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Abstract 

One of the biggest problems that we face in the 21st century is climate change, especially global 

warming. The Community Land System Model (CLM) helps scientists understand how human and 

vegetation can affect the climate. An important task at the moment is to link measurements collected at 

a site with results computed by the CLM components. This project will investigate the influences of 

critical parameters to photosynthesis by carrying out sensitivity and uncertainty analyses of a leaf 

photosynthesis-stomatal resistance model that is utilized by the CLM. Such techniques will allow us to 

understand how the variation in the output parameters can be related to changes in input parameters. 

SimLab software was used for Monte Carlo analysis and generation of sensitivity indices through the 

methods of Extended FAST, Sobol, regression, and Morris. A ranking of influential parameters can then 

be determined based on each method. The results shed light on the influential significance of vegetation 

temperature and other parameters to photosynthesis.  
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Chapter I 

 General Introduction 

Understanding the behavior of many natural phenomena such as storms, diseases, earthquakes, 

and chemical reactions has been marked by the use of mathematical models in recent times. Besides 

their usefulness in analyzing phenomena, mathematical models are also important because they can 

make valuable predictions. Since mathematical models are built under assumptions that are more 

idealized than in nature, mathematical models must be examined carefully. In 1987, the statistician 

George Box infamously warned that “all models are wrong, but some are useful” [1].  

In this work, one aspect of a mathematical model for climate change is examined through 

parametric sensitivity analysis. Climate change is a very important topic of investigation in the 21st 

century as global warming is a concern among scientists. Scientists from across various disciplines such 

as meteorology, chemistry, biology, computer science, and engineering have all collaborated on 

understanding global warming and possible ways to prevent it from intensifying. One such outcome of 

these collaborations has been the Community Land Model (CLM) which has various components. This 

work will focus on a leaf photosynthesis and stomatal resistance component of CLM. 

 As mentioned before, sensitivity analysis is the method of study for this work. Sensitivity 

analysis is about analyzing a model to improve it. More specifically, sensitivity analysis involves changing 

the parameter values in a model over a series of model trials and measuring how much the output 

values changes due to the changes in the parameter values. Sensitivity analysis can then be utilized to 

see which are the most important parameters (and equally the least important ones) in the model. The 

model can then be simplified by removing non-influential parameters for example. Besides simplification, 

sensitivity analysis can assist in model validation, distribution of resources, promotion of new means of 

collecting data or performing the experiment, exemplification of unrealistic model behavior, and 

identification of useful model assumptions [2]. Sensitivity analysis can be done in several ways due to 
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different theoretical approaches in calculating sensitivity measures of the parameters. Many of these 

approaches require frameworks involving probability and statistics which will also be explored. The final 

task is then to perform sensitivity analysis on the leaf photosynthesis-stomatal resistance component of 

CLM and identify which are the more sensitivity (important) parameters.  
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Chapter 2 

Community Land Model 

 The National Center for Atmospheric Research (NCAR) has developed many computational 

models for the global atmosphere over the past three decades starting with the Community Climate 

Model (CCM) in 1983. In 1994, they improved CCM through the Climate System Model (CSM) which 

incorporated more model components for the atmosphere, land surface, ocean, and sea ice. Afterwards, 

the Department of Energy (DOE), the National Aeronautics and Space Administration (NASA), and the 

National Science Foundation (NSF) began to provide more funding for CCM with the goal of encouraging 

more participation of the scientific community. In 1996, CCM was renamed as the Community Climate 

System Model (CCSM). One particular experiment from CCSM in 1998 predicted that the concentration 

of atmospheric carbon dioxide would increase three-fold in 125 years. Today, the model is still being 

used and improved.  

The climate is a sophisticated system that is influenced by physical, chemical, and biological 

processes that occur throughout the atmosphere, water, and land. Furthermore, these processes can 

either be influenced by natural causes or human causes. Increasing scientific understanding and 

computational capabilities are thus both crucial in developing a more accurate model of the climate. 

Therefore, NCAR has created CESM as an “evolving model” for the greater scientific community. With a 

more refined model, national and international policies regarding climate change can be better made [3]. 

 Biogeochemical processes occurring on land is one of the most significant factors in climate 

change. The Community Land Model (CLM) was created by NCAR to be the land (terrestrial) component 

model for CESM. CLM is associated with the quantification of ecological climatology which involves 

studying how nature and human beings affect vegetation which in turn affects climate.  There are 

several aspects considered within CLM such as surface heterogeneity, biogeophysics, hydrologic cycle, 

biogeochemical cycles, ecosystem dynamics, and human impact [4].  
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 Surface heterogeneity is a factor that takes into consideration that land is not uniform. A piece 

of land can be modeled as a grid which then can be divided into sub-grids known as landunits as shown 

in Figure 1. The main landunits are glacier, wetland, vegetated, lake, and urban. The vegetated landunit 

is further sub-divided into patches of plant functional types such as tropical broadleaf deciduous tree 

and C4 grass. Each plant function type patch has an associated leaf and stem area index and canopy 

height [5]. Quantities relating to energy and water balance are calculated for each patch at every time 

step so at the end of the calculations each patch has prognostic variables. The patches do not interact 

with each other in a direct manner [6]. 

 

Figure 1. There exist 5 types of main sub-grids (named landunits) that partition a land surface grid. The vegetated landunit 
can be re-divided into patches of plant functional types [5]. 

  
CLM is comprehensive in describing many processes such as absorption, reflection, and 

transmittance of solar radiation, lake temperatures, stomatal physiology and photosynthesis, and 

carbon-nitrogen cycling. Figure 2 contains schematic diagrams of the various aspects of CLM along with 

a list of land surface processes represented in the CLM [4, 7].  
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Figure 2. The CLM model incorporates many components that take account of surface energy fluxes, hydrology, 
biogeochemical cycles, vegetation dynamics, and anthropogenic impact on the land. Furthermore, specific processes of these 
components are listed. Note that SCF is snow cover fraction, BVOC is biogenic volatile organic compounds, C/N is carbon and 

nitrogen. Lastly, the black arrow in the Biogeochemical Cycles diagram refers to carbon flux while the 
purple arrow refers to nitrogen flux [7].  

 CLM has been tested rigorously against other developed land models and thus has gone through 

four stages of improvement. As of spring 2014, version 4.5 is the current version of CLM [4]. 

When the testing is performed, the model results are compared with observational data that has been 

collect over various years and from different regions of the world. It has been shown that the CLM 

performs better in regard to simulation of many processes than the other developed land models [6]. 

CLM uses a vast array of model parameters, many of which involve uncertainties. CLM consists also of 

various methods known as subroutines with associated parameters that calculate certain quantities. The 

subroutine of CLM and its associated parameters of most importance to this work are those of leaf 

photosynthesis and stomatal resistance which will be the topic of the next chapter.  
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Chapter 3 

Leaf Photosynthesis and Stomatal Resistance 

 Photosynthesis is the process by which plants convert light energy into chemical energy that is 

stored in carbohydrate molecules (primarily as glucose, C6H12O6) as shown in Figure 3. The carbohydrate 

molecules can later be broken down to release energy as fuel for the plant’s metabolism. The 

carbohydrate molecules are synthesized from carbon dioxide (CO2) and water (H2O). Oxygen gas (O2) is 

then released as a waste product. During photosynthesis, light energy usually from the sun is captured 

by organelles known as chloroplasts found in leaf cells. Chloroplast contains green chlorophyll pigments 

and thus is the reason why vegetation is mainly green. The biochemistry of photosynthesis is actually 

more detailed and involves several of stages and pathways and thus will not be discussed in this work. 

However, photosynthesis can be summarized by the chemical equation:  

6 CO2 + 12 H2O + Light   C6H12O6 + 6 O2+ 6 H2O. 

 

Figure 3. A simplified representation of how photosynthesis works. Note that the carbohydrates are not shown as they are 
produced within the plant [8]. 

  
 There exist pores on the leaves by the name of stomata by which carbon dioxide flows in while 

the water and oxygen flow out.  Because plants require water to live, plants can retain water when 

sufficient carbon dioxide needs are met through closing off its stomata. Figure 4 depicts actual stomata 

on a leaf and a demonstration of how they work.  
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Figure 4. The left picture is a photograph of two actual stomata while the right picture demonstrates that carbon dioxide 
enters the stomata while water and oxygen gas leave the stomata [9]. 

 
 In the CLM, stomatal resistance and leaf photosynthesis are both coupled together in a model 

that is inspired by the C3 photosynthesis model of Farquhar et al. (1980), the C4 model of Collatz et al. 

(1992), and the leaf stomatal conductance model of Ball (1998) [10, 11, 12]. The rate of passage of 

carbon dioxide entering the stomata is defined as the stomatal conductance. Stomatal conductance can 

also be defined as the rate of passage of water vapor exiting the stomata. The inverse of stomatal 

conductance is stomatal resistance which is directly related to the boundary layer resistance of the leaf 

and the absolute gradient of water vapor from the leaf to the atmosphere. The rate for leaf 

photosynthesis is known as the gross photosynthetic rate (denoted by A) is the rate at which carbon 

dioxide is assimilated in the leaf and converted into carbohydrates.  The gross photosynthetic rate can 

be quantified as the minimum of three limiting rates. The first rate is associated with the efficiency of 

the RuBisCO enzyme involved in photosynthesis (Rubisco limited rate of assimilation, denoted by wc). 

The second rate is associated with the amount of photosynthetically active radiation (PAR) that is 

absorbed by chlorophyll (light-limited rate of assimilation, denoted by we). Finally the third rate is 

associated with the products of photosynthesis and how they are used (Carbon compound export 

limitation, denoted by ws).  Therefore, the equation for the gross photosynthetic rate is   

              . Sellers et al. (1995) includes functional definitions of the three rates [13]. Another 
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quantity can be defined as the net gross photosynthetic rate (An) which is An= A – Rd where Rd is the leaf 

respiration rate. The leaf stomatal conductance model of Ball (1998) is combined with the above 

photosynthetic model to give the equation  
 

  
  

  

  

  

  
       where    is leaf stomatal resistance,   

is the plant functional type dependent parameter,    is the CO2 partial pressure at the leaf surface,    is 

the vapor pressure at the leaf surface,    is the saturation vapor pressure inside the leaf at the 

vegetation temperature,      is the atmospheric pressure, and   = 2000 is the minimum stomatal 

conductance when An = 0. In summary, the equation is useful in that the stomatal conductance (inverse 

of stomatal resistance) depends simply on carbon dioxide concentration, relative humidity, and two 

vegetation-dependent parameters.  

 The above model represents a single leaf. There exist two types of leaves that are assumed to 

exist at the top layer called the canopy: sunlit leaves and shaded leaves. The determination of type of 

leaf at the canopy is based on the amount of PAR absorbed. The canopy itself can have an associated 

gross photosynthetic rate photosynthesis and stomatal conductance which are respectively defined as 

                   where      and      are leaf area indices and 
 

  
        

 

  
       . Both of these 

were found by integrating the original equations over the depth of the canopy [6, 13, 14]. 
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Chapter 4 

Sensitivity Analysis: Background and Local-based Methods 

 Sensitivity analysis is an important consideration when implementing a mathematical model. A 

mathematical model of a natural process typically will have parameters that represent quantities 

pertaining to nature. For instance, a model of free falling of an object near the Earth’s surface in a 

vacuum will include the gravitational acceleration parameter        
 

   . Noting the approximation, 

one can see that this parameter has some uncertainty since it was experimentally determined and there 

exists random error in experimental measurements for example.   

A model that contains many parameters can become less useful due to the fact that each 

parameter contains uncertainties. Many of the parameters may be challenging to measure by 

experiments. Additionally, some parameters may be unknown. Reducing the number of parameters thus 

is one appealing option when improving a model. In general, the solution to the problem with 

uncertainties is the understanding on how uncertainties of the parameter inputs affect the uncertainties 

of the model output [15]. The method used to perform such a task is sensitivity analysis. More precisely, 

sensitivity analysis is defined by Saltelli (2004) as “the study of how the uncertainty in the output of a 

model (numerical or otherwise) can be apportioned to different sources of uncertainty in the model 

input” [16]. Figure 5 illustrates how sensitivity analysis is used in the context of a mathematical model. 

 

Figure 5. Overall schematic of sensitivity analysis [17] 
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Uncertainties in the parameters can be due to measurement error, variability found in nature, 

and the absence of a method to measure the parameters [16]. In this work, the mathematical model is 

the leaf photosynthesis-stomatal resistance subroutine which has input parameters pertaining to 

quantities such as vapor pressure inside the leaf and vegetation temperature. A list of these parameters 

will be given in Chapter 6. All of these parameters will contain uncertainties and thus conducting a 

sensitivity analysis on these parameters will be appropriate.   

The basic idea behind sensitivity analysis is to vary the input parameters, run the model, observe 

output differences, and repeat the process. For example, if a one input parameter changes by a small 

amount and the model output changes by a large amount then this parameter can be considered to 

have high sensitivity. However, if another input parameter is changed by a large amount and the model 

output changes by a small amount then that parameter is quite insensitive. The model with respect to 

the insensitive parameter is known to be more robust. This kind of information will allow researchers to 

perhaps exclude insensitive parameters in improving mathematical models. The goal of this work in the 

spirit is to utilize sensitivity analysis on the leaf photosynthesis-stomatal resistance subroutine to seek a 

ranking of important parameters.   

The history of sensitivity analysis was influenced by developments in the field of statistics. 

Gregor Mendel and his work with pea plants and Gosset and his work with Irish hop crops both involved 

precursor techniques to sensitivity analysis [2]. Throughout time, different approaches to sensitivity 

analysis were formulated using various frameworks. Sensitivity analysis at the beginning was usually 

local based while more recently global-based sensitivity analysis has become more widespread [18].  

Local sensitivity analysis as the name implies describes sensitivity around a neighborhood of an 

input point. This will mean that one input factor will vary around a reference value while all the other 

input factors are kept constant. Mathematically, local sensitivity analysis approaches will generally use 

partial differentiation to compute sensitivities. However, one drawback to local sensitivity analysis is 
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that sometimes the derivatives cannot be calculated. Furthermore, another drawback is that the 

sensitivities calculated pertain to when the input parameter changes by small amount around the 

reference value [19]. 

 If the model is relatively simple and mathematically well behaved enough a continuous 

derivative, then the local sensitivity analysis can be obtained by analytic sensitivity functions. Usually 

these functions are partial derivatives and thus can be written as a function of all other parameters. The 

other type of sensitivity function is empirical sensitivity functions which involve evaluating at a point for 

a given parameter while fixing other parameter values. The latter case is going to be used in more 

complex computer models since analytical functions will be more difficult to derive [2]. The partial 

derivative of a function will now be discussed to understand why it is used as a sensitivity measure. The 

mathematics is borrowed from [20]. 

Consider a function       , that is a function of only two variable   and  . When the variable   

is fixed at      , then the function        is essentially a function of one variable   and denoted as 

      Therefore,              The definition of the partial derivative of   with respect to   at       

is: 

  

  
         

   

           

 
    

   

               

 
 

Similarly, the partial derivative of   with respect to   at       is: 

  

  
         

   

               

 
 

In a more general case, for function                         of   variables, the partial 

derivative with respect to the     variable is: 
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Therefore, it can be seen that partial derivatives can give information about the rates of change of a 

function. More exactly, 
  

  
     would mean the rate of change of   with respect to   when   is fixed. 

This rate can be evaluated at any points       in the domain. Therefore, the partial derivative quantity 

is a measure of sensitivity as desired. In matter of fact,    
  

  
 is denoted as the absolute sensitivity for 

function f with respect to parameter   [2]. 

Now, consider the function             . The partial derivatives and thus sensitivities 

of        will only depend on the coefficient values   and  . Then, consider the more complicated 

function                            . To begin the local sensitivity analysis, an initial 

point must be chosen. Let the initial point be      . The sensitivities are:  

                                  

                              

Therefore, at the point        the absolute sensitivities are the same across all six parameters. The 

significance would be that increasing the parameters by unit 1 will increase the output by unit 1. 

Additionally, one can take higher order partial derivatives to measure the interaction between 

parameters. For example, if function   is continuous then the mixed second-order partial derivative  

   

    
      

   

    
         which then measures the sensitivity when the parameter   and variable 

  are both changed at the same time. These interaction terms are quite significant since higher order 

terms parameters may result in higher sensitivities as shown by the example above involving   and  .  

 Sometimes it is better to normalize the absolute sensitivities so that it is possible to compare all 

sensitivities. The resulting quantity is called a relative sensitivity,   ̅  (
  

  
) (

  

  
) where    is the normal 

value of the parameter in question and    is the normal value of the function. This quantity can be 

derived intuitively by considering changes in percentages instead of actual values. Therefore,  
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(
  

  
)  (

  

  
) = (

  

  
)  (

  

  
) = (

  

  
) (

  

  
). The relative sensitivity thus can provide information about 

which parameters will produce the most change in the output based on percent change in the 

parameters while absolute sensitivity would be based on a fixed size change.  

 In scenarios when the derivatives are difficult to calculate, then numerical estimation must be 

used. Numerical estimation based on Taylor Polynomial expansion can be used.  

Recall Taylor series expansion of the function   around the point  : 

              
  

  
    

  

  

   

   
      

  

  

   

   
      

Therefore, 

              
  

  
    

  

  

   

   
   , where   is between   and      

If   and 
   

    are small, then  
  

  
    

           

 
. Otherwise, the second derivative must be accounted 

for. The Taylor expansion for higher dimensions can be done for multivariable functions and a similar 

numerical estimation can be done for the partial derivatives [2].  
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Chapter 5 

Sensitivity Analysis: Global-based Methods 

More recently, the method of global-based sensitivity analysis is more widely used because they 

do not have the same limitations as local-based sensitivity analysis approaches. Global-based sensitivity 

analysis takes into account of the whole parameter space, nonlinearity, interactions between 

parameters, and models without analytical forms. However, global-based approaches require higher 

computation costs as a limitation [18].  Global-based sensitivity analysis consists of various techniques 

such probabilistic variance decompositions, regression analysis, and elementary effects tests [19].  The 

variance-based sensitivity analysis framework will now be discussed because this type of sensitivity 

analysis was used with the leaf photosynthesis-stomatal resistance model. The mathematics including 

some definitions and proofs involving probability is borrowed from [21]. 

 The variance is a mathematical quantity that is defined in a couple of ways. In particular, 

sensitivity can be defined through variance since sensitivity analysis is about analyzing how the variance 

of an output is affected by the variance of an input parameter. 

It is first important to generalize a mathematical model such as the leaf photosynthesis-stomatal 

resistance model. In this case, let the model be denoted as        and          where   is 

the output,   =           are   independent inputs (in this case, input parameters). The function   

does not have to have an analytical form nor is numerical estimation required. 

First, set    equal to its true value denoted as   
 . Then, one way to intuitively define the 

importance of an input variable     is to see how it affects the variance of  . Mathematically, this 

quantity can be written a       |     
   which is known as the conditional variance of   given    

  
 . However, one problem with this definition is that frequently the true value   

  of    is unknown. The 

correction to this problem is to average of the conditional variances under all possible values for   
 . This 
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average is written as        |     
    which is known as the expected value of the conditional 

variances of   given      
  [22]. 

The expected value is an important quantity used in mathematics and statistics. The most 

general definition of an expected value is the value of a random variable   is called the mean or the 

weighted average of  . More precisely, the expected value of a continuous random variable   with the 

probability density function   is defined by: 

      ∫      
 

  

   

A geometric analog to expected value is to think of a graph of the function      that has been cut out of 

cardboard with uniform density. The expected value of   is the point on the x-axis at which the graph 

will balance on a given edge orthogonal to the x-axis [21].  

However, random variables are not constantly equal to its expected value. In nature, random 

variables vary from their expected values all the time. These fluctuations from the expected values can 

be quantified by averaging the magnitude of such fluctuations. This quantity is then called the variance. 

Precisely, the variance of a continuous random variable X with the probability density function f is 

defined by:  

         [(      )
 
]  ∫ (      )

 
    

 

  

   

  

In probability, there arises a situation when one needs to calculate conditional probabilities. The 

conditional probability of   given   is the probability that   occurs given that   has already occurred. 

More precisely, the conditional probability of   given   is denoted by    |    
     

    
 where       is 

the probability that A and B happen (the joint occurrence) and          [21]. 
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Now, consider 

        [(      )
 
] 

                      

                         

                      

              

Therefore,                      Furthermore, by similar reasoning,      |       |   

   |   .  An important quantity to examine is then    |  . Observe the following: 

     |    ∫    |           
 

  

 

 ∫ (∫    |   |  
 

  

  )
 

  

         

 ∫  (∫   |   |         
 

  

)
 

  

   

 ∫  (∫
      

     
       

 

  

)
 

  

   

 ∫  (∫         
 

  

)
 

  

   

 ∫       
 

  

   

      

Therefore,      |          One can then conclude that the expected value of   is the weighted 

average of conditional expected values of   given Y over all possible values of   [21].  

Finally, consider  

     |       |      |    

which implies        |          |         |                |    . 

Additionally, 
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       |         |           |           |              

Therefore, 

              |           |   . Similarly,               |           |   . 

Now from the original motivation of defining sensitivity from variance, 

               |     
           |     

    . 

Recall that the intuitive definition of quantifying the importance of input    is        |     
   . For a 

constant         a lower        |     
    would imply a higher        |     

     

The quantity        |     
     named as the variance of the conditional expected value (also, 

written as         |      can be thought of the importance of   on the variance of  . Therefore, 

       |     
    is considered to be the sensitivity of   to   .  It is to be noted that the more 

important is   , the greater is        |    . Finally,        |     is normalized to 
       |    

      
 so that it 

can take a value between 0 and 1. 
       |    

      
 is known as the first-order sensitivity index, correlation 

ratio, and importance measure, which quantifies how input    mainly affects output   [22]. 

As was seen in the local-based approach, interactions between parameters can be measured. 

This is accomplished by variance decomposition. The variance of Y can be decomposed by the following 

way: 

       ∑   ∑    

       

 

   

        

Where 

          |      

       ( [ |     ]     |     [ |  ]) 

        ( [ |        ]   [ |     ]     |        [ |     ]     |     [ |  ]     |   ) 

Etc. 

Because the   are independent inputs,  
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          |     

       ( [ |     ])        

        ( [ |        ])                       

Etc. 

 The first-order sensitivity index is    
  

      
 which is consistent with the previous definition. 

The second-order sensitivity index is then      
   

      
 which quantifies interactions between inputs    

and   . The third-order sensitivity index is then       
    

      
 which quantifies interactions between 

inputs   ,   , and   .  Higher order indices are defined in a similar manner. The number of all order 

indices can be calculated by the formula      where   is the number of inputs. Finally, the total 

sensitivity index    
 can be computed by summing all order indices relating to   . For example, 

   
                 for the input    and three total inputs,      , and    [22].  

Besides using a variance-based approach, regression analysis can be used as long as the model is 

linear or close to being linear. This is more limited than variance-based approaches which can handle 

cases where there is non-monotonicity, non-linearity, and non-additivity. Regression analysis is based on 

fitting a linear model to data. The general linear model is           ∑        
    where the 

output vector is  , number of parameters is  ,     parameter is   , estimated coefficient for    is   , and 

  is the random error. The    ’s can be calculated by the least squares method and minimizing  . 

Afterwards, the quantity known as the standardized regression coefficient (SRC) can be defined  by 

             
 ̂ 

 ̂
 where  ̂  is the standard deviation for input parameters and  ̂ is standard 

deviation for outputs. This standardization of the   ’s is meaningful since it allows for changing an input 

parameter by a fixed fraction of its standard deviation while all other parameters are fixed. Because the 

  ’s are essentially slopes,   
   measure sensitivities [23].  There are other sensitivity measures from 

regression analysis such as PCC (Partial Correlation Coefficient) and PEAR (Pearson Product Moment 
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Correlation Coefficient). When the model is not linear, a ranked transformed statistic can be computed 

known as the SRRC (Standardized Rank Regression Coefficients) [24]. SRRC involves first ranking the 

outputs from largest output to smallest output and then performing regression analysis on the ranking. 

Thus, the limitation is that the model is transformed into one based on the rankings. This makes SRRC 

more of a qualitative measure of sensitivity than a quantitative one. Another limitation is that 

monotonicity is preferred when using the model [25].  

The last type of global-based sensitivity analysis approach is an elementary effect test which is 

exemplified by the Morris Method, a screening method. It has the advantage since it requires a 

relatively much lower computation cost. The limitation is that that the sensitivity measures are 

qualitative rather than quantitative. Thus, a ranking can be made but measuring how much one 

parameter is more sensitive than the other is difficult [24]. In the Morris Method, the ranges are divided 

into (p-1) intervals of equal sizes.  A quantity called the elementary effect is calculated by the following: 

    
 

  

                                     

 
, where   

 

      
. The elementary effects’ mean and 

standard deviation are calculated. The absolute value of the mean will represent the overall importance 

of a parameter while the standard deviation will represent nonlinear and interaction effects [18].  The 

sensitivity measures can either be the absolute value of the mean or the standard deviation and then be 

ranked accordingly [16]. 
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Chapter 6 

Materials and Procedure 

 The leaf photosynthesis and stomatal resistance subroutine was used in the form of a “stomata” 

functional test with a main user interface provided by Dr. Dali Wang and his team from the Climate 

Change Science Institute of Oak Ridge National Laboratory [26]. Figure 6 is a snapshot of the interface.  

 

Figure 6. "Stomata" functional test main user interface 

 The subroutine contains 11 input parameters, 1 plant functional type parameter (categorical), 

and 5 outputs. Table 1 lists all the parameters used in the subroutine with given ranges: 

 

Table 1. List of all parameters for the leaf photosynthesis-stomatal resistance subroutine 
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The psnsun refers to the leaf photosynthetic rate and the rssun refers to stomatal resistance as mention 

in Chapter 3. The plant functional types are listed in Table 2: 

 

Table 2. List of plant functional types [14] 

 The sensitivity analysis methods were implemented using a software called SimLab (Simulation 

Laboratory for Uncertainty and Sensitivity Analysis) which was developed the Joint Research Centre of 

the European Commission. Its current version 2.2 can be downloaded at [27]. SimLab is a free 

professional tool that has been continuously improved since 1985. Knowing how to use SimLab was very 

important since it can provide many features that are relevant to the study of sensitivity analysis of a 

model. SimLab is designed for global-based sensitivity analysis which was covered in Chapter 5. Also, 

Simlab is made of three modules which are used in succession. The first model is known as the Statistical 

Pre-Processor module, the second is the Model Execution module, and the third is the Statistical Post-

Processor module. The three modules can be seen in Figure 7.  

The function of the Statistical Pre-Processor module is to generate sample data points in the 

space of the input parameters. The function of the Model Execution module is to run the model for each 

sample point created from the Statisical Pre-Processor module. Lastly, the function of the Statistical 

Post-Processor module is to execute the uncertainty and sensitivity analysis. The first module involves 

choosing probability distribution functions for the uncertainty of each input factor.  Because the 
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probability distributions and statistical properties for each input factor were unknown, it was decided to 

use the uniform distribution for each input factor based on the ranges given in Table 1.  

 

  

From the mathematics presented in [21], a random variable X is said to be uniformly distributed 

over an interval (a,b) if its probability density function is given by: 

     {
          
           

 

Because      is a probability density function, ∫       
 

 
 = 1 which implies that 

∫              
 

 
 Therefore,   

 

   
.  

Statistical 

Preprocessor module 

Model execution 

module 

Statistical Postprocessor 

module 

Figure 7. Interface of SimLab with its 3 modules [25] 
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Since the analysis at this point in the research is mainly exploratory, it is justified to use uniform 

distribution. There is also no underlying data that could be used. Even if there were underlying data, 

there is a cost for getting better probability distribution functions.  

 After the selection of uniform distribution and setting the ranges, the next step is to choose 

sampling methods. The sampling methods that can be chosen in SimLab are FAST, Fixed samples, Latin 

Hypercube, Morris, QuasiRandom LpTau, Random, and Sobol. The sampling method is mainly chosen 

based on the input factors. This research seeks to utilize various methods to see how they affect 

sensitivity analysis. The sampling methods used in this work were Latin Hypercube, Extended Fast, Sobol, 

Random, and Morris.  

 The sampling method is one aspect of the Monte Carlo simulation used in generating input data. 

The idea is that the model is evaluated many times through random numbers. A probability distribution 

has to be chosen for each parameter characterizing uncertainty. If the probability distribution is not 

known, then a uniform distribution can be chosen as was done in this work [15]. Besides the probability 

distributions, the sample size has to be assigned for each parameter. A large enough evaluation has to 

be chosen or else the sample is not a good representation of the population. The samples themselves 

are created by selecting points by probability distribution function. The input data is evaluated into the 

model which returns a set of outputs of same sample size. Uncertainty can then be quantified or visually 

represented on a graph.  

 Latin Hypercube Sampling (LHS) is a type of Monte Carlo sampling method. From LHS, one can 

generate an estimation of average model outputs. Compared to Random Sampling, LHS has the same 

accuracy but through input. The basis of LHS is stratified sampling without replacement. The distribution 

is divided into N equal intervals where N is the sample size. Each interval is then sampled once. Each 

factor thus contains N realizations from the N intervals. A random realization is chosen from each factor 

and this is considered to the first input of the sample [25]. Therefore, this guarantees that the sample is 
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able to represent values from all over the distribution (high, low, and middle). For instance, if N = 4, then 

the range [0, 1] the LHS would contain values from the ranges [0, 0.25], [0.25, 0.50], [0.50, 0.75], and 

[0.75, 1] rather than randomly having values just from [0, 0.25] for example. 

 Random Sampling is another Monte Carlo sampling method but it has less accuracy in terms of 

generating means and the probability distributions when compared to LHS [25]. In Random Sampling, 

the points are selected from joint distribution of the input parameters assuming they are not 

independent. If the parameters are independent, then the marginal distributions are used. The Random 

Distribution is known as pseudo-random since the random numbers are generated by a deterministic 

process and an initial value known as a seed. The joint distribution between uniform random variables 

can be understood by the following: 

  Let           be n random variables with joint probability density function                 

Then the n random variables are independent if and only if               =    
        

     

     
     where    

     is the marginal density for random variable     Thus, assuming            

are   independent uniform random variables with ranges         for   , then 

              {
        
           

 

where   
 

∏        
 
   

 and                              . In this work, n is 11. 

There were a minimum of two characterizations for each sampling method which were a seed 

for a random number generator algorithm that is used and the number of executions (sample size). The 

seed was recommended to be at least a seven digit number. The seed chosen for all sampling methods 

was 1234567. The number of executions will generate the cardinality of the sample set. However, 

choosing the number of executions is less straightforward because each method’s accuracy is 

dependent on the number of executions.  The appropriate number of executions for each method was 

determined based on convergence studies in [23].  
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The number of executions determined by [23] was 4000 for LHS, 4000 for Random, and 22803 

for Extended FAST. In [23], the Sobol method is considered to be the reference method with a number 

of executions to be 49,152. The authors of [23] had varied the number of executions for various 

methods and compared the rankings with those produced by the Sobol method.  The Morris method 

was not compared because there are three characterizations instead of two. Besides the seed and 

number of executions, the number of “levels” is a factor which corresponds to quantiles of the input 

factors distribution. In this work, level was chosen to be 4 as in [28]. 

In particular, the actual number of executions chosen in this work was higher and more 

conservative than in [23] to ensure even more accuracy. Thus, the number of executions was 49152 for 

Sobol, 24915 for Extended FAST, 120 for Morris, 4500 for Random, and 4500 for LHS. 

As for the sensitivity analysis methods themselves, the Sobol and Extended FAST methods are 

variance-based methods as presented in Chapter 5. In the Sobol Method, the Si quantity is estimated 

through variance decompositions and Monte Carlo integration [25]. The inputs must be independent in 

the Sobol method but it can handle nonlinear models.  More information about the Sobol Method can 

be found in [29].  

The FAST method is known as the Fourier Amplitude Sensitivity Test. Both monotonic and non-

monotonic models can be used with FAST which is a good advantage. The idea is to transform a 

multidimensional integral over all inputs that are uncertain into a single one-dimensional integral. This 

integral is known as a search curve that “scans” all of the parameters. The Fourier series decomposition 

is utilized to calculate how much each input parameter contributes to variance [25]. The Extended FAST 

can provide sensitivity indices first order and total order. More information about the Extended FAST 

method can be found in [31]. 

 The Model Execution module is the module after the Statistical Pre-Processor module. In the 

Model Execution module, SimLab can perform the Monte Carlo analysis on the input factors sample set 
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that was created in the previous module. In this module, the user can choose between using an internal 

model or an external model depending on the design of the experiment. In the internal model, the 

generated sample is manipulated through mathematical equations such as linear equation that the user 

can program. However, this work uses a standalone leaf photosynthesis-stomatal resistance subroutine 

involving more complicated equations as described in Chapter 3. Therefore, the external model option is 

used to evaluate the generated sample. One option that is used to link SimLab and the external model is 

through Microsoft Excel. SimLab allows this “Excel switch” option when using the Processing Module. By 

using this option, SimLab will produce an Excel Worksheet titled “Inputs” with the name of the input 

factors and the corresponding sample. At this point, SimLab expects the user to input the corresponding 

outputs into another provided Excel Worksheet titled “Outputs.”  In this work, the user manually takes 

the data in the worksheet and adds them to a new worksheet. It is reformatted so that it can be read by 

the subroutine. The subroutine already has the function to produce Excel spreadsheet of the output 

data after model evaluation. This output data then is simply transferred back to the “Outputs” Excel 

Worksheet from SimLab and upon closing, the Model Evaluation module ends.  

 Finally, the Statistical Post-Processor Module is opened up to the user to perform uncertainty 

analysis and sensitivity analysis for any combinations of the factors. The Uncertainty Analysis option can 

provide means, variances, and probability distribution functions estimated from the model predictions. 

The Sensitivity Analysis option will provide sensitivity measures in the form of tables and graphs. The 

sensitivity measures and the type of graphs will depend on which method is used. These will be explored 

in Chapter 7. A summary of the procedure in performing the data collection in this work is depicted in 

Figure 8.  
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Figure 8. Flow chart of data collection using SimLab and the leaf photosynthesis-stomatal resistance subroutine 
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Chapter 7 

Results: Broadleaf Deciduous Tree - Temperate (PFT = 7)  

Five methods of sensitivity analysis were tested on data pertaining to broadleaf deciduous trees 

in temperate zones. The 5 possible outputs were psnsun, rssun, cisun, lncsun, and vcmxsun. However, 

the lncsun output was constant regardless of input and sensitivity analysis could not be performed on 

the lncsun output. Thus, lncsun data is omitted. It was constant in the leaf photosynthesis-stomatal 

resistance subroutine because nitrogen limitation was not considered.  

After running the procedure explained in Chapter 6, measures of sensitivity analysis were 

obtained in the form of tables and graphs. One example of a table is presented in Table 3.  

 

Table 3. Table of sensitivity indices from the Sobol Method 

The actual value of sensitivity measures are not the focus of this work. Rather, this work will 

concentrate more on the relative comparison of sensitivity measures across the different methods, 

outputs, input parameters, and plant functional types.  In this work, the tabulated values were graphed 

using Excel and then comparisons could be made. 
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The bar graphs of first order and total order sensitivity indices from the Sobol Method on 

psnsun, rssun, cisun, and vcmxsun are the following: 

 

Figure 9. The Sobol Method 

The bar graphs of first order and total order sensitivity indices from Extended FAST Method on 

psnsun, rssun, cisun, and vcmxsun are the following: 

 

Figure 10. The Extended FAST Method 
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The bar graphs of sensitivity measures (mean and standard deviations of elementary effects) 

from the Morris Method on psnsun, rssun, cisun, and vcmxsun are the following: 

 

Figure 11. The Morris Method 

The bar graph of sensitivity measures (SRRC) from Regression Analysis with LHS Sampling on 

psnsun, rssun, cisun, and vcmxsun is the following: 

 

Figure 12. Regression Analysis based on Latin Hypercube Sampling 
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The bar graph of sensitivity measures (SRRC) from Regression Analysis with Random Sampling 

on psnsun, rssun, cisun, and vcmxsun is the following 

 

Figure 13. Regression Analysis based on Random Sampling 

A summary of the rankings based on the five methods were compiled in the tables below: 

 

Table 4. Rankings for Broadleaf Deciduous Tree - Temperate  
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Chapter 8 

Results: Needleleaf Evergreen Tree - Temperate (PFT = 1)  

The same five methods of sensitivity analysis were tested on data pertaining to needleleaf 

evergreen trees in temperate zones. The 5 possible outputs were psnsun, rssun, cisun, lncsun, and 

vcmxsun. Again, the lncsun output was constant regardless of input and sensitivity analysis could not be 

performed on the lncsun output. Therefore, the lncsun data is omitted. 

The bar graphs of first order and total order sensitivity indices from the Sobol Method on 

psnsun, rssun, cisun, and vcmxsun are the following: 

 

Figure 14. The Sobol Method 
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The bar graphs of first order and total order sensitivity indices from Extended FAST Method on 

psnsun, rssun, cisun, and vcmxsun are the following: 

 

Figure 15. The Extended FAST Method 

The bar graphs of sensitivity measures (mean and standard deviations of elementary effects) 

from the Morris Method on psnsun, rssun, cisun, and vcmxsun are the following: 

 

Figure 16. The Morris Method 
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The bar graph of sensitivity measures (SRRC) from Regression Analysis with LHS Sampling on 

psnsun, rssun, cisun, and vcmxsun is the following: 

 

Figure 17. Regression Analysis based on Latin Hypercube Sampling 

The bar graph of sensitivity measures (SRRC) from Regression Analysis with LHS Sampling on 

psnsun, rssun, cisun, and vcmxsun is the following: 

 

Figure 18. Regression Analysis based on Random Sampling 
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After producing the graphs and comparing them, a summary of the rankings based on the five 

methods were compiled in the tables below: 

 

Table 5. Rankings for Needleleaf Evergreen Tree - Temperate 
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Chapter 9 

Results: Broadleaf Evergreen Tree - Temperate (PFT = 5) 

The same five methods of sensitivity analysis were tested on data pertaining to needleleaf 

evergreen trees in temperate zones. The 5 possible outputs were psnsun, rssun, cisun, lncsun, and 

vcmxsun. Again, the lncsun output was constant regardless of input and sensitivity analysis could not be 

performed on the lncsun output. Therefore, the lncsun data is omitted. 

The bar graphs of first order and total order sensitivity indices from the Sobol Method on 

psnsun, rssun, cisun, and vcmxsun are the following: 

 

Figure 19. The Sobol Method 
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The bar graphs of first order and total order sensitivity indices from Extended FAST Method on 

psnsun, rssun, cisun, and vcmxsun are the following: 

 

Figure 20. The Extended FAST Method 

The bar graphs of sensitivity measures (mean and standard deviations of elementary effects) 

from the Morris Method on psnsun, rssun, cisun, and vcmxsun are the following: 

 

Figure 21. The Morris Method 
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The bar graph of sensitivity measures (SRRC) from Regression Analysis with LHS Sampling on 

psnsun, rssun, cisun, and vcmxsun is the following: 

 

Figure 22. Regression Analysis based on Latin Hypercube Sampling 

The bar graph of sensitivity measures (SRRC) from Regression Analysis with LHS Sampling on 

psnsun, rssun, cisun, and vcmxsun is the following: 

 

Figure 23. Regression Analysis based on Random Sampling 
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After producing the graphs and comparing them, a summary of the rankings based on the five 

methods were compiled in the tables below: 

 

Table 6. Broadleaf Evergreen Tree - Temperate 
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Chapter 10 

Conclusion 

 This work aimed to achieve a couple of goals. The main goal was to determine which parameters 

are important and influential by implementing sensitivity analysis on a leaf photosynthesis-stomatal 

resistance model. Other goals include learning background information about sensitivity analysis and 

the computational model itself, learning how to use SimLab, learning how to design sensitivity analysis 

experiments, and how to analyze the results. Because of the mathematical nature of sensitivity analysis, 

some of the frameworks from probability and statistics used in developing sensitivity analysis methods 

were explored. 

  Chapters 7, 8, and 9 presented many results from the sensitivity analysis in the forms of graphs 

and tables.  By comparing the tables visually, rankings for parameter based on the overall synthesis of all 

5 methods were developed. These rankings are presented in the following: 

 

Table 7. Overall rankings across all methods for each plant functional type 

 The first important conclusion that can be made is that tl (vegetation temperature) is the most 

sensitive and thus most important parameter across all methods and outputs. By inspecting all the 

graphs from Figure 9 to Figures 23, one can see that tl had much higher sensitivities than all other 

parameters. For example, the total sensitivity indices for tl had more than twice the value of those for 

the second ranked input under the psnsun and vcmxsun outputs and about more than four times the 

value of the second ranked input under the rssun output. This trend can essentially be seen on the other 



Garcia 44 
 

two plant functional types and the Extended FAST method graphs as well (Figures 9, 10, 14, 15, 19, and 

20).  

The tl parameter also is dominating in the Morris Method graphs and the Regression Analysis 

graphs. In particular, the standardized rank regression coefficients for tl are more than twice the values 

of those for the second ranked input under the psnsun, rssun, and vcmxsun outputs regardless of 

sampling method.  

 The next conclusion to be made is which parameter ranked second highest. The two most 

important parameters after tl were btran (soil water transpiration factor) and daylfactor (daylength) for 

psnsun, rssun, and vcmxsun as can be inferred from Table 7. The co2 (atmosphere carbon dioxide 

concentration) was second specifically for cisun. This can be seen in each of the graphs for all plant 

functional types. The rankings for btran and daylfactor were not significantly different but btran usually 

was more sensitive than daylfactor by a very small amount. Since the psnsun output refers to the leaf 

photosynthesis rate and rssun refers to the stomatal resistance, then it can be regarded that btran and 

daylfactor both have essentially the same level of importance. The co2 having a more important role for 

cisun is in agreement with the fact that cisun signifies the sunlit intracellular carbon dioxide 

concentrations.  

After tl, btran, and daylfactor, the next most important factor was ei (vapor pressure inside the 

leaf) which has a more prominent sensitivity measure compared to the lesser ranked parameters for the 

Morris Method as shown in Figure 11. The parameter ei is generally about half significant compared to 

btran and daylfactor for the Sobol and Extended FAST method as shown in Figure 15.  

After ei, the lesser important parameters were generally forcpbot, tgcm, and ea in different 

orders depending on the output and plant functional type.  The least important parameters can thus be 

inferred to be aparsun, o2, co2, rb, and to some degree forcpbot and tgcm. Specifically, the two least 

important parameters across all methods, plant functional types, and outputs are aparsun 
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(photosynthetically active radiation absorbed per leaf area index) and o2 (atmospheric oxygen 

concentration).  

Besides the ranking of parameters, one can make the observation that the sensitivity analysis 

methods agree with each other for the most part because many conclusions about the parameters hold 

true across all sensitivity analysis methods. This can be supported by the fact that tl ranked first, btran 

and daylfactor and had very similar sensitivities, and co2 was ranked second under cisun across all 

sensitivity analysis methods generally.  

As for the plant function types, the broadleaf deciduous tree in temperate zones (PFT = 7) and 

the broadleaf evergreen tree in temperate zones (PFT = 5) both had identical overall rankings as shown 

in Table 7. However, the needleleaf evergreen tree in temperate zones (PFT = 1) had a similar ranking as 

well. This ranking differed from the other two in regards to btran and daylfactor ranking differences, co2 

ranking lower, and rb ranking higher.  

There are still some more improvements that can be made in this work. For example, another 

step in the work would be to explore more in depth the biological basis of the rankings. Knowing that tl 

ranked first, more study can be undertaken to see how vegetation temperature plays a role in leaf 

photosynthesis rate and stomatal resistance. More biological background in the other parameters would 

be sought. This kind of study would also apply to the plant functional types. One would need to research 

into how these photosynthetic processes perform in different leaves and climate zones since it was 

noted that the broadleaf trees had identical rankings while the needleleaf tree did not.  Moreover, there 

were other plant functional types with some involving different zones such as tropical or arctic zones 

that were not tested. These plant functional types should be tested as well.   

Another type of improvement to this work would be standardizing the approach to compare all 

the sensitivities across output, plant functional types, and sensitivity analysis methods. This could 

involve setting an appropriate threshold. A more rigorous means of comparison should also be 
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investigated. Additionally, the probability distributions were assumed to be uniform for the parameter 

because not much was known about the parameters. There should be more inquiry in determining 

appropriate distributions for the parameters in future improvements. 

From this work, one can see that sensitivity analysis proved to be a useful method in achieving 

the goal of determining which parameters are most important and sensitive. This work involved 

integrating biology, mathematics, statistics, and engineering and applying sensitivity analysis to a small 

model of leaf photosynthesis and stomatal conductance that is part of larger model that simulates the 

Earth’s climate. On a larger scale, scientists, mathematicians, and engineers from all disciplines are 

working together to solve the problem of global warming. For example, the research team from [26 ] 

which provided the leaf photosynthesis and stomatal conductance subroutine used in this work is 

involved in improving the Community Land Model through linking the model with site measurements 

done by field experimentalists and exploring how to use sensitivity analysis to for model improvement.   

After conducting sensitivity analysis, one can begin to make choices concerning for instance how much 

resources should be allocated in studying certain parameters or even deciding which parameters can be 

excluded from the model for simplification. Therefore, sensitivity analysis can be a powerful tool for 

decision making especially at the public policy level involving cases such as global warming.  
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