
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative

Exchange
Faculty Publications and Other Works -- Civil &
Environmental Engineering

Engineering -- Faculty Publications and Other
Works

2015

Discontinuous Element Insertion Algorithm
Timothy James Truster
ttruster@utk.edu

Follow this and additional works at: http://trace.tennessee.edu/utk_civipubs

Part of the Geometry and Topology Commons, Mechanics of Materials Commons, and the
Numerical Analysis and Scientific Computing Commons

This Article is brought to you for free and open access by the Engineering -- Faculty Publications and Other Works at Trace: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Faculty Publications and Other Works -- Civil & Environmental Engineering by an authorized
administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

Recommended Citation
Truster, Timothy James, "Discontinuous Element Insertion Algorithm" (2015). Faculty Publications and Other Works -- Civil &
Environmental Engineering.
http://trace.tennessee.edu/utk_civipubs/17

http://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_civipubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_civipubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_civipubs?utm_source=trace.tennessee.edu%2Futk_civipubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_civipubs?utm_source=trace.tennessee.edu%2Futk_civipubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_enginfacpubs?utm_source=trace.tennessee.edu%2Futk_civipubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_enginfacpubs?utm_source=trace.tennessee.edu%2Futk_civipubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_civipubs?utm_source=trace.tennessee.edu%2Futk_civipubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=trace.tennessee.edu%2Futk_civipubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/283?utm_source=trace.tennessee.edu%2Futk_civipubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=trace.tennessee.edu%2Futk_civipubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

1

Discontinuous Element Insertion Algorithm

Timothy J. Truster a †

a Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, 318 John D. Tickle

Engineering Building, Knoxville, TN 37921

Manuscript Preprint, 2015

Abstract

An algorithm is presented for inserting zero-thickness interface elements, termed herein as
“couplers”, into continuous finite element meshes in two and three dimensions. Insertion is
governed solely by the mesh topology and is specified according to regions or subdomains within
the overall analysis domain, a geometrically intuitive means to designate the coupler locations.
The algorithm is self-contained and requires only nodal coordinates and element connectivity as
input. A wide class of volume elements and interface couplers are treated within the framework.
Since the algorithm is topologically-based, interfaces of arbitrary complexity are naturally
accommodated. Separate treatment is given to inserting couplers within regions and along region
boundaries to improve efficiency. Numerical tests verify that the algorithm is computationally
scalable and produces analysis suitable meshes.

Key Words: Interface elements, cohesive zone models, Discontinuous Galerkin method, mesh
topology, open source code

1. Introduction

The popularity of discontinuous formulations for computational solid mechanics has steadily
increased in recent years. Physical applications relevant to fracture mechanics include
fragmentation of brittle materials [1, 2], delamination in composite materials [3-5], and grain
boundary cracks in polycrystalline materials [6]. Similarly, the Discontinuous Galerkin (DG)
method [7-10] has been applied in the solid mechanics field to efficiently model sharp gradient
features and to enable mesh adaptivity. A common approach for numerically realizing these
methods is using the so-called zero-thickness interface finite elements, whereby an element is

† Assistant Professor. Corresponding author: Ph: (865) 974-1913; Fax: (865) 974-2669,
e-mail: ttruster@utk.edu

2

created through node duplication such that the two sides of the interface initially coincide but
subsequently may separate apart. Unfortunately, at the present time, standard commercial finite
element codes do not contain mesh generation features for zero-thickness elements. Thus, the
burden is placed on the user to create the modified mesh connectivity, which can be highly
non-trivial for complex meshes in three dimensions.

Various researchers have proposed algorithms for generating zero-thickness elements for
specialized applications. Some of the earliest examples were developed for adaptively inserting
the elements during fragmentation simulations [1, 11]. These algorithms support the extrinsic
cohesive zone (CZ) modeling approach [12] whereby elements are inserted dynamically or
“on-the-fly” to track the propagation of cracks within a brittle material under impact loading.
While the earlier works were limited to triangular and tetrahedral elements, subsequent
developments by other authors [13] led to methods for general element types. These topological
algorithms have also been applied to high-performance computing on parallel architectures [14, 15]
and on graphical processing units [16]. Note that these numerical methods typically require that
the interface elements are inserted during the course of the simulation, from step to step of a
nonlinear analysis, which can entail revisions to the finite element code structure. Other methods,
such as intrinsic cohesive zone models and Discontinuous Galerkin approaches, instead require all
interface elements to be present from the start of a simulation, so that the displacement
discontinuity can be evolved through activation criteria and constitutive relations. Thus, these
approaches could benefit from concurrent insertion algorithms where the entire mesh is processed
at once in a more efficient manner compared to inserting interfaces individually.

More recently, an algorithm and open-source code [17] have been developed for inserting
zero-thickness elements throughout the mesh as a pre-processing step. This algorithm treats the
mesh as consisting of several geometrical regions and can insert interface elements along all
region boundaries as well as between all volume elements within regions. It has been applied to
model grain boundary cracking, composite delamination, and matrix cracking [18] using a hybrid
DG-CZ formulation [2]. However, this approach can be applied only when interface elements are
required along all inter-region boundaries rather than a selection of them. Therefore, a method that
provides the user with greater flexibility for choosing the location and type of interface elements is
desirable.

In the current work, a general-purpose algorithm is presented for inserting zero-thickness interface
elements, termed herein as “couplers”, into specified regions of conforming meshes. The
duplication of nodes to accommodate the couplers is treated in a systematic fashion by introducing
the concept of sectors of elements attached to nodes. This concept ensures that the finite element
interpolation space retains the proper features of continuity and discontinuity in the vicinity of the
interface. The algorithm employs only topological operations on the original element connectivity

3

of the mesh to perform the coupler insertions. Therefore, it can be applied to general element types
for two and three dimensional problems with minimal input from the user. Couplers can be
selectively inserted within specific regions or along specific interfaces. Also, different types of
couplers as well as different material properties may be directly assigned to these particular sets,
providing an intuitive means to complete the description of the interfacial-modified mesh for
analysis purposes. An implementation of the algorithm in MATLAB© is provided at
https://bitbucket.org/trusterresearchgroup/deiprogram. Numerical studies are performed for a range
of two and three dimensional problems to investigate the accuracy, efficiency, and scalability of
the proposed algorithm.

In what follows, the topological definitions relevant to finite element meshes and interface
problems are discussed in Section 2. The phases of the insertion algorithm and corresponding
pseudo-code are presented in Section 3. Section 4 contains performance aspects of the method
obtained for numerical examples. Conclusions are drawn in Section 5.

2. Topological Definitions

Consider a domain consisting of a conforming mesh of finite elements in two (2D) or three (3D)
dimensional space. Throughout the following discussions, topological entities are identified by
italic typeset. Each element in the mesh is defined by a set of nodes which are points within the
domain associated with their particular coordinates; see the 2D example in Figure 1. In 2D,
meshes containing a mixture of triangular and quadrilateral elements are considered, and in 3D,
meshes containing tetrahedral, wedge, or hexahedral elements are permitted. In Figure 1, nodes
are designated by numbers and elements are denoted by lower-case letters. For example, element
a is composed of the three nodes 1, 4, and 5. The edge of an element in 2D is defined by the line
segment connecting two nodes, and the face of an element in 3D is defined by the set of nodes
connected by edges which form a closed loop within a single plane in space. The term facet is
applied to refer either to an edge in 2D or a face in 3D in the algorithmic descriptions that follow.

In addition to the above standard features associated with finite element discretization, we define
a region as a contiguous set of elements within the domain, which in general may form
nonconvex subdomains and consist of spatially disjoint sets of elements. Each element in the
domain is a member of exactly one region. In Figure 1, the regions are denoted by capital letters,
and the elements belonging to each region share the same color. Examples of regions in the
context of finite element modeling include the grains within a polycrystal, fibers and the
surrounding matrix in composites, concrete and steel in reinforced concrete, and so forth, where
each region is considered to have different material properties. However, herein a region is a
purely geometrical construct to enable completely general applications. The role played by the
regions is central to the algorithm for inserting the “interface elements”.

4

Figure 1. Conforming finite element mesh containing regions

The facets of all the elements in the domain can be separated into three disjoint sets. The first set
are those facets which lie on the domain boundary, which are adjacent to exactly one element.
The second set are those which lie between elements of two different regions, which are said to
belong to interfaces. This set is further divided according to pairs of regions, such that
interface(A,B) is the set of all facets between region A and region B. The third set are those
which lie between elements of the same region. Such facets belonging to region C will be
denoted as intraface(C), and so forth. Interfaces are shown as thick line segments in Figure 1
while intrafaces are shown as thin line segments.

3. Coupler Insertion Algorithm

A topological-based algorithm is presented for inserting couplers along the interfaces or
intrafaces in the domain. In the finite element literature, such computational entities are typically
referred to as “zero-thickness elements” or “interface elements”. Herein, we apply the term
coupler to distinguish from the other topological definitions made in Section 2 and to provide for
broader types of computational entities. Thus, a coupler is defined as a topological unit
consisting of nodes from exactly two elements which are adjacent across either an interface or
intraface. The coupler is generated by duplicating the nodes lying on the facet shared by the two
elements to effectively split the mesh along that facet. These couplers commonly appear as
numerical realizations of discontinuous formulations for modeling PDEs. For example, to model
the progressive debonding in composites, intrinsic cohesive zone models can be introduced as
interface couplers between the elements of the fiber and matrix constituents. The couplers are
present in the analysis from the initial stage in order to capture the initiation and progression of
fracture at the interface through a traction-separation relation. The treatment of the theory and

5

computational aspects of such formulations is beyond the scope of this work. Regarding the
intrinsic cohesive zone models, the reader may consult [1, 2, 5, 19] for mathematical aspects and
[17, 20] for notes on implementation. Similarly, the formulation [7] and implementation [8, 10]
of the Discontinuous Galerkin method can be found elsewhere. The common feature of these and
other discontinuous interpolation methods is that they require additional topological data beyond
just the nodes and elements of the mesh.

Remark: These numerical methods may be implemented into finite element codes by considering
the “couplers” as generalized “elements” according to the template element approach [13, 21].
This approach enables a single assembly loop across various element types.

Starting from an initially conforming finite element mesh, the insertion of couplers is
accomplished by reference to the interfaces and intrafaces between various regions. The region
is a natural geometric entity for assigning the desired location of the couplers. For example,
when modeling debonding in fibrous composites or cavitation along grain boundaries in
polycrystals, the interfaces between the different material regions is the desired location.
Similarly, intrafaces are the natural location for couplers when using Discontinuous Galerkin
numerical methods or when simulating general crack propagation with cohesive zone models.

The input data for the algorithm is simply the spatial coordinates of the nodes, the list of nodes
connected to each element, and the list of elements belonging to each region. This topological
data is provided by almost every finite element mesh generation software package, meaning that
minimal data preparation is required by the user. Next, the list of interfaces and intrafaces is
provided to specify which topological locations to insert the couplers. For example, the interface
between a fiber region A and matrix region B would be indicated by flagging interface(A,B); in
Figure 1, this is indicated by the dashed lines between these regions. Herein, these facets where
couplers are to be inserted are called “cut” facets. Similarly, the intraface(A) facets inside region
A are dashed in Figure 1 to indicate that they will also be cut. The algorithm then determines the
set of couplers to insert and the set of nodes to duplicate through an automated process based
upon the topology of the mesh.

The crucial aspect of the insertion algorithm is the node duplication procedure, which relies upon
the concept of sectors of elements surrounding a focus node. Two elements are defined to belong
to a sector if the shared facet between them is not a cut facet, namely it is not designated for a
coupler. A sector is then the largest set of elements satisfying this definition; a single element
constitutes a sector if all of the facets of that element sharing the focus node are cut. Also, the
union of all sectors is equal to the set of all elements surrounding the focus node. In general, a
sector will consist of all elements for a single region only if all interfaces attached to that region
are to be cut. Otherwise, a sector may consist of elements from multiple regions.

Referring to the mesh in Figure 1, elements b, c, and d belong to one sector, since couplers are

6

added along interface(A,B) and interface(B,D). Within the finite element discretization, each of
these elements is required to have a continuous interpolation of the solution field. Therefore, the
nodal coefficient of the solution field associated with this corner node must be identical for each
of the three elements, so that the sector remains “solid”. Elements in other sectors will have a
discontinuous functional interpolation, so the nodal value of the solution field should be
independent or distinct between the sectors. For the example shown, the duplication of node 5
onto each region does not satisfy the continuity requirement; this leads to an incorrect
discretization shown in Figure 2 (a), with open gaps between elements b and c. Using such a
discretization would lead to erroneous numerical results. Rather, a single copy of node 5 should
be assigned to these three elements which belong to the sector, as indicated by the single shading
in Figure 2 (b). This situation arises because regions B and C are prescribed to remain connected
without adding couplers along interface(B,C). In contrast, within region A, node 4 will be
duplicated for all surrounding elements, since each element constitutes a sector due to the
insertion of intraface couplers.

 (a) (b)

Figure 2. Node duplication: (a) incorrect discontinuity obtained by using regions; (b) correct
continuity obtained by using sectors

Remark: The above definition ensures that a single sector is obtained for the cases of a node
attached to only one cut edge in 2D and a node with cut faces lying on a single (non-smooth)
manifold in 3D. Thus, the node would not be duplicated, and the field interpolation remains
continuous at that node. See additional discussions and examples in [13].

The coupler insertion algorithm consists of six phases, which are summarized below:

1. Construct the set of elements attached to each node

7

2. Categorize all facets in the mesh as boundary, interface, or intraface.

3. Designate all cut interface facets, where couplers are to be inserted.

4. Duplicate nodes according to sectors for interfaces

5. Duplicate nodes for intrafaces

6. Construct the connectivity of nodes to couplers according to specified templates

Each of these phases is described in the paragraphs that follow and also outlined using
pseudo-code in Box 1 – Box 6. Several explicit arrays are defined to record the relation between
the entities of one topological category attached to a specific instance of an entity of another
category. For example, NodesOnElements is the set of nodes attached to or “on” a particular
element. In this array, the global nodes attached to a specific global element are assigned a local
identifier, ranging from 1 to the number of nodes attached to the element. In the case shown in
Figure 1, NodesOnElement(d,2)=6 means that node 6 is the local-node 2 of element d. This
nomenclature is extended to the relations of other topological entities, including
ElementsOnNode and FacetsOnElement. Also, the inverse relation, between a local identifier
and a global identifier, is designated by the pseudo-function FindLoc, such that
FindLoc(NodesOnElement(d,1:end),6)=2, where the descriptor “1:end” implies that the
search is across all local entries. For various arrays, the index “end+1” indicates that the specific
local identifier is incremented by one to append a new global entity. The other pseudo-functions
are denoted by self-explanatory names. Finally, short abbreviations of the topological entities are
given in the Table 1. Local identifiers are generically designated by “loc” followed by the object
letter, such as locE. Note that the distinct reference to interfaces excluding intrafaces is denoted
by “ine” while the generic set of interface and intraface facets is denoted with “int”.

Remark: The proposed algorithm does not assume any particular pattern exists between the
numbering of nodes and element and their ordering in space. However, many of the arrays
generated during the algorithm will possess an inherent ordering due to increasing node and
element numbers. This fact can be used to speed up the searches for local indices.

Table 1. Abbreviations for topological entities

Object name Short name Letter Object name Short name Letter

Coupler cou C Intraface ina I

Element ele E Node nod N

Facet fac F Region reg R

Interface ine, int I Sector sec S

8

During the first phase in Box 1, the set of elements attached to each node in the mesh is
determined, which is the inverse of the traditional finite element connectivity array. This array
enables localized searches over elements. Due to its significant use within subsequent
algorithmic phases, this array needs to be created and stored in memory. Note that the maximum
number of elements attached to a node, called the valence, is not known a priori; hence the size
of this array is indefinite.

Box 1. Construct the set of elements attached to each node

for each ele in domain

 for each locN on ele

 nod = NodesOnElements(ele,locN)

 ElementsOnNode(nod,end+1) = ele

During the second phase in Box 2, all facets in the mesh are categorized as either boundary,
interface, or intraface. A simple way to traverse all facets is by looping over all elements and
each of their local facets. By definition, two elements share a facet if all of the nodes attached to
the local facet of the first element are also attached to a local facet of the second element. The
second element is the common intersection of the sets of elements attached to the nodes on that
particular facet. If a second element is not found, then that facet belongs to the domain boundary.
Otherwise, the facet lies on an interface or intraface depending whether the two elements belong
to different or identical regions, respectively. The facet is given a unique identifier, and
information is recorded for both the element-facet and the node-facet relations. Note that the
number of nodes per facet, denoted by NumNode, varies based on the element type; typically the
corner nodes suffice for defining the facet. We also remark that this phase could instead be
implemented as an implicit query for a facet rather than storing the entire array in memory.
However, these topological relations are used multiple time during the algorithm, and also the
information may be needed subsequently by the user to update nodal boundary conditions or
other model features.

During the third phase in Box 3, each of the interface facets are indicated as cut if the associated
interface is designated to have couplers inserted. In Figure 1, those sets indicated by thick
dashed lines are interface(A,B), interface(A,E), and interface(B,D). Also, the associated nodes
are flagged for duplication in phase 4. The intraface(A) facets will be treated separately in phase
5.

The fourth phase is the distinguishing feature of the insertion algorithm and prescribes the
duplication of interface nodes. Because all couplers are predestined by the cut interfaces rather
than inserted sequentially or adaptively, this process can be performed independently at each
node in the mesh. The phase as shown in Box 4 has two steps: determining sectors and updating
topology. One generic approach for determining sectors is described next; other approaches

9

Box 2. Categorize all facets in the mesh

for each ele in domain

 for each locF on ele

 for locN = 1:NumNode on locF

 nodI = NodesOnElements(ele,locN(locF,I))

 setI = ElementsOnNode(nodI,1:end)

 [ele1,ele2] = SetIntersection(set1,set2,...,setNumNode)

 if ele1 == ele and ele2 > 0 then

 locF2 = DetermineLocalFacet(ele2,[nod1,nod2,...,nodNumNode])

 if FacetsOnElement(ele2,locF2) = 0 then

 fac = fac + 1

 reg1 = RegionOnElement(ele1); reg2 = RegionOnElement(ele2)

 int = Interface(reg1,reg2)

 ElementsOnFacet(fac,1:4) = [ele1,locF,ele2,locF2]

 FacetsOnElement(ele1,locF) = fac; FacetsOnElement(ele2,locF2) = fac

 FacetsOnInterface(int,end+1) = fac

 FacetsOnNode(nodI,end+1,1:3) = [fac,int,false] for each nodI

 else if only ele1 then

 fac = fac + 1

 ElementsOnFacet(fac,1:2) = [ele1,locF]

 FacetsOnBoundary(end+1) = fac

Box 3. Designate all cut interface facets

for each nod in domain

 for each ine in CutInterfaces

 set = FindLoc(FacetsOnNode(nod,1:end,2),ine)

 FacetsOnNode(nod,set,3) = true

 if size(set) > 0 then

 NodesOnInterface(end+1) = nod

could also be devised. First, each element attached to the node is assumed to belong to a different
sector. Then, a loop is performed over all facets attached to the node. If a facet is not being cut,
then the sectors containing the two elements sharing that facet are merged together. At the
completion of the loop, all elements that are linked by uncut interface facets will be
agglomerated into common sectors. Since all logic operations are performed one-way (merger)
rather than two-way (merger/separation) and each element is a member of exactly one sector at
each step, this procedure is a complete process for determining the sectors. Both corner nodes as
well as mid-edge nodes for 3D facets are properly treated by the operations in Box 4. However,
mid-edge nodes in 2D and mid-face nodes in 3D can be handled more easily since they are only

10

attached to a single facet. Also note that the array FacetsOnNode must be explicitly stored for
this implementation. As an alternative, a double loop could instead be performed over each
element attached to the node and each local facet containing that node.

Remark: This procedure involving sectors is similar to the topology traversal presented in [13]
regarding the adaptive insertion of interface elements for extrinsic cohesive zone modeling. The
conceptual difference is that herein each node is evaluated once during insertion of multiple
couplers while therein each node is considered multiple times during insertion of individual
couplers.

Once the sectors around a node are identified, each sector is assigned a unique copy of the node.
This step involves three topological changes: (i) addition of global nodes; (ii) duplication of
nodal coordinates; and (iii) updates of element connectivity. Also, the new global node identifiers
assigned to each element are stored in the array ElementsOnNodeDup for reference by the user to
update other mesh information such as boundary conditions.

Box 4. Duplicate nodes according to sectors for interfaces

for each nod in NodesOnInterface

 Sectors(1:end,1) = ElementsOnNode(nod,1:end)

 for each locF on FacetsOnNode(nod,1:end)

 if not FacetsOnNode(nod,locF,3) then

 fac = FacetsOnNode(nod,locF)

 ele1 = ElementsOnFacet(fac,1); ele2 = ElementsOnFacet(fac,3)

 sec1 = FindParentSector(Sectors,ele1)

 Sec2 = FindParentSector(Sectors,ele2)

 if sec1 not equal sec2 then

 Merge(Sectors(sec1,1:end),Sectors(sec2,1:end))

 Delete(Sectors(sec2,1:end))

 for each sec in Sectors(2:end)

 newnod = newnod + 1

 for each ele in Sectors(sec,1:end)

 Coordinates(newnod,1:nD) = Coordinates(nod,1:nD)

 locN = FindLoc(NodesOnElement(ele,1:end),nod)

 NodesOnElementNew(ele,locN) = newnod

 locE = FindLoc(ElementsOnNode(nod,1:end),ele)

 ElementsOnNodeDup(nod,locE) = newnod

During the fifth phase in Box 5, node duplication is performed for all cut intraface facets. This
operation results in a fully discontinuous interpolation of the fields within the associated region,
such as region A in Figure 1. The duplication of nodes within a region is quite simple: each

11

element is ascribed a unique instance of all nodes attached to itself. Observe that the revised
topology from phase 4 leads to individual regions that have the appearance of smaller domains
due to the node duplication along interfaces. Thus, the process of treating intrafaces inside
individual regions is identical to generating a completely discontinuous representation of a
domain. While intrafaces could be treated alongside interfaces within Box 4, the separate
treatment is computationally more efficient when there are significantly fewer interface facets
than intraface facets, which is usually the case. The speed-up is achieved because the logical
tests involving sectors are avoided for all nodes attached only to intraface facets. Note that
phases 4 and 5 will lead to correct meshes only if, for each region with intraface couplers, all
interfaces adjoining that region are also designated for couplers. Otherwise, cutting of both
interfaces and intrafaces should be treated concurrently within phases 3 and 4.

Box 5. Duplicate nodes for intrafaces

for each ina in CutIntrafaces

 for each ele such that RegionOnElement(ele) = reg

 for each nod on NodesOnElement(ele,1:end)

 if InstancesOf(nod) > 1

 newnod = newnod + 1

 Coordinates(newnod,1:nD) = Coordinates(nod,1:nD)

 locN = FindLoc(NodesOnElement(ele,1:end),nod)

 NodesOnElementNew(ele,locN) = newnod

 locE = FindLoc(ElementsOnNode(nod,1:end),ele)

 ElementsOnNodeDup(nod,locE) = newnod

During the sixth phase in Box 6, the coupler connectivity is generated. All node duplication has
been performed before this phase, such that all adjacency information in the mesh is prepared for
coupler insertion. Similar to elements, each coupler type has a specific template for the
arrangement of local nodes on either side of the cut facet. For cohesive zone modeling, typically
only the nodes lying on the interface are required for the computations because these
formulations are displacement-based. However, Discontinuous Galerkin (DG) methods usually
require computations of stresses and strains along the interface, which involve
displacement-gradient calculations using all of the nodes in the adjoining elements. Examples of
templates for linear elements and couplers in 2D and 3D are shown in Figure 3; higher-order
counterparts are naturally treated by adding mid-edge, mid-face, and interior nodes. Volume
elements are denoted by letter(s) and the number of nodes per element such as “T3”, cohesive
couplers are denoted by adding the prefix “COH” such as “COHQ4”, and DG couplers are
denoted similarly as “DGHEX8”. Dissimilar element types across couplers are also supported,
such as “COHT3Q4”, so long as the original mesh is conforming.

12

Box 6. Construct the connectivity of couplers

for each cut int

 for each fac in FacetsOnInterface(int,1:end)

 cou = cou + 1

 [ele1,locF1,ele2,locF2] = ElementsOnFacet(fac,1:4)

 CouplerSet = PermuteNodes(ele1,locF1,ele2,locF2,NodesOnElementNew,template)

 NodesOnCoupler(cou,1:end) = CouplerSet

Using these coupler templates, the nodes from the parent elements on either side of a coupler are
permuted to conform to the respective template. This permutation involves the renumbering of
the local nodes so that the element’s local facet is transformed to lie on the coupler surface. Note
that the connectivity of the volume element is not modified, which would be impossible since a
single element may have couplers on each of its facets. Also, the coupler connectivity does not at
all influence the node duplication process. Hence, different coupler types may be inserted into
the same mesh from phase 5, and indeed certain interfaces may be left without couplers in order
to create traction-free boundaries within the mesh. The separation of node duplication and
coupler insertion phases was also recommended in [17]. Finally, because the relation between
couplers, interfaces, and regions is explicitly available, the assignment of different material
properties to different interfaces is also trivial. As an example, for the modeling of crack
propagation in multi-phase composites where each phase is represented as a region, different
fracture toughness could be assigned to the interfaces lying between specific phases.

At the conclusion of the sixth phase using Box 6, the modified mesh containing couplers is
suitable for analysis. Updates may also be required for boundary conditions or other sets relating
to nodes and elements; the necessary mapping of old to new identifiers is explicitly stored to
enable the updating of such sets. Other element types and coupler types could be added within
this proposed framework so long as the convention that a coupler is adjacent to exactly two
elements is maintained. Operations on 2D meshes could be trivially extended to manifolds (shells)
in 3D by adding the third spatial coordinate to all nodes. Also, the version of the algorithm
presented herein is skewed towards the explicit creation and storage of the topological relations
in computer memory. Other approaches could be devised using implicit relations [22] if memory
is limited.

13

 (a) (b)

 (c) (d)

Figure 3. Linear element and coupler templates: (a) triangular 2D element; (b) quadrilateral 2D
element; (c) tetrahedral 3D element; (d) hexahedral 3D element

A realization of the proposed algorithm written in MATLAB© is provided
https://bitbucket.org/trusterresearchgroup/deiprogram; the code has also been successfully tested in
the GNU interpreted language Octave. Furthermore, the modified mesh corresponding to Figure
1 that is generated by this script is provided in Section 4.1.

14

4. Numerical Results

The following numerical examples verify that the proposed algorithm produces analysis suitable
discontinuous meshes. Focus is placed upon the nodes which are duplicated and upon the
zero-thickness interface elements (referred to as couplers) which are inserted. The efficiency and
scaling properties of the algorithm are also investigated. All finite element simulations are
performed using codes written in MATLAB© and FORTRAN that require as input only the
traditional arrays of nodal coordinates and element connectivity, which ensures compatibility of
the algorithm with commercial finite element codes.

4.1 Verification example from Section 2

The geometric and topological information corresponding to the mesh from Figure 1 is listed in
Table 2 through Table 4. Providing these arrays as input to the program, the resulting
discontinuous mesh is shown in Figure 4. The node duplication is carried out exactly as
described in Section 3 to yield the numbering pattern that is shown. The mesh is intentionally
expanded to show the location of the couplers and the duplicated nodes. Notice that four separate
copies of node 5 appear and that all elements in region A have been completely disconnected.

Table 2. Contents of array Coordinates, transposed

Node 1 2 3 4 5 6 7 8 9

x 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0

y 2.0 2.0 2.0 1.0 1.0 1.0 0.0 0.0 0.0

Table 3. Contents of array NodesOnElement, transposed

Element a b c d e f g h

Node

1 1 5 5 5 8 7 7

4 5 3 6 9 9 8 5

5 2 2 3 6 5 5 4

Table 4. Contents of array RegionsOnElement, transposed

Element a b c d e f g h

Region A B C B D D E A

15

Figure 4. Resulting mesh after node duplication

4.2 Two dimensional patch test

The second numerical example further tests the ability of the algorithm to treat complex patterns
of regions and interfaces. A rectangular 4 mm × 3 mm domain is considered with both linear
triangular and linear quadrilateral elements, as shown in Figure 5 (a). The elements are grouped
into a series of regions as indicated by numbers as well as the colors in the legend. Couplers are
then inserted along various interfaces in the domain as well as within the intraface of region 6;
the list of region pairs identifying the interfaces is given in Table 5. Each of the resulting portions
of the domain have been separated in Figure 5 (b) in order to highlight the location of the
couplers. This figure was created after the completion of the insertion algorithm; hence, the
duplicated nodes allowed the nodal coordinates of different regions to be translated separately.
Notice that the smaller mesh from Figure 1 is contained within the lower-left portion of this
mesh, with the intersection of five regions at a single node. A motivating physical problem for
this mesh would be a polycrystalline material with multiple grain boundaries that are primary
sources for cracks as well as a single weak inclusion in which matrix cracking is expected.

Table 5. Region identifier pairs for interfaces

Interfaces 1,3 1,5 1,8 2,6 3,5 4,6 5,6 5,8

16

 (a) (b)

Figure 5. Mesh containing multiple regions: (a) continuous mesh; (b) discontinuous mesh with
artificial separation indicating coupler locations

A patch test is then performed using the Discontinuous Galerkin formulation from [9, 10] to test
the validity of the generated topology in Figure 5 (b). Plane stress conditions are considered, and
each of the regions is assigned the material properties 100,000E = MPa and 0.25ν = . The
horizontal displacement is prescribed as zero along the left boundary of the domain, and a tensile
traction of 2,500Σ = MPa is applied to the right boundary. These boundary conditions result in
a 0.1 mm horizontal displacement of the right face. The computed nodal stress field is shown in
Figure 6 on the deformed geometry. Observe that the stress field is essentially constant
everywhere; also, no gaps or overlaps can be seen in the mesh. Therefore, we conclude that the
DG couplers have been correctly inserted so that the patch test is satisfied by the variationally
consistent DG method.

17

Figure 6. Normalized stress field xxσ Σ on deformed configuration for DG method

A second simulation is performed using cohesive zone (CZ) couplers in place of the DG
couplers. The initial elastic stiffness of the cohesive zone is set to 50,000 MPa/mm in order to
exaggerate the present of the couplers in the mesh. Hence, the expected gap across the couplers
under a stress of 2,500Σ = MPa is 0.05 mm. Normal displacements of 0.1 mm are prescribed
on the top and right domain boundaries, and symmetry boundary conditions are applied to the

bottom and left surfaces. The normalized stress field xxσ Σ with 2,500Σ = MPa is shown on

the deformed configuration in Figure 7; the deformations have been magnified by a factor of
two. The zero-thickness elements are also visualized in the mesh as solid elements. Note that
voids have appeared in the domain where multiple couplers intersect at multiple angles. Also,
regions 6 and 8 are carrying relatively lower stresses due to the compliance of the interfaces so
that the applied stress is redistributed throughout the domain. However, no discontinuities in
displacement or stress are present between regions 5 and 7 since these interfaces were not
decoupled and uniform elastic properties were employed; we remark that nodal stress projection
has been applied within contiguous regions for both Figure 6 and Figure 7. Notice that the single
triangular element of region 5 has been fully decoupled since all three of its facets are part of the
cut interface(1,5) and interface(3,5). Thus, these results highlight that the mesh produced by the
proposed algorithm is suitable for CZ modeling as well.

18

Figure 7. Normalized stress field xxσ Σ on deformed configuration for intrinsic CZ method

4.3 Three dimensional scalability study

A numerical scalability study is performed on a geometry of practical engineering significance.
The domain is a representative volume element (RVE) of a polycrystalline material that contains
100 grains with conforming grain boundaries, as shown in Figure 8. The meshes of 10-node
quadratic tetrahedral elements were generated using the open-source software Neper [23]. Three
levels of mesh refinement are considered, and the number of nodes and elements in each mesh is
listed in Table 6. Because each mesh is regenerated by the program, the number of elements does
not exactly increase by a multiple of eight. Each mesh contains non-uniform topology; for
example, the number of elements attached to a node varies between 1 and 40 on the coarse mesh.

19

Figure 8. Polycrystalline material domain discretized with quadratic tetrahedral elements

Our objective is to assess the average runtime of the algorithm for inserting the couplers similar
to the study in [13]. Two scenarios are performed: the insertion of couplers only along interfaces
between the grains, and the insertion along all interface and intraface facets in the mesh. The
timings were performed using the MATLAB© implementation of the algorithm on a serial
desktop computer; the recorded time is for each of the six phases from Section 3 not including
the mesh loading time. Random orderings of the nodes and elements were employed as input to
the script. The total execution time for the script on each mesh is reported in Table 6, which is
the average of three analyses. Note that patch tests have also been conducted on this three
dimensional geometry using the DG method [9, 10] to verify that the modified meshes are
analysis suitable.

Table 6. Mesh statistics and elapsed time for inserting interface and interface couplers

Mesh Elements Nodes Interface
Couplers

Interface
Time (s)

All
Couplers

Interface
Fraction

Total
Time (s)

Coarse 10,402 15,761 3,921 7.55 19,896 0.1971 19.5

Medium 68,713 97,720 12,111 36.2 134,474 0.0901 118

Fine 539,293 742,167 42,220 237 1,067,885 0.0395 797

Approximate linear scaling of the computing time is observed with respect to the number of
elements in the mesh or the number of couplers inserted. Similar performance was obtained for
the adaptive coupler insertion in [13]. Also, the recorded times for the proposed algorithm are on
the same order of magnitude as reported therein. We expect that the runtimes could be slightly
improved by using a compiled language rather than a scripting language. Also, an accounting for

20

the time expended during each phase is presented in Table 7 for one analysis of the coarse mesh.
Clearly, phase 4 for duplicating nodes using the sector approach is the most expensive operation
of the algorithm, followed by the generation of coupler connectivity in phase 6. Substantial
speedup is achieved by avoiding these operations for the duplication on intrafaces during phase 5.
By comparing Table 6 and Table 7, we conclude that approximately five to ten times as many
nodes are duplicated within one tenth the time in phase 5 compared to phase 4. These cost
savings are dependent upon the ratio of interface to intraface facets in the mesh. In general, the
insertion algorithm is seen to possess optimal scaling properties.

Table 7. Execution time (seconds) for each algorithmic phase for the coarse mesh

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
(Interface)

Phase 6
(All)

0.182 2.797 0.778 8.675 0.680 0.497 6.302

5. Conclusion

A topological algorithm was presented for inserting zero-thickness interface elements, referred to
as “couplers”, into conforming finite element meshes. The method is applicable for a wide class
of problems involving: (i) intrinsic cohesive zone modeling, Discontinuous Galerkin
formulations, or other interface methods; (ii) linear and higher order finite elements of various
shapes; and (iii) two and three dimensional domains. The key feature of the method is use of
“regions” of elements in the domain to indicate the locations for insertion, where the regions may
be purely geometrical or may be a collection of elements with common material properties.
Collections of couplers may be designated along interface facets of elements between regions or
along intraface facets of elements within a region. Using as input only the mesh connectivity and
the region designations, appropriate couplers are inserted and nodes are duplicated using
topological operations alone. Furthermore, the concept of element sectors surrounding a node is
introduced in order to ensure that the proper level of interpolation continuity is preserved during
the insertion process. The phases of inserting interface couplers and intraface couplers are
distinguished for increased computational efficiency. Numerical tests for two and three
dimensional problems verify that the algorithm scales linearly with the number of elements and
produces correct patterns of node duplication and coupler insertion to retain desirable continuous
features in the domain. In particular, the algorithm has proved to be suitable for complex three
dimensional meshes.

Acknowledgements

T. Truster was supported by a subcontract through the project DE-AC05-000R22725 at Oak
Ridge National Laboratory. This support is gratefully acknowledged.

21

References

1. Pandolfi A, Ortiz M. Solid modeling aspects of three-dimensional fragmentation.
Engineering with Computers 1998; 14(4):287-308.

2. Radovitzky R, Seagraves A, Tupek M, Noels L. A scalable 3D fracture and fragmentation
algorithm based on a hybrid, discontinuous Galerkin, cohesive element method.
Computer Methods in Applied Mechanics and Engineering 2011; 200(1-4):326-344.

3. Alfano G, Crisfield MA. Finite element interface models for the delamination analysis of
laminated composites: mechanical and computational issues. International Journal for
Numerical Methods in Engineering 2001; 50(7):1701-1736.

4. Raghavan P, Ghosh S. A continuum damage mechanics model for unidirectional
composites undergoing interfacial debonding. Mechanics of Materials 2005; 37:955-979.

5. Truster TJ, Masud A. A Discontinuous/continuous Galerkin method for modeling of
interphase damage in fibrous composite systems. Computational Mechanics 2013;
52(3):499-514.

6. Chandra N, Li H, Shet C, Ghonem H. Some issues in the application of cohesive zone
models for metal-ceramic interfaces. International Journal of Solids and Structures 2002;
39(10):2827-2855.

7. Arnold DN, Brezzi F, Cockburn B, Marini LD. Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis 2002;
39(5):1749-1779.

8. Liu R, Wheeler MF, Dawson CN. A three-dimensional nodal-based implementation of a
family of discontinuous Galerkin methods for elasticity problems. Computers &
Structures 2009; 87(3):141-150.

9. Truster TJ, Masud A. Primal interface formulation for coupling multiple PDEs: A
consistent derivation via the Variational Multiscale method. Computer Methods in
Applied Mechanics and Engineering 2014; 268:194-224.

10. Masud A, Truster TJ, Bergman LA. A unified formulation for interface coupling and
frictional contact modeling with embedded error estimation. International Journal for
Numerical Methods in Engineering 2012; 92(2):141-177.

11. Pandolfi A, Ortiz M. An Efficient Adaptive procedure for three-dimensional
fragmentation simulations. Engineering with Computers 2002; 18(2):148-159.

12. Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for
three-dimensional crack-propagation analysis. International Journal for Numerical
Methods in Engineering 1999; 44(9):1267-1282.

13. Paulino GH, Celes W, Espinha R, Zhang Z. A general topology-based framework for
adaptive insertion of cohesive elements in finite element meshes. Engineering with
Computers 2007; 24(1):59-78.

14. Dooley I, Mangala S, Kale L, Geubelle P. Parallel Simulations of Dynamic Fracture

22

Using Extrinsic Cohesive Elements. Journal of Scientific Computing 2008;
39(1):144-165.

15. Espinha R, Celes W, Rodriguez N, Paulino GH. ParTopS: compact topological
framework for parallel fragmentation simulations. Engineering with Computers 2009;
25(4):345-365.

16. Alhadeff A, Celes W, Paulino GH. Mapping Cohesive Fracture and Fragmentation
Simulations to Graphics Processor Units. International Journal for Numerical Methods in
Engineering 2015, doi 10.1002/nme.4842.

17. Nguyen VP. An open source program to generate zero-thickness cohesive interface
elements. Advances in Engineering Software 2014; 74:27-39.

18. Nguyen VP. Discontinuous Galerkin/extrinsic cohesive zone modeling: Implementation
caveats and applications in computational fracture mechanics. Engineering Fracture
Mechanics 2014; 128:37-68.

19. Needleman A. A continuum model for void nucleation by inclusion debonding. J. Appl.
Mech. 1987; 54(3):525.

20. Park K, Paulino GH. Computational implementation of the PPR potential-based cohesive
model in ABAQUS: Educational perspective. Engineering Fracture Mechanics 2012;
93:239-262.

21. Beall MW, Shephard MS. A general topology-based mesh sata structure. International
Journal for Numerical Methods in Engineering 1997; 40(9):1573-1596.

22. Celes W, Paulino GH, Espinha R. A compact adjacency-based topological data structure
for finite element mesh representation. International Journal for Numerical Methods in
Engineering 2005; 64(11):1529-1556.

23. Quey R, Dawson PR, Barbe F. Large-scale 3D random polycrystals for the finite element
method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics
and Engineering 2011; 200(17–20):1729-1745.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	2015

	Discontinuous Element Insertion Algorithm
	Timothy James Truster
	Recommended Citation

	Abstract
	1. Introduction
	2. Topological Definitions
	3. Coupler Insertion Algorithm
	4. Numerical Results
	4.1 Verification example from Section 2
	4.2 Two dimensional patch test
	4.3 Three dimensional scalability study

	5. Conclusion
	Acknowledgements
	References

