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Abstract 

 Bioluminescent imaging (BLI) systems possess several benefits over their fluorescent 
counterparts, including negligible interference from target tissues, and are therefore prevalently 
used in cellular and molecular research. Furthermore, a recently created human cell line expressing 
the bacterial luciferase (lux) gene cassette has resulted in autonomous bioluminescent production 
without the addition of exogenous substratrate or cell lysis. This BLI’s ability to monitor cellular 
events on an extended basis and a notable deep tissue detectability may prove particularly 
applicable for evaluating previously difficult to image systems such as 3D tissue culturing 
techniques. These platforms attempt to mimic natural in vivo conditions, facilitating cell-to-cell 
contact and extracellular matrix (ECM) dynamics. In this research, several 3D culture techniques 
signifying a diverse coverage of available varieties were evaluated, ranging from magnetic 
levitation to gel encapsulation. Detectable bioluminescent signals were observed for all of the 3D 
culture techniques. These results demonstrate the feasibility of the lux BLI for this application, 
permitting the evaluation of 3D cellular dynamics for both short term and long term investigations.  
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Introduction 

The development of bioluminescent imaging (BLI) systems throughout the previous 
decades has transformed the biotechnical and biomedical sciences. These systems harness 
bioluminescence, the production of light from a living organism through biochemical reactions, to 
visualize a diverse range of biological and chemical processes within a living system. This process, 
which is accomplished through the use of an oxidative, light producing enzyme such as firefly, 
Renilla, or bacterial luciferase, has become increasingly popular as a diagnostic tool within the 
scientific community compared to its fluorescent counterpart due to the complete absence of 
endogenous bioluminescence in tissue1. In contrast, background fluorescence from the myriad of 
autoflourescent molecules found within biological structures is commonly encountered as 
interference, severely limiting the fluorescent imaging’s capabilities2.  The near background-free 
nature of BLI therefore provides a characteristically more sensitive means of detection3.  

These highly sensitive, high resolution BLI systems are therefore particularly well suited 
to use in in vivo studies. Utilizing the bacterial bioluminescence lux cassette, researchers are 
capable of monitoring cellular events on a repeated and extended basis whereas traditional, 
enzymatic techniques are limited to providing only single data points at selected time points or 
upon completion of the event4. For example, TUNEL and MTT assays, commonly used to assess 
cell viability, necessitate the destruction of the sample by formaldehyde fixation and potential 
mutagenesis, respectively.  

In particular, bacterial bioluminescence (lux) has recently been demonstrated as a powerful 
imaging tool via the creation of an autonomously bioluminescent human cell line5. Unlike firefly 
or Renilla luciferase-based systems, this cell line does not require the addition of an exogenous 

substrate to initiate production of a detectable signal. Instead, the lux gene cassette synthesizes 
both the light production luciferase enzyme, as well as the entire assemblage required for substrate 
production and regeneration. In combination with abundant metabolites and membrane precursors, 
this architecture therefore permits the fully autonomous generation of a bioluminescent signal 
(Figure 1). 

Other demonstrated benefits of this system include non-invasive in vivo compatibility and 
a defined quantitative correlation between signal strength and cell number. These traits are 

Figure 1. Schematic demonstrating the biochemical pathways and intermediates through 
which the lux cassette produces a bioluminescent signal that peaks at 490 nm. 
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relatively unique to the lux system, as several studies focusing on the alternative BLI luciferases 
have demonstrate that they are comparatively volatile in mammalian systems due to 
thermoinstability (measured half-lives of several minutes) and rapidly consuming their required 
substrate, compelling prompt evaluation6, 7. On the other hand, the stable and consistent activity of 
the lux cassette permits a particularly accurate correlation between the number of cells and the 
bioluminescent signal strength8. Using this relationship, researchers can therefore more precisely 
investigate the dynamics of cell growth in a non-destructive and continuous manner. Furthermore, 
recent optimization of this system has resulted in a dramatic increase in bioluminescent signal 
intensity as compared to the originally published lux system, permitting signal detection at lower 
cell concentrations and in deep tissue experiments9.  

Nevertheless, it is important to note that several disadvantages remain with respect to 
bacterial bioluminescence as compared to other BLIs. The most pertinent of these is that the 
resultant signal intensity of the lux reaction is significantly less than that produced by firefly 
luciferases, even when optimized lux-expressing cell lines are employed10. Similarly, the 490 nm 
wavelength of the lux signal maintains a greater propensity for absorption in animal tissues, 
requiring bacterial bioluminescence-based experiments to employ exceptionally sensitive imaging 
equipment and further increasing the difficulty of signal detection compared to other substrate-
requiring luciferase systems8.  

An important application of the lux BLI is a more in-depth evaluation of systems that 
traditional technology were unable to assess. For example, one of the principal goals of 
contemporary tissue culture research has been to develop platforms that mimic natural in vivo 
conditions for use as experimental analogs. Since standard monolayer tissue culturing methods 
lack several of the characteristic features of natural tissue such as omnidirectional cell-to-cell 
contact, extracellular matrix (ECM) interactions, and the structural influences on gas/nutrient 
diffusion and transport, multi-dimensional or 3D culturing methods have garnered attention as 
potential alternatives11, 12. Nevertheless, these novel systems remain mostly unevaluated because 
of imaging difficulties and thus, have not become widely employed13. The depth and complex 
nature of these platforms have limited the feasibility of most imaging techniques because 
comprehensive and accurate analysis of 3D biological structures would require a strong signal-to-
noise ratio (minimal interference from target) and significant tissue penetration14. 

In response to these challenges, this research endeavors to evaluate several of the novel 
culturing techniques using the previously developed autonomously bioluminescent human cell 
line. Demonstrating the capabilities of this BLI for 3D tissue culture imaging, its characteristic low 
background and deep tissue detectability should be compatible with evaluating previously difficult 
to image samples. Furthermore, the culturing techniques assessed represent a diverse range of 3D 
structure and a sound depiction of potential applications.  
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Materials and Methods 

Cell growth and maintenance 

Cell lines used in this study included a 1st generation lux-expressing autobioluminescent 
HEK293, a 2nd generation autobioluminescent HEK293 cell line that displayed a higher signal 
intensity compared to its 1st generation counterpart, and an autobioluminescent human colorectal 
carcinoma HCT116 cell line. HEK293 and HCT116 cells were grown, respectively, in Dulbecco’s 
Modified Eagle Medium (DMEM) and McCoy’s 5A medium (Hyclone), supplemented with 10% 
fetal bovine serum (FBS) (Hyclone), 1x sodium pyruvate (Life Technologies), 1x 
antibiotic/antimycotic (Life Technologies), 1x non-essential amino acids (Life Technologies), and 
Neomycin G418 (EMD Millipore) at a final concentration of 500 µg/ml G418 (750 µg/ml for 
HCT116). Cells were incubated at 37 °C with 5% CO2. Medium was refreshed approximately 
every three to four days. Cells were passaged upon reaching 80% confluence.  

Porous Polycaprolactone Scaffold (Kiyatec) 

Actively growing 1st generation autobioluminescent HEK293 cells were harvested from a 
75 cm2 tissue culture flask. Cell number was then determined using a hemocytometer with a 
Trypan Blue vital stain. Approximately 3.0 × 105 cells were plated in triplicate onto a non-tissue 
culture treated 24-well plate, a non-tissue culture treated 24-well plate housing the 
polycarprolactone 3D scaffold (Kiyatec), and a tissue-culture treated 24-well plate to mimic 
suspension, 3D tissue scaffold, and monolayer culturing conditions, respectively. After a 2 hour 
incubation at 37 °C with 5% CO2 to allow for cellular attachment to the scaffold and tissue culture-
treated surface, medium in the scaffold and monolayer culture was refreshed to remove any 
unattached cells. Bioluminescence was then monitored using an IVIS Lumina imaging system 
(Perkin Elmer) using a 10 minute integration at 15 minute intervals for 24 hours. 

Hyaluronic Acid Gel (Celenys) 

Following Celenys’s provided protocol, 24 hyaluronic hydrogels were plated in individual 
wells of a Ultra-Low binding 96-well plate (Corning) with 100µl of serum-free medium and 
incubated at 37 °C in a 5% CO2 environment for 72 hours to permit liquid absorption and gel 
expansion. Immediately prior to cell seeding, actively growing 2nd generation autobioluminescent 
HEK293 cells were harvested from a 25 cm2 tissue culture flask and counted using the Scepter 
automated cell counter (EMD Millipore). Cells were then washed with PBS and resuspended in 
growth medium to a final concentration of 5 × 105 cells/ml. To seed cells to the hydrogels, the old 
medium was removed from 21 of the 24 hydrogels and replaced with 100 µl freshly prepared cell 
suspension containing approximately 1.0 × 105 cells. The remaining 3 gels were refreshed with 
fresh medium to serve as negative controls. The plate was then incubated for 24 hours at 37 °C 
with 5% CO2 to permit cell attachment. After the 24 hour incubation, the medium was removed to 
eliminate unattached cells and 100 µl of fresh medium was added to each well. The plate was then 
incubated for 5 days at 37 °C with 5% CO2 without refreshing medium, in order to avoid any 
potential disruption of 3D structure formation. Following the 5 day incubation, fresh medium was 
added to each well.  

To validate the utilization of this platform for 3D tissue culture and the lux system as a 
potential imaging technique, Zeocin, an antibiotic in the bleomycin family, was added in triplicate 
to the cell-seeded gels following the initial 5 days of 3D structure development to create the 



6 
 

following treatment concentrations: 1800 µg/ml, 1500 µg/ml, 1200 µg/ml, 900 µg/ml, 600 µg/ml, 
and 300 µg/ml. Additionally, one cell-seeded gel triplicate remained unexposed to serve as a 
positive control and to provide a subject for long-term monitoring and assessment of the 3D 
structure’s continued dynamics. Bioluminescence was then monitored sing the IVIS Lumina 
imaging system (Perkin Elmer) with a 10 minute integration time at various intervals over a 96 
hour time course while maintaining the plate under standard incubation conditions between 
readings. Imaging for the positive control was performed similarly, but was continued over 263 
hours, concluding when it was no longer statistically differentiable from the negative control. 
Medium in this well was refreshed after the initial 96 hour screening and every third day 
afterwards. 

Although the Ultra-Low binding plate advertises insignificant cellular attachment, control 
runs were employed to determine any effects that cells not attached to the hydrogel and not 
removed by refreshing might have had on the results. Actively growing 2nd generation 
autobioluminescent HEK293 cells were plated in triplicate on an Ultra-Low binding 96-well plate 
at the following concentrations: 5.0 × 104 cells/ml, 1.0 × 105 cells/ml, 1.5 × 105 cells/ml, 2.0 × 105 
cells/ml, and 2.5 × 105 cells/ml. Subsequently, the plate was incubated for 24 hours at 37 °C and 
then refreshed to remove any unattached cells, mimicking the hydrogel protocol. However, in this 
case the spent medium was collected and imaged using a 10 minute integration, and the resultant 
bioluminescent signal was correlated with the originally plated concentration. After an additional 
5 days of incubation, the medium was again refreshed and the plate was imaged to ascertain the 
bioluminescence of any remaining cells. 

Magnetic Levitation Bioassember (N3D Bio) 

Actively growing 2nd generation autobioluminescent HEK293 cells growing in 25 cm2 
tissue culture were incubated with 200 µl of the magnetic nanoparticle solution overnight. The 
cells were then harvested, counted using the Scepter, and resuspended in fresh medium. 
Approximately 1.0 × 104, 2.5 × 104, 5.0 × 104, 7.5 × 104, 1.0 × 105, 2.5 × 105, and 5.0 × 105 cells 
in 400 µl volume were plated in duplicate in an Ultra-Low binding 24-well plate (Corning) along 
with triplicate 400 µl medium only controls. After plating, the magnetic drive and opaque spacer 
were positioned following manufacturer’s protocol. The plate was then incubated at 37 °C with 
5% CO2. 

Each well was refreshed every third day by removing old medium and adding 400 µl of 
fresh medium. To facilitate the integrity of the 3D structure and ensure that cells were not removed 
during refreshing, the magnetic drive was placed upside-down underneath the plate, magnetically 
adhering the cells to the bottom of the well. Before repositioning the magnetic drive and opaque 
spacer above the wells, each was sterilized with 70% ethanol.  

Furthermore, the plate was imaged over a 45 day period at various intervals using the IVIS 
Lumina imaging system. Imaging procedure included removing the magnetic drive and opaque 
spacer, which did not permit bioluminescence visualization, and a 10 minute integration.   

UV Cross-linked Poly-ethylene Glycol Hydrogel 

Polymerized polyethylene glycol (PEG) hydrogels have been well-researched and are 
commonly used for in vivo studies because of their biocompatibility across a wide range of 
matrices15-17. Recent studies have shown that polymerization by UV cross-linking may permit 
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encapsulation of cells in 3D structures, maintaining cell viability18, 19. To evaluate this 3D tissue 
culture technique, several experiments were performed to determine 1) the optimal UV wavelength 
to allow for cross-linking while maintaining cell viability and bioluminescent emission, 2) the 
bioluminescent dynamics of the PEG-encapsulated cells, and 3) potential toxicity of the PEG 
hydrogel.  

 To determine the optimal UV wavelength for maintaining cell viability and 
bioluminescence, approximately 2.0 × 105 2nd generation autobioluminescent HEK293 cells along 
with equal volume of medium were plated in triplicate wells of three 24-well plates, which were 
immediately imaged using a 10 min integration time in the IVIS Lumina imaging system. 
Following the initial bioluminescent reading, each of the three plates was exposed to 245 nM or 
365 nm UV for 10 minutes, or left unexposed, respectively. The plates were then reimaged using 
a 10 minute integration to evaluate the effects of UV exposure. This procedure was repeated to 
include 20 minutes of UV exposure. 

To encapsulate the cells, actively growing 2nd generation autobioluminescent HEK293 cells were 
harvested from 75 cm2 tissue culture flasks, washed with PBS, counted using the Scepter, and 
resuspended in the gel precursor solution at a final concentration of 1.0 × 106 or 107 cells/ml. The 
gel precursor solution consisted of 30%, 25%, 20%, or 15% (w/w) PEG and the photoinitiator (4- 
(2-Hydroxyethoxy) phenyl-(2-hydroxy-2-propyl) ketone) at a final concentration of 30 mg/ml in 
DMEM medium. Ten microliter of each cell/precursor suspension was then pipetted in duplicate 
between two sterile glass plates separated by a thin plastic strip, followed by a 10 minute exposure 
to 365 nm UV to initiate hydrogel formation. The gels that properly developed were transferred to 
individual wells of in a black 96-well plate and immersed in 200 µl of medium. Equal volumes of 
medium and unexposed cells were included as negative and positive controls, respectively. 
Bioluminescence was visualized in the IVIS Lumina imaging system using a 10 minute integration 
at 30 minute intervals for 21 hours.  

Finally, toxicities of the PEG and the photoinitiator were assessed by suspend ~ 1.0 × 104 
2nd generation autobioluminescent HEK293 cells in triplicate in 100 µl of the following solutions: 
DMEM medium, DMEM + 30% PEG, DMEM + 30 mg photoinitiator/ml, and DMEM + 30% 
PEG + 30 photoinitiaator mg/ml. Bioluminescence was then visualized using a 10 minute 
integration in the IVIS Lumina imaging system. After imaging, each triplicate was combined and 
centrifuged at 1250 rpm for 7 minutes. Each pellet was washed with PBS and resuspended in 200 
µl of fresh medium and imaged using the same procedure as described above. 
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Results 

Porous Polycaprolactone 3D Scaffold 

The bioluminescent activity of the 1st generation autobioluminescent HEK293 cells grown 
on the Kiyatec polycaprolactone 3D culture scaffolds proved significantly greater than the medium 
control (student’s t-test p < 0.0002) and those grown as a monolayer (p < 0.004) or in suspension 
(p < 0.02). Furthermore, an increasing trend was observed until approximately 8.5 hours at which 
a steady decrease began (Figure 2). Nevertheless, a drop in bioluminescence that opposes this trend 
was observed for each sample centered at ~13 hours. 

 

 

 

 

 

 

 

 

 

Figure 2. HEK293 cells plated onto the Kiyatec polycaprolactone 3D culture scaffold, in 
suspension, and in a monolayer. These treatments were imaged over a 24 hour period. 
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Hyaluronic Acid Gel 

 Exposure of bioluminescent cells grown on the hyaluronic acid hydrogels to various 
concentrations of the antibiotic Zeocin ranging from 300 to 1800 µg/ml demonstrated a consistent 
decreasing trend, eventually becoming non-differentiable from the medium control (Figure 3). 
However, only a slight correlation was observable between antibiotic concentration and 
bioluminescence (R2=0.49 after 24 hours). Nevertheless, bioluminescent signal produced from the 
unexposed cells remained distinguishable from the medium control throughout the experiment. 

Therefore, imaging of the unexposed cells was continued for additional 167 hours to further 
demonstrate the extended imaging and culturing capabilities of the autobioluminescent cells on 
the hyaluronic acid hydrogel (Figure 4). Although bioluminescence peaked hours after the 5 day 
incubation, cell viability and activity were maintained throughout the imaging duration. It must 
also be noted that an extreme outlier exhibiting bioluminescent activity more than 2.5 times of the 
maximum demonstrated at the 24 hour time-point was excluded from the 192 hour replicates. To 
assess any confounding effects from cells attached to plate instead of to the hydrogel, varying 
numbers of 2nd generation autobioluminescent HEK293 cells were plated in individual wells of an 
Ultra-Low binding 96-well plate and incubated following manufacturer’s protocol. Imaging of the 
spent medium removed after the suggested one day incubation for cell attachment to the hydrogel 
revealed bioluminescent signals that correlated well (R2=0.96) with the number of cells initially 
plated (Figure 5), suggesting that cell attachment to the plate itself was negligible. Any potentially 
remaining cells attached to the plate were incubated for 5 days and the resultant bioluminescence 

Figure 3. Bioluminescence of 2nd generation autobioluminescent HEK293 cells plated onto 
Celenys hyaluronic gels and exposed to various concentrations of Zeocin. 
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was compared to a medium control. None of the samples demonstrated a significantly 
differentiable signal (p = 0.288, 0.090, 0.352, 0.059, and 0.061). 

 

 

Figure 4. Cells grown on the hyaluronic hydrogel without Zeocin treatment were imaged 
for 263 hours after the 5 day post-plating incubation and demonstrated a signal statistically 
differentiable from the control throughout.  

Figure 5. Bioluminescence produced from the spent medium containing unattached cells 
collected 1 day post plating to an Ultra-Low binding 96-well plate correlated well 
(R2=0.96) with the number of cells initially plated. 
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Magnetic Levitation Bioassember 

 Cells grown in 3D structures using the N3D magnetic levitation drive were imaged for 45 
days (Figure 6). Although the bioluminescence measured throughout the experiment did not 
demonstrate an observable pattern with respect to concentration plated, the initial bioluminescence 
at 24 hours after plating correlated well with concentration up to 1.0 × 105 cells (R2=0.94). The 
bioluminescent signal of the 5.0 × 105 and 2.5 × 105 sample became statistically non-differentiable 
from the medium control after 2 and 8 days, respectively. The remaining samples produced a 
detectable signal throughout the 45 days of experiment. 
 

 
UV Cross-linked PEG Hydrogel 

The comparative effects of 254 nm and 365 nm UV on cell viability and bioluminescence 
were assessed by plating equal number of 2nd generation autobioluminescent HEK293 cells and 
exposing the samples to different UV treatments (Figure 7). Cells exposed to 20 minutes of 365 
nm UV were not statistically differentiable from the unexposed cells (p = 0.93). However, after 10 
and 20 minutes, cells exposed to 254 nm UV produced significantly smaller bioluminescent signals 
than the positive control with a more pronounced difference after 20 minutes (p < 0.001 and p < 
0.00001 respectively). 

The encapsulation process was then repeated using 365 nm UV and varying concentrations 
of PEG (Figure 8). Although the positive control consisting of 1.0 × 105 cells in equal volume of 
DMEM medium demonstrated detectable bioluminescent signals, none of the hydrogel samples 
was distinguishable from the medium only control regardless of PEG concentration. 

 

Figure 6. HEK293 cells incubated with magnetic nanoparticles, plated on an Ultra-
Low binding plate, and magnetically levitated. 
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Figure 7. Equal numbers of 2nd generation autobioluminescent HEK293 cells were exposed 
to different wavelength of UV for two 10 minute increments. A control that was not exposed 
to any UV was also included. 

Figure 8. HEK293 cells encapsulated in PEG hydrogels of various concentrations using 365 
nm UV. Along with a medium control, a positive control of 1.0 × 105 cells in 200 µl DMEM 
medium was also included. 
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Finally, approximately 1.0 × 104 2nd generation autobioluminescent HEK29cells were 
plated in solutions containing hydrogel reagents at the concentrations used for gel formation 
(Figure 9). The sample containing cells in medium only produced a statistically significant 
bioluminescent signal from the medium control (p = 0.0002). In contrast, none of the samples 
containing hydrogel precursor reagents were differentiable from the medium control 
(photoinitiator: p = 0.76, PEG: p = 0.10, and photoinitiator + PEG: p = 0.05). 

To evaluate whether the results presented in Figure 9 stemmed from cytotoxicity or UV 
absorbance, the samples were collected, washed with PBS, and resuspended in fresh medium. No 
bioluminescent signal was observable for any treatment except for cells that were not exposed to 
hydrogel precursor reagents (Figure 10). 

Figure 9. Comparison of bioluminescence produced from equal number (1.0 × 104 of 
2nd generation HEK293 cells suspended in various PEG hydrogel precursor solutions 
without UV exposure. 

Figure 10. The cells from Figure 9 were washed, replated, and imaged. Only the cells that were 
previously plated in simple medium demonstrated a detectable bioluminescent signal. 
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Discussion 

Utilizing an autonomously bioluminescent HEK293 cell line, the polycaprolactone 3D 
tissue scaffold was compared to traditional monolayer and suspension cultures. Since the health 
and metabolic activity of the cells had previously been correlated with bioluminescent signal and 
the purpose of pursuing 3D tissue culture is to provide an environment that mimics in vivo 
conditions, the resultant signal dynamics represent the cellular differences created by these 
dissimilar culture techniques20. Signifying dynamics that were previously unmeasurable due to 
technological and imaging limitations, this data demonstrates the feasibility of using the lux 
cassette as a 3D culture imaging tool. Furthermore, the activity and growth of cells demonstrated 
by these results validate the potential of this scaffold as a 3D culture platform. The metabolic 
activity as measured through bioluminescent signal for cells plated on the 3D scaffold was 
statistically higher than the suspension and monolayer cultures, highlighting the differences 
between traditional culture techniques and in vivo conditions. As numerous studies have shown, 
these differences can be pronounced and are the principal reason for culture technique comparison 
21, 22. 

The bioluminescent activity of the cells plated on hyaluronic acid hydrogels and exposed 
to the antibiotic Zeocin only demonstrated a minor measurable pattern. Although bioluminescent 
activity was detectable and all samples tended towards the medium control, antibiotic 
concentration was not correlated well with any particular change in bioluminescence, divergent 
from similar studies utilizing the same conditions in 2D culture23. Cytotoxicity and drug screening 
studies have shown that 3D culture more closely resembles in vivo clinical studies in drug efficacy, 
resulting from networked intercellular interactions and a greater resistance to toxic compounds24, 

25. Thus, the unpatterned results of Zeocin on the hyaluronic acid hydrogel-based 3D cultures may 
plausibly be explained by the heterogeneity of the 3D culture and increased resistance to damaging 
environmental conditions and the stability of in vivo-like systems. 

However, the positive control that was not exposed to any antibiotic continued producing 
a detectable bioluminescent signal as expected. Further imaging revealed a statistically significant 
signal throughout and an increase in bioluminescent activity after the wells’ first medium refresh. 
Demonstrating the hyaluronic acid hydrogel’s capability for extended culture and the potentially 
related cyclical dynamics of nutrient use and replacement, the lux-based autobioluminescent cells 
were further validated as a capable tool for 3D culture evaluation. 

To identify any potential confounding effects caused by cells that unexpectedly attached 
to the Ultra-Low binding plate, a range of concentrations were plated and incubated following the 
Celenys protocol. The spent medium removed after the 1 day incubation required for attachment 
to the hyaluronic hydrogel produced detectable bioluminescent signals at all concentrations. 
Furthermore, these signals correlated well with the concentrations originally plated, suggesting 
that the cells plated were predominantly recovered. However, to fully discount unintentional 
attachment, the entire Celenys protocol was completed and the plate imaged. Since no detectable 
signal was observed for any of the concentrations, the hyaluronic hydrogel results appeared to be 
unaffected by inadvertent attachment. As previous studies have shown, these unidentified 
attachments can interfere significantly with accurate signal detection26. The cells used in this 
experiment have demonstrated detectable signals at quantities as low as 103, suggesting that even 
a small fraction of plated cells adhering to an attachment resistant plate could bias results.  
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In opposition to providing cells with a physical scaffold, levitation using magnetic 
nanoparticles bound to target cells has been proposed to create 3D structures that mimic natural 
conditions27. In this experiment, most of the cells cultured and plated using the magnetic 
bioassembler demonstrated detectable bioluminescent signal over a 45 day period. However, the 
5.0 × 105 and 2.5 × 105 samples respectively stopped producing a detectable signal after 2 and 8 
days, indicating a maximum capacity for maintaining proper cellular health. Furthermore, although 
research suggests that cells will detach and grow independent from the magnetic nanoparticles 
after 8 days, careful handling promoted the maintenance of the 3D structure for approximately 45 
days. Further research and experimentation will be required to accurately elucidate applicable 
conclusions since only minor patterns were observed from this data, but the signal dynamics 
demonstrated substantiate the long-term imaging and culturing capabilities of the 
autobioluminescent cells and magnetic levitation systems. 

In addition to the 3D culture techniques discussed above, UV cross-linkable PEG hydrogel 
was also evaluated in this study. Although both 254 nm and 365 nm UV exposure are effective in 
PEG hydrogel formation, cells exposed to 245 nm UV displayed a significant decrease in 
bioluminescent signal relative to those exposed to 365 nm UV. Given that 254 nm UV is a known 
and prevalently used microbicidal instrument, the absence of bioluminescent activity was plausibly 
attributed to UV damage28. Since exposure 365 nm UV had minimal effect on bioluminescent 
emission (Figure 7), the encapsulation process was evaluated using 365 nm low energy UV 
exposure. Additionally, the PEG concentration was varied with hopes of improving cell viability 
during the encapsulation process. Although the literature used as a blueprint for encapsulation 
states that 30% (w/w) PEG maintains cellular health, other studies have shown that PEG 
concentrations above 10% can be damaging18, 19, 29. Increasing PEG concentrations result in a 
firmer and more easily manipulated gel but the dense polymer limits nutrient diffusion for long 
term viability and increases free-radical concentrations during gel formation. However, after 21 
hours of continuous imaging, no detectable bioluminescent signal was observed for any of the PEG 
concentrations, whereas, the positive controls of 105 cells resuspended in 10 µl medium 
demonstrated significant bioluminescent activity.  

The cells were then suspended in solutions containing one or both of the hydrogel reagents 
at the same concentrations used for gel formation without UV exposure to evaluate potential 
negative impacts on bioluminescent activity. The samples containing these reagents were not 
differentiable from the medium control whereas cells plated in medium were statistically greater. 
Furthermore, subsequent washing of these cells and replating in medium did not affect 
bioluminescent activity, suggesting that the compounds are toxic and not simply absorbing the 
bioluminescent signal, a plausible hypothesis given the photo-active nature of the polymerization 
initiating reagent. 

In conclusion, the UV cross-linked PEG hydrogel did not prove successful. Encapsulation 
of autobioluminescent cells using high and low energy UV exposure and various PEG 
concentrations did not demonstrate a detectable bioluminescent signal. Thus, subsequent research 
may endeavor to evaluate additional encapsulation methods. Although free radical cross-linking 
remains a significant challenge to cell viability, various chemically cross-linked gels have 
demonstrated potential encapsulation application without the use of free-radical polymerization. 
For example, gel formation using collagen backbones and chemically induced cross-linking has 
been demonstrated and is commercially available30. Preliminary research conducted using this 
encapsulation process appears promising. Although inconsistent, encapsulation has been achieved 
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while maintaining cell viability and bioluminescent activity (Figure 11). Current experimentation 
endeavors to evaluate a commercially available protocol and alter it for consistent encapsulation 
of autobioluminescent HCT116 cells. The success of these experiments will serve to validate the 
lux cassette’s use for imaging 3D encapsulation matrices.  

 

 
 
 
 
  

Figure 11. Preliminary collagen encapsulation of the autobioluminescent HCT116 cells. 
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