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RESEARCH ARTICLE Open Access

Odontogenic ameloblast-associated protein
(ODAM) inhibits growth and migration of human
melanoma cells and elicits PTEN elevation and
inactivation of PI3K/AKT signaling
James S Foster1,3†, Lindsay M Fish2,3†, Jonathan E Phipps1,3, Charles T Bruker4, James M Lewis2,3, John L Bell2,3,
Alan Solomon1,3 and Daniel P Kestler1,3*

Abstract

Background: The Odontogenic Ameloblast-associated Protein (ODAM) is expressed in a wide range of normal
epithelial, and neoplastic tissues, and we have posited that ODAM serves as a novel prognostic biomarker for breast
cancer and melanoma. Transfection of ODAM into breast cancer cells yields suppression of cellular growth, motility,
and in vivo tumorigenicity. Herein we have extended these studies to the effects of ODAM on cultured melanoma
cell lines.

Methods: The A375 and C8161 melanoma cell lines were stably transfected with ODAM and assayed for properties
associated with tumorigenicity including cell growth, motility, and extracellular matrix adhesion. In addition,
ODAM–transfected cells were assayed for signal transduction via AKT which promotes cell proliferation and survival
in many neoplasms.

Results: ODAM expression in A375 and C8161 cells strongly inhibited cell growth and motility in vitro, increased
cell adhesion to extracellular matrix, and yielded significant cytoskeletal/morphologic rearrangement. Furthermore,
AKT activity was downregulated by ODAM expression while an increase was noted in expression of the PTEN
(phosphatase and tensin homolog on chromosome 10) tumor suppressor gene, an antagonist of AKT activation.
Increased PTEN in ODAM-expressing cells was associated with increases in PTEN mRNA levels and de novo protein
synthesis. Silencing of PTEN expression yielded recovery of AKT activity in ODAM-expressing melanoma cells. Similar
PTEN elevation and inhibition of AKT by ODAM was observed in MDA-MB-231 breast cancer cells while ODAM
expression had no effect in PTEN-deficient BT-549 breast cancer cells.

Conclusions: The apparent anti-neoplastic effects of ODAM in cultured melanoma and breast cancer cells are
associated with increased PTEN expression, and suppression of AKT activity. This association should serve to clarify
the clinical import of ODAM expression and any role it may serve as an indicator of tumor behavior.
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Background
Melanoma is the most lethal form of skin cancer and
the incidence is increasing in the United States and
worldwide [1]. Mortality from melanoma occurs as a
result of local tumor proliferation and invasion of sur-
rounding tissues leading to metastatic spread of the
disease. Clinically, metastases are often predicted by pri-
mary tumor factors that reflect biologic behavior such as
Breslow thickness, mitotic rate, and ulceration. Sentinel
lymph node (SLN) status remains the single most im-
portant predictor of survival [2]. Recently, multiple po-
tential biomarkers for melanoma have been identified;
however, their clinical significance remains largely to be
determined [3-5]. On a molecular and genetic level, a
number of factors influencing primary melanoma growth
and metastasis have been identified, including signaling
via the phosphoinositide 3-kinase (PI3K)/AKT/mamma-
lian target of rapamycin (mTOR), and Wnt/β-catenin
pathways, as well as BRAF mutations which activate sig-
naling through the Ras/Raf/MAP-ERK kinase (MEK)/
mitogen-activated protein kinase (/MAPK) pathway [6-9].
The Odontogenic Ameloblast-Associated Protein (ODAM)

was first identified less than a decade ago as the protein
constituent of calcifying epithelial odontogenic/Pindborg
tumors (CEOT) and subsequent studies revealed that it is
highly expressed in mature ameloblasts and present in the
rodent enamel organ and junctional epithelium [10-13]. It
has also been found to be present in additional normal hu-
man tissues including the skin, gastrointestinal tract, tra-
chea, bronchus, and glandular breast epithelium. Further
analysis showed that ODAM is also expressed in epithelial
malignancies including those of the, colon, breast, lung,
stomach, and in melanoma [14-16]. In breast cancer pa-
tient biopsies a correlation was observed between ODAM
expression/localization and disease staging/clinical out-
come, indicating that ODAM may serve as a novel prog-
nostic biomarker in this type of cancer [17]. When stably
transfected with recombinant ODAM the MDA-MB-231
breast cancer cell line showed marked inhibition of neo-
plastic and metastatic properties in vivo and in vitro [18].
This suggests that ODAM has a potentially significant role
in regulating tumorigenesis and metastasis in breast cancer
with possible clinical implications. More recently, a retro-
spective study of melanoma patient samples have demon-
strated a significant correlation of ODAM expression/
nuclear localization and sentinel lymph node metastases
indicative of poorer prognosis [19].
The apparent association of ODAM expression with

disease status in breast cancer and melanoma, and the
inhibition of neoplastic and metastatic properties shown
in ODAM-transfected breast tumor cells have led us to
investigate the role of this protein in the tumorigenesis
of melanoma. To this end the invasive C8161 and A375
human melanoma cell lines were stably transfected with

a construct encoding ODAM and evaluated in vitro for
properties associated with tumorigenesis. Similar to our
earlier studies with breast cancer cells, the results indi-
cate that ODAM expression inhibits cell growth and mi-
gration in melanoma cells. We further demonstrate that
this inhibition is associated with increased expression of
the PTEN (phosphatase and tensin homolog on chromo-
some 10) tumor suppressor and suppression of signaling
via AKT, in both of the melanoma cell lines as well as in
MDA-MB-231 breast cancer cells.

Methods
Cells and tissue culture
The human melanoma cell line C8161 [20] was kindly
provided by Professor Mary JC Hendrix. The A375 mel-
anoma cell line and BT-549 breast cancer line were
obtained from the American Type Culture Collection
(Rockville, MD). Control and ODAM-expressing MDA-
MB-231 cells were described in detail previously [18].
All cell cultures were maintained in DMEM/F12 medium
(Lonza, Walkersville, MD) containing 5% fetal bovine
serum (FBS, Thermo-Fisher-Hyclone, Logan, UT), and
penicillin/streptomycin (Thermo-Fisher, Pittsburg, PA) in
a humidified incubator at 37°C under 5% CO2. These
studies did not involve human or animal subjects but all
studies were carried out under the oversight of our Insti-
tutional Review Board (approval numbers 2683 and 2803),
Biosafety Commitee (approval numbers 251-11 and 334-
11), and Animal Care and Use Commitee (approval num-
ber 2092-0412).

Transfection of tumor cell lines with rODAM
The C8161, A375, and BT-549 cell lines were transfected
with either a human ODAM-pcDNA5T/O construct [18]
or, the empty vector control using Lipofectamine LTX
reagent (Invitrogen, Carlsbad, CA) according to the man-
ufacturer’s protocol. Selection of stable ODAM-producing
clones was performed in medium supplemented with
400 μg/mL hygromycin (Thermo-Fisher-Hyclone) in
100-mm culture dishes and visible colonies transferred
into 24-well plates. Culture media collected 7–10 days
later were tested for ODAM production by capture
ELISA [18]. ODAM-positive clones were designated as
C8161-ODAM, A375-ODAM, BT-549-ODAM, and along
with respective controls were expanded and maintained in
medium with hygromycin.

Cell growth assays
Control and ODAM-expressing clones of A375, C8161,
and BT-549 cells were trypsinized, counted, and plated
in quadruplicate in 12-well plates at 1×104 cells/well
with standard growth medium. At appropriate intervals,
cells were fixed by addition of 70% ethanol and stained
with 0.1% crystal violet. After washing with water, the
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crystal violet was solubilized with 10% acetic acid and
the relative cell content measured as absorbance at 562
nm. Where applicable, growth rates were determined by
linear regression analysis using GraphPad Prism 4.0
software.

Cell migration assays
Trypsinized control and ODAM-expressing melanoma
cell lines were washed and suspended (5×105 cells/mL)
in serum-free DMEM/F12 medium and a 100 μL ali-
quots were placed in the upper chamber of a Costar
Transwell permeable support (8-μm pore size, Thermo-
Fisher); the lower chamber was filled with 0.6 mL of
DMEM/F12 medium with 10% FBS serving as a chemo-
attractant. After incubation at 37ºC for 18 h, the mem-
brane was fixed and stained with HEMA3 Wright-Giemsa
(Thermo-Fisher). Non-migrating cells were swabbed from
the upper surface and those that passed through to the
lower surface were photographed with an inverted micro-
scope and counted.

Immunofluorescent/Cytoskeletal staining
Control and ODAM-expressing cells were plated onto
15-mm sterile glass coverslips (Thermo-Fisher) in 12-
well tissue culture plates (BD Biosciences, San Jose, CA)
and, 72 h later, washed with PBS, fixed with 4% parafor-
maldehyde, permeabilized with 0.25% Triton X-100/PBS,
and blocked with 4% goat serum in PBS. Cellular F-actin
was visualized by staining with AlexaFluor488-conjugated
Phalloidin (Invitrogen) and Hoescht 33342 nuclear counter-
stain (Roche Applied Science, Indianapolis, IN). ß-catenin
was visualized on separate slides by staining with rabbit
anti-ß-catenin (Thermo-Fisher-Neomarkers, Fremont, CA)
followed by AlexFluor 488-conjugated goat anti-rabbit IgG
(Invitrogen) along with Hoescht 33342. For confocal/SIM
microscopy images were collected on a Zeiss LSM 710
confocal laser scanning microscope equipped with 405 nm
and 488 nm laser lines using a Plan-Apochromat 40×/1.4
oil objective (Carl Zeiss Microimaging, Thornwood, NY).
Where applicable optical sections were collected at 1 μm
spacing and shown as maximum intensity projections using
Zen 2009 software (Carl Zeiss).

Western blot analysis
For Western blot analysis [21], cells growing at ~80%
confluence in 100 mm dishes were washed in cold PBS
and lysed in RIPA buffer (20 mM Tris, pH 7.5, 200 mM
NaCl, 0.5% Triton X-100, 0.2% sodium deoxycholate,
0.15% SDS, 1mM sodium orthovanadate, 5 mM sodium
fluoride, 5 mM β-glycerophosphate and 0.5 mM PMSF)
followed by centrifugation at 15,000 × g for 20 min at
4°C. Lysate protein concentrations were determined by
BCA protein assay (Thermo-Fisher-Pierce, Rockwood,
IL) and equal 50-100 μg amounts (control vs. ODAM-

expressing cultures) were electrophoresed in 10% Bis-Tris
gels (Invitrogen) and blotted to PVDF membranes. Equal
protein loading was verified by Ponceau S staining and by
reprobing blots for β-actin expression. For detection of
ODAM production cell supernatants (1 ml) were
subjected to immunoprecipitation with anti-ODAM
monoclonal antibody 8B4 as described, blotted, and
probed with anti-ODAM antibody 5A1 [15,18,21]. Add-
itional primary antibodies used were rabbit monoclonal
anti-PTEN (D4.3)XP, rabbit anti-phospho-AKT (Ser 473),
anti-phospho-AKT (Thr 308), anti-total AKT, anti-phosph-
PDK1, anti-phospho-PI3Kp85 (Y458)/p55 (Y199), and
anti-phospho-c-Raf (S259) (all from Cell Signaling Tech-
nologies, Danvers, MA); anti-phospho-Erk (sc-7383), anti-
Erk2 (sc-154), anti-PI3K (sc-423), and anti-Erk1 (SC-93)
(all from Santa Cruz Biotech, Santa Cruz, CA). Anti-β-
actin was from Sigma-Aldrich (St. Louis, MO). Polyclonal
rabbit anti-PTEN (Ab-2) was from Neomarkers (Freemont,
CA). Anti-ODAM monoclonal antibodies 5A1 and 8B4
are produced in our laboratory. Probed blots were de-
veloped using HRP-conjugated secondary antibodies
(Jackson Immunoresearch, Westgrove, PA) with chemi-
luminescent substrate detection (ECL, Thermo-Fisher-
Pierce) visualized on Kodak X-OMAT LS film. For probing
with multiple antibodies lysates were run on replicate gels
or blots were reprobed after stripping with 1% SDS in 50
mM glycine, pH 3.0 [22].

Cell-substrate adhesion assays
Polystyrene 96-well tissue culture plates were coated
overnight at 4°C with 50 μL/well of Matrigel (BD Biosci-
ences) or BSA, each at a concentration of 50 μg/mL.
After washing with PBS, the wells were filled with 50 μL
of suspended, trypsinized cells (5×105 cells/mL) and the
plates incubated at 37°C for 40 minutes. After washing
with PBS, the cells were fixed for 30 min with 4% glutar-
aldehyde and washed with water. The relative cell bind-
ing was determined after staining with 0.1% crystal
violet, solubilization with 10% acetic acid, and measure-
ment of absorbance at 562 nm [18].

RNA isolation and analysis by real time RT-PCR
Total cellular RNA was harvested from control and
ODAM-expressing melanoma cultures by the RNAeasy
Plus RNA isolation kit (Qiagen, Valencia, CA) and product
integrity assessed by agarose gel electrophoresis. RNA
concentration was determined by UV spectroscopy and
first strand cDNA was synthesized using SuperScript III
reverse transcriptase (Invitrogen) and 500 ng of RNA.
Gene specific primers for PTEN were designed: (forward),
5΄-TTTGAAGACCATAACCCACCAC-3΄ and (reverse),
5΄-ATTACACCAGTTCGTCCCTTTC-3΄ (yielding a 134-
bp product). Primers to human GAPDH (Real Time
Primers, Elkins Park, PA) were used to amplify the
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calibrator gene: (forward), 5΄-GAGTCAACGCGGATTT
GGTCGT-3΄ and (reverse), 5΄-TTGATTTTGGAGGGA
TCTCG-3΄ (yielding a 238-bp product). Real-time PCR
was performed in 96-well PCR plates with an ICycler PCR
unit (Bio-Rad, Hercules, CA) utilizing iQ SYBR Green
Supermix containing 400 nM primer mix and 3 μl cDNA
in a 20μl reaction volume. Fluorescence was detected with
an iQ5 Multicolor Real-Time PCR system and analyzed
with iQ5 optical systems software. Conditions for activa-
tion and denaturation were: cycle 1, 95°C for 3 min,
followed by forty 30-sec amplification cycles at 95°C, 63°C,
and 72°C.

Metabolic labeling and immunoprecipitation
Control and ODAM-expressing A375 cells were pre-
incubated in methionine/cysteine-free RPMI (MP Bio-
medicals, Santa Ana, CA) for 30 min. and labeled for 1
hour in the same medium containing 40 μCi/ml 35S
TranS label (1175 Ci/mmol, MP Biomedicals, Irvine,
CA). Cultures were then washed in PBS, lysed in RIPA
buffer as above, and pre-cleared 4 hours with protein
A/G agarose (Santa Cruz Biotechnology). Lysate amounts
were equalized on the basis of trichloroacetic acid-
precipitable counts, and PTEN was immunoprecipitated
by incubation overnight with monoclonal rabbit anti-
PTEN (Cell Signaling Technologies) and protein A/G
agarose beads. The precipitates were centrifuged, washed
in RIPA buffer, and proteins released by boiling in SDS
sample buffer before separation by SDS-PAGE as above.
Gels were soaked in 1M sodium salicylate (Sigma), dried,
and exposed to Kodak X-OMAT LS film.

Depletion of PTEN expression using siRNA
Control and ODAM-expressing melanoma cell lines were
plated in 12-well plates at 30% confluency and transfected
the following day with 40 pmol/well of PTEN siRNA (Cell
Signaling Technologies) or a non-silencing control siRNA
(Qiagen) using 2 μl/well Lipofectamine 2000 (Invitrogen)
according to the manufacturers protocol. Following 72
hours in culture after transfection the cells were lysed for
western blot analysis of PTEN expression and AKT phos-
phorylation as given above.

Results
Reduced growth and cellular migration as a result of
ODAM-expression
Prior studies with the MDA-MB-231 breast cancer cell
line demonstrated that stable ODAM-expression sup-
pressed the tumorigenic properties of these cells, as
evidenced by reduced growth, cellular migration and
barrier invasion in vitro, in addition to increased cellular
adhesion, and an increased apoptotic rate [18]. More-
over, in vivo tumor growth was drastically reduced, as
demonstrated by xenograft and metastatic models. Given

the evidence that ODAM is expressed in melanoma and
corresponds with lymph node metastasis [19], we wished
to examine the effects of ODAM expression on melan-
oma cell lines. Initial experiments determined that the
parental A375 and C8161 cell lines did not express de-
tectable ODAM protein. After transfection, selection,
and expansion, stable ODAM-expressing clones of these
cell lines were characterized. As in previous studies
[13,18] secreted ODAM was readily detectable in cell
culture supernatants and was only associated with cells
at low levels, primarily localized to the golgi apparatus
(data not shown). In vitro growth assays revealed signifi-
cant growth suppression in ODAM-expressing clones of
both A375 and C8161 cells relative to controls after 6
days in culture, as shown by their differences in relative
cell mass (Figure 1A). Similar decreased rates of growth
in tissue culture were observed in additional ODAM-
transfected clones of each cell line and were consistently
observed upon routine cell passage.
In previous studies with MDA-MB-231 cells ODAM ex-

pression increased cell binding to extracellular matrix
components and elicited direct cell-cell interactions in sus-
pension [18]. Other investigators have observed ODAM
localization at the tissue/enamel junctional epithelium
where it is thought to act in part to promote cellular adhe-
sion around the mature tooth [13]. Both A375-ODAM and
C8161-ODAM cells exhibited increased adhesion on
Matrigel-coated plates although the extent of this increase
was greater in C8161 cells (Figure 1B). In contrast to our
observations with MDA-MB-231 cells [18] neither melan-
oma cell line exhibited adhesive cell-cell interactions in
suspension, regardless of ODAM expression.
Cellular migration, a critical component of tumor me-

tastasis, is subject to complex regulation through cell
adhesion to extracellular matrix components in vitro
and in vivo [23]. Previously ODAM expression in MDA-
MB-231 cells was shown to markedly inhibit cellular
migration and barrier invasion [18]. Correspondingly,
examination of the migratory abilities of the ODAM-
expressing melanoma cell lines in transwell migration as-
says demonstrated that cell motility is strongly inhibited
(70-80%) by ODAM expression in both A375 and C8161
melanoma cell lines (Figure 1C).

Cytoskeletal rearrangement and cellular confirmation
change
In addition to effects on cell growth, adhesion, and mo-
tility, ODAM expression in MDA-MB-231 cells yielded
cytoskeletal reorganization indicative of morphological
reversion towards a more developed, epithelial pheno-
type, evident as increased vimentin solubility and F-actin
rearrangement [18]. Cytoskeletal arrangement in control
and ODAM-expressing melanoma cell lines was visualized
by phalloidin staining and indicated clear morphologic
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changes associated with ODAM expression (Figure 2).
The A375-ODAM cells exhibited smaller size compared
to control cells, and an essentially complete disappearance
of actin stress fibers, with a transition to circumferential
actin cables. In addition, these cells adopted a more
clustered arrangement in the cultures and showed a
marked increase in formation of adherens junctions with
localization of ß-catenin at cell-cell interfaces. In contrast
to the A375-ODAM cells, C8161-ODAM cells adopted a
larger, more rounded morphology relative to the spindle
shape of cells in control cultures. These cells did not ex-
hibit circumferential actin cables (Figure 2, bottom panel)
or ß-catenin arrangement in adherens junctions.

Analysis of signal transduction
Human melanomas frequently exhibit dysregulation of
crucial signal transduction pathways and their compo-
nents, including those of the Ras/Raf/MEK/MAPK and
PI3K/AKT/mTOR pathways, each of which constitute

central regulators of cell growth, survival, and other crit-
ical parameters of oncogenesis [6-9]. Western blot ana-
lysis of melanoma cell lysates with phospho-specific
antibodies revealed a marked decrease in AKT activation
in ODAM-expressing cells evident as decreased phos-
phorylation on both the Ser 473 and Thr 308 residues
associated with AKT activation (Figure 3A), while overall
levels of AKT protein were unaffected. Accordingly,
phosphorylation of c-Raf (S259), a downstream target of
AKT [24], was also decreased.
Activation of AKT requires the generation of

phosphatidylinositol-3,4,5-triphosphate (PIP3) by phos-
phatidylinositol 3-kinase (PI3K), together with mem-
brane docking of AKT and dual site phosphorylation of
AKT by phosphoinositide-dependent kinase-1 (PDK1)
and mTOR [25] [26]. Conversely, activation of AKT is
antagonized by the PTEN tumor suppressor gene prod-
uct through its PIP3-phosphatase activity [27-29]. Prob-
ing of western blots with phospho-specific antibodies for

Figure 1 Effect of ectopic ODAM expression on growth, adhesion, and migration of human melanoma cell lines. A) Growth of control
and stably ODAM-transfected A375 and C8161 melanoma cells as assessed by relative cell mass after six days of culture. Values are given as
mean ± 1 standard deviation (S.D.) from quadruplicate cultures (**, p< 0.01). B) Adhesion of control and ODAM-expressing melanoma cell lines to
matrigel-coated plastic surfaces. Values are based on absorbance of adherent cells and are given as mean ± 1 S.D. for six replicates (**, p< 0.01).
C) Transwell migration assay of control and ODAM-expressing melanoma cell lines (left panels, Wright-Giemsa staining, original magnifications
200X). Average cell counts from nine representative fields for each determination are given as mean ± 1 S.D. (**, p< 0.01).
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active PDK1 and PI3K indicated no alterations in their
activation state associated with ODAM expression
(Figure 3B). Significantly, levels of PTEN protein were
elevated (3–4 fold) in A375-ODAM cells relative to
controls, and similarly in C8161-ODAM cells. Accord-
ingly, measurements of PTEN mRNA by quantitative
real time RT-PCR indicated that the PTEN message was
increased (2.5-4 fold) in A375-ODAM and C8161-ODAM
cells over those in vector control cells (Figure 3C). Meta-
bolic labeling analysis confirmed the increased rate of syn-
thesis of PTEN protein in A375-ODAM cells (Figure 3D).
In contrast to altered AKT activation, probing of blots

with phospho-ERK 1 and 2 antibodies for active MAPK
indicated that levels of phosphorylated (active) ERKs
were no different in control and rODAM-expressing
melanoma cells suggesting that signaling through this
pathway is not directly altered by ODAM expression
under these culture conditions (Figure 3B).
Since PTEN is known to inhibit AKT activation we

wished to establish whether the elevated PTEN levels evi-
dent in ODAM-expressing melanoma cells are responsible

for the observed suppression of AKT activation. There-
fore we treated cultures with control and PTEN-specific
siRNAs and assayed PTEN levels and phospho-AKT by
western blots of lysates prepared 72 hours later. As
shown in Figure 4A, PTEN protein expression was sub-
stantially downregulated by specific siRNA treatment of
both C8161-CON and C8161-ODAM cells and this
corresponded with increased AKT phosphorylation in
both cultures. While PTEN siRNA treatment reduced
PTEN protein levels to a lesser degree in A375-ODAM
cells, AKT phosphorylation was increased (Figure 4B).
To test whether suppression of AKT activation and the

elevation of PTEN expression is specific to ODAM-
expressing melanoma cells or may be observed in other
cell types, we examined AKT phosphorylation and PTEN
expression in MDA-MB-231 breast cancer cells where we
have also observed prominent anti-tumor effects upon
ODAM transfection [18] Lysates of control and ODAM-
expressing MDA-MB-231 cells were probed for phospho-
AKT and PTEN expression and, as with the melanoma
cell lines, MDA-MB-231-ODAM cells exhibited decreased
AKT phosphorylation (2-fold) on the activating S473 and
T308 residues and, correspondingly, 3-fold increased ex-
pression of PTEN protein (Figure 5A).
To further investigate the role of PTEN in AKT sup-

pression by ODAM we utilized BT-549 breast cancer
cells which are phenotypically similar to MDA-MB-231
cells but do not express functional PTEN [30]. Notably,
BT-549 cells did not exhibit growth suppression in re-
sponse to stable ODAM expression (Figure 5B) while
Western blot analysis indicated that phospho-AKT levels
are also unaffected by ODAM expression in these cells
(Figure 5C), lending credence to the association of AKT
suppression with increased PTEN and the observed
growth inhibition in cells expressing ODAM. ODAM-
transfected BT-549 cells do, however, show increased ad-
hesion on Matrigel-coated plates indicating that ODAM
expression in these cultures is functional in this respect
and, further, that ODAM effects on cellular adhesion are
to some degree independent of regulation through
PTEN (Figure 5D).

Discussion
ODAM protein expression has been demonstrated in a
wide range of normal odontogenic, glandular, and epi-
thelial renewal tissues [10-13] as well as in malignancies
including odontogenic tumors, gastric cancer, breast
cancer, lung cancer, and melanoma [14-16]. Prior retro-
spective studies of breast cancer patient biopsies indi-
cated an increase in ODAM expression localized to the
cell nucleus associated with advancing disease stage, yet
this expression corresponded with improved survival for
patients at each stage [17]. A recent study of melanoma
patient specimens indicated that nuclear ODAM-

Figure 2 Cytoskeletal rearrangement in ODAM-expressing
human melanoma cell lines. A) F-actin arrangement in A375-CON
and A375-ODAM cells (top panels) was visualized by phalloidin
staining (green) with nuclei counterstained (blue); original
magnifications 320X). ß-catenin localization (lower panels) visualized
by staining with anti-ß-catenin (green) with nuclei counterstained
(blue). B) F-actin arrangement in C8161-CON and C8161-ODAM cells
stained with phalloidin as above in ‘A’.
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Figure 3 Inhibition of AKT activation by ODAM expression in human melanoma cell lines. A,B) Western blot analysis of AKT activation in
total cell lysates from control and ODAM-expressing A375 and C8161 melanoma cells grown under normal culture conditions. Multiple blots from
the same lysate sets were probed sequentially with the indicated antibodies. ODAM expression was detected by immunoprecipitation from cell
culture supernatants C) Quantitative real time RT-PCR analysis of PTEN mRNA levels in control and ODAM-expressing cells growing under normal
culture conditions. Values for ODAM-expressing cells represent the mean ± 1 S.D. from five independent determinations expressed relative to
values from control cells assayed concurrently. D) Analysis of PTEN protein synthesis in control and ODAM-expressing A375 cells by metabolic
labeling and immunoprecipitation as given in the methods.

Figure 4 AKT suppression by ODAM is PTEN dependent. A) Western blot analysis of PTEN expression and AKT activation in whole cell lysates
of C8161-CON and C8161-ODAM cells treated 72 hours with control or PTEN-specific siRNA as given in the methods. B) A375-ODAM and control
cells were treated and analyzed for phospho-AKT and PTEN levels as in ‘A’.
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expression correlates with sentinel lymph node metasta-
sis in over 70% of cases, indicative of higher stage mel-
anoma at diagnosis and poor prognosis requiring more
aggressive therapeutic intervention [2,19]. These studies
have left the role of ODAM in malignancy unclear since,
in both breast cancer and melanoma, nuclear ODAM
localization corresponds with advancing disease stage
yet its influence on disease outcome seemingly differs.
With respect to cellular functions of ODAM, those in-

dicated in ameloblasts are varied, and include an extra-
cellular role at the cell-tooth interface in the junctional
epithelium, roles in enamel maturation, and in the re-
sponse to peridontal disruption [31,32]. ODAM is se-
creted [13,33] yet may also have a role in the cell
nucleus regulating matrix metalloproteinase expression
via direct chromatin binding [34]. ODAM has thus been
suggested to be a matricellular protein exhibiting func-
tions at cellular junctions, in cell signaling, and in direct

gene activation [32]. Our previous studies indicated that
ectopic ODAM expression in MDA-MB-231 breast
cancer cells led to suppression of tumorigenic properties
in vitro and in murine tumor models [18]. When the
A375 and C8161 human melanoma cell lines were
transfected with a gene construct encoding ODAM,
their cellular properties were affected in a fashion similar
to our studies in MDA-MB-231 cells. Specifically, their
growth rate, and migratory ability was decreased and
this was associated with increased cell matrix adhesion
and morphologic/cytoskeletal rearrangement.
The most significant finding in our studies is the

marked suppression of AKT phosphorylation/activation
upon ectopic ODAM expression in both melanoma and
breast cancer cell lines (Figures 3 and 5). Further, this in-
hibition of AKT activation was associated with elevated
expression levels of PTEN protein, a negative regulator
of AKT activation with an essential tumor suppressive

Figure 5 ODAM inhibits AKT activation in MDA-MB-231 breast cancer cells but not in BT-549 breast cancer cells that lack PTEN
expression. A) Western blot analysis of AKT activation in lysates of control and ODAM-expressing MDA-MB-231 cells. Whole cell lysates were
probed with the indicated antibodies as given in the methods. B) Growth assay of control and ODAM-expressing BT-549 breast cancer cells.
Values represent the mean relative cell mass ± 1 S.D. from four replicate wells after 6 days in culture. C) Western blot analysis of AKT
phosphorylation/activation in whole cell lysates of control and ODAM-expressing BT-549 cells. D) Matrigel adhesion assay of control and
ODAM-expressing BT-549 cells (**, p< 0.01). Values represent the mean O.D. ± 1 S.D. for six replicates.
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role in multiple tissues [35-38]. Dysregulated, active
PI3K/AKT/mTOR signaling promotes cell proliferation
and survival, and is found in a wide range of tumor
types, including melanoma [39]. PTEN expression is fre-
quently absent or decreased in melanoma and many other
cancers [40-43], with loss occurring through mutation, de-
letion, epigenetic silencing, and loss of heterozygocity
[44,45]. The attendant activation of AKT, often in associ-
ation with ß-catenin stabilization and MAPK activation,
serves as a primary driver of growth and metastasis in
these tumors [9].
Knockout mouse studies have demonstrated the tumor

suppressive role of PTEN in multiple tissues, and indi-
cate that PTEN function is gene-dosage dependent, as
subtle changes in PTEN protein expression level yield
significant functional consequences in terms of tumor
growth and progression [46,47]. In each of the melan-
oma cell lines the increase in PTEN subsequent to
ODAM expression was sufficient that AKT activation
was profoundly inhibited, and was recovered upon spe-
cific silencing of PTEN expression (Figure 4). Accord-
ingly, cell growth and AKT activity were unaffected by
ODAM in BT-549 cells that lack PTEN.
As to the mechanism(s) of increased PTEN expression

our studies indicate that this corresponds with increased
levels of PTEN mRNA in ODAM expressing cells, and
likely an increase in de novo protein synthesis (Figure 3).
Regulation of PTEN expression is, however, highly
complex, mediated at transcription in part by p53 [48].
Further, PTEN protein levels are regulated posttran-
slationally by ubiquitin-mediated proteasomal degrad-
ation elicited by the E3 ubiquitin ligase activities of
NEDD4 (neural precursor cell expressed developmen-
tally downregulated protein 4–1), XIAP (X-linked inhibi-
tor of apoptosis protein), and others [49,50]. PTEN
stability and function are further regulated through phos-
phorylation by casein kinase 2 (CK2), RhoA-associated
kinase (RAK), GSK3ß and others [51-53], as well as by dir-
ect protein interactions with P-REX2a [54] and a host of
other proteins [45,55]. Further studies addressing tran-
scriptional regulation of the PTEN gene, PTEN protein
stability, and function will be required to fully define the
modes of PTEN regulation with respect to ODAM expres-
sion and effects on AKT activation.
In a parallel to our observations, overexpression of the

matricellular protein SPARC (secreted protein acidic and
rich in cysteine) inhibits growth [56] and migration [57]
of MDA-MB-231 cells, and yields elevated PTEN and
growth suppression in neuroblastoma cells [58]. SPARC
is the ancestral gene of the SPARCL1 (SPARC-like 1
gene) which is, in turn, the putative progenitor of those
in the secretory calcium phosphoprotein (SCPP) gene
cluster on human chromosome 4 (at 4q 13.3) which in-
cludes ODAM, the α/ß and κ caseins, and FDC-SP

(Follicular Dendritic Cell-Secretory Protein) [59,60].
Matricellular proteins can modulate tumor cell prolifera-
tion positively, or negatively, through a variety of mecha-
nisms [61]. SPARC has been reported to function as a
tumor suppressor in neuroblastoma, breast, pancreatic,
lung and ovarian cancers, yet SPARC is associated with
highly aggressive tumor phenotypes in melanomas and
gliomas [62-64]. In notable similarity to ODAM action
SPARC modulates cell-cell, and cell-matrix interactions,
elicits cellular adhesive signaling, and exhibits differen-
tial nuclear localization dependent on cellular status
[63,65,66].
In studies again similar to our observations, over-

expression of the Profilin-1 actin-binding protein in
MDA-MB-231 cells yields growth suppression and de-
creased tumorigenicity [67-69]. This is associated with
inhibition of AKT activity dependent on elevated PTEN,
and with altered cell motility, actin rearrangement, and
increased formation of adherens junctions.

Conclusions
Our studies demonstrate that ectopic ODAM expression
in melanoma cell lines suppresses growth and migratory
activity in these cells, while eliciting elevated PTEN
expression and suppression of AKT activity. These obser-
vations are in agreement with the inhibition of tumorigen-
icity we previously observed in MDA-MB-231 breast
cancer cells expressing ODAM [18]. This serves, however,
to highlight the seemingly contrary association of ODAM
expression with more advanced malignancies [17,19], and
the need for clarification of the role(s) it may play in these
tumors. This will hinge on further investigation into
ODAM localization/functionality in the context of tumor
cell variation. In this regard recent studies have shed light
on the complex interactions between the PI3K/AKT/
mTOR, Ras/RafMAPK, and/or Wnt/ß-catenin signaling
pathways governing tumor growth and metastasis in
melanoma, colon cancer, breast cancer, and others
[9,70-72]. These interactions are proving determinative
in terms of tumor behavior and are proposed to be pre-
dictive in terms of therapeutic responsiveness. Defining
ODAM expression in relation to signaling pathways ac-
tive across the range of tumor phenotypes will allow us
to further clarify its role in tumorigenesis and delineate
any relationship it may have to pathway-specific thera-
peutic intervention.
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