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RESEARCH ARTICLE Open Access

Genetic variation in hippocampal microRNA
expression differences in C57BL/6 J X DBA/2 J
(BXD) recombinant inbred mouse strains
Michael J Parsons1, Christina Grimm2, Jose L Paya-Cano3, Cathy Fernandes3, Lin Liu3, Vivek M Philip4,
Elissa J Chesler5, Wilfried Nietfeld2, Hans Lehrach2 and Leonard C Schalkwyk3*

Abstract

Background: miRNAs are short single-stranded non-coding RNAs involved in post-transcriptional gene regulation
that play a major role in normal biological functions and diseases. Little is currently known about how expression of
miRNAs is regulated. We surveyed variation in miRNA abundance in the hippocampus of mouse inbred strains,
allowing us to take a genetic approach to the study of miRNA regulation, which is novel for miRNAs. The BXD
recombinant inbred panel is a very well characterized genetic reference panel which allows quantitative trait locus
(QTL) analysis of miRNA abundance and detection of correlates in a large store of brain and behavioural
phenotypes.

Results: We found five suggestive trans QTLs for the regulation of miRNAs investigated. Further analysis of these
QTLs revealed two genes, Tnik and Phf17, under the miR-212 regulatory QTLs, whose expression levels were
significantly correlated with miR-212 expression. We found that miR-212 expression is correlated with cocaine-
related behaviour, consistent with a reported role for this miRNA in the control of cocaine consumption. miR-31 is
correlated with anxiety and alcohol related behaviours. KEGG pathway analysis of each miRNA’s expression
correlates revealed enrichment of pathways including MAP kinase, cancer, long-term potentiation, axonal guidance
and WNT signalling.

Conclusions: The BXD reference panel allowed us to establish genetic regulation and characterize biological
function of specific miRNAs. QTL analysis enabled detection of genetic loci that regulate the expression of these
miRNAs. eQTLs that regulate miRNA abundance are a new mechanism by which genetic variation influences brain
and behaviour. Analysis of one of these QTLs revealed a gene, Tnik, which may regulate the expression of a miRNA,
a molecular pathway and a behavioural phenotype. Evidence of genetic covariation of miR-212 abundance and
cocaine related behaviours is strongly supported by previous functional studies, demonstrating the value of this
approach for discovery of new functional roles and downstream processes regulated by miRNA.

Background
Micro-ribonucleic acids (miRNAs) are short single-
stranded non-coding RNAs that are involved in the
post-transcriptional regulation of genes. MiRNAs are
processed from primary transcripts into smaller stem-
loop precursor RNAs in the nucleus by the enzyme
DROSHA and then further processed by DICER in the
cytoplasm into the mature miRNA [1]. Only the mature

form of miRNAs cause post-transcriptional gene silen-
cing by imperfect base pairing, as part of a larger mo-
lecular complex, with its target sites which in turn can
lead to mRNA cleavage or translational repression [2,3].
A single miRNA can have predicted target sites on hun-
dreds of different mRNAs and thus have wide ranging
effects on mRNA expression [1]. Roughly one-third of
all genes have at least one predicted miRNA target site
[4]. However, the small size of the miRNAs, combined
with the complex nature of the miRNA and miRNA tar-
get interactions, makes prediction of miRNA target
genes difficult [5].
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MiRNAs play a major role in a wide range of functions
including development, immune processes, apoptosis
and synapse formation [3,6-11]. MiRNAs have also been
shown to play an important role in numerous diseases in-
cluding cancer, heart disease and mental disorders [12-14].
The associations between miRNAs and these phenotypes
and diseases are likely due to the effects of miRNAs on
the expression of specific groups of mRNAs via post-
transcriptional regulation. Thus, genetic variation that
effects miRNA expression will likely affect these pheno-
types. Numerous studies have used genetic correlation of
gene expression with a variety of phenotypes to discover
gene functions in biological processes including brain and
behaviour [15,16]. By exploring patterns in the networks
of gene expression genetically correlated with individual
miRNAs we may be able to determine each miRNA’s
underlying function.
While many miRNAs are widely expressed, the expres-

sion of some miRNAs has a spatial specificity [17,18].

This is the case in adult brain, where miRNAs expres-
sion is often exclusive to particular regions [19] or where
there are families of miRNAs that are preferentially
expressed in specific brain areas, such as the hippocam-
pus or frontal cortex [17]. This suggests that individual
miRNAs may only play a role in defined anatomical
areas.
Though much is known about the general function

and regulation of miRNAs, much work is still needed
to determine the specific functioning of individual
miRNAs. A high-throughput functional genomics strat-
egy to investigate the functions of individual miRNAs
makes use of the genetic variation across mouse inbred
strains and allows one to see how this variation affects
miRNA expression. To date, three studies have used this
approach to establish variation in miRNA expression
across inbred mouse strains, one in the hippocampus [20]
and two in the liver [21,22]. We previously identified sev-
eral differentially expressed hippocampal miRNAs in the

Table 1 Strain means and standard deviation for miRNA expression

strain miR-15b miR-31 miR-34c miR-212 miR-301a

mean st dev mean st dev mean st dev mean st dev mean st dev

BXD 01TY 0.063 ± 0.03 0.099 ± 0.04 0.064 ± 0.03 0.190 ± 0.12 0.219 ± 0.09

BXD 05TY 0.058 ± 0.01 0.070 ± 0.02 0.034 ± 0.01 0.117 ± 0.04 0.164 ± 0.04

BXD 06TY 0.053 ± 0.02 0.072 ± 0.01 0.053 ± 0.03 0.112 ± 0.02 0.183 ± 0.03

BXD 08TY 0.056 ± 0.01 0.090 ± 0.02 0.041 ± 0.01 0.137 ± 0.01 0.176 ± 0.02

BXD 09TY 0.050 ± 0.02 0.132 ± 0.10 0.076 ± 0.04 0.141 ± 0.05 0.171 ± 0.04

BXD 11TY 0.053 ± 0.02 0.074 ± 0.01 0.045 ± 0.02 0.148 ± 0.10 0.180 ± 0.06

BXD 12TY 0.048 ± 0.00 0.066 ± 0.01 0.040 ± 0.01 0.114 ± 0.02 0.192 ± 0.04

BXD 16TY 0.044 ± 0.02 0.099 ± 0.01 0.054 ± 0.01 0.115 ± 0.03 0.210 ± 0.04

BXD 18TY 0.042 ± 0.01 0.083 ± 0.01 0.044 ± 0.01 0.142 ± 0.03 0.173 ± 0.02

BXD 19TY 0.053 ± 0.01 0.060 ± 0.01 0.061 ± 0.03 0.139 ± 0.03 0.194 ± 0.02

BXD 21TY 0.055 ± 0.01 0.072 ± 0.02 0.060 ± 0.02 0.152 ± 0.04 0.188 ± 0.04

BXD 22TY 0.055 ± 0.02 0.094 ± 0.03 0.055 ± 0.01 0.097 ± 0.02 0.186 ± 0.02

BXD 23TY 0.051 ± 0.01 0.127 ± 0.07 0.061 ± 0.01 0.114 ± 0.01 0.167 ± 0.02

BXD 24TY 0.045 ± 0.01 0.071 ± 0.03 0.045 ± 0.03 0.091 ± 0.03 0.157 ± 0.03

BXD 27TY 0.049 ± 0.01 0.064 ± 0.01 0.063 ± 0.02 0.128 ± 0.02 0.159 ± 0.02

BXD 28TY 0.045 ± 0.02 0.071 ± 0.02 0.044 ± 0.01 0.124 ± 0.06 0.137 ± 0.08

BXD 30TY 0.036 ± 0.00 0.057 ± 0.02 0.033 ± 0.02 0.104 ± 0.03 0.132 ± 0.03

BXD 31TY 0.055 ± 0.01 0.074 ± 0.02 0.040 ± 0.01 0.123 ± 0.02 0.187 ± 0.02

BXD 32TY 0.038 ± 0.02 0.071 ± 0.01 0.049 ± 0.03 0.118 ± 0.05 0.158 ± 0.03

BXD 33TY 0.066 ± 0.03 0.074 ± 0.01 0.080 ± 0.03 0.154 ± 0.01 0.228 ± 0.04

BXD 34TY 0.056 ± 0.01 0.063 ± 0.01 0.075 ± 0.01 0.159 ± 0.04 0.184 ± 0.02

BXD 39TY 0.049 ± 0.02 0.074 ± 0.01 0.050 ± 0.02 0.118 ± 0.05 0.162 ± 0.02

BXD 40TY 0.055 ± 0.00 0.074 ± 0.01 0.060 ± 0.02 0.160 ± 0.03 0.173 ± 0.02

BXD 42TY 0.047 ± 0.01 0.095 ± 0.02 0.047 ± 0.02 0.133 ± 0.01 0.147 ± 0.02

DBA2/J 0.037 ± 0.01 0.079 ± 0.01 0.034 ± 0.00 0.093 ± 0.01 0.128 ± 0.02

C57BL/6 J 0.051 ± 0.01 0.058 ± 0.02 0.098 ± 0.05 0.143 ± 0.04 0.159 ± 0.01
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C57BL/6 J and DBA/2 J strains [20]. Finding the genetic
source of this variation and identifying the functional
associates requires a genetic reference population that has
been broadly characterized for brain and behavioural
function.
In this study we further characterized differentially

expressed hippocampal miRNAs between the inbred
mouse strains C57BL/6 J and DBA/2 J [20] in a C57BL/
6 J x DBA/2 J recombinant inbred panel (BXD). This is
the first study to use BXD RI mice to investigate the
functioning of specific miRNAs in the brain. The wide
array of cumulative data available for these strains
allowed us to evaluate associations with a wide range of
phenotypes including mRNA expression, neurological
and behavioural phenotypes, and perform QTL mapping.
This approach allowed us to identify upstream genetic
loci that influence functioning of these specific miRNA
and downstream gene expression and behavioural corre-
lates which may be influenced by the same loci.

Results
Genetic variation in miRNA expression in the BXD RI lines
The means (± standard deviations) of hippocampal
miRNA expression for all the BXD RI strains investi-
gated are listed in Table 1. We replicated the reported
expression differences across the C57BL/6 J vs. DBA/2 J
strains for the five miRNAs we previously found to be
differentially expressed [20]. The η2 values for miRNA
gene expression by strain are 0.21, 0.33, 0.28, 0.27 and
0.37 for miR-15b, miR-31, miR-34c, miR-212 and miR-
301a, respectively.

MRNA expression correlations of miRNA expression
The correlations among hippocampal miRNA expression
and genomewide mRNA expression, independent of the
presence of a predicted miRNA target site, are sum-
marized in Table 2 (for a complete list of nominally
significant genes (p-value < 0.05) for each miRNA see
Additional file 1: Table S1). We controlled the false de-
tection rate for each gene list individually using the
Benjamini and Hochberg method, q < 0.2 [23]. Only a
single correlation remained significant following FDR

multiple testing correction, which was the correlation be-
tween miR-15b and probe set 1437110_at (p-value=2.6e-6,
q=0.04). This probe set corresponds to the gene
2810474O19Rik.
Χ2 analysis was used to determine whether those genes

with predicted miRNA binding sites were overrepre-
sented within the list of nominally significant correla-
tions between miRNA and mRNA. We used target sites
predicted by the MIRANDA algorithm as this is one of
the most widely used and has a higher sensitivity rate
than the other commonly used algorithms [24]. As
increases in miRNA expression can degrade the corre-
sponding target mRNA, we conducted these analyses
first using just the significant negative correlations, then
using all significant correlations (summarized on
Table 2). None of the miRNAs showed an overrepresen-
tation of genes with predicted miRNA binding sites
when either just the negative correlations or all correla-
tions were used.

KEGG pathway analysis
We used the list of all genes for which there were nom-
inally significant correlations between miRNA vs. mRNA
expression, independent of the presence of a miRNA tar-
get site, to conduct KEGG pathway analyses for each
miRNA. We found a number of pathways that were sig-
nificantly enhanced for these miRNAs (summarized on
Table 3), including numerous neurobehavioural path-
ways. In particular, we found that genes correlated with
miR-15b expression were enriched in a number of path-
ways related to neuronal plasticity, including axon guid-
ance, long-term potentiation, long-term depression and
regulation of the actin cytoskeleton.

QTL analysis of miRNA expression
We conducted quantitative trait loci analysis of miRNA
expression for each miRNA using R/QTL. We found a
total of five suggestive QTLs which are summarized on
Table 4. In order to further investigate what genes may
be responsible for these QTLs, we conducted correla-
tions of miRNA vs. mRNA gene expression for those
genes within the 1.5 LOD confidence intervals for each

Table 2 No increase in correlations between miRNA expression and mRNA expression for genes with miRNA target
sites

miRNA Target sites All correlations (p < 0.05) Negative correlations (p< 0.05)

Target sites Total Chi square (Χ2 ,df, p-value) Target sites Total Chi square (Χ2 ,df, p-value)

miR-15b 526 5 541 (8.6,1,0.003) 4 302 (2.6,1,0.11)

miR-31 404 10 586 (1.1, 1, 0.30) 3 312 (0.1, 1, 0.15)

miR-34c 494 12 532 (0.7, 1, 0.39) 6 174 (0.7, 1, 0.82)

miR-212 519 17 858 (3.3, 1, 0.07) 3 271 (2.8, 1, 0.10)

miR-301a 456 26 927 (0.1, 1, 0.76) 7 362 (0.5, 1, 0.49)

The total number of probes investigated was the same for all five miRNAs (n = 17208).
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of these peaks. We controlled the false detection rate for
each gene list individually using the Benjamini and
Hochberg method, q < 0.2 [23]. Two of these correlations
survived multiple testing correction, 1429870_at (gene
Tnik) and 1438412_at (gene Phf17), both lying under-
neath the expression QTL (eQTL) for miR-212 on
chromosome 3 (see Figure 1).

We examined whether there were any genes under these
eQTL peaks that contained predicted miRNA binding
sites. There were genes with predicted miRNA target sites
under all of the eQTL peaks, except themiR-301a peak on
chr11 (summarized in Additional file 2: Table S2). The
gene Acad9, which codes for a mitochondrial Acyl-CoA
dehydrogenase, had two predicted miR-212 target sites
and was negatively correlated with miR-212 expression
(r = -.446, p = .029). Neither of the genes, Phf17 and
Tnik, have a predicted miR-212 target site.

Correlations of miRNA expression and phenotype
The correlations of miRNA expression and phenotype
revealed a total of 69 nominally significant correlations
(p < 0.05), summarized in Additional file 3: Table S3.
Two of these correlations survived FDR multiple testing
correction (q < 0.2), miR-31 expression and both blood
ethanol concentration (following 2.25 mg/kg ethanol)
(r = 0.7, p = 0.001) and percent time spent in the centre
area of the open field test (r = 0.68, p = 0.002) (measures

Table 3 KEGG pathway analysis for those genes whose mRNA expression was significantly associated with miRNA
expression (p < 0.05)

miRNA Correlated genes (n = 17208) SIGNIFICANTLY ENHANCED KEGG PATHWAYS (4 gene threshold)

p< 0.05 q< 0.2 KEGG Pathway name (observe, expected, p-value)

miR-15b 541 1 Focal adhesion (o = 10; e = 1.8; p = 2.8e-5)

Regulation of actin cytoskeleton (o = 10; e = 1.9; p = 4.2e-5)

Long-term potentiation (o = 5; e = 0.6; p = 6.3e-4)

Pancreatic cancer (o = 4; e = 0.7; p = 7.1e-3)

Long-term depression (o = 4; e = 0.7; p = 7.7e-3)

Axon guidance (o = 4; e = 1.3; p = 4.0e-2)

miR-212 858 0 MAPK signaling pathway (o = 12; e = 3.8; p = 7.1e-4)

Regulation og actin cytoskeleton (o = 10; e = 2.8; p = 7.4e-4)

Calcium signaling pathway (o = 8; e = 2.4; p = 4.5e-3)

Tight junction (o = 8; e = 1.6; p = 3.2e-4)

miR-34c 532 0 MAPK signaling pathway (o = 12; e = 2.7; p = 3.3e-5)

Jak-STAT signaling pathway (o = 7; e = 1.5; p = 9.9e-4)

Focal adhesion (o = 7; e = 1.9; p = 3.6e-3)

Long-term depresion (o = 4; e = 0.7; p = 8.4e-3)

miR-31 586 0 Regulation of actin cytoskeleton (o = 11; e = 2.1; p = 1.5e-5)

MAPK signaling pathway (o = 10; e = 2.9; p = 8.5e-4)

Axon guidance (o = 9; e = 1.3; p = 1.5e-5)

GnRH signaling pathway (o = 7; e = 1.0; p = 1.0e-4)

Wnt signaling pathway (o = 6; e = 1.5; p = 5.5e-3)

miR-301a 927 0 Focal adhesion (o = 13; e = 3.1; p = 2.5e-5)

Regulation of actin cytoskeleton (o = 11; e = 3.2; p = 6.0e-4)

MAPK signaling pathway (o = 10; e = 4.4; p = 1.6e-2)

Colorectal cancer (o = 7; e = 1.4; p = 6.5e-4)

Long-term potentiation (o = 4; e = 1.1; p = 2.5e-2)

Table 4 eQTL peaks reaching suggestive significance

miRNA chr position (Mb) LOD score 1 LOD C.I. 1.5 LOD C.I.

miR-15b 9 41.3 2.28 (24.4, 47.4) (24.4, 119.2)

miR-212 3 37.3 2.29 (28.6, 46) (27.5, 46)

miR-301a 1 20.6 2.82 (14.0, 96.9) (11.1, 186.1)

miR-301a 11 19.4 2.37 (11.1, 22.9) (4.4, 82.1)

miR-301a 17 69.2 2.30 (68.4, 89.9) (57.5, 92.1)

The LOD score confidence intervals for a 1 LOD and 1.5 LOD score drop-off
(LOD C.I. and 1.5 LOD C.I., respectively) are listed in Mb and were calculated
using the lodint() function in the QTL package in R. We used the NCBI37
genome build for this analysis.
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from [25]). In order to determine if the number of sig-
nificant correlations within a behavioural category was
overrepresented, we conducted Fishers Exact Tests
which showed that behaviour traits in general were
overrepresented with miR-31 expression (p < 0.05) and
cocaine related traits were overrepresented with both
miR-34c expression (p < 0.05) and miR-212 expression
(p < 0.1) (see Table 5).

Discussion
BXD-RI lines have been successfully used to characterize
the roles that genetic variation plays in various molecu-
lar and functional phenotypes, including gene expres-
sion, and thus in complex behaviour and disease
[16,26,27]. The genetic and phenotypic variation across
the RI strains, combined with extensive collections of
cumulative data available in extensive web-based data-
bases including gene expression data, genetic mapping
panels and phenotypic data [28] underlies the utility of
these reference strains in such characterization.
One of the greatest advantages of using BXD RI, and

similar RI populations, is that existing dense genotypic
data allows variation of any quantitative phenotype to be
readily mapped using QTL mapping approaches, thus
allowing for the discovery of putative local (cis) and dis-
tant (trans) genetic loci governing this variation. We
were able to find five suggestive distant QTLs for the
miRNAs investigated. Of particular interest was the QTL
for miR-212 expression on chromosome 3, within which
we found two expression probe sets that were signifi-
cantly correlated with miR-212 expression. Phf17, PHD
finger protein17 (also know as Jade1), has also been
shown to be involved in WNT pathway signalling [29],
particularly playing a role in anteroposterior axis devel-
opment [30]. Tnik, TRAF2 and NCK-interacting protein
kinase, is a member of the Ste20 group of kinases, known
to be regulators of MAP kinase cascades [31]. It has pre-
viously been shown to be an activator of WNT target
genes [32] and regulation of the cytoskeleton [33]. KEGG
pathway analysis for co-expressed transcripts of miR-212
supports a role for miR-212 in the regulation of the cyto-
skeleton and of MAPK kinase pathways, functions that
overlap with those of Tnik and suggesting that the miR-
212 and Tnik correlation may underlie a real functional
relationship between these genes.
It should be noted that neither of the genes corre-

sponding to these probe sets, Phf17 and Tnik, have a pre-
dicted miR-212 binding site or any RNA genes within
their transcripts. The existence of such a site is not
required to posit a mechanism by which genetic variation
in that a functional process can indirectly regulate the
abundance of miR-212. Further studies are required to
determine which genetic variant potentially underlies this
correlation, and what genes and mechanisms this variant
acts upon to indirectly regulate miR-212 expression.
We found that the gene Acad9, which lies under the

QTL for miR-212 expression on chromosome 3, had
two predicted miR-212 target sites. Furthermore its ex-
pression was also negatively correlated with miR-212 ex-
pression. This suggests that there is the potential for
Acad9 to both indirectly regulate miR-212 expression
and in turn be directly regulated by miR-212 expression.
While we do not expect to find such a mechanism for

Table 5 Summary of the significant correlations of miRNA
expression with behaviour

miRNA Category Number of traits

p< 0.05 q< 0.2

mIR-15b General Behaviour 3 0

mIR-15b Morphine 1 0

miR-31 Cocaine 7 0

miR-31 Ethanol 1 1

miR-31 General Behaviour** 13 1

miR-31 Morphine 1 0

miR-34c Cocaine** 7 0

miR-34c General Behaviour 3 0

miR-212 Cocaine* 11 0

miR-212 Ethanol 1 0

miR-212 General Behaviour 11 0

miR-301a General Behaviour 10 0

Categories with a Fisher’s exact test (one-way, overrepresented) of p < 0.05 are
noted with a **, while categories with a Fisher’s exact test (one-way,
overrepresented) of 0.05 < p< 0.1 are represented with a *.
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Figure 1 eQTL peak for miR-212 on chromosome 3. The eQTL
for miR-212 expression is shown for chromosome 3. The triangles on
the x-axis represent the location of the probe sets that were
significantly associated with miR-212 expression (q < 0.2).
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every QTL locus, this is an additional mechanism by
which genetic variation could influence gene expression.
While we did find five suggestive distant QTLs, we did

not find any local QTLs, indicating that polymorphisms
in the miRNA we evaluated do not directly influence
their abundance in the hippocampus. Two previous
studies investigating liver miRNA expression found a
local QTL for miR-31 in BXD and F2 panels [21,22].
The failure to replicate this local QTL in the present
study may be due to the use of a different tissue
(hippocampus) in our study. A study conducted in
human samples looking for eQTLs across numerous
tissues found that while 30% of all eQTLs were
shared across the three tissues investigated, 29% were
tissue-specific [34].
We found significant correlations between both miR-

34c and miR-212 expression and cocaine-related beha-
viours. This is particularly interesting for miR-212, which
has previously been shown to control cocaine intake
[35]. In particular, it was shown that striatal miR-212 ex-
pression is increased following extended cocaine use in
rats and that increases in striatal miR-212 expression
leads to decreases in cocaine intake following extended
access conditions. Furthermore, miR-212 is known to be
regulated by MeCP2, an important regulator of neuro-
plasticity, and to affect BDNF expression and neuroplas-
ticity in postmitotic neurons [36]. As cocaine addiction
is widely believed to result in changes in neurocircuitry
[37], miR-212 is an excellent candidate for susceptibility
to cocaine addiction, further supported by a previous
finding that miR-212 expression affects dendrite growth
and arborisation [38]. Our present result augments this
finding by demonstrating that genetic polymorphisms
can cause phenotypic variation in this process. The de-
tection of this relationship also demonstrates the utility
of a systems genetics strategy for the discovery of spe-
cific molecular and functional roles of miRNAs.
We found significant correlations (q < 0.2) of miR-31

expression with both blood ethanol concentration and a
measure of anxiety (percent time spent in the centre area
of the open field test). We further found an overrepre-
sentation of traits in general behaviour with miR-31 ex-
pression, with a particular number from open field and
light-dark box measures, suggesting that miR-31 may
play a role in anxiety. These are the first indications of
miR-31 potentially being involved in alcohol or anxiety
related traits. A number of miRNAs have previously been
shown to be altered in the brain of alcoholics, including
miR-15b, miR-34c and miR-301a [39]. This suggests that
miR-31 should be investigated further for a role in anx-
iety and susceptibility to alcohol use, but that it may not
be associated with long term alcohol exposure.
The WNT signalling pathway has previously been asso-

ciated with adult neurogenesis in the hippocampus [40].

Both the MAPK and WNT signalling pathways were
enhanced within the KEGG pathway analysis for miR-31
expression. These pathways have been associated with
miR-31 in a previous KEGG pathway analysis in human
tumour cells [41]. Over expression of miR-31 increased
Wnt-5a expression, which adds further support for the
involvement of miR-31 in the WNT signalling pathway
[42]. Together this suggests that miR-31 may possibly
play a role in adult neurogenesis via the WNT signalling
pathway.
MiR-301a plays a role in wide range of cancers includ-

ing lung cancer [43], breast cancer [44], pancreatic can-
cer [45]. KEGG analysis revealed that miR-301a was
associated with colorectal cancer. The expression of
miR-301a is altered in p53-deficient mice, a known
tumor suppressor gene, further supporting its involve-
ment in cancer [46].
A recent study has shown that miR-34c plays a role

in anxiety at the level of the amygdala [47]. More spe-
cifically, this gene was upregulated following acute and
chronic stress, and lenti-virus mediated overexpression
of miR-34c in the amygdala induced anxiolytic behav-
iour after challenge. We found the miR-34c expression
was positively correlated with open arm duration
(r = 0.43, p = 0.03), a measure of anxiety. Additionally,
miR-34c has been shown to reduce the cellular re-
sponse to corticotrophin releasing factor receptor type
1 (CRFR1), possibly acting via a miR-34c target site on
the CRFR1 mRNA [47]. Together these findings suggest
a role for miR-34c in regulating the central stress re-
sponse. This gene has also been shown to be elevated
in the hippocampus of Alzheimer’s disease patients and
the corresponding mouse models, and overexpressing
miR-34c leads to memory impairment [48]. Together
this data suggests a role for this gene in the mechan-
isms of anxiety and memory which should be further
investigated.
MiR-34c has also been shown to be involved in various

cancers [49-51]. More specifically, miR-34c is thought to
act as a tumor suppressor as part of a negative feedback
loop including Myc and Mapkapk5, part of the MAPK
signalling pathway [52]. We found that the MAPK sig-
nalling pathway is enhanced for miR-34c, and while
miR-34c was not significantly associated with Mapkapk5
expression (r = -0.24, p = 0.27), it was with Mapkapk3
(r = 0.55, p = 0.009).
Our KEGG pathway analysis for miR-15b suggests it

plays a role in long-term potentiation, long-term depres-
sion and axon guidance. A study investigating the
localization of miRNAs in sympathetic neurons revealed
that miR-15b is more highly abundant in the distal
axons compared to the cell bodies [53]. Taken together,
these findings suggest a role for miR-15b in neuronal
plasticity. Expression studies have also linked miR-15b

Parsons et al. BMC Genomics 2012, 13:476 Page 6 of 11
http://www.biomedcentral.com/1471-2164/13/476



expression with various cancers [46,54,55], including
pancreatic cancer [56]. Similarly, we found an enhanced
KEGG pathway for pancreatic cancer for this gene.
The only correlation between miRNA and mRNA

expression that had a genome-wide significance level
was between miR-15b and 2810474O19Rik expression.
2810474O19Rik, which has no predicted miR-15b
binding sites, is thought to play a role in development,
being expressed in both gonadal [57] and preimplanta-
tion mouse development [58]. This gene also has
been suggested to play a role in cell potency, more
specifically in pluripotent cell identity via an inter-
action with Oct4 [59]. There is limited evidence that
miR-15b plays a role in cell potency, with it being
expressed in multipotent cells during osteogenic dif-
ferentiation [60]. The expression of miR-15b was
upregulated in the umbilical vein [61] and human
placenta [62], but there is no known link between
miR-15b and development.
Our study made use of existing mRNA data collected

in independent mice. While this enables one to clearly
ascribe correlation to genetic factors, each sample came
from environmentally distinct mice. Thus, one may con-
clude that environmental variation in mRNA across
these two population samples was sufficient to exceed
the genetic variation accounted for by the loci we
detected. Nonetheless, relevant co-expression was
detected and future studies in which samples are col-
lected from a single population for phenotype, miRNA
and gene expression are warranted. This may be done in
a genetic reference population to exploit the breadth of
existing data or a large experimental cross or mapping
population such as the Diversity Outbred to improve
mapping power and precision.
In our study we investigated the potential effects of

miRNAs on mRNA by correlating their gene expression.
For this approach to be successful, we need a significant
percentage of miRNAs to regulate their target genes via
RNA degradations rather than by blocking translation,
as blocking translation would not necessarily change the
mRNA levels. Numerous groups have successfully used
this approach to show that miRNAs do reduce the ex-
pression of a significant fraction of their targets [63-66].
This approach thus allows us to investigate the effects of
miRNA on their potential gene targets for a great num-
ber of genes.
If a significant fraction of predicted miRNA target sites

are real and if miRNAs commonly cause RNA degrad-
ation of their target genes then we should see an over-
representation of miRNA vs. mRNA correlations for
genes with predicted target sites. We failed to find this
for the miRNAs that we investigated (both all correlated
genes and just the negatively correlated genes). This gen-
erally held true in another study investigating liver

miRNA expression in inbred and BXD RI strains [22]. It
is possible that there is little degradation of mRNA tran-
scripts by miRNA in mammals, and instead miRNAs
block translation of the targeted mRNA. The difficulty
in accurate prediction of miRNA binding sites due to
the small size of the recognition sequences could also
account for this result [5]. An alternative interpretation
is that additional cellular processes, possibility including
indirect mechanisms of miRNA gene regulation, act in
an indirect fashion to modulate or mask the regulatory
effects of miRNAs in vivo [66].

Conclusions
Systems genetic analyses make use of naturally occurring
genetic polymorphisms to simultaneously map sources
of genetic variation and identify relations among bio-
logical entities across biological scale (in this case
miRNA, mRNA and behaviour). Genetic analysis of
miRNA expression and co-expression in the BXD re-
combinant inbred panel, takes advantage of the extensive
cumulative data available for this panel, to further
characterize five miRNAs that were previously shown to
be differentially expressed in the BXD progenitor strains
[20]. This is the first study of brain miRNA abundance
in the BXD genetic reference panel, and it revealed that
a well-characterized miRNA to behaviour relationship is
subject to genetic control.
Using this approach, we conducted QTL analysis that

enabled the detection of genetic loci that regulate the
expression of these miRNAs. eQTLs that regulate
miRNA abundance are a new mechanism by which gen-
etic variation influences brain and behaviour. Analysis of
one of these QTLs revealed a gene, Tnik, which may
regulate the expression of a miRNA, a molecular path-
way and a behavioural phenotype. Furthermore, we
found evidence of genetic covariation of miR-212 abun-
dance and cocaine related behaviours that is strongly sup-
ported by previous functional studies, demonstrating the
value of this approach for discovery of new functional
roles and downstream processes regulated by miRNA.
In summary, systems genetic analysis of miRNA abun-

dance is a promising approach to discovery of the func-
tional significance or particular miRNA in phenotypic
variation and disease. With a simple profiling study
across the original BXD RI strains, robust associations of
miRNA to gene expression and behaviour can be
detected. Simultaneous estimation of gene expression
and miRNA abundance in the full BXD RI panel or
high-power, high precision populations such as large ex-
perimental crosses and advanced mouse populations re-
cently developed by the Complex Trait Consortium may
yield many more such associations to bridge the gap be-
tween molecular discovery of miRNA and functional
biology.
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Methods
Animals
Hippocampal tissue was collected from 24 strains of
C57BL/6 J x DBA/2 J recombinant inbred mice (BXD):
BXD1/TyJ, BXD5/TyJ, BXD6/TyJ, BXD8/TyJ, BXD9/TyJ,
BXD11/TyJ, BXD12/TyJ, BXD16/TyJ, BXD18/TyJ,
BXD19/TyJ, BXD21/TyJ, BXD22/TyJ, BXD23/TyJ,
BXD24/TyJ, BXD27/TyJ, BXD28/TyJ, BXD30/TyJ,
BXD31/TyJ, BXD32/TyJ, BXD33/TyJ, BXD34/TyJ,
BXD39/TyJ, BXD40/TyJ, BXD42/TyJ (n = 4 for all BXD
strains except BXD30/TyJ where n = 2). The colony of
BXD RI strains was maintained at the Institute of Psych-
iatry using original stocks purchased fromsbl;lll The
Jackson Laboratory (Bar Harbor, ME, USA). All animals
were males aged between 100-110 days when killed.
After cervical dislocation, bilateral hippocampi were dis-
sected in their entirety from fresh brains within two
minutes from the time of death. Any connecting tissue
was trimmed off and the hippocampi were immediately
snap frozen on dry ice and stored at -800C. All housing
and experimental procedures were carried out in accord-
ance with the UK Home Office Animals (Scientific Pro-
cedures) Act 1986 under License PPL No. 70/5113.

miRNA isolation
In order to obtain reliable levels of miRNA, total RNA
was isolated from hippocampus using a miRNA isolation
kit (Abmbion, Life Technologies, UK). The total RNA
concentration was determined using a nanodrop ND-1000
(Thermo Fisher Scientific).

Taqman real-time polymerase chain reactions (RT-PCR)
The mature miRNA expression for the five miRNAs
miR-15b, miR-31, miR-34c, miR-212, and miR-301a were
quantified in the individual BXD animals using Taqman
RT-PCR assays (Applied Biosystems, Life Technologies,
Foster City, CA, USA). The reverse transcription (RT)
reactions were conducted using the miRNA reverse
transcription primer specific for each assay, using the
standard TaqManW micro RNA Reverse Transcription
protocol (www.appliedbiosystems.com, document #:
4364031). The RT-PCR reactions were performed in
triplicate using 0.5 μl of 20x PCR Probe/Primer Mix,
1.5 μl of product from the RT reaction (diluted 1:10),
5 μl of 2x TaqMan Master Mix (No UNG) and 3 μls
nuclease-free water. A sample minus reverse transcrip-
tion buffer was used as a negative control for the
RT-PCR reactions. (All of the negative controls used
failed to reach threshold by 45 cycles).
Reactions were run on a 7900HT Fast real-Time PCR

System (Applied Biosystems, Foster City, CA, USA) in
384 well format. RNU19, miR-9 and miR-99a were used
as controls for each of the test assays investigated in the
individual samples. These assays were chosen as controls

because their expression did not differ across strain and
they had low variability within strain.

Taqman RT-PCR statistical analysis
Relative expression was calculated using the standard 2
� Δ Ctð Þð Þ relative expression method in Microsoft Excel.
The relative expression of the individual samples was
normalized to the geometric mean of RNU19, miR-9 and
miR-99a (previously shown not to differ between
C57BL/6 J and DBA 2 J, [20]). The η2 values were calcu-
lated from the genetic and environmental (error-term)
sums of squares derived from a one-way ANOVA using
the open source statistical program R.

Correlations of behaviour and miRNA expression
Correlations were conducted between miRNA expres-
sion and the phenotypic measures from the behavioural
batteries previously described in [67] (n = 40) and [25]
(n = 243). We limited our analysis to those measures for
which we had the corresponding phenotype and miRNA
expression data in at least 18 BXD RI strains. Correla-
tions were conducted using PASW Statistics 18, Release
Version 18.0.0 (SPSS Inc., 2009, Chicago, IL, USA). False
Discovery Rate control [23] was used to account for
multiple testing (q < 0.2). For each miRNA, we con-
ducted Fisher’s exact tests (one-sided) to determine if
the number of significantly correlated behavioural traits
within a given behavioural category was greater than
that predicted by chance.

Correlations of mRNA and miRNA expression
Lists of genes with MIRANDA predicted miRNA sites
[68] were downloaded from the online miRNA database,
miRBase (http://microrna.sanger.ac.uk/). Hippocampal
mRNA expression for the BXD RI mice was obtained
from the Hippocampus Expression Consortium [69].
The hippocampus, excluding most of the subiculum,
from two to three animals was dissected and pooled
for hybridization to a single Affymetrix M430 2.0
array. Raw microarray data was transformed using the
PDNN, MAS5 and RMA methods. to 2z + 8, thus
yielding a data set with a standard deviation of 2 and
an overall mean of 8.
The expression data and predicted target site informa-

tion were merged and correlations between miRNA and
mRNA expression were conducted using the open source
statistical program R [70]. False discovery rate [23] was
used to account for multiple testing. KEGG pathway ana-
lysis was conducted using the lists of nominally significant
genes for each miRNA using WebGestalt (http://bioinfo.
vanderbilt.edu/webgestalt). Chi squared tests for inde-
pendence (two-sided without Yates correction) were cal-
culated to see if there was a relationship between the
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presence of a target site and a significant correlation be-
tween mRNA and miRNA expression (p <0.05).

QTL analysis of miRNA expression
QTL analysis was conducted for miRNA expression
for those miRNAs investigated in the BXD RI strains
(miR-15b, miR-31, miR-34c, miR-212, and miR- 301a).
These analyses were done using the R-QTL package in
the open source statistical program R as previously
described in [71]. Confidence intervals (1 and 1.5 LOD
score drops) were calculated for any suggestive QTL
peaks. A series of correlations between miRNA expres-
sion and mRNA expression were conducted for all of the
genes underlying all the suggestive eQTL peaks using
PASW Statistics 18, Release Version 18.0.0 (SPSS Inc.,
2009, Chicago, IL, USA). False discovery rate control [23]
was used to account for multiple testing (q < 0.2).
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