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Abstract 
The ability to determine the age of seized nuclear material—that is, the time that has passed since 
it was formed— would provide crucial data to be used in its investigation.  This paper reviews the 
methods and mathematical reasoning behind the use of diffusion theory, as previously applied to 
analysis of metals in ancient artifacts and other objects, to modern investigations in nuclear 
science. We here examine the time-dependent processes of diffusion, including grain boundary 
diffusion and discontinuous precipitation, and we assess the utility of examining the profiles of 
impurity and alloying element concentrations for use as a tool in pre-detonation nuclear forensics. 

I. Introduction 
Interdiction of metallic nuclear material raises many questions of provenance, only some of 
which can be satisfactorily addressed today [1–3]. For example, we can analyze for the date of 
last chemical purification by examining progeny isotopes. This analysis technique develops the 
approach to answer another key question: when was the specimen cast or formed? We address 
this question by examining impurity diffusion in the microstructure of the metal. 
 
An enhanced capability in nuclear forensics—one that determines the material’s critical 
parameters, such as its timeline of processing—would support investigations of seized illicit 
materials. Earlier casework has demonstrated that information important to the investigation can 
be garnered not just from the nuclear materials themselves, but also from the containers, shields, 
and assorted other components associated with a seized illicit article [2]. Notably, the first 
methodology we envision should be extensible for evaluation of the time since forming of any 
metallic sample, not just potential nuclear device components. 
 
This forensic method of interpretation is not currently developed in the nuclear materials 
forensics community. In the case of an interdicted sample, all forensics evidence that can be 
brought to light helps determine possible sources or pathways for the objects in question. Also, 
the approaches we examine in this article compliment our other work for uranium metals and 
alloys, providing a cross-check on the results of each, and thus higher confidence in the accuracy 
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of interpretations [4]. In principle, our proposed work is also applicable to metals broadly, 
including plutonium or other nuclear fuels, including uranium. 

II. Background 
In the late 1970s, researchers from the Musee d’art et d’historie in Geneva and the Metropolitan 
Museum of Art in New York City collaborated on a project to investigate changes in the 
microstructure of Ag-Cu alloys. Their goal was to explain the manner in which normally 
malleable, ductile silver artifacts become brittle. It has been well documented that ancient silver 
artifacts are found to be brittle after excavation, whether or not they appear to be corroded [5].  
 
There are three primary causes for embrittlement in ancient silver: corrosion-induced 
embrittlement, microstructurally-induced embrittlement, and synergistic embrittlement, all of 
which are discussed in detail elsewhere [6, 7]. Schweizer and Meyer investigated discontinuous 
precipitation (DP) of copper in ancient silver alloys in order to distinguish between forgeries that 
had precipitated rapidly at high temperatures and copper that had precipitated very slowly over 
many centuries [5]. They based their conclusions on an observation that the interlamellar distance 
of a precipitated cell in silver alloys is a function of the temperature at which the precipitation 
occurred. 
 
In order to apply this principle to verifying the age of a sample, they generated an interlamellar 
distance versus temperature curve and sought to estimate the rate at which DP occurred at room 
temperature, in the hopes of approximating the size of the precipitated cells in an ancient alloy 
that had been aging for several centuries. Schweizer and Meyers’ curves illustrated that the 
maximum growth rate at 25oC is 1.0 nm per year. Thus, a 1500-year-old sample should have 
precipitated cells of about 1.5 µm in diameter. 
 
In 2003, R.J.H. Wanhill compared the approximated values with samples taken from the 
Gundestrup Cauldron, the largest surviving silverwork from the European Iron Age, which dates 
from the 1st or 2nd centuries BCE [8]. The cauldron consists of twelve plates and a bowl, all of 
95-98% silver. Chemical analysis has determined copper to be the main alloying (or impurity) 
element. The cauldron is relatively large, (50 cm in diameter), and due to its high-quality 
workmanship, it has been the subject of numerous studies. 
 
Wanhill examined the samples using a field emission gun scanning electron microscope (FEG-
SEM) and automated electron backscatter diffraction (EBSD) equipment. Samples from the 
cauldron contained precipitate widths up to 7 µm, well beyond the predicted maximum of 2.1 to 
2.2 µm, thus ruling out the use of precipitate widths for authentication.  
 
Furthermore, evidence indicates that the copper precipitate is not lamellar and presents a mottled 
appearance, eliminating the notion that interlamellar distances could be used to authenticate a 
sample [9]. A non-uniform growth of DP colonies from different boundaries in the same 
microstructure is frequently observed in the experimental studies for the following reasons: the 
physical orientation between the grain boundary (GB) and the precipitate habit planes, and the 
dynamic properties of grain and interphase boundaries, are dependent on their structure and can 
vary widely in a polycrystalline aggregate [10].  These investigations of metal in objects formed 
centuries ago suggest important applications to studies of other metals and contexts—as in the 
present study of impurity diffusion as a possible metal chronometer for pre-detonation nuclear 
forensics. 
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III. Methods 

A. Diffusion Fundamentals 
Diffusion in solids occurs on microscopic scales through the motion of discrete entities (atoms, 
molecules, clusters and lattice vacancies). These motions are the result of a statistical distribution 
of kinetic and potential energy expected among the atoms [11]. The process is thermally 
activated; relative movement (flux) of atoms or molecules is a response to forces such as 
gradients in chemical potential or temperature. The process is spontaneous, and must result in a 
net decrease in free energy [12]. Linear equations are sufficient for relating fluxes on the 
macroscopic level; however, since each component of a system may be influenced by the gradient 
in chemical potential of any other component, diffusion in multicomponent systems becomes 
increasingly complex. 

B. Fick’s Laws 
In the presence of a concentration gradient, impurity atoms will move in the direction of the 
gradient, from regions of high concentration to regions of low concentration, creating a flux of 
diffusing atoms. Fick’s first law governs this interaction: the flux F per unit area per unit time is 
proportional to the diffusion coefficient and the one-dimensional concentration gradient: 
 
 𝐹 =   −𝐷 !"

!"
 (1) 

 
where C is the dopant concentration per unit volume, and X is the distance. The diffusion 
coefficient D depends on the individual type of atom and is strongly temperature dependent: 
 
 𝐷 =   −𝐷!𝑒

!!!
!"  (2) 

 
where D0 is the diffusion coefficient extrapolated to infinite temperature, in units of m2/s and Ea is 
the activation energy in eV. The motion of a diffusant is determined by a combination of a 
material’s crystallography, its intermolecular forces, and its defects. Diffusion mechanism is also 
dependent on factors such as the atomic radius of the diffusing atom compared to the host lattice 
atoms, and whether or not a defect-assisted process is required. 
 
If an interstitial atom is small enough, when compared to atoms of the host lattice, it can migrate 
freely from one interstitial site to another. Figure 1 compares bulk diffusion data for several 
impurity elements in uranium extrapolated to ambient temperatures [13]. Interstitial diffusers 
have much smaller activation enthalpies than those for self-diffusion. 
 
Unless the experiment attains a steady state, time is also a variable, and a continuity equation 
must be solved. The time dependence of diffusion t is governed by Fick’s second law: 
 
 !"

!"
= !

!"
𝐷 !"
!"

 (3) 
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Figure 1. Diffusion coefficients of several interstitial solutes in U extrapolated to ambient temperatures. U self-
diffusion is shown for comparison. [13] 
 

This equation considers the time dependence of the diffusion process. However, when D is 
independent of concentration C, and not a function of position (x), this equation simplifies to: 
 
 !"

!"
= 𝐷 !!!

!!!
 (4) 

 
By applying the chain rule to Fick’s Second Law (Equation 4), a system of n components in a 
volume of fixed reference is expressed a follows: 
 

 

𝐹! = −𝐷!!
!!!
!"

− 𝐷!"
!!!
!"

…− 𝐷!(!!!)
!!!!!
!"

𝐹! = −𝐷!"
!!!
!"

− 𝐷!!
!!!
!"

…− 𝐷!(!!!)
!!!!!
!"

𝐹!!! = −𝐷(!!!)!
!!!
!"

− 𝐷(!!!)!
!!!
!"

…− 𝐷(!!!)(!!!)
!!!!!
!"

 (5) 

 
Using matrix multiplication, Equation 5 can be rewritten as:  
 

 

𝐽!
𝐽!
⋮

𝐽!!!

=

𝐷!! 𝐷!" … 𝐷!(!!!)
𝐷!" 𝐷!! … 𝐷!(!!!)
⋮ ⋮ ⋮ ⋮

𝐷(!!!)! 𝐷(!!!)! … 𝐷(!!!)(!!!)

𝜕𝐶! 𝜕𝑥
𝜕𝐶! 𝜕𝑥

⋮
𝜕𝐶(!!!) 𝜕𝑥

 (6) 

 
or simply as: 
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 𝐉 = −𝐃 !𝐂
!"

 (7) 
 
Where the concentration gradient is defined in Equation 3, 𝐉 and 𝐂 are column vectors and 𝐃 is a 
matrix of diffusion coefficients. The 𝐃 matrix must always have real, positive eigenvalues, which 
constrains the values of the elements within the matrix [14]. Often, due to a lack of experimental 
data, the off-diagonal terms are neglected, and we are forced to assume (at some risk) that they 
are zero. If n = 2, then Equations 5-7 reduce to the binary diffusion flux, where D11 is the binary 
interdiffusion coefficient. The D matrix is usually not symmetrical; however, it can be related to 
two symmetric matrices, L and G, as follows: 
 
 𝐃 = 𝐋𝐆 (8) 
 
where the 𝐋 matrix is the Onsager matrix of kinetic or phenomenological coefficients, and 𝐆 is 
the thermodynamic matrix. Both matrices have real, positive eigenvalues, and as such, the 𝐃 
matrix must meet those conditions. 

C. Time-Dependent Diffusion Properties 
As we mentioned, scientists have extensively researched diffusion-driven processes such as 
discontinuous precipitation. Kossowsky determined that, in its simplest form in binary alloys, the 
linear growth rate of precipitation is obtained from the slope of a line in a plot of the largest cell 
diameter versus aging time [15].  Malhotra established a linear relationship between time and the 
thickness of the precipitates [16].  
 
Diffusion in multi-component systems involves the simultaneous flow of more than two 
components. In these systems, the flux of each component is dependent upon its own 
concentration and chemical gradient, as well as that of all other diffusing components. 
 
Cellular precipitation does not always occur in multi-component systems such as steel, where the 
material contains interstitial and substitutional solutes with widely different diffusivities. More 
importantly, the growth features typically observed during cellular precipitation in binary 
substitutional systems, such as constant interlamellar spacing, are not present in multicomponent 
systems [17]. The composition of alloys can impede or promote DP during annealing. Saucedo-
Muñoz examined precipitation in steel alloys and found agreement between experimental results 
and theory that steels with the highest concentration of interstitial solutes (C and N) had the 
highest kinetics of precipitation, and volume fraction of precipitation, while steel samples with 
the highest concentration of Mn allowed only carbides to precipitate, as Mn maintains N in the 
solid solution [17]. 
 

Figure 2. Volume fraction of cellular precipitation vs. aging time of the alloy aged at 100, 200, and 300oC. [15] 

5

Peskie and Hall: Impurity Diffusion as a Metal Chronometer

Published by Trace: Tennessee Research and Creative Exchange, 2015



 
 

 
 

 
 

In 1991, Kikuchi et al. published a comprehensive review of cellular precipitation in Cr–Ni 
austenitic steels [18]. Cellular precipitation of Cr23C6 or Cr2N often occurs when nitrogen is 
alloyed to Cr–Ni or Cr–Mn austenitic stainless steel samples. Adding nitrogen to high-chromium 
austenitic alloys enhances the cellular precipitation of Cr23C6, and when no carbon is used in 
nitrogen alloyed Cr–Ni and Cr–Mn steels, the dominant precipitate is Cr2N. Typically, DP stops 
in these systems once cells cover 80-90% of the grains, unlike the constant growth rates seen in 
binary substitutional alloys. 
 
In 2010, Contreras-Piedras et al. examined microstructural evolution and growth kinetics in a 
magnesium alloy [19]. They sought evidence of GB diffusion and also wanted to evaluate the 
effects of temperature on cellular spacing. Figure 2 shows the volume fraction of cellular 
precipitation vs. aging time. The lowest aging temperature yielded the highest volume fraction. 
The analysis of the plot was done using the Johnson-Mehl-Avrami-Kolmogorov equation, which 
governs most discontinuous phase transformations: 
 
 𝑋! = 1− 𝑒!!!! (9) 
 
Where Xf  is the volume fraction transformed, t is time, and k and n are constants whose values 
depend on the nucleation and growth rate of the transformation product. An n value of 1 
corresponds to a boundary, and values obtained experimentally for Xf  were 1.1, 0.85 and 0.87 for 
100 oC, 200 oC and 300oC, respectively. Cellular spacing increased with aging time, in accordance 
with the Turnbull theory, and the activation energy indicated a grain boundary diffusion process.  
 
The non-steady-state growth of precipitates can be qualitatively explained by three factors. The 
first is the transfer of the faster diffusing element, nitrogen. At 1073 K, the volume diffusion 
coefficient of nitrogen in Cr–Ni austenitic stainless steel is five orders of magnitude larger than 
that of chromium [18]. Initially, the boundary diffusion of chromium is the rate-controlling factor. 
However, as the reaction progresses, the growth rate, G (as defined in Equation 10, where s is the 
interlamellar spacing and Dv is the volume diffusion coefficient) becomes larger than the 
observed growth rate. The difference between the experimentally observed growth rate and the 
growth rate governed by volume diffusion decreased by an order of magnitude. This is primarily 
attributed to the interlamellar spacing’s inability to increase rapidly enough to match the 
decreasing migration rate of the moving cell boundary. This suggests that the volume diffusion of 
chromium may have increased significance in the later stages of cellular precipitation. 
 
 𝐺 = !!

!
 (10) 

 
The second factor is the deceleration of the moving cell boundary. Nitrogen supersaturation in the 
untransformed matrix is the driving force for the precipitation of Cr2N in Cr–Ni austenitic steel. 
Once precipitation begins, nitrogen, the faster-diffusing element, flows from the untransformed 
matrix to the cell via long-range diffusion. This action decreases the amount of nitrogen in the 
untransformed matrix, which in turn decreases the migration rate of the moving cell boundary. 
The final factor is the stoppage of cell boundary movement. Under steady-state conditions, where 
the growth rate is constant, a diffusion zone exists ahead of a moving cell boundary. Its width is 
defined by the growth rate divided by the volume diffusivity. As the migration rate decreases, the 
diffusion zone’s width increases and is accompanied by a loss in chemical diving force for 
cellular precipitation. This causes the migration rate to continually decrease, until migration stops 
altogether. 
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In 2004, Santhi-Srinivas and Kutumbarao studied DP of a multi-component (Fe–Cr–Mn–N) 
system [20]. Of note, for temperatures below 700oC, they observed no DP. And for temperatures 
above 700oC, they found that the volume fraction and precipitate cell size increased sigmoidally 
with time, in agreement with the results shown in Figure 2. Based on their observations and the 
work of Kikuchi, they proposed a six-step description of the growth mechanism for DP in 
multicomponent systems. The mechanism outlined in Figure 3 can be described as follows: 

1. In the solution-treated sample, the concentration of nitrogen is uniform and is represented 
by Ns in Figure 3(a).  

2. After aging, Cr2N lamellae form by absorbing nitrogen from the immediate surrounding 
matrix, which becomes highly depleted of nitrogen. The concentration of nitrogen in the 
cell matrix (Ncm) decreases with the formation of lamellae while the concentration of 
nitrogen in the untransformed matrix Num remains the same as Ns, as shown in Figure 
3(b).  

3. This process creates a large concentration gradient between the untransformed matrix and 
the cell matrix, which results in the flow of nitrogen to the cell matrix.  

4. Long-range diffusion of nitrogen from the untransformed matrix is needed for the growth 
of Cr2N lamellae. See Figure 3(c).  

5. As aging continues, the concentration of nitrogen in the untransformed matrix (Num) 
decreases and nitrogen concentration in the cell (Nc) increases as more nitrogen diffuses 
to cause growth. As the gradient between the untransformed matrix and the cell 
continuously decreases, the diffusion rate of nitrogen, and hence the migration rate of the 
cell boundary, decreases with reaction time.  

6. As aging progresses, Num decreases further. Eventually, when chemical equilibrium is 
reached, Num= Ncm, as shown in Figure 3(d), cell growth stops, leading to an incomplete 
cellular reaction.  

 

Figure 3. Growth mechanism for DP in the multi-component system (Fe-Cr-Mn-N). (a) nitrogen concentration in solution-
treated samples; (b) formation of cells after aging at t=t1; (c) nitrogen diffusion at t=t2;(d) termination of cell growth at t=t3.  
[20].   
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This six-step process differs from the method proposed by Kikuchi in three ways: long-range 
diffusion of nitrogen was assumed to take place from the untransformed matrix to the cell; the 
observed concentration of chromium in the untransformed matrix did not change (emphasis was 
placed on the volume diffusion of nitrogen and corresponding decrease in the migration rate of 
the cell boundary), and finally, boundary migration and cell growth were assumed to stop when 
the cell matrix and the untransformed matrix reached chemical equilibrium. 

D. Effective Binary Diffusion Coefficient (EBDC) 
Complex diffusion processes in multicomponent alloys are not often solved analytically, and 
must be dealt with numerically. In order to simplify these calculations, a key assumption is 
possible to alleviate the need for extensive calculations. The analysis of multi-component 
diffusion can be simplified by using the concept of effective binary diffusion coefficient (EBDC), 
treating an alloy as if there were only two components: a solute and a solvent matrix. 
 
The system in Equation 5 required n-1 flux equations in a system of n components. The diagonal 
terms illustrate the effects of a component's concentration gradient on its flux, and the off-
diagonal terms illustrate the ability of the remaining components to influence the flux. The 
system of equations in Equation  5 can be simplified to: 
 
 𝐽! = −𝐷!(𝐸𝐵)

!!!
!"

 (11) 
 
as if there were only two components. D1(EB) represents the effective boundary diffusion 
coefficient of component 1. D1(EB) is different for each component, which is not the case in true 
binary diffusion. If we are to model the diffusion couple as semi-infinite, such that initial 
concentrations are preserved at sufficiently large distances from the interface (x=0), and that no 
concentration gradient exists on either side of the couple, we must also assume that the EBDC of 
a component is independent of distance within the diffusion zone. The solution to the isothermal 
diffusion equation is as follows [19, 21]:  
 
 𝐶! 𝑡, 𝑥 = 𝐶! 0 + ∆!!

!
1− 𝑒𝑟𝑓 !

! !!(!")!
 (12) 

 
where ΔC0 is the initial difference between the concentrations of the components on each side of 
the couple, Ci(0) is the lower of the two initial values of Ci . Calculation of an EBDC requires 
knowledge of the self-diffusion coefficients of all the diffusing components and the concentration 
gradients of all but one component. Extensive, current diffusion data can be found in Neumann’s 
Handbook of Experimental Data [13]. 
 
Ganguly determined that the true value of Dt, where D is the diffusion coefficient and t is time, is 
related to the calculated value (Dt)c from the measured concentration profile by the relationship 
[21]: 
 
 𝐷𝑡 = (𝐷𝑡)! −

!!

!
 (13) 

 
where 𝜖 is the standard deviation of the distribution of intensities of x-rays from the spatial 
averaging of the microprobe beam. 
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E. Influence of Time and Temperature 
In 1996 and in several subsequent works, Ganguly sought to use solutions to the diffusion 
equation to model the time scale of metamorphism in natural garnet diffusion couples, consisting 
of Ca, Fe, Mg, and Mn [14, 21, 22]. A diffusion profile clearly exists in Figure 4a. However, the 
data points for the Mn-profile are too irregular to be of help in the analysis, and the Ca and Fe 
profiles were used in the determination of Dt. The best fit for the data in Figure 4b using 
multicomponent diffusion values is given by Dt=7.5x10-12 cm2; however, it is not required that 
the Dt values be the same for each best-fit curve. 
 
Diffusion is a function of time due to its dependence on temperature. Non-isothermal diffusion 
can be reduced to an isothermal diffusion problem (through the period of effective diffusion) by 
determining the characteristic temperature TCh as follows: 
 
 𝐷 𝑡 𝑑𝑡 = 𝐷(𝑇!!)(𝑡! −

!!

!!
𝑡!) = Γ (14) 

 
By increasing the number of isothermal steps, one can improve accuracy in calculations. 
Similarly, one can determine a characteristic diffusion coefficient based on the characteristic 
temperature in Equation 14 [21, 22]. Using the value of Dt=7.5x1012 cm2, and solving Equation 
14 for Dt, yields: 
 Δ𝑡 = !.!"×!"!!"!"

!!(!")(!!!)
 (15) 

 
where Δt= t’-t0 ,and Di(EB)T(ch) is the effective binary diffusion coefficient at the characteristic 

Figure 4. Measured concentration profiles (Top, Figure 4a) and modeled concentration profiles with Dt=7.5x1012 
cm2 (bottom, Figure 4b). [14]. 
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temperature. In order to calculate the EBDC for a component, one must know self-diffusion 
coefficients for all the diffusing components, and the concentration gradients of n-1 components. 
Also, as in the case of the Mn profile in Ganguly's geological example [21], one can eliminate 
diffusing components with poorly defined profiles that would otherwise distort or complicate the 
solution. Similarly, to average the EBDC of components within the diffusion zone, one can 
assume a constant Di(EB) and use values from the center of the diffusion zone (about 440 nm in the 
provided example), as shown in Figure 4b. In order to determine the EBDC for diffusion in a 
semi-infinite couple, we see that: 
 

 
𝐷!"(!") = 𝐷!"!" +   𝐷!"#$

!!!"
!!!"

𝐷!"(!") = 𝐷!"!" +   𝐷!"#$
!!!"
!!!"

 (16) 

 
In order to populate the 𝐃 matrix, Ganguly used Equation 17 for thermodynamically ideal 
solutions: 
 

 𝐷!" = 𝐷!∗𝛿!" −
(!!!!

∗)(!!
∗!!!∗ )

!!!
!!! !!

∗  (17) 

 
where 𝐷!∗ is the self-diffusion coefficient of the component i, n is the dependent component, and 
𝛿!" is the Kronecker delta. Ideal values for DFe(EB) and DCa(EB) were calculated from low-
temperature extrapolations.  Due to a lack of experimental data, 𝐷!"∗   was treated as an unknown, 
and varied until the values for DFe(EB) and DCa(EB) matched Equation  16.  Figure 5 illustrates 
convergence of ideal EBDCs for Ca and Fe at a Δt of about 4.7 x 107 yrs.  
 
In order to adapt this method for the study of metal alloys, the D  matrix should be populated by 
using the Ziebold-Cooper procedure, an extension of Darken’s equation of multi-component 
diffusion as follows [23], in lieu of Equation 17.  
 
 𝐷!"! = 𝐷!∗ 𝛿!" − 𝑁!(𝐷!∗ − 𝐷!∗)

!!
!!
𝑔!"   !!!

!!!   (18) 
 
where: 
 
 𝑔!" =

! !"#!!
! !"#!! !!!!!,!!

 (19) 

 
where i is the number of components, D*

m is the self-diffusion coefficient, ai is the activity of the 
i-th component, and δm  is the Kronecker delta function.   

IV. Results 

A. Sample Calculation 
To illustrate the implications of this solution, this paper examines an alloy with known tracer 
diffusion coefficients (D*

i), and Gibbs free energies.  Desestret et al. and Assassa et al. conducted 
tracer experiments on an austenitic FeCrNi alloy of molar fraction composition 0.196 Cr and 
0.1057 Ni at 1100oC and determined that Desestre, Froment, and Guiralde; Assassa and 
Guiralde)[24, 25]:  
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𝐷!"∗ = 1.92×10!!"m!s!!

𝐷!"∗ = 7.62×10!!"m!s!!

𝐷!"∗ = 1.28×10!!"m!s!!
 (20) 

 
Using the Gibbs free energies obtained by Hillert and Waldenstrom [26], and Equation 18, the 
matrix of thermodynamic coefficients is:  
 
 

𝑔!"!" 𝑔!"#$
𝑔!"#$ 𝑔!"!" = +1.177 −0.321

−0.710 +1.002  (21) 
 
For the alloy in question, assuming Cr=1, Ni=2, and Fe=3 (the solvent), the ternary diffusion 
coefficients are found through the use of Eqn. 22. 
 

 

𝐷!!! = 𝐷!∗ − 𝑁!(𝐷!∗ − 𝐷!∗) 𝑔!! − 𝑁!(𝐷!∗ − 𝐷!∗)𝑔!"
𝐷!"! = 𝐷!∗ − 𝑁! 𝐷!∗ − 𝐷!∗ (𝑁! 𝑁!)𝑔!! − 𝑁!(𝐷!

∗ − 𝐷!∗)𝑔!!
𝐷!!! = 𝐷!∗ − 𝑁!(𝐷!∗ − 𝐷!∗) 𝑔!! − 𝑁!(𝐷!∗ − 𝐷!∗)𝑔!"

𝐷!"! = 𝐷!∗ − 𝑁! 𝐷!∗ − 𝐷!∗ (𝑁! 𝑁!)𝑔!" − 𝑁!(𝐷!
∗ − 𝐷!∗)𝑔!!

 (22) 

 
Applying the values in Eqns. 20 and 21 to Eqn.  22 yields: 
 

 
𝐷!!! 𝐷!"!

𝐷!"! 𝐷!!!
=    +2.07 −1.31

−0.35 +0.86 ∙ 10!!"m!s!! (23) 

 
For ideal solutions, (where the activity of each atom species is equal to its atom fraction, the 
atoms species of ideal solutions must be made up of elements that are chemically very similar, if 
not identical), 𝑔!" can be replaced with unity [23]. 
 
Using the values in the D matrix in Equation  24, and assuming it to be constant, we used the 
program PROFILER [11] to generate diffusion profiles.  The simulation was for 3.6x105s, and 
exhibited no evidence of uphill diffusion. We assumed the initial concentration differences to be 
as shown in Figure 6.  

Figure 5. Variations in calculated time scales (Δt) as functions of DFe(EB)  and DCa(EB), derived from assumed values of 
D*

Ca. [14]. 
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Given these values for ternary diffusion, one can use an equation similar to Equation 15 and 
select concentration data from the center of the diffusion zone (about 2100 nm) to ensure an 
average. 
 

 
𝐷!"(!") = 𝐷!"!" +   𝐷!"#$

!!!"
!!!"

𝐷!"(!") = 𝐷!"!" +   𝐷!"#$
!!!"
!!!"

 (24) 

 
The values were calculated to be:  
 

 
𝐷!"(!") = 2.982×10!!"m!s!!

𝐷!"(!") = 1.363×10!!"m!s!!
 (25) 

 
To illustrate the effects of time on isothermal diffusion, Figure 6 shows the effects of varying the 
aging time at Tch, the characteristic temperature of diffusion, which is based on the experimental 
data at 1100oC.  

 
Figure 7 Diffusion profiles at varying times. 

V. Uncertainties 
Small errors when calculating T can lead to large errors in calculating D or Δt. An error of ±15°C 
will cause a significant increase in uncertainty. The activation energy for impurity diffusion in 
uranium ranges from 52 kJ/mol for Co to 127 kJ/mol for Au [13]. Generally, the higher an atom's 

!!" = 0.1960
!!" = 0.1057

!!" = 0.1800
!!" = 0.0900  

Figure 6. Initial concentrations of example diffusion couple. 
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activation energy, the more sensitive it is to temperature changes, as shown by the relationship in 
Equation  26:  
 
 𝐷 ∝ 𝑒!! !" (26) 
 
Figure 7 illustrates the effects of a variance in temperatures and activation energy on calculated D 
values. The value for D  calculated at 300K is 3.75x10-29 m2/s, while at 315K it is 4.24x10-28 m2/s. 
The greater the activation energy, the steeper the slope of the line and the more significant the 
variance in temperatures. 

 
 Figure 8. Effects of a variance in temperatures and activation energy on calculated D values. 
 
Another potential source of error is the low-temperature extrapolation of experimental diffusion 
data according to Arrhenian relations. The lowest experimental temperatures for which data is 
provided is 683K, nearly 300K greater than ambient temperatures [13]. Whether or not the 
diffusion mechanism in uranium changes between 300 and 683K is outside the scope of this 
study, but it bears consideration in future experiments.  

VI. Conclusions 
The measured properties described in the preceding sections have proven useful in studying the 
age of geological specimens.  Evidence supports the extension of these types of calculations to 
alloys, to include uranium-based metals. To develop a more reliable method, these calculations 
must be applied to several impurities/precipitates, such that the estimation of an object’s age is 
determined by solving a system of equations.  Also, in the case of the austenitic steels examined, 
there was no evidence of DP at temperatures less than 700°C. When materials are exposed to 
ambient temperatures, the nucleation time for DP should be significantly longer than Santhi-
Srinivas study [20], and the kinetics sufficiently slow such that the maximum volume 
transformation occurs not at 103 seconds, but over the course of a period more useful to forensic 
exploration, such as 10s to 100s of years.  
 
We have here presented a method for determining the age (time since casting or forming) of both 
binary alloys and multicomponent systems. This method involves the diffusion of impurities and 
alloying elements and the rate of discontinuous precipitation.  The ability to validate this method 
as a useful chronometer depends upon our ability to accurately measure these properties with 
electron microscopy or similar high-spatial-resolution methods, at much lower temperatures than 
previously studied. 
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