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Abstract
This study is the first evaluation of dynamical downscaling using the Weather Research and
Forecasting (WRF) Model on a 4 km × 4 km high resolution scale in the eastern US driven by
the new Community Earth System Model version 1.0 (CESM v1.0). First we examined the
global and regional climate model results, and corrected an inconsistency in skin temperature
during the downscaling process by modifying the land/sea mask. In comparison with
observations, WRF shows statistically significant improvement over CESM in reproducing
extreme weather events, with improvement for heat wave frequency estimation as high as
98%. The fossil fuel intensive scenario Representative Concentration Pathway (RCP) 8.5 was
used to study a possible future mid-century climate extreme in 2057–9. Both the heat waves
and the extreme precipitation in 2057–9 are more severe than the present climate in the
Eastern US. The Northeastern US shows large increases in both heat wave intensity (3.05 ◦C
higher) and annual extreme precipitation (107.3 mm more per year).

Keywords: dynamical downscaling, high resolution, RCP 8.5, Eastern US

S Online supplementary data available from stacks.iop.org/ERL/7/044025/mmedia

1. Introduction

Global climate models (GCMs) are designed to simulate
large-scale global climate at a spatial resolution of several
hundred kilometers [1]. However, finer spatial resolution has
become increasingly important when studying the impact of
climate change at the local level [2]. There are two primary

Content from this work may be used under the terms
of the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.

methods for studying climate change in more spatial detail:
statistical downscaling and dynamical downscaling. Statistical
downscaling establishes the empirical relationships between
large-scale climate and local climate based upon statistical
methods [3]. It demands less computational power and
requires less effort to implement, but it is limited by assuming
stationary relationship between present observations and the
present model climate in a changed future climate [4].
Dynamical downscaling uses GCMs output to provide the
initial and boundary conditions for the regional climate
models (RCMs) projecting globally consistent high resolution
local climate conditions [2]. It is computationally demanding
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and requires considerable implementation effort, but a major
advantage is the dependence on physical process rather
than statistical correlations and there is no assumption of
stationarity [3]. Thus, in order to capture extreme conditions
and provide more regional detail, the dynamical downscale
technique is used in this study.

Dynamical downscaling has been studied since the
early 1990s [5–9]—using RCMs with spatial resolutions of
50–60 km. More recently, finer spatial resolution has been
applied. Bell et al [10] conducted dynamical downscaling on a
40 km × 40 km resolution, and found 75% of RCMs perform
similarly or more favorably than GCMs over 16 stations in
California region. Salathe et al [11] evaluated daily maximum,
minimum temperature and precipitation over 55 stations in the
Northwestern US at 15 km resolution, and found a cold bias
in downscaled RCM results, which is likely inherited from the
GCM. Other high resolution downscaling studies were also
conducted for California [2, 12, 13]. As these studies have a
major focus in the western US, the high resolution dynamical
downscaling was previously ignored in the eastern US. Since
the small domain size in previous studies limits the number of
observational data (only 16 in Bell et al [10] and 55 in Salathe
et al [11]), it would be more meaningful and representative
to evaluate a larger domain with more observational sites
(more than 1000), thus the design of a larger eastern US
domain in this study. In addition, most previous downscaling
studies use National Center for Atmospheric Research
(NCAR) GCM Parallel Climate Model (PCM) or Community
Climate System Model version 3 (CCSM3). The PCM
has been superseded by the CESM, which includes an
updated atmosphere component, the Community Atmosphere
Component version 4 (CAM4) [14]. Compared to CAM3 (in
CCSM3) and PCM, CAM4 contains significant improvement
on El Niño–Southern Oscillation (ENSO) by the inclusion of
sub-grid scale convective momentum transport and a dilution
approximation for the calculation of convective available
potential energy (CAPE) in the deep convection [15]. To
provide downscaling analysis with the new GCM model is
the purpose of this study. At the end, the discussions of
the newest Coupled Model Intercomparison Project Phase 5
(CMIP5) [16, 17] ‘representative concentration pathways4

(RCPs [18]) scenarios in this study could potentially
contribute to the upcoming Fifth Assessment Report (AR5)
of the United Nations Intergovernmental Panel on Climate
Change (IPCC). Thus, the eastern US domain is targeted in
this study with a high resolution (4 km × 4 km) to provide an
understanding of the dynamics of climate change on a highly
resolved regional basis.

A higher resolution is necessary for climate studies of
extreme weather events [2]. Extreme weather events have
already significantly influenced North America. According to
Lott and Ross [19] nearly every year since 1980, extreme
weather events have caused more than 1 billion dollars in
damage in the US. Prior to 2005, four or fewer events occurred
yearly; while 5 events were experienced in 2005, an extreme
peak was reached with 14 events occurring in 2011.5 In 2005

4 www.iiasa.ac.at/web-apps/tnt/RcpDb/dsd?Action=htmlpage&page=about.
5 www.ncdc.noaa.gov/billions/.

the annual loss due to extreme weather events totaled 100
billion dollars, mainly due to Hurricane Katrina. A more
commonly occurring extreme event, heat waves, can inflict
substantial harm on sensitive populations including the elderly
and people with pre-existing health conditions. For instance,
several hundred people died in 1995 during the Chicago heat
wave and more than 30 000 deaths were attributed to the
2003 European heat wave [20, 21]. In 2010, about 55 000
premature deaths were attributed to the Russian heat wave
(‘2010 Disasters in Numbers’ CRED6). In addition, more
intense heat waves [22, 23] and precipitation [24] are likely to
occur in a warmer climate. Thus, two kinds of extreme events,
heat waves and extreme precipitation, were examined in this
study under present and future climate conditions.

2. Model description and configuration

In this study, CESM version 1.0 was used for global climate
simulations. CESM 1.0, the state-of-the-art global climate
model developed by the NCAR, is composed of four major
components including atmosphere, ocean, land surface and
sea ice. The atmospheric component CAM4, described earlier,
uses the finite-volume (FV) dynamical core [14] with a
horizontal latitude/longitude grid of 0.9◦ × 1.25◦ and 26
vertical layers. The land component is the Community Land
Model (CLM4) [25], which incorporates the effects of CO2
and nitrogen on plant fertilization and growth [26]. The
ocean component is the Parallel Ocean Program version 2
(POP2) [27], with dramatic improvement in the thermocline
structure and SST [28] over POP version 1.4 [29, 30] used in
CCSM3 and PCM. The sea ice component uses the code from
the Los Alamos National Laboratory Sea Ice Model, version 4
(CICE4) [31], on which substantial improvement has been
achieved over new radiative transfer scheme and aerosols [32].

The latest version of regional climate model WRF
3.2.1 [33] was used in the regional climate simulations.
The most widely used physics in US simulation domain
was selected in this study, including: the new Kain–Fritsch
convective parameterization [13, 34–36], the single-moment
6-class microphysical scheme (WSM6) [12, 13, 36, 37],
the Mellor–Yamada–Janjic planetary boundary layer (PBL)
scheme [35, 38, 39] and the Noah land surface model [13,
35, 40]. For the shortwave and longwave radiation scheme,
the rapid radiative transfer model (RRTM), widely used
in US WRF simulations [35, 41], can reproduce highly
accurate line-by-line results, while improved efficiency was
provided by the new scheme RRTM for GCMs (RRTMG) [42,
43]. Thus, RRTMG was used in this study. Since there
are no cumulus parameterization schemes suitable for the
4 km × 4 km scales at present [44], no convective
parameterization scheme was used for the 4 km × 4 km
domain.

Three domains were designed for WRF simulations, as is
shown in figure 1. The outer domain (D1) with a resolution
of 36 km × 36 km is centered at 97◦W, 40◦N. The second
domain (D2) is 12 km × 12 km and covers most of North

6 http://cred.be/sites/default/files/PressConference2010.pdf.
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Figure 1. WRF simulation domains: D1 (36 km × 36 km
resolution), D2 (12 km × 12 km) and D3 (4 km × 4 km). The points
represent NCDC US COOP network station observation points in
three regions: northeast (red color), eastern Midwest (blue color)
and southeast (green color).

America and the inner domain (D3) with a high resolution of
4 km × 4 km, shown in figure 1. The boundary between nest
and mother domain is suggested7 at least 5 grid points, and
to ensure enough buffer zone, 10 grids or more are used in
the domain design for this study. D3 can be divided to three
sub-regions based on the definition of the US Global Change
Research Program (USGCRP)8: northeast (red color), eastern
Midwest (blue color) and southeast (green color) regions. The
colored points in each state represent the observational data
point over quality controlled National Climatic Data Center
(NCDC) US COOP network station observations (referred
to as NCDC)9, which will be used for model evaluations in
section 3. This dataset is selected to evaluate extreme events;
daily maximum temperature, daily minimum temperature
and daily precipitation are required for the evaluations. The
observational data has been well documented by Meehl et al
[45]. This domain size is significant and computationally
intensive, but the high computational effort for these regions
is justified since the regions contain large populations which
may be affected by climate change. The main purpose of this
study is high resolution downscaling; the regional climate
analysis will mainly focus on the downscaled 4 km × 4 km
eastern US.

For the CMIP5, present climate simulations and four
future climate RCP (RCP 2.6, RCP 4.5, RCP 6.0 and RCP
8.5) scenarios were designed. The present climate simulations
with CESM are from 1850 to 2005 and the RCP scenarios are
from 2005 to 2100. The analysis of global climate simulations
were well documented by Meehl et al [24]. Considering
the limited computational resources in this regional high
resolution downscaling study, a four year period (2001–4) was
selected to represent present climate and one RCP scenario

7 www.mmm.ucar.edu/mm5/documents/MM5 tut Web notes/TERRAIN/
terrain.htm.
8 http://globalchange.gov/publications/reports/scientific-assessments/
us-impacts/regional-climate-change-impacts.
9 http://dss.ucar.edu.

(RCP 8.5 [46]) was used to illustrate future climate conditions
from 2057–9. For both present and future climate simulations,
one month spin-up period was applied before both modeling
periods in order for the model to reach equilibrium, as
suggested by previous studies [47, 48]. Among the four RCP
scenarios, RCP 8.5 projects the most intensive fossil fuel
emissions, which is comparable [24] to the Special Report on
Emissions Scenarios (SRES) A1FI [49] scenario.

3. Dynamical downscaling methodology

At each three-hour interval, CESM outputs were dynamically
used to establish boundaries for the outer WRF domain
simulations. A number of variables, including both surface
and three-dimensional variables, are required for dynamical
downscaling. Most of the variables are extracted in the CAM4
outputs, while soil moisture and soil temperature are taken
from the CLM4 history outputs.

Surface variables are horizontally interpolated from
CESM (CAM4 and CLM4, 0.9◦ × 1.25◦ spatial resolution in
latitude/longitude) to WRF simulation domains. In this step,
the WRF Preprocessing System (WPS) is used to interpolate
CESM output into WRF domains. Physics are not involved
in this process, and theoretically, the outputs from CESM
and WPS should show similar spatial patterns or integrity.
This phenomenon was observed for most of the downscaled
variables (not shown) except for skin temperature.

Figure 2 shows the spatial patterns for skin temperature
in the first time step (0:00 on 1 January 2001). Figure 2(a) is
extracted from CESM outputs and figure 2(b) is from WPS.
Between these two plots, significant differences are apparent
near the Great Lakes region. When horizontally interpolating
typical variables (other than skin temperature) from CESM
outputs, WPS uses the nearest 16 grids in distance-weighted
interpolation. However, the skin temperature in water
area uses the nearest temperature in water (sea surface
temperature) reflected by the land/sea mask in CAM4. The
land/sea mask of Great Lakes region was land in CAM4,
thus, interpolation occurs using the nearest sea surface
temperature to the right side (green contour in figure 2(b)).
To achieve consistent skin temperature between CAM4 and
WPS, the land/sea mask from CAM4 in the Great Lakes
region has been changed to the same as ocean areas. After
the modification, the spatial pattern of skin temperature from
WPS (figure 2(c)) shows consistent temperature distributions
with CESM (figure 2(a)) in the Great Lakes region. A
sensitivity test showed that the improved skin temperature
could reduce the bias of 2 m air temperature between WRF
and CESM as high as 10 ◦C for the Great Lakes region.

4. State-level extreme events evaluations of
dynamical downscaling

Before investigating the extreme events such as heat waves
and extreme precipitation in a future climate, we first
evaluated how well WRF predicts the extreme events (by
comparing to observations) and how much improvement can
be gained from the high resolution downscaling.
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Figure 2. Skin temperature comparisons: (a) CESM; (b) WPS output without changing land use type; (c) WPS output after modifying the
land/sea mask.

4.1. Evaluations of heat wave intensity, duration and
frequency

We studied three key parameters of heat waves at an annual
basis: intensity, duration and frequency. Heat wave intensity
(◦C) is defined as the highest three continuous nighttime
minima [50]. Heat wave duration (number of days during a
heat wave) and frequency (number of heat wave events per
year) are based upon two thresholds, T1 and T2, of daily
maximum temperature. We define a heat wave as the longest
continuous period satisfying three criteria: (a) the maximum
daily temperature remained T1 or higher for at least three
continuous days, (b) the mean daily maximum temperature
is higher or equal to T1, and (c) in each day, the daily
maximum temperature is no lower than T2 [23, 51]. T1 and
T2 are taken as the 97.5th and 81st percentiles [51] of daily
maximum temperature at present climate (2001–4) based on
previous studies. Considering model dependency of these
percentiles, the thresholds were applied to CESM, WRF and
NCDC observational data, respectively. In other words, the
same percentile thresholds (97.5th and 81st) in these three
datasets correspond to different temperatures. Theoretically,
it is the best to get the same 97.5th or 81st percentile
among CESM, WRF and NCDC. However, this desirable
condition hardly exists for climate studies. Each model has its
own probability (cumulative) distribution of daily maximum
temperature, thus the evaluation of the distributions was
first discussed in the supplementary material (available at
stacks.iop.org/ERL/7/044025/mmedia) (section 1). Overall,
the cumulative distributions of daily maximum temperature
in both CESM and WRF fit NCDC fairly well (supplementary
material available at stacks.iop.org/ERL/7/044025/mmedia).
Although biases exist in the thresholds, they are more likely to
exist in the heat wave duration and frequency as well. Thus, by
using thresholds from each dataset and further evaluate heat

wave duration and frequency, we can find out whether regional
climate model has the skill to improve the extreme weather
events predictions compared with global climate model. In
addition, there are only limited observation points in NCDC
(1065 points in the eastern US), and the high resolution
WRF domain (4 km × 4 km) contains more than 100 000
grid points. If only using thresholds from NCDC, a majority
of grid points in WRF will be interpolated from NCDC.
In this case, the large spatial variations and representation
achieved in the high resolution simulations cannot be fully
taken advantage of. Thus, the temperature threshold from each
dataset is used in this study. For future heat waves in CESM
and WRF simulations, the same temperature thresholds as
present climate were retained in order to characterize the
changes between the present and future climate.

The heat wave parameters were first evaluated for each
year, and then the four year (2001–4) mean was calculated
and used in the following analysis. The heat wave intensity,
duration and frequency were calculated from CESM outputs,
WRF outputs and NCDC data. The evaluations were based
on the NCDC observations covering 23 states in the eastern
US and all the 1098 observational sites (figure 1) were used
for point–point comparisons. Heat waves at each point in the
NCDC network and the corresponding grid in CESM/WRF
were determined separately. State means were then calculated
and are compared in table 1. The 23 states can be divided into
three regions (shown in figure 1): northeast, eastern Midwest
and southeast. The evaluations of regional mean, derived from
arithmetic mean using stations points for NCDC and the
corresponding model points for CESM and WRF within each
region, are bolded in table 1.

Following each of the regional means is the evaluation
for the states belonging to the region. A t-test (α = 0.05)
was performed to determine the statistical significance of the
improvement in WRF over CESM. From table 1, there are
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16 and 14 states showing statistically significant improvement
for heat wave intensity and duration, respectively. However,
only 6 states show statistical improvement for heat wave
events, mainly due to the small number of heat wave
events. The improvement in WRF for heat wave intensity is
primarily contributed by more realistic topography, while the
improvement for heat wave duration and frequency indicates
better skill in regional climate models. Among the states with
statistically significant improvement in WRF over CESM,
the greatest improvements include: heat wave intensity in
Florida (97%), heat wave duration in Maryland (91%) and
heat wave frequency in Kentucky (98%). For those states that
CESM achieves lower bias than WRF (numbers with negative
sign), the performance differences between CESM and WRF
are not statistically significant. Thus, by taking advantage
of high resolution topography and land use information,
dynamical downscaling statistically improves, or at least
performs similarly to, CESM for the heat wave reproducing
over the eastern US.

4.2. Evaluations of precipitation and extreme precipitation

A rainy day is defined as a day when the daily precipitation
totals at least 1 mm [52]. In the current analysis, extreme
precipitation is defined as the 95th percentile of all the rainy
days [52, 53]. The 95th percentile threshold is calculated
as the mean of each year’s 95th percentile precipitation
from 2001 to 2004 for each dataset from CESM, WRF and
NCDC [10, 53]. Similar as the explanation in section 4.1,
using the 95th percentile thresholds from each dataset not
only take advantage of high regional resolution, but also
indicate the skill of regional climate model in predicting
extreme weather events. The determination of 95th percentile
threshold is location dependent, so no fixed value is used
in this definition. The following indices were used for the
evaluations:

• Total extreme precipitation (mm yr−1): annual total of
extreme daily precipitation amounts.
• Annual extreme events (days yr−1): frequency of extreme

daily precipitation events.
• Daily extreme precipitation (mm d−1): annual mean rate

of extreme daily precipitation, which is calculated as the
total amount of annual extreme precipitation divided by
total annual extreme precipitation days.

The probability distributions of precipitation on rainy
days are shown in figure 3 for each of the 23 states in the
eastern US. In addition, the probability distributions of daily
precipitation 40 mm or more is magnified and plotted in the
middle of each plot. The value of 40 is significant because
in the majority of the states, daily precipitation values of
40 mm or more account for less than 5% of rainy days,
which is considered extreme precipitation. Annual extreme
precipitation totals were also evaluated and listed in the upper
portion of each plot.

WRF-simulated precipitation probability distributions are
in closer agreement with NCDC observations than CESM

(figure 3). The CESM tends to yield larger percentages of
rainy days with daily precipitation from 1 to 5 mm, but
lower percentages with daily precipitation of 10 mm or
more. The probability distributions of extreme precipitation
in WRF agree more closely with NCDC data, while CESM
data substantially underestimate the frequency of extreme
precipitation. In the northeast, six states (Massachusetts,
New York, Pennsylvania, New Jersey, Maryland and West
Virginia) have improvement over 70% in both total extreme
precipitation and extreme precipitation days in WRF over
CESM. Three states in the eastern Midwest (Wisconsin,
Illinois and Indiana) and five states in the southeast (Kentucky,
Virginia, North Carolina, Georgia and South Carolina) have
similarly high improvement in WRF over CESM. However, a
few exceptions exist. For instance, WRF overpredicts extreme
precipitation in New Hampshire and Connecticut, and the
amount by which precipitation is over predicted is larger
than the under predicted amount in CESM. In parts of
the southeast, such as in Florida, both CESM and WRF
under predict the extreme precipitation, but WRF tends to
capture more extreme events. This phenomenon indicates
that dynamical downscaling with WRF has the capability
of reproducing extreme precipitation better than CESM.
However, more than 20 hurricane events10 occurred during
2001–4, which is possibly not captured well by either CESM
or WRF, resulting in less extreme precipitation events in both
models compared to NCDC. Overall, 32–33% improvement
was achieved in WRF downscaled outputs. In addition, the
dynamical downscaling not only captures better probability
distributions of extreme precipitation, but also results in
improvement of the reproducing in both annual extreme
precipitation amount and precipitation days.

5. Increasing trends of state-level extreme events by
the end of 2050s

5.1. Increasing trends of heat wave intensity, duration and
frequency

The spatial distributions of heat wave intensity, duration and
frequency at present (2001–4) and future climate (RCP 8.5,
2057–9) are shown in figure 4 and the region/state means are
shown in table 2. First, we performed a t-test (α = 0.05), and
found mean RCP85 outputs is statistically greater than present
climate for heat wave intensity, duration and frequency except
heat wave duration in Tennessee.

Figure 4(a) shows, at present, the heat wave intensity is
higher in the southeast (mostly higher than 23 ◦C) than the
northeast and the eastern Midwest. A few hot spots, indicating
higher heat wave intensity, are located in the megacities, such
as Chicago and Detroit in the eastern Midwest, Washington
DC, Philadelphia and New York City in the northeast,
Memphis and Atlanta in the southeast. The urban heat island
effects were captured by regional climate simulations, mainly
contributing by the higher resolution landscape in Noah
land surface model in WRF than CLM4. In addition to the

10 http://en.wikipedia.org/wiki/List of Florida hurricanes %282000%E2%
80%93present%29#2001.
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Figure 3. Probability distributions of precipitation from NCDC, CESM and WRF outputs. The probability distributions of daily
precipitation 40 mm or more (extreme precipitation) is zoomed in and plotted in the middle of each plot. Total annual extreme precipitation
amounts and days were listed in the upper portion of each plot. The numbers on the left represent total annual extreme precipitation, with
NCDC in black, bias in CESM (CESM-NCDC) in blue, bias in WRF (WRF-NCDC) in red and the bias reduction in WRF over CESM
((|CESM-NCDC| − |WRF-NCDC|)/(|CESM-NCDC|)× 100%, in green); the numbers on the right are similar to the left but apply to the
annual extreme precipitation days.

state-level studies, 20 cities in the eastern US (top 50 by
population in US) were also selected to investigate these urban
heat waves (extreme precipitation as well) and more intense
heat waves and extreme precipitation was found in future
climate for majority of these cities (details are discussed in
the supplementary material available at stacks.iop.org/ERL/7/
044025/mmedia).

By the end of 2050s (2057–9), the severity of heat
waves increases in most of the areas in the eastern US
(figures 4(b) and (c)). Again, the southeast still shows highest
intensity; however, the highest increase occurs in the northeast
(figure 4(c)), reaching 3–5 ◦C, pushing the northeast to the
current conditions in the southeast. In the northeast, six states
(New Hampshire, Vermont, New York, Pennsylvania, New
Jersey and Maryland) have an increase of higher than 3 ◦C,
with the highest increase occurring in the state of New York.

Figure 4(d) shows, at present, the heat wave duration
is similar in the northeast and eastern Midwest, about
4 days/event, while in southeast it could reach more than
7 days/event. By the end of 2050s, the heat wave duration
decreases in the center areas (Tennessee, Mississippi and
Alabama) of southeast, while the northeast and eastern
Midwest show an increase of 2 days/event event on average
(figures 4(e) and (f)). The decrease of heat wave duration
does not necessarily mean the annual total heat wave days
decrease. Particularly, in this case, for Tennessee, Mississippi
and Alabama, even though the heat wave duration slightly
decreases in future, the annual total heat wave days are 21.2,
12.9 and 19.8 in RCP 8.5, while they are only 6.3, 6.3
and 5.6 at present. There is about 1 event yr−1 at present
from figure 4(g), while 5 or more events could occur in the
northeast, eastern Midwest and Florida by the end of the 2050s
under the RCP 8.5 scenario (figures 4(h) and (i)). Combining
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Figure 4. The spatial distributions of heat wave intensity, duration and frequency at present (2001–4) and future climate (RCP 8.5,
2057–9): (a) four year average of heat wave intensity at present climate (2001–4), (b) three year average of heat wave intensity at future
climate under RCP 8.5, (c) the differences of heat wave intensity between RCP 8.5 and present climate (RCP 8.5—present climate),
(d)–(f) are similar as (a)–(c), but applies to heat wave duration, (g)–(i) are similar as (a)–(c) as well, but applies to heat wave frequency.

the heat wave duration and frequency, the total heat wave days
in the northeast and eastern Midwest would be higher than
southeast.

5.2. Increases in the state-level extreme precipitation

At present (figure 5(a) and table 3), the total extreme
precipitation in the northeast and southeast is larger than the
eastern Midwest. The highest annual extreme precipitation,
371.0 mm, occurs in Connecticut. By the end of 2050s, while
scattered decreases in extreme precipitation exist, most areas

show increasing patterns, as seen in figures 5(b) and (c). As
shown in figure 5(c), the largest increase (dark green) takes
place mainly in the coastal states, including New Hampshire,
New Jersey, North Carolina, South Carolina, Georgia and
Alabama, with an increase of around 150 mm yr−1 (table 3).
From table 3, almost half of the states have a total extreme
precipitation increase of more than 35%, including five states
in the northeast (New Hampshire, Vermont, Massachusetts,
New Jersey and Maryland), two in the eastern Midwest
(Illinois and Indiana) and four in the southeast (North
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Table 2. Heat wave intensity, duration and frequency.

Heat wave intensity (◦C) Heat wave duration (days/event) Heat wave frequency (events/yr)

Regions/states Present
RCP
8.5

RCP
8.5—Present Present

RCP
8.5

RCP
8.5—Present Present RCP8.5

RCP
8.5—Present

Northeast region 21.81 24.85 3.05 3.61 5.53 1.92 1.24 7.03 5.79
New Hampshire 21.16 24.23 3.07 3.22 5.35 2.13 1.29 7.41 6.12
Vermont 20.84 24.02 3.18 3.37 5.35 1.98 1.15 7.94 6.79
Massachusetts 22.21 25.05 2.84 3.60 5.47 1.87 1.02 7.13 6.11
Connecticut 22.45 25.43 2.98 3.68 5.71 2.03 1.24 6.53 5.29
New York 20.84 24.08 3.24 3.78 5.32 1.54 0.96 7.65 6.69
Pennsylvania 20.97 24.16 3.19 3.85 5.48 1.63 1.33 7.26 5.93
New Jersey 23.44 26.55 3.11 3.59 5.49 1.90 1.36 6.26 4.90
Maryland 23.26 26.33 3.07 3.91 5.67 1.76 1.34 5.89 4.55
West Virginia 21.08 23.82 2.74 3.53 5.96 2.43 1.45 7.16 5.71
Eastern Midwest
Region

22.26 25.05 2.78 3.86 5.65 1.78 1.23 5.57 4.34

Wisconsin 21.63 24.61 2.98 3.64 5.63 1.99 0.97 5.23 4.26
Michigan 21.70 24.62 2.92 3.96 5.00 1.04 1.20 5.78 4.58
Illinois 23.48 25.74 2.26 3.97 5.94 1.97 1.32 4.50 3.18
Indiana 22.72 25.28 2.56 3.87 5.87 2.00 1.37 5.66 4.29
Ohio 21.79 24.99 3.20 3.88 5.80 1.92 1.30 6.70 5.40
Southeast region 23.53 25.99 2.46 4.55 5.78 1.23 1.25 5.02 3.77
Kentucky 22.80 25.54 2.74 4.22 6.28 2.06 1.41 4.48 3.07
Virginia 22.50 25.43 2.93 3.70 6.00 2.30 1.38 5.38 4.00
Tennessee 23.00 25.69 2.69 5.47 5.46 −0.01 1.16 3.88 2.72
North Carolina 23.27 26.06 2.79 3.82 6.45 2.63 1.35 4.71 3.36
Mississippi 23.99 26.21 2.22 4.70 4.41 −0.29 1.35 2.93 1.58
Alabama 23.80 26.34 2.54 4.96 4.57 −0.39 1.12 4.33 3.21
Georgia 23.74 25.92 2.18 4.98 5.66 0.68 1.02 6.19 5.17
South Carolina 23.98 26.32 2.34 4.41 6.08 1.67 1.33 5.46 4.13
Florida 24.67 26.38 1.71 4.66 7.11 2.45 1.09 7.81 6.72

Carolina, Alabama, Georgia and South Carolina). However,
some inland regions show decreasing extreme precipitation
(figure 5(c)), including part of New York, Pennsylvania, Ohio
and West Virginia, Illinois and Tennessee. Wisconsin is the
only state with overall decreasing mean extreme precipitation
by the end of 2050s (18.3 mm less per year from table 3).

Daily extreme precipitation ranges from 40 to 60 mm d−1

at present (figure 5(d)). By the end of 2050s (figures 5(e)
and (f)), smaller increases occur in the northeast and eastern
Midwest, while larger increases occur in the southeast. As
shown in figures 5(c) and (f)), the southeast has the largest
increase in both daily extreme precipitation and annual
extreme precipitation days, while the eastern Midwest shows
less increase. At present, about 4–6 days per year have
extreme precipitation (figure 5(g)), while 8–12 days could
occur per year in large areas of the northeast and southeast
by the end of 2050s (figure 5(h)), indicating the extreme
precipitation days could increase to twice as many as present
conditions (figure 5(i)).

In addition to the extreme precipitation days, we
also compared the percentage change of annual extreme
precipitation to annual total precipitation. We found at
present, the extreme precipitation accounts for 25% (West
Virginia) to 30% (Wisconsin) of annual total precipitation; by
the end of 2050s, these percentage ranges from 27% in West
Virginia to 39% in Illinois, with a mean increase of 7% across
the eastern US. The three largest increases (more than 10%)
occur in New Hampshire (13%), Alabama (12%) and Illinois
(11%). At present, Wisconsin has the largest percentage in

extreme precipitation (30%). However, it is the only state that
is projected to have a slight decrease in extreme precipitation
percentage (about 1%), while all other states show increasing
trends in extreme precipitation percentage (3%–13%).

6. Conclusions

The regional climate dynamical downscaling technique
has been successfully applied to CESM results for the
RCP 8.5 climate change scenario to generate high resolution
climate outputs. When conducting dynamical downscaling,
one should examine spatial patterns to determine whether
consistency between models exists. In this study, the
inconsistency in skin temperature between CESM and WRF
was corrected by modifying the land/sea mask from CESM.
The downscaling using CCSM has been widely studied, but no
one has reported inconsistency of skin temperature so far. We
recommend downscaling studies using either CCSM/CESM
or other global climate models compare the spatial patterns
between global climate models and WPS outputs before
producing WRF simulations.

The extreme events evaluations of CESM and WRF
in comparison to NCDC network prove that WRF is more
capable than CESM in reproducing local extreme events.
The percentage improvement could reach as high as 97% in
Florida for heat wave intensity, 91% in Maryland for heat
wave duration, 98% in Kentucky for heat wave frequency
(table 1), more than 95% in Wisconsin and Pennsylvania

9
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Figure 5. The spatial distributions of total extreme precipitation (a)–(c), daily extreme precipitation (d)–(f) and annual extreme events
(g)–(i) at present (2001–4), future climate (RCP 8.5, 2057–9) and changes in future (RCP 8.5–Present).

for both annual extreme precipitation and annual extreme
events (figure 3). Thus, by taking advantage of high resolution
topography, land use information and the skill of regional
climate model, the dynamical downscaling dramatically
improves the heat wave and extreme precipitation reproducing
over the eastern US. Thus, the coarse resolution global climate
model results may not be suitable for regional/local extreme
climate studies.

The RCP 8.5 scenario was used as an example to study
the future climate in 2057–9 compared to present climate in
2001–4. By the end of 2050s, the heat waves become more
severe in most regions of the eastern US. The increases in the

northeast and eastern Midwest are more than the southeast,
which reduces the severity of differences among the north
and south regions. It is an indicator that northeast and eastern
Midwest may suffer more resulting from a steeper increase
in the severity of heat waves. The total annual extreme
precipitation in both the northeast and southeast have a mean
increase of 35% or more, suggesting a greater risk of flooding
in future climate conditions. Considering both heat waves and
extreme precipitation, the northeast region shows the largest
increases. Thus, it is important that the northeast take actions
to mitigate the impact from climate change in the next several
decades.
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Table 3. Total extreme precipitation, daily extreme precipitation and annual extreme events. (Note: A t-test (α = 0.05) was performed, and
by the end of 2050s, the extreme precipitation is statistically more intense than present climate except for daily extreme precipitation in
Ohio.)

Total extreme precipitation
(mm yr−1)

Daily extreme precipitation
(mm day−1)

Annual extreme events
(days yr−1)

Regions/states Present RCP8.5
RCP
8.5—Present Present RCP8.5

RCP
8.5—Present Present RCP8.5

RCP
8.5—Present

Northeast region 308.7 416.1 107.3 51.1 52.6 1.5 6.1 7.9 1.8
New Hampshire 324.4 537.6 213.3 49.7 55.7 6.0 6.5 9.6 3.1
Vermont 286.2 415.7 129.5 43.1 46.7 3.6 6.5 8.8 2.2
Massachusetts 328.5 454.3 125.8 54.5 56.7 2.1 6.1 8.1 2.1
Connecticut 371.0 444.3 73.3 61.4 60.7 −0.8 6.2 7.4 1.3
New York 292.5 332.5 40.0 45.7 44.9 −0.8 6.4 7.4 1.0
Pennsylvania 290.8 359.8 69.0 47.9 49.6 1.6 6.1 7.3 1.2
New Jersey 307.7 458.4 150.7 57.8 56.9 −0.9 5.4 8.1 2.8
Maryland 272.9 402.3 129.3 52.9 54.3 1.4 5.2 7.5 2.3
West Virginia 304.8 339.5 34.8 46.7 48.3 1.5 6.6 7.2 0.6
Eastern Midwest
Region

235.2 293.8 58.7 50.6 52.0 1.5 4.7 5.6 0.9

Wisconsin 182.9 164.7 −18.3 44.5 43.5 −1.0 4.0 3.8 −0.2
Michigan 217.8 254.0 36.1 42.1 44.2 2.2 5.2 5.8 0.6
Illinois 208.0 322.9 114.9 55.6 60.0 4.4 3.7 5.3 1.6
Indiana 277.8 386.8 109.1 58.5 60.1 1.7 4.8 6.5 1.7
Ohio 289.3 340.8 51.5 52.1 52.3 0.2 5.6 6.6 1.1
Southeast region 294.6 405.0 110.4 56.8 60.6 3.9 5.2 6.7 1.5
Kentucky 287.6 329.8 42.3 55.6 57.3 1.7 5.2 5.8 0.5
Virginia 262.0 388.2 126.3 50.2 54.5 4.4 5.2 7.1 1.9
Tennessee 293.2 365.7 72.5 57.8 59.4 1.6 5.1 6.2 1.1
North Carolina 338.1 477.7 139.6 59.3 64.6 5.3 5.7 7.4 1.7
Mississippi 226.0 286.8 60.8 57.4 60.4 3.0 4.0 4.8 0.8
Alabama 288.7 458.1 169.4 58.5 65.5 7.0 5.0 7.1 2.1
Georgia 330.4 490.7 160.4 59.3 63.6 4.3 5.6 7.8 2.2
South Carolina 323.1 482.4 159.4 57.9 62.9 5.0 5.6 7.7 2.1
Florida 302.1 365.4 63.3 55.0 57.7 2.7 5.6 6.4 0.8
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