each bar indicates the number of proteins with an average sequence greater than 30%; the proportional value is indicated at the top of each bar. Numbers of total protein identifications accumulate all proteins identified in any replicate measurement, and therefore appear larger than suggested by Table 3.5.

producing a relatively large number of total protein identifications, yielded only 12 protein identifications at \geq 30% sequence coverage. In sharp contrast to the other four protocols, the *Guan-HCl* protocol produced only one protein with a sequence coverage \geq 30%.

A previous report of nanospray LC-MS-MS analyses of *B. taurus* MAPs ranged from 147 peptide identifications (64% were fully-tryptic peptides) matching 26 protein identifications for a one dimensional reverse-phase chromatographic separation to 431 peptide identifications (57% were fully-tryptic peptides) matching 62 protein identifications for a 3-phase MudPIT separation [59]. The present study is thus comparable to previous results on a comparable analytical platform. For the MAP isolates, the CH₃CN 16 hr protocol was most effective in terms of both total and tryptic peptide identifications, and yielded numbers of protein identifications and sequence coverage values greater than 30% that were among the highest. The *Guan-HCl* protocol produced the fewest peptide identifications, fewest total protein identifications, and lowest number of proteins with \geq 30% sequence coverage values for MAPs. As discussed above for ribosomal proteins, this protocol has the most sample processing steps, namely dilution of the guanidine hydrochloride and SPE, which offer the potential for the peptide loss. Digestion protocols conducted for as little as 1 hour produced a similar number of peptide identifications as the Lys-C/trypsin protocol, suggesting that the combination of two proteases and digestion times beyond 16 hours was not advantageous for peptide identifications in this sample. It is likely that in addition to the dilution step, more peptide losses resulted from the SPE in the *Guan-HCl* protocol, where only 1 protein was identified with greater than 30% sequence coverage.

47

3.4 Conclusions

Protein enrichment protocols often provide yields in the low microgram to high nanogram range. The characterization of such protein isolates by LC-MS-MS of peptides requires the digestion of proteins into peptides prior to the measurements of the intact mass and fragmentation pattern of the peptides. This digestion step is frequently taken for granted, especially for the digestion of limited or small quantities of protein, e. g. those isolated by affinity purification. Here we compared the performance of existing protocols for the digestion of small quantities of "real world" protein isolates and further demonstrated the effectiveness of the 80% acetonitrile solvent for trypsin digestions.

In both types of protein isolates examined, protocols where the trypsin digestion was conducted in the 80% acetonitrile solvent performed as well as, and in many instances better than, the other protocols tested. For isolates of the *R. palustris* 70*S* ribosomal protein complex, a 1 hour digestion in 80% acetonitrile resulted in the highest number of peptide identifications. A 16 hour digestion in 80% acetonitrile yielded in the highest number of peptide identifications for the *B. taurus* MAPs. Digestion in 80% acetonitrile solvent can be advantageous because it eliminates steps in the workflow that can lead to losses of protein or peptides, which becomes a more significant problem for samples that contain small quantities of protein. Chaotrope dilution steps, such as those in the *Guan-HCl* and *Lys-C/trypsin* protocols, increase the surface area to which the sample is exposed inside microcentrifuge tubes, increasing the possibility of adsorptive losses of proteins or peptides. To prevent interference in chromatography, chaotropes are frequently removed from peptide mixtures in a sample cleanup step prior to LC-MS-MS by SPE or precipitation, as in the *Guan-HCl* and *RapiGest* protocols. These steps

increase the amount of sample handling, surface area to which the sample is exposed, and exacerbate the potential for peptide loss. The 80% acetonitrile solvent is volatile and may quickly be removed from peptide mixtures by centrifugal evaporation, apparently leading to fewer losses than SPE or precipitation of acid-labile surfactants. Regardless of the type of protein isolates examined, we consistently found the minimization of sample handling steps in the digestion protocols tested to be beneficial. Finally, although not investigated in this study, it is possible that the activity of trypsin differs among the solvents used in the various protocols, which span a considerable range of composition and pH.

Chapter 4

Evaluation of Affinity-Tagged Protein Expression Strategies using Local and Global Isotope Ratio Measurements

All of the data presented in this chapter have been adapted from the following published journal article:

W. Judson Hervey, IV, Gurusahai Khalsa-Moyers, Patricia K. Lankford, Elizabeth T. Owens, Catherine K. McKeown, Tse-Yuan Lu, Linda J. Foote, Keiji G. Asano, Jennifer L. Morrell-Falvey, W. Hayes McDonald, Dale A. Pelletier, and Gregory B. Hurst. *Journal of Proteome Research.* 2009, 8 (7), 3675-3688.

Chromosome-integrated *E. coli* sequential peptide affinity (SPA) clones were a generous gift from the laboratory of Andrew Emili, Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, ON.

Development of the SPA2 plasmid was performed by Gurusahai Khalsa-Moyers, Jennifer L. Morrell-Falvey, W. Hayes McDonald, Linda J. Foote, and Dale A. Pelletier. Molecular cloning of DNA, primer design, and Invitrogen Gateway recombination reactions were performed by Tse-Yuan Lu, Elizabeth T. Owens, Patricia K. Lankford, and Catherine K. McKeown.

Microbial cell growth, ¹⁵N stable isotope metabolic labeling, isolation of affinity-tagged bait proteins, isolation of soluble proteome fractions, sample preparation, LC-MS-MS measurements, and data analysis was performed by W. Judson Hervey, IV.

Supplementary Information referred to in the Results and Discussion section are available freely on the internet at <u>http://pubs.acs.org/doi/suppl/10.1021/pr801088f</u>

Abstract

Elucidation of protein-protein interactions can provide new knowledge on protein function. Enrichments of affinity-tagged (or "bait") proteins with interaction partners generally include background, non-specific protein artifacts. Furthermore, in vivo bait expression may introduce additional artifacts arising from altered physiology or metabolism. In this study, we compared these effects for chromosome and plasmid encoding strategies for bait proteins in two microbes: Escherichia coli and Rhodopseudomonas palustris. Differential metabolic labeling of strains expressing bait protein relative to the wild-type strain in each species allowed comparison by liquid chromatography tandem mass spectrometry (LC-MS-MS). At the local level of the protein complex, authentic interacting proteins of RNA polymerase (RNAP) were successfully discerned from artifactual proteins by the *i*sotopic *d*ifferentiation of interactions as random or targeted (I-DIRT; A. J. Tackett et al. J. Proteome Res. 2005, 4 (5), 1752-1756). To investigate global effects of bait protein production, we compared proteomes from strains harboring a plasmid encoding an affinity-tagged subunit (RpoA) of RNAP with the corresponding wild-type strains. The RpoA abundance ratios of 0.8 for R. palustris and 1.7 for E. coli in plasmid strains versus wild type indicated only slightly altered expression. While most other proteins also showed no appreciable difference in abundance, several that did show altered levels were involved in amino acid metabolism. Measurements at both local and global levels proved useful for evaluating in vitro and in vivo artifacts of plasmid-encoding strategies for bait protein expression.

4.1 Introduction

Many biological processes are conducted by macromolecular assemblies of individual polypeptide chains, or protein "complexes." Elucidation of physical interactions among protein complexes is essential for improved understanding of cellular function. Interaction analyses of entire biological systems are now possible through integration of genomic, analytical, and computational tools [3]. Typically, such large-scale studies encompass systematic surveys of genome-wide fusion protein expression libraries with techniques to measure physical protein interactions, such as two-hybrid, phage display, or affinity isolation [2]. The combination of affinity purification of a tagged "bait" protein and its interaction partners with mass spectrometry (AP-MS) [30, 76] has emerged as an attractive, robust, high-throughput approach to performing such measurements. Mass spectrometric identification of the proteins that are co-purified along with the bait enables the inference of physical interactions among enriched proteins, implying membership in a protein complex and providing insights into function. Amid authentic, bona fide proteinprotein interactions, however, it is common to observe non-specific protein artifacts. In the absence of follow-up experimental verification, identifying the authentic, biologically significant protein interactions from AP-MS datasets relies upon statistical techniques [77], corroborating predictions from bioinformatics, and/or computational algorithmic development [78].

Most AP-MS studies have been conducted in model organisms for which genetic systems have been developed that enable expression of chromosome-encoded bait fusion proteins [47, 79]. Such chromosome encoding strategies have the advantage that bait proteins are expressed under control of the native promoter gene sequence and, in

prokaryotic organisms, are transcribed as a unit with other genes in the same operon. In order to extend the utility of AP-MS to the growing number of microbes for which genome sequencing is complete, but for which tools for chromosomal integration have not yet been developed, our laboratory recently described a plasmid-based strategy for expression of fusion proteins for AP-MS studies across a range of Gram-negative species [80]. In plasmid-based strategies, bait proteins are encoded in extra-chromosomal DNA that has been introduced into the cell. Expression of the bait from plasmid is often under control of a promoter sequence that cannot be regulated. Although effects such as altered levels of bait protein expression or other collateral physiological consequences are likely [81], plasmid-based systems offer advantages such as implementation with general molecular biological tools and commercial reagents, no requirement of a species-specific genetic system, and applicability for organisms beyond "model" biological species.

In order to differentiate authentic from artifactual interactions, isotope ratio mass spectrometry measurements have been applied to the study of protein-protein interactions by AP-MS [30, 31, 76]. In particular, the *isotopic d*ifferentiation of *i*nteractions as *r*andom or *t*argeted (I-DIRT) method has been demonstrated using chromosomal fusion expression strategies in *S. cerevisiae* [82] and *E. coli* [83]. In this method, a strain that has been genetically modified to express a bait protein is grown in medium prepared from components with naturally occurring stable isotope distributions (mostly ¹²C, ¹⁴N, etc.), so that newly synthesized proteins that interact with the bait *in vivo* during culture growth will contain predominantly the naturally occurring distribution of isotopes. A second culture of an unmodified strain, grown in medium enriched in a distinctive stable isotope (e.g. ¹³C or ¹⁵N), is mixed with the bait-expressing strain. Proteins from the latter strain

that interact with the bait *in vitro* after mixing are affinity isolated along with the bait protein. These proteins can be distinguished via their isotope abundance ratios in mass spectra; authentic interactors will contain mostly naturally abundant isotopes, while proteins interacting with the bait after mixing will contain more of the distinctive stable isotope.

In this study, we compared different strategies of bait fusion protein expression for their effects on detection of microbial protein interactions by AP-MS. We used the DNA-directed RNA polymerase (RNAP) as a model complex to investigate strategies for encoding bait proteins in two phylogenetically distinct microbial species: Escherichia coli, a model species, and Rhodopseudomonas palustris [66], a metabolically diverse and environmentally uibiquitous species. For the chromosome-encoded bait protein strategy, we used sequential peptide affinity (SPA) [50, 79] strains expressing the E. coli RNA polymerase proteins RpoA/SPA, RpoB/SPA, and RpoC/SPA. For the plasmid-encoded bait protein strategy, we encoded SPA-tagged RpoA in E. coli and R. palustris using a medium-copy vector backbone [80]. To differentiate authentic protein-protein interactions from co-isolating artifactual interactions, we looked locally, i.e. at the level of the protein complex, by applying the I-DIRT method to affinity-isolated RNAP using different bait proteins. To examine more global consequences of the plasmid encoding strategy on the cell, we performed whole-proteome quantitative MS measurements of the differentially labeled plasmid-expressing strains relative to their wild-type counterparts. For both E. coli and R. palustris, expression levels of plasmid encoded RpoA were similar to wild type, and most other proteins were within 2-fold of their abundance in wild type strains. Nevertheless, some 2-fold or greater differences in abundances of

proteins, especially those involved in amino acid biosynthesis, were observed. At both local and global levels, chromosome- and plasmid-encoding strategies for the genes studied yielded comparable results for detection of authentic protein-protein interactions.

4.2 Experimental Procedures

Reagents obtained from Sigma Chemical Company (St. Louis, MO) included Trizma Hydrochloride (UltraPure), Trizma Base (UltraPure), NH₄HCO₃ (UltraPure), guanidine hydrochloride (UltraPure), 2-mercaptoethanol (>98% molecular biology grade), KH₂PO₄ (> 99.0% purity), ethylene glycol-bis(aminoethylether)-tetraacetic acid (EGTA) (SigmaUltra), glycerol (SigmaUltra), Triton[®] X-100 (SigmaUltra), ANTI-FLAG[®] M2 affinity gel, CH₃CO₂NH₄ (99.999% purity), and disodium ethylenediamine-tetraacetic acid (EDTA) (99+% molecular biology grade). Other reagents included dithiothreitol (DTT) (OmniPur), glucose (USP purity), Novagen Benzonase[®] nuclease, and formic acid (SupraPur) (EMD Chemicals, Darmstadt, Germany); ¹⁵NH₄Cl (98+ atom % excess ¹⁵N) and (¹⁵NH₄)₂SO₄ (98+ atom % excess ¹⁵N) (Isotec, Miamisburg, OH); NH₄Cl (99.5% purity), (NH₄)₂SO₄ (99.5% purity), CaCl₂ (99% purity) and NaCl (molecular biology grade) (Mallinckrodt Baker Chemicals, Phillipsburg, NJ); AcTEVTM protease (Invitrogen, Carlsbad, CA); Calmodulin SepharoseTM 4B (GE Healthcare, Piscataway, NJ); bicinchoninic acid (BCA) Protein Assay Kit (ThermoFisher Scientific, Rockford, IL), lyophilized sequencing-grade modified trypsin (Promega, Madison, WI), HPLCgrade acetonitrile and water (Burdick and Jackson, Muskegon, MI); MgSO4•7H2O (99.9% purity) and Na₂HPO₄ (USP) (Fischer Scientific, Fair Lawn, NJ). Ultrapure 18 $M\Omega$ water used for protein isolation buffers was obtained from a Milli-Q system (Millipore, Bedford, MA). HPLC-grade water was used in trypsin buffer (50 mM

Trizma-HCl, 10 mM CaCl₂, pH 7.6). HPLC-grade water, HPLC-grade acetonitrile, formic acid (SupraPur), and CH₃CO₂NH₄ (99.999% purity) were used in preparation of HPLC mobile phases.

Table 4.1 lists microbial strains, metabolic labeling, and growth media used in three bait encoding strategies (outlined in Figure 4.1). The SPA [50, 79] strains used in the chromosome encoding strategy were a generous gift from the laboratory of Andrew Emili, Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, ON. For the plasmid encoding strategy, the SPA2 plasmid was designed to encode a bait protein with a C-terminal calmodulin binding peptide epitope, TEV cleavage sites, and FLAG epitopes, encoding an affinity tag comparable to chromosomally-integrated SPA bait proteins [84]. DNA sub-cloning, recombination into a broad-host-range vector backbone that allows encoding of fusion proteins bearing a variety of affinity tags, and strain sub-culturing was performed as described elsewhere in more detail [80].

Escherichia coli and *Rhodopseudomonas palustris* strains were grown to exponential phase in ¹⁴N- or ¹⁵N-enriched minimal medium. *E. coli* cultures were grown on M9 minimal medium [85] to a density of OD_{600} =0.6, with NH₄Cl as the sole source of nitrogen [40]. Growth was conducted in baffled Erlenmeyer flasks under aerobic conditions in a shaking incubator (New Brunswick Innova) at 37°C, with agitation at approximately 1,440 rpm. *R. palustris* cultures were grown on photosynthetic medium (PM-10) under anaerobic, photoheterotrophic conditions with succinate as a carbon source, to a density of OD_{660} =0.6 [41, 86]. In PM-10 medium, ammonium sulfate (0.014 M) is the sole source of nitrogen available for incorporation into biosynthesized proteins;

Species, strain, <u>Bait Protein</u> , or (Gene Number)	RNAP Subunit	Molecular Weight ^a	Encoding Strategy [¢]	Growth Medium; Nitrogen Source	Source	Refer- ence
Escherichia coli						
RpoA/SPA (ECK3282)	α	36.5 kDa	chromosome	M9; NH4Cl	A. Emili	8, 15
<u>RpoB/SPA</u> (ECK3978)	β	150.6 kDa	chromosome	M9; NH ₄ Cl	A. Emili	8, 15
<u>RpoC/SPA</u> (ECK3979)	β'	155.2 kDa	chromosome	M9; NH ₄ Cl	A. Emili	8, 15
<u>RpoA/SPA2</u> (ECK3282)	α	36.5 kDa	plasmid	M9; NH ₄ Cl	our lab	9, 16
<u>RpoB/SPA2</u> (ECK3978)	β	150.6 kDa	plasmid (-)	M9; NH ₄ Cl	our lab	9, 16
<u>RpoC/SPA2</u> (ECK3979)	β'	155.2 kDa	plasmid (-)	M9; NH4Cl	our lab	9, 16
K12 MG1655 (wild-type strain)			-	M9: ¹⁵ NH ₄ Cl	ATCC (700926)	25
Rhodopseudomonas palustris						
<u>RpoA/SPA2</u> (RPA3226)	α	37.5 kDa	plasmid	PM-10; (NH ₄) ₂ SO ₄	our lab	9, 16
<u>RpoC/SPA2</u> (RPA3267)	β'	156.1 kDa	plasmid (-)	PM-10; (NH ₄) ₂ SO ₄	our lab	9, 16
<u>RpoB/SPA2</u> (RPA3268)	β	154.6 kDa	plasmid (-)	PM-10; (NH ₄) ₂ SO ₄	our lab	9, 16
CGA010 (wild-type strain)			-	PM-10; (¹⁵ NH ₄) ₂ SO ₄	C. Harwood	14, 18

Table 4.1. Microbial Species, Affinity-Tagged Bait Protein Expression Strategy, and Metabolic Labeling used in this study.

^{*a*} Molecular weight of the native, untagged protein determined by the amino acid sequence of the predicted proteome. Molecular weight of the SPA affinity tag is approximately 8.1 kDa⁸. ^{*b*} Entries labeled "plasmid (-)" indicate fusion proteins that did not express.

Figure 4.1. Experimental outline for evaluation of encoded affinity-tagged (or "bait") protein strategies presented in this study.

A small concentration of *p*-aminobenzoic acid (0.015 mM) provides a negligible amount of ¹⁴N contamination. Duplicate cell cultures were grown as outlined in Figure 4.2. Each cell culture was harvested by centrifugation [80]. Mixtures of bait-expressing strains and isotopologous wild-type strains were created at 1:1 (w/w) wet cell paste mass ratios on ice [82]. Wet cell paste mass of each mixture was measured on an analytical balance (Mettler, Toledo, OH); total cell paste masses were approximately 1.5 g.

Protein Complex Analysis. Following the left-hand workflow shown in Figure 1, isolation of the RNA polymerase (RNAP) protein complex was performed using protocols appropriate for the SPA tag [50, 79], with slight modifications for the I-DIRT method [82, 83]. Each cell mixture was resuspended at 0.2 g/mL in M2 buffer (10 mM Trizma-HCl, 100 mM NaCl, 10% glycerol, 0.1% Triton[®] X-100, 1 µg/mL Benzonase[®] Nuclease), and incubated on ice for 30 min. Cell lysis was performed on ice using a Branson Sonifier (Danbury, CT) [41, 86] and cellular debris were removed by centrifugation [80]. RNAP was isolated from the resulting cleared, soluble protein fraction of cell lysate for all bait proteins [50, 79], with the following modifications: cell lysate was incubated with ANTI-FLAG[®] M2 affinity gel at 4°C for 4 h; AcTEVTM protease reaction was conducted at ambient laboratory temperature (approximately 25°C) for 1 h; and, AcTEVTM cleavage product was incubated with Calmodulin SepharoseTM 4B at 4°C for 1 h. The final elution from Calmodulin SepharoseTM, containing the affinity-isolated protein enrichment, was digested with trypsin in a solvent of 80% CH₃CN [87].

Figure 4.2. Replication scheme for experiments outlined in Figure 1. (a) Local (complex-specific) measurements; (b) global (whole proteome) measurements. BR= biological replicate (i.e., culture), TR = technical replicate (i.e. LC-MS-MS run).

The resulting mixtures of proteolytic peptides were separated by an automated one dimensional reverse phase C₁₈ nanoHPLC system, composed of a FAMOS autosampler, Switchos, and UltiMate HPLC pump (LC-Packings/Dionex, Sunnyvale, CA), described in more detail previously [87]. The nanoHPLC system was coupled directly to the nanoelectrospray source (Proxeon Biosystems, Odense, Denmark) of a linear ion trap mass spectrometer (ThermoFinnigan LTQ, San Jose, CA), under control of the Xcalibur software (version 2.0.9, ThermoFinnigan). The LTQ instrument scanned the mass-to-charge range of 400-1700 in data dependent mode and subjected the three most intense ions to MS/MS analysis at 35% normalized collisional energy. Dynamic exclusion [64] was enabled and conducted under the following settings: repeat count 1, repeat duration 60 sec., exclusion size list 300, exclusion duration 180 sec., exclusion width by mass (low and high) 1.5 Da, with expiration disabled. The default charge state was set to 3. Full-scan mass spectra were averaged from four microscans; tandem mass spectra were averaged from two microscans.

Proteome Analysis. Soluble proteome fractions were isolated from isotopologous cell mixtures of plasmid-bearing strains and wild-type strains, shown in the right-hand workflow in Figure 4.1. For *E. coli*, a single 1:1 (w/w) cell mixture was created between a strain encoding the RpoA protein in the SPA2 plasmid and the K12 MG1655 wild-type strain. Similarly, for *R. palustris*, a single mixture was created between the RpoA/SPA2 plasmid-bearing strain and the CGA010 wild-type. Proteome samples were processed as previously described in more detail [41, 86]. Briefly, the protein content of cleared, soluble proteome fractions from each cell mixture (obtained as described above) was measured by the BCA Assay (ThermoFisher). Approximately 2 mg of each proteome

fraction was digested with trypsin and resulting peptides desalted by solid phase extraction [41, 86]. The resulting mixtures of proteolytic peptides were separated by a two dimensional (strong cation exchange and reverse phase) nanoHPLC system [41, 86], configured for a split-phase 12-step MudPIT separation [26], coupled to a nanoelectrospray source (Proxeon Biosystems, Odense, Denmark) of a linear ion trap mass spectrometer (ThermoFinnigan LTQ, San Jose, CA). The LTQ mass spectrometer was operated in data dependent mode with dynamic exclusion [64] enabled, as described above. Duplicate LC-MS-MS analyses were conducted for the *E. coli* mixture and for the *R. palustris* mixture as outlined in Figure 4.2.

Peptide Identification, Protein Quantification, and Data Analysis. Identification of peptides from tandem mass spectra was performed using the SEQUEST algorithm (version 27) [10] without enzyme specificity. *E. coli* FASTA-formatted protein sequences were obtained from SwissProt [88], while *R. palustris* FASTA-formatted protein sequences (version 3.0) were obtained from the ORNL genome annotation pipeline [89]. To estimate the false positive peptide identification rate, the predicted proteome of each microbial species was reversed and concatenated to the FASTA-formatted protein sequence file [90] by Perl scripting. Additional proteins encoded by the vector backbone [80] (antibiotic resistance proteins, and affinity tag sequences), and common contaminant proteins (in-house standard mixture proteins, proteolytic enzymes, and keratins, etc. specified as "contaminant" in the FASTA protein description) were added to each FASTA sequence file, resulting in 8,712 protein sequences in the *E. coli* file and 9,700 protein sequences in the *R. palustris* file. Two separate SEQUEST searches were performed, with amino acid molecular masses calculated based on ¹⁴N for
the first, and ¹⁵N for the second search [41]. Results from these ¹⁴N and ¹⁵N SEQUEST searches were merged using the "Merge Directories" tool of the ProRata program GUI (version 1.1) [41].

Peptide identifications were filtered, organized, and assembled by locus using the DTASelect program (version 2.06) [27]. DTASelect retained identifications based on singly-, doubly-, and triply-charged peptide ions with X_{Corr} scores ≥ 1.8 , ≥ 2.5 , and ≥ 3.5 , respectively, and ΔCN scores ≥ 0.08 . Identification at the protein level required identification of two or more non-redundant tryptic peptides. Multiple MS-MS scans for identified peptide sequences were retained by specifying the DTASelect locus filter -t 0. DTASelect discarded redundant locus information by default; contaminant proteins (proteolytic enzymes, keratins, etc.) were removed using the filter $-l \ contaminant$. The false positive identification rates were estimated by DTASelect as $\leq 0.3\%$ at the peptide level and $\leq 0.7\%$ at the protein level.

The ProRata program extracted selected ion chromatograms, estimated peptide abundance ratios, and assembled peptide quantifications into protein quantifications according to default specifications [41], with the additional requirement of \geq 3 peptide quantifications per protein. Quantification data from biological replicates of protein complex analyses was further filtered by the ProRata program [86] to include only those proteins quantified in all 4 total LC-MS-MS analyses per bait protein, yielding a single isotopic protein abundance ratio and 90% confidence interval. Interaction specificity with RNAP was based upon the combination of protein abundance ratio, known interactors determined by standard biochemical techniques [91, 92], and those reported in previous AP-MS studies [50, 80, 83]. For proteome analyses, the ProRata program

estimated peptide and protein abundance ratios as described above; however, isotope ratio results were reported only for those proteins for which isotope ratios could be determined in both replicate LC-MS-MS analyses. Proteins were considered more abundant in the plasmid encoded bait expression strains if the log₂ abundance ratio of the protein was ≥ 1 , and less abundant if the log₂ abundance ratio was ≤ -1 [86]. *E. coli* proteins differing in abundance were classified into clusters of orthologous groups of proteins (COGs) functional category assignments using the COGnitor tool [93]. COG functional categories for *R. palustris* proteins differing in abundance were retrieved from the ORNL genome annotation pipeline [89]. KEGG pathways for proteins were downloaded from the Kyoto Encyclopedia of Genes and Genomes [94]. Predicted operons for *E. coli* and *R. palustris* genes were obtained from the Virtual Institute for Microbial Stress and Survival Operon Prediction website [95]. Tab-delimited output of protein identifications, abundance ratios, and COGs were further analyzed in a relational database (Microsoft Access).

4.3 Results and Discussion

In this study, we have applied isotope ratio proteomics techniques to compare affinitytagged bait fusion protein expression from chromosome and plasmid encoding strategies for detection of microbial protein interactions. We devised the current experimental design, shown in Figure 4.1, using RNAP as a model protein complex. This study used isotope ratio mass spectrometry in both a local approach to characterize the proteins that were isolated along with the bait in the affinity purification, and in a global approach to examine effects of expression of a plasmid-encoded bait on protein abundances across the proteome. The local approach, I-DIRT, used ¹⁴N:¹⁵N isotopic abundance ratios to distinguish authentic protein-protein interactions with the bait protein from artifactual interactions. The global approach, shotgun proteome profiling, used metabolic stable isotope labeling to enable abundance ratio measurements for proteins in plasmid-bearing strains relative to wild-type strains. In combination, these two measurements allowed us to assess particular protein-protein interactions, the extent of bait protein over-expression, and broader effects on the proteome profile arising from the "metabolic load" [81] imposed by the presence of the plasmid.

Numerous classical biochemical experiments encompassing decades of research have deciphered the role of DNA-dependent RNA polymerase in the flow of genetic information [91, 92]. In bacterial species, the transcription of genomic DNA into mRNA is performed by a 5-subunit core polymerase, with specificity conferred by the presence of one of several gene-specific σ factors. Core RNAP consists of the α -subunit, RpoA (36.5 kDa), a β -subunit, RpoB (150.6 kDa), a β '-subunit, RpoC (155.2 kDa), and an ω – subunit, RpoZ (10.2 kDa), configured in a 2:1:1:1 stoichiometry, respectively ($\alpha_2\beta\beta'\omega$) This breadth of previous biochemical knowledge regarding this protein [91, 92]. complex has contributed to its use as a model system for demonstrating both chromosome-[50, 79] and plasmid-encoded [80] fusion bait protein strategies, and as a model to demonstrate the I-DIRT method in the hemorrhagic E. coli strain O157:H7 [83]. To leverage this wealth of background information, we chose specific components of RNAP as baits, and applied the I-DIRT method to E. coli strains expressing chromosome-encoded SPA-tagged [50, 79] bait proteins (designated RpoA/SPA, RpoB/SPA, and RpoC/SPA), and to E. coli and R. palustris strains expressing plasmidencoded SPA2-tagged RpoA (shown in Table 4.1).

Chromosome-Encoded Baits. Affinity isolation by the I-DIRT method [82, 83] was performed from a 1:1 (w/w) cell mixture of an isotopically "light" strain expressing the affinity-tagged bait protein with an isotopically "heavy" wild-type strain (Figure 1). Authentic components of RNAP that interact *in vivo* with the bait protein will be isotopically light, while artifactual associations occurring *in vitro* after mixing of the cell pellets will be a mixture of light and heavy isotopologs. Thus proteins involved in authentic interactions yield greater ¹⁴N:¹⁵N isotopic ratios than artifactual proteins.

<u>I-DIRT Analysis of *E. coli* RpoA/SPA Co-Isolates</u>. Isotope ratios for a total of 15 proteins that co-isolated with the RpoA/SPA bait protein are shown in Figure 4.3a and Table S1 (<u>Supporting Information</u>). Relatively large ¹⁴N:¹⁵N isotopic abundance ratios of 14.9, 6.5, and 4.3 were measured for core RNAP components RpoB, RpoA, and RpoC, respectively. Among other proteins with ¹⁴N:¹⁵N isotopic abundance ratios indicative of specific interactions were DnaK (4.3) and RapA, formerly HepA¹⁵ (2.6). The latter two proteins were previously identified qualitatively with affinity isolated RNA polymerase [50], and in I-DIRT analysis of the *E. coli* O157:H7 RNAP as authentic-interacting proteins [83]. In addition to DnaK, another heat-shock family protein, CH60 (GroEL), was quantified with an isotopic ratio of 2.8. This interaction is plausibly specific, as the presence of chaperones in this case could be attributable to the C-terminal affinity tag of the bait protein or other anomalies related to fusion protein folding, although literature sources, consulted as described in Experimental Procedures, offered no evidence suggest-

Figure 4.3a. I-DIRT measurements of affinity isolated RNA polymerase protein complex from the *E. coli* chromosome-encoded RpoA/SPA bait protein. Isotopic abundance ratios for each protein are indicated with a circle; open circles indicate specific protein interactions, while filled circles represent non-specific protein interactions. Scale for the abundance ratio is shown along the lower x-axis. Error bars represent the 90% confidence interval calculated by ProRata. Average spectrum count is shown for each protein and indicated with an X. The scale is provided along the upper x-axis.

(RI9), ribosomal protein L6 (RI6), and ribosomal-associated trigger factor (Tig), may drive the equilibrium toward association of these proteins with the bait protein or other components of the RNAP complex, leading to detection of these abundant proteins in the AP-MS experiment. As a crude estimate of absolute protein amount, Figure 3a also shows the average spectrum count, a semi-quantitative measure of protein abundance [96], associated with each detected protein. The spectrum count observed for known interactor DnaK was measurably lower than for abundant cellular proteins such as EfTu, RI6, and RI9. However, low ¹⁴N:¹⁵N ratios for these abundant proteins clearly indicated that they associated with the bait after mixing of the "light" and "heavy" cell pellets and cellular lysis, and thus are likely to be artifactual. On the other hand, spectrum count values for RpoA, RpoB and RpoC were fairly high, indicating that the affinity isolation is effective in enriching RNAP components.

<u>I-DIRT Analysis of *E. coli* RpoB/SPA Co-Isolates</u>. Isotope ratios for a total of 11 proteins were measured from isolations of the RpoB/SPA bait protein (shown in Figure 4.3b, and Table S2 in <u>Supporting Information</u>). Similar to results for RpoA/SPA described above, co-isolates of the RpoB/SPA bait protein yielded relatively large isotope ratios for core polymerase components RpoA (9.8), RpoC (4.6), and the bait protein itself, RpoB (13.9). The RapA protein was also classified as a specific interactor with the complex, with an isotope ratio of 4.0.

The distribution of the isotopic abundance ratios for the other 7 proteins co-isolating with the RpoB/SPA bait protein was lower and nearly uniform, with a mean of 1.9. As in the case of the RpoA/SPA bait, some of the identified proteins with lower isotopic ratios

Average Spectrum Count

Figure 4.3b. I-DIRT measurements of affinity isolated RNA polymerase protein complex from the *E. coli* chromosome-encoded RpoB/SPA bait protein. Isotopic abundance ratios for each protein are indicated with a circle; open circles indicate specific protein interactions, while filled circles represent non-specific protein interactions. Scale for the abundance ratio is shown along the lower x-axis. Error bars represent the 90% confidence interval calculated by ProRata. Average spectrum count is shown for each protein and indicated with an X. The scale is provided along the upper x-axis.

Are known to be abundant cellular proteins, such as ribosomal proteins and EfTu.

I-DIRT Analysis of *E. coli* RpoC/SPA Co-Isolates. Isotope ratios for the 8 proteins coisolated with the RpoC/SPA bait protein are shown in Figure 4.3c and Table S3 (Supporting Information). Isolation of the RNAP complex from the RpoC/SPA protein was the most stringent isolation among chromosome-encoded bait proteins, yielding isotope ratios for only 2 proteins likely to be background (EfTu, 2.1; and Rs16, 1.4). Just as with co-isolates of the two other chromosome-encoded fusion proteins, specific interactions with the bait were characterized by large ¹⁴N:¹⁵N isotopic abundance ratios for RpoA (4.0), RpoB (7.5), and RapA (4.9). Two additional specific RNAP interactions were also detected with this bait: the σ_{70} factor, RpoD, and the ω subunit, RpoZ, yielded isotope ratios of 4.3 and 8.6, respectively. Detection of these two proteins as authenticaffiliated components of RNAP is consistent with a previous report using Protein Atagged RpoC as bait in the I-DIRT method [83]. Interestingly, we observed the interaction between the known core subunit RpoZ and RNAP exclusively from isolations of the RpoC/SPA bait. Our result is also consistent with a biophysical study suggesting that RpoZ exhibits a chaperone-like propensity towards RpoC [97].

Plasmid-Encoded Baits. In recent years, the increasing rate of microbial genome sequencing has outpaced the development of homologous recombination systems for expression of chromosome-encoded bait proteins in these species. For these sequenced microbes, recombinant DNA technology and commercial systems for plasmid-based expression of fusion proteins is a useful alternative to homologous recombination. To determine whether plasmid-based strategies provide protein-protein interaction results

Figure 4.3c. I-DIRT measurements of affinity isolated RNA polymerase protein complex from the *E. coli* chromosome-encoded RpoC/SPA bait protein. Isotopic abundance ratios for each protein are indicated with a circle; open circles indicate specific protein interactions, while filled circles represent non-specific protein interactions. Scale for the abundance ratio is shown along the lower x-axis. Error bars represent the 90% confidence interval calculated by ProRata. Average spectrum count is shown for each protein and indicated with an X. The scale is provided along the upper x-axis.

Comparable to chromosomal integration, it is important to compare the two approaches. To compare the stringency of isolation between chromosome-encoded baits (described above) and plasmid-encoded baits, we implemented the left-hand workflow in Figure 1, and encoded the same genes as described above for chromosomal studies (*rpoA*, *rpoB*, *rpoC*) in a plasmid and introduced the plasmid into *E. coli* cells. To demonstrate the plasmid strategy in a less thoroughly studied species, plasmids encoding the analogous proteins were also transformed into *R. palustris*. Attempts in both species to express SPA2 fusion proteins with RpoB and RpoC from plasmid were unsuccessful, even though RpoB and RpoC could be expressed as fusions with a dual hexahistidine and V5 epitope affinity tag when cloned into the pBBR5DEST42 destination vector, derived from the same backbone [80]. Expression of fusion protein from the *rpoA* gene was successful in both species.

I-DIRT Analysis of *E. coli* RpoA/SPA2 Co-Isolates. ¹⁴N:¹⁵N isotope ratios for eight proteins were obtained in isolates of RNAP from the plasmid-encoded *E. coli* RpoA/SPA2 bait protein and are shown in Figure 4.3d and Table S4 (Supporting Information). As with chromosome-encoded fusion proteins, the isotopic abundance ratios of core components RpoB (16.0), RpoC (13.9), and RpoA (9.8) were greater than other proteins, whose mean isotope abundance ratio was 0.9. The majority of the artifactual proteins shown in Figure 3d represent abundant ribosome-associated proteins, such as EfTu and Rs7, as well as outer membrane protein A (OmpA), and pyruvate dehydrogenase E1 component (Odp1, formerly AceE).

As discussed above, we observed that average spectrum count values did not correlate

Figure 4.3d. I-DIRT measurements of affinity isolated RNA polymerase protein complex from the *E. coli* plasmid-encoded RpoA/SPA2 bait protein. Isotopic abundance ratios for each protein are indicated with a circle; open circles indicate specific protein interactions, while filled circles represent non-specific protein interactions. Scale for the abundance ratio is shown along the lower x-axis. Error bars represent the 90% confidence interval calculated by ProRata. Average spectrum count is shown for each protein and indicated with an X. The scale is provided along the upper x-axis.

to interaction specificity, as measured by isotopic abundance ratios. This is further illustrated by comparing results for Odp1, likely an artifactual protein, with an RNAP component, RpoB. The average spectrum count of Odp1 was 70.5 and the isotopic abundance ratio of this protein was 2, while the corresponding values for RpoB were 104.5 and 16, respectively. The combination of average spectrum count and isotopic abundance ratio provide evidence that the Odp1 protein is abundant in the affinity-isolated enrichment, yet is likely to be an artifactual interactor with RNAP. On the other hand, these results demonstrate that RpoB is both abundant (due to enrichment by the affinity isolation) and an authentic interactor with the bait.

<u>I-DIRT Analysis of *R. palustris* RpoA/SPA2 Co-Isolates</u>. Isotope ratios were obtained for 4 proteins that co-isolated with the *R. palustris* RpoA/SPA2 bait. The isotopic abundance ratios of these proteins are shown in Figure 4.3e and Table S5 (Supporting Information). As with all other isolations of RNAP, core components RpoB (8.0), RpoC (6.5), and RpoA (3.5), were among the largest isotope ratios. The other protein, RpoD (or RPA1288), is the *R. palustris* σ_{70} factor, a known component of RNA polymerase.

No other isotopic abundance ratios were measured, despite qualitative identification of both putatively authentic (NusA, RnpO, and RpoH) and artifactual interactions (SecA, AtpA, and AtpD) as shown in Table S5 (Supporting Information). The lack of isotopic ratios for these proteins is attributable to our conservative approach for combining ProRata results [86], which required, for each protein, the presence of an isotopic ratio in each LC-MS-MS replicate in order to calculate a combined isotope ratio for that protein (see Experimental Procedures).

Figure 4.3e. I-DIRT measurements of affinity isolated RNA polymerase protein complex from the *R. palustris* plasmid-encoded RpoA/SPA2 bait protein. Isotopic abundance ratios for each protein are indicated with a circle; open circles indicate specific protein interactions, while filled circles represent non-specific protein interactions. Scale for the abundance ratio is shown along the lower x-axis. Error bars represent the 90% confidence interval calculated by ProRata. Average spectrum count is shown for each protein and indicated with an X. The scale is provided along the upper x-axis.

Quantitative Global Proteome Analysis of Plasmid-Bearing Strains. A principal concern when adopting plasmid-encoded bait protein strategies for AP-MS is that an altered level of expression of the bait protein could result in collateral physiological responses in the microbe of study [81] resulting in the detection of protein interactions that are not biologically relevant. To investigate this possibility, we applied isotope labeling to perform comparative surveys of the microbial proteomes to measure the amount of bait protein produced by plasmid-bearing strains relative to its native counterpart in wild-type strains (Figure 1, right-hand workflow), as well as other proteins with higher or lower abundance.

<u>*E. coli* RpoA/SPA2 Strain</u>. From a total of 703 identified proteins (362 identified in both LC-MS-MS replicates), the ProRata program estimated ¹⁴N:¹⁵N isotopic ratios for 320 proteins from duplicate LC-MS-MS analyses of a single mixed pellet containing ¹⁴N plasmid-bearing cells and ¹⁵N wild type cells. Figure 4.4a shows the distribution of the log₂ values of these ratios. (For the whole proteome measurements, it is convenient to express ¹⁴N:¹⁵N isotope ratios as base 2 logarithms, so that a protein with equal abundance in both strains, with ¹⁴N:¹⁵N = 1, has a log₂ isotope ratio = 0.) Proteins of higher abundance in the ¹⁴N strain will have positive log₂ isotope ratios. A total of 51 proteins were measured with log₂ ¹⁴N:¹⁵N isotopic ratios \geq 1.0 (Table S6, Supporting Information), suggesting 2-fold or greater abundance in the *E. coli* RpoA/SPA2 plasmid encoded strain relative to the *E. coli* wild-type strain. A total of 24 proteins were measured at lower abundance in the plasmid-bearing strain, as indicated by log₂ ¹⁴N:¹⁵N

Figure 4.4a. Distributions of ¹⁴N:¹⁵N isotope ratios from proteome measurements of plasmid-encoded RpoA/SPA2 expressed in *E. coli* relative to wild-type strains.

Isotopic ratios \leq -1.0. The remaining 245 proteins, representing 77% of all measured isotopic ratios, ranged from log₂ -1.0 to 1.0. These data suggest that the majority of proteins in *E. coli* do not exhibit large changes in abundance attributable to the *in vivo* expression of the plasmid-encoded RpoA/SPA2 bait protein.

The ¹⁴N:¹⁵N ratios from measurement of 79 chromatographic features identified by ProRata, representing 15 peptides, indicated that total amount of the RpoA protein, including both native and affinity-tagged forms, was approximately 1.7 times greater ($\log_2 \text{ value} = +0.8$) in the *E. coli* RpoA/SPA2 strain than for native RpoA in the *E. coli* wild type strain. This is an upper limit for the ratio of affinity-tagged RpoA from the plasmid-bearing strain to native RpoA in the wild type strain, because the plasmidbearing strain may also contain RpoA originating from the chromosomal copy of the gene. For this protein and expression plasmid, therefore, it does not appear that the bait protein abundance is markedly different in the plasmid-bearing strain.

Among other proteins, the largest isotopic ratio measured was for the antibiotic resistance protein encoded by the SPA2 plasmid, gentamycin 3'-acetyl transferase (GenR). The log₂ isotopic ratio of 5.0 indicating greater abundance in the plasmid encoded strain was expected, as the wild-type proteome does not express this protein.

Several other proteins exhibited either higher or lower abundance in the plasmidbearing strain. While it is beyond the scope of this paper to analyze these changes in detail, we sought to identify any obvious trends by examining the classifications of these proteins into clusters of orthologous groups (COG, Table 4.2), their membership in KEGG metabolic pathways [98-100], and their membership in operons [101] (Tables 4.3-4.4).

Cellular Process	Functional Category	COG Code	Numbe Measur Abu	r of Proteins red at Higher undancea	Number Measure Abu	of Proteins ed at Lower ndancea
			E. coli	R. palustris	E. coli	R. palustris
Information	translation, ribosomal structure, and biogenesis	J	1		1	
Storage and Processing	Transcription	K	3			
U	DNA replication, recombination, and repair	L			1	
	Cell division and chromosome partitioning	D	1			
	Cell envelope biogenesis, outer membrane	М	1	1	1	
Cellular Processes	post-translational modification, protein turnover	0	5		2	2
	inorganic ion transport and metabolism	Р	3		3	
	signal transduction	Т				2
	energy production and conversion	С	7	1	2	19
	amino acid transport and metabolism	Е	13	5	3	16
	nucleotide transport and metabolism	F	4		1	2
Metabolism	carbohydrate transport and metabolism	G	2		2	4
	coenzyme metabolism	Н	6		1	3
	lipid metabolism	Ι	1	1		8
	secondary metabolites	Q	2	1		4
Poorly	general function prediction only	R	4		2	11
Characterized Proteins	function unknown	S			2	1
	no related COG		2	1	3	3
-	GenR protein ^b		1	1		

Table 4.2. COG Functional Category Assignment of Proteins Measured at Different Abundances in Plasmid-bearing Microbial Strains relative to Wild-Type Strains

^a Some proteins were assigned to multiple COGs, thus total number of proteins may not equal the total number of functional categories. ^b GenR protein is the antibiotic resistance protein encoded in the plasmid.

Table 4.3.	Selected ^a protein	s of increased	abundance in	plasmid-bearin	g E. coli re	lative to wi	ld type.	Multiple p	roteins c	oded by a
single oper	on are grouped ar	ıd shown in bc	old type.							

										Pa	thwa	ay							
Accession No.	Locus	COG ^b	log ₂ isotope ratio (confidence interval)	Valine, leucine and isoleucine biosynthesis	Pantothenate and CoA biosynthesis	ÿ t Pyruvate	Pyruvate metabolism	Taurine and hypotaurine metabolism	Glutamate metabolism	Alanine and aspartate metabolism	Valine, leucine and isoleucine degradation	Citrate cycle (TCA cycle)	Biosynthesis of siderophore group nonribosomal peptides	ABC transporters – General	ABC transporters - Organism-specific	Urea cycle and metabolism of amino groups	Purine metabolism	Sulfur metabolism	Protein description
P0A6F1	B0032	EF	13(1115)						x										CARA Carbamoyl-phosphate synthase small chain
P30126	B0071	E	1.3 (0.9, 1.7)	x															LEUD 3-isopropylmalate dehydratase small subunit
P0A6A6	B0072	Е	3.1 (2.7, 3.4)	x															LEU2 3-isopropylmalate dehydratase large subunit
P0A9P0	B0116	С	1.1 (0.8, 1.3)				x			x	x	x							DLDH Dihydrolipoyl dehydrogenase
P0A790	B0131	Н	1 (0.5, 1.5)							x									PAND Aspartate 1-decarboxylase
P28635	B0197	R	1.2 (0.8, 1.6)											x	x				METQ D-methionine-binding lipoprotein metQ
POAEJ2	B0593	HQ	1.3 (1, 1.5)										x						ENTC Isochorismate synthase entC

Table 4.3.	(Continued)

										Pat	hwa	ıy							
Accession No.	Locus	COG ^b	log ₂ isotope ratio (confidence interval)	Valine, leucine and isoleucine biosynthesis	Pantothenate and CoA biosynthesis	Propanoate metabolism	Pyruvate metabolism	Taurine and hypotaurine metabolism	Glutamate metabolism	Alanine and aspartate metabolism	Valine, leucine and isoleucine degradation	Citrate cycle (TCA cycle)	Biosynthesis of siderophore group nonribosomal peptides	ABC transporters – General	ABC transporters - Organism-specific	Urea cycle and metabolism of amino groups	Purine metabolism	Sulfur metabolism	Protein description
P10378	B0594	Q	1.8 (1.4, 2.2)										x						ENTE Enterobactin synthetase component E
																			SUCD Succinyl-CoA ligase (ADP-forming)
POAGE9	B0729	C	1.1 (0.8, 1.3)			X						X							subunit alpha
P0A6A3	B2296	C	1 (0.7, 1.3)			X	X	X											ACKA Acetate kinase
POA9M8	B2297	C	1 (0.7, 1.3)			X	X	X											PTA Phosphate acetyltransferase
P16703	B2421	E	1.1 (0.3, 1.7)															X	CYSM Cysteine synthase B
P15254	B2557	F	1 (0.8, 1.2)														x		PUR4 Phosphoribosylformylglycinamidine synthase
	D2(70	Б	1 (0 (1 4)																PROX Glycine betaine-binding periplasmic
PUAFM2	B26/9	E	1 (0.6, 1.4)											X	X				CVCL CollEte and extense (NIADDLI) have seen to be
P17846	B2763	Р	1.2 (0.6, 1.8)															x	beta-component
P21170	B2938	E	1 (0.5, 1.4)						x							x			SPEA Biosynthetic arginine decarboxylase

										Pat	thwa	ıy							
Accession No.	Locus	COG ^b	log ₂ isotope ratio (confidence interval)	Valine, leucine and isoleucine biosynthesis	Pantothenate and CoA biosynthesis	Propanoate metabolism	Pyruvate metabolism	Faurine and hypotaurine metabolism	Glutamate metabolism	Alanine and aspartate metabolism	Valine, leucine and isoleucine degradation	Citrate cycle (TCA cycle)	Biosynthesis of siderophore group nonribosomal peptides	ABC transporters – General	ABC transporters – Organism-specific	Urea cycle and metabolism of amino groups	Purine metabolism	Sulfur metabolism	Protein description
			,								F								ILVE Branched-chain-amino-acid
POAB80	B3770	EH	1.8 (1.4, 2.3)	X	X						X								aminotransferase
P05791	B3771	EG	5.3 (4.7, 5.9)	X	X														ILVD Dihydroxy-acid dehydratase
P23908	B3957	E	1.7 (1.4, 2)													x			ARGE Acetylornithine deacetylase
P11447	B3960	E	1.4 (0.7, 1.9)							х						x			ARLY Argininosuccinate lyase
P15640	B4005	F	1.6 (1.2, 1.9)														X		PUR2 Phosphoribosylamine–glycine ligase
P15639	B4006	F	1.3 (1, 1.6)														x		PUR9 Bifunctional purine biosynthesis protein purH

^aNot included are pathways containing <2 proteins, and proteins that were the sole identified member of a pathway. ^bDescriptions of COG categories are shown in Table 4.2.

Table 4.4. Selected ^a proteins of decreased abundance in plasmid-bearing <i>E. coli</i> relative to wild type.	Multiple proteins coded by a
single operon are grouped and shown in bold type.	

]	Pathway	/		
AccNo	Locus	COG ^b	Log2 isotope ratio (confidence interval)	Phenylalanine, tyrosine and tryptophan biosynthesis	Two-component system – General	Pentose and glucuronate interconversions	ABC transporters – General	ABC transporters – Organism-specific	Protein description
P00895	B1264	EH	-1.7 (-2.1, -1.5)	X	Х				TRPE Anthranilate synthase component 1
P00904	B1263	EH	-1 (-1.3, -0.8)	x	X				TRPG Anthranilate synthase component II
P0A8G3	B3092	G	-1.7 (-2.1, -1.2)			Х			UXAC Uronate isomerase
P0AAB6	B2042	М	-1.3 (-1.7, -1)			х			GALF UTP-glucose-1-phosphate uridylyltransferase
P0AEM9	B1920	ET	-4.2 (-5.2, -3.5)				х	Х	FLIY Cystine-binding periplasmic protein
P23843	B1243	E	-3 (-3.2, -2.8)				х	Х	OPPA Periplasmic oligopeptide-binding protein
P37329	B0763	Р	-5.2 (-6.3, -4.1)				х	x	MODA Molybdate-binding periplasmic protein

^aNot included are pathways containing <2 proteins, and proteins that were the sole identified member of a pathway. ^bDescriptions of COG categories are shown in Table 4.2.

The COG functional category containing most of the proteins that were more abundant in the plasmid-bearing strain was amino acid transport and metabolism. Five of the 12 more abundant proteins in this category are involved in branched-chain amino acid (valine, leucine, and isoleucine) biosynthesis [102]. Log₂ ¹⁴N:¹⁵N isotopic abundance ratios of 5.3 for dihydroxy-acid dehydratase (IIvD), 3.1 for 3-isopropylmalate dehydratase large subunit (Leu2), 1.8 for the branched-chain-amino-acid transferase (IIvE), 1.3 for 3-isopropylmalate dehydratase subunit (LeuD), and 1.2 for acetolactate synthase isoenzyme 1 large subunit (IIvB) are indicative of higher abundance of these proteins in the plasmid encoded bait-expressing strain. Genes encoding Leu2 and LeuD occur in the same operon, as do genes encoding IIvD and IIvE, suggesting that mRNA transcription for these enzymes increases under the plasmid load. The increased abundances of these specific proteins, which collectively account for 8 of 12 total steps for branched-chain amino acid biosynthesis, could potentially be attributed to the increased protein expression due to the presence of the plasmid.

Among other proteins that were more abundant in the plasmid-bearing strain, acetate kinase and phosphate acetyltransferase, transcribed as a unit, are involved in interconversions among acetate (or propanoate), acetyl phosphate (propanoyl phosphate), and acetyl-CoA (propanoyl-CoA). Isochorismate synthase (EntC) and enterobactin synthetase component E (EntE) also share an operon, and are involved in synthesis of iron-scavenging siderophore compounds. Several heat shock and chaperone proteins in the post-translational modification and protein turnover functional category also were more abundant in the plasmid-encoded strain, consistent with a previous report [103].

Proteins with decreased abundance in the RpoA/SPA2 strain also were dominated by the amino acid transport and metabolism COG category. However, the anthranilate synthase proteins, TrpE and TrpG (encoded within the same operon), occur not in the isoleucine, leucine and valine pathway, but instead are in the phenylalanine, tyrosine and tryptophan biosynthesis pathway. Although not sharing operon membership, three periplasmic proteins annotated as ABC transporters (FliY, OppA, ModA) were significantly less abundant in the plasmid-bearing strain.

<u>*R. palustris* RpoA/SPA2 Strain</u>. From a total of 1052 identified proteins (673 identified in both LC-MS-MS replicates), $\log_2 {}^{14}N.{}^{15}N$ isotopic ratios for 598 proteins were estimated from duplicate LC-MS-MS analyses of a single mixed pellet containing ${}^{14}N$ plasmid-bearing cells and ${}^{15}N$ wild type cells. The distribution of these ratios is shown in Figure 4.4b. A total of 11 proteins were estimated with $\log_2 {}^{14}N.{}^{15}N$ isotopic ratios ≥ 1.0 (Table S7, <u>Supporting Information</u>), suggesting 2-fold or greater expression in the *R. palustris* RpoA/SPA2 bait-expressing strain relative to the wild-type *R. palustris* strain. A total of 71 proteins were measured at lower abundance in the plasmid-bearing strain, as indicated by $\log_2 {}^{14}N.{}^{15}N$ isotopic ratios ≤ -1.0 . The remaining 516 proteins, representing 86% of all measured isotopic ratios, ranged from $\log_2 -1.0$ to 1.0, shown in Figure 4b. These data suggest that *in vivo* expression of the plasmid-encoded RpoA/SPA2 bait protein does not affect abundances of the majority of the *R. palustris* proteins.

Figure 4.4b. Distributions of ¹⁴N:¹⁵N isotope ratios from proteome measurements of plasmid-encoded RpoA/SPA2 expressed in *R. palustris* relative to wild-type strains.

The ¹⁴N:¹⁵N ratios from measurement of 60 chromatographic features by ProRata, representing 15 peptides, indicated that total expression of the RpoA protein, including both native and affinity-tagged forms, in the *R. palustris* RpoA/SPA2 strain was approximately 0.8 times the level for native RpoA in the *R. palustris* wild type strain (log₂ value = -0.3). As for the *E. coli* experiment described above, the abundance of RpoA in the plasmid-bearing strain is not significantly different from the wild type, and is actually slightly decreased. The other protein encoded only in the plasmid, GenR, yielded the second largest isotope ratio in this experiment, with log₂ isotopic ratio of 5.4.

Surprisingly, the largest observed \log_2 isotopic ratio of 5.9 indicated that an unknown protein (RPA1422) was considerably more abundant in the plasmid-bearing strain than in the wild type. The 14 peptide quantifications measured for this protein were all of the ¹⁴N isotopolog of this protein originating from the RpoA/SPA2 strain; no ¹⁵N peptides expressed by the wild-type strain were identified. A recent proteome study of wild-type *R. palustris* identified the RPA1422 unknown protein as more highly abundant under two growth conditions: benzoate and nitrogen fixation [43]. In contrast, the cell cultures in the present study were grown under anaerobic photoheterotrophic growth with succinate as the carbon source. These data suggest that the presence of the SPA2 plasmid potentially affects the abundance of the RPA1422 protein.

The remainder of proteins with $\log_2 \text{ ratios} \ge 1$ in the *R. palustris* RpoA/SPA2 strain were annotated [89] in COG functional categories shown in Table 2. In particular, two proteins annotated in the amino acid transport and metabolism functional category, MetC (RPA2350) and OhaS (RPA4251), are located in biosynthetic pathways for the sulfurcontaining amino acids cysteine and methionine. Specifically, O-acetylhomoserine sulfhydrylases MetC [104] and OhaS [105] are enzymes involved in the conversion of Oacetyl-L-homoserine and methanethiol to L-methionine and acetate. Proteins with altered abundances that are also encoded within shared operons included acetolactate synthase (higher abundance in plasmid-bearing strain, Table 4.5) and components of pyruvate dehydrogenase, alcohol/aldehyde dehydrogenase, and carbon monoxide dehydrogenase (lower abundance in plasmid-bearing strain, Table 4.6). Acetolactate synthase uses pyruvate as a substrate for synthesis of the amino acids isoleucine, leucine, and valine.

However, pyruvate dehydrogenase, which also uses pyruvate but produces acetyl CoA, is over 2-fold less abundant in plasmid vs. wild type. These two results suggest that the plasmid-bearing strain preferentially converts pyruvate to products other than acetyl-CoA. Consistent with this observation is the fact that acetyl Co-A synthetase (RPA0211) was also less abundant in the plasmid-bearing strain vs. wild type. It is difficult to formulate reasonable explanations for the markedly lower abundance levels of carbon monoxide dehydrogenase subunits, as well as the aldehyde and alcohol dehydrogenases RPA1205 and 1206, in the plasmid-bearing strain.

Despite quite different metabolic characteristics for the two species, both *E. coli* and *R. palustris* strains that harbor the plasmid encoding the RpoA bait showed increased abundance in proteins involved in biosynthesis of isoleucine, leucine, and valine. Although not highly over-expressed in either species, RpoA contains a relatively large proportion of isoleucine, leucine, and valine: *E. coli* RpoA contains more of these amino acids than ~85% of predicted *E. coli* proteins, and RpoA in *R. palustris* contains more of these amino acids than ~80% of predicted *R. palustris* proteins. In the minimal media

Table 4.5. Selected^a proteins of increased abundance in plasmid-bearing *R. palustris* relative to wild type. Multiple proteins coded by a single operon are grouped and shown in bold type.

					Path	way			
Locus	COG ^b	log ₂ isotope ratio (confidence interval)	Butanoate metabolism	C5-Branched dibasic acid metabolism	Pantothenate and CoA biosynthesis	Valine, leucine and isoleucine biosynthesis	Cysteine metabolism	Methionine metabolism	Protein description
RPA2031	EH	1.1 (0.9, 1.3)	Х	Х	Х	Х			ilvI acetolactate synthase (large subunit)
RPA2032	Ε	1.2 (0.9, 1.6)	X	X	X	X			ilvH acetolactate synthase (small subunit)
RPA2317	Ι	1.2 (0.8, 1.6)	х						gctB putative CoA transferase, small subunit B
RPA2350	Е	1.7 (1.2, 2.2)					х	х	metC putative O-acetylhomoserine sulfhydrylase
RPA4251	Е	1.2 (1, 1.4)					х	х	oahs O-acetylhomoserine sulfhydrylase

^aNot included are pathways containing <2 proteins, and proteins that were the sole identified member of a pathway. ^bDescriptions of COG categories are shown in Table 4.2.

													Pa	thw	yay											
Locus	COG ^b	log ₂ isotope ratio (confidence interval)	Glycolysis / Gluconeogenesis	Propanoate metabolism	Pyruvate metabolism	Reductive carboxylate cycle (CO2 fixation)	Butanoate metabolism	ABC transporters – General	Fatty acid biosynthesis	Fatty acid metabolism	Bile acid biosynthesis	3-Chloroacrylic acid degradation	Valine, leucine and isoleucine degradation	beta-Alanine metabolism	Citrate cycle (TCA cycle)	Carbon fixation	Glyoxylate and dicarboxylate metabolism	Pantothenate and CoA biosynthesis	Nitrogen metabolism	Alanine and aspartate metabolism	Glycine, serine and threonine metabolism	Valine, leucine and isoleucine biosynthesis	Purine metabolism	Methane metabolism	Trinitrotoluene degradation	Protein description
RPA0211	Ι	-1 (-1.2, -0.9)	x	x	x	x																				acetyl-CoA synthetase
RPA0532	QR	-1.1 (-1.5, -0.8)					x																			beta-ketothiolase, acetoacetyl-CoA reductase
RPA0668	E	-1.4 (-1.6, -1.1)						x																		hbaE putative ABC transporter subunit, substrate-binding component
RPA1110	QR	-1 (-1.7, -0.2)							x																	putative 3-oxoacyl-acyl carrier protein reductase
RPA1205	C	-4.8 (-5.1, -4.6)	x							x	x	x														putative alcohol dehydrogenase
RPA1206	C	-5.1 (-5.3, -4.8)	x	x	x		x			x	x	x	x	x												aldehyde dehydrogenase
RPA1226	C	-1.4 (-1.7, -1.1)				x									x											putative 2-oxoglutarate ferredoxin oxidoreductase, alpha subunit
RPA1236	Ι	-1.6 (-1.9, -1.2)		x						x			x	x												putative acyl-CoA dehydrogenase
RPA1242	IQ	-1 (-1.3, -0.6)								x																fadD1 putative long-chain-fatty-acid CoA ligase
RPA1298	R	-1 (-1.2, -0.7)							x																	putative 3-oxoacyl-acyl carrier protein synthase III
RPA1560	C	-1 (-1.3, -0.6)														x	x									cbbS bisphosphate carboxylase small chain

Table 4.6. Selected^a proteins of decreased abundance in plasmid-bearing *R. palustris* relative to wild type. Multiple proteins coded by a single operon are grouped and shown in bold type.

rubie not (continued)	Table 4.6.	(Continued)
-----------------------	------------	-------------

			Pathway																							
Locus	COG ^b	log ₂ isotope ratio (confidence interval)	Jlycolysis / Gluconeogenesis	Propanoate metabolism	vruvate metabolism	teductive carboxylate cycle (CO2 fixation)	3utanoate metabolism	ABC transporters – General	atty acid biosynthesis	atty acid metabolism	3 ile acid biosynthesis	-Chloroacrylic acid degradation	/aline, leucine and isoleucine degradation	eta-Alanine metabolism	Citrate cycle (TCA cycle)	Carbon fixation	ilyoxylate and dicarboxylate metabolism	antothenate and CoA biosynthesis	Vitrogen metabolism	Manine and aspartate metabolism	Ilycine, serine and threonine metabolism	/aline, leucine and isoleucine biosynthesis	urine metabolism	Aethane metabolism	rinitrotoluene degradation	Protein description
	-							4	<u> </u>	<u> </u>	<u>ш</u>	(7)		<u>.</u>								-				possible branched-chain amino acid transport
RPA1741	E	-2.2 (-2.4, -1.9)						Х																		system substrate-binding protein
RPA1763	IQ	-1 (-1.6, -0.4)							X																	putative long-chain-fatty-acid CoA ligase
RPA1943	Н	-1.9 (-2.2, -1.5)																x								91uts putative ketopantoate reductase
RPA2061	C	-3.5 (-3.7, -3.3)																	x							nosZ nitrous-oxide reductase precursor NosZ
RPA2863	С	-1.4 (-1.8, -1.1)	x		x								X		x					x	x					dihydrolipoamide dehydrogenase, E3 Component of Pyruvate dehydrogenase multienzyme complex
RPA2864	C	-1.3 (-1.6, -1.1)	X		X															X						Dihydrolipoamide acetyltransferase
RPA2866	C	-1.6 (-1.8, -1.4)	X		x		X													x		x				pyruvate dehydrogenase E1 beta subunit
RPA2867	C	-1.5 (-1.9, -1)	x		x		x													x		x				pyruvate dehydrogenase E1 alpha subunit
RPA2975	Е	-1.2 (-1.6, -0.8)																			x					serA1 putative phosphoglycerate dehydrogenase
RPA2977	F	-1.3 (-1.7, -0.9)																					x			nrd ribonucleotide reductase
RPA3289	Ι	-1 (-1.3, -0.8)		x						x			х	x												acyl-CoA dehydrogenase
RPA3472	EG	-1 (-1.3, -0.6)																x				x				ilvD1 dihydroxy-acid dehydratase
RPA3756	С	-1.6 (-2.1, -1.2)			x	x									x	x	x									malate dehydrogenase-like protein

Table 4.6. (Continued)

			Pathway																							
Locus	COG ^b	log ₂ isotope ratio (confidence interval)	Glycolysis / Gluconeogenesis	Propanoate metabolism	Pyruvate metabolism	Reductive carboxylate cycle (CO2 fixation)	Butanoate metabolism	ABC transporters – General	Fatty acid biosynthesis	Fatty acid metabolism	Bile acid biosynthesis	3-Chloroacrylic acid degradation	Valine, leucine and isoleucine degradation	beta-Alanine metabolism	Citrate cycle (TCA cycle)	Carbon fixation	Glyoxylate and dicarboxylate metabolism	Pantothenate and CoA biosynthesis	Nitrogen metabolism	Alanine and aspartate metabolism	Glycine, serine and threonine metabolism	Valine, leucine and isoleucine biosynthesis	Purine metabolism	Methane metabolism	Trinitrotoluene degradation	Protein description
RPA3848	Е	-1.3 (-1.5, -1)				, , , , , , , , , , , , , , , , , , ,							, 						x		x	Í				gcvT2 glycine cleavage system protein T2
RPA3974	С	-1.2 (-1.5, -1)																						x	x	putative dehydrogenase
RPA4019	Е	-1.7 (-1.8, -1.5)						x																		putative branched-chain amino acid ABC transporter system substrate-binding protein possible branched-chain amino acid ABC
RPA4045	Е	-1.7 (-1.8, -1.6)						x																		transport system substrate-binding protein
RPA4644	С	-1.1 (-1.3, -0.9)														x										cbbP phosphoribulokinase (phosphopentokinase) (PRK)
RPA4666	С	-2.2 (-2.5, -1.8)																						x	x	coxS, 92uts carbon-monoxide dehydrogenase small subunit
RPA4667	С	-2.3 (-2.5, -2.1)																					x			coxL, CO dehydrogenase subunit
RPA4668	С	-1.7 (-2, -1.4)																						X	X	coxM, cutM carbon monoxide chain C
RPA4813	E	-1.1 (-1.3, -0.8)						x																		periplasmic binding protein of ABC transporter

^aNot included are pathways containing <2 proteins, and proteins that were the sole identified member of a pathway. ^bDescriptions of COG categories are shown in Table 4.2.

Used in this study, the bacteria are forced to synthesize all amino acids that will be used to subsequently synthesize proteins. The somewhat increased proportion of isoleucine, leucine and valine in RpoA may result in a detectably increased activity within this pathway.

4.4 Conclusions

The study of protein complexes by AP-MS involves the choice of a bait expression strategy. Several large-scale reports of protein-protein interactions for model organisms in recent years have used genetic systems for expression of chromosome-encoded bait proteins. As an alternative to such chromosomal strategies, protein-protein interaction studies could potentially be extended to a larger range of organisms by a practical and flexible plasmid-based system for expression of bait proteins in multiple gram-negative microbial species [80]. In this study, we have compared chromosome- and plasmid-encoding strategies in both a model biological species, *E. coli*, and *R. palustris*, a species that is less-studied, but environmentally ubiquitous and metabolically diverse.

For the three bait proteins studied, the major difference between chromosome and plasmid encoding was success or failure in expression of the affinity-tagged bait protein. In *E. coli*, all three bait proteins were expressed from chromosome-encoded versions, while two of the three were not expressed from the plasmid. Similarly, only one of the three baits showed expression from plasmid in *R. palustris*, despite previous success in expressing all three proteins from a plasmid encoding a different affinity tag [80]. This limited study, along with our previous results, suggests that chromosomal encoding may have greater generality across a range of genes, while plasmid encoding will require the

testing of several affinity tags and orientations (i.e., N-terminal or C-terminal fusion) to find a combination that results in successful expression of the tagged bait.

If the affinity-tagged bait can be expressed, however, it appears that both chromosome and plasmid encoding strategies perform comparably. Using RNAP as a model protein complex, the I-DIRT method showed that for both strategies, core components of the complex exhibited isotopic abundance ratios that indicated specific interaction with the bait protein. Abundant background proteins were also identified in these AP-MS experiments, but their isotopic ratios clearly indicated artifactual (post-mixing) association with the bait protein, in affinity isolations from both chromosome- and plasmid-encoded strains.

From a more global perspective of the proteome, isotope ratio measurements revealed no significant over-expression of bait protein from plasmid-bearing strains of *E. coli* or *R. palustris*, although this result is confined to a single protein (RpoA) and affinity tag (SPA). Beyond the bait, most proteins for which isotope ratios could be measured in both *E. coli* and *R. palustris* showed no significant change in abundance attributable to the presence of the plasmid, although some were either increased or decreased in abundance. The majority of proteins with altered abundances in plasmid-bearing strains were involved in amino acid biosynthesis, which may reflect the metabolic load [81] imposed by the biosynthesis of plasmid-encoded proteins in a minimal medium that requires the bacteria to produce all needed amino acids. This effect suggests that perhaps we did not successfully express RpoB and RpoC as baits in plasmid-bearing strains thus requiring production of larger amounts of amino acids.

In sum, we have demonstrated the utility of local (complex-specific) and global (proteome-level) isotope ratio measurements as diagnostic tools for objectively comparing different bait protein expression strategies for AP-MS. It is our hope that these tools will facilitate expanded studies of protein-protein interactions in bacteria, leading eventually to a better understanding of how proteins interact to form complexes and function within the cell.

Chapter 5

Evaluation of Periplasmic Protein Enrichment Protocols using Stable Isotope Labeling and Mass Spectrometry

The data presented here are planned for submission to the Journal of Proteome Research.

W. Judson Hervey, IV, Adam M. Tebbe, Dale A. Pelletier, and Gregory B. Hurst.

Microbial cell growth, ¹⁵N-metabolic labeling, protein isolation, sample preparation, primary data acquisition, and data analysis were performed by W. Judson Hervey, IV.

Dr. Gregory B. Hurst assisted with experimental design and data analysis.

Abstract

Determination of protein localization provides clues regarding function. Isolation of protein fractions from selected cellular structures is a prerequisite to detailed proteomic characterization of microbial cells. Information regarding protein subcellular localization is often difficult to obtain by existing qualitative proteomic techniques due to the presence of non-specific, contaminant proteins among fractions of enriched protein mixtures.

To assist with subcellular localization, we apply a quantitative proteomics approach to characterize protein localization to the periplasm in *Escherichia coli* K12. Enrichment of periplasmic protein fractions was performed by two separate cold osmotic shock protocols: H₂O or GdCl₃. Measurements of ¹⁵N:¹⁴N protein isotope ratios between ¹⁵N-labeled periplasmic and ¹⁴N-labeled whole cell lystate proteome fractions, expressed as PP:WCL, provided an indication of abundance in the periplasmic fraction. PP:WCL ratios highlighted enrichment of 31 annotated periplasmic proteins by the H₂O protocol and 29 annotated periplasmic proteins by the $GdCl_3$ protocol. When combined with an informatics strategy to identify amino-terminal signal peptide cleavages, a posttranslational modification present among the majority of periplasmic proteins, 26 proteins were enriched in either the H₂O or GdCl₃ protocol and included this modification. As expected, substrate binding proteins constituted the majority of these 26 proteins. However, uncharacterized proteins YnfD, YraP, YnhG, and YgiW were also detected with signal peptide cleavages, though at lower PP:WCL ratios not indicative of periplasmic abundance.

Collectively, quantitative measurement of PP:WCL isotope ratios among enriched periplasmic proteins consistent with identification of signal peptide cleavages provide increased experimental evidence of potential periplasmic localization in comparison to qualitative proteomics platforms.

5.1 Introduction

The cellular location of a protein imparts significant information regarding its biological function(s). Frequently, protein localization studies involve combinations of biochemical methods and/or molecular techniques to determine the cellular distribution of a single protein [2]. Standard biochemical methods may involve fractionation of a specific cellular structure and subsequent activity measurement to determine presence of an enzyme in the fraction. Molecular techniques may encompass fusion of an exogenous tag to a single protein, such as a fluorophore or affinity epitope, with measurement by confocal microscopy to determine cellular location(s). Implementations of biochemical and molecular methods are quite effective for examining localization of a single protein throughout the cell. Often, combinations of biochemical and molecular methods require each protein to be studied on an individual basis, reducing study throughput to a "one-byone" approach. Considering the dynamic nature of the cell, undergoing simultaneous synthesis, degradation, and trafficking thousands of proteins at any given time, it would be beneficial to monitor distribution of multiple proteins for more detailed understanding of protein localization.

A viable alternative is integration of proteomics approaches in conjunction with biochemical and/or molecular techniques to significantly expand the scope of protein
localization studies. Proteome studies of a "targeted" subset of proteins, such as a protein fraction, organelle, or other cellular structure combine biochemical isolation of a selected group of proteins with characterization by qualitative liquid chromatography tandem mass spectrometry (LC-MS-MS) [32, 106, 107]. Integration of proteome techniques in protein localization studies is particularly advantageous by providing identification of the entire protein content of targeted biochemical isolations in a single data acquisition, providing localization insight for multiple proteins. Furthermore, proteome techniques permit study of a wild-type organism, thus capturing an organism's native biological state free from potential perturbations introduced by genetic modification. Though more robust, a disadvantage of using proteome techniques is that numerous qualitative protein identifications obtained from LC-MS-MS analysis are representative of the desired or "targeted" proteins of interest amid abundant, co-isolating proteins detected as an artifact of protein isolation. Implementations of qualitative subtractive proteomic methods yielded a number of novel candidates localizing to the eukaryotic nuclear envelope [108], obtained through the subtraction of qualitative protein identifications common to two distinct protein isolations. Subtraction of common protein identifications between the protein isolations accounted for contaminant, co-isolating proteins occurring as an artifact of the biochemical isolation.

More recently, protein localization studies have benefitted from application of quantitative techniques to targeted proteome analyses by imparting advantages of both molecular tagging and biochemical separations. Incorporation of isotopic signatures via quantitative techniques effectively "tags" an entire proteome at the molecular level, alleviating a constraint of singular, "one-by-one" molecular tagging approaches. Biochemical separation techniques provide methods to enrich, or "target," the subset of proteins bearing an isotopic signature. Measurement of isotopic signatures by LC-MS-MS provides a means to distinguish "targeted" proteins of interest from contaminant, coisolates amid biochemical enrichments.

Applications of quantitative techniques to targeted proteome analyses have focused on organelles and structures of higher eukaryotic organisms [32, 33, 107, 109]. Despite the lack of membrane-bound organelles, prokaryotic organisms also use complex, dynamic mechanisms of localization to traffic the proteome. Targeted analyses of the periplasmic proteome have been performed using the combination of protein isolation by cold osmotic shock-based protocols [44, 45], followed by their identification by qualitative LC-MS-MS in *Escherichia coli* [110], and other species [111, 112]. The periplasm, or "periplasmic space," is the region of the cell located between the inner membrane and outer membrane, as shown in Figure 5.1. Periplasmic proteins function in this region, performing important roles in electron transport, binding of nutrients, cell wall biosynthesis, and modification of molecules that will eventually enter the cytoplasm [113]. Thus, periplasmic proteins are of considerable biological interest in elucidating interactions between microbial cells and the external environment. As an intermediate transport zone between the inner cell and surrounding external environments, the periplasm may best be conceptualized as an exceptionally dynamic region of the cell rather than a strictly rigid compartmentalized cellular structure [113]. A number of proteins that function in the periplasm may be performing a function

Figure 5.1. Protein export to the periplasm via the general secretory (Sec) pathway. Four general structures of the gram-negative cell membrane are shown above: the outer membrane (OM), the periplasm (PP), the inner membrane (IM), and the cytoplasm (CP). The majority of periplasmic proteins enter the periplasm via the general secretory (Sec) pathway. Here, an example periplasmic protein (green) bearing Sec-dependent amino-terminal signal peptide (orange) is directed through an inner membrane protein to the periplasm.

elsewhere within the cell, or be *en route* to the periplasm via the general secretory pathway after protein synthesis at the ribosome. Detailed characterization of localization among this group of proteins by existing qualitative LC-MS-MS techniques has proven difficult, as periplasmic protein enrichments frequently contain "contaminant" proteins released as an artifact of enrichment [110]. This previous study examined protein database entries for putative general secretory (Sec) pathway amino-terminal signal peptides among identifications to indicate protein localization to the periplasm, rather than direct experimental measurement by mass spectrometry. The elucidation of the twin-arginine translocation (TAT) pathway [114] has demonstrated that periplasmic proteins may also contain an amino-terminal signaling motif of twin arginine residues. Also, some TAT substrate proteins translocate the inner membrane bound to other proteins in complex that do not contain a recognizable amino-terminal signaling motif. Thus, sole presence of a Sec pathway amino-terminal signal peptide sequence motif may not be sufficient to implicate periplasmic function among proteins enriched from the periplasm.

In this study, we describe a quantitative proteomics strategy to differentiate ¹⁵N-labeled periplasmic isolate from ¹⁴N-labeled whole cell lysate among protein mixtures of the *Escherichia coli* K12 proteome. Figure 5.2 outlines our strategy of incorporating isotopic signatures via ¹⁵N metabolic labeling, followed by cold osmotic shock isolation to obtain a "heavy" enrichment of periplasmic proteins (PP). The "targeted,"

¹⁵N-labeled fraction of enriched periplasmic proteins is then mixed with a whole cell lysate (WCL) protein fraction containing predominantly the most abundant natural

Figure 5.2. Experimental overview for measurement of PP:WCL protein isotope ratios.

isotope of nitrogen, ¹⁴N. Upon characterization of the mixture by LC-MS-MS, relative abundance measurement of isotopic signatures provides a means to distinguish peptides enriched from the periplasmic enrichment (PP) from peptides of the whole cell lysate (WCL) fraction. Expressed as the PP:WCL ratio for each protein, higher PP:WCL ratios potentially indicate enrichment in the periplasmic fraction, while lower values indicate greater abundance in the whole cell lysate. We evaluated two separate osmotic shock buffers to isolate periplasmic proteins (H₂O [44] and GdCl₃ [45].

For proteins enriched by the H₂O isolation protocol, 394 total PP:WCL protein isotope ratios were measured, 31 of which corresponded to annotated periplasmic proteins indicating enrichment. Similarly, 29 PP:WCL protein isotope ratios corresponded to annotated periplasmic proteins enriched via the GdCl₃ isolation protocol, but the total number of measured ratios, 722, differed.

Integration of PP:WCL ratio measurements with an informatics strategy to identify amino-terminal signal peptides resulted in 62 annotated periplasmic proteins containing this post-translational modification. Between the H₂O or GdCl₃ protocols, 26 of these proteins were measured among the most enriched in the periplasmic isolation by PP:WCL isotope ratio and were identified bearing the post-translational modification of amino-terminal signal peptide cleavage. Collectively, the measurements performed in our quantitative approach provide increased confidence in studying protein localization to the *E. coli* K12 periplasm.

5.2 Experimental Procedures

Materials. Reagents obtained from Sigma Chemical Company (St. Louis, MO)

included Trizma Hydrochloride (UltraPure), Trizma Base (UltraPure), CH₃CO₂NH₄ (99.999% purity), guanidine hydrochloride (molecular biology grade), sucrose (99+% molecular biology grade), KH₂PO₄ (≥99.0% purity), and disodium ethylenediaminetetraacetic acid (EDTA) (99+% molecular biology grade). Other reagents included dithiothreitol (DTT) (OmniPur), glucose (USP purity), and formic acid (SupraPur), EMD Chemicals, Darmstadt, Germany); ¹⁵NH₄Cl (98+ atom % excess ¹⁵N) (Isotec, Miamisburg, OH), NH₄Cl (99.5% purity), CaCl₂ (99% purity), and NaCl (molecular biology grade) (Mallinckrodt Baker Chemicals, Philipsburg, NJ); lyophilized sequencinggrade modified trypsin (Promega, Madison, WI), HPLC-grade CH₃CN and H₂O (Burdick and Jackson, Muskegon, MI), GdCl₃•7H₂O (99.99% metals basis purity) (Alfa Aesar, Ward Hill, MA); MgSO₄•6H₂O (99.9% purity) and Na₂HPO₄ (USP) (FisherScientific, Fair Lawn, NJ). Ultrapure 18 M Ω water used for protein isolation buffers was obtained from a Milli-Q system (Millipore, Billerica, MA). HPLC-grade water was used in trypsin buffer (50 mM Trizma-HCl 10 mM CaCl₂, pH 7.6). HPLC-grade water, HPLC-grade acetonitrile, formic acid (SupraPur), and CH₃CO₂NH₄ were used in preparation of HPLC mobile phases.

Bacterial Growth. Identical *Escherichia coli* K12 MG1655 (ATCC number 47076, American Type Culture Collection, Rockville, MD) cultures were grown separately in ¹⁴N- and ¹⁵N-enriched M9 minimal medium [85] with ammonium chloride (1 g/L, w/v) as the sole nitrogen source [40]. Separate 5-mL cultures of *E. coli* K12 MG1655 were grown overnight in ¹⁵N-enriched M9 medium at 37°C for five consecutive days to ensure incorporation of ¹⁵NH₄Cl into the amino acids of the *E. coli* proteome.

Separate (two ¹⁴N-enriched, two ¹⁵N-enriched) 5 mL liquid cultures were used to inoculate four 500-mL portions of M9 minimal medium in 2 L baffled Erlenmeyer flasks. Growth was conducted under aerobic conditions in a shaking incubator (New Brunswick Innova) at 37°C, with agitation at approximately 1,440 rpm. Cells were harvested in late logarithmic phase ($OD_{600} = 1.5$).

Periplasmic Protein Isolation. Periplasmic protein isolation was performed by one of two cold osmotic shock protocols: one protocol used a hypotonic shock buffer of H₂O [44] (designated as H_2O *isolation*), while the second protocol used a hypotonic shock buffer of 1 mM gadolinium (III) chloride (GdCl₃) in HPLC-grade H₂O [45] (designated as *GdCl₃ isolation*). Briefly, 20 mL-aliquots of ¹⁵N-enriched *E. coli* K12 cells were harvested by centrifugation at 5000 *g* at 4°C for 25 min, washed twice with 10 mL of 20 mM Trizma-HCl pH 7.6, and again centrifuged at 5000 *g* at 4°C for 25 min. The cell pellet was resuspended in 2.0 mL periplasting buffer (20 mM Trizma-HCl pH 7.6, 20% sucrose, 0.5 mM EDTA) and incubated on ice for 10 min. 2 mL of H₂O or 1 mM GdCl₃ hypotonic shock buffer, pre-chilled to 4°C, was added to the cellular suspension, which was incubated on ice for an additional 10 min. The cellular suspension was then centrifuged at 12,000 *g* at 4°C for 15 min. The supernatant liquid was collected as periplasmic protein isolate; a 10 µL aliquot was removed for SDS-PAGE and the remainder was stored at -80°C.

Whole Cell Lysate Isolation. Soluble proteome fractions were isolated from cell cultures, grown in M9 minimal medium, as described above. Approximately 2 g of wet cellular paste was resuspended in 10 mL 20 mM Trizma-HCl (pH 7.6, chilled to 4°C),

lysed by five one-minute intervals of pulsating sonication (Branson Sonifier, Danbury, CT) on ice. Briefly, each one-minute sonication interval consisted of disruption of the cellular suspension with a microprobe set to high power for 30 sec. followed by cooling incubation period for 30 sec. on ice. This process was repeated five times to achieve lysis of cellular membranes. The cellular suspension was centrifuged at 12, 000 *g* to sediment cellular debris. A 10 μ L aliquot was removed for SDS-PAGE. The remainder of the whole cell lysate (WCL) fraction was aliquotted into 1-mL portions and stored at -80°C until further use.

SDS-PAGE. 10-μL aliquots of protein fractions (¹⁵N-labeled H₂O periplasmic protein isolate, ¹⁴N-labeled soluble proteome fraction, and ¹⁵N-labeled GdCl₃ periplasmic protein isolate), along with a Precision Plus DualColorTM molecular weight marker (BioRad), were separated by 1D SDS-PAGE on a precast 4-20% Precise Protein Gel (Pierce) inserted into a Hoeffer Mighty Small Gel Apparatus. SDS-PAGE was conducted at a constant voltage (110-120 V). Following the SDS-PAGE protein separation, the gel was stained with SimplyBlueTM Coumassie stain (Invitrogen), and an image of the gel was acquired with a VersaDoc imaging system (BioRad).

Protein Fraction Mixing. Each periplasmic and cellular protein isolate was dialyzed against 18 MΩ ultrapure water for 16 h at 4°C using SnakeSkin Dialysis Tubing, (3500 MWCO, Pierce, Rockford, IL) and quantified by the microBCA assay (Pierce). Mixtures of ¹⁴N and ¹⁵N labeled proteins were created at a 1:1 ratio (w/w) by protein mass according to the results of the microBCA assay.

The protein mixtures were created as described here in more detail. For experimental

protein mixtures, relative abundance measurements of peptide isotopic signatures were expressed for each protein as the PP:WCL ratio (or ¹⁵N:¹⁴N ratio). Values of the PP:WCL ratio were used to estimate enrichment of periplasmic proteins in PP isolate. These experimental protein mixtures were created as follows:

a. ¹⁵N-labeled H₂O PP isolate mixed with ¹⁴N-labeled WCL fraction; and,

b. ¹⁵N-labeled GdCl₃ PP isolate mixed with ¹⁴N-labeled WCL fraction.

To estimate errors associated with preparing mixtures of ¹⁵N- and ¹⁴N-labeled proteins, the following control mixtures were also created:

a. ¹⁵N-labeled H₂O PP isolate mixed with ¹⁴N-labeled H₂O PP isolate;and,

b. ¹⁵N-labeled GdCl₃ PP isolate mixed with ¹⁴N-labeled GdCl₃ PP isolate.

In control mixtures, relative abundance measurements of peptide isotopic signatures were expressed for each protein as PP:PP ratios (or ^{15}N : ^{14}N ratios). Barring mixing errors, values of PP:PP ratios should equal 1 (or $\log_2=0$).

Digestion by Enzymatic Proteolysis. Guanidine hydrochloride was added to each protein mixture to a final concentration of 6M. Disulfide bonds were reduced with the addition of 10 mM DTT and incubation at 60°C for 1 h. Following incubation, guanidine hydrochloride was diluted to 1M by the addition of 50 mM Trizma-HCl 10 mM CaCl₂, pH 7.6. Sequencing-grade modified trypsin (Promega) was added at an enzyme-to-substrate ratio of 1:50 (w/w). Proteolysis was conducted on a platform mixer (VWR) inside a 37°C incubator (VWR) with gentle nutating for 18 h. Proteolytic peptides were subjected to reverse-phase C₁₈ solid phase extraction (SepPak Light, Waters, Milford, MA) and exchanged into a solvent of 100% H₂O, 0.1% formic acid by centrifugal

evaporation (SpeedVac, Savant Instruments, Holbrook, NY) to a final concentration of 10 $\mu g/\mu L$, on the basis of the amount of protein starting material. Proteolytic peptide samples were filtered with an Ultrafree-MC centrifugal filter device (Durapore PVDF 0.45 μ m filter, Millipore, Bedford, MA) at 2000 *g* and stored at -80°C until LC-MS-MS analysis.

Liquid Chromatography and Tandem Mass Spectrometry. The resulting mixtures of proteolytic peptides were separated by a two dimensional (strong cation exchange and reverse phase) nanoHPLC system [41], configured for a split-phase 12-step MudPIT separation [26], interfaced via a nanoelectrospray source (Proxeon Biosystems, Odense, Denmark) with a linear ion trap mass spectrometer (ThermoFinnigan LTQ, San Jose, CA), under control of the XCalibur software (version 2.0.9, ThermoFinnigan). Replicate biological and technical (LC-MS-MS) analyses were performed as outlined in Figure 5.3.

The LTQ instrument scanned the mass-to-charge range of 400-1700 in data dependent mode and subjected the five most intense ions to MS-MS analysis at 35% normalized collisional energy. Dynamic exclusion [64] was enabled and conducted under the following settings: repeat count 1, repeat duration 60 sec., exclusion size list 300, exclusion duration 180 sec., exclusion width by mass (low and high) 1.5 Da, with expiration disabled. The default MS-MS charge state was set to 3. Full-scan mass spectra were averaged from four microscans; tandem mass spectra were averaged from two microscans.

Protein FASTA file construction. FASTA-formatted protein sequences of the predicted *E. coli* proteome were obtained from SwissProt (HAMAP) [88]. A list of

109

Figure 5.3. Replication Scheme of LC-MS-MS Analyses outlined in Figure 2. a. For measurement of PP:WCL isotope ratios, two pairs (1 ¹⁵N labeled, 1 ¹⁴N labeled) of cultures were grown and duplicate LC-MS-MS runs performed for each culture after protein mixing. b. For measurement of PP:PP isotope ratios, only a single culture pair (1 ¹⁵N labeled, 1 ¹⁴N labeled) was grown and duplicate LC-MS-MS runs performed after protein mixing. BR= biological replicate (i.e., culture and protein isolation), TR = technical replicate (i.e. LC-MS-MS run). Experiments shown above in a. and b. were performed for both the H₂O and GdCl₃ isolation protocols.

potential periplasmic proteins was obtained by querying the predicted E. coli proteome with the SwissProt Sequence Retrieval System (SRS) [115]. The SRS Query "swiss prot-Organism: escherichia coli & swiss prot-Strain: K12 & swiss prot-Keywords: periplasm*" returned 168 proteins. Nine of the 168 proteins returned from the SRS query contained both transmembrane domains and peripheral periplasmic domains and were thus removed from the targeted list, resulting in a total of 159 potential periplasmic proteins. Annotations for 98 of the 159 potential periplasmic proteins specified an amino-terminal signal peptide cleavage position previously described by experimental methods. For each of these 98 proteins, two additional entries were added to the FASTA sequence file of predicted E. coli proteins: one short entry consisting of the amino- terminal signal peptide (approximately 20-30 amino acids) and a second longer entry consisting of the remaining amino acids of the protein. Creation of these two additional entries for each periplasmic protein in the FASTA sequence file permitted identification of the amino-terminal signal peptide cleavage position as a tryptic peptide in our informatics workflow (detailed below). Protein sequences of the remaining 61 potential periplasmic proteins were submitted to both the PrediSi [116] and SignalP [117] signal peptide prediction algorithms. Additional entries to the FASTA sequence file were made for potential periplasmic proteins reflecting the length of the predicted aminoterminal signal peptide and cleavage site according to the following prediction of algorithm scores: PrediSi score >0.5; SignalP NN D-score >0.5; and SignalP HMM Sprob ≥ 0.5 . An additional 19 FASTA-formatted sequences, representing common contaminant proteins (keratins, in-house standard proteins, and proteolytic enzymes)

were also included. The 4,337 proteins of the *E. coli* predicted proteome, obtained from SwissProt's HAMAP, were reversed and concatenated to the FASTA-formatted protein sequence file by Perl scripting to permit estimation of the false positive identification rate [90]. The final database contained a total of 9,121 FASTA-formatted protein sequences: 4,337 proteins of the SwissProt's HAMAP Proteome, 4,337 "reversed" (or decoy) proteins, 424 entries representing periplasmic proteins, some with processed aminotermini, 2 annotated periplasmic proteins that do not contain a signal peptide, and 19 contaminant proteins.

Peptide Identification, Protein Quantification, and Data Analysis.

Identification of peptides from tandem mass spectra was performed using the SEQUEST algorithm [10] (version 27) with tryptic enzyme specificity (enzyme number = 1)

Two separate SEQUEST searches were performed, with amino acid molecular masses calculated based on ¹⁴N for the first, and ¹⁵N for the second search [41]. Peptide identifications were filtered, organized, and assembled by locus using the DTASelect program [27] (version 2.0.6). DTASelect retained identifications based on singly-, doubly-, and triply-charged peptide ions with X_{corr} scores ≥ 1.8 , ≥ 2.5 , and ≥ 3.5 , respectively, and Δ CN scores ≥ 0.08 . Identification at the protein level required identification of two or more non-redundant tryptic peptides. Multiple MS-MS scans for identified peptide sequences were retained by specifying the DTASelect locus filter -t 0. DTASelect discarded redundant locus information by default; contaminant proteins (keratins, proteolytic enzymes) were removed using the filter -l contaminant. The DTASelect-estimated forward false positive rates were $\leq 0.15\%$ at the peptide level and \leq 0.05% at the protein level. The predicted *E. coli* proteome, amino-terminal signal peptide cleavage sites, and predicted amino-terminal signal peptide cleavage sites were sorted into separate protein classes using DTASelect (classifications.txt). Separate classes were defined for protein sequences from the HAMAP proteome and protein sequences containing predicted signal peptide cleavages. The DTASelect classifications function (--*class*) allowed the program to differentiate between these two classes of protein identifications.

Results from these ¹⁴N and ¹⁵N SEQUEST searches were merged using the "Merge Directories" tool of the ProRata program [41] GUI (version 1.1). The ProRata program was used with default specifications to extract selected ion chromatograms, estimate peptide abundance ratios, and assemble peptide quantifications into protein quantifications, with the additional requirement of \geq 3 peptide quantifications per protein [41]. Biological (cultures/isolations) and technical (LC-MS-MS) replicate data were further processed by the ProRata program to estimate a single log₂ PP:WCL (or ¹⁵N:¹⁴N) isotope ratio and 90% confidence interval for each protein meeting these criteria.

5.3 Results and Discussion

Knowledge of the spatial distribution of the proteome is highly desirable in elucidating protein function. The dynamic nature of the proteome—simultaneously undergoing synthesis, transport, modification, and degradation of proteins—often complicates the obtaining this valuable information. Protein localization is routinely studied by biochemical separation methods and/or molecular tagging techniques in a "one-by-one" fashion, focusing on examination of a single protein target per study. A growing number of studies have applied quantitative proteomic techniques to study the localization of large numbers of proteins simultaneously. The combination of molecular tagging via isotopic signatures, biochemical separation of a "target" protein fraction, and measurement of signatures on robust LC-MS-MS platforms greatly increases experimental throughput. Examining a targeted subset of the proteome by integrating these tools may provide insight not attainable through the study of individual proteins. While such targeted, quantitative proteome analyses focusing on protein localization have been performed in eukaryotic organisms [32, 107, 109, 118, 119], prokaryotic organisms also contain distinct cellular structures, such as inner and outer membranes (shown in Figure 1) and multiple mechanisms of protein trafficking, such as the Sec and TAT pathways.

In this study, we wished to apply quantitative proteomics techniques to characterize the spatial distribution of microbial proteins isolated from the periplasm. To this end, we have devised an experimental approach (shown in Figure 5.2) combining stable isotope metabolic labeling, protein fractionation, and isotope ratio mass spectrometry to examine localization of *Escherichia coli* K12 periplasmic proteins. We enriched periplasmic proteins from ¹⁵N-labeled *E. coli* cell cultures by two distinct isolation protocols (H₂O [44] and GdCl₃ [45]) and created protein mixtures containing periplasmic protein isolates and a ¹⁴N-labeled whole cell lysate fraction, as shown in Figure 5.3a. LC-MS-MS analysis of tryptic peptides from protein mixtures allowed measurement of PP:WCL protein isotope ratios. The PP:WCL ratio of each protein provides an estimate of periplasmic enrichment during the cold-osmotic shock isolation

114

protocol. Periplasmic proteins should have larger PP:WCL ratios than non-periplasmic proteins present in the whole cell lysate fraction. Thus, proteins measured with larger PP:WCL ratios indicate enrichment and potential periplasmic localization.

To account for experimental error attributable to protein mixing, a series of control experiments were also performed, composed of ¹⁵N-labeled periplasmic enrichments mixed with ¹⁴N periplasmic enrichments, shown in Figure 5.3b. Separate ¹⁵N:¹⁴N mixtures were created for the H₂O [44] and GdCl₃ [45] isolation protocols. LC-MS-MS analysis of this mixture permitted estimation of PP:PP protein isotope ratios for proteins present in the mixture. Barring experimental error from protein mixing, PP:PP isotope ratios should equal 1 (log₂=0) for each protein in these mixtures. Control PP:PP protein isotope ratios of approximately 1 indicate enrichment similar protein abundances between separate ¹⁵N- and ¹⁴N-labeled isolate.

Prior to protein mixing or further downstream sample processing, each of the protein fractions were resolved by SDS-PAGE, shown in Figure 5.4. As expected, H₂O and GdCl₃ periplasmic isolates are simpler mixtures than whole cell lysate. Figure 4 also shows that periplasmic isolates from both H₂O and GdCl₃ protocols yields similar patterns, suggesting that a similar set of proteins was isolated by the two different cold osmotic shock protocols.

A previous qualitative characterization of periplasmic proteins enriched by cold osmotic shock reported a number of non-periplasmic proteins present among periplasmic proteins [110]. In this previous study, periplasmic localization was inferred by database presence of a Sec-dependent amino-terminal signal peptide for each protein. The TAT

Figure 5.4. SDS-PAGE of protein fractions used in this study. Lane descriptions (L-R) are as follows: lane 1, molecular weight marker; lane 2, H_2O periplasmic protein isolate; lane 3, whole cell lysate (WCL); lane 4, GdCl₃ periplasmic protein isolate. Each lane represents a 10 µL aliquot of protein sample prior to dialysis, microBCA assay, protein mixing, and further downstream analysis. See experimental procedures for further details.

pathway has revealed a distinct amino-terminal signaling motif for periplasimc localization and shown that co-exported proteins localized to the periplasm may be absent of an amino-terminal motif entirely [114].

Thus, presence of a Sec-dependent motif, as annotated in a database, may not sufficiently implicate all proteins localizing to the periplasm. To complement the series of isotope ratio measurements performed in our study, we also sought to identify tryptic peptides of mature amino-termini resulting from signal peptide cleavage rather than infer modification from database query of primary protein sequence after qualitative identification. A subset database of periplasmic proteins reflecting previously identified signal peptide cleavage site and predicted cleavage sites was appended to the proteome database and included in the search of mass spectrometry data.

Differentially-Labeled Mixtures of Periplasmic Isolate and Cellular Lysates.

¹⁵N H₂O Periplasmic Isolate mixed with ¹⁴N Cellular Lysate. Fifty-nine of the 394 protein isotope ratios measured by the ProRata program corresponded to proteins annotated as periplasmic proteins. Ratios were measured for proteins identified in \geq 1 of 4 LC-MS-MS experiments from an average of 819 total protein identifications, with a standard deviation of ±205 identifications, representing averages and standard deviations of 39±10 annotated periplasmic protein identifications and 780±215 non-periplasmic protein identifications. The distribution of 394 protein isotope ratios is shown in Figure 5.5, ranked in decreasing order of PP:WCL (or ¹⁵N:¹⁴N) ratio. Rather than define strict, rigorous statistical cutoffs between "periplasmic" and "non-periplasmic" protein annotations plots showing the cumulative number of identified proteins that are annotated

Figure 5.5: Distribution of protein isotope ratios from mixtures of $H_2O^{15}N$ -periplasmic isolate (PP) and ¹⁴N-whole cell lysate (WCL). PP:WCL isotope ratios are plotted along the y-axis, with proteins ranked according to this value along the x-axis. Periplasmic and non-periplasmic protein annotations were obtained from the SwissProt SRS query (see Experimental Procedures for more details) and are represented as detailed in the legend. Lines representing the cumulative periplasmic and cumulative non-periplasmic proteins as a fraction of the measured isotope ratios are also provided as described in the legend.

as periplasmic (green), or not annotated as periplasmic (blue) are provided in Figure 5.5. The cumulative number of identified periplasmic proteins initially increased at a greater rate than that of the non-periplasmic proteins. At lower values of the PP:WCL isotope ratio, the slope of the cumulative periplasmic distribution is much smaller (approaching 0), indicating that few annotated periplasmic proteins were measured with low PP:WCL isotope ratio values. A complete list of all measured PP:WCL protein ratios is provided in Appendix D.

As expected, several annotated periplasmic proteins were detected among the top 50 ranked PP:WCL isotope ratios over which the slope of the cumulative periplasmic rank is the largest in the distribution. Observed PP:WCL isotope ratios for periplasmic substrate-binding proteins for glutamine [120] (GlnH, 4.6), spermidine/putrescine [120] (PotD, 4.3), glycine/betadine [121] (ProX, 4.3), and thiamine [122] (ThiB, 3.5) are consistent with previous studies reporting periplasmic localization. Each of these proteins have been annotated and experimentally characterized as the substrate-binding component of ATP-binding cassette (ABC) transport systems, which shuttle their respective substrates from the periplasm to an inner membrane-spanning permease, facilitating import into the cytoplasm [123]. Twelve other periplasmic proteins annotated as periplasmic substrate-binding proteins in ABC transport systems were detected among the 50 largest-ranked PP:WCL isotope ratios.

Ratios for periplasmic proteins performing other functions were also detected in this portion of the distribution, such as protease 3 (PrtA, 3.1), the tail-specific protease (Prc, 2), and the blue copper oxidase (CueO, -0.5). The CueO protein has been described

as a member of the TAT pathway [114, 124], which employs a signaling motif distinct from the general secretory (Sec) pathway, shown in Figure 1.

In addition to the above annotated periplasmic proteins, some non-periplasmic proteins were observed with large PP:WCL isotope ratios among the top 50 ranked proteins. Detection of non-periplasmic proteins among enriched periplasmic proteins was expected, as previously reported [110]. Here, we observed large PP:WCL ratios for outer membrane receptors CirA (6.3), FepA (3.6), Fiu (3.6), and flagellin (3.2). A plausible explanation for these specific observed ratios is that the H₂O periplasmic isolation protocol weakens the outer membrane, potentially leading to co-enrichment of these proteins along with periplasmic proteins.

A small fraction of annotated periplasmic proteins was detected with low PP:WCL isotope ratios, such as the osmotically-inducible protein Y (OsmY, -1.5), maltose binding protein (MalE, -1.5), and the vitamin B12 transport protein (BtuE, -4.5), among others. The observed low PP:WCL ratio for the OsmY protein may be attributable to induction of expression during osmotic stress [125], potentially in response to the periplasmic protein isolation protocol and/or the sonication procedure used for obtaining the whole cell lysate.

The ratio observed for BtuE is located along the distribution where the slope of the cumulative periplasmic rank is zero. Interestingly, the BtuE protein has been reported as non-essential for vitamin B12 transport [126] and another protein, BtuF has been implicated as the periplasmic substrate-binding protein for vitamin B12 [127]. These previous findings, combined with our quantitative PP:WCL ratio measurement merit further investigation of the periplasmic annotation of the BtuE protein.

¹⁵N GdCl₃ Periplasmic Isolate mixed with ¹⁴N Cellular Lysate. In an identical measurement performed using a different periplasmic isolation protocol, seventy-eight of the 722 protein isotope ratios measured by the ProRata program were proteins annotated as periplasmic proteins. Ratios were measured for proteins identified in \geq 1 of 4 LC-MS-MS experiments from an average of 546±44 protein identifications (49±4 periplasmic proteins, 597±43 non-periplasmic proteins). The distribution of 722 protein isotope ratios is shown in Figure 6.6. A complete list of all measured PP:WCL protein ratios is provided in Appendix E.

As described above for Figure 5.5, Figure 5.6 also shows the cumulative number of identified periplasmic proteins increased at a greater rate than that of the non-periplasmic proteins, showing that larger ¹⁵N:¹⁴N ratios are more likely to be measured for periplasmic proteins. For the GdCl₃ periplasmic isolates, this is most evident for the 50 highest-ranked PP:WCL isotope ratios, 29 of which were annotated as periplasmic proteins.

As with the H₂O isolation protocol, a number of proteins detected in this portion of the distribution were also ABC transporter periplasmic substrate-binding proteins, namely those binding thiamine (ThiB, 1.3), glycine/betadine (ProX, -0.3), and spermidine /putrescine (PotD, -1.1). Additional periplasmic binding proteins were detected with similar PP:WCL isotope ratios, such as TolB (0.7) and YobA (0.3), which are involved in the uptake of colicins and copper [88] based on their annotation, respectively. The YcdO protein, belonging to the uncharacterized protein family

Figure 5.6: Distribution of protein isotope ratios from mixtures of GdCl₃ ¹⁵N-periplasmic isolate (PP) and ¹⁴N-whole cell lysate. PP:WCL isotope ratios are plotted along the y-axis, with proteins ranked according to this value along the x-axis. Periplasmic and non-periplasmic protein annotations were obtained from the SwissProt SRS query (see Experimental Procedures for more details) and are represented as detailed in the legend. Lines representing the cumulative periplasmic and cumulative non-periplasmic proteins as a fraction of the measured isotope ratios are also provided as described in the legend.

UPF0409 [88], was measured with a PP:WCL isotope ratio of 0.3. Initially suspected to be a TAT substrate protein, export of the YcdO protein to the periplasm has been demonstrated in TAT-deficient strains [128]. Though our measured isotope ratio further implicates periplasmic localization of YcdO it does not clearly pinpoint a function of this unknown protein.

Several non-periplasmic proteins were also observed with large PP:WCL isotope ratios among the top 50 ranked proteins. The largest 7 PP:WCL isotope ratios were obtained for proteins not annotated as periplasmic. As with the H₂O isolation protocol, a number of these proteins were outer membrane-affiliated proteins, such as flagellin (FliC, 3.1), catecholate siderophore receptor (Fiu, 3.1), and outer membrane protein A (OmpA, 1.0), further supporting the notion that outer membrane proteins co-enrich with periplasmic proteins due to compromised membrane rigidity. Interestingly, an uncharacterized protein, YcgK, was observed with a PP:WCL isotope ratio of 3.0, the fourth largest-ranked ratio of all proteins. Though not annotated as a periplasmic protein, sequence analysis of this 14.9 kDa unknown protein contains a potential signal peptide at its amino terminus inferred by electronic annotation [88]. Based upon our measurement of PP:WCL protein isotope ratio, the YcgK protein represents a candidate hypothetical protein whose annotation could be investigated further to implicate periplasmic function.

Closer inspection of Figure 5.6 shows that the values of the 50 highest-ranked PP:WCL protein isotope ratios of GdCl₃ isolates are lower than their counterparts from H₂O isolates. This interesting result merits further discussion. In comparison to other methods of periplasmic protein enrichment, it has been hypothesized that the GdCl₃

isolation protocol is more stringent in liberating periplasmic proteins versus cytoplasmic proteins due to the presence of gadolinium ion in the osmotic shock buffer, which blocks inner membrane mechanosensitive channel protein MscL [45, 129]. Blockage of the MscL protein would then, in turn, prevent this inner membrane channel from functioning as a conduit for non-specific release of proteins during osmotic downshock. Measurements of the PP:WCL isotope ratios presented here shown that comparable numbers of periplasmic proteins are of the 50-largest PP:WCL ratios for each protocol: 31 ratios by the H₂O protocol and 29 ratios by the GdCl₃ protocol. However, numbers of total periplasmic proteins enriched by each protocol differed somewhat, with 59 by the H₂O protocol and 78 by the GdCl₃ protocol. Differences among the enriched periplasmic protein between protocols, for almost twice as many protein isotope ratios were measured for the GdCl₃ isolation protocol (722) than for the H₂O protocol (394).

A plausible explanation for differences between protocols is that the total protein amount differs for each protein mixture of periplasmic isolate and whole cell lysate. Each time enrichment by cold osmotic shock is performed it may yield different amounts of periplasmic isolate. If periplasmic isolate liberates more proteins, it will generally yield smaller PP:WCL protein isotope ratios, for any particular protein will be present in smaller amount in the periplasmic isolate, but will be at the same amount in the whole cell lysate. This is evident between the H₂O and GdCl₃ protocols. The H₂O protocol yielded fewer total proteins, yet the PP:WCL protein isotope ratios are larger than the GdCl₃ protocol, which yielded more proteins. Consequently, PP:WCL protein isotope ratios observed for the GdCl₃ protocol were smaller than the H₂O protocol.

Differentially-Labeled Mixtures of Periplasmic Isolate. Accurate measurement of ¹⁵N:¹⁴N protein isotope ratios is critically dependent upon accurate protein mixing in our experimental design, depicted in Figure 5.2. To monitor experimental error in this step, we created control mixtures of isotopologous periplasmic isolate as shown in Figure 5.3b for both GdCl₃ and H₂O isolation protocols. Barring experimental error in the protein mixing step, ¹⁵N:¹⁴N protein isotope ratios, denoted as PP:PP ratios, should be roughly equivalent between the two isotopologous periplasmic isolates in the mixture, resulting in PP:PP ratios of 1 (or 0 in log₂). Distributions of protein quantifications from differentially-Labeled periplasmic enrichment mixtures are shown in Figures 5.7 and 5.8. Complete lists of all measured PP:PP protein ratios are provided in Appendices F and G for the H₂O and GdCl₃ isolation protocols, respectively.

¹⁴N H₂O Periplasmic Isolate mixed with ¹⁵N H₂O Periplasmic Isolate. The distribution of PP:PP protein isotope ratios in Figure 5.7 shows the majority of measured ratios did not differ drastically between mixtures of separate ¹⁵N and ¹⁴N periplasmic enrichments by the H₂O isolation protocol. Nearly half of the PP:PP protein isotope ratios were measured at log₂=0 (or 1), indicating little change in protein abundance between separate ¹⁵N and ¹⁴N periplasmic enrichments. The 296 ratios distributed over this range accounted for 46 annotated periplasmic proteins and 223 annotated non-periplasmic proteins. In fact, 85% of the PP:PP protein isotope ratios ranged from log₂ values of -1 to 1 (representing 0.5 to 2-fold change) between the isotopologous enrichments, which indicate protein mixing in the experimental design shown in Figure

Figure 5.7: Distribution of Protein Isotope Ratios from Differentially-Labeled Periplasmic Isolate by the H₂O Isolation Protocol.

Figure 5.8: Distribution of Protein Isotope Ratios from Differentially-Labeled Periplasmic Isolate by the GdCl₃ Isolation Protocol.

5.2, is approximately a 1:1 ratio and thus, not a large source of experimental error.

¹⁴N GdCl₃ Periplasmic Isolate mixed with ¹⁵N GdCl₃ Periplasmic Isolate. Though not as striking as with the H₂O isolation protocol, 80% of the 538 measured PP:PP protein isotope ratios for the GdCl₃ isolation protocol also ranged from log₂ values of -1 to 1 (representing 0.5 to 2-fold change) between the isotopologous periplasmic enrichments. The 430 total isotope ratios distributed over this range included 60 annotated periplasmic proteins and 370 non-periplasmic annotated proteins.

In contrast to the H₂O isolation protocol, which similar abundances between ¹⁵N and ¹⁴N periplasmic enrichments, the highest frequency of proteins isolated by the GdCl₃ isolation protocol were distributed near log₂=-1. This indicates a slight (0.5-fold) increase in abundance of the ¹⁴N GdCl₃ isolation relative to the ¹⁵N GdCl₃ isolation, potentially attributable to protein mixing error. Among 212 total PP:PP protein isotope ratios measured in this bin, 39 are annotated periplasmic proteins, potentially indicating more ¹⁴N GdCl₃ protein isolation was included in the mixture relative to the ¹⁵N GdCl₃ protein isolation.

Despite this slight difference among GdCl₃ isolates, distributions of PP:PP protein isotope ratios between protocols is still relatively comparable, with 85% of H₂O ratios and 80% of GdCl₃ ratios ranging from \log_2 -1 to 1 (0.5 to 2-fold). Thus, errors attributable to protein mixing did not drastically skew measurement of ¹⁵N:¹⁴N isotope ratios in the experiment.

Amino-Terminal Signal Peptide Cleavage Identification from Tandem Mass Spectra. A characteristic feature of the majority of periplasmic proteins is the presence of an amino-terminal signal peptide, approximately 20-30 amino acids in length, which translocates proteins to the periplasm via the general Sec pathway. Entry into the periplasm results in cleavage of this peptide from the remaining protein sequence. In addition to periplasmic enrichment, measurement of this post-translational modification provides higher confidence evidence in determining protein localization to the periplasm.

In a previous qualitative LC-MS-MS characterization of periplasmic proteins enriched by cold osmotic shock [110], presence of this feature among the primary sequence of identifications was determined by database querying and subsequently used to differentiate periplasmic proteins from other enriched proteins. Identification of the post-translational identification was determined by other experimental methods, such as Edman sequencing [120], not by mass spectrometry.

To identify the post-translational modification of amino-terminal signal peptide cleavage among enriched periplasmic proteins, we concatenated a subset database of annotated periplasmic proteins to the HAMAP proteome prior to SEQUEST analysis of mass spectrometry data (Experimental Procedures). For each protein in the periplasmic subset database, one entry was created containing the full length of the amino-terminal signal peptide and a second entry was created containing the remaining sequence of the modified periplasmic protein. Cleavage positions for each periplasmic protein was based on previous experimental results listed among SwissProt protein annotations [88, 120], if available, or signal peptide cleavage predictions by the PrediSi [116] and SignalP [117] algorithms. This informatics approach permits identification of tryptic peptides for both cleaved and uncleaved forms of periplasmic proteins. Results are listed in Table 5.1.

Protein	H ₂ O PP:WCL			GdCl ₃ PP:WCL		SwissProt	Protein Description	
	Protein Mixtures			Protein Mixtures			Signal	
	PP:WCL		N-term	PP:WCL		N-term	Peptide	
	Isotope	SS	Cleavage	Isotope	Ges	Cleavage	Prediction*	
	Ratio	cate	Spectrum	Ratio	cat	Spectrum	(residues in	
	10000	olic	Count	1 curio	pli	Count	mature	
		reț	Count		De	Count	chain)	
	2					_	Potential	
Prc	(1.5, 2.6)	2	8			7	(23-682)	Tail-specific protease
D W	4.3	4	127	-0.3		00	Confirmed	
<u>ProX</u>	(4, 4.6)	4	137	(-0.5, -0.1)	4	99	(22-682)	Glycine betaine-binding periplasmic protein
PotD	4.3	Δ	13	-1.1	4	4	Confirmed	Sparmiding/nutragaing parinlagmia protain
roid	(3.8, 4.8)	–	15	(-1.3, -0.8)		–	(24-348) Confirmed	Spermume/purescine periplasific protein
PotF	(2.7, 3.8)	3	2	-0.8	3	1	(27-370)	Putrescine-binding periplasmic protein
	1.7			0.2			Confirmed	
<u>SubI</u>	(1.2, 6.9)	2	8	(-0.2, 0.7)	2	5	(20-329)	Sulfate-binding protein
	4.6	4	2	-2.9		1	Confirmed	
<u>GlnH</u>	(4.3, 5)	4	3	(-3.1, -2.6)	4	1	(23-248)	Glutamine-binding periplasmic protein
T in T	0.7	1	174	0.3	1	116	Confirmed	T /T1 /T7 1 1 ' 1' / '
LIVJ	(0.5, 0.8)	4	1/4	(0.1, 0.4)	4	110	(24-367)	Leu/IIe/Val-binding protein
FliV	$\begin{array}{c} 0.4 \\ (0.1, 0.6) \end{array}$	4	21	(0.1, 0.4)	4	18	(30-266)	Cystine-hinding periplasmic protein
<u>1111</u>	1 1	•		-1 2	•	10	Confirmed	Cystine officing periphasine protein
ModA	(0.9, 1.4)	4	145	(-1.4, -1)	4	70	(25-257)	Molybdate-binding periplasmic protein
	-0.1			-0.1		• •	Confirmed	
<u>HisJ</u>	(-0.3, 0.1)	4	40	(-0.3, 0.1)	4	20	(23-260)	Histidine-binding periplasmic protein
T · TZ	-0.1	4	02	-0.4		10	Confirmed	
LIVK	(-0.3, 0.1)	4	92	(-0.5, -0.2)	4	48	(24-369)	Leucine-specific-binding protein
CycP		4	15	-0.4		6	Confirmed	Thissulfate hinding protein
<u>Cysi</u>	(-0.3, 0.2)	–	15	(-0.6, -0.2)		0	(20-338) Confirmed	
ArtJ	-0.2	4	59	-0.0	4	25	(20-243)	Arginine-binding periplasmic protein 2
	-0.6			-0.6			Confirmed	6
<u>PpiA</u>	(-1, -0.1)	3	0	(-0.9, -0.2)	4	4	(25-190)	Peptidyl-prolyl cis-trans isomerase A
	-0.3			-1		<u> </u>	Confirmed	
<u>DppA</u>	(-0.4, -0.1)	4	29	(-1.2, -0.9)	4	41	(29-535)	Periplasmic dipeptide transport protein
<u>SurA</u>	-0.3	3	27	-1	4	37	Confirmed	Chaperone surA

Table 5.1. Amino-terminal Signal Peptide Identifications from MS-MS Spectra among Annotated Periplasmic Proteins

Table 5.1. (Continued)

	(-0.6, 0)			(-1.3, -0.8)			(21-428)	
	-0.9			-0.8			Confirmed	Lysine-arginine-ornithine-binding
ArgT	(-1.2, -0.7)	4	43	(-1, -0.6)	4	35	(23-260)	periplasmic protein
	-0.6			-1.1			Confirmed	
LolA	(-0.9, -0.3)	4	3	(-1.4, -0.8)	4	8	(22-203)	Outer-membrane lipoprotein carrier protein
	-0.1		_	-1.6	_		Confirmed	
<u>PstS</u>	(-0.6, 0.4)	2	7	(-2.1, -1.2)	3	4	(26-346)	Phosphate-binding protein pstS
	-0.8	1	2	-1.2	•	0	Confirmed	
<u>FimC</u>	(-1.7, -0.1)		2	(-1.8, -0.7)	2	0	(37-241)	Chaperone protein fimC
-			2	-1.1		1	Confirmed	
TesA			2	(-1.6, -0.7)	2	1	(27-208)	Acyl-CoA thioesterase I
AtT	-0.8	1	0	-1.4	1	2	Confirmed	A · · · · · · · · · · · · · · ·
Arti	(-1.1, -0.4)	4	0	(-1.7, -1.2)	4	3	(20-243)	Arginine-binding periplasmic protein I
Cree	-0.5	1	5	-2.1	2	12	Confirmed	
CueO	(-1.2, 0.1)	1	5	(-2.4, -1.8)	<u> </u>	15	(29-516)	Blue copper oxidase cueO
OppA	-0.8	1	200	-1.9	1	13	Confirmed	Demintegenie aligenentide hinding motoin
Орра	(-0.9, -0.7)	-	200	(-2.1, -1.8)	–		(27-543)	Periplasmic ongopeptide-offiding protein
DhcP	-0.5	4		-2.4	4	14	(26, 206)	D ribaga hinding parinlagmia protain
KUSD	(-0.9, 0)	–	– –	(-2.7, -2)	–	17	(20-290)	D-mouse-omding periplasific protein
GsiB			6	-1.7	3	5	(27, 512)	Glutathione-binding protein gsiB
USID	1.5			(-2, -1.4)	5		(27-512) Predicted	Ortitatilone-onliding protein gsib
YnfD	(-2, 2, -0, 9)	1	11	(-2.9, -1.8)	2	12	(22-101)	Uncharacterized protein vnfD
	-1 3	-		-26	_		Confirmed	
OsmY	(-1.5, -1.1)	4	45	(-2.8, -2.4)	4	30	(29-201)	Osmotically-inducible protein Y
	(110, 111)			-2.1			Confirmed	
OpgD			2	(-2.4, -1.8)	2	0	(33-551)	Glucans biosynthesis protein D
	-0.5			-37			Confirmed	Glutamate/aspartate periplasmic-binding
GltI	(-0.8, -0.3)	4	51	(-39 - 34)	4	22	(23-302)	protein
	15			3 1			(25 502) Confirmed	High-affinity zinc untake system protein
ZnuA	(-1, 7, -1, 4)	4	95	(-3, 3, -3)	4	41	(27-310)	znu A
	_1 9	· ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-2.8	•		Confirmed	
DsbC	(-24 - 14)	1	26	(-5, 6, -1, 3)	3	13	(21-236)	Thiol disulfide interchange protein dsbC
	0.6	-		(5.0, 1.5)			Confirmed	FKBP-type pentidyl-prolyl cis-trans
FkbA	-0.0	4	61	(-4.3)	4	27	(26-270)	isomerase fkn Δ
	-2 7	· ·	01	-3	•	21	(20-270) Confirmed	
Skn	(-3, -2, 4)	4	35	(-3 3 -2 8)	3	43	(21-161)	Chaperone protein skp
	-2.9	<u> </u>		-3			Confirmed	
SodC	(-3.2, -2.5)	3	1	(-3.3, -2.7)	4	3	(20-173)	Superoxide dismutase [Cu-Zn]
	-3		_	-3	-		Confirmed	
<u>DgaL</u>	(-3.3, -2.7)	4	4	(-3.2, -2.8)	4	4	(24-332)	D-galactose-binding periplasmic protein

 Table 5.1. (Continued)

UgnB	-3	2	3	-3	4	9	Confirmed (24-438)	sn-glycerol-3-phosphate-binding periplasmic
CpxP	(3.1, 2.0)		8	-3.1	2	8	Potential (22-166)	Periplasmic protein cpxP
GlpQ	-2.3 (-2.8, -1.9)	4	12	-4.2 (-4.6, -3.9)	4	7	Confirmed (26-558)	Glycerophosphoryl diester phosphodiesterase
Ivy	-2.1 (-2.5, -1.7)	4	18	-4.5 (-4.8, -4.1)	3	8	Confirmed (29-157)	Inhibitor of vertebrate lysozyme
BglX			13	-3.7 (-4.2, -3.2)	2	9	Potential (21-756)	Periplasmic beta-glucosidase
Ycel			15	-3.9 (-4.4, -3.3)	1	10	Confirmed (23-191)	Protein yceI
<u>Aspg2</u>	-4 (-4.4, -3.5)	2	1			1	Confirmed (23-348)	L-asparaginase 2
AraF	-4.4 (-5.2, -0.7)	1	4	-3.7 (-4.3, -3.1)	1	2	Confirmed (24-329)	L-arabinose-binding periplasmic protein
AgP	-3.1 (-7, -2.4)	2	11	-5.1 (-5.9, -4.3)	2	2	Confirmed (23-506)	Glucose-1-phosphatase
<u>YnhG</u>	-4.6 (-4.9, -4.3)	3	23	-3.9 (-6.1, -3.5)	4	12	Potential (24-334)	Uncharacterized protein ynhG
<u>EcoT</u>			19	-4.3 (-7, -3.5)	1	8	Confirmed (21-162)	Ecotin
<u>TreA</u>	-4.1 (-4.9, -3.3)	1	11	-4.7 (-5.2, -4.3)	3	3	Confirmed (31-565)	Periplasmic trehalase
<u>DegP</u>	-3.9 (-4.4, -3.3)	3	16	-4.9 (-5.4, -4.5)	2	6	Confirmed (27-474)	Protease do
<u>YdcS</u>			1	-4.7 (-5.1, -4.3)	1	2	Potential (23-381)	Putative ABC transporter periplasmic- binding protein ydcS
YgiW	-3 (-3.7, -2.5)	2	33	-6.4 (-6.9, -5.9)	1	13	Confirmed (21-130)	Protein ygiW
<u>OpgG</u>	-4.1 (-4.6, -3.5)	1	3	-5.9 (-6.5, -5.4)	2	3	Confirmed (23-511)	Glucans biosynthesis protein G
<u>HdeA</u>	-4.6 (-5, -4.2)	2	0	-5.6 (-5.9, -5)	4	4	Confirmed (22-110)	Protein hdeA
<u>YtfQ</u>	-6.3 (-6.6, -6.1)	4	58	-5.8 (-6.1, -5.6)	3	37	Confirmed (22-318)	ABC transporter periplasmic-binding protein ytfQ
<u>Spy</u>			4	-6.2 (-6.5, -5.9)	2	10	Confirmed (24-161)	Spheroplast protein Y
<u>MppA</u>			5	-6.9 (-7, -6.3)	2	0	Confirmed (23-537)	Periplasmic murein peptide-binding protein
YraP			4			0	Potential	Uncharacterized protein yraP

Table 5.1. (Continued)

			(24-191)	
DdpA	2	3	Potential (26-516)	Probable D,D-dipeptide-binding periplasmic protein ddpA
AmpC	3	3	Confirmed (20-377)	Beta-lactamase
Ggt	4	8	Confirmed (26-580)	Gamma-glutamyltranspeptidase
DegQ	5	5	Confirmed (28-455)	Protease degQ
SufI	3	1	Confirmed (28-470)	Protein sufI

*"Potential" means that the protein sequence potentially contains an amino-terminal signal peptide based on SwissProt annotation. "Confirmed" means that an amino-terminal signal peptide has been confirmed by experimental means based on the SwissProt annotation. The SwissProt annotation for each protein is accessible by clicking the hyperlinked-protein name. SEQUEST searches identified signal peptide cleavage positions for 62 annotated periplasmic proteins. None of these 62 proteins were identified in the uncleaved form, that is, with an unprocessed signal peptide still attached.

Elucidation of the TAT pathway [114] has shown consensus primary sequence motifs other than the Sec signal peptide lead to periplasmic localization. Database queries of primary sequence analysis for Sec-dependent amino-terminal signal peptide alone may not have inferred periplasmic localization of the TAT protein CueO; however, our experimental measurements of PP:WCL ratio and MS-MS spectra of the cleavage position have (Table 5.1).

The informatics approach provided marginal insight for uncharacterized proteins. Though a total of 23 MS-MS spectra corresponded to a SignalP-predicted signal peptide cleavage site for the uncharacterized YnfD protein, low PP:WCL ratios measured from both isolation protocols suggest that it is enriched at low abundance in the periplasm. Similarly, MS-MS spectra were identified consistent with potential signal peptide cleavages for the YcdS, YraP, and YnhG proteins. However, measurement of each of their respective PP:WCL isotope ratios does not indicate periplasmic enrichment, shown in Table 5.1.

5.4 Conclusions

Knowledge of cellular localization is integral to fully elucidating protein function. Given the dynamic nature of the cell, this insight is difficult to attain on a large scale for multiple proteins. A complication to localization studies combining biochemical isolation of selected protein fractions with qualitative proteomics platforms is that frequently, protein isolates contain a heterogeneous mixture of the desired proteins of interest and co-isolating contaminant proteins.

In this study, we have shown that quantitative proteomics provides higher confidence experimental evidence for localization of *E. coli* periplasmic proteins. Quantitative PP:WCL

134
protein isotope ratios indicating enrichment were measured for both the H₂O and GdCl₃ isolation protocols. The separate protocols yielded comparable numbers in terms of annotated periplasmic proteins: 31 proteins for the H₂O isolation protocol and 29 for the GdCl₃ protocol. However, markedly different values were observed in the total number of measured PP:WCL isotope ratios, with 394 measured in the H₂O protocol opposed to 722 in the GdCl₃ protocol.

When combined with experimental identifications of the post-translational modification of amino-terminal signal peptide cleavage, a total of 26 annotated periplasmic proteins bearing this modification were among the largest measured PP:WCL protein isotope ratios in either the H₂O or GdCl₃ isolation protocols.

The quantitative proteomics approach presented in this study provides more experimental credibility towards inference of protein localization in comparison to qualitative approaches. Adaptation of this experimental design to future proteome studies could potentially increase the scale of protein localization to other protein fractions among the growing number of sequenced microbial species.

Chapter 6 Conclusions

The goal of this dissertation was to expand the latitude of biological questions that may be addressed with bottom-up proteomics. To expand this horizon, biochemical and quantitative proteome techniques were tailored together to address specific areas of proteome research. Blending standard biochemical techniques, such as sucrose-density fractionation and affinity isolation, with newer quantitative proteomics tools provides a more targeted focus to proteome study.

Biochemical enrichment methods permit study of specific proteins of interest. Depending on the specific application, quantitative measurements of protein isotope ratios may afford a degree of increased confidence to the measurement. In conjunction, the application of the described biochemical and quantitative tools enables a more direct approach to addressing specific biological questions than qualitative proteome inventory profiling. In general, characterizing targeted protein mixtures of simpler complexity enable greater protein coverage of selected proteins, for the mass spectrometer is not overwhelmed by large numbers of peptides per unit time, as in the case of more complex proteome mixtures.

Chapter 1 highlights five common biological applications of proteomics: proteome inventory profiling, comparative proteome profiling, protein interaction analyses, protein localization, and post-translational modification identification. In the past five years, proteome inventory profiling of microbial species by the bottom-up approach has become routine [6]. After acquiring a large inventory of proteins, a logical "next step" is to infer each of their roles in the proteome. This dissertation has adapted techniques to specifically address the four *other* biological applications of proteomics:

comparative proteome profiling (Chapter 4),

136

protein interaction analyses (Chapters 3 and 4; Appendices A and B), protein localization (Chapter 5), and post-translational modification identification (Chapter 5).

Prior to engaging each of these biological applications, it was necessary to optimize sample preparation methods for studying small quantities of protein samples. Study of the above four applications involve a variety of distinct protein samples that differ in complexity and quantity. Sample preparation methods were in place for the study of complex proteome samples [43]; however, multiprotein complexes presented were technically challenging with respect to enzymatic proteolysis. Excessive handling steps during sample preparation, such as dilution of chaotropic agents and solid phase extraction, introduce potential sources of peptide loss. It is important to minimize sources of loss, especially when working with small quantities of limited protein sample. Chapter 3 addresses this critical, yet often overlooked, area of the bottom-up proteomics workflow. As proteomics is very much an interdisciplinary field, it frequently involves collaborations between biologists, biochemists, and analytical chemists. More often than not, collaborative proteomics studies require several trial experiments before yielding successful results. Biochemists expend significant time and resources to enrich small protein quantities prior to transferring the sample to analytical chemists for LC-MS-MS characterization. A prerequisite for successful collaboration is both parties reaching compromise conditions spanning the entire workflow, from protein enrichment through protein identification. This includes detailed discussion of optimal buffering solutions, steps of protein enrichment, yield of protein enrichment, and the presence of surfactants or protease inhibitors in the final protein sample.

Thus, the work presented in Chapter 3 is of significance, especially with respect to collaborative proteomics studies. First, it demonstrates general efficacy of five enzymatic protocols for small protein quantities. In collaborative studies, having a variety of buffering conditions, chaotropic agents, proteases, and sample cleanup methods is an important resource. These different conditions may be adapted to suit a specific set of compromise conditions between biochemists and analytical chemists. More importantly for the purposes of this dissertation, the work showed trypsin digestions in a solvent of 80% CH₃CN were most effective on enriched samples of microbial proteins, resulting in greater peptide identifications, protein identifications, and sequence coverage.

Interaction analyses combining affinity isolation of proteins with characterization by LC-MS-MS are promising methods to study protein-protein interactions. Technical challenges facing this methodology are identification of non-specific (or "background") interactions amid affinity isolates and possible collateral effects resulting from heterologous expression of affinitytagged "bait" proteins. In Chapter 4, both of these challenges were addressed by performing local and global protein isotope ratio measurements of the bacterial RNA polymerase protein complex. Local isotope ratio measurements provided a method to distinguish authentic protein interactions from non-specific interactions. This method, adapted from the I-DIRT method described by Tackett *et al.* [82], successfully differentiated RNA polymerase complex components from non-specific interactions. Global isotope ratio measurements of baitexpressing versus wild-type strains yielded a comparative proteome profile. The comparative profile enabled assessment of collateral effects from heterologous protein expression. Interestingly, this showed that the combination of growth on minimal salt medium (required for

138

¹⁵N-labeling) and production of the bait protein may increase the metabolic load in both *E. coli* and *R. palustris*.

In Chapter 5, protein localization to the *E. coli* periplasm was studied. In mixtures of cold osmotic shock periplasmic isolate and whole cell lysate, measurement of protein isotope ratios permitted estimation of periplasmic protein enrichment. This measurement, the PP:WCL protein isotope ratio, increases confidence in periplasmic localization relative to previous qualitative LC-MS-MS studies. To further infer localization to the periplasm, a number of amino-terminal signal peptide cleavages were experimentally identified. This specific post-translational modification was found to be present in the majority of periplasmic proteins studied in Chapter 5. Combination of the PP:WCL protein isotope ratio with experimental measurement of this modification increases the overall confidence in periplasmic localization.

In conclusion, tailoring together the number of biochemical and quantitative techniques has provided increased confidence for investigating four other common biological applications of proteomics outside of qualitative proteome profiling. Targeted studies that expand the scope of common applications of proteomics will provide useful biological insight into the everincreasing number of sequenced microbial genomes. Hopefully, the combinations of biochemical and quantitative techniques used throughout this dissertation will serve as an adaptable framework for future studies by the bottom-up proteomics approach.

139

List of References

- 1. Madigan, M.T., J.M. Martinko, and J. Parker, *Brock Biology of Microorganisms*. 9th ed. 2000, Upper Saddle River, NJ: Prentice Hall.
- 2. Alberts, B., et al., *Manipulating Proteins, DNA, and RNA*, in *Molecular Biology of the Cell*. 2002, Garland Science: New York, NY. p. 513-524.
- 3. Ideker, T., T. Galitski, and L. Hood, *A new approach to decoding life: Systems biology*. Annual Review of Genomics and Human Genetics, 2001. **2**: p. 343-372.
- 4. Ideker, T., *Systems biology 101 what you need to know*. Nature Biotechnology, 2004. **22**(4): p. 473-475.
- 5. Yates, J.R., 3rd, *Mass spectrometry and the age of the proteome*. J Mass Spectrom, 1998. **33**(1): p. 1-19.
- 6. VerBerkmoes, N.C., et al., *Mass spectrometric approaches for characterizing bacterial proteomes*. Expert Review of Proteomics, 2004. **1**(4): p. 433-447.
- 7. Domon, B. and R. Aebersold, *Review Mass spectrometry and protein analysis*. Science, 2006. **312**(5771): p. 212-217.
- 8. Fenn, J.B., et al., *Electrospray ionization for mass spectrometry of large biomolecules*. Science, 1989. **246**(4926): p. 64-71.
- 9. Eng, J., McCormack AL, and Yates, JR III., *An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database*. Journal Of The American Society For Mass Spectrometry, 1994. **5**: p. 976-989.
- 10. Yates, J.R., 3rd, et al., *Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database*. Anal Chem, 1995. **67**(8): p. 1426-36.
- Ram, R.J., et al., *Community proteomics of a natural microbial biofilm*. Science, 2005.
 308(5730): p. 1915-1920.
- 12. VerBerkmoes, N.C., et al., *Evaluation of "Shotgun" proteomics for identification of biological threat agents in complex environmental matrixes: Experimental simulations.* Analytical Chemistry, 2005. **77**(3): p. 923-932.
- 13. Link, A.J., et al., *Direct analysis of protein complexes using mass spectrometry*. Nat Biotechnol, 1999. **17**(7): p. 676-82.
- 14. Gould, K.L., et al., *Tandem affinity purification and identification of protein complex components*. Methods, 2004. **33**(3): p. 239-44.
- 15. Butland, G., et al., *Interaction network containing conserved and essential protein complexes in Escherichia coli*. Nature, 2005. **433**(7025): p. 531-7.
- 16. Hillenkamp, F., et al., *Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers*. Anal Chem, 1991. **63**(24): p. 1193A-1203A.
- 17. Jonscher, K.R. and J.R. Yates, *The quadrupole ion trap mass spectrometer A small solution to a big challenge*. Analytical Biochemistry, 1997. **244**(1): p. 1-15.
- Schwartz, J.C., M.W. Senko, and J.E.P. Syka, A two-dimensional quadrupole ion trap mass spectrometer. Journal Of The American Society For Mass Spectrometry, 2002. 13(6): p. 659-669.
- 19. Wells, J.M. and S.A. McLuckey, *Collision-induced dissociation (CID) of peptides and proteins*, in *Biological Mass Spectrometry*. 2005, Elsevier Academic Press Inc: San Diego. p. 148-185.
- 20. Hunt, D.F., et al., *Protein sequencing by tandem mass spectrometry*. Proc Natl Acad Sci U S A, 1986. **83**(17): p. 6233-7.

- 21. Steen, H. and M. Mann, *The ABC's (and XYZ's) of peptide sequencing*. Nature Reviews Molecular Cell Biology, 2004. **5**(9): p. 699-711.
- 22. Thompson, M.R., et al., *Dosage-dependent proteome response of Shewanella oneidensis MR-1 to acute chromate challenge*. Journal of Proteome Research, 2007. **6**(5): p. 1745-1757.
- 23. Blackler, A.R., et al., *Quantitative comparison of proteomic data quality between a 2D and 3D quadrupole ion trap.* Analytical Chemistry, 2006. **78**(4): p. 1337-1344.
- Washburn, M.P., D. Wolters, and J.R. Yates, 3rd, *Large-scale analysis of the yeast proteome by multidimensional protein identification technology*. Nat Biotechnol, 2001. 19(3): p. 242-7.
- 25. Wolters, D.A., M.P. Washburn, and J.R. Yates, 3rd, *An automated multidimensional protein identification technology for shotgun proteomics*. Anal Chem, 2001. **73**(23): p. 5683-90.
- McDonald, W.H., et al., Comparison of three directly coupled HPLC MS/MS strategies for identification of proteins from complex mixtures: single-dimension LC-MS/MS, 2phase MudPIT, and 3-phase MudPIT. International Journal of Mass Spectrometry, 2002. 219(1): p. 245-251.
- 27. Tabb, D.L., W.H. McDonald, and J.R. Yates, *DTASelect and contrast: Tools for assembling and comparing protein identifications from shotgun proteomics.* Journal of Proteome Research, 2002. **1**(1): p. 21-26.
- 28. McDonald, W.H., et al., *MS1*, *MS2*, and *SQT-three unified*, compact, and easily parsed file formats for the storage of shotgun proteomic spectra and identifications. Rapid Commun Mass Spectrom, 2004. **18**(18): p. 2162-8.
- 29. VerBerkmoes, N.C., et al., SYSTEMS BIOLOGY Functional analysis of natural microbial consortia using community proteomics. Nature Reviews Microbiology, 2009. 7(3): p. 196-205.
- 30. Gingras, A.C., et al., *Analysis of protein complexes using mass spectrometry*. Nature Reviews Molecular Cell Biology, 2007. **8**(8): p. 645-654.
- 31. Pflieger, D., et al., *Quantitative proteomic analysis of protein complexes*. Molecular & Cellular Proteomics, 2008. 7(2): p. 326-346.
- 32. Andersen, J.S. and M. Mann, *Organellar proteomics: turning inventories into insights*. Embo Reports, 2006. 7(9): p. 874-879.
- 33. Sadowski, P.G., et al., *Quantitative proteomic approach to study subcellular localization of membrane proteins*. Nature Protocols, 2006. **1**(4): p. 1778-1789.
- 34. Gerber, S.A., et al., *Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS.* Proc Natl Acad Sci U S A, 2003. **100**(12): p. 6940-5.
- 35. Kirkpatrick, D.S., S.A. Gerber, and S.P. Gygi, *The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications.* Methods, 2005. **35**(3): p. 265-273.
- 36. Meinnel, T. and C. Giglione, *Tools for analyzing and predicting N-terminal protein modifications*. Proteomics, 2008. **8**(4): p. 626-649.
- 37. Ong, S.E. and M. Mann, *Mass spectrometry-based proteomics turns quantitative*. Nature Chemical Biology, 2005. **1**(5): p. 252-262.
- 38. Putz, S., et al., *Mass spectrometry-based peptide quantification: applications and limitations*. Expert Review of Proteomics, 2005. **2**(3): p. 381-392.

- 39. Zybailov, B., et al., *Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae*. Journal of Proteome Research, 2006. **5**(9): p. 2339-2347.
- 40. Meselson, M. and F.W. Stahl, *The Replication of DNA in Escherichia coli*. Proceedings of the National Academy of Sciences of the United States of America, 1958. **44**(7): p. 671-682.
- 41. Pan, C.L., et al., *ProRata: A quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation*. Analytical Chemistry, 2006. **78**(20): p. 7121-7131.
- 42. Strader, M.B., et al., *Characterization of the 70S Ribosome from Rhodopseudomonas* palustris using an integrated "top-down" and "bottom-up" mass spectrometric approach. J Proteome Res, 2004. **3**(5): p. 965-78.
- 43. VerBerkmoes, N.C., et al., *Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states.* J Proteome Res, 2006. **5**(2): p. 287-98.
- 44. Neu, H.C. and L.A. Heppel, *Release of Enzymes from Escherichia coli by Osmotic Shock and during the Formation of Spheroplasts*. Journal of Biological Chemistry, 1965.
 240(9): p. 3685-&.
- 45. Ewis, H.E. and C.D. Lu, *Osmotic shock: A mechanosensitive channel blocker can prevent release of cytoplasmic but not periplasmic proteins*. Fems Microbiology Letters, 2005. **253**(2): p. 295-301.
- 46. McCormack, A.L., et al., *Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level.* Anal Chem, 1997. **69**(4): p. 767-76.
- 47. Rigaut, G., et al., *A generic protein purification method for protein complex characterization and proteome exploration.* Nat Biotechnol, 1999. **17**(10): p. 1030-2.
- 48. Gavin, A.C., et al., *Functional organization of the yeast proteome by systematic analysis of protein complexes*. Nature, 2002. **415**(6868): p. 141-7.
- 49. Ho, Y., et al., *Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry*. Nature, 2002. **415**(6868): p. 180-3.
- 50. Butland, G., et al., *Interaction network containing conserved and essential protein complexes in Escherichia coli*. Nature, 2005. **433**(7025): p. 531-537.
- 51. Gingras, A.C., R. Aebersold, and B. Raught, *Advances in protein complex analysis using mass spectrometry*. Journal Of Physiology-London, 2005. **563**(1): p. 11-21.
- 52. Klibanov, A.M., *Improving enzymes by using them in organic solvents*. Nature, 2001. **409**(6817): p. 241-246.
- 53. Gupta, M.N. and I. Roy, *Enzymes in organic media Forms, functions and applications*. European Journal Of Biochemistry, 2004. **271**(13): p. 2575-2583.
- 54. Welinder, K.G., *Generation of peptides suitable for sequence analysis by proteolytic cleavage in reversed-phase high-performance liquid chromatography solvents*. Anal Biochem, 1988. **174**(1): p. 54-64.
- 55. Russell, W.K., Z.Y. Park, and D.H. Russell, *Proteolysis in mixed organic-aqueous* solvent systems: applications for peptide mass mapping using mass spectrometry. Anal Chem, 2001. **73**(11): p. 2682-5.
- 56. Strader, M.B., et al., *Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems*. Anal Chem, 2006. **78**(1): p. 125-34.

- 57. http://www.promega.com/tbs/9piv511/9piv511.pdf, Promega Usage Information for Sequencing-Grade Modified Trypsin.
- 58. Riviere, L.R.T., P., *Enzymatic Digestion of Proteins in Solution*, in *Current Protocols in Protein Science*, J.E. Coligan, Editor. 1995, Wiley: Hoboken.
- 59. McDonald, W.H., et al., *Comparison of three directly coupled HPLC MS/MS strategies* for identification of proteins from complex mixtures: single-dimension LC-MS/MS, 2phase MudPIT, and 3-phase MudPIT. Int J Mass Spectrom, 2002. **219**(1): p. 245-251.
- 60. Klammer, A.A., and MacCoss, M. J., *Effects of Modified Digestion Schemes on the Identification of Proteins from Complex Mixtures*. J Proteome Res, 2006. **5**(3): p. 695-700.
- 61. Yu, Y.Q., et al., *Enzyme-friendly, mass spectrometry-compatible surfactant for insolution enzymatic digestion of proteins.* Anal Chem, 2003. **75**(21): p. 6023-8.
- 62. Yu, Y.Q., M. Gilar, and J.C. Gebler, *A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin.* Rapid Commun Mass Spectrom, 2004. **18**(6): p. 711-5.
- 63. Dehmelt, L. and S. Halpain, *The MAP2/Tau family of microtubule-associated proteins*. Genome Biology, 2004. **6**(1).
- 64. ThermoFinnigan. *Product Support Bulletin 105*. [cited 2009 February 19]; Available from: http://www.thermo.com/eThermo/CMA/PDFs/Articles/articlesFile_21286.pdf.
- 65. Yates, J.R., et al., Method To Correlate Tandem Mass-Spectra Of Modified Peptides To Amino-Acid-Sequences In The Protein Database. Anal Chem, 1995. 67(8): p. 1426-1436.
- 66. Larimer, F.W., et al., *Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris*. Nat Biotechnol, 2004. **22**(1): p. 55-61.
- 67. http://www.ebi.ac.uk/IPI/IPIcow.html, International Protein Index for the Cow.
- 68. http://www.ornl.gov/sci/GenomestoLife/index.shtml, ORNL Genome Annotation Pipeline for *R. palustris*.
- 69. Tabb, D.L., W.H. McDonald, and J.R. Yates, 3rd, *DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics*. J Proteome Res, 2002. **1**(1): p. 21-6.
- Haynes, P.A., et al., *The wildcat toolbox: a set of perl script utilities for use in peptide mass spectral database searching and proteomics experiments.* J Biomol Tech, 2006. 17(2): p. 97-102.
- Lundell, N. and T. Schreitmuller, Sample preparation for peptide mapping A pharmaceutical quality-control perspective. Analytical Biochemistry, 1999. 266(1): p. 31-47.
- 72. Wolfe, S.L., Introduction to Cell and Molecular Biology. 1995, Belmont: Wadsworth.
- 73. Batra, R.G.M., *Enhancement of Enzyme Activity in Aqueous-Organic Solvent Mixtures*. Biotechnology Letters, 1994. **16**(10): p. 1059-1064.
- 74. Olmstead, J.B., *Microtubule-Associated Proteins*. Annual Review of Cell Biology, 1986.
 2: p. 421-457.
- 75. Hyman, A.D., D.; Kellog, D.; Salser, S.; Sawin, K.; Steffen, P.; Wordeman, L.; and Mitchison, T., *Preparation of Modified Tubulins*. Methods in Enzymology, 1991. **196**: p. 478-485.
- 76. Berggard, T., S. Linse, and P. James, *Methods for the detection and analysis of proteinprotein interactions.* Proteomics, 2007. **7**(16): p. 2833-2842.

- 77. Sharp, J.L., et al., *Statistically inferring protein-protein associations with affinity isolation LC-MS/MS assays.* Journal of Proteome Research, 2007. **6**(9): p. 3788-3795.
- Musso, G.A., Z.L. Zhang, and A. Emili, *Experimental and computational procedures for* the assessment of protein complexes on a genome-wide scale. Chemical Reviews, 2007. 107(8): p. 3585-3600.
- 79. Zeghouf, M., et al., Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. Journal of Proteome Research, 2004. 3(3): p. 463-468.
- 80. Pelletier, D.A., et al., *A general system for studying protein-protein interactions in gramnegative bacteria.* Journal of Proteome Research, 2008. **7**(8): p. 3319-3328.
- 81. Glick, B.R., *Metabolic Load and Heterologous Gene-Expression*. Biotechnology Advances, 1995. **13**(2): p. 247-261.
- 82. Tackett, A.J., et al., *I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions.* Journal of Proteome Research, 2005. **4**(5): p. 1752-1756.
- 83. Lee, D.J., et al., Affinity isolation and I-DIRT mass spectrometric analysis of the Escherichia coli 0157 : H7 Sakai RNA polymerase complex. Journal of Bacteriology, 2008. **190**(4): p. 1284-1289.
- 84. Khalsa-Moyers, G., et al., *Unpublished Work*. 2005-2009, Oak Ridge National Laboratory: Oak Ridge, TN.
- 85. Sambrook, J. and D.W. Russell, *Appendix A.1: Bacterial Media, Antibiotics, and Bacterial Strains*, in *Molecular Cloning: A Laboratory Manual*. 1989, Cold Spring Harbor Laboratory Press: Plainview, NY.
- Pan, C., et al., Characterization of anaerobic catabolism of p-coumarate in Rhodopseudomonas palustris by integrating transcriptomics and quantitative proteomics. Molecular & Cellular Proteomics, 2008. 7(5): p. 938-948.
- 87. Hervey, W.J., M.B. Strader, and G.B. Hurst, *Comparison of digestion protocols for microgram quantities of enriched protein samples*. Journal of Proteome Research, 2007. 6(8): p. 3054-3061.
- 88. *HAMAP: Escherichia coli (strain K12) Complete Proteome*. [cited 2008 January 29]; Available from: http://ca.expasy.org/sprot/hamap/ECOLI.html.
- 89. *Rhodopseudomonas palustris CGA009 Complete Genome Sequence and Annotation.* [cited 2008 January 29]; Available from: http://genome.ornl.gov/microbial/rpal.
- 90. Elias, J.E. and S.P. Gygi, *Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry*. Nature Methods, 2007. **4**(3): p. 207-214.
- Chamberlin, M.J., *Introduction to RNA Polymerase*, in *RNA Polymerase*, R. Losick and M.J. Chamberlin, Editors. 1976, Cold Spring Laboratory Press: Cold Spring Harbor, NY. p. 17-67.
- 92. Wolfe, S.L., *mRNA Transcription in E. coli*, in *Introduction to Cell and Molecular Biology*. 1995, Wadsworth: Belmont, CA.
- 93. *COGnitor*. [cited 2008 August 28]; Available from: http://www.ncbi.nlm.nih.gov/COG/old/xognitor.html.
- 94. *Kyoto Encyclopedia of Genes and Genomes*. [cited 2008 September 15]; Available from: ftp://ftp.genome.jp/pub/kegg/pathway/organisms.

- 95. Virtual Institute for Microbial Stress and Survival Operon Prediction. [cited 2008 September 25]; Available from: http://www.microbesonline.org/operons/OperonList.html.
- 96. Liu, H.B., R.G. Sadygov, and J.R. Yates, *A model for random sampling and estimation of relative protein abundance in shotgun proteomics*. Analytical Chemistry, 2004. **76**(14): p. 4193-4201.
- 97. Ghosh, P., C. Ramakrishnan, and D. Chatterji, *Inter-subunit recognition and manifestation of segmental mobility in Escherichia coli RNA polymerase: a case study with omega-beta ' interaction*. Biophysical Chemistry, 2003. **103**(3): p. 223-237.
- 98. Kanehisa, M., et al., *KEGG for linking genomes to life and the environment*. Nucleic Acids Research, 2008. **36**: p. D480-D484.
- 99. Kanehisa, M. and S. Goto, *KEGG: Kyoto Encyclopedia of Genes and Genomes*. Nucleic Acids Research, 2000. **28**(1): p. 27-30.
- 100. Kanehisa, M., et al., *From genomics to chemical genomics: new developments in KEGG*. Nucleic Acids Research, 2006. **34**: p. D354-D357.
- 101. Price, M.N., et al., A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Research, 2005. **33**(3): p. 880-892.
- 102. *KEGG Map of Branched-Chain Amino Acid Biosynthesis*. [cited 2008 August 28]; Available from: http://www.genome.ad.jp/kegg/pathway/map00290.html.
- 103. Birnbaum, S. and J.E. Bailey, Plasmid Presence Changes the Relative Levels of Many Host-Cell Proteins and Ribosome Components in Recombinant Escherichia-Coli. Biotechnology and Bioengineering, 1991. 37(8): p. 736-745.
- 104. *KEGG Enzyme 4.4.1.8.* [cited 2008 August 28]; Available from: http://www.genome.ad.jp/dbget-bin/www_bget?enzyme+4.4.1.8.
- 105. *KEGG Enzyme 2.5.1.49*. [cited 2008 August 28]; Available from: http://www.genome.ad.jp/dbget-bin/www_bget?enzyme+2.5.1.49.
- 106. Dreger, M., Subcellular proteomics. Mass Spectrometry Reviews, 2003. 22(1): p. 27-56.
- 107. Yates, J.R., et al., *Proteomics of organelles and large cellular structures*. Nature Reviews Molecular Cell Biology, 2005. **6**(9): p. 702-714.
- 108. Schirmer, E.C., et al., *Nuclear membrane proteins with potential disease links found by subtractive proteomics*. Science, 2003. **301**(5638): p. 1380-1382.
- 109. Dunkley, T.P.J., et al., *Localization of organelle proteins by isotope tagging (LOPIT)*. Molecular & Cellular Proteomics, 2004. **3**(11): p. 1128-1134.
- 110. Link, A.J., E. Carmack, and J.R. Yates, *A strategy for the identification of proteins localized to subcellular spaces: Application to E-coli periplasmic proteins.* International Journal of Mass Spectrometry and Ion Processes, 1997. **160**(1-3): p. 303-316.
- 111. Fulda, S., et al., *Isolation of salt-induced periplasmic proteins from Synechocystis sp. strain PCC 6803.* Archives of Microbiology, 1999. **171**(3): p. 214-217.
- 112. Chi, A., et al., *Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans*. Molecular & Cellular Proteomics, 2007. **6**(12): p. 2239-2251.
- 113. Ferguson, S.J., *The Periplasm*, in *Prokaryotic Structure and Function: A New Perspective*, S. Mohan, C. Dow, and J.A. Coles, Editors. 1991, Cambridge University Press: Cambridge. p. 311-339.
- 114. Berks, B.C., *A common export pathway for proteins binding complex redox cofactors?* Molecular Microbiology, 1996. **22**(3): p. 393-404.

- 115. SwissProt. *Sequence Retrieval Service (SRS) Version 5.* 2008 October 21, 2008]; Available from: http://ca.expasy.org/srs5bin/cgi-bin/wgetz?-fun+Pagelibinfo+info+SWISS_PROT.
- 116. Hiller, K., et al., *PrediSi: prediction of signal peptides and their cleavage positions*. Nucleic Acids Research, 2004. **32**: p. W375-W379.
- 117. Bendtsen, J.D., et al., *Improved prediction of signal peptides: SignalP 3.0.* Journal of Molecular Biology, 2004. **340**(4): p. 783-795.
- 118. Jiang, X.S., et al., A comparative proteomic strategy for subcellular proteome research -ICAT approach coupled with bioinformatics prediction to ascertain rat liver mitochondrial proteins and indication of mitochondrial localization for catalase. Molecular & Cellular Proteomics, 2005. 4(1): p. 12-34.
- 119. Emanuelsson, O., et al., *Locating proteins in the cell using TargetP, SignalP and related tools*. Nature Protocols, 2007. **2**(4): p. 953-971.
- Link, A.J., K. Robison, and G.M. Church, *Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12*. Electrophoresis, 1997. 18(8): p. 1259-1313.
- Barron, A., J.U. Jung, and M. Villarejo, *Purification and Characterization of a Glycine Betadine Binding-Protein from Escherichia coli*. Journal of Biological Chemistry, 1987.
 262(24): p. 11841-11846.
- 122. Webb, E., K. Claas, and D. Downs, *thiBPQ encodes an ABC transporter required for transport of thiamine and thiamine pyrophosphate in Salmonella typhimurium*. Journal of Biological Chemistry, 1998. **273**(15): p. 8946-8950.
- 123. Linton, K.J. and C.F. Higgins, *The Escherichia coli ATP-binding cassette (ABC)* proteins. Molecular Microbiology, 1998. **28**(1): p. 5-13.
- 124. Graubner, W., A. Schierhorn, and T. Bruser, *DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone.* Journal of Biological Chemistry, 2007. **282**(10): p. 7116-7124.
- 125. Yim, H.H. and M. Villarejo, *OsmY, a New Hyperosmotically Indicible Gene, Encodes a Periplasmic Protein in Escherichia coli*. Journal of Bacteriology, 1992. **174**(11): p. 3637-3644.
- Rioux, C.R. and R.J. Kadner, Vitamin-B12 Transport in Escherichia coli K12 Does Not Require the btue Gene of the btuced Operon. Molecular & General Genetics, 1989.
 217(2-3): p. 301-308.
- 127. Cadieux, N., et al., *Identification of the periplasmic cobalamin-binding protein BtuF of Escherichia coli*. Journal of Bacteriology, 2002. **184**(3): p. 706-717.
- 128. Sturm, A., et al., *YcdB from Escherichia coli reveals a novel class of Tat-dependently translocated hemoproteins.* Journal of Biological Chemistry, 2006. **281**(20): p. 13972-13978.
- Ajouz, B., et al., *Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells*. Journal of Biological Chemistry, 1998.
 273(41): p. 26670-26674.

Appendices

Appendix A. Efficient and Specific Trypsin Digestion of Microgram to Nanogram Quantities of Proteins in Organic–Aqueous Solvent Systems.

Appendix B. A General System for Studying Protein-Protein Interactions in Gram-Negative Bacteria.

Appendix C. Modified Perl Script for conducing Automated SEQUEST searches on *nix Operating Systems

Appendix D. H₂O Isolation Protocol, All PP:WCL Protein Isotope Ratios (Chapter 5)

Appendix E. GdCl₃ Isolation Protocol, All PP:WCL Protein Isotope Ratios (Chapter 5)

Appendix F. H₂O Isolation Protocol, All PP:PP Protein Isotope Ratios (Chapter 5)

Appendix G. GdCl₃ Isolation Protocol, All PP:PP Protein Isotope Ratios (Chapter 5)

Appendices D-G lists all measured ¹⁵N:¹⁴N protein isotope ratios described in Chapter 5.

The data are listed in 5 columns. The *Protein* column contains the SwissProt accession number and protein name. The *PP* column designates periplasmic annotation; a 1 in this column indicates periplasmic annotation, a 0 indicates a non-periplasmic annotation. The log_2 ratio is the measured ProRata protein isotope ratio. The number of chromatographic features (or peaks) the measurement was calculated from is listed in the *Chr. Features* column. The number of experimental replicates is listed in the *Reps* column. The protein description from the SwissProt annotation is shown in the sixth column, *Protein Description*.

Appendix A Efficient and Specific Trypsin Digestion of Microgram to Nanogram Quantities of Proteins in Organic–Aqueous Solvent Systems

Strader *et al. Analytical Chemistry*, 2006, **78** (1), 125–134. http://pubs.acs.org/doi/abs/10.1021/ac0513481

As a co-author of this publication, W. J. Hervey. IV performed sample preparation, collection of data on the LCQ Deca XP instrument, and critically read the final manuscript prior to and after submission.

Efficient and Specific Trypsin Digestion of Microgram to Nanogram Quantities of Proteins in Organic-Aqueous Solvent Systems

Michael Brad Strader¹[†], David L. Tabb²¶, W. Judson Hervey[†][‡], Chongle Pan[†][‡], and Gregory B. Hurst[†]*

[†]Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge

National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6131

[¶]Genome Analysis and Systems Modeling Group, Life Sciences Division, Oak Ridge National

Laboratory

[‡]Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge

National Laboratory

¹Present address: Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, MD 20892

²Present address: Department of Biomedical Informatics, Vanderbilt University Medical Center, 465 21st Ave. S., U9211 MRB III, Nashville, TN 37232-8575.

Revised submission to *Analytical Chemistry*. *Author for Correspondence: Gregory B. Hurst Phone: (865) 574-6142 Fax: (865) 576-8559 E-mail: <u>hurstgb@ornl.gov</u>

ABSTRACT

Mass spectrometry-based identification of the components of multiprotein complexes often involves solution-phase proteolytic digestion of the complex. The affinity purification of individual protein complexes often yields nanogram to low microgram amounts of protein, which poses several challenges for enzymatic digestion and protein identification. We tested different solvent systems to optimize trypsin digestions of samples containing limited amounts of protein for subsequent analysis by LC-MS-MS. Data collected from digestion of 10 µg, 2 µg, 1 µg and 0.2 µg portions of a protein standard mixture indicated that an organic aqueous solvent system containing 80% acetonitrile consistently provided the most complete digestion, producing more peptide identifications than the other solvent systems tested. For example, a one hour digestion in 80% acetonitrile yielded over 52% more peptides than the overnight digestion of 1 µg of a protein mixture in purely aqueous buffer. This trend was also observed for peptides from digested ribosomal proteins isolated from Rhodopseudomonas palustris. In addition to improved digestion efficiency, the shorter digestion times possible with the organic solvent also improved trypsin specificity, resulting in smaller numbers of semi-tryptic peptides than an overnight digestion protocol using an aqueous solvent. The technique was also demonstrated for an affinity-isolated protein complex, GroEL. To our knowledge, this report is the first using mass spectrometry data to show a linkage between digestion solvent and trypsin specificity.

INTRODUCTION

Mass spectrometry (MS) has become a widely used method for studying proteins, protein complexes, and whole proteomes because of innovations in soft ionization techniques, bioinformatics and chromatographic separation techniques.¹⁻⁷ An example of a high-throughput mass spectrometry strategy commonly used for this purpose is a variation of the "shotgun" approach, involving in-solution digestion of a protein complex followed by one dimensional (1D) or two dimensional (2D) liquid chromatography (LC) coupled with electrospray ionization (ESI) MS-MS.⁶⁻⁸ One of the applications of this method is for characterizing multi-protein complexes by identifying large numbers of proteins in a single data acquisition.⁹ Large-scale implementations of this strategy have been reported for yeast and *E. coli*.¹⁰⁻¹² In order to achieve a goal of characterizing large numbers of protein complexes¹³ isolated by affinity purification from *Rhodopseudomonas palustris*,¹⁴ an efficient protocol for digesting these complexes is required.

The isolation of individual protein complexes by affinity purification often yields small amounts of protein, complicating enzymatic digestion and peptide identification.^{15, 16} In many cases, samples may contain less than 100 nanograms of total protein, resulting in low protein concentrations ($\leq 10 \text{ ng/µl}$) that are unsuitable for efficient enzymatic digestion. One could keep protein concentrations higher by working in smaller volumes, but unless microfluidic techniques are invoked, a few microliters is a lower practical volume limit for conventional pipetting techniques. Because the reaction rate of digestion is proportional to the concentration¹⁷, dilute protein concentrations may lengthen digestion times. If digestion remains incomplete, large peptide fragments from incompletely digested proteins may not be suitable for identification via MS-MS analysis. For example, these larger peptides may be outside the scan range of the mass spectrometer. Other characteristics of large peptides, such as higher charge states (>3) or multiple missed enzymatic cleavage sites, may place them beyond the default settings for software used for automatic peptide identification from MS or MS-MS data. To promote more complete digestion, it is useful to identify proteolytic digestion methods that maximize peptide yields from samples containing low microgram to high nanogram amounts of total protein.

Digestion strategies may employ organic solvents, heat, chaotropes, or surfactants to denature proteins before digestion to render more of the protein's structure accessible to the proteolytic enzyme.¹⁸⁻²¹ Thermal denaturation often results in sample loss due to precipitation because many proteins are susceptible to aggregation when treated with heat. Chaotropes and surfactants, on the other hand, can inactivate proteases at high concentrations required for denaturation and therefore require dilution of the sample prior to digestion.²² Dilution permits proteins to refold, reduces proteolytic activity by decreasing substrate concentration, and can increase surface area available for adsorptive loss of peptides on container walls. In addition, chaotropes and surfactants can compete with peptide ions for adsorption on stationary phases during liquid chromatography and for charge during mass spectrometry.^{21, 23, 24} To avoid this interference, these chemicals can be removed, although this step can lead to additional loss of peptides. An acid-labile surfactant has recently been introduced that decomposes into insoluble These degradation products, however, can co-precipitate with degradation products.²⁵ hydrophobic peptides and result in sample loss. To minimize the required amount of starting material while maximizing sensitivity in the MS measurement, one must avoid when possible the drawbacks associated with the described digestion strategies.

Addition of organic solvents such as methanol or acetonitrile to buffers can assist in digestion by unfolding and solubilizing proteins.^{26, 27} Trypsin and some other proteases are resistant to

153

unfolding in organic solvents, retaining activity under conditions that denature other proteins.²⁸ Organic solvents can be removed after digestion by lyophilization, providing a more efficient "clean-up" step compared to removal of chemical denaturants, etc. Russell *et al.* have reported that addition of organic solvents can accelerate trypsin reactions for proteolysis-resistant proteins and reduce digestion times to less than an hour.¹⁹ These digestions, however, were analyzed using matrix assisted laser desorption ionization (MALDI)-MS, making the benefits of this digestion technique less clear for the LC-MS-MS analysis of low microgram and nanogram amounts of protein. Because addition of organic solvents reduces the potential for sample loss by allowing smaller volumes to be used, obviating chaotrope removal steps, accelerating reaction rates, and enabling protease-resistant proteins to be digested, they seemed an ideal choice for protocols designed to digest samples containing limited amounts of protein, such as those obtained from affinity isolations.

For this report, we systematically tested different solvent systems to optimize trypsin digestion of samples containing low microgram to high nanogram amounts of protein. The resulting digestions were analyzed by LC-MS-MS. MS data collected from digestions of samples containing 200 ng to 10 µg protein indicated that an organic-aqueous solvent system containing 80% acetonitrile consistently resulted in the most complete digestion, producing more peptide identifications than several other solvent systems. In addition, the shorter digestion times possible with addition of organic solvents resulted in smaller numbers of semi-tryptic-peptides (peptides resulting from cleavage at one end at a residue other than lysine or arginine) than an overnight digestion protocol using an aqueous solvent. The use of an 80% acetonitrile solvent achieved both more numerous peptide identifications and reduced nonspecific cleavages. This system was then compared with an overnight digestion in aqueous buffer for digestions of protein complexes isolated from *Rhodopseudomonas palustris* by sucrose density gradient fractionation (the 70S ribosome) and by affinity purification (GroEL).

MATERIALS AND METHODS

Materials. All proteins, salts, buffers, dithiothreitol (DTT), guanidine HCl, trifluoroacetic acid, diethyl pyrocarbonate (DEPC), phenylmethylsulfonyl fluoride (PMSF), sucrose and RNase-free DNase I were obtained from Sigma Chemical Co. (St. Louis, MO). RNase Away was obtained from Molecular BioProducts (San Diego, CA). Sequencing-grade trypsin was purchased from Promega (Madison, WI). Formic acid was obtained from EM Science (Affiliate of Merck KgaA, Darmstadt, Germany). HPLC grade acetonitrile and water were used for all LC-MS analyses (Burdick & Jackson, Muskegon, MI). Ultrapure 18 MΩ water obtained from a Millipore Milli-Q system (Bedford, MA) was used for sample buffers. Fused silica capillary tubing was purchased from Polymicro Technologies (Phoenix, AZ). BCA assay reagent and standards were obtained from Pierce Chemical Co. (Rockford, IL).

Construction of Protein Standard Mixture. Protein standard mixtures were generated using 6 proteins: bovine serum albumin (MW 69 kDa), yeast alcohol dehydrogenase I (MW 37 kDa), bovine carbonic anhydrase II (MW 29 kDa), horse myoglobin (MW 17 kDa), bovine hemoglobin (MW 15 kDa) and chicken egg lysozyme C (MW 14 kDa). Hemoglobin includes α and β polypeptides, and the isomer yeast alcohol dehydrogenase II was found to be a component of yeast alcohol dehydrogenase I, giving a total of 8 polypeptides in the mixture. Mixtures contained equal masses of each protein. Each of the proteins was dissolved in 50 mM Tris-HCl, 10 mM CaCl₂ (pH 7.6) and then combined in equal masses to give 10 µg, 2 µg, 1 µg, and 200 ng of total protein in final volumes of 100 µl of one of the digestion solvents described below.

Proteolytic Digestion of Protein Standard Mixture. The same amount of trypsin (200 ng) was added to each sample for digestion. For 10 μ g, 2 μ g, 1 μ g and 200 ng samples the enzyme to substrate ratios (wt/wt) were, therefore, 1:50, 1:20, 1:5 and 1:1 respectively. The protein mixture digestions, performed in triplicate, differed also by the use of different solvent conditions (organic or aqueous) and incubation time for digestion. For all amounts of protein standard mixtures, trypsin digestions were performed in 100 μ l of each solvent, using conditions listed in Table 1.

A control sample of 10 μ g was digested using the manufacturer's protocol for the trypsin used in these experiments, that included denaturation in 6M guanidine HCl, 50 mM Tris-HCl, 10 mM CaCl₂ (pH 7.6) for 45 minutes followed by dilution to 0.5M guanidine HCl and overnight digestion with 200 ng trypsin at 37°C. The resultant peptides from this control digestion were desalted using solid phase extraction (C₁₈ Zip-Tip, Millipore, Billerica, MA).

After digestion, all peptide samples were treated with DTT (20 mM) for 1 hour at 37°C to reduce disulfide bonds. The reduced peptides were lyophilized and resuspended in 100 μ l of 95% H₂O/5% acetonitrile/0.1% formic acid. To inhibit further trypsin activity, 2 μ l of 10% formic acid were added to each resuspended sample. All samples were stored at -80°C until analysis.

Isolation and Digestion of *R. palustris* **Ribosomal Proteins.** 70S ribosomes from *R. palustris* were purified and fractionated using a high salt sucrose cushion and sucrose density fractionation as previously described.²⁹ Ribosomal protein extraction and the removal of contaminant rRNA was performed using the acid extraction method.³⁰ After overnight dialysis in a 3500 molecular weight cutoff dialysis cassette (Slide-A-Lyzer, Pierce, Rockford, IL) against Ultrapure water, the protein samples were concentrated and then quantitated using the BCA

assay according to manufacturer's instructions (Pierce, Rockford, IL). Ribosomal protein samples were concentrated by solvent evaporation, reconstituted in 50 mM Tris-HCl, 10 mM CaCl₂ (pH 7.6) and digested with 200 ng of trypsin in solvent systems 1 and 4 (Table 1). Each digestion was performed in duplicate.

Tandem Affinity Purification and Digestion of *R. palustris* **Groel2 Complex.** The *R. palustris* wild type strain (CGA009), harboring the pBBR5-DEST/42 modified Gateway expression plasmid (Invitrogen, Carlsbad, CA) with the GroEL2 open reading frame (ORF) was a generous gift from Dr. Dale Pelletier at the Oak Ridge National Laboratory. The ORF was cloned into the expression plasmid such that V5 and 6xHis affinity tags were fused at the C-terminus of the protein. The presence of both tags allowed the use of a dual affinity purification strategy to "capture" the GroEL complex, using a strategy similar to tandem affinity purification (TAP).³¹ The first affinity purification was a Ni-NTA capture in which the C-terminal 6xHis tag chelated the Ni-NTA resin (Qiagen, Valencia, CA). The second affinity purification was a capture using V5 resin (Sigma; anti-V5 antibody conjugated to agarose beads). This is our standard protocol for large-scale isolation of protein complexes from *R. palustris*, in which a large number of strains each bears a plasmid encoding a different affinity-tagged protein.¹³

R. palustris cells harboring the expression plasmid were grown anaerobically and harvested at mid-log phase (O.D.₆₆₀ ~0.8).³² Cell pellets were resuspended in NTA binding buffer (50 mM NaH₂PO₄ at pH 8, 300 mM NaCl, 10 mM imidazole, 5 mM ATP, 10 mM MgCl₂, 10 mM KCl, 100 μ g/ml PMSF and 10 μ g/ml leupeptin) and then sonicated with a Cell Disruptor 185 (Amphotech, Beverly, MA) using a series of six 15 second pulses separated by 30 second cooling intervals. Cellular debris was removed in an initial centrifugation at 4°C using an SS-34 Sorval rotor at 12,100 × g for 30 minutes. The supernatant was centrifuged for an additional 15

minutes at 23,700×g. The final resulting supernatant was then immediately used in the first stage of the affinity purification of GroEL.

Ni-NTA Capture: After the addition of 100 μ l of 50% Ni-NTA bead suspension (previously washed in NTA Binding buffer 4X), the supernatants were incubated on a rotator for one hour at ambient temperature. The beads were then collected by centrifugation at 425×*g*, transferred to new tubes, and washed 4X with NTA wash buffer (50 mM NaH₂PO₄ at pH 8, 300 mM NaCl, 20 mM imidazole, 5 mM ATP, 10 mM MgCl₂, 10 mM KCl). Afterwards, bound proteins were eluted from the Ni-NTA beads 4 times with 50 μ l NTA elution buffer (50 mM NaH₂PO₄ at pH 8, 300 mM NaCl, 500 mM imidazole, 5 mM ATP, 10 mM MgCl₂, 10 mM MgCl₂, 10 mM KCl). Combined eluents (approximately 200 μ l total) were diluted with 400 μ l buffer (5 mM ATP, 10 mM MgCl₂, 10 mM KCl) and either stored at -80°C or immediately used for the second affinity purification step.

V5 Capture: 100 μ l of a 50% V5 bead suspension (previously washed in PBS buffer) were added to the combined eluents from the Ni-NTA capture and incubated on a rotator for one hour at ambient temperature. The beads were then centrifuged at 425×*g* and washed 4 times with V5 wash buffer (50 mM Tris-HCl, 10 mM CaCl₂ at pH 7.6, 5 mM ATP, 10 mM MgCl₂, 10 mM KCl). Afterwards, the bound proteins were eluted three times from the V5 beads with 50 μ l V5 elution buffer (80% acetonitrile, 20% 50 mM Tris-HCl, 10 mM CaCl₂ at pH 7.6). The combined eluents (approximately 175 μ l total) were digested with 200 ng of trypsin in solvent systems 1 and 4 (Table 1). Because of limited sample amounts, only one digestion of GroEL for each of the two solvent conditions was performed. After digestion, peptides were treated with DTT, lyophilized and resuspended in 100 μ l of 95% H₂O/5% acetonitrile/0.1% formic acid. Aliquots

at each stage of the affinity purification were analyzed by Western blot using anti-V5 antibodies to determine the purification efficiency.

1D LC-MS-MS Analysis. For all peptide samples, one-dimensional (1D) LC-MS-MS experiments were performed with a Famos/Switchos/Ultimate HPLC System (Dionex, Sunnyvale, CA) coupled to an LCQ-DECA XP Plus quadrupole ion trap mass spectrometer (Thermo Finnigan, San Jose, CA) equipped with a nanospray source as previously described.³³ For all 1D LC-MS-MS data acquisition, the LCQ was operated in the data dependent mode with dynamic exclusion enabled (repeat count 2), where the four most abundant peaks in every MS scan were subjected to MS-MS analysis. Data dependent LC-MS-MS was performed over a parent m/z range of 400-2000.

1D LC-FTICR-MS Analysis. 1D LC-FTICR-MS experiments were performed with an Ultimate HPLC system coupled with a HiResESI Fourier-transform ion cyclotron resonance mass spectrometer (IonSpec, Lake Forest, CA) equipped with a 9.4T magnet (Cryomagnetics Inc., Oak Ridge, TN). Samples were separated with a Vydac 218MS5.30015 C18 column (300 μ m id × 15cm, 300Å pore size, 5 μ m particles) at a flow rate of 4 ul/min and directly introduced to the FTICR MS with an electrospray source (Analytica, Branford CT).

Protein Identification from MS Data Analysis. The SEQUEST algorithm was used to match experimental MS-MS spectra with their counterparts predicted from a protein sequence database.³⁴ An unconstrained database search was employed so that peptides resulting from cleavage at residues other than lysine or arginine at one end (semi-tryptic peptides) or both ends (non-tryptic) could be identified. The sequence database used for searches in this manuscript consisted of two major elements. The 4833 ORFs of the published *R. palustris* database¹⁴ were search targets for the ribosome and GroEL searches but acted as distractors (indicators of false

positive identifications) during the protein standard mixture searches. Sequences for the eight proteins in the standard mixture were also included in the database; we added the sequence for alcohol dehydrogenase II because this protein was observed as a component in the alcohol dehydrogenase I standard. The total count of proteins in the protein standard mixture database was 4841, yielding a 0.17% chance of randomly hitting one of the eight standard proteins.

DTASelect assembled, filtered and compared the identifications from SEQUEST searches on all data sets. This software sorts peptide identifications by the proteins that contain them.⁵ A protein in the mixture was considered successfully identified if at least 2 component peptides passed DTASelect's default SEQUEST score cutoffs. Spectra from singly-charged peptides were required to exceed 1.8 in the SEQUEST parameter XCorr, while XCorr values for doubly-and triply-charged peptides were required to exceed 2.5 and 3.5, respectively.⁵ The best matching sequence for each spectrum was required to have an XCorr at least 8% greater than the second best (DeltCN \geq 0.08).

MS1PeakFinder Algorithm. Software created in the C++ programming language analyzed the mass spectra collected during each LC separation to catalog the observed ions. For each ion, the chromatographic profile was reconstructed from the intensities reported at its m/z through successive scans. Once this list of eluting ions was inferred, the tandem mass spectra were matched to the list, and those that were confidently identified by SEQUEST were flagged.

Scripts in the R statistical environment can be used to visualize these reports.³⁵ An image called a "matchmap" segregates the ions into three classes: ions observed only during MS scans, ions for which a tandem mass spectrum was collected but not successfully identified, and ions for which a tandem mass spectrum was both collected and confidently identified. These classes were colored yellow, orange, and red, respectively.

RESULTS AND DISCUSSION

The goal of this research was to optimize our digestion protocol through a systematic test of different solvent systems for dilute or limited protein samples, such as those typically obtained through affinity isolation of protein complexes. To this end, we compared digestion of 10 µg, 2 µg, 1 µg, and 200 ng amounts of a protein standard mixture in several solvent systems, including 100% aqueous buffer (50 mM Tris at pH 7.6, 10 mM CaCl₂) and the same aqueous buffer with different organic additives, including 60% methanol, 60% acetonitrile and 80% acetonitrile. To compare digestion efficiencies we used three criteria. First, we determined the total number of peptide identifications, including the number of semi-tryptic peptides, individual protein sequence coverage, and peptides per protein for each digested sample. Second, we analyzed the completeness of digestion by analyzing each LC-MS-MS run to identify the ion elution profiles for ions that were not confidently identified. Finally, we employed LC-FTICR-MS to identify incompletely digested ions eluting late in chromatographic runs. The two solvent systems that yielded the most efficient digestion of the protein standard mixture with respect to these criteria were then compared for digesting two biologically relevant complexes from *Rhodopseudomonas* palustris: the 70S ribosome and GroEL. The 80% acetonitrile system provided results in one hour that were comparable or superior to those obtained overnight using an aqueous buffer. Because times as short as 5 minutes have been reported for digestion of myoglobin in 80% acetonitrile,¹⁹ we did not investigate digestion times longer than 1 hour in buffers containing methanol or acetonitrile.

Protein Standard Mixture Digestions and LC-MS-MS Analysis. The protein standard mixture used in this study included eight proteins with different proteolytic susceptibilities, to

emulate a protein complex isolated by affinity methods. Alcohol dehydrogenase I and II, carbonic anhydrase II, lysozyme C and hemoglobin α/β chains are amenable to proteolysis, while globular proteins such as myoglobin, stabilized predominantly by a hydrophobic interior, and serum albumin, whose tertiary structure is stabilized by 17 disulfide bonds, are resistant to proteolytic digestion.^{18, 36}

Using 10 µg samples of the protein standard mixture, we compared a digestion protocol including the chaotrope guanidine HCl and a desalting step against protocols that use no guanidine HCl (see Figure 1). Because sample losses can occur during the dilution and desalting processes, we expected that the number of peptide identifications would be lower for the protocol incorporating a chaotrope. This was indeed the case in our study; the 41 peptide identifications (highest number of three replicates) obtained by the denaturant method were lower than the peptide identification numbers obtained for the other digestion protocols, regardless of the amount of the digested sample (see Table 2). Because sample loss would be an even greater concern with lower sample amounts, the denaturant method was not applied to samples containing less than 10 µg of protein.

The one hour digestion in 80% acetonitrile resulted in the highest number of identifications across the entire range of sample quantities. Table 2 shows the number of peptide identifications for three replicate LC-MS-MS analyses of each protein standard mixture sample. To compare solvent digestion efficiency, we used the value representing the highest number of peptides determined out of the three replicate separations. When 1 μ g of protein was digested, the 80% acetonitrile solvent resulted in the identification of 52% more peptides than the overnight aqueous digest. The 200 ng and 10 μ g quantities of proteins produced either similar or smaller numbers of peptide identifications than the 1 and 2 μ g samples. In the least concentrated sample,

digestions with fewer peptides probably resulted from low signal that is characteristic of smaller samples, while the most concentrated sample had a high ratio of substrate to enzyme, resulting in saturation.

A recent report by Olsen et al. suggested that MS data of tryptically digested samples should be analyzed for peptide identifications by configuring search algorithms for strict trypsin specificity.³⁷ In this configuration, potential peptides resulting from cleavages after residues other than lysine or arginine at one end (semi-tryptic peptides) or both ends (non-tryptic) are not considered in database searches. Their results from in-gel trypsin digests of mouse liver proteins indicated that fully tryptic peptides were exclusively identified except for C-terminal peptides cut by trypsin at either lysine or arginine or semi-tryptic peptides resulting from in source fragmentation products of fully tryptic peptides containing internal proline residues.³⁷ Our results, on the other hand, establish a link between digestion specificity and the solvent in which the digestion is performed; the proportion of fully tryptic peptides depends upon the digestion solvent system used. Table 2 demonstrates that trypsin specificity was lowest for digestions performed overnight in the aqueous solvent; for example, 82% of the peptide identifications from the 1 µg overnight digestion in aqueous solvent were fully tryptic, compared to 97% from the one hour digestion in 80% acetonitrile. From the overnight aqueous digest, the identified peptides included 107 fully tryptic, 23 semi-tryptic, and 0 non-tryptic peptides. This trend was consistent for the other replicates and for the other protein concentrations (data not shown). Manual inspection of the 23 spectra matched to semi-tryptic peptides from the 1 µg overnight digestions, as exemplified by Figure 2, indicated that these peptides had been successfully identified by SEQUEST. Table 3 lists the 23 semi-tryptic peptides identified from the 1 µg overnight digests in aqueous solvent. Interestingly, 21 of the 23 had chymotryptic ends

(tryptophan, tyrosine, phenylalanine, methionine, leucine, alanine, aspartic acid and glutamic acid, at a terminal position of the peptide), suggesting that the L-(1-tosylamido-2-phenyl)ethylchloromethyl ketone (TPCK) treatment of the commercially available trypsin may not have completely inhibited all contaminant chymotrypsin activity. Because the amount of active chymotrypsin is likely very small, the overnight digestion may have allowed sufficient time for chymotrypsin activity while the shorter digestion times possible with addition of organic solvents resulted in more specific proteolysis reactions.³⁸ This is supported by the fact that a one hour digest in the same aqueous solvent produced lower proportions of semi-tryptic peptides than an overnight digestion. If the matches listed in Table 3 were identified to random sequences, there would be a greater probability of obtaining non-tryptic identifications rather than semi-tryptic because a majority of possible sequences are non-tryptic. Instead, semi-tryptic identifications were far more common than non-tryptics; only one non-tryptic was identified for all solvent systems at 1 µg of protein digested. Among the peptides listed in Table 3, five were identified in at least one of the other digestion conditions. In addition, several were identified with other charge states or were represented by more than one spectrum.

To further examine the effect of digestion conditions, we examined the sequence coverage and numbers of peptides identified from each protein individually. Table 4 shows these statistics for the replicate with the highest number of peptide identifications for each solvent condition of the 1 μ g mixture; the overall trends observed for these data were consistent for other replicates across the entire range of total protein quantities. While most of the proteins yielded similar sequence coverage in each of the digestion conditions, myoglobin, lysozyme and serum albumin varied considerably in response to the conditions in which they were digested. In the case of the myoglobin's proteolytically resistant structure, an overnight digestion in aqueous solvent

resulted in 75% sequence coverage, while a one hour digestion in either 60% methanol or 80% acetonitrile resulted in nearly 100% sequence coverage. Lysozyme digested poorly in aqueous solvent but digested well in all three organic-containing solvents, most likely because these solvents improved its solubility. In fact, digestion of lysozyme in aqueous solvents was so poor that no identifications were obtained in the mixtures containing 10 and 2 µg total protein. For serum albumin, a one hour digestion in 80% acetonitrile resulted in 61 identified peptides, corresponding to 70% of the amino acid sequence. An overnight digestion of the same sample in aqueous buffer resulted in only 16 identified peptides, corresponding to 23% of the serum albumin sequence. Surprisingly, neither 60% acetonitrile nor 60% methanol improved the digestion efficiency of serum albumin substantially. Taken together, the improved sequence coverage for serum albumin suggests that the 80% acetonitrile solvent serves as an excellent denaturant, exposing a larger number of lysine and arginine residues for proteolysis.

Assessing Digestion Completeness by Visualization of LC-MS-MS Runs. We evaluated how well trypsin performed in each solvent by analyzing ion elution profiles from each LC-MS-MS run. Incomplete digestion should result in fewer small peptides, and more numerous larger partially digested protein fragments. These large polypeptides can be expected generally to elute later in reverse phase HPLC gradients due to their larger sizes and hydrophobicities. We visualized the ions observed during each separation using the "MS1PeakFinder" algorithm developed at ORNL to reveal the retention times and m/z ratios of identifiable and unknown ions for each sample. Figure 3 shows MS1PeakFinder plots for the overnight digestion in aqueous buffer and the one hour digestion in 80% acetonitrile for the 1 µg protein standard mixture. These plots are not intended to provide intensity or chromatographic peak width information, but rather to indicate whether each parent ion was subjected to CID, and whether the tandem mass spectrum was confidently identified by SEQUEST and DTASelect as a peptide. The overall trends observed in these two plots are representative of data across the entire range of protein quantities.

For both plots, ions corresponding to confident spectral identifications (red peaks) eluted between 20 minutes and 70 minutes. A dense patch of ions, eluting during a retention time interval of 77 to 82 minutes, was seen in the MS1PeakFinder plot representing the overnight digestion (Figure 3a). These ions correspond to peptides that were among the last to elute from the column. A majority of the ions seen in this dense patch did not result in confident identifications, and may represent undigested or partially digested proteins that produced ions with more than three charges, preventing identification by SEQUEST as configured for this work. For the one hour digestion, a less compact patch of species eluted during retention times of 45 to 60 minutes (Figure 3b). While several red peaks were observed in the 45 to 60 minute retention time interval, a majority of the ions detected during this interval were not confidently identified. Because species producing these unidentified ions eluted sooner than the 77 to 82 minute window observed from the overnight digest, they most likely represent smaller proteolytic fragments that reflect a higher level of digestion. The number of different ions from species eluting during a retention time interval of 77 to 82 minutes appeared to decrease with an increasing number of peptide identifications reported in Table 2. For example, the one hour aqueous digestion produced the fewest peptide identifications, and contained 1072 ions detected between 75 and 82 minutes. On the other hand, only 58 ions detected during the same retention times for the 80% acetonitrile digestion, for which the largest number of peptide identifications was observed. In fact, the majority of the ions in the 80% acetonitrile digestion were detected during the 20-70 minute time interval.

Assessing Digestion Quality by FTICR. In order to identify species corresponding to the dense patch in Figure 3a eluting between 77 to 82 minutes, we analyzed protein standard mixtures digested overnight in aqueous buffer or digested for one hour in 80% acetonitrile using 1D-LC Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. FTICR allows isotopic resolution of multiply charged ions, allowing the determination of molecular mass to better than 10 ppm accuracy.³⁹ By knowing the accurate molecular masses, we were able to determine that species eluting during the time interval corresponding to the dense patch of unidentified ions in the LC-MS-MS results shown in Figure 3a represented intact undigested proteins from the mixture and partially digested protein fragments with charge states too high to be identified by SEQUEST as configured for this work. Figure 4 shows the LC-FTICR total ion chromatograms of the mixture digested overnight in aqueous buffer, and digested for one hour in 80% acetonitrile. The C18 reverse phase column, LC instrumentation, and gradients used for these experiments were identical to those used for the LC-MS-MS analyses described above, which were performed using the quadrupole ion trap mass spectrometer for detection. As illustrated in the insets in Figure 4, intact myoglobin (most abundant isotope mass [MAIM]²⁹ measured = 16,950.954 Da, calculated MAIM = 16,950.993 Da, mass error = 2.3 ppm) and hemoglobin α chain (measured MAIM = 15,052.891 Da, calculated MAIM = 15052.929 Da, mass error = 2.5 ppm) were identified in the 75-82 minute retention time window for the overnight aqueous digestion. In addition, several unidentified species, probably partially digested protein fragments, in the 27-29 kDa range were observed (data not shown). We did not identify any intact proteins in the 75-82 minute retention time window for the 80% acetonitrile digestion shown in Figure 4, and consistent with the LC-MS-MS results, overall ion signal was

lower in this retention time window. These data collectively show that trypsin cut more efficiently in the 80% acetonitrile digestion.

Analysis of the 70S ribosome and GroEL Complexes from R. palustris. One of our major goals is to develop an efficient protocol for high throughput MS analysis of protein complexes from microbes.^{13, 40} Currently, we use dual affinity purification to isolate protein complexes, a method that results in variable amounts of protein for each purified complex. Because limited sample amounts can complicate enzymatic digestion and protein identifications, we have focused on tailoring digestion protocols for samples, obtained through dual affinity purification, that are destined for MS analysis. The intent of this report is to describe a protocol for protein digestion that maximizes the number of protein identifications from MS. Our results indicate that the 80% acetonitrile solvent system was most suitable for digesting a protein standard mixture under conditions similar to those imposed by our overall workflow. Biological samples, however, are often significantly more complex than our model mixture, containing a large number of proteins at different concentrations, with different proteolytic susceptibilities and solubilities, and varying amounts and types of impurities. With this in mind, we chose the 70S ribosome (purified by sucrose density fractionation)²⁹ and dual affinity purified GroEL from R. palustris as representative protein complexes to test the effectiveness of the 80% acetonitrile digestion protocol for biologically relevant samples. As a control, we compared the 80% acetonitrile digestions with our standard protocol for affinity isolation samples, which is overnight digestion in aqueous buffer.

Because the 70S ribosome is composed of over 50 proteins, it contains a wider variety of subunits than most complexes that would be obtained from affinity isolation procedures, and thus offers a significant challenge for our approach. Table 5 shows the peptide and protein

identifications obtained from digesting 1 µg and 200 ng of the R. palustris 70S ribosome. For both sample amounts, the 80% acetonitrile digestions gave more peptide and protein identifications than the overnight aqueous digestions. For example, 39 proteins were identified for a one hour digestion of 1 µg of ribosomes compared to 30 proteins for the overnight digestion in aqueous solvent. The identifications obtained for the one hour digestion corresponded to 72%of the proteins comprising the 70S ribosome. In contrast to the protein standard mixtures, no semi-tryptic identifications were obtained for either digestion of the ribosome samples; only fully tryptic peptides were identified. Although these samples contained 6 to 7 times as many protein sequences as the protein standard mixture, the 80% acetonitrile digest continued to outperform the overnight aqueous digest. The lower numbers of peptide and protein identifications observed for the smaller 200 ng sample size suggest that other aspects of our workflow, such as the LC-MS-MS analysis, are limiting factors for sensitivity as sample sizes decrease. Indeed, a more comprehensive characterization of the ribosomal proteins requires larger amounts of protein (and replicate analyses) than used in the current work.²⁹ However, the increased peptide and protein identifications obtained here by using the 80% acetonitrile digestion solvent for both the 1 µg and 200 ng sample sizes suggest that this solvent represents a significant step toward the use of lower amounts of protein for characterization of ribosomes or other large protein complexes.

Table 5 also shows the peptide and protein identifications for dual affinity purified GroEL. In the two digestions we identified both gene products of GroEL genes expressed by *R. palustris* (GroEL1 and GroEL2). These data indicate that a one hour digest in 80% acetonitrile produced results comparable to the overnight aqueous digests. These results suggest that GroEL may be fairly amenable to proteolysis and therefore the potential advantages of the organic solvent were

not needed to maximize peptide yields. The overnight aqueous digest, however, yielded many semi-tryptic peptides; 40% of the 51 peptide identifications were of this class. In contrast, 25% of the identifications were semi-tryptic for the one hour digestion with acetonitrile. The identification of semi-tryptic peptides from the digestion in acetonitrile may have occurred due to endogenous proteases from *R. palustris*, as this sample would have contained the highest complement of impurities of the systems studied. While the results for GroEL do not show an increase in the peptides identifiable for these proteins by use of organic solvents, other biological complexes may contain components that are more proteolytically resistant and that require the organic additive to serve as a denaturant.

CONCLUSION

Our results demonstrate that effective trypsin digestions of high nanogram to microgram amounts of proteins can be performed in one hour using 80% acetonitrile as the solvent. This protocol does not require the chemical denaturing steps necessary for protein digestion methods that require chaotropes or surfactants, followed by dilution and/or purification steps that can collectively lead to sample loss and diminished sensitivity. As the data from the dual affinity purified GroEL attest, however, the use of acetonitrile in rapid digestions may not improve peptide recovery relative to traditional overnight digests when the target proteins are amenable to digestion. The benefits appear to be most pronounced in protease-resistant proteins such as bovine serum albumin and chicken lysozyme. Large protein complexes, such as the ribosome, still require tens of micrograms of material for *complete* characterization, although we have presented evidence that digestion in 80% acetonitrile allows detection of more ribosomal proteins than the aqueous digestion.
A further benefit of employing 80% acetonitrile in digestion buffers is the reduction of nonspecific cleavage. Because overnight aqueous digestions can result in increased numbers of semi-tryptic peptides, as observed for the protein standard mixture and GroEL samples, database searching with no protease specificity becomes necessary to maximize peptide identification. These searches, however, generate larger numbers of candidate sequences, take more time to run, and yield higher false positive rates. The use of 80% acetonitrile can produce substantially higher proportions of fully tryptic peptides than overnight digestions. As a result, these spectra can be identified by more efficient searches that consider only tryptic peptides.

This digestion method opens new opportunities to efficiently detect and characterize proteins in amounts typically obtained from affinity isolation of biological complexes. First, the ability to minimize sample loss and improve the number of peptide identifications will ultimately allow more sensitive detection of less abundant components from biological complexes. Second, the one hour incubation time possible with this method is a distinct improvement for high throughput applications. The results presented here suggest further investigation of at least two aspects of protocols for digestion in organic-containing solvents. Some proteins are likely to precipitate in solutions with high organic content; in fact, organic precipitation is an accepted method for purifying proteins. The ability of the protocols presented here for detecting such organicinsoluble proteins should be explored. Also, while we did not test the use of 80% acetonitrile to digest larger sample amounts ($\geq 20 \ \mu g$), it is likely that these digestion conditions will be applicable to more abundant samples simply by increasing the volume of solvent. This study, therefore, presents a digestion method that potentially can be adapted to a variety of different types of samples.

ACKNOWLEDGEMENTS

We thank Caroline S. Harwood, Department of Microbiology, University of Iowa for the generously contributing the *R. palustris* strain used in this study. We thank the John Yates laboratory at The Scripps Research Institute for DTASelect and Contrast software. W. Judson Hervey IV and Chongle Pan acknowledge support from the University of Tennessee-Oak Ridge National Laboratory Graduate School of Genome Science and Technology. We would like to thank William Hayes McDonald for technical advice and critical evaluation of this manuscript. This research was funded by the U.S. DOE Office of Biological and Environmental Sciences Genomes to Life Program. Oak Ridge National Laboratory is operated and managed by the University of Tennessee-Battelle, L.L.C. for the U.S. Department of Energy under contract number DE-AC05-000R22725.

Table 1. Digestion Solvents

	Solvent/Buffer*	Incubation Time**
1.	50 mM Tris HCl 10 mM CaCl ₂	Overnight
2.	50 mM Tris HCl 10 mM CaCl ₂	One hour
3.	60% acetonitrile 40% 50 mM Tris HCl 10 mM CaCl ₂	One hour
4.	80% acetonitrile 20% 50 mM Tris HCl 10 mM CaCl ₂	One hour
5.	60% methanol 40% 50 mM Tris HCl 10 mM CaCl ₂	One hour

* All buffers were pH 7.6

** All incubations were performed at 37°C.

	Total Protein Amount							
	0.2 μg		1 μg		2 μg		10 µg	
Digestion	Peptides		Peptides		Peptides		Peptides	
Solvent	Identified	Tryptic**	Identified	Tryptic**	Identified	Tryptic**	Identified	Tryptic**
	high = 105	90%	high = 130	82%	high = 148	68%	high $= 138$	62%
Aqueous	94		114		146		137	
overnight	low = 84		low = 107		low = 127		low = 133	
•	high = 95	91%	high = 94	93%	high = 125	81%	high $= 123$	70%
Aqueous	70		91		111		119	
one nour	low = 69		low = 87		low = 86		low = 112	
(00/	high = 95	97%	high = 113	93%	high = 165	96%	high = 117	91%
00% A cotonitrilo	80		100		134		115	
Acetomitine	low = 64		low = 99		low = 90		low = 111	
800/	high = 138	97%	high = 197	97%	high = 197	96%	high = 146	91%
80% A cotonitrilo	132		187		157		141	
Acetomitine	low = 119		low = 169		low = 157		low = 140	
(00/	high = 67	97%	high = 134	96%	high = 137	97%	high = 120	91%
00% Mathanal	60		107		137		118	
Wiethanoi	low = 55		low = 90		low = 129		low = 115	
Overnight	N/A		N/A		N/A		high = 41	68%
using							40	
chaotrope ***							low = 40	

Table 2. Peptide Identifications for Different Quantities of the Protein Standard Mixture

*Equal masses of each protein were combined to give the corresponding quantities.

**Fully tryptic peptide percentages for highest value out of three replicates are shown.

***Digestion protocol included using guanidine HCl prior to digestion and reverse phase extraction prior to sample injection (see Figure 1).

N/A: Not analyzed.

Semi-tryptic peptide	Protein	Charge state(s)	Spectrum Count	X-corr
K.VGGHAAEYGAE.A	bovine hemoglobin α	+1	1	2.4
L.SELSDLHAHK.L	bovine hemoglobin α	+2	1	2.6
A.SHLPSDFTPAVHASLDK.F	bovine hemoglobin α	+3	1	4.3
W.GKVEADIAGHGQEVLIR.L	horse myoglobin	+3	1	4.1
K.GHHEAELKPL.A	horse myoglobin	+3, +2	1, 1	3.6, 2.6
K.YLEFISDAIIHVL.H	horse myoglobin	+2	1	4.8
R.LLVVYPW.T	bovine hemoglobin β	+2	1	3.0
F.GDLSTADAVMNNPK.V	bovine hemoglobin β	+2	2	4.6
L.STADAVMNNPK.V	bovine hemoglobin β	+2	1	3.5
K.LLGNVLVVVL.A	bovine hemoglobin β	+2	2	2.8
K.VVAGVANAL.A	bovine hemoglobin β	+1	1	2.0
K.AVVQDPALKPL.A*	bovine carbonic anhydrase	+2	1	3.3
L.ALVYGEATSR.R	bovine carbonic anhydrase	+1, +2	1,2	2.1, 3.6
W.IVLKEPISVSSQQMLK.F	bovine carbonic anhydrase	+3	1	3.8
R.TLNFNAEGEPELLML.A	bovine carbonic anhydrase	+1, +2	1,2	2.9, 3.4
L.ANWRPAQPLK.N*	bovine carbonic anhydrase	+2	1	2.8
K.SANLMAGHWVAIS.G	yeast alcohol dehydrogenase I	+2	1	2.6
L.GIDGGEGKEELFR.S*	yeast alcohol dehydrogenase I	+2	1	3.3
N.GTTVLVGMPAGAK.C*	yeast alcohol dehydrogenase I	+2	2	3.8
L.STLPEIYEK.M*	yeast alcohol dehydrogenase I	+1	1	1.9

Table 3. Semi-tryptic Peptides from the Overnight Aqueous Digest of a 1 μ g Mixture

*semi-tryptic peptides identified in multiple digestion data sets.

	Aqueous Overnight		Aqueous One Hour		60% CH ₃ CN		80% CH ₃ CN		60% CH ₃ OH	
Protein	% seq. cov.	number of peptides	% seq. cov.	number of peptides	% seq. cov.	number of peptides	% seq. cov.	number of peptides	% seq. cov.	number of peptides
yeast alcohol dehydrogenase I	59	26	51	29	40	16	56	25	36	21
yeast alcohol dehydrogenase II	27	10	32	14	14	5	20	10	10	6
bovine serum albumin	23	16	0	0	19	9	70	61	25	17
horse myoglobin	75	24	50	11	70	25	94	30	98	27
bovine hemoglobin α	79	14	62	13	59	13	71	12	54	11
bovine hemoglobin β	73	22	72	17	77	19	62	20	76	23
Chicken lysozyme	38	5	22	2	86	20	86	17	95	16
bovine carbonic anhydrase	59	22	54	14	34	10	72	20	48	17

Table 4. Protein Sequence Coverage and Peptide Identifications of 1 μ g Mixture

		Ribosom	GroEL*				
	0.2 µg 1 µg						
Digestion Solvent	peptide ids ribosomal protein ids		peptide ids	ribosomal protein ids	peptide ids	protein ids	
Aqueous**	22	9	102	31	57	2	
80% Acetonitrile***	36	13	144	39	54	3	

Table 5. Peptide and protein identifications for *R. palustris* 70S ribosomal proteins

^{*}We identified both gene products, GroEL1 and GroEL2, from each digestion method. The third identified protein from the GroEL digestion in 80% acetonitrile was apolipoprotein n-acyltransferase, with 2 peptides identified (4.3% sequence coverage).

**Overnight digestion in 50mM Tris buffer (pH 7.6), 10mM CaCl₂.

****One hour digestion in 80% acetonitrile.

FIGURE CAPTIONS

Figure 1. Flowchart representing the solvent systems and digestion protocols used in this study.

Figure 2. An example MS-MS spectrum identified as a semi-tryptic peptide. This spectrum represents the doubly-charged F.GDLSTADAVMNPK.V, an internal peptide from hemoglobin's beta chain. (The periods in the peptide sequence represent protease cleavage points; the actual peptide detected corresponds to the sequence between the periods.) SEQUEST yielded an XCorr of 4.6, an unlikely score for a false positive.

Figure 3. MS1PeakFinder plots for parent ions in LC-MS-MS data of the 1 μ g mixture. (a) overnight digestion in aqueous buffer, (b) one hour digestion in 80% acetonitrile. The dense patch of ions resulting from incompletely digested proteins eluting between 77 and 82 minutes is circled in figure 3a. The circled region in figure 3b indicates a more diffuse region at shorter retention times, corresponding to more complete digestion. Peaks for eluting peptides are red if a tandem mass spectrum resulted in a confident identification, orange if a tandem mass spectrum was acquired but no confident identification was obtained, and yellow if no tandem mass spectra were obtained for the ion.

Figure 4. LC-FTICR-MS total ion chromatograms of the 1 μ g mixture. The blue trace is from overnight digestion in aqueous buffer; the red trace is from a one-hour digestion in 80% acetonitrile. The insets illustrate the isotopic resolution of nominal masses representing undigested myoglobin and hemoglobin α chain. Peptides were separated using identical chromatographic gradients for both the LC-FTICR-MS and LC-MS-MS measurements shown in Figure 3.

Figure 1.

Figure 2.

-F.GDLSTADAVMNNOPK.V-

Figure 3a

m/z

Figure 3b.

REFERENCES

(1) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64-71.

(2) Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Anal. Chem. **1991**, 63, 1193A-1203A.

(3) Yates, J. R., 3rd; Eng, J. K.; McCormack, A. L.; Schieltz, D. Anal. Chem. **1995**, 67, 1426-1436.

(4) Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S. *Electrophoresis* 1999, 20, 3551-3567.

(5) Tabb, D. L.; McDonald, W. H.; Yates, J. R., 3rd J. Proteome Res. 2002, 1, 21-26.

(6) McCormack, A. L.; Schieltz, D. M.; Goode, B.; Yang, S.; Barnes, G.; Drubin, D.; Yates, J.R., 3rd Anal. Chem. 1997, 69, 767-776.

(7) Wolters, D. A.; Washburn, M. P.; Yates, J. R., 3rd Anal. Chem. 2001, 73, 5683-5690.

(8) Hunt, D. F.; Yates, J. R., 3rd; Shabanowitz, J.; Winston, S.; Hauer, C. R. *Proc. Natl. Acad. Sci. U. S. A.* **1986**, *83*, 6233-6237.

(9) Link, A. J.; Eng, J.; Schieltz, D. M.; Carmack, E.; Mize, G. J.; Morris, D. R.; Garvik, B.
M.; Yates, J. R., 3rd *Nat. Biotechnol.* 1999, *17*, 676-682.

(10) Gavin, A. C.; Bosche, M.; Krause, R.; Grandi, P.; Marzioch, M.; Bauer, A.; Schultz, J.;
Rick, J. M.; Michon, A. M.; Cruciat, C. M.; Remor, M.; Hofert, C.; Schelder, M.; Brajenovic,
M.; Ruffner, H.; Merino, A.; Klein, K.; Hudak, M.; Dickson, D.; Rudi, T.; Gnau, V.; Bauch, A.;

Bastuck, S.; Huhse, B.; Leutwein, C.; Heurtier, M. A.; Copley, R. R.; Edelmann, A.; Querfurth,
E.; Rybin, V.; Drewes, G.; Raida, M.; Bouwmeester, T.; Bork, P.; Seraphin, B.; Kuster, B.;
Neubauer, G.; Superti-Furga, G. *Nature* 2002, *415*, 141-147.

(11) Ho, Y.; Gruhler, A.; Heilbut, A.; Bader, G. D.; Moore, L.; Adams, S. L.; Millar, A.; Taylor, P.; Bennett, K.; Boutilier, K.; Yang, L.; Wolting, C.; Donaldson, I.; Schandorff, S.; Shewnarane, J.; Vo, M.; Taggart, J.; Goudreault, M.; Muskat, B.; Alfarano, C.; Dewar, D.; Lin, Z.; Michalickova, K.; Willems, A. R.; Sassi, H.; Nielsen, P. A.; Rasmussen, K. J.; Andersen, J. R.; Johansen, L. E.; Hansen, L. H.; Jespersen, H.; Podtelejnikov, A.; Nielsen, E.; Crawford, J.; Poulsen, V.; Sorensen, B. D.; Matthiesen, J.; Hendrickson, R. C.; Gleeson, F.; Pawson, T.; Moran, M. F.; Durocher, D.; Mann, M.; Hogue, C. W.; Figeys, D.; Tyers, M. *Nature* 2002, *415*, 180-183.

Butland, G.; Peregrin-Alvarez, J. M.; Li, J.; Yang, W.; Yang, X.; Canadien, V.;
Starostine, A.; Richards, D.; Beattie, B.; Krogan, N.; Davey, M.; Parkinson, J.; Greenblatt, J.;
Emili, A. *Nature* 2005, *433*, 531-537.

(13) http://www.ornl.gov/sci/GenomestoLife/index.shtml

(14) Larimer, F. W.; Chain, P.; Hauser, L.; Lamerdin, J.; Malfatti, S.; Do, L.; Land, M. L.; Pelletier, D. A.; Beatty, J. T.; Lang, A. S.; Tabita, F. R.; Gibson, J. L.; Hanson, T. E.; Bobst, C.; Torres, J. L.; Peres, C.; Harrison, F. H.; Gibson, J.; Harwood, C. S. *Nat. Biotechnol.* **2004**, *22*, 55-61.

(15) Rigaut, G.; Shevchenko, A.; Rutz, B.; Wilm, M.; Mann, M.; Seraphin, B. *Nat. Biotechnol.* **1999**, *17*, 1030-1032.

(16) Gould, K. L.; Ren, L.; Feoktistova, A. S.; Jennings, J. L.; Link, A. J. *Methods* **2004**, *33*, 239-244.

(17) Fersht, A. *Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding*, Third ed.; W. H. Freeman and Company: New York, 2000, 103-131.

(18) Park, Z. Y.; Russell, D. H. Anal. Chem. 2000, 72, 2667-2670.

(19) Russell, W. K.; Park, Z. Y.; Russell, D. H. Anal. Chem. 2001, 73, 2682-2685.

(20) Ekstrom, S.; Onnerfjord, P.; Nilsson, J.; Bengtsson, M.; Laurell, T.; Marko-Varga, G. *Anal. Chem.* **2000**, *72*, 286-293.

(21) Doucette, A.; Craft, D.; Li, L. Anal. Chem. 2000, 72, 3355-3362.

(22) Riviere, R.; Fleming, M.; Elicone, C.; Tempst, P. *Techniques in Protein Chemistry II*, 1991.

(23) Ekstrom, S.; Malmstrom, J.; Wallman, L.; Lofgren, M.; Nilsson, J.; Laurell, T.; Marko-Varga, G. *Proteomics* **2002**, *2*, 413-421.

(24) Bosserhoff, A.; Wallach, J.; Frank, R. W. J. Chromatogr. 1989, 473, 71-77.

(25) Yu, Y. Q.; Gilar, M.; Gebler, J. C. Rapid Commun. Mass Spectrom. 2004, 18, 711-715.

(26) Griebenow, K.; Kilbanov, A. M. J. Am. Chem. Soc. 1996, 118, 11695-11700.

(27) Welinder, K. G. Anal. Biochem. 1988, 174, 54-64.

(28) Simon, L.; Laszlo, K.; Vertesi, A.; Bagi, K.; Szajani, B. J. Mol. Catal. B: Enzym. 1998, 4, 41-45.

(29) Strader, M. B.; Verberkmoes, N. C.; Tabb, D. L.; Connelly, H. M.; Barton, J. W.; Bruce,
B. D.; Pelletier, D. A.; Davison, B. H.; Hettich, R. L.; Larimer, F. W.; Hurst, G. B. J. Proteome *Res.* 2004, *3*, 965-978.

(30) Hardy, S. J.; Kurland, C. G.; Voynow, P.; Mora, G. Biochemistry 1969, 8, 2897-2905.

(31) Puig, O.; Caspary, F.; Rigaut, G.; Rutz, B.; Bouveret, E.; Bragado-Nilsson, E.; Wilm, M.; Seraphin, B. *Methods* **2001**, *24*, 218-229.

(32) Geissler, J. F.; Harwood, C. S.; Gibson, J. J. Bacteriol. 1988, 170, 1709-1714.

(33) Tabb, D. L.; Narasimhan, C.; Strader, M. B.; Hettich, R. L. Anal. Chem. 2005, 77, 2464-2474.

(34) Eng, J. K.; McCormack, A. L.; Yates, J. R., 3rd J. Am. Soc. Mass Spectrom. 1994, 5, 976-989.

(35) Hornik, K., The R FAQ., http://www.ci.tuwien.ac.at/~hornik/R/; ISBN 3-900051-08-9.

(36) Slysz, G. W.; Schriemer, D. C. Rapid Commun. Mass Spectrom. 2003, 17, 1044-1050.

(37) Olsen, J. V.; Ong, S. E.; Mann, M. Mol. Cell Proteomics 2004, 3, 608-614.

(38) Simon, L.; Kotorman, M.; Garab, G.; Laczko, I. *Biochem. Biophys. Res. Commun.* 2001, 280, 1367-1371.

(39) Bogdanov, B.; Smith, R. D. Mass Spectrom. Rev. 2005, 24, 168-200.

(40) Buchanan, M. V.; Larimer, F. W.; Wiley, H. S.; Kennel, S. J.; Squier, T. J.; Ramsey, J.

M.; Rodland, K. D.; Hurst, G. B.; Smith, R. D.; Xu, Y.; Dixon, D.; Doktycz, M. J.; Colson, S.;

Gesteland, R.; Giometti, C.; Young, M.; Giddings, M. Omics 2002, 6, 287-303.

Appendix B A General System for Studying Protein-Protein Interactions in Gram-Negative Bacteria

Pelletier and Hurst *et al. Journal of Proteome Research*, 2008, **7** (8), 3319–3328. http://pubs.acs.org/doi/abs/10.1021/pr8001832

As a co-author of this publication, W. J. Hervey. IV performed microbial cell growth, protein isolation, sample preparation and collection of data on the LCQ Deca XP instrument for the *E. coli* tandem affinity isolation (TAP) clones.

A General System for Studying Protein-Protein Interactions in Gram-Negative Bacteria

Dale A. Pelletier^{1,*,+}, Gregory B. Hurst^{2,+}, Linda J. Foote¹, Patricia K. Lankford¹, Catherine K. McKeown¹, Tse-Yuan Lu¹, Denise D. Schmoyer³, Manesh B. Shah¹, W. Judson Hervey IV^{2,8}, W. Hayes McDonald², Brian S. Hooker⁵, William R. Cannon⁶, Don S. Daly⁶, Jason M. Gilmore⁶, H. Steven Wiley⁷, Deanna L. Auberry⁵, Yisong Wang¹, Frank W. Larimer¹, Stephen J. Kennel^{1,**}, Mitchel J. Doktycz¹, Jennifer L. Morrell-Falvey¹, Elizabeth T. Owens¹, Michelle V. Buchanan⁴

¹Biosciences Division, ²Chemical Sciences Division, ³Computer Science and Mathematics Division, and ⁴Physical Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge TN 37831

⁵Biological Sciences Division, ⁶Computational Sciences and Mathematics Division, ⁷Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352

⁸UT-ORNL Genome Science and Technology Program, Oak Ridge TN 37831

**Present Address: University of Tennessee Medical Center, Knoxville TN 37920

⁺These two authors contributed equally to the writing of this manuscript.

Keywords: protein interactions, protein complexes, RNA polymerase, affinity purification, mass spectrometry

*Corresponding author: E-mail: <u>dpelletier@ornl.gov</u> Phone: 865-576-2857 Fax: 865-574-6210

Abstract

One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the co-purified proteins. Previous studies have generated affinity-tagged proteins using genetic tools or cloning systems that are specific to a particular organism. To enable protein-protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged "bait" proteins from a medium copy-number plasmid. This construct is based on a broad-host-range vector backbone (pBBR1MCS5). The vector has been modified to incorporate the Gateway DEST vector recombination region, to facilitate cloning and expression of fusion proteins bearing a variety of affinity, fluorescent, or other tags. We demonstrate this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram-negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results compared favorably with those for both plasmid- and chromosomally-encoded affinity-tagged fusion proteins expressed in a model organism, E. coli.

Introduction

Most polypeptide chains function as components of larger protein complexes or "molecular machines" ¹⁻³. Living organisms gain several advantages from a strategy of assembling machines from smaller components, such as a smaller probability of translation error for small versus large proteins, the increased flexibility and coding economy when using a single subunit protein in several different complexes, more efficient channeling of enzyme substrates, and the ability to modulate the activity or function of a complex by altering its subunit composition ¹⁻⁴. Discovering the protein-protein interactions that make up these complexes is an important technique for studying protein function. If a previously unknown protein is observed to interact with other proteins or a complex of known function, then one has gained insight into the function of the unknown ⁵. Genome-wide elucidation of protein-protein interactions within and among protein complexes ⁶⁻¹¹.

Various approaches allow identification of physical protein-protein interactions in complexes ³, ^{12, 13}. Classical "one-at-a-time" experimental approaches focus on proteins that can be linked with a measured activity. Newer techniques seek to elucidate larger sets of interactions that involve a large fraction of the proteome, generally with higher speed, but less rigor, than classical methods. These higher-throughput techniques include the yeast two-hybrid technique ¹⁴⁻¹⁷, arrays of immobilized proteins ^{18, 19}, and phage display ²⁰. Mass spectrometry-based measurements of protein-protein interactions across the proteome in *Saccharomyces cerevisiae* ^{21, 22} and in *E. coli* ^{23, 24} have been reported. Desirable attributes of the latter approach include direct detection of proteins (as opposed to *m*RNA, for example), additional experimental tools

for reducing false positive interactions ²⁵, and the potential to study post-translational modifications.

It would be desirable to extend application of a mass spectrometry-based approach for discovery of protein-protein interactions to a wider variety of environmentally relevant Gram-negative bacterial species, expecially those of potential interest for energy production, bioremediation, or carbon sequestration 26 . To address this need, we have developed a straightforward approach that is general to Gram-negative bacteria, and flexible enough to accommodate different affinity tags without the need to amplify and re-clone all genes of interest from genomic DNA. Our goal is a system for efficient *in vivo* expression of a range of affinity tagged fusion proteins across a variety of species, particularly in those strains in which chromosomal integration is difficult or impossible. This report describes the construction and testing of a vector based on pBBR1MCS5, which has been demonstrated to replicate in a number of Gram-negative bacteria ²⁷. We have modified this vector to incorporate the GatewayTM cloning system ²⁸, which allows facile introduction of a library of cloned genes (entry vectors) into constructs encoding several different affinity (or other) tags (destination vectors). Using the RNA polymerase complex as a test case, we evaluated the performance of the plasmid-encoded hexahistidine/V5 epitope fusion proteins in *R. palustris*²⁹, *S. oneidensis* MR-1³⁰, and *E. coli*³¹, and compared this tagging and purification strategy with the chromosome-encoded tandem affinity purification (TAP) tag ³² in E. coli.

Materials and Methods

Strains, plasmids and media

Bacterial strains and plasmids used in this study are listed in Table 1. *Rhodopseudomonas palustris* CGA010³³ and pBBR1MCS5 broad-host-range vector ²⁷ were gifts from Caroline Harwood, University of Washington-Seattle. *Shewanella oneidensis* MR1 was obtained from ATCC (Manassas, VA). The *E. coli* strains expressing proteins from the tandem affinity purification (TAP) vector ³² integrated into the *E. coli* chromosome were a gift from Andrew Emili, University of Toronto. *E. coli* and *S. oneidensis* strains were cultured on Luria-Bertani (LB) broth or LB agar plates for cloning and strain maintenance. For affinity isolation experiments *E. coli* was cultured on M9 media and *S. oneidensis* was grown in a defined mineral medium ³⁴. *R. palustris* was grown anaerobically in the light at 30°C in a defined mineral medium containing 10 mM succinate (PMS-10) ³⁵. Plasmid-containing strains were routinely grown with antibiotics at the following concentrations: ampicillin, 100 µg/ml; chloramphenicol, 30 µg/ml; and gentamycin, 10 µg/ml for *E. coli* and *S. oneidensis* strains, and 100 µg/ml for *R. palustris* strains. The growth medium for *E. coli* B2155 was supplemented with 100 µg/ml

Construction of pBBR5DEST42 broad-host-range destination vector

Isolated pBBR1MCS5 plasmid DNA was digested with KpnI and PvuI, phenol-extracted, treated with calf intestine alkaline phosphatase, and a 4.5 kb fragment was purified on an agarose gel. The recombination region on pET-DEST42 vector DNA (Invitrogen, Carlsbad, CA) was PCR amplified using the following primers that include KpnI and PvuI restriction sites, respectively: 42F: 5'-cag cgg tac etc tcg atc ccg cga aat taa ta-3' and 42R: 5'-ctg tcg atc gct gta ggc ata ggc ttg gtt atg-3'. The PCR reactions were done in 100 µl volumes with PfuTurbo DNA polymerase (Stratagene, La Jolla, CA) and 50 ng of pET-DEST42 DNA. PCR products were analyzed on an

agarose gel to verify that the products were the correct size. The PCR product was digested with KpnI and PvuI and agarose gel-purified. 60 ng of PCR product was ligated with 30 ng of 4.5 kb pBBR1MCS5 KpnI/PvuI fragment following standard protocols ³⁶. Ligation products were transformed into *E. coli* DB3.1 chemically competent cells (Invitrogen) and transformants were selected by plating on LB agar plates containing appropriate antibiotics. Individual colonies were grown overnight in LB containing 30 μ g/ml chloramphenicol and 10 μ g/ml gentamycin, and plasmid DNA was prepared using QIAprep spin miniprep following the manufacturer's protocol (Qiagen, Valencia, CA). Plasmid DNA was digested with KpnI and PvuI and digestion products were analyzed on an agarose gel to confirm the presence of products of the expected sizes.

Cloning of Target Genes into Gateway Entry Vector

Genes of interest were PCR-amplified from *R. palustris* CGA010, *S. oneidensis* MR1 or *E. coli* K12 MG1655 genomic DNA with Expand DNA polymerase (Roche Diagnostics, Indianapolis, IN), and appropriate primers (Table 1). The primers contain appropriate *attB* recombination sequences, Shine-Delgarno sequence, and the ATG start codon; the transcriptional stop codon was removed to allow C-terminal fusion of affinity tag sequences. PCR products were analyzed on an agarose gel and purified with a QIAquick PCR purification kit (Qiagen). PCR product was recombined with pDONR221 DNA using BP Clonase II enzyme mix following the manufacturer's protocol (Invitrogen), and then transformed into chemically competent DH5 α cells and plated onto LB with appropriate antibiotic selection. The inserts were confirmed by sequencing using M13 forward and reverse primers (Laragen, Inc; Los Angeles, CA).

Creation of Expression Clones from Gateway Entry Clones

Entry clones in the pDONR221 vector were recombined with the pBBR5DEST42 destination vector using LR Clonase II enzyme mix following the manufacturer's protocol (Invitrogen), transformed into BL21(DE3) chemically competent cells, and plated onto selective media. Individual colonies were grown overnight in LB containing gentamycin, and plasmid DNA was purified with a Qiaprep miniprep kit (Qiagen).

Plasmid transformation of <u>R. palustris</u> and <u>S. oneidensis</u>

To obtain electrocompetent cells of *R. palustris* CGA010, 50 ml cultures were grown anaerobically in the light at 30°C in PMS-10 to OD of 0.4 at 660 nm. Cells were recovered by centrifugation at 10,000 rpm for 10 min. at 4°C. Three cycles of washing and resuspension in 50 ml of ice cold sterile distilled water were performed followed by final resuspension in 1 ml of chilled 10% glycerol. Aliquots were stored at -80°C until needed. For optimal transformation 40 µl of competent cells, along with 1 to 10 ng of plasmid DNA in 80 µl of chilled distilled water, were added to 2 mm cuvettes of a Gene Pulser (Bio-Rad Laboratories, Hercules, CA). Electroporation was performed using the following settings: voltage 2.5 kV; capacitance 25 µF; resistance 100 Ω . After electroporation 1 ml PMS-10 was added and cells were incubated at 30°C for 20 hr. Transformants were selected by plating on PMS-10 agar plates containing 100µg/ml gentamycin and incubated anaerobically in the light at 30°C. For transformation of *S. oneidensis*, purified plasmids were first transformed into chemically competent *E. coli* β-2155 ³⁷. Plasmids were then transferred from *E. coli* β-2155 to *S. oneidensis* MR-1 by conjugation and transformants were selected on LB agar plates containing appropriate antibiotic.

Western blots

To test for protein expression, individual colonies of expression strains were grown in appropriate liquid media as described previously to mid-log phase and cells were harvested by centrifugation. Cell pellets were lysed in phosphate buffered saline (PBS) with 1 µl/ml BugBuster plus Benzonase Nuclease (Novagen, Madison, WI), 10 µg/ml lysozyme, 100 µg/ml phenylmethylsulfonylfluoride (PMSF) and 10 µg/ml leupeptin. After mixing gently for 20 min. at room temperature, lysates were centrifuged at 16,000 X g for 15 min at 4°C. Cleared lysates were separated on 10% SDS-PAGE and transferred to Immobilon P membrane (Millipore, Billerica, MA) in tris-glycine-MeOH buffer for 1 hour at 200 mA. Membranes were washed overnight at 4°C in PBS containing 0.1% Tween 20 (PBS-Tween). Non-specific binding was blocked by incubation of the membrane with gentle rocking for 1 hour in 5% non-fat milk powder, 10% bovine serum in PBS-Tween ("Blotto"). The membrane was then incubated for 2 hours with rocking at room temperature with the primary antibody, mouse anti-V5 epitope (Invitrogen) at 1/5000 dilution in Blotto. After extensive washing in PBS-Tween, the membrane was incubated with rocking for 1.5 hr in horseradish peroxidase-conjugated goat anti-mouse IgG (Bio-Rad, Hercules, CA) at 1/1000 dilution. After washing, color was developed by the addition of ImmunoPure metal enhanced DAB substrate (Pierce, Rockford, IL).

Affinity isolation

Cultures of 0.8 L of each bacterial strain were grown in appropriate media to mid-logarithmic phase and cells were harvested by centrifugation and pellets frozen at -80°C until needed. Frozen cell pellets were thawed, and cells were lysed using 5 volumes lysis buffer (w/v), prepared with 10X BugBusterTM extraction reagent (Novagen) diluted to 1X in Ni-NTA binding buffer (50 mM NaH₂PO₄, 300 mM NaCl, 10 mM imidazole, pH 8), containing 1 µL/mL benzonase nuclease reagent (Novagen), lysozyme (5 kU/g cell paste), 100 µg/mL PMSF and 10 µg/mL leupeptin. Cells were suspended in the lysis buffer, and incubated with end-over-end rotation at room temperature for 20 min. Lysates were centrifuged for 30 min at 12,000 x g for 20 min. The supernatant was transferred to a fresh tube, centrifuged for 15 min at 20,000 x g at 4°C, and the resulting supernatant (lysate) was used for subsequent purification steps. The lysate was added to 200 μ L of a 50% suspension of Ni-NTA agarose beads (Invitrogen), which had previously been washed 3-4 times with Ni-NTA binding buffer. The lysate and Ni-NTA beads were incubated with end-over-end tube rotation for 1 hour at room temperature, and then centrifuged at 100 x g for 30s and the supernatant removed. The beads were washed 3 times with 1 mL wash buffer (50 mM NaH₂PO₄, 300 mM NaCl, 20 mM imidazole, 100 µg/mL PMSF, 10 µg/mL leupeptin). Proteins were eluted from the beads using four 50 µL aliquots of elution buffer (50 mM NaH₂PO₄, 300 mM NaCl, 500 mM imidazole, 100 µg/mL PMSF, 10 µg/mL leupeptin). The eluates were combined and 400 µL water containing 100 µg/mL PMSF and 10 µg/mL leupeptin was added. After a final short clearing spin to pellet any remaining beads, $\sim 90\%$ of the supernatant was transferred to a clean tube.

The second purification step was performed using mouse anti-V5 monoclonal antibody agarose beads (Sigma). Eluate from the Ni-NTA purification was added to 100 μ L of 50% slurry of anti-V5 beads, which had previously been washed 4 times with PBS. Sample and beads were incubated for 1 hour with end-over-end rotation of the tube at room temperature. Three cycles of brief centrifugation at 100 x g for 30s followed by addition of 1 mL PBS, gentle shaking, and removal of the supernatant, were performed. Proteins were eluted from the anti-V5 beads with three 50 μ L volumes of aqueous 80% acetonitrile containing 1% formic acid. After

centrifugation at 100 x g for 30s to pellet any remaining beads, supernatant was transferred to a fresh tube.

For TAP affinity isolations, *E. coli* cellular lysates were incubated with IgG (Amersham/GE) affinity resin for 1 hour. Elution from the IgG resin was performed by treatment with AcTEV protease (Invitrogen) for 1 hour. A second 1 hr incubation with calmodulin affinity resin (Amersham/GE) further isolated the affinity-tagged proteins. Proteins were eluted from the calmodulin affinity resin as described by Zeghouf *et al.* ³⁸.

Trypsin digestion

Proteins eluted from affinity resins were dried by vaccum centrifugation, then reconstituted in 150 μ L of 50 mM Tris, 10 mM CaCl₂ (pH 7.6) buffer. One μ g trypsin (sequencing grade; Promega) was added and the digestion allowed to proceed overnight at 37°C. The sample was acidified with 50 μ L of 2.5% trifluoroacetic acid (TFA). Two 65 μ L volumes were aliquoted into separate tubes for desalting via solid-phase extraction (OMIX C18, 100 μ g size, Varian) using the manufacturer's protocol. Peptides were eluted from the OMIX tip in 100 μ L aqueous 50% acetonitrile, 0.1% TFA. A 100 μ L portion of aqueous 0.1% TFA was added, and the sample volume was decreased by approximately one half using vacuum centrifugation. Particulates were removed by centrifugation for 15 min at 10,600 x g before transfer to autosampler vials.

Mass spectrometry and protein identifications

The resulting peptides were analyzed by automated LC-ESI-MS/MS as reported previously in greater detail³⁹. Briefly, an LCPackings (Sunnyvale CA) chromatographic system (Famos autosampler, Switchos flow switching module, and Ultimate HPLC) was interfaced with a ThermoFinnigan (San Jose CA) DecaXP Plus quadrupole ion trap mass spectrometer via a nanospray source. After injection via the autosampler, peptides were concentrated onto a reverse-phase preconcentration column and washed to remove excess salt. The peptides were then eluted onto a 75 µm ID C18 reverse-phase analytical column. Peptides were eluted from the analytical column using a gradient from 95% water/5% acetonitrile to 30% water/70% acetonitrile (with 0.1% formic acid in all mobile phases). Blank chromatographic runs between samples minimized carryover. The mass spectrometer was operated in a data-dependent MS/MS mode, with up to four peptides automatically selected per MS scan for MS/MS analysis. Proteins interacting with the bait proteins were identified from MS/MS spectra of their tryptic peptides via Sequest ⁴⁰. The resulting peptide identifications and other relevant statistics were filtered and collated by protein using DTASelect⁴¹. Peptide identifications required standard minimum XCorr values of ≥ 1.8 for singly-charged, ≥ 2.5 for doubly-charged, or ≥ 3.5 for triplycharged ions, and DeltaCN ≥ 0.08 . Proteins were initially identified based on detection of one or more peptides and subsequently filtered at later stages of data analysis. Sequest searches were performed against separate FASTA protein databases for the three bacterial species, compiled as follows. Sequences for 4833 R. palustris proteins were obtained from the ORNL microbial genome annotation pipeline at http://www.ornl.gov/sci/GenomestoLife/index.shtml²⁹, with an additional 44 common contaminants and standard proteins. The E. coli protein sequence file contained 4337 proteins ⁴², plus their sequence-reversed counterparts and 188 common

contaminants and standard proteins. The *S. oneidensis* MR-1 file contained 4898 *S. oneidensis* protein sequences ⁴³, plus 44 common contaminants and standard proteins.

Evaluation of protein-protein interactions

The BEPro³ algorithm ⁴⁴ was applied for statistical evalution of observed bait-prey interactions. Two BePro³ results were used: The *Bayes Odds*, a score associated with each bait-prey pair, ranging from 0 (low likelihood of interaction) to 1 (high likelihood of interaction); and the *Ubiquity*, a measure of the tendency of a given prey protein to be detected in association with a large variety of baits (0 indicates a "selective" prey, and 1 indicates a "sticky" prey.) For the *R*. *palustris* proteins, the data set included 77 LC-MS/MS measurements using 18 different affinitytagged baits ⁴⁴. The *S. oneidensis* data set encompassed 84 LC-MS/MS measurements of affinity isolations obtained using 29 different affinity-tagged baits. BEPro³ calculations were not performed for *E. coli* results due to the small size of the data set.

Results

Figure 1 outlines the approach tested in this paper for systematically identifying interactions among proteins across a range of bacterial species. The major steps are PCR amplification of genes of interest, recombination of each gene into a Gateway entry vector, recombination of each entry clone into a pBBR5DEST42 destination vector, transformation of host cells, cell culture and harvest, affinity isolation, mass spectrometric protein identification, and data analysis.

To demonstrate our system, we focused on the protein complex RNA polymerase, which has been suggested as a standard for evaluating methods for measuring protein-protein interactions ⁴⁵. DNA-directed RNA polymerase uses DNA as the template for RNA synthesis during transcription. The "core" bacterial RNA polymerase contains two copies of the α subunit (RpoA) along with β (RpoB), β ' (RpoC), and ω (RpoZ in *E. coli*; RnpO in *R. palustris*) subunits. This core can perform transcription of DNA into RNA, but has little specificity. Incorporation of additional protomers, the sigma factors, which join the complex depending on the cell's stress or environment ⁴⁶, provides specificity in recognition of promoter regions on DNA. As described below, detection of the core components, sigma factors and other proteins known to interact with RNA polymerase provide a basis for evaluating our approach.

Vectors coding for Affinity-Tagged Proteins

Figure 2 shows the plasmid map for the pBBR5DEST42 destination vector, created by insertion of pET-DEST42 recombination region into the vector backbone of pBBR1MCS5. This new vector combines the convenience of facile introduction of genes of interest using the Gateway site-specific recombinase system with the medium copy number and broad-host-range conferred by the pBBR5MCS origin of replication. The plasmid also encodes proteins necessary for mobilization of the plasmid by RK2 conjugal transfer from an appropriate host strain, the *lac* and T7 promoter sequences for expression in *E. coli* or other appropriate host strains, and a carboxy-terminal hexahistidine/V5 epitope fusion for affinity isolation. To evaluate the ability of this vector to stably replicate and drive expression we introduced destination plasmids bearing the *rpoA* gene from three phylogenetically diverse bacterial species, the alpha proteobacterium *R. palustris*, the gamma-proteobacteria *S. oneidensis* and *E. coli*, and subsequently transformed the respective vectors into native host strains. Expression of plasmid-encoded fusion proteins was confirmed by Western blot analysis. Figure 3 demonstrates expression of hexahistidine/V5-

tagged RpoA from *E. coli* containing pBBR5DEST42-ECK3282 (Lane 2), from *R. palustris* cells containing pBBR5DEST42-RPA3226 (Lane3) and from *S. oneidensis* cells containing pBBR5DEST42-SO0256 (Lane 4).

Comparison of chromosomal and plasmid-encoded SPA affinity tags in *E. coli*

Table 2 compares results from several different affinity isolation strategies using the α subunit, RpoA, of RNA polymerase as the tagged protein. The data presented include results from largescale protein-protein interaction studies in *E. coli* using the hexahistidine tag 23 , or a dual affinity tag (SPA or TAP)²⁴, as well as results obtained in the present study using the TAP-tagged chromosomal insert²⁴ and the plasmid-encoded hexahistidine/V5-tagged proteins as baits. Results from the present study are presented in Table 2 as the number of MS-MS spectra assigned to a particular protein (the "spectrum count"), which is a crude indicator of the amount of that protein in the sample ⁴⁷. For comparison, Table 2 also includes predictions from STRING ⁴⁸ (http://string.embl.de), and from Prolinks (http://mysql5.mbi.ucla.edu/cgibin/functionator/pronav)⁴⁹. The data resulting from the four different experimental approaches shown in Table 2 detected RNA polymerase core components β and β ' (RpoB and RpoC), as well as the most common sigma factor, σ^{70} (RpoD). Results from both tags used in the present study, as well as literature results obtained using the TAP or SPA tag 24 , include the ω subunit (RpoZ); RpoZ was not reported using the hexahistidine tag alone ²³. Using the TAP or SPA tag, previous studies reported detection of both NusA and NusG²⁴, which are known to interact with RNA polymerase ⁵⁰. Using our detection system with the chromosomally encoded TAP-tagged strain²⁴, we detected NusA but not NusG. Neither NusA nor NusG was detected using the hexahistidine tag alone²³ or the hexahistidine/V5 tag (this study). Among other proteins in

Table 2 known to associate with RNA polymerase, and detected in the published studies ^{23, 24} (HepA, GreB ⁵¹, and Rho ⁵²), we detected Rho with the hexahistidine/V5 tag, but not with the TAP tag. All four approaches led to detection of ribosomal proteins RplB, RpsE, and RpsD; several other ribosomal proteins were detected using one or more approaches. All four approaches also led to detection of several proteins that are not obviously related to RNA polymerase (see also footnotes b and c, Table 2).

RNA polymerase in <u>S. oneidensis</u>

Table 3 summarizes protein-protein interactions determined using RpoA, RpoC and RpoZ expressed as affinity-tagged fusions from the pBBR5DEST42 plasmid in S. oneidensis. A prey protein is listed in Table 3 only if it fulfills all of the following conditions for at least one bait: BePro³ Ubiquity < 0.5, BePro³ Bayes Odds > 0.5, with two or more peptides identified. A more complete listing is provided in Supplementary Table I. Bold entries in Table 3 identify bait-prey interactions with BePro³ Bayes Odds ≥ 0.5 . Multiple bold entries among the core components of the RNA polymerase enzyme indicate the specificity of the measurement. No sigma factors were detected with these baits for S. oneidensis. The RpoA bait showed the most interactors, including several that are not known components of RNA polymerase, but are abundant proteins in *E. coli* (ribosomal proteins, β subunit of ATP synthase F1). It is noteworthy that the average spectrum count for the RpoA bait protein itself was, by a large margin, the highest among the baits in Table 3, suggesting strong preferential over-expression of this protein from the plasmid. Unlike the other affinity-tagged components of RNA polymerase that were used as bait in S. oneidensis, RpoB was not detected when used as bait, based on duplicate LC-MS-MS measurements from a single culture. However, this protein was detected as a prey in

experiments where RpoA, RpoC, or RpoZ was the affinity-tagged bait. While Table 3 lists the more obvious interactors with the RNA polymerase core components, Supplementary Table I contains evidence for additional interactions. For example, prey proteins that were observed with the RpoA bait, but did not meet all the criteria for inclusion in Table 3, include NusA and NusG, which are known interactors of RNA polymerase ⁵⁰.

RNA polymerase in <u>R. palustris</u>

Table 4 summarizes protein-protein interactions for DNA-dependent RNA polymerase in R. *palustris*, using α (RpoA, RPA3226), β (RpoB, RPA3268), and β' (RpoC, RPA3267) subunits of the core RNA polymerase enzyme and the heat shock sigma factor σ^{32} (RpoH, RPA0367) expressed as affinity-tagged fusions from the pBBR5DEST42 plasmid. A prev protein was listed in Table 4 only if it fulfilled the conditions described above for Table 3; a more complete listing is provided in Supplementary Table II. Bold entries in the table identify bait-prey interactions with BePro³ Bayes Odds ≥ 0.5 . As noted above for S. oneidensis, multiple bold entries suggest robust detection of interactions among the core components of the enzyme. Although the ω subunit of the core complex from this organism, RnpO, was not successfully cloned and expressed as an affinity-tagged fusion, this protein was nonetheless detected in experiments using the other RNA polymerase components as baits. The major sigma factor (σ^{70} , RpoD) was detected using several baits. Using σ^{32} as affinity-tagged bait led to detection of several core components. Also interacting with σ^{32} were heat shock proteins GrpE (RPA0331, Table 3) and, less strongly, DnaK (RPA0333, Supplementary Table II); these two proteins have been reported to associate with σ^{32} in *E. coli*⁵³. A 14.5 kDa acidic conserved protein of unknown function, RPA0060, was detected fairly robustly with the RpoA bait, suggesting a previously unreported

association with the RNA polymerase complex. RPA0060 was also observed, albeit weakly, as a prey for both the RpoC and RpoB baits. Several abundant proteins not necessarily associated with RNA polymerase were observed, including ribosomal proteins, aconitase, and ATP synthase subunits.

Discussion

Microbes inhabit a diverse array of habitats, deriving energy from a variety of sources and biochemicals from a wide range of raw materials. The protein complexes and biochemical pathways that microbes have evolved over countless iterations in nature represent an amazing range of activities and strategies for bioremediation and energy production ²⁶. To gain access to this potentially vast resource, it will be necessary first to develop faster and more accurate methods, such as that described in this report, for studying the protein-protein interactions involved in these complexes and pathways.

To enhance our ability to discover such novel and potentially useful biochemical capabilities in microbes, we have developed a strategy to extend studies of protein-protein interactions to a larger subset of bacterial species. The basis of this strategy is the pBBR5DEST42 vector, which can be introduced into a broad range of Gram-negative bacterial hosts (Figure 2). In addition to broad species applicability, the strategy facilitates expression of a variety of fusion protein types. Because the approach is based on the Gateway system, each protein of interest can be "decorated" with new affinity or other types of tags simply by constructing a new destination vector; each gene of interest need only be cloned and verified once. This system is particularly useful in species where transformation is feasible, but chromosomal integration is not. We

demonstrated that pBBR5DEST42 could be used to express fusion proteins in *R. palustris*, *S. oneidensis* and *E. coli* (Figure 3, Table 2-4).

Initial large-scale studies of protein-protein interactions in yeast used different approaches for producing affinity-tagged protein. In one study, engineered genes encoding each protein of interest and an affinity tag were introduced into a chromosome by homologous recombination²¹, while another group employed heterologous expression, with genes for affinity-tagged proteins introduced on plasmids²². It has been suggested that the former approach may result in fewer undetected interactions because protein expression is under the control of native promoters and at chromosomal copy number ⁴⁵. For this reason, we compared overall results from plasmid encoded versus chromosomally encoded affinity-tagged RpoA expressed in E. coli. To evaluate the performance of the pBBR5DEST42 vector in the context of a strategy that also includes affinity isolation and mass spectrometric identification of interacting proteins, we compared results in E. coli from the pBBR5DEST42-encoded fusion of RpoA with the dual hexahistidine/V5 tag to the chromosomally encoded TAP-RpoA²⁴, and a plasmid-encoded hexahistidine tagged RpoA²³. Both "dual-tag" strategies led to identification of all four components of the core enzyme, the major sigma factor, and Rho; the hexahistidine/V5 tag did not lead to detection of NusA, NusG, HepA, or GreB. The chromosomal TAP/SPA tag thus offers more sensitivity in some cases than the plasmid-borne dual hexahistidine/V5 tag. From our results, it is not possible to determine whether this is due to the location of the tagged gene (chromosomal versus plasmid) or to the properties of the tag and the associated affinity isolation. However, results shown in Table 2 suggest that, in our hands, the overall methodology, when applied to a chromosomally tagged RpoA, provides similar results for proteins expected to be
more abundant in the sample while diverging somewhat for polypeptides that associate conditionally with RNA polymerase and for background proteins. Nonetheless, the plasmidencoded hexahistidine/V5 tagging strategy used in the current study identifies known interaction partners for RpoA. The results are generally comparable (given the recognized noisy nature of these types of measurements ¹³) to previous studies reported in the literature ^{23, 24} for major interacting proteins, but with some differences in less-abundant or transient interactors and in the background proteins observed. Affinity-tagged baits expressed from plasmid-encoded genes could lead to false interactions that would not occur in the native complex due to expression of the bait protein at inappropriate times, concentrations or locations in the cell.

When we extended the plasmid-encoded hexahistidine/V5 strategy to other components of RNA polymerase in *R. palustris* and *S. oneidensis* MR-1, the expected small "networks" of multiple connections among subunits emerged. As shown in Tables 3 and 4, interactions among the core components of RNA polymerase could be confidently identified in *R. palustris* and *S. oneidensis*. Other interactors besides the core components were also detected. However, some known interactors (sigma factors for *S. oneidensis*; NusA and NusG for *R. palustris*) were not detected. The observed differences between the two species suggest that a comparative analysis may be fruitful. For example, the pBBR5DEST42 vector may cause different species dependent stresses affecting expression and/or assembly of RNA polymerase holoenzyme. The biophysical characteristics (e.g. binding constants) of protomers that conditionally associate with the RNA polymerase core may differ between species. Regulation of RNA polymerase via sigma factors and other components may differ between species. Examination of this complex in additional species may help to focus such a comparative analysis. As with all affinity-MS approaches, a number of proteins were detected that are not expected interactors with RNA polymerase

(potential false positives), especially abundant proteins such as components of the ribosome. The BEPro³ tool ⁴⁴ proved useful for distinguishing potentially authentic bait-prey interactions from "background."

Conclusions

We have described a tool for expressing fusion proteins containing affinity tags via a system that combines a broad-host-range capability ²⁷ with the flexibility to incorporate any of several different affinity tags via the commercial Gateway site-specific recombination system ²⁸. Although this paper has focused on the C-terminal hexahistidine/V5 affinity tag, other constructs can be readily generated, for example we have evaluated N-terminal glutathione-s-transferase (GST), C-terminal GST, and N-terminal hexahistidine.

Our goal is to perform large-scale experimental studies of protein-protein interactions in microbial species that have potential for environmental applications. We are currently applying this system to large-scale characterization of protein-protein interactions in *R. palustris*. The system we describe will allow us to pursue several refinements to optimize throughput and accuracy in identifying protein-protein interactions. The flexibility of the destination vector design will allow us to explore the use of other affinity tag combinations and promoters, potentially expanding the range of protein-protein interactions that can be characterized through the powerful combination of affinity isolation and mass spectrometry.

Acknowledgements

208

We thank the laboratories of Caroline Harwood (University of Washington) and Andrew Emili (University of Toronto) for generous gifts of materials. This research was sponsored by the Genomics:GTL program, Office of Biological and Environmental Research, U.S. Department of Energy, under contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. WJH acknowledges the UT-ORNL Graduate School of Genome Science and Technology for support.

Supporting Information Available: Supplementary Table I and Table II. The material is available free at <u>http://pubs.acs.org</u>.

Figure Captions

Figure 1. Overview of our approach for experimental determination of protein-protein interactions in Gram-negative bacteria.

Figure 2. Map containing relevant features of pBBR5DEST42 destination vector (see Materials and Methods for details of plasmid construction) *rep*, pBBR1MCS5 replication protein; *mob*, mobilization protein; *ccdB*, death gene; Cm^r, chloramphenicol resistance protein; Gm^r, gentamicin resistance protein; V5, C-terminal V5 epitope fusion; 6xHis, hexahistidine C-terminal fusion.

Figure 3. Western blot analysis of several RpoA hexahistidine/V5-fusion proteins expressed from pBBR5DEST42. Lane 1, MW standards; lane 2, *E. coli* K12 pBBR5DEST42-ECK3282, predicted MW 40768 Da; lane 3, *R. palustris* pBBR5DEST42-RPA3226, predicted MW 41791 Da; lane 4, *S. oneidensis* MR1 pBBR5DEST42-SO0256, predicted MW 40417 Da. Each lane contains ~30 µg total cell lysate. The blot was probed with anti-V5 antibody.

Strain, plasmid or primer	Genotype, phenotype or sequence of primer (5'-3')	Reference, origin or description
E. coli		
K12	K-12 MG1655 Wild-type strain	ATCC
DH5a	F \P 80dlacZ Δ M15 Δ (lacZYA-argF) U169 recA1 endA1 hsdR17(r _k , m _k ⁺) phoA supE44 λ thi-1 gyrA96 relA1	Novagen
DB3.1	F ⁻ gyrA462 endA1 Δ (sr1-recA) mcrB mrr hsdS20(r _B -, m _B -) supE44 ara-14 galK2 lacY1 proA2 rpsL20(Sm ^R) xyl-5 λ - leu mtl1	Invitrogen
β2155	<i>thrB1004 pro thi strA hsdS lacZDM15</i> (F9 <i>lacZDM15 laclq traD36 proA1 proB1</i>) D <i>dapA::erm</i> (Ermr) <i>pir::</i> RP4 [:: <i>kan</i> (Kmr) from SM10]	37
BL21(DE3)	$F ompT hsdS_B(r_B m_B) gal dcm (DE3)$	Invitrogen
<i>R. palustris</i> CGA010	hupV repaired derivative of CGA009 ²⁹	33
S. oneidensis MR1	Wild-type strain	ATCC 700550 54
Plasmids		
pET-DEST42	Ap ^r , Cm ^r , C-terminal 6XH is and V5 epitope	Invitrogen
pBBR1MCS5	Gm ^r , <i>mob</i> , broad host range cloning vector	27
pBBR5DEST42	Gm ^r , C-terminal 6XHis and V5 epitope	This study
pDONR221	Km ^r , gateway entry vectorGm ^r , N-terminal GST	Invitrogen
PCR Primers ^a		
RPA3226-for	gggg aca agt ttg tac aaa aaa gca ggc ttc gaa <u>gga g</u> at agaATGACGATCCAGAAAAATTGGC	rpoA
RPA3226-rev	ggg gac cac ttt gta caa gaa agc tgg gtcGTAGTGATCTTCGAAGCGCTT	
RPA0367-for	gggg aca agt ttg tac aaa aaa gca ggc ttc gaa <u>gga g</u> at agaATGGCCCGTGCTGCTACTCT	rpoH
RPA0367-rev	ggg gac cac ttt gta caa gaa agc tgg gtcGTGCGCTGCTTCCAGCGCC	
RPA3267-for	gggg aca agt ttg tac aaa aaa gca ggc ttc gaa <u>gga g</u> at agaATGGCGATGAACCAGGAAATTA	rpoC
RPA3267-rev	ggg gac cac ttt gta caa gaa agc tgg gtcCTCTGCCGGCGGCAGCGA	
RPA3268-for	gggg aca agt ttg tac aaa aaa gca ggc ttc gaa <u>gga g</u> at agaATGGCGCAGCAGACGTTCAC	rpoB
RPA3268-rev	ggg gac cac ttt gta caa gaa agc tgg gtcCTCGGCAGCCTCGGCCGG	
ECK3282-for	gggg aca agt ttg tac aaa aaa gca ggc ttc gaa <u>gga g</u> at aga ATGCAGGGTTCTGTGACAG	rpoA
ECK3282-rev	ggg gac cac ttt gta caa gaa agc tgg gtc CTCGTCAGCGATGCTTGCC	
SO0256-for	gggg aca agt ttg tac aaa aaa gca ggc ttc gaa <u>gga g</u> at agaATGCAGGGTTCTGTTACAGAAT	rpoA
SO0256-rev	ggg gac cac ttt gta caa gaa agc tgg gtcTAGGTCGTCTGCTAAACTAGCT	
SO0225-for	gggg aca agt ttg tac aaa aaa gca ggc ttc gaa <u>gga g</u> at	rpoC

Table 1. Bacterial strains, plasmids and primers used in this study

	agaATGGTTTACTCCTATTCTGAAA
SO0225-rev	ggg gac cac ttt gta caa gaa agc tgg
	gtcTTCCTGATCCAACTCGATATTA
SO0360-for	gggg aca agt ttg tac aaa aaa gca ggc ttc gaa gga gat
	agaATGGCTCGCGTAACTGTAGAAG
SO0360-rev	ggg gac cac ttt gta caa gaa agc tgg
	gtcTAGTGAACGGCCTTCAGCGAT

rpoZ

^aGene specific sequences are in upper case. Shine-Delgarno sequence is underlined.

Tag,	6-His/V5, ^{a,b}	TAP ^{a,c} ,	TAP/SPA,	6-His,		
Location	plasmid	chromosomal	chromosomal	plasmid		
Detection			LC-MS-MS and			
Method	LC-MS-MS	LC-MS-MS	MALDI	MALDI		
Source	This study	This study	Ref. ^{24d}	Ref. ^{23e}	STRING ^f	Prolinks ^g
Gene ^h						
rpoC	62.5	381	Y	у	0.999	0.505 GN
rpoB	50.5	331	Y	у	0.999	0.53 GN
rpoD	6	62	Y	у	0.999	0.577 PP
rplB	15.5	6	Y	у	0.909	0.807 GN
					0.961	0.877 GN, 0.17
rpsE	30	5	Y	У		PP
					0.989	0.87 PP, 0.853
rpsD	5.5	4	Y	у		GN, 0.676 GC
rpoA (bait)	107	92	У			
rpoZ	11	19	Y		0.998	N
-		_			0.926	0.799 GN, 0.392
rplD	3.5	5	Y			РР
G					0.898	0.717 GN, 0.354
rpsG	4	3	Y			
T	-	2			0.923	0.795 GN, 0.471
rpsJ	5	2	У		0.00	
N	4	2			0.98	0.879 GN, 0.637
rpsM	4	2	У		0.0(5	PP 0.745CN
rpiO	0	22	У	У	0.965	0./45GN
	24.5	23			0.85	0.686 GN
nupA		4	y y		0.10	0.10/ PP
nusA		4	Y		0.994	0.778 PP
rpsO		2	y y		N N	0.248 PP
Ips1 hon A			y V		IN 0.570	N N
rho	0		Y	У	0.579	IN 0.274 DD
1110	0		У		0.333	0.274 PP
rn1 A	5		N/		0.871	0.069 FF, 0.307 GN
тріА	5		у		0.077	0.846 GN 0.105
rnlF	18.5		V		0.977	0.040 GIN, 0.195 PP
ipit	10.0		y		0.948	0.867 GN 0.633
mlF	2			v	0.910	PP
ipii				<u> </u>	0.86	0.685 GN 0.388
rplM	6.5		Y		0.00	PP
					0.947	0.821 GN. 0.633
rplP	6.5		v			PP
rpsB	26.5		Ý		0.687	0.435 PP
rpsC	17.5		Y		0.974	0.816 GN
greB			Y		0.897	0.148 PP
					0.899	0.566 PP, 0.454
nusG			Y			GŃ
					0.899	0.798 GN, 0.314
rplC			Y			PP
rplL			Y		0.919	0.159 GN
rpsP			Y		0.242	N

Table 2. Proteins co-isolating with affinity-tagged RpoA in E. coli*

*Table contains proteins detected by two or more approaches, plus those reported as validated by Butland *et al.* 24

a. Table entries correspond to number of MS-MS spectra identified as arising from peptides of the corresponding protein. Average of two LC-MS-MS runs for His-V5 tag; single run for TAP tag.
b. Proteins detected only with His-V5 tagged rpoA: atpF (6), crp (5.5), cyoA (7.5), dacB (3), dnaJ (10.5), gatY (9), glpD (36), lldD (3), ppiD (4), rplJ (8), rpsI (4.5), rpsK (4), secG (3), xerD (6), yfgM (2.5), yqjD (8.5), yqjI (4.5). This list provides gene name followed in parentheses by number of MS-MS spectra (see note a above).

c. Proteins detected only with TAP tagged rpoA in present study: dps (23), hupA (4), hupB (4), pepA (12), rplV (2), rpmC (6), rpoE (2), rpoS (10), seqA (4), rpsO (2), rpsT (2). This list provides gene name followed in parentheses by number of MS-MS spectra (see note a above).

d. Interactions reported by Butland *et al.*²⁴ denoted by "y", with "**Y**" denoting interactions reported as validated. Other interactions reported:²⁴ aceE, aceF, aspS, cspC, mreB, pssA, rfaK, rplS, rplU, rplW, rplX, rpmA, rpmB, rpmG, rpsA, rpsF, rpsN, rpsS, rpsU, wecG.

e. Interactions reported by Arifuzzaman *et al.*²³ denoted by "y" in the table. Other interactors reported ²³: fur, greA, hybE, pta, yccC.

f. Combined score predicted from STRING (http://string.embl.de). N: not found.

g. Predicted scores from Prolinks (http://mysql5.mbi.ucla.edu/cgi-bin/functionator/pronav), with prediction methods: PP: phylogenetic profile; GN: gene neighbor; GC: gene cluster. N: not found.⁴⁹ h. Bold entries are components of RNA polymerase core enzyme.

						Ba	its		
				SO R	0225, роС	SO025	6, RpoA	SO0 Rp	360, oZ
		biological replicates, technical re	eplicates ^b \rightarrow	3	6,6	4	, 6	3, 6	
		Preys							
Gene ID	Name ^c	Product	Ubiquity	BO	SCav	BO	SC _{av}	BO	SCav
SO0224	<u>rpoB</u>	DNA-directed RNA polymerase, beta subunit	0.17	1	23.33	1	104	1	10.83
SO0225	rpoC	DNA-directed RNA polymerase, beta subunit	0.21	1	16.33	1	81	1	6.67
SO0256	<u>rpoA</u>	DNA-directed RNA polymerase, alpha subunit	0.17	1	17.17	1	42.67	1	7.83
SO0360	rpoZ	DNA-directed RNA polymerase, omega subunit	0.09	0.59	1.33	1	12	1	17.33
SO1490	adhB	alcohol dehydrogenase II	0.28	0.98	2	0.25	8	0.96	1.83
SO4236	leuA	2-isopropylmalate synthase	0.35			1	4.83	1	3.67
SO3907		conserved hypothetical protein	0.04	0	1.17	0	1.17	0.99	2
SO4747	atpD	ATP synthase F1, beta subunit	0.24			0.96	3.5		
SO1624	purU	formyltetrahydrofolate deformylase	0.48			1	2.33	1	1
SO1630	tsf	translation elongation factor Ts	0.48			1	2.83		
SO4263		conserved hypothetical protein	0.24			1	2.83		
SO0227	rpsG	ribosomal protein S7	0.24			1	2.33		
SO0253	rpsM	ribosomal protein S13	0.37			1	2.17		
SO0222	rplJ	ribosomal protein L10	0.38			1	2		
SO2485		deoxyguanosinetriphosphate triphosphohydrolase, putative	0.29			0.94	2		
SO3652	rplU	ribosomal protein L21	0.36			0.66	1.83		
SO2299	thrS	threonyl-tRNA synthetase	0.19			0.87	1.67		
SO3348	hemH-2	ferrochelatase	0.12			0.93	1.33		
SO4105	mshA	MSHA pilin protein MshA	0.37			0.98	1.17		

Table 3. Selected^a proteins detected in affinity isolations with tagged components of RNA polymerase in S. oneidensis MR-1

^a Selection criteria: $Ubiquity \le 0.5$, $Bayes Odds \ge 0.5$, two or more peptides. See Supplementary Table I for complete listing. ^b biological replicates = number of different cultures; technical replicates = number of LC-MS/MS experiments.

BO: Bayes Odds

SC_{av}: spectrum count averaged across technical replicates

Bold entries correspond to *Bayes Odds* \geq 0.5.

^c Underlined entries are components of RNA polymerase core enzyme.

			Baits								
				RPA	.0367,	RPA	A3226,	RPA	43267,	RPA3	3268,
			Rp	юH	R	роА	R	роС	Rp	рВ	
		biological replicates, technical rep	3	, 6	۷	1, 4	2	2, 4	4, 10		
		Preys									
Gene ID	Name ^c	Product	Ubiquity	BO	SC _{av}						
RPA3268	<u>rpoB</u>	RNA polymerase beta subunit	0.19	0.02	19.83	0.99	177.	0.99	130.25	1	85.1
RPA3267	<u>rpoC</u>	RNA polymerase beta' subunit	0.31	1	12.17	1	87.25	1	137.75	1	43.2
RPA3226	<u>rpoA</u>	DNA-directed RNA polymerase alpha subunit	0.25	1	8.67	1	123.5	1	43.25	1	31.8
RPA0367	<u>rpoH</u>	stress response sigma factor	0.19	1	38	0.98	9.5	0.98	11	0	2.9
RPA1288	<u>rpoD</u>	RNA polymerase sigma subunit	0.19			1	11.5	1	25.5	1	12.9
RPA2692	<u>rnpO</u>	RNA polymerase omega subunit	0.19	0.01	1.33	1	13.5	1	17.5	1	11.7
RPA0183	RPA0183	unknown protein	0.19	0.81	9.67	0	2.75	0.33	15.	0.95	7.5
RPA1093	ribB	possible GTP cyclohydrolase II, riboflavin	0.07	0.87	11.33	0	2.75	0.41	13.5	0.02	4.7
RPA0333	dnaK	heat shock protein DnaK (70)	0.06	1	23.5						
RPA3254	rpsG	30S ribosomal protein S7	0.45	1	5.17	0.81	2.75	0.99	10.25	0.92	2.7
RPA3246	rpsS	30S ribosomal protein S19	0.38	1	6.33	0.01	1	0.13	3.75	1	2.6
RPA1548	puhA	H subunit of photosynthetic reaction center	0.05	0.24	5			0.53	6	0	2.5
RPA0304	RPA0304	possible outer membrane lipoprotein GNA33	0.49	1	6.33	0.01	1	0.23	1.25	0.05	1.3
RPA0060	RPA0060	conserved unknown protein	0.06			0.9	7.25	0.14	2	0	0.6
RPA1597	purQ	phosphoribosylformylglycinamide synthetase	0.12	0	0.67			0.95	8.75		
RPA4356	ctc, rplY, L25	putative 50S ribosomal protein L25	0.12	0	2.5	0	0.75	0.87	5.25		
RPA0202	acnA	aconitate hydratase	0.06	0	0.5			0.97	7.5		
RPA1653	RPA1653	conserved unknown protein	0.07	0.9	3.83	0.01	2.75			0	1.3
RPA3252	tufA, EF-Tu	elongation factor Tu	0.06					0.93	6.5	0	1.1
RPA3283	tuf, EF-Tu	elongation factor Tu	0.06					0.93	6.5	0	1.1
RPA3270	rplJ	50S ribosomal protein L10	0.17	0.62	2.5	0	0.5	0.73	3.5	0	0.8
RPA1205	RPA1205	putative alcohol dehydrogenase	0.12					0.99	5.75	0	1.2
RPA0844	atpF2	putative FoF1 ATP synthase, subunit B'	0.24	0	1.67	0	0.5	0.7	4.75		
RPA3238	rplE	50S ribosomal protein L5	0.06	0	0.67			0.98	5.25		
RPA0176	atpD	putative H+-transporting ATP synthase beta	0.31	0	1.5			0.98	4	0	0.4
RPA0241	rplS, L19	50s ribosomal protein L19	0.07	0	0.67			0.99	4.75		
RPA0240	leuC	3-isopropylmalate dehydratase	0.06	0	1.5			0.95	3.5		
RPA0331	RPA0331	possible heat shock protein (HSP-70 cofactor)	0.06	1	5						

Table 4. Selected^a proteins detected in affinity isolations with tagged components of RNA polymerase in *R. palustris*

RPA1051	RPA1051	pyruvate phosphate dikinase	0.06			0.07	0.75	0.77	4		
RPA2922	rpsB	30S ribosomal protein S2	0.13	0	1.17			0.96	2.75	0	0.5
RPA0217	sdhA	succinate dehydrogenase flavoprotein subunit	0.1					0.63	2.75		
RPA0934	RPA0934	conserved unknown protein	0.06					0.68	2.5		
RPA0854	hemO	5-aminolevulinic acid synthase (ALAS)	0.06					0.61	2		
RPA3253	fusA, EF-G	elongation factor G	0.06					0.96	1.75		
RPA4636	RPA4636	FeoA family	0.02	0.55	1.67						

^a Selection criteria: *Ubiquity* \leq 0.5, *Bayes Odds* \geq 0.5, two or more peptides. See Supplementary Table II for complete listing.

^bbiological replicates = number of different cultures; technical replicates = number of LC-MS/MS experiments.

BO: Bayes Odds

SC_{av}: spectrum count averaged across technical replicates

Bold entries correspond to *Bayes Odds* \geq 0.5.

^c Underlined entries are components of RNA polymerase core enzyme.

Figure 1

Figure 2

Figure 3

References

1. Alberts, B., The cell as a collection of protein machines: Preparing the next generation of molecular biologists. *Cell* **1998**, 92, (3), 291-294.

2. Klotz, I. M.; Darnall, D. W.; Langerman, N. R.; Neurath, H.; Hill, R. L.; Boeder, C. L., Quaternary Structure of proteins. In *The Proteins*, Academic Press: New York, 1975; Vol. 3, pp 293-411.

3. Phizicky, E. M.; Fields, S., Protein-Protein Interactions - Methods for Detection and Analysis. *Microbiological Reviews* **1995**, *59*, (1), 94-123.

4. Alberts, B.; Miakelye, R., Unscrambling the Puzzle of Biological Machines - the Importance of the Details. *Cell* **1992**, 68, (3), 415-420.

5. Oliver, S., Proteomics: Guilt-by-association goes global. *Nature* **2000**, 403, (6770), 601-603.

6. de Silva, E.; Stumpf, M. P. H., Complex networks and simple models in biology. *Journal of the Royal Society Interface* **2005**, *2*, (5), 419-430.

7. Drewes, G.; Bouwmeester, T., Global approaches to protein-protein interactions. *Current Opinion in Cell Biology* **2003**, 15, (2), 199-205.

8. Ideker, T., A systems approach to discovering signaling and regulatory pathways - or, how to digest large interaction networks into relevant pieces. *Advances in Systems Biology* **2004**, 547, 21-30.

9. Noirot, P.; Noirot-Gros, M. F., Protein interaction networks in bacteria. *Current Opinion In Microbiology* **2004**, 7, (5), 505-512.

10. Schachter, V., Protein-interaction networks: from experiments to analysis. *Drug Discovery Today* **2002**, *7*, (11), S48-S54.

11. Xia, Y.; Yu, H. Y.; Jansen, R.; Seringhaus, M.; Baxter, S.; Greenbaum, D.; Zhao, H. Y.; Gerstein, M., Analyzing cellular biochemistry in terms of molecular networks. *Annual Review of Biochemistry* **2004**, 73, 1051-1087.

12. Chen, Y.; Xu, D., Computational analyses of high-throughput protein-protein interaction data. *Current Protein & Peptide Science* **2003**, 4, (3), 159-180.

13. Musso, G. A.; Zhang, Z.; Emili, A., Experimental and Computational Procedures for the Assessment of Protein Complexes on a Genome-wide Scale. *Chemical Reviews* **2007**, 107, (8), 3585-3600.

14. Fields, S.; Song, O. K., A novel genetic system to detect protein-protein interactions. *Nature* **1989**, 340, 245-246.

15. Rain, J. C.; Selig, L.; De Reuse, H.; Battaglia, V.; Reverdy, C.; Simon, S.; Lenzen, G.; Petel, F.; Wojcik, J.; Schachter, V.; Chemama, Y.; Labigne, A.; Legrain, P., The protein-protein interaction map of *Helicobacter pylori*. *Nature* **2001**, 409, (6817), 211-215.

16. Ito, T.; Chiba, T.; Ozawa, R.; Yoshida, M.; Hattori, M.; Sakaki, Y., A comprehensive two-hybrid analysis to explore the yeast protein interactome. *Proceedings of The National Academy of Sciences of The United States of America* **2001**, 98, (8), 4569-4574.

17. Uetz, P.; Giot, L.; Cagney, G.; Mansfield, T. A.; Judson, R. S.; Knight, J. R.; Lockshon, D.; Narayan, V.; Srinivasan, M.; Pochart, P.; Qureshi-Emili, A.; Li, Y.; Godwin, B.; Conover, D.; Kalbfleisch, T.; Vijayadamodar, G.; Yang, M. J.; Johnston, M.; Fields, S.; Rothberg, J. M., A comprehensive analysis of protein-protein interactions in *Saccharomyces cerevisiae Nature* **2000**, 403, 623-627.

18. Bertone, P.; Snyder, M., Advances in functional protein microarray technology. *FEBS Journal* **2005**, 272, (21), 5400-5411.

19. Zhu, H.; Bilgin, M.; Bangham, R.; Hall, D.; Casamayor, A.; Bertone, P.; Lan, N.; Jansen, R.; Bidlingmaier, S.; Houfek, T.; Mitchell, T.; Miller, P.; Dean, R. A.; Gerstein, M.; Snyder, M., Global analysis of protein activities using proteome chips. *Science* **2001**, 293, 2101-2105.

20. Sidhu, S. S.; Fairbrother, W. J.; Deshayes, K., Exploring protein-protein interactions with phage display. *Chembiochem* **2003**, 4, (1), 14-25.

21. Gavin, A. C.; B"sche, M.; Krause, R.; Grandi, P.; Marzioch, M.; Bauer, A.; Schultz, J.; Rick, J. M.; Michon, A. M.; Cruciat, C. M.; Remor, M.; H"fert, C.; Schelder, M.; Brajenovic, M.; Ruffner, H.; Merino, A.; Klein, K.; Hudak, M.; Dickson, D.; Rudi, T.;

Gnau, V.; Bauch, A.; Bastuck, S.; Huhse, B.; Leutwein, C.; Heurtier, M. A.; Copley, R. R.; Edelmann, A.; Querfurth, E.; Rybin, V.; Drewes, G.; Raida, M.; Bouwmeester, T.; Bork, P.; Seraphin, B.; Kuster, B.; Neubauer, G.; Superti-Furga, G., Functional organization of the yeast proteome by systematic analysis of protein complexes. *Nature* **2002**, 415, 141-147.

22. Ho, Y.; Gruhler, A.; Heilbut, A.; Bader, G. D.; Moore, L.; Adams, S. L.; Millar, A.; Taylor, P.; Bennett, K.; Boutilier, K.; Yang, L.; Wolting, C.; Donaldson, I.; Schandorff, S.; Shewnarane, J.; Vo, M.; Taggart, J.; Goudreault, M.; Muskat, B.; Alfarano, C.; Dewar, D.; Lin, Z.; Michalickova, K.; Willems, A. R.; Sassi, H.; Nielsen, P. A.; Rasmussen, K. J.; Andersen, J. R.; Johansen, L. E.; Hansen, L. H.; Jespersen, H.; Podtelejnikov, A.; Nielsen, E.; Crawford, J.; Poulsen, V.; Sorensen, B. D.; Matthiesen, J.; Hendrickson, R. C.; Gleeson, F.; Pawson, T.; Moran, M. F.; Durocher, D.; Mann, M.; Hogue, C. W. V.; Figeys, D.; Tyers, M., Systematic identification of protein complexes in *Saccharomyces cerevisiae* by mass spectrometry. *Nature* 2002, 415, 180-183.

23. Arifuzzaman, M.; Maeda, M.; Itoh, A.; Nishikata, K.; Takita, C.; Saito, R.; Ara, T.; Nakahigashi, K.; Huang, H. C.; Hirai, A.; Tsuzuki, K.; Nakamura, S.; Altaf-Ul-Amin, M.; Oshima, T.; Baba, T.; Yamamoto, N.; Kawamura, T.; Ioka-Nakamichi, T.; Kitagawa, M.; Tomita, M.; Kanaya, S.; Wada, C.; Mori, H., Large-scale identification of protein-protein interaction of *Escherichia coli* K-12. *Genome Research* **2006**, 16, (5), 686-691.

24. Butland, G.; Peregrin-Alvarez, J. M.; Li, J.; Yang, W. H.; Yang, X. C.; Canadien, V.; Starostine, A.; Richards, D.; Beattie, B.; Krogan, N.; Davey, M.; Parkinson, J.; Greenblatt, J.; Emili, A., Interaction network containing conserved and essential protein complexes in *Escherichia coli*. *Nature* **2005**, 433, (7025), 531-537.

25. Tackett, A. J.; DeGrasse, J. A.; Sekedat, M. D.; Oeffinger, M.; Rout, M. P.; Chait, B. T., I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. *Journal of Proteome Research* **2005**, *4*, (5), 1752-1756.

26. Frazier, M. E.; Johnson, G. M.; Thomassen, D. G.; Oliver, C. E.; Patrinos, A., Realizing the Potential of the Genome Revolution: The Genomes to Life Program. *Science* **2003**, 300, (5617), 290-293.

27. Kovach, M. E.; Elzer, P. H.; Hill, D. S.; Robertson, G. T.; Farris, M. A.; Roop, R. M.; Peterson, K. M., 4 new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* 1995, 166, (1), 175-176.

28. Landy, A., Dynamic, Structural, and Regulatory Aspects of Lambda-Site-Specific Recombination. *Annual Review of Biochemistry* **1989**, 58, 913-949.

29. Larimer, F. W.; Chain, P.; Hauser, L.; Lamerdin, J.; Malfatti, S.; Do, L.; Land, M. L.; Pelletier, D. A.; Beatty, J. T.; Lang, A. S.; Tabita, F. R.; Gibson, J. L.; Hanson, T. E.; Bobst, C.; Torres, J.; Peres, C.; Harrison, F. H.; Gibson, J.; Harwood, C. S., Complete genome sequence of the metabolically versatile photosynthetic bacterium *Rhodopseudomonas palustris. Nature Biotechnology* **2004**, 22, (1), 55-61.

30. Heidelberg, J. F.; Paulsen, I. T.; Nelson, K. E.; Gaidos, E. J.; Nelson, W. C.; Read, T. D.; Eisen, J. A.; Seshadri, R.; Ward, N.; Methe, B.; Clayton, R. A.; Meyer, T.; Tsapin, A.; Scott, J.; Beanan, M.; Brinkac, L.; Daugherty, S.; DeBoy, R. T.; Dodson, R. J.; Durkin, A. S.; Haft, D. H.; Kolonay, J. F.; Madupu, R.; Peterson, J. D.; Umayam, L. A.; White, O.; Wolf, A. M.; Vamathevan, J.; Weidman, J.; Impraim, M.; Lee, K.; Berry, K.; Lee, C.; Mueller, J.; Khouri, H.; Gill, J.; Utterback, T. R.; McDonald, L. A.; Feldblyum, T. V.; Smith, H. O.; Venter, J. C.; Nealson, K. H.; Fraser, C. M., Genome sequence of the dissimilatory metal ion-reducing bacterium *Shewanella oneidensis. Nature Biotechnology* **2002**, 20, (11), 1118-1123.

31. Blattner, F. R.; Plunkett, G.; Bloch, C. A.; Perna, N. T.; Burland, V.; Riley, M.; ColladoVides, J.; Glasner, J. D.; Rode, C. K.; Mayhew, G. F.; Gregor, J.; Davis, N. W.; Kirkpatrick, H. A.; Goeden, M. A.; Rose, D. J.; Mau, B.; Shao, Y., The complete genome sequence of *Escherichia coli* K-12. *Science* **1997**, 277, (5331), 1453-&.

32. Rigaut, G.; Shevchenko, A.; Rutz, B.; Wilm, M.; Mann, M.; Seraphin, B., A generic protein purification method for protein complex characterization and proteome exploration. *Nature Biotechnology* **1999**, 17, 1030-1032.

33. Rey, F. E.; Oda, Y.; Harwood, C. S., Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in *Rhodopseudomonas palustris*. *Journal of Bacteriology* **2006**, 188, (17), 6143-6152.

34. Gorby, Y. A.; Yanina, S.; McLean, J. S.; Rosso, K. M.; Moyles, D.; Dohnalkova, A.; Beveridge, T. J.; Chang, I. S.; Kim, B. H.; Kim, K. S.; Culley, D. E.; Reed, S. B.; Romine, M. F.; Saffarini, D. A.; Hill, E. A.; Shi, L.; Elias, D. A.; Kennedy, D. W.; Pinchuk, G.; Watanabe, K.; Ishii, S. i.; Logan, B.; Nealson, K. H.; Fredrickson, J. K., Electrically conductive bacterial nanowires produced by *Shewanella oneidensis strain* MR-1 and other microorganisms. *PNAS* **2006**, 103, (30), 11358-11363.

35. Kim, M. K.; Harwood, C. S., Regulation of Benzoate-CoA Ligase in *Rhodopseudomonas palustris. FEMS Microbiology Letters* **1991**, 83, (2), 199-203.

36. Sambrook, J.; Russell, D. W., *Molecular cloning: a laboratory manual*, . 3rd ed.; Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY., 2001; p p. 1.84–1.117.

37. Dehio, C.; Meyer, M., Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from *Escherichia coli*. *J. Bacteriol.* **1997**, 179, (2), 538-540.

38. Zeghouf, M.; Li, J.; Butland, G.; Borkowska, A.; Canadien, V.; Richards, D.; Beattie, B.; Emili, A.; Greenblatt, J. F., Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. *Journal of Proteome Research* **2004**, *3*, (3), 463-468.

39. Hervey, W. J.; Strader, M. B.; Hurst, G. B., Comparison of Digestion Protocols for Microgram Quantities of Enriched Protein Samples. *Journal of Proteome Research* **2007**, 6, (8), 3054-3061.

40. Eng, J. K.; McCormack, A. L.; Yates, J. R., III, An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. *Journal of the American Society for Mass Spectrometry* **1994**, 5, 976-989.

41. Tabb, D. L.; McDonald, W. H.; Yates, J. R., DTASelect and contrast: Tools for assembling and comparing protein identifications from shotgun proteomics. *Journal of Proteome Research* **2002**, 1, (1), 21-26.

42. Gattiker, A.; Michoud, K.; Rivoire, C.; Auchincloss, A. H.; Coudert, E.; Lima, T.; Kersey, P.; Pagni, M.; Sigrist, C. J. A.; Lachaize, C.; Veuthey, A. L.; Gasteiger, E.; Bairoch, A., Automated annotation of microbial proteomes in SWISS-PROT. *Computational Biology and Chemistry* **2003**, 27, (1), 49-58.

43. Romine, M. F.; Elias, D. A.; Monroe, M. E.; Auberry, K.; Fang, R. H.; Fredrickson, J. K.; Anderson, G. A.; Smith, R. D.; Lipton, M. S., Validation of *Shewanella oneidensis* MR-1 small proteins by AMT tag-based proteome analysis. *Omics-a Journal of Integrative Biology* **2004**, *8*, (3), 239-254.

44. Sharp, J. L.; Anderson, K. K.; Hurst, G. B.; Daly, D. S.; Pelletier, D. A.; Cannon, W. R.; Auberry, D. L.; Schmoyer, D. D.; HayesMcDonald, W.; White, A. M.; Hooker, B. S.; Victry, K. D.; Buchanan, M. V.; Kery, V.; Wiley, H. S., Statistically Inferring Protein-Protein Associations with Affinity Isolation LC-MS/MS Assays. *Journal of Proteome Research* **2007**, *6*, (9), 3788-3795.

45. Edwards, A. M.; Kus, B.; Jansen, R.; Greenbaum, D.; Greenblatt, J.; Gerstein, M., Bridging structural biology and genomics: assessing protein interaction data with known complexes. *Trends In Genetics* **2002**, 18, (10), 529-536.

46. Hiratsu, K.; Amemura, M.; Nashimoto, H.; Shinagawa, H.; Makino, K., The *rpoE* Gene of *Escherichia coli*, Which Encodes Sigma(E), Is Essential for Bacterial-Growth at High-Temperature. *Journal of Bacteriology* **1995**, 177, (10), 2918-2922.

47. Liu, H. B.; Sadygov, R. G.; Yates, J. R., A model for random sampling and estimation of relative protein abundance in shotgun proteomics. *Analytical Chemistry* **2004**, 76, (14), 4193-4201.

48. von Mering, C.; Jensen, L. J.; Kuhn, M.; Chaffron, S.; Doerks, T.; Kruger, B.; Snel, B.; Bork, P., STRING 7--recent developments in the integration and prediction of protein interactions. *Nucleic Acids Research* **2007**, 35, (suppl_1), D358-D362.

49. Bowers, P. M.; Pellegrini, M.; Thompson, M. J.; Fierro, J.; Yeates, T. O.; Eisenberg, D., Prolinks: a database of protein functional linkages derived from coevolution. *Genome Biology* **2004**, *5*, (5), Article #R35.

50. Mah, T. F.; Kuznedelov, K.; Mushegian, A.; Severinov, K.; Greenblatt, J., The alpha subunit of *E. coli* RNA polymerase activates RNA binding by NusA. *Genes & Development* **2000**, 14, (20), 2664-2675.

51. Rouby, J.; Pugniere, M.; Mani, J. C.; Granier, C.; Monmouton, P.; Saint Germain, S. T.; Leonetti, J. P., Characterization of monoclonal antibodies against *Escherichia coli* core RNA polymerase. *Biochemical Journal* **2002**, 361, 347-354.

52. Banerjee, S.; Chalissery, J.; Bandey, I.; Sen, R. J., Rho-dependent transcription termination: More questions than answers. *Journal of Microbiology* **2006**, 44, (1), 11-22.

53. Gamer, J.; Bujard, H.; Bukau, B., Physical Interaction Between Heat-Shock Proteins DnaK, DnaJ, and GrpE and the Bacterial Heat-Shock Transcription Factor-Sigma(32). *Cell* **1992**, 69, (5), 833-842.

54. Venkateswaran, K.; Moser, D. P.; Dollhopf, M. E.; Lies, D. P.; Saffarini, D. A.; MacGregor, B. J.; Ringelberg, D. B.; White, D. C.; Nishijima, M.; Sano, H.; Burghardt, J.; Stackebrandt, E.; Nealson, K. H., Polyphasic taxonomy of the genus *Shewanella* and description of *Shewanella oneidensis* sp. nov. *Int J Syst Bacteriol* **1999**, 49, (2), 705-724.

To enable protein-protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged "bait" proteins from a medium copy-number plasmid, followed by affinity isolation and mass spectrometry identification of interacting proteins. The vector has been modified to incorporate the Gateway DEST vector recombination region, to facilitate cloning and expression of various fusion proteins. We demonstrate this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram-negative microbial species of environmental interest, *Rhodopseudomonas palustris* CGA010 and *Shewanella oneidensis MR-1*.

Appendix C

Modified Perl Script for conducing Automated SEQUEST searches on *nix Operating Systems

#!/usr/bin/perl

07/28/04 GitRSeq v0.95 - Hayes McDonald, Oak Ridge National Lab # # A sister script to GitRDug that automates the process of running a # # SEQUEST search on a Windows box. It creates the folders and calls a # # series of programs to do the extraction, charge-state selection, # search, and then pulls the data back together into SQT and MS2 files. # # # Some modifications to get it working on the Linux boxes by WJH # print "\nGitRSeq v0.95\n"; print "Hayes McDonald, Oak Ridge National Lab\n"; print "\nHello and welcome GitRSeq, a program to take the pain\n"; print "and effort out of doing a SEQUEST search on a Windows box.\n"; print "\nBefore we get started, make certain you have everything you\n"; print "OS Conversion to Unix/Linux by Judson Hervey\n"; print "UT-ORNL Graduate School of Genome Science\n"; print "\nHello and welcome GitRSeq, a program to automate SEQUEST\n"; print "searches under Unix/Linux on Bombur and Balin.\n"; print "\nBefore we get started, make certain you have everything you\n"; print "need:\n"; print " - a folder of MS2 files\n"; print " - a sequest.params file for Unix\n"; print " - and an appropriate fasta file specified in the params file\n"; print "\nKick back and relax for a minute or two - this won't take as long as\n"; print "it does under Windoze...\n";

\$current_dir = cwd;

#print "\n \$current_dir\n\n";
opendir (DIR, "\$current_dir");

@filelist = readdir(DIR);

\$searches_dir = "\$current_dir";
print "\nMaking folders and copying sequest.params ...\n";

```
foreach $file (@filelist)
```

```
if (file = /(\S+)\MS2/)
     sub dir = 1;
     print "making $sub dir";
     mkdir $sub_dir;
     chdir $sub_dir;
     print "\n\nExtracting MS/MS data - please be patient ...\n";
     system "cp ../sequest.params sequest.params";
     system "cp ../$file .";
     print "\nAssigning charge states ...\n";
     system "$ms2zassign --DTAs";
     # sequest search #
     system "find . -name \"\*\.dta\" | xargs $sequest -S" ;
     # modified unitemare and cleanup #
     print "\nCleaning up and getting rid of those pesky .DTAs and .OUTs\n";
```

```
print "\nThank you for your continued patience (think of how much\n";
              print "space you'll be saving)\n";
              system "$unitemare";
              #system "COPY *.MS2 ..";
              if (-e "$sub_dir.sqt")
                     {
                     system "cp ./*.sqt ..";
                     my @currentlist = ();
                     opendir (CURRENT, ".");
                     @currentlist = readdir(CURRENT);
                     closedir CURRENT;
                     $filesremoved = unlink @currentlist;
                     print "\n$filesremoved\n";
                     }
              chdir $searches_dir;
              rmdir $sub_dir;
              #system "RD $sub dir";
              }
       }
################
```

system "DTASelect";

Appendix D H2O Isolation Protocol, All PP:WCL Protein Isotope Ratios

Protein	PP	log2ratio	Chr. Features	Reps	Protein Description
P0AEQ3_GLNH_ECOLI	1	4.6	126	4	Glutamine-binding periplasmic protein
P0AFK9_POTD_ECOLI	1	4.3	45	4	Spermidine/putrescine-binding periplasmic protein
P0AFM2_PROX_ECOLI	1	4.3	68	4	Glycine betaine-binding periplasmic protein
P31550_THIB_ECOLI	1	3.5	4	1	Thiamine-binding periplasmic protein
P08331_CN16_ECOLI	1	3.2	35	3	2',3'-cyclic-nucleotide 2'-phosphodiesterase
P0A855_TOLB_ECOLI	1	3.2	15	2	Protein tolB
P05458_PTRA_ECOLI	1	3.1	7	1	Protease 3
P23865_PRC_ECOLI	1	2	15	2	Tail-specific protease
P0AG78_SUBI_ECOLI	1	1.7	17	2	Sulfate-binding protein
P37329_MODA_ECOLI	1	1.1	323	4	Molybdate-binding periplasmic protein
P0AEG4_DSBA_ECOLI	1	1	9	2	Thiol:disulfide interchange protein dsbA
P0ADV1_YHBN_ECOLI	1	0.8	7	2	Protein yhbN
P0AD96_LIVJ_ECOLI	1	0.7	432	4	Leu/Ile/Val-binding protein
P0AEM9_FLIY_ECOLI	1	0.4	141	4	Cystine-binding periplasmic protein
P16700_CYSP_ECOLI	1	-0.1	68	4	Thiosulfate-binding protein
P0AEU0_HISJ_ECOLI	1	-0.1	135	4	Histidine-binding periplasmic protein
P04816_LIVK_ECOLI	1	-0.1	204	4	Leucine-specific-binding protein
P0AG82_PSTS_ECOLI	1	-0.1	18	2	Phosphate-binding protein pstS
P30860_ARTJ_ECOLI	1	-0.2	164	4	Arginine-binding periplasmic protein 2
P23847_DPPA_ECOLI	1	-0.3	321	4	Periplasmic dipeptide transport protein
P0ABZ6_SURA_ECOLI	1	-0.3	108	3	Chaperone surA
P37902_GLTI_ECOLI	1	-0.5	72	4	Glutamate/aspartate periplasmic-binding protein
P02925_RBSB_ECOLI	1	-0.5	78	4	D-ribose-binding periplasmic protein
P0AE22_APHA_ECOLI	1	-0.5	5	1	Class B acid phosphatase
P36649_CUEO_ECOLI	1	-0.5	3	1	Blue copper oxidase cueO
P0AB24_YCDO_ECOLI	1	-0.5	4	1	UPF0409 protein ycdO
P45523_FKBA_ECOLI	1	-0.6	61	4	FKBP-type peptidyl-prolyl cis-trans isomerase fkpA
P61316_LOLA_ECOLI	1	-0.6	38	4	Outer-membrane lipoprotein carrier protein
P0AAX8_YBIS_ECOLI	1	-0.6	40	4	Uncharacterized protein ybiS
P0AFL3_PPIA_ECOLI	1	-0.6	14	3	Peptidyl-prolyl cis-trans isomerase A

P30859_ARTI_ECOLI	1	-0.8	47	4	Arginine-binding periplasmic protein 1
P23843_OPPA_ECOLI	1	-0.8	976	4	Periplasmic oligopeptide-binding protein
P31697_FIMC_ECOLI	1	-0.8	7	1	Chaperone protein fimC
P09551_ARGT_ECOLI	1	-0.9	66	4	Lysine-arginine-ornithine-binding periplasmic protein
P07024_USHA_ECOLI	1	-0.9	53	4	Protein ushA
P0AFH8_OSMY_ECOLI	1	-1.3	231	4	Osmotically-inducible protein Y
P0AEX9_MALE_ECOLI	1	-1.5	31	4	Maltose-binding periplasmic protein
P39172_ZNUA_ECOLI	1	-1.5	335	4	High-affinity zinc uptake system protein znuA
P0AEG6_DSBC_ECOLI	1	-1.9	22	1	Thiol:disulfide interchange protein dsbC
P0AD59_IVY_ECOLI	1	-2.1	33	4	Inhibitor of vertebrate lysozyme
P37648_YHJJ_ECOLI	1	-2.1	6	1	Protein yhjJ
P09394_GLPQ_ECOLI	1	-2.3	24	4	Glycerophosphoryl diester phosphodiesterase
P0AEU7_SKP_ECOLI	1	-2.7	75	4	Chaperone protein skp
P0AGD1_SODC_ECOLI	1	-2.9	47	3	Superoxide dismutase [Cu-Zn]
P0AEE5_DGAL_ECOLI	1	-3	89	4	D-galactose-binding periplasmic protein
P0AG80_UGPB_ECOLI	1	-3	17	2	sn-glycerol-3-phosphate-binding periplasmic protein ugpB
P0ADU5_YGIW_ECOLI	1	-3	18	2	Protein ygiW
P19926_AGP_ECOLI	1	-3.1	14	2	Glucose-1-phosphatase
P0C0V0_DEGP_ECOLI	1	-3.9	31	3	Protease do
P00805_ASPG2_ECOLI	1	-4	19	2	L-asparaginase 2
P0A9L3_FKBB_ECOLI	1	-4	4	1	FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase
P33136_OPGG_ECOLI	1	-4.1	12	1	Glucans biosynthesis protein G
P13482_TREA_ECOLI	1	-4.1	15	1	Periplasmic trehalase
P06610_BTUE_ECOLI	1	-4.2	31	2	Vitamin B12 transport periplasmic protein btuE.
P0A862_TPX_ECOLI	1	-4.3	75	4	Thiol peroxidase
P02924_ARAF_ECOLI	1	-4.4	7	1	L-arabinose-binding periplasmic protein
P76193_YNHG_ECOLI	1	-4.6	89	3	Uncharacterized protein ynhG
P0AES9_HDEA_ECOLI	1	-4.6	26	2	Protein hdeA
P39325_YTFQ_ECOLI	1	-6.3	95	4	ABC transporter periplasmic-binding protein ytfQ
P17315_CIRA_ECOLI	0	6.5	5	1	Colicin I receptor
P05825_FEPA_ECOLI	0	3.6	6	1	Ferrienterobactin receptor
P75780_FIU_ECOLI	0	3.6	13	1	Catecholate siderophore receptor fiu
P76177_YDGH_ECOLI	0	3.5	92	4	Protein ydgH

P0ABD8_BCCP_ECOLI	0	3.4	14	1	Biotin carboxyl carrier protein of acetyl-CoA carboxylase
P31133_POTF_ECOLI	0	3.3	31	3	Putrescine-binding periplasmic protein
P04949_FLIC_ECOLI	0	3.2	91	4	Flagellin.
P76002_YCGK_ECOLI	0	2.8	18	4	Uncharacterized protein ycgK
P31828_PQQL_ECOLI	0	2.3	6	1	Probable zinc protease pqqL
P09169_OMPT_ECOLI	0	1.9	6	1	Protease 7
P66948_YFGC_ECOLI	0	1.8	8	2	TPR repeat-containing protein yfgC
P0ADB1_OSME_ECOLI	0	1.7	12	2	Osmotically-inducible lipoprotein E
P0A910_OMPA_ECOLI	0	1.4	73	4	Outer membrane protein A
P76116_YNCE_ECOLI	0	1	278	4	Uncharacterized protein yncE
P0A7G2_RBFA_ECOLI	0	1	8	1	Ribosome-binding factor A
P76344_YODA_ECOLI	0	0.3	220	3	Metal-binding protein yodA
P00954_SYW_ECOLI	0	0.3	8	1	Tryptophanyl-tRNA synthetase
P0ADN2_YIFE_ECOLI	0	-0.5	26	3	UPF0438 protein yifE.
P0A9D2_GST_ECOLI	0	-0.5	3	1	Glutathione S-transferase
P0A6D7_AROK_ECOLI	0	-0.9	4	1	Shikimate kinase 1
P00509_AAT_ECOLI	0	-1.2	29	3	Aspartate aminotransferase
P0A8F8_UVRB_ECOLI	0	-1.3	6	1	UvrABC system protein B
P78067_YNJE_ECOLI	0	-1.3	3	1	Putative thiosulfate sulfurtransferase ynjE
P76172_YNFD_ECOLI	0	-1.5	6	1	Uncharacterized protein ynfD
P0A6X7_IHFA_ECOLI	0	-1.6	5	1	Integration host factor subunit alpha
P77499_SUFC_ECOLI	0	-1.7	8	1	Probable ATP-dependent transporter sufC.
P33362_YEHZ_ECOLI	0	-1.8	17	2	Uncharacterized protein yehZ
P06999_K6PF2_ECOLI	0	-1.8	31	1	6-phosphofructokinase isozyme 2
P0A877_TRPA_ECOLI	0	-1.9	23	2	Tryptophan synthase alpha chain
P37330_MASZ_ECOLI	0	-1.9	7	1	Malate synthase G
P00934_THRC_ECOLI	0	-2	39	3	Threonine synthase
P23857_PSPE_ECOLI	0	-2	6	2	Phage shock protein E
P0AAT6_YBEB_ECOLI	0	-2	3	1	Uncharacterized protein ybeB.
P13029_CATA_ECOLI	0	-2.1	13	1	Peroxidase/catalase HPI
P0A6H1_CLPX_ECOLI	0	-2.1	4	1	ATP-dependent Clp protease ATP-binding subunit clpX.
P32132_TYPA_ECOLI	0	-2.2	5	1	GTP-binding protein typA/BipA
P76143_YNEB_ECOLI	0	-2.2	35	1	Uncharacterized aldolase yneB

Q59385_ATCU_ECOLI	0	-2.3	4	1	Copper-transporting P-type ATPase
P06968_DUT_ECOLI	0	-2.3	3	1	Deoxyuridine 5'-triphosphate nucleotidohydrolase
P0AF12_MTNN_ECOLI	0	-2.3	8	1	MTA/SAH nucleosidase
P16659_SYP_ECOLI	0	-2.3	11	1	Prolyl-tRNA synthetase
P37191_GATZ_ECOLI	0	-2.4	20	4	Putative tagatose 6-phosphate kinase gatZ
P76558_MAO2_ECOLI	0	-2.4	11	2	NADP-dependent malic enzyme
P00579_RPOD_ECOLI	0	-2.4	12	2	RNA polymerase sigma factor rpoD
P0AEJ2_ENTC_ECOLI	0	-2.4	7	1	Isochorismate synthase entC
P10371_HIS4_ECOLI	0	-2.4	5	1	1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneam
P0AED0_USPA_ECOLI	0	-2.5	26	4	Universal stress protein A.
P0ADX7_YHHA_ECOLI	0	-2.5	52	3	Uncharacterized protein yhhA
P0ABB4_ATPB_ECOLI	0	-2.5	8	1	ATP synthase subunit beta
P67910_HLDD_ECOLI	0	-2.5	5	1	ADP-L-glycero-D-manno-heptose-6-epimerase
P0AGE6_YIEF_ECOLI	0	-2.5	9	1	Uncharacterized protein yieF.
P33219_YEBF_ECOLI	0	-2.6	15	3	Protein yebF
P69503_APT_ECOLI	0	-2.6	6	1	Adenine phosphoribosyltransferase
P0ACR9_MPRA_ECOLI	0	-2.6	19	1	Transcriptional repressor mprA
P02930_TOLC_ECOLI	0	-2.6	9	1	Outer membrane protein tolC
P39377_IADA_ECOLI	0	-2.7	9	2	Isoaspartyl dipeptidase
P0A9S5_GLDA_ECOLI	0	-2.7	9	1	Glycerol dehydrogenase
P0AB77_KBL_ECOLI	0	-2.7	4	1	2-amino-3-ketobutyrate coenzyme A ligase
P0AG30_RHO_ECOLI	0	-2.7	14	1	Transcription termination factor rho
P37440_UCPA_ECOLI	0	-2.7	8	1	Oxidoreductase ucpA
P0A6A6_LEU2_ECOLI	0	-2.8	24	4	3-isopropylmalate dehydratase large subunit
P63284_CLPB_ECOLI	0	-2.8	21	2	Chaperone protein clpB
P0A6N8_EFPL_ECOLI	0	-2.8	21	2	Elongation factor P-like protein.
P61714_RISB_ECOLI	0	-2.8	11	2	6,7-dimethyl-8-ribityllumazine synthase
P25526_GABD_ECOLI	0	-2.8	14	1	Succinate-semialdehyde dehydrogenase [NADP+]
P0AFW2_RMF_ECOLI	0	-2.8	22	1	Ribosome modulation factor
P0ACE7_HINT_ECOLI	0	-2.9	3	1	HIT-like protein hinT.
P39173_YEAD_ECOLI	0	-2.9	4	1	UPF0010 protein yeaD
P0A7R5_RS10_ECOLI	0	-3	38	3	30S ribosomal protein S10.
P0A8R4_SLYX_ECOLI	0	-3	16	2	Protein slyX.

P00550_PTM3C_ECOLI	0	-3	7	1	PTS system mannitol-specific EIICBA component
P75746_YBGL_ECOLI	0	-3	3	1	UPF0271 protein ybgL.
P77735_YAJO_ECOLI	0	-3.1	14	1	Uncharacterized oxidoreductase yajO
P0A9W3_YJJK_ECOLI	0	-3.1	9	1	Uncharacterized ABC transporter ATP-binding protein yjjK.
P0A6J8_DDLA_ECOLI	0	-3.2	3	1	D-alanineD-alanine ligase A
P10408_SECA_ECOLI	0	-3.2	3	1	Protein translocase subunit secA.
P33221_PURT_ECOLI	0	-3.3	16	4	Phosphoribosylglycinamide formyltransferase 2
P0AFG3_ODO1_ECOLI	0	-3.3	11	2	2-oxoglutarate dehydrogenase E1 component
P0ABD3_BFR_ECOLI	0	-3.3	7	1	Bacterioferritin
P24186_FOLD_ECOLI	0	-3.3	4	1	Bifunctional protein folD
P0AB43_YCGL_ECOLI	0	-3.3	4	1	Uncharacterized protein ycgL.
P32157_YIIM_ECOLI	0	-3.3	7	1	Protein yiiM.
P0C0L2_OSMC_ECOLI	0	-3.4	55	3	Peroxiredoxin osmC
P30125_LEU3_ECOLI	0	-3.4	13	2	3-isopropylmalate dehydrogenase
P15047_ENTA_ECOLI	0	-3.4	9	1	2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase
P0A6N1_EFTU_ECOLI	0	-3.5	289	4	Elongation factor Tu
P23869_PPIB_ECOLI	0	-3.5	51	4	Peptidyl-prolyl cis-trans isomerase B
P42616_YQJC_ECOLI	0	-3.5	51	4	Protein yqjC
P0AG63_RS17_ECOLI	0	-3.5	28	2	30S ribosomal protein S17.
P0A6T3_GAL1_ECOLI	0	-3.5	10	1	Galactokinase
P09831_GLTB_ECOLI	0	-3.5	8	1	Glutamate synthase [NADPH] large chain
P37689_GPMI_ECOLI	0	-3.5	30	1	2,3-bisphosphoglycerate-independent phosphoglycerate mutase
P09151_LEU1_ECOLI	0	-3.5	7	1	2-isopropylmalate synthase
P0ADZ4_RS15_ECOLI	0	-3.5	7	1	30S ribosomal protein S15.
P36683_ACON2_ECOLI	0	-3.6	44	4	Aconitate hydratase 2
P0A9D8_DAPD_ECOLI	0	-3.6	35	4	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltrans
P0ADZ0_RL23_ECOLI	0	-3.6	23	2	50S ribosomal protein L23.
P21177_FADB_ECOLI	0	-3.6	9	1	Fatty acid oxidation complex subunit alpha
P0AEQ1_GLCG_ECOLI	0	-3.6	21	1	Protein glcG.
P30126_LEUD_ECOLI	0	-3.6	12	1	3-isopropylmalate dehydratase small subunit
P76243_YEAO_ECOLI	0	-3.6	4	1	Uncharacterized protein yeaO.
Q46868_YQIC_ECOLI	0	-3.6	4	1	Uncharacterized protein yqiC.
P0A9M0_LON_ECOLI	0	-3.7	30	3	ATP-dependent protease La

P68191_SRA_ECOLI	0	-3.7	25	3	Stationary-phase-induced ribosome-associated protein
P75694_YAHO_ECOLI	0	-3.7	22	3	UPF0379 protein yahO
P62620_ISPG_ECOLI	0	-3.7	11	2	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase
P12281_MOEA_ECOLI	0	-3.7	21	2	Molybdopterin biosynthesis protein moeA.
P0ADY7_RL16_ECOLI	0	-3.7	13	2	50S ribosomal protein L16.
P75691_YAHK_ECOLI	0	-3.7	33	1	Zinc-type alcohol dehydrogenase-like protein yahK
P0AC59_GLRX2_ECOLI	0	-3.8	55	4	Glutaredoxin-2
P69441_KAD_ECOLI	0	-3.8	116	4	Adenylate kinase
P21151_FADA_ECOLI	0	-3.8	28	2	3-ketoacyl-CoA thiolase
P18843_NADE_ECOLI	0	-3.8	12	2	NH(3)-dependent NAD(+) synthetase
P0AFU8_RISA_ECOLI	0	-3.8	14	2	Riboflavin synthase alpha chain
P76402_YEGP_ECOLI	0	-3.8	15	2	UPF0339 protein yegP.
P0ADS9_YGGN_ECOLI	0	-3.8	25	2	Uncharacterized protein yggN.
P00962_SYQ_ECOLI	0	-3.8	11	1	Glutaminyl-tRNA synthetase
P0C037_YAIE_ECOLI	0	-3.8	5	1	UPF0345 protein yaiE.
P0AAI9_FABD_ECOLI	0	-3.9	55	4	Malonyl CoA-acyl carrier protein transacylase
P0A9Y6_CSPC_ECOLI	0	-3.9	28	3	Cold shock-like protein cspC
P0AAB6_GALF_ECOLI	0	-3.9	63	3	UTPglucose-1-phosphate uridylyltransferase
P0ACC7_GLMU_ECOLI	0	-3.9	15	3	Bifunctional protein glmU
P25665_METE_ECOLI	0	-3.9	22	2	5-methyltetrahydropteroyltriglutamatehomocysteine methyltr
P52061_RDGB_ECOLI	0	-3.9	14	2	Nucleoside-triphosphatase rdgB
P0A7L3_RL20_ECOLI	0	-3.9	18	2	50S ribosomal protein L20.
P0ABB0_ATPA_ECOLI	0	-3.9	11	1	ATP synthase subunit alpha
P31663_PANC_ECOLI	0	-3.9	17	1	Pantothenate synthetase
P08997_MASY_ECOLI	0	-4	44	4	Malate synthase A
P0A7D7_PUR7_ECOLI	0	-4	51	4	Phosphoribosylaminoimidazole-succinocarboxamide synthase
P0A8T7_RPOC_ECOLI	0	-4	75	4	DNA-directed RNA polymerase subunit beta'
P0A7J7_RL11_ECOLI	0	-4	61	3	50S ribosomal protein L11.
P0AA25_THIO_ECOLI	0	-4	37	2	Thioredoxin-1
P25516_ACON1_ECOLI	0	-4	12	1	Aconitate hydratase 1
P69797_PTNAB_ECOLI	0	-4.1	27	4	PTS system mannose-specific EIIAB component
P0A8A0_YEBC_ECOLI	0	-4.1	40	4	UPF0082 protein yebC.
P00370_DHE4_ECOLI	0	-4.1	27	3	NADP-specific glutamate dehydrogenase

P0A8E7_YAJQ_ECOLI	0	-4.1	81	3	UPF0234 protein yajQ.
P0AB55_YCII_ECOLI	0	-4.1	26	3	Protein yciI.
P0A6K6_DEOB_ECOLI	0	-4.1	14	2	Phosphopentomutase
P0A6R0_FABH_ECOLI	0	-4.1	21	2	3-oxoacyl-[acyl-carrier-protein] synthase 3
P0A7E5_PYRG_ECOLI	0	-4.1	8	2	CTP synthase
P0A9P4_TRXB_ECOLI	0	-4.1	34	2	Thioredoxin reductase
P0AAB8_USPD_ECOLI	0	-4.1	8	1	Universal stress protein D.
P00350_6PGD_ECOLI	0	-4.2	74	4	6-phosphogluconate dehydrogenase, decarboxylating
P0A9Q9_DHAS_ECOLI	0	-4.2	110	3	Aspartate-semialdehyde dehydrogenase
P0A858_TPIS_ECOLI	0	-4.2	51	3	Triosephosphate isomerase
P0A7J0_RIBB_ECOLI	0	-4.2	7	2	3,4-dihydroxy-2-butanone 4-phosphate synthase
P0AFG0_NUSG_ECOLI	0	-4.2	17	1	Transcription antitermination protein nusG.
P0AFJ1_PHNA_ECOLI	0	-4.2	7	1	Protein phnA.
P0A6L0_DEOC_ECOLI	0	-4.3	61	4	Deoxyribose-phosphate aldolase
P0A6P1_EFTS_ECOLI	0	-4.3	79	4	Elongation factor Ts
P45578_LUXS_ECOLI	0	-4.3	41	4	S-ribosylhomocysteine lyase
P0AFF6_NUSA_ECOLI	0	-4.3	30	4	Transcription elongation protein nusA
P07012_RF2_ECOLI	0	-4.3	77	4	Peptide chain release factor 2
P21599_KPYK2_ECOLI	0	-4.3	32	3	Pyruvate kinase II
P0A7F3_PYRI_ECOLI	0	-4.3	14	1	Aspartate carbamoyltransferase regulatory chain.
P0AD24_YEJL_ECOLI	0	-4.3	3	1	UPF0352 protein yejL.
P0A6M8_EFG_ECOLI	0	-4.4	257	4	Elongation factor G
P0AET2_HDEB_ECOLI	0	-4.4	102	4	Protein hdeB
P0AB91_AROG_ECOLI	0	-4.4	22	3	Phospho-2-dehydro-3-deoxyheptonate aldolase, Phe-sensitive
P0A707_IF3_ECOLI	0	-4.4	37	3	Translation initiation factor IF-3.
P0A9X4_MREB_ECOLI	0	-4.4	26	3	Rod shape-determining protein mreB.
P38489_NFNB_ECOLI	0	-4.4	38	3	Oxygen-insensitive NAD(P)H nitroreductase
P12758_UDP_ECOLI	0	-4.4	40	3	Uridine phosphorylase
P0A8W8_YFBU_ECOLI	0	-4.4	23	2	UPF0304 protein yfbU.
P0A6F1_CARA_ECOLI	0	-4.4	19	1	Carbamoyl-phosphate synthase small chain
P27550_ACSA_ECOLI	0	-4.5	39	3	Acetyl-coenzyme A synthetase
P0ABA6_ATPG_ECOLI	0	-4.5	17	2	ATP synthase gamma chain
P0A6H5_HSLU_ECOLI	0	-4.5	72	2	ATP-dependent hsl protease ATP-binding subunit hslU

P0A763_NDK_ECOLI	0	-4.5	48 2	2	Nucleoside diphosphate kinase
P0A7U7_RS20_ECOLI	0	-4.5	33 2	2	30S ribosomal protein S20.
P0AFM6_PSPA_ECOLI	0	-4.5	27 1	l	Phage shock protein A.
P15640_PUR2_ECOLI	0	-4.5	13 1	l	Phosphoribosylamineglycine ligase
P0AE08_AHPC_ECOLI	0	-4.6	121 4	4	Alkyl hydroperoxide reductase subunit C
P0ABK5_CYSK_ECOLI	0	-4.6	258 4	1	Cysteine synthase A
P0AEK2_FABG_ECOLI	0	-4.6	89 4	1	3-oxoacyl-[acyl-carrier-protein] reductase
P69783_PTGA_ECOLI	0	-4.6	135 4	1	Glucose-specific phosphotransferase enzyme IIA component
P0A7K2_RL7_ECOLI	0	-4.6	47 4	4	50S ribosomal protein L7/L12
P29217_YCEH_ECOLI	0	-4.6	38 4	1	UPF0502 protein yceH
P0ACX3_YDHR_ECOLI	0	-4.6	23 2	2	Protein ydhR
P62768_YAEH_ECOLI	0	-4.6	17 1	l	UPF0325 protein yaeH.
P39831_YDFG_ECOLI	0	-4.6	6 1	l	NADP-dependent L-serine/L-allo-threonine dehydrogenase ydfG
P02359_RS7_ECOLI	0	-4.7	126 4	1	30S ribosomal protein S7.
P0A8M6_YEEX_ECOLI	0	-4.7	38 4	1	UPF0265 protein yeeX.
P77695_GNSB_ECOLI	0	-4.7	12 2	2	Protein gnsB.
P0A786_PYRB_ECOLI	0	-4.7	20 2	2	Aspartate carbamoyltransferase catalytic chain
P00547_KHSE_ECOLI	0	-4.7	5 1	l	Homoserine kinase
P0AA04_PTHP_ECOLI	0	-4.8	60 4	1	Phosphocarrier protein HPr
P37192_GATY_ECOLI	0	-4.8	17 2	2	Tagatose-1,6-bisphosphate aldolase gatY
P00957_SYA_ECOLI	0	-4.8	15 1	l	Alanyl-tRNA synthetase
P0A805_RRF_ECOLI	0	-4.9	111 4	1	Ribosome recycling factor
P0AE52_BCP_ECOLI	0	-4.9	39 3	3	Putative peroxiredoxin bcp
P06959_ODP2_ECOLI	0	-4.9	58 2	2	Dihydrolipoyllysine-residue acetyltransferase component of p
P0ABA4_ATPD_ECOLI	0	-4.9	4 1	l	ATP synthase delta chain
P63020_GNTY_ECOLI	0	-4.9	7 1	l	Protein gntY.
P0AGE0_SSB_ECOLI	0	-4.9	12 1	l	Single-stranded DNA-binding protein
P0ACG1_STPA_ECOLI	0	-5	57 4	1	DNA-binding protein stpA
P0A9Z1_GLNB_ECOLI	0	-5	25 2	2	Nitrogen regulatory protein P-II 1.
P0AG18_PUR6_ECOLI	0	-5	14 2	2	Phosphoribosylaminoimidazole carboxylase catalytic subunit
P0AEK4_FABI_ECOLI	0	-5	47 1	l	Enoyl-[acyl-carrier-protein] reductase [NADH]
P08200_IDH_ECOLI	0	-5.1	154 4	1	Isocitrate dehydrogenase [NADP]
P62399_RL5_ECOLI	0	-5.1	62 4	1	50S ribosomal protein L5.

P0A870_TALB_ECOLI	0	-5.1	67 4	Transaldolase B
P69428_TATA_ECOLI	0	-5.1	16 3	Sec-independent protein translocase protein tatA.
P0A8B5_YBAB_ECOLI	0	-5.1	37 3	UPF0133 protein ybaB.
P0AC38_ASPA_ECOLI	0	-5.1	10 1	Aspartate ammonia-lyase
P0A9C5_GLNA_ECOLI	0	-5.1	18 1	Glutamine synthetase
P0ADE6_YGAU_ECOLI	0	-5.1	19 1	Uncharacterized protein ygaU.
P0A7M6_RL29_ECOLI	0	-5.2	27 3	50S ribosomal protein L29.
P0A850_TIG_ECOLI	0	-5.2	175 3	Trigger factor
P0A9P0_DLDH_ECOLI	0	-5.2	19 2	Dihydrolipoyl dehydrogenase
P16456_SELD_ECOLI	0	-5.2	13 2	Selenide, water dikinase
P26646_YHDH_ECOLI	0	-5.2	16 1	Protein yhdH.
P0A9M8_PTA_ECOLI	0	-5.3	53 4	Phosphate acetyltransferase
P0AG44_RL17_ECOLI	0	-5.3	82 3	50S ribosomal protein L17.
P0A7R1_RL9_ECOLI	0	-5.3	107 3	50S ribosomal protein L9.
P0AA16_OMPR_ECOLI	0	-5.3	26 2	Transcriptional regulatory protein ompR.
P46837_YHGF_ECOLI	0	-5.3	10 2	Protein yhgF.
P0A8F0_UPP_ECOLI	0	-5.4	38 3	Uracil phosphoribosyltransferase
P0AG67_RS1_ECOLI	0	-5.5	77 4	30S ribosomal protein S1.
P05042_FUMC_ECOLI	0	-5.5	10 1	Fumarate hydratase class II
P05791_ILVD_ECOLI	0	-5.5	17 1	Dihydroxy-acid dehydratase
P0AFG6_ODO2_ECOLI	0	-5.6	23 3	Dihydrolipoyllysine-residue succinyltransferase component of
P0AF93_YJGF_ECOLI	0	-5.6	34 3	UPF0076 protein yjgF.
P0A6P9_ENO_ECOLI	0	-5.7	484 4	Enolase
P0ADY3_RL14_ECOLI	0	-5.7	66 4	50S ribosomal protein L14.
P0A9Q7_ADHE_ECOLI	0	-5.7	36 3	Aldehyde-alcohol dehydrogenase
P0A7A9_IPYR_ECOLI	0	-5.7	38 3	Inorganic pyrophosphatase
P0A7V8_RS4_ECOLI	0	-5.7	91 3	30S ribosomal protein S4.
P07650_TYPH_ECOLI	0	-5.7	29 3	Thymidine phosphorylase
P00935_METB_ECOLI	0	-5.7	9 1	Cystathionine gamma-synthase
P0A9Q1_ARCA_ECOLI	0	-5.8	39 4	Aerobic respiration control protein arcA
P0A6F9_CH10_ECOLI	0	-5.8	93 4	10 kDa chaperonin
P62707_GPMA_ECOLI	0	-5.8	270 4	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase
P0ADS6_YGGE_ECOLI	0	-5.8	46 3	Uncharacterized protein yggE.

P0ACF8_HNS_ECOLI	0	-5.9	131	4	DNA-binding protein H-NS
P61889_MDH_ECOLI	0	-5.9	307	4	Malate dehydrogenase
P0C018_RL18_ECOLI	0	-5.9	76	4	50S ribosomal protein L18.
P0A991_ALF1_ECOLI	0	-5.9	41	3	Fructose-bisphosphate aldolase class 1
P0AEZ3_MIND_ECOLI	0	-5.9	36	3	Septum site-determining protein minD
P0A7V3_RS3_ECOLI	0	-5.9	35	3	30S ribosomal protein S3.
P05793_ILVC_ECOLI	0	-5.9	76	2	Ketol-acid reductoisomerase
P0A7Z0_RPIA_ECOLI	0	-5.9	25	2	Ribose-5-phosphate isomerase A
P02413_RL15_ECOLI	0	-5.9	72	1	50S ribosomal protein L15.
P07118_SYV_ECOLI	0	-5.9	12	1	Valyl-tRNA synthetase
P0AF36_YIIU_ECOLI	0	-5.9	13	1	Uncharacterized protein yiiU.
P0A825_GLYA_ECOLI	0	-6	243	4	Serine hydroxymethyltransferase
P68066_GRCA_ECOLI	0	-6	210	4	Autonomous glycyl radical cofactor.
P08839_PT1_ECOLI	0	-6	184	4	Phosphoenolpyruvate-protein phosphotransferase
P0A7V0_RS2_ECOLI	0	-6	47	4	30S ribosomal protein S2.
P0A7W1_RS5_ECOLI	0	-6	131	4	30S ribosomal protein S5.
P09373_PFLB_ECOLI	0	-6	66	3	Formate acetyltransferase 1
P0AA10_RL13_ECOLI	0	-6	32	2	50S ribosomal protein L13.
P0A7N4_RL32_ECOLI	0	-6	9	2	50S ribosomal protein L32.
P0A6L2_DAPA_ECOLI	0	-6	24	1	Dihydrodipicolinate synthase
P0A6Y8_DNAK_ECOLI	0	-6.1	383	4	Chaperone protein dnaK
P0A799_PGK_ECOLI	0	-6.1	189	4	Phosphoglycerate kinase
P0A6A3_ACKA_ECOLI	0	-6.1	35	2	Acetate kinase
P00961_SYGB_ECOLI	0	-6.1	35	2	Glycyl-tRNA synthetase beta subunit
P00864_CAPP_ECOLI	0	-6.2	43	4	Phosphoenolpyruvate carboxylase
P0A9B2_G3P1_ECOLI	0	-6.2	369	4	Glyceraldehyde-3-phosphate dehydrogenase A
P0ADG7_IMDH_ECOLI	0	-6.2	156	4	Inosine-5'-monophosphate dehydrogenase
P0AD61_KPYK1_ECOLI	0	-6.2	177	4	Pyruvate kinase I
P0A7L0_RL1_ECOLI	0	-6.2	71	4	50S ribosomal protein L1.
P60438_RL3_ECOLI	0	-6.2	57	4	50S ribosomal protein L3.
P0A8L1_SYS_ECOLI	0	-6.2	35	4	Seryl-tRNA synthetase
P0A7M2_RL28_ECOLI	0	-6.2	22	3	50S ribosomal protein L28.
P60422_RL2_ECOLI	0	-6.2	55	3	50S ribosomal protein L2.

P0AG55_RL6_ECOLI	0	-6.2	119	3	50S ribosomal protein L6.
P0AG59_RS14_ECOLI	0	-6.2	42	3	30S ribosomal protein S14.
P02358_RS6_ECOLI	0	-6.2	34	3	30S ribosomal protein S6
P0A7T3_RS16_ECOLI	0	-6.2	16	2	30S ribosomal protein S16.
P0AG51_RL30_ECOLI	0	-6.2	11	1	50S ribosomal protein L30.
P0A9G6_ACEA_ECOLI	0	-6.3	168	4	Isocitrate lyase
P0A6E4_ASSY_ECOLI	0	-6.3	44	4	Argininosuccinate synthase
P0A6F5_CH60_ECOLI	0	-6.3	563	4	60 kDa chaperonin
P0A705_IF2_ECOLI	0	-6.3	58	3	Translation initiation factor IF-2.
P0A8V2_RPOB_ECOLI	0	-6.3	36	3	DNA-directed RNA polymerase subunit beta
P69913_CSRA_ECOLI	0	-6.3	21	2	Carbon storage regulator.
P0A953_FABB_ECOLI	0	-6.3	44	2	3-oxoacyl-[acyl-carrier-protein] synthase 1
P0ACF0_DBHA_ECOLI	0	-6.4	64	4	DNA-binding protein HU-alpha
P60723_RL4_ECOLI	0	-6.4	75	4	50S ribosomal protein L4.
P0A836_SUCC_ECOLI	0	-6.4	96	4	Succinyl-CoA synthetase beta chain
P0ACF4_DBHB_ECOLI	0	-6.4	174	3	DNA-binding protein HU-beta
P0AC62_GLRX3_ECOLI	0	-6.4	45	3	Glutaredoxin-3
P06988_HISX_ECOLI	0	-6.4	69	3	Histidinol dehydrogenase
P0A6Y1_IHFB_ECOLI	0	-6.4	30	3	Integration host factor subunit beta
P68679_RS21_ECOLI	0	-6.4	23	3	30S ribosomal protein S21.
P0AEP3_GALU_ECOLI	0	-6.4	26	2	UTPglucose-1-phosphate uridylyltransferase
P0A8G9_EX7S_ECOLI	0	-6.4	12	1	Exodeoxyribonuclease 7 small subunit
P0A8I5_TRMB_ECOLI	0	-6.4	6	1	tRNA
P0AGE9_SUCD_ECOLI	0	-6.5	47	4	Succinyl-CoA ligase [ADP-forming] subunit alpha
P0AB14_YCCJ_ECOLI	0	-6.5	39	4	Uncharacterized protein yccJ.
P0AB71_ALF_ECOLI	0	-6.5	50	3	Fructose-bisphosphate aldolase class 2
P00968_CARB_ECOLI	0	-6.5	74	3	Carbamoyl-phosphate synthase large chain
P0A6Z3_HTPG_ECOLI	0	-6.5	38	3	Chaperone protein htpG
P05055_PNP_ECOLI	0	-6.5	77	3	Polyribonucleotide nucleotidyltransferase
P0A7J3_RL10_ECOLI	0	-6.5	129	3	50S ribosomal protein L10
P0A7Z4_RPOA_ECOLI	0	-6.5	76	3	DNA-directed RNA polymerase subunit alpha
P0A7T7_RS18_ECOLI	0	-6.5	41	3	30S ribosomal protein S18.
P64463_YDFZ_ECOLI	0	-6.5	36	3	Putative selenoprotein ydfZ.
P21179_CATE_ECOLI	0	-6.5	18	2	Catalase HPII
--------------------	---	------	-----	---	---
P0A6F3_GLPK_ECOLI	0	-6.5	29	2	Glycerol kinase
P09832_GLTD_ECOLI	0	-6.5	52	2	Glutamate synthase [NADPH] small chain
P0A9A6_FTSZ_ECOLI	0	-6.5	32	1	Cell division protein ftsZ.
P0A7L8_RL27_ECOLI	0	-6.5	6	1	50S ribosomal protein L27.
P61175_RL22_ECOLI	0	-6.6	63	4	50S ribosomal protein L22.
P0A7N1_RL31B_ECOLI	0	-6.6	23	3	50S ribosomal protein L31 type B.
P0A867_TALA_ECOLI	0	-6.6	42	3	Transaldolase A
P0A7R9_RS11_ECOLI	0	-6.6	20	2	30S ribosomal protein S11.
P0A7S9_RS13_ECOLI	0	-6.6	16	2	30S ribosomal protein S13.
P68206_YJBJ_ECOLI	0	-6.7	104	3	UPF0337 protein yjbJ.
P39177_USPG_ECOLI	0	-6.7	31	2	Universal stress protein G.
P0ACW6_YDCH_ECOLI	0	-6.7	18	2	Uncharacterized protein ydcH.
P0A9K3_PHOL_ECOLI	0	-6.7	7	1	PhoH-like protein.
P60624_RL24_ECOLI	0	-6.7	17	1	50S ribosomal protein L24.
P0ADE8_YGFZ_ECOLI	0	-6.7	17	1	tRNA-modifying protein ygfZ.
P04036_DAPB_ECOLI	0	-6.8	36	3	Dihydrodipicolinate reductase
P0A715_KDSA_ECOLI	0	-6.8	25	3	2-dehydro-3-deoxyphosphooctonate aldolase
P0A794_PDXJ_ECOLI	0	-6.8	14	3	Pyridoxine 5'-phosphate synthase
P31658_HCHA_ECOLI	0	-6.8	24	2	Chaperone protein hchA
P0A7W7_RS8_ECOLI	0	-6.8	22	2	30S ribosomal protein S8.
P0A9T0_SERA_ECOLI	0	-6.8	17	2	D-3-phosphoglycerate dehydrogenase
P21513_RNE_ECOLI	0	-6.8	30	1	Ribonuclease E
P0A7D4_PURA_ECOLI	0	-6.9	44	3	Adenylosuccinate synthetase
P27302_TKT1_ECOLI	0	-6.9	28	3	Transketolase 1
P22256_GABT_ECOLI	0	-7	29	3	4-aminobutyrate aminotransferase
Q46857_DKGA_ECOLI	0	-7	18	2	2,5-diketo-D-gluconic acid reductase A
P0A817_METK_ECOLI	0	-7	20	2	S-adenosylmethionine synthetase
P07004_PROA_ECOLI	0	-7	21	2	Gamma-glutamyl phosphate reductase
P15639_PUR9_ECOLI	0	-7	41	2	Bifunctional purine biosynthesis protein purH
P09372_GRPE_ECOLI	0	-7	32	1	Protein grpE
P0A8U6_METJ_ECOLI	0	-7	13	1	Met repressor
P69786_PTGCB_ECOLI	0	-7	10	1	PTS system glucose-specific EIICB component

P64581_YQJD_ECOLI 0 -7 14 1 Uncharacterized protein yqjD.

Appendix E GdCl3 Isolation Protocol, All PP:WCL Protein Isotope Ratios

Protein	PP	log2ratio	Chr. Features	Reps	Protein Description
P31550_THIB_ECOLI	1	1.3	16	1	Thiamine-binding periplasmic protein
P0A855_TOLB_ECOLI	1	0.7	31	2	Protein tolB
P0AA57_YOBA_ECOLI	1	0.3	5	1	Protein yobA
P0AB24_YCDO_ECOLI	1	0.3	21	2	UPF0409 protein ycdO
P0AD96_LIVJ_ECOLI	1	0.3	486	4	Leu/Ile/Val-binding protein
P0AEM9_FLIY_ECOLI	1	0.2	161	4	Cystine-binding periplasmic protein
P0AG78_SUBI_ECOLI	1	0.2	14	2	Sulfate-binding protein
P0AEG4_DSBA_ECOLI	1	0.1	27	3	Thiol:disulfide interchange protein dsbA
P0AEU0_HISJ_ECOLI	1	-0.1	199	4	Histidine-binding periplasmic protein
P0AFM2_PROX_ECOLI	1	-0.3	123	4	Glycine betaine-binding periplasmic protein
P04816_LIVK_ECOLI	1	-0.4	203	4	Leucine-specific-binding protein
P16700_CYSP_ECOLI	1	-0.4	147	4	Thiosulfate-binding protein
P0AFL3_PPIA_ECOLI	1	-0.6	34	4	Peptidyl-prolyl cis-trans isomerase A
P30860_ARTJ_ECOLI	1	-0.6	235	4	Arginine-binding periplasmic protein 2
P0C0T5_MEPA_ECOLI	1	-0.7	4	1	Penicillin-insensitive murein endopeptidase
P09551_ARGT_ECOLI	1	-0.8	139	4	Lysine-arginine-ornithine-binding periplasmic protein
P0ABZ6_SURA_ECOLI	1	-1	87	4	Chaperone surA
P0ADV1_YHBN_ECOLI	1	-1	17	1	Protein yhbN
P23847_DPPA_ECOLI	1	-1	325	4	Periplasmic dipeptide transport protein
P0ADA1_TESA_ECOLI	1	-1.1	9	2	Acyl-CoA thioesterase I
P0AFK9_POTD_ECOLI	1	-1.1	88	4	Spermidine/putrescine-binding periplasmic protein
P61316_LOLA_ECOLI	1	-1.1	41	4	Outer-membrane lipoprotein carrier protein
P31697_FIMC_ECOLI	1	-1.2	6	2	Chaperone protein fimC
P37329_MODA_ECOLI	1	-1.2	219	4	Molybdate-binding periplasmic protein
P08331_CN16_ECOLI	1	-1.3	46	4	2',3'-cyclic-nucleotide 2'-phosphodiesterase
P0AEL6_FEPB_ECOLI	1	-1.4	9	2	Ferrienterobactin-binding periplasmic protein
P30859_ARTI_ECOLI	1	-1.4	91	4	Arginine-binding periplasmic protein 1
P0AEX9_MALE_ECOLI	1	-1.5	68	4	Maltose-binding periplasmic protein
P21338_RNI_ECOLI	1	-1.5	8	2	Ribonuclease I
P0AG82_PSTS_ECOLI	1	-1.6	21	3	Phosphate-binding protein pstS

P0AAX8_YBIS_ECOLI	1	-1.7	48	3	Uncharacterized protein ybiS
P75797_GSIB_ECOLI	1	-1.7	43	3	Glutathione-binding protein gsiB
P39265_ALSB_ECOLI	1	-1.8	6	1	D-allose-binding periplasmic protein
P23843_OPPA_ECOLI	1	-1.9	730	4	Periplasmic oligopeptide-binding protein
P36649_CUEO_ECOLI	1	-2.1	21	2	Blue copper oxidase cueO
P37648_YHJJ_ECOLI	1	-2.1	20	3	Protein yhjJ
P40120_OPGD_ECOLI	1	-2.1	28	2	Glucans biosynthesis protein D
P07024_USHA_ECOLI	1	-2.3	52	4	Protein ushA
P0AE22_APHA_ECOLI	1	-2.3	9	1	Class B acid phosphatase
P02925_RBSB_ECOLI	1	-2.4	81	4	D-ribose-binding periplasmic protein
P0AFX9_RSEB_ECOLI	1	-2.4	9	1	Sigma-E factor regulatory protein rseB
P0AFH8_OSMY_ECOLI	1	-2.6	199	4	Osmotically-inducible protein Y
P00634_PPB_ECOLI	1	-2.7	5	1	Alkaline phosphatase
P0AEG6_DSBC_ECOLI	1	-2.8	25	3	Thiol:disulfide interchange protein dsbC
P0AEQ3_GLNH_ECOLI	1	-2.9	107	4	Glutamine-binding periplasmic protein
P0AEE5_DGAL_ECOLI	1	-3	120	4	D-galactose-binding periplasmic protein
P0AEU7_SKP_ECOLI	1	-3	69	3	Chaperone protein skp
P0AG80_UGPB_ECOLI	1	-3	45	4	sn-glycerol-3-phosphate-binding periplasmic protein ugpB
P0AGD1_SODC_ECOLI	1	-3	40	4	Superoxide dismutase [Cu-Zn]
P0AE85_CPXP_ECOLI	1	-3.1	12	2	Periplasmic protein cpxP
P39172_ZNUA_ECOLI	1	-3.1	262	4	High-affinity zinc uptake system protein znuA
P05458_PTRA_ECOLI	1	-3.4	14	2	Protease 3
P02924_ARAF_ECOLI	1	-3.7	17	1	L-arabinose-binding periplasmic protein
P33363_BGLX_ECOLI	1	-3.7	31	2	Periplasmic beta-glucosidase
P37902_GLTI_ECOLI	1	-3.7	106	4	Glutamate/aspartate periplasmic-binding protein
P0A8X2_YCEI_ECOLI	1	-3.9	12	1	Protein yceI
P76193_YNHG_ECOLI	1	-3.9	93	4	Uncharacterized protein ynhG
P37387_XYLF_ECOLI	1	-4	3	1	D-xylose-binding periplasmic protein
P39176_ERFK_ECOLI	1	-4	6	1	Protein erfK/srfK
P0A9L3_FKBB_ECOLI	1	-4.1	19	3	FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase
P09394_GLPQ_ECOLI	1	-4.2	44	4	Glycerophosphoryl diester phosphodiesterase
P0AGC3_SLT_ECOLI	1	-4.3	15	2	Soluble lytic murein transglycosylase
P23827_ECOT_ECOLI	1	-4.3	7	1	Ecotin

P0AD59_IVY_ECOLI	1	-4.5	32	3	Inhibitor of vertebrate lysozyme
P45523 FKBA ECOLI	1	-4.5	52	4	FKBP-type peptidyl-prolyl cis-trans isomerase fkpA
P13482 TREA ECOLI	1	-4.7	50	3	Periplasmic trehalase
P76108 YDCS ECOLI	1	-4.7	34	1	Putative ABC transporter periplasmic-binding protein ydcS
P0A862 TPX ECOLI	1	-4.9	89	4	Thiol peroxidase
P0C0V0 DEGP ECOLI	1	-4.9	36	2	Protease do
P06610_BTUE_ECOLI	1	-5	26	3	Vitamin B12 transport periplasmic protein btuE.
P19926_AGP_ECOLI	1	-5.1	50	2	Glucose-1-phosphatase
P0AES9_HDEA_ECOLI	1	-5.6	65	4	Protein hdeA
P39325_YTFQ_ECOLI	1	-5.8	117	3	ABC transporter periplasmic-binding protein ytfQ
P33136_OPGG_ECOLI	1	-5.9	32	2	Glucans biosynthesis protein G
P77754_SPY_ECOLI	1	-6.2	36	2	Spheroplast protein Y
P0ADU5_YGIW_ECOLI	1	-6.4	10	1	Protein ygiW
P07102_PPA_ECOLI	1	-6.8	9	1	Periplasmic appA protein
P77348_MPPA_ECOLI	1	-6.9	20	2	Periplasmic murein peptide-binding protein
P0A9M0_LON_ECOLI	0	6.7	43	3	ATP-dependent protease La
P04949_FLIC_ECOLI	0	3.1	99	4	Flagellin.
P75780_FIU_ECOLI	0	3.1	9	1	Catecholate siderophore receptor fiu
P76002_YCGK_ECOLI	0	3	27	3	Uncharacterized protein ycgK
P76014_DHAL_ECOLI	0	2	4	1	PTS-dependent dihydroxyacetone kinase, ADP-binding subunit d
P0AEY5_MDAB_ECOLI	0	1.8	16	1	Modulator of drug activity B.
P23837_PHOQ_ECOLI	0	1.4	4	1	Sensor protein phoQ
P0A910_OMPA_ECOLI	0	1	54	4	Outer membrane protein A
P0ADB1_OSME_ECOLI	0	0.4	23	4	Osmotically-inducible lipoprotein E
P76177_YDGH_ECOLI	0	0.1	73	4	Protein ydgH
P64519_YODD_ECOLI	0	-0.1	4	1	Uncharacterized protein yodD.
P22106_ASNB_ECOLI	0	-0.2	6	1	Asparagine synthetase B [glutamine-hydrolyzing]
P0AB46_YMGD_ECOLI	0	-0.6	5	1	Uncharacterized protein ymgD
P12281_MOEA_ECOLI	0	-0.8	17	2	Molybdopterin biosynthesis protein moeA.
P31133_POTF_ECOLI	0	-0.8	29	3	Putrescine-binding periplasmic protein
P76116_YNCE_ECOLI	0	-0.9	189	4	Uncharacterized protein yncE
P04994_EX7L_ECOLI	0	-1.3	8	1	Exodeoxyribonuclease 7 large subunit
P0A6C8 ARGB ECOLI	0	-1.3	14	2	Acetylglutamate kinase

P0ADX5_YHFG_ECOLI	0	-1.3	4	1	Uncharacterized protein yhfG.
P0A7U3 RS19 ECOLI	0	-1.4	17	1	30S ribosomal protein S19.
P0AB89 PUR8 ECOLI	0	-1.4	18	1	Adenylosuccinate lyase
P0A9K7 PHOU ECOLI	0	-1.7	4	1	Phosphate transport system protein phoU.
P0AFK0 PMBA ECOLI	0	-1.7	14	2	Protein pmbA
P23857_PSPE_ECOLI	0	-1.7	21	4	Phage shock protein E
P24203 YJIA ECOLI	0	-1.7	3	1	Uncharacterized GTP-binding protein yjiA.
P0ADV7_YRBC_ECOLI	0	-1.8	21	2	Protein yrbC
P17993_UBIG_ECOLI	0	-1.9	4	1	3-demethylubiquinone-9 3-methyltransferase
P76055_YDAO_ECOLI	0	-1.9	4	1	UPF0021 protein ydaO.
P77376_YDGJ_ECOLI	0	-1.9	3	1	Uncharacterized oxidoreductase ydgJ
P0AAQ6_YBAA_ECOLI	0	-2	13	1	Uncharacterized protein ybaA.
P63417_YHBS_ECOLI	0	-2	6	1	Uncharacterized acetyltransferase yhbS
P77212_YKGC_ECOLI	0	-2	3	1	Probable pyridine nucleotide-disulfide oxidoreductase ykgC.
P0A8I3_YAAA_ECOLI	0	-2.1	6	1	UPF0246 protein yaaA.
P22939_ISPA_ECOLI	0	-2.1	4	1	Geranyltranstransferase
P30958_MFD_ECOLI	0	-2.1	9	2	Transcription-repair-coupling factor
P0A9S1_FUCO_ECOLI	0	-2.2	5	1	Lactaldehyde reductase
P27830_RFFG_ECOLI	0	-2.2	4	1	dTDP-glucose 4,6-dehydratase
P62617_ISPF_ECOLI	0	-2.2	4	1	2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
P64581_YQJD_ECOLI	0	-2.2	8	1	Uncharacterized protein yqjD.
P69908_DCEA_ECOLI	0	-2.2	3	1	Glutamate decarboxylase alpha
P02930_TOLC_ECOLI	0	-2.3	4	1	Outer membrane protein tolC
P05042_FUMC_ECOLI	0	-2.3	18	2	Fumarate hydratase class II
P0ABJ1_CYOA_ECOLI	0	-2.3	3	1	Ubiquinol oxidase subunit 2
P0AFI7_PDXH_ECOLI	0	-2.3	4	1	Pyridoxamine 5'-phosphate oxidase
P31455_YIDR_ECOLI	0	-2.3	5	1	Uncharacterized protein yidR.
P76172_YNFD_ECOLI	0	-2.3	13	2	Uncharacterized protein ynfD
Q47147_YAFJ_ECOLI	0	-2.3	8	1	Putative glutamine amidotransferase yafJ
P00861_DCDA_ECOLI	0	-2.4	10	1	Diaminopimelate decarboxylase
P00888_AROF_ECOLI	0	-2.4	21	2	Phospho-2-dehydro-3-deoxyheptonate aldolase, Tyr-sensitive
P0A7B8_HSLV_ECOLI	0	-2.4	4	1	ATP-dependent protease hslV
P0A873 TRMD ECOLI	0	-2.4	8	1	tRNA

P0ADS9_YGGN_ECOLI	0	-2.4	21	2	Uncharacterized protein yggN.
P07762_GLGB_ECOLI	0	-2.5	5	1	1,4-alpha-glucan-branching enzyme
P0A6J8_DDLA_ECOLI	0	-2.5	4	1	D-alanineD-alanine ligase A
P0A6L9_HSCB_ECOLI	0	-2.5	10	1	Co-chaperone protein hscB
P0A8R4_SLYX_ECOLI	0	-2.5	9	1	Protein slyX.
P0AGG8_TLDD_ECOLI	0	-2.5	6	1	Protein tldD.
P21367_YCAC_ECOLI	0	-2.5	6	1	Uncharacterized protein ycaC.
P27431_YCFD_ECOLI	0	-2.5	3	1	Uncharacterized protein ycfD.
P0A9H1_MUG_ECOLI	0	-2.6	9	1	G/U mismatch-specific DNA glycosylase
P0AFJ1_PHNA_ECOLI	0	-2.6	17	2	Protein phnA.
P33219_YEBF_ECOLI	0	-2.6	15	3	Protein yebF
P33368_YOHF_ECOLI	0	-2.6	11	1	Uncharacterized oxidoreductase yohF
P37647_KDGK_ECOLI	0	-2.6	3	1	2-dehydro-3-deoxygluconokinase
P69776_LPP_ECOLI	0	-2.6	3	1	Major outer membrane lipoprotein
P0A749_MURA_ECOLI	0	-2.7	5	1	UDP-N-acetylglucosamine 1-carboxyvinyltransferase
P0A7C2_LEXA_ECOLI	0	-2.7	4	1	LexA repressor
P0A9R4_FER_ECOLI	0	-2.7	9	1	2Fe-2S ferredoxin.
P0ACC7_GLMU_ECOLI	0	-2.7	16	3	Bifunctional protein glmU
P0ACP7_PURR_ECOLI	0	-2.7	10	1	HTH-type transcriptional repressor purR
P0AD24_YEJL_ECOLI	0	-2.7	6	1	UPF0352 protein yejL.
P0AED7_DAPE_ECOLI	0	-2.7	7	1	Succinyl-diaminopimelate desuccinylase
P60664_HIS6_ECOLI	0	-2.7	9	1	Imidazole glycerol phosphate synthase subunit hisF
P61517_CAN_ECOLI	0	-2.7	9	2	Carbonic anhydrase 2
P76113_YNCB_ECOLI	0	-2.7	12	1	Putative NADP-dependent oxidoreductase yncB
P08312_SYFA_ECOLI	0	-2.8	19	1	Phenylalanyl-tRNA synthetase alpha chain
P0A6P7_ENGB_ECOLI	0	-2.8	4	1	Probable GTP-binding protein engB.
P33362_YEHZ_ECOLI	0	-2.8	25	3	Uncharacterized protein yehZ
P39173_YEAD_ECOLI	0	-2.8	33	2	UPF0010 protein yeaD
P40191_PDXK_ECOLI	0	-2.8	6	1	Pyridoxine kinase
Q47679_YAFV_ECOLI	0	-2.8	3	1	UPF0012 hydrolase yafV
P00893_ILVI_ECOLI	0	-2.9	9	1	Acetolactate synthase isozyme 3 large subunit
P08660_AK3_ECOLI	0	-2.9	20	2	Lysine-sensitive aspartokinase 3
P09158_SPEE_ECOLI	0	-2.9	12	2	Spermidine synthase

P0A972_CSPE_ECOLI	0	-2.9	13	2	Cold shock-like protein cspE
P0ABE2_BOLA_ECOLI	0	-2.9	6	1	Protein bolA.
P0ABU0_MENB_ECOLI	0	-2.9	8	1	Naphthoate synthase
P0AE63_CHAB_ECOLI	0	-2.9	4	1	Cation transport regulator chaB.
P0AGG0_THIL_ECOLI	0	-2.9	5	1	Thiamine-monophosphate kinase
P13000_BIOD_ECOLI	0	-2.9	9	1	Dethiobiotin synthetase
P0ACX5_YDHZ_ECOLI	0	-3	4	1	Uncharacterized protein ydhZ.
P32662_GPH_ECOLI	0	-3	12	1	Phosphoglycolate phosphatase
P63284_CLPB_ECOLI	0	-3	16	2	Chaperone protein clpB
P00909_TRPC_ECOLI	0	-3.1	28	2	Tryptophan biosynthesis protein trpCF
P0ACA3_SSPA_ECOLI	0	-3.1	10	2	Stringent starvation protein A.
P0AGJ5_YFIF_ECOLI	0	-3.1	7	1	Uncharacterized tRNA/rRNA methyltransferase yfiF
P11880_MURF_ECOLI	0	-3.1	3	1	UDP-N-acetylmuramoyl-tripeptideD-alanyl-D-alanine ligase
P0A6K3_DEF_ECOLI	0	-3.2	7	1	Peptide deformylase
P0AAI5_FABF_ECOLI	0	-3.2	13	1	3-oxoacyl-[acyl-carrier-protein] synthase 2
P0AES6_GYRB_ECOLI	0	-3.2	30	3	DNA gyrase subunit B
P17169_GLMS_ECOLI	0	-3.2	3	1	Glucosaminefructose-6-phosphate aminotransferase
P67095_YFCE_ECOLI	0	-3.2	6	1	Phosphodiesterase yfcE
Q57261_TRUD_ECOLI	0	-3.2	14	1	tRNA pseudouridine synthase D
P0ACR4_YEIE_ECOLI	0	-3.3	11	1	Uncharacterized HTH-type transcriptional regulator yeiE.
P0ADS2_YGFE_ECOLI	0	-3.3	13	1	Uncharacterized protein ygfE.
P37744_RMLA1_ECOLI	0	-3.3	24	2	Glucose-1-phosphate thymidylyltransferase 1
P60340_TRUB_ECOLI	0	-3.3	12	1	tRNA pseudouridine synthase B
P67826_CUTC_ECOLI	0	-3.3	6	1	Copper homeostasis protein cutC.
P69222_IF1_ECOLI	0	-3.3	9	2	Translation initiation factor IF-1.
P69407_RCSB_ECOLI	0	-3.3	5	1	Capsular synthesis regulator component B.
P69503_APT_ECOLI	0	-3.3	15	1	Adenine phosphoribosyltransferase
P76344_YODA_ECOLI	0	-3.3	208	4	Metal-binding protein yodA
P00934_THRC_ECOLI	0	-3.4	88	4	Threonine synthase
P09147_GALE_ECOLI	0	-3.4	18	2	UDP-glucose 4-epimerase
P0A763_NDK_ECOLI	0	-3.4	67	4	Nucleoside diphosphate kinase
P0A955_ALKH_ECOLI	0	-3.4	39	3	KHG/KDPG aldolase
P0AEH5_ELAB_ECOLI	0	-3.4	11	1	Protein elaB.

P20099_BISC_ECOLI	0	-3.4	8	2	Biotin sulfoxide reductase
P24215_UXUA_ECOLI	0	-3.4	10	1	Mannonate dehydratase
P24232_HMP_ECOLI	0	-3.4	4	1	Flavohemoprotein
P37051_PURU_ECOLI	0	-3.4	8	1	Formyltetrahydrofolate deformylase
P45955_YBGF_ECOLI	0	-3.4	16	2	Uncharacterized protein ybgF
P64455_YDCY_ECOLI	0	-3.4	10	2	Uncharacterized protein ydcY.
P69829_PTSN_ECOLI	0	-3.4	9	1	Nitrogen regulatory protein
P76223_YNJB_ECOLI	0	-3.4	13	2	Protein ynjB.
P04951_KDSB_ECOLI	0	-3.5	7	2	3-deoxy-manno-octulosonate cytidylyltransferase
P04995_EX1_ECOLI	0	-3.5	8	2	Exodeoxyribonuclease I
P0A9C0_GLPA_ECOLI	0	-3.5	17	2	Anaerobic glycerol-3-phosphate dehydrogenase subunit A
P0AFR4_YCIO_ECOLI	0	-3.5	19	2	Uncharacterized protein yciO.
P24178_YFFB_ECOLI	0	-3.5	10	1	Protein yffB.
P25524_CODA_ECOLI	0	-3.5	15	2	Cytosine deaminase
P30136_THIC_ECOLI	0	-3.5	12	2	Thiamine biosynthesis protein thiC.
P37685_ALDB_ECOLI	0	-3.5	4	1	Aldehyde dehydrogenase B
P69797_PTNAB_ECOLI	0	-3.5	38	4	PTS system mannose-specific EIIAB component
P00363_FRDA_ECOLI	0	-3.6	4	1	Fumarate reductase flavoprotein subunit
P07004_PROA_ECOLI	0	-3.6	30	2	Gamma-glutamyl phosphate reductase
P0A6N4_EFP_ECOLI	0	-3.6	7	1	Elongation factor P
P0A8N7_SYK3_ECOLI	0	-3.6	4	1	Putative lysyl-tRNA synthetase
P0ACB2_HEM2_ECOLI	0	-3.6	18	1	Delta-aminolevulinic acid dehydratase
P0ACE7_HINT_ECOLI	0	-3.6	4	1	HIT-like protein hinT.
P0ADY1_PPID_ECOLI	0	-3.6	4	1	Peptidyl-prolyl cis-trans isomerase D
P0AFM6_PSPA_ECOLI	0	-3.6	28	2	Phage shock protein A.
P11454_ENTF_ECOLI	0	-3.6	15	1	Enterobactin synthetase component F
P30126_LEUD_ECOLI	0	-3.6	28	3	3-isopropylmalate dehydratase small subunit
P33602_NUOG_ECOLI	0	-3.6	3	1	NADH-quinone oxidoreductase subunit G
P46837_YHGF_ECOLI	0	-3.6	41	3	Protein yhgF.
P77695_GNSB_ECOLI	0	-3.6	15	3	Protein gnsB.
P78067_YNJE_ECOLI	0	-3.6	22	2	Putative thiosulfate sulfurtransferase ynjE
Q2EEQ2_RL362_ECOLI	0	-3.6	11	1	50S ribosomal protein L36 2.
Q46851 YGHZ ECOLI	0	-3.6	20	3	Uncharacterized protein yghZ.

P00579_RPOD_ECOLI	0	-3.7	21	1	RNA polymerase sigma factor rpoD
P0A9W3_YJJK_ECOLI	0	-3.7	24	1	Uncharacterized ABC transporter ATP-binding protein yjjK.
P0ADP9_YIHD_ECOLI	0	-3.7	26	3	Protein yihD.
P10408_SECA_ECOLI	0	-3.7	46	4	Protein translocase subunit secA.
P37191_GATZ_ECOLI	0	-3.7	39	4	Putative tagatose 6-phosphate kinase gatZ
P39180_AG43_ECOLI	0	-3.7	28	2	Antigen 43
P63224_GMHA_ECOLI	0	-3.7	27	1	Phosphoheptose isomerase
P75874_YCCU_ECOLI	0	-3.7	21	2	Uncharacterized protein yccU.
P00448_SODM_ECOLI	0	-3.8	72	2	Superoxide dismutase [Mn]
P00960_SYGA_ECOLI	0	-3.8	10	1	Glycyl-tRNA synthetase alpha subunit
P05194_AROD_ECOLI	0	-3.8	13	1	3-dehydroquinate dehydratase
P06986_HIS8_ECOLI	0	-3.8	15	2	Histidinol-phosphate aminotransferase
P0A6A6_LEU2_ECOLI	0	-3.8	23	2	3-isopropylmalate dehydratase large subunit
P0A6N1_EFTU_ECOLI	0	-3.8	255	4	Elongation factor Tu
P0A6N8_EFPL_ECOLI	0	-3.8	8	2	Elongation factor P-like protein.
P0A9T4_TAS_ECOLI	0	-3.8	17	1	Protein tas.
P17846_CYSI_ECOLI	0	-3.8	26	1	Sulfite reductase [NADPH] hemoprotein beta-component
P31120_GLMM_ECOLI	0	-3.8	27	3	Phosphoglucosamine mutase
P33018_YEIG_ECOLI	0	-3.8	10	2	Esterase yeiG
P33221_PURT_ECOLI	0	-3.8	15	2	Phosphoribosylglycinamide formyltransferase 2
P37759_RFBB_ECOLI	0	-3.8	27	2	dTDP-glucose 4,6-dehydratase
P40874_MTOX_ECOLI	0	-3.8	10	1	N-methyl-L-tryptophan oxidase
P67080_YGGS_ECOLI	0	-3.8	6	1	UPF0001 protein yggS.
P69441_KAD_ECOLI	0	-3.8	104	3	Adenylate kinase
P75949_NAGZ_ECOLI	0	-3.8	7	2	Beta-hexosaminidase
P77454_GLSA1_ECOLI	0	-3.8	9	1	Glutaminase 1
P77499_SUFC_ECOLI	0	-3.8	11	1	Probable ATP-dependent transporter sufC.
P05791_ILVD_ECOLI	0	-3.9	14	2	Dihydroxy-acid dehydratase
P0A744_MSRA_ECOLI	0	-3.9	12	1	Peptide methionine sulfoxide reductase msrA
P0A8A0_YEBC_ECOLI	0	-3.9	13	1	UPF0082 protein yebC.
P0A9K3_PHOL_ECOLI	0	-3.9	23	3	PhoH-like protein.
P0AAB4_UBID_ECOLI	0	-3.9	16	1	3-octaprenyl-4-hydroxybenzoate carboxy-lyase
P0AES0_GSP_ECOLI	0	-3.9	15	2	Bifunctional glutathionylspermidine synthetase/amidase

P23908_ARGE_ECOLI	0	-3.9	4	1	Acetylornithine deacetylase
P67910_HLDD_ECOLI	0	-3.9	26	2	ADP-L-glycero-D-manno-heptose-6-epimerase
P00509_AAT_ECOLI	0	-4	104	2	Aspartate aminotransferase
P08244_PYRF_ECOLI	0	-4	12	1	Orotidine 5'-phosphate decarboxylase
P08373_MURB_ECOLI	0	-4	6	2	UDP-N-acetylenolpyruvoylglucosamine reductase
P0A7S9_RS13_ECOLI	0	-4	50	4	30S ribosomal protein S13.
P0A867_TALA_ECOLI	0	-4	72	2	Transaldolase A
P0ABU5_ELBB_ECOLI	0	-4	30	2	Enhancing lycopene biosynthesis protein 2
P0ADU2_YGIN_ECOLI	0	-4	9	1	Protein ygiN.
P0AGD3_SODF_ECOLI	0	-4	20	1	Superoxide dismutase [Fe]
P28861_FENR_ECOLI	0	-4	9	1	FerredoxinNADP reductase
P37192_GATY_ECOLI	0	-4	23	2	Tagatose-1,6-bisphosphate aldolase gatY
P77541_PRPB_ECOLI	0	-4	26	4	Methylisocitrate lyase
P00452_RIR1_ECOLI	0	-4.1	14	2	Ribonucleoside-diphosphate reductase 1 subunit alpha
P0AB80_ILVE_ECOLI	0	-4.1	16	3	Branched-chain-amino-acid aminotransferase
P0AG18_PUR6_ECOLI	0	-4.1	10	2	Phosphoribosylaminoimidazole carboxylase catalytic subunit
P14900_MURD_ECOLI	0	-4.1	9	2	UDP-N-acetylmuramoylalanineD-glutamate ligase
P30125_LEU3_ECOLI	0	-4.1	51	2	3-isopropylmalate dehydrogenase
P45578_LUXS_ECOLI	0	-4.1	55	4	S-ribosylhomocysteine lyase
P64463_YDFZ_ECOLI	0	-4.1	46	4	Putative selenoprotein ydfZ.
P75694_YAHO_ECOLI	0	-4.1	82	4	UPF0379 protein yahO
P05020_PYRC_ECOLI	0	-4.2	32	2	Dihydroorotase
P07012_RF2_ECOLI	0	-4.2	46	4	Peptide chain release factor 2
P0A7U7_RS20_ECOLI	0	-4.2	32	3	30S ribosomal protein S20.
P0A7Z4_RPOA_ECOLI	0	-4.2	91	2	DNA-directed RNA polymerase subunit alpha
P0AAI9_FABD_ECOLI	0	-4.2	47	3	Malonyl CoA-acyl carrier protein transacylase
P0AD10_YECJ_ECOLI	0	-4.2	8	1	Uncharacterized protein yecJ.
P15640_PUR2_ECOLI	0	-4.2	55	4	Phosphoribosylamineglycine ligase
P24171_DCP_ECOLI	0	-4.2	41	2	Peptidyl-dipeptidase dcp
P37760_RFBD_ECOLI	0	-4.2	4	1	dTDP-4-dehydrorhamnose reductase
P52697_6PGL_ECOLI	0	-4.2	21	3	6-phosphogluconolactonase
P07003_POXB_ECOLI	0	-4.3	23	1	Pyruvate dehydrogenase [cytochrome]
P08957_T1MK_ECOLI	0	-4.3	7	1	Type I restriction enzyme EcoKI M protein

P0A800 RPOZ ECOLI	0	-4.3	19	3	DNA-directed RNA polymerase subunit omega
P0A8G3_UXAC_ECOLI	0	-4.3	31	2	Uronate isomerase
P0A8S1_ICIA_ECOLI	0	-4.3	7	1	Chromosome initiation inhibitor
P0A8T7_RPOC_ECOLI	0	-4.3	152	3	DNA-directed RNA polymerase subunit beta'
P0A993_F16P_ECOLI	0	-4.3	15	2	Fructose-1,6-bisphosphatase
P0A9C3_GALM_ECOLI	0	-4.3	24	2	Aldose 1-epimerase
P0ABB4_ATPB_ECOLI	0	-4.3	45	3	ATP synthase subunit beta
P0ACX3_YDHR_ECOLI	0	-4.3	34	3	Protein ydhR
P0ADE8_YGFZ_ECOLI	0	-4.3	24	1	tRNA-modifying protein ygfZ.
P0AE18_AMPM_ECOLI	0	-4.3	13	1	Methionine aminopeptidase
P0AG59_RS14_ECOLI	0	-4.3	25	2	30S ribosomal protein S14.
P0AG84_YGHA_ECOLI	0	-4.3	31	2	Uncharacterized oxidoreductase yghA
P10378_ENTE_ECOLI	0	-4.3	5	1	Enterobactin synthetase component E
P30177_YBIB_ECOLI	0	-4.3	16	2	Uncharacterized protein ybiB.
P30178_YBIC_ECOLI	0	-4.3	17	1	Uncharacterized oxidoreductase ybiC
P36938_PGM_ECOLI	0	-4.3	41	2	Phosphoglucomutase
P00547_KHSE_ECOLI	0	-4.4	25	3	Homoserine kinase
P08142_ILVB_ECOLI	0	-4.4	15	2	Acetolactate synthase isozyme 1 large subunit
P08178_PUR5_ECOLI	0	-4.4	25	1	Phosphoribosylformylglycinamidine cyclo-ligase
P0A6D7_AROK_ECOLI	0	-4.4	12	1	Shikimate kinase 1
P0A6R0_FABH_ECOLI	0	-4.4	31	3	3-oxoacyl-[acyl-carrier-protein] synthase 3
P0A7Z0_RPIA_ECOLI	0	-4.4	39	4	Ribose-5-phosphate isomerase A
P0AAN9_IRAP_ECOLI	0	-4.4	8	1	Protein iraP.
P0ACG1_STPA_ECOLI	0	-4.4	56	2	DNA-binding protein stpA
P0ADA3_NLPD_ECOLI	0	-4.4	8	2	Lipoprotein nlpD
P13033_GLPB_ECOLI	0	-4.4	7	1	Anaerobic glycerol-3-phosphate dehydrogenase subunit B
P21362_YCIF_ECOLI	0	-4.4	21	2	Protein yciF.
P60757_HIS1_ECOLI	0	-4.4	26	2	ATP phosphoribosyltransferase
P76569_YFGD_ECOLI	0	-4.4	6	1	Uncharacterized protein yfgD.
P0A6W9_GSH1_ECOLI	0	-4.5	9	1	Glutamatecysteine ligase
P0A8M3_SYT_ECOLI	0	-4.5	24	1	Threonyl-tRNA synthetase
P0A8M6_YEEX_ECOLI	0	-4.5	37	3	UPF0265 protein yeeX.
P0A8W8_YFBU_ECOLI	0	-4.5	13	2	UPF0304 protein yfbU.

P0AAB6_GALF_ECOLI	0	-4.5	94	4	UTPglucose-1-phosphate uridylyltransferase
P0AB14_YCCJ_ECOLI	0	-4.5	30	2	Uncharacterized protein yccJ.
P0ABT2_DPS_ECOLI	0	-4.5	18	2	DNA protection during starvation protein
P0AC13_DHPS_ECOLI	0	-4.5	11	1	Dihydropteroate synthase
P0AC81_LGUL_ECOLI	0	-4.5	6	1	Lactoylglutathione lyase
P0ADY3_RL14_ECOLI	0	-4.5	35	4	50S ribosomal protein L14.
P0AE01_TRMJ_ECOLI	0	-4.5	11	2	tRNA
P0AGE0_SSB_ECOLI	0	-4.5	26	4	Single-stranded DNA-binding protein
P0C018_RL18_ECOLI	0	-4.5	60	4	50S ribosomal protein L18.
P17115_GUTQ_ECOLI	0	-4.5	9	1	Protein gutQ.
P21888_SYC_ECOLI	0	-4.5	47	2	Cysteinyl-tRNA synthetase
P25665_METE_ECOLI	0	-4.5	120	3	5-methyltetrahydropteroyltriglutamatehomocysteine methyltr
P27434_YFGA_ECOLI	0	-4.5	12	1	Uncharacterized HTH-type transcriptional regulator yfgA.
P30749_MOAE_ECOLI	0	-4.5	9	1	Molybdopterin-converting factor subunit 2
P56262_DLHH_ECOLI	0	-4.5	16	2	Putative carboxymethylenebutenolidase
Q46856_YQHD_ECOLI	0	-4.5	30	2	Alcohol dehydrogenase yqhD
P06960_OTC2_ECOLI	0	-4.6	7	1	Ornithine carbamoyltransferase chain F
P0A6B7_ISCS_ECOLI	0	-4.6	15	1	Cysteine desulfurase
P0A6Q3_FABA_ECOLI	0	-4.6	24	2	3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase
P0A6T3_GAL1_ECOLI	0	-4.6	12	1	Galactokinase
P0A729_YCEF_ECOLI	0	-4.6	6	1	Maf-like protein yceF.
P0A7E5_PYRG_ECOLI	0	-4.6	39	2	CTP synthase
P0A870_TALB_ECOLI	0	-4.6	120	4	Transaldolase B
P0A8L1_SYS_ECOLI	0	-4.6	63	4	Seryl-tRNA synthetase
P0AAV6_YBGS_ECOLI	0	-4.6	18	3	Uncharacterized protein ybgS
P0ABB0_ATPA_ECOLI	0	-4.6	38	3	ATP synthase subunit alpha
P0AC41_DHSA_ECOLI	0	-4.6	9	1	Succinate dehydrogenase flavoprotein subunit
P0ACA7_YLIJ_ECOLI	0	-4.6	16	2	Uncharacterized GST-like protein yliJ.
P0AEK4_FABI_ECOLI	0	-4.6	66	4	Enoyl-[acyl-carrier-protein] reductase [NADH]
P10121_FTSY_ECOLI	0	-4.6	11	2	Cell division protein ftsY.
P11447_ARLY_ECOLI	0	-4.6	57	1	Argininosuccinate lyase
P18843_NADE_ECOLI	0	-4.6	43	3	NH(3)-dependent NAD(+) synthetase
P31130_YDEI_ECOLI	0	-4.6	11	1	Uncharacterized protein ydeI

P60438_RL3_ECOLI	0	-4.6	58	3	50S ribosomal protein L3.
P68191_SRA_ECOLI	0	-4.6	28	4	Stationary-phase-induced ribosome-associated protein
P75849_YCBL_ECOLI	0	-4.6	8	1	Uncharacterized protein ycbL
P76143_YNEB_ECOLI	0	-4.6	46	4	Uncharacterized aldolase yneB
P76536_YFEX_ECOLI	0	-4.6	9	2	Uncharacterized protein yfeX.
Q46829_BGLA_ECOLI	0	-4.6	10	1	6-phospho-beta-glucosidase bglA
P00946_MANA_ECOLI	0	-4.7	35	3	Mannose-6-phosphate isomerase
P00957_SYA_ECOLI	0	-4.7	69	2	Alanyl-tRNA synthetase
P0A6D3_AROA_ECOLI	0	-4.7	25	2	3-phosphoshikimate 1-carboxyvinyltransferase
P0A6G7_CLPP_ECOLI	0	-4.7	16	3	ATP-dependent Clp protease proteolytic subunit
P0A6H1_CLPX_ECOLI	0	-4.7	11	1	ATP-dependent Clp protease ATP-binding subunit clpX.
P0A7R1_RL9_ECOLI	0	-4.7	92	4	50S ribosomal protein L9.
P0A877_TRPA_ECOLI	0	-4.7	88	4	Tryptophan synthase alpha chain
P0A879_TRPB_ECOLI	0	-4.7	48	3	Tryptophan synthase beta chain
P0A881_TRPR_ECOLI	0	-4.7	6	1	Trp operon repressor.
P0A8B5_YBAB_ECOLI	0	-4.7	32	2	UPF0133 protein ybaB.
P0A998_FTNA_ECOLI	0	-4.7	19	1	Ferritin-1
P0A9X4_MREB_ECOLI	0	-4.7	49	4	Rod shape-determining protein mreB.
P0ABK5_CYSK_ECOLI	0	-4.7	368	4	Cysteine synthase A
P0AE52_BCP_ECOLI	0	-4.7	40	3	Putative peroxiredoxin bcp
P0AED0_USPA_ECOLI	0	-4.7	45	4	Universal stress protein A.
P14407_FUMB_ECOLI	0	-4.7	10	1	Fumarate hydratase class I, anaerobic
P16456_SELD_ECOLI	0	-4.7	20	1	Selenide, water dikinase
P37689_GPMI_ECOLI	0	-4.7	47	3	2,3-bisphosphoglycerate-independent phosphoglycerate mutase
P60595_HIS5_ECOLI	0	-4.7	12	1	Imidazole glycerol phosphate synthase subunit hisH
P77444_SUFS_ECOLI	0	-4.7	6	1	Cysteine desulfurase
P06999_K6PF2_ECOLI	0	-4.8	35	3	6-phosphofructokinase isozyme 2
P0A8E7_YAJQ_ECOLI	0	-4.8	89	4	UPF0234 protein yajQ.
P0A9Q5_ACCD_ECOLI	0	-4.8	15	2	Acetyl-coenzyme A carboxylase carboxyl transferase subunit b
P0AA04_PTHP_ECOLI	0	-4.8	63	4	Phosphocarrier protein HPr
P0ABP8_DEOD_ECOLI	0	-4.8	39	1	Purine nucleoside phosphorylase deoD-type
P0AC69_GLRX4_ECOLI	0	-4.8	16	1	Glutaredoxin-4
POACR9_MPRA_ECOLI	0	-4.8	26	2	Transcriptional repressor mprA

P0AET2_HDEB_ECOLI	0	-4.8	163	4	Protein hdeB
P0AFF6_NUSA_ECOLI	0	-4.8	39	3	Transcription elongation protein nusA
P0AG07_RPE_ECOLI	0	-4.8	20	1	Ribulose-phosphate 3-epimerase
P15639_PUR9_ECOLI	0	-4.8	57	4	Bifunctional purine biosynthesis protein purH
P33195_GCSP_ECOLI	0	-4.8	13	1	Glycine dehydrogenase [decarboxylating]
P37349_DHAM_ECOLI	0	-4.8	4	1	PTS-dependent dihydroxyacetone kinase, phosphotransferase su
P37773_MPL_ECOLI	0	-4.8	8	1	UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminop
P38489_NFNB_ECOLI	0	-4.8	70	4	Oxygen-insensitive NAD(P)H nitroreductase
P60422_RL2_ECOLI	0	-4.8	77	4	50S ribosomal protein L2.
P69783_PTGA_ECOLI	0	-4.8	108	4	Glucose-specific phosphotransferase enzyme IIA component
P76316_DCYD_ECOLI	0	-4.8	17	1	D-cysteine desulfhydrase
P04805_SYE_ECOLI	0	-4.9	48	2	Glutamyl-tRNA synthetase
P09030_EX3_ECOLI	0	-4.9	22	2	Exodeoxyribonuclease III
P09151_LEU1_ECOLI	0	-4.9	13	1	2-isopropylmalate synthase
P0A7A2_GPMB_ECOLI	0	-4.9	3	1	Probable phosphoglycerate mutase gpmB
P0A9D8_DAPD_ECOLI	0	-4.9	122	2	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltrans
P0A9Y6_CSPC_ECOLI	0	-4.9	46	4	Cold shock-like protein cspC
P0AC62_GLRX3_ECOLI	0	-4.9	24	2	Glutaredoxin-3
P0AEP3_GALU_ECOLI	0	-4.9	65	3	UTPglucose-1-phosphate uridylyltransferase
P0AEZ3_MIND_ECOLI	0	-4.9	27	4	Septum site-determining protein minD
P0AF96_YJGK_ECOLI	0	-4.9	16	2	Uncharacterized protein yjgK.
P0AG55_RL6_ECOLI	0	-4.9	98	3	50S ribosomal protein L6.
P15288_PEPD_ECOLI	0	-4.9	60	2	Aminoacyl-histidine dipeptidase
P16703_CYSM_ECOLI	0	-4.9	18	3	Cysteine synthase B
P21165_PEPQ_ECOLI	0	-4.9	18	2	Xaa-Pro dipeptidase
P23869_PPIB_ECOLI	0	-4.9	80	4	Peptidyl-prolyl cis-trans isomerase B
P28635_METQ_ECOLI	0	-4.9	12	1	D-methionine-binding lipoprotein metQ
P32132_TYPA_ECOLI	0	-4.9	35	3	GTP-binding protein typA/BipA
P52061_RDGB_ECOLI	0	-4.9	9	1	Nucleoside-triphosphatase rdgB
P60560_GUAC_ECOLI	0	-4.9	28	4	GMP reductase
P61714_RISB_ECOLI	0	-4.9	24	3	6,7-dimethyl-8-ribityllumazine synthase
P76402_YEGP_ECOLI	0	-4.9	57	3	UPF0339 protein yegP.
P06149_DLD_ECOLI	0	-5	3	1	D-lactate dehydrogenase

P0A734_MINE_ECOLI	0	-5	3	1	Cell division topological specificity factor.
P0A794_PDXJ_ECOLI	0	-5	24	1	Pyridoxine 5'-phosphate synthase
P0A7D7_PUR7_ECOLI	0	-5	78	4	Phosphoribosylaminoimidazole-succinocarboxamide synthase
P0A7R5_RS10_ECOLI	0	-5	42	4	30S ribosomal protein S10.
P0AEZ1_METF_ECOLI	0	-5	49	2	5,10-methylenetetrahydrofolate reductase
P36683_ACON2_ECOLI	0	-5	130	3	Aconitate hydratase 2
P75863_YCBX_ECOLI	0	-5	7	1	Uncharacterized protein ycbX.
P06959_ODP2_ECOLI	0	-5.1	91	4	Dihydrolipoyllysine-residue acetyltransferase component of p
P07118_SYV_ECOLI	0	-5.1	62	2	Valyl-tRNA synthetase
P0A6V1_GLGC_ECOLI	0	-5.1	33	2	Glucose-1-phosphate adenylyltransferase
P0A7J0_RIBB_ECOLI	0	-5.1	17	1	3,4-dihydroxy-2-butanone 4-phosphate synthase
P0A805_RRF_ECOLI	0	-5.1	91	4	Ribosome recycling factor
P0A8V0_RNZ_ECOLI	0	-5.1	3	1	Ribonuclease Z
P0AB77_KBL_ECOLI	0	-5.1	7	1	2-amino-3-ketobutyrate coenzyme A ligase
P39353_YJHC_ECOLI	0	-5.1	4	1	Putative oxidoreductase yjhC
P75823_LTAE_ECOLI	0	-5.1	24	1	Low specificity L-threonine aldolase
P77735_YAJO_ECOLI	0	-5.1	33	4	Uncharacterized oxidoreductase yajO
P0A8N3_SYK1_ECOLI	0	-5.2	24	2	Lysyl-tRNA synthetase
P0AB71_ALF_ECOLI	0	-5.2	127	4	Fructose-bisphosphate aldolase class 2
P0ACF8_HNS_ECOLI	0	-5.2	158	4	DNA-binding protein H-NS
P0AE88_CPXR_ECOLI	0	-5.2	18	2	Transcriptional regulatory protein cpxR.
P0AGJ9_SYY_ECOLI	0	-5.2	31	2	Tyrosyl-tRNA synthetase
P22256_GABT_ECOLI	0	-5.2	75	4	4-aminobutyrate aminotransferase
P27848_YIGL_ECOLI	0	-5.2	15	1	Uncharacterized protein yigL.
P0A6M8_EFG_ECOLI	0	-5.3	394	4	Elongation factor G
P0AB28_YCED_ECOLI	0	-5.3	8	1	Uncharacterized protein yceD
P0AET8_HDHA_ECOLI	0	-5.3	15	2	7-alpha-hydroxysteroid dehydrogenase
P22255_CYSQ_ECOLI	0	-5.3	19	2	Protein cysQ.
Q46871_YQJH_ECOLI	0	-5.3	11	1	Uncharacterized protein yqjH.
P04079_GUAA_ECOLI	0	-5.4	42	2	GMP synthase [glutamine-hydrolyzing]
P04693_TYRB_ECOLI	0	-5.4	12	1	Aromatic-amino-acid aminotransferase
P06983_HEM3_ECOLI	0	-5.4	15	1	Porphobilinogen deaminase
P0A7M6_RL29_ECOLI	0	-5.4	32	3	50S ribosomal protein L29.

P0A7N4_RL32_ECOLI	0	-5.4	32	1	50S ribosomal protein L32.
P0A7P5_RL34_ECOLI	0	-5.4	7	1	50S ribosomal protein L34.
P0A7W7_RS8_ECOLI	0	-5.4	20	2	30S ribosomal protein S8.
P0A825_GLYA_ECOLI	0	-5.4	309	4	Serine hydroxymethyltransferase
P0ABD3_BFR_ECOLI	0	-5.4	4	1	Bacterioferritin
P0AE78_CORC_ECOLI	0	-5.4	8	1	Magnesium and cobalt efflux protein corC.
P0AF93_YJGF_ECOLI	0	-5.4	33	1	UPF0076 protein yjgF.
P23882_FMT_ECOLI	0	-5.4	10	1	Methionyl-tRNA formyltransferase
P39315_YTFG_ECOLI	0	-5.4	5	1	Uncharacterized oxidoreductase ytfG
P75691_YAHK_ECOLI	0	-5.4	55	3	Zinc-type alcohol dehydrogenase-like protein yahK
P00561_AK1H_ECOLI	0	-5.5	6	1	Bifunctional aspartokinase/homoserine dehydrogenase I
P0A717_KPRS_ECOLI	0	-5.5	18	2	Ribose-phosphate pyrophosphokinase
P0A759_NAGB_ECOLI	0	-5.5	13	2	Glucosamine-6-phosphate deaminase
P0A7G6_RECA_ECOLI	0	-5.5	17	2	Protein recA
P0AE08_AHPC_ECOLI	0	-5.5	155	4	Alkyl hydroperoxide reductase subunit C
P0AFG0_NUSG_ECOLI	0	-5.5	20	2	Transcription antitermination protein nusG.
P68919_RL25_ECOLI	0	-5.5	23	2	50S ribosomal protein L25.
P76015_DHAK_ECOLI	0	-5.5	8	1	PTS-dependent dihydroxyacetone kinase, dihydroxyacetone-bind
P77739_YNIA_ECOLI	0	-5.5	7	1	Uncharacterized protein yniA.
P0A6A3_ACKA_ECOLI	0	-5.6	50	4	Acetate kinase
P0A6P9_ENO_ECOLI	0	-5.6	545	4	Enolase
P0A7K2_RL7_ECOLI	0	-5.6	37	2	50S ribosomal protein L7/L12
P0A9A6_FTSZ_ECOLI	0	-5.6	53	2	Cell division protein ftsZ.
P0AA16_OMPR_ECOLI	0	-5.6	27	3	Transcriptional regulatory protein ompR.
P0AB43_YCGL_ECOLI	0	-5.6	6	1	Uncharacterized protein ycgL.
P22259_PPCK_ECOLI	0	-5.6	60	4	Phosphoenolpyruvate carboxykinase [ATP]
P61889_MDH_ECOLI	0	-5.6	321	4	Malate dehydrogenase
P76004_YCGM_ECOLI	0	-5.6	10	2	Uncharacterized protein ycgM.
P0A6F1_CARA_ECOLI	0	-5.7	63	4	Carbamoyl-phosphate synthase small chain
P0A6T5_GCH1_ECOLI	0	-5.7	14	1	GTP cyclohydrolase 1
P0A7F6_SPED_ECOLI	0	-5.7	17	2	S-adenosylmethionine decarboxylase proenzyme
P0A8F0_UPP_ECOLI	0	-5.7	52	3	Uracil phosphoribosyltransferase
P0A8F8_UVRB_ECOLI	0	-5.7	15	1	UvrABC system protein B

P0A8W2_SLYA_ECOLI	0	-5.7	10	1	Transcriptional regulator slyA.
P0A9L8_P5CR_ECOLI	0	-5.7	12	3	Pyrroline-5-carboxylate reductase
P23836_PHOP_ECOLI	0	-5.7	11	1	Transcriptional regulatory protein phoP.
P24182_ACCC_ECOLI	0	-5.7	33	3	Biotin carboxylase
P00954_SYW_ECOLI	0	-5.8	32	2	Tryptophanyl-tRNA synthetase
P08997_MASY_ECOLI	0	-5.8	147	4	Malate synthase A
P0A6K6_DEOB_ECOLI	0	-5.8	51	2	Phosphopentomutase
P0A799_PGK_ECOLI	0	-5.8	299	3	Phosphoglycerate kinase
P0A9C5_GLNA_ECOLI	0	-5.8	57	2	Glutamine synthetase
P0AA25_THIO_ECOLI	0	-5.8	40	3	Thioredoxin-1
P18335_ARGD_ECOLI	0	-5.8	22	2	Acetylornithine/succinyldiaminopimelate aminotransferase
P21889_SYD_ECOLI	0	-5.8	70	1	Aspartyl-tRNA synthetase
P25906_YDBC_ECOLI	0	-5.8	18	1	Putative oxidoreductase ydbC
P27298_OPDA_ECOLI	0	-5.8	46	2	Oligopeptidase A
P37666_TKRA_ECOLI	0	-5.8	17	2	2-ketogluconate reductase
P08839_PT1_ECOLI	0	-5.9	241	4	Phosphoenolpyruvate-protein phosphotransferase
P0A6L2_DAPA_ECOLI	0	-5.9	45	3	Dihydrodipicolinate synthase
P0A6T1_G6PI_ECOLI	0	-5.9	66	2	Glucose-6-phosphate isomerase
P0A7R9_RS11_ECOLI	0	-5.9	34	2	30S ribosomal protein S11.
P0A836_SUCC_ECOLI	0	-5.9	137	3	Succinyl-CoA synthetase beta chain
P0A9Q9_DHAS_ECOLI	0	-5.9	137	4	Aspartate-semialdehyde dehydrogenase
P0ABD5_ACCA_ECOLI	0	-5.9	24	2	Acetyl-coenzyme A carboxylase carboxyl transferase subunit a
P0ADG7_IMDH_ECOLI	0	-5.9	145	4	Inosine-5'-monophosphate dehydrogenase
P0ADX7_YHHA_ECOLI	0	-5.9	47	3	Uncharacterized protein yhhA
P13035_GLPD_ECOLI	0	-5.9	33	2	Aerobic glycerol-3-phosphate dehydrogenase
P16659_SYP_ECOLI	0	-5.9	33	1	Prolyl-tRNA synthetase
P29217_YCEH_ECOLI	0	-5.9	38	4	UPF0502 protein yceH
P32157_YIIM_ECOLI	0	-5.9	12	2	Protein yiiM.
P69428_TATA_ECOLI	0	-5.9	7	2	Sec-independent protein translocase protein tatA.
Q46857_DKGA_ECOLI	0	-5.9	37	2	2,5-diketo-D-gluconic acid reductase A
P07395_SYFB_ECOLI	0	-6	52	2	Phenylalanyl-tRNA synthetase beta chain
P0A705_IF2_ECOLI	0	-6	61	3	Translation initiation factor IF-2.
P0A715_KDSA_ECOLI	0	-6	61	3	2-dehydro-3-deoxyphosphooctonate aldolase

P0A796_K6PF1_ECOLI	0	-6	30	1	6-phosphofructokinase isozyme 1
P0A7D4_PURA_ECOLI	0	-6	111	4	Adenylosuccinate synthetase
P0A7V3_RS3_ECOLI	0	-6	63	4	30S ribosomal protein S3.
P0A850_TIG_ECOLI	0	-6	175	4	Trigger factor
P0A858_TPIS_ECOLI	0	-6	105	3	Triosephosphate isomerase
P0A991_ALF1_ECOLI	0	-6	47	4	Fructose-bisphosphate aldolase class 1
P0A9D2_GST_ECOLI	0	-6	17	2	Glutathione S-transferase
P0A9P4_TRXB_ECOLI	0	-6	38	3	Thioredoxin reductase
P0AB91_AROG_ECOLI	0	-6	39	3	Phospho-2-dehydro-3-deoxyheptonate aldolase, Phe-sensitive
P0AG63_RS17_ECOLI	0	-6	27	2	30S ribosomal protein S17.
P23721_SERC_ECOLI	0	-6	68	2	Phosphoserine aminotransferase
P32685_YJBD_ECOLI	0	-6	3	1	Uncharacterized protein yjbD.
P37747_GLF_ECOLI	0	-6	16	1	UDP-galactopyranose mutase
P37903_USPF_ECOLI	0	-6	19	2	Universal stress protein F.
P42616_YQJC_ECOLI	0	-6	29	4	Protein yqjC
P68066_GRCA_ECOLI	0	-6	180	4	Autonomous glycyl radical cofactor.
P02413_RL15_ECOLI	0	-6.1	65	4	50S ribosomal protein L15.
P06612_TOP1_ECOLI	0	-6.1	41	3	DNA topoisomerase 1
P06721_METC_ECOLI	0	-6.1	9	1	Cystathionine beta-lyase
P0A7S3_RS12_ECOLI	0	-6.1	28	3	30S ribosomal protein S12.
P0A7T7_RS18_ECOLI	0	-6.1	31	3	30S ribosomal protein S18.
P0AAC0_USPE_ECOLI	0	-6.1	28	4	Universal stress protein E.
P0ABU2_ENGD_ECOLI	0	-6.1	30	3	GTP-dependent nucleic acid-binding protein engD.
P0AC38_ASPA_ECOLI	0	-6.1	14	1	Aspartate ammonia-lyase
P0ACW6_YDCH_ECOLI	0	-6.1	8	1	Uncharacterized protein ydcH.
P0AG16_PUR1_ECOLI	0	-6.1	20	1	Amidophosphoribosyltransferase
P0AG86_SECB_ECOLI	0	-6.1	15	1	Protein-export protein secB.
P13029_CATA_ECOLI	0	-6.1	53	2	Peroxidase/catalase HPI
P21513_RNE_ECOLI	0	-6.1	31	3	Ribonuclease E
P21599_KPYK2_ECOLI	0	-6.1	86	4	Pyruvate kinase II
P31663_PANC_ECOLI	0	-6.1	43	3	Pantothenate synthetase
P33012_GYRI_ECOLI	0	-6.1	3	1	DNA gyrase inhibitory protein
P06988_HISX_ECOLI	0	-6.2	100	4	Histidinol dehydrogenase

P07650_TYPH_ECOLI	0	-6.2	37	4	Thymidine phosphorylase
P07813_SYL_ECOLI	0	-6.2	61	2	Leucyl-tRNA synthetase
P09373_PFLB_ECOLI	0	-6.2	287	4	Formate acetyltransferase 1
P09424_MTLD_ECOLI	0	-6.2	57	3	Mannitol-1-phosphate 5-dehydrogenase
P0A7J7_RL11_ECOLI	0	-6.2	69	3	50S ribosomal protein L11.
P0A7V8_RS4_ECOLI	0	-6.2	96	4	30S ribosomal protein S4.
P0A988_DPO3B_ECOLI	0	-6.2	15	1	DNA polymerase III subunit beta
P0A9K9_SLYD_ECOLI	0	-6.2	4	1	FKBP-type peptidyl-prolyl cis-trans isomerase slyD
P0ACF0_DBHA_ECOLI	0	-6.2	136	3	DNA-binding protein HU-alpha
P0ADI7_YECD_ECOLI	0	-6.2	5	1	Isochorismatase family protein yecD.
P0AG67_RS1_ECOLI	0	-6.2	148	4	30S ribosomal protein S1.
P11875_SYR_ECOLI	0	-6.2	18	1	Arginyl-tRNA synthetase
P42620_YQJG_ECOLI	0	-6.2	4	1	Uncharacterized protein yqjG.
P61175_RL22_ECOLI	0	-6.2	80	4	50S ribosomal protein L22.
P76142_YNEA_ECOLI	0	-6.2	64	2	Uncharacterized protein yneA
P76243_YEAO_ECOLI	0	-6.2	19	2	Uncharacterized protein yeaO.
P00350_6PGD_ECOLI	0	-6.3	168	4	6-phosphogluconate dehydrogenase, decarboxylating
P00968_CARB_ECOLI	0	-6.3	124	4	Carbamoyl-phosphate synthase large chain
P02359_RS7_ECOLI	0	-6.3	131	4	30S ribosomal protein S7.
P05459_PDXB_ECOLI	0	-6.3	20	3	Erythronate-4-phosphate dehydrogenase
P08200_IDH_ECOLI	0	-6.3	267	4	Isocitrate dehydrogenase [NADP]
P0A6F3_GLPK_ECOLI	0	-6.3	160	3	Glycerol kinase
P0A6H5_HSLU_ECOLI	0	-6.3	75	4	ATP-dependent hsl protease ATP-binding subunit hslU
P0A6L0_DEOC_ECOLI	0	-6.3	92	4	Deoxyribose-phosphate aldolase
P0A6P1_EFTS_ECOLI	0	-6.3	121	2	Elongation factor Ts
P0A6S7_GPDA_ECOLI	0	-6.3	8	1	Glycerol-3-phosphate dehydrogenase [NAD(P)+]
P0A6Y8_DNAK_ECOLI	0	-6.3	535	4	Chaperone protein dnaK
P0A786_PYRB_ECOLI	0	-6.3	62	4	Aspartate carbamoyltransferase catalytic chain
P0A7N1_RL31B_ECOLI	0	-6.3	20	3	50S ribosomal protein L31 type B.
P0A8V2_RPOB_ECOLI	0	-6.3	138	3	DNA-directed RNA polymerase subunit beta
P0A9B2_G3P1_ECOLI	0	-6.3	535	4	Glyceraldehyde-3-phosphate dehydrogenase A
P0A9D4_CYSE_ECOLI	0	-6.3	7	1	Serine acetyltransferase
P0AD61_KPYK1_ECOLI	0	-6.3	227	4	Pyruvate kinase I

P0ADS6_YGGE_ECOLI	0	-6.3	29	3	Uncharacterized protein yggE.
P0AES4_GYRA_ECOLI	0	-6.3	24	2	DNA gyrase subunit A
P0AFG8_ODP1_ECOLI	0	-6.3	99	2	Pyruvate dehydrogenase E1 component
P0C0L2_OSMC_ECOLI	0	-6.3	88	2	Peroxiredoxin osmC
P15254_PUR4_ECOLI	0	-6.3	89	2	Phosphoribosylformylglycinamidine synthase
P16681_PHNB_ECOLI	0	-6.3	21	3	Protein phnB.
P23538_PPSA_ECOLI	0	-6.3	38	2	Phosphoenolpyruvate synthase
P26646_YHDH_ECOLI	0	-6.3	31	2	Protein yhdH.
P28304_QOR_ECOLI	0	-6.3	26	2	Quinone oxidoreductase
P46853_YHHX_ECOLI	0	-6.3	13	2	Putative oxidoreductase yhhX
P60624_RL24_ECOLI	0	-6.3	19	2	50S ribosomal protein L24.
P62707_GPMA_ECOLI	0	-6.3	345	4	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase
P75913_GHRA_ECOLI	0	-6.3	5	1	Putative 2-hydroxyacid dehydrogenase ghrA
P00370_DHE4_ECOLI	0	-6.4	89	3	NADP-specific glutamate dehydrogenase
P00961_SYGB_ECOLI	0	-6.4	63	3	Glycyl-tRNA synthetase beta subunit
P00962_SYQ_ECOLI	0	-6.4	34	2	Glutaminyl-tRNA synthetase
P05055_PNP_ECOLI	0	-6.4	91	4	Polyribonucleotide nucleotidyltransferase
P0A6E4_ASSY_ECOLI	0	-6.4	80	3	Argininosuccinate synthase
P0A6F5_CH60_ECOLI	0	-6.4	617	4	60 kDa chaperonin
P0A6W5_GREA_ECOLI	0	-6.4	12	1	Transcription elongation factor greA
P0A7A9_IPYR_ECOLI	0	-6.4	57	4	Inorganic pyrophosphatase
P0A7J3_RL10_ECOLI	0	-6.4	86	4	50S ribosomal protein L10
P0A7L0_RL1_ECOLI	0	-6.4	101	4	50S ribosomal protein L1.
P0A817_METK_ECOLI	0	-6.4	49	3	S-adenosylmethionine synthetase
P0A9Q7_ADHE_ECOLI	0	-6.4	149	3	Aldehyde-alcohol dehydrogenase
P0AB55_YCII_ECOLI	0	-6.4	27	3	Protein yciI.
P0ACJ0_LRP_ECOLI	0	-6.4	26	3	Leucine-responsive regulatory protein.
P0ACY1_YDJA_ECOLI	0	-6.4	18	2	Protein ydjA.
P0ACY3_YEAG_ECOLI	0	-6.4	51	2	Uncharacterized protein yeaG.
P0ADY7_RL16_ECOLI	0	-6.4	33	2	50S ribosomal protein L16.
P0AEK2_FABG_ECOLI	0	-6.4	92	4	3-oxoacyl-[acyl-carrier-protein] reductase
P0AEQ1_GLCG_ECOLI	0	-6.4	16	1	Protein glcG.
P0AF36_YIIU_ECOLI	0	-6.4	36	2	Uncharacterized protein yiiU.

P0AFM4_PSIF_ECOLI	0	-6.4	21	1	Phosphate starvation-inducible protein psiF
P0AG44_RL17_ECOLI	0	-6.4	64	3	50S ribosomal protein L17.
P25516_ACON1_ECOLI	0	-6.4	124	3	Aconitate hydratase 1
P25553_ALDA_ECOLI	0	-6.4	70	2	Aldehyde dehydrogenase A
P37330_MASZ_ECOLI	0	-6.4	90	2	Malate synthase G
P60723_RL4_ECOLI	0	-6.4	71	4	50S ribosomal protein L4.
P69913_CSRA_ECOLI	0	-6.4	24	2	Carbon storage regulator.
P00864_CAPP_ECOLI	0	-6.5	112	4	Phosphoenolpyruvate carboxylase
P09832_GLTD_ECOLI	0	-6.5	88	4	Glutamate synthase [NADPH] small chain
P0A7K6_RL19_ECOLI	0	-6.5	24	3	50S ribosomal protein L19.
P0A7M2_RL28_ECOLI	0	-6.5	23	3	50S ribosomal protein L28.
P0A7T3_RS16_ECOLI	0	-6.5	36	4	30S ribosomal protein S16.
P0A7W1_RS5_ECOLI	0	-6.5	88	3	30S ribosomal protein S5.
P0A953_FABB_ECOLI	0	-6.5	71	3	3-oxoacyl-[acyl-carrier-protein] synthase 1
P0A9M8_PTA_ECOLI	0	-6.5	76	4	Phosphate acetyltransferase
P0ABH7_CISY_ECOLI	0	-6.5	9	1	Citrate synthase
P0ABS1_DKSA_ECOLI	0	-6.5	14	1	DnaK suppressor protein.
P0AC59_GLRX2_ECOLI	0	-6.5	69	4	Glutaredoxin-2
P0ADE6_YGAU_ECOLI	0	-6.5	45	4	Uncharacterized protein ygaU.
P0ADZ0_RL23_ECOLI	0	-6.5	18	1	50S ribosomal protein L23.
P0AG30_RHO_ECOLI	0	-6.5	19	1	Transcription termination factor rho
P0AGE9_SUCD_ECOLI	0	-6.5	64	3	Succinyl-CoA ligase [ADP-forming] subunit alpha
P21177_FADB_ECOLI	0	-6.5	38	1	Fatty acid oxidation complex subunit alpha
P27550_ACSA_ECOLI	0	-6.5	127	3	Acetyl-coenzyme A synthetase
P31142_THTM_ECOLI	0	-6.5	15	2	3-mercaptopyruvate sulfurtransferase
P37095_PEPB_ECOLI	0	-6.5	23	3	Peptidase B
P38038_CYSJ_ECOLI	0	-6.5	42	2	Sulfite reductase [NADPH] flavoprotein alpha-component
P60906_SYH_ECOLI	0	-6.5	33	1	Histidyl-tRNA synthetase
P62399_RL5_ECOLI	0	-6.5	91	4	50S ribosomal protein L5.
P62768_YAEH_ECOLI	0	-6.5	24	1	UPF0325 protein yaeH.
P76621_CSID_ECOLI	0	-6.5	16	1	Protein csiD.
P02358_RS6_ECOLI	0	-6.6	54	4	30S ribosomal protein S6
P04036 DAPB ECOLI	0	-6.6	70	4	Dihydrodipicolinate reductase

P05793_ILVC_ECOLI	0	-6.6	184	4	Ketol-acid reductoisomerase
P09831_GLTB_ECOLI	0	-6.6	115	1	Glutamate synthase [NADPH] large chain
P0A6F9_CH10_ECOLI	0	-6.6	74	3	10 kDa chaperonin
P0A6X7_IHFA_ECOLI	0	-6.6	13	2	Integration host factor subunit alpha
P0A6Y1_IHFB_ECOLI	0	-6.6	42	3	Integration host factor subunit beta
P0A707_IF3_ECOLI	0	-6.6	44	3	Translation initiation factor IF-3.
P0A7F3_PYRI_ECOLI	0	-6.6	53	4	Aspartate carbamoyltransferase regulatory chain.
P0A7N9_RL33_ECOLI	0	-6.6	26	3	50S ribosomal protein L33.
P0A7X3_RS9_ECOLI	0	-6.6	25	3	30S ribosomal protein S9.
P0A8M0_SYN_ECOLI	0	-6.6	22	2	Asparaginyl-tRNA synthetase
P0A9Q1_ARCA_ECOLI	0	-6.6	75	3	Aerobic respiration control protein arcA
P0ABD8_BCCP_ECOLI	0	-6.6	25	3	Biotin carboxyl carrier protein of acetyl-CoA carboxylase
P0ADN2_YIFE_ECOLI	0	-6.6	35	2	UPF0438 protein yifE.
P0AFG3_ODO1_ECOLI	0	-6.6	70	1	2-oxoglutarate dehydrogenase E1 component
P0AFG6_ODO2_ECOLI	0	-6.6	67	3	Dihydrolipoyllysine-residue succinyltransferase component of
P31658_HCHA_ECOLI	0	-6.6	36	1	Chaperone protein hchA
P33570_TKT2_ECOLI	0	-6.6	51	2	Transketolase 2
P36659_CBPA_ECOLI	0	-6.6	15	2	Curved DNA-binding protein.
P68679_RS21_ECOLI	0	-6.6	34	2	30S ribosomal protein S21.
P76558_MAO2_ECOLI	0	-6.6	70	4	NADP-dependent malic enzyme
P77581_ASTC_ECOLI	0	-6.6	7	2	Succinylornithine transaminase
P00956_SYI_ECOLI	0	-6.7	37	2	Isoleucyl-tRNA synthetase
P00959_SYM_ECOLI	0	-6.7	26	2	Methionyl-tRNA synthetase
P06715_GSHR_ECOLI	0	-6.7	17	2	Glutathione reductase
P0A7V0_RS2_ECOLI	0	-6.7	98	3	30S ribosomal protein S2.
P0A9G6_ACEA_ECOLI	0	-6.7	365	4	Isocitrate lyase
P0A9P0_DLDH_ECOLI	0	-6.7	73	3	Dihydrolipoyl dehydrogenase
P0AD33_YFCZ_ECOLI	0	-6.7	10	2	UPF0381 protein yfcZ.
P0AFW2_RMF_ECOLI	0	-6.7	29	4	Ribosome modulation factor
P0AGE6_YIEF_ECOLI	0	-6.7	14	1	Uncharacterized protein yieF.
P21179_CATE_ECOLI	0	-6.7	89	3	Catalase HPII
P25526_GABD_ECOLI	0	-6.7	60	2	Succinate-semialdehyde dehydrogenase [NADP+]
P26616 MAO1 ECOLI	0	-6.7	26	1	NAD-dependent malic enzyme

P27302_TKT1_ECOLI	0	-6.7	81	3	Transketolase 1
P35340_AHPF_ECOLI	0	-6.7	51	3	Alkyl hydroperoxide reductase subunit F
P39177_USPG_ECOLI	0	-6.7	34	3	Universal stress protein G.
P68206_YJBJ_ECOLI	0	-6.7	78	4	UPF0337 protein yjbJ.
Q46845_YGHU_ECOLI	0	-6.7	22	2	Uncharacterized GST-like protein yghU.
P09372_GRPE_ECOLI	0	-6.8	62	3	Protein grpE
P0A6Z3_HTPG_ECOLI	0	-6.8	100	4	Chaperone protein htpG
P0A9T0_SERA_ECOLI	0	-6.8	85	4	D-3-phosphoglycerate dehydrogenase
P0ACF4_DBHB_ECOLI	0	-6.8	121	3	DNA-binding protein HU-beta
P0AD49_RAIA_ECOLI	0	-6.8	13	2	Ribosome-associated inhibitor A
P0ADZ4_RS15_ECOLI	0	-6.8	7	1	30S ribosomal protein S15.
P45395_KDSD_ECOLI	0	-6.8	9	2	Arabinose 5-phosphate isomerase
P69786_PTGCB_ECOLI	0	-6.8	9	1	PTS system glucose-specific EIICB component
Q59385_ATCU_ECOLI	0	-6.8	23	2	Copper-transporting P-type ATPase
P00582_DPO1_ECOLI	0	-6.9	35	1	DNA polymerase I
P0AA10_RL13_ECOLI	0	-6.9	27	2	50S ribosomal protein L13.
P0AG51_RL30_ECOLI	0	-6.9	11	1	50S ribosomal protein L30.
P12758_UDP_ECOLI	0	-6.9	88	2	Uridine phosphorylase
P15034_AMPP_ECOLI	0	-6.9	27	1	Xaa-Pro aminopeptidase
P00550_PTM3C_ECOLI	0	-7	3	1	PTS system mannitol-specific EIICBA component
P0A9M2_HPRT_ECOLI	0	-7	11	1	Hypoxanthine phosphoribosyltransferase
P0A9Z1_GLNB_ECOLI	0	-7	15	1	Nitrogen regulatory protein P-II 1.
P0ABA6_ATPG_ECOLI	0	-7	17	1	ATP synthase gamma chain
P0AC53_G6PD_ECOLI	0	-7	5	1	Glucose-6-phosphate 1-dehydrogenase
P0AD12_YEEZ_ECOLI	0	-7	12	1	Protein yeeZ
P0AFU8_RISA_ECOLI	0	-7	11	1	Riboflavin synthase alpha chain
P29745_PEPT_ECOLI	0	-7	16	1	Peptidase T
P39371_YJHT_ECOLI	0	-7	3	1	Kelch domain-containing protein yjhT
P52647_NIFJ_ECOLI	0	-7	14	1	Probable pyruvate-flavodoxin oxidoreductase
P60651_SPEB_ECOLI	0	-7	9	1	Agmatinase
P76550_YFFS_ECOLI	0	-7	10	1	Uncharacterized protein yffS.
P77522_SUFB_ECOLI	0	-7	13	1	Protein sufB.

Appendix F H2O Isolation Protocol, All PP:PP Protein Isotope Ratios

Protein	PP	log2ratio	Chr. Features	Reps	Protein Description
P0AA57_YOBA_ECOLI	1	2.7	12	2	Protein yobA
P0AEL6_FEPB_ECOLI	1	2.4	7	1	Ferrienterobactin-binding periplasmic protein
P0AB24_YCDO_ECOLI	1	1.9	52	2	UPF0409 protein ycdO
P77754_SPY_ECOLI	1	1.8	14	2	Spheroplast protein Y
P0ADV1_YHBN_ECOLI	1	1.6	15	2	Protein yhbN
P77804_YDGA_ECOLI	1	1.2	10	2	Protein ydgA
P37329_MODA_ECOLI	1	0.5	248	2	Molybdate-binding periplasmic protein
P0A8X2_YCEI_ECOLI	1	0.4	16	2	Protein yceI
P0ADU5_YGIW_ECOLI	1	0.4	26	2	Protein ygiW
P76193_YNHG_ECOLI	1	0.4	44	2	Uncharacterized protein ynhG
P18956_GGT_ECOLI	1	0.3	6	1	Gamma-glutamyltranspeptidase
P0AFL3_PPIA_ECOLI	1	0.2	29	2	Peptidyl-prolyl cis-trans isomerase A
P77348_MPPA_ECOLI	1	0.1	32	2	Periplasmic murein peptide-binding protein
P13482_TREA_ECOLI	1	0.1	44	2	Periplasmic trehalase
P0C0V0_DEGP_ECOLI	1	0	89	2	Protease do
P31697_FIMC_ECOLI	1	0	18	2	Chaperone protein fimC
P0ADA1_TESA_ECOLI	1	0	30	2	Acyl-CoA thioesterase I
P76128_DDPA_ECOLI	1	0	3	1	Probable D,D-dipeptide-binding periplasmic protein ddpA
P00805_ASPG2_ECOLI	1	-0.1	17	2	L-asparaginase 2
P0AEM9_FLIY_ECOLI	1	-0.1	194	2	Cystine-binding periplasmic protein
P61316_LOLA_ECOLI	1	-0.1	34	2	Outer-membrane lipoprotein carrier protein
P0ABZ6_SURA_ECOLI	1	-0.1	124	2	Chaperone surA
P31550_THIB_ECOLI	1	-0.1	69	2	Thiamine-binding periplasmic protein
P0AD59_IVY_ECOLI	1	-0.2	44	2	Inhibitor of vertebrate lysozyme
P0AFM2_PROX_ECOLI	1	-0.2	113	2	Glycine betaine-binding periplasmic protein
P0AEU7_SKP_ECOLI	1	-0.2	70	2	Chaperone protein skp
P0AD96_LIVJ_ECOLI	1	-0.3	389	2	Leu/Ile/Val-binding protein
P37028_BTUF_ECOLI	1	-0.3	7	1	Vitamin B12-binding protein
P00811_AMPC_ECOLI	1	-0.4	23	2	Beta-lactamase
P0AEG6_DSBC_ECOLI	1	-0.4	40	2	Thiol:disulfide interchange protein dsbC

P45523_FKBA_ECOLI	1	-0.4	93	2	FKBP-type peptidyl-prolyl cis-trans isomerase fkpA
P40120_OPGD_ECOLI	1	-0.4	23	2	Glucans biosynthesis protein D
P05458_PTRA_ECOLI	1	-0.4	26	2	Protease 3
P39172_ZNUA_ECOLI	1	-0.4	205	2	High-affinity zinc uptake system protein znuA
P07024_USHA_ECOLI	1	-0.4	33	1	Protein ushA
P0AEG4_DSBA_ECOLI	1	-0.5	33	2	Thiol:disulfide interchange protein dsbA
P75797_GSIB_ECOLI	1	-0.5	126	2	Glutathione-binding protein gsiB
P0AFK9_POTD_ECOLI	1	-0.5	150	2	Spermidine/putrescine-binding periplasmic protein
P0AG78_SUBI_ECOLI	1	-0.5	15	2	Sulfate-binding protein
P26648_SUFI_ECOLI	1	-0.5	13	2	Protein sufI
P0A855_TOLB_ECOLI	1	-0.5	97	2	Protein tolB
P64596_YRAP_ECOLI	1	-0.5	10	2	Uncharacterized protein yraP
P39099_DEGQ_ECOLI	1	-0.6	33	2	Protease degQ
P0AFH8_OSMY_ECOLI	1	-0.6	206	2	Osmotically-inducible protein Y
P23865_PRC_ECOLI	1	-0.6	50	2	Tail-specific protease
P37648_YHJJ_ECOLI	1	-0.6	45	2	Protein yhjJ
P30859_ARTI_ECOLI	1	-0.7	128	2	Arginine-binding periplasmic protein 1
P33363_BGLX_ECOLI	1	-0.7	55	2	Periplasmic beta-glucosidase
P0AES9_HDEA_ECOLI	1	-0.7	28	2	Protein hdeA
P0AG82_PSTS_ECOLI	1	-0.7	20	2	Phosphate-binding protein pstS
P0A862_TPX_ECOLI	1	-0.7	49	2	Thiol peroxidase
P0AFX9_RSEB_ECOLI	1	-0.7	7	1	Sigma-E factor regulatory protein rseB
P16700_CYSP_ECOLI	1	-0.8	181	2	Thiosulfate-binding protein
P37902_GLTI_ECOLI	1	-0.8	160	2	Glutamate/aspartate periplasmic-binding protein
P33136_OPGG_ECOLI	1	-0.8	20	2	Glucans biosynthesis protein G
P0AGD1_SODC_ECOLI	1	-0.8	18	2	Superoxide dismutase [Cu-Zn]
P0A9L3_FKBB_ECOLI	1	-0.9	17	2	FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase
P0AEQ3_GLNH_ECOLI	1	-0.9	195	2	Glutamine-binding periplasmic protein
P04816_LIVK_ECOLI	1	-0.9	190	2	Leucine-specific-binding protein
P0AAX8_YBIS_ECOLI	1	-0.9	71	2	Uncharacterized protein ybiS
P09551_ARGT_ECOLI	1	-1	112	2	Lysine-arginine-ornithine-binding periplasmic protein
P23847_DPPA_ECOLI	1	-1	405	2	Periplasmic dipeptide transport protein
P23827_ECOT_ECOLI	1	-1	25	2	Ecotin

P0AEU0_HISJ_ECOLI	1	-1	187	2	Histidine-binding periplasmic protein
P23843_OPPA_ECOLI	1	-1.1	650	2	Periplasmic oligopeptide-binding protein
P0AGC3_SLT_ECOLI	1	-1.1	30	2	Soluble lytic murein transglycosylase
P06610_BTUE_ECOLI	1	-1.1	6	1	Vitamin B12 transport periplasmic protein btuE.
P08331_CN16_ECOLI	1	-1.2	59	2	2',3'-cyclic-nucleotide 2'-phosphodiesterase
P0AEX9_MALE_ECOLI	1	-1.3	85	2	Maltose-binding periplasmic protein
P76108_YDCS_ECOLI	1	-1.4	36	2	Putative ABC transporter periplasmic-binding protein ydcS
P39325_YTFQ_ECOLI	1	-1.5	120	2	ABC transporter periplasmic-binding protein ytfQ
P30860_ARTJ_ECOLI	1	-1.6	183	2	Arginine-binding periplasmic protein 2
P07102_PPA_ECOLI	1	-1.7	16	2	Periplasmic appA protein
P0AG80_UGPB_ECOLI	1	-1.7	89	2	sn-glycerol-3-phosphate-binding periplasmic protein ugpB
P19926_AGP_ECOLI	1	-1.8	126	2	Glucose-1-phosphatase
P0ABK9_NRFA_ECOLI	1	-1.9	6	1	Cytochrome c-552
P0AEE5_DGAL_ECOLI	1	-2.1	73	2	D-galactose-binding periplasmic protein
P09394_GLPQ_ECOLI	1	-2.2	52	2	Glycerophosphoryl diester phosphodiesterase
P02925_RBSB_ECOLI	1	-2.4	96	2	D-ribose-binding periplasmic protein
P77214_CUSF_ECOLI	1	-2.5	35	2	Cation efflux system protein cusF
P00634_PPB_ECOLI	1	-2.6	6	1	Alkaline phosphatase
P02924_ARAF_ECOLI	1	-3.4	50	2	L-arabinose-binding periplasmic protein
P36649_CUEO_ECOLI	1	-3.5	60	2	Blue copper oxidase cueO
P0AEJ2_ENTC_ECOLI	0	7	15	2	Isochorismate synthase entC
P69222_IF1_ECOLI	0	7	12	2	Translation initiation factor IF-1.
P0ADU2_YGIN_ECOLI	0	7	4	1	Protein ygiN.
P17315_CIRA_ECOLI	0	6.2	225	2	Colicin I receptor
P75780_FIU_ECOLI	0	5.7	72	2	Catecholate siderophore receptor fiu
P05825_FEPA_ECOLI	0	4.9	202	2	Ferrienterobactin receptor
P0AG84_YGHA_ECOLI	0	4.8	5	1	Uncharacterized oxidoreductase yghA
P76116_YNCE_ECOLI	0	3.9	254	2	Uncharacterized protein yncE
P75818_YBJP_ECOLI	0	3.5	4	1	Uncharacterized lipoprotein ybjP
P10378_ENTE_ECOLI	0	3.4	3	1	Enterobactin synthetase component E
P37636_MDTE_ECOLI	0	3.1	7	2	Multidrug resistance protein mdtE
P0AB40_YCFR_ECOLI	0	3	12	2	UPF0379 protein ycfR
P64614_YHCN_ECOLI	0	2.7	6	1	UPF0379 protein yhcN

P68066_GRCA_ECOLI	0	2.2	116	2	Autonomous glycyl radical cofactor.
P68191_SRA_ECOLI	0	2.2	10	2	Stationary-phase-induced ribosome-associated protein
P0A910_OMPA_ECOLI	0	2.1	266	2	Outer membrane protein A
P64463_YDFZ_ECOLI	0	2.1	21	2	Putative selenoprotein ydfZ.
P0A917_OMPX_ECOLI	0	1.8	112	2	Outer membrane protein X
P33219_YEBF_ECOLI	0	1.8	24	2	Protein yebF
P0AB38_YCFM_ECOLI	0	1.7	11	2	Uncharacterized protein ycfM.
P76002_YCGK_ECOLI	0	1.7	69	2	Uncharacterized protein ycgK
P08506_DACC_ECOLI	0	1.6	3	1	D-alanyl-D-alanine carboxypeptidase dacC
P36659_CBPA_ECOLI	0	1.5	9	2	Curved DNA-binding protein.
P76009_EMTA_ECOLI	0	1.5	34	2	Endotype membrane-bound lytic murein transglycosylase A
P06971_FHUA_ECOLI	0	1.5	3	1	Ferrichrome-iron receptor
P31554_OSTA_ECOLI	0	1.5	3	1	LPS-assembly protein
P62707_GPMA_ECOLI	0	1.4	129	2	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase
P0AE06_ACRA_ECOLI	0	1.4	4	1	Acriflavine resistance protein A
P0ADB1_OSME_ECOLI	0	1.3	42	2	Osmotically-inducible lipoprotein E
P0A7N9_RL33_ECOLI	0	1.3	7	2	50S ribosomal protein L33.
P0A905_SLYB_ECOLI	0	1.3	27	2	Outer membrane lipoprotein slyB
P16869_FHUE_ECOLI	0	1.3	17	1	FhuE receptor
P0AFW2_RMF_ECOLI	0	1.3	3	1	Ribosome modulation factor
P0ADT2_YGIB_ECOLI	0	1.3	3	1	UPF0441 protein ygiB.
P0AG55_RL6_ECOLI	0	1.2	44	2	50S ribosomal protein L6.
P37194_SLP_ECOLI	0	1.2	14	2	Outer membrane protein slp
P0A7Q1_RL35_ECOLI	0	1.2	3	1	50S ribosomal protein L35
P06996_OMPC_ECOLI	0	1.1	57	2	Outer membrane protein C
P34210_OMPP_ECOLI	0	1.1	8	2	Outer membrane protease ompP
P0AA04_PTHP_ECOLI	0	1.1	24	2	Phosphocarrier protein HPr
P0ADX7_YHHA_ECOLI	0	1.1	82	2	Uncharacterized protein yhhA
P0AF70_YJEI_ECOLI	0	1.1	7	2	Uncharacterized protein yjeI
P0A9P6_DEAD_ECOLI	0	1.1	3	1	Cold-shock DEAD box protein A
P30139_THIG_ECOLI	0	1.1	9	1	Thiazole biosynthesis protein thiG.
P0AEH5_ELAB_ECOLI	0	1	17	2	Protein elaB.
P09169_OMPT_ECOLI	0	1	216	2	Protease 7

P68919_RL25_ECOLI	0	1	24	2	50S ribosomal protein L25.
P0AG51_RL30_ECOLI	0	1	19	2	50S ribosomal protein L30.
P0A7G2_RBFA_ECOLI	0	1	5	1	Ribosome-binding factor A
P0A8B5_YBAB_ECOLI	0	1	4	1	UPF0133 protein ybaB.
P42616_YQJC_ECOLI	0	1	7	1	Protein yqjC
P0A7U7_RS20_ECOLI	0	0.9	21	2	30S ribosomal protein S20.
P0ACW4_YDCA_ECOLI	0	0.9	17	2	Uncharacterized protein ydcA
P31130_YDEI_ECOLI	0	0.9	11	2	Uncharacterized protein ydeI
P0ADE6_YGAU_ECOLI	0	0.9	25	2	Uncharacterized protein ygaU.
P75820_AMID_ECOLI	0	0.9	3	1	N-acetylmuramoyl-L-alanine amidase amiD
P0A6X7_IHFA_ECOLI	0	0.9	3	1	Integration host factor subunit alpha
P0AB43_YCGL_ECOLI	0	0.9	4	1	Uncharacterized protein ycgL.
P64503_YEBV_ECOLI	0	0.9	7	1	Uncharacterized protein yebV.
P0ACF4_DBHB_ECOLI	0	0.8	10	2	DNA-binding protein HU-beta
P45464 YRAM ECOLI	0	0.8	14	2	Uncharacterized protein yraM.
POAEY5 MDAB ECOLI	0	0.8	6	1	Modulator of drug activity B.
POACFO DBHA ECOLI	0	0.7	31	2	DNA-binding protein HU-alpha
P05459 PDXB ECOLI	0	0.7	11	2	Erythronate-4-phosphate dehydrogenase
P60624 RL24 ECOLI	0	0.7	15	2	50S ribosomal protein L24.
P0A7M6 RL29 ECOLI	0	0.7	18	2	50S ribosomal protein L29.
P0A7U3 RS19 ECOLI	0	0.7	7	2	30S ribosomal protein S19.
P0ADA5_YAJG_ECOLI	0	0.7	13	2	Uncharacterized lipoprotein yajG
P0A986 CSPI ECOLI	0	0.6	15	2	Cold shock-like protein cspI
P02931 OMPF ECOLI	0	0.6	21	2	Outer membrane protein F
P28304 QOR ECOLI	0	0.6	12	2	Quinone oxidoreductase
P0C018 RL18 ECOLI	0	0.6	17	2	50S ribosomal protein L18.
P00448 SODM ECOLI	0	0.6	37	2	Superoxide dismutase [Mn]
P02930 TOLC ECOLI	0	0.6	20	2	Outer membrane protein tolC
P0A877 TRPA ECOLI	0	0.6	77	2	Tryptophan synthase alpha chain
POADS6 YGGE ECOLI	0	0.6	12	2	Uncharacterized protein yggE.
POADA3 NLPD ECOLI	0	0.6	3	1	Lipoprotein nlpD
P0AB55 YCII ECOLI	0	0.6	5	1	Protein ycil.
P0A972_CSPE_ECOLI	0	0.5	10	2	Cold shock-like protein cspE

P04128_FIMA1_ECOLI	0	0.5	9	2	Type-1 fimbrial protein, A chain
P60723_RL4_ECOLI	0	0.5	37	2	50S ribosomal protein L4.
P0A7T7_RS18_ECOLI	0	0.5	15	2	30S ribosomal protein S18.
P68679_RS21_ECOLI	0	0.5	10	2	30S ribosomal protein S21.
P76177_YDGH_ECOLI	0	0.5	130	2	Protein ydgH
P0A6Y1_IHFB_ECOLI	0	0.4	6	2	Integration host factor subunit beta
P0C0L2_OSMC_ECOLI	0	0.4	47	2	Peroxiredoxin osmC
P0A7J7_RL11_ECOLI	0	0.4	40	2	50S ribosomal protein L11.
P0ADY7_RL16_ECOLI	0	0.4	26	2	50S ribosomal protein L16.
P0A7K2_RL7_ECOLI	0	0.4	16	2	50S ribosomal protein L7/L12
P0A805_RRF_ECOLI	0	0.4	48	2	Ribosome recycling factor
P0A7T3_RS16_ECOLI	0	0.4	31	2	30S ribosomal protein S16.
P0A7W7_RS8_ECOLI	0	0.4	8	2	30S ribosomal protein S8.
P77717_YBAY_ECOLI	0	0.4	22	2	Uncharacterized lipoprotein ybaY
P0A7N1_RL31B_ECOLI	0	0.4	7	1	50S ribosomal protein L31 type B.
P0ABJ1_CYOA_ECOLI	0	0.3	8	2	Ubiquinol oxidase subunit 2
P0A6N4_EFP_ECOLI	0	0.3	15	2	Elongation factor P
P61320_LOLB_ECOLI	0	0.3	8	2	Outer-membrane lipoprotein lolB
P61175_RL22_ECOLI	0	0.3	20	2	50S ribosomal protein L22.
P0A7W1_RS5_ECOLI	0	0.3	36	2	30S ribosomal protein S5.
P22256_GABT_ECOLI	0	0.3	4	1	4-aminobutyrate aminotransferase
P0A903_NLPB_ECOLI	0	0.3	9	1	Lipoprotein 34
P33570_TKT2_ECOLI	0	0.3	14	1	Transketolase 2
P77625_YFBT_ECOLI	0	0.3	4	1	Phosphatase yfbT
P76569_YFGD_ECOLI	0	0.3	5	1	Uncharacterized protein yfgD.
P77774_YFGL_ECOLI	0	0.3	4	1	Lipoprotein yfgL
P0A9W6_YRBA_ECOLI	0	0.3	3	1	Uncharacterized protein yrbA.
P00350_6PGD_ECOLI	0	0.2	56	2	6-phosphogluconate dehydrogenase, decarboxylating
P21179_CATE_ECOLI	0	0.2	23	2	Catalase HPII
P0A9Y6_CSPC_ECOLI	0	0.2	47	2	Cold shock-like protein cspC
P0A9B2_G3P1_ECOLI	0	0.2	192	2	Glyceraldehyde-3-phosphate dehydrogenase A
P69776_LPP_ECOLI	0	0.2	14	2	Major outer membrane lipoprotein
P0A908_MIPA_ECOLI	0	0.2	25	2	MltA-interacting protein

P0A7K6_RL19_ECOLI	0	0.2	20	2	50S ribosomal protein L19.
P0A7R1_RL9_ECOLI	0	0.2	42	2	50S ribosomal protein L9.
P0A8M6_YEEX_ECOLI	0	0.2	8	2	UPF0265 protein yeeX.
P24186_FOLD_ECOLI	0	0.2	3	1	Bifunctional protein folD
P0AAI3_FTSH_ECOLI	0	0.2	7	1	Cell division protease ftsH
P10100_RLPA_ECOLI	0	0.2	4	1	Rare lipoprotein A
P46130_YBHC_ECOLI	0	0.2	8	1	Acyl-CoA thioester hydrolase ybgC
P31063_YEDD_ECOLI	0	0.2	4	1	Uncharacterized lipoprotein yedD
P06129_BTUB_ECOLI	0	0.1	8	2	Vitamin B12 transporter btuB
P0A8P3_FETP_ECOLI	0	0.1	19	2	Probable Fe(2+)-trafficking protein.
P69829_PTSN_ECOLI	0	0.1	10	2	Nitrogen regulatory protein
P61714_RISB_ECOLI	0	0.1	47	2	6,7-dimethyl-8-ribityllumazine synthase
P02413_RL15_ECOLI	0	0.1	36	2	50S ribosomal protein L15.
P0A867_TALA_ECOLI	0	0.1	17	2	Transaldolase A
P0A8E7_YAJQ_ECOLI	0	0.1	48	2	UPF0234 protein yajQ.
P0AAV6_YBGS_ECOLI	0	0.1	6	2	Uncharacterized protein ybgS
P39173_YEAD_ECOLI	0	0.1	23	2	UPF0010 protein yeaD
P0AC02_YFIO_ECOLI	0	0.1	9	2	UPF0169 lipoprotein yfiO
P52697_6PGL_ECOLI	0	0.1	9	1	6-phosphogluconolactonase
P0AFF6_NUSA_ECOLI	0	0.1	4	1	Transcription elongation protein nusA
P21513_RNE_ECOLI	0	0.1	8	1	Ribonuclease E
P0A7S9_RS13_ECOLI	0	0.1	9	1	30S ribosomal protein S13.
P68206_YJBJ_ECOLI	0	0.1	10	1	UPF0337 protein yjbJ.
P24182_ACCC_ECOLI	0	0	11	2	Biotin carboxylase
P33235_FLGK_ECOLI	0	0	23	2	Flagellar hook-associated protein 1
P04949_FLIC_ECOLI	0	0	1343	2	Flagellin.
P0ACF8_HNS_ECOLI	0	0	37	2	DNA-binding protein H-NS
P00935_METB_ECOLI	0	0	15	2	Cystathionine gamma-synthase
P38489_NFNB_ECOLI	0	0	26	2	Oxygen-insensitive NAD(P)H nitroreductase
P0A7E5_PYRG_ECOLI	0	0	13	2	CTP synthase
P0AG44_RL17_ECOLI	0	0	18	2	50S ribosomal protein L17.
P0A7L0_RL1_ECOLI	0	0	39	2	50S ribosomal protein L1.
P0A7M2_RL28_ECOLI	0	0	11	2	50S ribosomal protein L28.

P60422_RL2_ECOLI	0	0	44	2	50S ribosomal protein L2.
P60438_RL3_ECOLI	0	0	31	2	50S ribosomal protein L3.
P76344_YODA_ECOLI	0	0	306	2	Metal-binding protein yodA
P0ADV7_YRBC_ECOLI	0	0	37	2	Protein yrbC
P0AE91_CREA_ECOLI	0	0	7	1	Protein creA.
P0ACJ0_LRP_ECOLI	0	0	5	1	Leucine-responsive regulatory protein.
Q47702_YFEK_ECOLI	0	0	3	1	Uncharacterized protein yfeK
P0ADE8_YGFZ_ECOLI	0	0	26	1	tRNA-modifying protein ygfZ.
P04036_DAPB_ECOLI	0	-0.1	10	2	Dihydrodipicolinate reductase
P0AEK2_FABG_ECOLI	0	-0.1	24	2	3-oxoacyl-[acyl-carrier-protein] reductase
P0A707_IF3_ECOLI	0	-0.1	8	2	Translation initiation factor IF-3.
P61889_MDH_ECOLI	0	-0.1	135	2	Malate dehydrogenase
P0AG30_RHO_ECOLI	0	-0.1	24	2	Transcription termination factor rho
P0A7J3_RL10_ECOLI	0	-0.1	16	2	50S ribosomal protein L10
P0AA10_RL13_ECOLI	0	-0.1	12	2	50S ribosomal protein L13.
P0ADY3_RL14_ECOLI	0	-0.1	8	2	50S ribosomal protein L14.
P0A7R5_RS10_ECOLI	0	-0.1	17	2	30S ribosomal protein S10.
P02358_RS6_ECOLI	0	-0.1	21	2	30S ribosomal protein S6
P02359_RS7_ECOLI	0	-0.1	53	2	30S ribosomal protein S7.
P0ACG1_STPA_ECOLI	0	-0.1	26	2	DNA-binding protein stpA
P0AA25_THIO_ECOLI	0	-0.1	20	2	Thioredoxin-1
P39177_USPG_ECOLI	0	-0.1	32	2	Universal stress protein G.
P0A8J4_YBED_ECOLI	0	-0.1	8	2	UPF0250 protein ybeD.
P66948_YFGC_ECOLI	0	-0.1	15	2	TPR repeat-containing protein yfgC
P04825_AMPN_ECOLI	0	-0.1	3	1	Aminopeptidase N
P0A6E1_AROL_ECOLI	0	-0.1	3	1	Shikimate kinase 2
P36995_CSPB_ECOLI	0	-0.1	3	1	Cold shock-like protein cspB
Q46857_DKGA_ECOLI	0	-0.1	7	1	2,5-diketo-D-gluconic acid reductase A
P0AC62_GLRX3_ECOLI	0	-0.1	4	1	Glutaredoxin-3
P76558_MAO2_ECOLI	0	-0.1	9	1	NADP-dependent malic enzyme
P08244_PYRF_ECOLI	0	-0.1	4	1	Orotidine 5'-phosphate decarboxylase
P37744_RMLA1_ECOLI	0	-0.1	9	1	Glucose-1-phosphate thymidylyltransferase 1
P76172_YNFD_ECOLI	0	-0.1	7	1	Uncharacterized protein ynfD

Q46856_YQHD_ECOLI	0	-0.1	3 1		Alcohol dehydrogenase yqhD
P0ABB0_ATPA_ECOLI	0	-0.2	29 2	2	ATP synthase subunit alpha
P29744_FLGL_ECOLI	0	-0.2	54 2	2	Flagellar hook-associated protein 3
P0A6W5_GREA_ECOLI	0	-0.2	11 2	2	Transcription elongation factor greA
P0ADG7_IMDH_ECOLI	0	-0.2	61 2	2	Inosine-5'-monophosphate dehydrogenase
P69441_KAD_ECOLI	0	-0.2	91 2	2	Adenylate kinase
P26616_MAO1_ECOLI	0	-0.2	9 2	2	NAD-dependent malic enzyme
P28635_METQ_ECOLI	0	-0.2	25 2	2	D-methionine-binding lipoprotein metQ
P0A912_PAL_ECOLI	0	-0.2	31 2	2	Peptidoglycan-associated lipoprotein
P0A799_PGK_ECOLI	0	-0.2	187 2	2	Phosphoglycerate kinase
P0A7Z0_RPIA_ECOLI	0	-0.2	9 2	2	Ribose-5-phosphate isomerase A
P0A7Z4_RPOA_ECOLI	0	-0.2	25 2	2	DNA-directed RNA polymerase subunit alpha
P08312_SYFA_ECOLI	0	-0.2	3 1		Phenylalanyl-tRNA synthetase alpha chain
P0ACY1_YDJA_ECOLI	0	-0.2	6 1		Protein ydjA.
P0ABD8_BCCP_ECOLI	0	-0.3	7 2	2	Biotin carboxyl carrier protein of acetyl-CoA carboxylase
P0A9P0_DLDH_ECOLI	0	-0.3	25 2	2	Dihydrolipoyl dehydrogenase
P0AAI5_FABF_ECOLI	0	-0.3	11 2	2	3-oxoacyl-[acyl-carrier-protein] synthase 2
P0AEK4_FABI_ECOLI	0	-0.3	40 2	2	Enoyl-[acyl-carrier-protein] reductase [NADH]
P24216_FLID_ECOLI	0	-0.3	37 2	2	Flagellar hook-associated protein 2
P06715_GSHR_ECOLI	0	-0.3	9 2	2	Glutathione reductase
P08200_IDH_ECOLI	0	-0.3	152 2	2	Isocitrate dehydrogenase [NADP]
P25665_METE_ECOLI	0	-0.3	90 2	2	5-methyltetrahydropteroyltriglutamatehomocysteine
P0AFG6_ODO2_ECOLI	0	-0.3	26 2	2	Dihydrolipoyllysine-residue succinyltransferase component
P31663_PANC_ECOLI	0	-0.3	14 2	2	Pantothenate synthetase
P09373_PFLB_ECOLI	0	-0.3	297 2	2	Formate acetyltransferase 1
P23869_PPIB_ECOLI	0	-0.3	38 2	2	Peptidyl-prolyl cis-trans isomerase B
P0AG18_PUR6_ECOLI	0	-0.3	13 2	2	Phosphoribosylaminoimidazole carboxylase catalytic subunit
P0A7J0_RIBB_ECOLI	0	-0.3	8 2	2	3,4-dihydroxy-2-butanone 4-phosphate synthase
P0A7R9_RS11_ECOLI	0	-0.3	18 2	2	30S ribosomal protein S11.
P0A7X3_RS9_ECOLI	0	-0.3	9 2	2	30S ribosomal protein S9.
P21889_SYD_ECOLI	0	-0.3	22 2	2	Aspartyl-tRNA synthetase
P0AGE6_YIEF_ECOLI	0	-0.3	13 2	2	Uncharacterized protein yieF.
P0AE67_CHEY_ECOLI	0	-0.3	4 1		Chemotaxis protein cheY.

P0ABP8_DEOD_ECOLI	0	-0.3	7	1	Purine nucleoside phosphorylase deoD-type
P0AG48_RL21_ECOLI	0	-0.3	8	1	50S ribosomal protein L21.
P0ADS9_YGGN_ECOLI	0	-0.3	3	1	Uncharacterized protein yggN.
P00509_AAT_ECOLI	0	-0.4	67	2	Aspartate aminotransferase
P0A9G6_ACEA_ECOLI	0	-0.4	89	2	Isocitrate lyase
P0A9Q7_ADHE_ECOLI	0	-0.4	76	2	Aldehyde-alcohol dehydrogenase
P0AE08_AHPC_ECOLI	0	-0.4	120	2	Alkyl hydroperoxide reductase subunit C
P0AE52_BCP_ECOLI	0	-0.4	13	2	Putative peroxiredoxin bcp
P0A6F5_CH60_ECOLI	0	-0.4	124	2	60 kDa chaperonin
P0AAI9_FABD_ECOLI	0	-0.4	53	2	Malonyl CoA-acyl carrier protein transacylase
P0A9C5_GLNA_ECOLI	0	-0.4	54	2	Glutamine synthetase
P0A825_GLYA_ECOLI	0	-0.4	139	2	Serine hydroxymethyltransferase
P05793_ILVC_ECOLI	0	-0.4	123	2	Ketol-acid reductoisomerase
P0A7A9_IPYR_ECOLI	0	-0.4	12	2	Inorganic pyrophosphatase
P0A796_K6PF1_ECOLI	0	-0.4	39	2	6-phosphofructokinase isozyme 1
P0A715_KDSA_ECOLI	0	-0.4	27	2	2-dehydro-3-deoxyphosphooctonate aldolase
P09151_LEU1_ECOLI	0	-0.4	14	2	2-isopropylmalate synthase
P69797_PTNAB_ECOLI	0	-0.4	21	2	PTS system mannose-specific EIIAB component
P0A7G6_RECA_ECOLI	0	-0.4	20	2	Protein recA
P0AG67_RS1_ECOLI	0	-0.4	23	2	30S ribosomal protein S1.
P0A7V8_RS4_ECOLI	0	-0.4	20	2	30S ribosomal protein S4.
P23721_SERC_ECOLI	0	-0.4	61	2	Phosphoserine aminotransferase
P27302_TKT1_ECOLI	0	-0.4	30	2	Transketolase 1
P0A879_TRPB_ECOLI	0	-0.4	18	2	Tryptophan synthase beta chain
P0AF93_YJGF_ECOLI	0	-0.4	35	2	UPF0076 protein yjgF.
P39371_YJHT_ECOLI	0	-0.4	13	2	Kelch domain-containing protein yjhT
P0ABA6_ATPG_ECOLI	0	-0.4	4	1	ATP synthase gamma chain
P0AFM4_PSIF_ECOLI	0	-0.4	7	1	Phosphate starvation-inducible protein psiF
P0AG86_SECB_ECOLI	0	-0.4	3	1	Protein-export protein secB.
P0ACA3_SSPA_ECOLI	0	-0.4	6	1	Stringent starvation protein A.
P60906_SYH_ECOLI	0	-0.4	8	1	Histidyl-tRNA synthetase
P00962_SYQ_ECOLI	0	-0.4	13	1	Glutaminyl-tRNA synthetase
P76227_YNJH_ECOLI	0	-0.4	10	1	Uncharacterized protein ynjH

P35340_AHPF_ECOLI	0	-0.5	10	2	Alkyl hydroperoxide reductase subunit F
P0A991_ALF1_ECOLI	0	-0.5	13	2	Fructose-bisphosphate aldolase class 1
P0A955_ALKH_ECOLI	0	-0.5	27	2	KHG/KDPG aldolase
P0A6D3_AROA_ECOLI	0	-0.5	7	2	3-phosphoshikimate 1-carboxyvinyltransferase
P0ABH7_CISY_ECOLI	0	-0.5	13	2	Citrate synthase
P0A6Q3_FABA_ECOLI	0	-0.5	20	2	3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase
P75937_FLGE_ECOLI	0	-0.5	106	2	Flagellar hook protein flgE.
P04425_GSHB_ECOLI	0	-0.5	11	2	Glutathione synthetase
P0AD61_KPYK1_ECOLI	0	-0.5	77	2	Pyruvate kinase I
P00946_MANA_ECOLI	0	-0.5	23	2	Mannose-6-phosphate isomerase
P09424_MTLD_ECOLI	0	-0.5	30	2	Mannitol-1-phosphate 5-dehydrogenase
P0AF24_NAGD_ECOLI	0	-0.5	16	2	Protein nagD.
P33221_PURT_ECOLI	0	-0.5	14	2	Phosphoribosylglycinamide formyltransferase 2
P0A7V0_RS2_ECOLI	0	-0.5	19	2	30S ribosomal protein S2.
P0A9T0_SERA_ECOLI	0	-0.5	56	2	D-3-phosphoglycerate dehydrogenase
P0AGE9_SUCD_ECOLI	0	-0.5	12	2	Succinyl-CoA ligase [ADP-forming] subunit alpha
P04805_SYE_ECOLI	0	-0.5	12	2	Glutamyl-tRNA synthetase
P0A8M0_SYN_ECOLI	0	-0.5	14	2	Asparaginyl-tRNA synthetase
P07118_SYV_ECOLI	0	-0.5	23	2	Valyl-tRNA synthetase
P0AGL2_TDCF_ECOLI	0	-0.5	7	2	Protein tdcF.
P0A858_TPIS_ECOLI	0	-0.5	34	2	Triosephosphate isomerase
P0AAB8_USPD_ECOLI	0	-0.5	19	2	Universal stress protein D.
P64506_YEBY_ECOLI	0	-0.5	7	2	Uncharacterized protein yebY
P26646_YHDH_ECOLI	0	-0.5	13	2	Protein yhdH.
P0A6D7_AROK_ECOLI	0	-0.5	4	1	Shikimate kinase 1
P76015_DHAK_ECOLI	0	-0.5	11	1	PTS-dependent dihydroxyacetone kinase
P06959_ODP2_ECOLI	0	-0.5	12	1	Dihydrolipoyllysine-residue acetyltransferase component
P34209_YDCF_ECOLI	0	-0.5	6	1	Protein ydcF.
P32157_YIIM_ECOLI	0	-0.5	3	1	Protein yiiM.
P0A9W9_YRDA_ECOLI	0	-0.5	8	1	Protein yrdA.
P0AB71_ALF_ECOLI	0	-0.6	64	2	Fructose-bisphosphate aldolase class 2
P0A6F9_CH10_ECOLI	0	-0.6	27	2	10 kDa chaperonin
P0A6P1_EFTS_ECOLI	0	-0.6	84	2	Elongation factor Ts

P0A953_FABB_ECOLI	0	-0.6	42	2	3-oxoacyl-[acyl-carrier-protein] synthase 1
P13035_GLPD_ECOLI	0	-0.6	37	2	Aerobic glycerol-3-phosphate dehydrogenase
P0AC59_GLRX2_ECOLI	0	-0.6	31	2	Glutaredoxin-2
P0AET2_HDEB_ECOLI	0	-0.6	52	2	Protein hdeB
P60757_HIS1_ECOLI	0	-0.6	8	2	ATP phosphoribosyltransferase
P06988_HISX_ECOLI	0	-0.6	19	2	Histidinol dehydrogenase
P0A705_IF2_ECOLI	0	-0.6	20	2	Translation initiation factor IF-2.
P08997_MASY_ECOLI	0	-0.6	77	2	Malate synthase A
P0AFG0_NUSG_ECOLI	0	-0.6	13	2	Transcription antitermination protein nusG.
P0AFG8_ODP1_ECOLI	0	-0.6	55	2	Pyruvate dehydrogenase E1 component
P15288_PEPD_ECOLI	0	-0.6	15	2	Aminoacyl-histidine dipeptidase
P15254_PUR4_ECOLI	0	-0.6	63	2	Phosphoribosylformylglycinamidine synthase
P15639_PUR9_ECOLI	0	-0.6	12	2	Bifunctional purine biosynthesis protein purH
P0A7F3_PYRI_ECOLI	0	-0.6	28	2	Aspartate carbamoyltransferase regulatory chain.
P62399_RL5_ECOLI	0	-0.6	40	2	50S ribosomal protein L5.
P0A836_SUCC_ECOLI	0	-0.6	55	2	Succinyl-CoA synthetase beta chain
P0A8L1_SYS_ECOLI	0	-0.6	31	2	Seryl-tRNA synthetase
P0A870_TALB_ECOLI	0	-0.6	60	2	Transaldolase B
P0A8F0_UPP_ECOLI	0	-0.6	14	2	Uracil phosphoribosyltransferase
P33362_YEHZ_ECOLI	0	-0.6	21	2	Uncharacterized protein yehZ
P22106_ASNB_ECOLI	0	-0.6	4	1	Asparagine synthetase B [glutamine-hydrolyzing]
P04079_GUAA_ECOLI	0	-0.6	3	1	GMP synthase [glutamine-hydrolyzing]
P0A6A3_ACKA_ECOLI	0	-0.7	14	2	Acetate kinase
P0A6A8_ACP_ECOLI	0	-0.7	13	2	Acyl carrier protein
P0A6G7_CLPP_ECOLI	0	-0.7	12	2	ATP-dependent Clp protease proteolytic subunit
P0A6K6_DEOB_ECOLI	0	-0.7	25	2	Phosphopentomutase
P0A6L0_DEOC_ECOLI	0	-0.7	29	2	Deoxyribose-phosphate aldolase
P0A9Q9_DHAS_ECOLI	0	-0.7	110	2	Aspartate-semialdehyde dehydrogenase
P00370_DHE4_ECOLI	0	-0.7	48	2	NADP-specific glutamate dehydrogenase
P0A6T1_G6PI_ECOLI	0	-0.7	43	2	Glucose-6-phosphate isomerase
P0A817_METK_ECOLI	0	-0.7	25	2	S-adenosylmethionine synthetase
P0A786_PYRB_ECOLI	0	-0.7	56	2	Aspartate carbamoyltransferase catalytic chain
P69407_RCSB_ECOLI	0	-0.7	17	2	Capsular synthesis regulator component B.
P0A7I4_RF3_ECOLI	0	-0.7	7	2	Peptide chain release factor 3
-------------------	---	------	-----	---	--
P0A9K9_SLYD_ECOLI	0	-0.7	23	2	FKBP-type peptidyl-prolyl cis-trans isomerase slyD
P00954_SYW_ECOLI	0	-0.7	20	2	Tryptophanyl-tRNA synthetase
P0A850_TIG_ECOLI	0	-0.7	88	2	Trigger factor
P75694_YAHO_ECOLI	0	-0.7	52	2	UPF0379 protein yahO
P0ACX3_YDHR_ECOLI	0	-0.7	10	2	Protein ydhR
P0A8W8_YFBU_ECOLI	0	-0.7	10	2	UPF0304 protein yfbU.
P76223_YNJB_ECOLI	0	-0.7	21	2	Protein ynjB.
P0A6T9_GCSH_ECOLI	0	-0.7	4	1	Glycine cleavage system H protein.
P75823_LTAE_ECOLI	0	-0.7	4	1	Low specificity L-threonine aldolase
P0A7L3_RL20_ECOLI	0	-0.7	5	1	50S ribosomal protein L20.
P00864_CAPP_ECOLI	0	-0.8	45	2	Phosphoenolpyruvate carboxylase
P0A9D8_DAPD_ECOLI	0	-0.8	69	2	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltrans
P24171_DCP_ECOLI	0	-0.8	33	2	Peptidyl-dipeptidase dcp
P0A6Y8_DNAK_ECOLI	0	-0.8	78	2	Chaperone protein dnaK
P0ABT2_DPS_ECOLI	0	-0.8	72	2	DNA protection during starvation protein
P0A6P9_ENO_ECOLI	0	-0.8	305	2	Enolase
P25526_GABD_ECOLI	0	-0.8	6	2	Succinate-semialdehyde dehydrogenase [NADP+]
P0AAB6_GALF_ECOLI	0	-0.8	13	2	UTPglucose-1-phosphate uridylyltransferase
P09372_GRPE_ECOLI	0	-0.8	16	2	Protein grpE
P0ACE7_HINT_ECOLI	0	-0.8	16	2	HIT-like protein hinT.
P69783_PTGA_ECOLI	0	-0.8	123	2	Glucose-specific phosphotransferase enzyme IIA component
P07012_RF2_ECOLI	0	-0.8	16	2	Peptide chain release factor 2
P0AED0_USPA_ECOLI	0	-0.8	27	2	Universal stress protein A.
P0ACA7_YLIJ_ECOLI	0	-0.8	15	2	Uncharacterized GST-like protein yliJ.
P18843_NADE_ECOLI	0	-0.8	12	1	NH(3)-dependent NAD(+) synthetase
P05055_PNP_ECOLI	0	-0.8	4	1	Polyribonucleotide nucleotidyltransferase
P0AFU8_RISA_ECOLI	0	-0.8	3	1	Riboflavin synthase alpha chain
P0AGJ9_SYY_ECOLI	0	-0.8	7	1	Tyrosyl-tRNA synthetase
P0ABB4_ATPB_ECOLI	0	-0.9	55	2	ATP synthase subunit beta
P63284_CLPB_ECOLI	0	-0.9	28	2	Chaperone protein clpB
P0ABK5_CYSK_ECOLI	0	-0.9	216	2	Cysteine synthase A
P0A6L2_DAPA_ECOLI	0	-0.9	15	2	Dihydrodipicolinate synthase

0	-0.9	59	2	Pyruvate kinase II
0	-0.9	23	2	3-isopropylmalate dehydrogenase
0	-0.9	25	2	S-ribosylhomocysteine lyase
0	-0.9	6	2	Peptide methionine sulfoxide reductase msrA
0	-0.9	11	2	Peptidase B
0	-0.9	21	2	Xaa-Pro dipeptidase
0	-0.9	63	2	Putrescine-binding periplasmic protein
0	-0.9	102	2	Phosphoenolpyruvate-protein phosphotransferase
0	-0.9	53	2	Adenylosuccinate synthetase
0	-0.9	29	2	30S ribosomal protein S3.
0	-0.9	4	1	Glucosaminefructose-6-phosphate aminotransferase [isomeriz
0	-0.9	3	1	Ornithine carbamoyltransferase chain F
0	-0.9	7	1	Adenylosuccinate lyase
0	-0.9	5	1	Lysyl-tRNA synthetase
0	-0.9	3	1	Threonyl-tRNA synthetase
0	-1	33	2	Phospho-2-dehydro-3-deoxyheptonate aldolase, Phe-sensitive
0	-1	10	2	Glucokinase
0	-1	25	2	Glutamate synthase [NADPH] small chain
0	-1	10	2	Branched-chain-amino-acid aminotransferase
0	-1	14	2	MTA/SAH nucleosidase
0	-1	24	2	UDP-N-acetylglucosamine 1-carboxyvinyltransferase
0	-1	26	2	Ornithine carbamoyltransferase chain I
0	-1	11	2	Peptidase T
0	-1	10	2	Spermidine synthase
0	-1	27	2	GTP-binding protein typA/BipA
0	-1	6	2	Uncharacterized oxidoreductase yajO
0	-1	9	1	Chaperone protein htpG
0	-1	5	1	Cysteine desulfurase
0	-1.1	691	2	Antigen 43
0	-1.1	40	2	Lysine-sensitive aspartokinase 3
0	-1.1	9	2	Aldehyde dehydrogenase A
0	-1.1	9	2	Cell division protein ftsZ.
0	-1.1	20	2	Chaperone protein hchA
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

P0A717_KPRS_ECOLI	0	-1.1	13	2	Ribose-phosphate pyrophosphokinase
P16659_SYP_ECOLI	0	-1.1	17 2	2	Prolyl-tRNA synthetase
P12758_UDP_ECOLI	0	-1.1	36	2	Uridine phosphorylase
P0A8G6_WRBA_ECOLI	0	-1.1	82 2	2	Flavoprotein wrbA
P0A6F1_CARA_ECOLI	0	-1.1	7	1	Carbamoyl-phosphate synthase small chain
P52643_LDHD_ECOLI	0	-1.1	3	1	D-lactate dehydrogenase
P31057_PANB_ECOLI	0	-1.1	7	1	3-methyl-2-oxobutanoate hydroxymethyltransferase
P00561_AK1H_ECOLI	0	-1.2	24	2	Bifunctional aspartokinase/homoserine dehydrogenase I
P69503_APT_ECOLI	0	-1.2	14	2	Adenine phosphoribosyltransferase
P11447_ARLY_ECOLI	0	-1.2	14	2	Argininosuccinate lyase
P0A6E4_ASSY_ECOLI	0	-1.2	32	2	Argininosuccinate synthase
P00968_CARB_ECOLI	0	-1.2	48	2	Carbamoyl-phosphate synthase large chain
P0AC41_DHSA_ECOLI	0	-1.2	14	2	Succinate dehydrogenase flavoprotein subunit
P0A6M8_EFG_ECOLI	0	-1.2	262	2	Elongation factor G
P0A993_F16P_ECOLI	0	-1.2	12	2	Fructose-1,6-bisphosphatase
P76658_HLDE_ECOLI	0	-1.2	7 2	2	Bifunctional protein hldE
P0AEZ1_METF_ECOLI	0	-1.2	16 2	2	5,10-methylenetetrahydrofolate reductase
P15640_PUR2_ECOLI	0	-1.2	19	2	Phosphoribosylamineglycine ligase
P0A8V2_RPOB_ECOLI	0	-1.2	39	2	DNA-directed RNA polymerase subunit beta
P00961_SYGB_ECOLI	0	-1.2	13	2	Glycyl-tRNA synthetase beta subunit
P00956_SYI_ECOLI	0	-1.2	10 2	2	Isoleucyl-tRNA synthetase
P0A998_FTNA_ECOLI	0	-1.2	4	1	Ferritin-1
P08142_ILVB_ECOLI	0	-1.2	4	1	Acetolactate synthase isozyme 1 large subunit
P0A7B1_PPK_ECOLI	0	-1.2	3	1	Polyphosphate kinase
P0AEP3_GALU_ECOLI	0	-1.3	35 2	2	UTPglucose-1-phosphate uridylyltransferase
P37689_GPMI_ECOLI	0	-1.3	59 2	2	2,3-bisphosphoglycerate-independent phosphoglycerate mutase
P23893_GSA_ECOLI	0	-1.3	13	2	Glutamate-1-semialdehyde 2,1-aminomutase
P0A9X4_MREB_ECOLI	0	-1.3	18 2	2	Rod shape-determining protein mreB.
P0A763_NDK_ECOLI	0	-1.3	20 2	2	Nucleoside diphosphate kinase
P27298_OPDA_ECOLI	0	-1.3	24	2	Oligopeptidase A
P78067_YNJE_ECOLI	0	-1.3	80 2	2	Putative thiosulfate sulfurtransferase ynjE
P0A6H5_HSLU_ECOLI	0	-1.3	3	1	ATP-dependent hsl protease ATP-binding subunit hslU
P62620_ISPG_ECOLI	0	-1.3	3	1	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase

P0A6C8_ARGB_ECOLI	0	-1.4	12	2	Acetylglutamate kinase
P18335_ARGD_ECOLI	0	-1.4	16	2	Acetylornithine/succinyldiaminopimelate aminotransferase
P0A6N1_EFTU_ECOLI	0	-1.4	298	2	Elongation factor Tu
P0AES4_GYRA_ECOLI	0	-1.4	12	2	DNA gyrase subunit A
P0A7D7_PUR7_ECOLI	0	-1.4	32	2	Phosphoribosylaminoimidazole-succinocarboxamide synthase
P05020_PYRC_ECOLI	0	-1.4	36	2	Dihydroorotase
P00909_TRPC_ECOLI	0	-1.4	15	2	Tryptophan biosynthesis protein trpCF
P76142_YNEA_ECOLI	0	-1.4	44	2	Uncharacterized protein yneA
Q59385_ATCU_ECOLI	0	-1.4	9	1	Copper-transporting P-type ATPase
P0AES0_GSP_ECOLI	0	-1.4	3	1	Bifunctional glutathionylspermidine synthetase/amidase
P0AEZ3_MIND_ECOLI	0	-1.5	15	2	Septum site-determining protein minD
P23538_PPSA_ECOLI	0	-1.5	7	2	Phosphoenolpyruvate synthase
P23857_PSPE_ECOLI	0	-1.5	59	2	Phage shock protein E
P0A8T7_RPOC_ECOLI	0	-1.5	29	2	DNA-directed RNA polymerase subunit beta'
P21888_SYC_ECOLI	0	-1.5	12	2	Cysteinyl-tRNA synthetase
P0A8A2_YEEN_ECOLI	0	-1.5	9	2	UPF0082 protein yeeN.
P0ADP9_YIHD_ECOLI	0	-1.5	25	2	Protein yihD.
P07395_SYFB_ECOLI	0	-1.5	9	1	Phenylalanyl-tRNA synthetase beta chain
P29217_YCEH_ECOLI	0	-1.5	5	1	UPF0502 protein yceH
P0ABU2_ENGD_ECOLI	0	-1.6	16	2	GTP-dependent nucleic acid-binding protein engD.
P0A9S5_GLDA_ECOLI	0	-1.6	10	2	Glycerol dehydrogenase
P09831_GLTB_ECOLI	0	-1.6	64	2	Glutamate synthase [NADPH] large chain
P22259 PPCK ECOLI	0	-1.6	32	2	Phosphoenolpyruvate carboxykinase [ATP]
P76536_YFEX_ECOLI	0	-1.6	8	2	Uncharacterized protein yfeX.
P24203 YJIA ECOLI	0	-1.6	6	2	Uncharacterized GTP-binding protein yjiA.
P31677_OTSA_ECOLI	0	-1.6	3	1	Alpha, alpha-trehalose-phosphate synthase [UDP-forming]
P77318_YDEN_ECOLI	0	-1.6	3	1	Uncharacterized sulfatase ydeN
P36683 ACON2 ECOLI	0	-1.7	54	2	Aconitate hydratase 2
P37330 MASZ ECOLI	0	-1.7	16	2	Malate synthase G
P0AB14_YCCJ_ECOLI	0	-1.7	10	2	Uncharacterized protein yccJ.
P09147 GALE ECOLI	0	-1.7	3	1	UDP-glucose 4-epimerase
P17846_CYSI_ECOLI	0	-1.8	22	2	Sulfite reductase [NADPH] hemoprotein beta-component
P37192 GATY ECOLI	0	-1.8	29	2	Tagatose-1,6-bisphosphate aldolase gatY

P37759_RFBB_ECOLI	0	-1.8	14	2	dTDP-glucose 4,6-dehydratase
P0A9W3_YJJK_ECOLI	0	-1.8	31	2	Uncharacterized ABC transporter ATP-binding protein yjjK.
P0A9J6_RBSK_ECOLI	0	-1.8	3	1	Ribokinase
P0A6F3_GLPK_ECOLI	0	-1.9	68	2	Glycerol kinase
P05791_ILVD_ECOLI	0	-1.9	15	2	Dihydroxy-acid dehydratase
P30126_LEUD_ECOLI	0	-1.9	47	2	3-isopropylmalate dehydratase small subunit
P00934_THRC_ECOLI	0	-1.9	71	2	Threonine synthase
P0A915_OMPW_ECOLI	0	-1.9	6	1	Outer membrane protein W
P07623_META_ECOLI	0	-2	12	2	Homoserine O-succinyltransferase
P0AC33_FUMA_ECOLI	0	-2	14	1	Fumarate hydratase class I, aerobic
P0A6T3_GAL1_ECOLI	0	-2	6	1	Galactokinase
P0A6W9_GSH1_ECOLI	0	-2	8	1	Glutamatecysteine ligase
P0AG16_PUR1_ECOLI	0	-2.1	7	2	Amidophosphoribosyltransferase
P0AAC0_USPE_ECOLI	0	-2.1	33	2	Universal stress protein E.
P0AFG3_ODO1_ECOLI	0	-2.1	7	1	2-oxoglutarate dehydrogenase E1 component
P69828_PTKA_ECOLI	0	-2.2	13	2	Galactitol-specific phosphotransferase enzyme IIA component
P07639_AROB_ECOLI	0	-2.3	10	2	3-dehydroquinate synthase
P0AGD3_SODF_ECOLI	0	-2.5	14	2	Superoxide dismutase [Fe]
P0A9P4_TRXB_ECOLI	0	-2.5	4	1	Thioredoxin reductase
P07650_TYPH_ECOLI	0	-2.5	10	1	Thymidine phosphorylase
P13033_GLPB_ECOLI	0	-2.6	7	1	Anaerobic glycerol-3-phosphate dehydrogenase subunit B
P10408_SECA_ECOLI	0	-2.6	4	1	Protein translocase subunit secA.
P25516_ACON1_ECOLI	0	-2.7	44	2	Aconitate hydratase 1
P13029_CATA_ECOLI	0	-2.7	40	2	Peroxidase/catalase HPI
P0A9C3_GALM_ECOLI	0	-2.7	16	2	Aldose 1-epimerase
P0AF36_YIIU_ECOLI	0	-2.7	22	2	Uncharacterized protein yiiU.
P40874_MTOX_ECOLI	0	-2.7	3	1	N-methyl-L-tryptophan oxidase
P27550_ACSA_ECOLI	0	-3.1	35	2	Acetyl-coenzyme A synthetase
P67080_YGGS_ECOLI	0	-3.1	7	2	UPF0001 protein yggS.
P0A6A6_LEU2_ECOLI	0	-3.3	45	2	3-isopropylmalate dehydratase large subunit
P0A9M8_PTA_ECOLI	0	-3.4	13	2	Phosphate acetyltransferase
P12281_MOEA_ECOLI	0	-3.4	8	1	Molybdopterin biosynthesis protein moeA.
P37191_GATZ_ECOLI	0	-3.6	13	2	Putative tagatose 6-phosphate kinase gatZ

P39315_YTFG_ECOLI	0	-3.9	6	1	Uncharacterized oxidoreductase ytfG
P0A9C0_GLPA_ECOLI	0	-4.1	4	1	Anaerobic glycerol-3-phosphate dehydrogenase subunit A

Appendix G GdCl3 Isolation Protocol, All PP:PP Protein Isotope Ratios

Protein	PP	log2ratio	Chr. Features	Reps	Protein Description
P0AEL6_FEPB_ECOLI	1	1.3	12	1	Ferrienterobactin-binding periplasmic protein
P0AA57_YOBA_ECOLI	1	1	7	1	Protein yobA
P77754_SPY_ECOLI	1	0.8	20	2	Spheroplast protein Y
P0ADV1_YHBN_ECOLI	1	0.6	11	2	Protein yhbN
P0C0V0_DEGP_ECOLI	1	0.3	34	2	Protease do
P45523_FKBA_ECOLI	1	0.3	18	2	FKBP-type peptidyl-prolyl cis-trans isomerase fkpA
P0AB24_YCDO_ECOLI	1	0.2	22	2	UPF0409 protein ycdO
P0AEM9_FLIY_ECOLI	1	0.1	238	2	Cystine-binding periplasmic protein
P0AD59 IVY ECOLI	1	-0.2	19	2	Inhibitor of vertebrate lysozyme
P0AD96_LIVJ_ECOLI	1	-0.4	520	2	Leu/Ile/Val-binding protein
P0AFL3_PPIA_ECOLI	1	-0.5	40	2	Peptidyl-prolyl cis-trans isomerase A
P39172 ZNUA ECOLI	1	-0.5	106	2	High-affinity zinc uptake system protein znuA
P64596 YRAP ECOLI	1	-0.5	6	1	Uncharacterized protein yraP
P37329_MODA_ECOLI	1	-0.6	226	2	Molybdate-binding periplasmic protein
P23865_PRC_ECOLI	1	-0.7	8	1	Tail-specific protease
P0A9L3_FKBB_ECOLI	1	-0.8	11	2	FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase
P0ABZ6_SURA_ECOLI	1	-0.8	115	2	Chaperone surA
P0ADA1_TESA_ECOLI	1	-0.8	21	2	Acyl-CoA thioesterase I
P0AEG4_DSBA_ECOLI	1	-0.9	48	2	Thiol:disulfide interchange protein dsbA
P61316 LOLA ECOLI	1	-0.9	48	2	Outer-membrane lipoprotein carrier protein
P0AE85 CPXP ECOLI	1	-0.9	3	1	Periplasmic protein cpxP
P31697 FIMC ECOLI	1	-0.9	3	1	Chaperone protein fimC
P30859 ARTI ECOLI	1	-1	157	2	Arginine-binding periplasmic protein 1
P06610 BTUE ECOLI	1	-1	13	2	Vitamin B12 transport periplasmic protein btuE.
P0AES9 HDEA ECOLI	1	-1	53	2	Protein hdeA
P0AFM2 PROX ECOLI	1	-1	131	2	Glycine betaine-binding periplasmic protein
P31550 THIB ECOLI	1	-1	49	2	Thiamine-binding periplasmic protein
P0A855 TOLB ECOLI	1	-1	66	2	Protein tolB
P0A862_TPX_ECOLI	1	-1	69	2	Thiol peroxidase
P13482_TREA_ECOLI	1	-1	29	2	Periplasmic trehalase

P07024_USHA_ECOLI	1	-1	69	2	Protein ushA
P23827_ECOT_ECOLI	1	-1.1	9	2	Ecotin
P18956_GGT_ECOLI	1	-1.1	8	1	Gamma-glutamyltranspeptidase
P00811_AMPC_ECOLI	1	-1.2	12	2	Beta-lactamase
P37902_GLTI_ECOLI	1	-1.2	71	2	Glutamate/aspartate periplasmic-binding protein
P75797_GSIB_ECOLI	1	-1.2	52	2	Glutathione-binding protein gsiB
P0AFH8_OSMY_ECOLI	1	-1.2	34	2	Osmotically-inducible protein Y
P16700_CYSP_ECOLI	1	-1.3	158	2	Thiosulfate-binding protein
P0AFK9_POTD_ECOLI	1	-1.3	153	2	Spermidine/putrescine-binding periplasmic protein
P0AGC3_SLT_ECOLI	1	-1.3	34	2	Soluble lytic murein transglycosylase
P0AG78_SUBI_ECOLI	1	-1.3	41	2	Sulfate-binding protein
P76193_YNHG_ECOLI	1	-1.3	70	2	Uncharacterized protein ynhG
P09551_ARGT_ECOLI	1	-1.4	121	2	Lysine-arginine-ornithine-binding periplasmic protein
P04816_LIVK_ECOLI	1	-1.4	320	2	Leucine-specific-binding protein
P0AEU7_SKP_ECOLI	1	-1.4	60	2	Chaperone protein skp
P08331_CN16_ECOLI	1	-1.5	65	2	2',3'-cyclic-nucleotide 2'-phosphodiesterase
P0AEQ3_GLNH_ECOLI	1	-1.5	77	2	Glutamine-binding periplasmic protein
P0AEU0_HISJ_ECOLI	1	-1.5	195	2	Histidine-binding periplasmic protein
P00634_PPB_ECOLI	1	-1.5	15	2	Alkaline phosphatase
P37648_YHJJ_ECOLI	1	-1.5	26	2	Protein yhjJ
P21338_RNI_ECOLI	1	-1.5	10	1	Ribonuclease I
Q46863_YGIS_ECOLI	1	-1.5	5	1	Putative binding protein ygiS
P0AFX9_RSEB_ECOLI	1	-1.6	7	1	Sigma-E factor regulatory protein rseB
P39265_ALSB_ECOLI	1	-1.7	6	2	D-allose-binding periplasmic protein
P0AE22_APHA_ECOLI	1	-1.8	19	2	Class B acid phosphatase
P23843_OPPA_ECOLI	1	-1.8	349	2	Periplasmic oligopeptide-binding protein
P05458_PTRA_ECOLI	1	-1.9	28	2	Protease 3
P0AGD1_SODC_ECOLI	1	-1.9	21	2	Superoxide dismutase [Cu-Zn]
P39099_DEGQ_ECOLI	1	-1.9	6	1	Protease degQ
P33136_OPGG_ECOLI	1	-1.9	20	1	Glucans biosynthesis protein G
P76108_YDCS_ECOLI	1	-1.9	16	1	Putative ABC transporter periplasmic-binding protein ydcS
P0AG82_PSTS_ECOLI	1	-2	15	2	Phosphate-binding protein pstS
P0AEE5_DGAL_ECOLI	1	-2.1	78	2	D-galactose-binding periplasmic protein

P39325_YTFQ_ECOLI	1	-2.1	148	2	ABC transporter periplasmic-binding protein ytfQ
P23847_DPPA_ECOLI	1	-2.2	319	2	Periplasmic dipeptide transport protein
P39176_ERFK_ECOLI	1	-2.2	11	2	Protein erfK/srfK
P40120_OPGD_ECOLI	1	-2.2	29	2	Glucans biosynthesis protein D
P0AAX8_YBIS_ECOLI	1	-2.2	40	2	Uncharacterized protein ybiS
P19926_AGP_ECOLI	1	-2.3	113	2	Glucose-1-phosphatase
P0AEG6_DSBC_ECOLI	1	-2.3	21	2	Thiol:disulfide interchange protein dsbC
P0AEX9_MALE_ECOLI	1	-2.3	73	2	Maltose-binding periplasmic protein
P30860_ARTJ_ECOLI	1	-2.6	187	2	Arginine-binding periplasmic protein 2
P09394_GLPQ_ECOLI	1	-2.6	64	2	Glycerophosphoryl diester phosphodiesterase
P0AG80_UGPB_ECOLI	1	-2.7	90	2	sn-glycerol-3-phosphate-binding periplasmic protein ugpB
P07102_PPA_ECOLI	1	-2.7	11	1	Periplasmic appA protein
P00805_ASPG2_ECOLI	1	-3	16	2	L-asparaginase 2
P02925_RBSB_ECOLI	1	-3.3	101	2	D-ribose-binding periplasmic protein
P33937_NAPA_ECOLI	1	-3.5	8	1	Periplasmic nitrate reductase
P02924_ARAF_ECOLI	1	-3.6	24	2	L-arabinose-binding periplasmic protein
P36649_CUEO_ECOLI	1	-4.1	71	2	Blue copper oxidase cueO
P0ABK9_NRFA_ECOLI	1	-6.2	32	1	Cytochrome c-552
P17315_CIRA_ECOLI	0	5.1	93	2	Colicin I receptor
P75780_FIU_ECOLI	0	4.9	43	2	Catecholate siderophore receptor fiu
P0AEJ2_ENTC_ECOLI	0	4	18	2	Isochorismate synthase entC
P05825_FEPA_ECOLI	0	3.8	132	2	Ferrienterobactin receptor
P76116_YNCE_ECOLI	0	2.2	167	2	Uncharacterized protein yncE
P10100_RLPA_ECOLI	0	2.2	4	1	Rare lipoprotein A
P0A9X9_CSPA_ECOLI	0	2.1	4	1	Cold shock protein cspA
P0AB40_YCFR_ECOLI	0	1.8	7	2	UPF0379 protein ycfR
P0A910_OMPA_ECOLI	0	1.7	131	2	Outer membrane protein A
P68191_SRA_ECOLI	0	1.6	21	2	Stationary-phase-induced ribosome-associated protein
P0A917_OMPX_ECOLI	0	1.4	40	2	Outer membrane protein X
P0A905_SLYB_ECOLI	0	1.4	23	2	Outer membrane lipoprotein slyB
P68066_GRCA_ECOLI	0	1.3	88	2	Autonomous glycyl radical cofactor.
P0A800_RPOZ_ECOLI	0	1.3	8	2	DNA-directed RNA polymerase subunit omega
P0A7N4_RL32_ECOLI	0	1.1	8	2	50S ribosomal protein L32.

P76014_DHAL_ECOLI	0	1.1	5	1	PTS-dependent dihydroxyacetone kinase, ADP-binding subunit d
P0A7N9 RL33 ECOLI	0	1	11	2	50S ribosomal protein L33.
P0A8M6 YEEX ECOLI	0	1	12	2	UPF0265 protein yeeX.
P64463 YDFZ ECOLI	0	0.9	9	2	Putative selenoprotein ydfZ.
P68919_RL25_ECOLI	0	0.9	16	1	50S ribosomal protein L25.
P0ADB1_OSME_ECOLI	0	0.8	36	2	Osmotically-inducible lipoprotein E
P60624_RL24_ECOLI	0	0.8	18	2	50S ribosomal protein L24.
P0AE06_ACRA_ECOLI	0	0.8	3	1	Acriflavine resistance protein A
P0AEH5_ELAB_ECOLI	0	0.8	4	1	Protein elaB.
P62707_GPMA_ECOLI	0	0.7	149	2	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase
P0A786_PYRB_ECOLI	0	0.7	12	2	Aspartate carbamoyltransferase catalytic chain
P00448_SODM_ECOLI	0	0.7	66	2	Superoxide dismutase [Mn]
P0ACW4_YDCA_ECOLI	0	0.7	24	2	Uncharacterized protein ydcA
P33219_YEBF_ECOLI	0	0.7	15	2	Protein yebF
P30139_THIG_ECOLI	0	0.7	3	1	Thiazole biosynthesis protein thiG.
P0ACF0_DBHA_ECOLI	0	0.6	59	2	DNA-binding protein HU-alpha
P0ACF4_DBHB_ECOLI	0	0.6	32	2	DNA-binding protein HU-beta
P76009_EMTA_ECOLI	0	0.6	8	2	Endotype membrane-bound lytic murein transglycosylase A
P0A7M6_RL29_ECOLI	0	0.6	37	2	50S ribosomal protein L29.
P02930_TOLC_ECOLI	0	0.6	14	2	Outer membrane protein tolC
P0AG51_RL30_ECOLI	0	0.6	4	1	50S ribosomal protein L30.
P0A6Y1_IHFB_ECOLI	0	0.5	11	2	Integration host factor subunit beta
P0ADE6_YGAU_ECOLI	0	0.5	13	2	Uncharacterized protein ygaU.
P68679_RS21_ECOLI	0	0.5	10	1	30S ribosomal protein S21.
P37194_SLP_ECOLI	0	0.5	12	1	Outer membrane protein slp
P0AB38_YCFM_ECOLI	0	0.5	5	1	Uncharacterized protein ycfM.
P31828_PQQL_ECOLI	0	0.4	11	2	Probable zinc protease pqqL
P0AA04_PTHP_ECOLI	0	0.4	23	2	Phosphocarrier protein HPr
P0A7U7_RS20_ECOLI	0	0.4	18	2	30S ribosomal protein S20.
P0AF70_YJEI_ECOLI	0	0.4	6	2	Uncharacterized protein yjeI
P62768_YAEH_ECOLI	0	0.4	3	1	UPF0325 protein yaeH.
P64503_YEBV_ECOLI	0	0.4	7	1	Uncharacterized protein yebV.
P31063_YEDD_ECOLI	0	0.4	3	1	Uncharacterized lipoprotein yedD

P0ACF8_HNS_ECOLI	0	0.3	18	2	DNA-binding protein H-NS
P09169_OMPT_ECOLI	0	0.3	125	2	Protease 7
P0A7J3_RL10_ECOLI	0	0.3	12	2	50S ribosomal protein L10
P0A7U3_RS19_ECOLI	0	0.3	11	2	30S ribosomal protein S19.
P36995_CSPB_ECOLI	0	0.3	3	1	Cold shock-like protein cspB
P0AEZ9_MOAB_ECOLI	0	0.3	3	1	Molybdenum cofactor biosynthesis protein B.
P0A912_PAL_ECOLI	0	0.2	11	2	Peptidoglycan-associated lipoprotein
P0A7J7_RL11_ECOLI	0	0.2	17	2	50S ribosomal protein L11.
P0ADY7_RL16_ECOLI	0	0.2	35	2	50S ribosomal protein L16.
P0A877_TRPA_ECOLI	0	0.2	46	2	Tryptophan synthase alpha chain
P0A8B5_YBAB_ECOLI	0	0.2	16	2	UPF0133 protein ybaB.
P0A707_IF3_ECOLI	0	0.2	9	1	Translation initiation factor IF-3.
P34210_OMPP_ECOLI	0	0.2	4	1	Outer membrane protease ompP
P0A7W7_RS8_ECOLI	0	0.2	5	1	30S ribosomal protein S8.
P04949_FLIC_ECOLI	0	0.1	918	2	Flagellin.
P61175_RL22_ECOLI	0	0.1	30	2	50S ribosomal protein L22.
P0ACG1_STPA_ECOLI	0	0.1	12	2	DNA-binding protein stpA
P76002_YCGK_ECOLI	0	0.1	13	2	Uncharacterized protein ycgK
P64451_YDCL_ECOLI	0	0.1	11	2	Uncharacterized lipoprotein ydcL
P0AC02_YFIO_ECOLI	0	0.1	16	2	UPF0169 lipoprotein yfiO
P0ADZ0_RL23_ECOLI	0	0.1	4	1	50S ribosomal protein L23.
P0AA10_RL13_ECOLI	0	0	13	2	50S ribosomal protein L13.
P0AEK4_FABI_ECOLI	0	0	6	1	Enoyl-[acyl-carrier-protein] reductase [NADH]
P04128_FIMA1_ECOLI	0	0	4	1	Type-1 fimbrial protein, A chain
P12281_MOEA_ECOLI	0	0	3	1	Molybdopterin biosynthesis protein moeA.
P0AG59_RS14_ECOLI	0	0	11	1	30S ribosomal protein S14.
P0A8E7_YAJQ_ECOLI	0	0	4	1	UPF0234 protein yajQ.
P77625_YFBT_ECOLI	0	0	5	1	Phosphatase yfbT
P0AB46_YMGD_ECOLI	0	0	3	1	Uncharacterized protein ymgD
P0A972_CSPE_ECOLI	0	-0.1	15	2	Cold shock-like protein cspE
P0C0L2_OSMC_ECOLI	0	-0.1	27	2	Peroxiredoxin osmC
P02413_RL15_ECOLI	0	-0.1	25	2	50S ribosomal protein L15.
P0AG55_RL6_ECOLI	0	-0.1	38	2	50S ribosomal protein L6.

P0A7S3_RS12_ECOLI	0	-0.1	9	2	30S ribosomal protein S12.
P36659_CBPA_ECOLI	0	-0.1	3	1	Curved DNA-binding protein.
P00935_METB_ECOLI	0	-0.1	3	1	Cystathionine gamma-synthase
P0A903_NLPB_ECOLI	0	-0.1	7	1	Lipoprotein 34
P0AAV6_YBGS_ECOLI	0	-0.1	4	1	Uncharacterized protein ybgS
P0AFG6_ODO2_ECOLI	0	-0.2	15	2	Dihydrolipoyllysine-residue succinyltransferase component of
P0AG44_RL17_ECOLI	0	-0.2	20	2	50S ribosomal protein L17.
P0C018_RL18_ECOLI	0	-0.2	38	2	50S ribosomal protein L18.
P0A7M2_RL28_ECOLI	0	-0.2	7	2	50S ribosomal protein L28.
P60422_RL2_ECOLI	0	-0.2	35	2	50S ribosomal protein L2.
P0A7T3_RS16_ECOLI	0	-0.2	19	2	30S ribosomal protein S16.
P0A7T7_RS18_ECOLI	0	-0.2	15	2	30S ribosomal protein S18.
P69776_LPP_ECOLI	0	-0.2	6	1	Major outer membrane lipoprotein
P0A935_MLTA_ECOLI	0	-0.2	6	1	Membrane-bound lytic murein transglycosylase A
P69829_PTSN_ECOLI	0	-0.2	4	1	Nitrogen regulatory protein
P21513_RNE_ECOLI	0	-0.2	5	1	Ribonuclease E
P0ACY1_YDJA_ECOLI	0	-0.2	3	1	Protein ydjA.
P0AEK2_FABG_ECOLI	0	-0.3	13	2	3-oxoacyl-[acyl-carrier-protein] reductase
P0A7K2_RL7_ECOLI	0	-0.3	10	2	50S ribosomal protein L7/L12
P0A7W1_RS5_ECOLI	0	-0.3	39	2	30S ribosomal protein S5.
P45464_YRAM_ECOLI	0	-0.3	10	2	Uncharacterized protein yraM.
P52697_6PGL_ECOLI	0	-0.3	3	1	6-phosphogluconolactonase
P0A8P3_FETP_ECOLI	0	-0.3	8	1	Probable Fe(2+)-trafficking protein.
P0A8U6_METJ_ECOLI	0	-0.3	4	1	Met repressor
P17117_NFSA_ECOLI	0	-0.3	4	1	Oxygen-insensitive NADPH nitroreductase
P0A7K6_RL19_ECOLI	0	-0.3	15	1	50S ribosomal protein L19.
P77499_SUFC_ECOLI	0	-0.3	3	1	Probable ATP-dependent transporter sufC.
P75818_YBJP_ECOLI	0	-0.3	5	1	Uncharacterized lipoprotein ybjP
P0AB55_YCII_ECOLI	0	-0.3	5	1	Protein yciI.
P0AD07_YECF_ECOLI	0	-0.3	3	1	Uncharacterized protein yecF.
P0ADU2_YGIN_ECOLI	0	-0.3	5	1	Protein ygiN.
P0ADX5_YHFG_ECOLI	0	-0.3	3	1	Uncharacterized protein yhfG.
P0A986_CSPI_ECOLI	0	-0.4	7	2	Cold shock-like protein cspI

P75937_FLGE_ECOLI	0	-0.4	67	2	Flagellar hook protein flgE.
P60438_RL3_ECOLI	0	-0.4	17	2	50S ribosomal protein L3.
P0A7R5_RS10_ECOLI	0	-0.4	13	2	30S ribosomal protein S10.
P0A7R9_RS11_ECOLI	0	-0.4	21	2	30S ribosomal protein S11.
P39177_USPG_ECOLI	0	-0.4	30	2	Universal stress protein G.
P0ADX7_YHHA_ECOLI	0	-0.4	72	2	Uncharacterized protein yhhA
P0ADN2_YIFE_ECOLI	0	-0.4	15	2	UPF0438 protein yifE.
P0A908_MIPA_ECOLI	0	-0.4	14	1	MltA-interacting protein
P0A7X3_RS9_ECOLI	0	-0.4	4	1	30S ribosomal protein S9.
P0ADA5_YAJG_ECOLI	0	-0.4	12	1	Uncharacterized lipoprotein yajG
P76004_YCGM_ECOLI	0	-0.4	4	1	Uncharacterized protein ycgM.
Q47702_YFEK_ECOLI	0	-0.4	5	1	Uncharacterized protein yfeK
P64614_YHCN_ECOLI	0	-0.4	3	1	UPF0379 protein yhcN
P00350_6PGD_ECOLI	0	-0.5	37	2	6-phosphogluconate dehydrogenase, decarboxylating
P0A9Y6_CSPC_ECOLI	0	-0.5	30	2	Cold shock-like protein cspC
P04036_DAPB_ECOLI	0	-0.5	10	2	Dihydrodipicolinate reductase
P0A9B2_G3P1_ECOLI	0	-0.5	258	2	Glyceraldehyde-3-phosphate dehydrogenase A
P28635_METQ_ECOLI	0	-0.5	15	2	D-methionine-binding lipoprotein metQ
P24182_ACCC_ECOLI	0	-0.5	10	1	Biotin carboxylase
P05459_PDXB_ECOLI	0	-0.5	11	1	Erythronate-4-phosphate dehydrogenase
P08179_PUR3_ECOLI	0	-0.5	4	1	Phosphoribosylglycinamide formyltransferase
P0ADZ4_RS15_ECOLI	0	-0.5	4	1	30S ribosomal protein S15.
P0AAB8_USPD_ECOLI	0	-0.5	3	1	Universal stress protein D.
P0ADP9_YIHD_ECOLI	0	-0.5	5	1	Protein yihD.
P21179_CATE_ECOLI	0	-0.6	11	2	Catalase HPII
P0A9C5_GLNA_ECOLI	0	-0.6	32	2	Glutamine synthetase
P05793_ILVC_ECOLI	0	-0.6	108	2	Ketol-acid reductoisomerase
P69441_KAD_ECOLI	0	-0.6	78	2	Adenylate kinase
P0ACJ0_LRP_ECOLI	0	-0.6	6	2	Leucine-responsive regulatory protein.
P61889_MDH_ECOLI	0	-0.6	143	2	Malate dehydrogenase
P0A799_PGK_ECOLI	0	-0.6	114	2	Phosphoglycerate kinase
P0AG30_RHO_ECOLI	0	-0.6	12	2	Transcription termination factor rho
P0A7R1_RL9_ECOLI	0	-0.6	29	2	50S ribosomal protein L9.

P0A805_RRF_ECOLI	0	-0.6	26	2	Ribosome recycling factor
P0A7S9_RS13_ECOLI	0	-0.6	16	2	30S ribosomal protein S13.
P0AA25_THIO_ECOLI	0	-0.6	10	2	Thioredoxin-1
P76172_YNFD_ECOLI	0	-0.6	9	2	Uncharacterized protein ynfD
P69503_APT_ECOLI	0	-0.6	6	1	Adenine phosphoribosyltransferase
P15770_AROE_ECOLI	0	-0.6	5	1	Shikimate dehydrogenase
P06129_BTUB_ECOLI	0	-0.6	15	1	Vitamin B12 transporter btuB
P0A9P0_DLDH_ECOLI	0	-0.6	5	1	Dihydrolipoyl dehydrogenase
P0A6Q3_FABA_ECOLI	0	-0.6	5	1	3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase
P0AEM4_FLGM_ECOLI	0	-0.6	3	1	Negative regulator of flagellin synthesis
P0AAI3_FTSH_ECOLI	0	-0.6	4	1	Cell division protease ftsH
P69797_PTNAB_ECOLI	0	-0.6	4	1	PTS system mannose-specific EIIAB component
P0AE08_AHPC_ECOLI	0	-0.7	106	2	Alkyl hydroperoxide reductase subunit C
P0AB91_AROG_ECOLI	0	-0.7	24	2	Phospho-2-dehydro-3-deoxyheptonate aldolase, Phe-sensitive
P33235_FLGK_ECOLI	0	-0.7	21	2	Flagellar hook-associated protein 1
P29744_FLGL_ECOLI	0	-0.7	53	2	Flagellar hook-associated protein 3
P24216_FLID_ECOLI	0	-0.7	36	2	Flagellar hook-associated protein 2
P0A6T1_G6PI_ECOLI	0	-0.7	33	2	Glucose-6-phosphate isomerase
P0A825_GLYA_ECOLI	0	-0.7	151	2	Serine hydroxymethyltransferase
P23869_PPIB_ECOLI	0	-0.7	50	2	Peptidyl-prolyl cis-trans isomerase B
P61714_RISB_ECOLI	0	-0.7	17	2	6,7-dimethyl-8-ribityllumazine synthase
P0A7L0_RL1_ECOLI	0	-0.7	39	2	50S ribosomal protein L1.
P02358_RS6_ECOLI	0	-0.7	36	2	30S ribosomal protein S6
P33570_TKT2_ECOLI	0	-0.7	27	2	Transketolase 2
P0ACX3_YDHR_ECOLI	0	-0.7	6	2	Protein ydhR
P0AF36_YIIU_ECOLI	0	-0.7	9	2	Uncharacterized protein yiiU.
P0AF93_YJGF_ECOLI	0	-0.7	33	2	UPF0076 protein yjgF.
P0ADV7_YRBC_ECOLI	0	-0.7	33	2	Protein yrbC
P0AET8_HDHA_ECOLI	0	-0.7	3	1	7-alpha-hydroxysteroid dehydrogenase
P0AFG0_NUSG_ECOLI	0	-0.7	5	1	Transcription antitermination protein nusG.
P31663_PANC_ECOLI	0	-0.7	5	1	Pantothenate synthetase
P0A7J0_RIBB_ECOLI	0	-0.7	6	1	3,4-dihydroxy-2-butanone 4-phosphate synthase
P00956_SYI_ECOLI	0	-0.7	9	1	Isoleucyl-tRNA synthetase

P76001_YCGJ_ECOLI	0	-0.7	3	1	Uncharacterized protein ycgJ
P0ADI7_YECD_ECOLI	0	-0.7	4	1	Isochorismatase family protein yecD.
P00509_AAT_ECOLI	0	-0.8	82	2	Aspartate aminotransferase
P0A9G6_ACEA_ECOLI	0	-0.8	71	2	Isocitrate lyase
P0A6F5_CH60_ECOLI	0	-0.8	94	2	60 kDa chaperonin
P08200_IDH_ECOLI	0	-0.8	130	2	Isocitrate dehydrogenase [NADP]
P0A7A9_IPYR_ECOLI	0	-0.8	29	2	Inorganic pyrophosphatase
P08997_MASY_ECOLI	0	-0.8	93	2	Malate synthase A
P06996_OMPC_ECOLI	0	-0.8	26	2	Outer membrane protein C
P02931_OMPF_ECOLI	0	-0.8	27	2	Outer membrane protein F
P02359_RS7_ECOLI	0	-0.8	36	2	30S ribosomal protein S7.
P0A870_TALB_ECOLI	0	-0.8	55	2	Transaldolase B
P0A6D7_AROK_ECOLI	0	-0.8	5	1	Shikimate kinase 1
P69910_DCEB_ECOLI	0	-0.8	3	1	Glutamate decarboxylase beta
P0A858_TPIS_ECOLI	0	-0.8	11	1	Triosephosphate isomerase
P0AD12_YEEZ_ECOLI	0	-0.8	5	1	Protein yeeZ
P37659_YHJU_ECOLI	0	-0.8	5	1	Uncharacterized protein yhjU.
P0AGE6_YIEF_ECOLI	0	-0.8	8	1	Uncharacterized protein yieF.
P68206_YJBJ_ECOLI	0	-0.8	9	1	UPF0337 protein yjbJ.
P39315_YTFG_ECOLI	0	-0.8	7	1	Uncharacterized oxidoreductase ytfG
P0ABT2_DPS_ECOLI	0	-0.9	69	2	DNA protection during starvation protein
P0AAI9_FABD_ECOLI	0	-0.9	31	2	Malonyl CoA-acyl carrier protein transacylase
P0A796_K6PF1_ECOLI	0	-0.9	19	2	6-phosphofructokinase isozyme 1
P0A817_METK_ECOLI	0	-0.9	28	2	S-adenosylmethionine synthetase
P09373_PFLB_ECOLI	0	-0.9	172	2	Formate acetyltransferase 1
P0AFM4_PSIF_ECOLI	0	-0.9	28	2	Phosphate starvation-inducible protein psiF
P76177_YDGH_ECOLI	0	-0.9	101	2	Protein ydgH
P0A955_ALKH_ECOLI	0	-0.9	9	1	KHG/KDPG aldolase
P0A6D3_AROA_ECOLI	0	-0.9	5	1	3-phosphoshikimate 1-carboxyvinyltransferase
P0ABA6_ATPG_ECOLI	0	-0.9	4	1	ATP synthase gamma chain
P08191_FIMH_ECOLI	0	-0.9	3	1	Protein fimH
P0A715_KDSA_ECOLI	0	-0.9	24	1	2-dehydro-3-deoxyphosphooctonate aldolase
P0A794_PDXJ_ECOLI	0	-0.9	5	1	Pyridoxine 5'-phosphate synthase

P0A6L0_DEOC_ECOLI	0	-1	23	2	Deoxyribose-phosphate aldolase
P0AET2_HDEB_ECOLI	0	-1	132	2	Protein hdeB
P0AD61_KPYK1_ECOLI	0	-1	50	2	Pyruvate kinase I
P0A744_MSRA_ECOLI	0	-1	11	2	Peptide methionine sulfoxide reductase msrA
P0A7Z0_RPIA_ECOLI	0	-1	21	2	Ribose-5-phosphate isomerase A
P0A7V0_RS2_ECOLI	0	-1	32	2	30S ribosomal protein S2.
P0A7V8_RS4_ECOLI	0	-1	23	2	30S ribosomal protein S4.
P23721_SERC_ECOLI	0	-1	49	2	Phosphoserine aminotransferase
P09158_SPEE_ECOLI	0	-1	8	2	Spermidine synthase
P21889_SYD_ECOLI	0	-1	15	2	Aspartyl-tRNA synthetase
P0A8M0_SYN_ECOLI	0	-1	19	2	Asparaginyl-tRNA synthetase
P45955_YBGF_ECOLI	0	-1	13	2	Uncharacterized protein ybgF
P33362_YEHZ_ECOLI	0	-1	36	2	Uncharacterized protein yehZ
P0A991_ALF1_ECOLI	0	-1	3	1	Fructose-bisphosphate aldolase class 1
P22256_GABT_ECOLI	0	-1	3	1	4-aminobutyrate aminotransferase
P06715_GSHR_ECOLI	0	-1	14	1	Glutathione reductase
P0AG07_RPE_ECOLI	0	-1	7	1	Ribulose-phosphate 3-epimerase
P0A9P4_TRXB_ECOLI	0	-1	11	1	Thioredoxin reductase
P66948_YFGC_ECOLI	0	-1	9	1	TPR repeat-containing protein yfgC
P39180_AG43_ECOLI	0	-1.1	513	2	Antigen 43
P0A6F9_CH10_ECOLI	0	-1.1	18	2	10 kDa chaperonin
P24171_DCP_ECOLI	0	-1.1	18	2	Peptidyl-dipeptidase dcp
P0A9Q9_DHAS_ECOLI	0	-1.1	96	2	Aspartate-semialdehyde dehydrogenase
P0A6P9_ENO_ECOLI	0	-1.1	249	2	Enolase
P0A9C3_GALM_ECOLI	0	-1.1	20	2	Aldose 1-epimerase
P00946_MANA_ECOLI	0	-1.1	13	2	Mannose-6-phosphate isomerase
P25665_METE_ECOLI	0	-1.1	85	2	5-methyltetrahydropteroyltriglutamatehomocysteine methyltr
P38489_NFNB_ECOLI	0	-1.1	32	2	Oxygen-insensitive NAD(P)H nitroreductase
P31133_POTF_ECOLI	0	-1.1	33	2	Putrescine-binding periplasmic protein
P37744_RMLA1_ECOLI	0	-1.1	9	2	Glucose-1-phosphate thymidylyltransferase 1
P0A7Z4_RPOA_ECOLI	0	-1.1	20	2	DNA-directed RNA polymerase subunit alpha
P0A9T0_SERA_ECOLI	0	-1.1	55	2	D-3-phosphoglycerate dehydrogenase
P0A836_SUCC_ECOLI	0	-1.1	62	2	Succinyl-CoA synthetase beta chain

P0AGE9_SUCD_ECOLI	0	-1.1	10	2	Succinyl-CoA ligase [ADP-forming] subunit alpha
P0A8L1_SYS_ECOLI	0	-1.1	26	2	Seryl-tRNA synthetase
P0A9M5_XGPT_ECOLI	0	-1.1	8	2	Xanthine phosphoribosyltransferase
P75694_YAHO_ECOLI	0	-1.1	31	2	UPF0379 protein yahO
P05194_AROD_ECOLI	0	-1.1	9	1	3-dehydroquinate dehydratase
P63284_CLPB_ECOLI	0	-1.1	9	1	Chaperone protein clpB
P76015_DHAK_ECOLI	0	-1.1	3	1	PTS-dependent dihydroxyacetone kinase, dihydroxyacetone-bind
P77454_GLSA1_ECOLI	0	-1.1	4	1	Glutaminase 1
P04079_GUAA_ECOLI	0	-1.1	6	1	GMP synthase [glutamine-hydrolyzing]
P15288_PEPD_ECOLI	0	-1.1	13	1	Aminoacyl-histidine dipeptidase
P08244_PYRF_ECOLI	0	-1.1	3	1	Orotidine 5'-phosphate decarboxylase
P33643_RLUD_ECOLI	0	-1.1	3	1	Ribosomal large subunit pseudouridine synthase D
P0A9Q7_ADHE_ECOLI	0	-1.2	28	2	Aldehyde-alcohol dehydrogenase
P0AE52_BCP_ECOLI	0	-1.2	15	2	Putative peroxiredoxin bcp
P0A6G7_CLPP_ECOLI	0	-1.2	10	2	ATP-dependent Clp protease proteolytic subunit
P0AC53_G6PD_ECOLI	0	-1.2	9	2	Glucose-6-phosphate 1-dehydrogenase
P06988_HISX_ECOLI	0	-1.2	22	2	Histidinol dehydrogenase
P0A705_IF2_ECOLI	0	-1.2	18	2	Translation initiation factor IF-2.
P0ADG7_IMDH_ECOLI	0	-1.2	25	2	Inosine-5'-monophosphate dehydrogenase
P21165_PEPQ_ECOLI	0	-1.2	10	2	Xaa-Pro dipeptidase
P15254_PUR4_ECOLI	0	-1.2	40	2	Phosphoribosylformylglycinamidine synthase
P07813_SYL_ECOLI	0	-1.2	14	2	Leucyl-tRNA synthetase
P27302_TKT1_ECOLI	0	-1.2	39	2	Transketolase 1
P35340_AHPF_ECOLI	0	-1.2	6	1	Alkyl hydroperoxide reductase subunit F
P0A6R0_FABH_ECOLI	0	-1.2	8	1	3-oxoacyl-[acyl-carrier-protein] synthase 3
P33195_GCSP_ECOLI	0	-1.2	3	1	Glycine dehydrogenase [decarboxylating]
P13035 GLPD ECOLI	0	-1.2	19	1	Aerobic glycerol-3-phosphate dehydrogenase
P67910 HLDD ECOLI	0	-1.2	7	1	ADP-L-glycero-D-manno-heptose-6-epimerase
P06721 METC ECOLI	0	-1.2	6	1	Cystathionine beta-lyase
P0AF24_NAGD_ECOLI	0	-1.2	3	1	Protein nagD.
P0AFX7_RSEA_ECOLI	0	-1.2	3	1	Sigma-E factor negative regulatory protein.
P0A927_TSX_ECOLI	0	-1.2	7	1	Nucleoside-specific channel-forming protein tsx
P0A8F0_UPP_ECOLI	0	-1.2	3	1	Uracil phosphoribosyltransferase

P0A6A3_ACKA_ECOLI	0	-1.3	30	2	Acetate kinase
P0AB71_ALF_ECOLI	0	-1.3	56	2	Fructose-bisphosphate aldolase class 2
P00888_AROF_ECOLI	0	-1.3	10	2	Phospho-2-dehydro-3-deoxyheptonate aldolase, Tyr-sensitive
P0ABK5_CYSK_ECOLI	0	-1.3	163	2	Cysteine synthase A
P0A9D8_DAPD_ECOLI	0	-1.3	67	2	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltrans
P00370_DHE4_ECOLI	0	-1.3	22	2	NADP-specific glutamate dehydrogenase
P31658_HCHA_ECOLI	0	-1.3	12	2	Chaperone protein hchA
P0AB80_ILVE_ECOLI	0	-1.3	15	2	Branched-chain-amino-acid aminotransferase
P30125_LEU3_ECOLI	0	-1.3	16	2	3-isopropylmalate dehydrogenase
P18843_NADE_ECOLI	0	-1.3	23	2	NH(3)-dependent NAD(+) synthetase
P36938_PGM_ECOLI	0	-1.3	24	2	Phosphoglucomutase
P0A8G6_WRBA_ECOLI	0	-1.3	46	2	Flavoprotein wrbA
P0ADS9_YGGN_ECOLI	0	-1.3	8	2	Uncharacterized protein yggN.
P76142_YNEA_ECOLI	0	-1.3	45	2	Uncharacterized protein yneA
P0A9Q1_ARCA_ECOLI	0	-1.3	4	1	Aerobic respiration control protein arcA
P0ABJ1_CYOA_ECOLI	0	-1.3	7	1	Ubiquinol oxidase subunit 2
P0ABP8_DEOD_ECOLI	0	-1.3	6	1	Purine nucleoside phosphorylase deoD-type
P0A9S5_GLDA_ECOLI	0	-1.3	3	1	Glycerol dehydrogenase
P0A6W5_GREA_ECOLI	0	-1.3	4	1	Transcription elongation factor greA
P27298_OPDA_ECOLI	0	-1.3	9	1	Oligopeptidase A
P08178_PUR5_ECOLI	0	-1.3	11	1	Phosphoribosylformylglycinamidine cyclo-ligase
P60651_SPEB_ECOLI	0	-1.3	3	1	Agmatinase
P11875_SYR_ECOLI	0	-1.3	4	1	Arginyl-tRNA synthetase
P64506_YEBY_ECOLI	0	-1.3	4	1	Uncharacterized protein yebY
P08660_AK3_ECOLI	0	-1.4	22	2	Lysine-sensitive aspartokinase 3
P0A6K6_DEOB_ECOLI	0	-1.4	14	2	Phosphopentomutase
P0A953 FABB ECOLI	0	-1.4	38	2	3-oxoacyl-[acyl-carrier-protein] synthase 1
P09832_GLTD_ECOLI	0	-1.4	17	2	Glutamate synthase [NADPH] small chain
P0ACE7 HINT ECOLI	0	-1.4	11	2	HIT-like protein hinT.
P06986_HIS8_ECOLI	0	-1.4	12	2	Histidinol-phosphate aminotransferase
P0AAN9_IRAP_ECOLI	0	-1.4	9	2	Protein iraP.
P06959_ODP2_ECOLI	0	-1.4	14	2	Dihydrolipoyllysine-residue acetyltransferase component of p
P08839 PT1 ECOLI	0	-1.4	83	2	Phosphoenolpyruvate-protein phosphotransferase

P69783_PTGA_ECOLI	0	-1.4	79	2	Glucose-specific phosphotransferase enzyme IIA component
P0A7D4_PURA_ECOLI	0	-1.4	44	2	Adenylosuccinate synthetase
P33221_PURT_ECOLI	0	-1.4	24	2	Phosphoribosylglycinamide formyltransferase 2
P0A7V3_RS3_ECOLI	0	-1.4	18	2	30S ribosomal protein S3.
P07395_SYFB_ECOLI	0	-1.4	19	2	Phenylalanyl-tRNA synthetase beta chain
P0A850_TIG_ECOLI	0	-1.4	80	2	Trigger factor
P37685_ALDB_ECOLI	0	-1.4	3	1	Aldehyde dehydrogenase B
P0AAI5_FABF_ECOLI	0	-1.4	12	1	3-oxoacyl-[acyl-carrier-protein] synthase 2
P0AC62_GLRX3_ECOLI	0	-1.4	9	1	Glutaredoxin-3
P0A9D2_GST_ECOLI	0	-1.4	10	1	Glutathione S-transferase
P04391_OTC1_ECOLI	0	-1.4	8	1	Ornithine carbamoyltransferase chain I
P37095_PEPB_ECOLI	0	-1.4	5	1	Peptidase B
P15640_PUR2_ECOLI	0	-1.4	19	1	Phosphoribosylamineglycine ligase
P30177_YBIB_ECOLI	0	-1.4	8	1	Uncharacterized protein ybiB.
P0ABH7_CISY_ECOLI	0	-1.5	20	2	Citrate synthase
P0AC59_GLRX2_ECOLI	0	-1.5	34	2	Glutaredoxin-2
P62399_RL5_ECOLI	0	-1.5	38	2	50S ribosomal protein L5.
P16659_SYP_ECOLI	0	-1.5	11	2	Prolyl-tRNA synthetase
P12758_UDP_ECOLI	0	-1.5	28	2	Uridine phosphorylase
P0AED0_USPA_ECOLI	0	-1.5	42	2	Universal stress protein A.
P0A8W8_YFBU_ECOLI	0	-1.5	12	2	UPF0304 protein yfbU.
P0A6N8_EFPL_ECOLI	0	-1.5	7	1	Elongation factor P-like protein.
P0AAB6_GALF_ECOLI	0	-1.5	6	1	UTPglucose-1-phosphate uridylyltransferase
P31057_PANB_ECOLI	0	-1.5	3	1	3-methyl-2-oxobutanoate hydroxymethyltransferase
P05055_PNP_ECOLI	0	-1.5	10	1	Polyribonucleotide nucleotidyltransferase
P18335_ARGD_ECOLI	0	-1.6	10	2	Acetylornithine/succinyldiaminopimelate aminotransferase
P00968_CARB_ECOLI	0	-1.6	29	2	Carbamoyl-phosphate synthase large chain
P17169_GLMS_ECOLI	0	-1.6	16	2	Glucosaminefructose-6-phosphate aminotransferase [isomeriz
P76558_MAO2_ECOLI	0	-1.6	15	2	NADP-dependent malic enzyme
P0A749_MURA_ECOLI	0	-1.6	9	2	UDP-N-acetylglucosamine 1-carboxyvinyltransferase
P0A9M8_PTA_ECOLI	0	-1.6	18	2	Phosphate acetyltransferase
P04693_TYRB_ECOLI	0	-1.6	9	2	Aromatic-amino-acid aminotransferase
P0ADE8_YGFZ_ECOLI	0	-1.6	18	2	tRNA-modifying protein ygfZ.

P76223_YNJB_ECOLI	0	-1.6	28 2	2	Protein ynjB.	
P76344_YODA_ECOLI	0	-1.6	285 2	2	Metal-binding protein yodA	
P0A6L2_DAPA_ECOLI	0	-1.6	8 1		Dihydrodipicolinate synthase	
P0AES4_GYRA_ECOLI	0	-1.6	3 1		DNA gyrase subunit A	
P40874_MTOX_ECOLI	0	-1.6	7 1		N-methyl-L-tryptophan oxidase	
P0A763_NDK_ECOLI	0	-1.6	12 1		Nucleoside diphosphate kinase	
P37760_RFBD_ECOLI	0	-1.6	3 1		dTDP-4-dehydrorhamnose reductase	
P0AD33_YFCZ_ECOLI	0	-1.6	3 1		UPF0381 protein yfcZ.	
P0ABB4_ATPB_ECOLI	0	-1.7	26 2	2	ATP synthase subunit beta	
P00864_CAPP_ECOLI	0	-1.7	54 2	2	Phosphoenolpyruvate carboxylase	
P0A6Y8_DNAK_ECOLI	0	-1.7	77 2	2	Chaperone protein dnaK	
P0AEP3_GALU_ECOLI	0	-1.7	15 2	2	UTPglucose-1-phosphate uridylyltransferase	
P0A717_KPRS_ECOLI	0	-1.7	9 2	2	Ribose-phosphate pyrophosphokinase	
P0AFG8_ODP1_ECOLI	0	-1.7	43 2	2	Pyruvate dehydrogenase E1 component	
P0AG67_RS1_ECOLI	0	-1.7	34 2	2	30S ribosomal protein S1.	
P07639_AROB_ECOLI	0	-1.7	4 1		3-dehydroquinate synthase	
P0AES0_GSP_ECOLI	0	-1.7	6 1		Bifunctional glutathionylspermidine synthetase/amidase	
P00962_SYQ_ECOLI	0	-1.7	7 1		Glutaminyl-tRNA synthetase	
P0A6P1_EFTS_ECOLI	0	-1.8	68 2	2	Elongation factor Ts	
P0A9A6_FTSZ_ECOLI	0	-1.8	12 2	2	Cell division protein ftsZ.	
P37689_GPMI_ECOLI	0	-1.8	53 2	2	2,3-bisphosphoglycerate-independent phosphoglycerate mutase	
P00909_TRPC_ECOLI	0	-1.8	16 2	2	Tryptophan biosynthesis protein trpCF	
P0A6E9_BIOD2_ECOLI	0	-1.8	4 1		Putative dethiobiotin synthetase	
P0A6F1_CARA_ECOLI	0	-1.8	9 1		Carbamoyl-phosphate synthase small chain	
P0ABU5_ELBB_ECOLI	0	-1.8	4 1		Enhancing lycopene biosynthesis protein 2	
P08142_ILVB_ECOLI	0	-1.8	9 1		Acetolactate synthase isozyme 1 large subunit	
P52643_LDHD_ECOLI	0	-1.8	3 1		D-lactate dehydrogenase	
P09424_MTLD_ECOLI	0	-1.8	8 1		Mannitol-1-phosphate 5-dehydrogenase	
P30850_RNB_ECOLI	0	-1.8	3 1		Exoribonuclease 2	
P0A879_TRPB_ECOLI	0	-1.8	14 1		Tryptophan synthase beta chain	
P0A8A0_YEBC_ECOLI	0	-1.8	5 1		UPF0082 protein yebC.	
P45578_LUXS_ECOLI	0	-1.9	16 2	2	S-ribosylhomocysteine lyase	
P05020_PYRC_ECOLI	0	-1.9	22 2	2	Dihydroorotase	

P07012_RF2_ECOLI	0	-1.9	10	2	Peptide chain release factor 2
P00960_SYGA_ECOLI	0	-1.9	14	2	Glycyl-tRNA synthetase alpha subunit
Q46829_BGLA_ECOLI	0	-1.9	3	1	6-phospho-beta-glucosidase bglA
P25524_CODA_ECOLI	0	-1.9	4	1	Cytosine deaminase
P0AD57_ISPB_ECOLI	0	-1.9	4	1	Octaprenyl-diphosphate synthase
P0A7C6_PEPE_ECOLI	0	-1.9	6	1	Peptidase E
P0A7F6_SPED_ECOLI	0	-1.9	3	1	S-adenosylmethionine decarboxylase proenzyme
P29217_YCEH_ECOLI	0	-1.9	4	1	UPF0502 protein yceH
P0A6E4_ASSY_ECOLI	0	-2	28	2	Argininosuccinate synthase
P09831_GLTB_ECOLI	0	-2	35	2	Glutamate synthase [NADPH] large chain
P23857_PSPE_ECOLI	0	-2	45	2	Phage shock protein E
P07650_TYPH_ECOLI	0	-2	11	2	Thymidine phosphorylase
P16703_CYSM_ECOLI	0	-2	5	1	Cysteine synthase B
P0A6B7_ISCS_ECOLI	0	-2	10	1	Cysteine desulfurase
P0A729_YCEF_ECOLI	0	-2	3	1	Maf-like protein yceF.
P0A8T7_RPOC_ECOLI	0	-2.1	23	2	DNA-directed RNA polymerase subunit beta'
P0AAC0_USPE_ECOLI	0	-2.1	16	2	Universal stress protein E.
P0A6A8_ACP_ECOLI	0	-2.1	7	1	Acyl carrier protein
P08192_FOLC_ECOLI	0	-2.1	3	1	Bifunctional protein folC
P0A6T3_GAL1_ECOLI	0	-2.1	9	1	Galactokinase
P00547_KHSE_ECOLI	0	-2.1	6	1	Homoserine kinase
P07623_META_ECOLI	0	-2.1	4	1	Homoserine O-succinyltransferase
P0AEZ3_MIND_ECOLI	0	-2.1	3	1	Septum site-determining protein minD
P36683_ACON2_ECOLI	0	-2.2	56	2	Aconitate hydratase 2
P0ABB0_ATPA_ECOLI	0	-2.2	13	2	ATP synthase subunit alpha
P0A6M8_EFG_ECOLI	0	-2.2	191	2	Elongation factor G
P37192_GATY_ECOLI	0	-2.2	23	2	Tagatose-1,6-bisphosphate aldolase gatY
P0AFF6_NUSA_ECOLI	0	-2.2	16	2	Transcription elongation protein nusA
P0A7D7_PUR7_ECOLI	0	-2.2	35	2	Phosphoribosylaminoimidazole-succinocarboxamide synthase
P37759_RFBB_ECOLI	0	-2.2	11	2	dTDP-glucose 4,6-dehydratase
P11447_ARLY_ECOLI	0	-2.2	6	1	Argininosuccinate lyase
P06983_HEM3_ECOLI	0	-2.2	9	1	Porphobilinogen deaminase
P16456_SELD_ECOLI	0	-2.2	9	1	Selenide, water dikinase

P0ACY3_YEAG_ECOLI	0	-2.2	4	1	Uncharacterized protein yeaG.
P0ABF6_CDD_ECOLI	0	-2.3	12	2	Cytidine deaminase
P13033_GLPB_ECOLI	0	-2.3	6	1	Anaerobic glycerol-3-phosphate dehydrogenase subunit B
P0A6C8_ARGB_ECOLI	0	-2.4	12	2	Acetylglutamate kinase
P0A6N1_EFTU_ECOLI	0	-2.4	250	2	Elongation factor Tu
P21599_KPYK2_ECOLI	0	-2.4	33	2	Pyruvate kinase II
P22259_PPCK_ECOLI	0	-2.4	30	2	Phosphoenolpyruvate carboxykinase [ATP]
P0A8V2_RPOB_ECOLI	0	-2.4	26	2	DNA-directed RNA polymerase subunit beta
P0AC33_FUMA_ECOLI	0	-2.4	5	1	Fumarate hydratase class I, aerobic
P23893_GSA_ECOLI	0	-2.4	3	1	Glutamate-1-semialdehyde 2,1-aminomutase
P06999_K6PF2_ECOLI	0	-2.4	6	1	6-phosphofructokinase isozyme 2
P09151_LEU1_ECOLI	0	-2.4	6	1	2-isopropylmalate synthase
P0A993_F16P_ECOLI	0	-2.5	9	2	Fructose-1,6-bisphosphatase
P0A6F3_GLPK_ECOLI	0	-2.5	57	2	Glycerol kinase
P00934_THRC_ECOLI	0	-2.5	71	2	Threonine synthase
P23908_ARGE_ECOLI	0	-2.5	4	1	Acetylornithine deacetylase
P15639_PUR9_ECOLI	0	-2.5	4	1	Bifunctional purine biosynthesis protein purH
P25906_YDBC_ECOLI	0	-2.5	3	1	Putative oxidoreductase ydbC
P76536_YFEX_ECOLI	0	-2.5	10	1	Uncharacterized protein yfeX.
P05791_ILVD_ECOLI	0	-2.6	10	2	Dihydroxy-acid dehydratase
P30126_LEUD_ECOLI	0	-2.6	20	2	3-isopropylmalate dehydratase small subunit
P0AEZ1_METF_ECOLI	0	-2.6	19	2	5,10-methylenetetrahydrofolate reductase
P78067_YNJE_ECOLI	0	-2.6	64	2	Putative thiosulfate sulfurtransferase ynjE
P22106_ASNB_ECOLI	0	-2.6	4	1	Asparagine synthetase B [glutamine-hydrolyzing]
P24186_FOLD_ECOLI	0	-2.7	5	1	Bifunctional protein folD
P37747_GLF_ECOLI	0	-2.7	5	1	UDP-galactopyranose mutase
P69828_PTKA_ECOLI	0	-2.8	11	2	Galactitol-specific phosphotransferase enzyme IIA component
P60723_RL4_ECOLI	0	-2.9	12	1	50S ribosomal protein L4.
P25516_ACON1_ECOLI	0	-3	29	2	Aconitate hydratase 1
P00561_AK1H_ECOLI	0	-3	29	2	Bifunctional aspartokinase/homoserine dehydrogenase I
P0A915_OMPW_ECOLI	0	-3	19	1	Outer membrane protein W
P37188_PTKB_ECOLI	0	-3	3	1	Galactitol-specific phosphotransferase enzyme IIB component
P13029_CATA_ECOLI	0	-3.1	22	1	Peroxidase/catalase HPI

Q46857_DKGA_ECOLI	0	-3.1	9	1	2,5-diketo-D-gluconic acid reductase A
P0A9T4_TAS_ECOLI	0	-3.1	3	1	Protein tas.
P0A9W3_YJJK_ECOLI	0	-3.1	13	1	Uncharacterized ABC transporter ATP-binding protein yjjK.
P0AGD3_SODF_ECOLI	0	-3.3	13	1	Superoxide dismutase [Fe]
P27550_ACSA_ECOLI	0	-3.4	51	2	Acetyl-coenzyme A synthetase
P37191_GATZ_ECOLI	0	-3.4	25	2	Putative tagatose 6-phosphate kinase gatZ
P0A6A6_LEU2_ECOLI	0	-3.5	38	2	3-isopropylmalate dehydratase large subunit
Q59385_ATCU_ECOLI	0	-3.6	23	1	Copper-transporting P-type ATPase
P21888_SYC_ECOLI	0	-3.7	11	2	Cysteinyl-tRNA synthetase
P30178_YBIC_ECOLI	0	-3.8	12	1	Uncharacterized oxidoreductase ybiC
P0A6H5_HSLU_ECOLI	0	-4	7	1	ATP-dependent hsl protease ATP-binding subunit hslU
P32132_TYPA_ECOLI	0	-4.9	15	2	GTP-binding protein typA/BipA
P77739_YNIA_ECOLI	0	-7	6	1	Uncharacterized protein yniA.

William "Judson" Hervey, IV, was born on January 18, 1979 in Wheeling, the first capital of West Virginia. From childhood through adolescence, Judson was raised in the small town of Wellsburg, WV. He frequently spent time with his father on the family farm, which fostered an interest in living things from a young age. Judson studied in the Brooke County public school system, attending Wellsburg Primary West, Wellsburg Middle School, and Brooke High School. When not engaged in his studies, Judson worked part-time at the historic Drover's Inn and Tavern in Wellsburg from May 1996 to June 2002.

In 1997, Judson graduated from Brooke High and began studying at West Liberty State College (now West Liberty University). While at West Liberty, he participated in a research project propagating an heirloom tomato seed repository under Dr. Roger G. Seeber and Dr. Robert Kreisberg. Work on this project led to an interest in research. Not soon thereafter, Judson changed his major from a pre-professional track to Biology.

After graduation from West Liberty in May 2002, he accepted an offer to study in the multidisciplinary Graduate School of Genome Science and Technology, a joint program between the University of Tennessee-Knoxville and Oak Ridge National Laboratory. While completing his Doctorate of Philosophy degree in 2009, Judson received a National Research Council Research Associateship from the National Academies of Science. He plans to conduct post-doctoral research in proteomics at the Naval Research Laboratory in Washington, D. C. In any free time, Judson plans to resume his study of music and the bass guitar.