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ABSTRACT 

Multiple traditional time-series forecasting models were applied to statewide, monthly data 

for shigellosis with the goal of forecasting the incidence rate of this disease in Tennessee. The 

dataset begins in 1995 and ends in 2012 for a total of eighteen years, or 216 months. The year 

2012 was used to validate the model results. Forecasting models used include time-series 

regression, exponential smoothing, decomposition, Box-Jenkins autoregressive integrated 

moving averages, and dynamic linear regression. The coefficient of determination of the training 

and validation sets was the main evaluation fit statistic for preliminary results. None of the 

traditional models fits the data well, and more advanced methods that better respond to cyclical 

elements will need to be utilized in order to properly forecast the incidence rate of shigellosis. 

Developing a forecasting model for this infectious disease will aid the public health sector in 

predicting the severity of an outbreak and will allow for the preparation of an intervention for a 

disease outbreak. 

 

INTRODUCTION 

Shigellosis is an infectious disease caused by a group of bacteria called Shigella [1]. Four 

different subgroups of this species include S. flexneri, S. dysenteriae, S. sonnei, and S. boydii [2]. 

Diarrhea, fever, nausea, and vomiting may accompany this disease [2]. Shigella typically lingers 

on hands that have not been adequately washed and is commonly transmitted fecal-orally [1]. 

About 14,000 cases of the disease are reported in the United States yearly, and about 72% of 

those cases are caused by the subgroup S. sonnei [3]. However, many cases of shigellosis go 

unreported [3]. Cases are confirmed through testing of the feces in order to isolate the Shigella 

bacteria [4]. People who have the aforementioned symptoms may forgo a visit to a doctor’s 

office, and then the case cannot be filed; this affects the data and the extent to which researchers 

can generalize conclusions. Another factor with the shigellosis disease is its high incidence in 

children. The Centers for Disease Control and Prevention (CDC) reports that children aged two 

to four years old are more likely to contract shigellosis [1]. This is likely due to poor hand 

washing and less awareness of personal health in general.  

Due to this disease’s temporarily debilitating effects and spread in children, we wanted to 

focus locally on shigellosis in Tennessee for this forecasting project. Overall, we would like to 

be able to forecast the incidence rate of each month in order to be prepared for an outbreak. An 
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element of other diseases is monthly seasonality, especially during the summer months when the 

heat affects the bacteria. Since children in Tennessee typically start school in August, we want to 

see if some seasonal effect exists. Time-series forecasting models will allow us to determine 

seasonality and incidence rates for the next year. We look at traditional forecasting methods first, 

and then we modify our approach to account for both cyclical and seasonal patterns in the data. 

 

MATERIALS AND METHODS  

Data source  

The Tennessee Department of Health’s online data reporting service, Communicable Disease 

Interactive Data, provides counts of shigellosis for the state of Tennessee by month for years 

1995 to 2012.  

In order for a case to be reported, an individual with shigellosis must visit a healthcare 

provider and pass a stool sample that tests positive for Shigella bacteria [4]. As a reportable 

disease, shigellosis must be reported to the Tennessee Department of Health if Shigella sp. is 

isolated from a clinical specimen, if Shigella sp. is detected using non-culture based methods, or 

if a person with diarrhea has been in contact with someone with a confirmed Shigella infection 

[4]. Due to the high level of underreporting in shigellosis cases, the CDC estimates that the 

actual number of cases may be as much as twenty times greater than reported, on a national level 

[1]. 

 

Data preparation 

Data from years 1995 to 2012 provide us with a total of 216 data points. We converted the 

count data to incidence rates per 100,000 people by using the annual Tennessee population 

estimate data from the United States Census Bureau [5].  These conversions were performed 

with Excel. An incidence rate of one can be interpreted as one person having shigellosis per 

100,000 people, for example. Incidence rates, as opposed to counts, help the data be more 

understandable on a population level. The monthly incidence rate per 100,000 people for 

shigellosis varies in Tennessee from as low as 0.05 to as high as 5.01.   

In order to find a forecasting model, we split the data into two sets, the training set and the 

validation set. The training set has 204 data points for monthly incidence rates from 1995-2011, 

and the validation set has 12 points for monthly incidence rates in 2012. The validation set may 
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also be referred to as the holdout set. We want a model that forecasts into the future opposed to 

only fitting the past data. The holdout sample is essential in forecasting because it validates the 

effectiveness of the forecasting model constructed with the training data [6].  

We performed most statistical analyses in NCSS 8, unless otherwise noted [7].  The 

forecasting methods used include time-series regression, Holt-Winter’s exponential smoothing, 

decomposition, Box-Jenkins autoregressive integrated moving averages (ARIMA), and dynamic 

linear regression in varying forms. We used R2, the coefficient of determination, to determine the 

adequacy of each model according to the training set and the validation set.  

 

Pattern analysis and outlier identification 

In order to get an initial idea of the data, a few analyses must be performed. First, it is critical 

to look at the monthly incidence rate over time. Figure 1, displayed below, illustrates the cyclical 

pattern of the data but no definite seasonal aspects. Figure 2 and Figure 3 display the training set 

and the validation set over time. Figure 4 allows us to see if any months are consistently having 

higher incidence rates over time; we can see that no months have the highest incidence rates on a 

year-to-year basis.  

Figure 5 allows us to examine the seasonal effect more closely. Many months have outliers, 

but June, September, October, and November all have what we consider to be extreme outliers. 

We also perform a Kruskal-Wallis One Way ANOVA on the monthly incidence rates to identify 

equal medians, and we accept the null hypothesis that the medians are equal (p > 0.05). 

Therefore, our monthly seasonal impact hypothesis cannot be proven by this data; however, 

since we are aware of such rampant underreporting of this disease, we would still like to 

incorporate some sort of seasonal element into our forecasting models.  

Outliers may affect the data and its analysis. It is important to identify these outliers at an 

early stage. Figure 6 contains the same time plot as Figure 2 but also contains the mean of the 

training set as the red line and one, two, and three standard deviations above the mean as the blue 

lines. The two data points in October and November of 1998 are well above three standard 

deviations from the mean. We were cognizant of these points throughout our analysis, but we 

could not remove them since they do provide insight for the cycles and the seasons of the data. 

Now that we have determined the initial observations of the data, we can proceed to time-

series modeling. 
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Time-series forecasting models  

All time-series forecasting models tested had to meet certain criteria to be considered a good 

model. The initial statistic evaluated for each model was the coefficient of determination, or R2 

statistic, on the training data. The R2 for the validation set was evaluated second. R2 can be 

presented as either a proportion or percentage; we will use the former. R2 ranges from 0 to 1, 

with 1 being the most variation explained by the model. Equation (1) and equation (2) provide 

computation of R2 for both the training and validation sets, respectively:  

 

R2 Prediction = 1− [!!
!
!!! !  ŷ !! ]!

[!!!
!!! !  !]!

    (1) 

 

R2 Holdout = 1− [!!
!!
!!! !  ŷ ! ]!

[!!!!
!!! !  !]!

         (2) 

 

Typically, if the R2 prediction and R2 holdout statistics are close in number, then the model is 

considered adequate, and we can then perform residual analysis [8]. Various forecasting 

techniques were utilized throughout the duration of this project including time-series regression, 

Winters Exponential Smoothing, decomposition, ARIMA, and dynamic linear regression, and 

the R2 values were the initial fit statistics for these models.  

We examined residual plots and normality using Shapiro-Wilk’s goodness-of-fit for 

normality. We also examined the existence of white noise in the residuals using the Q-statistic 

[9]. When no pattern exists in the residuals, the model does not need further improvement.  

In addition to the traditional models, we attempted combination models with the top 

performing models. We used the simple combination method that averages the forecasts from 

each model. The three simple combination models with averages of the forecasts are Winters 

exponential smoothing and ARIMA(1,0,1), Winters exponential smoothing and decomposition, 

and decomposition and ARIMA(1,0,1). 

After evaluating traditional forecasting models and combination models, we smoothed the 

two high outliers. We perform decomposition, dynamic linear regression, and moving origin, 

fixed horizon decomposition models on the smoothed data.  
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Time-series regression 

Regression models allow us to use trend and seasonal elements. We utilized ordinary least 

squares methods in the NCSS macro for multiple regression [7]. After investigating trend only 

models and trend plus seasonal models, the results were better with the seasonal element. Due to 

interpretation issues, we excluded any interaction variables from the model. The base month for 

the seasonal variables is October. We used additive time-series regression and multiplicative 

(log-transformed) time-series regression. The formulas for the additive and multiplicative time-

series regression models are outlined in equation (3) and (4), respectively.  

 

!! =   !! +   !!!!"#$% +    !!
!!!"
!!! !! +   !!   (3) 

 

!! =   !! +   !!!!"#$% +    !!
!!!"
!!! !! +   !! (4) 

 

Holt-Winters exponential smoothing 

Holt-Winters exponential smoothing, or simply Winters exponential smoothing, utilizes 

smoothing constants along with seasonal parameters. NCSS has a Winters exponential 

smoothing macro [7]. The model that best fit the shigellosis data had an additive trend and 

multiplicative seasonality. Winters exponential smoothing uses the equations (5) through (8) 

below:  

 

!! = !   !!
!!!!

+ 1− ! (!!!! +   !!!!)        (5) 

 

!! = ! !! − !!!! + 1− ! !!!!    (6) 

 

!! =   !   !!
!!
+ (1− !)!!!!     (7) 

 

!!!! = (!! +   !!!)!!!!!!     (8) 
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where !,!, !  are smoothing constants, and we account for trend, slope, and seasonality. St is the 

smoothed value at end of t after adjusting for seasonality, bt  is the smoothed value of trend 

through period t, and It  is the smoothed seasonal index at end of period t [10].  

 

Decomposition 

Various decomposition methods were utilized throughout this project. NCSS has a macro for 

decomposition that performs automatic multiplicative decomposition with stable seasonal 

variation [7]. Due to the nature of decomposition, one is also able to perform decomposition 

methods within the spreadsheet feature of NCSS with either stable seasonal variation or 

changing seasonal variation. The basic formula for decomposition is outlined below in equation 

(9): 

!! = !!!!!!!!   (9) 

 

Equation (9) displays the trend, cyclical, seasonal, and error components, respectively. The 

nature of this model allows us to isolate these elements for forecasts when necessary. 

 

Box-Jenkins autoregressive integrated moving averages (ARIMA) 

Various ARIMA models were tested in this project. ARIMA models are set-up as follows. 

!"#$!(!,!, !)(!,!,!) (10) 

 

Equation (10) encompasses seasonal ARIMA. The elements include p as the number of 

autoregressive terms, d as the number of nonseasonal differences, q as the number of lagged 

forecast errors in the prediction equation (moving average), P as the number of seasonal 

autoregressive terms, D as the number of seasonal differences, and Q as the number of seasonal 

moving average terms [11]. 

We ran a myriad of ARIMA models in NCSS with autoregressive and moving averages 

terms up to two and differencing as zero or one. The best model, ARIMA(1,0,1), is represented 

by the backshift  operator equation (11): 

1− !!! !! = (1− !!!)!!     (11) 
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Dynamic linear regression 

SAS software allows users to perform dynamic linear regression through the Time Series 

Forecasting System macro [12]. Dynamic linear regression is a type of transfer function, another 

model type attributed to Box and Jenkins [13]. Transfer functions are represented by equation 

(12): 

 

!! = ! +    !!!!!!   + !!!
!!!     (12) 

 

Dynamic regression utilizes trend elements along with other predictor elements like ARIMA and 

cyclical components, making it a possible model for this time-series data. 

 

RESULTS  

Pattern analysis 

Another preliminary step before analyzing the data involves examining autocorrelation 

(ACF) and partial autocorrelation (PACF) plots [14]. Figure 7 shows the autocorrelation plot for 

the Tennessee shigellosis incidence rate data; the slightly exponential pattern here demonstrates a 

need for a model with an autoregressive process of order 2. Figure 8, the partial autocorrelation 

plot, has one large, significant spike at the beginning of the series, indicating a need for a model 

with an autoregressive process of order 1. Both of these plots confirm that some sort of time 

dependency exists in the data that can be accounted for by lags.  

 

Outlier identification and smoothing 

Since the outliers in 1998 are large, we smooth them down to better reflect the peak of the 

typical cycle. The highest data point is now at three standard deviations away from the training 

dataset’s mean with the second highest data point slightly below three standard deviations, as 

seen in Figure 9. We perform decomposition, dynamic linear regression, and moving origin, 

fixed horizon decomposition models on the smoothed data. All of these models allow for cyclical 

and seasonal elements, but we are still unable to achieve preferred model performance since the 

R2 training and R2 holdout are not close, as seen in Table 1. Therefore, the smoothing of the 

outliers is unnecessary. 
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Time-series model results  

Table 2 provides the summary of the models examined including time-series regression, 

Winters Exponential Smoothing, decomposition, ARIMA, and dynamic linear regression. Most 

of the models do not perform well because they are not catching the cyclical nature of the series. 

None of the R2 training values is close to its corresponding R2 holdout value. Additionally, the 

only model to result in a positive R2 holdout value is Holt-Winters Exponential Smoothing with 

an additive trend and multiplicative seasonality. 

Three simple combination models with averages of the forecasts for Winters exponential 

smoothing and ARIMA(1,0,1), Winters exponential smoothing and decomposition, and 

decomposition and ARIMA(1,0,1) did not result in much better R2 values for the training set, and 

all R2 validation values were negative. The exact R2 values are in Table 3. This method shows 

that combining the already poor performing models in the case of this data does not improve the 

fit. 

 

Holt-Winters Exponential Smoothing 

Winters exponential smoothing model with additive trend and multiplicative seasonality is 

the only forecasting model that has positive R2 for both the training set and the validation set. 

With the smoothed data, the holdout fit actually slightly decreases with this model. Therefore, it 

was in our best interest to keep the original, unmodified data set. Even though the R2 values are 

both positive, we ideally would like the two R2 values to be similar, and 0.597 and 0.258 are not 

close; the model does not adequately forecast the incidence rates. 

Figure 10 and Figure 11 visually show how the Winters exponential smoothing model 

performs on this Tennessee shigellosis incidence rate data. The Winters exponential smoothing 

model captures the cycles’ peaks and valleys as well as some of the seasonality, but the data and 

the forecasts do not perfectly align, causing the R2 values to be lower. 

 

DISCUSSION 

Conclusion and Suggestions 

Winters exponential smoothing resulted in the best forecasting model for Tennessee’s 

shigellosis data. About 60% of the variation in the shigellosis incidence rates between 1995 and 

2011 can be explained by this model, whereas only about 25% of the variation in shigellosis 
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incidence rates in the holdout sample can be explained by Winters exponential smoothing. 

Although this forecast provides us some sense of knowledge about the patterns in the data, there 

is no normality or white noise of residuals, so there is room for improvement in the model. For 

this reason, we do not recommend using Winters exponential smoothing with additive trend and 

multiplicative seasonality on Tennessee’s shigellosis incidence rates. Instead, more advanced 

models that better incorporate the cyclical and seasonal elements should be utilized. For instance, 

Winters exponential smoothing with ARIMA for the cyclical element in the decomposition mode 

might be an option.  

Other disease data are better modeled by more advanced models. Tuberculosis, as well as 

other diseases, in China, for example, is best modeled by a hybrid model that combines ARIMA 

models and generalized regression neural network models [15]. Therefore, more advanced 

models may be necessary for Tennessee’s shigellosis data. 

Also, a different holdout period, forecast range, or cycle prediction may improve our time-

series forecasting models. Other suggestions for improvement include the inclusion of a 

geographical breakdown by region or county and a breakdown by age since shigellosis is 

common in young children.  

Limitations   

All of the data used for this forecasting project had to be laboratory confirmed cases of 

shigellosis. The Centers for Disease Control and Prevention estimate the actual number of cases 

to be much higher so our modeling may not reflect the actual incidence rates. Without confirmed 

cases, records of outbreaks are difficult to pinpoint.  

Additionally, we limited ourselves to using NCSS and SAS software packages. More 

complicated models as well as other packages may have provided more accurate models for 

Tennessee’s disease data. 
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TABLES AND FIGURES  
Table 1. Time-series forecasting models and their performance in forecasting smoothed 

shigellosis incidence rates in Tennessee. 
  R2 R2 Holdout 
Stable Seasonal Automatic Decomposition 0.6754825 -9.0469167 
Changing Seasonal Decomposition 0.445713932 -5.3311764 
Dynamic Linear Regression with cyclical element, cubic 
trend, and seasonal dummies 0.632 -2.85 

R2 is the training R2 ,or the prediction R2. 
R2 Holdout is the holdout R2, or the validation R2 . 
Models ideally have similar, positive R2 values. 

 
Table 2. Time-series forecasting models and their performance in forecasting shigellosis 

incidence rates in Tennessee. 
  R2 Normality of 

residuals? 
White 

noise in 
residuals

? 

R2 

Holdout 

Multiplicative Regression 
with Trend and Seasonal 
Components without 
Interaction terms 

-0.01715 No No -2.17487 

Additive Regression with 
Trend and Seasonal 
Components without 
Interaction terms 

0.0626 No No -9.28059 

Additive Trend, 
Multiplicative Seasonality 
Winter’s Exponential 
Smoothing 

0.59733 No No 0.25794 

Stable Seasonal Automatic 
Decomposition  

0.60575 No No -7.9688 

Changing Seasonal 
Decomposition 

0.38925 No No -10.5252 

ARIMA(1,0,1) 0.54208 No Yes -10.0994 
Dynamic Linear 
Regression with 
Exponential Trend + 
ARIMA(1,0,1)s No 
Intercept 

0.63283 No No -0.165 

R2 is the training R2, or the prediction R2.  
Normality of residuals refers to the distribution of the residuals for each model. 
White noise in the residuals describes the adequacy of the model fit to the data. 
R2 Holdout is the holdout R2, or the validation R2 . 
The ideal model will have similar, positive R2 values, normality of residuals, and white noise. 
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Table 3. Time-series combination forecasting models and their performance in forecasting 

shigellosis incidence rates in Tennessee. 
  R2 R2 Holdout 
Winters Exponential Smoothing and 
ARIMA(1,0,1) 0.593556502 -2.394410276 
Winters Exponential Smoothing and 
Decomposition 0.773730285 -0.446069372 
Decomposition and ARIMA(1,0,1) 0.539510984 -5.711060638 

R2 is the training R2 ,or the prediction R2. 
R2 Holdout is the holdout R2, or the validation R2 . 
Models ideally have similar, positive R2 values. 
 
 

 

 
Figure 1. Time-series plot of the monthly incidence rate of shigellosis in Tennessee from 1995 to 

2012. 



   

 13 

 
Figure 2. Time-series plot of the monthly incidence rate of shigellosis in Tennessee from 1995 to 

2011. 
 
 
 

 
Figure 3. Time-series plot of the monthly incidence rate of shigellosis in Tennessee in 2012. 
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Figure 4. Monthly incidence rate of shigellosis in Tennessee by year from 1995 to 2012. 

 

 
Figure 5. Box plots of monthly incidence rate of shigellosis in Tennessee from 1995 to 2012. 
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Figure 6. Monthly incidence rate of shigellosis in Tennessee from 1995 to 2011, emphasizing the 

outliers above 3 standard deviations. 
 

 
Figure 7. Autocorrelation plot for Tennessee’s shigellosis incidence rate per 100,000 people. 

 

!
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Figure 8. Partial autocorrelation plot for Tennessee’s shigellosis incidence rate per 100,000 

people. 
 

 
Figure 9. Smoothed time-series plot of monthly incidence rate of shigellosis in Tennessee from 

1995 to 2011.  
 

!
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Figure 10. Overlay plot of Winters exponential smoothing model monthly forecasts and the 

training data for shigellosis incidence rates in Tennessee. 
 
 

 
Figure 11. Overlay plot of Winters exponential smoothing model monthly forecasts and the 

holdout data for shigellosis incidence rates in Tennessee. 
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