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Abstract 

An algorithm is presented for inserting zero-thickness interface elements, termed herein as 
“couplers”, into continuous finite element meshes in two and three dimensions. Insertion is 
governed solely by the mesh topology and is specified according to regions or subdomains within 
the overall analysis domain, a geometrically intuitive means to designate the coupler locations. 
The algorithm is self-contained and requires only nodal coordinates and element connectivity as 
input. A wide class of volume elements and interface couplers are treated within the framework. 
Since the algorithm is topologically-based, interfaces of arbitrary complexity are naturally 
accommodated. Separate treatment is given to inserting couplers within regions and along region 
boundaries to improve efficiency. Numerical tests verify that the algorithm is computationally 
scalable and produces analysis suitable meshes. 

Key Words: Interface elements, cohesive zone models, Discontinuous Galerkin method, mesh 
topology, open source code 

1. Introduction 

The popularity of discontinuous formulations for computational solid mechanics has steadily 
increased in recent years. Physical applications relevant to fracture mechanics include 
fragmentation of brittle materials [1, 2], delamination in composite materials [3-5], and grain 
boundary cracks in polycrystalline materials [6]. Similarly, the Discontinuous Galerkin (DG) 
method [7-10] has been applied in the solid mechanics field to efficiently model sharp gradient 
features and to enable mesh adaptivity. A common approach for numerically realizing these 
methods is using the so-called zero-thickness interface finite elements, whereby an element is  
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created through node duplication such that the two sides of the interface initially coincide but 
subsequently may separate apart. Unfortunately, at the present time, standard commercial finite 
element codes do not contain mesh generation features for zero-thickness elements. Thus, the 
burden is placed on the user to create the modified mesh connectivity, which can be highly 
non-trivial for complex meshes in three dimensions. 

Various researchers have proposed algorithms for generating zero-thickness elements for 
specialized applications. Some of the earliest examples were developed for adaptively inserting 
the elements during fragmentation simulations [1, 11]. These algorithms support the extrinsic 
cohesive zone (CZ) modeling approach [12] whereby elements are inserted dynamically or 
“on-the-fly” to track the propagation of cracks within a brittle material under impact loading. 
While the earlier works were limited to triangular and tetrahedral elements, subsequent 
developments by other authors [13] led to methods for general element types. These topological 
algorithms have also been applied to high-performance computing on parallel architectures [14, 15] 
and on graphical processing units [16]. Note that these numerical methods typically require that 
the interface elements are inserted during the course of the simulation, from step to step of a 
nonlinear analysis, which can entail revisions to the finite element code structure. Other methods, 
such as intrinsic cohesive zone models and Discontinuous Galerkin approaches, instead require all 
interface elements to be present from the start of a simulation, so that the displacement 
discontinuity can be evolved through activation criteria and constitutive relations. Thus, these 
approaches could benefit from concurrent insertion algorithms where the entire mesh is processed 
at once in a more efficient manner compared to inserting interfaces individually. 

More recently, an algorithm and open-source code [17] have been developed for inserting 
zero-thickness elements throughout the mesh as a pre-processing step. This algorithm treats the 
mesh as consisting of several geometrical regions and can insert interface elements along all 
region boundaries as well as between all volume elements within regions. It has been applied to 
model grain boundary cracking, composite delamination, and matrix cracking [18] using a hybrid 
DG-CZ formulation [2]. However, this approach can be applied only when interface elements are 
required along all inter-region boundaries rather than a selection of them. Therefore, a method that 
provides the user with greater flexibility for choosing the location and type of interface elements is 
desirable.  

In the current work, a general-purpose algorithm is presented for inserting zero-thickness interface 
elements, termed herein as “couplers”, into specified regions of conforming meshes. The 
duplication of nodes to accommodate the couplers is treated in a systematic fashion by introducing 
the concept of sectors of elements attached to nodes. This concept ensures that the finite element 
interpolation space retains the proper features of continuity and discontinuity in the vicinity of the 
interface. The algorithm employs only topological operations on the original element connectivity 
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of the mesh to perform the coupler insertions. Therefore, it can be applied to general element types 
for two and three dimensional problems with minimal input from the user. Couplers can be 
selectively inserted within specific regions or along specific interfaces. Also, different types of 
couplers as well as different material properties may be directly assigned to these particular sets, 
providing an intuitive means to complete the description of the interfacial-modified mesh for 
analysis purposes. An implementation of the algorithm in MATLAB© is provided at 
https://bitbucket.org/trusterresearchgroup/deiprogram. Numerical studies are performed for a range 
of two and three dimensional problems to investigate the accuracy, efficiency, and scalability of 
the proposed algorithm. 

In what follows, the topological definitions relevant to finite element meshes and interface 
problems are discussed in Section 2. The phases of the insertion algorithm and corresponding 
pseudo-code are presented in Section 3. Section 4 contains performance aspects of the method 
obtained for numerical examples. Conclusions are drawn in Section 5. 

2. Topological Definitions 

Consider a domain consisting of a conforming mesh of finite elements in two (2D) or three (3D) 
dimensional space. Throughout the following discussions, topological entities are identified by 
italic typeset. Each element in the mesh is defined by a set of nodes which are points within the 
domain associated with their particular coordinates; see the 2D example in Figure 1. In 2D, 
meshes containing a mixture of triangular and quadrilateral elements are considered, and in 3D, 
meshes containing tetrahedral, wedge, or hexahedral elements are permitted. In Figure 1, nodes 
are designated by numbers and elements are denoted by lower-case letters. For example, element 
a is composed of the three nodes 1, 4, and 5. The edge of an element in 2D is defined by the line 
segment connecting two nodes, and the face of an element in 3D is defined by the set of nodes 
connected by edges which form a closed loop within a single plane in space. The term facet is 
applied to refer either to an edge in 2D or a face in 3D in the algorithmic descriptions that follow. 

In addition to the above standard features associated with finite element discretization, we define 
a region as a contiguous set of elements within the domain, which in general may form 
nonconvex subdomains and consist of spatially disjoint sets of elements. Each element in the 
domain is a member of exactly one region. In Figure 1, the regions are denoted by capital letters, 
and the elements belonging to each region share the same color. Examples of regions in the 
context of finite element modeling include the grains within a polycrystal, fibers and the 
surrounding matrix in composites, concrete and steel in reinforced concrete, and so forth, where 
each region is considered to have different material properties. However, herein a region is a 
purely geometrical construct to enable completely general applications. The role played by the 
regions is central to the algorithm for inserting the “interface elements”. 
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Figure 1. Conforming finite element mesh containing regions 

The facets of all the elements in the domain can be separated into three disjoint sets. The first set 
are those facets which lie on the domain boundary, which are adjacent to exactly one element. 
The second set are those which lie between elements of two different regions, which are said to 
belong to interfaces. This set is further divided according to pairs of regions, such that 
interface(A,B) is the set of all facets between region A and region B. The third set are those 
which lie between elements of the same region. Such facets belonging to region C will be 
denoted as intraface(C), and so forth. Interfaces are shown as thick line segments in Figure 1 
while intrafaces are shown as thin line segments. 

3. Coupler Insertion Algorithm 

A topological-based algorithm is presented for inserting couplers along the interfaces or 
intrafaces in the domain. In the finite element literature, such computational entities are typically 
referred to as “zero-thickness elements” or “interface elements”. Herein, we apply the term 
coupler to distinguish from the other topological definitions made in Section 2 and to provide for 
broader types of computational entities. Thus, a coupler is defined as a topological unit 
consisting of nodes from exactly two elements which are adjacent across either an interface or 
intraface. The coupler is generated by duplicating the nodes lying on the facet shared by the two 
elements to effectively split the mesh along that facet. These couplers commonly appear as 
numerical realizations of discontinuous formulations for modeling PDEs. For example, to model 
the progressive debonding in composites, intrinsic cohesive zone models can be introduced as 
interface couplers between the elements of the fiber and matrix constituents. The couplers are 
present in the analysis from the initial stage in order to capture the initiation and progression of 
fracture at the interface through a traction-separation relation. The treatment of the theory and 
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computational aspects of such formulations is beyond the scope of this work. Regarding the 
intrinsic cohesive zone models, the reader may consult [1, 2, 5, 19] for mathematical aspects and 
[17, 20] for notes on implementation. Similarly, the formulation [7] and implementation [8, 10] 
of the Discontinuous Galerkin method can be found elsewhere. The common feature of these and 
other discontinuous interpolation methods is that they require additional topological data beyond 
just the nodes and elements of the mesh.  

Remark: These numerical methods may be implemented into finite element codes by considering 
the “couplers” as generalized “elements” according to the template element approach [13, 21]. 
This approach enables a single assembly loop across various element types. 

Starting from an initially conforming finite element mesh, the insertion of couplers is 
accomplished by reference to the interfaces and intrafaces between various regions. The region 
is a natural geometric entity for assigning the desired location of the couplers. For example, 
when modeling debonding in fibrous composites or cavitation along grain boundaries in 
polycrystals, the interfaces between the different material regions is the desired location. 
Similarly, intrafaces are the natural location for couplers when using Discontinuous Galerkin 
numerical methods or when simulating general crack propagation with cohesive zone models. 

The input data for the algorithm is simply the spatial coordinates of the nodes, the list of nodes 
connected to each element, and the list of elements belonging to each region. This topological 
data is provided by almost every finite element mesh generation software package, meaning that 
minimal data preparation is required by the user. Next, the list of interfaces and intrafaces is 
provided to specify which topological locations to insert the couplers. For example, the interface 
between a fiber region A and matrix region B would be indicated by flagging interface(A,B); in 
Figure 1, this is indicated by the dashed lines between these regions. Herein, these facets where 
couplers are to be inserted are called “cut” facets. Similarly, the intraface(A) facets inside region 
A are dashed in Figure 1 to indicate that they will also be cut. The algorithm then determines the 
set of couplers to insert and the set of nodes to duplicate through an automated process based 
upon the topology of the mesh.  

The crucial aspect of the insertion algorithm is the node duplication procedure, which relies upon 
the concept of sectors of elements surrounding a focus node. Two elements are defined to belong 
to a sector if the shared facet between them is not a cut facet, namely it is not designated for a 
coupler. A sector is then the largest set of elements satisfying this definition; a single element 
constitutes a sector if all of the facets of that element sharing the focus node are cut. Also, the 
union of all sectors is equal to the set of all elements surrounding the focus node. In general, a 
sector will consist of all elements for a single region only if all interfaces attached to that region 
are to be cut. Otherwise, a sector may consist of elements from multiple regions. 

Referring to the mesh in Figure 1, elements b, c, and d belong to one sector, since couplers are 
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added along interface(A,B) and interface(B,D). Within the finite element discretization, each of 
these elements is required to have a continuous interpolation of the solution field. Therefore, the 
nodal coefficient of the solution field associated with this corner node must be identical for each 
of the three elements, so that the sector remains “solid”. Elements in other sectors will have a 
discontinuous functional interpolation, so the nodal value of the solution field should be 
independent or distinct between the sectors. For the example shown, the duplication of node 5 
onto each region does not satisfy the continuity requirement; this leads to an incorrect 
discretization shown in Figure 2 (a), with open gaps between elements b and c. Using such a 
discretization would lead to erroneous numerical results. Rather, a single copy of node 5 should 
be assigned to these three elements which belong to the sector, as indicated by the single shading 
in Figure 2 (b). This situation arises because regions B and C are prescribed to remain connected 
without adding couplers along interface(B,C). In contrast, within region A, node 4 will be 
duplicated for all surrounding elements, since each element constitutes a sector due to the 
insertion of intraface couplers. 

     

  (a)                 (b)  

Figure 2. Node duplication: (a) incorrect discontinuity obtained by using regions; (b) correct 
continuity obtained by using sectors 

Remark: The above definition ensures that a single sector is obtained for the cases of a node 
attached to only one cut edge in 2D and a node with cut faces lying on a single (non-smooth) 
manifold in 3D. Thus, the node would not be duplicated, and the field interpolation remains 
continuous at that node. See additional discussions and examples in [13]. 

The coupler insertion algorithm consists of six phases, which are summarized below: 

1. Construct the set of elements attached to each node 
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2. Categorize all facets in the mesh as boundary, interface, or intraface. 

3. Designate all cut interface facets, where couplers are to be inserted. 

4. Duplicate nodes according to sectors for interfaces 

5. Duplicate nodes for intrafaces 

6. Construct the connectivity of nodes to couplers according to specified templates 

Each of these phases is described in the paragraphs that follow and also outlined using 
pseudo-code in Box 1 – Box 6. Several explicit arrays are defined to record the relation between 
the entities of one topological category attached to a specific instance of an entity of another 
category. For example, NodesOnElements is the set of nodes attached to or “on” a particular 
element. In this array, the global nodes attached to a specific global element are assigned a local 
identifier, ranging from 1 to the number of nodes attached to the element. In the case shown in 
Figure 1, NodesOnElement(d,2)=6 means that node 6 is the local-node 2 of element d. This 
nomenclature is extended to the relations of other topological entities, including 
ElementsOnNode and FacetsOnElement. Also, the inverse relation, between a local identifier 
and a global identifier, is designated by the pseudo-function FindLoc, such that 
FindLoc(NodesOnElement(d,1:end),6)=2, where the descriptor “1:end” implies that the 
search is across all local entries. For various arrays, the index “end+1” indicates that the specific 
local identifier is incremented by one to append a new global entity. The other pseudo-functions 
are denoted by self-explanatory names. Finally, short abbreviations of the topological entities are 
given in the Table 1. Local identifiers are generically designated by “loc” followed by the object 
letter, such as locE. Note that the distinct reference to interfaces excluding intrafaces is denoted 
by “ine” while the generic set of interface and intraface facets is denoted with “int”. 

Remark: The proposed algorithm does not assume any particular pattern exists between the 
numbering of nodes and element and their ordering in space. However, many of the arrays 
generated during the algorithm will possess an inherent ordering due to increasing node and 
element numbers. This fact can be used to speed up the searches for local indices. 

Table 1. Abbreviations for topological entities 

Object name Short name Letter Object name Short name Letter 

Coupler cou C Intraface ina I 

Element ele E Node nod N 

Facet fac F Region reg R 

Interface ine, int I Sector sec S 
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During the first phase in Box 1, the set of elements attached to each node in the mesh is 
determined, which is the inverse of the traditional finite element connectivity array. This array 
enables localized searches over elements. Due to its significant use within subsequent 
algorithmic phases, this array needs to be created and stored in memory. Note that the maximum 
number of elements attached to a node, called the valence, is not known a priori; hence the size 
of this array is indefinite. 

Box 1. Construct the set of elements attached to each node 

for each ele in domain 

  for each locN on ele 

    nod = NodesOnElements(ele,locN) 

    ElementsOnNode(nod,end+1) = ele 

During the second phase in Box 2, all facets in the mesh are categorized as either boundary, 
interface, or intraface. A simple way to traverse all facets is by looping over all elements and 
each of their local facets. By definition, two elements share a facet if all of the nodes attached to 
the local facet of the first element are also attached to a local facet of the second element. The 
second element is the common intersection of the sets of elements attached to the nodes on that 
particular facet. If a second element is not found, then that facet belongs to the domain boundary. 
Otherwise, the facet lies on an interface or intraface depending whether the two elements belong 
to different or identical regions, respectively. The facet is given a unique identifier, and 
information is recorded for both the element-facet and the node-facet relations. Note that the 
number of nodes per facet, denoted by NumNode, varies based on the element type; typically the 
corner nodes suffice for defining the facet. We also remark that this phase could instead be 
implemented as an implicit query for a facet rather than storing the entire array in memory. 
However, these topological relations are used multiple time during the algorithm, and also the 
information may be needed subsequently by the user to update nodal boundary conditions or 
other model features. 

During the third phase in Box 3, each of the interface facets are indicated as cut if the associated 
interface is designated to have couplers inserted. In Figure 1, those sets indicated by thick 
dashed lines are interface(A,B), interface(A,E), and interface(B,D). Also, the associated nodes 
are flagged for duplication in phase 4. The intraface(A) facets will be treated separately in phase 
5. 

The fourth phase is the distinguishing feature of the insertion algorithm and prescribes the 
duplication of interface nodes. Because all couplers are predestined by the cut interfaces rather 
than inserted sequentially or adaptively, this process can be performed independently at each 
node in the mesh. The phase as shown in Box 4 has two steps: determining sectors and updating 
topology.  One generic approach for determining sectors is described next; other approaches 
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Box 2. Categorize all facets in the mesh 

for each ele in domain 

  for each locF on ele 

    for locN = 1:NumNode on locF 

      nodI = NodesOnElements(ele,locN(locF,I)) 

      setI = ElementsOnNode(nodI,1:end) 

    [ele1,ele2] = SetIntersection(set1,set2,...,setNumNode) 

    if ele1 == ele and ele2 > 0 then 

      locF2 = DetermineLocalFacet(ele2,[nod1,nod2,...,nodNumNode]) 

      if FacetsOnElement(ele2,locF2) = 0 then 

        fac = fac + 1 

        reg1 = RegionOnElement(ele1); reg2 = RegionOnElement(ele2) 

        int = Interface(reg1,reg2) 

        ElementsOnFacet(fac,1:4) = [ele1,locF,ele2,locF2] 

        FacetsOnElement(ele1,locF) = fac; FacetsOnElement(ele2,locF2) = fac 

        FacetsOnInterface(int,end+1) = fac 

        FacetsOnNode(nodI,end+1,1:3) = [fac,int,false] for each nodI 

      else if only ele1 then 

        fac = fac + 1 

        ElementsOnFacet(fac,1:2) = [ele1,locF] 

        FacetsOnBoundary(end+1) = fac 

Box 3. Designate all cut interface facets 

for each nod in domain 

  for each ine in CutInterfaces 

    set = FindLoc(FacetsOnNode(nod,1:end,2),ine) 

    FacetsOnNode(nod,set,3) = true 

    if size(set) > 0 then 

      NodesOnInterface(end+1) = nod 

could also be devised. First, each element attached to the node is assumed to belong to a different 
sector. Then, a loop is performed over all facets attached to the node. If a facet is not being cut, 
then the sectors containing the two elements sharing that facet are merged together. At the 
completion of the loop, all elements that are linked by uncut interface facets will be 
agglomerated into common sectors. Since all logic operations are performed one-way (merger) 
rather than two-way (merger/separation) and each element is a member of exactly one sector at 
each step, this procedure is a complete process for determining the sectors. Both corner nodes as 
well as mid-edge nodes for 3D facets are properly treated by the operations in Box 4. However, 
mid-edge nodes in 2D and mid-face nodes in 3D can be handled more easily since they are only 
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attached to a single facet. Also note that the array FacetsOnNode must be explicitly stored for 
this implementation. As an alternative, a double loop could instead be performed over each 
element attached to the node and each local facet containing that node. 

Remark: This procedure involving sectors is similar to the topology traversal presented in [13] 
regarding the adaptive insertion of interface elements for extrinsic cohesive zone modeling. The 
conceptual difference is that herein each node is evaluated once during insertion of multiple 
couplers while therein each node is considered multiple times during insertion of individual 
couplers. 

Once the sectors around a node are identified, each sector is assigned a unique copy of the node. 
This step involves three topological changes: (i) addition of global nodes; (ii) duplication of 
nodal coordinates; and (iii) updates of element connectivity. Also, the new global node identifiers 
assigned to each element are stored in the array ElementsOnNodeDup for reference by the user to 
update other mesh information such as boundary conditions. 

Box 4. Duplicate nodes according to sectors for interfaces 

for each nod in NodesOnInterface 

  Sectors(1:end,1) = ElementsOnNode(nod,1:end) 

  for each locF on FacetsOnNode(nod,1:end) 

    if not FacetsOnNode(nod,locF,3) then 

      fac = FacetsOnNode(nod,locF) 

      ele1 = ElementsOnFacet(fac,1); ele2 = ElementsOnFacet(fac,3)  

      sec1 = FindParentSector(Sectors,ele1) 

      Sec2 = FindParentSector(Sectors,ele2) 

      if sec1 not equal sec2 then 

        Merge(Sectors(sec1,1:end),Sectors(sec2,1:end)) 

        Delete(Sectors(sec2,1:end)) 

  for each sec in Sectors(2:end) 

    newnod = newnod + 1 

    for each ele in Sectors(sec,1:end) 

      Coordinates(newnod,1:nD) = Coordinates(nod,1:nD) 

      locN = FindLoc(NodesOnElement(ele,1:end),nod) 

      NodesOnElementNew(ele,locN) = newnod 

      locE = FindLoc(ElementsOnNode(nod,1:end),ele) 

      ElementsOnNodeDup(nod,locE) = newnod 

During the fifth phase in Box 5, node duplication is performed for all cut intraface facets. This 
operation results in a fully discontinuous interpolation of the fields within the associated region, 
such as region A in Figure 1. The duplication of nodes within a region is quite simple: each 
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element is ascribed a unique instance of all nodes attached to itself. Observe that the revised 
topology from phase 4 leads to individual regions that have the appearance of smaller domains 
due to the node duplication along interfaces. Thus, the process of treating intrafaces inside 
individual regions is identical to generating a completely discontinuous representation of a 
domain. While intrafaces could be treated alongside interfaces within Box 4, the separate 
treatment is computationally more efficient when there are significantly fewer interface facets 
than intraface facets, which is usually the case. The speed-up is achieved because the logical 
tests involving sectors are avoided for all nodes attached only to intraface facets. Note that 
phases 4 and 5 will lead to correct meshes only if, for each region with intraface couplers, all 
interfaces adjoining that region are also designated for couplers. Otherwise, cutting of both 
interfaces and intrafaces should be treated concurrently within phases 3 and 4.  

Box 5. Duplicate nodes for intrafaces 

for each ina in CutIntrafaces 

  for each ele such that RegionOnElement(ele) = reg 

    for each nod on NodesOnElement(ele,1:end) 

      if InstancesOf(nod) > 1 

        newnod = newnod + 1 

        Coordinates(newnod,1:nD) = Coordinates(nod,1:nD) 

        locN = FindLoc(NodesOnElement(ele,1:end),nod) 

        NodesOnElementNew(ele,locN) = newnod 

        locE = FindLoc(ElementsOnNode(nod,1:end),ele) 

        ElementsOnNodeDup(nod,locE) = newnod 

During the sixth phase in Box 6, the coupler connectivity is generated. All node duplication has 
been performed before this phase, such that all adjacency information in the mesh is prepared for 
coupler insertion. Similar to elements, each coupler type has a specific template for the 
arrangement of local nodes on either side of the cut facet. For cohesive zone modeling, typically 
only the nodes lying on the interface are required for the computations because these 
formulations are displacement-based. However, Discontinuous Galerkin (DG) methods usually 
require computations of stresses and strains along the interface, which involve 
displacement-gradient calculations using all of the nodes in the adjoining elements. Examples of 
templates for linear elements and couplers in 2D and 3D are shown in Figure 3; higher-order 
counterparts are naturally treated by adding mid-edge, mid-face, and interior nodes. Volume 
elements are denoted by letter(s) and the number of nodes per element such as “T3”, cohesive 
couplers are denoted by adding the prefix “COH” such as “COHQ4”, and DG couplers are 
denoted similarly as “DGHEX8”. Dissimilar element types across couplers are also supported, 
such as “COHT3Q4”, so long as the original mesh is conforming. 
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Box 6. Construct the connectivity of couplers 

for each cut int 

  for each fac in FacetsOnInterface(int,1:end) 

    cou = cou + 1 

    [ele1,locF1,ele2,locF2] = ElementsOnFacet(fac,1:4) 

    CouplerSet = PermuteNodes(ele1,locF1,ele2,locF2,NodesOnElementNew,template) 

    NodesOnCoupler(cou,1:end) = CouplerSet 

Using these coupler templates, the nodes from the parent elements on either side of a coupler are 
permuted to conform to the respective template. This permutation involves the renumbering of 
the local nodes so that the element’s local facet is transformed to lie on the coupler surface. Note 
that the connectivity of the volume element is not modified, which would be impossible since a 
single element may have couplers on each of its facets. Also, the coupler connectivity does not at 
all influence the node duplication process. Hence, different coupler types may be inserted into 
the same mesh from phase 5, and indeed certain interfaces may be left without couplers in order 
to create traction-free boundaries within the mesh. The separation of node duplication and 
coupler insertion phases was also recommended in [17]. Finally, because the relation between 
couplers, interfaces, and regions is explicitly available, the assignment of different material 
properties to different interfaces is also trivial. As an example, for the modeling of crack 
propagation in multi-phase composites where each phase is represented as a region, different 
fracture toughness could be assigned to the interfaces lying between specific phases. 

At the conclusion of the sixth phase using Box 6, the modified mesh containing couplers is 
suitable for analysis. Updates may also be required for boundary conditions or other sets relating 
to nodes and elements; the necessary mapping of old to new identifiers is explicitly stored to 
enable the updating of such sets. Other element types and coupler types could be added within 
this proposed framework so long as the convention that a coupler is adjacent to exactly two 
elements is maintained. Operations on 2D meshes could be trivially extended to manifolds (shells) 
in 3D by adding the third spatial coordinate to all nodes. Also, the version of the algorithm 
presented herein is skewed towards the explicit creation and storage of the topological relations 
in computer memory. Other approaches could be devised using implicit relations [22] if memory 
is limited. 
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  (a)                 (b)  

 

  (c)                 (d)  

Figure 3. Linear element and coupler templates: (a) triangular 2D element; (b) quadrilateral 2D 
element; (c) tetrahedral 3D element; (d) hexahedral 3D element 

A realization of the proposed algorithm written in MATLAB© is provided 
https://bitbucket.org/trusterresearchgroup/deiprogram; the code has also been successfully tested in 
the GNU interpreted language Octave. Furthermore, the modified mesh corresponding to Figure 
1 that is generated by this script is provided in Section 4.1. 
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4. Numerical Results 

The following numerical examples verify that the proposed algorithm produces analysis suitable 
discontinuous meshes. Focus is placed upon the nodes which are duplicated and upon the 
zero-thickness interface elements (referred to as couplers) which are inserted. The efficiency and 
scaling properties of the algorithm are also investigated. All finite element simulations are 
performed using codes written in MATLAB© and FORTRAN that require as input only the 
traditional arrays of nodal coordinates and element connectivity, which ensures compatibility of 
the algorithm with commercial finite element codes. 

4.1 Verification example from Section 2 

The geometric and topological information corresponding to the mesh from Figure 1 is listed in 
Table 2 through Table 4. Providing these arrays as input to the program, the resulting 
discontinuous mesh is shown in Figure 4. The node duplication is carried out exactly as 
described in Section 3 to yield the numbering pattern that is shown. The mesh is intentionally 
expanded to show the location of the couplers and the duplicated nodes. Notice that four separate 
copies of node 5 appear and that all elements in region A have been completely disconnected. 

Table 2. Contents of array Coordinates, transposed 

Node 1 2 3 4 5 6 7 8 9 

x 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0 

y 2.0 2.0 2.0 1.0 1.0 1.0 0.0 0.0 0.0 

Table 3. Contents of array NodesOnElement, transposed 

Element a b c d e f g h 

Node 

1 1 5 5 5 8 7 7 

4 5 3 6 9 9 8 5 

5 2 2 3 6 5 5 4 

Table 4. Contents of array RegionsOnElement, transposed 

Element a b c d e f g h 

Region A B C B D D E A 
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Figure 4. Resulting mesh after node duplication 

4.2 Two dimensional patch test 

The second numerical example further tests the ability of the algorithm to treat complex patterns 
of regions and interfaces. A rectangular 4 mm × 3 mm domain is considered with both linear 
triangular and linear quadrilateral elements, as shown in Figure 5 (a). The elements are grouped 
into a series of regions as indicated by numbers as well as the colors in the legend. Couplers are 
then inserted along various interfaces in the domain as well as within the intraface of region 6; 
the list of region pairs identifying the interfaces is given in Table 5. Each of the resulting portions 
of the domain have been separated in Figure 5 (b) in order to highlight the location of the 
couplers. This figure was created after the completion of the insertion algorithm; hence, the 
duplicated nodes allowed the nodal coordinates of different regions to be translated separately. 
Notice that the smaller mesh from Figure 1 is contained within the lower-left portion of this 
mesh, with the intersection of five regions at a single node. A motivating physical problem for 
this mesh would be a polycrystalline material with multiple grain boundaries that are primary 
sources for cracks as well as a single weak inclusion in which matrix cracking is expected. 

Table 5. Region identifier pairs for interfaces 

Interfaces 1,3 1,5 1,8 2,6 3,5 4,6 5,6 5,8 
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  (a)                 (b)  

Figure 5. Mesh containing multiple regions: (a) continuous mesh; (b) discontinuous mesh with 
artificial separation indicating coupler locations 

A patch test is then performed using the Discontinuous Galerkin formulation from [9, 10] to test 
the validity of the generated topology in Figure 5 (b). Plane stress conditions are considered, and 
each of the regions is assigned the material properties 100,000E =  MPa and 0.25ν = . The 
horizontal displacement is prescribed as zero along the left boundary of the domain, and a tensile 
traction of 2,500Σ =  MPa is applied to the right boundary. These boundary conditions result in 
a 0.1 mm horizontal displacement of the right face. The computed nodal stress field is shown in 
Figure 6 on the deformed geometry. Observe that the stress field is essentially constant 
everywhere; also, no gaps or overlaps can be seen in the mesh. Therefore, we conclude that the 
DG couplers have been correctly inserted so that the patch test is satisfied by the variationally 
consistent DG method. 
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Figure 6. Normalized stress field xxσ Σ  on deformed configuration for DG method 

A second simulation is performed using cohesive zone (CZ) couplers in place of the DG 
couplers. The initial elastic stiffness of the cohesive zone is set to 50,000 MPa/mm in order to 
exaggerate the present of the couplers in the mesh. Hence, the expected gap across the couplers 
under a stress of 2,500Σ =  MPa is 0.05 mm. Normal displacements of 0.1 mm are prescribed 
on the top and right domain boundaries, and symmetry boundary conditions are applied to the 

bottom and left surfaces. The normalized stress field xxσ Σ  with 2,500Σ =  MPa is shown on 

the deformed configuration in Figure 7; the deformations have been magnified by a factor of 
two. The zero-thickness elements are also visualized in the mesh as solid elements. Note that 
voids have appeared in the domain where multiple couplers intersect at multiple angles. Also, 
regions 6 and 8 are carrying relatively lower stresses due to the compliance of the interfaces so 
that the applied stress is redistributed throughout the domain. However, no discontinuities in 
displacement or stress are present between regions 5 and 7 since these interfaces were not 
decoupled and uniform elastic properties were employed; we remark that nodal stress projection 
has been applied within contiguous regions for both Figure 6 and Figure 7. Notice that the single 
triangular element of region 5 has been fully decoupled since all three of its facets are part of the 
cut interface(1,5) and interface(3,5). Thus, these results highlight that the mesh produced by the 
proposed algorithm is suitable for CZ modeling as well. 
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Figure 7. Normalized stress field xxσ Σ  on deformed configuration for intrinsic CZ method 

4.3 Three dimensional scalability study 

A numerical scalability study is performed on a geometry of practical engineering significance. 
The domain is a representative volume element (RVE) of a polycrystalline material that contains 
100 grains with conforming grain boundaries, as shown in Figure 8. The meshes of 10-node 
quadratic tetrahedral elements were generated using the open-source software Neper [23]. Three 
levels of mesh refinement are considered, and the number of nodes and elements in each mesh is 
listed in Table 6. Because each mesh is regenerated by the program, the number of elements does 
not exactly increase by a multiple of eight. Each mesh contains non-uniform topology; for 
example, the number of elements attached to a node varies between 1 and 40 on the coarse mesh. 
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Figure 8. Polycrystalline material domain discretized with quadratic tetrahedral elements 

Our objective is to assess the average runtime of the algorithm for inserting the couplers similar 
to the study in [13]. Two scenarios are performed: the insertion of couplers only along interfaces 
between the grains, and the insertion along all interface and intraface facets in the mesh. The 
timings were performed using the MATLAB© implementation of the algorithm on a serial 
desktop computer; the recorded time is for each of the six phases from Section 3 not including 
the mesh loading time. Random orderings of the nodes and elements were employed as input to 
the script. The total execution time for the script on each mesh is reported in Table 6, which is 
the average of three analyses. Note that patch tests have also been conducted on this three 
dimensional geometry using the DG method [9, 10] to verify that the modified meshes are 
analysis suitable. 

Table 6. Mesh statistics and elapsed time for inserting interface and interface couplers 

Mesh Elements Nodes Interface 
Couplers  

Interface 
Time (s) 

All 
Couplers 

Interface 
Fraction 

Total 
Time (s) 

Coarse 10,402 15,761 3,921 7.55 19,896 0.1971 19.5 

Medium 68,713 97,720 12,111 36.2 134,474 0.0901 118 

Fine 539,293 742,167 42,220 237 1,067,885 0.0395 797 

Approximate linear scaling of the computing time is observed with respect to the number of 
elements in the mesh or the number of couplers inserted. Similar performance was obtained for 
the adaptive coupler insertion in [13]. Also, the recorded times for the proposed algorithm are on 
the same order of magnitude as reported therein. We expect that the runtimes could be slightly 
improved by using a compiled language rather than a scripting language. Also, an accounting for 
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the time expended during each phase is presented in Table 7 for one analysis of the coarse mesh. 
Clearly, phase 4 for duplicating nodes using the sector approach is the most expensive operation 
of the algorithm, followed by the generation of coupler connectivity in phase 6. Substantial 
speedup is achieved by avoiding these operations for the duplication on intrafaces during phase 5. 
By comparing Table 6 and Table 7, we conclude that approximately five to ten times as many 
nodes are duplicated within one tenth the time in phase 5 compared to phase 4. These cost 
savings are dependent upon the ratio of interface to intraface facets in the mesh. In general, the 
insertion algorithm is seen to possess optimal scaling properties. 

Table 7. Execution time (seconds) for each algorithmic phase for the coarse mesh 

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 
(Interface) 

Phase 6 
(All) 

0.182 2.797 0.778 8.675 0.680 0.497 6.302 

5. Conclusion 

A topological algorithm was presented for inserting zero-thickness interface elements, referred to 
as “couplers”, into conforming finite element meshes. The method is applicable for a wide class 
of problems involving: (i) intrinsic cohesive zone modeling, Discontinuous Galerkin 
formulations, or other interface methods; (ii) linear and higher order finite elements of various 
shapes; and (iii) two and three dimensional domains. The key feature of the method is use of 
“regions” of elements in the domain to indicate the locations for insertion, where the regions may 
be purely geometrical or may be a collection of elements with common material properties. 
Collections of couplers may be designated along interface facets of elements between regions or 
along intraface facets of elements within a region. Using as input only the mesh connectivity and 
the region designations, appropriate couplers are inserted and nodes are duplicated using 
topological operations alone. Furthermore, the concept of element sectors surrounding a node is 
introduced in order to ensure that the proper level of interpolation continuity is preserved during 
the insertion process. The phases of inserting interface couplers and intraface couplers are 
distinguished for increased computational efficiency. Numerical tests for two and three 
dimensional problems verify that the algorithm scales linearly with the number of elements and 
produces correct patterns of node duplication and coupler insertion to retain desirable continuous 
features in the domain. In particular, the algorithm has proved to be suitable for complex three 
dimensional meshes. 
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