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Abstract 

 Recent events at the Fukushima Daiichi Nuclear Power Plant have introduced several 

concerns about the spent fuel pool of power plants, as well as the safety and stability of the 

current storage of spent nuclear fuel. This report looks into alterations to current dry cask storage 

conditions to attempt to cut down on costs and to cut down on storage space required. Increasing 

the boiling point of the spent fuel pool in an accident situation is also looked into, with ethylene 

glycol chosen as a possible cheap solution. The design developed involves removing fuel rods 

from used fuel assemblies via a lifting device and placing them into individual stainless steel 

tubes. Once placed into these tubes, a machine seals the tubes with threaded caps. Each tube has 

a thickness of 0.07 cm and has an air gap of 0.01 cm between the inner wall of the tube and the 

fuel cladding. By removing the fuel rods from the fuel assemblies, the number of fuel rods that 

can be acceptably placed into a single dry cask goes up significantly, which would cut down on 

the number of dry casks required for storage of spent fuel and cut down on overall cost of dry 

cask storage in the long term. A thermal analysis where the fuel rods were transported to the 

stainless steel tubes after only 3 years showed a centerline temperature of just under 1140 K 

(867℃), and a criticality analysis showed that keff would be roughly 0.61, indicating that neither 

of these would be a major safety concern with this design. The design was modeled in 

SolidWorks, the thermal analysis was performed using COMSOL Multiphysics, and the 

criticality analysis was performed using SCALE 6.1.  
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1. Background 

 On March 11, 2011, an earthquake and subsequent tsunami struck Japan in an area 

including the Fukushima Daiichi Nuclear Power System. A loss of power and leaks in the 

containment boundary led to a decrease in water level and uncovered fuel in the reactor pressure 

vessels in Units 1, 2, and 3 [1]. This resulted in the zirconium fuel cladding reacting with water, 

producing hydrogen gas, as shown by equation 1 [1]. To prevent a hydrogen explosion, attempts 

were made to inject fresh and salt water into the reactor pressure vessels. Unfortunately, due to 

the leakage and the amount of time the fuel was exposed, hydrogen explosions occurred in Units 

1, 2, and 3. However, no hydrogen production occurred in the spent fuel pools, as Unit 4 spent 

fuel pools were used to successfully restore the water level in Unit 1 before any spent fuel was 

exposed and damaged [1]. These events have raised concerns over spent fuel pools and their 

boiling points, leading to an exploration of the possibility of increasing the boiling point in 

accident situations. 

𝑍𝑟 + 2𝐻 𝑂 → 𝑍𝑟𝑂 + 2𝐻  (Eq. 1) 

 Fuel rods in a typical commercial nuclear reactor consist of uranium oxide pellets 

surrounded by a zirconium cladding. Every 12 to 18 months, roughly one-fourth to one-third of 

the total fuel load in a reactor is unloaded and replaced with fresh fuel [2]. When nuclear fuel is 

discharged from a nuclear power plant reactor, it is still highly radioactive and is designated as 

“spent”  or  “used”  fuel  [3]. The spent fuel is then stored under water in spent fuel pools up to 40 

feet deep, with the rods being at least 20 feet deep to provide adequate shielding [2]. Generally, 

the spent fuel pools hold approximately 400,000 gallons (1.51 million liters) of water [4]. The 

walls of the spent fuel pools are constructed of reinforced concrete, which has a thickness 

ranging from 4 to 8 feet (1.2 to 2.4 meters), and they contain a stainless-steel liner that is ¼ to ½ 
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inches thick (6 to 13 millimeters thick) [4]. A typical spent fuel pool can be seen in Figure 1. 

These pools provide radiation shielding, provide cooling, and prevent criticality accidents.  

 

Figure 1: A typical spent fuel pool design [2] 

With one-fourth to one-third  of  a  reactor’s  fuel  being  unloaded  into  a  spent  fuel  pool  

every 12 to 18 months, the available space in a pool can quickly disappear. Fortunately with how 

deep the pools are, fuel assembly consolidation and re-racking of the spent fuel pool grid can 

usually be performed to increase the amount of spent fuel that can be stored in the pool, without 

running the risk of exposing workers to the radiation [2]. Even with these methods, a spent fuel 

pool is only so large, meaning that it will eventually reach its capacity for storage. Before a spent 

fuel pool reaches this limit, older fuel can be moved to a dry storage system, so that the plant can 

continue operating. Current U.S. regulations allow transfer to dry storage only after the spent 

fuel has been in the pool for at least five years [3]. Dry storage systems are designed to provide 

radiation shielding, dissipate heat, and prevent degradation or damage to the fuel.  
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In the United States, there are two main types of storage systems: bare-fuel casks and 

canister-based storage systems [3]. In bare-fuel cask storage systems, used fuel assemblies are 

placed directly into a basket within a thick-walled cask and sealed with two bolted lids. In 

canister-based storage, used fuel assemblies are placed into a basket within a thin-walled 

stainless steel canister and sealed with two welded lids. The canister is then stored in a 

cylindrical overpack system, usually made up of concrete. The thick exterior canisters provide 

radiation shielding, a thermal barrier, and protection against natural and man-made events [3]. 

The storage system is then placed as a free-standing structure on a reinforced concrete pad. All 

bare-fuel dry-storage systems and most canister-based systems in the United States store the used 

fuel vertically; however, some used fuel is also stored horizontally in a concrete module [3]. 

Figures 2 and 5 below show vertical dry casks, while Figures 3 and 4 show a sketch of a dry cask 

and its components. 

 

Figure 2: Spent fuel storage site at Connecticut Yankee Nuclear Power Plant [3] 
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Figure 3: Aerial view of dry cask with basket design [3] 

 

Figure 4: Dry cask storage system [3] 



10 | P a g e  
 

Dry-storage systems are loaded by placing them directly into the spent fuel pool. After 

the assemblies are loaded into the basket, the canister is removed from the pool and 

decontaminated, with moisture then removed from the system by vacuum drying [3]. The 

canister is backfilled with helium to protect the integrity of the fuel cladding. Due to all of these 

steps and the necessary precautions, the loading of a single system can take up to one week. 

 

Figure 5: Vertical storage casks [3] 

Although the conditions found within a dry cask are not as severe as those found inside of 

a reactor, some degradation processes will occur during extended dry storage [3]. The properties 

of the fuel, cladding, and storage cask components may change due to radiation, elevated 

temperatures, and the presence of moisture. Oxidation is the most significant fuel degradation 
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mechanism, as irradiated UO2 will eventually oxidize to U3O8 when exposed to an oxidizing 

atmosphere [3]. Maintaining a helium environment that surrounds the cladding is therefore 

important to prevent air or water from coming into contact with the fuel pellet. Once fuel rods 

are removed from a reactor, cladding temperature, pressure, and stress decrease significantly [3]. 

During the drying process, temperatures and stresses increase sharply. Fracture of the cladding 

while vacuum drying is one of the most likely failure mechanisms for used fuel rods, as they are 

no longer in water, allowing for an increase in their temperature. Unlike used fuel and cladding, 

certain dry storage cask components can be accessed for inspection and maintenance [3]. Certain 

components such as bolts, welded areas, and seals are more susceptible to corrosion due to high 

stresses, loads, or dripping water. However, many aging problems can be corrected before 

significant damage occurs. 

2. Purpose 

With the recent Fukushima Daiichi accident, concerns over accident response times and 

general safety conditions have been raised for nuclear power plants. The tsunami caused minimal 

damage  to  the  plant’s  structure;;  however,  the  electricity  supplied  to  the  plant  was  cut  off,  with  

the backup diesel generators to be used in such situations damaged by the tsunami [1]. 

Emergency batteries were able to power the coolant pumps, but this was only for around 8 hours 

[1]. While the Fukushima accident was a combination of an unusually large natural disaster and 

some bad luck, it did shed some light on issues that should be addressed for nuclear power 

plants, especially with spent fuel pools and dry cask storage. Specifically, the spent fuel pool at 

Fukushima started to boil during the accident. Fortunately, the fuel was not uncovered; however, 

it very easily could have been exposed to the air. As a result of this disaster and the fallout from 
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it, a few possible improvements to spent fuel pools and dry cask storage are examined in this 

paper, with simulated results presented and discussed. COMSOL Multiphysics1, SCALE 6.12, 

and SolidWorks3 were all used in this project to model and simulate various aspects of the design 

chosen. 

3. Boiling Point of Spent Fuel Pool 

Fukushima’s  spent  fuel  pool  water  started  to  boil  during  the  accident,  which could have 

led to an even bigger problem than already present. With this in mind, an improvement to the 

boiling point of the pool water has been considered. Because spent fuel pool water is connected 

to the coolant water, it would be difficult to change the chemistry of the water, as the coolant 

water cannot have any type of contaminant in it. As such, the proposed improvement to the 

boiling point of the water should only be considered in an accident situation, where safety is of 

top concern. In addition to this, any type of reaction needs to be avoided, even in an accident 

situation, so a substance that is already known to mix well with water is ideal. Ethylene glycol, 

which is used in conjunction with water in car radiators, is one such substance. 

By itself, ethylene glycol has an extremely high boiling point of 197.3℃ , but it has poor 

heat transfer properties, meaning that it cannot be used by itself [5]. Mixing ethylene glycol with 

water will increase its boiling point beyond the normal 100 ℃;;  however,  it  will  also  make  water’s  

heat transfer properties worse [5]. As a result of this, a solution of 50% ethylene glycol by 

volume is a nice medium between the increasing boiling point and the decreasing heat transfer 

capabilities. Increasing the boiling point of the spent fuel water in an accident situation would 

                                                           
1 COMSOL, Inc., Burlington, Massachusetts 
2 Oak Ridge National Laboratory, Oak Ridge, Tennessee 
3 Dassault Systèmes SolidWorks Corp., Waltham, Massachusetts 
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then be possible by just dumping ethylene glycol into the pool, with the volume being roughly 

50% of the water volume. By placing the aforementioned amount of ethylene glycol into the 

pool, the boiling point of the water could be increased by approximately 7.2℃ [5]. This increase 

is not a tremendous amount, but it could be enough to buy the personnel on-site enough time to 

come up with another solution in an accident situation.  

By utilizing the volume of water in a spent fuel pool mentioned earlier, along with some 

assumptions, the amount of time this would provide can be estimated. Equation 2, shown below, 

was used to estimate the extra time that adding ethylene glycol in this manner would provide. In 

order for Equation 2 to be used, the following assumptions were made: the total volume of water 

in the spent fuel pool is 1.51 million liters, the specific heat of the water is 4,186 J/kg-℃, the 

initial temperature is 50℃, the final temperature is 107℃ , and there are a total of 1,000 

assemblies in the spent fuel pool, each with a decay heat of 3,986 W, making the total decay heat 

being generated by the fuel 3.986 MW. Substituting these values into Equation 2 gives a result of 

approximately 1 day before the water would reach its new boiling point when starting at 50℃. 

When using pure water, it would take just 0.92 days for the water to reach its boiling point of 

100℃. As a result of adding the ethylene glycol to the spent fuel pool, it appears that it would 

take the pool approximately 3.2 hours longer to reach a boiling state. Because ethylene glycol 

would  only  raise  water’s  boiling  point  by  7.2℃, this seems reasonable and could very well be 

enough time for personnel to find an alternative solution. In addition to this, ethylene glycol is 

relatively inexpensive, making for a fairly cheap solution to raising the water boiling point 

without risking neutron activation or an adverse reaction when mixed with the water. 
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𝑡 = ∗ ∗( )
  (Eq. 2) 

Where:  t = Time 
                          m = Mass 
                          cp = Specific Heat 
                          Tf = Final Temperature 
                          Ts = Initial Temperature 
                          Q = Heat Generation 

4. Design Details 

 Coating a fuel rod, or an entire fuel assembly, in a neutron poison alloy could lead to 

increased survivability for individual fuel rods in both pool storage and dry cask storage for 

decades. Initially, several different cadmium alloys were considered for coating the fuel rods, 

including In-25Cd, Pb-17Cd, and Sn-32Cd. Unfortunately the more this idea was explored, the 

more it seemed like it simply would not produce viable results. In the case of all three of these 

alloys, the melting point is actually lower than what typical fuel rods are at when transported to 

dry storage. This means that even if the rods were successfully coated, the coating would likely 

melt off quickly, making the coating process not worthwhile. Even if the melting point was not a 

problem, consistently coating the rods evenly and getting an appropriate thickness would be very 

difficult. Due to these shortcomings of coating the fuel rods via dipping, several other ideas were 

considered. Such considerations include the following: electroplating and using a boron nitride 

foam. Neither of these methods seemed promising after more investigation, as electroplating 

would not practically provide a good coating and would take too long to get an appropriate 

thickness and the boron nitride foam has very poor heat transfer properties. After looking into the 

previously mentioned ideas and deciding they were not the best methods to pursue, the idea of 

removing fuel rods from fuel assemblies and placing them inside of premade tubes was selected. 
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The reasons for this design choice and the feasibility of such a design will be discussed in 

sections 4.1 and 4.2.  

 4.1 Reason for Selection 

 After seeing that initial ideas did not seem to have much value, a final, somewhat 

different idea was considered. If the fuel rods need to be coated in some sort of neutron poison, 

why not bypass the need to dip the rods and avoid the possibility of an uneven coating? This type 

of thinking is what led to the idea of using premade tubes for containing the fuel rods 

individually. Initially, Inconel was considered for the tubing material. This was because of the 

melting point of Inconel and its availability. However, after looking into the price of Inconel, it 

was decided that it would not be the most economical choice. Due to cost effectiveness, stainless 

steel was selected as the tubing material. Specifically, type 304 stainless steel was selected, 

which actually has a higher melting point than Inconel by around 200℃, making it better than 

Inconel in that respect as well. As for the design itself, it was selected because the tubing would 

eliminate  the  idea  of  the  fuel’s  melting  point  being  the  limiting  factor,  as  the  tubing  has  a  much  

higher melting point. In addition to this, taking the fuel rods out of the fuel assemblies could lead 

to more fuel rods in individual dry casks, decreasing the total number of dry casks needed for 

storage, and it could increase the longevity of the casks if the tubing can reduce the number of 

interactions between the concrete and neutrons. 

 4.2 Mechanical Feasibility 

 In order for this tube design to properly work, a mechanical device needs to be created 

for removing the fuel rods from the fuel assembly and placing them into the prefabricated tubes. 

A model of a proposed design to accomplish this task was created using SolidWorks and the 



16 | P a g e  
 

various aspects of this design can be seen in Figures 6-20. A lifting device consisting of a lifting 

bracket and 289 driving rods is submerged into the spent fuel pool and attached to the entire fuel 

assembly. As a safety measure for workers, the lifting device will have a shield surrounding 

itself and the fuel rods during the drying and moving process. Once the lifting device is securely 

attached, it moves the rods out of the water, allowing for the water residue to be evaporated off 

of the fuel rods via their own decay heat. The device then moves the fuel assembly to where it is 

on top of a stainless steel tube assembly that is relatively similar to the existing assembly. This 

stainless steel tube assembly contains 289 empty tubes, each with a capped bottom and a UNC-

2B threaded inner rim on the top. Once the fuel assembly is placed above the stainless steel 

assembly, the brackets that hold and space the fuel rods are cut in such a way that they can now 

freely slide up the length of the fuel rods. The fuel assembly is then lowered onto the stainless 

steel assembly, such that each fuel rod fits into a single, individual stainless steel tube. Although 

the possibility of fuel rods being slightly bent exists, this should not be a concern for placing 

them into the stainless steel tubes, as they would bend less than a centimeter. As the fuel 

assembly is lowered, the spacing brackets slide up the fuel assembly and collect at the top of the 

fuel assembly.  
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Figure 6: Lifting device used for picking up the fuel assembly, with 289 driving rods for 
removing the fuel rods 
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Figure 7: The lifting device about to pick up the fuel assembly, with the stainless steel tubes on 
the right side 
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Figure 8: Close up of the fuel assembly 

 

Figure 9: Close up of the stainless steel tubes that will contain the individual fuel rods 
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Figure 10: Another close up of the stainless steel tubes that will house the individual fuel rods 

 

Figure 11: Top view of the bracket that holds the stainless steel tubes in place while the fuel rods 
are placed into the tubes 
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Figure 12: Angled view of the bracket that holds the stainless steel tubes in place while the fuel 
rods are placed into the tubes 

 

 

Figure 13: The lifting device placing the fuel assembly above the stainless steel tube assembly, 
with the driving rods preparing for the fuel rods to be pushed into the tubes 
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Figure 14: The fuel rods being pushed into the tube assembly via the driving rods 

 

 

Figure 15: The brackets remaining in the lifting device after the fuel rods have been pushed into 
the tubes 



23 | P a g e  
 

After the fuel rods have been successfully placed inside of the stainless steel assembly, a 

device with the 289 corresponding UNC-2A threaded caps is placed on top of the stainless steel 

assembly, with the caps then mechanically screwed in place. These caps can later be tightened 

individually  if  needed.  The  dry  casks  used  for  this  storage  uses  an  “egg  crate”  design,  with  32  

individual spaces that are usually in place for storing fuel assemblies. With the fuel rods enclosed 

in the type 304 stainless steel tubes, they can be placed into the individual holders of the dry 

cask, providing for more tubes in each space than a typical fuel assembly, with this concept 

shown in Figures 18, 19, and 20. These will either be bundled within another shielded box (as 

shown in Figure 18) or bound with metal bands around the bundle.  

 

Figure 16: Device used to mechanically cap all of the stainless steel tubes with threaded ends 
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Figure 17: Close up of the threaded caps 

 

Figure 18: Model showing possible layout for stainless steel tubes in one of the baskets of the 
dry cask 
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Figure 19: A close-up showing three baskets with stainless steel tubes placed inside of a dry cask 

 

Figure 20: Three baskets with stainless steel tubes placed inside of a modeled dry cask 
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5. Thermal Analysis 

 In order to perform a realistic heat transfer analysis for this design, COMSOL 

Multiphysics was used, as it has the capability to do finite element calculations that can solve for 

the temperature of the fuel rods. COMSOL is an application-based program that allows users to 

make geometries and specify the type of physics model that should be used. In the fuel rod 

bundle described previously, a 2D conduction model is used in place of a 3D model. This is done 

for two reasons: the 2D model can be used to approximate the 3D design because of the similar 

temperatures in the height and to cut down on computational requirements. Because most heat 

transfer is radial, this 2D approximation should provide satisfactory results. Although the center 

of the fuel will be at a higher temperature, a higher heat flux for each individual rod was used in 

the model to accommodate for a worst-case scenario. The dimensions used in this design for the 

fuel rod and stainless steel tubing can be seen in Table 1. Figure 21 shows each finite element 

used in the simulation. Each element uses a different equation based on the results generated 

from the surrounding elements. The equation used to approximate conduction through a solid is 

given in Equation 3. 

Table 1: Dimensions used for the fuel rod modeling and analysis 

Element: Radius or Thickness (cm): 

Fuel 0.41 

Gap between Fuel and Cladding 0.01 

Zircaloy Cladding 0.05 

Gap between Rod and Tube Wall 0.01 

Stainless Steel Tube Thickness 0.07 
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Figure 21: Visualization of finite element analysis and the heat generation used in the simulation 



cputransT  (kT)Q (Eq. 3) 

Where:  ρ  =  Density 
  cp = Specific Heat 
  utrans = Translational Motion Vector 
                              ∇T = Temperature Gradient 
                        k = Thermal Conductivity 
                        Q = Heat Generation 

 The change in temperature depends on the thermal conductivity (k) and the heat 

generation (Q) of each fuel rod. The heat generation from each fuel rod was found using 

ORIGEN in SCALE. In this particular example, the watts per assembly after being removed 

from a reactor for 3 years was just over 3,986 W, which was determined with an executable in 
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SCALE 6.1 known as ORIGEN-ARP. This must be transformed to find the heat generation in 

each rod that is modeled. Because there are only 41 fuel rods modeled compared to 

approximately 19,000 actual fuel rods, the heat generation per rod differs from the modeled heat 

generation. In order to simulate the heat generated for the 41-rod temperature profile, decay heat 

was taken from ORIGEN-ARP. This decay heat was outputted in heat generated per fuel 

assembly, which was converted to watts per fuel rod. Because the model only has 41 rods, the 

next step required that one simulated rod be equivalent to nearly 500 actual rods in terms of heat 

output. Since the model is a 2D approximation, the total watts were divided by the height of each 

fuel rod. After these calculations were completed, the heat generated per simulated rod was 

2,325 W. 

 The heat generation is approximated to a much smaller area because fewer equal-sized 

fuel rods are used in the model. Since the center fuel rod will have the highest temperature, it is 

the limiting factor. The radius of the modeled cask is far less than an actual cask radius, so the 

temperature on the outside of the fuel model has no real value. In addition, the model assumed 

that the fuel burnup was 40 GWd/t and that the fuel rods were to be moved to dry storage after 

only 3 years. The inner temperature in this model is just under 1140 K (867℃ ). This result 

represents a worst-case scenario in a sense, as conduction was the only method of heat transfer 

modeled in this simulation. Although type 304 stainless steel has a melting point of 1450℃, the 

limiting temperature for the fuel rods is around 1200℃, as the cladding would begin to 

exothermically react at that point, causing the temperature to quickly rise above the melting point 

of the tubing. A temperature flux model and a contour figure modeling heat flow are shown in 

Figures 22 and 23. 
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Figure 22: Plot of surface temperature in 41-rod model 
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Figure 23: Temperature gradient of the 41-rod model 

The blue signifies a lower temperature, while the dark red is the hottest temperature in 

Figure 22. As previously stated, the radius of the cask is very small at only 50 mm. This small 

radius is the reason that the temperature difference is not very high, and the surrounding 

temperature is still very hot. If the computational model was big enough, it would show that the 

temperature at the edge of the cask would be near 150℃. 

Figures 24 and 25 show a simulation of the 41-rod model where the rods were 

transported to the stainless steel tubes at different times. This was accomplished by using 

appropriate decay heats at the specific times. In Figure 24, the rods were transported to the tubes 
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after only 36 days, showing an extremely high temperature of nearly 11,000 K (10,727℃) for the 

center rod. This gives very good justification for why the spent fuel rods should not be removed 

from a spent fuel pool shortly after they are unloaded from a nuclear reactor. In contrast to the 

extremely high temperatures found in Figure 24, Figure 25 shows that transporting the rods after 

10 years would leave the center rod at only 590 K (317℃), a much more reasonable temperature 

for the rods. Figure 26 shows a comparison of the temperature of the center rod when transported 

to the stainless steel tubes, ranging from less than 1 year after being unloaded all the way to 50 

years after being unloaded. A steep drop off in temperature can be seen within the first 5 years, 

but it appears to asymptotically approach approximately 600 K (327℃), with diminishing returns 

being apparent from 10 years to 50 years. 

 

Figure 24: Temperature of 41-rod model assuming rods are placed in the stainless steel tubes 
after only 36 days 
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Figure 25: Temperature of 41-rod model assuming rods are placed in the stainless steel tubes 
after 10 years 

 



33 | P a g e  
 

 

Figure 26: Plot of temperature vs. time for when the rods are placed into the stainless steel tubes, 
from less than 1 year to 50 years 

6. Criticality Analysis 

A criticality calculation was performed on the proposed technique of bundling individual 

fuel pins with a shield tube completely surrounding the fuel pin. This technique would allow for 

more fuel pins to be placed per basket in current dry casks storage equipment. Using the 

dimensions of current dry cask technology, it was calculated that approximately 450 fuel pins 
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could be placed per basket. From this calculation, it was determined that a 21x21 array of fuel 

pins should be modeled to best represent the newly proposed storing technique to ensure that 

criticality would stay below the upper subcritical limit.  

For this criticality model, the GeeWiz (Graphically Enhanced Editing Wizard) of SCALE 

6.1 was utilized to construct the desired array. To begin, a 2D model of an individual fuel pin 

was constructed with a proposed shield in place. This model is shown in Figure 27.  

 

Figure 27: Image showing the basic SCALE model of fuel with cladding and stainless steel 
tubing 

The dimensions of the fuel, air gap, cladding, and gap between tube and cladding were 

consistent with those used for the heat transfer model (Table 1). The shield thickness is a 

parameter that can be varied to optimize the heat transfer and criticality characteristics. With this 

base model in place, a 21x21 test array was generated and the effect of keffective was recorded. 

This model is shown in Figure 28.  
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Figure 28: SCALE model of 21x21 array of fuel pins with tubing shield 

Through this study, it was determined that the proposed model with a tube thickness of 0.07 cm 

has a keff of around 0.61, much lower than the standard for an allowable operation of 0.90 for dry 

storage [6]. 

 Because the 21x21 model took so long to actually simulate, a 5x5 model was created to 

allow for comparisons when varying parameters of the model. Before any parameters were 

altered, this 5x5 array was simulated in the same manner as the 21x21 array, with keff again being 
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0.61, indicating that the results from the 5x5 simulations should be comparable to the 21x21 

model. Figure 29 shows the 5x5 model that was created in SCALE, with it having the same 

dimensions for the fuel rods and stainless steel tubing as the model shown in Figure 28. Once 

this 5x5 model was created, simulations comparing the keff for a varying tube thickness were 

performed, with some of these models seen in Figure 30. Simulations were performed varying 

from no tube on the fuel rods, to a tube thickness of 0.5 cm. The resulting keff for each case can 

be seen in Figure 31. Even with no stainless steel tubes, the keff came out to be only 0.68, 

indicating that a criticality problem is not likely. In order to optimize the amount of fuel rods that 

can fit into each basket of a dry cask, a tube thickness of 0.07 cm was selected, with keff coming 

out to be around 0.61 for this thickness, indicating that the upper limit of 0.90 should not be a 

concern.  

 

Figure 29: Original 5x5 model that was used in SCALE for differing parameters 



37 | P a g e  
 

 

Figure 30: Four separate 5x5 models, each with varying tube thickness 

 

Figure 31: Graphical representation of the keff for each of the tube thicknesses shown in Figure 
30, with the thickness that was eventually selected highlighted in red 

 In addition to varying the tube thickness, different fuel enrichments were used to see the 

effect it had on keff. Because 0.07 cm was selected as the optimal tube thickness, this thickness 
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was used for each test case, and the results can be seen in Figure 32. An enrichment of 7% 

showed a keff just under the operational limit of 0.9 for dry storage; however, US reactors are 

currently restricted to no more than 5% enrichment, which had a keff of 0.74, showing that even 

the maximum allowable enrichment should not pose criticality problems with the stainless steel 

tubes at a thickness of 0.07 cm. In the previous SCALE simulations, an enrichment of 3.5% was 

assumed, with this enrichment producing a keff of 0.62.  

 

Figure 32: Representation of the keff for varying enrichment values 

 An additional contingency analysis was performed to see the effect on keff if the spent 

fuel water residue was not completely burned off before enclosing the fuel rods in the stainless 

steel tubes. For the SCALE model, it was assumed that the gap between the cladding and inner 

tube wall was now completely water, instead of air. Figure 33 below shows a pictorial 

representation of this worst-case analysis. This geometry was then placed in a 5x5 array, and a 
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test was performed. Even if this situation occurred, the keff only rises to 0.69. This means that 

even in this worst case, the system would remain subcritical and well below the acceptable 

operational limit of 0.90 for dry storage.  

 

Figure 33: Representation of a worst-case scenario where water is still on the fuel rods before 
going into the stainless steel tubes 

7. Economics Analysis 

 No design will ever work out if it is not economically viable. A preliminary cost analysis 

has been performed to select the best possible tubing material to still have satisfactory results. 

Type 304 stainless steel, type 316 stainless steel, and Inconel 600 were all looked at as possible 

materials. Type 304 and type 316 stainless steel are comparable in cost, with 304 costing 

approximately $50.00 per tube and 316 costing approximately $70.00 per tube at appropriate 

dimensions. Alternatively, an Inconel 600 tube only 6 feet in length of otherwise appropriate 
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dimensions would cost approximately $100.00; therefore, type 304 stainless steel would be the 

best economical option, while still producing satisfactory thermal and criticality conditions. 

 By using type 304 stainless steel tubing at a conservative price of $50.00 a tube and 

assuming no cost reduction for buying in bulk, a total of $14,450 would be spent for an 

individual fuel assembly. Assuming that each dry cask used for these calculations can hold up to 

32 fuel assemblies, using only the fuel rods from 32 fuel assemblies would cost around 

$462,400. Rather than doing this, though, it would be more viable to put as many fuel rods that 

will fit inside of each cask, leading to a reduction in the number of dry casks used. By assuming 

a thickness of 0.07 cm for each tube, along with the set dimensions of the fuel rod (Table 1), 

approximately 15,360 tubes could be placed into a single cask; however, only 14,112 tubes were 

considered for a single cask for overall space concerns. This would mean that the tubing cost for 

each fuel cask would actually be $705,600. By placing this many tubes, each cask would hold 

4,864 extra rods. As a result of this increase, the total number of casks needed would 

approximately become 2 for every 3 when comparing the new design and the current design. 

Since dry casks cost approximately $1,000,000 just to make—along with another $500,000 to 

load the fuel—this could help cut down on the overall cost of dry cask storage [7]. By utilizing a 

21x21 bundle in each dry cask basket and assuming a site that normally has 100 dry casks, a total 

of approximately $4,760,000 could be saved and 34 fewer casks could be used, as Figure 34 and 

Table 2 show. This was found by assuming that the only costs were making the dry casks, 

loading the fuel, and buying the material for the stainless steel tubing. The more advantageous 

aspect of this method, though, is the fact that it could cut down on the amount of space required 

for storing spent fuel, as storage space is quickly becoming a very big concern for spent fuel 

storage. Although these numbers show the possibility of cost reductions from fewer dry casks 
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needed, it does not take into account the cost of developing the machines required to remove the 

fuel rods from the fuel assemblies and to place them into the stainless steel tubes, and it does not 

take into account operation costs of the equipment. These would likely make the cost savings 

more apparent in the long term, rather than in the short term. 

 

Figure 34: Plot showing the cost savings vs. the tube bundle array per basket, with it costing 
money until the 21x21 bundle array (assuming an original site size of 100 casks) 
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Table 2: Total Casks Needed and Savings for Varying Bundle Array Sizes 

Rod Bundle Array Total Casks Needed 

Total Cost  

(in Millions of Dollars) 

Savings  

(in Millions of Dollars) 

17x17 100 196.24 -46.24 

18x18 90 181.24 -31.24 

19x19 81 167.74 -17.74 

20x20 73 155.74 -5.74 

21x21 66 145.24 4.76 

22x22 60 136.24 13.76 

23x23 55 128.74 21.26 

24x24 51 122.74 27.26 

 

8. Conclusion 

 The recent events that occurred at the Fukushima Daiichi site brought about several 

concerns for current spent fuel storage. Two alternative designs were discussed in this report: 

raising the boiling point of the spent fuel pool in accident situations and altering the way that 

spent fuel is stored in dry casks. By adding ethylene glycol to the spent fuel pool during an 

accident situation, the boiling point of the water could be increased by approximately 7.2℃ , 

while maintaining adequate heat transfer properties. This could buy personnel enough time to 

consider other options. Ethylene glycol is also relatively inexpensive and should not cause any 

adverse reactions when put into the pool. Current dry cask storage is quite expensive to maintain, 

with a single dry cask possibly costing $1,500,000 alone, and there are currently serious 

concerns about how much space dry cask storage takes up. By removing used fuel rods from fuel 
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assemblies and placing them into stainless steel tubes of 0.07 cm thickness, the total number of 

casks needed for storage could be reduced, saving on both storage space and total cost.  

Stainless steel tubes of this thickness seemed to give satisfactory results from a thermal 

analysis and criticality analysis standpoint. The thermal analysis showed the fuel centerline 

temperature would not be above 1200℃, meaning that the fuel rods should be able to be moved 

to dry storage after 3 years without concern of the cladding exothermally reacting. The criticality 

analysis showed a keff of around 0.61, indicating that there would not be a criticality issue. The 

dry casks should last longer than they do currently, as there will be fewer interactions between 

the neutrons and the concrete of the dry casks. Overall, assuming mechanical feasibility, this 

design seems like it would help cut down on total costs of dry cask storage and help free up some 

much-needed storage space. 
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9. Future Work 

 Moving forward with this idea of placing the fuel rods into stainless steel tubes would 

require looking further into the mechanical concepts and the feasibility of a design such as the 

one presented in this report. A mechanical design would need to be refined, with actual models 

built and tested. A method to consistently keep the fuel rods from becoming misaligned with the 

stainless steel tubes would need to be developed, and a tested method for bundling the stainless 

steel tubes into the individual baskets of the dry casks would be needed as well. The mechanics 

displayed in this report are simply for proofs of concept. Should this idea be pursued, machines 

would be designed with the actual capabilities of the models proposed here. 

In order to verify that the design would be effective, a more thorough heat transfer 

analysis would need to be performed. Due to time constraints and limited exposure to COMSOL, 

it was difficult to perform an extensive heat transfer analysis of fuel rods once placed in the 

stainless steel tubes. Gaining more experience with COMSOL would allow for the model to 

include convective and radiative heat transfer to make for a more accurate heat transfer 

simulation, with these results indicating whether a design like this would actually be feasible.  
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