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Ethological Aspects of Stress in a Model Lizard, Anolis carolinensis1 

NEIL GREENBERG2 

Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 3 7996 

SYNOPSIS. Research on the stress response in reptiles can provide a useful comparative perspective for 
understanding how the constituent elements of the response can be put into service of diverse behavioral 
adaptations. A summary of the neural and endocrine causes and consequences of specific behavioral patterns 
seen in the small diurnal lizard, Anolis carolinensis, has provided a model for the exploration of the dynamics 
of autonomic and neurohormonal contributions to adaptive behavior. In this species, changes in body color 
provide indices of the flux of circulating stress-relevant hormones, and are seen in situations from sponta
neous exploration through agonistic behavior. Furthermore, captive adult males spontaneously and consis
tently manifest social dominance relationships that provide many of the elements of a stress-mediated adap
tive behavioral patterns. These patterns include suppressed reproduction and long-term coping apparently 
based more on stress-mediated changes in motivation than acquired changes in behavior. 

INTRODUCTION 

The physiological ethology of stress in reptiles can 
inform views about the possible evolutionary anteced
ents of coping responses in other taxa, not least hu
mans. For reptiles, as in other species studied, stressors 
are real or perceived challenges to an organisms's abil
ity to meet its real or perceived needs. Stressors may 
be internal or external changes and the nature of their 
challenge can evoke responses from within a nested 
hierarchy of possible coping responses depending on 
the severity and duration of their challenge. Several 
excellent general reviews (Axelrod and Reisine, 1984; 
Goldstein, 1987; Johnson eta/., 1992; Sapolsky eta/., 
2000) in concert with much work on reptiles (below) 
provide a useful framework for interpreting the phys
iological ethology of the reptilian stress response at 
several levels, from the individual to phylogenetic. 

Before 1950, there was little basic knowledge about 
the adrenal glands in reptiles. This regrettable state 
began to be corrected with Hebard and Charipper's 
(1955) comparative study of the morphology and his
tochemistry of the reptilian adrenal gland and the work 
of Wright and Chester Jones (1957) on lizards and 
snakes. Within twenty years, Manfred Gabe (1970) 
had a significant body of work to summarize, Ian Cal
lard and colleagues (1973) addressed the workings hy
pothalamic pituitary adrenal axis and Unsicker (1976) 
described storage of the adrenaline and noradrenaline 
in chromaffin tissue. In 1978, Lofts summarized the 
structure ( 1978) and the Callards discussed the com
parative physiology of the reptilian adrenal gland (Cal
lard and Callard, 1978) in a comparative light. The 
interactions of stress with reproduction, immunology, 
and intermediary metabolism with an emphasis on rep
tiles was provided by Guillette and colleagues (1995). 

1 From the Symposium Stress-Is It More Than a Disease? A 
Comparative Look at Stress and Adaptation presented at the Annual 
Meeting of the Society for Integrative and Comparative Biology, 3-
7 January 200 I, at Chicago, Illinois. 

2 E-mail: ngreenbe@utk.edu 
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STRESS-SENSITIVE BEHAVIOR IN REPTILES 

Laboratory and field studies of the relationship be
tween the stress response and behavior have prolifer
ated in various reptile taxa to provide a clear sense of 
the diversity of adaptive functions that stress physiol
ogy can serve as well as the utility of reptiles as mod
els. For example, in sea turtles, adrenocortical function 
is suppressed in the face of highly stressful environ
mental conditions in an apparent trade-off favoring 
successful reproduction (Jessop et a/., 1999a, b, 2000 
in green sea turtles; Valverde et a/., 1999 in olive rid
ley sea turtles). In captive red-eared slider turtles, im
plants of adrenal steroid resulted in an initial increase 
in activity (and possible food encounters), but dimin
ished activity (possibly to conserve energy) in subse
quent days (Cash and Holberton, 1999). Stress-induced 
suppression of reproductive behavior is well known in 
many taxa, including reptiles where diminished andro
gen is correlated with elevated corticosterone in alli
gators (Lance and Elsey, 1986) and lizards (e.g., 
Moore eta/., 1991; DeNardo and Licht, 1993; Manzo 
et a/., 1994; Greenberg and Crews, 1990). 

Plasma levels of corticosterone is often taken to in
dicate physiological stress and to suggest how well a 
population is coping with ecological challenges such 
altered predator prey relationships, population density, 
or climatic extremes (Christian, 1980), but as Dunlap 
and Wingfield ( 1995) pointed out using free-living liz
ards, basal adrenal hormone levels must be considered 
apart from adrenal responsiveness to acute stressors 
(and see Dunlap, 1995). Such a distinction was useful 
in a unique test of the utility of the stress response to 
predict of survival in wild animal populations, Gala
pagos marine iguanas were studied on six islands in 
the archipelago, all subject to the stress of local famine 
attributable to El Nino-related climate change. Base
line corticosterone was not predictive of survival 
through an El Nino period, but corticosterone response 
to handling stress was found to be better than body 
condition at predicting survival (Romero and Wikel
ski, 2001). 
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The behavioral endocrinology of lizards in the lab
oratory and field has been investigated at length by 
Michael Moore and his colleagues (e.g., Moore eta/., 
1991; Knapp and Moore, 1997; Crews and Moore, 
1986) who noted in particular the flexibility of re
sponses to sex and stress hormones depending on var
iables such as ecological context and social status. 
Moore's approach, by exploring the epigenetics of al
ternative life history strategies, underscores the adap
tive flexibility of hormonally sensitive behavioral 
mechanisms (Moore et al., 1998). 

Anolis lizards 

Among lizards, the diverse and wide-spread new 
world genus A no lis is the most studied and has become 
a useful model for evolutionary ecology (see Losos, 
1994). In particular, the green anole, Anolis carolinen
sis, has proved to be a useful model for many phe
nomena, including some of clear biomedical interest 
(Greenberg eta/., 1989). This small, diurnal, insectiv
orous lizard of the American southeast is abundant, 
convenient to observe and easy to maintain in the lab
oratory (see Greenberg 1992, 1994 ), qualities which 
have led to their frequent use in behavioral studies 
(e.g., Crews, 1979; B. Greenberg and Noble, 1944; 
Jenssen, 1978; Jenssen et al., 1995). Aspects of A. car
olinensis relevant to understanding their ethology in
clude behavior inventories that emphasize social dy
namics (Greenberg, 1977) and basic ecology (Jenssen 
eta/., 1995) as well as laboratory studies of their be
havioral endocrinology (e.g., Crews, 1979). An atlas 
of the forebrain (Greenberg, 1982) prepared to guide 
brain lesion experiments (e.g., Greenberg eta/., 1984) 
is useful for analyzing regional histochemical or met
abolic changes associated with behavior (e.g., Sum
mers eta/., 1998; Baxter eta/., 2001). 

THE ANOLIS MODEL OF STRESS 

Investigations, which began with neural control of 
aggressive displaying as the key behavioral variable 
(Greenberg, 1977), broadened into other areas of phys
iological ethology when it became apparent that body 
color change is a reliable indicator of the stress re
sponse in this species. This fact in concert with the 
consistent correlation between specific patterns of col
or change and specific behavioral patterns indicates the 
participation of stress-sensitive systems at multiple 
levels of organization. 

Stress and body color in A. carolinensis 
Body color can be something of a "window" on the 

internal state of A. carolinensis. In this species, dermal 
chromatophores are known to be free of sympathetic 
innervation (Kleinholz, 1938b ), leaving body color 
subject only to the influence of circulating chromo
active hormones: epinephrine (EPI), norepinephrine 
(NE) and melanotropin (MSH). For example, a shift 
from green to brown, or darkening involving speckling 
and the appearance of a small "eyespot" just behind 
the eye, indicate specific patterns of activation of a 2-

FIG. I. The effects of stress hormones on a dermal chromatophore 
of Anolis carolinensis. Acute and chronic stressors are integrated to 
cause the release of hormones that interact with each other and con
verge in affecting the darkness of a chromatophore. ACTH, adre
nocorticotropic hormone; CS, corticosterone; E, epinephrine; MSH, 
melanocyte stimulating hormone; NE, norepinephrine. CS can ele
vate the ratio of E to NE by facilitating a key enzyme within the 
adrenal gland. E stimulates ~ receptors preferentially and then a 
receptors resulting in opposing effects. (adapted from Greenberg and 
Crews, 1983). 

and 132-adrenoceptors (sympathetic elements of the 
acute stress response in Fig. 1), and MSH. Despite 
early beliefs about A. carolinensis color matching its 
background (e.g., Kleinholz, 1938a), more recent stud
ies in the field (Jenssen eta/., 1995) indicate that body 
color is most typically affected by social activities. For 
example, when male A. carolinensis is engaged in be
havior such as predator avoidance or the mutual stalk
ing, chases, and retreats of territorial confrontation, 
color fluctuates in ways strongly suggestive of the hor
mones associated with the physiological stress re
sponse (Table 1). 

Although green is the basic color of an unstressed 
individual's skin, a consistent brown coloration sugges-



528 NEIL GREENBERG 

TABLE I. Body colors of the green anole, Anolis carolinensis, and 
possible endocrine influences. 

• Green: resting state of healthy lizard (normal tonic levels of NE) 
• Green and brown: transitional color reflecting mild stress (slight 

EPI and MSH) 
• Brown: mildly stressed (slight EPI and MSH) 
• Dark brown: sustained or more intense but not threatening stress 

(EPI and MSH) 
• Brown with eyespot: moderate level of stress (high levels ofEPI 

and MSH) 
• Green with eyespot: high level of stress (EPI sufficient to counter 

NE effects in skin, but eyespot (with [3-adenoceptors only) not 
subject to catecholamine reversal of color) 

• Dark green (speckled): highest level of stress (apparent EPI ef
fect without chronic MSH response; usually includes eyespot) 

• Blotchy green and brown: morbid stress (competence of cate
cholaminergic regulation appears compromised) 

EPI, epinephrine; NE, norepinephrine; MSH, melanocyte stimu
lating hormone. 

tive of chronic stress is often stable and can be sus
tained for extended periods without evidence of harmful 
effects. It is likely that this color change is attributable 
to MSH, which, like adrenocorticotropin (ACTH), is 
derived from the precursor molecule, pro-opiomelano
cortin (POMC), and can be co-released from the pitu
itary with ACTH or released by itself (Proulx-Ferland 
et al., 1982). In the pituitary of A. carolinensis, POMC 
end-products include stress-sensitive opiate-active beta
endorphins (references in Dores et al., 1984). In cir
culation, MSH promotes melanin dispersion (darken
ing) by means of stimulation of MSH receptors on chro
matophores (Carter and Shuster, 1982), but it also fa
cilitates a-adenoceptor induction of melanin 
aggregation (lightening) or 13-adenoceptors promotion 
of melanin dispersion (darkening) in response to EPI or 
NE (Goldman and Hadley, 1969). An apparent antag
onism exists between MSH receptors and a 2-adreno
ceptors (Carter and Shuster, 1982), while the 132-adren
oceptor appears to be linked with the MSH receptor to 
cause melanin dispersion by stimulating adenyl cyclase 
(Vaughan and Greenberg, 1987). While 13 1-adenoceptors 
respond to circulating EPI and NE released by sym
pathetic neurons, the natural agonist for 132-adenocep
tors is apparently EPI (Hadley, 1996, p. 325). Hadley 
and Goldman (1969) observed that dermal chromato
phores are similar to many other sympathetic effector 
cells in which stimulation of a-adrenoceptors tend to 
override 13-adrenoceptor present on the cell, thereby 
"reversing" the darkening and turning skin color light. 
Certain patches of skin, however, most notably the post
orbital "eyespot" has 13-adrenoceptor only. Thus while 
skin colors may fluctuate, if EPI is present the eyespot 
remains dark. 

The hormone associated with the chronic stress re
sponse, the adrenal glucocorticoid, corticosterone 
(CS), does not usually affect color directly but can 
facilitate a key methylating enzyme in the adrenal 
cortex leading to an increased rate of synthesis of EPI 
from NE, thereby also contributing to darker color 

(hypothalamic-pituitary-adrenal 'cortex' responses in 
Fig. 1). 

Anolis carolinensis, possessed of excellent eyesight 
and all-cone (color-sensing) retinas, are very sensitive 
to expressions of arousal in animals around them, most 
notably the flash of red from a possible adversary's 
dewlap, usually kept folded beneath the chin. But in
terestingly, there is little evidence that an acute change 
in body color-essentially an extended autonomic re
flex-has a signal function. There is, however, evi
dence that the eyespot may function. as a social signal 
to limit aggressive interaction.' When Korzan et al. 
(2000) covered a territorial male's stress-evoked eye
spot, its aggressive behavior directed toward a mirror 
were more intense than when the eyespot was not cov
ered or artificially provided. In other words, the per
ception of an eyespot appeared to suppress aggression. 
When the brains of such animals were studied, Korzan 
documented elevations in 5HT and NE in hippocam
pus as well as several other sites. 

The advantage of brown body color on the substrate 
(to which subordinates in the lab are usually relegated) 
or with reduced body profile on the trunk of a tree 
rather than out on a leafy twig (a preferred territorial 
surveillance site) is obvious, but it is remarkable that 
there is little evidence that body color has any signif
icance as a social signal with the notable exception of 
the eyespot. 

Many other reptiles are known to change color rap
idly in response to environmental stimuli such as light 
or temperature by means of chromatophore changes 
mediated by neural or neuroendocrine mechanisms 
(see Cooper and Greenberg, 1992). The control of 
long-term color change, however, is in many cases at
tributable to altered levels of circulating sex steroid 
hormones as a result of seasonal or developmental 
changes, or chronic stress affecting steroid hormone 
secretions. These longer-term changes can then alter 
the endocrine allostatic "tone" which provides the 
background for and can affect the expression of more 
rapid sympathetic neural/adrenomedullary changes 
that may be expressed in response to potential stress
ors, the need for crypsis, or the expression of social 
signals. Externally detectable elements of the stress re
sponse have long been believed to be a rich source of 
potential communicative signals (Morris, 1956). 

Stress and behavior in Anolis 
The conspicuous color changes during and follow

ing competitive interactions between males (Table 1) 
provide a significant external indication of internal 
state that enabled us to conduct studies concerned with 
the neural and endocrine causes and consequences of 
lizard behavior (Greenberg et al., 1984; Summers and 
Greenberg, 1994). 

Anolis carolinensis in the lab. Like many other liz
ards (Amphibolurus, Lacerta muralis, Uta stansburi
ana, and some Anolis spp., see Sugerman, 1990), 
green anoles in the laboratory provided with basic 
ethological needs (see Greenberg, 1992) appear to ha-
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bituate to discreet human observers, at least in so far 
as they express a full spectrum of spontaneous activity 
and maintain a bright green body color. In most re
search settings, observers sit in the dark watching an 
illuminated vivarium, peer through gauzy curtains, or 
observe by means of remote video surveillance. Cap
tive A. carolinensis will gradually reduce their defen
sive immobility responses in response to simulated 
predation (McNight et a/., 1978 and see Hennig, 1979) 
while other species may manifest a continuing observ
er effect and will reduce their activity levels (Suger
man and Hacker, 1980 for Crotaphytus collaris). 

Obvious climatic and physical ecological variables 
can be easily accommodated in the laboratory but 
some responses that might constitute a significant de
pendent experimental variable are quite subtle. It 
should be a truism by now that the transfer of research 
into the lab must be highly sensitive to the multiple 
interacting variables that constrain the behavioral pat
tern of interest in nature. Accommodation of these 
needs is what I have characterized elsewhere as "eth
ologically informed design" (EID) (Greenberg, 1994). 
For example, slight differences in temperature can 
evoke alternative defensive behavior (fleeing versus 
freezing) in response to prospective predators (hu
mans) in the lizard Anolis lineatopus (Rand, 1964). In 
the Amazonian Tropidurus oreadicus, approach dis
tance is reduced at lower body temperatures (Rociia 
and Bergallo, 1990), and even in comparable thermal 
environments approach distance manifest by Anolis 
cristatellus and A. stratulus can be significantly af
fected by the degree of crypsis each enjoys (Heatwole, 
1968). In Anolis carolinensis, the immobility response 
to a potential predator's approach is of significantly 
longer duration when foliage is nearby than when it is 
absent, but only in the early days of captivity (Hennig, 
1979). 

Ethological research is deeply informed by a con
cern for the spontaneity and external validity of ob
served behavior. A green anole in the lab is not quite 
the same animal as in the field, but certain benchmark 
traits such as frequency of spontaneous movements al
low us to calibrate the controlled environment in order 
to evoke a relatively undistorted view of the animal's 
behavior. For example, use of fluffy sphagnum sub
strate allows crickets to hide and forces resident ano1es 
to maintain high levels of alertness comparable to 
those in nature. Simplification of the vivarium by suc
cessive reductions in habitat complexity is a key to the 
confidence one can have in the validity of findings 
(Greenberg, 1978). 

SPECIFIC ASPECTS OF STRESS AND BEHAVIOR IN ANOLIS 

CAROLJNENSIS 

The A. carolinensis model has been employed to 
explore the effects of stress on several key behavioral 
or physiological variables. My ambition here is to re
view the state of research to date on specific behavioral 
patterns and on hormones associated with stress in the 
light of adaptive possibilities raised by the more gen-

TABLE 2. Units of exploratory behavior in Anolis carolinensis. * 

• Orientation and locomotor responses 
o Posture Change (significantly increased by handling or place

ment in a new cage) 
o Site Change (significantly increased by handling or placement 

in a new cage) 

• Tongue flick responses 
o Tongue-touch (significantly increased by handling but not 

placement in a new cage) 
o Air-lick (significantly increased by handling but not placement 

in a new cage) 

* Adapted from Greenberg, 1985.' 

eral review above and comparative surveys (such as 
Greenberg et a/., 2002). 

Exploratory behavior and stress 

"Curiosity" is not a legendary attribute of ecto
thermic squamates in general, although intensive for
aging lizards such the macroteiid, Ameiva, may man
ifest spontaneous rates of exploratory behavior com
parable to a gerbil (Regal, 1978). Even in other fam
ilies generally regarded as "sit-and-wait" predators 
such as Iguanidae, individual species are remarkable 
for their exploratory behavior. For example, Rand et 
a/. (1975) observed intense curiosity evoked by novel 
stimuli in Anolis agassizi. Seasonal changes are also 
manifest: in A. caro/inensis, observed at a field site 
near Augusta, Georgia, foraging behavior is much 
greater during the post-breeding season (August to 
September) than during the breeding season (May to 
July), presumably in association with relaxed pressure 
to maintain breeding territories (Jenssen et a/., 1995). 

Exploratory behavior is observed in several iguanid 
species when placed in a novel habitat (see Pederson, 
1992), presumably to gather ecologically relevant in
formation. In many reptiles, tongue-flicking is a con
sistent concomitant of novel-habitat behavior but is 
also seen (at a reduced rate) during movements in a 
familiar environment. It is readily manifest in the lab
oratory and field (see Burghardt, 1986 for a coordi
nated laboratory/field study). While tongue-flicking is 
likely to gather ecologically relevant chemosensory in
formation, there is also a reasonable possibility that 
enhanced exploratory behavior is a consequence of 
non-specific arousal-the "energizing" effect of fear 
(Halliday, 1966) or relatively mild stress (see Leshner, 
1978). 

Increased exploratory behavior is associated with 
mild stress as both a cause and consequence in many 
taxa. In an experiment in which anoles were mildly 
stressed by handling before placement in either their 
home or an unfamiliar habitat, handling was more po
tent than the unfamiliarity of the habitat in evoking 
some but not all aspects of exploratory behavior. 

Like most reptiles, A. carolinensis manifest two 
forms of tongue flicking, presumably to gather che
mosensory information: "tongue-touching" and "air
licking"(Table 2) (Greenberg, 1985). The spontaneous 
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TABLE 3. Consequences of a male Anolis carolinensis losing an 
agonistic encounter in the laboratory. 

PHYSIOLOGICAL 
Immediate 

• CATECHOLAMINE (EPI and NE) SURGES (body color, 
nuchal crest erection, Greenberg et al., 1984) 

• NE LOWER RELATIVE TO WINNER (Summers and 
Greenberg, 1994) . 

• CIRCULATING CORTICOSTERONE INCREASED 
(Greenberg, Chen, and Crews, 1984) 

• MSH INCREASED (relative to winners, Greenberg et a/., 
1986) 

• SEROTONIN ACTIVITY INCREASED IN THE MID
BRAIN, HIND BRAIN (Summers and Greenberg, 1995), 
HIPPOCAMPUS, AND NUCLEUS ACCUMBENS (Sum
mers et a/., 1998) 

Long term 
• ANDROGEN REDUCED (Greenberg and Crews, 1990) 
• CORTICOSTERONE ELEVATED (Greenberg eta/., 1984) 
• MSH INCREASED (relative to dominants, Greenberg eta/., 

1986) 
• DOPAMINE ACTIVITY DIMINISHED, ADRENERGIC 

ACTIVITY ENHANCED IN THE MID AND HIND BRAIN 
(BUT BACK TO CONTROL VALVES BY ONE MONTH) 
(Summers and Greenberg, 1995) 

BEHAVIORAL 
Immediate 

• BODY COLOR BROWN RELATIVE TO WINNER (indic
ative of exhaustion of EPI and/or MSH release) 

Long term 
• BODY USUALLY COLOR BROWN (Greenberg et a/., 

1984) 
• WILL NOT COURT FEMALES (Greenberg and Lumsden, 

1990) 
• LOWER PERCH-SITE SELECTION (Greenberg et a/., 

1984) (frequently take cover in leaves or even burrow into 
loose mossy substrate) 

EPI, epinephrine; NE, norepinephrine; MSH, melanocyte stimu
lating hormone. 

rates of posture and site changes (indicative of arousal 
and attention) and tongue touching and air-licking (to 
detect gustatory or vomeronasal stimuli, respectively) 
were observed in both intact and castrated male anoles. 
When they were in their home cages, spontaneous be
havior was comparable, but when they were mildly 
stressed (by being placed in novel habitat) all indices 
increased. When, on the other hand, animals were sub
jected to more intense stress (restraint until an eyespot 
is elicited) before being placed in a novel habitat, all 
behavior was significantly depressed with the excep
tion of airlicks, which increased (Greenberg, 1993). 
Also, as in other studies (e.g., Greenberg eta/., 1984), 
the absence of androgen ameliorated the stress re
sponse: castrated males were much less affected by the 
experience of restraint than were intact animals. Of 
particular interest was the fact that the familiar ener
gizing effects of mild stress and inhibitory effect of 
more intense on behavior (Leshner, 1978; Sapolsky et 
al., 2000) was manifest in most but not all behavioral 
patterns. Interestingly, it was the least conspicuous of 
the behavioral patterns (airlick) that was spared, sug
gesting more adaptive specificity in the inhibitory ef
fect of intense stress than generally appreciated. 

Androgen is associated with general arousal in sev
eral vertebrates (Archer, 1973; Andrew, 1978). In sub
jects with reduced androgen levels, stimuli that nor
mally evoke a stress response are significantly less po
tent. It is also interesting to note that the chemical 
senses served by tongue-touching and airlicking may 
be different and involve different neural substrates. 

Exploratory behavior was also used to examine the 
effects of central catecholamines related to the stress 
response. The catecholamine-specific neurotoxin, N
methyl-4-phenyl-1 ,2,3 ,6-tetrahydropyridine (MPTP) 
was administered to nine adult rrta:le lizards to deplete 
central nervous system catecholamines. Changes in 
brain content of dopamine (DA), norepinephrine (NE) 
and serotonin (5HT) were determined in a parallel 
study (Greenberg, 1993; Greenberg et al., 1990). DA 
and NE were reduced (to 24% and 7% of control val
ues, respectively) while 5HT increased 200%. In these 
catecholamine-depleted animals, spontaneous behav
iors in the home cage were depressed for all measures, 
but only orientation and locomotor responses signifi
cantly so. In novel habitats, posture changes and 
tongue-touching were significantly depressed but site
changes and air-licks were unaffected. 

Learning and stress 

When behavior changes as a result of experience, it 
qualifies as "learning"-but there are significant dif
ferences between circumstances in which (1) behavior 
changes because the balance between tendencies to ap
proach or avoid a stimulus is altered; or (2) behavior 
is affected because a specific stimulus is perceived as 
possessing less adaptive meaning; that is, the stimuli 
no longer have control over behavior because of an 
altered motivational state. Some optimal level of 
arousal, anxiety, or stress appears necessary for learn
ing to occur. Mild stress often acts to focus attention 
on relevant cues while more intense stress impairs 
learning (see Greenberg et al., 2002, Table 1). This is 
a clear expression of "optimal arousal," described by 
the Yerkes-Dodson law (see for example, Mook, 
1987); in other words, more or less stimulus intensity 
than an "optimal" level is less effective in evoking 
the focal behavioral pattern. 

Partly as a result of extraordinary efforts to dispel 
the view of reptiles as having impoverished learning 
capacities (Burghardt, 1977), the importance of eco
logically relevant stimuli as effective contextual or 
motivational variables has become progressively more 
appreciated by ethologists and other scholars and re
searchers of learning. 

Several experimental demonstrations of learning 
met with a measure of success using ethologically rel
evant cues (for example, Regal, 1971 ), but the stress 
connection has not yet been made clear in reptiles. An 
implicit role for stress was found in a report from a 
field study of Leiocephalus schreibersi (Marcellini and 
Jenssen, 1991). Very rapid learning seemed apparent 
when evoked by a novel predator (human) in 80% of 
the animals tested. 
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The hippocampal connection. In mammals and 
birds, the hippocampus is a target of stress-evoked cor
ticosterone (CS) (McEwen, 1999) as well as a critical 
mediator of memory and learning (Sapolsky, 1992). It 
may well be a key structure for establishing connec
tions between phenomena that are discontiguous in 
time and space (Wallenstein et a/., 1998). There is 
good evidence for homology between reptilian hip
pocampus and that of mammals and birds. For exam
ple, the distributions of GABAergic neurons are sim
ilar (Schwerdtfeger and Lopez, 1986); and such neu
rons, once identified principally as having a damping 
function on neuron activity are now believed to be 
actively involved in information processing (Paulsen 
and Moser, 1998). 

Reptiles have a distinct, if modest hippocampus 
(medial cortex), capable of neurogenesis in response 
to neurotoxic trauma (Font eta/., 1991; Lopez-Garcia, 
1992) as well as in the adult brain (Perez-Canellas and 
Garcia-Verdugo, 1996), in areas implicated in memory 
and learning (Font and Gomez-Gomez, 1991). There 
is evidence that the hippocampus of reptiles is both 
involved in learning and sensitive to stress, however 
there are as yet only a few studies. Damage to the 
hippocampus has been known to affect conditioned re
flexes since the early 1980s (Ivazov, 1983, in Ophi
saurus apodus). More recently, the behavioral function 
of this site, so prominently stress-sensitive in other 
taxa, was found to be morphometrically correlated 
with the spatially organized behavioral patterns of a 
lizard; even though an effective spatial learning test to 
discriminate specific abilities has eluded invention. 
The relative volume of hippocampus is larger in the 
active foraging lizard, Acanthodactylus boskianus, 
than in its sit-and-wait congener, A. scutellatus (Day 
eta/., 1999). While the role of hippocampus in learn
ing of A. carolinensis is not established, its association 
with stress is more clear (Summers et a/., 1998). 

Aggression and stress 

The relationships of acute and chronic stress to ag
gressiveness, and the role of the hypothalamic-pitui
tary-adrenal axis in particular, has been appreciated 
since at least the 1960s when a longer latency to man
ifest aggressiveness was noted in adrenalectomized 
mice, and mice bred for aggressiveness were found to 
have heavier adrenal glands (reviewed by Leshner, 
1983). 

Can we say much as yet about the physiological 
substrate of this behavior in reptiles? The last two de
cades have established a site in the basal forebrain ap
parently responsible for integration of stimuli leading 
to the expression of aggressive social displays (re
viewed in Greenberg, 1983, 1990; Baxter eta/., 2001a, 
b), and brainstem nuclei controlling a key effector of 
the dewlap displays (Font et a/., 1986; Font, 1991). 
More recently, the darker body color seen in losers of 
fights provided a key to endocrine variables associated 
with social subordination and submissiveness. This 
body color change during aggression, well known in 

the laboratory (Greenberg and Noble, 1944) and in the 
field (Medvin, 1990), presents provocative possibilities 
because the hormones that affect the chromatophores 
are also associated with the physiological stress re
sponse and, at least in other taxa, have appear to act 
to suppress aggressiveness and facilitate the expression 
of social submissiveness (Leshner, 1978). 

Body color changes indicative of the involvement 
of stress physiology in lizard aggression can also pro
vide clues about the temporal dynamic of interactions 
and the qualities that may allow one combatant or an
other to prevail. For example, at the conclusions of 
fights, losers are typically brown (Sigmund, 1979; per
sonal observation) with an eyespot, and winners are 
green with an eyespot. Further, close observations of 
agonistic interactions revealed that individuals who 
were the first to display the eyespot were almost in
variably the winners and ultimate social dominants 
(Summers and Greenberg, 1994). The progress and 
outcome of fights suggest that losers may lose when 
they are depleted of reserves of energy or the hor
mones to mobilize that energy. Such an "exhaustion" 
hypothesis would suggest a war of attrition in which 
very slight differences in capacity would make a cru
cial difference. 

Social dominance and stress 

The ethological concern with stress and social dom
inance emerged from the confluence of Hans Selye's 
clinical concern for "diseases of adaptation" (Selye, 
1936, 1976) the ecologist J. J. Christian's (1961) in
sights about diminished fitness in an ecological stress
ing context. In particular, observations of reduced fer
tility at high population densities and the correlation 
of behavioral dysfunction with adrenal pathology 
(Christian and Davis, 1964) created an appreciation for 
the connection between social dominance (see Gauth
reaux, 1978) and physiological stress. In little more 
than a decade, research with reptiles began, reflecting 
this convergence of physiological ecology and behav
ior in conjunction with social influences on resource 
utilization. In the spirit of these early ecologists, 
Brackin (1978) demonstrated a relationship between 
social dominance and adrenal volume in the lizard 
Cnemidophorus sex/ineatus. 

The "dominance threshold. " Species possessing the 
flexibility to shift from strict territoriality to social 
dominance in response to changing resources exists in 
many taxa (see Brain, 1981). This phenomenon has 
also been observed in lizards in the field by Evans 
(1951) for Ctenosaura pectinata; Norris (1953) for 
Dipsosaurus dorsalis as well as in the lab by Hunsaker 
and Burrage (1969) for various species; Brattstrom 
(1974); Greenberg (1977) for Anolis caro/inensis. In
deed, many species may possess an apparent "domi
nance threshold," unique for each, that reflects a point 
at which an individual accepts subordination rather 
than competes for an individual territory. Presumably, 
after experience in the social environment, such an in
dividual acts to maximize the benefits and minimize 
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the costs of a particular life history option. Losers 
could easily escape to neighboring territories, but they 
may still be at a competitive disadvantage if a more 
robust male is already resident there or the territory is 
inferior in other ways. At some point, the interests of 
a loser of a fight may be better served by remaining 
in the winner's territory, keeping a low profile, and 
waiting. 

Social dominance in anoles. Social dominance re
lationships, while rarely seen in the field, are likely a 
natural feature of at least some anoles, and like explo
ration (indeed, virtually any behavioral trait) depen
dant more on habitat and social options available to an 
evolving species than on taxonomic position. While 
generally territorial, some anoles are, in the field, seen 
to manifest hierarchical intermale relations suggestive 
of social dominance (Trivers [1976] in the giant A. 
garmani, Fleishman [1988] in A. auratus, Rand eta/. 
[1975] for A. agassizi, Jenssen and Feely [1991] for 
Chamaelinorops barbouri). Field data on social dom
inance in the most fully studied of the anoles, Anolis 
carolinensis, is anecdotal at best, and one extensive 
field study found no support for the idea (Jenssen et 
al., 1995). However, in the course of an elaborate field 
study of the interactions of the sympatric anoles, A. 
carolinensis and A. sagrei, on small islands, Campbell 
(2000) frequently observed that when large territorial 
males of either species were temporarily removed for 
marking and measuring, they were replaced by there
tofore unseen smaller males within minutes (Campbell, 
personal communication). The rapidity of replacement 
by the smaller males suggests they were nearby and 
alert for an opportunity, much like the situation in a 
laboratory. In vivaria where dominant and subordinate 
lizards are living together, if a dominant male falls ill 
or is removed, it will be replaced on the favored high 
perch by the subordinate (personal observation). It is 
likely that males that lose territorial fights in nature 
will find marginal territories, but on Campbell's is
lands, as in laboratory habitats, such options are se
verely limited. 

The earliest detailed report on social dominance in 
Anolis carolinensis was that of L. T. Evans (193 6) who 
studied their behavior in large cages. He regarded their 
formation of social hierarchies as a "modification of 
the behavior in the field" attributable to the impossi
bility of retreat to a new territory. He also noted that 
"the dominant male is commonly green while all the 
rest are brown." 

In the laboratory, Anolis carolinensis that fight form 
social dominance relationships with a rapidity sugges
tive of a well-established behavioral pattern (Green
berg, 1977; Greenberg eta/., 1984). Social dominance, 
in the conventional sense of one animal manifesting a 
priority of access to a limited resource over another, is 
seen in virtually all winners of aggressive interactions 
between males cohabiting laboratory vivaria. For the 
first 2-3 days there may be occasional renewals of 
agonistic interacting, especially in the morning, but 
these get progressively shorter and less intense. Many 

(but not all) animals that establish stable relationships 
within three days often appear to be able to cohabit 
indefinitely, suggesting an adaptive resetting of phys
iological and behavioral tone-"allostasis" in the 
sense of re-establishing stability through change (Ster
ling and Eyer, 1988; and see McEwen, 2001). 

For green anoles, the physiological and behavioral 
consequences of losing are extensive relative to those 
of winning (see Table 1). In one experiment where 
pairs were tracked for over a month, 25% of subor
dinate males died or showed signs of morbidity (Sum
mers and Greenberg, 1994), but of these, more than 
half manifested atypical autonomic reactions early in 
the relationship. 

Winners and losers. In captive green anoles, win
ners continue to perch at the highest site available and 
court females, expressing little more than occasional 
notice of the cohabiting loser. The loser, however, 
changes markedly: he becomes darker in body color, 
selects lower perch sites, is less active, and does not 
court-he has become a social subordinate (Greenberg 
et al., 1984). Such pairs often share food and water 
and maintain stable relationships for extended periods, 
suggesting a pattern well fixed in their behavioral rep
ertoire. But observations from the lab, no matter how 
consistent, can do no more than suggest ecological hy
potheses about the possible advantages accruing from 
the changes in subordinates: their lower posture, activ
ity levels, darker color, and altered site selection. 

Only after stability is attained is a loser of a fight 
characterized as a social subordinate. During cohabi
tation in a vivarium, dominants are usually (but not 
always) green and dominant the highest perch while 
subordinates are usually (but not always) brown. When 
at a specific time their relationship is ambiguous, in
troducing a receptive female decisively confirms sta
tus. When the dominant starts courting, the subordi
nate shows signs of submissiveness. In rare cases 
where a subordinate also courts, the dominant imme
diately shifts from courtship displays (with their char
acteristic rapid head nodding) to aggression (with sag
ittal expansion of the body profile, eyespot), and sub
ordinates back down. Reversals are very rare, and only 
seen in our lab when there is an asymmetry in size. 
In intruder experiments (as opposed to removing a di
vider between two tanks), residents that are smaller 
may initially prevail over a slightly larger intruder, but 
are ultimately unseated as dominants ( Alworth, 1986). 

Matched antagonists. Are there ever truly matched 
pairs of antagonists in agonistic encounters? There is 
a built in asymmetry in the "intruder/resident" para
digm. It is reasonable that, all else equal, an individual 
in an unfamiliar habitat would be at an initial disad
vantage. In nature this might happen when a defeated 
male escapes and looks further, in the lab this is not 
usually the case. In one experiment we compared res
ident and intruder males for whole body lactate con
centrations, indicative of glycolysis before and after 
encounters. All animals engaged in the territorial sit
uation had two to three times the resting levels of lac-
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TABLE 4. Putative causes and consequences of MSH release in various taxa. 

CAUSES 
• CRF increases circulating levels (Proulx-Ferland et a/., 1982) 
• ACh increases circulating levels (see Hadley and Bagnara, 1975) 
• SEROTONIN may be MSH-RF (see Hadley and Bagnara, 1975) 
• CATECHOLAMINES (EPI, NE, 5-HT) may inhibit MSH release from pars intermedia (see Hadley and Bagnara, 1975) 
• MELATONIN depletes pituitary MSH (after IP injection; see Kastin et a/., 1979) 
• ENDORPHIN reduces MSH binding 
• STRESSORS increase MSH activity: aggression raises pituitary content (Francis and Peaslee, 1974); "non-physical" stress increases 

release (Sandman eta/., 1973); "physical" stress increases release (along with increased ACTH; Sandman eta/., 1973); immobilization 
· elevates circulating levels which then modulate prolactin (Khorram et a/., 1985). 

• BEHAVIOR: acute stress (chase or restraint) reduces MSH, aggression reduces it in winners, increases it in losers; chronic stress (social 
subordination) increases MSH (Greenberg eta!., 1986) (MSH response to aggression in castrates is amel,iorated) 

CONSEQUENCES 
• AGGRESSIVENESS diminished (attributable to MSH suppression of pineal melatonin; Patterson eta/., 1980) 
• "EMOTIONALITY" is decreased (Golus eta/., 1979) 
• TONIC IMMOBILITY, the duration of this defensive pattern of behavior, is decreased (Stratton and Kastin, 1976) 
• "MOTIVATION" is increased (Stratton and Kastin, 1973) 
• ATTENTION is enhanced (Kastin et a/., 1979; Sandman et a/., 1973) 
• LEARNING: delays extinction of passive avoidance response in rats (Datta and King, 1977) 
• ANXIETY is reduced (Miller eta/., 1974) 
• ACTH release is increased (Lis eta/., 1982) 
• TESTOSTERONE synergizes with MSH to stimulate release of aggression-releasing pheromone (in mice, Nowell eta/., 1980) 
• TROPHIC PROPERTIES are indicated by stimulation of fetal growth, protein synthesis, wound healing, and liver regeneration (see Swaab 

and Martin, 1981) 

5-HT, 5-hydroxytryptamine, serotonin; ACh, acetylcholine; ACTH, adrenocorticotropic hormone; EPI, epinephrine; NE, norepinephrine; 
MSH, melanocyte stimulating hormone; MSH-RH, melanocyte stimulating hormone releasing factor. 

tate, but a pairwise comparison of animals at the be
ginning of an encounter showed intruders to be sig
nificantly higher than residents, presumably attribut
able to elevated autonomic arousal (Wilson et al., 
1990). 

Among the physiological variables that might en
able one of a matched pair prevailing in combat and 
ultimately manifesting dominance is adaptive scope. 
"Scope" in this sense refers to the tolerance for forced 
deviations from an optimal physiological state-the 
capacity to cope-before possibly escalating to or in
voking a coping mechanism at another level. "Auto
nomic tone," that is the resting state of the autonomic 
nervous system and its reactivity, is also a concern. In 
our laboratory we generally use the "simultaneous 
sighting" design to introduce animals to each other. 
Each individual, in its own compartment of a large 
vivarium behaves like a dominant, selecting high 
perches and courting when a female is introduced. 
They first meet each other when a sliding door be
tween compartments is delicately removed. "Resident 
advantage" is eliminated and lizards, each on their 
home ground, apparently perceive each other as in
truders. Using this design, evidence (mentioned above) 
was found that prospective winners are more reactive 
to the situation and return to a stable state more rapidly 
that their adversary (Summers and Greenberg, 1994 ). 

But what of losers? Stress is about coping with 
change, and following fights, winners return much as 
before. Color changes during fights might be similar, 
but the immediate consequences are not. The final col
or of the loser is usually brown with an eyespot while 
that of the winner is green with an eyespot. The pre-

sent understanding of Anolis chromatophore control 
suggests that losers have either exhausted EPI needed 
to change the ratio of alpha- and beta-adrenergic re
ceptor stimulation or that MSH may prevail. Darker 
body color is typically seen in the losers of fights at 
their conclusion and will also characterize that animal 
if it remains to cohabit with the winner as a social 
subordinate. Body color thus suggests that acute re
sponses are reinforced by subsequent allostatic read
justment of tonic hormone levels, particularly that of 
melanotropin (MSH). 

Hormones and behavior 

Melanotropin (MSH). It is interesting that in rats, 
physical stress elevates both plasma MSH and ACTH, 
while psychological stress evokes only an MSH re
sponse (Sandman eta/., 1973). If a comparable phe
nomenon obtains in Anolis, we would expect to find 
both hormones immediately after a rigorous physical 
encounter, but replaced by MSH with time. The long
term stability often seen in chronically brown lizards, 
presumed to be chronically stressed, may be in part 
attributable to some of the unique properties of me
lanotropin (Table 4). And MSH may in this respect 
serve a restorative function, helping long-term subor
dinates cope. In other taxa, melanotropin has found to 
reduce anxiety. When injected into A. carolinensis, it 
was found to significantly reduce the duration of de
fensive freezing (tonic immobility) (Stratton and Kas
tin, 1976). Unlike other stress-related hormones, MSH 
possesses trophic properties that can stimulate fetal 
growth, protein synthesis, wound healing, and liver re-
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generation (Swaab and Martin, 1981 ), as well as neural 
regeneration (Van der Zee et al., 1988). 

Corticosterone (CS). In reptiles, much as in other 
taxa, circulating levels of glucocorticoid is increased 
by stress (Gist and Kaplan [1976] in Caiman; Dau
phin-Villemant and Xavier [1987] in Lacerta). Corti
costerone, the dominant glucocorticoid in reptilia, has 
apparent reciprocal relations with reproduction (re
viewed in Greenberg and Wingfield [1987]; but see 
Sapolsk:y et al. [2000]). Suppression of reproduction 
reflects the classic conceptualization of the stress syn
drome, as resources are reallocated to cope with needs 
more urgent than reproduction. 

When Richard Tokarz (1987) implanted subcutane
ous CS pellets in mature male brown anoles, Anolis 
sagrei. Implanted males manifested significantly fewer 
approaches and aggressive acts towards stimulus males 
compared to placebo-implanted individuals. Implanted 
males also had no detectable circulating testosterone 
while placebo males were normal. Similarly, side
blotched lizards, Uta stansburiana, had significantly 
depressed testosterone levels after CS pellet implan
tation (DeNardo and Licht, 1993). The Uta experi
ment, however, went further in utilizing an experimen
tal group in which CS implanted animals also received 
testosterone. Such animals were also nonaggressive, 
demonstrating that the suppressive effects of CS was 
not testosterone-dependent. Further, CS implanted an
imals did significantly diminish courtship and copu
lation. The results of the double implants were com
parable to those of CS alone, much like the findings 
in song sparrows (Wingfield and Silverin, 1986). 

In a pilot study of the effects of CS implants in A. 
carolinensis in the laboratory, initial aggressive re
sponses to a potential adversary were unimpaired, but 
even a modest aggressive reply evoked a rapid and 
complete shut-down of hostilities, subordinate postur
ing, and skin colors indicative of extreme acute stress 
(unpublished observation). The impression was one of 
hyper-responsiveness and underscoring the importance 
of the research environment. 

A field study on Uta stansburiana showed signifi
cantly reduced activity and home range when some 
animals were CS-implanted and others saline-implant
ed, but when all males were CS-implanted there was 
no change, indicating that the competitive advantage 
that accrued to unaffected saline animals was nullified 
(DeNardo and Sinervo, 1994a). In a subsequent study, 
Testosterone-implanted males manifested a compara
ble competitive advantage over saline-implanted 
males; an effect that was nullified by co-implanting 
testosterone and CS-pellets (DeNardo and Sinervo, 
1994b) 

This underscores the point that just as CS has a large 
ensemble of potential effects on stressed organisms, it 
is likely to affect social relations through multiple 
routes, some more specific than others. For example, 
Andrew (e.g., 1972) and Archer (1975) have made 
convincing cases for the effects of testosterone on at
tention structure in birds, affecting what stimuli re-

ceive attention as well as how much. In birds and 
mammals, ACTH, adrenal and gonadal steroids can 
apparently work through the hippocampus and septum 
to modulate selective attention (reviewed by Oades, 
1979). 

Androgen, stress and reproductive behavior 

Reproduction is impaired by chronic as well as 
acute stress responses involving corticotropic releasing 
hormone (CRH), endogenous opiates, and glucocorti
coids (reviewed by Sapolsky et al., 2000). Reproduc
tive suppression is consistent with the general principle 
of conserving resources when stressed. In dominance 
relationships, reproductive opportunities are typically 
the most critical of limited resources which a dominant 
seeks to monopolize, vividly reflecting at least direct 
fitness. It is thus reasonable to regard it, as Moberg 
(1985) puts it, a "barometer of animal well-being"; a 
sensitive index of the effects of stress. In practical 
terms such a barometer might be difficult to apply to 
specific populations. For example, the now familiar 
phenomenon of stress-sensitivity of offspring as a con
sequence of severe stress experiences of parents (e.g., 
Clarke et al. [1996] in rhesus macaques; and see Gra
ham et al. [1999]), forces us to consider long-term 
(multi-generational) effects on fitness. 

Androgen spike in winners and suppression in los
ers. While short-term stress might facilitate testoster
one secretion and long term stress suppress it (see 
Moberg, 1985), the experience of winning seems all
important in aggression-induced stress facilitation of 
androgen. In humans, testosterone elevation after 
stressful competition is more sustained in winners than 
in losers (Booth et al., 1989) even imagining success 
in a conflict can elevate testosterone (Schultheiss et al., 
1999). Following a territorial dispute between matched 
adult males, Anolis carolinensis winners manifest a 
dramatic (470%) but transient spike in circulating an
drogen levels (Greenberg and Crews, 1990). A similar 
finding in birds led Wingfield et al. (1987) to suggest 
that a supportive or facilitative role for steroid hor
mones should complement their classic organizing and 
activating effects on the CNS. Wingfield also cau
tioned that evolutionary background, experience, so
cial context, and multiple environmental variables are 
significant constraints on the manner in which testos
terone affects social aggression. 

In lizards, the hormone profile of subordinates fol
lowing a fight is different. After combatants occupy 
the same vivarium for a week, circulating testosterone 
in lizards that win encounters have returned to control 
values, while the levels in losers have fallen to about 
60% (Greenberg and Crews, 1990). Testicular function 
in subordinates is not, however, significantly altered. 
When spermatogenic stage was assessed by the pro
portion of cell types present in the reproductive tracts 
of 14 pairs of dominants and subordinates, in only two 
pairs did dominants manifest significantly more ad
vanced cell types (Greenberg et al., 1984). This indi
cates that if and when the motivation to court is re-
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stored, the animal would rapidly recover sexual com
petence. 

In subordinate lizards, the dynamics of changing 
stress and sex hormone levels is reflected in the im
mediate suppression of courtship and also the gradual 
loss of testosterone. The full suppression of circulating 
androgen is seen at about the time that dominance re
lationships are stabilized. It is reasonable that low an
drogen levels impair reproductive behavior but in the 
few days preceding this, might the subordinate's be
havior in the presence of the dominant be expressing 
a conditioned avoidance response? 

If a subordinate has learned that the presence of the 
dominant is an indication that courting or seeking an 
advantageous surveillance post will be punished, we 
might expect that when the dominant is not present the 
subordinate will no longer be inhibited. We tested this 
assumption. If after a week of cohabiting as a stable 
dominant/subordinate pair, the dominant is removed, 
effective courtship responses to a receptive female by 
the subordinate resumes gradually over a period of 18-
48 hr (Greenberg and Lumsden, 1990). Interestingly, 
early responses to females were aberrant, occasionally 
dysfunctionally violent. It is likely that the recovery 
of function indicates a resurgence of androgen pro
duction after the removal of the presumed tonic sup
pressive effect of the presence of the dominant. 

Is androgen suppression anxiolytic? Androgen re
duction apparently ameliorates the effects of at least 
perceived, behavioral stressors on the system. Body 
color changes that occur during and after fights indi
cate that the experience of losing is more stressful than 
that of winning. The energetic effort of both combat
ants may appear comparable but there is no testoster
one spike that may evoke some transitory metabolic 
advantage that might compensate for the energy ex
pended. The gradually subsiding testosterone levels of 
losers may have important effects on motivation. Be
havior that may be at first controlled by an avoidance 
response may, during this time, be gradually become 
affected by waning motivation such that an ordinarily 
attractive stimulus such as a high perch or female will 
no longer evoke an approach response. This would ef
fectively replace a subordinate's stressful approach/ 
avoidance ambivalence about behavior that might re
sult in a punishing conflict with a dominant, with a 
redirection of attention to other needs. Testosterone is 
known to enhance motivation, at least for sexual ac
tivity (Balthazart et a/. [ 199 5] in quail; Alexander et 
al. [1994] in rats). In birds and mammals, gonadal ste
roids can directly affect sensory functions (Gandel
man, 1983), selective attention (Oades, 1979), persis
tence of attention (Andrew, 1978), and have indepen
dent rewarding properties in the brain (Packard et al., 
1997). 

Subordinates in stable relationships, much like cas
trates, appear to be under less stress. Castration does 
not eliminate agonistic responding in males, but ad
renergic body color responses are retarded, and latency 
and duration of eyespot expression are both extended 

significantly (Summers and Greenberg, 1994). Cas
trated males will engage in vigorous agonistic inter
actions in defense of territory but rarely show the en
duing darkening effects of losing on body color when 
they cohabit with the winner. This absence of signifi
cant skin darkening in such ·losers suggested they 
might not be experiencing chronic stress as intact sub
ordinates clearly are. Indeed, this was the case: corti
costerone (CS) levels in castrates that lose was not 
found to be significantly greater than those of the win
ners (Greenberg et al., 1984). Castration apparently 
reduces stress, presumably because the attention to 
previously provocative stimuli or their motivational 
significance was ameliorated by reduced androgen. In
terestingly, female green anoles will also fight for rel
ative status in which dominance is manifest by ex
pression of the capacity to supplant an adversary. 
There are no color differences between paired females 
unless a male is present, in which case the dominant 
female is darker and would display sexual receptivity 
more often (Andrews and Summers, 1996). These ob
servations are particularly interesting in light of find
ings in mammals that intensity and context of stressors 
(Shors and Servatius, 1997) can evoke different effects 
in males and females. For example, stress can impair 
acquisition of a conditioned response in female rats 
(but not if ovariectomized) while the same stressor fa
cilitates learning in males (Wood and Shors, 1998). 

Testosterone implants. The idea of adaptive testos
terone reduction was tested in a pilot experiment on 
green anoles. Reasoning that an inability to reduce tes
tosterone after an agonistic encounter with a superior 
adversary would lead to a more intense stress response 
in the defeated animal, both animals scheduled for a 
staged confrontation received testosterone implants. In 
now familiar fashion, winners occupied higher perches 
and were brilliant green, losers were brown to dark 
brown and remained on the substrate. A female was 
continually present. In these cages there were leaves 
and twigs to hide under and losers took every advan
tage of them. In the few tests to date, testosterone
implanted animals created the impression of a "super
subordinate." Such subordinates watch dominants in
tently and generally lowered their body posture or hid 
whenever the dominant's gaze went in their direction. 
Unlike typical subordinates, however (and possibly 
more like animals in nature), whenever the dominant 
was removed, the subordinate might immediately be
gin to court the female (Greenberg et al., 1995). This 
further reinforces the idea mentioned above that tes
tosterone enhances and may focus attention. 

What other behavioral patterns affected by stress 
may also be modulated by androgen? Melanotropin is 
depressed by acute stress (Hadley and Bagnara, 1975). 
In green anoles, chase or restraint or winning an ag
onistic encounter cause reductions of 34%, 44%, 56% 
respectively. Losing an encounter, however, evokes a 
slightly elevated level of MSH. The levels remain el
evated relative to the dominant (who returns to slightly 
more than control levels) during subsequent cohabi-
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tation as a social subordinate. The MSH response in 
subordinates, however is ameliorated in castrates 
(Greenberg eta/., 1986) 

Units of behavior documented during exploratory 
behavior are depressed by stress. but this depression 
is also ameliorated by castration with the exception of 
the form of tongue-flick called air-licking, presumed 
to be related to the vomeronasal chemosensation and 
mediated through a unique neural pathway (Green
berg, 1985, 1993). 

Seasonal influences on the relationship between tes
tosterone and aggressiveness in the field was indicated 
by artificially increasing testosterone levels in some 
males lizards, Sce/oporus jarrovi. Moore and Marler 
(1987) found that there were significant increases in 
some, but not all, measures of territorial aggression. 
Males castrated in the fall when testosterone levels are 
highest show a dramatic diminution in the intensity of 
territorial defense, while castration of males during the 
summer when testosterone levels are only moderately 
elevated does not affect their capacity to vigorously 
and successfully defend their territories. Castrated An
o/is carolinensis also manifest territorial defense when 
challenged (Greenberg et a/., 1984) however indices 
of stress in both winners and losers are markedly re
duced (above). Taken together these findings support 
the idea that the diversity of endocrine control path
ways as well as their multiple targets and diverse ef
fects can provide a rich substrate for evolutionary in
fluences on behavior (see Crews and Moore, 1986; 
Ketterson and Nolan, 1992). 

ENVOI AND DIRECTIONS FOR FUTURE STUDY 

One of the most vivid and provocative outcomes of 
a broad comparative review of stress is the potential 
of the system to make adaptive contributions in all 
aspects of life (Greenberg et a/., 2002). The multiplic
ity of hormone functions and the complexity of their 
participation in behavioral systems creates, as Ketter
son and Nolan (1992, p. S33), put it (speaking mainly 
of testosterone), "ample room for variation on which 
natural selection can act." Examples of the manner in 
which control of autonomic reflexes can be brought 
under the influence of stimuli other than those con
cerned mainly with physiological homeostasis can be 
found in all taxa. In reptilia, specific species can pro
vide us with models that can provide insight into this 
process. Hopefully, continuing work in this area will 
provide illuminating examples of the manner in which 
the cascade of effects the stress response represents 
can integrate all levels of organization into specific 
evolutionary changes. For example, the biology of 
stress is likely central to the shift in the control of 
chromatophores from serving purely homeostatic 
needs such as thermoregulation, to serving a role in 
crypsis, and even social communications. The manner 
in which fragments of motor patterns or autonomic 
reflexes are transformed into social signals are de
scribed in part by the evolutionary process of rituali
zation (Hinde and Tinbergen, 1958; Morris, 1956). 

Sex steroids are the organizing and activating prin
ciple of reproductive and social biology and they are 
also centrally involved in stress biology. The psycho
active effects of two key steroids, corticosterone and 
testosterone, are becoming better known (see referenc
es above and McEwen, 1992), and the dynamic they 
manifest in reptilian models are consistent with the 
known effects. It would be interesting to review the 
interactions of steroids on monoamine expression in 
brain and chromatophores considering the contrasting 
effects of glucocorticoids and gonadal steroids (Flug-
ge, 2000). ' 

Stress physiology is likely involved with the life
saving facultative responses to transient, often unpre
dictable, environmental challenges that constitute an 
"emergency" stage in their life history (richly illus
trated by Wingfield and his colleagues, see Wingfield 
eta/., 1998). These responses can and often are su
perimposed upon more programmed life history traits 
in ways that can suggest specific mechanisms by 
which facultative responses can become obligate. 

The richness of steroid hormone genomic and non
genomic influences on electrophysiological respon
siveness of neurons and effects on neurotransmitter re
lease (the elegant work of McEwen, Pfaff, deKloet, 
and others, see Brown, 1994) lays the groundwork for 
inquiries into specific adaptive phenomena. For ex
ample, are the stress-reducing effects of reduced an
drogen attributable to altered afferent mechanisms, in
tegrative processes, or efferent mechanisms and/or the 
manner in which these three dimensions of behavior 
interact? A clarification of information flow through 
the nervous system must also accommodate complex 
interactions. For example, gonadal steroids can mod
ulate adrenoceptor responses to catecholamines and 
even mediate contrary responses depending on their 
concentration (Hadley, 1996, p. 330). In the orchestra
tion of the stress response there are nested hierarchies 
that invoke alternative coping strategies, although it is 
also clear that many apparently specific effects of ste
roids on behavior are secondary to nonspecific effects 
in the nervous system. 

The dynamics of endocrine responses to sustained 
stress such as social subordination suggests that there 
is a release of both MSH as well as ACTH, both de
rived from the precursor, proopiomelanocortin 
(POMC). Many subordinates cope well with their sta
tus suggesting questions about how these sibling hor
mones with very different effects are modulated. Is it 
possible that the processing of POMC is responsive to 
feedback that affects the varying proportions of its po
tential products in a manner not unlike the effect of 
glucocorticoids on the proportions of epinephrine and 
norepinephrine produced and released from adrenal 
chromaffin tissue? 

The green anole has also been utilized as a model 
to help understand the role of the basal ganglia of the 
brain. This site, generally identified as a center of mo
tor coordination, has been revealed in recent decades 
to be a key element in many cognitive processes in 
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mammals. Previous work with A no/is carolinensis has 
identified ventral portions of the basal ganglia as es
sential to the territorial aggression of this species (ref
erences in Greenberg eta/. [1988]; and see Baxter et 
a/. [200la]). In this species, otherwise unimpaired 
males with lesioned ventral basal ganglia apparently 
manifest social agnosia and are unstressed and unpro
voked by the site of intruding conspecifics. In the light 
of recent work on the regional localization and activity 
of stress-related neurotransmitters (Summers and 
Greenberg, 1995; Summers eta/., 1998; Baxter eta/., 
2001 b) this area, which in other taxa is in part re
sponsible for integrating effects of stress as well as 
affect, motivation, and action, as well as stress (Green
berg, 2002), may be a source of future insight. In sum
mary, we can look forward to deeper understanding of 
the activation and coordination of the stress response 
as research into the physiological ethology of this 
model species progresses. 
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