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ON THE NUMBER OF TILINGS OF A SQUARE BY RECTANGLES

TIM MICHAELS AND JIM CONANT

Abstract. How many ways are there to partition a square into n rectangles? In [2],
Reading exhibits a bijection between a subset of permutations called 2-clumped permu-

tations and those rectangulations with no 4 valent vertices, i.e., occurrences of We

develop a recursion for generating the number of all rectangulations (also called tilings)
of a square by n rectangles. This formula specializes to agree with Readings calculations.
This results in an interesting periodicity modulo 2 which we verify for small values of n,
but the general result remains elusive, hinting at some unseen structure of the rectangu-
lations analogous to Readings bijection. Then, considering the topological space of all 0
to n-rectangulations, we use discrete Morse theory to prove homotopy equivalence of this
space to wedges of n-1 dimensional spheres. The Euler characteristics obtained from the
recursion allow us to compute the exact homotopy types.

1. Introduction

We are considering all rectangular tilings of the unit square. A tiling is any partition
of the square into a finite number of rectangles such that the edges of the rectangles are
parallel to the edges of the square. We define Tn to be the topological space of tilings by
≤ n rectangles. The topology is straight forward. We equip Tn with the Hausdorff metric
on the edges of the rectangles. Thus perturbation of an edge in a tiling yields another
tiling close to the first. We are concerned with the homotopy types of this space. Our
main result uses discrete Morse theory to establish homotopy equivalence between Tn and
a wedge of n-1 dimensional spheres.

Theorem 1. There is a homotopy equivalence Tn ' ∨kni=1S
n−1, for some nonnegative

integer kn.

To compute the homotopy type, we must compute the kn, and this motivates our treat-
ment of the tilings as combinatorial equivalence classes. Two tilings are said to be combina-
torially equivalent if there exists a homeomorphism between them which fixes the corners
of the square. Equivalently, two tilings are equivalent if all corners which end on the same
line segment, or wall, have the same relative positions in each tiling Now Tn can be seen as
a cell complex, and a rectangulation with m rectangles and e 4-valent vertices, i.e. occur-

rences of Has dimension m− e− 1. Each combinatorial equivalence class corresponds

bijectively to a cell in Tn. The numbers kn are determined by the number of cells in
each dimension using the Euler characteristic. Thus combinatorially, we need to count the
number of rectangulations with m rectangles and e 4-valent vertices which we denote tm,e.
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2 TIM MICHAELS AND JIM CONANT

We develop a recursion to generate more complex rectangulations from simpler ones. This
two step process involves sliding in vertical lines from the right side of the square and then
adding horizontal lines to the right of the vertical lines just added. Thus we index over
horizontal lines in a given rectangulation which hit the right edge of the square and arrive
at our second main result. Let tm,r,e be the number of rectangulations of m rectangles, r
horizontal lines hitting the right edge, and e 4-valent vertices.

Theorem 2.

tm,r,e =

n−1∑
s=0

m−1∑
n=1

e∑
f=0

d(s+1)/2e∑
c=1

(−1)c+1

(
`− 1

c− 1

)(
s+ 2− `

c

)(
`− c
∇

)(
∆− c−∇+ `− 1

`− 1

)
tn,s,f

where ∇ = e − f , ∆ = m − n, and ` = s + m − n − r. The base of the recursion is given
by tk,k−1,0 = 1 for k ≥ 1.

Clearly the quantity we need, tm,e =
∑m−1

r=0 tm,r,e. A closed form for either tm,e or

tm :=
∑m−1

e=0 tm,e = the number of total rectangulations of m rectangles would be desirable
and is still an open problem. In [2], the numbers tm,0 are shown to count a certain class of
permutations of {1, . . . ,m}, called 2-clumped permutations. In particular, since the first
2-clumped permutation does not occur until m = 5, the interesting pattern t1,0 = 1, t2,0 =
2, t3,0 = 6, and t4,0 = 24 arises. Reading’s beautiful result, however, does not easily give
a formula for tm,0 or extend to tm,e for e ≥ 1. From the recursion, a simpler expression
for tm can be formulated which only indexes over the number of rectangles and the lines
hitting the right edge. However, since it does not keep track of the number of 4-valent
vertices, it is less interesting topologically. Now for this corollary only, let tm,r denote the
number of rectangulations with m rectangles and r horizontal lines hitting the right edge
of the square.

Corollary 3.

tm,r =

n−1∑
s=0

m−1∑
n=1

d(s+1)/2e∑
c=1

`−c∑
i=0

(−1)i+c+1

(
`− 1

c− 1

)(
s+ 2− `

c

)(
`− c
i

)(
∆ + 2(`− c− 1− i)

2`− c− 2

)
tn,s

where ∆ = m− n, and ` = s+m− n− r. The base of the recursion is given by tk,k−1 = 1
for k ≥ 1.

The above recursion yields the following data, where tm,e now counts the number of
4-valent vertices again.
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m 1 2 3 4 5 6 7 8 9 10 11 12
tm,0 1 2 6 24 116 642 3938 26194 186042 1395008 10948768 89346128
tm,1 0 0 0 1 12 114 1028 9220 83540 768916 7200852 68611560
tm,2 0 0 0 0 0 2 48 770 10502 132210 1593934 18755516
tm,3 0 0 0 0 0 0 0 10 348 7680 137940 2206972
tm,4 0 0 0 0 0 0 0 0 1 104 4020 106338
tm,5 0 0 0 0 0 0 0 0 0 0 20 1571
tm,6 0 0 0 0 0 0 0 0 0 0 0 2
tm 1 2 6 25 128 758 5014 36194 280433 2303918 19885534 179028087

Although tm does not have topological significance, it is an interesting combinatorial quan-
tity.

The sequence tm continues

1,2, 6, 25, 128, 758, 5014, 36194, 280433, 2303918, 19885534, 179028087, 1671644720,

16114138846, 159761516110, 1623972412726, 16880442523007, 179026930243822,

1933537655138482, 21231023519199575, 236674460790503286, 2675162663681345170,

30625903703241927542, 354767977792683552908, 4154708768196322925749,

49152046198035152483150, 587011110939295781585102, 7072674305834582713614923

This sequence motivates the following conjecture about the 8 fold periodicity of the
parity of tm.

Conjecture 4. tn ≡ 1 mod 2 if n = 8k + 1 or n = 8k + 3. Otherwise tn ≡ 0 mod 2.

Returning to our main result, we can use the calculations of tm,e above to calculate kn:

Proposition 5. The sequence kn referred to in Theorem 1 is given by:

0, 2, 4, 19, 85, 445, 2513, 15221, 97436, 653290, 4554620, 32833261, . . .

for n ≥ 1

2. Recursive formula for the number of tilings

We first enumerate the combinatorially distinct rectangulations

Theorem 6. Let tm,r,e be the number of distinct tilings with m tiles, r edges that meet the
right-hand side of the square and e 4-valent vertices.

tm,r,e =

n−1∑
s=0

m−1∑
n=1

e∑
f=0

d(s+1)/2e∑
c=1

(−1)c+1

(
`− 1

c− 1

)(
s+ 2− `

c

)(
`− c
∇

)(
∆− c−∇+ `− 1

`− 1

)
tn,s,f

where ∇ = e − f , ∆ = m − n, and ` = s + m − n − r. The base of the recursion is given
by tk,k−1,0 = 1 for k ≥ 1.

Proof. Every rectangular tiling, except ones with only vertical edges can be generated from
a simpler tiling by the process in Figure 1, where c = 1. The simpler tiling is pictured
in (A). Then one pushes an edge of length ` in from the right, blocking ` − 1 horizontal
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edges from hitting the right edge, as in (B). One then adds horizontal edges in the newly
created box, some of which create 4-valent vertices as in (C), and some of which do not as
in (D). However, some tilings may be generated in more than one way from this move. For

example, the tiling comes from two different simpler tilings. To take care of this we

use an inclusion-exclusion argument and write

tm,r,e =
∑
c≥1

(−1)c+1(# of ways to push in c edges from the right from a simpler tiling)

First we count the ways to push in c lines from the right with total length `, as in
Figure 1 (B). (Note that ` = s− r+m− n, because ∆Boxes = ∆(Right edges)− `.) Since
there are s+ 1 available slots on the right, this is the count of the number of c-component
subsets of s+1 with a total length of `, which by Lemma 7, is

(
`−1
c−1
)(

s+2−`
c

)
. Next, we need

to create e− f 4-valent vertices, and the only way to do this is to put a horizontal line at
one of the existing pushed in horizontal lines, as in (C). There are ` − c pushed in lines,

so there are
(
`−c
e−f
)

choices available. Finally, we need to figure out how to distribute the

remaining horizontal edges to get an m-tile configuration with s right-hitting edges. The
number of bins these new horizontal lines can go to is `. Each pushed in component creates
a new box making c, and each 4-valent vertex also creates a new box, making c+ e− f . So
we need to create m− n− (c+ e− f) new boxes. Hence we need to count the number of
ways to distribute m− n− c− e+ f edges into the ` distinct slots they can go, as in (D).

By Lemma 8, this is
(
m−n−c−e+f+`−1

`−1
)
. Thus we have accounted for all four factors of the

coefficient in the formula.
The limits of the summations are explained as follows. Given a tiling where s edges

hit the right edge, one can push in at most d(s + 1)/2e edges. The number of tiles in the
simpler tiling must be smaller, so n ranges to m − 1. The number of edges meeting the
right may not be smaller in the simpler tiling, but we can at least say it has to be less than
the number of tiles n. Finally the number of 4-valent vertices must indeed be less than or
equal to the number in the more complex tiling. �

Lemma 7. The number of c-component subsets of {1, . . . , s+ 1} of total size ` is given by
the formula (

`− 1

c− 1

)(
s+ 2− `

c

)
.

Proof. First we count the number of ways to break ` into c nonzero pieces, which is
(
`−1
c−1
)
.

Then we count the ways of inserting those c pieces into the rest of the slots. There are
s + 1 − ` slots remaining, and there are s + 2 − ` interstices available, accounting for the(
s+2−`

c

)
term. �

The following lemma is well-known and can be found, for example, in [1].

Lemma 8. The number of ordered nonnegative integer partitions of n with k parts is(
n+k−1
k−1

)
.
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s + 1

...

(a)

!1

!2

!c

...
...

(b)

...

(c) (d)

Figure 1. (A): The right side of the square with s edges hitting it. (B):
Pushing in c vertical edges, of total length `1 + · · · + `c = `. (C): Adding
e−f horizontal line segments to create e−f 4-valent vertices. (D): Adding
edges to the ` available bins.

Using the recursive strategy in the proof of Theorem 6 we obtain a different recursion,
simpler because it does not index over the number of 4-valent vertices, but less topologically
interesting for this same reason.

Corollary 9. Let tm,r denote the number of rectangulations with m rectangles and r hor-
izontal lines hitting the right edge of the square. Then

tm,r =

n−1∑
s=0

m−1∑
n=1

d(s+1)/2e∑
c=1

`−c∑
i=0

(−1)i+c+1

(
`− 1

c− 1

)(
s+ 2− `

c

)(
`− c
i

)(
∆ + 2(`− c− 1− i)

2`− c− 2

)
tn,s

where ∆ = m− n, and ` = s+m− n− r. The base of the recursion is given by tk,k−1 = 1
for k ≥ 1.

Proof. The proof replicates that of theorem 6 until steps (C) and (D). We distribute the
remaining m− n− c horizontal lines after sliding in the c vertical lines at once. There are
(` − c) + (` − 1) possible slots for a line and the ` − c slots corresponding to the creation
of a 4-valent vertex can hold at most one line. Thus by Lemma 10 the number of ways to

do this is
((m−n−c)+(`−c)+(`−1)

(`−c)+(`−1)−1
)
, and the result follows by moving the summation sign and

simplifying. �

Lemma 10. The number of ordered nonnegative integer partitions of n of size k + j such
that the first k entries are either 0 or 1 is

k∑
i=0

(−1)i
(
k

i

)(
n+ k + j − 1− 2i

k + j − 1

)
Proof. Let A := the total number of partitions of n and Ai = the number of partitions of
n such that the ith term is ≥ 2 for i = 1, . . . k. We need |A−

⋃
Ai| which by the principle

of inclusion and exclusion =
∑

I⊂{1,...,k}(−1)|I||
⋂

i∈I Ai| =
∑k

i=0(−1)i
(
k
i

)(
n+k+j−1−2i

k+j−1
)

�
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The recursive strategy of the proof of Theorem 6 is illustrated in the following diagram.
Here we generate rectangulations of 4 rectangles, starting with the empty tiling and the
two tilings of two rectangles. The first step is sliding in the vertical line followed by adding
the remaining horizontal lines to the right of it.

Similarly one can construct new tilings starting with and so on.

2.1. Calculations. Now, let tm,e denote the number of tilings which have m rectangles

and e 4-valent vertices. So tm,e =

m−1∑
r=0

tm,r,e. The above recursion yields the following data.

m 1 2 3 4 5 6 7 8 9 10 11 12
tm,0 1 2 6 24 116 642 3938 26194 186042 1395008 10948768 89346128
tm,1 0 0 0 1 12 114 1028 9220 83540 768916 7200852 68611560
tm,2 0 0 0 0 0 2 48 770 10502 132210 1593934 18755516
tm,3 0 0 0 0 0 0 0 10 348 7680 137940 2206972
tm,4 0 0 0 0 0 0 0 0 1 104 4020 106338
tm,5 0 0 0 0 0 0 0 0 0 0 20 1571
tm,6 0 0 0 0 0 0 0 0 0 0 0 2
tm 1 2 6 25 128 758 5014 36194 280433 2303918 19885534 179028087

Indeed the sequence tm continues

1,2, 6, 25, 128, 758, 5014, 36194, 280433, 2303918, 19885534, 179028087, 1671644720,

16114138846, 159761516110, 1623972412726, 16880442523007, 179026930243822,

1933537655138482, 21231023519199575, 236674460790503286, 2675162663681345170,

30625903703241927542, 354767977792683552908, 4154708768196322925749,

49152046198035152483150, 587011110939295781585102, 7072674305834582713614923

3. Symmetric tiles and a mod 2 counting conjecture

From the sequence tn, we notice an 8 fold periodicity of parity. Here is tn mod 2, for
1 ≤ n ≤ 28.

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, . . .
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This sequence appears to satisfy the surprising property that the number of rectangulations
is even unless n = 8k + 1 or 8k + 4 in which case it is odd.

Conjecture 11. tn ≡ 1 mod 2 if n = 8k + 1 or n = 8k + 4. Otherwise tn ≡ 0 mod 2.

We consider the action of the dihedral group of 8 elements D8 on Tn. Let sn be the
number of tilings fixed by this action. That is, sn counts the totally symmetric tilings.

Lemma 12. sn ≡ tn mod 2

Proof. The orbits of the D8 action on Tn have an even number of elements except for the
singleton orbits. �

Thus to prove Conjecture 11 we need only to count the totally symmetric rectangulations
of Tn. Furthermore, again considering the action of D8 we have the following:

Lemma 13. A totally symmetric rectangulation has either 4k tiles or 4k + 1 tiles.

Proof. Given a totally symmetric rectangulation, D8 acts on the individual rectangles
within it. The orbit of a rectangle under the D8 action has either 1, 4, or 8 elements. It
has 1 element if and only if the rectangle contains the square’s center in its interior. �

This gives the immediate result

Proposition 14. sn = 0 unless n = 4k or n = 4k + 1. Furthermore s4k+1 = s4k+4.

Proof. The first statement follows from Lemma 13. The bijection corresponding to s4k+1 =
s4k+4 is given by subdividing the central square into 4 squares. �

Conjecture 11 can be independently verified for small n by directly counting symmetric
configurations. Every symmetric rectangulation is determined by what it looks like in a
triangular fundamental domain for the D8 action, depicted in grey in the following picture:

. So we study the possible configurations when restricted to this triangle. It is clear

that they must look as follows

where the grey region is a rectangular tiling, and there are some number of “sawteeth” that
hit the diagonal. The dashed edge may or may not be there, and accounts for the equality
s4k+1 = s4k+4. So for example, here is a count of the symmetric tilings by 17 rectangles.
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1

4

4 44 1

4

4 8 1

4

48 1

4

4
8

1

4

4

4 4

Here the numbers refer to the number of rectangles in the orbit of a given region, and must
add up to 17. We see that s17 = 5, which is consistent with our calculation that t17 ≡ 1
mod 2.

4. Topological remarks

Let Tn be the topological space of tilings of the unit square by ≤ n rectangles. The
topology is straightforward: if you move a vertex slightly the new tiling is near the old tiling.
To make this precise is to consider the Hausdorff metric on the edges of the rectangles.
This makes Tn into a metric space.

The space Tn is a cell complex, where the cells correspond to combinatorially distinct
tilings. The dimension of a cell with m tiles and e 4-valent vertices is m− e− 1.

Define the reduced Euler characteristic χ̃(K) of a complex K to be χ(K)−1 where χ(K)
is the classical Euler characteristic. Let xn = χ̃(Tn). We can use our calculations of tm,e

to calculate reduced Euler characteristics.

Proposition 15. The sequence xn of reduced Euler characteristics is given by:

0,−2, 4,−19, 85,−445, 2513,−15221, 97436,−653290, 4554620,−32833261, . . .

for n ≥ 1

4.1. Proof of Theorem 1. We define a discrete vector field in the sense of Forman [3]
on the complex Tn. This is a collection of pairs of cells (α, β), called vectors, where α is a
codimension 1 face of β, in the sense that the degree of the attaching map is ±1. Every cell
of Tn is allowed to appear in at most 1 pair. Furthermore, we need the vector field to be a
gradient field, which means that no chain α1, β1, α2, β2, α3, β3, . . . can loop back on itself,
where each (αi, βi) is a pair from the vector field, and αi+1 is a cell in the boundary of βi
distinct from αi, with nonzero multiplicity. The critical cells are defined to be those that
don’t appear in any pair in the vector field. Forman’s theorem implies that Tn is homotopy
equivalent to a complex which has cells in 1− 1 correspondence with the critical cells.

We define the vector field as follows. Given a rectangulation R, define 8R to be the
rectangulation with a new long thin box added on the left of the ambient square. Every
nontrivial rectangulation R can be uniquely written 8kS where S 6= 8T for any T . By
convention we think of the trivial rectangulation with 1 tile as 8∅, although ∅ does not
correspond to a rectangulation in Tn. Create a vector field by forming all possible pairs
(82iS, 82i+1S). Depending on orientation conventions 82iS appears with coefficient ±1 in
∂82i+1S because there are 2i + 1 different terms in the boundary that correspond to 82iS
which mostly cancel. (On the other hand notice that 82i−1S appears with coefficient 0 in
∂82iS.) By design these pairs do not overlap at all. To see there are no closed gradient
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loops, notice that in a chain α1, β1, α2, β2, we must have α1 = 82iS, β1 = 82i+1S and
α2 = 82i+1S′ for some S′. Since α2 is the first in a pair, S′ = 82`+1T for some ` and T . In
particular α2 has more leading rectangles than α1. Since the number of leading rectangles
strictly increases along gradient paths, there can be no closed loops.

The critical cells for this vector field consist of the trivial rectangulation, which is the
unique vertex, as well as cells corresponding to rectangulations with n tiles that are not
of the form 82i+1S. These are of dimension n − 1 minus the number of 4-valent vertices.
Our next task is to extend the previous vector field to a vector field that includes all
singular rectangulations (i.e. rectangulations with at least one 4-valent vertex.) Among
critical rectangulations from the previous vector field, we define a map ∆ as follows. Given

a rectangulation t, find all positions in the tiling of the form or . Locate the

position which is furthest right, and if there is more than one that is furthest right, take

the one that is closest to the top. If this position is of the form , then ∆(t) = 0.

If it is of the form then define ∆(t) to be the rectangulation where this position is

changed to . Now the vector field consists of all pairs (t,∆(t)) where ∆(t) 6= 0, and t

is critical for the previous vector field. (Which implies that ∆(t) is also.) All of these pairs

are disjoint since if the upper right instance is , then it is the first coordinate of a pair,

and if it is , then it is the second coordinate of a pair. All singular rectangulations

appear either as the first or second coordinate of a pair, so the critical cells are either the
unique 0-cell or are (n − 1)-dimensional. Finally we argue there are no closed gradient
loops in the combined vector field. We claim that a gradient loop cannot contain any pairs
(82iS, 82i+1S). If we have α2 = 82jS′, then j > i and β2 = 82j+1S′′. If we have α2 = 82j+1S′,
then this is a contradiction since such rectangulations are always the second coordinate of
a vector. So if a gradient path contains a pair (82iS, 82i+1S), then all subsequent pairs are
of this form, and so by the previous argument, there is no closed loop. So now we can
concentrate on pairs (t,∆(t)) only.

Notice that ∆ preserves the number of vertical walls, and ∂ cannot increase the number.
[Discussion of all codimension 1 events.] Thus a closed gradient loop must have a constant
number of vertical walls for every αi and βi. Also, once ∆ operates on a given vertical wall
it can never operate on one below it or to the left. So in a loop, it must operate on a single
vertical wall. Similarly, the number of edges meeting the wall from the left and right must
be constant since ∆ preserves this number and ∂ cannot increase it. Thus it makes sense
to label the edges meeting the wall from the left and right by numbers which are constant
throughout the purported gradient loop. We are then reduced to the following question.
Consider the following moves:

(Y1):

7→
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(Y2):

7→

These are the two possible moves βi → αi+1 consisting of taking a term in the boundary
where the number of walls and attaching edges from the left and right are preserved.
However the move Y2 can never be part of a loop, since the left edge starts out below
the right edge, and ∆ cannot reverse their order. Hence only Y 1 moves are available. So
consider α1, β1, α2 where α2 is obtained from β1 by a Y 1 move. Then it must have operated

on a site below the one that changed from α1 to β1, so that α2 still has an as its top

instance. Thus ∆(α2) = 0 and it cannot be the first cell in a pair.
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