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Modeling On-Farm Escherichia coli O157:H7
Population Dynamics

P. Ayscue, C. Lanzas, R. Ivanek, and Y.T. Gröhn

Abstract

Escherichia coli O157:H7 is a potentially fatal foodborne pathogen with a putative reservoir for human infection in
feedlot cattle. In order to more effectively identify targets for intervention strategies, we aimed to (1) assess the role
of various feedlot habitats in E. coli O157:H7 propagation and (2) provide a framework for examining the relative
contributions of animals and the surrounding environment to observed pathogen dynamics. To meet these goals
we developed a mathematical model based on an ecological metapopulation framework to track bacterial pop-
ulation dynamics inside and outside the host. We used E. coli O157:H7 microbiological and epidemiological
literature to characterize E. coli O157:H7 habitats at the pen level and account for E. coli O157:H7 population
processes in water troughs, feedbunks, cattle hosts, and pen floors in the model. Simulations indicated that E. coli
O157:H7 was capable of maintaining viable populations in the feedlot without net growth in the cattle gastro-
intestinal tract, suggesting E. coli O157:H7 may not always act as an obligate parasite. Water troughs and con-
taminated pen floors appeared to be particularly influential sources driving E. coli O157:H7 population dynamics
and thus would serve as prime environmental targets for interventions to effectively reduce the E. coli O157:H7
load at the pen level.

Introduction

Enterohemorrhagic Escherichia coli is a serious and
potentially fatal pathogen of humans across the globe.

E. coli O157:H7 infection can result in hemolytic uremic syn-
drome and accounts for thousands of cases of severe food-
borne illness in the United States each year (Mead et al., 1999).
E. coli O157:H7 can infect humans from a wide variety of
sources; however, the most common source of exposure and
subsequent infection is contaminated food. Poorly cooked,
tainted ground beef and other bovine food products have
often been implicated as the primary source of infection in
outbreaks (e.g., Chapman et al., 1992; Morgan et al., 1993; Tarr
1995; Armstrong et al., 1996). Cattle are frequently test-posi-
tive and actively shed E. coli O157:H7 intermittently after
challenge infection but rarely show clinical signs of disease
(Besser et al., 1997; Hancock et al., 1997; Shere et al., 1998;
Khaitsa et al., 2003). Cattle are putatively considered the pri-
mary reservoir for E. coli O157:H7 infecting humans (as re-
viewed by Hussein and Sakuma, 2005). It has been shown that
a reduction in E. coli O157:H7 shedding in feedlot cattle
is correlated with a reduction in carcass contamination at
slaughter, indicating that preharvest interventions may be an

effective means of controlling human foodborne infection
(Chapman et al., 1992; Elder et al., 2000).

A number of interventions have been proposed to reduce
E. coli O157:H7 load or prevalence in cattle that follow one of
two general strategies: to reduce cattle’s exposure to E. coli
O157:H7 or to increase the resistance of cattle to the bacteria
(Sargeant et al., 2007). Despite extensive testing including
randomized clinical trials, no single intervention appears
ready for extensive implementation that would result in the
control of O157:H7 in bovine populations (Callaway et al.,
2004; Ahmadi et al., 2007; LeJeune and Wetzel 2007). This
suggests further work is needed to identify intervention
measures that are both efficacious in reducing the load of
E. coli O157:H7 at harvest and economically and logistically
feasible to administer to large cattle holdings. However, it is
not always clear if the failures of previous control strategies
stem from an inefficient mechanism of action in the inter-
vention when applied at the population level or are the result
of inadequately targeting the vulnerable habitats of E. coli on
the farm and feedlot. Currently, this question is difficult to
answer as the relative importance of factors leading to prop-
agation and maintenance of E. coli O157:H7 on the farm are
poorly understood.
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Fecal–oral contamination is presumed to be an important
mechanism for transmission of E. coli O157:H7 between cattle
in close proximity. The potential for direct transmission be-
tween cattle has been demonstrated in proof of concept
studies; however, given the relatively high load and potential
for reproduction of E. coli O157:H7 in water troughs (LeJeune
et al., 2001a, 2001b; Van Donkersgoed et al., 2001), feed bunks
(Lynn et al., 1998), slurry (Maule, 2000), feces (Wang et al.,
1996; Fukushima et al., 1999), pen floors (Berry and Miller,
2005), and surrounding environment (Trevena et al., 1996;
Beuchat, 1999; Taormina and Beuchat, 1999; Maule, 2000) and
the high level of contact between these habitats and feedlot
cattle, it seems unlikely that cow-to-cow transmission accounts
for the majority of E. coli O157:H7 propagation and mainte-
nance. Further support is found in the work of LeJeune et al.
(2004), who reported that restriction endonuclease digestion
patterns observed in E. coli O157:H7 remained consistent
within feedlot from year to year despite massive cattle turn-
over, which the authors concluded implicated the farm en-
vironment, rather than incoming cattle, as a source for E. coli
O157:H7.

Mathematical models have generally provided a frame-
work in which the effect of interventions is able to be tested
under a wide range of management conditions, thus allow-
ing researchers to identify areas and processes vulnerable to
disruption and offering specific management guidance. Pre-
vious mathematical modeling work has attempted to parse
the contribution of environmental contamination and direct
and indirect cattle to cattle transmission to observed E. coli
O157:H7 dynamics (Turner et al., 2003, 2006, 2008; Liu et al.,
2005, 2007; Ahmadi et al., 2007; Wood et al., 2007). However,
the role of environment in on-farm E. coli O157:H7 propaga-
tion remains unclear.

We aim to address two central objectives through this
study. Firstly, we examine the importance of various E. coli
habitats (water troughs, feed bunks, cattle gastrointestinal
tracts, and surrounding pen environment) to the propagation

of the E. coli O157:H7 strain within the context of an ecologi-
cally realistic cattle feedlot. Secondly, we aim to identify vul-
nerable points for control of E. coli O157:H7 propagation and
maintenance in cattle and the surrounding pen environment
through various interventions in the absence of an explicitly
modeled contact-based pathogen transmission process. To
robustly examine these questions, we depart from the infec-
tious disease compartmental framework (i.e., Suspectible In-
fected Susceptible models) used in previous studies and
develop pathogen-level metapopulation models capable of
reflecting widespread bacterial growth and population dy-
namics outside an animal host. This will allow us to focus
current and future efforts to develop intervention strategies
aimed at lowering the load of E. coli O157:H7 presented to the
human food chain.

Methods

Model description

To meet these aims we follow methods based in an eco-
logical metapopulation framework (Hanski, 1998) modified
to represent a free-living pathogen capable of extra-host rep-
lication. The metapopulation framework allows for the study
of populations consisting of organisms capable of moving
between and growing in spatially segregated habitats. Briefly,
a system of coupled ordinary differential equations is pa-
rameterized to represent potential replication habitats (i.e.,
patches) and population dynamics for E. coli O157:H7 while
allowing for transfer between patches.

The dynamic equations in this model system represent
E. coli O157:H7 organisms migrating between water troughs
(W), feedbunks (F), cattle (C), and surrounding pen environ-
ment (E) compartments (Fig. 1). Habitats were selected based
on reported potential for sustaining E. coli O157:H7 growth.
Population dynamics are heterogenous between patches, re-
flecting diverse abilities at supporting E. coli O157:H7 repli-
cation:

FIG. 1. Diagrammatic representation of model states and flows. Boxes represent patches where E. coli O157:H7 can reside.
Arrows represent migration rates between patches with flow from patch i to patch j represented by mij. Large arrows indicate
density-dependent exponential growth of bacteria within each patch.
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¼ rcC 1� C
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� (lcþ p)CþmecEþmwcWþmfcF

dW
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� �
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Bacteria are tracked and parameters calibrated to colony-
forming units (CFU) as these are the most common quantified

measures of bacterial presence reported in the E. coli O157:H7
literature. Parameters are defined and estimates presented in
Table 1. Point estimates and distributions were derived from
literature when possible. Distributions were selected to en-
compass both expected natural variation and uncertainty in
point estimates. The parameter mj represents non–density-
dependent death (population-level decay) in compartment j.
Growth rates (rj) in water troughs, feedbunks, animals, and
surrounding environment are assumed to experience density-
dependent adjustment through the logistic function depen-
dent on the patch’s carrying capacity (Kj). Growth rate in
cattle (rc) was set to 1 in the base model indicating neutral net

Table 1. Parameter Definitions and Values for Deterministic and Stochastic Analysis

Parameter Definition (units) Baseline value Sensitivity analysis Referencea

Water
Kw Carrying capacity (CFU=mL) 106 Log uniform (2, 7) Amalaradjou et al., 2006;

Besser et al., 2003;
LeJeune et al., 2001a,
2001b

rw Replication (per day) 3.5 Normal (3.5, 0.75) LeJeune et al., 2001b
mw Death (per day) 0.06 Uniform (0, 0.13) LeJeune et al., 2001a
Vw Trough size (L) 50 Uniform (25, 3000) Pers. comm.; Harner and

Murphy, 1998
Environment

Ke Carrying capacity (CFU=g) 105 Log uniform (1, 6) Berry and Miller, 2005;
Besser et al., 1997;
Jiang et al., 2002

re Replication (per day) 1.5 Normal (1.5, 0.5) Wang et al., 1996
me Death (per day) 0.3326 Uniform (0.1–0.9) Jiang et al., 2002;

Maule, 2000;
McGee et al., 2001

Ve Size of E compartment (kg) 500 Uniform (200, 1000) Management
Feed

Kf Carrying capacity (CFU=g) 104 Log uniform (1, 5) Besser et al., 1997;
Lynn et al., 1998

rf Replication (per day) 0.75 Uniform (0.05–2.5) Besser et al., 2003;
Lynn et al., 1998

mf Death (per day) 0.3 Uniform (0.05–1.5) Estimated
Vf Bunk capacity (kg) 2000 Uniform (500, 2500) Pers. comm.

Cattle
Kc Carrying capacity (CFU=g feces) 106 Log uniform (1, 7) Chase-Topping et al., 2007
rc Replication (per day) 1 Uniform (1, 3) Estimated
mc Death (per day) 3 Uniform (1, 12) Estimated
P Passage rate (per day) 1 Constant Van Soest, 1994
S Number steers (animals) 150 Uniform (50, 300) Pers. comm.; Harner and

Murphy, 1998
cw Water consumption [L=(animal=day)] 45 Normal (45, 7) Harner and Murphy, 1998
cf Feed intake [kg=(animal=day)] 11 Normal (11, 2) Pers. comm.
ce Fecal and soil ingestion [kg=(animal=day)] 0.75 Uniform (0.25, 1.25) Estimated

Movement rates between patchesb

mwc Drinking (per day) S · cw

Vw

NA

mfc Consumption(per day) S · cf

Vf

NA

mec Ingestion of environment (per day) S · ce

Ve

NA

mwe Spillage (per day) 0.1 Uniform (0.05, 5) Estimated
mew Water contamination(per day) 0.005 Uniform (0.001, 0.01) Estimated
mcw Fecal shedding(to W; per day) 0.05 Uniform (0.01, 0.07) Estimated
mcf Fecal shedding(to F; per day) 0.02 Uniform (0.005, 0.03) Estimated
mce Fecal shedding(to E; per day) mce¼ 1�mcw�mcf NA NA

aPers. comm. indicates that estimates were arrived at from discussions with T. Besser, G. Loneragan, M. Baker, and J. VanDonkersgoed.
bmij is the movement rate from compartment i to compartment j where i; j 2 fc;w; e; fg and i= j.
CFU, colony-forming units.
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growth. This parameter was however allowed to vary above 1
in the sensitivity analysis of the deterministic and stochastic
models to assess the importance of pathogen replication in the
host assuming long-term colonization and growth. The terms
mji represent the rate of movement between habitat j to habitat
i and p is the passage rate of ingested media through the cattle
gastrointestinal tract. All elements outside the logistic func-
tions in the model are linear with assumed exponential time to
events.

Cattle ingest bacteria from and shed fecal matter into all
other states. The model developed here to test the role repli-
cation plays in each compartment does not mechanistically
model contact-based transmission between cattle. Patches
were selected based on their abilities to sustain and=or
propagate E. coli O157:H7, and cattle are considered a single
patch experiencing homogenous growth. Spilled water is
modeled as a vector for CFU to move into the environment,
and bacteria are reciprocally able to enter water from the
environment as troughs are assumed to be contaminated
throughout the daily activities of the cattle. A single pen is
considered.

All patches are subject to assumptions of homogenous
mixing within the compartment. For example, water troughs
and feedbunks are assumed to have uniformly distributed
CFU throughout the water column and feed mixture, re-
spectively, and all steers are assumed to eat and drink at equal
rates evenly across a day. All patches also maintain a constant
capacity reflecting an assumption that portions of the ‘‘hab-
itat’’ consumed or removed are continuously refilled. Water
sources, feedbunks, and surrounding environment (e.g., pen
floor) are assumed to be the only sources from which cattle
are exposed to E. coli O157:H7. The bulk of feces are assumed
to enter the surrounding environment, thus fecal–oral con-
tamination is largely modeled as vectored through this com-
partment.

The model was implemented and solved numerically in
both Vensim Professional (Ventana Systems, Inc., Harvard,
MA) and R 2.4.1 (freely available online at www.r-project.org)
across a single summer season (120 days). Model output from
both software systems agreed quantitatively with less than
1% variability at steady state. Bifurcations across parameters
were explored and figures and data reported here were de-
veloped in R, Matlab (The Mathworks, Natick, MA) (2006),
Microsoft Excel (Microsoft Corporation, Redmond, WA), and
PowerPoint (Microsoft Corporation) (2003). Baseline para-
meter estimates as reported in Table 1 were used for all de-
terministic simulations and analyses unless otherwise noted.
All analyses presented below were conducted with initial
values of zero CFU in all patches except for feed (F0¼ 10,000),
to mimic an introduction of E. coli O157:H7 via feed into an
otherwise sterile feedlot.

Stochastic simulations

We generated stochastic simulation data from a range of
parameter values in order to evaluate the robustness of results
derived from the deterministic analysis. We used Monte Carlo
techniques to conduct a global sensitivity analysis (as re-
viewed in Helton and Davis, 2003) by generating 10,000 it-
erations. Parameter distributions were sampled using Latin
Hypercube methods with 1000 equiprobable stratifications in
each distribution (McKay et al., 1979). The simulation output

was the steady state value for number of E. coli O157:H7 CFU
shed per gram of cattle feces and was summarized with
quartile box plots. For all analyses, model outputs reporting
CFU per gram fecal material were calibrated to an average of
30 kg fecal production=(day=steer).

Spearman’s rank correlation coefficient (r) was used to test
a two-sided hypothesis of correlation between each parameter
and output values. Significance was set at the a¼ 0.05 level
with Bonferroni correction for multiple hypothesis tests im-
plemented (a corrected¼ 0.00217). Parameters influencing
E. coli O157:H7 shedding rates in cattle were identified and are
discussed below.

Model assessment

Model assessment and applicability were considered by
comparing model outputs to population prevalences, a met-
ric available in the E. coli O157:H7 animal agriculture litera-
ture. Real-world testing relates the number of CFU per fecal
gram shed to animal level prevalence observations via im-
perfect culture tests. Similarly, we related the simulated
number of CFU per gram of feces to pen-level prevalence
estimates by the dose-dependent sensitivity of standard
culture-based detection techniques (LeJeune et al., 2006). This
modification allowed us to examine model results across or-
ganismal scales. The number of CFU per gram of substrate in
environment, water, and feed were validated against litera-
ture data.

Results

Deterministic analysis

The model demonstrated two steady states—one with
E. coli present and one with E. coli absent (comparable to the
disease-free state in host-level models). The E. coli–absent
steady state is unstable at equilibrium; the system is readily
invaded by E. coli organisms. The positive stable point is ro-
bust to changes in the initial value of state variables. The so-
lution to the baseline model revealed a dynamic invasion
process where E. coli moved throughout the system and grew
approximately exponentially toward an equilibrium state, as
demonstrated in Fig. 2. All patches outside the host main-
tained viable E. coli populations and thus contributed directly
to CFU observed in cattle feces through CFU ingestion and
subsequent expulsion.

Analysis of the deterministic form of the model revealed
which environmental patches were influential for E. coli
O157:H7 persistence. In the baseline model, the environ-
mental patch dominated dynamics due to its relatively large
size and slow turnover rate; environmental growth was nec-
essary to maintain populations throughout the system, and
served as the main reservoir for E. coli O157:H7 in the system.
At equilibrium, the environmental patch acted as a reservoir
for over 99.6% of the total E. coli population in the feedlot pen
and accounted for over 98% of E. coli ingested by steers. Cattle
shed 33 CFU=g feces at equilibrium.

In addition to the environmental patch, feed and animal
growth rates and carrying capacities influenced systemwide
shedding dynamics. High growth rates in the animal or feed
patches can result in higher levels of shedding than the en-
vironmental compartment is able to produce alone (Fig. 3).
However, the feed growth rates necessary to alter cattle
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FIG. 2. The number of E. coli O157:H7 colony-forming units (CFU; log10) observed in each patch (left panel) and the
number of log10 CFU per gram of substrate in each patch (right panel).

FIG. 3. Each panel is the bifurcation diagram of the respective patch comparing the growth rate and log carrying capacity
per gram (K) with the effect on the number of colony-forming units (CFU) of E. coli O157:H7 per gram of fecal matter (note
change in x-axis between panels). Changes in water parameters have little effect on the shedding dynamics, while changes in
parameters of other patches do have substantial influence at values examined here.
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shedding patterns are likely infeasible and discussed below.
Changes in growth parameters in water do not meaningfully
change the CFU per fecal gram excreted by cattle.

When we considered values from the parameter distribu-
tions that result in a reduction in the turnover rate of water
(changes in rw, mw, Vw, cw, S), a qualitative change in system
dynamics (bifurcation) was reached whereby water came to
dominate the invasion and equilibrium dynamics in the sys-
tem as a whole. Crossing this bifurcation resulted in an almost
fourfold increase in the number of E. coli O157:H7 in a gram of
steer feces from approximately 101 to 105 CFU=g feces and
system-wide growth during the invasion phase was slaved to
growth seen in water (Fig. 4). The parameters most influential
to determining whether the system was at the higher or lower
level of shedding were those which most strongly influenced
the exit rate of organisms in the water patch: numbers of steer
(S; due to the high volume of water consumption imposed)
and size of the water trough (Vw). The ratio of parameters
S:Vw determined which regime the system operated under

with the threshold occurring at approximately 10 L water=
steer (Fig. 5).

Stochastic analysis

The average number of CFU shed per gram of feces for
10,000 simulated feedlots is reported in Fig. 6. Approximately
44.5% of the simulations demonstrated fewer than 10 CFU=g
feces; given the sensitivity of the standard culture techniques,
this would translate to an apparent prevalence of less than
10%. Fewer than 100 CFU=g feces was shed in 63.8% of the
simulations, while the remaining 36.2% had shedding loads
greater than 100 CFU=g, which would translate to an appar-
ent prevalence as high as 80%. Growth and population dy-
namics in the animal and environmental patches were shown
to be most influential from the sensitivity analysis (Fig. 7);
high levels of growth in cattle and environment and envi-
ronmental carrying capacity were found to be correlated with
high levels of fecal shedding. Death rates in steers and the
environment and the number of steers per pen were shown to
be negatively correlated with fecal shedding per gram of
feces.

Discussion

Interpretation and assessment

The results of this study indicate that E. coli O157:H7
growth dynamics in water, the external environment, and
cattle hosts are influential to the population size of E. coli
O157:H7 in a feedlot pen. We have further demonstrated that
previously observed growth rates of E. coli O157:H7 popula-
tions outside the cattle host are adequate to maintain high
levels of E. coli O157:H7 in the feedlot without net replication
in cattle hosts. In the absence of these processes, we identify
the carrying capacity of the environmental compartment, net
growth=death rates in cattle, and number of steers in a pen as
particularly vulnerable points for E. coli O157:H7 control at
endemic levels of contamination. We predict that interven-
tions targeting these parameters, such as higher cleaning rates
and administration of growth inhibition agents in the envi-
ronment and water troughs or probiotic treatments in cattle,
would prove particularly efficacious at reducing the load of

FIG. 4. Steady state solutions for proportion of E. coli
O157:H7 population in each patch with different capacities of
water trough in liters.

FIG. 5. Effect of varying the number of steers (S) in a
pen and the capacity of the water trough (L) on the
log10 colony-forming units (CFU) of E. coli O157:H7
observed per gram of fecal matter. Two clear planes
emerge with a bifurcation resulting as the number of
steers is decreased or capacity of water troughs in-
creased.
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E. coli on the farm, and subsequently the load introduced into
the human food chain.

One of the most prominent results from this study is the
ability of the model to maintain E. coli O157:H7 populations

without net contributions from animal hosts. The predicted
shedding levels compare favorably to those reported in the
literature. For the deterministic baseline evaluation (assuming
that all cows have the same shedding status and the number
of bacteria shed per gram of feces), 33 CFU=g feces were ob-
served that would lead to a prediction of approximately 20%
prevalence observed in tested beef feedlot herds. This closely
mirrors the recently observed prevalences in cross-sectional
studies of feedlots. Elder and colleagues (2000) observed 28%
prevalence in sampled feces of feedlot cattle, and Hussein
(2007) found prevalence in beef feedlots ranged from esti-
mates of 0.3–19.7% in a review of cross-sectional studies using
fecal samples. Using most probable number analysis, Fegan
and colleagues (2004) also demonstrated that the majority of
cattle shedding E. coli O157:H7 (>90%) are shedding less than
500 CFU=g feces with 83% shedding less than 100 CFU=g. This
has strong agreement with our deterministic and stochastic
analyses that suggest most feedlots would support average
cattle shedding at less than 100 CFU=g. Briefly, the E. coli
O157:H7 predicted per gram of substrate in each compart-
ment is also within the reported range of CFU in these media
(Lynn et al., 1998; LeJeune et al., 2001a, 2001b; Jiang et al., 2002;
Besser et al., 2003; Berry and Miller 2005; Amalaradjou et al.,
2006), as would be expected given the logistic constraints
imposed within each patch of the model.

Our work predicts that as the turnover rate of E. coli or-
ganisms in water (water available=steer ratio) is increased,

FIG. 6. A quantile box plot (left panel) and frequency histogram (right panel) of log colony-forming units (CFU) of E. coli
O157:H7 per gram of fecal matter at equilibrium in stochastic simulations. The dotted line in both panels (horizontal on left
and vertical on right) represents the minimum level of reliable detection in culture with immunomagnetic bead separation,
the method most often used to test fecal samples for E. coli O157:H7.

FIG. 7. Spearman’s correlation (r) values indicating
strength of the relationship between parameter and model
output (colony-forming units [CFU] of E. coli O157:H7 per
gram of feces at equilibrium) as determined by stochastic
simulations. Only parameters with statistically significant
correlations are shown.
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shedding levels will cross a threshold that results in higher
individual prevalence levels observed. Thus, we would pre-
dict pens housing smaller numbers of animals, while main-
taining trough capacities, would experience higher loads of
E. coli O157:H7 in the system, per gram of feces with higher
observed prevalences; as more steers drink from a single
water trough, turnover rates of water are faster than E. coli is
able to reproduce, and thus contributes very few organisms to
the microbial population. When water ingestion by cattle re-
mains constant but water turnover rate is slow enough to
allow for E. coli growth in water, cattle may be ingesting 107

CFU=mL of water at a rate of 45–60 L=day. This bifurcation
explains the negative correlation of herd size with fecal
shedding per gram predicted from the stochastic analysis
above and may account for differences seen between low and
high E. coli O157:H7 burden farms.

The effect of herd size observed in this study also appears to
be in agreement with reported observations; Khaitsa and
colleagues (2003) observed 10 pens with only 10 steers apiece
and tested for O157:H7 for 19 weeks. The observed prevalence
across all pens was as high as 80% with 6 of 10 pens demon-
strating 100% prevalence in at least one weekly sampling in
the study period. These observations closely align with our
model predictions that animals would be shedding at quan-
tities that would demonstrate approximately 80% apparent
prevalence when housed in numbers comparable to those in
the study by Khaitsa et al. (2003).

The results of the model analysis suggest that positive ex-
ponential growth greater than approximately one (ra�ma> 1)
in cattle could also lead to substantially increased amounts of
fecal E. coli shedding. The model is not formulated to allow for
individual host heterogeneity; however, when a group of
steers experiences high net growth (>1), the average CFU per
fecal gram reflect values seen in the high or ‘‘super’’ shedding
animals observed in previous studies (Omisakin et al., 2003;
Fegan et al., 2004; Low et al., 2005). The fate of E. coli O157:H7
organisms ingested by cattle is not clear. Studies demon-
strating that large oral doses of E. coli can lead to variable
shedding on the order of weeks in cattle have been used as
evidence that within-host replication and host–host trans-
mission are driving forces in E. coli O157:H7 maintenance on
the farm. However, these studies have been conducted on
experimental farms which are under the influence of the extra-
host growth dynamics explored in this study and thus do not
offer strong evidence for or against pathogen transmission or
within host colonization and growth. Little information is
available empirically regarding the net growth or death
influencing E. coli populations moving through the bovine
gastrointestinal (GI) tract. It is reasonable to assume orally
ingested bacteria experience high rates of death in cattle given
the diverse and relatively harsh environments of the cattle GI
tract that O157:H7 must pass through before being able to
colonize at the recto-anal junction. However the extent of this
turnover and potential for subsequent colonization and
growth in the recto-anal junction are unclear. The ability of
relatively few animals to support a high level of E. coli
O157:H7 growth following colonization may account for the
diversity and relatively small number of animals demon-
strating ‘‘super shedding’’ levels of E. coli in feces. An exten-
sion of this work will introduce a mechanism to scale
heterogeneity to the host level to attempt to account for these
observed rare high-end shedders.

The deterministic analysis (Fig. 3) indicated that growth
rates in feed could significantly impact the population dy-
namics of E. coli O157:H7 across the pen at high values.
However, the values needed to affect dynamics in other pat-
ches are likely biologically infeasible; the exponential growth
rate in feed has been reported as high as 2.5 per day (Lynn
et al., 1998), but later attempts to replicate reproduction ob-
served in the earlier study were unsuccessful (Besser et al.,
2003). Thus, we defined a more modest growth rate in line
with these observations as the baseline and conclude inter-
ventions targeted to reduce growth in feed will likely have
little impact to the system’s load of E. coli O157:H7. Feedbunks
also likely violate the assumption of homogenous mixing
more so than did the other more viscous compartments con-
sidered which could result in an overestimate of growth in
feeds in our model. Depending on trough design and sedi-
mentation rates, water may also violate assumptions of ho-
mogenous mixing.

Limitations

The model performs well in simulations and compares fa-
vorably to observed data; however, limitations are introduced
by modeling the pathogen population directly. Firstly, most
real world pathogen observations occur at the host scale. In
order to relate the model to observed data a pathogen testing
regimen needed to be parameterized and modeled. Similarly,
a large amount of data is necessary to parameterize the pop-
ulation dynamics of the pathogen. Fortunately, a large amount
of laboratory work has been conducted on E. coli O157:H7 and
parameter estimates were generally available for this study.
Further, each individual stochastic model simulation reported
here, even when drawn from a random distribution, is itself a
deterministic realization of a single theoretical feedlot. As a
result, parameter values that allowed for a meaningful inva-
sion of E. coli O157:H7 into the system settled at a positive
population equilibrium and did not allow for a systemwide
fadeout of bacteria. We are not aware of any longitudinal data
demonstrating long-term trends in feedlot environment,
water, or feed E. coli O157:H7 populations; however, observed
cattle shedding patterns are notoriously transient and highly
variable. Stochastic implementation at the host level may be
able to produce fadeout dynamics in future extensions of this
work. Similarly, a biologically meaningful change at the E. coli
O157:H7 population scale in salient parameters could lead to
a lower equilibrium population value. This could be induced
by any number of intrinsic or external factors to the microbial
population (e.g., weather unfavorable to growth).

Recommendations and conclusions

We developed pathogen-based methods to evaluate where
meaningful replication, and thus propagation of E. coli
O157:H7, is occurring on the beef feedlot. By moving toward
evaluating the E. coli system at the microbial scale, we were
able to robustly address the question of E. coli propagation
and replication from its mechanistic underpinnings. The re-
sults of this analysis highlight the influence of water and en-
vironment in maintaining E. coli O157:H7 populations on the
farm. Additionally, we were able to identify levels of repli-
cation that would be necessary for the animal host to be in-
fluential in the maintenance of the microbial organism. Given
the results of this study, we recommend expanding research
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efforts to develop intervention strategies to target environ-
mental growth and maintenance and limit the ability of cattle
to harbor positive net E. coli O157:H7 replication. We identify
the water available=cattle ratio as being particularly influen-
tial to high-level shedding patterns by affecting the turnover
rate of water. Our model was able to demonstrate appropriate
low- and high-level prevalences emergent from the mecha-
nistic growth introduced in habitats outside the cattle host
while reproducing realistic number of CFU per gram of feces,
suggesting contact-based transmission and colonization of
cattle is not solely responsible for E. coli O157:H7 propagation
on feedlots, as is generally considered. Dynamics external to
the host are likely impacting systemwide microbe propaga-
tion processes and thus affecting the load of E. coli O157:H7
presented to the human food chain.
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