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1. Background 

1.1. Relevance of Adsorption 

 Adsorption is the attachment of particles to a surface through one of several 

means.  The adsorbate is the phase that attaches to the adsorbent; for example, a gas-

phase adsorbate molecule may adsorb to the surface of a solid adsorbent.  Adsorption 

plays an important role in many processes including the analytical techniques of gas, 

high-pressure liquid, and thin-layer chromatography.  It can also be used for air 

purification,1 the removal of contaminants from aqueous solutions,2 and the storage of 

volatile materials in a less energy-intensive manner than compression.3   

1.1.1. Chemisorption 

 Chemical adsorption, called chemisorption, occurs when a molecule or atom is 

adsorbed to a surface by forming a chemical bond.  This process may involve the 

formation of several bonds in which the adsorbate interacts with multiple atoms or 

molecules of the adsorbent.  Chemisorption can only involve the formation of a 

single adsorbate-adsorbent bond.  Since chemisorption requires the formation of 

bonds between the adsorbate and the adsorbent, the number of sites at which 

adsorption can occur is limited.  For this reason, chemisorption is limited to 

monolayer coverage.  The enthalpy of chemisorption is often much greater than 

that of physical adsorption; the distance between the adsorbent and adsorbate is 

often shorter than for physically-adsorbed molecules.4 
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1.1.2. Physisorption 

 On the other hand, physical adsorption, or physisosorption, occurs when an 

atom or molecule adsorbs to a surface without the formation of a chemical bond.  

This interaction is generally the result of a van der Waals interaction between the 

adsorbate and the adsorbent.  Since van der Waals interactions are weaker than 

chemical bonds, physisosorbed molecules are attached to the adsorbent more 

weakly than chemisosorbed molecules.  Due to its reliance upon comparatively-

weak van der Waals interactions, physical adsorption to a surface is a reversible 

process.  Furthermore, since the number of molecules adsorbed is not limited by 

the number of sites available for the formation of adsorbate-adsorbent chemical 

bonds, physical adsorption processes retain the potential for multilayer coverage, 

which is the formation of several layers of adsorbate molecules on the surface.  

Additionally, the potential for multilayer coverage leaves open the possibility that 

adsorbed gas molecules could fill pores in a surface, which would allow for the 

calculation of pore volume.4  Aside from their broad applicability, physisorption 

studies benefit from the short time required for physisorption equilibria to be 

reached.5 

1.2. Adsorption Isotherms 

 Adsorption isotherms in which small doses of gas are added to an adsorbent while 

maintaining a constant pressure allow for the characterization of a surface through 

several means.  Since physisorption is a complex process involving various 

interactions, several models have been developed to aid in the use of experimental 
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data.  Each of these relies upon different assumptions that may affect the model's 

validity for a given surface.   

1.2.1. Langmuir Isotherm 

 Langmuir developed one of the earliest models of adsorption based on a 

kinetic approach to explaining a physical adsorption isotherm of a form similar to 

a typical chemisorption isotherm.  This model assumes only a monolayer of 

adsorbed molecules, a uniform surface, and the absence of interactions among 

adsorbed molecules.4   

1.2.2. BET Theory of Adsorption 

 While the Langmuir isotherm provided an initial model, the Brunauer, 

Emmett, and Teller (BET) isotherm used a similar kinetic approach that could be 

applied to multilayer adsorption.  BET theory assumes a uniform surface, 

localized adsorption, no interactions among adsorbed molecules, no limitation on 

number of adsorbed layers, and that all layers above the first behave like a bulk 

phase.  It also relies upon the assumption that the top layer of adsorbed molecules 

in a particular location is in dynamic equilibrium with the vapor.  Despite these 

assumptions, BET theory remains useful in the determination of the surface area 

of an adsorbent. 

1.3. Determination of Pore Size 

 While BET theory and the later Frenkel-Halsey-Hill theory provide a means to 

calculate the surface area of an adsorbed, other approaches have been developed in 

order to determine the pore volume and pore radius of porous materials.  Since 

molecules of the adsorbate may be constrained within the pores, the adsorption 
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interaction may vary depending on the size of the pores.  For this reason, different 

approaches and theories have been developed based on the size of the pore. 

1.3.1. Dubinin-Astakhov 

 The Dubinin-Astakhov theory, which was in itself an extension of Dubinin-

Radushkevich theory of adsorption, developed to explain the adsorption of gases 

in micropores.  This theory, which Dubinin called the "theory of volume filling of 

micropores,"6 is a macroscopic thermodynamic approach similar to Polanyi's 

potential theory of adsorption.4  However, it is still used today for the 

characterization of microporous carbon adsorbents.1,2,7  While early studies relied 

upon the use of benzene as the adsorbate, several approaches have been 

developed in order to allow for the use of another adsorbate in the Dubinin-

Astakhov equation:8  

� � �� � ��� �	 
 ��
����  [1] 

where W is the amount adsorbed per mass adsorbent; W0 is the micropore volume; 

E0 is the characteristic energy of adsorption; β is the affinity coefficient; and, A is 

the change in Gibbs' free energy given by 

� � �� ln ���   [2] 

where R is the gas constant; T is temperature; P0 is the saturated vapor pressure; 

and P is the pressure of the system. 

1.3.2. Kelvin Equation 

 Adsorption in mesoporous materials such as MCM-41, MCM-48, and SBA-15 

differs from either adsorption on a nonporous or microporous surface.  The main 

reason for this difference is pore condensation, which is a phenomenon in which 
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the gas adsorbed in the pores forms a bulk liquid phase at a pressure less than the 

saturated vapor pressure of the liquid at that temperature.  One of the most 

common approaches for addressing pore condensation in mesoporous materials is 

the macroscopic, thermodynamic Kelvin equation:4 

� 	 �� � 	� � � � ln ��� � �������� � !�∆#   [3] 

In Equation [3] above, γ is the surface tension of the liquid phase, θ is the contact 

angle between the liquid phase and the wall of the pore, ∆ρ is the difference 

between the orthobaric liquid density and the gas density, and rm is the “radius of 

curvature of the meniscus of the pore liquid.”4 The mean radius of curvature of 

the meniscus is the same as the pore radius, or Kelvin radius, for cylindrical 

pores.  The most important aspect of the Kelvin equation is its relation between 

the chemical potential of a system, µ- µ0, to macroscopic quantities.4   
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2. Methods 

 Over the course of several months, numerous adsorption isotherms were measured 

using a high-resolution volumetric adsorption isotherm system.  In all studies, the 

adsorbent was SBA-15 made by other members of the research group according to a 

common literature process.  The adsorbates used were methane, ethane, and nitrogen.    

2.1. Apparatus 

 The high resolution volumetric adsorption isotherm system consisted of the 

various parts in Figure 1.  The gas source was either a large bottle or lecture bottle 

purchased from an industrial supplier at a very high purity and controlled using a 

flammable regulator.  In the case of the nitrogen isotherms used for the surface area 

calculation, the bleed-off from the liquid nitrogen tank was used as the gas source.  

The pressure transducer connected to the system allowed for the pressure to be 

measured accurately and reported to the LabVIEW software using a control box.  The 

sample was loaded into a copper sample cell inside a glovebox containing an argon 

atmosphere.  The sample cell contained a copper spacer to limit the movement of the 

0.1-0.15g adsorbent used in this study.  The sample cell, which was connected to the 

gas-handling system using a capillary tube, could be placed on a displex connected to 

the helium compressor.  The helium compressor cooled the displex while a 

temperature controller monitored the temperature of the cell within the evacuated 

environment of the vacuum jacket.  This temperature controller, which was also 

connected to the computer and LabVIEW software via a control box, could heat the 

displex to maintain a constant temperature in the sample cell.  Rather than relying 

upon one pump to evacuate the system, both a rough pump and a turbomolecular 
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pump were used.  This combination of pumps was able to evacuate the system to a 

baseline pressure of approximately 6x10-7 torr.  In Figure 1, the small blue circles 

represent manual valves while the small orange circles represent computer-controlled 

valves.  These computer-controlled valves were important because they allowed for 

the isotherm to be controlled remotely using a computer program. 

High-Resolution Volumetric Adsorption 

Isotherm System

C

EF

D

A

B

A. Gas Source
B. Pressure 
Transducer
C. Sample
D. Temperature 
Controller
E. Helium 
Compressor
F. Pump

 

FIGURE 1: Schematic of High-Resolution Volumetric Adsorption Isotherm Station 
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2.2. Adsorbent 

 In all of these studies, the adsorbent was SBA-15, which is a mesoporous silica 

material.  The surface area of the material is high, 400-900 m2/g.   Figure 2, which is 

a TEM micrograph from Michael Felty, demonstrates the hexagonal shape of the 

pores found in SBA-15.  In the image, the exceptionally dark portions are gold 

nanowires.  According to Zhou, the material is characterized by a narrow pore size 

distribution.9  The pore size of SBA-15 can be varied between 5 nm and 15 nm.10,11  

Despite the narrow pore size distribution, SBA-15 has micropores that connect with 

the mesopores.  The temperature and time of the synthesis affect the surface area as 

well as the number and volume of the micropores.12 

 

FIGURE 2: TEM Micrograph of SBA-15 with Gold Nanowire 
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2.3. Adsorbates 

 In this study, several different adsorbates were used to characterize the surface of 

the SBA-15 material as well as the adsorbate-adsorbent interactions.  In all cases, 

nonpolar adsorbates were used.  Methane was chosen for its spherical symmetry and 

as a reference for any future studies using longer-chain alkanes.  Ethane was chosen 

in order to determine if the difference in molecular size between it and methane 

would significantly affect the adsorbate-adsorbent interactions.  Since methane and 

ethane are both nonpolar hydrocarbons, differences in polarity or dipole were not 

expected to affect the result.  Nitrogen was selected because it is the gas most often 

used for surface area and pore size determinations.  Furthermore, it shares some 

symmetry elements with ethane.  For a summary of various properties of these gases, 

please see Table 1. 

Parameter Methane Ethane Nitrogen 
Molecular Weight (g mol-1) 16.043 30.069 28.013 

Liquid Density (g cm-3) 0.423 0.545 0.808 
Density at STP (g cm-3) 0.000717 0.00126 0.00125 

Refractive Index 1.004 1.005 1.199 
Molar Polarizabilityi 0.0101 0.173 4.41 

Antoine Equation 
Coefficients 

A13 3.9895 4.50706 3.7362 
B13 443.028 791.3 264.651 
C13 -0.49 -6.422 -6.788 

TABLE 1: Properties of Adsorbates Used13,14 

  

  

                                                           
i These values were calculated using equation [17]. 
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 For these studies, it was expected that the difference in molecular size would 

affect the enthalpy and entropy of adsorption for subsequent adsorption steps.  In the 

case of methane, a smaller difference in these thermodynamic quantities was expected 

because the small molecule should readily access both mesopores and micropores.  In 

the case of ethane, a larger energetic difference was expected because the larger 

molecule was expected to preferentially fill the larger pores at lower relative 

pressures.   
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3. Quantities from Adsorption Isotherm  

3.1. Moles Adsorbed 

 In order to use the adsorption data recorded, the number of moles of gas adsorbed 

was calculated for each data point in the adsorption isotherm.  The initial pressure, 

final pressure, and sum of the change in pressure were recorded by the LabVIEW 

program.  The initial pressure was that present in the known volume of the gas-

handling system at room temperature, which was determined using a series of helium 

expansions.  The initial number of moles was then calculated using the ideal gas law: 

$% � �&'&()&    [4] 

where Pi is the initial pressure recorded in the LabVIEW software as measured by the 

pressure transducer, Vi is the initial volume in the gas-handling system, and Ti is the 

temperature of the room.  After gas was introduced into the sample-cell, the system 

was allowed to reach equilibrium, and the final pressure was recorded.  Using the law 

of conservation of mass, the number of moles in each part of the apparatus could be 

determined: 

$* � $+,-., 0-1234 5 $6476 8�794 5 $ 768- :46   [5] 

where nknown volume is the number of moles in the gas phase in the known volume, ndead  

space is the number of moles in the gas phase in the sample cell, and nadsorbed is the 

number of moles adsorbed to the surface of the adsorbent. 

 The ideal gas law relationship was then used to derive an equation for the number 

of moles of gas adsorbed: 

$768- :46 � ∑ ∆��'<=>?=()@>>! 	 �A'BCDB EFDGC()ED!FHC    [6] 
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 Using Equation 1 above, the number of moles of gas adsorbed was calculated for 

each data point recorded by the computer program controlling the high-resolution 

adsorption isotherm station.  The term Vknown is the initial volume into which the gas 

is dosed from the high-resolution adsorption isotherm system.  The term Vdead space, or 

the dead space volume, is the free volume in the sample cell, which was determined 

using helium expansions and the ideal gas law.  Since this volume, Vdead space,  was at 

the same temperature as the sample, the sample temperature was used to determine 

the number of moles in the gas phase in the dead space volume.   

3.2. Temperature within Sample Cell 

 Although one calibrated resistance thermometer was used by the temperature 

controller to monitor the temperature of the sample cell while another recorded the 

temperature, the temperature inside the sample cell was determined using the Antoine 

equation:15 

IJKL�MNO � � 	 P)QR   [7] 

where P is the saturated vapor pressure of the gas; T is the temperature; and, A, B, and 

C are the Antoine parameters of the gas.  The saturated vapor pressure, which is P0, in 

most subsequent equations, was taken from the LabView Data File as the maximum 

final pressure.  Solving the Antoine equation for temperature gives a more useful 

form of the equation for the purposes of adsorption studies: 

�S 8 � �PT�UV�M�O�� 	 W   [8] 

3.3. Volume of Molecules Adsorbed  

 In order to create a pore size distribution plot of 
6'DBE>@XCB6  versus the Kelvin 

radius, it is necessary to determine the volume of molecules adsorbed.  Since volume 
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and temperature are directly proportional in the ideal gas law, using the equivalent 

volume of molecules adsorbed at standard temperature and pressure helps to 

normalize the values: 

Y768- :46 � ,DBE>@XCB�(�)� �  [9] 

 In this equation, R is the gas constant, T0 is 273.15 K, and P is 100 kPa.   

3.4. BET Surface Area 

 In order to determine the monolayer coverage and the surface area of an 

adsorbent, the Brunauer, Emmett, and Teller (BET) theory is often used to model 

physical adsorption.4  Then, the monolayer coverage of a system can be determined 

by plotting 
Z,ML�ZO versus x: 

Z,�ML�ZO � L9�,! 5 M9�LO�Z9�,!   [10] 

 In this plot, x is the reduced pressure—the final pressure as a fraction of the 

saturated vapor pressure of the system at a given temperature.  The term n is the 

number of moles of gas adsorbed.   

 The term c is the BET constant calculated using the parameters of a linear least-

squares regression of the BET plot between reduced pressures of 0.05 and 0.30: 

[ � 3: 5 1    [11] 

 In this equation, m is the slope of the linear fit of the BET plot while b is the y-

intercept of the same regression.  These values were also used to determine the 

number of moles of gas in the adsorbed monolayer, nm: 

$3 � L:�9      [12] 
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 In this equation, b is the y-intercept of the linear least squares regression of the 

BET plot, and c is a dimensionless constant.   

 Then, using the number of moles of gas in the adsorbed monolayer and the 

average molecular cross-sectional area of the adsorbate, the surface area of the 

monolayer, Am, was calculated: 

�3 � ]� � $3 � ^        [13] 

 In this equation, N0 is Avogadro's number, and σ is the molecular cross-sectional 

area of the adsorbate on the adsorbent.  Since the molecular cross-sectional area is 

dependent upon the adsorbate-adsorbent interactions and the orientation in which the 

adsorption occurs, literature values were used to determine this value.16,17  

3.5.  Two-Dimensional Compressibility 

 The two-dimensional compressibility, which reflects the response of adsorbed 

molecules to the spreading pressure, can be used to determine the location at which 

phase transitions in the film of adsorbed gas occur:18 

_�` � ���+a�)�,b�cd � 6,6�   [14] 

 In Equation [14] above, A is the surface area, p is the final pressure, T is the 

temperature, and n is the number of molecules adsorbed.  By plotting K2D as a 

function of chemical potential, µ, the locations of the peaks may be used to determine 

the temperature at which a phase change occurs. 

� 	 �� � 	� � � � ln ���   [15] 

 In Equation [15] above, R is the gas constant, T is the temperature, and 
��� is the 

reduced pressure.  From this relation, it is apparent that the chemical potential of a 

system is a function of the reduced pressure and temperature.   
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3.6. Phase Transition 

 Larher and Angerand demonstrated that tracking the two-dimensional 

compressibility of a system as a function of chemical potential (temperature) can be 

useful in determining the temperature at which phase transitions occur.19  The most 

important parameter in characterizing this shift is the width of the peak in two-

dimensional compressibility reflected by the full-width, half-maximum of the peak.18  

The use of FWHM to represent peak width is especially useful in noisy or irregular 

peaks; however, some poorly resolved peaks create situations in which difficult 

decisions regarding data analysis must be made. 

3.7. Dubinin-Astakhov Pore Size Distribution 

 As demonstrated above, Dubinin-Astakhov theory is useful for the determination 

of the pore size distribution of the micropores in carbon-based materials.  However, 

this theory was extended to adsorption onto mesoporous silica material SBA-15 in 

order to assess the validity of Dubinin-Astakhov assumptions to a system involving a 

polar adsorbent containing both micro- and mesopores.   

3.7.1. Micropore Volume 

 In order to use Dubinin-Astakhov theory to create a pore size distribution, a 

logarithmic form of the Dubinin-Astakhov equation was used:20 

logMgO � logMV�O 	 i ()�
�jc � ilog ��� jc
   [16] 

 In this equation, V is the volume of gas adsorbed at standard temperature and 

pressure, V0 is the micropore capacity, P is the final pressure of the system, and P0 

is the saturated vapor pressure of the gas at temperature T.  As usual, R is the gas 

constant, used in kJ K-1mol-1.  The final two parameters--N and β--are the 
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Astakhov exponent and affinity coefficient of the analysis gas.  In Dubinin-

Radushkevich theory, the exponent was set to a value of 2; however, the 

Astakhov exponent can be varied across a range of values.ii  Wood demonstrated 

the usefulness of using the ratio of molar polarizabilities (rather than liquid molar 

volume or parachor) with respect to benzene as a means of determining the 

affinity coefficient of a gas on an adsorbent not previously studied.8  Molar 

polarizability is a function of several easily-found parameters: 

N4 � 
k?6l � � 
,mb�L,mbQ��  [17] 

 In this equation, Pe is the molecular polarizability, Mw is the molecular weight 

of the gas, dL is the liquid density, and nD is the refractive index.   

 Plotting the logarithm of volume of gas adsorbed, log(V), as a function of the 

logarithm of the inverse of reduced pressure, log (P0/P)
N
, allows a linear 

regression to be used to determine unknown values.  The monolayer capacity in 

equation [16] was determined directly from the y-intercept of the regression: 

g� � 10o�%,S4 94�S   [18] 

 The characteristic energy, E0, was also calculated using the terms of this linear 

regression: 

p�c � �M()Oq
�q�3          [19] 

 In this equation, R is the gas constant; T is temperature; β is the affinity 

coefficient; and, m is the slope of the linear regression.  N is the Astakhov 

exponent, which was set to 1 in this experiment.   

                                                           
ii Most commercial surface area apparatuses vary this number automatically to minimize the standard error in the y-
intercept.  In this study, a value of 1 was found to give the lowest standard error in y-intercept and was used for all 
subsequent calculations. 
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 More important, however, was the calculation of the micropore volume for 

each data point: 

�% � g% � rH&st&BruDE,wxy   [20] 

 This value, along with the subsequent equivalent pore diameter calculation, 

was used to create a pore-size distribution for the SBA-15 sample. 

3.7.2. Equivalent Pore Diameter  

 The equivalent pore diameter was calculated as a function of several values 

derived from the Dubinin-Astakhov plot:20 

z � 2 �
|}
}}
~��V�� =!� Å����� �

q

T� �&�T� �� ��
��
�L �c�

   [21] 

 In equation [21], the value of Wi is the micropore volume calculated using 

Equation [20] while W0 is the limiting micropore volume calculated by 

substituting V0 for Vi in equation [20].  From this equivalent pore diameter, the 

equivalent pore radius was calculated: 

��- 4 � `F>@C�   [22] 

 To create a pore-size distribution, the derivative of the micropore volume with 

respect to equivalent pore radius was plotted against the equivalent pore radius.  
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3.8. Kelvin Equation Pore Size Distribution 

 In order to compare the results of the Dubinin-Astakhov equation to those of a more-

recognized theory applied to mesoporous materials, the Kelvin equation was used.   

3.8.1. Kelvin Radius 

 The data from an adsorption isotherm can also prove useful for determining the 

pore size of a mesoporous material such as SBA-15.  Macroscopic, thermodynamic 

approaches to determining pore size can be used if the pores of the adsorbent are of 

uniform size and shape.  The simplest approach relies upon the Kelvin equation:2 

� 	 �� � 	� � � � ln ��� � �������� � !�∆#    [23] 

 In Equation [23] above, γ is the surface tension of the liquid phase, θ is the contact 

angle between the liquid phase and the wall of the pore, ∆ρ is the difference between 

the orthobaric liquid density and the gas density, and rm is the “radius of curvature of 

the meniscus of the pore liquid.”4 The mean radius of curvature of the meniscus is the 

same as the pore radius, or Kelvin radius, for cylindrical pores.  In the case of 

complete wetting, θ is assumed to be zero.  This, along with the common assumption 

that the orthobaric liquid density is very much greater than the gas density, results in a 

simplified Kelvin equation: 

ln ��� � ����'� !�(�)   [24] 

 In Equation [24] above, γ is the surface tension of the bulk phase, and g�  is the 

average molar volume of the liquid phase.2   

 In order to correct for any interactions between the liquid phase and the wall or 

the layers of adsorbed molecules, the modified Kelvin equation is used: 
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ln ��� � �������� �(�)�∆#�M !�SGO   [25] 

 In Equation [25] above, the new term, tc, is the statistical thickness before 

condensation.2   

 A plot of the derivative of the equivalent volume of gas adsorbed at standard 

temperature and pressure with respect to pore radius versus the pore radius illustrates 

the distribution of pore sizes calculated.  

3.9. Clausius-Clapeyron  

The data from an adsorption can also be used to calculate the thermodynamic 

quantities associated with a specific adsorption step using the Clausius-Clapeyron 

equation:4 

log ��� � �∆�@E�()    [26] 

In order to use Equation [26] above, a plot of the logarithm of pressure versus 

inverse temperature was created, which gives a linear plot:3 

log �* � �, 5 �=
)    [27] 

In Equation [27] above, Bn and An are coefficients for a particular adsorption step.  

The value of pf used in this equation was the maximum of the first derivative of the 

standard adsorption isotherm.  Using the slope and intercept for the linear trend lines 

of the plot described in Equation [27], the coefficients Bn and An
 may be determined.  

From these values, the enthalpy and entropy for the adsorption process of the given 

layer could be determined: 

∆�, � 	� � M�, 	 �∞O   [28.a] 

∆�, � 	� � M�, 	 �∞O   [28.b] 
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The heat of adsorption can also be determined using the coefficients of Clausius-

Clapeyron plot: 

�S 8 � � � �,   [28.c] 

  



21 

 

4. Results  

4.1. Moles Adsorbed 

Figure 3 is a set of adsorption isotherms for methane over the temperature range 

of 68.82 K to 89.20 K.  Two adsorption-desorption isotherms that had crossed others 

at a reduced pressure of approximately 0.6-0.7 were discarded; this difference was 

likely a result of a change in temperature or a difference between the standard 

adsorption program and that used for adsorption-desorption isotherms.  The deviation 

of the 89.20 K isotherm from the others beginning at a reduced pressure of 

approximately 0.15 was likely caused by temperature fluctuations.  At the time, the 

secondary resistance thermometer was not recorded by the LabVIEW software--an 

issue that was corrected in subsequent isotherm experiments.  From this plot, it 

becomes apparent that the reduced pressure at which the second layering step is 

complete decreases with temperature. 

Figure 5 is a set of adsorption isotherms for ethane over the temperature range of 

114.15 K to 143.25 K.  Despite having a larger temperature range and greater number 

of isotherms than set of methane isotherms, those of ethane generally conform to the 

expected shape with significant separation among the temperatures only occurring in 

the riser region, which will be shown to correspond to the completion of the second 

adsorption step.  Unlike the adsorption isotherms for methane, the reduced pressure at 

which the second layering step is complete increases with temperature.   

Figures 4 and 6 are adsorption-desorption isotherms for methane and ethane, 

respectively, on SBA-15.  Both exhibit a significant hysteresis loop, which reflects 

that the adsorption and desorption processes occur in different manners.  As noted in 
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Lowell, adsorbents with a network of pores such as SBA-15 often exhibit hysteresis 

due to capillary condensation.4 

Figure 7 is a set of nitrogen adsorption isotherms from 65.63 K to 80.42 K.  These 

isotherms were performed on a different sample of SBA-15 manufactured using the 

same process.  Unlike both methane and ethane, these isotherms do not appear to 

complete the adsorption steps at the same relative pressure nor do they approach a 

maximum number of moles adsorbed.  For these reasons, the nitrogen isotherms were 

not used in any subsequent calculations other than the determination of the BET 

surface area using one of the sets of data which had the shape expected for nitrogen 

adsorption onto SBA-15.12 
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FIGURE 3: Adsorption Isotherms for Methane on SBA-15 
 
 
 

 
 

FIGURE 4: Adsorption-Desorption Isotherm for Methane on SBA-15 (78.42 K) 
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FIGURE 5: Adsorption Isotherms for Ethane on SBA-15 
 
 
 

 
 

FIGURE 6: Adsorption-Desorption Isotherm for Ethane on SBA-15 (133.75 K) 
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FIGURE 7: Adsorption Isotherms of Nitrogen on SBA-15 
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4.2. BET Surface Area 

Figures 8 and 10 represent plots of an adsorption isotherm and first derivative of 

the isotherm curve for methane and ethane, respectively, on SBA-15.  The maxima in 

first derivative correspond to the completion of a given adsorption layer.  For both of 

these plots, the completion of the monolayer occurred at a reduced pressure too small 

to determine accurately without using a very-high resolution isotherm.  However, the 

completion of the second layer occurred at a reduced pressure of approximately 0.65 

for methane and 0.50 for ethane.   

Figures 9 and 11 represent BET plots for methane and ethane on SBA-15 

respectively.  By fitting a linear trend line to these plots between reduced pressures of 

0.05 and 0.30 and using Equations [10-12], the number of moles in the monolayer 

could be determined.  These values may be found in Table 2.  The number of moles 

of gas adsorbed in the monolayer was greater for methane than for ethane, which is to 

be expected due to the difference in size of the two gases.   

Figure  12 is a plot of an adsorption isotherm for nitrogen on SBA-15 and its first 

derivative.  This isotherm suggests the completion of several different adsorption 

steps approaching a relative pressure of unity; however, the relatively large step size 

chosen for the nitrogen isotherms limited the number of data points between which 

the derivative could be taken.  This may have contributed to the numerous local 

maxima in the first derivative curve for the nitrogen adsorption isotherm.  

Figure 13 is a representative BET plot of nitrogen on SBA-15.  As with methane 

and ethane, the number of adsorbed molecules in the monolayer was calculated using 

Equations [10-12]. 



27 

 

Then, using Equation [13] and the average molecular cross-sectional area, the 

surface area per gram of the SBA-15 sample was determined.  In Table 2, several 

different molecular cross-sectional areas were used for each adsorbate; this reflects 

the various possible orientations at which adsorption can occur and the nature of the 

adsorbate-adsorbent interactions.  If this interaction is stronger such that the 

molecules become more closely packed, the average molecular cross-sectional area of 

the adsorbed molecule decreases.  Similarly, if the gas-phase molecule adsorbs in 

along a different symmetry element, the molecular cross-sectional area may vary.  

From the data in Table 2, methane and ethane suggest a surface area between 25 m2/g 

and 30 m2/g. The surface area determined using nitrogen adsorption was roughly one 

order of magnitude greater at between 185 m2/g and 235 m2/g.  Although neither of 

these results corresponds with the projected surface area of 400-900 m2/g, the values 

derived from the BET plot of nitrogen adsorption are on the correct order of 

magnitude.  Had a nitrogen isotherm with higher resolution and at a temperature of 

77K been used, the result of this surface area determination may have coincided with 

the expected range more closely. 
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FIGURE 8: Plot of Adsorption Isotherm and First Derivative for Methane on SBA-15 
(77.69 K) 

 
 

 
 

FIGURE 9: Representative BET Plot for Methane on SBA-15 (77.69 K) 
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FIGURE 10: Plot of Adsorption Isotherm and First Derivative for Ethane on SBA-15 
(114.15 K) 

 
 
 

 
FIGURE 11: Representative BET Plot for Ethane on SBA-15 (114.15 K) 
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FIGURE 12: Plot of Adsorption Isotherm and First Derivative for Nitrogen on  

SBA-15 (70.39 K) 
 
 

 
 

FIGURE 13: Representative BET Plot for Nitrogen on SBA-15 (70.39 K) 
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Adsorbate nm σ (Å2) Orientation Amonolayer (m
2) A (m2/g) 

Methane 2.79E-05 

15.4 
 

2.58 25.8 
16.4 Standard 2.75 27.5 
17.3 

 
2.90 29.0 

15.35 2H down 2.57 25.7 
16.261 3H down 2.73 27.2 

Ethane 2.17E-05 
20.5 

 
2.68 26.8 

19.317 3H down 2.52 25.3 
24.009 4H down 3.14 31.4 

Nitrogen 3.46E-04 
13.5 

 
28.10 187.35 

14.785 on SBA 30.78 205.18 
16.2 Standard 33.72 224.82 

 
TABLE 2: Table of BET Surface Area Data4,16,17 

 

 

4.3. Two-Dimensional Compressibility 

Using equation [14] above, the two-dimensional compressibility was calculated 

for each isotherm.  Figures 14 and 16 are representative of plots of two-dimensional 

compressibility versus chemical potential for methane and ethane, respectively.  From 

these, it is difficult to determine whether the peaks observed are truly two separate 

peaks or just one poorly-resolved peak.  

Figures 15 and 16 are plots of two-dimensional compressibility for the data sets of 

methane and ethane, respectively.  In both, the relationship between chemical 

potential and temperature given in Equation [15] is apparent.  Furthermore, both plots 

reflect the temperature-dependence of the completion of the adsorbed layer being 

studied.  For methane, the reduced pressure at which the second layer is completed is 

inversely proportional to temperature.  In Figure 16, the maximum in two-

dimensional compressibility occurs at a lower chemical potential for those isotherms 

performed at higher temperatures.  Considering Equation [14] in which the two-
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dimensional compressibility is directly proportional with the derivative of the 

adsorption isotherm, this relationship becomes apparent. 

 
 

FIGURE 14: Representative Plot of K2D v. µ-µ0 for Methane on SBA-15 (78.43 K) 
 
 

 
 

FIGURE 15: K2D v.µ-µ0 for Methane on SBA-15 
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FIGURE 16: Representative Plot of K2D v. µ-µ0 for Ethane on SBA-15 (114.15 K) 
 
 

 
 

FIGURE 17: K2D v.µ-µ0 for Ethane on SBA-15 
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4.4. Phase Transition 

 Although plotting the FWHM of the two-dimensional compressibility peak for an 

adsorption step may prove useful in determining the phase transition, the data in 

Figures 14-17 make this analysis more difficult for this system.  If the peaks are, in 

fact, two separate local maxima in two-dimensional compressibility potentially 

corresponding to the filling of the micropores and the mesopores in SBA-15, Figures 

15 and 16 demonstrate no marked change in the slope of the linear regression of this 

FWHM over the temperature range of methane studied.  Since a phase transition is 

marked by a dramatic change in the slope of the linear regression such that two 

distinct data sets become apparent, it does not appear that methane undergoes a phase 

transition within this temperature range.  Similarly, for the FWHM of the two-

dimensional compressibility of ethane plotted with respect to temperature in Figures 

20-21, no phase change is apparent.   
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FIGURE 18: Plot of FWHM of K2D versus Temperature for Methane, First Step 

 

 

FIGURE 19: Table of FWHM of K2D versus Temperature for Methane, Second Step 
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FIGURE 20: Table of FWHM of K2D versus Temperature for Ethane, First Step  

 

 

FIGURE 21: Table of FWHM of K2D versus Temperature for Ethane, Second Step 
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4.5. Dubinin-Astakhov Pore Size Distribution  

 Using Equations [16-22] and the adsorption isotherm data, the Dubinin-Astakhov 

pore size distributions of methane and ethane on SBA-15 found in Figures 22 and 24 

were created.  Based on Figure 22, the pore radius of SBA-15 was found to be 

between 7.5 nm and 8.0 nm.  Since the pore size (diameter) of SBA-15 can be tuned 

between 5 nm and 15 nm by the conditions of synthesis, this result seems quite 

reasonable.  Furthermore, the pore size distribution is relatively narrow and consistent 

across a small range of temperatures.  As Figure 23 suggests, however, the data 

reflects a trend in the calculated pore radius with respect to temperature greater than 

the error.   

 For the Dubinin-Astakhov pore size distribution of ethane on SBA (Figure 24), 

the calculated pore radius was approximately 4.45 nm.  This is within the range of 

pore radius values expected for SBA-15.  Furthermore, this set of data produced a 

very narrow peak with a variation in pore radius only visible at the small scale used in 

Figure 24.  At larger scales, the distinction among the different temperatures 

disappeared, and the different data sets were difficult to discern.  As Figure 25 

demonstrates, the pore size did not show a marked relationship with temperature over 

the 30 K temperature range studied. 
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FIGURE 22: Plot of dW/dr versus Equivalent Pore Radius for Methane 

 

 

FIGURE 23: Plot of Equivalent Pore Radius versus Temperature for Methane 
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FIGURE 24: Plor of dW/dr versus Equivalent Pore Radius for Ethane 

 

 

FIGURE 24: Plot of Equivalent Pore Radius versus Temperature for Ethane 

 



40 

 

4.6. Kelvin Equation Pore Size Distribution 

Using Equations [9,23-24], a pore size distribution based on the Kelvin equation 

was created.  Figure 25 is the Kelvin equation pore size distribution for methane, 

which reflects the same peaks in the data found in previous plots involving the two-

dimensional compressibility.  The range of pore radius values, 2.5 nm to 

approximately 7.0 nm is within that expected for SBA-15.  This data suggests the 

temperature-dependence of pore radius calculated using the Kelvin equation, but 

further analysis of this data was omitted. 

For the adsorption of ethane onto SBA-15, the average pore radius was found to 

be within the range of 3.2 nm to 3.9 nm based on Figure 26.  These values lie within 

the range expected for SBA-15.  Further analysis of the data would be necessary to 

assess the validity of any claims regarding the temperature-dependence of the pore 

radius of SBA-15 calculated using the Kelvin equation.   
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FIGURE 25: Plot of Pore Size Data for Methane on SBA-15 (69.49 K – 89.21 K) 

 

 

FIGURE 26: Plot of Pore Size Data for Ethane on SBA-15 (114.19 K – 148.00 K) 
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4.7. Clausius-Clapeyron 

The Clausius-Clapeyron equation can be used to calculate several thermodynamic 

quantities from a plot of final pressure for the completion of a given layer of adsorbed 

gas versus inverse temperature.  In all of the trials completed, the monolayer was 

completed at a pressure too low for inclusion in the calculations.  Figures 8 and 10 

show two nearly-overlapping peaks in the first derivative plot.  This suggests that the 

completion of the second layer of adsorbed gas molecules occurs in two overlapping 

steps, presumably completion of the second layer in the mesopores and micropores 

separately.   

In Figures 27 and 28, the Clausius-Clapeyron plots for methane and ethane, 

respectively, on SBA-15 are displayed.  The line corresponding to the lowest 

pressures represents the line of best fit for the completion of the second layer of 

adsorbed gas molecules in the micropores.  The second line corresponds to the 

completion of this layer in the micropores while the data at highest values of log(p) 

reflects the bulk.  The calculated values found in Tables 3 and 4 reflect the 

differences in the adsorbate-adsorbent interactions between the methane and ethane 

on SBA-15 as well as the effect of pore size on adsorption for the two gases.  For 

methane, the differences in energy between adsorption in the mesopores and 

micropores were generally quite small, which suggests that methane adsorption 

occurs similarly in both.  However, the thermodynamic differences for ethane 

adsorption in the mesopores and micropores were approximately 100 J/mol for both 

the enthalpy and heat of adsorption.  This suggests that ethane adsorbs differently 

based on pore size. 
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FIGURE 27: Clausius-Clapeyron Plot for Methane on SBA-15 

 

FIGURE 28: Clausius-Clapeyron Plot for Ethane on SBA-15 
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N An Bn ∆Htrs 
(J/mol) 

∆Strs 
(J/mol) 

∆Qtrs 
(J/mol) 

N=2, Mesopore 434.8 6.522 -3335 -34.89 3615 
N=2, Micropore 432.9 6.525 -3320 -34.93 3600 

N=∞ 33.61 2.325 --- --- 279.4 
TABLE 3: Methane on SBA-15 Thermodynamic Data 

Ethane An Bn ∆Htrs 
(J/mol) 

∆Strs 
(J/mol) 

∆Qtrs 
(J/mol) 

N=2, Mesopore 934.7 7.860 -483.2 -1.169 7771 
N=2, Micropore 924.4 7.817 -398.0 -0.8082 7686 

N=∞ 876.6 7.720 --- --- 7288 
TABLE 4: Ethane on SBA-15 Thermodynamic Data 
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5. Conclusion 

 From a series of adsorption isotherms of methane, ethane, and nitrogen on SBA-15, 

various quantities were calculated in order to characterize the surface of SBA-15 and the 

adsorbate-adsorbent interactions.  Based on the BET plots and subsequent surface area 

calculations, it appears that nitrogen is superior to either methane or ethane for 

determining the surface area.  In order to confirm this assertion, more adsorption 

isotherms over a larger range of temperatures would be necessary.  Using each of these 

samples on the same sample of SBA-15 rather than just samples from the same batch 

would also improve the validity of these results.  The point-B method could have also 

been used as an alternate means of calculating surface area. 

 Based on the plots of two-dimensional compressibility, it is difficult to characterize 

the local maxima in the derivative of the adsorption isotherm as being two distinct 

layering steps or one step completed over a larger range of relative pressures.  The plots 

of FWHM do not support an assertion that a phase transition for methane on SBA occurs 

over the range of 68.82K to 89.21K.  Similarly, the data do not suggest a phase transition 

of ethane on SBA over the temperature range of 114.15K to 148.00K.  In order to make 

any further conclusions regarding this data, a smoother adsorption isotherm would be 

necessary.  This goal could be accomplished by applying a smoothing fit to the 

experimental data or completing isotherms using a smaller step size.  If a larger 

temperature range were used, the phase transitions may become apparent.   

 Using the Dubinin-Astakhov model produced good results for the pore size 

distribution and was much easier than using the Kelvin equation for the systems under 

study.  While the parameters necessary to solve the Kelvin equation were sometimes 
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difficult to locate or required an approximation, those necessary for calculating molar 

polarizability were located quickly.  In both cases, the pore radii determined for SBA-15 

were within the range of expected values.  However, the different pore size values for 

methane and ethane using both Dubinin-Astakhov and Kelvin equations suggest that 

further refinements should be made.  In order to optimize the Dubinin-Astakhov results, 

the Astakhov coefficient, N, could be varied over a larger range than 1.0000 to 3.000.  

Since the Kelvin equation has been found to underestimate pore size by about 25% for 

many mesoporous systems,4 it is unlikely that any further refinements would eliminate 

the uncertainty in this result short of using non-localized density functional theory.  In the 

interest of assessing these values, other methods of determining pore size such as 

adsorption-desorption isotherms, small-angle x-ray scattering, or neutron scattering. 

 Based on the Clausius-Clapeyron plots, the difference in thermodynamics of the 

adsorption of methane and ethane became apparent.  Completing adsorption isotherms 

over larger temperature ranges such that a more significant trend could have been located 

would have been useful.   

 Overall, these sets of data suggest that both Dubinin-Astakhov and Kelvin equations 

return similar results for calculating the surface area of SBA-15.  This effectiveness may 

be due to the presence of micropores for which Dubinin-Astakhov theory was developed 

as well as mesopores for which the Kelvin equation was developed.  Although Dubinin-

Astakhov theory has traditionally been used to assess the pore size of microporous carbon 

surfaces, the results suggest the applicability of its extension to a primarily mesoporous 

silica material. 
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