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This paper discusses an improvement in a Stochastic Evolutionary Model of 
Protein Production Rate (SEMPPR) by revising the method by which it mod-
els mutation. SEMPPR previously assumed unbiased mutation, an assumption 
whose inaccuracy is made clear by observed codon counts of low-expression 
genes, where mutation determines equilibrium state. This paper presents a new, 
more complex model generalized on a per-codon basis and calculated from 
observed codon frequencies using a maximum likelihood framework. Results 
obtained from SEMPPR using the codon specific mutation model proved more 
accurate in predicting a protein’s production rate, reaffirming that complex 
mechanisms govern codon mutation rates.

Introduction

The presence of more translating codons than translated amino acids in the genetic code 
creates redundancy in the protein code. Codons that translate the same amino acid are 
referred to as synonymous codons, and codon sequences that produce the same protein 
sequence are referred to as synonymous sequences. Codon usage bias, or codon bias, refers 
to the widely documented phenomenon showing the non-uniform use of synonymous co-
dons within an organism’s genome (Ikemura 1981; Bennetzen and Hall 1982; Sharp and Li 
1987). Several explanations of codon bias include mutational bias, intron splicing, recom-
bination and gene conversion, DNA packaging, and selection for increased translational 
efficiency or accuracy (Bernardi and Bernardi 1986; Bulmer 1988, 1991; Shields et al. 
1988; Kliman and Hey 1993,1994; Akashi 1994,2003; Xia 1996,1998; Akashi and Eyre-
Walker 1998; Musto et al. 2003; Chen et al. 2004; Chamary and Hurst 2005a,b; Comeron 
2006; Lin et al. 2006; Warnecke and Hurst 2007; Drummond and Wilke 2008; Warnecke 
et al. 2008).

http://trace.tennessee.edu/pursuit
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The Stochastic Evolutionary Model of Protein Production Rate (SEMPPR), in-
troduced in Gilchrist (2007), assumed unbiased mutation, where mutation rates among 
all codons are equal. In low-expression genes, mutation determines the equilibrium state 
of codon bias because few selective pressures exist to influence translational efficiency. 
Assuming unbiased mutation, low-expression genes should be composed of equal frequen-
cies of all codons for a given amino acid. As shown in Figure 1, non-uniform codon fre-
quencies in low-expression genes suggest that codon mutation rates between codons are 
unequal. Several mechanistic models have been proposed to explain mutation bias includ-
ing transition/transversion bias and A-T bias (Kimura 1980; Hershberg and Petrov 2010).

Figure 1. This bar chart shows codon frequencies of low expression genes (< 0.01/
sec) in S. Cerevisiae. Note that in unbiased mutation, all codon frequencies should be 
equal. 

The new mutation model presented in this study takes a heuristic approach in which codon-
specific mutation rates are calculated using a maximum likelihood framework based on 
observed codon frequencies (Shah and Gilchrist 2011). The new codon-specific mutation 
model was implemented in SEMPPR to observe its effect on SEMPPR’s ability to predict 
protein production rates. 

Methods

SEMPPR uses an evolutionary framework to predict the production rate of each protein 
sequence based on the fitness of its codon sequence (Gilchrist 2007). Assuming that a co-
don sequence is more favorable if it uses less energy to produce a protein, the fitness  of a 
codon sequence is assumed a negative exponential function of the energy expenditure rate 
for its production, ϕη.

In this equation, ϕ represents the production rate of the protein (units of proteins/second), 
and η represents the cost of completing one protein (units of energy), and the coefficient q 
represents a scaling factor, which makes the proportional scale of these units arbitrary. As 
explained later, protein cost η is calculated as a composition of the cost of one complete 
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polypeptide plus the expected energetic cost due to nonsense errors. The previously men-
tioned energy expenditure rate ϕη is calculated as the rate of protein production ϕ times 
the cost of producing one protein η.

To conceptualize the idea of this fitness function, consider cases of low-expression 
genes and high-expression genes. Given the previously defined fitness function, as ϕ ap-
proaches 0, w approaches 1 independently of protein cost η. Since fitness, a measure of 
reproductive success, does not vary with η, all organisms are equally likely to pass on 
their genetic material when considering only protein cost’s effect on fitness. In this case, 
the codon that is mutated to most frequently by other codons will appear most frequently. 
Therefore, mutation is the major contributor to the equilibrium state of codon bias in low-
expression genes. In contrast, as ϕ gets large, w varies significantly with values of η. A 
large difference in w is more likely to affect reproductive success, and organisms with 
low-cost sequences are more likely to pass on their genes. SEMPPR calculates the cost of 
completing a protein η based on the cost of the completed protein plus the expected cost 
of nonsense errors during translation of the said protein. For a vector of codon elongation 
rates c⃗ :

Here, σn represents the probability that a codon sequence will translate a protein to the last 
codon n without a nonsense error. More generally, σi represents the probability that a codon 
sequence will translate up to and including codon i. The probability of successfully translat-
ing an individual codon i is equal to ci/(ci+b), where b is the background nonsense error 
rate. Since the probability of translating up to and including codon i equals the product of 
the completion probabilities up to and including codon ,

3	
  
	
  

individual codon 𝑖𝑖 is equal to 𝑐𝑐!/(𝑐𝑐! + 𝑏𝑏), where 𝑏𝑏 is the background nonsense error rate. Since 
the probability of translating up to and including codon 𝑖𝑖 equals the product of the completion 
probabilities up to and including codon , 𝜎𝜎! =    𝑐𝑐!/(𝑐𝑐! + 𝑏𝑏)!

!!! . Similarly, the probability of 
observing a nonsense error at codon 𝑖𝑖 is equal to 𝑏𝑏/(𝑐𝑐! + 𝑏𝑏), and the probability of observing a 
nonsense error at codon 𝑖𝑖 after translating successfully to codon 𝑖𝑖 − 1 is 
Pr 𝑁𝑁𝑁𝑁𝑁𝑁 =   𝜎𝜎!!! ∗ 𝑏𝑏/(𝑐𝑐! + 𝑏𝑏). Another term, 𝜉𝜉(𝑐𝑐), represents the expected cost of one nonsense 
error. SEMPPR calculates 𝜉𝜉(𝑐𝑐) by summing the cost of nonsense errors at every codon position 
weighted by the probability that a nonsense error will occur at that position. Parameters 𝑎𝑎! and 
𝑎𝑎! represent cost of ribosome recharge and cost of peptide bond, respectively. 

Nonsense errors occur when a ribosome terminates protein translation before completion, 
and the incomplete polypeptide is assumed non-functional, contributing an energetic cost to the 
cell. SEMPPR assumes a constant background nonsense error rate, so the faster a codon is 
translated, the lower chance it has to experience a nonsense error. Generally, a codon sequence 
with a higher number of fast translating codons will have a lower production cost and thus higher 
fitness. Since energy is invested in each peptide bond, fast-translating codons that occur near the 
end of a sequence have a larger impact on production cost and are subject to higher selective 
pressures. Using analogies to thermodynamic system state analysis (Sella and Hirsh 2005), 
SEMPPR calculates the probability of observing each synonymous sequence by comparing its 
fitness and mutation bias to that of all synonymous sequences. This can be observed as a Markov 
process with equilibrium: 

 
The exponent 𝑥𝑥! represents the number of occurrences of codon 𝑘𝑘 in the given sequence, 

𝑁𝑁! represents the effective population size, a measure of genetic drift, and 𝑆𝑆 represents the 
synonymous space, or the set of all synonymous codon sequences for a given amino acid 
sequence. 

As previously explained, mutation values used in this experiment were taken from 
Gilchrist and Shah (2011) which used a maximum likelihood framework to estimate the relative 
mutation rates. Although the model used in the aforementioned study calculated protein cost 
from ribosome overhead cost rather than nonsense errors, it should still estimate accurate 
mutation values, because the underlying mutation process is the same for both models. This 
mutation model differs from simpler mutation models by the number of parameters estimated. In 
simpler models such as transition/transversion, there are only two estimated parameters - 
transition rate and transversion rate (Kimura 1980). In an even simpler model, A-T bias, there is 
only one estimated parameter - AT relative frequency (Hershberg and Petrov 2010). Finally in 
the simplest model, unbiased mutation, there are no estimated parameters. Here, there are 40 
estimated parameters, one for each translating codon minus one for each synonymous codon 
group. For each synonymous codon group, one arbitrarily chosen mutation rate was normalized 
to 1, because only relative mutation rates are important in the codon-specific mutation model. 
Although there are 61 codons and 20 amino acids, amino acid serine was split into two 

. Similarly, 
the probability of observing a nonsense error at codon i is equal to b/(ci+b), and the prob-
ability of observing a nonsense error at codon i after translating successfully to codon 
i-1 is Pr(NSE)= σi-1*b/(ci+b). Another term, ξ(c⃗), represents the expected cost of one 
nonsense error. SEMPPR calculates ξ(c⃗) by summing the cost of nonsense errors at every 
codon position weighted by the probability that a nonsense error will occur at that posi-
tion. Parameters a1 and a2 represent cost of ribosome recharge and cost of peptide bond, 
respectively.

Nonsense errors occur when a ribosome terminates protein translation before com-
pletion, and the incomplete polypeptide is assumed non-functional, contributing an en-
ergetic cost to the cell. SEMPPR assumes a constant background nonsense error rate, so 
the faster a codon is translated, the lower chance it has to experience a nonsense error. 
Generally, a codon sequence with a higher number of fast translating codons will have 
a lower production cost and thus higher fitness. Since energy is invested in each peptide 
bond, fast-translating codons that occur near the end of a sequence have a larger impact on 
production cost and are subject to higher selective pressures. Using analogies to thermo-
dynamic system state analysis (Sella and Hirsh 2005), SEMPPR calculates the probability 
of observing each synonymous sequence by comparing its fitness and mutation bias to that 
of all synonymous sequences. This can be observed as a Markov process with equilibrium:
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The exponent xk represents the number of occurrences of codon k in the given sequence,  
Ne represents the effective population size, a measure of genetic drift, and S represents the 
synonymous space, or the set of all synonymous codon sequences for a given amino acid 
sequence.

As previously explained, mutation values used in this experiment were taken from 
Gilchrist and Shah (2011) which used a maximum likelihood framework to estimate the 
relative mutation rates. Although the model used in the aforementioned study calculated 
protein cost from ribosome overhead cost rather than nonsense errors, it should still esti-
mate accurate mutation values, because the underlying mutation process is the same for 
both models. This mutation model differs from simpler mutation models by the number 
of parameters estimated. In simpler models such as transition/transversion, there are only 
two estimated parameters - transition rate and transversion rate (Kimura 1980). In an even 
simpler model, A-T bias, there is only one estimated parameter - AT relative frequency 
(Hershberg and Petrov 2010). Finally in the simplest model, unbiased mutation, there are 
no estimated parameters. Here, there are 40 estimated parameters, one for each translating 
codon minus one for each synonymous codon group. For each synonymous codon group, 
one arbitrarily chosen mutation rate was normalized to 1, because only relative mutation 
rates are important in the codon-specific mutation model. Although there are 61 codons and 
20 amino acids, amino acid serine was split into two synonymous groups, because the co-
dons differed by more than one mutation, resulting in 61 codons and 21 amino acid groups. 

Although the previously defined equilibrium expression returns a probability distri-
bution of η given ϕ, Bayes’ Theorem provides a posterior distribution of ϕ given η.

Here, information known about the distribution of ϕ in the form of a prior distribution f(ϕ) 
is combined with the observed distribution of η, f(ηobs|ϕ). The prior distribution f(ϕ) is as-
sumed noninformative where all protein production rates are equally likely. This combined 
information yields a posterior distribution, and its arithmetic mean is used to determine the 
predicted expression levels. With the codon-specific mutation model in place, SEMPPR 
calculated predicted production rates ϕ of 5530 verified genes from the Saccharomyces 
cerevisiae genome and compared predicted values of ϕ to empirical estimates from Bayer 
et al. (2004).

Results
Generated values of ϕ are found in Figure 2. Since error in predicted values is assumed 
lognormal, a plot of the log of predicted production values versus the log of empirical val-
ues is more informative. Results using the codon-specific mutation model correlated more 
strongly than results using unbiased mutation with coefficient of determination R2 values 
of 0.441 and 0.426, respectively.

For low-expression genes, the results found when implementing the codon-specific 
mutation model indicated a slight decrease of predicted production rates while remain-
ing relatively static in high-expression genes. Separate plots of high- and low-expression 
genes showed a greater improvement in the prediction of protein production rate for low-
expression genes with the new mutation model. Using the codon specific mutation model, 
the coefficient of determination R2 improved from .201 to .221 in the 5000 genes with the 
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lowest expression levels, while R2 only improved from .485 to .502 in the 530 genes with 
the highest expression levels. This difference indicates that the codon specific model had 
little effect on predicted production rates for highly expressed genes. Another interesting 
result lies in the difference in R2 values between high-expression genes and low-expression 
genes. The higher R2 values in high-expression genes show that SEMPPR predicts the pro-
duction rate of highly-expressed genes more accurately than low-expression genes.

The indication that the codon-based mutation model affected the predicted produc-
tion rate of low-expression genes more than high-expression genes is further evinced by 
similar deviating patterns in both graphs in genes with high expression levels. Examining 
the outer edges of the distribution, it is easy to identify patterns of individual data points 
that occur in both graphs, and these deviating patterns experienced less change in the region 
of highly expressed genes when implementing the new mutation model. To quantify this 
claim, the data were analyzed to find the percent change of ϕ for 530 genes with the highest 
expression rates compared to the percent change of ϕ for all other genes. On average, data 
points in high-expression genes changed 11.8%, while data points in low-expression genes 
changed 47.5%. According to these results, not only did the new mutation model conserve 
the overall behavior of predicted production rates in high-expression regions, but it also 
conserved their behavior on an individual basis.

Discussion

The increased accuracy of predicted protein production rates using the codon-specific 
mutation model is most likely due to more accurate prediction of the production rate of 
low-expression genes. Before implementing the codon-specific mutation model, SEMPPR 
most likely mistook codon bias seen in low-expression genes for bias due to selective pres-
sures, when the biases were actually caused by mutation. This discrepancy occurs because 
several codons with high relative mutation rates also have relatively fast translation rates. 

Figure 2. The first grid shows results from SEMPPR using the codon specific muta-
tion model, and the second grid shows results from SEMPPR assuming unbiased 
mutation. Y-axis shows values of predicted production rate on a logarithmic scale. 
X-axis shows values of empirically determined production rates on a logarithmic 
scale. As you can see, results from SEMPPR using the codon specific mutation model 
are more accurate than those using unbiased mutation (Coefficient of determina-
tion0.441 vs. 0.426).
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For eight of the twenty amino acids, the codon with the highest translation rate is also the 
codon with the highest relative mutation rate. The new codon-specific mutation model 
helped alleviate some error due to mutation bias. However, significant error is still present 
in low-expression genes according to the coefficient of determination R2 values of the plots 
of low-expression genes. 

Among the shortcomings of the codon-specific mutation model is the inability to 
distinguish the particular mechanism responsible for the heuristically determined mutation 
rates. In the future, researchers can develop mechanistic models that predict mutation rates, 
implement them in SEMPPR, and compare their results to these.

These findings emphasize the importance of mutation in codon usage bias. In low-
expression genes, fitness is relatively insensitive to codon sequence, so mutation domi-
nates the equilibrium distribution. In high-expression genes, fitness varies significantly 
with codon sequence, and mutation has little effect. In order to distinguish and elucidate 
the mechanisms behind the effects of mutation and selective pressures on codon bias, it is 
important that the scientific community understand both phenomena. This codon-specific 
mutation model improves the accuracy of predicted production rates from SEMPPR and 
brings the scientific community one step closer to understanding codon usage bias.
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