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Bacteria have been widely reported to use quorum sensing (QS) systems, which employ
small diffusible metabolites to coordinate gene expression in a population density
dependent manner. In Proteobacteria, the most commonly described QS signaling
molecules are N-acyl-homoserine lactones (AHLs). Recent studies suggest that members
of the abundant marine Roseobacter lineage possess AHL-based QS systems and are
environmentally relevant models for relating QS to ecological success. As reviewed here,
these studies suggest that the roles of QS in roseobacters are varied and complex. An
analysis of the 43 publically available Roseobacter genomes shows conservation of QS
protein sequences and overall gene topologies, providing support for the hypothesis that
QS is a conserved and widespread trait in the clade.

Keywords: quorum sensing, Roseobacter , marine bacteria, biogeochemical cycles, acyl-homoserine lactones

INTRODUCTION
When acting as coordinated communities, bacterial populations
are able to influence their local environment in manners that
are unachievable by individual cells. It has been widely reported
that phylogentically diverse bacteria use genetic regulatory sys-
tems, known as quorum sensing (QS) systems, to coordinate
gene expression in a population density dependent manner (e.g.,
Fuqua et al., 2001; Pappas et al., 2004; Case et al., 2008; Ng and
Bassler, 2009). Among other things, QS is hypothesized to facil-
itate maximal access to available nutrients through the use of
exoenzymes (Vetter et al., 1998; Schimel and Weintraub, 2003),
the colonization of desirable niches (Nadell et al., 2008, 2009),
and competitive advantages against other organisms (Folcher
et al., 2001; Chin-a-Woeng et al., 2003; Barnard et al., 2007). The
chemical mediators of QS are often small molecular weight dif-
fusible molecules (Fuqua et al., 2001; Churchill and Chen, 2011).
A well-characterized type of QS uses N-acyl-homoserine lac-
tones (AHLs) and appears exclusive to Proteobacteria (Case et al.,
2008). Canonical AHL-QS systems produce and respond to AHLs
using two proteins that mediate signal production and response,
LuxI and LuxR-like proteins, respectively (Nealson et al., 1970;
Ruby, 1996). The genes encoding these two proteins are often
located adjacent to one another on the chromosome (Fuqua et al.,
1996; Churchill and Chen, 2011; Gelencsér et al., 2012). LuxI-
like proteins synthesize AHLs by cyclizing S-adenosyl methionine
into a lactone ring and the addition of an acylated carbon chain
from fatty acid biosynthesis pathways (Schaefer et al., 1996).
Chain length and modification at the third carbon (either -H, -
OH, or -O) allow for species or group specificity (Schaefer et al.,
1996; Fuqua et al., 2001). LuxR-like proteins are response regula-
tors that mediate the expression of genes required for communal

behavior in response to intracellular concentrations of cognate
AHLs (Fuqua and Winans, 1994; Fuqua et al., 1996). Activated
LuxR proteins often upregulate luxI transcription to enhance the
rate of AHL synthesis, increasing AHL concentrations, and also
modulate the expression of other genes (Fuqua et al., 1996, 2001;
Case et al., 2008).

AHL-based QS is common in Proteobacteria, which are abun-
dant in coastal marine systems (Dang and Lovell, 2002; Waters
and Bassler, 2005; Ng and Bassler, 2009). One of the most
abundant and biogeochemically active groups of marine a α-
proteobacteria is the Roseobacter clade (Gonzalez and Moran,
1997; Buchan et al., 2005). Roseobacters can comprise up to
30% of the total 16S rRNA genes in coastal environments and
up to 15% in the open ocean (Buchan et al., 2005; Wagner-
Dobler and Bibel, 2006). In coastal salt marshes, roseobacters are
the primary colonizers of surfaces and mediate a wide range of
biogeochemically relevant processes, including mineralization of
plant-derived compounds and transformations of reduced inor-
ganic and organic sulfur compounds (Gonzalez and Moran, 1997;
Dang and Lovell, 2000; Buchan et al., 2005; Dang et al., 2008).
Here, we describe some of the most compelling recent research
that focuses on QS in the Roseobacter clade, provide a genomic
perspective of QS systems in roseobacters, and highlight areas for
further investigation.

ROSEOBACTERS AND QUORUM SENSING
QS was first reported in roseobacters associated with marine snow
and hypothesized to contribute to the ability of group mem-
bers to colonize particulate matter in the ocean (Gram et al.,
2002). Subsequent studies further demonstrated that roseobac-
ters are prolific colonizers of a variety of marine surfaces, both
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inert and living, and the contribution of QS to this ability and
other physiologies is of growing interest (Dang and Lovell, 2002;
Berger et al., 2011; Zan et al., 2012). Characterized Roseobacter
isolates produce diverse AHL structures with acyl chains rang-
ing from eight to eighteen carbons in length that display vary-
ing degrees of saturation as well as all three possible oxidation
states (-H, -OH, or -O) at the third carbon (for structures see
Gram et al., 2002; Wagner-Dobler et al., 2005; Cicirelli et al.,
2008; Mohamed et al., 2008; Thiel et al., 2009; Berger et al.,
2011; Zan et al., 2012). The production of AHLs has been
detected by LuxR-LacZ fusion bioreporters and mass spectrome-
try for several isolates (Gram et al., 2002; Wagner-Dobler et al.,
2005; Martens et al., 2007; Thiel et al., 2009; Berger et al.,
2011; Zan et al., 2012). Of the 43 publicly available Roseobacter
genomes, only five lack annotated luxI homologs: Oceanicola
batsensis HTCC2597, Oceanicola sp. S124, Pelagibaca bermu-
densis HTCC2601, Rhodobacterales bacterium HTCC2255, and
Ruegeria sp. TM1040. All except HTCC2255, however, have luxR
homologs (Table A2). Thus far, experimental studies of QS have
primarily focused on isolated representatives of the Ruegeria-
Phaeobacter branch of the Roseobacter clade, with the exception of
the description of a diunsaturated long chain AHL produced by
Jannaschia helgolandensis (Thiel et al., 2009), a survey of 31 AHL
producing isolates (Wagner-Dobler et al., 2005), and a recent
analysis of QS in Dinoroseobacter shibae, where QS was shown
to control motility, expression of a type IV secretion system, and
whether the cells divided by binary fission or budding (Patzelt
et al., 2013).

Culture-based studies of bacterial symbionts of marine
sponges suggest that roseobacters are the primary producers of
AHLs in these systems (Taylor et al., 2004). A model for sponge-
associated roseobacters has been established using Ruegeria sp.
KLH11 (Zan et al., 2011). Studies with this strain have been
informative in providing insight into the contributions of QS
to host-bacterial interactions. KLH11 contains two sets of luxRI
homologs, designated ssaRI (RKLH11_1559 and RKLH11_2275)
and ssbRI (RKLH11_1933 and RKLH11_260), and a recently dis-
covered orphan luxI, designated sscI, that is not annotated in the
publically available KLH11 genome. While orphan luxI have not
been widely described in the literature, they are best described as
luxI homologs that are not immediately adjacent to a correspond-
ing luxR homolog on the chromosome. It has been proposed that
sscI is a recent duplication of ssbI (Zan et al., 2012). Heterologous
expression of SsaI, SsbI, and SscI in Escherichia coli showed that
they predominantly produce long chain saturated and unsatu-
rated AHLs (C12-16). More specifically, SsaI produces 3O-AHL
variants whereas SsbI and SscI produce 3OH-AHLs (Zan et al.,
2012). The modification at the third carbon has been shown
to affect the binding affinity of signaling molecules to LuxR
homologs, and may allow KLH11 to finely tune its metabolism
to cellular density and AHL diversity (Koch et al., 2005). KLH11
mutants deficient in QS display impaired motility, which cor-
responds to decreased transcription of genes encoding flagella
biosynthesis machinery. The QS and motility impaired mutants
form drastically thicker biofilms, suggesting when motility or QS
is retarded, biofilm formation is increased (Zan et al., 2012). This

may also suggest that biofilm formation may not be directly con-
trolled by QS, but that when quorum is achieved, motility and
biofilm dispersion are induced. Recent work has shown a phos-
phorelay system that controls motility in KLH11 is induced by
QS (Zan et al., 2013). A similar phenotype has been observed
in other roseobacters, and this trend may extend across the
Ruegeria-Phaeobacter subgroup (Bruhn et al., 2006; Dobretsov
et al., 2007).

QS-mediated physiologies have been implicated in one of the
few examples of roseobacters demonstrating antagonistic behav-
ior toward a eukaryotic host. Nautella (formerly Ruegeria) sp.
R11 readily colonizes the macroalga Delisea pulchra resulting in
bleaching and subsequent death (Case et al., 2011; Fernandes
et al., 2011). To combat infection, D. pulchra produces halo-
genated furanones, which have been shown to block AHL-based
QS systems in many bacterial species. Active synthesis of fura-
nones prevents macroalgal colonization by epiphytic bacteria,
including Nautella sp. R11. However, in the absence of halo-
gen substrates required for furanone biosynthesis, colonization
occurs rapidly (Manefield et al., 1999; Hentzer et al., 2002;
Defoirdt et al., 2007). Further, it appears furanones may be effec-
tive against other potentially pathogenic Ruegeria spp. (Zhong
et al., 2003).

QS is closely connected to antimicrobial production in sev-
eral roseobacters. In Phaeobacter sp. strain Y4I, the regulatory
controls dictating the production of the antimicrobial compound
indigoidine are complex and include QS. Indigoidine production
confers a competitive advantage to Y4I when grown in co-culture
with Vibrio fischeri. Transposon insertions in either of two sep-
arate luxRI-like systems leads to an inability of Y4I mutants to
produce wildtype levels of indigoidine and an inability to inhibit
the growth of V. fischeri. This indicates a role for both QS systems
in the synthesis of indigoidine (Cude et al., 2012). The presence
of multiple QS systems in the genomes of many roseobacters sug-
gests multi-layered control is a common feature to regulate energy
intensive processes, including secondary metabolite production.

Tropodithietic acid (TDA) is a broad spectrum antimicrobial
produced by multiple roseobacters in response to QS (Bruhn
et al., 2005; Porsby et al., 2008; Berger et al., 2011). Genome anal-
yses of Phaeobacter gallaeciensis strains isolated from geographi-
cally distant locations suggest they are capable of producing both
AHLs and TDA (Thole et al., 2012). P. gallaeciensis 2.10 has been
suggested to produce TDA in response to AHLs while colonizing
the marine alga Ulva australis, thus protecting the alga from bac-
terial, fungal, and larval pathogens (Rao et al., 2007). A closely
related strain, P. gallaeciensis DSM17395, which has also been
shown to colonize U. australis (Thole et al., 2012), produces N-3-
hydroxydecanoyl-homoserine lactone (3OHC10-HSL) using the
LuxI homolog PgaI. 3OHC10-HSL activates the adjacent regu-
lator, PgaR, in a concentration dependent manner, which leads
to the upregulation of a TDA biosynthetic operon (Berger et al.,
2011). Interestingly, in a �pgaI strain of DSM17395, addition
of exogenous TDA is sufficient to upregulate TDA biosynthesis
machinery, suggesting that regulation of TDA biosynthesis may
involve multiple signals in some strains (Berger et al., 2011). The
dual role of TDA as an autoinducer and an antimicrobial has also
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FIGURE 1 | Continued
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FIGURE 1 | Maximum likelihood phylogenetic trees of Roseobacter LuxR-

(A) and LuxI-like (B) deduced amino acid sequences (see Appendix for

details). Strain designations are shown and gene locus tags of the
corresponding gene sequences can be found in Table A1. The scale bar
represents the substitutions per sequence position. The Roseobacter clade
number is represented in parentheses after the organism name and follows the
classification system identified in Newton et al., 2010. Proposed designations

of LuxR and LuxI subgroups in roseobacters are indicated by Greek character
subscript and color. Bootstrap values <50% (from 1000 iterations) are shown at
branch nodes. Sequences designated with a closed pentagon indicate
organisms that have been shown experimentally, by either bioreporters or
mass spectrometry, to produce AHLs (Wagner-Dobler et al., 2005; Rao et al.,
2006; Bruhn et al., 2007; Berger et al., 2011; Case et al., 2011; Zan et al., 2012).
Sequences designated with a circle are non-roseobacters.

been demonstrated in Ruegeria sp. TM1040, which lacks AHL-
based QS (Geng and Belas, 2010). Collectively, these data show
that in addition to AHLs, roseobacters use novel autoinducers.
In fact, recent investigations into novel non-fatty acyl-HSLs have
shown that at least one Roseobacter, Ruegeria pomeroyi DSS-3,
is capable of producing p-coumaroyl-homoserine lactone when
grown in the presence of the aromatic lignin breakdown prod-
uct p-coumaric acid (Schaefer et al., 2008). This discovery raises
the possibility that many novel signaling molecules could be pro-
duced by roseobacters in response to available local substrates,
specifically plant-derived aromatics which are primary growth
substrates for roseobacters (Buchan et al., 2000; Gulvik and
Buchan, 2013). The production of specific signaling molecules in
response to exogenously supplied substrates suggest a single signal
may convey information about both population density and envi-
ronmental conditions (i.e., availability of a substrate that serves
as both a source of organic nutrients and a colonizable surface),
which would dictate a specific set of behaviors.

QUORUM SENSING GENE HOMOLOGY AND TOPOLOGY
To understand the relatedness of AHL-based QS systems in
roseobacters, we performed a phylogenetic reconstruction of
the LuxI- and their neighboring LuxR-like sequences in 38
Roseobacter genomes. As solo LuxR homologs have been found
to bind a variety of ligands, including non-AHL molecules
from eukaryotic organisms (Pappas et al., 2004; Subramoni and
Venturi, 2009), it is difficult to infer their contribution in AHL-
based QS. Thus, luxR genes that are not adjacent to luxI genes
were not included in this analysis, but they are listed in Table A2.
Likely a result of the close relatedness of clade members and
instances of horizontal gene transfer (HGT), many of the LuxR-
and LuxI-like proteins analyzed show high sequence similarity
and can be grouped together (Figures 1A,B). Our phylogenetic
trees suggests there are four LuxR-like (designated Rα, Rβ, Rγ, and
Rδ) and four LuxI-like protein types (designated Iα, Iβ, Iγ, and
Iδ) found in most sequenced roseobacters, though more sequence
variants may be discovered as more genome sequences become
available.

Genome analysis demonstrates that multiple conserved QS
gene topologies are present within sequenced roseobacters, allow-
ing for classification by sequence similarity and gene orientation
(Figure 2 and Table A1). The most conserved gene topologies are
the A and B groups, of which 28 different Roseobacter genomes
contain one of the orientations, and three Ruegeria genomes
contain both. Genomes that contain the A topology have highly
similar LuxI and LuxR sequences (>63 and >70% similarity,
respectively) and its presence in three different roseobacter sub-
clades (defined in Newton et al., 2010) may be suggestive of

HGT (Figures 1A,B). Genomes with topology A share a Trigger
Factor (TF) encoding gene downstream from luxRI (Figure 2).
The location of this TF is conserved in seven genomes. Though
the function has not been examined in roseobacters, in Vibrio
cholera, TFs play a role in the folding and secretion of proteins
(Ludlam et al., 2004). The LuxI and LuxR of the A topology have
been designated Iα and Rα, respectively (Figure 2).

The B topology is the most prevalent among the sequenced
roseobacters and is found in four variations in 24 genomes
(Table A1). Like the A topology, the LuxI and LuxR protein
sequences are highly similar (>73%) between the organisms
that contain the B topology. This topology is found in mem-
bers of all five Roseobacter subclades identified by Newton et al.
(2010) (Figures 1A,B). The LuxI and LuxR of the B topology have
been labeled Iβ and Rβ, respectively (Figure 2). The conserved
regions of the B topology include genes encoding a crotonyl-CoA
reductase preceding luxRI and a putative ATP-dependent heli-
case following luxRI. In some organisms, crotonyl-CoA reductase
interconverts unsaturated crotonyl-CoA to saturated butyryl-
CoA as a precursor to fatty acid biosynthesis (Wallace et al., 1995).
The helicase may be involved in DNA repair, protein degrada-
tion, or gene regulation (Snider et al., 2008). The B1 subgroup is
the most abundant orientation within the B group, and contains
a short-chain dehydrogenase following the helicase. This gene
orientation is conserved in 14 Roseobacter genomes. Short-chain
dehydrogenases are a large family of proteins that modify carbon
chains of many substrates (Joernvall et al., 1995). The protein
encoded by this gene may function to modify AHL biosynthesis
substrates before or after AHL production.

Variations of the D topology are found in six Roseobacter
genomes, all belonging to members of the Roseobacter subclade
4 (Figures 1A,B). These LuxI and LuxR proteins share >52
and >64% sequence similarity, respectively. The LuxI and LuxR
of the D topology have been designated Iγ and Rδ (Figure 2). This
topology shares two genes in common between the variations, fliG
in the opposite orientation upstream of luxRI and an adenylo-
succinate lyase encoding gene downstream. In E. coli, FliG is the
flagellar motor switch that controls the spin direction of flagella
(Roman et al., 1993). The characterized role of QS and motil-
ity in roseobacters was addressed previously (Zan et al., 2012),
but none of the organisms containing the D topology have been
investigated with respect to QS. The direct connection between
QS and flagellar machinery may be an interesting avenue for
future investigation. The other gene in this orientation putatively
encodes an adenylosuccinate lyase, which is important in the de
novo purine biosynthetic pathway and in controlling the levels of
AMP and fumarate inside the cell (Tsai et al., 2007), suggesting
purine biosynthesis may respond to QS.
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FIGURE 2 | Continued

FIGURE 2 | The gene orientation of all putative luxRI operons in

available Roseobacter genomes. Green arrows represent AHL

synthase encoding genes (luxI), orange arrows represent AHL binding

response regulators (luxR), and black arrows represent adjacent

genes. Abbreviations used: Crotonyl CoA, Crotonyl CoA reductase; HK,
histidine kinase; HK/RR, hybrid histidine kinase/response regulator;
HK/REC, histidine kinase with REC domain; CHP, conserved hypothetical
protein; RND, RND multidrug efflux pump; Sig B, sigma B factor; SCD,
short chain dehydrogenase; Trans., transposase; L17, L17 component of the
50S ribosomal protein; 2CRS, two-component regulatory system; TctA,
TctA family transmembrane transporter; mdlB, mandelate dehydrogenase
mdlB; spαβ, α and β subunits of sulfopyruvate decarboxylase. Rx and Ix
designations above the response regulators and AHL synthases indicate
their corresponding phylogentic subgroupings in Figures 1A,B,
respectively. Those without Rx and Ix designations indicate unique
sequences not found in the conserved groupings. The corresponding
genomes that contain these topologies can be found in Table A1.

The presence of orphan luxI genes appears common, espe-
cially in the Sulfitobacter, Ruegeria, and Phaeobacter genera
(Table A1).The synteny of these luxI and their adjacent genes is
conserved in the H, I, and J topologies. In organisms that have
these three orientations, there is a luxI-like gene of the Iδ. The
LuxI of these topologies share >52% sequence similarity. Shared
among the H, I, and J topologies are different types of putative
histidine kinase (HK) encoding genes upstream of the orphan
luxI, suggesting the protein is part of a two-component phos-
phorelay (Dutta et al., 1999; Stock et al., 2000). These genes are
in the same direction as the luxI in H and I and in the oppo-
site in J (Figure 2). In Vibrio harveyi, the hybrid two-component
HK LuxN has been shown to activate gene circuits that lead to
coordinated behaviors, such as bioluminescence, in response to
AHLs (Freeman and Bassler, 1999; Laub and Goulian, 2007). The
HKs found these topologies share modest identity with the Vibrio
harveyi LuxN (≤26%) suggesting similar regulatory systems may
be present in roseobacters. While the similarity of gene sequence
does not directly predict regulatory cascades or phenotypes, the
development of model systems for each of these topologies will
prove valuable for comparative studies across lineage members.

FUTURE DIRECTIONS
The repertoire of chemical signals in roseobacters is anticipated
to be large and result in complex chemical signaling pathways in
lineage members, some of which may contribute to interspecies
interactions and should be investigated further. For example,
uncharacterized roseobacters have been shown to be epibionts of
the abundant cyanobacterial lineage Trichodesmium. While AHL-
based interactions between Trichodesmium and select epibionts
have been shown to stimulate mechanisms for phosphorus acqui-
sition in this host (Hmelo et al., 2012; Van Mooy et al., 2012), a
definitive role for roseobacters in this symbiosis has not yet been
demonstrated. Similarly, it has been hypothesized that QS plays
a role in the switch from mutualistic to antagonistic behavior
proposed for P. gallaeciensis in its interactions with the phyto-
plankter Emiliana huxleyi (Seyedsayamdost et al., 2011). Finally,
the relationships roseobacters have with vascular plants as they
colonize plant material and transform plant-derived compounds
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(Buchan et al., 2000; Dang and Lovell, 2000; Buchan et al., 2001) is
suggestive of inter-kingdom communication, such as that found
in other α-proteobacteria [e.g., Agrobacterium tumefaciens and
Sinorhizobium meliloti (Hughes and Sperandio, 2008)]. Research
in these areas would help elucidate the role of QS in the ability
of roseobacters to colonize and interact with a diverse group of
organisms.

The presence of orphan luxR-like genes in Proteobacterial
genomes has been widely described, and their gene products have
been shown to respond to AHLs and other molecules produced
by other QS systems in the same organism or by other organisms
(Malott et al., 2009; Patankar and González, 2009; Sabag-Daigle
et al., 2012). Furthermore, it is possible that these LuxR family
proteins bind structurally similar molecules that are not related
to QS. In fact, it has been shown that cross-domain signaling
can be mediated through LuxR homologs that bind non-AHL
eukaryotic molecules (Subramoni and Venturi, 2009). In contrast,
detailed studies of orphan luxI-like gene products are rare and
are an area ripe for study. Perhaps either novel non-LuxR-like
proteins or proteins encoded by genes located in distal regions
of the genome (Table A2) respond to the orphan LuxI-derived
AHLs. Undoubtedly, more detailed characterization of such sys-
tems will lead to a better understanding of their biological roles in
roseobacters as well as other lineages.

To date, experimental studies of QS in relatively few select
roseobacters have revealed complex and multi-layered control
mechanisms as well as novel signaling molecules. In addition to
expanding our knowledge of these characterized systems, it is
our hope that future studies also broaden our understanding of
currently under investigated systems within the clade and their
contribution to complex multi-species interactions.
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APPENDIX
Maximum likelihood phylogenetic trees of LuxI-like and genet-
ically linked LuxR-like sequences from 38 published roseobacter
genomes were constructed. Protein alignments of the LuxI and
LuxR homologs were done using the MUSCLE algorithm with
default parameters (Edgar, 2004), and manually curated. The
phylogenetic trees were generated using MEGA 5.2 following
published methods (Hall, 2013). The Maximum Likelihood
statistical method was used with the WAG model of amino
acid substitution and gamma distribution with invariant sites
(G+I) selected. Gaps were handled with a 95% partial dele-
tion data treatment, and the phylogeny was tested with 1000
bootstrap replications (Tamura et al., 2011). Bootstrap values
are reported in percentages and shown at nodes where values
are >50%. Groups were divided and defined by natural divi-
sions in the trees and gene topology in the genome (Figure 2).
The LuxRI protein sequences of Vibrio fischeri (Accession:
AAQ90231.1 and AAP22376.1) were used to root the trees.
LuxR and LuxI homologs of six proteobacterial species with
sequence similarity to at least one roseobacter sequence in each

subgroup (>30% identity) were included in the alignments
to assess the validity of the groupings. The non-roseobacter
LuxRI included were: Sinorhizobium meliloti (Accession:
ABC88593.1 and CAC46417.1), Bradyrhizobium elkanii
(Accession: WP_018273827.1 and WP_018272735), Rhizobium
leguminosarum (Accession: YP_002281222.1 and CAD20929.1),
Agrobacterium tumefaciens (Accession: WP_003501811.1 and
AAZ50597.1), Pseudomonas putida (Accession: CAO85746.1
and CAO85747), Pseudomonas aeruginosa (CAO85753.1 and
CAO85754.1.
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Table A1 | Paired LuxRI and orphan LuxIa homologs identified in the 38 sequenced roseobacters.

Strains Gene orientation luxR gene locus luxI gene locus

Rhodobacterales bacterium HTCC2083 A RB2083_3272 RB2083_3255

Ruegeria sp. KLH11 A RKLH11_1559 RKLH11_2275

Roseovarius sp. 217 A ROS217_18272 ROS217_18267

Roseovarius sp. TM1035 A RTM1035_10475 RTM1035_10485

Ruegeria lacuscaerulensis ITI-1157 A SL1157_2477 SL1157_2476

Ruegeria pomeroyi DSS-3 A SPO2286 SPO2287

Ruegeria sp. TW15 A RTW15_010100013877 RTW15_010100013872

Citreicella sp. 357 B C357_10197 C357_10192

Citreicella SE45 B CSE45_4055 CSE45_4054

Roseobacter denitrificans OCh 114 B RD1_1638 RD1_1639

Sagittula stellata E-37 B SSE37_11169 SSE37_11164

Ruegeria pomeroyi DSS-3 B SPO0371 SPO0372

Dinoroseobacter shibae DFL 12 B1 DSHI_2852 DSHI_2851

Loktanella sp. SE62 B1 LSE62_0618 LSE62_0617

Phaeobacter gallaeciensis 2.10 B1 PGA2_c03430 PGA2_c03440

Phaeobacter gallaeciensis DSM 17395 B1 PGA1_c03880 PGA1_c03890

Phaeobacter gallaeciensis ANG1 B1 ANG1_1316 ANG1_1315

Phaeobacter sp. Y4I B1 RBY4I_1689 RBY4I_3631

Ruegeria sp. KLH11 B1 RKLH11_1933 RKLH11_260

Rhodobacterales bacterium HTCC2150 B1 RB2150_14426 RB2150_14421

Roseobacter sp. AzwK-3b B1 RAZWK3B_04270 RAZWK3B_04275

Roseobacter sp. GAI101 B1 RGAI101_376 RGAI101_3395

Roseobacter sp. MED193 B1 MED193_10428 MED193_10423

Ruegeria lacuscaerulensis ITI-1157 B1 SL1157_0613 SL1157_0612

Ruegeria sp. R11 B1 RR11_2850 RR11_2520

Ruegeria sp. TW15 B1 RTW15_010100017779 RTW15_010100017784

Roseobacter sp. R2A57 B2 R2A57_2403 R2A57_2404

Thalassiobium R2A620 B2 TR2A62_3165 TR2A62_3166

TR2A62_3167

Maritimibacter alkaliphilus HTCC2654 B3 RB2654_09024 RB2654_09014

Rhodobacterales bacterium HTCC2083 B4 RB2083_3265 RB2083_730

Roseobacter litoralis Och 149 B4 RLO149_c030690 RLO149_c030680

Dinoroseobacter shibae DFL 12 C DSHI_0311 DSHI_0312

Jannaschia sp. CCS1 C JANN_0619 JANN_0620

D SKA53_05835 SKA53_05830

Loktanella vestfoldensis SKA53 SKA53_05840

Loktanella sp. SE62 D1 LSE62_3230 LSE62_3231

LSE62_3229

Oceanicola granulosus HTCC2516 D1 OG2516_02284 OG2516_02294

OG2516_02289

Octadecabacter antarcticus 307 D1 OA307_2044 OA307_4586

OA307_3216

Roseobacter sp. CCS2 D1 RCCS2_02083 RCCS2_02078

RCCS2_02088

Octadecabacter arcticus 238 D2 OA238_4151 OA238_2886

OA238_3367

Roseobacter sp. SK209-2-6 E RSK20926_22079 RSK20926_22084

(Continued)
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Table A1 | Continued

Strains Gene orientation luxR gene locus luxI gene locus

Sulfitobacter NAS-14.1 E NAS141_01141 NAS141_01136

Maritimibacter alkaliphilus HTCC2654 F RB2654_20053 RB2654_20048

Roseovarius sp. 217 G ROS217_01405 ROS217_01410

Roseobacter litoralis Och 149 G1 RLO149_c036220 RLO149_c036210

Sulfitobacter NAS-14.1 H NAS141_00695

Sulfitobacter sp. EE-36 H EE36_01635

Roseovarius nubinhibens ISM I ISM_03755

Oceanibulbus indolifex HEL45 I OIHEL45_00955

Ruegeria sp. R11 J RR11_2017

Roseobacter sp. MED193 J MED193_08053

Ruegeria sp. TW15 J RTW15_010100005486

Dinoroseobacter shibae DFL 12 K DSHI_4152

Phaeobacter gallaeciensis 2.10 L PGA2_c18970 PGA2_c18960

Phaeobacter sp. Y4I L1 RBY4I_1027 RBY4I_3464

Phaeobacter gallaeciensis 2.10 M PGA2_c07460

Phaeobacter gallaeciensis DSM 17395 M PGA1_c07680

Rhodobacterales bacterium HTCC2150 N RB2150_11281 RB2150_11291

Roseobacter litoralis Och 149 O RLO149_c036590

Roseobacter sp. AzwK-3b P RAZWK3B_19371

Roseobacter sp. SK209-2-6 Q RSK20926_15126 RSK20926_15131

Roseobacter sp. GAI101 Q1 RGAI101_1101

Ruegeria lacuscaerulensis ITI-1157 R SL1157_1706

Ruegeria sp. TrichCH4B S SCH4B_1938

Homologs of LuxI encoding genes were determined using BlastP to characterized proteinsb (E-value < e−3) on Roseobase (www.roseobase.org) and are consistent

with the genome annotations. The LuxR gene loci listed do not represent all homologs within the genomes, but were determined based using BlastP with the

autoinducer binding domain sequence from Pfam (PF03472) on Roseobase, and proximity to luxI homologs. These were also consistent with genome annotations.

Gene orientations are represented in Figure 2.
aOrphan luxI homologs are defined as those that do not have an immediately adjacent luxR gene. All reported orphan luxI genes are located and at least 100 kb from

the end of the draft genome contig.
bVibrio fischeri LuxI (AAP22376), Agrobacterium tumefaciens TraR (AAZ50597) and Phaeobacter gallaeciensis PgaI (YP_006571842).
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Table A2 | Putative orphan LuxR encoding genes that do not have an

adjacent luxI on the chromosome.

Strains luxR gene locus

Citreicella sp. 357 C357_03001

Citreicella sp. SE45 CSE45_1818

CSE45_4969

Dinoroseobacter shibae DFL 12 Dshi_1550

Dshi_1815

Dshi_1819

Jannaschia sp. CCS1 Jann_1153

Jann_2301

Jann_3193

Loktanella sp. SE62 LSE62_3779

Maritimibacter alkaliphilus HTCC2654 RB2654_10983

RB2654_03619

Oceanibulbus indolifex HEL-45 OIHEL45_01695

OIHEL45_02625

OIHEL45_13145

Oceanicola batsensis HTCC2597 OB2597_03302

Oceanicola granulosus HTCC2516 OG2516_08027

Oceanicola sp. S124 OS124_010100017942

OS124_010100007975

Octadecabacter antarcticus 238 OA238_3367

OA238_3623

Octadecabacter antarcticus 307 OA307_2044

Pelagibaca bermudensis HTCC2601 R2601_24964

R2601_10664

Phaeobacter gallaeciensis 2.10 PGA2_c15480

PGA2_c18970

Phaeobacter gallaeciensis DSM 17395 PGA1_c15590

Phaeobacter gallaeciensis ANG1 ANG1_869

Phaeobacter sp. Y4I RBY4I_896

Rhodobacterales bacterium HTCC2083 RB2083_1776

Rhodobacterales bacterium HTCC2150 RB2150_02239

Roseobacter denitrificans OCh 114 RD1_3967

Roseobacter litoralis Och 149 RLO149_c004710

RLO149_c036470

Roseobacter sp. AzwK-3b RAZWK3B_15865

Roseobacter sp. CCS2 RCCS2_00422

Roseobacter sp. GAI101 RGAI101_670

Roseobacter sp. MED193 MED193_03932

Roseobacter sp. R2A57 R2A57_3570

Roseobacter sp. SK209-2-6 RSK20926_03972

RSK20926_18892

Roseovarius nubinhibens ISM ISM_09921

ISM_15650

Roseovarius sp. TM1035 RTM1035_08219

Roseovarius sp. 217 ROS217_20327

Ruegeria pomeroyi DSS-3 SPO1974

Ruegeria sp. KLH11 RKLH11_1390

Ruegeria sp. R11 RR11_2316

Ruegeria sp. TM1040 TM1040_3102

TM1040_1212

(Continued)

Table A2 | Continued

Strains luxR gene locus

Ruegeria sp. TW15 RTW15_010100007191

Ruegeria sp. TrichCH4B SCH4B_0463

SCH4B_4179

SCH4B_4368

SCH4B_4682

Ruegeria lacuscaerulensis ITI-1157 SL1157_2844

Sagittula stellata E-37 SSE37_06082

Sulfitobacter sp. EE-36 EE36_03628

Sulfitobacter sp. NAS-14.1 NAS141_08556

Thalassiobium sp. R2A62 TR2A62_0664

Homologs of LuxR encoding genes were determined using BlastP with the

autoinducer binding domain sequence from Pfam (PF03472) on Roseobase

(www.roseobase.org).
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