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Foreword 

The field of systems programming primarily grew out of the efforts of 
many programmers and managers whose creative energy went into pro
ducing practical, utilitarian systems programs needed by the rapidly grow
ing computer industry. Programming was practiced as an art where each 
programmer invented his own solutions to problems with little guidance 
beyond that provided by his immediate associates. In 1968, the late 
Ascher Opler, then at IBM, recognized that it was necessary to bring 
programming knowledge together in a form that would be accessible to all 
systems programmers. Surveying the state of the art, he decided that 
enough useful material existed to justify a significant publication effort. 
On his recommendation, IBM decided to sponsor The Systems Pro
gramming Series as a long term project to collect, organize, and publish 
principles and techniques that would have lasting value throughout the 
industry. 

The Series consists of an open-ended collection of text-reference 
books. The contents of each book represent the individual author's view 
of the subject area and do not necessarily reflect the views of the IBM 
Corporation. Each is organized for course use but is detailed enough for 
reference. Further, the Series is organized in three levels: broad introduc
tory material in the foundation volumes, more specialized material in the 
software volumes, and very specialized theory in the computer science 
volumes. As such, the Series meets the needs of the novice, the experi
enced programmer, and the computer scientist. 

The Editorial Board 

v 





Preface 

THE MATHEMATICAL CHARACTER OF SOFTWARE 

The objective of this book is to show practicing programming profes

sionals how to be more powerful, how to design more reliable and effi

cient software by the use of systematic methods of program analysis and 

synthesis. The central theme of these IVethods is the mathematical cor
rectness of programs. There are two important by-products of this theme; 

namely, 1) the discipline of mathematical correctness provides a check 

and balance for the free and creative inventions that are so necessary in 

software design, and 2) the ability to create logically correct designs can 
be parlayed into actual programs that require little or no debugging. Since 

debugging is the most error prone and expensive activity in software 

development, its sharp reduction leads to more reliability and productiv

ity simultaneously. The additional intellectual control of the design proc

ess allows more concentration on questions of software efficiency, and 

more capability for tuning program designs with execution experience. 

Software began as an afterthought to hardware, and as long as hard

ware was small and simple, software could be handled informally by 

scientifically trained people as a by-product of the use intended for the 

hardware. As hardware grew in size and complexity, richer software 

possibilities emerged and software specialists appeared, to produce in

ventions such as assemblers, compilers, operating systems, and data 

management systems. Although there was an early recognition of math

ematical ideas in computing, for example, in mathematical logic, linguis

tics, and automata theory, the approach of most software specialists was 

vii 
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pragmatic rather than mathematical. Thus, although it may seem sur
prising, the rediscovery of software as a form of mathematics in a deep 
and literal sense is just beginning to penetrate university research and 
teaching, as well as industry and government practices. The forcing 
factor in this rediscovery has been the growth of software complexity, 
and the inability of informal software practices and management to cope 
with the complexity of today's challenges in software. 

Of course, software is a special form of mathematics, with totally 
new demands in the sheer volume of logical precision required in its 
application. A single software project may occupy hundreds, even thou
sands, of people over several years, so that unique requirements exist 
for documentation, communication, and management of the develop
ment. These unique requirements lead to almost all of the jargon in 
software and, in fact, this jargon tends to obscure the mathematical 
character of software, as people get caught up in implementation and 
management details. But not understanding this mathematical character 
leads to an overly complex, ad hoc view of software based on historical 
and accidental ideas, which are often reinvented in ignorance and haste. 

The work of E. W. Dijkstra and C. A. R. Hoare has been a major 
force in this rediscovery of software as mathematics. t Dijkstra has given 
an argument that sums up the case we want to make here::j: 

As soon as programming emerges as a battle against unmastered 
complexity, it is quite natural that one turns to that mental discipline 
whose main purpose has been for centuries to apply effective struc
turing to otherwise unmastered complexity. That mental dis.cipline 
is more or less familiar to all of us, it is called Mathematics. If we 
take the existence of the impressive body of Mathematics as the 
experimental evidence for the opinion that for the human mind the 
mathematical method is indeed the most effective way to come to 
grips with complexity, we have no choice any longer: we should 
reshape our field of programming in such a way that, the mathema
tician's methods become equally applicable to our programming 
problems, for there are no other means. 

t See, for example, 
O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming (Lon
don and New York, Academic Press) 1972: and C. A. R. Hoare, "An Axiomatic 
Basis for Computer Programming," Communications of the ACM. vol. 12, no. 
10 (October 1969): pp. 576-583. 

:j: E. W. Dijkstra, "On a Methodology of Design," MC-25 Informatica sympo
sium, MC Tract 37, Mathematisch Centrum, Amsterdam, Holland, 1971: pp. 4.1-
4.10. 
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Fifty years ago swimming champions were products of long hours of 
swimming practice-swimming and swimming and swimming. But these 
days, when the varsity swimming team assembles in the fall, emphasis 
is also placed on running and weight lifting to build stamina and muscles 
more effectively. 

There is a similar lesson to learn in programming. A previous gen
eration of programmers learned by programming and programming and 
programming-sometimes this led to one year of experience repeated ten 
times, rather than ten years of experience. For this reason, we will stress 
mental weight lifting for programming that develops capabilities for pre
cise logical expression. Precise logical expression requires a discipline of 
thought that is invaluable in programming but that is easily bypassed in 
simple programming problems through ignorance or intent. In either case, 
the result is frustration and inability in more complex programming prob
lems because of simple lessons bypassed. 

We all learned in elementary mathematics courses that it wasn't 
enough just to get the right answers if we couldn't show how we got 
them. There was good reason: Though we might guess the answers on 
simple problems, we won't be able to do so on complex ones. But a 
systematic process for getting answers to simple problems will scale up 
to the complex ones. Structured programming provides a systematic 
process for creating correct programs, but the steps require mental pre
cision rather than clever guesses. There is still room and reason for 
insight and ingenuity, but they should be addressed to the strategy of 
programming and not to its mechanics. 

ABOUT THIS BOOK 
This book is organized into seven chapters. Chapters 1 through 3 deal 
with context-setting, and concepts and notation for precise communica
tion in the software development process. Chapter 4 defines key mathe
matical properties of programs, which are elaborated and applied to 
program reading, program verification, and program writing in Chapters 
5, 6, and 7, respectively. 

Chapter 1 introduces the idea of programs as mathematical objects 
whose correctness is subject to rules of logic and reason. A central thesis 
is that, by applying tJ:te principles of structured programming and its 
mathematics, programmers can expect to consistently write error-free 
programs. The chapter concludes with a discussion of the need for con
ceptual integrity and rigor in program design. Chapter 2 summarizes 
principles of logical expression, both in writing good English and in the 
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use of mathematical logic, sets, functions, and grammars. Effective log
ical expression is essential for precise communication in software devel
opment. A process design language (PDL) is introduced in Chapter 3 as 
a means for precise expression of program designs. PDL is composed of 
a prescribed outer syntax of control, data, and system structures with 
important mathematical properties, and a flexible inner syntax of opera
tions and tests. 

Chapter 4 introduces a particular understanding of program designs 
in PDL as expressions in an algebra of functions. Such an approach 
permits mathematical rigor and precision in the design and development 
of software systems of any size. In the Structure Theorem, a small set 
of PDL control structures is shown to be sufficient to represent the logic 
of any arbitrarily complex program, and the concept of a structured 
program is defined. The proof of the Structure Theorem prescribes a 
methodology for converting any arbitrary program into a structured pro
gram. 

We believe that the quality and clarity of one's own writing, whether 
for programs or prose, benefits from critical analysis of the works of 
others, and so in this book we introduce principles of program reading 
before program writing. In Chapter 5, function concepts are used to 
develop systematic reading and documentation techniques for structured 
programs, which are applied in a case study to the analysis of a published 
program. 

Chapter 6 develops a function-theoretic basis for the correctness of 
structured programs. Correctness verification of loop-free programs is 
carried out by case analysis and substitution, and the Iteration-Recursion 
Lemma is introduced to reduce the verification of looping programs to 
the verification of loop-free programs. The Correctness Theorem sum
marizes verification requirements for the structures of PDL, and both 
formal and informal proof techniques are shown. The Invariant Status 
Theorem gives a systematic means for deriving loop invariants, and an 
alternate proof technique based on invariants is descfibed. Finally, the
oretical techniques for the derivation of structured programs are defined, 
for insight into the program design process. 

Chapter 7 describes function-based techniques for designing struc
tured programs. A central theme is the need to keep complexity intellec
tually manageable in program design. The processes of stepwise refine
ment and stepwise reorganization are illustrated as means to limit 
complexity, by localizing design decisions and correctness arguments. 
The chapter concludes with case studies of the critical differences be
tween program detailing and program design, and between heuristic and 
rigorous design methods. 
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Writing this book has been an adventure of some duration, during which 
time we have come to entirely new understandings about both the subject 
matter and effective means for teaching it. We have not exhausted either 
of these topics, so what is here is a summing up for now. But we do 
have the conviction that the subject matter is deep; we have observed 
that it gives people new power to deal with complexity in software design. 
This new power is crucial because, with the advent of structured pro
gramming, the standards of achievement have changed radically, just as 
the standards for doing engineering changed with the introduction of 
calculus. 

This book is dedicated first to the new programmer beginning a 
professional career in software engineering, who already knows how to 
program computers and presumably has been well taught in structured 
programming from the beginning. But a beginning programmer needs a 
deeper foundation to cope with pressures that lie ahead-pressures from 
the complexities of ill-defined problems and poorly conceived software 
development tools, and most of all, pressures from large-scale, difficult 
deadline projects. All of these pressures will cry out for shortcuts and 
compromises. But many of these siren calls are pitfalls that lead to more 
difficulties and frustrations than can be imagined. Without strong inner 
discipline, based on a deep understanding of how to deal with massive 
logical designs and their complexities, the best of intentions and tech
niques are soon swamped. So take heed. This boo� begins with elemen
tary notions, but just knowing about them is not enough; it is necessary 
to know them deeply and to understand their relation to the practice of 
large-scale logical design. 

This book is also dedicated to the professional development of those 
more-experienced programmers who have already made or are about to 
make the transition to structured programming. The motivation for going 
to structured programming is easy to see with a healthy firsthand appre
ciation for the complexities and frustrations of sizable programming proj
ects. A new look at the very foundations of programming discipline can 
help experienced programmers to recognize opportunities for simplifi
cation and rigor in such large and complex projects, 

Finally, this book is dedicated to programming managers. The man
agement of programming projects is a difficult and rewarding job. But the 
lack of sound technical direction is as disastrous as the lack of good 
organization or personnel motivation in programming management. This 
book can help with the technical part of the management problem. We 
believe it is vital that management be sensitive about the need to simplify 
requirements and the need for adequate time to develop conceptually 



xii Preface 

sound designs. We also believe it is vital that management be well in
formed about technical problems and that managers be at ease with the 
language of the problem-solvers. Programmers should know more than 
this book covers in programming, and managers should know more than 
this book covers in strategies for system development. What this book 
does promote is a common methodology for precise communication be
tween programmers and managers. For in the final analysis, there is no 
such thing as technical or management communication, oTlly human com
munication. 
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1 
Precision 

Programming 

1 .1 PROG RAM M I N G  I N  T H E  S M ALL 

1 .1 .1 H ow to Write Co rrect Prog rams and Know It 

There is an old myth about programming today, and there is a new reality. 
The old myth is that programming must be an error prone, cut-and-try 
process of frustration and anxiety. The new reality is that you can learn to 
consistently design and write programs that are correct from the beginning 
and that prove to be error free in their testing and subsequent use. 
By practicing principles of structured programming and its mathema

tics, you should be able to write correct programs and convince yourself and 
others that they are correct by logic and reason, rather than by trial and 
error. Your programs should ordinarily execute properly the first time you 
try them, and from then on. If you are a professional programmer, errors in 
program logic should be extremely rare, because you can prevent them from 
entering your programs by positive action on your part. Programs do not 
acquire bugs as people do germs-just by being around other buggy pro
grams. They acquire bugs only from their authors. 
There is a simple reason why you should commit yourself to writing 

programs that are free of errors from the very start. It is that you will never 
be able to establish that a program has no errors in it by testing. Since there 
is no way to be certain that you have found the last error, your real oppor
tunity to gain confidence in a program is to never find the first error. The 
ultimate faith you can have in one of your programs is in the thought 
process that created it. With every error you find in testing and use, that faith 
is undermined. Even if you have found the last error left in your program, 
you cannot be certain it is the last one. 

1 



2 Preci sion Prog ra m m i ng 

Now the new reality is that ordinary programmers, with ordinary care, 
can learn to write programs which are error free from their inception. Just 
knowing that this is possible is half the battle. Learning how to write such 
programs is the other half. And gaining experience in writing correct pro
grams, small ones at first, then larger ones, provides a new psychological 
basis for sustained concentration in programming that is difficult to appre
ciate without direct personal experience. 

It will be difficult (but not impossible) to achieve no first error in a 
thousand-line program. But, with theory and discipline, it will not be 
difficult to achieve no first error in a fifty-line program nine times in ten. The 
methods of structured programming will permit you to write that thousand
line program in twenty steps of fifty lines each, not as separate subprograms, 
but as a continuously expanding and executing partial program. If eighteen 
of those twenty steps have no first error, and the other two are readily 
corrected, you can have very high confidence in the resulting thousand-line 
program. 

The basis for this new precision in programming is neither human infal
libility, nor being more careful, nor trying harder. The basis is understanding 
programs as mathematical objects that are subject to logic and reason, and 
rules for orderly combination (whether a program operates in numbers, text, 
or whatever). People still make mistakes doing mathematical reasoning, 
because people are fallible. But they make fewer mistakes, and they can 
check each other's work, to let even fewer mistakes through. The result is 
enough added precision in reasoning and communication to change pro
gramming from a cut-and-try ad hoc process to an orderly technical process. 

1.1.2 What Is a Correct Prog ram? 

A correct program defines a procedure for a stated processor to satisfy a 
stated specification. Programs may require changes or corrections from 
three kinds of difficulties : 

1. Specification changes 

2. Programming errors 

3. Processor discrepancies 

By processor we mean any complex of hardware and software that con
verts programs into their executions, through compiling, assembling, and so 
forth, as necessary. 

If you don't know what a program is supposed to do or don't know how 
the processor is supposed to work, then you can't write a correct program. 
So we presume a known specification and a known processor throughout. 
Even so, a practicing programmer must be prepared to deal with incomplete 
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and changing specifications and with processors that do not behave the way 
their software/hardware manuals say. For these external difficulties we have 
no simple remedy. But a radical reduction in programming errors can help 

isolate difficulties in the other areas. Nevertheless, the usual experience in 

programming often fails to separate these three sources of difficulty, so that 
programming errors-lumped in with everything else-seem much more 
inevitable than they really are. And the logical precision you develop as a 
professional programmer serves well to improve your skills in recognizing 
the need for, and in developing, good specifications, and in being able to 
read, understand, and anticipate difficulties in processor descriptions. 

Writing correct programs does not mean that programs can be written 
once and for all. It means that they can be written to do exactly what is 
intended of them. But as intentions change, program changes are required as 
well. The same opportunities and principles apply to the program changes ; if 
programs are well designed and explained, you should be able to modify 
them correctly as well as to write them correctly to begin with. 

1.1.3 Proofs of Prog ra m  Co rrectness 

It is possible for professional programmers, with sufficient care and concen
tration, to consistently write correct programs by applying the mathematical 
principles of structured programming. Those same principles also permit 
mathematical proofs of program correctness to be carried out to any desired 
degree of rigor, both during and after program construction. 

A mathematical proof is an agenda for a repeatable experiment, just as 
an experiment in a physics or chemistry laboratory. But the main subject in 
each experiment is another person instead of physical objects or material. 
The intended result of the experimenter is a sUbjective conviction on the part 
of the other person that a given logical hypothesis leads to a given logical 
conclusion. The experiment may be carried out in a conversation, or collec
tively in a lecture, or in writing. A successful experiment ends in a sUbjective 
conviction by a listener or reader that the hypothesis implies the conclusion. 
The conviction may be incorrect either in accepting a logical falsity or in 
rejecting a logical verity. The conviction may be correct, but based on faulty 
reasoning. As noted, any human fal libility may be present because reasoning 
is a human activity ; that is, an agreement that a proof is correct and the 
actual correctness of the proof are two quite independent things. 

The conversation deals with a proof that the hypothesis leads to the 
conclusion. The proof may consist of a single claim; "It is obvious," or a 
sequence of such claims for a succession of intermediate conclusions, each of 
which may serve as a hypothesis for a later conclusion. But in the final 
analysis no other claim less than "It is obvious" is possible, because if one 



4 Precision Programming 

starts to explain why "It is obvious," the explanation must lead finally to a 
new sub-sequence of such claims, "It is obvious," and so on. At each claim, 
the subject agrees or disagrees; in the first case the experiment continues, 
and in the second case the experiment terminates. 

Mathematical notation plays no role in the proof, except in its effect on 
the person who is the experimental subject. What mathematical notation 
does is facilitate human communication and memory. It permits a succes
sion of claims to be stated and agreed to rapidly, so that more ground can be 
covered for the same human effort. Mathematics also permits a person, 
using pencil and paper, to extend his memory for details (e.g., doing long 
division or simplifying an algebraic expression). It even permits humans to 
agree on rules for agreeing about proof claims (as in mathematical logic). In 
fact, the computer is itself another way of extending human effort in proof 
activities, with agreed rules of proof to be used in automatic theorem
proving programs. 

What is a convincing proof? Clearly that depends on the person who is 
the experimental subject. There are many alternative conversations possible 
about the same hypothesis and conclusion. If there are too few steps, the leap 
in intuition may be too large. But if there are too many steps, human 
exhaustion or lack of interest may set in. So there is a balance needed. But it 
is a typically human problem whose resolution requires human experience 
and judgment. 

Why bother with mathematics at all, if it only leads to subjective convic
tions? Because that is the only kind of reasoned conviction possible, and 
because the principal experimental subject who examines your program 
proofs is yourself! Mathematics provides language and procedure for your 
own peace of mind. 

1.1.4 An Intuitive Approach to Program Correctness 

In a small example below, we prove the correctness of a program in 
flowchart form, using direct analysis and deduction. We call the approach 
intuitive because it deals directly with program operations and does not 
exploit the algebraic properties of structured programs. In Chapter 6, we 
develop a function-theoretic approach to program correctness that utilizes 
these algebraic properties, but our objective here is simply to show that a 
proof of program correctness is possible in concrete terms. 

Consider a program that is required to find the integer part of the 
square root, say y, of a given integer, say x, as diagrammed in Fig. 1.1. (Note 
that the proof method is by no means restricted to numerical problems.) First, 
the specification of the program needs to be stated precisely, as shown by 
the logical conditions attached to its entry and exit lines. The entry condi-
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� • • •  [x �O] 

Figure 1.1 

� 
t . . . [x unchanged and y2 � X < (y + 1)2] 

tion requires that x be zero or positive, so this particular program will not 
have to cope with negative values of x. The exit condition requires that y be 
the greatest integer equal to or less than the square root of x, and also that x 

be unchanged. A more general program may be required to handle any value 
for x, but its exit condition would merely be more complicated, and make 
the illustration longer. 

A simple program that purports to satisfy this specification by succes
sive incrementing is given in Fig. 1.2 (read y: = y + 1 as "y is assigned the 
value y + 1 "). Some trial and error may have gone into its invention, but an 
examination of initial x values 0, 1, 2, 4, 5, 9, . . . seems to indicate that the 
program is correct. However, examining (and testing) such cases usually 
cannot be done exhaustively, and a more general approach is needed. 

Figure 1.2 

Logical entry/exit conditions can now be derived for every line in the 
flowchart of Fig. 1.2. After some logical invention (how is discussed later, in 
Chapter 6) the annotated flowchart shown in Fig. 1.3 results, where the 
conditions have been given short names for ease of discussion. It can now be 
proved that this whole set of conditions will necessarily be satisfied if only 
the single condition in:[x 2: 0] (read "in, defined as x 2: 0") is satisfied. 
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. . . in : [x � 0) 

sqrt 

yes: [(y + 1)2 � x) 

. . .  cant: [y2 � x) 

. • .  out: [x unchanged and y2 � X < (y + 1)2) 

Figure 1.3 

Therefore, in particular, the program will correctly compute values for x and 
y that satisfy the out condition, the specification of the program. The proof 
will consist of a subproof for each condition except in : [x � 0], which is 
assumed. The sequence of subproofs is immaterial. It is sufficient to ensure 
that every condition is ultimately proved, assuming the truth of the im
mediately prior conditions in the flowchart. Thus, we state each condition 
followed by a proof argument : 

1. init:[x � 0 and y = 0] 

The entry condition in: [x � 0] gives the first part, and y has just been 
set to zero, giving the second part. Therefore, init: [x � 0 and y = 0] is 
satisfied. 

2. loop: [y2 � x] 

The condition loop is entered either from init: [x � 0 and y = 0] in 
which case loop is satisfied directly, or from the condition cont:[y2 � x], 
which is identical to loop. Therefore, loop:[y2 � x] is satisfied in either 
case. 

3. cont: [y2 � x] 

The condition cont is the exit condition when y is set to y + 1 with entry 
condition yes:[(y + 1)2 � x], so y2 � x (after y is set to y + 1 ), and 
cont: [y2 � x] is satisfied. 

4. yes:[(y + 1)2 � x] 

The test (y + 1 )2 � x has just been passed successfully. 

5. out : [x unchanged and y2 � X < (y + 1 )2] 
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First, an examination of the entire program shows that x is reset 
nowhere, and must therefore be unchanged. Second, the test 
(y + 1)2 � x has just failed, so therefore (y + 1)2 > x. Finally, the entry 
condition loop: [y2 � x] for the test must still hold. The last two condi
tions can be combined into y2 � X < (y + 1 )2. Therefore, condition out 
is satisfied. 

The foregoing is a proof of correctness for the program, given its 
specification. It shows that the program will compute the correct output 
whenever it terminates. That the program does terminate can be seen by 
noting that y is incremented by 1 each time through the loop, and the loop 
test must eventually fail. 
In this example, a key logical invention is condition 2, loop : [y2 � x], 

which holds every time the loop is entered (reentered ). It is called an "invar
iant condition" and serves as a keystone-all of the other conditions can be 
derived by direct rules of reasoning from in: [x � 0] and loop : [y2 � x] (once 
loop:[y2 � x] has been invented). For simple programs the invention of 
invariant conditions can often be done by inspection of operations. For 
more complex programs a systematic approach is required, as described in 
Chapter 6. But Chapter 6 goes beyond these ideas, to develop a theory of 
program correctness based on hierarchies of mathematical functions, for 
which invariant conditions are simply not required. 

1 .2  PR O G R A M M I N G I N  T H E  LA R G E  

1 .2 .1 Conceptual Integ rity 

The principal lesson of the past 25 years of programming is that software 
development is more difficult than it appeared to be at the outset. Without a 
clean and compelling design, a large software system soon becomes a jumble 
of confusion and frustration. Local details may be easily understood and 
checked, but the system gets beyond intellectual control anyway. 
Fred Brooks, in The M yt hical M an-Month : Essays on Software Engineer

ing, states that "conceptual integrity is the most important consideration in 
system design" [po 42] and backs it up with a dramatic recollection of his 
experience in managing the development of OSj360, as follows [pp. 47-48]: 
It is a very humbling experience to make a multimillion-dollar mistake, 
but it is also very memorable. I vividly recall the night we decided how 
to organize the actual writing of external specifications for OSj360. The 
manager of architecture, the manager of control program implementa
tion, and I were threshing out the plan, schedule, and division of 
responsibilities. 
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The architecture manager had 10 good men. He asserted that they 
could write the specifications and do it right. It would take ten months, 
three more than the schedule allowed. 
The control program manager had 150 good men. He asserted that 

they could prepare the specifications, with the architecture team coordi
nating; it would be well-done and practical, and he could do it on 
schedule. Furthermore, if the architecture team did it, his 150 men 
would sit twiddling their thumbs for ten months. 
To this the architecture manager responded that if I gave the con

trol program team the responsibility, the result would not in fact be on 
time, but would also be three months late, and of much lower quality. I 
did, and it was. He was right on both counts. Moreover, the lack of 
conceptual integrity made the system far more costly to build and 
change, and I would estimate that it added a year to debugging time. t 

1 .2.2 The Di fference Between H eu ristics a n d  Ri go r 

The principal basis for maintaining conceptual integrity in software develop
ment is rigorous design. It was imagined in the early days of software 
development that heuristic designt methods were sufficient. Observation 
and experience seemed to be reliable guides to design, and indeed, the pos
sibility of rigorous design l1?-ethods was hardly considered. After all, it 
seemed a simple but tedious matter for clever people to think up all the data 
processing pieces that had to be done and make sure that nothing was left 
out. But the trouble is that such a heuristic design is usually difficult, and 
often virtually impossible, to prove correct. As Brooks points out, we now 
know better. 
In order to visualize the devastation of heuristic design, imagine an 

important, much used, program that almost always works-the trouble is in 
"almost always." Such a program must be patched as errors are reported, 
and the patches patched, and so on, until its logic scarcely resembles the 
original article. In fact, the program will become highly idiosyncratic, with 
peculiarities that depend on the very sequence in which errors were 
found-a different sequence would have led to a different program. This 
error history may be prevented if designers are clever enough to foresee 
all errors of a heuristic design before implementing and releasing the 

t Frederick P. Brooks, The Mythical Man-Month: Essays on Software Engineering 
(Reading, Mass. : Addison-Wesley, 1975). 
t Note that heuristic design refers to design by trial and error, not to rigorous design 
of heuristic programs, as found, for example, in automatic translation of natural 
language. 
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program. But the design will still be idiosyncratic, based on the imagined 
error history. 
In contrast, a rigorous design can be shown to be error free by its very 

form, in self-evident arguments and proofs. A rigorous design may include the 
form of a state machine that defines a closed set of system transitions, or a 
recursive function that defines a search space, or perhaps a formal grammar 
that defines all possible inputs and outputs for a program. But whatever the 
logical form, a rigorous design is one that can be shown to be correct, before 
getting into its implementation. A rigorous design will take more creativity 
and thought than a heuristic one, but once created a rigorous design is more 
stable. A rigorous design should survive its implementation, not be swamped 
by it, and provide a framework for the intellectual control of changes to the 
implementation as requirements change. 
The difference between heuristics and rigor in design can be illustrated 

in constructing a tic-tac-toe playing program. Anyone with a pad and pencil 
can readily figure out what to do next in any situation. But listing all such 
possibilities may be impractical. So the next step might be a heuristic 
approach, based on introspection. The beginning of such a process 
(oversimplified for illustration) might be "play in priority order, if possible, 
center, any corner, any side." This will account for some reasonable moves 
but will fail in many situations, and an analysis of these situations will 
suggest additional criteria of play. But with each addition, a less obvious 
situation may still lead to a failure. After many such additions, the program 
may indeed be capable of perfect tic-tac-toe. But it will be difficult to prove, 
except for an exhaustive analysis, which itself will be hard to prove complete. 
As noted before, such a heuristically developed design, even though possibly 
correct, will be highly idiosyncratic based on the history of imagined (or 
real) failures encountered in play. 
In Chapter 7, we contrast heuristic and rigorous designs for a change

making program and a tic-tac-toe program to illustrate this point in depth. 

1 . 2 .3 Structu red Prog rams a n d  Good Design 

Structured programs are written for people to read and understand. At first, 
they may seem a little more difficult to write than unstructured programs. 
But a typical program uses up much more human effort being read than 
being written (including being read by its author), so there is great value 
indeed in producing readable structured programs. Readable programs are 
beneficiaries of good design and good style-of good precise logical 
expression. 
Good design means finding a good solution to a problem that is often 
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ill-defined. Therefore, there are usually two steps : (1) define a right problem, 
and (2) invent a good solution. A few problems (very few) are so well known 

and universal that a simple phrase will define them; for example, sort a 

linear table, find the sum of a list of numbers. Most problems need to be 

formulated more precisely, with respect to both what is to be done and what 

logical resources are available. For example, finding a sum of a list of num

bers is one thing if an adder is available, another thing if an inner product 
operation is available, and still another if only character operations are 
available. 

A structured program does not guarantee a good design. Structured 
programming introduces the possibility of good design but not the necessity. 
A good design provides a solution that is no more complex than the problem 
it solves. A good design is based on deep simplicities, not on simple
mindedness. Usually, a good design is the last thing you think of, not the first 
thing. A familiar example of an overcomplicated solution is the earth
centered description of the solar system. Two thousand years ago humans 
attempted to explain the motion of the planets with epicycles. It took 
another thousand years and much personal pain for people to put the sun at 
the center and make the explanation much simpler thereby. The moral is 
that if it took a thousand years for mankind's best and brightest to solve this 
problem, one shouldn't feel badly about taking an extra hour to think harder 
about a program design. 

Good program design-finding deep simplicities in a complex logical 
task-leads to work reduction. It can reduce a 500-line program that makes 
sense line-by-line to 100 lines that make sense as a whole. Good design can 
reduce a 50,OOO-line program impossible to code correctly to a 20,OOO-line 
program that runs error free. 

1.2.4 The Difference Between Detailing and Design 

A computer program doesn't need its design-all it needs is its code. No 
matter what lofty ideas went into the program, if the code is right, the 
computer runs right. Since these facts are indisputable, it is small wonder 
that program designs are usually regarded as stepping stones to executing 
code-and throwaway stepping stones at that. There is only one difficulty 
with this argument; although the logic is absolutely correct, no one is smart 
enough to build large and complex programs that way without untold 
trouble and frustration. 

In fact, even though the term design is used in programming, the term 
detailing is often more accurate. Detailing is writing a lot of details about 
what programs have to do, what data formats are, how program parts 
interact, and so on. Detailing is characterized by a preoccupation with partic-
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ulars, tQ the exclusion of overall program structure and design. In contrast, 
designing is a step-by-step expansion of a set of well-defined requirements 
specifications into high-level, then successively lower-level, programs and 
subspecifications, until the level of code is reached. A program design has a 
hierarchical structure ; it can be viewed both vertically, from requirements 
down to code, and horizontally, across the design at each level of detail. 

Designing produces details, but detailing does not produce design. 

One symptom of detailing, as opposed to design, is inflexibility. When 

details reveal that a project schedule and budget are jeopardized, how easy is 
it to subset requirements and assign new priorities to meet the challenge? 
When details reveal that performance is jeopardized, how easily is reanalysis 
undertaken? Are programming projects managed by working out moun
tains of details and just seeing how things come out? Or is systematic 
redesign used to make development means and ends meet? 

Another symptom of detailing, as opposed to design, is the system
integration crunch-the frustration of program parts not going together as 
planned, along with the "last error" problem (a new "last error" every test 
run). Program parts written from detailings are based on faith in human 
infallibility, a notably risky proposition. The fixes undertaken in the integra
tion crunch bring new details and new idiosyncrasies not imagined in the 
detailing. The more fixes, the more idiosyncratic and accidental the final 
result becomes. 

The final symptom of detailing is the maintenance of an idiosyncratic 
system. The merit of the program is that it works most of the time. But 
discovering why it doesn't work is a major detective story. In fact, one way 
to solve difficult corrective maintenance is to stop using the unreliable 
function-the ultimate solution is to stop using the program. 

In Chapter 7, we illustrate the difference between detailing and design in 
the construction of a program to do long division. 

1.2.5 Design Val i dati on by Top- Down Development 

The necessity of top-down development in large software systems is born out 
of bitter experience with top-down design followed by bottom-up develop
ment. In bottom-up development, in which low-level code is written early 
and system integration occurs late, poor design is often hidden until late in 
integration, after much functional code has been written and tested only to 
be discarded. Conversely, in top-down development, the control programs 
that integrate functional code are written and tested first, and the functional 
code is added progressively. In fact, the development proceeds on an in
cremental basis, level by level, with testing and integration accomplished 
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during the programming process rather than afterwards. At each level, 
required common services and data are defined and developed within the 
process as well. 

In a software system, top-down development typically starts with a 
logical design for the harmonious cooperation of several programs through 
access to several shared data sets. For example, a financial information 
system may include a file maintenance program, several data entry programs 
(which produce transaction files for the file maintenance program), several 
data retrieval/report programs that access the files, system usage and billing 
programs, and so forth. Although each such program can be developed 
top-down independently, top-down system testing requires cooperation be
tween them, for example, data entry programs providing input for the file 
maintenance program, which in turn creates files for data retrieval 
programs. 

In retrospect, it is easy to see that the advantage of top-down develop
ment over bottom-up development is the advantage of a closed-loop feed
back process over an open-loop process. In a bottom-up development, the 
programs are not tested as part of the final system until the end of develop
ment; in top-down development, they are tested in their system environment 
right away. If there are design or programming errors, top-down develop
ment discovers them early, when freshly programmed and when the original 
programmers are still on hand. But bottom-up development often leaves 
errors undiscovered until integration time, when the original programmers 
have often departed. 

Top-down development is more difficult to design for than bottom-up 
development, but the extra effort in design is made up in integration and 
testing. The problem of design in top-down development is not only how the 
final system will look, but also how the system under development will look 
at every stage of its construction. Building a bridge illustrates the problem. 
In designing a bridge on paper, a spanning girder can be drawn first, to hang 
unattached until other members are drawn later to support it. But to ac
tually construct that same bridge, a construction plan is needed that allows 
girders to be placed and pinned one by one in support of one another until 
the bridge is completed. 

Building a software system bottom-up is like building a paper bridge. 
No construction plan is needed, only the final design, and everyone hopes it 
all goes together as planned. If people were infallible, especially designers, no 
construction plans would be needed. 

Building a software system top-down is like building a real bridge. 
Finding the proper tops is a significant technical task. A proper top is one 
that executes as a partial system early in the development, and which pro
vides the basis for adding intermediate and final programs in a continuous 
code/integrate/test iteration process. 

1 . 2 
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1 . 2 .6 The Basis for Software Reliability Is 

Design, Not Testing 

1 3  

It is well known that a software system cannot be made reliable by testing. If 

programs are well designed in both data structure and control structure, 

there is no contest between a programmer and a computer in finding errors ; 

the programmer will win hands down. So the first defenses against errors are 

well-designed programs and preventative proofing by authors themselves. 
But effective design can do far more than make errors easy to discover. 

Design can reduce the size of a system, reduce its interconnections, reduce the 
complexity of its program specifications. In short, good design makes cor
rect systems possible out of correct programs. Since in structured program
ming every level of program development is conducted in identical terms (in 
contrast to traditional descriptions of words at the top, code at the bottom), 
high-level design can be scrutinized and critiqued for correctness as well as 
low-level design. In fact, it is extremely cost effective to validate high-level 
design before lower-level expansions proceed, rather than after. An impor
tant by-product of a design and validation process is traceability of require
ments in every level of the design. It is this traceability that gives the 
flexibility to solve budget, schedule, or performance problems at the right 
level in the design, without having to start all over with a new detailing 
process. 

A designer has the opportunity, using the top-down design and develop
ment discipline of structured programming, to keep the expanding design 
under good intellectual control, to discover the deepest simplicities possible 
at every level, step by step, before becoming swamped in a sea of details that 
make the development problem one of memorizing accidentals and oddities 
rather than one of clean logical design. 





2 
Elements of 

Logical 
Expression 

2.1 OV E RVI EW 

Programming is a specialized form of creative design in writing. At first 
glance, it seems that programs need only be read and followed by machines 
and that matters of taste and style are irrelevant. But quite the opposite is 
true. Programs must be read and understood by people, as part of the 
creation process and so that they can be trusted or modified to meet chang
ing needs. Ability in both English composition and mathematical descrip
tion is a critical requirement for good programming. 

In this chapter we review some elements of English, mathematics, and 
other means of logical expression. We first discuss good English because 
much of your best thinking in programming will need to be expressed for 
people rather than for machines. Principles for writing clear, concise English 
are precisely those principles required for writing clear, concise program 
designs. Next, we review standard concepts and terminology of formal logic, 
sets, relations, and functions. We also remind the reader of recursive func
tions, state machines, list structures, formal grammars, and regular expres
sions. These expressive forms allow precision and rigor in design 
descriptions, and permit a wide range of human creativity and imagination 
to be applied in complex logical situations. 

2.2 G O O D E N G LI S H  

2.2.1 Structure a nd Content 

It has been observed time and again that there is a high correlation between 
the ability for clean written expression and the ability to program com
puters. A Japanese programming manager put it this way at a computing 
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conference (in Japan), "The important language for the programmer to 
know well is not JCL or PLjI, it is Japanese !" 

This empirical observation is not hard to explain. Good English re
quires organization and structure to separate forests from trees. It requires � .. 

logical organization as well as the right words. Effective technical communi
cation is achieved by a combination of structure and content. A jumbled, r, 

rambling compilation of absolutely correct content may be of little value 
because it is simply too difficult to understand or reference. Structure re
duces the amount of human effort required to understand content
structure does not make up for the lack of content, but neither does content 
make up for the lack of structure. 

A technical composition needs to be organized into sections, sections 
into subsections, and so on, for human understanding. Sometimes such a 
hierarchical organization can be supplemented by other devices that show 
more complex relations among sections and their content. For example, it 
may be useful to incorporate a precedence diagram that shows which sec
tions must be read prior to other sections. Occasionally, descriptions of 
mutual dependence may be necessary that state that two or more sections 
need to be understood together and that no simple ordering in their reading 
is possible. For example, an operations manual of a computing system 
usually discusses related subjects, such as data organization and instruction 
format, which are best understood as a group rather than as a sequence of 
separate topics. 

Whatever way a composition is organized, whatever additional rela
tions are described to clarify its structure, the raw materials of structure are 
simply the same raw materials of content itself, namely, words and diagrams. 
But the words and diagrams describing structure are more important to the 
reader and must be chosen with more care by the writer. In their structural 
capacity, well-chosen section headings carry content in themselves-even 
more content per word than the text. For example, headings such as "Intro
duction," "Discussion," and "Analysis," don't take much thinking to invent, 
and don't carry much thought to the reader. But headings such as "The 
Problem of Unreliable Solder Joints" or "Three Factors in Solder Joint 
Failure" say a good deal more to the interested reader. 

In fact, the headings, subheadings, and other means to display organiza
tion to the reader provide the writer an opportunity to index and abstract 
the text. Usually the writer knows the content better than the reader (at least 
at the point in time of the writing), so the usual error is to understructure, 
not overstructure, because "it is all so clear." Good headings and subhead
ings take work to compose; in fact, composing good headings frequently 
forces better organization of content-to put like considerations together 
and to separate distinct cases otherwise jumbled together. 
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A good mental guide is "the rule of five," based on the well-known 

human ability to relate about five objects of thought (plus or minus two) 

into a new object of thought. Management organizations frequently follow 

this pattern ;  for example, usually a department is made up of three to seven 

other departments. Applied to composition structure, the rule of five sug

gests five (plus or minus two) sentences/paragraph, paragraphs/subheading, 

subheadings/heading, and so on. From the top down, these headings can tell 

a story in themselves in the organization of the subject matter. Exceptions 

prove the rule : An important sentence can be a paragraph by itself. A very 
regular set of topics may exceed seven in number because their regularity 
permits human understanding as a pattern ; for example, natural collections 
of objects, such as counties, states, or universities, may serve as SUbtopics on 
a given occasion (even there, a contextual grouping may be better, such as by 
region or size). 

Effective writing is based on good structure-much like a program 
structure-that allows the reader to execute your reasoning, maintain your 
perspective, and be convinced of your conclusions. If your reasoning, 
perspective, and conclusions don't hang together, it will be difficult to write 
well about them. But in this case the problem isn't in the writing after all ! 

2 . 2 .2 The Context of Com mun icati on 

The communication of content in text, headings, diagrams, whatever, is 
always carried out in some context. The primary context is natural language, 
but usually there are more specialized contexts, based on common experi
ence in programming, engineering, accounting, and so forth. These contexts 
are defined by literature and practice; for example, the field of electrical 
engineering describes a certain general context for communication. These 
contextual domains are seldom clearly defined. They are based on human 
activities, organizations, and sometimes on only similarities in background 
and thought. 

A concerted effort to define a contextual domain for discourse occurs in 
mathematical logic, but even there a total definition is not possible. In 
mathematics, physical sciences, and engineering, the contextual domains are 
relatively rigorous, while in the somewhat general areas of social science, 
management science, business practice, and so forth, broader topics involve 
less well-defined contexts. 

Whatever the context of communication, it is vital to understand it 
explicitly-what is the audience of the composition? what can its members 
be expected to know? and what kind of reasoning is meaningful to them? 
Sometimes the audience is a broad one. In that case, is a single composition 
the best approach, or should there be separate ones ? For example, a pro-
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gramming system may require quite separate documents for user's guides, 
program maintenance, and operator's guides. 

Specialized contexts permit more concise compositions and conciseness 
is often critical to communications. But there are ways of being concise in 
broader contexts, too. One way is through carefully chosen structures, which 
permit a reader to select levels of detail by the organization of the composi
tion, possibly with appendices to handle full details. Another is to better 
formulate the subject matter of the composition into subtopics that permit 
more concise expository treatment, one by one, even though some d uplica- ; 
tion occurs overall. 

Effective writing uses its context to good advantage. Complex ideas are 
not easy to express, and crucial assertions often need many qualifications. 
But surrounding an assertion with all of its qualifications often drowns it, 
instead, in a sea of words. Put the assertion up front, in few words ; then add 
the qualifications, in plain sight, but not covering up the assertion. 

2 .2.3 Models of Communication 

The model of mathematical deduction illustrates a definite communication 
strategy. In order to avoid circularity in definitions and reasoning, one 
identifies undefined objects in discourse, and new objects are then defined in 
terms of undefined or previously defined objects. In this way an attempt is 
made to localize the appearance of undefined objects in "axioms" at the 
beginning (and in "rules of inference"). In broader discourses, undefined 
objects may be introduced anywhere. While logically disconcerting, it may 
not be possible to do otherwise in general subjects. 

And yet, good technical writing profits from the model of mathematical 
deduction. The use of the "axiom-theorem-proof" model provides a strong 
logical persuasion arising from the deductive aspects of a composition. The 
difficulty with this model is motivation and understanding in a broader 
setting. The "theorem" is typically an answer to some problem-but is it the 
"right problem," or even worth knowing answers to? The "proof" often 
describes constructive procedures for solving a problem, subject to the prob
lem being worth solving. So the "axiom-theorem-proof" model of math
ematics is an important model of technical communication in areas where 
motivation and perspective have been accomplished in some other way, 
perhaps even earlier in the same composition. 

In inductive reasoning, another strategy is represented that begins with 
various concrete facts and events and associates them into more general 
conclu sions and laws. Program designs are frequently justified in terms of 
concrete restrictions and machine availabilities. Such a program design may 
solve a problem, but often the problem is not stated, being implicit in the 
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mind of the designer. Right then, it is critical to take the time to state the 

problem being solved. In fact, finding the right problem is often more 

difficult than solving it. Thus, a very effective strategy in broad questions is a 

problem definition and solution sequence : What is the problem? What are 

the resources available? What is a good way to solve the problem with the 

resources available? 

2.3 FO R M A L  LO G I C  

2.3 .1 Log ical Propositions 

Formal logic deals with human communication and mutual human beliefs 
about the truth of statements. It does this by providing an axiomatic cal
culus (a mechanical means of calculation based on a set of axioms) for 
deriving new beliefs about various combinations of such statements and 
beliefs about them. Two such systems of formal logic are discussed below, 
the propositional calculus, and (using an enlarged set of axioms ) the predicate 
calculus. 

A statement is called a logical proposition, or proposition for short ; a 
human belief about a proposition is called its truth value, or value for short. 
The mutual beliefs may be the result of a conversation or of a written 
discussion read later by others. The value of a proposition is one of two 
possibilities, namely, true andJalse, for which symbols T, F, or even 1 , 0, are 
often used. More precisely, propositions are regarded as names (aliases) for 
the truth values true,Jalse. For example, "a circle is round" is another name 
for true, just as "2 + 4" and "six" are other names for the number called 6. 
Logical systems are possible with additional truth values, such as unknown, 
undefined, and possibly, but we shall restrict our attention to two-value 
systems. 

2.3 . 2  The Propositi onal Ca lcul us 

There is no simple or universal rule in logic to decide whether a statement in 
natural language is a proposition or not. That decision itself reduces to a 
matter of human belief. But when a collection of statements is admitted as 
propositions, along with truth values for each, the propositional calculus 
provides a fixed set of ways of combining old propositions into new ones, 
and for calculating the truth values of the new propositions from the old 
values. Conversely, the propositional calculus provides ways of breaking 
down complex propositions into combinations of simpler propositions so 
that the truth values of the complex propositions can be calculated system
atically from the truth values of the simpler ones. 
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A combination of proposItIOns is called a logical expression. The 
common types of logical expressions are 

not For any one proposition p, its denial, denoted '" p. 
and For any two propositions p, q, the assertion of both, denoted 

p 1\ q. 

or For any two propositions p, q, the assertion of at least one, 
denoted p v q. 

equals For any two propositions p, q, the assertion that p and q name 
the same logical value, denoted p +-+ q. 

implies For any two propositions p, q, the assertion that if p is true then 
q must be true, denoted p � q. 

The truth values for these expressions, each itself a proposition, depend 
on the truth values of the propositions in the expressions, and are given for 
each possible case as axioms in truth tables. The truth table for these expres
sions, for any propositions p and q, is 

not and or equals implies 
Rule p q - p p l\ q p v q p - q p � q  

1 T T F T T T T 
2 T F F F T F F 
3 F T T F T F T 
4 F F T F F T T 

Such a truth table contains a rule (row) for each possible set of truth 
values of propositions in an expression. The truth table above gives truth 
values that seem sensible in view of the verbalizations of the expressions, but 
a word of warning is in order. It is the truth tables that are definitive in 
describing truth values of expressions and not the apparent sense of the 
ex pressions. t 

Since logical expressions are themselves logical propositions, with truth 
values derived from the truth values of their constituent propositions, they 
can be used in other logical expressions to form compound logical expres
sions. Just as in compound arithmetic expressions, parentheses can be used 
to specify groupings and the order in which subexpressions are to be eval
uated. A compound logical expression of several types of elementary expres
sions, such as those given above, can be evaluated a step at a time by 

t The truth table for implies is not necessarily intuitive for the cases p = F, but 
mathematical experience testifies to the usefulness of this definition which separates 
implication and causality as independent concepts (and does not address causality in 
any way).  
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replacing any innermost parenthesized expression by its truth value, as il
lustrated below. The leftmost inner parenthesized expression is evaluated at 
each step, and the means for reaching each new expression is explained by 
the truth table row invoked : 

(F /\ ( "'"'  T)) v ((F -+ T) v (T +--+ T)) 

(F /\ F ) v ((F -+ T) v (T +--+ T)) not, by Rule 1 

F v ((F -+ T) v (T +--+ T)) and, by Rule 4 

F v ( T  v (T +--+ T)) implies, by Rule 3 

F v ( T v T  ) equals, by Rule 1 

F v T or, by Rule 1 

T or, by Rule 3 

2 .3 .3 The Pred icate Ca lculus 

The propositional calculus deals with the analysis of propositions composed 
of simpler propositions ;  but the simplest of the propositions are viewed as 
undivided wholes. We can, however, view simple propositions as subject
predicate structures, and, in particular, deal with statements whose subject is 
unknown. Thus, instead of the proposition 

A circle is round 

we might consider the predicate 

is round 

Instead of the (false) proposition 

6500 < 5000 

we might consider the predicate 

salary < 5000 

or even (given values for table and minimum) 

(name in table) /\ (salary < minimum) 

where name and salary are terms correspCimding to unspecified data. (That 
is, the expression has no more information content than " ( __ in table) /\ 
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( __ < minimum).") A useful extension to the propositional calculus that 
deals with such statements is the predicate calculus. 

A statement that contains one or more variables (i.e., placeholders that 
name various possibilities), each of which may occur one or more times in 
the statement, is called a predicate (also proposition form, propositional 
function, or open sentence). Predicates are not necessarily propositions, 
because the variable may prevent assignment of a value of true orfalse. Such 
a statement may, however, become a proposition when its variables are 
assigned definite values. For example, 

(name in table) 1\ (salary < minimum) 

is not a proposition, but the assertion 

(Green, Ed in table) 1\ (6500 < 5000) 

is a (false) proposition. 
It is often useful to convert predicates into propositions in more�eneral 

ways, short of assigning definite values to their variables. Let p(x) be a 
predicate that becomes a proposition when x is given a possible value. Then 
we define two quantifiers for such a statement that lead to new propositions : 

there exists (3.x) (Existential quantifier.) The assertion that some pos
sible value of x exists such that 

for all (Vx) 

p(x) = true 

written 3.x p(x), or 3x(p(x)), or (3.x )(p(x)) 

(U niversal quantifier.) The assertion that for all pos
s ible values of x 

p(x) = true 

written Vx p(x), or Vx(p(x)), or (Vx)(p(x )) 

Both 3.x(p(x)) and Vx(p(x)) are propositions since, unlike p(x), their 
evaluation (as true or false) doesn't depend upon the value of x. However 

3.x(p(x, y)) and 3x(p(x)) 1\ q(x) 

are not propositions. The former depends on the value of y; the latter 
depends on the value of x in q(x), since q(x) is not within the scope of the 
quantifier. A variable in the scope of a matching quantifier is said to be 
bound ; otherwise it is said to be free. By binding the free variables of a 
predicate, we can create propositions ; thus, from the examples above, we 
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might obtain 

Vy(3x(p(x, y))) and Vx(3x(p(x)) 1\ q(x)) 

or more simply 

Vy3x p(x, y) and 3x p(x )  1\ 'Ix q(x) 

that are propositions.t 
To illustrate this notation, we state several propositions, the plausibility 

of which the reader should verify, for any given p(x), q(x ), and r(x, y) :  

Vx( '" p(x)) � '" 3x p(x) 
3x( '" p(x)) � '" 'Ix p(x) 

3x3y r(x, y) �  3y3x r(x, y) 
VxVy r(x, y) � VyVx r(x, y) 

'Ix p(x) - 3x p(x) 
Vx( '" (p(x) 1\ q(x)) � '" p(x) v '" q(x)) 
Vx( '" (p(x) v q(x)) � '" p(x) 1\ '" q(x)) 

One last word on notation is in order. We may wish to identify the 
domain of a quantifier, for example, the largest domain for which JX is real. 
We recognize the domain to be x � 0, and express the proposition as 

('Ix, x � O)(JX is real) 

With a slight abbreviation in notation, we may write 

('Ix � O)(JX is real) 

In general though, the domain of a quantifier will be denoted by 

('Ix, p(x ) )(q(x)) or (3x, p(x ))(q(x )) 

As an aside, these expressions are equivalent to 

Vx(p(x) - q(x)) and 3x(p(x) - q(x)) 
respectively. 

t Note Vx(3x(p(x)) 1\ q(x)) is of the form Vx(r 1\ q(x)), because 3x(p(x)) is a proposi
tion independent of x, and becomes r 1\ 'Ix q(x ). 
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2.4 S ETS A N D  F U N CTIO NS 

2.4.1 Sets 

A set is any well-defined collection of objects, called members or elements. 
The relation of membership between a member, m, and a set, S, is written 

m E S  

If m is not a member of S, we write 

m � S  

A set with no members is called the empty set, denoted �. Two sets are equal 
if they have the same members. 
A set of elements can be listed using braces as delimiters, for example, 

fruit = {apple, grape, orange} 

The order of the members listed is immaterial, as is their duplication, for 
example, 

fruit = {grape, apple, orange, apple} 

since the members are still the same as above. The number of distinct ele
ments of a set S is denoted by I S I ' for example, I fruit I = 3. A set can be 
given by a rule for generating the members of a set, using a set builder 
notation, for example, 

fruit = {x I x = apple or x = grape or x = orange} 

where now the vertical bar reads "such that," and the expression is read 
"fruit is the name of the set containing members named x such that 
x = apple or x = grape or x = orange." Given two sets, say A and B, we 
define their union A u B, intersection A n B, difference A - B as follows: 

A u B = B u A = {x I x E A v X E B} 

A n B = B n A = {x I x  E A I\. X E B} 

A - B = {x I x E A I\. X ¢ B} 

If every member of set A is also a member of a set B, we say A is a subset of B, 
written A c B. Thus, 

A c A u B, A n B c A, A - B c A 

1 
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The cartesian product of (A 1, A2, . . .  , An), where each element is a set name 

and n is some integer, is a set of lists, written 

Al x A2 x . . . x An = {(aI , a2, . . .  , an) l a I E A I /\ a2 E A2 /\ . . .  /\ an E An} 

One example of a cartesian product is the familiar (x, y) rectangular coordi
nate system. 

Note that whereas set union and intersection are commutative and 
associative, set difference and cartesian product are not ; that is, 

A u B = B u A  and A rl B = B rl A  

(A u B) u C = A u (B u C) and (A rl B) rl C = A rl (B rl C) 

but 
A - B =I= B - A  and A x B =I= B x A  

(A - B) - C =1= A - (B - C) and (A x B) x C =1= A x (B x C) 

To illustrate the assertions about union, intersection, and difference, let 

We have 

and 

but 

A = {a, b, c, d} 

B = {b, c, e, f} 

C = {c, d, f, g} 

A u B = B u A = {a, b, c, d, e, f} 

A rl B = B rl A = {b, c} 

(A u B) u C = A u (B u C) = {a, b, c, d, e, f, g} 

(A rl B) rl C = A rl (B rl C) = {c} 

A - B = {a, d} 

(A - B) - C = {a} 

and 

and 

B - A = {e, f} 

A - (B - C) = {a, c, d} 

For the assertions about cartesian product, let H be the set of heights of 
a group of individuals (in inches) and W be the set of their weights (in 
pounds ). Then H x W consists of pairs of (height, weight ). The absence of 
commutativity in cartesian products merely says that (60, 150) is a quite 
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different thing from (150, 60). To illustrate the absence of associativity, con
sider the following sets of strings : 

F = fruit = {apples, grapes} 

C = color = {red, yellow} 

P = package = {crate, basket} 

Then 

and 

F x C = {(apples, red)(apples, yellow)(grapes, red)(grapes, yellow)} 

C x P = {(red, crate)(red, basket)(yellow, crate)(yellow, basket)} 

(F x C) x P = {((apples, red), crate)((apples, red), basket) . . .  } 

F x (C x P) = {(apples, (red, crate))(apples, (red, basket)) . . .  } 

F x C x P = { (apples, red, crate)(apples, red, basket) . . .  } 

Thus, each of the 3 products j ust above is a set of objects, each describing 
packaged fruit. The first contains two ways of packaging 4 varieties ; the 
second contains four ways of packaging 2 fruits ; the third is ambiguous. 
They are clearly not equivalent. 

2.4.2 Relations 

A relation is a set whose members (if any) are all ordered pairs. The set 
composed of the first member of each pair is called the domain ; the domain 
of a relation r is denoted D(r). The members of D(r) are called arguments of r. 
The set composed of the second member of each pair is called the range; the 
range of relation r is denoted R(r). The members of R(r) are called values 
of r. 

Because first or second members may be duplicated in r, it is clear that 

I D(r) 1 � I r l , I R(r) 1 � I r l 

for any relation r; r is said to be a relation on the set D(r) u R(r). Since 
relations are sets, they inherit set operations and properties ; for example, � 
is the empty relation, and if r and s are relations, then so are r u s, r n s, and 
r - s. 

Relations can be classified in several useful ways : 

1 .  r is reflexive if x E D(r) implies that (x, x) E r, that is, r includes the 
relation "is the same as." 
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2. r is symmetric if (x, y) E r implies that (y, x) E r, that is, r includes the 
relation "is the sibling of." 

3. r is transitive if (x, y) E r, (y, z) E r implies that (x, z) E r, that is, r in
cludes the relation "is the descendant of." 

To illustrate, consider the relations defined by 

equal {(x, y) l x = y} 
less than {(x, y) l y < x} 
opposite sign {(x, y) I x * y < O} 

We find that 

equal is a reflexive relation (7 = 7 is true) 
less than is not a reflexive relation (7 < 7 is false) 
equal is a symmetric relation ((2/4 = 1/2) � (1/2 = 2/4)) 
less than is not a symmetric relation (it is false that (2 < 7) � (7 < 2)) 
less than is a transitive relation (((2 < x) /\ (x < y)) � (2 < y)) 
opposite sign is not a transitive relation (it is false that 
((3 * ( - 5) < 0) /\ (( - 5) * 7 < 0) � (3 * 7 < 0)) 

The transpose of a relation r, denoted rT, is the set of reversed ordered 
pairs of r, that is, 

rT 
= {(x, y) I (y, x) E r} 

It is easy to see that the union of a relation and its transpose is a symmetric 
relation. 

2.4.3 Fu nctions 

A function is a relation, say f, such that for each x E D(f) there exists a 
unique element (x, y) E f  We often express this as y = f(x), where y is the 
unique value corresponding to x in the functionf When x and y are lists, for 
example of 4 and 2 elements, respectively, we may write (y 1, y2) = 
f(x1, x2, x3, x4). It is the uniqueness of y that distinguishes a function from 
other relations. It is often convenient to define a function f by giving its 
domain, D(f), and a rule for calculating the corresponding value for each 
argument in the domain. A computer program may be such a rule. If a rule is 
given that does not suffice for the domain given, we consider it a partial rule, 
and regard the definition of the function insufficient. (Some writers use the 
term "partial function" for such a case, but we believe that to be a misleading 
phrase to describe the situation, since a function is a set, and "partial set" has 
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no meaning.) In short, we regard function as master and rule as slave be
cause there are many possible rules for each function. 
In illustration, the function 

f = {(.x, y) I x E {a, I}, y = x2 + 3x + 2}t 

where (x E {a, I } )  denotes the domain and (y = x2 + 3x + 2) denotes the 
rule, can also be given by enumeration as 

f = {(a, 2), ( 1 , 6)} 

or by a set description with rule denoted by two equations: 

f= {(x, y) l x(x - 1 ) = 0, y - x2 - 3x - 2 = o} 

Note also that the symbols x, y are convenient place holders ("dummy 
variables") and irrelevant in themselves to the function f That is, no such 
symbols are required at all in the enumeration of f, and an alternate 
descri ption 

f= { (u, v) l u  E {a, I }, v = u2 + 3u + 2} 

defines the same set f of ordered pairs. Functions inherit the set operations 
that do not destroy the uniqueness of function values. Iff, g are functions, 
then f n g, f - g are functions, but f u g need not be (since (x, y) E f, 
(x, z) E g would destroy the uniqueness of function values if y =1= z ). Iff and g 
are functions, then the function 

{(x, y) I y = f (g(x))} 

is called the function composition of g and f and is denoted by f o g. 
If a function f is reflexive, it is called an identity function, with f(x) = x 

for every x E D(f). For example, of the three relations 
{(I ,  1 ), (2, 2), (3, I )} 

{ ( 1, 1 ), (2, 2), ( 1 , 2)} 

{ (I ,  1 ), (2, 2), (3, 3 )} 

the first is a function but is not reflexive; the second is reflexive but is not a 
function ; the third is both a function and reflexive and is therefore called an 
identity function. If the transpose of a functionfis a function (it will surely 

t Note that the comma in the set builder notation is a synonym for logical and ( 1\ ), a 
common convention used throughout this book. 
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be a relation ), then fT(f(x)) = f(fT(X)) = x, and fT is called the inverse 

function of f If the range of a function f is a one-element set, it is called a 
constant function ; if the range of a function is a nonempty subset of {true, 

false}, it is called a predicate function, or simply a predicate. A predicate 
function is frequently denoted by a condition on the domain ; for example, 

P = {(x, true) I x � O} u {(x, false) I x  < O} 

is simply denoted by x � 0, that is, the portion of the domain for which P is 
true. 
Predicate functions may be used to express rules of other functions. For 

example, 
f = {(x, y) 1 (x � 0 � y = 3 1  x < 0 � y = 4)} 

In general, the rule of a function may take the form of a conditional rule, a 
sequence of (predicate � rule) pairs separated by vertical bars and enclosed 
in parentheses : 

The meaning of this conditional rule is: evaluate predicates PI '  P2 , . . . , Pk in 
order; for the first predicate, Pi ' which evaluates true, if any, use the rule ri ; if 
no predicate evaluates true, the rule is undefined. Note that P � r is not a 
logical implication ; that is, we are not concerned about the truth of P � r. 
For convenience, the conditional rule above is read "if PI then r1 ; else if P2 
then r2 ; . . .  ; else if Pk then rk ." If Pk is the constant predicate true and all 
previous predicates are false, we can be assured that rule rk will be used. For 
example, 

f= {(x, y) l x  E D, (x divisible by 2 � y = x/2 1 

x divisible by 3 � y = xl3 1 

true � y = x)} 

Note true � r has the effect of else � r where else means "if all else fails, 
use r." 

2.4.4 Recu rsi ve Fu ncti ons 

A recursively defined function, or recursive function for short, is a function 
that is defined by using the function itself in the rule that defines it. For 
example, the integer function 

oddeven = {(x, 1 ) 1 x odd} u {(x, 0) 1 x even} 
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can also be defined recursively, using a conditional rule, as 

odd even = {(x, y) l (x E {O, 1} -+ y = x l x > l -+ y = oddeven (x 2) 1  

x < 0 -+ y = oddeven (x + 2))} 

We can evaluate the function by repeated application of the conditional rule 
as follows for x = 7 :  

oddeven(7 ) oddeven(5 ) 

= oddeven(3) 

= oddeven( l )  

= 1 

Recursive rules in themselves do not guarantee function definitions for 
arbitrary arguments. For example, the "definition': 

sign = {(x, y) I (x = 0 -+ y = 0 I x =1= 0 -+ y = sign( -x))} 

defines only the one element function 

sign = {(O, O)} 

since repeated application for x =1= 0, say 

sign(l )  = �ign( - 1 ) sign(l )  = . . .  

never te�inates in a vallie. 
Recursive rules can be used to describe complex functions not easily 

defined otherwise. For example, let G be a railroad guide of connections 
between cities, and C(x, y) be a predicate that states whether any two cities 
are so connected : 

G = {(x, y) l a  train runs from x to y} 

C(x, y) = a connection exists from x to y 

Then the predicate function C can be defined recursively as 

C = {((x, y), w) I (x and y are cities), w = C(x, y)} 

where 

C(x, y) = ((x, y) E G -+ W = true 1 3z((x, z) E G 1\ C(z, y)) -+ W true I 

true -+ w = false) 
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That is, C(x, y) is true if a train runs from x to y or if a connection through 
some city z can be found ; otherwise C(x, y) is false. Note that the condi
tional rule for C(x, y) can also be written as a logical proposition : 

C(x, y) = ((x, y) E G) v (3z((x, z) E G "  C(z, y))) 

2.4. 5 Dig raphs 

A relation g is also called a digraph, defined as a set of directed lines, each 
line connecting a member of D(g) to a member of R(g). The term digraph 
(directed graph) is used to emphasize the interpretation that the ordered 

pairs of g are directed lines. (If g is symmetric, the lines of g can be thought of 

as undirected. )  
In  illustration, the lines of  the digraph of  a function are partitioned into 

four sets (some possibly empty) according to whether the lines originate in 
D - R or D () R, and terminate in D () R or R - D, as illustrated in Fig. 2. 1 .  

More formally, for any functionf (with subscripts denoting originating and 
terminating partitions), 

f = fD - R,D n R U fD - R,R - D U fD n R,D n R U fD n R,R - D 

where, for example : 

fD - R , D  n R  = {(x, y) E f  I x E (D(f) - R (f)) " y E (D(f) () R(f))} 

Fig u re 2.1 

A path of g is a set of nodes (or members) of D(g) u R(g), say Xb . . .  , 
xk , such that 

A cycle of g is a path x b . . .  , Xk such that Xl = Xk . A digraph with no cycles is 
called acyclic. In further illustration, let C be the set of nodes in cycles of the 
digraph of function! Then C c: (D () R ), because each member x of a cycle 
must be in both D(f) and R(f ). 
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2 .4.6 State M achi nes 

A state machine is a function whose members are ordered pairs of ordered 
pairs, say 

m = {((x, y), (u, v))} 

that is also called a transition function. These members are customarily : 
given an interpretation denoted by 

. 

m = {( (state, input), (newstate, output))} 

State machines are useful in program design. For example, consider a 
character-by-character examination of a string for the purpose of removing 
excess blanks, so that on output all blank substrings have been reduced to a 
single member. A state machine for such a purpose can be enumerated in the 
following table with entries denoting (newstate, output). 

input 

state blank nonblank 

excess excess, A nonexcess, input 
nonexcess excess, input nonexcess, input 

Note that A. means the empty output here. This state machine, initialized to 
state "nonexcess," will remove all excess initial and interior blanks by pass
ing the first of each string of blanks found, then ignoring the rest. This state 
machine can also be diagrammed as shown in Fig. 2.2, in which circles 
denote states and a directed line is labeled in the form input/output, the line 
itself showing the state transformation. 

blank/A nonblank/input 

nonblank/i nput 

blank/input 

Fig ure 2.2 
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2. 5 LISTS AN D STR I N G S 

2.5 .1 Li st Structu res 
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A list is a sequence of items which are all members of a single set, called an 
alphabet. The concept of list is as important in computing as the concept of 
set in mathematics. Any computing process must eventually be represented 
by, and be described in terms of operations on, a list. The alphabet may be 
bits, characters, bytes (8 bits), words (e.g., 16 bits, 32 bits, etc.), or variable 
size sublists, as discussed below. All members of the alphabet need not be 
printable. The empty list, denoted by �, is a sequence of no items. 

The fundamental relationship in lists is between members of the 
alphabet and a list, namely, being the first item, say a, of a nonempty list, say 
L, written 

a = head(L), L =1= � 

A nonempty list L with its first member removed is written tail(L). Note that 
tail(L) can be the empty list. An item of a list, say a, is different from a 
one-element list, say (a), holding that same item; head(L) is an item, while 
tail(L) is a list. If L = �, then head(L) is undefined. 

Two fundamental operations in lists are (1 ) adding a new item, a, to the 
head of a list L, written 

a + L 

and (2) concatenating two lists L and M, written 

L I I M 

This leads to the following identities : 

L =1= � -+ head(L) + tail(L) = L 
head(a + L) = a 
tail(a + L) = L 
a + L = (a) I l L 

A list can be structured into smaller lists, called strings, by the use of 
self-defining patterns. A simple form of self-defining pattern is to reserve 
certain characters as delimiters, which mark off the strings. For example, 
blanks serve as delimiters for words in ordinary English text (as do periods, 
commas, etc.). If the strings of the list are all disjoint, then these strings form 
a list of strings in a new alphabet, namely an alphabet of strings. Then, we 
can reapply the concepts of head, tail, + (prefix), and II (concatenation) to 
such lists of strings. 
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The list builder + ,  adding an item to the head of a list, permits the 
insertion of a list in another list by the simple device of adding a list (as an 
item) to a list. For example, with lists L, M, and item a, the expression 

a + (L + M) 

defines a list whose second member is the list L. Any such list built from lists 
and items is called a list structure. The Dewey decimal numbers form a 
natural coordinate system for such list structures. For example, 3. 1 .4 refers 
to the list item (possibly a list, itself) found by finding the 3rd item of the 
outer list structure (assumed to be a list), then the 1st item of the next inner 
list (also assumed to be a list), then the 4th item of this latter list. If any item 
cannot be found, or if any item except for the last is not a list, then 3 . 1 .4 is 
undefined. 

It is often convenient to be able to name lists in order to refer to them 
indirectly. A list name can be attached to a list by means of a colon, for 
example, 

apple : (lettuce, 'McIntosh', 'Winesap') 

indicates that apple is the name of a list of three elements, each element a 
string. Strings within a list may be either names of lists (defined elsewhere) or 
literals (usually delimited by quotes). In the list above, lettuce is the name of 
a list, followed by two literals. 

Next, consider the set of lists defined by 

apple : (lettuce, 'McIntosh', 'Winesap') 

melon : (peach, 'cantaloupe', 'honeydew') 

lettuce : (melon, 'iceberg', 'romaine') 

A list structure is implied by the chain of names (apple, lettuce, melon, 
peach) that is independent of any written ordering among the named lists. 
For example, in the list above, apple is followed by lettuce, not melon. Using 
Dewey decimal notation, we have, for example, 

apple. 1. 1.2 = 'cantaloupe' 

From their context, the names apple, melon, lettuce are list names, but the 
referent of the name peach is undefined. 

The size of a list may be used as a prefix ; for example, a list of three 



2.5 Lists and Strings 35 

elements may be called a 3-list. Thus, we might define a 3-list named produce 
as 

Then 

and 

produce : ((lettuce, 'McIntosh', 'Winesap') 
(peach, 'cantaloupe', 'honeydew') 
(melon, 'iceberg', 'romaine')) 

produce.2 = (peach, 'cantaloupe', 'honeydew') 

produce.2.3 = 'honeydew' 

Sublists may be referred to by using ordinal identifiers, for example, 
apple(2 : 3) = ('McIntosh', 'Winesap'). 

2.5 .2 Stri ngs and La nguages 

We define a language to be a set of strings. This may seem an unusual 
definition for a language, but it will prove useful because as sets, languages 
inherit set operations and relations, and these properties will be decisive. 
Words in English (strings of characters) make up a language, say as 

enumerated in a specific dictionary. Sentences in English (strings of words, 
punctuation marks, etc. ) are impractical to enumerate but are conceivable as 
a set. In fact, simple foreign language guides will enumerate a set of English 
sentences and their foreign equivalents for travel conversation. These, too, 
by our definition, are languages. 
However, in programming, we can define languages of our own choos

ing with convenient internal structure among members, without having to 
cope with the mysteries and accidentals of languages of natural origin. And 
it is only sensible to use set-theoretic operations in defining such langauges. 
In fact, we define a formal language to be a set of strings that is defined 
exclusively by a collection of set operations and relations with no natural 
experience or language required in the definition. For example, consider the 
following two set definitions 

D = {O, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

I = D u (D x D) u (D x D x D) u . . .  

where I is a language consisting of all possible decimal integers, with the two 
definitions comprising the grammar of the language. In this context, the 
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following additional terms are useful : 

1. Each of the definitions is called a production. 

2. The set names being defined (e.g., D and I) are called phrases (or nonter
minal symbols). 

3. The symbols of the language (e.g., 0, 1, 2, . . . , 9) are called terminal 
symbols. The aggregate of all terminal symbols is called the alphabet. 

4. The particular phrase (I in this example) that identifies the set that 
contains all strings of the language is called the distinguished phrase. 

As further illustration, if the grammar is extended with two new productions 

ED = {O, 2, 4, 6, 8} 

E1 = ED u (D x ED) u (D x D x ED) u . . .  

and E1 is identified as the distinguished phrase of the language, then the : 
revised language consists of even decimal integers. Next, if the following " 
production is added 

01 = 1 - E1 

and 01 is defined as the distinguished phrase, then the language consists of 
odd integers. Finally, if 

P = { . } 

and 

DN = (D x . . .  x D x P x . . .  x D) u (D x . . .  x D x P) u (P x D x . . .  x D) 

are added and DN is defined as the distinguished phrase, then the language 
consists of all decimal numbers. Note that in the final grammar, above, the 
productions defining 1, ED,.E1, and 01 are superfluous. 

Since languages are sets of strings, it will be useful to introduce a new set 
operation that is especially useful in forming languages, namely a language 
product, defined as 

A x x B = {x I a E A, b E B, x = a I I b} 

That is, the language product of two sets of strings is the set formed by 
concatenating each member of the first set with each member of the second 
set. Note the difference between A x B and A x x B. In particular, if 

a E A A b E B  
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then 

(a l l b) E A x x B but (a ll b) ¢ A x B  

and 

(a, b) E A x B but (a, b) ¢ A x x B 

Thus, elements of A and B retain their identity in A x B, but that identity is 
lost in the language product A x x B. Note also that language product x x is 
associative but not commutative : 

A x x (B x x C) = (A x x B) x x C but A x x B =F B x x A 

In illustration of the use of the language product, we redefine the set of 
decimal integers, I, in a recursion 

1 = D u (I x x  D) 

in place of the infinite union used before. We can read this recursion as "an 
integer (I) is a decimal digit (D) or an integer followed by a decimal digit." 
Note in contrast that the recursion 

1 = D u (I x D) 

does not define the integers, but a union of list structures instead, of the form 

1 = D u (D x D) u ((D x D) x D) u . . . 

In further illustration, the language of alphanumeric strings headed by 
an alphabetic character (the typical set of program identifiers) can be 
identified by the following grammar, where the first production defines the 
distinguished phrase : 

1 D = A u (I D x x AD) 

A = {a, b, . . .  , z} 
D = {O, 1, . . .  , 9} 

AD = A u  D 

The non recursive (infinite union) form of 1 D is 

ID = A u (A x (A u D)) u (A x (A u D) x (A u D)) u . . .  

which is rather more cumbersome. 
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2.5 .3  Fo rmal G rammars 

Formal grammars are often defined with more specialized notation called 
Backus Naur Form (BNF), summarized as follows : 
1. Language product operations are denoted by juxtaposing phrases. 
2. Juxtaposed phrases must be self-delimiting, often by use of angle 
brackets ( ), for example, (A ), (apple), (x � 3)  are phrases. 

3. Members of the language alphabet (i.e., the set of terminal symbols) are 
denoted by their literal symbols. 

4. The phrase definition symbol used in productions is : : = ,  rather than 
= ,  for example, 

(2-digit integers) : : =  (digit)(digit) 
5. The union symbol u is replaced by a vertical bar I .  
6. If a phrase is defined in two places within a formal grammar, the union 
of the resulting sets is intended (not the intersection as is customary in 
mathematics) ; for example, 

means 

(integer) : : =  (digit) 
(integer) : : = (digit)(digit) 

(integer) : : =  (digit) 1 (digit)(digit) 
7. Iterative language operations are denoted by a prefixed *, + ,  to mean 
the union of zero or more, or one or more, iterations, respectively. For 
example, 

(integer) : : =  + ( digit») 
defines the decimal integers, and 

*( . ) 
defines a string of zero or more periods. A superscript used with *, 
+ denotes maximum number of iterations, for example, 

(name) : : = + 5( (letter») * 1 ( digit» ) 
defines a name to be one to five letters optionally followed by a single 
digit. (We realize that * has been traditionally used as a suffix itera
tion operator, but believe the additional clarity of a prefix operator for 
iteration is worth the break with tradition.) 
A formal grammar in which every definition is of the form 

(name) : : =  (any language expression) 
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is called a context free grammar (CFG). A CFG can be recursive, as il

lustrated for integers and identifiers above. The set of productions 

(definitions) of a CFG defines a language associated with a distinguished 
phrase whose defini�ion motivates the grammar itse�f. F?r example, �he 
grammar for clock tImes {OO : 00, . . . , 23 : 59} can be gIven m the followmg 
form, where (clocktime) serves as the distinguished phrase : 

(clocktime) : : =  (hour) : (minute) 

(hour) : : = O(digit) 1 1(digit) 1 2(digit to 3 )  

(minute) : : =  (digit to 5 ) (digit) 

(digit to 3)  : :  = ° 1 1 1 2 1 3 

(digit to 5) : : = (digit to 3 ) 1 4 1 5 

(digit) : : =  (digit to 5 )  1 6 1 7 1 8 1 9 

If every definition is of the form 

(name) : : =  x(name 1)  

where x i s  any character string of the alphabet and (name 1 )  possibly names 
the empty string, �, the grammar is called a regular grammar. 

A syntax diagram defines a language definition in a simple, almost self
explanatory way by providing a "graph" with "paths" that can be taken at 
will in the production. For example, the grammar for identifiers of a pro
gramming language can be diagrammed as shown in Fig. 2.3 . The choice 
between syntax diagrams and formal grammars depends on the use at 
hand-diagrams are easier to visualize, grammars are easier to process me
chanically. In fact, there is no reason why they cannot be used interchange
ably. Grammar ideas should be used with flexibility for recording and 
communicating language structures. 

2 . 5.4 Regul ar Expressions 

A regular expression is the right-hand side of a single production which 
defines a language with operations of concatenation (language product), 
union, and iteration. (But there is no good reason other than historical why 
set intersection and difference operations should not be used in language 
expressions if useful in a given context.) For example, the definition of 
identifiers of a programming language can be given as the regular expression 

(id ) : : = (A I ' ' ' I Z) * ((A I " ' I Z) I (O I " ' 1 9)) 

A regular expression is a compact way of describing a language. 
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< i d > : : =  

< Iette' > : � -{� 
<digit > : : =  

Figu re 2.3 

The notation of regular expressions permits several alternatives to rep
resent identical languages, which fact may permit certain simplifications as 
needed, that is (where � names the empty string) : 

+ (A) *(A) = *(A) + (A) = +(A) 
* (A) *(A) = * (A) 
A *(A) = * (A)A = + (A) 
A� = �A = A 
* ( * (A )) = * (A ) 
A(B I C) =  (AB) I (AC), (B I C)A = (BA ) I (CA) 
A(BC) = (AB)C 

+ (A) I �  = * (A) 

There is an interesting application of regular expressions to program 
control structures. The instructions executed in a program form a string, and 
the strings formed over all possible executions form a language. The regular 
expressions and program control structures shown in Fig. 2.4 correspond. 
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A B  -0-8--

A l B  

+ (A ) 

Figure 2.4 

Regular expressions for complex program logic composed of these or similar 
structures can often be simplified, thus producing simpler program logic. 
For example, the program in Fig. 2.5 has regular expression (ignoring predi-
cate values) 

((BA) I (CA))((A *(A)) I �) 
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1-- ---- ---------
I 1 I 
I 

Fig u re 2.5 

that can be simplified to 

((BA) I (CA))( + (A) I �) 
= ((BA) I (CA)) *(A) 
= ((B I C)A) *(A) 
= (B I C)(A *(A)) 
= (B I C) + (A) 

yielding the simplified program shown in Fig. 2.6. 

Figure 2.6 

2.6 R E LATE D R EA D I N G  

We suggest the following references for readers interested in further investi
gation of elements of logical expression: 
On good English 

Barzun, Jacques, and Georgia Dunbar. Simple and Direct: A Rhetoric 
for Writers. New York: Harper & Row, 1976. 
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Elements of 

Program 
Expression 

3.1 OVE R V I EW 

In this chapter we introduce language forms for the precise and concise 
expression of program designs. These language forms are divided between 
an outer syntax, which deals with control structure, data structure, and 
system/module structure, and an inner syntax, which deals with operations 
and tests on data. t Outer syntax promotes and enforces structure in pro
gram design not only with respect to control logic but also with respect to 
data organization and system organization. 

3.2 P R O CESS D ES I G N  LA N G UAG E 

3.2.1 The Idea of P O L  

The development and evolution of large software systems can extend over 
months, years, or even decades. Throughout this time, there is a need for 
users and designers to communicate effectively about proposed and actual 
system structure and operation. For this purpose, clearly written natural 
language serves up to a point, but may not provide sufficient structural form 
to effectively define functions in a system and all their interactions. On the 

t The terms outer syntax and inner syntax were introduced by M. V. Wilkes, "The 
Outer and Inner Syntax of a Programming Language," The Computer Journal 1 1  
( 1968) :  260-263. 

The concept of module structures is due to D. L. Parnas, "A Technique for 
Software Module Specification with Examples," Communications of the ACM 1 5, no. 
5 (May 1972 ) :  330-33 6. 

4� 
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other hand, programming languages often provide the required struct 
forms, but within a uniformly low level of expression so that overall design 
concepts become lost in a sea of details. Furthermore, programming lan
guages introduce special syntax and implementation conventions usually ' 
not necessary at the design level. 
Thus, there is a need for a language for inventing and communicating 

software designs, in rigorous logical terms, for use jointly by specialists and 
nonspecialists in software development. Such a language must be capable of 
expressing a continuum of design ideas-from proposals for high level " 
system descriptions, to intermediate level operations, and even down to low 
level details if necessary. It must facilitate data and control logic design, as 
well as provide descriptive commentary ; recorded designs must be easily 
maintained. For this purpose, we introduce some basic conventions for 
inventing and communicating software designs in text form, summarized as 
Process Design Language, or POL. POL is an open-ended specialization of 
natural language and mathematics, not a closed formal language. It permits 
specification of software designs from a logical point of view without getting 
directly into the physical storage and operations of specific computing 
systems. The structures of POL are intended to facilitate discovery and 
insight during system and program design. POL permits precision for 
human communication and for nearly direct human translation into typical 
procedural programming languages, as well as into procedural instructions 
in user's guides, operating manuals, and so forth, that are intended for 
human readers. 
3.2.2 Outer Syn tax and Inner Syn tax i n  P O L  

The principal specialization of POL from natural language occurs in an 
outer syntax of control, data, and system structures, employing a few POL 
keywords and a tabular typographic form. Outer syntax describes how oper
ations are sequenced and controlled, how data is organized, accessed, and 
assigned, and how programs are defined and organized into modules. The 
inner syntax of POL deals with data types and operations. Inner syntax is 
expressed in natural language or in specialized languages, such as mathema
tics, appropriate for the problem at hand. 
The POL outer syntax control structures are 
sequence structures 
sequence 
indexed sequence (or fordo) 

alternation structures 
ifthenelse 
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ifthen 
indexed alternation (or case) 

iteration structures 
whiledo 
dountil 
dowhiledo 
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The outer syntax of data structures provides a small set of data access 
conventions to both named and anonymous data, specifically 

named data 
scalars 
arrays 
records 

anonymous data, organized in 
sequences 
queues 
stacks 
sets 

The outer syntax of system structures defines three levels of organiza
tion : the job, the procedure, and the module. The job describes the highest 
level of program execution. Jobs are invoked on demand by an external 
agency (e.g. , operator, scheduled clock time) and executed to completion. 
The procedure is the executable unit of stored programs, to be invoked and 
executed to completion with no internal data surviving between invocations. 
The module is the system unit, in which several procedures are organized to 
be invoked by users (jobs or other procedures) on demand, with access to a 
common set of data that survives between successive invocations. A 
procedure provides a rule for a/unction, while a module provides a rule for 
a state machine. Both procedure and module are used recursively in software 
system design, in wide size variations-from a three-line subprogram to 
a ten-thousand-line program organized into a hierarchy of smaller programs 
or procedures ; from a module that maintains a small directory for other 
using procedures to a module that serves as a text processing system or
ganized into a structure of smaller modules. 

Outer and inner syntax are informal terms that point up an important 
distinction. Outer syntax is standard and general ; since the properties of 
outer syntax structures are independent of program subject matter, these 
properties can be studied and understood once and for all. Inner syntax, on 
the other hand, is not so easily standardized ; it encompasses a variety of 
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expressive forms that deal directly with program subject matter and 
may depend on specialized knowledge for effective communication. But 
that outer syntax is not rigid ; nor is inner syntax imprecise. Intel11.gellt 
extensions to outer syntax control and data structures may make sense 
particular problems and computer architectures, and inner syntax II' np1ose:s' 
full requirements for rigorous expression, whatever form it may assume. 

3.2 .3 Data Assign ment in POL 

The explicit assignment of data is denoted by the assignment symbol " :=", as, 
for example, in 

x := y + z 

with meaning "x is assigned the value of y + z." The left side consists of a ; 
single data name; the right side is an expression in data names, possibly 
including the data name of the left side. For example, 

. 

X := x + 1 
x := max(x, y) 

x := y  

are assignments. 
A multiple (concurrent )  assignment is denoted by a list of data names on 

the left side of the assignment symbol and a list of expressions of the same , 
length on the right side, as, for example, 

x, y, z := X + y, min (x, z), abs(z y) 

which means to compute the values of all expressions on the right side first, 
then assign these values simultaneously to the data names of the left side, 
respectively. For example, 

x, y := y, X 

exchanges the values of x and y. 

3.3 O UTER SYNTAX CO NTR O L  ST R U CT U R ES 

3 .3.1  Sequence Structu res 

Operations carried out in a PDL sequence structure are written in sequence, 
one below another, with general form 

3 .3 

wt 
de 
lal 
ne 
ex 

tr 
01 
(� 
o 
ti 
a 
(I 

t 
h 
[I 
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firstpart 
second part 

nthpart 
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$ 
where PDL text and flowchart correspond. This program fragment is 
delimited by ellipsis symbols ( . . .  ) to show that it could be embedded in a 
larger program. Sequence is an outer syntax structure composed of compo
nent operations ; namely, firstpart, second part, . . . , nth part. In the following 
example, 

sort transaction file ; 
update inventory file with 
transactions; 
print inventory report ; 

the operations are specified by brief natural language statements, and the 
outer syntax symbol ( ; )  serves to separate sequence parts where necessary. 
(Semicolons are usually omitted where each part in a sequence consistently 
occupies one line.) Ordinarily, no outer syntax keywords appear with opera
tions in a sequence. However, it is sometimes useful during program design 
and documentation to delimit sequence parts with outer syntax do and od 
(do spelled backward) keywords, as follows.t 

t In the PDL programs in this book, keywords are displayed in boldface format ; in 
handwritten and typed PDL programs, keywords are ordinarily underlined for 
readability. 
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do 

od 

sort transaction file; 
update inventory file with 
transactions ; 

print inventory report ; 

In this instance, a three-part sequence has been represented as two 
with firstpart itself another two-part sequence indented for readability. 
meaning of the original sequence is unchanged ; do and od simply 
convenient delimiters for attaching comments, as we will see. As a separa 
example, the following sequence interchanges the values of x and y (and 
also sets t to the initial value of x), using explicit data assignments : 

t := x 
x := y  
y := t  

It is convenient to introduce a generalization of the sequence, called an 
indexed sequence, or fordo structure, closely patterned on the well-known do : 
loop (e.g., "do i = 1 to 10;" in PL/I), but renamed here to identify two 
critical distinctions discussed below. The indexed sequence is abbreviated ' 
notation where the operations in all parts (firstpart, secondpart, . . .  , nthpart) 
of a fixed-length sequence are identical, although difTere,nt data may be ' 
operated on in each part. PDL outer syntax keywords for, do, and od delimit 
the indexed sequence, written as 

for 
index list 

do 
dopart 

od 
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where successive dopart executions carry out successive parts of the 

sequence. The indexlist and dopart are indented to improve readability in 

larger contexts. The indexlist, an inner syntax expression, defines both an 

index variable and a list whose values are to be successively assumed by the 

index. The list may be enumerated or given by a rule. For example, in 

for 

do 

od 

i :E 1 to 20 by 2 

j := table{i ) + table{i + 1 ) 
print j 

i is the index, " :E" is read "is assigned all consecutive values in the list," and 
"1 to 20 by 2" describes the list; in this case, i takes on consecutive values 1 ,  
3, . . .  , 19. We regard the right side of an index list (following " :E ") as an 
informal specification of a list; if the specification of an arithmetic list con
tains no successor rule, it is assumed to be "by 1 ." The fordo above is an 
abbreviation for the following sequence : 

j := table{ 1 ) + table(2 ) 
print j 
j := table(3 ) + table(4) 
print j 

j := table( 19) + table(20) 
print j 

Critical distinctions between the usual do loop and the indexed se
quence are ( 1 ) in the indexed sequence, the dopart cannot alter the value of 
the index, and (2 ) the value of the index is not available for use by program 
parts following the indexed sequence. In other forms of the do loop, the 
index is treated as any other variable and can be assigned new values both in 
the dopart and outside the loop. We regard the index in a different way-as 
a data item beyond control of the program once set up that can be read in 
the dopart, much like a local clock, but that cannot be altered in the dopart 
or read or altered thereafter. 

As a second illustration, the indexed sequence below has an index 
named pointer and assigns to each member of a ten-element array named x 
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the sum of members from that member to the tenth member : 

for 
pointer :E 9 to 1 by - 1 

do 
x(pointer) := x(pointer) + x(pointer + 1 )  

od 

3.3.2 Alternati on Structu res 

The ifthenelse structure has general form 

if 
if test 

then 
thenpart 

else 
else part 

Ii 

with outer syntax keywords if, then, else, and Ii (if spelled backward) de
limiting an inner syntax predicate named if test, an operation named thenpart 
to be executed when iftest evaluates true, and an operation named else part to 
be executed when if test evaluates false. In illustration, the following ifthen
else searches either an online file or an archive file, depending on the data 
requested. The test and operations are given by brief natural language 
statements :  

if 
data requested is current status 

then 
search online personnel file 

else 
search archive personnel file 

Ii 
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The ifthenelse below sets z to the maximum of x and y, using explicit data 
assignments : 

if 
x > y  

then 
z := x  

else 
z := y 

fi 

If more convenient, a PDL structure can be written in linear form, for 
example, 

if x > y then z := X else z := y fi 

with less readability but identical meaning as above. 
The if then structure, a special case of the ifthenelse in which no operation 

is carried out when if test evaluates false, has general form 

if 
if test 

then 
then part 

fi 

The following ifthen 

if 

F 

inventory transactions available 
then 

update inventory file 
fi 
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carries out an update process i f  inventory transactions are available. The 
if then below sets x to the minimum of x and y:  

if 
x > y  

then 
x y 

fi 

The indexed alternation, or case structure, is a multibranch, multi join 
control structure with general form 

case 
casetest 

part(caselistl ) 
casepart l 

part ( caselist2) 
casepart2 

part(caselistn) 
casepartn 

else 
elsepart 

esac 

The case structure delimits caseparts and inner syntax casetest and caselists 
with outer syntax keywords case, part, else, and esac (case spelled back
ward). In execution, the casetest expression is evaluated and control flow is 
directed to the first casepart whose corresponding caselist (list of values or 
expressions) contains the current value of casetest. Caselists are scanned in 
ordinal sequence; for a value appearing in multiple caselists, the casepart 
corresponding to the first occurrence is always executed. The e1separt is 
optional; it handles missing casetest values when present. The indexed alter
nation is of interest because of the architectures of underlying physical 
machines (e.g., efficient use of indexed branch instructions) and because of 
the way program logic often seems natural to describe (e.g., expressing one 
of many possible alternatives, otherwise expressed as nested ifthenelse struc
tures). In illustration, the case structure below manipulates a personnel 
record, based on the current value of op : 

case 
op 

part ('ad( 
add ] 

part('del 
delet 

part ('me 
modi 

part ('dis 
displ 

else 
disp1 

esac 

3 .3.3 Itel 

The whiledo 

while 
whil 

do 
dop, 

od 

with keywG 
the dopart. 
as long as t 
modificatio 
example, in 

while 
pay 

do 
retr 
up( 

od 



3 .3 

case 
op 

part('add') 
add personnel record 

part('delete') 
delete personnel record 

part('modify') 
modify personnel record 

Outer Syn ta x  Control Structu res 

part('display for salary', 'display for tenure') 
display personnel record 

else 
display 'operation incorrectly specified' 

esac 

3.3. 3 Iterati on Structu res 

The whiledo structure has general form 

while 
whiletest 

do 
dopart 

od 

55 

with keywords while, do, and od delimiting the inner syntax whiletest, and 
the dopart. The whiledo structure carries out the dopart zero or more times 
as long as the whiletest evaluates to true. Of course, the dopart must include 
modification of the whiletest condition for execution to terminate. For 
example, in 

while 
pay updates remain 

do 
retrieve next pay update record 
update corresponding record in master pay file 

od 
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records are updated in a master pay file as long as updates remain. Note that 
this structure is correct for the case where no updates exist (assuming that an 
end-of-file can be detected in the whiletest). In such case, the master file 
remains unchanged. The whiledo 

while 
x > 1 

do 
X := x - 2 

od 

converts a positive integer x into 1 if x is initially odd, into 0 if initially even ;  
i t  leaves non positive integers unchanged. 

The dountil structure has general form 

do 
dopart 

until 
untiltest 

od 

with keywords do, until, and od delimiting the dopart and the inner syntax 
untiltest. The dountil carries out an operation one or more times, including 
modification of the untiltest condition, until that test evaluates to true, as in 
the following example :  

do 
retrieve next pay update 
update corresponding record in master pay file 

until 
no pay updates remain 

od 
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Note that this structure, unlike the whiledo, executes the dopart before 
evaluating the predicate ; therefore it is used when at least one iteration of 

the dopart is required. Thus the example is correct only if at least one pay 

update is present. The following dountil repeatedly divides any real number 

x greater than or equal to 10 by 10 until its magnitude is reduced to 1 or less, 

and divides any real number less than 10 by 10 :  

do 
x := x/l0 

until 
x ::;  1 

od 

The dowhiledo structure has general form 

dol 
dopart l 

while 
whiletest 

do2 
dopart2 

od 
T 

with PDL keywords dol, while, do2, and od delimiting the inner syntax 
whiletest, and the two doparts. For example, the following dowhiledo 
repeats a calculation until some resulting value is within an allowed 
tolerance 

dol 
calculate error in value 

while 
error > tolerance 

do2 
calculate new value 

od 
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and the dowhiledo below prints individual characters from a string, up to a 
blank character :  

dol 
get next character from string 

while 
character not blank 

do2 
prin t character 

od 

We consider the preceding control structures to be the fundamental 
building blocks of programs. With the exception of extended sequence struc
tures (sequences of more than two parts) and fordo and case structures 
(convenient alternatives to uniform sequences and multiple ifthenelses, re
spectively), the POL control structures correspond to the simple "prime 
programs" to be discussed in Chapter 4. These simple structures have 
properties that help limit complexity in program reading, writing, and cor
rectness demonstration, but are sufficiently powerful to express the design of 
any program whatsoever, as will be shown. 

3.3.4 Comments 

Comments, delimited by square brackets, can appear anywhere in POL 
programs, but they are particularly effective when systematically attached to 
control structure keywords in order to explain operations within the struc
tures. Thus for sequence structures 

do [comment] 
first part 
secondpart 

od [comment] 

the do comment can explain the function (or action) of the sequence, that is, 
what firstpart followed by second part does, and the od comment can explain 
the status of affairs, that is, the relations holding among data objects, after 
the sequence has been carried out. For example (overcommenting for the 
sake of illustration), 

do [set c to max(a, abs(b))] 
d abs(b) 
c max(a, d) 

od [c = max(a, abs(b))] 
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where max produces the maximum of the two arguments and abs produces 

the absolute value of an argument. 

Similar conventions are employed for ifthenelse : 

[comment] 
if 

iftest 
then [comment] 

thenpart 
eJse [comment] 

elsepart 
fi [comment] 

The leading comment can explain what the ifthenelse does, the then com
ment can explain what the thenpart does, the else comment can explain what 
the else part does, and the fi comment can summarize the status of data 
following the ifthenelse. For example (still overcommenting to illustrate), 

[set x to min (a, b, e)] 
if 

a < b  
then [set x to min(a, e)] 

if a < e then x := a else x := e fi 
eJse [set x to min(b, e)] 

if b < e then x := b else x := e fi 
fi [x = min(a, b, e)] 

where min, of course, produces the minimum of its arguments. 
For the whiledo form 

[comment] 
while 

whiletest 
do [comment] 

dopart 
od [comment] 

the leading comment can explain what the whiledo does, the do comment 
can explain what the dopart does, and the od comment can summarize the 
state of affairs following the whiledo. To illustrate, the following initialized 
whiledo substitutes blanks for leading zeros in a natural number stored in an 
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array named n :  

i := 1 .. 
[remove leading zeros from n] 
while 

n{i )  = '0' 
do [remove ith character from n, prepare to check i + 1 character] 

n{i) '�' 
i i + 1 

od [leading zeros removed from n] 

The remaining PDL control structures are commented in similar fashion. 

3 .3 .5 Expan d i n g  and Pa rsin g  P O L  Control St ruct u res 

PDL control structures are one entry-one exit structures that can be used to 
expand individual operations into more and more detail, as required. Con
versely, any PDL control structure can be treated as a single operation, if i t  
i s  convenient to do so. For example, the PDL fragment 

do 
if necessary, compute tax payment or refund 

for next record from tax file 
until 

all tax records processed 
od 

that computes tax payments or refunds for all records in a nonempty tax file 
can be expanded to, or used to summarize, the PDL fragment shown in 
Fig. 3 . 1 .  The original dopart action appears as a comment at do, in Fig. 3 . 1, 
to explain the expanded dopart. Notice the cumulative indentation of PDL 
text to better display nesting of control structures. As a second example the 
fragment 

if 
x > O  

then 
convert positive x odd or even into 1 or 0 

else 
convert nonpositive x odd or even into 1 or 0 

fi 

3 .: 

C 
'\ 
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do [if necessary, compute tax payment or refund 
for next record from tax file] 
read next record from tax file 
if 

tax due not equal to withholding 
then 

fi 
until 

if 
tax due greater than withholding 

then 
compute tax payment 

else 
compute tax refund 

fi 

all tax records processed 
oct 

Figure 3.1 
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converts an integer x (positive, zero, or negative) into 1 or 0 according to 
whether x is initially odd or even, and can be expanded to, or regarded as a 
summary of, 

if 
x > O 

then [convert positive x odd or even into 1 or 0] 
while 

x > l 
do 

X := x - 2 
oct 

else [convert nonpositive x odd or even into 1 or 0] 
while 

fi 

x < O 
do 

X := x + 2 
oct 
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Any POL control structure can be parsed uniquely into its constituent · 
parts, these parts can be parsed uniquely again, and so on, until the entire 
program is described in a unique hierarchy of expansions. Parsing of POL 
programs can be carried out directly in the program text, shown by a Dewey 
decimal numbering of text lines to reflect control structure hierarchy. The 
numbering rules are simple and standard. If a program part is itself another 
control structure, begin a new level of Dewey decimal numbering and 
number each outer and inner syntax statement in sequence (ignoring lines 
containing only comments). Numbering is illustrated in the POL fragments 
below (with m a Dewey decimal number inherited from a containing 
structure) : 

sequence 

m. l firstpart 
m.2 secondpart 

m .n nthpart 

ifthenelse 

m. l if 
m.2 iftest 
m.3 then 
m.4 thenpart 
m.5 else 
m.6 elsepart 
m. 7 Ii 

whiledo 

m. l while 
2 whiletest 
3 do 
4 dopart 
5 od 

(where a repeated digit m and the succeeding decimal point may be under
stood in context) 
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dountil � 

m. 1 do 
2 dopart 
3 until 
4 untiltest 
5 od 
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Note that more than one Dewey decimal identifier can be introduced on a 
single line. For example, if the first part of a sequence is itself an if then, it 
would be numbered 

m. l . 1  if 
2 iftest 
3 then 
4 thenpart 
5 fi 

2 second part 

To illustrate, the tax computation fragment previously shown has parse 
structure 

m. 1 

2. 1 
2 . 1 

3 
4 
5 

2 
3 
4 . 1 

5 

2 
3 
4 
5 
6 
7 

do [if necessary, compute tax payment or refund 
for next record from tax file] 
read next record from tax file 
if 

tax due not equal to withholding 
then 

fi 
until 

if 
tax due greater than withholding 

then 
compute tax payment 

else 
compute tax refund 

fi 

all tax records processed 
od 
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with dopart (lfne m.2) composed of a sequence (lines m.2. 1 and m.2.2). 
secondpart of the sequence (line m.2.2) is an ifthen structure 
m.2.2 . 1-m. 2 .2 .5), itself containing a nested ifthenelse structure. The parse 
structure of the odd even fragment introduced above is 

m. 1 if 
2 x > 0  
3 then [convert positive x odd or even into 1 or 0] 
4. 1 while 

2 x > l  
3 do 
4 x := x - 2 
5 od 

5 else [convert non positive x odd or even into 1 or 0] 
6 . 1 while 

2 x < O 
3 do 
4 x := x + 2  
5 od 

7 fi 

with then part (line m.4) and elsepart (line m.6) both expanding as whiledo 
structures (lines m.4. 1-m.4.5 and m.6. 1-m.6 .5, respectively). 

Any PDL control structure can be diagrammed as a tree to highlight its 
parse structure, using the following primitives : 

sequence : SEQ 

f irstpart secondpart . . •  nthpart 

fordo : F DO 

/\ 
i ndex l ist dopart 
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ifthen : I T  

/\ 
i ftest thenpart 

ifthene1se : I T E  

case : 

casetest 

i f  test thenpart elsepart 

CASE 

(casel ist 1  ) (casel i stn )  
casepart 1 casepartn 

whiledo : W DO 

/\ 
wh i letest dopart 

dountil : DOU 

/\ 
dopart unti ltest 

dowhiledo : DWDO 

dopart 1 wh i letest dopart2 

elsepart 

65 



66 El e ments of P ro g ra m  Expressi on 

The tax computation fragment in tree form is as follows : 

read next record 
from tax f i le  

SEQ 

IT 

DOU 

al l  tax records 
processed 

tax due not equal 
to withhold ing 

I T E  

t a x  d u e  greater compute tax compute tax 
than withhold i ng payment refu nd 

3.4 O UT E R  SY NTAX DATA ST R U CT U R ES 

3 .4.1 Structu res o f  Named Data 

PDL provides keywords and conventions for describing collections of data 
and their access functions in a few special data structures of named and 
anonymous data. We begin with a discussion of named data. 

Scalar. A data structure containing a single data item with no accessible 
substructure is called a scalar, declared by the keyword scalar. PDL scalar 
data items are referred to by name within a PD L program and are defined 
separately in a data declaration prior to such use. For example, 

scalar x, y, z 
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declares that x, y, z are each single data items. A scalar data item can be (but 
need not be) restricted to a given type (class of values) such as numeric, 
character, or logical. Data types are expressed in PDL inner syntax and are 
described later. 

Array. A list of PDL structures that is indexed by a Cartesian product of 
indexes is called an array. For example, the array [X(l, 1 )  x(l ,  2) . . .  x(l ,  n)] 

x(2, 1 )  x(2, 2) . . .  x(2, n) 
. . .  . . . . . . 

x(m, 1 )  x(m, 2) . . .  x(m, n) 

is indexed by the Cartesian product { 1, 2, . . .  , m} x { 1 , 2, . . .  , n}. An array can 
be described as a list, or a list of lists, and so on. PDL arrays are accessed by 
name, and their members are accessed as illustrated by the array name 
followed by a parenthesized list of indexes, that is, integers and/or identifiers 
with integer values. The dimension of an array and the limits of each index 
are given in a declaration such as 

array a(3 ), b(2, 4), c(3, 2, 4) 

that declares a one-dimensional array of 3 members, a two-dimensional 
array of 8 members, and a three-dimensional array of 24 members. 
The PDL assignment 

a( l ) := b(2, 3 )  

states that member a(l ) of a takes on the value of member b(2, 3)  of b ;  the 
assignment 

a( l ) := b 

states that member a(l ) of a (clearly not a scalar) takes on the value of the 
entire array b; that is, 

a(1 ) := [b(l, 1 ), b(l, 2), b(l ,  3 ), b(l ,  4) ] 
b(2, 1 ), b(2, 2), b(2, 3 ), b(2, 4) 
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All the members of an array (or any other data structure) may have 
same type of structure, for example, an array of scalars or an array of 
but there is no necessity for such a restriction in PDL. Also, the term 
traditionally refers to data in the main storage of a computing system. 
for design purposes, random accessed storage on disks or drums (with much 
longer access times) and even large main storage units are logically . 
described as PDL arrays as well. 

Record. A record is a data structure that can be represented by a tree, such 
as 

student 

name address class 

11\ 
street city state 

Such structures are called Cartesian structures because parent nodes (such as 
student and address above) can be identified as the Cartesian products of 
their descendants. Thus 

student = (name, address, class) 

address = (street, city, state) 

A member is any node of a tree ; a field is a member having no descendants. 
Members are named by a concatenation of node names, proceeding from the 
root name (i.e., the record name) and separating names with a period. In 
place of a node name, the ordinal position (for any fixed ordering) of the 
node with respect to other siblings can be used. In contexts in which there is 
no ambiguity, it is sufficient to use the member name alone. The names of 
the members in the example are 

student . name = student. 1 name 

student . address = student .2 = address 

student. address. street = student. 2 . 1 street 

student. address. city = student.2 .2  = city 
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student.address .state = student. 2 . 3  = state 

student .  class = student. 3 = class 

The structure of a record is given in a PDL declaration by indentation 
and Dewey decimal numbering, for example : 

record student 
1 name 
2 address 
2. 1 street 
2 .2 city 
2 .3  state 
3 class 

3.4.2 Structu res of An onymous Data 

Data structures can also be defined in which members can be accessed 
without individual item names. Four such data structures are defined next ; 
namely, sequences, stacks, queues, and sets. A sequence is a familiar data 
structure, which can be referred to by a name as a whole but which has 
anonymous members, such as a deck of cards to be read, a magnetic tape file 
of records, or a sequence of character lines to be printed. But even though 
sequences have familiar realizations, this very familiarity disguises a rela
tively complex data structure, compared to stacks, queues, and sets. There
fore, we define stacks, queues, and sets before sequences. 
List operations will be useful for defining operations with anonymous 

data, but we may want to view a list from either end, front or back. There
fore, we augment the ordinary list operations as follows : 

List Builders. Define list operations + (plus ), Ei1 (circle plus ) to mean : 
a + b :  add member a to the front of list b 

a Ei1 b :  add member b to the back of list a 

List Breakers. Define operations H + ,  T+ (head plus, tail plus ), H - ,  T
(head minus, tail minus) to mean : 

H + (a + b) = a, 

H - (a Ei1 b) = b, 

T+ (a + b) = b  

T- (a Ei1 b) = a 

Note that + is the ordinary list builder, and H + ,  T+ are the ordinary head, 
tail operations H, T. In what follows, H, T may be used in place of H + ,  T + .  
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In illustration, consider lists a = (A B C), b = (E F). Then 

M + a = (M A B C) 
b EB N = (E F N) 
H + (a)  = A 
T+(b)  = (F) 
H- (b) = F 
T- (a) = (A B) 

(Note that (F) denotes a one-element list, F denotes a single list member.) 
It is easy to verify various list identities, using concatenation ( I I ) and 
(R) operations, such as 

H - (a)  = H + (R(a)) 
T- (a) = R(T+ (R(a))) 
a EB b = a I I  (b) 
a EB b = R(b + R(a)) 

Stack. A PDL stack is a data structure that provides for LIFO (last in, first 
out) access to a list by keyword top. On reading, top designates and removes . 
the last member placed on the stack, if any ; on writing, top designates and 
adds the new member to the top of the stack. The stack operations/tests in 
list definition form are as follows for stack a (with head (H) designating the 
top of the stack) :  

Operation/test 

c := top(a) 
top(a) := d 
a := empty 
a = empty 

List definition 

c, a := H(a), T(a) 
d, a := d, d + a 
a :=�  
a = �  

(a ¥= �) 

where the top read operation fails (to execute) with an empty stack.t For 
example, in the program fragment 

1 stack a 
2 scalar b, c 
3 top(a) := b 
4 c := top(a) 

t Anonymous data structures are generally not presumed to be empty on declara
tion ; they must be assigned empty if so desired. However, in the small examples in  
this book, where context clearly indicates that a data structure is empty, no such 
assignment is made. 
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at line 1 stack a is declared ; at line 3 the value of data item b is placed at the 
top of the stack ; at line 4 the top element of the stack is assigned to c 

(removing it from the stack). 

Queue. A PDL queue is a data structure that provides for FIFO (first in, 
first out) access to a list by keyword end. On reading, end designates and 
removes the first member, if any, of the list, the only member available for 
reading; on writing, end designates and adds the member to the new last 
place of the list, the only place available for writing. The queue 
operations/tests in list definition form are as follows for queue a (with head 
(H) designating the end of the queue available for reading) : 

Operation/test 
c := end(a) 
end(a) := d 
a := empty 
a = empty � 

List definition 
c, a := H(a), T(a) 
d, a := d, a ffi d 
a := �  
a = �  

(a � �) 

where the end read operation fails with an empty queue. For example, in the 
program fragment 

1 queue a 
2 scalar b, c 
3 end(a) := b 
4 c := end(a) 

at line 1 queue a is declared ; at line 3 the value of data item b is added to the 
end of a as its last item ; at line 4 the first element of a is moved to data 
item c. 

Set. A PDL set is a data structure that provides access to an arbitrary 
member of a list using the keyword member. The set operations/tests in list 
definition form are (for set a) 

Operation/test 
c := member(a) 
member(a) := d 
a := empty 
a = empty 

List definition 
c, a := H(a), T(a) (a � �) 
d, a := d, P(d + a) 
a := �  
a = �  

where the member read operation fails with an empty set, and P(x) is any 
permutation and compression (delete all duplicates) of list x. For example, 
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in the fragment (a is assumed nonempty) 

1 set a 
2 scalar b, c 
3 b := member(a) 
4 member(a) c 

at line 1 set a is declared ; at line 3 some arbitrary member of set a is moved 
into b (and deleted from a) ; at line 4 data item c is added to set a. Set 
operations have no particular access discipline, such as FIFO or LIFO, and 
any member at all may be produced by an assignment such as line 3, in 
particular not necessarily the last member added. Note that a set can contain 
a given member only once; that is, addition of a member already present 
results in no change to the set. In this, a set behaves like an index or 
directory with each entry unique. 

Sequence. A PDL sequence is a data structure that provides for sequential 
access to a list with an implicit pointer position using keywords current, 
next, and reset. A sequence is defined to be an ordered pair of lists. The first 
list ("past list") designates the subsequence of members already accessed, 
with head minus (H- )  of the list being the most recently accessed, and so on 
(e.g., cards already read, lines already printed). The second list ("future list") 
designates the subsequence of members not yet accessed, with head plus (H+ )  
of the list being the next t o  be accessed (e.g., cards yet to be read). That is, if 
member C, of the sequence containing members (A B C D  E F G) in order, 
was most recently accessed, the sequence is represented by first list (A B C) 
and second list (D E F G). The PDL keyword current refers to the last 
member, if any, of the first list of the sequence (member C, above) ; the 
keyword next refers to the first member, if any, of the second list of the 
sequence (member D, above) . The keyword reset defines a new sequence that 
is derived from an old one, and whose first list is the empty list and whose 
second list is the concatenation of the two lists of the old sequence. 

Given a sequence named a, its first and second lists are denoted by a
and a+ , respectively, and their composition into the sequence a is denoted by 
a dot, as in 

For example, the sequence with members (A B C D  E F G) and pointer 
between C and D (C most recently accessed) can be written 

a = (A B C). (D E F G) 
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that is, 

a - = (A B C) 
a+ = (D E F G) 

Outer Syntax Data Structu res 

Either a- or a +  can itself be replaced by a list expression, for example 

or 

a- = (A ) " (B C) 
a+ = D + (E F G) 

a = (A ) II (B C).D + (E F G) 

The keywords current and next refer to members 

current (a ) = H - (a - ) 
next(a) = H + (a + ) 
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Operations/tests on sequences can be defined in terms of list assignments as 
follows (for sequence a) : 

Operation/test 

reset (a) 
c := current(a) 
current(a) : =  d 
c := next(a) 
next(a) := d 
a := empty 
a = empty 

List definition 

a := �.a - II a+ 
c, a := H - (a - ), a (a - =F �) 
d, a : = d, T- (a - ) EB d. a +  
c ,  a := H(a + ), a - EB H(a+ ). T(a+ ) 
d, a := d, a- EB d.� 
a := a - .� 
a + = � (or, a = a - .�) 

where the current read operation fails with an empty first list, the next read 
operation fails with an empty second list. The keyword next implies an 
automatic advance along the sequence (reflected in the sizes of a - , a + ) while 
the keyword current implies no advance. Note that writing with next de
stroys the second list of the sequence, if not already empty, but that writing 
with current preserves the second list. For that reason, the keyword empty 
refers to the second list and not the entire sequence, either in an operation or 
a test. That is, the test a = empty asks if any members of a remain to be 
accessed by next. 

Ordinarily, the input and output of computing are in sequential form, 
for example, as card input and print output. The PDL conventions make se-
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quential input and output easy to describe by so naming files ; for example, 

1 sequence input, output 
2 c next(input) 
3 next(output) := d 

The keyword next specifies a single data item (e.g., scalar or record) to 
be transferred to or from a sequence. For convenience such transfers can be 
generalized to a list of data items using the keyword list as shorthand for a 
series of next operations as in 

1 scalar a, b 
2 record c 

1 d 
2 e 
2 . 1 f 
2.2 g 

3 sequence input, output 
4 a, b, c := list(input) 
5 list(output) := a, b, c 

where the list read operation fails if the sequence has insufficient members. 
At line 4 scalars a and b and all members of record c are assigned values 
serially read from the input sequence, and at line 5 the values are serially 
written to the output sequence. 

3 .4.3 Seq u ence Extensi ons 

The sequence (and stack ) data structures are generic forms that can be 
implemented directly in magnetic tape. But the implementation possibilities 
may differ in details, which can be described in list notation as variants of 
these generic PDL data structures. And for program designs that deal 
directly with physical hardware, an accurate and detailed list description of 
hardware operations is advisable. A physical file may have a backspace, or 
read backward capability, which could be described as follows, 

Operation 

backspace(a) 
c := back(a) 

List definition 

a := T- (a- ).H - (a - )  + a + (a- #: �) 
c, a := H- (a - ), T- (a- ).H - (a - )  + a+ (a- #: �) 

and other physical features will have list descriptions accordingly. 
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In illustration of other possibly useful operations on sequences, and 

their descriptions, we note the possibility of adding or deleting members of 

the sequence, such as follows : 

operation 

;idaftercurrent(a) := d 
c readanddeletenext( a)  

List definition 

d, a d, a- EB d.a +  
c, a H(a + ), a - .T(a + )  

In particular, the following operations, while a little awkward t o  define, are 
very useful in deleting a value or inserting a new value in sorted order in an 
already sorted list :  

Operation 

c := mid(a) 
mid(a) := d 

List definition 

c, a := H- (a - ), T- (a - ).a +  (a - =1= �) 
d, a := d, (T- (a - )  EB d) EB H - (a- ) .a +  

That is, current(a) i s  removed by the mid read, and d i s  inserted before 
current(a) by the mid write. To illustrate, lines 3 through 8 of the program 
fragment 

1 sequence a, d [a in ascending sorted order] 
2 scalar b, c, e,j, g 
3 do 
4 b := next(a) 
5 until 
6 b > c 
7 od 
8 mid(a) := c 
9 do 

10 e := next(d) 
1 1  until 
12 e = ! 
1 3 od 
14 g := mid(d) 

insert the value of c in a sorted sequence named a such that sorted order is 
maintained (where c is guaranteed smaller than the last member of a). Lines 
9 through 14 delete the first occurrence of the value of! from a sequence 
named d (where! is guaranteed to occur in d). 
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3.4.4 Set Exten si ons 

In addition to defining new operations for PDL data structures, it may be : 
convenient in design to extend and specialize the data structures themselves . .  
In illustration, we might define a table to be a data structure that provides 
access to a table of data. A table is a specialization of the set data structure, 
in which all members are ordered pairs. Such a specialization permits the 
construction of mathematical functions and relations (sets of ordered pairs) 
in tables, in which the first member of a pair is considered a name for the 
second member. Thus an anonymous data structure can be used to create 
named data. In addition to the set operations/tests on tables (in which 
members are defined as ordered pairs in every case ), the table 
operations/tests could include the ability to deal separately with the first and 
second members of the ordered pairs of a table, using keywords domain, 
range, argument, and value of conventional meaning in functions and rela
tions. Table operations could be given in list definition form as follows for 
table a, pair (c, d) of scalars, and set b :  

Operation/test 

d value(a, c) 
value(a, c) := d 
c := argument(a, d)  
argument(a, d) c 
b := domain(a) 
b := range(a) 
c domain(a) 
d E  range(a) 
delete(a, c, d) 

where 

x l  E {x l (c, x) E a} 
x2 P((c, d) + a) 
x3 E {x I (x, d) E a} 
x4 = P((c, d) + a) 

List definition 

a, c, d a, c, x l  (a # �) 
a, c, d x2, c, d 
a, c, d := a, x3, d (a # �) 
a, c, d := x4, c, d 
a, b := a, domain(a) 
a, b := a, range(a) 
c E domain (a ) 
d E  range(a) 
delete pair (c, d) from a, if presentt 

and where a value read or argument read operation fails when the required 
member of a is not present (x l  or x3 are not defined). Note that operations 
value(a, c) := d and argument(a, d) := c have identical effect in table a, but 

t The delete(a, c, d) operation can be expressed as a conditional rule as follows 

(H(Q(a, (c, d))) = (c, d) -+ a, c, d := T(Q(a, (c, d))), c, d I true -+ a, c, d := a, c, d) 

where Q(x, y) is any permutation of x such that y ¢ T(Q(x, y)). 
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resent two views for table building. For example, in the fragment 
rep 

1 table a 
2 scalar c, d, e 
3 value(a, c) := d  

4 e := value(a, c) 
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at line 1 table a is declared, at line 3 the ordered pair (c, d) is added to table a 

(that is, the name c is assigned the value d in table a), and at line 4 any value 
associated with name c in table a is assigned to e (if table a is empty before 
line 3 is executed, then d will be assigned to e in line 4, since d will be the only 
value associated with name c at that time ). 

3.4.5 Data S paces 

Thus far we have discussed PDL operations on static collections of named 
and anonymous data items, that is, data items that are declared in advance 
and exist until execution terminates. We now introduce dynamic changes in 
the composition of the list of data items itself, in analogy with facilities for 
allocation and release of storage found in some programming languages. 
Specifically, let S be a list of active data items declared in or passed to a 
program. (A declared data item becomes active when first assigned a value. ) 
We call S a data space. A data space can also be changed by use of keywords 
initial and free, defined next. 

Let each member of S name a stack of indefinite depth, with only top 
members accessible for program operations and tests. Then initial and free 
are defined as follows, where name refers to a declared data name : 

initial name := value 

free name 

If name is a member of S, value 
is placed on its stack ; otherwise 
name is added to S and value is 
placed on its stack. 
If name is a member of S, the 
top member of its stack is removed, 
and if now empty, name is 
removed from S; otherwise the 
statement fails (to execute). 

An ordinary data assignment changes the top value of a stack ; an initial data 
assignment creates a new top value and makes the previous top value un
available until a corresponding free statement is executed. For example, 



78 El ements of P rogra m  Ex pressi on 

assume that x and z are active data items and that 

S : (x : ('ab'), z : (8, 1 )) 

That is, S is a list of stacks x and z, in which the top (and only) value of stack 
x is 'ab' and the top value of stack z is 8 (with previous value 1 ). Then the 
following sequence of operations produces the data spaces indicated (y an 
integer variable) :  

scalar y 
y := z  
initial y := 3 
y z 
free z 
initial x := 'cd' 
free z 
initial z := 0 

s :  (x : ('ab' ), z : (8, 1 )) 
S : (x : ('ab'), y : (8 ), z : (8, 1 )) 
s: (x : ('ab'), y : (3, 8), z : (8, 1 )) 
S : (x : ('ab'), y: (8, 8), z : (8, 1 )) 
S : (x : ('ab'), y : (8, 8), z : (1 )) 
S : (x : ('cd', 'ab'), y: (8, 8), z : (1 )) 
S : (x : ('cd', 'ab'), y :  (8, 8)) 
S : (x : ('cd', 'ab'), y: (8, 8), z : (0)) 

Given the concept of a data space S, it is possible to invent inner syntax 
predicates to determine whether specified data items are currently active 
(i.e., members of S). For example, the predicate (using a, b, c, d as data 
names) 

active(a v (b /\ c) v ('"'-'d)) 

is  true if a is  active, or  if b and c are active, or  if  d is not active, and is false 
otherwise. 

To illustrate, consider a program to multiply nonnegative integers x and 
y by addition and assign their product to z. The usual assumption is that the 
data space is identical on entry and exit and during execution in an ini
tialized whiledo as follows : 

z := O  
while 

x > O  
do 

od 

z := z  + y 
X := x - 1 

However, if x and y name stacks containing a single value and z is not active, 
the following program is an alternative to the program above: 
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while 
active(x A Y) 

do 
if 

'" active(z) 
then 

initial z := 0 
else 

if 
x = O 

then 
free x, Y 

else 

fi 

z := z  + Y 
X := x - 1 

fi 
od 

Outer Syntax S ystem Structures 

3.5 O UT E R  SY NTAX SYSTE M ST R U CT U R ES 

3.5.1  J o bs and Procedu res 
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Thus far, PDL structures have been illustrated in terms of unnamed pro
gram fragments. We now introduce named POL programs and the means 
for combining them into larger program structures. We distinguish two 
types of named programs; namely, jobs and procedures. POL jobs are pro
grams intended for immediate execution ; they correspond to job control 
language that invokes operating system faci lities in batch and conversa
tional processing. The use of jobs in a design language permits design of the 
highest level of control of sequential processes. The structures in a POL job 
should be patterned after structures available in the target job control lan
guage. (For example, a POL job to be translated into System/370 JCL would 
properly contain sequence structures but no looping structures, since JCL 
does not permit loops.) A job is defined by POL text listed between keywords 
job and boj, with a job name following job. 

POL procedures are programs intended to be stored for later invocation 
by other programs. Procedures correspond to programs stored in system 
libraries for execution under operating system control. A procedure is 
defined by POL text listed between keywords proc and corp, with a 
procedure name following proc. Procedures are invoked by jobs or by other 
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procedures using POL statements of the form "rlDl name," where name 
identifies the procedure. To illustrate, the following job runs a program that 
assigns the reverse of an input queue to an output queue by use of a s 
(past data declarations and parameter lists aside): 

job print reverse 

boj 

queue inqueue, outqueue 
run reverse 

proc reverse [outqueue := reverse(inqueue)] 
stack a 
a := empty 
outqueue := empty 
while 

inqueue =1= empty 
do 

top(a) := end(inqueue) 
od 
while 

a =1= empty 
do 

end(outqueue) := top(a) 
od 

corp 

To limit complexity and enhance readability, a large POL program can 
be organized not as a single procedure, but rather as a hierarchy of smaller 
procedures called segments. Segments are referenced in the hierarchy by rIDJ 
statements that appear in a procedure to invoke other named procedures, 
which themselves may contain additional rIDJ statements. For readability, 
segments should be limited to a quantity of text that can be easily com
prehended, usually a page or less, say 10 to 50 lines or so. Parameter lists are 
attached to run statements, and corresponding parameter lists attached to 
proc keywords, to specify data items passed from a job to a procedure or 
between procedures. In a programming language implementation, a run 
statement can be converted into either a call (to a closed subroutine) or 
in-line code (possibly by "include" or "copy" facilities), depending on 
efficiency matters. A call makes better use of space, in-line code makes better 
use of time. 

Similarly, although data structures can be declared within jobs or 
procedures, extensive collections of data can be defined in a separate data 
declaration segment, listed between keywords data and atad with a name 
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following data. The data declaration is then referenced by the statement "use 

name" within the corresponding job or procedure. A large data declaration 

can likewise be organized as a hierarchy of declaration segments by means of 
"use name" statements to specify inclusion of other declarations, which 

themselves are delimited by data and atad and possibly contain additional 
use statements. 

All data referenced within a PDL segment must be explicitly declared. 
Data structures named in a parameter list to be passed between procedures 
can be declared in a data segment that is then used by both procedures. In 

this case, data structures that are referenced by one of the procedures but 
that do not appear in the parameter list must not be present in the shared 
declaration. 

Next, we distinguish between data structures appearing in the pa
rameter list of a procedure, called passed data, and all other data structures 
declared in a procedure, called local data. The results of operations on 
passed data correspond to the function of the procedure, whereas local data 
operations are incidental to a particular implementation of that function. 

Data passed to or from ajob is called external data and is shown as a list 
of data names following the job name. For example, the job shown above 
could be augmented as 

job printreverse(inqueue, out queue ) 
queue inqueue, outqueue 
run reverse ( inqueue, out queue ) 

boj 

to define inqueue and outqueue as external data with respect to the job print
reverse, and passed data with respect to the procedure reverse. An outside 
agent is required to supply or remove external data, for example, in card or 
tape input, or in tape or print output. 

Data that is not external is called internal data. Such data is passed 
by being named in a parameter list attached to a run statement and is named 
(or renamed) in a corresponding parameter list attached to the invoked 
procedure. For example, for the run statement 

run squareroot(root, number, bound) 

the following parameter lists correspond; the first uses the identical names, 
the second renames the data items : 

proc squareroot(root, number, bound) 
proc squareroot(r, n, error) 
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Data passed to or from a procedure and external data passed to or from 
a job can be further characterized as alterable data or fixed data, by the . . 
keywords alt and fix. Alterable data can be changed in an invoked segment ;  
fixed data cannot be  changed.t Alterable and fixed data usage categories are 
m�ed to partition parameter lists, for better readability and control of the 
design process. For example, 

run squareroot(alt root, fix number, bound) 
proc squareroot(alt root, fix number, bound) 

The following miniature segment-structured program reads a sequence 
of integers and prints a 0 or 1 for each, depending on whether the integer is 
even or odd. Sequences in and out are external to the job segment ; they are 
passed data for the oddeven procedure, which also defines x as local data 
since it is required in the design of the odd even function. In the invocation of 
the procedures positive and nonpositive, x is treated as alterable passed data: 

job oddeven (in, out) 
sequence in, out 
run oddeven(alt out, fix in) 

boj 

proc oddeven(alt output, fix input) 
sequence input, output 
scalar x 
while 

input =1= empty 
do 

od 
corp 

x := next(input) 
if 

x > O 
then 

run positive(alt x) 
else 

run nonpositive(alt x) 
fi 
next(output) x 

t It is possible to alter and restore the values of data specified as fixed, provided 
that the restoration is verified to be correct. 
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proc positive(alt x) 
scalar x 
while 

do 

od 
corp 

x > l 

X := x  - 2 

proc nonpositive(alt x) 
scalar x 
while 

do 

od 
corp 

x < O  

X := x + 2 

Outer Syntax System Structu res 

3.5 .2 Systems and Modules 
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Jobs and procedures describe data processing that, despite the operations on 
internal data, result ultimately in visible operations on external data. 
However, data processing systems ordinarily require the permanent storage 
of data between job executions as an integral part of their service to users. 
For this reason, we identify a third class of data, called stored data, as a 
subclass of internal data, and as the name implies, it is to be retained for use 
in subsequent job execution. For example, the files of a text processing 
system will be maintained as stored data. A job executed in this system will 
involve external data (input/output of the job), internal data (temporary 
working data), and stored data (the updated files). A typical data processing 
system will be made up of several programs, say for text entry, text retrieval, 
file maintenance, recovery and restart, and so on. Each job executed in such 
a system will call on programs of the system and convert input data into 
output data and a new state of stored data. In short, by regarding the job 
itself as part of the input, such a data processing system can be seen to 
behave as a finite state machine. 

In contrast with a large and complex data processing system, a collec
tion of service routines for dealing with a data object such as a directory or a 
disk file can be put into the same logical form, but on a smaller scale. For 
example, the services of a directory may be defined in separate programs to 
add members, delete members, find members, reclaim free space, and so on. 
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These programs, together with the directory, also behave as a finite state 
machine, under calls by other programs rather than by user jobs. 

On a scale intermediate to these two examples, the mass storage subsys
tem of the text processing system can (possibly) be accessed through a small 
set of programs to put data, get data, recover space, and so on. These 
programs could call on the directory programs and be called on by the text 
proCessing system. 

This model of a small set of programs providing service to a data object 
is a powerful one for organizing programs and data into data processing · 
systems. For this reason, we define a PDL module to be a named collection 
of programs, datasets, and other modules by the syntax 

mod name 
programs program name list 
datasets data name list 
modules module name list 

dom 

The module definition implies that data segments named after datasets are 
to be stored data and that access to this stored data is to be limited to the 
named programs. The named programs of a module can also define and 
refer to other internal and external data, as described before, and may call on 
services of the named modules through their programs, as identified in their · 
corresponding module definitions. 

It is evident that the text processing system, the mass storage subsystem, 
and the directory services outlined above can each be described and or
ganized together in this module syntax : 

mod textprocessor 
programs textentry, textretrieval, filemaintenance, 

recovery, restart, . .  . 
datasets systemdata, . .  . 
modules mass storage, . .  . 

dom 

mod massstorage 
programs getdata, putdata, recoverspace, . . .  
datasets textfiles, archives, checkpoint, . . .  
modules directoryservices, . . .  

dom 
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mod directoryservices 
programs addmember, deletemember, findmember, . . . 
datasets directoryfiles, . . . 

dom 
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(POL jobs would be used to invoke the programs of the textprocessor 

module. )  Such a data processing system could have been described in poorly 

organized, difficult to understand form, as a single module. But it has been 

described here in better organized, more easily understood form, as a collec

tion of interconnected modules that define system structure by higher and 
higher level operations on data. In fact, the term data abstraction is used to 
describe the idea of a data object that can be accessed only by a prescribed 
set of operations. In this case, the actual representation of the data object is 
immaterial to the user since the data is only manifested through the 
operations. 

3. 6  I N N ER SYNTAX 

3.6.1 Inner Syntax Expressi ons 

The purpose of inner syntax in POL is to allow flexible, yet precise, data 
operations and tests at any point in program design, that are appropriate for 
the subject matter, design level, and audience. Oata operations drawn from 
arithmetic, logic, and character processing, and data objects found in high 
level programming languages, such as character strings, numbers, and logical 
values, are usefuL We use ordinary conventions in this book, denoting 
character strings by quotes, numbers in integer or real form, and logical 
values by POL keywords true or false. Oata names are (unquoted) alpha
numeric strings headed by an alphabetic character. 

As described in Chapter 2, logical expressions may be written using 
logical operators and quantifiers. The following are examples of the use of 
logical expressions as predicates (tests) in POL : 

there exists an unprocessed order (or, 3 unprocessed order) 
successful (or, successful = true) 
(x + y � z + limit) 1\ a ::/=  b 
for all transactions, n = 128 (or, V transactions (n = 128)) 
payfile ::/= empty 

Assignment statements in POL must specify a data expression whose 
evaluation produces a data value for assignment to a specified target 
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identifier. For example : 

Arithmetic operations (a, b, c integers) 

a := a  - 2 
a := (2*b) - (c + 2*a)!factor 
b := b ! 

(factor is a variable name) 
(set b to the factorial of b) 
(set c to the integer part of c) c := int(c) 

String operations (a, b, c strings, x, y integers) 

C := concatenate(a, b)  
or, 

c := a  II b 

c := substring(a, x, y) 

X := index(a, b) 

(c becomes the string formed by 
adjoining string b to string a) 

(c becomes the substring of 
string a that begins at character 
position x and has a 
length of y) 

(starting position of the first 
occurrence of string b in string a, 
if any, is assigned to x, otherwise 
x is assigned 0) 

Ultimately, expressing data operations and tests comes down to finding 
suitable terms for reliable communication, taking into account context 
shared with the intended audience. Informal description of an operation, say 
"sort transaction file," may be suited to a context where the operation is well 
understood or need not be understood in more detail ; where it is not well 
understood, an informal description may raise questions on details not 
specified, such as, in this example, questions on sort key, timing require
ments, and file size. 

3 .6 .2 Data Types 

A data type is a set of objects to which is associated (1 ) a set of operations, (2) 
a set of tests, and (3 ) a convenient symbol set. For example, integer ;;:: 0 is a 
data type with operations + ,  *, tests = ,  > ,  and a symbol set such as dew.mal 
or binary digit strings. A data type specification is denoted by the PDL 
keyword type which identifies a type name with a table of operations and 
tests. For example, a quite arbitrary data type, called "tricolor," could be 
defined with symbol set {red, white, blue}, operation "brighter of," test 
"brighter than," in the PDL type specification as follows : 
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type tricolor defined by 

tricolor tricolor "brighter of" "brighter than" 

red red red false 
red white white false 
red blue red true 
white red white true 
white white white false 
white blue white true 
blue red red false 
blue white white false 
blue blue blue false 

When the data type being specified is very familiar, the table of opera
tions and tests may be given implicitly by a name, or a reference. For 
example, 

type integer ;;::: 0 

implies a table of operations and tests that begins 

integer ;;::: 0 integer ;;::: 0 + * > 

0 0 0 0 true false 
0 1 1 0 false false 
1 0 1 0 false true 
0 2 2 0 false false 
1 1 2 1 true false 
2 0 2 0 false true 

which is well known, and can be described in more compact forms by 
axioms. Such data types of mathematical origin will be referred to frequently 
by their common names. 

There are two kinds of data type specification that warrant special 
treatment due to their convenience-enumerated types and subrange types. 
An enumerated type specification is given by listing the symbol set as 

type weekday = (M, Tu, W, Th, F, Sa, Su) 

with operations and tests implicit in the list form. A subrange type 
specification is given by listing two members of a known ordered set to 
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signify all members from the first member to the second member; for 
example, 

type twenties 
type workday 

where type twenties has members 

(1920 . .  1929) 
(M . .  F) 

1920, 1921 ,  1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929 

and type workday has members 

M, Tu, W, Th, F 

A subrange type inherits the operations and tests of its underlying ordered 
set that apply to the subrange. 

Inner syntax type assignments can be appended to outer syntax data 
structures, as in 

scalar a, b :  integer 

where the colon delimits the data list and integer is an inner syntax data type 
that implies admissible values and operations ; that is, a and b are integer 
values for use in ordinary arithmetic operations. The following examples 
illustrate elementary data types ; in all cases outer syntax keywords are 
boldface and inner syntax words are not : 

scalar a: string(50) 

sequence b, c: string(4) 

set d: logical 

stack e: string 

queue f, g :  integer � 0 

array h :  logical 

(a is a string of length 50) 
(each member of b and c is a 
string of length 4) 
(each member of d takes on 
only values true or false) 

(each member of e is a 
string of unspecified length) 

(each member off and g is a 
nonnegative integer) 

(each member of h takes on 
only values true or false) 

record k :  logical, (string, integer) (k is a record with k. 1 logical, 
k .2 . 1 string, and k .2 .2 integer) 
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record student 
1 name : nametype 
2 address 
2. 1 street : streettype 
2 .2  city : citytype 
2. 3 state : statetype 
3 class : c1asstype 

Inner Syntax 

(student is a record with 
typed members student. name, 
student .address.street, 
student . address. city, 
studenLaddress. state, and 
student . class) 

89 

That is, a type specification applies to every member of a structure, unless 
otherwise stated. 

At higher levels of design, other data types may be introduced as the 
need arises. In particular, high-level data types can be as useful in problem 
solving and program design as are high-level program structures. For exam
ple, "chess board" and '''chess move" may be data types that permit tests 
such as "black checkmate" and "white checkmate," and operations such as 
"chess board" + "chess move" ( = new "chess board" or "illegal move"). 
Such tests and operations could be implemented with corresponding module 
definitions as before. 

Even though sets, stacks, and queues have been used as outer syntax 
data structures, they can be regarded as data types independently if useful 
in a design problem. That is, sets may be regarded either as objects that 
contain other objects (as defined by set membership) or as objects in an 
algebra of sets (in which the concept of set membership plays no role at all). 
The first view corresponds to a data structure in which members can be 
stored and retrieved ; the second view corresponds to a data type that 
permits set operations and tests. For example, a set data type would permit 
the use of complex set expressions in assignments, tests, and procedure 
arguments. 
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4 
Structured 

Programs 

In Chapter 3 a small, closed set of PDL control structures was defined. But a 
general branching (GOTO) statement that allows the construction of arbi
trarily complex control structures was not defined. The omission of such 
structures is justified by the Structure Theorem, which shows that the effect 
on data of any arbitrarily complex control structure can be accomplished by 
use of the PDL control structures alone. The Structure Theorem proof 
construction permits systematic transformation of programs expressed in 
these arbitrarily complex control structures into equivalent programs ex
pressed in the PDL control structures. In order to make these ideas precise, 
this chapter introduces three fundamental concepts : proper programs, prime 
programs, and programfunctions.t Proper programs have one entry and one 
exit, and include PDL programs; their effect on data can be summarized at 
both the entry and the exit. Prime programs are proper programs that are 
irreducible in a certain sense discussed below, and include the PDL control 
structures. Program functions are precise and comprehensive statements of 
the effect of a proper program on data, from an initial data state at entry to a 
final data state at exit. Program functions are of fundamental importance in 
program reading, writing, and correctness validation, as described in sub
sequent chapters. 

t The concept of prime programs is due to Roy A. Maddux, "A Study of Computer 
Program Structure," Ph.D. Thesis, University of Waterloo, Ontario, Canada, 1975. 
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4.2 PROG RAM EXECUTIO N  

4.2.1 Flowchart Programs 

Aflowchart is a directed graph that depicts the flow of execution control of 
program and the instructions to be executed. Each instruction of a nrr .. nr·'.lI ....... ' 
corresponds to a node in the flowchart; each possible flow of control corre
sponds to a line. If an instruction node has more than one out-line, it is 
control instruction. If the execution of a control instruction affects no 
except an instruction counter, it is a pure control instruction ; otherwise 
control instruction has side effects that change data values. (Note that if 
real-time clock is part of the data, then no pure control instructions 
Isolation of side effects permits better human understanding of pro 
Side effects can be useful in control instructions-for example, in 100lPlIlll!' 
(decrement and branch), in subroutine linkages (branch and link return), 
implementing push down stacks-but we do not pursue those ideas f 
here. 

If a flowchart node has a single in-line and single out-line, it is called 
function node 

where a function named f is associated with the node, typically an assign
ment instruction. The term function node is especially appropriate since 
assignment instruction can be represented entirely by a mathematical func
tion in its effect on data. 

If a flowchart node has a single in-line and two out-lines and is a pure 
control instruction, it is called a predicate node 

where a predicate named p is associated with the node. A predicate node ' 

directs the flow of execution control according to whether the predicate 
evaluates to true or false (T or F); it does not affect the data of a program 
otherwise. In this book, where labels T and F do not appear with a predicate 
node, the true out-line will always be drawn above the false out-line. 

It is convenient to introduce one more node with a "no-op" instruction 
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that does not change or evaluate data, with two in-lines and one out-line, 
called a collecting node : 

In fact, a flowchart may join more than two in-lines at an instruction, but 
any number of in-lines can be depicted by a structure of multiple collecting 
nodes : 

The control structure of a flowchart preserves the ordering of function 
nodes, predicate nodes, and collecting nodes, but ignores the identity of 
associated functions, predicates, and predicate values. The flowchart shown 
in Fig. 4. 1 ,  with predicates named p and q and functions named g and h, has 
a control structure depicted by, say, either of the diagrams in Fig. 4.2. We 
note in passing that a control structure has a natural dual obtained by 
reversing each line and interchanging the roles of predicate and collecting 
nodes. 

Figure 4.1 
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Figure 4.2 

4 .2 .2 Proper Prog rams 

A proper program is  a program with a contro) structure that 

1 . has a single entry line and a single exit line, and 

2. for each node, has a path through that node from the entry line to the 
exit line. 

Condition 2 outlaws control structures such as those shown in Fig. 4.3 that 
have unleavable node sets (left) and unreachable node sets (right). 

Figure 4.3 

A proper program can be abstracted into a single -function node for 
better human understanding. The function node summarizes the total effect 
of the data operations and tests of the proper program it represents. For 
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example, the proper program 

can be redescribed as 

where 

-D-- abstracts the proper program 

and 

-D-- abstracts the proper program 
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The reduced proper program 

can then be abstracted to a single function node: 

Conversely, any function node of a program can be expanded into a 
proper program without affecting the function of other parts of the program. 
For example, the function node just above could be expanded to, say 

--------------, 
I k , 
I 9 I 
I I 

I 
I I 
I I 
L _ _ _ _ _ _ __ _ _ _ _  J 

and g and h could be expanded to, say 

r----------------------------, 
I k r:--------------------, I 
I I 9 I I 
I I b I I 
, I I I 
I I I I 

I I 
I I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
L _ _ _ _ _ _ __ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ __ _ _  � 
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The parts of a program that are themselves proper are called proper subpro

grams. The proper subprograms of program k are g, h, a, b, c, and d. Predi

cates p, q, s, and t are not proper subprograms by themselves because they 

each have two out-lines. 

4.2 .3 Execution Charts a nd Trees 

We will see that any proper program with arbitrary control structure can be 
expressed as an equivalent program composed of only a subset of the PDL 
control structures. This motivates a closer look at the concept of program 
equivalence. In preparation, we now introduce execution charts and execu

tion trees, and the fundamental concept of program functions. 
A flowchart program defines execution sequences along paths and 

cycles. These execution sequences can often be better understood in terms of 
a finite tree called an execution chart (E-chart). Given a proper flowchart, we 
construct its E-chart of nodes and lines in a stepwise manner as follows : 

1. Start the E-chart with the entry line of the flowchart and its adjacent 
predicate, function, or collecting node. 

2. At each step of construction, consider each execution path (a directed 
path of lines and nodes adjoined to the entry line) in the evolving 
E-chart. If an execution path currently terminates in a function, predi
cate, or collecting node not found earlier in that specific path, adjoin all 
of that node's out-lines (from the flowchart) and the nodes with which 
those out-lines connect, if any, to the execution path. 

3. When all execution paths terminate in exit lines or in nodes that 
previously appeared on the path, the E-chart is complete. 

It is clear that this procedure terminates with a finite tree since each path will 
eventually exhaust the nodes of the flowchart. For example, for the flowchart 
shown in Fig. 4.4 (with numbered collecting nodes) the above procedure 
generates the E-chart shown in Fig. 4.5. 

The execution of a flowchart is given by executions along paths of its 
E-chart, with the added rule that control passes from a repeated end node 
back to its initial occurrence on that path. It is clear that a flowchart is loop 
free if and only if its E-chart has no repeated nodes as execution path end 
points. It is also clear that all occurrences of collecting nodes except those 
appearing as repeated points on a path can be suppressed ; for example, the 
E-chart in Fig. 4.5 can be simplified as illustrated in Fig. 4.6, where only 
collecting node 2 has been retained. 

An execution tree (E-tree) of a flowchart program is a tree whose paths 
depict all possible execution sequences of the flowchart without retracing. If 
loops are not present in the flowchart, then the corresponding finite E-chart 
is the E-tree. If loops are present in a flowchart, the E-tree is the infinite tree 
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Figu re 4.4 

Figure 4.5 

Figu re 4.6 
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obtained by repeatedly replacing each repeated node by the subtree begin
ning at the first occurrence of that node earlier in the path. As a final 
simplification, the first occurrence of each repeated node can itself be sup

pressed. For example, the flowchart 

has the E-chart 

that expands to the E-tree (with collecting nodes suppressed) : 
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EX E RCISES 

1 .  Which of the following programs are proper? 

a) 

b) 

-{ 
c) 

d) 



e) 

Exercises 1 01 

2. Enumerate the proper subprograms with more than one node in the following 

program : 

3. Given a proper program with exactly 4> function nodes, 7l predicate nodes, y 
collecting nodes, and A. lines, show that 7l = Y and A. = 4> + 371 + 1. (Hint : Count 
heads and tails of lines and equate them.) 

4. Enumerate the 1 6  distinct control structures for proper programs with two 
predicate nodes and no function nodes. (Hint : Two such control structures are 

and 

These control structures are distinct, since the collector nodes may not be inter
changed.) Eight of the control structures are type CP; that is, entry is to a collector 
node (C), exit is from a predicate node (P). Similarly, two are type CC, two are type 
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PP, and four are type Pc. How many of the 16 are direct combinations of one
predicate control structures? Identify the 10 control structures of the 16 that are their 
own duals. 

5. Show that the dual of a control structure with unleavable node sets has unreach
able node sets, and, conversely. 

4 . 3  P R O G RAM F U N CTI O N S  

4 . 3 . 1  Data :Assign ment 

The assignment statement can be regarded as a program in its own right that 
transforms an initial data state into a final data state in a particularly simple 
way. All data not listed on the left side is to remain unchanged ; the right side 

gives the rule for calculating the new value(s) for the data item(s) on the left 
side. When embedded in a larger program, the assignment statement re
mains well behaved ; it does not change data of the larger program that it 
does not know about. 

However, in developing the concept of assignment statements at the 
design level, in PDL, the behavior of assignment statements at the im
plementation level in language compilers and machines is instructive. At the 
compiler and machine level, assignment statements can fail to execute for 
various reasons-type incompatibility (assigning a character to integer 
data), arithmetic overflow (dividing by zero), structure incompatibility 
(assigning an array to a scalar), and so forth. At the design level, assignment 
statements can be used to bridge these type, finiteness, and structural prQb
lems, which are then properly handled at more detailed levels. And yet, even 
at the design level, assignment statements must be specified with precision, 
even though with flexibility. 

This precision, yet flexibility, can be achieved by a simple but fundamen
tal step. It is to understand the assignment statement as the name of a 
function that defines a state transition for all data known to the program 
containing it. The domain of the function corresponds to the initial data 
states that are transformed by the assignment statement into final data states. 
For example, in a program with data space x, y, z the assignment 

x := y 

corresponds to an assignment junction, that is, a set of ordered pairs of the 
form 

{((x, y, z), (u, v, w)) I u = Y 1\ V = Y 1\ W = z} 

more easily written as 

{((x, y, z), (y, y, z))} 
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There may be additional conditions that limit the function. For example, if 

Y z are declared as data type integer ;;::: 0, then the function x := y should x, ' be amended to 

{((x, y, z), (y, y, z)) I x ;;::: 0 1\ Y ;;::: 0 1\ Z ;;::: O} 

As an alternative, a conditional rule can name the function : 

(x ;;::: 0 1\ Y ;;::: 0 1\ Z ;;::: 0 ....., X := y) 

Before proceeding to more complex assignments, however, note that the 

letters x, y, z have quite different meanings on the two sides of the equation 
(x I:::: y shown in parentheses for readability) 

(x := y) = {((x, y, z), (y, y, z))} 

In the function name "x := y", x and y refer to names of data known to a 
program ; on the right side, x, y, z are names of values of data. For example, 
given a data space (x, y, z) (meaning x is first, y second, z third) the definition 

(x := y) = {((u, v, w), (v, v, w))} 

defines the same assignment statement as before, as does 

(x := y) = {((y, z, x), (z, z, x))} 

In this context, assignments always map one data state into another, in 
which the names used in assignments refer to ordinal positions in the corre
sponding data space. 

Next, consider for scalars x, y, z with data type integer ;;::: 0, the 
assignment 

x y - z 

In this case, the assignment function is 

(x := y z) = {((x, y, z ), (y - z, y, z)) I x ;;::: 0 1\ Y ;;::: 0 1\ Z ;;::: 0 1\ Y - z ;;::: O} 

That is, x must be nonnegative before and after the assignment. In particu
lar, the function has no argument for which y < z. As defined, this assign
ment fails when y < z, just as real assignments fail when executing on a 
machine. In this way, a function definition permits flexibility for design, but 
also permits any degree of precision required in dealing with implementa
tion questions. 

Assignments may use functions in their definition, but these should not 
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be confused with the assignment function itself. For example 

x max(y, z) 

makes use of a max function defined as, say 

max = {((y, z), (u)) I (y ;:::: z /\ u = y) v (z ;:::: Y /\ U z)} 

but the assignment function is 

(x := max(y, z)) = {((x, y, z), (max(y, z), y, z))} 

which accounts for values of y, z, as well. 
Assignments to arrays using variable indexes provide a reminder that 

the indexes are part of the data state, as are the array members. For example, 
if x is a 3-list x( l :  3 )  (that is, an array of 3 elements), the multiple assignment 

i, x (i + 1 ) := x(i), i + x(i + 1 )  

is the name of a state transition function involving at least a 4-list 

(i, x(l ), x(2), x(3 )) 

which includes the index. The complete expression of the assignment above 
is therefore given by the conditional rule 

(i = 1 - d, x(2) := x(l ), 1 + x(2) 1 i = 2 -+ i, x(3 ) := x(2), 2 + x(3 )) 

(Since x(i + 1 )  is not defined for i > 2, the assignment function is undefined 
for any initial i not 1 or 2. )  In this case, the idea of an assignment function 
captures the correct use of assignment to arrays. 

4.3.2 Program Effects on Data 

An execution of a program may terminate (reach an end point) in its execu
tion tree, and possibly every execution will terminate, even though the 
execution tree is itself infinite. Consider all possible executions defined by an 
execution tree. For each initial data state X for which execution terminates, 
a final data state Y is determined.t The value Y is unique, given X, so that 
the set of all ordered pairs {(X, Y)} so defined is a function. We call this 
function the program/unction of a program. Thus, in particular, the program 
function of a single assignment statement is exactly the function that the 
assignment names, as discussed above. 

t In this book, upper-case letters denote data states, lower-case letters denote data 
variables. 
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Given a proper program named P, we denote its program function by 
[P] (read "brac�et P"). By definition then, a program P composed of an 

individual functIOn node f = {(X, Y)} 

has program function 

x y 
I I 
I I 
I I 

P �

-L[J-L 

[P] = {(X, Y) I Y = f(X)} 

A sequence of two functions 

p 

z 
I 
I 
, 
I 

where g = {(X, Y)}, h = {( Y, Z)}, has as its program function the composi
tion of the individual functions : 

[P] = {(X, Z)  I Z = h(g(X))} 

The program function of a loop-free program can be described as a 
union of function compositions that can be derived directly from its finite 
E-tree. Each predicate on a path, composed with earlier functions, defines a 
necessary and sufficient condition for continuing on each branch of the path ; 
the composition of all functions on the path gives the part of the program 
function corresponding to that path. For example, consider the flowchart 
program shown in Fig. 4.7. The E-chart, with end points labeled ( 1 )  to (5), is 

p =  

Figure 4.7 
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Figure 4.8 

(2 )  

shown in Fig. 4.8. The program function is thus a union of five function . 
compositions, each of whose domain and values are defined by a path 
through the E-chart ; namely, 

(1 ) {(X, Y) I p(X) /\ q(f(X)) /\ Y = g(f(X))} 

(2) { (X, Y) l p(X) /\ "' q(f(X)) /\ r(h (f(X))) /\ Y g (h(f(X)))} 

(3 ) { (X, Y) I p(X) /\ "' q(f(X)) /\ '" r(h (f(X))) /\ Y = h (f(X))} 

(4) {(X, Y) I '"  p(X) /\ r(h(X)) /\ Y = g(h(X))} 

(5) {(X, Y) I '" p(X) /\ '" r(h(X)) /\ Y = h(X)} 

This program function can also be defined as a conditional rule : 

[P] { (X, Y) I (P(X) /\ q 0 f(X) -+ Y g 0 f(X) I 

p(X) /\ ", q o f(X) /\ r o h  f(X) -+ Y = g o h  f(X) I 

p(X) /\ "' q  f(X) /\ '" r h o f(X) -+ Y = h f(X) I 

'" p(X) /\ r h(X) -+ Y = g 0 h(X)  I 

'" p(X) /\ '" r 0 h(X) -+ Y = h(X))} 

The program function of a looping program can be characterized by a 
number offunction equations in a like number of functions. In particular, for 
each repeated collecting node j in the E-chart of the program, define a 
functionfj. Eachfj defines the function of all nodes traversed in the E-chart 
from the first occurrence of collecting node j. Then, replacing each repeated 
collecting node with the corresponding function, we obtain a loop-free 
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Figure 4.9 

Figure 4.1 0 

Program Fu nctions 1 07 

E-chart, as shown above for loop-free programs, except that the final func
tion in each composition on a path may be one of the functions to be 
determined. 

For example, the flowchart program P shown in Fig. 4.9 has an E-chart 
as shown in Fig. 4. 10. To characterize the program function of P, associate 
11, /2, /3 with collecting nodes 1, 2, 3 as shown in Fig. 4. 1 1 .  Then 
/1, /2, /3 satisfy the following function equations, which can be written 
out by inspection, in following paths of the E-chart : 

/1 = {(X, Y) I Y = /2 0 gl(X)} 

/2 = {(X, Y) I (pl 0 g3(X) � Y = /1  0 g2 0 g3(X) I 

'" pi 0 g3(X) � Y = /3 0 g3(X))} 
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Figure 4.1 1 

/3 = {(X, Y) I (p2(X) A p3(X) � Y = /3 0 g5(X) I 

p2(X) A '" p3 (X) � Y = X I 
'" p2(X) � Y 0 g4(X))} 

If this system of equations can be solved, then the program function of P is 

[P] 

To illustrate program functions in PDL, consider the following pro
grams (all data items are integers). Program functions are given by sets of 
ordered pairs and by data assignments (within conditional rules where 
necessary ) : 

a) [x := x + y; y := x  - y] = {((x, y), (x + y, x))} 
= (x, y := x  + y, x) 

b) [if x > y then x := y 6] = {((x, y), (min(x, y), y))} 

= (x min(x, y)) 

4.3 
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c) [while x > ° do x := x - I 00] = {(x, min (O, x))} 
= (x := min (O, x)) 

d) [while x =1= ° do x := x - 1 00] = {(x, O) l x  � O} 
= (x � 0 -+  X := 0) 

e) [do x := X + 1 until x > y 00] = {((x, y), (max (x + 1 , y + 1 ), y))} 
= (x := max(x + 1, y + 1 )) 

f) [do x := X + 1 until x =1= y 00] = {((x, y), (x + 1 , y)) I x =1= y - I} 

u {((x, y), (y + 1 ,  y)) l x = y - I} 
= (x =1= y - 1 -+ x := X + 1 1  

x = y - 1 -+ x := y + 1 )  

1 09  

Note how a slight change in a whiletest or untiltest can change the program 
function. In (d), the whiledo does not terminate for x < 0, hence the domain 
is restricted to x � 0. 

4.3.3 Program Equival ence 

The concept of program equivalence is important in simplifying control 
structures for better understanding, as we will demonstrate in the Structure 
Theorem. We now define two types of program equivalence. If two programs 
have the same execution tree, they are execution equivalent; if they have the 
same program function, they are function equivalent. For example, the 
programs 

and 

are execution equivalent, while the programs 

and 
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are function equivalent, but not execution equivalent. Execution equivalence 
implies function equivalence, but not conversely. 

EXE RCISES 

I. Verify the assertions above about the examples of function equivalence and 
execution equivalence, by expanding their E-charts into execution trees and compar
ing them. 
2. Using E-trees, verify that the following pairs are execution equivalent : 

a) (do g until p -od) and (g ; while '" p do g 00) 
b) (dol g while p do2 h 00) and (g; while p do h ;  g 00) 

3. Construct program functions for the following programs : 

a) 

b) 

p 
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4. Given the following programs (x and y nonnegative integers), compare program 

p with programs Q, R, S, T, and U, and indicate whether each pair is execution 
equivalent, function equivalent, or neither : 

p == while 
y > O  

do 

od 

X := x - 1 
y := y - 1 

Q = (x, y := x - y, 0) 

R = if 
y > O  

then 

fi 

x := x - 1 
y := y - 1 
while 

y > O  
do 

X := x - 1 
y := y - 1 

od 

S = if 
y > O  

then 

fi 

x := x - 1 
y := y - 1 
x, y := x - y, 0 

T =  if 
y > O  

then 

fi 

x := x - 1 
y := y - 1 

x, y := x - y, 0 

U = if 
y > O  

then 

fi 

do 
X := x - 1 
y := y - 1 

until 
y � O  

od 

5. Determine the program function of the following programs (x, y, a, b non
negative integers ; use conditional rules to define domains such that the programs 
terminate) : 

P = while 
x � b  

do 
X := x + a 

od 

R = do 
X := x + a 

until 
x > b  

od 

Q = while 
x =/= b  

do 
X := x + a 

od 

S = do 
X := x + a 

until 
x = b  

od 
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T = dol 
X := x + a 

while 
x � b 

do2 
X := x + a 

od 

U = dol 
x x + a 

while 
x =/= b  

do2 

od 
x x + a  

4.4 PROG RAM STR U CTU R ES 

4.4.1 Prime Prog rams 

A proper program may contain parts that are themselves proper. As defined 
earlier, such parts are called proper subprograms. A prime program is a proper 
program that has no proper subprogram of more than one node. For exam
ple, programs with control structure as shown in the left column ih Fig. 4. 12 
are prime, while programs with control structure as shown in the right 
column are proper but not prime ; that is, the first figure in the right column 
has a proper subprogram of more than one node, namely, 

as does the second, 

and the third : 

There is an infinite number of prime control structures, as Fig. 4.13 shows. 
Proper programs can be enumerated by the number of their nodes and 

classified as prime or not prime. The control structures of prime programs 
composed of 1, 2, 3, and 4 nodes are enumerated in Fig. 4.14. Of these 1 5  
primes with up  to  four nodes, only seven have one or  more function nodes 
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Prime Not Prime 

-0-0-

Figure 4.1 2  

Figure 4.1 3 
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1 node 

2 nodes 

3 nodes 

4 nodes 

Figu re 4.1 4 



4.4 Program St. uctu res 1 1 5  

(and can thereby operate on data). These seven are given specific names 
below ;  they correspond to the control structures of PDL, as shown.t 

function f 

sequence g ; h 

if then if p then g fi 

whiledo while p do g od 

dountil do g until p od 

ifthenelse if p then g else h fi 

dowhiledo dol g while p do2 h od 

t The PDL extended sequence structure (sequence of more than two parts) and fordo 
and case structures (abbreviations for uniform sequences and multiple ifthenelses, 
respectively) do not appear in the following enumeration; however, we will find it 
convenient to treat them as special proper programs in the remainder of the book. 
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The program functions of these primes are readily derived from 
functions and predicates, as shown next, where superscripts on g are 
terpreted as follows : 

for k = 1, 2, . . .  

The program functions aret 

[I] = /  

[g ; h] = {(X, Y) I Y h 0 g(X)} 
[if p then g 6] {(X, Y) I (p(X) 1\ Y = g(X)) 

v ('" p(X) 1\ Y = X)} 
[while p do g od] = {(X, Y) 1 3k 2 O((Vj, 0 � j  < k)(p gi(X)) 

1\ '" P 0 gk(X) 

1\ Y = gk(X))} 

(In the outer quantified expression, the loop terminates after k l'tl eraltlons .. 
with predicate p testing true for k 1 iterations, then /alse. Note that if 
domain of j is empty, the inner quantified expression is vacuously true.) 

[do g until p od] = {(X, Y) 1 3k > O((Vj, 1 � j < k)( '" p gi(X)) 

1\ P gk(X) 

1\ Y = gk(X))} 

(The loop terminates after k iterations. ) 

[if p then g else h 6] = {(X, Y) I (p(X) 1\ Y = g(X)) 

v ( '"  p(X) 1\ Y = h(X))} 

[dol g while p do2 h od] = {(X, Y) 1 3k 2 O((Vj, 0 � j  < k)(p 

1\ '" P 0 g (h g )"(X) 

1\ Y = g 0 (h g)"(X))} 

(The loop terminates after k iterations. ) 

t These program functions can be written in an alternate form as, for example, 

[if p then 9 else h ti] {(X, Y) I (p(X) - Y = g(X) 
1\ '" p(X) - Y = h(X» } 
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Fig ure 4.1 5 

The program functions for the looping programs above are somewhat 
tedious to describe, but can also be visualized in terms of their E-trees. For 
example, the E-tree for dol g while p do2 h od is shown in Fig. 4. 15, and its 
program function is the union of the subfunctions defined by each terminat
ing path. The beginning sequence of subfunctions is shown in Fig. 4. 16. 

Figure 4.1 6 
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4 .4.2 Com pound Programs 

If a function node of a prime program is replaced by another prime program, 
a new proper program results. We define a compound program to be any 
program obtained by replacing function nodes of a prime program by prime 
programs. As a special case, prime programs are considered compound 
programs themselves. 

Compound programs can be defined with arbitrary size but limited 
complexity by restricting the prime programs used to a fixed set of primes 
called a basis set. Any basis set of prime programs generates a specific class · ,  
of compound programs, a subset of all possible proper programs. For exam
ple, the set {sequence, ifthenelse} generates a class of loop-free programs and 
the set {ifthenelse, whiledo} generates a class of programs whose execution · 
trees contain at most one distinct function node (possibly repeated) along 
any path. Some ofthese classes of compound programs are subsets of others; 
for example, the set {sequence, dountil} generates a subset of the programs ' 
generated by the set {sequence, ifthen, whiledo}. 

Definition. A structured program is a compound program constructed 
from a fixed basis set of prime programs. 

4.4.3 The Struct u re Theo rem 

The motivation for studying compound programs is the fact that any proper 
program, no matter how large or complex, can be simulated in its step-by
step execution by a new compound program generated by a small basis set 
of prime programs. One suitable basis set consists of sequence, ifthenelse, 
and whiledo programs. The simulation is accomplished by using the func
tions and predicates of the original program, and assignments to and tests 
on a single new data item, namely, a "program counter." We restate these 
assertions more formally as a theorem : 

Structure Theorem. Any proper program is function equivalent to a 
structured program with basis set {sequence, ifthenelse, whiledo}, using 
functions and predicates of the original program and assignments and 
tests on one additional counter. 

Proof Consider an arbitrary proper program, and arbitrarily number its 
function and predicate nodes 1, 2, . . .  , n, say, beginning with the first such 
node reached from the entry line. (If one or more collecting nodes are 
incident to the entry line, continue along their out-lines until a first function 
or predicate node is reached. ) Number the exit line of the program O. Now, 
attach to each out-line of each function and predicate node the number of 
the (unique) next function or predicate node reached, if any ; otherwise (if the 

4.4 

exit li] 
progn 

constl 

FolIo' 
variat 
each 1 

constl 

J:'I 
of ne 
out-li 
Origil 
inner 
is sh( 

I 
funct 
the b 



4.4 Prog ram Struct u res 1 1 9  

exit line is reached) attach O. Next, for each function node of the original 

program numbered i, say, with function h and out-line assigned j 

construct a new proper sequence program gj (with in-line assigned i ) :  

i _ r-=l _ � _ gi = � 
Following the execution of h, this program assigns the value j to a new label 
variable L (the "program counter") not in the original program. Next, for 
each predicate node numbered i, say 

j 

-4 k 

construct a new proper ifthenelse program gi : 

Now construct an initialized whiledo program, with dopart composed 
of nested ifthenelses testing values of L from 1 to n. Each ifthenelse true 
out-line connects to gi ' which contains a function or predicate node from the 
original program. The program is shown in Fig. 4. 17 (the elsepart of the 
innermost ifthenelse is simply i, the identity function). The program in PDL 
is shown in Fig. 4.1 8. 

It is clear that whatever the structure of the original program, j is 
function equivalent to it ; moreover, j is a structured program generated by 
the basis set {sequence, ifthenelse, whiledo}. This completes the proof. 

\ 
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/ =  L := l or in flo' 
while 

L > O  
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In other branches of mathematics a unique representation is often a 

desirable goal ; this does not seem to be the case in programming. Never

theless, the existence of a representation theorem, t which is what the Struc
ture Theorem is, still permits the resolution of questions of the completeness 
of a programming language simply and effectively. For example, all one 
needs in order to show that a new set of programs will span the set of all 

proper programs is the ability to represent sequence, ifthenelse, and whiledo 

programs in the new set. Thus, to show that the set {sequence, ifthenelse, 

dountil} can likewise represent all proper programs, it is sufficient to express 
the whiledo structure using members of that set. This can be shown in PDL 
text as 

[while p do g 00] = [if p then do g until '" p 00 else I 6] 

or in flowchart form, if 

then 

t The result of the Structure Theorem is similar to the result of representation 
theorems in various branches of mathematics, in which it is shown that all elements 
of a set, or "space," can be represented by combinations of a subset of the space. As 
two examples of representation theorems, three nonplanar vectors span a three
dimensional euclidean space, and the set {sin nx, cos nx I n 0, 1, . . . } spans a wide 
set of functions in the interval (0, 21t)-that is, the set spans a "function space." 
These examples refer to linear combination for representation. In the Structure 
Theorem it is shown that three simple classes of prime programs defined by sequence, 
i fthenelse, and whiledo control structures span the set of all proper programs, using 
substitution of prime programs for function nodes as the only rule of combination. 
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2 

4 

Figure 4.1 9 

Hence sequence, ifthenelse, and dountil are sufficient control structures to 
represent all proper programs as well. 

The constructive proof above permits a flowchart program with any 
arbitrary structure to be translated into a program with basis {sequence, 
ifthenelse, whiledo}. For example, consider the flowchart (Fig. 4. 19) with 
function and predicate nodes and exit line as numbered. The proof construc
tion produces the following new sequence and ifthenelse programs, 

which can be combined into the structured program shown in Fig. 4.20, 
where each node of the original program corresponds to a case evaluation of 
the label variable, L We call such a program a label structure program. 

4 



4.4 Program Structu res 1 23 

Figure 4.20 

4.4.4 Recursion Structu re Programs 

Although structured, the programs produced in the foregoing proof of the 
Structure Theorem may lack clarity and efficiency. To improve on that we 
give a new construction for eliminating unnecessary settings and testings of 
the counter L 

The idea is to replace, for some given j > 0, all assignments L := j by the 
program gj. (Note that for L = 1, the initialization L 1 preceding the 
whiledo must be replaced by gl '  along with any other occurrences of L 1 . )  
Since the value j will thereby never be assigned to L, the test L j can be 
removed from the set of ifthenelses in f One step of this kind leads to a new 
sequence of programs 

where the g's have been renumbered, if necessary. The only barrier to contin
uing this process is a recursive (or self) reference, that is, some g� has in it the 
assignment L := i . In such cases, the assignment L := i cannot be eliminated, 
because replacing L := i by g� reintroduces L i in the text of g;. We there-
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fore can continue substitution as long as possible until either 

1. all assignments to L have been eliminated except L := 0, or 

2. every g� remaining contains an assignment L := i. 

If the program is loop free, then the assignment L := 0 appears on every path, 
and the counter L and whiledo loop can be eliminated as well. What remains 
is a compound pr.ogram that likely exhibits reasonable clarity and execution 

. 

efficiency. 
For example, the label structure program derived above can be 

improved as follows. First, choosing to substitute the program on the L = 4 
path for the L := 4 assignment and to eliminate the L = 4 test, we get the new 
program shown in Fig. 4.21 .  (Note that on this step, programs on any of the 
L 1, L 2, L = 3, or L = 4 paths could have been substituted for the 
corresponding assignment to L) We choose next to substitute the program 
on the L = 3 path for the L := 3 assignment and eliminate the L = 3 test {Fig. 
4.22 � Next, the program on the L = 2 path can be substituted for the L :=  2 
assignment and the L = 2 test can be eliminated (Fig. 4.23 ). Finally, we 
observe that the L := 1 assignment and the L = 1 test within the loop are 
unnecessary, since L is initialized to 1 and becomes 0 only on exit ;  thus both 
can be eliminated to get a final structured program (Fig. 4.24) that exhibits 
more clarity and efficiency. We call such a program a recursion structure 
program. Note that it may be possible to translate a given label structure 

Figure 4.21 

4.4 
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Figu re 4.24 

program into a number of different function equivalent, but not execution 
equivalent, recursion structure programs, depending on the order in which 
substitutions are made. 

EXE R CI S ES 

1. Show that two distinct prime programs of a common program, with at least one 
predicate between them, are disjoint. 

2. Show that there are 30 prime programs with 5 nodes. (Recall the 16 control 
structures with two predicate nodes and no function nodes from the exercise in 
Section 4.2. ) 

3. Carry out the construction of the Structure Theorem to produce label structure 
programs and then recursion structure programs for the following flowcharts : 

a) 

b) 

c) 
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d) 

e) 

4. Show that the improved construction of a recursion structure program can be 
continued, even when some gj contains the assignment L := i, by 

a ) replacing gj by the program 

when hj is obtained from gj by 

1 )  deleting assignments L := i 

2 )  adding the assignment K := 0 just after each assignment L := j (j =1= i), and 

b ) replacing all assignments L := i outside gj by Gj• 

S. Show that repeated application of the construction of Exercise 4 leads to a 
structured program in which the original loop on counter L is replaced by a nested 
set of loops on new truth values, all of which can be maintained in a single stack. 

4.5 A CASE ST U DY I N  P R O G RAM ST R UCT U R I N G  

4. 5.1 Prime Prog ram Pa rsi ng 

The work required to convert an arbitrary program into a structured pro
gram can often be reduced by recognizing those parts, if any, of the arbitrary 
program that are already structured. Recognition of structured parts can be 
carried out in a completely systematic manner, as described next. 

The hierarchy of prime programs that make up a compound program 
can be found by a prime program parse, the process of repeatedly recognizing 
and replacing a prime program by a new function node, until no prime 
programs remain to be replaced. To expedite the parse, a sequence of any 
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number of function nodes (not just two) can be replaced by a single function 
node. A parse step is defined by a set of parse units that equate named new 
function nodes with the prime programs they represent, and by a reduced 
program made simpler by use of the new function nodes. The last such step 
reduces a final prime to a single function node at the top of the hierarchy
the highest level of control structure abstraction. The flowchart program 
illustrated in Fig. 4.25 parses to a single function node in a series of six parse 
steps (a purely mechanical process, tedious for humans to work through in a 
program of this size) as outlined below. New function nodes in parse units 
are labeled 

--1 identification/node count L---
�,---___ ----,I 

where identification is a number assigned in sequence, beginning with 100 for 
Step 1, 200 for Step 2, and so on, which names the new function, and node 
count is the number of function and predicate nodes from the original 
flowchart abstracted by the new function. Reduced programs corresponding 
to each step are shown in Figs. 4.26 through 4.3 1 .  

Step 1 
Parse units : 

sequence : --1 100/3 � 

sequence: -D-D-- ---1 101 /2 t---

ifthen : ---1 1 0212 t---

dountil : ----1 103/2 r---

sequence: -D---D-- ----1 104/2 r---

4.5 
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Figure 4.25 
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Reduced program : 

Figure 4.26 

4.5 
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Step 2 

parse units : 

ifthenelse : ----1 200/5 � 

dountil : � 10312 k>- ----1 201 /3 r 

whiledo: � 202/3 r 
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Reduced program : 

Step 3 
Parse units : 

if then : 

Figure 4.27 

--1 300/4 
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ifthen : ---1 30 1 /4 � 

Reduced program : 

Figure 4.28 
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Step 4 
Parse units : 

sequence : � 

Reduced program: 

Figure 4.29 

--1 400/5 r--

R 
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Step 5 
parse units : 
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(The prime below is not a POL prime-in fact, it has no standard name, 
so we call it "unnamed !". ) 

unnamed! :  � 500/21 � 

Reduced program: 

Figure 4.30 
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Step 6 
Parse units : 

sequence : � 
Reduced program: 

Figure 4.31 

--1 600/22 � 

Thus, the original program parses to a single function node in six steps. As a 
simple check on correctness, the count value of the final function node . 
should equal the total number of function and predicate nodes in the ori
ginal program-in this case 22 nodes. 

4.5.2 An I m proved Struct u ri ng Techn ique 

As we have seen, the Structure Theorem proof procedure can be used to ' 
convert an arbitrary proper program into a structured program with basis 
{sequence, i fthenelse, whiledo}. Following the conversion, the resulting label ,' 
structure program can be repeatedly simplified until it takes the form of a 
recursion structure program. This process can be improved by preceding the 
initial conversion to label structure with a special prime program parse that 
substitutes individual function nodes for structured portions, if any, of the 
arbitrary program. This reduces the work to be done in the structuring 
process and preserves any parts of the arbitrary program with acceptable 
structure. 

To illustrate, the following primes compose the basis set of the parse just 
completed : 

{sequence, ifthen, ifthenelse, dountil, whiledo, unnamed 1 } 
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Ilowever, a set of basis primes can be defined prior to parsing a program, as 

the only primes eligible to be recognized. In this case, the series of parse steps 

is called a fixed basis parse. For example, given the basis set {sequence, 

ifthen, ifthenelse, dountil, whiledo}, a fixed basis parse of the previous pro

gram would end at Step 4, since Step 5 identified a prime (unnamed 1 ) not in 

the basis set. 

Step 4 
Reduced program : 

Figure 4.32 

At completion of the parse, the new functions (100/3, 200/5, 300/4, 400/5) 
name structured islands in the original program. We now convert this parsed 

-
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Figure 4.33 

program to a label structure program and then to a recursion structure 
program as usual, and finally replace the new function nodes with the 
structured islands they abstract. To begin, we number the functions and 
predicates of the Step 4 program in arbitrary order, and number the exit line 
o (Fig. 4.33 ). The label structure program (shown with a case structure, as a 
simpler way to write nested ifthenelses within the dopart) appears in Fig. 
4.34. We decide against substituting for an L value of 1 outside the dopart, 
and reject L values of 3 and 8, whose multiple occurrences would require 
duplication of structure. This leaves L values of 2, 4, 5, 6, 7, and 9. When 
these substitutions and resulting case eliminations are carried out in tum, 
the recursion structure program is as shown in Fig. 4.35. 

Further substitutions are possible; namely, case 8 for L := 8 in cases 1 
and 3 (creating a recursive reference in case 3), or case 3 for L := 3 in case 8 

4. ! 

(1 
\\ 
4 
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Figure 4.34 

(likewise creating a recursive reference). But we elect to halt substitution 
with the three cases shown. In PD L, the program so far is as shown in Fig. 
4.36. The final program in flowchart form can now be constructed by sub-
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Figure 4.35 

stituting structured islands named by each new function node (Fig. 4. 
To reduce the amount of consecutive PDL text, the final program can 
given as a main segment that runs three segments at the next level, one 
each case (Fig. 4.38). 

The intertwined control logic of the original program has been 
raveled into three distinct structured program parts whose execution is 
trolled by assignments and tests on the label variable. With co]nplex1 
interconnections abstracted out, the functional effect of each 
entry/single exit program part can now be understood independently of the 
others, in a systematic manner. 

4.5 
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proc main 
L := 1  
while 

L > O  
do 

od 
corp 

case 
L 

part( 1 )  
a 
if 

p 
then 

400/5 
L := 8  

else 
L := 3  

fi 
part(3) 

100/3 
if 

q 
then 

200/5 
L := 8  

else 
e 
L :=O  

fi 
part(8) 

if 
w 

then 
300/4 
L := 3  

else 
L := O  

fi 
esae 

Figure 4.36 
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L : = 0 

Figure 4.37 



proc main 
L := l  
while 

L > O  
do 

case 
L 

part(l )  
ru n  caseone 

part(3 ) 
run caseth ree 

part(8) 
run caseeight 

esac 
od 

corp 

proc casethree 
b 
c 

d 
if 

q 
then 

if 
r 

then 

f 
g 

else 
if 

Ii 

s 

then 
h 

Ii 

L := 8  
else 

Ii 
corp 

e 

L := O  

Figure 4.38 

proc caseone 
a 

if 
p 

then 
if 

t 
then 

do 
do 

i 
until 

u 

od 
until 

v 

Ii 
j 

od 

L := 8  
else 

L := 3  
Ii 

corp 

proc caseeight 
if 

w 

then 
if 

y 
then 

while 
x 

do 
k 
I 

od 
Ii 
L := 3 

else 
L := O  

Ii 
corp 



EXE RCISES 

1. Use the following flowchart to complete parts (a) through (f) below. 
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a) Perform a full parse, showing parse units and resulting parsed flowchart for 
each step. 

b) Perform a fixed basis parse against {sequence, i f  then, ifthenelse, dounti� 
whiledo, dowhiledo}. 

c) Diagram any structured islands identified in part (b) as tree structures. 
d) Convert to a label structure program. 
e) Convert to a recursion structure program. 

f )  Reconstruct the final structured program by expanding new function nodes 
according to their structured island parse histories. 
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5.1 OV E RVI EW 

5 
Reading 

Structured 
Programs 

A structured program of any size can be read and understood in a com
pletely systematic manner, by reading and understanding its hierarchy of 
prime programs and their abstractions. The objective of reading prime pro
grams is to discover their program functions. Program functions can be 
recorded in programs to document program design by means of logical 
commentary, which specifies special syntax and meaning for comments at
tached to PDL primes. When combined with the program structuring 
techniques described in the previous chapter, prime program reading and 
logical commentary permit large and complicated programs to be under
stood and documented. In a case study, a PL/I program with arbitrary 
structure and no comments becomes readily understandable after systematic 
structuring, reading, and writing of logical commentary. 

5.2 R EADI N G  F U N DAM E NTALS 

5.2.1 The Idea of Prog ram Read i ng 

The ability to read programs methodically and accurately is.a crucial skill in 
programming. Program reading is the basis for modifying and validating 
programs written by others, for selecting and adapting program designs 
from the literature, and for veri fying the correctness of one's own programs. 
Moreover, just as, say, good writers and engineers learn from critical study 
of the works of other writers and engineers, so too, good programmers 
become more effective through critical study of programs written by others. 

1 47 
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There are two general reasons for reading a program: ( 1 )  the verification 
that a program is correct with respect to a given function, and (2) 
determination of the program function of a program. The verification of 
program constitutes a design review for its correctness. Design reviews 
be used to verify other properties than correctness, such as efficiency 
compatibility with implementation requirements. The determination of 
program function involves a design discovery. Such design discovery is 
difficult part of fixing an unfamiliar program, or finding out how to modify 
in a simple way. 

Given a well-documented program (including the program functions 
its intermediate abstractions), the reading process can generally proceed 
down, from overall design to successively lower levels of detail, using . 
mediate abstractions first as assignment statements in the overall prc.gr�� 
then verifying the correctness of their expansions in later reading. On 
other hand, given a poorly documented program, the reading process 
erally proceeds better bottom up, to discover the intermediate abstracti 
successively at higher levels, by using those already found. 

In either case, however, reading can seldom be strictly top down 
bottom up. In reading the best-documented programs, one needs an 
sional foray into details, if only to understand the context of documen 
that is intended to precede the details. For example, a comment such 
[check for special cases . . .  ] may be ambiguous without a more local frame 
reference, and the program's details may clear that up more easily than 
documentation. And in reading a totally mysterious program, it is useful 
back out of details periodically in order to form overall hypotheses 
guesses that can help fit the details together more easily. 

The process of reading a poorly documented program bottom up . 
called stepwise abstraction. Stepwise abstraction may be required in . 

the verification of correctness or the determination of program function. 
the intended function of a program is given but intermediate at>strac:uc)ns 
are not, then the program function must be determined and compared 
the intended function. If scattered intermediate abstractions are 'given, 
can be used as anchor points, verifying them by stepwise abstraction 
details below them, and using them for higher level verifications. 

5.2.2 The Algebra of Structu red Prog rams 

Our discussion of program reading begins with the following Axiom 
Replacement :  

Let P be a proper subprogram of Q, and let the replacement of P by P' 
within Q result in Q'. Then 

[P] = [PI] � [Q] = [Q'] 
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There are two important implications of this axiom : first, the truth value of 
any proposition involving [Q] is unchanged if P is replaced by P' ; second, 

(viewing P as a function node and P' as its expansion into a prime program) 
prime programs can be abstracted to function nodes, and function nodes can 
be expanded to other prime programs, independently of their surroundings 

in a larger control structure. That is, large structured programs are built up 

from smaller ones, and small structured programs can be used to summarize 

larger ones. The prime program parsing and reconstruction discussed in the 

previous chapter was based on this axiom. In this and the following chap
ters, the same axiom is used to derive principles of program reading, valida
tion, and writing. Thus, in the progression of PDL programs (Fig. 5.1 ), 
program writing is function expansion (e.g., expanding the known function 
named a into the program while p do c od). Program reading, the inverse of 
writing, is function abstraction (e.g., abstracting the known program if q then 
h else i fi into the function d). Program validation is comparing known 
functions and their expansions (e.g., is while p do c 00 equivalent to a, is if q 
then h else i fi equivalent to d?). 

These expansions and abstractions are algebraic operations among 
structured programs. PDL prime program keywords while-do-OO, if-then-

1 proc r 1 proc r 1 proc r 
2 a 2 . 1 while 2. 1 while 
3 b 2 p 2 p 
4 corp 3 do 3 do 

4 c 4 . 1 f 
5 od 2 9 

3 . 1  d 5 od 
2 e 3 . 1 . 1  if 

4 corp 2 q 
3 then 
4 h 
5 else 
6 
7 fi 

2 e 
4 corp 

... 
readi:l 
writing 
JIll' .... 

validation 
... .... .... .... 

Figure 5.1 
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eke-fi, and so on, are operators in these expressions, just as +, - , *, and so ., 
on, are operators in arithmetic expressions. In ordinary arithmetic, opera
tors are eliminated when 2 + (4*3) is abstracted to 14, and operators are 
introduced when 14 is expanded into 2 + (4*3). This abstraction and expan
sion is independent of any other terms in an arithmetic expression. Likewise, ' 
the PD L program 

if 
x < O 

then 
y := -x  

else 
y := x  

fi 

is an expression in an algebra of programs that can be abstracted to or 
expanded from 

y := abs(x) 

where no program operators appear. That is, their program functions are 
identical : 

[if x < 0 then y := - x else y := X fi] = [y := abs(x )] 

This abstraction or expansion is independent of other parts in a program; 
thus in 

if 
x < O 

then 
y := -x 

else 
y := x  

fi 
x := min(y, z) 

abstraction of the first part does not affect the second part, and the program 
below is function equivalent : 

y := abs(x) 
x := min(y, z) 

In short, there is an algebra of structured programs that allows any 
structured program, no matter how large, to be considered as a compound 
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program expression in smaller structured programs, and any compound 

program expression to be considered as a single term if it is convenient to do 

so. 
This algebra of structured programs is the principal source of power for 

structured program reading, writing, and validation. It allows a programmer 

to logically divide and conquer complex processing logic, just as it allows a 
grade school student to methodically carry out the evaluation of com
plicated (for the student) arithmetic expressions. Once familiar, this algebra 
helps a programmer to think in wholes-in one thought to understand what 

a program does in every possible circumstance, not simply trace its execu
tion for one input at a time. 

5. 2.3 Read i ng Prime Prog rams 

One way to read a program is to mentally execute the functions and predi
cates on every path of the E-tree, inventing data values to stay on each path 
read. But for a program of any size the number of paths quickly becomes 
unmanageable. A sequence of only six ifthenelses contains 64 possible paths. 
Fortunately, we have a more effective way to read a structured program; all 
the functions and predicates must still be read, but with practice, they can be 
read and summarized once and for all, not once for each path on which they 
appear. 

The object of reading a program or a program part is to recognize 
directly what it does-all in one thought-or to mentally transform it into a 
new one that can be recognized directly. The product of such a mental 
transformation is an abstraction that summarizes the possible outcomes of 
the program part under consideration, irrespective of its internal control 
structure and data operations. Thus, we can regard program reading as 
primarily a search for suitable abstractions. 

It turns out that a prime program, particularly a small prime program 
such as found in POL, is an ideal program part for abstraction. Although a 
POL prime program may contain sequencing, branching, and looping, those 
activities are internal to its execution and are reflected by altered data on 
exit; the abstraction describes just this effect on data, and no more. A prime 
program abstraction eliminates sequencing, branching, and looping in favor 
of more complex, but understandable, data assignments and expressions. 
Control structure operators if, do, and so forth, are abstracted out and what 
remains is the program function, stated directly. 

We begin reading POL primes with a branch-free program. The se
quence of assignments 

X := x - y 

y := x + y 
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creates new data values for x and Y from old ones. These data relationships 
can be written more explicitly using a zero SUbscript for values in the ini 
data state, a one subscript for values in the data state following the . first. 
assignment, and a two SUbscript for values in the final data state, following 
the second assignment, as follows : 

X l = Xo Yo 

Y2 = X t + YO 

Note that X I is used on the right side of the second equation because it has 
appeared earlier on a left side. Then 

= Xo - Yo 
and 

Y2 = XI + YO 

= (xo - Yo ) + Yo 

= xo 

With final values expressed in terms of initial values, the sequence program ' 

can now be represented by an equivalent sequence-free program : 

[x := x - Y; y := x  + y] (x, y := x  - y, x) 

Next, consider the branching program 

if 
x > Y  

then 
z := y  

else 
z := x  

6 

Of course, such a program can always be expressed as a conditional assign
ment, as 

(x > Y � z := Y I true � z := x) 

But it may be useful to find a single abstraction, if possible. In this case, we 
recognize the i fthenelse as one that assigns x or Y to z, in particular the 
minimum of x or y. That is 

[if x >  y then z 1= Y else z := X 6] (z := min(x, y)) 
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An ifthenelse abstraction is a recognition of two separate cases as part of a 
more general operation. If we understand what the operator min produces 
from arguments (x, y), then the second program is understandable directly ; 
that is, a more complex expression in an equivalent branch-free program is a 
means to understanding what the branching program does. It is also 
a means of communicating what the branching program does to someone 
else, who may be more familiar with the min operator than with the ifthen
else structure. Note that abstraction does not mean vagueness, but another 
way of saying precisely the same thing. The abstraction above could have 
been written 

Z := minimum of x and y 

or 

assign the minimum of x and y to z 

The important point is not the written form of abstraction, but rather that it 
be a precise statement of a program function. 

Finally, consider the looping program, for integer x 

while 
x > 1 

do 
X := x - 2 

00 

As we have seen, direct procedures exist for determining the functions of 
sequence programs (solving equations) and branching programs (writing 
conditional assignments). However, no such procedure exists for deter
mining the functions of looping programs. But in the examination of typical 
loops, functions can often be determined by inspection and simple analysis 
of patterns of iteration. In this case, we recognize the program as one that 
assigns a value to x. If the initial value of x is positive, x is reduced by 2 each 
iteration until it becomes 1 or 0, depending on whether initial x is odd or 
even. If the initial value of x is negative, 0, or 1 ,  it is not altered by the 
program. With a little thought, we can write the program function as 

[while x > 1 do x := x - 2 00] = (x := min(x, oddeven(x))) 

where oddeven(x ) is short for "1 if  initially odd, ° if initially even," and we 
have abstracted the whiledo into an equivalent loop-free program. We will 
investigate more systematic means for dealing with the functions of looping 
programs in Chapter 6. 
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5. 2.4 Read i ng by Stepwise Abstraction 

A compound program of any size can be read and understood by .. �""1"I 1 r1' _  
and understanding its hierarchy of primes and their abstractions. 
process of stepwise abstraction begins at the lowest (most detailed) level, 
replaces each prime by its equivalent abstraction. To illustrate, consider 
program shown in Fig. 5.2 (given array t of n integer elements). 

proc p(t, n, x, y) 
scalar x, y, n: integer 
array t(n) :  integer 
x, y := t(I ), t(l )  
for 

i :E 2 to n 
do 

if 
t(i) > x 

then 
x := t(i) 

else 
if 

t(i) < Y 
then 

y := t(i) 
fi 

fi 
od 

corp 

Figure 5.2 

A quick scan reveals the overall control structure to be a sequence with 
second part fordo, itself with dopart of nested alternations. We begin step
wise abstraction by reading the most deeply nested ifthen 

if 
t{i) < y 

then 
y := t{i) 

fi 

with hypothesized program function 

(t{i) < Y ---+ y := t{i) I t{i) � Y ---+ Y := y) 
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which we recognize as 

y := min{y, t{i)) 

Next, substituting this abstraction in the outer ifthenelse, we obtain 

if 
t{i) > x 

then 
x := t{i ) 

else 
y := min{y, t{i)) 

fi 

1 55 

We note that x is increased in the thenpart if a larger t{i) is found, so that we 
may write x := max{x, t{i)) as part of the function description of this 
program. For the e1separt, y is decreased if a smaller t{i) is found, but only if 
t{i) ::; x. What if x < t{i) < y? A reexamination of the overall program shows 
that 

1 .  x, y �re assigned the same value t( 1 )  before entry to the fordo, and 
2. x is only increased, y is only decreased within the fordo. 

Therefore, we conclude that x z y on entry to the ifthene1se. Hence, if 
t{i) < y, then the ifthene1se predicate will evaluate to false, the ifthen predi
cate will evaluate to true, and the assignment of the smaller t{i) will be made 
to y. Therefore, we may conclude unconditionally that y := min{y, t{i)) is 
part of the program function. Hence, the program function of the ifthenelse 
program is 

(x z y � x, y := max{x, t{i)), min{y, t{i))) 

We consider next the fordo prime : 

for 
i :E 2 to n 

do 
(x z y � x, y := max {x, t{i)), min{y, t{i))) 

od 

With a little thought, we form a hypothesis for the program function of the 
fordo, that, for initial x z y, x is the .maximum of initial x and t(2), . . .  , t{n) 
and that y is the minimum of initial y and t(2), . . .  , t{n). (As we will leam in 
the next chapter, an inductive proof can be carried out to verify such a 
hypothesis. ) In this case, the hypothesized function is easy to verify by a few 
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mental executions of the fordo, and by substitution we arrive at the seqluell1cC 
program, with first part the fordo initialization 

x, y := t( 1 ), t( 1 ) 

(x � y �  x, y max(x, t(2), . . .  , t(n)), min(y, t(2), . . .  , t (n))) 

from which the overall program function of program p is simply 

x, y := max(t( l :  n)), min(t(l : n)) 

where t( 1 : n) is shorthand for t( 1 ), . . . , t( n), and a more descriptive program 
name might be "maxmin." 

In retrospect, a little more insight than simple stepwise abstraction . 
made this program function easy .to find. It is not unusual for a program part 
to depend on a logical relation on entry. In this case, the program function 
for the ifthenelse depended on the relation x � y on entry. We note that 
nesting the minimum-finding i f  then in the maximum-finding i fthenelse 
a retest for a minimum when a new maximum is found. The simpler ..... r\ n .. 'u· ... ' 
shown in Fig. 5.3 would be easier to abstract, as the reader may verify, but it 
tests for both maximum and minimum at each iteration. 

proc maxmin(t, n, x, y) 
scalar x, y, n :  integer 
array t(n ) :  integer 
x, y := t( l �  t(l )  
for 

do 
i :E 2 to n 

if 
t(i )  > x 

then 

Ii 
if 

x := t(i) 

t(i) < y 
then 

y := t(i) 
Ii 

od 
corp 

Figure 5.3 
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As a second example of stepwise abstraction, consider the program 
shown in Fig. 5.4. 

1 proc q 
2 scalar a, b, f, g, error: real 
3 sequence input, output : real 
4 a, b := list(input) 
5 f:= a*a + b*b 
6 g 1 
7 error := abs(f - g*g) 
8 while 
9 error > .00 1 

10 do 
1 1  g := (g + f/g)/2 
12 error abs(f - g*g) 
13 od 
14 next(output) := g 
15 corp 

Figure 5.4 

A quick scan reveals the control structure is a sequence with an initialized 
whiledo part, the inputs are scalars a and b, and the output is scalar g. We 
concentrate first on the whiledo on lines 8-13  and its initialization on line 7. 
The dopart seems a bit mysterious, particularly the assignment to g on line 
1 1 . In reading a whiledo the exit condition often provides a vital clue to the 
abstraction, as going from 

7 error := abs (f - g*g) 
8 while 
9 error > .001 

10 do 
1 1  g := (g + f/g)/2 
12 error := abs(f - g*g) 
1 3  od 

to (by eliminating error as a variable) 

8 
7, 9, 12 

10 
1 1  
1 3  

while 
abs(f - g*g) > .00 1 

do 

g := (g + f/g)/2 
od 
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from which it is clear that, at exit (presuming that the whiledo termina 
abs(f - g*g) must be near zero or 

(within .001 ) 

But from the dopart, it i s  clear that g i s  being altered to satisfy this 
condition, not f. Hence, the whiledo reduces to the assignment (sqrt 
square root) 

6-13 g := sqrt(f) (f = g2 within .001 ) 

which depends only on the whiledo predicate, the presumption of .. "" .. ....... , .. q-, 
tion, and the observation that g and notfchanges each iteration. In n� l'T11"1._ 

lar, it does not depend on the dopart expression (g + f/g)/2. The red 
program at this point is : 

. 

1 
2 
3 
4 
5 

6-13 
14 
15 

proc q 
scalar a, b, f, g :  real 
sequence input, output :Jeal 
a, b := list (input ) 
f:= a*a + b*b 
g := sqrt(f) (within .001 ) 
next(output) := g 

corp 

The sequence on lines 5, 6-13 creates the effect of 

(within .001 ) 
and as a final sequence abstraction, the function of  the entire program can be 
written (presuming I(input) =I: �) 

1-15 next(output) := sqrt((H(input))2 

+ (H(T(input)))2) (within .001 ) 
where scalars a, b, f, g, and error, and the input sequence pointer, are 
regarded as incidental to the program function. Of course, the program 
function could as easily be written in English as, say, 

set the next member of the output sequence to the square root (within 
.001) of the sum of the squares of the next two members of the input 
sequence 

and a more descriptive procedure name might be "distance." 
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Read the following programs to determine their program functions : 

1. proc P 
sequence input, output : integer [input composed of nonnegative integer pairs] 
scalar a, b, c: integer 
while 

do 
input =/= empty 

a, b := list(input) 
c := a  
while 

c � b  
do 

C := c - b 
od 
list(output) := a, b, c 

od 
corp 

2. proc q 
sequence input, output : integer [input composed of nonnegative integer pairs] 
scalar a, b :  integer 
while 

input =/= empty 
do 

a, b := list(input) 
while 

do 
a =/= b  

if 
a > b  

then 
a := a - b 

else 
b := b - a 

Ii 
od 
next(output) := a 

od 
corp 

3. proc r 
sequence input, output : integer [input composed of nonnegative integer pairs] 
scalar a, b :  integer 
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while 
input ::/= empty 

do 
a, b := list(input) 
while 

a > b  
do 

a := a  - b 
od 
while 

b > a  
do 

b := b  a 
od 
next(output) b 

od 
corp 

4. proc s 
sequence input : character [input non empty] 
sequence output : logical 
stack s :  character 
scalar a, b: character 
scalar checking : logical 
top(s) := ' # ' 
checking := true 
while -

input ::/= empty /\ checking 
do 

a := next(input) 
if 

a = '(' 
then 

top(s) ')' 
else 

fi 

if 
a = ')' 

then 

fi 

b := top(s) 
if 

a ::/= b  
then 

checking := false 
fi 



od 
next(output) := checking 

corp 
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5. proc t 
sequence input, output : character [input contains two or more characters, last 

scalar a, b :  character 
a := next(input) 
do 

b := next(input) 
if 

a =l= b  
then 

next(output) := a 
fi 
a := b  

until 

od 
corp 

b = eos 

character is eos] 

6. What is the program function of exercise 5 above if the if test is changed to a = b ?  

7. proc u 
sequence input, output: character [input contains two or more characters, last 

character is eos] 
scalar a, b :  character 
scalar i: integer 
i :=O  
a :=  next(input) 
do 

b := next(input) 
if 

a = b  
then 

next(output) := a 
i := i + 1 

else 

fi 

if 
i =1= 0 

then 

fi 

list(output) := a, i + 1 
i := 0 

a := b  
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until 

od 
corp 

8. proc v 

b = eos 

sequence input : integer [contains scalars n and k ( 1  ::::; k ::::; n) followed by array 
t of n unique elements] 

sequence output : logical 
array t(n ) :  integer 
scalar i, j, k, n, order :  integer 
scalar looking : logical 
n, k, t Iist(input) 
looking, i true, 0 
while 

do 
i < n A looking 

i i + 1 
j, order := 0, 0 
while 

j < n A order ::::; k 
do 

j :=j + 1 
(t(j) ::::; t(i) -+ order order + 1 )  

od 
(order = k -+ looking, next( output) := false, t(i» 

od 
corp 

5.3 LO G ICAL CO M M E NTA RY I N  STR U CT U R E D  

PROG R A M S  

5 . 3 . 1  T h e  Struct u re of Log ical Commentary 

We introduce the idea of logical commentary in PDL as a refinement and 
extension of ordinary comments found in programs. Logical commentary 
documents the design of a program, amid all its details, by organizing details 
into a hierarchy of abstractions. The principles of program reading we have 
applied were derived from algebraic properties of programs. The placement 
and intent of logical commentary are likewise determined by these algebraic 
properties, and the content of logical commentary is based on the abstrac
tions of prime program reading. For poorly commented programs, the task 
of program reading is to invent logical commentary, and for programs 
already commented, to check correctness of comments and improve their 
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clarity where possible. (In Chapter 7, we will learn how to write logical 

commentary during program construction.) 
Two types of logical commentary are found in PDL programs, data 

commentary and prime program commentary. Data commentary is attached 

to data declarations to define the purpose and usage of data scalars or 

structures, as illustrated in later examples. Prime program commentary 
defines the prime program or prime program part to which it is attached, as 
illustrated below. 

Two forms of prime program commentary are associated with the 
primes of PDL, namely, action comments (also calledfunction comments) that 
describe program functions, and status comments that describe predicates 
on data states. Action comments apply to program parts that carry out the 
actions, that is, they define the effect on data of PDL statements within their 
scope. Action comments can precede any primes, as well as precede 
the thenparts and elseparts of alternation primes and the doparts of iteration 
primes. Status comments apply to program parts that produce the status, 
that is, they define valid predicates on the state produced by the PDL 
statements within their scope. Status comments can succeed sequence, alter
nation and iteration primes. To illustrate, the function 

f = {(a, b) I b = abs(a)} 

can be carried out by an if then prime (using a single scalar, x) :  

if 
x < o 

then 
x := - x  

fi 

The ifthen can be described by the action comment 

x := abs(x) 

and the thenpart by the action comment 

switch x sign 

The final data state can be described by a status comment as a predicate on 
x, namely, 

x � o 
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and the program documented as follows. Logical commentary is delimited 
by square brackets, and either precedes a prime or is attached to a keyword: 

[x := abs(x)] 
if 

x < O 
then [switch x sign] 

x := -x 
Ii [x z 0] 

If a nested prime immediately follows a keyword in a larger program, the 
leading comment is attached to that keyword, as in 

if 
y > O  

then [x abs(x )] 
if 

x < O 
then [switch x sign] 

x := -x 
Ii [x z 0] 

Ii 

Note use of := operators in action comments to specify data assignments, 
and use of relational operators , � ,  > ,  etc. ) in status comments to specify 
data properties. Of course, action and status comments can be written in any 
language (e.g., English or mathematical notation) suitable to a given context. 

Another convenient form of status comment expresses the final state 
after execution of a prime in terms of the initial state prior to execution, 
where initial state values are identified by a zero subscript. For example, the · 
status comment above can be written 

x = abs(xo) 

where Xo is a constant that is the initial value of x. The subscripted items 
always identify data values in the entry state of the containing prime. 

The syntax and semantics of logical commentary are illustrated below 
for the primes of PDL. In each case, the program function of the prime is 
named 'J-ac�ion." The miniature examples are intentionally "over com
mented" to fully illustrate possibilities for commentary in programs. 
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Sequence 
Extra keywords are required to delimit sequence primes selected for 
commentary. A do-od pair is used, thus 

do [faction] 
g 
h 

od [fstatus] 

where 

f-action = [g; h], 
and 

f-action l 
r- --, I I I I 
I I 
I I I I I I I I I I 
I I 
L _ _ _ _  J 

f-status 

g followed by h does [faction] to produce [fstatus]. 

(Note that the brackets in the expression [g ; h] just above, and in subsequent 
explanations of logical commentary for the other primes, denote the pro
gram function. The brackets on faction and f-status, of course, are logical 
commentary delimiters.) A sequence of any number of parts may be chosen 
for commentary. For example, in 

do [x, y := y, x] 
X := x + y 
y := x  - y 
X := x - y 

od [x = Yo ,  Y = xo] 

the sequence of assignments does action [x, y := y, x] to produce status 
[x = Yo, Y = xo] . The action and status could have been written in more 
English-like form, perhaps as [exchange(x, y)] and [x, y exchanged], respec
tively. For such simple sequences, either action or status may provide 
sufficient description. PDL keywords proc and corp can operate like a do-od 
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pair, to carry action and status comments for entire programs : 

proc name [f-action] 
g 
h 

corp [f-status] 

Fordo 

Commentary is attached to fordo primes as 

f-action 1 
r--- ---- -- - --, 

[faction] 
for 

indexlist 
do [g-action] 

g 
00 [f-status] 

I 
I 
I 
I 
I 

I 
I f-status 
I 
I 
I 
I 
I 
I 
I 
I 
I L _ _ _ _ _ _ _ _ _ _ _ _  ..J 

where 

f-action = [for index list do g od], 
and 
for each consecutive indexlist member, g does [g-action], 
the sequence of g's finally producing [f-status]. 

For example (a an array of n elements, int short for integer part), 

[a := reverse(a)] 
for 

i :E 1 to int(n/2) 
do [exchange a(i), a(n - i + 1 )] 

a(i), a(n - i + 1 ) := a(n - i + 1 ), a(i) 
00 [a = reverse(ao)] 
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If then 

Commentary is attached to ifthen primes as 

[factionl 
if 

p 
then [g-action] 
g 

6 [fstatus] 

where 

::i:l ------, 
1 F T l 
I P I 
I I 
I I 
I I 
I I 
I I 
I I I I 
L _ _ _ _  - - - - - � 

{-status 

faction = [if p then g 6], 
and 
when p is true, g does [g-action] to produce [fstatus], 
and 
when p is false, [fstatus] is true. 

The f-status summarizes the data state at 6, whether or not g-action is 
performed. To illustrate, 

[(x > y � X := decr(x))] 
if 
x > y  

then [x := decr(x)] 
x := x - 1 

6 [(xo > Yo � x = decr(xo ))] 
The ifthen below is the second part of a sequence : 

do [x := abs(min(y, z))] 
x :=min(y, z) 
if 
x < O 

then [switch sign] 
x := -x 

6 [x = abs(xo)] 
od [x = abs(min(yo , zo))] 
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Note that the status comments at 6 and 00 are not equivalent, since each 
summarizes the result of a different function-an if then at 6, a sequence at 
00. 

Ifthenelse 

Commentary is attached to ifthenelse primes as 

[f-action] 
if 

p 
then [g-action] 

g 
else [h-action] 

h 
6 [fstatus] 

where 

{-action 1 
r--- -- - - - - - ., 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I ·  l______ _ ____ --1 (-status 

f-action = [if p then g else h 6], 
and 
when p is true, g does [g-action] to produce [fstatus], 
and 
when p is false, h does [h-action] to produce [fstatus]. 

The f-status summarizes the data state at 6, whether the thenpart action or . 
the elsepart action is performed. To illustrate, for z � 0 

[z round (z)] 
if 

z - int(z) < .5 
then [round z down] 

z := int(z) 
else [round z up] 

z := int(z + 1 )  
6 [z = round(zo )] 
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Case 

Logical commentary for the case, or indexed alternation, structure is a gen
eralization of commentary for the ifthenelse : 
[I-action] 
ease 

p 
part( case list 1 ) [g-action] 
g 

part (caselistn ) [h-action] 
h 

else [i-action] 
i 

esae [I-status] 
Whiledo 
Commentary is attached to the whiledo prime as 

[faction] 
while 

p 
do [g-action] 
g 

00 [I-status] 

where 

f-action l 
r-- - - - - - - -:- --, i 9 � g-actlon ! 

� � I I . I I f-status L _ _ _ _ _ _ _ _ _ _ _  ...J 

I-action = [while p do g od], 
and 
when p is true, g does [g-action], 
and 
when p is lalse, [fstatus] is true. 

To illustrate, the add program, for x, Y � 0, can be commented as 

[x, y := x + Y, 0] 
while 

y > O  
do [increment x, decrement y] 

x, y := X + 1 , y - 1 
00 [x, y = Xo + Yo , 0] 
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Dountil 

Commentary is attached to the dountil prime as 

[f-action] 
do [g-action] 
g 

until 
p 

00 [!-status] 

where 

f-ac;:J _ _ _ _ _ _ _ _ _ _ _ _  , 
I I 

� g kbT I I -I g-action :J I f-status L- _ _ _ _ _ _ _ _ _ _ _ _ _ _  .J 

f-action = [do g until p od], 
and 
g does [g-action], 
and 
when p is true, [f-status] is true. 

Dowhiledo 

The dowhiledo prime is commented as 

[faction] 
dol [g-action] 
g 

while 
p 

do2 [h-action] 
h 

00 [f-status] 
where 

f-action 
r -J- - - - - - - :- - - -, 
I .-- h-actlon I � :5:1 i I -I g-act ion --.J I f-status L _ _ _ _ _ _ _ _ _ _ _ _ _ _  .J 

faction = [dol g while p do2 h od], 
and 
g does [g-action], h does [h-action] 
and 
when p is false, [fstatus] is true. 

Finally, we note that in writing logical commentary, various levels 
rigor are possible. In situations where reliable proofs of correctness are 
required, logical commentary should provide self-sufficient definitions 
program functions for use in proof arguments. But logical commentary that 
falls short of program functions can provide good documentation as we1� 
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and may be appropriate in situations where the extra effort to record pro
gram functions is not justified. Thus, in expressing the results of complex, 
but local, program logic, it may be useful to describe a program function 
only in part, by using the phrase in part preceding a multiple assignment 
statement. For example, 

in part, x, y := y, X 

could be used to describe an exchange program using temporary value t, 
with full program function 

x, y, t := y, x, X 

In this instance, x, y are regarded as intentional, and t as incidental, data. In 
practice, incidental assignments are usually omitted from logical commen
tary, and where the meaning is clear, in part may be dropped as well, to 
simply write 

x, y := y, X 

We observe, however, that in producing a well-documented program, the in 
part concept should not be applied excessively ; a self-sufficient definition of 
the program function of each segment in a program represents a minimum 
practice in the use of logical commentary. 

5.3 .2 Logi cal Com menta ry in Stepwise Abstraction 

Logical commentary makes programs intelligible by abstracting details into 
design. The maxmin and distance programs of Section 5.2 are shown in 
Figs. 5.5 and 5.6, respectively, with logical commentary based on our 
previous reading. The programs can be understood and checked at any level, 
from overall design, through intermediate abstractions, down to low-level 
details, if necessary. Note addition of alt and fix data usage categories to the 
maxmin program. 

As we have seen, insights gained during program reading can be conve
niently preserved in logical commentary, to better document programs for 
other readers. Consider stepwise abstraction and documentation of the pro
gram in Fig. 5.7, given array table of n integer elements. 

The innermost dopart is the familiar conditional exchange, which also 
sets incidental variable temp : 

(table(i) > table(i + 1 )  � table(i), table(i + 1 ), temp 

:= table(i + 1 ), table(i), table(i)) 
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proc maxmin(fix t, n, alt x, y) [x, y := max(t(1 : n)), min(t( 1 :  n))] 
scalar x, y, n :  integer 
array t(n ): integer 
x, y := t(1 ), t( 1 )  
[(x � y � x ,  y := max(x, t(2 : n ), min(y, t(2 : n)))] 
for 

i :E 2 to n 
do [(x � y � x, y := max (x, t(i)), min(y, t(i)))] 

if 
t(i) > x 

then 
x := t(i) 

else [y := min(y, t(i))] 
if 

t(i) < y 
then 

y := t(i) 
fi 

fi 
od 

corp [x, y = max(t), min(t)] 

Figure 5.5 

proc distance [next(output) := sqrt((H(input))2 + (H(T(input)))2) 
(within .(01)] 

scalar a, b, f, g, error : real 
sequence input, output : real 
a, b := list (input) 
do [g := sqrt(a*a + b*b) (within .(01)] 

od 

f:= a*a + b*b 
g := 1 
error := abs(f - g*g) 
while 

error > .001 
do 

g := (g + f/g)/2 
error := abs(f - g*g) 

ocI [g = sqrt(f ) (within .(01)] 

next(output) := g 
corp 

Fig ure 5.6 

5. 

1 
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1 proc r (n, table) 
2 scalar n, temp: integer 
3 array table(n) : integer 
4 for 
5 j :E n to 2 by - 1 
6 do 
7 for 
8 i :E 1 to (j 1 ) 
9 do 

10 if 
1 1  table(i) > table(i + 1) 
12 then 
13 temp : =  table(i) 
14 table(i) := table(i + 1)  
15 table(i + 1 )  temp 
16 fi 
17 od 
18 od 
19 corp 

Figure 5.7 

This program function can be documented in the program as 

9 do [asort(table(i), table(i + 1 ))] 
10 if  
1 1  table(i) > table(i + 1 )  
12 then [exchange table(i), table(i + 1 )] 
1 3  temp :=  table(i) 
14 table(i) := table(i + 1 )  
1 5  table(i + 1 ) := temp 
16 fi [table(i) � table(i + 1 )] 
17 od 

where asort names an operation that ensures elements in an argument list 
are in ascending sorted order. For the inner fordo at lines 7-17 we observe 
that for each dopart execution a consecutive overlapping table pair is guar
anteed to be in ascending sorted order, beginning with (table(I ), table(2)), 
then (table(2), table(3)), and so on, up to (tableU - 1 ), tableU)). Thus, the 
effect of the fordo is to propagate the largest element in table( 1 :  j) to the head 
of table( 1 :j), or 

tab leU) := max(table(1 :j)) 
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taking the final disposition of elements in table(l : (j - 1)) as incidental. W ' 
document this insight as an action comment : 
6 do [in part, table(j) := max(table(l :j))l 

Next, the outer fordo steps j from n to 2 by - 1, and at each step 
table(j) := max(table(l :j)) 

by the analysis just above. Thus, table entries are set in the following 
sequence, corresponding to successive dopart executions : 

table(n) := max(table( 1 :  n)) 

table(n 1 ) := max(table(l : (n - 1 ))) 

table(n - 2) := max(table(l :  (n 2))) 

table(2) max (table(l : 2)) 

table( l ) := max(table(l : l )) 

proc sort (n, table) 
scalar 

n :  integer [number of elements in table array] 
temp : integer 

array 
table(n) :  integer [values to be put into ascending sorted order] 

[table := asort(table)] [asort arranges elements in an argument 
list in ascending sorted order] 

for 
j :e n to 2 by - 1 

do [in part, table(j) max{table(1 :j))] 
for 

od 
corp 

i :e 1 to (j 1 )  
do [asort(table(i� table(i + 1 ))] 

if 
table(i) > table(i + 1 )  

th en  [exchange(table{i), table(i + 1 ))] 
temp := table(i) 
table(i) := table(i + 1 )  
table(i + 1 ) := temp 

fi [table(i) � table(i + 1 )] 
od 

Figure 5.8 
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That is, following the outer fordo execution, each consecutive element from 
table(2) to table(n) is greater than or equal to its predecessor, and the pro
gram function of the fordo (and the entire program) is 

table : =  asort(table) 
The fully documented program appears in Fig. 5.8. Note that the special 
name asort is defined to the side of the program. Control structure abstrac
tion clarifies data usage, and data comments have been added as well. 
As an exercise, try reading and writing logical commentary for the 

subroutine given in Fig. 5.9, with given integer arguments n, table (unique 

1 proc s(n, table, key, i) 
2 use k 
3 i := 0 
4 10 := 1 
5 hi := n 
6 while 
7 10 � hi /\ i = 0 
8 do 
9 mid := int((1o + hi )/2) 

10 if 
1 1  key = table(mid) 
12 then 
13 i := mid 
14 else 
15 if 
16 key > table(mid) 
17 then 
18 10 := mid + 1 
19 else 
20 hi := mid - 1 
2 1  fi 
22 fi 
23 od 
24 corp 

data k 
scalar 

i, 10, hi, mid, key, n :  integer 
array 

table(n) :  integer [unique values in ascending sorted order] 
atad 

Fig u re 5.9 
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values in ascending sorted order), and key, and integer argument i to be 
found (int short for integer part). 
A possible set of logical comments, including more descriptive proc and 

data names and alt and fix categories of data usage, appears in Fig. 5. 10. 

proc binary search(fix n, table, key, alt i) [(3k(key = table(k), 1 .s; k .s; n) 

2 use searchdata 
3 i := 0 
4 10 := 1 
5 hi := n 

- i := k I true - i := 0)] 

6 [(3k(key table(k), 10 .s; k .s; hi) - i := k I true - i unchanged)] 
7 while 
8 10 .s; hi A i = 0 
9 do [(key = table(k) - i := k I key > table(k) - 10 := k + 1 1  

key < table(k) - hi := k - 1 ), where k int((/o + hi)j2)] 
10 mid := int((lo + hi)j2) 
1 1  if 
1 2  key = table(mid) 
13  th en  [finish successful search] 
14 i := mid 
15  else [exclude irrelevant table part from search] 
16  if 
17  key > table(mid) 
1 8  then [exclude table(/o : mid)] 
19 10 := mid + 1 
20 else [exclude table(mid : hi)] 
2 1  hi := mid - l  
22 fi [key ¢ table( l :  (/0 - 1 )) A key ¢ table((hi + 1 ) : n) since 

table in ascending sorted order] 
23 fi [table(i) = key I (i unchanged A hi - 10 decreased)] 
24 od [table(i) = key I (hi - 10 < 0 A i = 0)] 
25 corp 

data searchdata 
scalar 

(i [search value, to be found] 
10 [lower search bound] 
hi [higher search bound] 
mid [lookup index] 
key [given search argument] 
n [number of elements in table]) :  integer 

array 
table(n ) :  integer [given array to search, unique values 

atad 
in ascending sorted order l 

Figure 5.1 0 
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1. Read the following program and record your abstractions as logical 

commentary. 

proc 
sequence 

a, b, c :  integer [if not empty, a and b are each 
in ascending sorted order] 

scalar 
akey, bkey: integer 
aleft, bleft : logical 

aleft := true 
bleft := true 
if 

a = empty 
then 

aleft := false 
else 

fi 
if 

akey := next(a) 

b = empty 
then 

bleft := false 
else 

bkey := next(b) 
fi 
while 

aleft v bleft 
do 

if 
(aleft 1\ bleft 1\ akey � bkey) v (aleft 1\ '" bleft) 

then 
next(c) := akey 
if 

a = empty 
then 

aleft := false 
else 

akey := next(a) 
fi 

else 
next(c) := bkey 
if 

b = empty 
then 

bleft := false 
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fi 
od 

corp 

else 
bkey := next(b} 

fi 

2. Add logical commentary to the programs in exercises 1 through 8 in Section 5.2. 

5.4 A CAS E ST U DY IN PROG RAM R EA D I N G  

5.4.1 The S i ngso rt Prog ram 

Consider the PLjI program named Singsortt shown in Fig. 5. 1 1. (Readers 
unfamiliar with PLjI will find the control structures of Singsort diagrammed 
in Fig. 5. 12. ) Singsort is written without indentation or comments, and 
contains a number of GOTO instructions and statement labels-as it stands, 
it is a formidable object for human understanding ! But suppose we need to 
understand Singsort, to reliably answer critical questions on its operation 
and limitations, and perhaps to make some reliable modifications. How can 
we carry out the learning process in a systematic way? A good strategy is to 
first unravel Singsort's control logic, restructuring if necessary into a suitable . 
basis set of primes, and then to read and document Singsort's functions with 
logical commentary. Then, with the program under intellectual control, 
questions and improvements can be investigated without guessing and 
merely hoping that we've got things right. 

5.4.2 The Prime Prog ram Pa rse of Si ngso rt 

Our first task in understanding Singsort is to carry out a prime program 
parse. Taken in reverse order, the parse steps will reveal the program's 
overall control structure and functions, the structure and functions of these 
functions, and so on, down to the individual operations and tests of the PLjI 
program. We begin by drawing the flowchart of Singsort, by tracing down 
the PLjI code, grouping sequences of statements into function nodes and 
inserting predicate nodes for conditional GOTO statements. At this stage, 
we make no particular effort to identify simple primes, although they may 
exist in the program in disguised form. The flowchart is shown in Fig. 5. 12. 
Numbers in function and predicate nodes are PLjI line numbers, and state-

t Singsort is taken from H. Lorin, Sorting and Sort Systems (Reading, Mass. : 
Addison-Wesley, 1975) A68-70. It originally appeared in FORTRAN and ALGOL 
as Algorithm 347, Communications of the ACM 12, no. 3 (March 1969):  1 85-187, 
submitted by Richard Singleton. The method used is a variation of Algorithm 64, 
Quicksort, by C. A. R. Hoare, and Algorithm 27 1, Quickersort, by R. S. Scowen. 

5.4 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
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1 SINGSORT: PROCEDURE(TOSORT, NUMBER); 

2 / * ALGORITHM 347, COMMUNICATIONS OF ACM, 
VOL 12, NO 3, P 1 85 * /  

3 DECLARE 
4 TOSORT(*) FIXED BINARY (3 1 ,  0), 
5 PIVOT FIXED BINARY (3 1 ,  0), 
6 TEMP2 FIXED BINARY (3 1 ,  0), 
7 LIMDEX FIXED BINARY (3 1 ,  O� 
8 INITIAL FIXED BINARY (3 1 ,  0), 
9 MEDIAN FIXED BINARY (3 1 ,  0), 

10 BOTIND FIXED BINARY (3 1 ,  0), 
1 1  TOPIND FIXED BINARY (3 1 ,  0), 
12 LIMITS FIXED BINARY (3 1, 0), 
13  I FIXED BINARY (3 1 ,  0), 
14 NUMBER FIXED BINARY (3 1 ,  O� 
1 5  PARTOP FIXED BINARY (3 1 ,  0 )  INITIAL (1 ) ;  
16 LIMITS = 20; 
17 SORT: BEGIN; 
18  DECLARE 
19 TOPS(LIMITS) FIXED BINARY (3 1 ,  0), 
20 BOTTOMS(LIMITS) FIXED BINARY (3 1 ,  0); 
21  LIMDEX = 1 ;  
22 INITIAL = PARTOP; 
23 GO TO SINKTEST; 
24 SPLIT: MEDIAN = TRUNC((PARTOP + NUMBER)/2) ;  
25 PIVOT = TOSORT(MEDIAN); 
26 TOPIND = PARTOP; 
27 BOTIND = NUMBER; 
28 IF TOSORT(PARTOP) > PIVOT THEN DO; 
29 TOSORT(MEDIAN) = TOSORT(PARTOP); 
30 TOSORT(PARTOP) = PIVOT; 
31 PIVOT = TOSORT(MEDIAN);  
32 END;  
33  IF TOSORT(NUMBER) < PIVOT THEN DO; 
34 TOSORT(MEDIAN) = TOSORT(NUMBER); 
35 TOSORT(NUMBER) = PIVOT; 
36 PIVOT = TOSORT(MEDIAN); 
37 IF TOSORT(PARTOP) > PIVOT THEN DO; 
38 TOSORT(MEDIAN) = TOSORT(PARTOP); 
39 TOSORT(PARTOP) = PIVOT; 
40 PIVOT = TOSORT(MEDIAN);  
41  END;  
42  END ;  
43 FINDSMALL: BOTIND = BOTIND - 1 ;  

Figure 5.1 1 ( Continued ) 
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44 IF TOSORT(BOTIND) > PIVOT THEN GO TO FINDSMALL; 
45 TEMP2 = TOSORT(BOTIND); 
46 FINDLARGE :  TOPIND = TOPIND + 1 ;  
47 IF TOSORT(TOPIND) < PIVOT THEN GO TO FINDLARGE; 
48 IF TOPIND < = BOTIND THEN DO; 
49 TOSORT(BOTIND) = TOSORT(TOPIND); 
50 TOSORT(TOPIND) = TEMP2; 
5 1  GO TO FINDSMALL; 
52 END; 
53 IF BOTIND - PARTOP < NUMBER - TOPIND THEN DO; 
54 TOPS(LIMDEX) = PARTOP; 
55 BOTTOMS(LIMDEX) = BOTIND; 
56 PARTOP = TOPIND; 
57 END; 
58 ELSE DO ; 
59 TOPS(LIMDEX) = TOPIND; 
60 BOTTOMS(LIMDEX) = NUMBER; 
61  NUMBER = BOTIND; 
62 END; 
63 LIMDEX = LIMDEX + 1 ;  
64 SINKTEST: IF NUMBER - PARTOP > 10 THEN GO TO 
65 IF INITIAL = PARTOP THEN DO; 
66 IF PARTOP < NUMBER THEN GO TO SPLIT; 
67 END;  
68 DO 1 =  PARTOP + 1 TO NUMBER BY 1 ;  
69 PIVOT = TOSORT(I); 
70 TOPIND = 1 - 1 ;  
71 IF TOSORT (TOPIND) > PIVOT THEN DO; 
72 SINK : TOSORT(TOPIND + 1 )  = TOSORT(TOPIND); 
73 TOPIND = TOPIND - 1 ;  
74 IF TOSORT(TOPIND) > PIVOT THEN GO TO SINK; 
75 TOSORT(TOPIND + 1 ) = PIVOT; 
76 END; 
77 END;  
78 LIMDEX = LIMDEX - 1 ;  
79 IF LIMDEX > = 1 THEN DO; 
80 PARTOP = TOPS(LI MDEX); 
81  NUMBER = BOTTOMS(LIMDEX); 
82 GO TO SINKTEST; 
83 END; 
84 END SORT; 
85 END SINGSORT; 

Figure 5.1 1 ( Continued) 
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singsort 

Figure 5.1 2 

ment labels are attached to the flowchart where they appear in the PLjI 
code. A six-sided node (line 68) depicts the only fordo structure in the 
program. 

Recall that a prime program parse can be determined by a series of 
flowchart reduction steps, each step abstracting existing primes into new 
function nodes. As before, it is convenient to parse sequences of rriore than 
two function nodes in a single step. A series of eight steps is required to 
reduce Singsort to a single node, as shown in Fig. 5 . 13 ; new function nodes 
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Figure 5.1 3 Reduction 2 
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are numbered nO l, n02, . . .  , where n is the reduction step number. As before, 
each node number is followed by the number of function and predicate 
nodes that have been abstracted by the new node. Each successive abstrac
tion accounts for the total of 33 nodes appearing in Fig. 5. 12. This abstrac
tion process is a purely mechanical exercise. It requires no special insight or 
judgment, only tracing through the flowchart to pick out primes as they 
show up. 
In this reduction of Singsort, all abstractions are made from basis set 

{sequence, if then, ifthenelse, dountil, dowhiledo} except for the following 
unnamed prime : 

� 50 1 /21  � 

However, a simpler prime results when the individual tests are combined 
into a compound test 

----I 501 /2 1  � 

thereby adding whiledo to the basis set. Thus, Singsort has in fact control 
logic structured in sequence and one-predicate primes (well disguised, to be 
sure ! ) that can be expressed in PDL to produce a more readable version. 
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Fig u re 5.1 4 Singsort parse tree 

Had our reductions turned up complex, multiple-predicate primes� we 
would have converted Singsort into a label structure program and then into 
a recursion structure program (as described in Chapter 4) to establish a 
simpler basis set for better understanding. 

The foregoing reductions can be summarized in the prime parse tree of 
Singsort, given in Fig. 5. 14. It can be seen that Singsort is an initialized 
dowhiledo program, up to eight abstractions deep, and the prime parse tree 
provides a simple map to the individual abstractions and their relations to 
the whole program. Any subtree of this prime parse tree is a candidate POL 
segment-a proper program, itself. But good choice of segments requires a 
look at the abstractions associated with the subtrees, in order to make the 
best possible sense in programming terms. 
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5.4.3 Si ngso rt i n  POL 

By inspecting its prime parse tree and reduced flowcharts in reverse order, 
Singsort can be readily transcribed into POL. Transcription begins with 
abstraction 80 1, which is the sequence (101 ; 701 ). Abstraction 101 is itselfthe 
sequence (1-15 ;  16 ;  17-22) from the original program, all written in POL, 
data declarations aside, as 

801 
101 21 
101 22 

801 

proc singsort( tosort, number) 
limdex := 1 
initial := partop 
701 

corp 

with a column of statement numbers on the far left delimiting the beginning 
and ending of each abstraction from the flowchart reductions, followed by a 
column of individual statement numbers from the original program. Next, 
abstraction 701 is a dowhiledo structure with whiletest 79, dopart l 601, and 
dopart2 80-8 1, which give the expansion 

801 proc singsort(tosort, number) 
101 21 limdex := 1 
101 22 initial := partop 
701 dol 

601 
while 

79 limdex � 1 
do2 

80 partop := tops(limdex) 
81  number := bottoms (limdex ) 

701 od 
801 corp 

We continue in this fashion until all abstractions have been expanded, as 
shown in the final POL program in Fig. 5. 15. (Two columns are required to 
display the number pairs that delimit the beginning and ending of abstrac
tions. ) Note we have recorded PLjI run-time declarations as if they were 
declared in advance. (The PLjI variable "limits" is thereby eliminated ; see 
lines 12, 19 and 20, and lines 4 and 14 in the PLjI program.) The POL inner 
syntax word "init" is used at line 15 to indicate an initializing data 
declaration. 
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801 

101 
101 
701 

601 501 

401 201 

102 

201 102 
301 

data singsortdata 
array 

4 tosort(number) : integer 
scalar 

5 (pivot 
6 temp2 
7 limdex 
8 initial 
9 median 

10 botind 
1 1  topind 
13  i 
14 number 
1 5  partop init(l ) ) :  integer 

array 
19 tops(20) : integer 
20 bottoms(20) :  integer 

atad 

proc singsort(tosort, number) 
use singsortdata 

21  limdex := 1 
22 initial := partop 

dol 
while 

64 number - partop > 10 v 
65 (initial = partop /\ 
66 partop < number) 

do 
24 median := truncate((partop + number)/2) 
25 pivot := tosort(median) 
26 topind := partop 
27 botind := number 

if 
28 tosort(partop) > pivot 

then 
29 tosort(median) := tosort(partop) 
30 tosort(partop) := pivot 
3 1  pivot : =  tosort(median) 

fi 
if 

33 tosort( number) < pivot 

Figure 5.1 5 

5.4 
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then 
202 34 tosort(median ) := tosort(number) 

35 tosort(number) := pivot 
36 pivot := tosort(median) 

103 if 
37 tosort(partop) > pivot 

then 
38 tosort(median ) := tosort(partop) 
39 tosort(partop) := pivot 
40 pivot := tosort(median) 

202 103 fi 
301 fi 
302 dol 

203 104 do 
43 botind := botind - 1 

until 
44 tosort(botind) � pivot 

104 od 
45 temp2 := tosort(botind) 

105 do 
46 topind := topind + 1 

until 
47 tosort(topind) � pivot 

203 105 od 
while 

48 topind � botind 
do2 

49 tosort(botind) := tosort(topind) 
50 tosort(topind) := temp2 

302 od 
204 106 if 

53 botind - partop < number - topind 
then 

54 tops(limdex) := partop 
55 bottoms(limdex) := botind 
56 partop := topind 

else 
59 tops(limdex) := topind 
60 bottoms (limdex ) := number 
61 number := botind 

106 fi 
401 204 63 limdex := limdex + 1 

50 1 od 

Fig u re 5.1 5 ( Continued) 
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502 for 
68 i :E partop + 1 to number by 1 

do 
402 69 pivot := tosort(i) 

70 topind := i - I  
303 if 

7 1  tosort(topind) > pivot 
then 

205 107 do 
72 tosort(topind + 1 ) := tosort(topind) 
73 topind := topind - 1 

until 
74 tosort(topind) � pivot 

107 od 
205 75 tosort(topind + 1 ) := pivot 

402 303 fi 
502 od 
60 1  78 limdex := limdex - 1 

while 
79 limdex � 1 

do2 
80 partop := tops(limdex) 
8 1  number := bottoms(limdex) 

701 od 
801 corp 

Figure 5.1 5 (Continued) 

5.4.4 Reading and Commenting Singsort 

With Singsort's control structure made visible, we can now investigate the 
operations carried out within that structure. Our approach is to perform 
three types of analysis, as follows : 

1. Apply the reading techniques described earlier to abstract program 
parts into logical commentary-action and status comments. 

2. Organize the program into a perspicuous hierarchy of segments, each a 
page or less of PDL ; segments should correspond to important abstract 
functions identified in the original program. 

3. Perform an analysis on the resulting segment structure for fixed and 
altered categories of data usage, to complete the definition of run and 
proc statements. 
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As noted, Singsort's overall control structure is an initialized dowhiledo. 
The dowhiledo structure, abstraction 701, has dopart 1 composed of a while
do (abstraction 501 ), followed by a fordo (abstraction 502), followed by an 
assignment (line 78 ). Reading primes and writing logical comments can 
begin within the dopart 1 ,  proceeding roughly in execution sequence. For 
example, in abstraction 201, the sequence at lines 24-27 sets the index named 
median to the mean of partop and number, sets pivot to the median element of 
tosort, and initializes topind and botind. Abstraction 102 is a conditional 
exchange of tosort(partop) and pivot, which also sets tosort(median) to tosort
(partop). The abstraction can be commented as follows : 

102 if 
28 tosort(partop) > pivot 

then [exchange(tosort(partop), pivot), 
tosort(median) := tosort(partop)] 

29 tosort(median) := tosort(partop) 
30 tosort(partop) := pivot 
3 1  pivot := tosort(median) 

102 fi [tosort(partop) � tosort(median) = pivot] 

Nested ifthen abstractions 103 and 301 are likewise conditional exchanges, 
which also set new values for tosort(median). The program parts read so far 
can be commented as shown in Fig. 5. 16. Note that abstractions 102 and 103 
are identical ; 103 reestablishes the status of 102 if it was changed by lines 
34-36. The status comment attached to fi at the end of abstraction 301 states 
that tosort(partop), tosort(median), and tosort(number) are in ascending 
sorted order, and that pivot is equivalent to tosort(median). (If the tosort 
array consisted of only two or three elements, it would be sorted at this 
point.) The effect of the sequence 201 ; 301 can also be expressed in a corre
sponding action comment as 

201 ; 301  [ascending sort tosort(partop), tosort(median), 
tosort(number) ;  pivot := tosort(median)] 

To continue reading, abstraction 302 is a dowhiledo with dopart 1 con
taining two dountil structures. The first of these, abstraction 104, searches 
from tosort(botindo - 1 )  upward in the array (i.e., toward tosort(l )) for an 
element less than or equal to pivot. (Note the relations botindo = number, 
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201 24 median := truncate((partop + number)j2) 
25 pivot := tosort(median) 
26 topind := partop 
27 botind := number 

102 if 
28 tosort(partop) > pivot 

then [exchange(tosort(partop), pivot 1 
tosort(median) := tosort(partop)] 

29 tosort(median) := tosort(partop) 
30 tosort(partop) := pivot 
3 1  pivot : =  tosort(median) 

201 102 fi [tosort(partop) � tosort(median) = pivot] 
301 if 

33 tosort(number) < pivot 
then [exchange(tosort(number), pivot), 

tosort(median) := tosort(number)] 
34 tosort(median) := tosort(number) 
35  tosort(number) := pivot 
36 pivot := tosort(median) 

103 if 
37 tosort(partop) > pivot 

then [exchange(tosort(partop), pivot), 
tosort(median) := tosort(partop)] 

38  tosort(median) := tosort(partop) 
39 tosort(partop) := pivot 
40 pivot := tosort(median) 

103 fi [tosort(partop) � tosort(median) = pivot] 
301 fi [tosort(partop) � tosort(median) 

= pivot � tosort(number)] 

Figure 5.1 6 

and tosort(number) � pivot. ) Termination of this first dountil is guaranteed 
on first execution of the dopartl since at least 

tosort(median) = pivot 

by the 201 ; 301  abstraction above. The second dountil, abstraction 105, 
searches from tosort(topindo + 1 ) downward in the array (i.e., toward the 
last tosort element ) for an element greater than or equal to pivot. (Note 
topindo = partop, and tosort(partop) ::; pivot. ) Termination of this second 
dountil on first execution of the dopart 1 is likewise guaranteed by the condi-
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tion just stated. To take advantage of the mnemonic value of variable names 
in Singsort, we adopt the convention that the first and last positions of the 
array are the "top" and "bottom" of the array, respectively. Thus, 
the dopart 1 can be commented as 

104 do 
43 botind := botind - 1 

until 
44 tosort(botind) � pivot 

104 od [tosort(botind) � pivot, (tosort((botind + 1 ) :  number)) � pivot] 
45 temp2 := tosort(botind) 

105 do 
46 topind := topind + 1 

until 
47 tosort(topind) � pivot 

105 od[(tosort(partop : (topind - 1 ))) � pivot, tosort(topind) � pivot] 

and summarized in the following action comment : 

dol [search bottom up for next element � pivot, top down 
for next element � pivot] 

If the whiletest at line 48 of dowhiledo abstraction 302 evaluates true, 
dopart2 is carried out to exchange tosort(topind) and tosort(botind), and the 
dowhiledo repeats. Termination of the dountil loops above is guaranteed 
from then on, but not necessarily (as before) because 

tosort(median) = pivot 

since the original element at tosort(median) may have been involved in an 
exchange. Instead, termination is guaranteed because 

tosort(partop) � pivot and tosort(number) � pivot 

by the 201 ;  301 abstraction above, which is sufficient to terminate the upward 
and downward searches, respectively. The effect of the dowhiledo is to 
segregate tosort(partop : number) into two partitions, one with elements no 
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greater than pivot, the other with elements no less than pivot, by exchanges 
of elements between partitions, if necessary. Termination of the dowhiledo is 
assured, since topind and botind are increased and decreased, respectively, on ' 
every iteration, and eventually, topind - botind > O. Because topind and 
botind are compared only when an exchange of tosort elements is to be made, 
a small "overshoot" can occur and on exit from the dowhiledo, topind -
botind � 2, as in the following examples : 

(pivot = 4)  
tosort 

partop median number 
t t t 

���a�
a
����e: I 1 I � I � I : I � I � I 9 I 

posit ion : 2 3 4 5 6  7 

topJ J J:I:I· I .  I botind 

(pivot = 2) 

new value : 
in itial value : 
position : 

topind 1 

tosort 

2 3 4 5 6 

.. I I : I ·  I boOnd 

The final partition boundary can end up anywhere inside the interval 
tosort((partop + 1 ) : (number - 1 )), and not necessarily at tosort(median). 
Because topind and botind cross in the scanning process, on exit from the 
dowhiledo partop and botind delimit the upper partition and topind and 
number delimit the lower partition. It appears that the largest possible 
partition remaining after segregating an array of n elements (n 2 4) has length 
less than or equal to (n - 2). 

In the commented dowhiledo fragment below, the status at od gives 
relations that hold for the two partitions on loop termination, when the 
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whiletest turns false : 

302 

203 104 
43 

44 
104 

45 
105 

46 

47 
203 105 

48 

49 
50 

302 

dol [search bottom up for next element � pivot, top 
down for next element 2 pivot] 

do 
botind := botind - 1 

until 
tosort(botind) � pivot 

od [tosort(botind) � pivot, (tosort((botind + 1) : 
number)) 2 pivot] 

temp2 := tosort(botind) 
do 

topind := topind + 1 
until 

tosort(topind) 2 pivot 
od [(tosort(partop : (topind - 1 ))) � pivot, 

tosort(topind) 2 pivot] 
while 

topind � boUnd 
do2 [exchange( tosort( topind), tosort( botind))] 

tosort(botind) := tosort(topind) 
tosort(topind) := temp2 

od [(tosort(partop : (topind - 1 ))) � pivot, 
(tosort( (bottnd + 1 ) : number)) 2 pivot, 
topind > botind] 

A corresponding action comment that summarizes the entire dowhiledo is 

302 [segregate tosort(partop : number) into two 
partitions � and 2 pivot] 

Consider next abstraction 106, an ifthenelse structure. The iftest com
pares (botind - partop) and (number - topind), and stores pointers to the 
smaller of these partitions in the tops and bottoms arrays. If the upper 
partition (delimited by partop and botind) is saved, the lower one becomes 
the new active partition (for possible further partitioning on the next itera
tion of Singsort), by setting partop to topind at line 56. If the lower partition 
(delimited by topind and number) is saved, the upper one becomes the new 
active partition, by setting number to botind at line 61.  The ifthenelse of 
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abstraction 106 can thus be commented as 

106 if 
53 botind - partop < number - topind 

then [save endpoints of upper partition, make lower new 
active partition] 

54 tops(limdex) := partop 
55 bottoms(limdex) := botind 
56 partop := topind 

else [save endpoints of lower partition, make upper new 
active partition] 

59 tops( limdex ) := topind 
60 bottoms(limdex) := number 
61 number := botind 

106 fi 

and summarized in an action comment as 

106 [set tops(limdex), bottoms(limdex) to top, bottom pointers 
of smaller partition, set partop to top, or number to 
bottom pointer of larger partition] 

The tops and bottoms arrays are declared with 20 elements each, so up to 20 
partition boundaries can be stored. What limit does this place on the maxi
mum possible size of the tosort array? This is an important question, and we 
will return to it when we have learned more about Singsort's operation. 

At line 63 limdex is incremented, and we have now read the entire 
dopart of the whiledo abstraction 501 .  

Continuing in execution sequence, consider abstraction 502, a fordo 
loop. The index i has initial value (partop + 1 ), and for first dopart execution 
the assignments at lines 69 and 70 can be written as 

69 pivot := tosort(partop + 1 )  
70 topind := partop 

and the iftest at line 71 can be written as 

71 tosort(partop) > tosort(partop + 1 )  

If this expression evaluates to false, no further operations are carried out in 
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the dopart and the loop repeats, this time wi th 

68 pivot := tosort(partop + 2) 
69 topind := partop + 1 

and so on. Thus, we conclude the fordo loop does nothing to tosort
(partop : number) if the elements are already in ascending sort. So it seems 
likely that the function of the then part, abstraction 205, is to force sorted 
order for tosort elements scanned so far. That is, as the index i increments 
over successive dopart executions, the then part assigns each tosort(i) not in 
sorted order to that relative position in the elements already sorted which 
reestablishes sorted order. 

A closer look reveals the dountil structure of abstraction 107 shifts 
tosort(i - 1 )  to tosort(i), tosort(i - 2) to tosort(i - 1 ), and so on, until an 
element is found with value not greater than pivot. No known property of 
tosort(partop : number) guarantees termination of the iteration, but with fur
ther reading we learn that topind can be decremented to point to the element 
just above tosort(partop), which is guaranteed, by the partitioning abstrac
tion 302, to be not greater than any value in the partition from partop to 
number now being sorted. But what if the partition being sorted has first 
element tosort( 1 ), since "tosort(O)" is not defined ? Our reading so far does 
not seem to provide an answer, so we leave the question open for now, and 
comment the fordo structure as shown below : 

502 for 
68 i :E partop + 1 to number by 1 

do [ascending sort tosort(partop : i)] 
402 69 pivot := tosort(i) 

70 topind := i" - 1 
303 if 

71  tosort(topind) > pivot 
then [insert pivot in sorted position] 

205 107 do 
72 tosort(topind + 1 ) := tosort(topind) 
73 topind := topind - 1 

until 
74 tosort(topind) :::; pivot 

107 od [tosort(topind) :::; pivot, tosort(topind + 2) > pivot] 
205 75 tosort(topind + 1 ) := pivot 

402 303 fi [tosort(partop) :::; ' "  :::; tosort(i)] 
502 od [tosort(partop) :::; · "  :::; tosort(number)] 
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Abstraction 502 can now be described by an action comment as 

502 [ascending sort tosort(partop : number)] 

Finally, at line 78, limdex is decremented, and we have read all of dopart1 of 
dowhiledo abstraction 701 .  

The reading so far has resulted in action comments that summarize . 
intermediate level abstractions (sequence 201 ;  301, and 302, 106, and 502) of 
compound programs within the Singsort structure. An abstract version of 
Singsort can now be written using these summaries in place of the com
pound programs they represent, to help understand operation of the entire ' 
program, as shown in Fig. 5. 17 (brackets have . been dropped to emphasize 
that the summaries are now actions in the program, and not comments). 

801 

101 2 1 
101 22 
701 

501 601 
64 
65 
66 

40 1 201 ; 30 1  

302 

106 

401 63 
501 
502 
601  78 

79 

80 
8 1  

701 
801 

proc singsort(tosort, number) 
use singsort data 
limdex := 1 
initial := partop 
dol 

while 

do 

od 

number - partop > 10 v 
(initial = partop 1\ 
partop < number) 

ascending sort tosort(partop), tosort(median), 
tosort(number); pivot := tosort(median) 
segregate tosort(partop : number) 
into two partitions � and � pivot 
set tops(limdex), bottoms(limdex) to top, bottom 
pointers of smaller partition, set partop to top, 
or number to bottom pointer of larger partition 
limdex := limdex + 1 

ascending sort tosort(partop : number) 
limdex := limdex - 1 

while 
limdex � 1 

do2 
partop := tops(limdex) 
number := bottoms(limdex) 

od 
corp 

Figure 5.1 7 
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We begin reading the reduced program above with the whiledo of 
abstraction 501. The dopart, abstraction 401 ,  first sorts the endpoints and 
median of the active partition delimited by partop and number (abstraction 
201 ; 301), next segregates the active partition based on the value of pivot 
(abstraction 302), and finally saves the endpoints of the smaller partition and 
recycles the larger one for further partitioning (abstraction 106). The dopart 
can thus be summarized in an action comment as 

do [partition the active partition, save endpoints of 
smaller, make larger new active] 

Partitioning by the whiledo abstraction 501 continues until the active 
partition size, given by (number - partop) in the first whiletest condition at 
line 64, drops below 10. Termination is guaranteed, since each new active 
partition in the loop is smaller than the previous one. What about the 
second whiletest condition, (initial = partop 1\ partop < number), at lines 65 
and 66? Initial is set to partop (itself initialized to 1 )  at line 22, and never 
reset. So the second condition tells us that the extent with upper boundary 
partop = 1 (i.e., extent with first element tosort(l )) is partitioned until 
number � partop (likewise guaranteed, by reduction in successive partition 
sizes), and at least tosort( l )  and tosort(2) are in sort. Remembering our open 
question on the fordo loop of abstraction 502, the purpose of this second 
condition now becomes clear. The active partition with first element 
tosort( 1 )  cannot be sorted by the fordo structure, as we discovered, and so is 
sorted by partitioning ! The second whiletest condition handles this case. 

What about a final status for the whiledo at od? A little thought reveals 
that all partitions produced by the whiledo are in relative ascending sort. 
Thus, we can define a predicate named relativesort, such that for, say, two 
partitions delimited by Lo1, Hi1 and Lo2, Hi2, 

re1ativesort((Lo1, Hi1 ), (Lo2, Hi2)) +-+ Lo1 � Hi ! < Lo2 � Hi2 

1\ ('Vi, j) ((Lo1 � i � Hi ! 1\ Lo2 5, j � Hi2) 

� tosort(i) � tosort(j)) 

Furthermore, at whiledo termination, endpoints of all partitions except for 
the current active partition have been saved for later processing. Thus, the 
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whiledo can be commented as 

501 while 
64 number partop > 10 v 
65 (initial = partop A 
66 partop < number) 

do [partition the active partition, save endpoints of 
smaller, make larger new active] 

501 od [relativesort(all partitions) A all except active saved A 
active S; 10 elements] 

Following the whiledo abstraction 501 ,  the current active partition is 
sorted by abstraction 502, and limdex is decremented at line 78 to complete 
the dopart 1 of dowhiledo abstraction 701, all summarized as 

701 dol [for active partition > 10 or starting at tosort{l ), 
partition, save endpoints of smaller, make larger 
new active and repeat, otherwise sort active partition] 

The dopart2 sets partop and number to the top and bottom, respectively, 
of the last saved partition, written in summary as 

do2 [make last saved partition new active partition] 

and the abstractions made so far permit us next to investigate the overall 
function of Singsort, embodied in the dowhiledo of abstraction 701. 

As we have learned, dopart 1 produces one partition in sorted order, and 
one or more partitions saved, with all partitions in relative sort. Partitions 
saved (counted by limdex) are recalled by dopart2 for further partitioning. 
Termination of the dowhiledo is guaranteed, whatever the size of the tosort 
array, since eventually, the partitions recalled are small enough (10 or fewer 
members) to be directly sorted in dopart 1, thereby generating no further 
partitions to be saved. When limdex drops to 1 ,  all partitions have been 
sorted, and the program terminates. Based on the foregoing analysis, the 
status at od can be written as 

od [relativesort(all partitions ) A sort(partitions not 
saved ) A no partitions saved] 
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where "sort(partitions not saved )" is short for "every partition not currently 
saved is in ascending sorted order," and we are able to summarize the entire 
Singsort program in an action comment attached to proc : 

proc singsort( tosort, number ) [ascending sort tosort array] 

This completes the derivation of Singsort's program function and the logical 
commentary for its prime programs. The abstracted program with derived 
comments appears in Fig. 5. 18. 

401 

501 

801 

101 2 1  
101  22 
701 

601 
64 
65 
66 

20 1 ; 301 

302 

106 

401 63 
501 

502 
601 78 

79 

80 
81 

70 1 

801 

proc singsort( tosort, number) [ascending sort tosort array] 
lfie singsort data 
limdex := 1 
initial := partop 
dol [for active partition > 10 or starting at tosort( l � 

partition, save endpoints of smaller, make larger 
new active and repeat, otherwise sort active 
partition] 

while 
number - partop > 10 v 
(initial = partop A 
partop < number) 

do [partition the active partition, save endpoints 
of smaller, make larger new active] 
ascending sort tosort(partop), tosort(median), 
tosort (n umber ) ; pivot := tosort(median) 
segregate tosort(partop : number) into 
two partitions .::; and � pivot 
set tops(limdex), bottoms(limdex) to top, bottom 
'pointers of smaller partition, set partop to top, 
or number to bottom pointer of larger partitior 
limdex := limdex + 1 

od [relativesort(all partitions) A all except active 
saved A active .::; 10 elements] 

ascending sort tosort(partop : number) 
limdex := limdex - 1 

while 

limdex � 1 
do2 [make last saved partition new active partition] 

partop := tops(limdex) 
number := bottoms(limdex) 

od [relativesort(all partitions) A sort(partitions 
not saved) A no partitions saved] 

corp 

Figure 5.1 8 
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5.4.5 A Seg ment Structu red Si ngso rt 

The intermediate abstractions (201 ; 301, 302, 106, 502) derived in the fore
going analysis summarize important functions in Singsort. They can be 
given convenient names based on their abstractions as 

201 ; 301 
302 
106 
502 

boundarysort 
partition 
save/activate 
siftsort 

and organized in a segment structure, shown as a segmented prime parse 
tree in Fig. 5. 19, and as segmented and commented POL in Fig. 5.20. Lists of 
data items in fixed- and altered-usage categories have been attached to run 
and proc statements (keeping all data declarations local to the top segment). 
The usage analysis is carried out by methodically recording data references 
in operations and tests of each segment, according to whether each data item 
is used as is or receives a new value. 

1 01 
SEQ 

� 

singsort 
801 
SEQ 

701 
DWDO 

1 - 1 5  1 7  - 22 79 80 - 81 
SEQ 

501 502 
WDO F DO 

A /\ 
64, 65, 66 401 68 402 

SEQ SEQ 

r---201 302 ---1', 204 69 - �03 
SEQ DWDO "" SEQ IT 

1\ � "/\ 1\ 
24 - 27 1 02 48 203 49 - 50 1 06 "" 63 71 205 

IT SEQ SEQ ITE " SEQ 1\ 34 ts;03 ' 04�05 53�- �1 , l\ 
28 29 - 31 IT DOU DOU 54 - 56 I DOU 

1\ 1 1\ 1\ 1 1\  
37 38 - 40 1 44 43 47 46 I 74 72 -

L��darYSO� ________ �artiti0'2-____ ..l�ve/activa�_J�ftso� __ _ 
Figure 5.1 9 
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[Segment hierarchy] 
singsort 

singsortdata 
boundarysort 
partition 
save/activate 
siftsort 

[Segments] 

801 

data singsortdata 
array 

4 tosort(number) :  integer [array to be sorted] 
scalar 

5 (pivot [value of active partition median for 

6 temp2 
boundarysort ] 

7 limdex [pointer in tops, bottoms arrays] 
8 initial 
9 median [pointer to median element in active partition] 

10 botind [pointer to bottom up exchange candidate] 
1 1  topind [pointer to top down exchange candidate] 
13  i 
14 number [pointer to last element in active partition] 
15  partop init(l )  [pointer to  first element in  active 

partition] ): integer 
array 

19 tops(20) : integer [pointers to first elements in saved 
partitions] 

20 bottoms(20): integer [pointers to last elements in saved 
partitions] 

atad 

proc singsort(tosort, number) [ascending sort tosort array] 
lISe singsortdata 

101 2 1  
101  22 
701 

limdex := 1 
initial := partop 
dol [for active partition > 10 or starting at tosort( l ), 

partition, save endpoints of smaller, make 

501 601 
64 
65 
66 

larger new active and repeat, otherwise 
sort active partition] 

while 
number - par top > 10 v 
(initial = partop " 
partop < number) 

do [partition the active partition, save 
endpoints of smaller, make larger new active] 

Figure 5.20 ( Continued) 
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401 201 ; 301  run boundarysort(alt median, pivot, topind, 
botind, tosort, fix partop, number) 

302 run partition(alt botind, topind, tosort, 
temp2, fix pivot) 

106 run save/activate(alt tops, bottoms, partop, 
number, fix botind, topind, limdex) 

401 63 limdex := limdex + 1 
501 od [relativesort(all partitions) /\ all except 

active saved /\ active ::; 10 elements] 
502 run siftsort(alt pivot, topind, tosort, i, fix 

partop, number) 
601 78 limdex := limdex - 1 

whi le 
79 limdex � 1 

do2 [make last saved partition new active partition] 
80 partop := tops(limdex) 203 
8 1  number := bottoms(limdex) 

701 od [relativesort(all partitions) /\ sort(partitions 
not saved) /\ no partitions saved] 

801 corp 

proc boundarysort(alt median, pivot, topind, botind, 
tosort, fix partop, number) [ascending sort tosort(partop), 
tosort(median), tosort( number); pivot := tosort(median)] 

201 24 median := truncate((partop + number)/2) 
25 pivot := tosort(median) 
26 topind := partop 203 
27 botind := number 

102 if 
28 tosort(partop) > pivot 

then [exchange(tosort(partop), pivot), 
tosort(median) := tosort(partop)] 

29 tosort(median) := tosort(partop) 
30 tosort(partop) := pivot 
3 1  pivot := tosort(median) 

201 102 fi [tosort(partop) ::; tosort(median) = pivot] 
301 if 

33 tosort(number) < pivot 
then [exchange(tosort(number), pivot), 

tosort(median) := tosort( number)] 
34 tosort(median) := tosort( number) 
35 tosort(number) := pivot 
36 pivot := tosort(median) 

103 if 
37 tosort(partop) > pivot 

Figure 5.20 ( Continued ) 
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then [exchange(tosort(partop), pivot), 
tosort(median ) := tosort(partop)] 

38 tosort(median ) := tosort(partop) 
39 tosort(partop) : = pivot 
40 pivot := tosort(median ) 

103 fi 
301 fi [tosort(partop) � tosort(median ) = pivot 

� tosort(number)] 
corp 

proc partition(alt botind, topind, tosort, temp2, fix 
pivot) [segregate tosort(partop : number) into 
two partitions � and � pivot] 

302 dol [search bottom up for next element � pivot, top 
down for next element � pivot] 

203 104 do 
43 botind : =  botind - 1 

until 
44 tosort(botind) � pivot 

104 od [tosort(botind) � pivot, (tosort((botind + 1 :  
number)) � pivot] 

45 temp2 := tosort(botind) 
105 do 

46 topind := topind + 1 
until 

47 tosort(topind) � pivot 
203 105 od [(tosort(partop : (topind - 1 ))) � pivot, 

tosort(topind) � pivot] 
while 

48 topind � botind 
do2 [exchange( tosort( topind), tosort(botind))] 

49 tosort(botind) := tosort(topind) 
50 tosort(topind) := temp2 

302 od [(tosort(partop : (topind - 1 ))) � pivot, 
(tosort((botind + 1 ) :  number)) � pivot, 
topind > botind] 

corp 

proc save/activate(alt tops, bottoms, partop, number, fix botind, 
topind, limdex ) [set tops(limdex), bottoms(limdex) to top, 
bottom pointers of smaller partition, set partop to top, 
or number to bottom pointer of larger partition] 

106 if 
53 botind - partop < number - topind 

Figure 5.20 (Continued )  
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106 

502 

402 

303 

107 

107 

205 
303 
502 

54 
55 
56 

59 
60 
61  

68 

69 
70 

7 1  

72 
73 

74 

75 

then [save endpoints of upper partition, make lower 
new active partition] 

tops(limdex) partop 
bottoms ( limdex) := botind 
partop := botind 

else [save endpoints of lower partition, make upper 

fi 
corp 

new active partition] 
tops ( limdex) topind 
bottoms(limdex) := number 
number := botind 

proc siftsort(alt pivot, topind, tosort, i, fix partop, 
number) [ascending sort tosort(partop : number)] 

for 
i :e partop + 1 to number by 1 

do [ascending sort tosort(partop : i)] 
pivot tosort(i) 
topind i - 1 
if 

tosort(topind) > pivot 
then [insert pivot in sorted position] 

do 
tosort(topind + 1 ) := tosort(topind) 
topind topind 1 

until 
tosort(topind) � pivot 

od [tosort(topind) � pivot, 
tosort(topind + 2) > pivot] 

tosort(topind + 1 ) := pivot 
fi [tosort(partop) � . . . � tosort(i)] 

od [tosort(partop) � . . .  � tosort(number)] 
corp 

Figure 5.20 

5.4.6 O pen Questions 

As we have learned, the save/activate segment saves top and bottom pointers 
to the smaller partition, leaving the larger one for further partitioning. The 
question raised earlier is still open-what limit does a capacity for saving 
only 20 partitions place on the size of the array to be sorted? The largest 
possible partition of an n-element array has size n 2, and a series of such 
lopsided partitions cannot be ruled out. Thus, in the worst case, a 42-element 
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array could require saving 2 1  partitions (each of the first 20 reducing the 
original array by a 2-element partition up from the bottom), thereby 
overflowing the save arrays. 

To solve the problem, the largest partition should be saved at each step, 
giving a worst case (now, for nearly equal, rather than lopsided, partitions) 
size limit on tosort of (2**(k + 1 )) - 1, where k is the size of the save arrays, 
in this case, (2**2 1 )  - 1 .  

There are other, less serious questions in Singsort, concerned with clar
ity and style, such as the following:  

1 . Line 45 plays no role in the search for exchange candidates within which 
it is embedded, and should be moved just above line 49. Then, lines 45, 
49, 50 (together) make up a meaningful abstraction-exchange. 

2. Two separate sorts (one for endpoints and median, another for active 
partitions � 10 elements) could be carried out by a single sort 
algorithm. 

3. In abstraction 502, pivot is used as a temporary variable, obscuring the 
sort function. 

4. Number is an argument to the Singsort subroutine, but its value is 
changed and not restored. 

5.4.7 A Stack Oriented Si ngsort 

Our reading of Singsort has uncovered a sensible algorithm, in which we 
now recognize the stacking and un stacking of partitions. The tops and bot
toms arrays are used as stack data structures with limdex as a pointer, 
permitting last in/first out access of stack members. Operations on these 
arrays (refer to Fig. 5.20) are distributed as follows : 

Statement 

21 limdex := 1 
54 tops(limdex) := partop 
55 bottoms(limdex) := botind 
59 tops(limdex) := topind 
60 bottoms(limdex) := number 
63 limdex : =  limdex + 1 
78 limdex := limdex - 1 
80 partop := tops(limdex) 
81 number := bottoms(limdex) 

Segment 

singsort 
save/activate 
save/activate 
save/activate 
save/activate 
singsort 
singsort 
singsort 
singsort 

Corresponding stack operation 

tops := empty ; bottoms := empty 
top(tops) := partop 
top(bottoms) := botind 
top(tops) := topind 
top(bottoms) := number 
none 
none 
partop := top(tops) 
number := top (bottoms ) 

It is now possible to reconstruct Singsort top down as a stack-oriented 
algorithm. A start at reconstruction is shown below, with partition pointers 
partop, botind, and so on, abstracted as a 2-array called "extent," and a single 
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stack, s, used to save copies of "extents" : 

top(s) := array extent 
while 

s =1= empty 
do 

od 

active extent := top(s) 
while 

active extent > 10, etc. 
do 

od 

larger extent, smaller extent := partition(active extent ) 
top(s) := smaller extent 
active extent := larger extent 

active extent := sort(active extent) 

EX E R C I SES 

1. Finish writing and commenting the stack-oriented Singsort program above. 
2. In parts (a) and (b) put the programst into better shape for understanding by 

doing a prime program parse, restructuring into a simpler basis if necessary, and 
translating into PDL; then add logical commentary, segment, and analyze data 
usage for fix and alt lists : 

a) 1 BSHELLSORT : PROCEDURE(TOSORT, NUMBER); 
2 / * ALGORITHM 201, SHELLSORT, PUBLISHED 

IN ALGOL PUBLICATION 
3 LANGUAGE, COMMUNICATIONS OF ACM, 

VOL 6, NO 8, AUGUST, 1963 */ 
4 DECLARE 
5 TOSORT(*) FIXED BINARY (3 1 ,  0), 
6 DISTANCE FIXED BINARY (3 1, 0), 
7 LIMIT FIXED BINARY (3 1, 0), 
8 TEMP FIXED BINARY (3 1, 0), 
9 I FIXED BINARY (3 1 ,  0), 

10 J FIXED BINARY (3 1 ,  0), 
1 1  LOGNMBR FIXED BINARY (3 1, 0), 
12 NUMBER FIXED BINARY (3 1, 0); 
13 LOGNMBER = LOG2(NUMBER); 
14 DISTANCE = 2 **  LOGNMBER - 1 ;  
15 DIST : DO WHILE (DISTANCE > 0); 

t H. Lorin, Sorting and Sort Systems (Reading, Mass. : Addison-Wesley, 1975) 
A64-65, A 70-72. 



16 LIMIT = NUMBER - DISTANCE; 
17  SETS : DO J = 1 TO LIMIT BY 1 ;  
1 8  ELTS : DO 1 =  J TO 1 BY - DISTANCE; 
19  IF  TOSORT(I + DISTANCE) > = TOSORT(I ) THEN GO TO OUT; 
20 TEMP = TOSORT(I); 
21 TOSORT(I ) = TOSORT(I + DISTANCE); 
22 TOSORT(I + DISTANCE) = TEMP; 
23 END ELTS; 
24 OUT: END SETS ; 
25 DISTANCE = DISTANCE/2 ; 
26 END DIST; 
27 END BSHELLSORT; 

b) 1 STRINGSORT: PROCEDURE(TOSORT, NUMBER); 
2 / * ALGORITHM 207, COMMUNICATIONS ACM, 

VOL 5, NO to, P 215 * /  
3 DECLARE 
4 TOSORT(*) FIXED BINARY (3 1 ,  O� 
5 NUMBER FIXED BINARY (3 1, 0); 
6 SORT: BEGIN; 
7 DECLARE 
8 WORK(2 * NUMBER) FIXED BINARY (3 1, 0), 
9 TOPST FIXED BINARY (3 1, 0), 

10 BOTST FIXED BINARY (3 1, 0), 
1 1  LIMITS (2) FIXED BINARY (3 1 ,  0), 
12 ADVANCE FIXED BINARY (3 1, 0), 
1 3  NEXT FIXED BINARY (3 1 ,  0), 
14 LAST FIXED BINARY (3 1 ,  0), 
1 5  K FIXED BINARY (3 1, 0), 
1 6  PASSW FIXED BINARY ( 1 ,  0), 
1 7  EXTEND LABEL; 
18 INITIAL: DO 1 = 1 TO NUMBER BY 1 ;  
1 9  WORK(I) = TOSORT(I); 
20 END INITIAL; 
2 1  ODDPASS : TOPST = 1 ;  
2 2  BOTST = NUMBER; 
23 LIMITS(I )  = NUMBER + 1 ;  
24 LIMITS(2) = 2 * NUMBER; 
25 K = 1 ;  
26 ADVANCE = 1 
27 PASSW = 1 ;  
28 FIRSTST: EXTEND = NONDOWN ; 
29 NEXT = LIMITS(K); 
30 IF WORK(TOPST) > = WORK(BOTST) 

THEN GO TO BOTTOM ; 
3 1  ELSE GO TO TOP; 
32 TOP : WORK(NEXT) = WORK(TOPST); 
33 TOPST = TOPST + 1 ;  
3 4  GO TO NEWNEXT; 

21 1 

\ 
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35 BOTTOM : WORK(NEXT) = WORK(BOTST); 
36 BOTST = BOTST - 1 ;  
37 NEWNEXT: LAST = NEXT; 
38 NEXT = NEXT + ADVANCE; 
39 IF BOTST > = TOPST THEN GO TO EXTEND ; 
40 IF PASSW = 0 THEN IF NEXT = NUMBER + 1 

THEN GO TO EXIT; 
4 1 ELSE GO TO ODDPASS; 
42 ELSE IF NEXT = 2 * NUMBER + 1 THEN GO TO EXIT; 
43 ELSE GO TO EVENPASS; 
44 JDOWN: IF WORK(TOPST) > = WORK(LAST) 

THEN GO TO TOP; 
45 ELSE GO TO BOTHDOWN; 
46 IDOWN: IF WORK(BOTST) > = WORK(LAST) 

THEN GO TO BOTTOM; 
47 ELSE GO TO BOTHDOWN; 
48 NONDOWN: IF WORK(TOPST) > = WORK(LAST) THEN 
49 IF WORK(BOTST) > = WORK(LAST) THEN 
50 IF WORK(BOTST) > = WORK(TOPST) THEN GO TO TOP;  
5 1 ELSE GO TO BOTTOM; 
52 ELSE DO; 6 
53 EXTEND = JDOWN; 1 
54 GO TO TOP; 
55 END;  s 

56 ELSE DO ; r 

57 EXTEND = IDOWN; � 
58 GO TO IDOWN; I 
59 END; f 
60 BOTHDOWN: 
6 1 LIMITS(K) = NEXT; 
62 IF K = 1 THEN K = 2 ;  
63 ELSE K = 1 ;  
64 ADVANCE = - ADVANCE ; 
65 GO TO FIRSTST; 
66 EVENPASS : TOPST = NUMBER + 1 ;  
67 BOTST = 2 * NUMBER; 
68 LIMITS(1 )  = 1 ;  
69 LIMITS(2) = NUMBER; 
70 ADVANCE = 1 ;  
7 1  K =  1 ;  
72 PASSW = 0; 
73 GO TO FIRSTST; 
74 EXIT: DO 1 = 1  TO NUMBER BY 1 ;  
75 TOSORT(I ) = WORK(LIMITS ( 1 )  - 1 + I ) ;  
76 END;  
77 END SORT; 
78 END STRINGSORT; 



6 
The Correctness 

of Structured 
Programs 

6. 1  OVE RV I EW 

This chapter develops a function-theoretic basis for the correctness of 
structured programs. Correctness relationships are crucial : first, in program 
reading, to know if one is interpreting a program properly ; second, in pro
gram writing, to know if one is writing a correct program; and third, in 
program validation, to know if a program correctly carries out its intended 
function. 

Program correctness is defined as a correspondence between a program 
and its intended function. Algebraic concepts are used to reduce the problem 
of determining compound program correctness to the problem of deter
mining correctness of constituent primes. The correctness verification of 
loop-free programs is carried out by analysis of their E-charts, and in an 
Iteration Recursion Lemma, the verification of looping programs is reduced 
to verification of equivalent loop-free programs. The Correctness Theorem 
summarizes verification requirements for both loop-free and looping primes. 
Trace tables and disjoint rules are introduced as techniques for proving 
program correctness, and the function-theoretic approach to verification is 
illustrated in several examples. Loop invariants are introduced for an alter
nate proof technique and as an aid to program documentation. A standard 
procedure for defining invariants is given by the Invariant Status Theorem. 
Finally, for insight into the design process, the derivation of correct pro
grams is described in terms of function equations for prime programs, for 
which formal solutions exist. 
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6.2 V E R I FYI N G  ST R U CT U R E D  PROG RAMS 

6.2.1  Veri fying Co rrectness i n  Reading,  Writing,  

and Val i dati on 

The verification questions encountered in reading, writing, and validating
' 

programs are identical. 
In program reading, at each step a prime program is abstracted in the · 

form of a hypothesis for its program function. For example, given program 
if p then g else h 6, we hypothesize that its program function is f The 
verification task is then to show 

/ = [if p then g else h 6] 

That is, the task is to verify that the hypothesized function / is, in fact, 
equivalent to (or possibly a subset of) the program function of the given : 
program. 

Next, in writing or designing a program, at each step a given function is 
expanded into a suitable prime structure, and function and predicate com
ponents are invented that we hypothesize will produce a program function 
identical to the given function. For example, beginning with a given fUn(:uolll�i 
/ and hypothesizing that an equivalent function will be produced by, say, 
ifthenelse structure using invented components p, g, and h, the 

. . 

task, as before, is to show 

/ = [if p then g else h 6] 

That is, the task is to verify that the given function / is equivalent to ( 
possibly a subset of) the program function of the invented program. 

Finally, in program validation both a function and its alleged prog�am 
expansion are given. So, once again, starting with the given function!, and a .  
program, say, if p then g else h 6, we must verify that 

/ = [if p then g else h 6] 

Thus, in general, the needs for program verification (proving a program 
correct) are identical, whether we are engaged in program abstraction in 
reading, program expansion in writing, or program validation. In all three

· 

cases we seek to confirm the equivalence (or subset relationship) of two 
expressions, each representing the function of a program. 

6.2.2 The Algebra of Co rrectness of Structu red Prog rams 

Program correctness is concerned with one of two questions : 

Given a function/and a program P (which is claimed to implement/� 

1 .  Is / = [P]? or 2. Is /e [P]? 
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That is, does P compute the correct values of I from the arguments of I? 

Question 1 i s  called the question of complete correctness ; question 2, of 
sufficient correctness. For complete correctness, P computes only the 
(correct) values of I from arguments of I (i.e., P is undefined for arguments 
outside of the domain of I). For sufficient correctness, P may compute 
values from arguments not belonging to f 

For example, for integers x, y, let 

I = (x � 0 1\ Y � 0 -+ x, y := X + y, 0) 

P1 = while y >  0 do x, y := X + 1, y - 1 od 

P2 = while y =1= 0 do x, y := X + 1, y - 1 od 

Since both P1 and P2 correctly compute/(x, y) for positive x, y, they satisfy 
the requirements for sufficient correctness, but neither satisfies the require
ments for complete correctness, for they both compute values for arguments 
not contained inf P1 accepts (i.e., terminates for) negative initial values for 
both x, y, and P2 accepts negative initial values for x. Note that P2 is un
defined for negative initial values for y, as is f, since it does not terminate 
when presented with y < O. 

The requirement to achieve complete correctness leads to the concept of 
defensive programming (i.e., "defending" against unexpected inputs). In this 
case, the idea of defensive programming suggests a respecification of I to 
include the complete domain of P, with the requirement that all arguments 
thereby added to the domain result in "exception processing" by the 
program. Thus, 1 and P can be redefined as 

11 = (x � 0 1\ Y � 0 -+ x, y, Z := X + y, 0, z I 
true -+ x, y, Z := x, y, 'error') 

P3 = if (x < 0) v (y < 0) then z := 'error' 
else while y > 0 do x, y := X + 1, y - 1 od fi 

for complete correctness with defenses against unexpected inputs. 
If P is not a prime program, its decomposition into primes provides a 

way to reduce the amount of reasoning required by use of the algebraic 
structure of P. In particular, the hierarchy of abstractions of P decomposes 
the proof of correctness for P into a proof of correctness for each such 
abstraction. For example, suppose we attempt to show that a compound 
program F implements a desired function f, where 

F = if p then G eise H fi (1 ) 
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and G and H are themselves programs. Rather than attempting at the 
to prove the set equality 

f = [if p then G eise H fi] 

which may be quite difficult (depending on the complexity of G and H), 
first hypothesize functions 9 and h and attempt to prove the complete cor
rectness of 

9 = [G] and h = [H] 

If successful, we can simplify (2) above, using the Axiom of Replacement 
(see Section 5.2.2), and reduce the problem to proving the set equality 

f = [if p then 9 else h fi] 

If again successful, we will have proved the complete correctness off = [F] . 
as we set out to do. However, if any of the three programs satisfy 
sufficient correctness, then program F satisfies only sufficient correctness� 
For example, if G computes values for arguments that are not in g, then F 
may compute values for arguments that are not in f 

In illustration, the subtract program (for x, y � 0) 

SUB = while 
x > O " y > O  

do 
X := x - 1 
y := y - 1 

od 
if 

y > O  
then 

x := - y 
fi 
free y 

is intended to produce the assignment function 

sub = [x, y := x - y, free] 

(by rc 
can t 

x 
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or 
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(by repeated decrementing, then checking for sign ). The four primes of SUB 
can be diagrammed and named as follows : 

SEQ:SUB 

WDO : M AG I FT : S I G N  free y 

� � 
x > 0  II y > O  SEQ: D E C R  y > O  x : = -y 

� 
x : = x - 1 y : =  y - 1 

Let program functions mag, decr, sign be hypothesized for MAG, DEeR, 
SIGN. Then there are four subproofs to a proof of correctness that 

1. sub = [SUB] or 2. sub c [SUB] 

These subproofs are either 

or 

1 . sub = [mag; sign ; free y] 
mag = [while x > 0 /\  Y > 0 do decr 00] 
decr = [x := x - l ; y := y - l] 
sign = [if y > 0 then x := -y fi] 

2. sub c [mag; sign ; free y] 
mag c [while x > 0 /\  Y > 0 do decr 00] 
decr c [x := X - 1 ;  y := y - 1] 
sign c [if y > 0 then x := -y fi] 

Thus, the correctness of a compound program can be verified by a set of 
verifications of the prime programs in which the compound program is 
expressed. 

EXE R CIS ES 

1. Given 

P I  = while x ;;::: y do x, y := y, X od 
P2 = if x ;;::: y then x, y := y, X fi 

P3 = do x, y := y, x until x =1= y od 
i l  = x, y := y, X 
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/2 = (x =1= y ---+ x, y := y, x) 

/3 = (x ;;::: y ---+ x, y := y, x) 

determine .  the correctness relationships between each program and 
(Complete, sufficient, neither?) 

2. Show a proof organization for the following program and function : 

P = if x < y then x, y := y, X fi while y > 0 do x, y := X - 1, y - 1 od 

/ = (x ;;::: 0 1\  y ;;::: 0 ---+ x, y := abs(x - y), 0) 

6.3 TH E CO R R ECT N ESS OF P R I M E P R O G RAMS 

6.3.1  Progra m  Term i n ati on 

As we have seen, if P is a loop-free program, then [P] is determined by a 
union of function compositions defined along the paths of the E-chart of 
(with or without decomposing P into cQnstituent primes). In this case, 
correctness questions can be answered directly by evaluating [P] and com
paring the result with the intended function of P, say f Of course, if P and 
are complicated objects, this evaluation and comparison will be com
plicated, too. But, nevertheless, the logical work to be done is known 
precisely. 

If P is not loop free, then the correctness questions are more difficult 
and, in genera� answering them may not be possible. The correctness of a .  
looping program depends, i n  part, on assurance that the program termin- · 
ates. This assurance will often be based on the observation that a regularly 
changing variable must ultimately cause predicate evaluation to result in an 
exit, or perhaps that a logical predicate variable previously true is set false to 
permit an exit. However, even if no such observation can be made, we 
cannot deduce in general that the program does not terminate. In fact, it 
may be logically impossible (undecidable) to determine i f  an execution of P 
halts for any given initial argument, say X, off 

Even though the termination question is undecidable in general, we can 
decide to limit our consideration to programs whose termination can be 
established. In fact, we define a new predicate 

termer, P} = "P terminates for every initial state X E D(f)" 

which we assume we can evaluate for any program P under consideration. In 
short, it's a minor sin to write a program that does not terminate, but a 
major sin to write one whose termination is undecidable. 
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6.3 .2 The Iteration Recursion Lem ma 

The verification of the three one-predicate prime programs with loops 
(whiledo, dountil, dowhiledo) can be reduced to the question of termination 
and the verification of loop-free programs, by converting iteration into 
recursion. Thus, for example, instead of directly verifying that f is the pro
gram function of the terminating whiledo program 

P = while p do g od 
which can be extremely difficult, it is sufficient to verify that P terminates for 
all arguments off and that f is the program function of the following non
looping ifthen program (with then part composed of dopart g followed by f)  

Q = i f  p then g ;f6  

because [P] = [Q], as we show next. To illustrate this equivalence, consider 
the whiledo program P that adds two nonnegative integers u, v :  

P = while v > 0 do u ,  v := U + 1 ,  v - 1 od 
We observe that P terminates and has function rule 

f =  (u, v := u  + v, 0) 

We therefore assert that P is function equivalent to 

Q = if v > 0 then u, v := U + 1, v - 1 ;  u, v := U + v, 0 fi 

This can be demonstrated by an examination of two cases : 

Case ,...., (v >  0) : 

,...., (v > 0) and v nonnegative � (v = 0). Since the predicate (v > 0) fails, 
both P and Q do nothing, and are therefore equivalent. 

Case (v >  0) : 

[Q] is a composition of two functions, and may be determined by direct 
substitution, namely, 

[u, V := U + 1, v - 1 ;  u, v := U + v, 0] = u, V := (u + 1) + (v - 1 ), 0 

with program function 

u, v := u  + v, 0 

Therefore [Q] = (u, v := U + v, 0) = [P] as was to be shown. 
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In other words, if we know the program function J of looping program 
P, we can find a recursive equation inJfor a loop-free program. The solution 
of such a recursive equation for J may be difficult or impossible to find ; but 
in this case we are verifying, not solving, the equation, and the recursion 
does not add any difficulty to the verification problem. This iteration-to
recursion possibility motivates the following Lemma 

Iteration Recursion Lemma. Given functions f, g, h, and predicate p:  

Case a (whiledo) : 

Case b (dountil ) :  

Case c (dowhiledo) :  

(J = [while p do g ocI]) +-+ 
(term(f, while p do g ocI) 1\ 

J = [if p then g; J fi]) 

(J = [do g until p ocI]) +-+ 
(term(f, do g until p ocI) 1\ 
J = [g ; if '" p then Jfi]) 

(J = [dol g while p do2 h ocI]) +-+ 
(term(f, dol g while p do2 h ocI) 1\ 
J = [g ; if p then h ; Jfi]) 

Proof Case a (whiledo) :  Assume, first, that 

J = [while p do g ocI] 

Then term (f, while p do g ocI) is necessary, otherwise the program function 
[while p do g ocI] could not equal the function! Consider next the execution 
equivalent programs 

while p do g ocI and if p then g ;  while p do g ocI fi 

whose equivalence can be seen directly, by inspection of their flowchart 
forms : 
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Therefore 

[while p do 9 00] = [if p then g ;  while p do 9 00 6] 

By hypothesis and the Axiom of Replacement, the two whiledo programs 
can be replaced by the single assignment program with function J, so that 

/ = [if p then g ; / 6] 

as was to be shown. 
Conversely (to complete the if and only if requirement), assume 

term(J, while p do 9 00) " / = [if p then g; / 6] 

and consider the series of function equivalent programs obtained by succes
sive substitution of the ifthen program for its program function : 

if p then g ; / 6  
if p then g ;  if p then g ; / 6  6 

if p then g ;  if p then g; . . .  if p then g ;  
(if p then g ; / 6) 6 . . .  6 6 

Since term(J, while p do 9 00) is hypothesized, the limit of this series is 
function equivalent to the program 

if p then g ;  if p then g; . . .  if p then g ;  I 6 . . .  6 6 

that is, identical except that the innermost ifthen is replaced by the identity 
function I because the predicate p must evaluate to false after a finite 
number of compositions of g. But this latter program is execution equivalent 
to 

while p do 9 00 

and hence 

/ = [while p do 9 00] 

as was to be shown. This concludes the proof for Case a (whiledo). The 
proofs for Cases b and c are similar, and are left for the reader. 

6.3.3 The Co rrectness Theo rem 

For convenience and reference, we assemble the requirements for verifying 
the correctness of prime programs with up to one predicate in a Correctness 
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Theorem. (Fordo and case programs are included as well.) The cOITec::tnes. 
questions noted before, namely 

1 .  Is f = [P] ? (complete correctness) 
2. Is f e [P] ? (sufficien t correctness) 

can be reasoned about and answered as corresponding set-theoretic 
questions. In the Correctness Theorem, we specialize these questions for 
various forms of program P into standard reasoning procedures fQr 
verification, based on the E-chart and Iteration Recursion Lemma discus
sions above. The problem of verifying a set relation is a mathematical prob
lem. The Correctness Theorem only defines what set relations must be 
verified in order to prove the correctness of a program. It is still necessary to . 
use whatever mathematical procedu,res and reasoning may be appropriate to , 
demonstrate the required relatio!}ships. 

The Correctness Theorem demonstrates that, aside from termination 
qlllestions, all structured programs expressed in primes of up to one predi
cate can be verified by using only those methods of reasoning required by 
sequence and ifthenelse pLograms. The proof problems may exceed our time j 

and patience but not our knowledge. 

Correctness Theorem. For any functionfand program P, correctness is 
defined by a condition C for 
1 .  complete correctness 

(f = [P] )+-+ (term(f, P) Af = {(X, Y) I C(X, Y)}) 

2: sufficient correctness 

(f e{P]) +-+ (term(f, P) Afe {(X, Y) I C(X, Y)}) 

where P and C are as tabulated below. Note that term(f, P) is always 
true for loop-free programs but permits a unified treatment of loop-free 
and looping programs alike. 

P C(X, Y) 

Case a (sequence) :  
g ; h  Y = h 0 g(X) 

Case b (fordo) :  
for i, :E L(l :  n) do g od Y = gL(n) 0 • • •  0 gL( l )(X) 
(gL(k) is the function of the kth dopart iteration) 

Case c (ifthen) :  
i f  p then g fi (p(X) -+ Y = g(X)) A 

( '" p(X) -+ Y = X) 
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Case d (ifthenelse) : 
if p then 9 else h 6 

Case e (case) :t 
case p part (CLI ) 9 . . .  

part (CLn) h eke t esac 

(CL short for caselist) 

Case f (whiledo) : 
while p do 9 od 

Case g (dountil ) :  
do 9 until p od 

Case h (dowhiledo) :  
dol 9 while p do2 h od 

(p(X) -+ Y = g(X)) 1\ 
('"  p(X) -+ Y = h(X)) 

(p(X) E CLI -+ Y = g(X)) 1\ 

(p(X) E CLn -+ Y = h(X)) 1\ 
(p(X) ¢ (CL I, . . .  , CLn) -+ 
Y = t(X)) 

(p(X) -+ Y = /0 g(X)) 1\ 
( '" p(X) -+ Y = X) 

(p 0 g(X) -+ Y = g(X)) 1\ 
('" p 0 g(X) -+ Y = / 0 g(X)) 

(p 0 g(X) -+ Y = / 0 h 0 g(X)) 1\ 
( '" p 0 g(X) -+ Y = g(X)) 

Proof In each case, the proof of the required equivalence can be found in 
an appropriate E-chart -the E-char! of a loop-free program itself, or for a 
looping program, the E-chart of its loop-free counterpart as given in the 
Iteration Recursion Lemma. For example, in case c (ifthen) where P = if p 
then 9 6, we must show 

(/ = [P]) � (term(f, P) 1\/ = { (X, Y) I C(X, Y)}) 

or 

(/ e [P])� (term(f, P) 1\/ e { (X, Y) I C(X, Y)}) 

where 

C(X, Y) = ((p(X) -+ Y = g(X)) 1\ ( '" p(X) -+ Y = X)) 

Since P is loop free, term(f, P) is true, and we must show 

(/= [P])�/= {(X, Y) I C(X, Y)} 
or 

(/e [P]) �/e {(X, Y) I C(X, Y)} 

t For purposes of this theorem, caselist elements are considered to be unique. Proof 
requirements for a case structure with non-unique caselist elements are better 
described by means of a conditional rule. 
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This will follow if we can show that 

[P] = {(X, Y) I C(X, Y)} 

We recall that the E-chart of P is 

and the function definition derived from it is 

[if p then g 6] = {(X, Y) I (p(X) � Y = g(X)) /\ ('" p(X) � Y = X)} 

Thus, it follows directly that C(X, Y) is the required condition, as was to be 
shown. 

For case g (dowhiledo) where 

P = dol g while p do2 h od 

we must show, first for complete correctriess, 

(f = [P] )� (term(f, P) /\f = {(X, Y) I C(X, Y)}) 

where 

C(X, Y) = ((p 0 g(X) � Y = f 0 h 0 g(X)) /\ ( '"  p 0 g(X) � Y = g(X))) 

By the Iteration Recursion Lemma, we can replace the left side (f = [P]) to 
get 

(term(f, P) /\f = [Q] )� (term(f, P) /\f = {(X, Y) I C(X, Y)}) 

where 

Q = (g ; if p then h ; f 6) 

Since term(f, P) is common to both sides, it is sufficient to show that 

[Q] = {(X, Y) I C(X, Y)} 
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But from the E-chart 

Q = 

and the derived function of Q is 

[Q] = {(X, Y) I (p 0 g(X) � Y = f 0 h 0 g(X)) A ( '" p 0 g(X) � Y = g(X))} 

from which it follows that C(X, Y) is the required condition, as was to be 
shown. 

Next, for sufficient correctness we must show 

(f e [P] ) +-+ (term(f, P) Af e {(X, Y) I C(X, Y)}) 

Let 

f' = [P] ( 1 ) 
Then by the complete correctness just shown 

(f' = [P] ) +-+ (term(f', P) Af' = {(X, Y) I C(X, Y)}) (2) 

Since the left side is true by definition, the right is true as well ; that is, 

term(f', P) (3)  

and 

f' = {(X, Y) I C(X, Y)} (4) 

Now for sufficient correctness, assume first that 

fe [P] (5)  

From ( 1 ) and (5) 

f e f' (6) 

and therefore 

term(f', P) � term(f, P) (7) 



226 The Correctness of Structu red Programs 

From (3) and (7) 

term(f, P) 

Also from (4) and (6) 

f e  {(X, Y) I C(X, Y)} 

Therefore, from (5), (8), and (9) 

(f e [P]) --+ (term(f, P) /\f e {(X, Y) I C(X, Y)} 

Now for the converse, assume 

term(f, P) /\f e {(X, Y) I C(X, Y)} 

or in particular 

f e  {(X, Y) I C(X, Y)} 

From (1 ), (4), and ( 1 1 )  

f e  {(X, Y) I C(X, Y)} = f' = [P] 

Therefore from (10) and (12) 

term(f, P) /\f e {(X, Y) I C(X, Y)} --+ f e [P] 

The reader is invited to verify the remaining cases. 

Note that the Correctness Theorem states a relationship between three 
objects, namely a function f, program P, and condition C, each concerned 
with ordered pairs (X, Y). In order to see the relationship more clearly, 
consider another form of the correctness questions : 

1. complete correctness 

(X, Y) E f� (X, Y) E [P]? 

2. sufficient correctness 

(X, Y) E f --+ (X, Y) E [P]? 

and C(X, Y) (with term(f, P)) can be used to answer them. That is, when 
applying C(X, Y) to prove, say, Y = h 0 g(X) for a sequence program, Y is 
derived independently from function f for argument X. 
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6.3.4 Wo rki n g  Questi ons for Com pl ete Co rrectness 

The ifthenelse correctness condition 

C(X, Y) = ((p(X) --+ Y = g(X )) /\ ( '"  p(X) --+ Y = h(X ))) 

227 

is easily put into words using the synonyms ifthenelse, if test, then part, 
elsepart, for functions /, p, g, h, respectively. For all function arguments, we 
ask 

When iftest is true does ifthenelse equal thenpart ? 

and 
when if test is false does ifthenelse equal elsepart ? 

Such verbalizations can be used informally in program reading, writing, 
and validation, with the knowledge that more formal and deliberate 
methods of reasoning are available when needed and warranted. We verbal
ize the Correctness Theorem (for complete correctness) below. 

For every possible argument required by a program specification : 

Case a (sequence) :  
sequence = [firstpart ; 

second part] 
Does sequence equal firstpart followed by second part ? 

Case b (fordo) :  

fordo = [for 
indexlist 

do 
dopart 

00] 
Does fordo equal firstpart followed by second part . . .  followed by 
lastpart? 

Case c (ifthen): 

ifthen = [if 
if test 

then 
thenpart 

6] 
When iftest is true does ifthen equal then part ? 
and 
when if test is false does ifthen equal identity? 
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Case d (ifthenelse) : 

ifthenelse = [if 
if test 

then 
thenpart 

else 
elsepart 

6] 
When if test is true does ifthenelse equal thenpart ? 

and 
when if test is false does ifthenelse equal else part ? 

Case e (case) : 
case = [case 

p 
part(CL1 ) 

casepartl 

part(CLn) 
casepartn 

else 
elsepart 

esac] 

When P E CLl does case equal casepartl ?  
and 

and 

when P E CLn does case equal casepartn ? 

and 
when P ¢ (CL 1, . . .  , CLn) does case equal elsepart ? 

Case f (whiledo ) : 
whiledo = [while 

whiletest 
do 

dopart 
00] 

Is loop termination guaranteed for any argument of whiledo? 
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and 

when whiletest is true does whiledo equal dopart followed by whiledo? 

and 
when whiletest is false does whiledo equal identity? 

Case g (dountil) : 

dountil = [do 
dopart 

until 
untiltest 

00] 

Is loop termination guaranteed for any argument of dountil? 
and 
when untiltest after dopart isfalse does dountil equal dopart followed 
by dountil? 
and 

when untiltest after dopart is true does dountil equal dopart? 

Case h (dowhiledo) : 
dowhiledo = [dol 

dopart l 
while 

whiletest 
do2 

dopart2 
00] 

Is loop termination guaranteed for any argument of dowhiledo? 
and 

when whiletest after dopartl is true does dowhiledo equal dopartl 
followed by dopart2 followed by dowhiledo? 

and 
when whiletest after dopartl is false does dowhiledo equal dopart l ? 

We will make use of these questions in the following chapter. 

6.3.5  Co rrectness Proof Syntax 

The requirements stated in the Correctness Theorem for proving prime 
programs suggest a standard format for the proofs themselves, for better 
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documentation and communication of proof arguments. We give next 
outer syntax of keywords and indentation for the parts of prime nrn.lh""lI .... 

proofs as extensions to PDL outer syntax, with inner syntax arg:UIIlenu 
specialized and recorded to whatever level is appropriate for the nrn.lh"",, _ 

and proof at hand. 
Specifically, the Correctness Theorem requires definition of the u' nell0ed 

function (J ), the program, the proof, and the proof result, identified 
keywords function, program, proof, and result, respectively. The proof 
come is specified by keywords : 

pass or fail 
suff or comp (for sufficient or complete correctness) 

Proofs are written in a tabular form for any prime as follows: 

function 
state or refer to intended function 

program 
state or refer to program part 

proof 
state or refer to proof 

result 
pass or fail, suff or comp 

The proof part of the proof is indented and specialized for each prime ' 
according to the form of condition C(X, Y) in the Correctness Theorem, 
which we recast into comparisons of conditional rules in order to specify 
proof rules more compactly. In illustration, consider the condition C for the 
ifthenelse prime, namely 

C(X, Y) = ((p(X) -+ Y = g(X)) 1\ ( --p(X) -+ Y = h(X))) 
First, since Y = J(X) in C(X, Y), the condition C can be restated as 

C(X, J(X)) = ((p(X) -+J(X) = g(X)) 1\ ( --p(X) -+J(X) = h(X))) 
Next, the implication 

p(X) -+ J(X) = g(X) 

can be restated as an equation between conditional rules 

(p(X) -+ J(X)) = (p(X) -+ g(X)) 

or simply 

(p -+J) = (p -+ g) 
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This leads to a proof part for the ifthenelse of the form (with additional proof 
keywords, and parenthetical relations defining what is to be proved) 

if test true 
(prove (p -+ f) = (p -+ g)) 

if test false 
(prove (- p -+ f) = (- p -+ h)) 

The forms for each Rrime follow. 

Case a (sequence) : f  = [g ; h] 
(provef = h o g) 

Case b (fordo): f =  [for i :E L( l : n) do g 00] 

(prove f = gL(n) 0 • • •  0 gL( 1 ») 

Case c (i fthen):  f = [if p then g 6] 

if test true 
(prove (p -+ f) = (p -+ g)) 
pass or fail 

if test false 
(prove (- p -+ f) = ( - p -+ I)) 
pass or fail 

Case d (i fthenelse ) : f = [if p then g else h 6] 

if test true 
(prove (p -+f) = (p -+ g)) 
pass or fail 

if test false 
(prove (- p -+ f) = (- p -+ h)) 
pass or fail 

Case e (case) : f =  [ease p part(CL I )  g . .  , part(CLn) h else t esae] 

partl 
(prove (p E CLI -+ f) = (p E CLI -+ g)) 
pass or fail 

partn 
(prove (p E CLn -+ f) = (p E CLn -+ h)) 
pass or fail 

elsecase 
(prove (p ¢ (CL I, . . .  , CLn) -+f) = (p ¢ (CL I, . . .  , CLn) -+ t)) 
pass or fail 
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Case f (whiledo) : f = [while p do g od] 
term 

(prove term(f, P)) 
pass or fail 

whiletest true 
(prove (p -+ f) = (p -+ f o g)) 
pass or fail 

whiletest false 
(prove ( '" p -+ f) = ( '" p -+ 1)) 
pass or fail 

Case g (dountil ) :  f = [do g until p 00] 
term 

(prove term(f, P)) 
pass or fail 

untiltest true 
(prove (p 0 g -+ f) = (p 0 g -+ g)) 
pass or fail 

untiltest false 
(prove ( '" p 0 g -+ f) = ( '" p 0 g -+ f o g)) 
pass or fail 

Case h (dowhiledo) :  f = [dol g while p do2 h 00] 
term 

(prove term(f, P)) 
pass or fail 

whiletest true 
(prove (p 0 g -+ f) = (p 0 g -+ f 0 h o g)) 
pass or fail 

whiletest false 
(prove ( '" p 0 g -+ f) = ( '" p 0 g -+ g)) 
pass or fail 

These formats are demonstrated in the remainder of the book. 

EXE R C I S ES 

1. Show that 

(I = [while p do g od]) -+ 
(term(f, while p do g od) /\ 
I = [if p then g fi /])  

(Hint : Use an E-chart .)  
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2. For each of the programs below, form a hypothesis for [P] and verify it, assum

ing (x, Y � 0): 
a) P = while 

x < y 
do 

x := y + 3 
od 

b) P = while 
x < y  

do 
x, y := y, X + 2 

od 
3. For each of the programs below, specify the domain (for termination), and form 

and verify a hypothesis for [P] : 

a) P = while 
x > y  

do 
x, y := x - 1 ,  y + 1 

od 
b) P = while 

x > y  
do 

X := x - y 
y := x + y 

od 
4. Verify the Correctness Theorem condition C(X, Y) given above for dountil and 

dowhiledo programs. 

5. Determine C(X, Y) for function /and program P, where P is defined as follows : 

T 

a) P = 

b) P = 

F 
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c) p = 

d) P = 

6 .4 TECH N IQ U ES FO R P ROVI N G  P RO G RA M  
CO R R ECT N ESS 

6 .4.1 Trace Ta bles 

Proving that a sequence program G; H correctly implements a given 
tion I requires verification of the set relations 

1= [G ; H] and Ie [G ; H] 

The verification process, which generally involves simplifying the right 
side, seems deceptively easy, because at first glance sequence logic seems 
simple. But consider determining the program function of the . 

sequence of assignments : 

1 x := x + y 
2 y := x  - y 
3 x := x - y 

At each assignment, one must mentally substitute the results of the preced
ing assignments, simplifying expressions where possible to keep what is to be 
remembered as manageable as possible. For a simple sequence this may be a 
reasonable approach, but as the sequence becomes more complex the pos
sibility of mental error increases. Even more importantly, the reasoning 
process itself is unrecorded and un repeatable. For these reasons, we intro
dQce the concept of a trace table as a formal way to record reasoning about 
sequence programs. A trace table is defined to be a table of equations-a 
row corresponding to each program part of the sequence, a column corre
sponding to each data item assigned in the sequence. Each entry of the 
trace table expresses the current value of a data item, denoted as a sub-
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scripted data item, in terms of previous values of data items. Each new data 
value is subscripted by the row of its new assignment, with initial data values 
subscripted by zero. The sequence of assignments is written in a column at 
the left of the table, along with an optional column of row numbers. For 
example, the sequence above has the following trace table : 

part x Y 

1 x := x + Y Xl = Xo + Yo Y l = Yo 
2 y := x - Y X2 = Xl Y2 = X l - Yl 
3 x := x - Y X3 = x2 - Y2 Y3 = Y2 

Note that each new value X l ' Y l' X2 , Y2 , . . .  is defined in terms of values with 
the predecessor subscripts, including the trivial definitions for items not 
explicitly assigned. This table of equations now permits elimination of all 
intermediate subscripts from final to initial subscripts, to systematically 
derive the program function : 

X3 = X2 - Y2 Y3 = Y2 
= X l - (x 1 - Y 1 ) = Xl - Y 1 
= Yl = Xo + Yo - Yo 
= Yo = Xo 

Thus, the program function for this sequence is simply the exchange 
assignment 

x, y := y, X 

but the reasoning is extensive enough to bear writing out and verifying. 
A more familiar form of exchange is given by the sequence (with tem-

porary data item t) 
1 t := x 
2 x := y 
3 y := t 

which has trace table 

part 

1 t := x 
2 x := y 
3 y := t 

with derivations 

t l = Xo 
t2 = tl 
t3 = t2 

x 

X l = Xo 
X2 = Yl 
X3 = X2 

Y 

Y l = Yo 
Y2 = Yl 
Y3 = t2 
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so that x, y are exchanged, all right, but t is set to x as well. In other 
this sequence has the program function 

t, x, Y := x, y, X 

Because our interest is in exchanging x, y in this sequence, the final values 
x, y are intentional, but the final value of t is incidental to the in 
function. We eliminate incidental data by using PDL keywords initial, 
as in the sequence 

1 initial t := x 
2 x := y 
3 y := t  
4 free t 

which has trace table 

part 

1 initial t := x 
2 x := y 
3 y := t  

tl = Xo 
t2 = t l 
t3 = t2 

4 free t 

with derivations 

X4 = X3 
= X2 
= Yl 
= Yo 

Y4 = Y3 
= t2 
= tl 
= Xo 

and program function 

free 

x 

Xl = Xo 
X2 = Yl 
X3 = X2 
X4 = X3 

x, y := y, X 

y 

Yl = Yo 
Y2 = Yl 
Y3 = t2 
Y4 = Y3 

as intended. Note the use of the term "free" in the table to express the 
disposition of t. If t had been initialized part way through the sequence 
instead of at the beginning, the term free would have appeared at all steps 
prior to initialization, as well as following the free statement. 

The trace table can be expanded to sequences of any size for any number 
of data items, and its equations used in a deliberate process for eliminating 
intermediate data values to derive the sequence program function. In simple 
sequences, the trace-table operations can also be abbreviated, if reasoning 
can be done reliably. Even if abbreviated, trace-table operations can be 
redone in fully deliberate form if any doubt arises. For example, consider the 
following sequence and partial trace table, in which only the changed data is 
entered into the table. 
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part 

1 W := x + Y 
2 x := Y + Z 
3 Y := z + W 
4 Z := w + X 
5 w := Y - Z 
6 x := z - W 
7 y := w - X 
8 Z := x - Y 
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W x Y Z 

W1 = Xo + Yo 
X2 = Y1 + Z1  

Y3 = Z2  + W2 
Z4 = W3 + X3 

Ws = Y4 - Z4 
X6 = Zs - Ws 

Y7 = W6 - X6 
Zs = X7 - Y7 

In the derivation of assignments we make use of the fact that any blank in 
the trace table denotes a trivial definition for two successively subscripted 
variables, so that subscript elimination can be done by scanning up the 
appropriate column to the next entry. The derivations are 

Ws = Ws 
= Y4 - Z4 
= Y3 - W3 - X3 

= Z2 + W2 - W2 - X2 
= Z2 - X2 
= Zo - Y1 - Z1 
= Zo - Yo - Zo 
= - Yo 

Ys = Y7 
= W6 - X6 
= Ws - Zs + Ws 
= 2ws - Zs 
= 2Y4 - 2Z4 - Z4 
= 2Y4 - 3z4 
= 2Y3 - 3W3 - 3X3 
= 2Z2 + 2W2 - 3W2 - 3X2 
= - W2 - 3X2 + 2Z2 
= - W 1 - 3 Y 1 - 3 Z 1 + 2z 1 
= - W1 - 3Y1 - Z1 
= - Xo - Yo - 3yo - Zo 
= - Xo - 4yo - Zo 

Xs = X6 
= Zs - Ws 
= Z4 - Y4 + Z4 
= 2Z4 - Y4 
= 2W3 + 2X3 - Y3 
= 2w 1 + 2x 2 - Z 2 - W2 
= 2W1 + 2Y1  + 2Z1 - Z1 - W1 
= W1 + 2Y1  + Z1  
= Xo + Yo + 2yo + Zo 
= Xo + 3yo + Zo 

Zs = X7 - Y7 
= X6 - W6 + X6 
= 2X6 - W6 
= 2z s - 2w s - W S 
= 2zs - 3ws 
= 2Z4 - 3Y4 + 3z4 
= - 3Y4 + 5z4 
= - 3Y3 + 5W3 + 5X3 

= - 3z2 - 3W2 + 5W2 + 5X2 
= 2W2 + 5X2 - 3z2 
= 2W1 + 5Y 1  + 5z 1 - 3z1 
= 2w 1 + 5 Y 1 + 2z 1 
= 2xo + 2yo + 5yo + 2zo 
= 2xo + 7 Yo + 2zo 

and the program function for this sequence is 

w, x, y, z := - y, x + 3y + z, - x  - 4y - Z, 2x + 7y + 2z 

Even though the above derivation is a little tedious, it is carried out in steps 
that can be verified independently by another person. 
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6 .4.2 Disjoint Rules 

Proving that an ifthenelse program if P then G eise H 6 correctly implements 
a function f requires the verification of the set relations 

f = [if P then G eise H 6] and f c [if P then G eise H 6] 

The verification process will involve the comparison of conditional rules, 
because an ifthenelse program function can be converted exactly into the 
form of a conditional rule, as in 

[if P then G eise H 6] = (p --+ [G] I ""  P --+ [H]) 

In the most general case, /, [G], and [H] may be given by conditional rules, 
themselves, so we consider how conditional rules of conditional rules are to 
be simplified, and how to compare conditional rules. 

First, consider a conditional rule of conditional rules, say in illustration, 

(P1 --+ (q1 1 --+ r1 1 1  q 12  --+ r12) I P2 --+ (q2 1 --+ r2 1 1 q22 --+ r22 )) 

The simple distribution of the outer p/s into the inner rules, say as 

(P1 " q1 1  --+ r 1 1  I P1 " q12  --+ r 12 1 P2 " q21  --+ r21  I P2 " q22 --+ r22) 

is not valid because of the case P1 true, but neither q1 1 or q12  true while P2 
and one of q2 b q22 true. In this case, the original rule would be undefined, . 
but the later one would be defined. However, if the predicate p/s were 
disjoint, that is P1 " P2 isfalse, then the outer p/s can be distributed into the 
inner rules. We call a conditional rule with all predicates disjoint a disjoint 
rule. 

As seen above, a disjoint rule can be more convenient than a conditional 
rule and is easy to derive by augmenting each predicate with the negation of 
all previous predicates. That is, the conditional rule 

(P1 --+ rd P2 --+ r2 1  P3 --+ r3 1 · · · ) 

has identical effect as the disjoint rule 

(P1 --+ r1 1  "" P1 " P2 --+ r2 1  "" P1 " "" P2 " P3 --+ r3 1 · · · ) 

Conversely, the disjoint rule 

(q1 --+ sd q2 --+ s2 1  q3 --+ s3 1 · · · ) 

has identical effect as the conditional rule 

(q1 --+ sd q1 v q2 --+ S2 / q1 V Q2 v q3 --+ s3 1 · · · ) 
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Note that in each predicate of this last conditional rule, any term except the 
last can be omitted, so that a disjoint rule may be converted into any one of 
many conditional rules. 

In illustration of transformation to disjoint form, the conditional rule 

(x >  0 - z := max(x, Y) I Y > 0 - z := min(x, y)) 

can be reexpressed as 

(x > 0 - (x > y - Z := X I true - z := y) I y > 0 -

(x < y - z := X I true - z := y)) 

where none of the rules are disjoint rules. We convert them to disjoint rules 
as 

(x > 0 - (x > y - Z := X I x 5 y - z := y) I 
x 5 0 1\ Y > 0 - (x < y - Z := X I x � y - Z := y)) 

which are equivalent to (by distributing the outer predicates into the inner 
rules) 

(x > 0 1\  X > Y - z := X I 
x > 0 1\ X 5 Y - z := y I 
x 5 0 1\  Y > 0 1\  X < Y - z := X I 
x 5 0 1\ Y > 0 1\  X � Y - z := y) 

Note the last predicate is false for any x, y, since it can be rewritten 

and can be deleted from the disjoint rule. The remainder of the rule can be 
diagrammed in the x, y plane as shown in Fig. 6. 1. 

'/ 
I' 

..=.;;;;=�==�---t--- X 

Figure 6.1 
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The preceding transformations can allow the manipulation and 
simplification of conditional rules. A disjoint rule has the property that · 
component rules can be permuted in any order without changing the effect 
of the rule. This property, along with the conversions between conditional 
and disjoint rules, provides a method for transforming conditional rules into 
simpler, equivalent ones by a three-step process ; namely, 

1. Given a conditional rule, convert it to an equivalent disjoint rule. 
2. Transform the disjoint rule by permuting its component rules in any 

convenient way. 
3. Convert the transformed disjoint rule back to any simpler, equivalent 

conditional rule. 

In illustration, by reference to the diagram, the preceding three-part disjoint 
rule can be transformed back to a two-part conditional rule different from 
the original, specifically one with no min, max operations : 

(y � x > 0 � Z := y I x > 0 v y > 0 � Z := x ) 

The verification process may require comparison of a disjoint con
ditional rule, say 

(P1 � r1 I p2 � r2 1 p3 � r3 ) 

with a function, say f, given by an unconditional rule. In this case, the 
predicates of the disjoint rule can be used to partition the domain of f, to 
prove, for sufficient correctness : 

P1 (X) � r1 (X) = f(X) 

P2(X) � r2(X) = f(X) 

P3(X) � r3(X) = f(X) 

To prove complete correctness, the domains of the two function rules must 
be proved identical, as well. 

Alternately, the verification process may require the comparison of two ' 
conditional rules, and, again, the disjoint form of these conditional rules 
will be convenient. Suppose disjoint rules 

(P1 � rd p2 � r2 I p3 � r3) and (q 1 � s 1 I q2 � S2) 

are to be compared for complete correctness. Then it  is  necessary and suffi
cient that ( 1 )  the rules define identical domains, and (2) the rules agree on 
every pairwise conjunction of the predicates of the rules. That is, 



6.4 Techniques fo r Provi n g  Prog ra m Correctness 

and 

(P3 /\ q2 -+ '3 ) = (P3 /\ q2 -+ S2 ) 

In illustration, consider the conditional rules 

(x � 0 /\ Y � 0 -+ X := X - Y I x � 0 /\  X + Y � 0 -+ X := X + y) 

and 

(x + y � 0 /\ Y � 0 -+ X := X + y I x + Y > 0 /\  X � 0 -+ X := X - y) 
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and the problem of comparing them. Step one is to convert these rules into 
disjoint form. The second predicate of the first rule becomes 

-- (x � O /\ y  � O) /\ x  � O /\ x  + Y � 0 
= (x < O v Y < O) /\ x  � O /\ x  + Y � 0 
= y < O /\ x � O /\ x + y � O  

while the second predicate of the second rule becomes 

-- (x + y � O /\ y  � O) /\ x  + Y > O /\ x  � 0 
= (x + Y < 0 v y > 0) /\ X + Y > 0 /\  X � 0 
= y > O /\ x + y > O /\ x � O  

Therefore, the two rules above in disjoint form are 

(x � 0 /\ Y � 0 -+ X := X - Y I y < 0 /\  X � 0 /\ X + Y � 0 -+ X := X + y) 

and 

(x + y � 0 /\  Y � 0 -+ X := X + y I y > 0 /\ X + Y > 0 /\  X � 0 -+ X := X - y) 

The comparison of these rules leads to a domain equality check, then to rule 
equality in four cases, which we number by the positions of their constitu
ents in the rules. 

Domain equality : 

Is (x � 0 /\  Y � 0) v (y < 0 /\  X � 0 /\  X + Y � 0) 
= (x + y � 0 /\ Y � 0) v (y > 0 /\ X + Y > 0 /\ X � O)? 

Case 1,1 (assignments shown in parentheses for clarity) :  

x � O /\ y � O /\ x + y � O /\ y � O 
Is (x := x - y) = (x := x + y)? 
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Case 1,2 :  

Case 2, 1 :  

Case 2,2 : 

X � O A y � O A y > O A X + y > O A X � O 
Is (x := x - y) = (x := x - y)? . 

y < O A X � O A X + y � O A X + y � O A Y S O 
Is (x := x  + y) = (x := x  + y)? 

y < O A X � O A X + y � O A y > O A X + y > O A X � O 
Is (x := x  + y) = (x := x  - y)? 

The domain equality can be seen in the diagram in Fig. 6.2, where Ll 
denotes the sector defined by the first major term of the left side, . . . , R2 
sector defined by the second major term of the right side. 

y 

-----+����- x 

Figure 6.2 

In the rule equality checks, cases 1,2 and 2,1 are evidently satisfied, 
because the assignments made are identical, so we investigate cases 1 ,1 and 
2,2 in more detail. In case 1 , 1  the combined predicate reduces to 

since y � 0 and y s O. In this case 

(x := X - y) = (x := X + y) 

since y = O. In case 2,2, the combined predicate reduces to 
- I 

(y < 0 A X � 0 A X + Y � 0 A Y > 0 A X· + Y > 0 A X � 0) = false 
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since y < 0 and y > 0, and this case holds vacuously. Therefore, since the 
rules agree in all cases, we conclude that the rules define identical functions. 
The three nonvacuous cases can be diagrammed in the X, Y plane (Fig. 

6.3 ). 

y 

case 1 , 1  
------T-�==="-- x 

Figure 6.3 

6.4.3 Case-Structu red Trace Ta bles 

The trace tables introduced before dealt with rules of a single case each, but 
it may be necessary to deal with sequences of conditional rules, as well. That 
will be easily done with disjoint rules (to which conditional rules can be 
readily converted). In illustration, consider a sequence of conditional rules of 
the form 

(x � 0 --+ x := X + y I true --+ y := y + x) 
(y � 0 --+ y := X - Y I true --+ x := y - x) 
(x � 0 --+ X := X - Y I true --+ y := y - x) 

which we convert into a sequence of disjoint rules : 
(x � 0 --+ X := X + y I x < 0 --+ y := y + x ) 
(y � 0 --+ y := X - Y I y < 0 --+ X := y - x) 
(x � 0 --+ X := X - Y I x < 0 --+ y := y - x) 

There will be eight cases, each involving a simple trace table, determined by 
the component rule invoked in each of the three disjoint rules. We number 
the cases by the component rules invoked in each respective part. The condi
tion associated with each case is given in a new column in the table, with 
subscripts corresponding to the points of evaluation of each predicate that 
makes up the total condition. Note that subscripts for conditions refer to the 
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values previous to the assignments made in the row. Intermediate SU[)SCI"lD1l 
are then eliminated by substitution as was done before for the rule itself. 

Case 1 , 1 , 1 : 

part 

x := x + Y 
y := x - Y 
X := x - Y 

derivations : 
condition : 

condition 

xo :2:: 0 

Y I  :2:: 0 
X2 :2:: 0 

x Y 

X l = Xo + Yo YI = Yo 
X2 = Xl Y2 = Xl - YI 
X3 = X2 - Y2 Y3 = Y2 

Xo :2:: O I\ YI :2:: O I\ X2 :2:: 0 = Xo :2:: O I\ Yo :2:: O I\ X I :2:: 0 

assignments : 

X3 = X2 - Y2 
= Xl - (X l - yd 
= YI 
= Yo 

Case 1 ,1 ,2 :  

part 

X := x  + Y 
y := x - Y 
y := Y - X 

derivations : 
condition : 

condition 

xo :2:: 0 

Y I  :2:: 0 
X2 < 0 

= Xo :2:: 0 1\ Yo :2:: 0 1\ Xo + Yo :2:: 0 

= Xo :2:: 0 1\ Yo :2:: 0 

Y3 = Y2 
= Xl - YI 
= (xo + Yo ) - Yo 
= Xo 

X Y 

Xl = Xo + Yo YI = Yo 
X2 = X l Y2 = X I - YI 
X2 = X2 Y3 = Y2 - X2 

xo :2:: O I\ YI :2:: O l\ X2 < 0 = Xo :2:: O I\ Yo :2:: O I\ X I < 0 

= Xo :2:: 0 1\ Yo :2:: 0 1\ Xo + Yo < 0 

= false 

assignments : Unnecessary 

Case 1 ,2, 1 : 

part condition X Y 

X := x + Y xo :2:: 0 X l = Xo + Yo YI = Yo 
x := y - X YI < 0 X2 = YI - Xl Y2 = YI 
X := x - Y X2 :2:: 0 X3 = X2 - Y2 Y3 = Y2 
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derivations :  

condition : 

Xo 2: 0 A YI < 0 A Xl 2: 0 = Xo � 0 A Yo < 0 A YI - Xl � 0 

assignments : 

X3 = Xl - Yl 
= (YI - xd - YI 
= - X l 
= - Xo - Yo 

Case 1 ,2,2 : 

part 

X := x + Y 
x := Y - X 
y := y - x 

derivations :  

condition : 

condition 

Xo � 0 
YI < 0 
Xl < 0 

= Xo � 0 A Yo < 0 A Yo - (Xo + Yo ) 2: 0 
= Xo � 0 A Yo < 0 A Xo � 0 
= Xo = O A Yo < 0 

Y3 = Yl 
= YI 
= Yo 

x 

X I = Xo + Yo 
Xl = YI - X l 
X3 = Xl 

Y 

YI = Yo 
Yl = YI 
Y3 = Yl - Xl 

Xo 2: O A YI < O A Xl < 0 = Xo � O A Yo < O A YI - Xl < 0 

assignments : 

X3 = Xl 
= YI - Xl 
= Yo - (xo + Yo ) 
= - Xo 

Case 2, 1 , 1 : 

part condition 

y := Y + X Xo < 0 
y := x  - Y YI 2: 0 
X := x  - Y Xl 2: 0 

= Xo � 0 A Yo < 0 A Yo - (xo + Yo ) < 0 
= Xo � 0 A Yo < 0 A Xo > 0 
= Xo > O A Yo < 0 

Y3 = Yl - Xl 
= Y I - (y I - X I ) 
= X l 
= Xo + Yo 

X Y 

X l = Xo YI = Yo + Xo 
Xl = X l Yl = X I - YI 
X3 = Xl - Yl Y3 = Yl 
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derivations : 
condition : 
Xo < O I\ YI Z O l\ X2 Z 0 = Xo < O I\ Yo + Xo Z O I\ XI Z 0 

= Xo < 0 1\ Yo + Xo Z 0 1\ Xo Z 0 
= false 

assignments : Unnecessary 

Case 2,1 ,2 : 

part 

y := Y + X 
y := x - Y 
y := Y - X 

derivations : 
condition : 

condition 

Xo < 0 

YI Z 0 
X2 < 0 

x Y 

Xl = Xo YI = Yo + Xo 
X2 = Xl Y2 = X I - YI 
X3 = X2 Y3 = Y2 - X2 

Xo < O I\ YI Z O l\ X2 < 0 = Xo < O I\ Yo + Xo Z O I\ XI < 0 

= Xo < 0 1\ Yo + Xo Z 0 1\ Xo < 0 

= Xo < 0 1\ Yo + Xo Z 0 

assignmen ts : 

Case 2,2, 1 : 

part 

y := Y + X 
x := Y - X 
X := x - Y 

derivations : 
condition : 

Y3 = Y2 - X2 
= (X I - YI ) - X I 
= - YI 
= - Yo - Xo 

condition X 

Xl = Xo 
X2 = YI - Xl 
X3 = X2 - Y2 

Y 

YI = Yo + Xo 
Y2 = YI 
Y3 = Y2 

Xo < O I\ YI < O l\ X2 Z 0 = Xo < O I\ Yo + Xo < O I\ YI - Xl Z 0 

= Xo < 0 1\ Yo + Xo < 0 1\ Yo + Xo - Xo Z 
= Xo < 0 1\ Yo + Xo < 0 1\ Yo Z 0 
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assignments : 

X3 = X2 - Y2 
= Y l  - X l - Yl 
= - X l 
= - Xo 

Case 2,2,2 : 

part 

y := Y + X 
x := Y - X 
y := Y - X 

derivations : 

condition : 

condition 

Xo < 0 
Yl < 0 
X2 < 0 

Y3 = Y2 
= Yl 
= Yo + Xo 

x 

Xl = Xo 
X2 = Yl - Xl 
X2 = X2 

Y 

Yl = Yo + Xo 
Y2 = Yl 
Y3 = Y2 - X2 

Xo < O I\ Yl < 0 l\ X2 < 0 = Xo < 0 1\  Yo + Xo < O I\ Yl - Xl < 0 

247 

= Xo < 0 1\  Yo + Xo < 0 1\  Yo + Xo - Xo < 0 
= Xo < 0 1\  Yo + Xo < 0 1\  Yo < 0 

assignments : 

X3 = X2 
= Yl - Xl 
= Yo + Xo - Xo 
= Yo 

= Xo < 0 1\  Yo < 0 

Y3 = Y2 - X2 
= Y 1 - (y 1 - X. ) 
= X l 
= Xo 

Assembling all cases, we find a function defined by a disjoint rule with six 
cases ; namely, 

(X Z 0 1\ Y Z 0 -+ X, Y := y, X I 
X = 0 1\  Y < 0 -+ X, Y :=  -X - y, Y I 
X > 0 1\  Y < 0 -+ X, y := -X, X + Y I 
X < 0 1\  X + Y z 0 -+ X, Y := X, -X - Y I 
X < 0 1\  X + Y < 0 1\  Y Z 0 -+ X, y := - X, X + Y I 
X < 0 1\ Y < 0 -+ X, Y := y, x) 

which can be diagrammed in the x, Y plane as shown in Fig. 6.4. 
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y x,v : = x, -x - V I 

x,v := -x,x + V 

I 
I 
I 
I 
I " I " 

---: ..... : ..... �=--�..L..x
-
--------.;.-..Jt-l ..... �----.....1x,-v--:-�-�-x-,x-+ : 

I I 
I I 
I I 

Figure 6.4 

x,v : =  -x - v, v 

With a little thought and study of the diagram, this disjoint rule can 
converted into a conditional rule such as 

(x :2: 0 /\ Y :2: 0 -+ x, Y := y, X I 
x = 0 -+ x, y := -X - y, y I 
x > 0 -+ x, y := - x, X + y I 
y < 0 -+ x, y := y, X I 
x + Y < 0 -+ x, y := -x, X + y I 
true -+ x, y := x, - X - y) 

Although this example has been treated as a sequence of three condi
tional assignments, it could be treated as a sequence of two parts, the first 
part being a sequence of two parts itself. In this case, the program function of 
the first two conditional assignments could be derived in four cases, then 
combined with the thVd conditional assignment to get the same final result. 

6 .4.4 Veri fy i n g  Fordo P rograms 

A fordo program, as described in Chapter 3, is simply an abbreviation for an ' 
extended sequence program, with an explicit data item (the index) under 
control of the fordo. For example, the fordo program 

Q = for 
i :e 1 to 6 by 2 

do 
S := max(i, s + i) 

od 
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is an abbreviation for the extended sequence 

R = S := max(1, S + 1 )  
s := max(3, S + 3)  
S := max(5, S + 5)  
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In this case, the program function of Q or R can be readily determined by the 
trace table 

part 

S := max(1 ,  S + 1 )  
s := max(3, S + 3) 
S := max(5, S + 5) 

with derivation 

S 
S I  = max(1 ,  So + 1 )  
S2 = max(3, SI + 3) 
S3 = max(5, S2  + 5) 

S3  = max(5, S2  + 5) 

and program function 

= max(5, max(3, S I  + 3 )  + 5) 
= max(8, S I  + 8) 
= max(8, max(1, So + 1 )  + 8)  
= max(9, So + 9) 

S := max (9, s + 9) 

However, given a more general fordo program, say with parameter n 

Pn = for 
i :E 1 to n by 2 

do 
s := max(i, s + i) 

od 

where n is large-say over 100-the enumeration of the sequence and its trace 
table will be impractica� and we must hypothesize the program function (if 
not given) and verify the hypothesis, either on the basis of a clear compelling 
pattern or, if more rigor is needed, by mathematical induction.t Two 
strategies are possible in using mathematical induction to determine a fordo 
program function, based on the choice of the induction variable. One choice 
is an integer variable in the fordo list description (for example, n in the 
program above). The other choice is the size of the fordo list itself. In either 
case, the procedure is to form an induction hypothesis (an intelligent guess) 

t See exercise 4, Section 6.4, for an alternate fordo proof technique. 
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of the program function as it depends on the induction variable, say k, as the 
hypothesis 

H(k) = ([PkJ = h (k)) 

where h (k) is the hypothesized program function of the fordo program P". 
Then, to carry out the induction, we need to show 

1. H(I )  
2. (k � 1 /\  H(k)) --+ H(k + 1 )  

from which we can deduce 

3. k � 1 --+ H(k) 
It may be necessary to invent the induction variable. For example, given . 

the program 

for 
i :e 1 to 100 by 2 

do 
s := max(i, s + i) 

od 

one needs to recognize the opportunity for induction by ( 1 )  generalizing the 
constant 100 to an induction variable with possible value 100, but other 
possible values 1 , 2, . . .  , 99, or (2) generalizing the size of the fordo list to an 
induction variable with possible value 50, but other possible values 1, 2, . . .  , 
49. 

The choice of induction strategy depends on details of the problem. H 
the dopart of program Pn happened to reference n (entirely possible and 
legitimate), the induction should likely be on n, not on the size of the fordo 
list ; otherwise the size of the fordo list is a natural induction variable be
cause it states the length of the trace table. Since the dopart is independent of 
n in this example, we investigate the size of the fordo list as an induction 
variable. 

First, in terms of n the size of the fordo list 

i : E 1 to n by 2 = ( 1 ,  3, . . .  ) 

say, size(n), is easily seen to be 

size(n) = (n + odd(n) )/2 

where odd(n) = 1 for n odd, odd(n) = 0 for n even. In fact, this could be 
proved by a separate induction on n, if necessary, but the following pattern 
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of values is quite compelling : 

n 1 2 3 4 5 6  
size(n) 1 1 2 2 3 3 

and size(n ) can be seen to satisfy the assertions above. 
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Next, we enumerate program functions for list sizes 1, 2, and 3 in fordo 
program Pn , denoting size(n) by k. (Derivation of the function for a list of 
size 3 was shown above) :  

k program function 

1 S := max(1 ,  S + 1 )  
2 s := max(4, s + 4) 
3 s := max(9, s + 9) 

We notice the progression of constants in the max operands to be squares, 
and form the hypothesis 

H(k) = ([Pn] = (s := max(k* *2, s + k**2))), k = size(n) 

Let R be the two-assignment sequence program shown below, with the 
firstpart an assignment to s that is equivalent to the first k iterations of the 
fordo (the hypothesized program function); and secondpart an assignment 
to s for the (k + 1 )  iteration. Note in the latter that the (k + 1 )  term is 
2*(k + 1 )  - 1 = 2*k + 1 :  

R = s := max(k**2, s + k**2) ;  
s := max(2*k + 1, s + 2*k + 1 )  

Then 

1. H( 1 )  because k = 1 -.  (s := max( 1 **2, s + h*2)) 
2. (k � 1 /\ H(k)) -. H(k + 1 )  

I n  this case we need to  show that [R], just defined, has the value 

[R] = s := max((k + 1 )**2, s + (k + 1 )**2) 

The trace-table equations for R are 

Sl = max(k**2, So + k**2) 
S2 = max(2*k + 1, S l  + 2*k + 1) 
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and the derivation is 

S2 = max(2*k + 1, k**2 + 2*k + 1, So + k**2 + 2*k + 1 )  
= max((k + 1 )**2, So + (k + 1)**2) 

Thus, the program function is 

[R] = s := max((k + 1 )**2, S + (k + 1 )**2) 

which is H(k + 1 ). 

Therefore, 

3. k :2: 1 -. H(k) = ([P] = (s := max(k**2, s + k**2))) 
that is, the hypothesized program function is correct. 

The reader is invited to carry out the induction directly on n in the fordo 
in order to contrast the two treatments. 

6 .4.5 Di rect Asserti ons a bout P rogram Functi ons 

Direct assertions about program functions is a key technique in dealing with 
large programs and finding the right balance in mathematical proof between 
formal procedure and economy of effort. As discussed in Chapter 1, a math
ematical proof is a repeatable experiment between two persons, the success · 
of which depends on both using and keeping formality within allowable 
bounds of human attention spans. A simple program part of a large program 
may be better verified by a direct assertion that its program function satisfies 
its specification rather than by a more detailed formal proof. Such an asser
tion is a claim that can be recorded, agreed to or not by another person, and 
if need be, even verified separately on an exception basis. The level of forma
lity should depend not only on the program itself but also on the uses to 
which it is put. If a life depends on its correct execution, it will be worth the 
formality that will require much effort. With lower stakes, an incorrect proof 
due to lower formality may be a reasonable calculated risk, compared to the 
effort required otherwise. It is important to note that no level of effort 
possible can guarantee the proof to be foolproof, but that even moderate 
levels of effort can uncover criticisms that may correct or improve the design 
in considerable ways. 

In illustration, if a l00-line program combines 10 program parts into an 
abstraction of 15 lines, each of the 10 program parts (under 10 lines each) 
may be verified by direct assertion, leaving a IS-line program, rather than a 
l00-line program to be verified more formally. It should be noted here that 
the examples in a book such as this are usually chosen to be small, but hard 
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for their size. In actual programming, most small program parts are easy for 
their size and should be treated accordingly. 

For example, the procedure shown in Fig. 6.5 is intended to separate a 
queue of integers into its odd and even members, then put its odd members 

1 proc oddbeforeeven(Q) [Q := oddmembers(Q) II evenmembers(Q)] 
2 queue Q, odd, even : in teger 
3 scalar x :  integer 
4 do [Q, odd, even : = �, oddmembers(Q), evenmembers(Q)] 
5 initial odd, even := empty, empty 
6 while 
7 Q =1= empty 
8 do 
9 initial x := end(Q) 

10 if 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 

20 
2 1  
22 
23 
24 
25 
26 

27 
28 
29 
30 
3 1  
32 
33 
34 

x odd 
then 

eod( odd) := x 
eke 

end(even) := x 
fi 
free x 

od 
od 
[Q, odd := Q II odd, 0] 
while 

do 

od 

odd =1= empty 

initial x := eod( odd) 
end(Q) := x 
free x 

[Q, even := Q II even, �] 
while 

even =1= empty 
do 

od 

initial x : =  end( even) 
eod(Q) := x 
free x 

free odd, even 
35 corp 

Figure 6.5 
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before its even members, but preserve relative order within the odd members 
and within the even members. 

In the logical commentary, oddmembers(Q) means the list of all odd 
members of Q in their relative order in Q, and similarly for evenmembers(Q). 
We now illustrate the use of direct assertions in proving that the procedure 
comment provides the correct program function of the procedure. The direct 
assertions corresponding to the three whiledo program parts are that their 
logical commentary is correct (of course these program parts require study 
to agree or disagree with the assertions). Square brackets enclosing begin
ning and ending line numbers denote program functions : 

[5- 18] = (Q,odd,even := �,oddmembers(Q),evenmembers(Q)) 

[20-26] = (Q,odd := Q II odd,�) 

[27-33] = (Q,even := Q II even,�) 

Note the role of initial, free of item x in limiting the scope of these program 
functions to Q, odd, and even. Using the program functions asserted for these 
program parts, the procedure oddbeforeeven is now equivalent to 

1 proc oddbeforeeven(Q) [Q := oddmembers(Q) II 

2 
3 

5-18  
20-26 
27-33 

34 
35 

evenmembers(Q)] 
queue Q,odd,even : integer 
scalar x :  integer 
Q,odd,even := �,oddmembers(Q),evenmembers(Q) 
Q,odd := Q l lodd,� 
Q,even := Q ll even,� 
free odd,even 

corp 

Next, a direct assertion about the program function of sequence (5 -18), 
(20-26), (27-33) takes the form 

[5-33] = (Q,odd,even := oddmembers(Q) l l evenmembers(Q),�,�) 

For an informal proof of this assertion, one can substitute backward in the 
sequence, beginning with 

[27-33] = (Q,odd,even := Q l leven,odd,�) 

then replacing Q, odd by their assignments in [20-26] to get 

[20-33] = (Q,odd,even := (Q l lodd) l l even,�,�) 

and 

whic 

odd1 

Thi� 
proJ 
of a 
late: 

EXI 

(All 
1. 

2. 
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and finally replacing Q, odd, even by their assignments in [5-18] to get 

[5-33] = (Q,odd,even := � ll oddmembers(Q) l l evenmembers(Q),�,�) 

which simplifies to the program function above. 
As a result of this last assertion, the program function of the procedure 

oddbeforeeven can be directly verified as 

[oddbeforeeven(Q)] = (Q := oddmembers(Q) l l evenmembers(Q)) 

This trail of explicit direct assertions about program functions of specific 
program parts can be recorded and scrutinized at later times, as the product 
of an informal proof, and as the skeleton of a more formal proof if called for 
later. 

EX E R CI S ES 

(All data objects are scalar integers.) 
1. Determine program functions for the following sequences by means of trace 

tables : 

a) y := a  
y := x*y + b 
y := x*y + c 
y := x*y + d  

b) x, y := X - y, x + y 
x, y := y, X 
x, y := X - y, x + y 

c) x, y, Z := Z, x, y 
x, y, Z := y, Z, X 
x, y, Z := Z, y, X 
x, y, Z := y, x, z 
x, y, Z := x, Z, y 

2. Determine program functions for the following sequences by means of case 
structured trace tables : 

a) if x > 0 then x := X - Y eke y := X + y fi 
if y > 0 then y := y - x eke x := y + x fi 
if x + y > 0 then x, y := X - y, y - x fi 

b) x, y := max(x, y), min(x, y) 
x, y := max(x - y, X + y), min(x - y, x + y) 
x, y := max(x, y), min(x, y) 
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3. Determine if the fordo program 

s := 0 
for 

i :e 0 to n by 3 
do 

s := max(i, s ) 
00 

has program function 
s := 3.int(n/3) 

by means of an inductive proof. 

4. Verify the fordo program function 

[for i :e 1 to y do x := x + 2.i 00] = (x := x + y.(y + 1 )) 

a) by induction on i, and 

b) by rewriting and verifying the fordo as a sequence with whiledo second part: 

i := 1 
while 

do 
i � y  

X := x + 2.i 
i := i + 1 

00 
free i 

5. Restudy the Singsort program (Fig. 5.20) and identify the extent to which 
direct assertions can be used to prove it correct, what additional logical com
mentary is required, and what program parts should be subject to formal proof. 

6 .5 EXA M P LES OF P R OG RAM V E R I F I CATI O N  

6 .5 . 1  Proofs of P D L  Pri mes With Sca l a r  Data 

We illustrate next proofs of correctness for POL prime programs with · 
examples that operate on scalar data objects. (Fordo and case structures are . 
not included ; fordo proofs were discussed above, and case proofs are a . 
simple generalization of ifthenelse proofs. Correctness proofs with array 
data and anonymous data are described in subsequent sections. )  The proofs 

. 

satisfy the verification requirements defined by the Correctness Theorem 
and are recorded in the proof syntax given in section 6.3. They are written 
out in complete syntactic and logical detail, to fully illustrate both the 
systematic process of recording data operations in trace tables and the appli
cation of logical rules of reasoning. Complete correctness is proven for each 
of the programs, with the exception of the dowhiledo, whose proof reveals an 
error. 

6 

1 

1 
t 

t 
c 
v 
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1 . Sequence proof 

function (x, y, and Z logical scalars) 
x, y, Z := y, Z, X 

program ( v  indicates the exclusive or operation) 
1 x := x V Z 
2 Z := x V Z 
3 x := x v  Z 
4 y := x v y  
5 x := x v  Y 
6 y := x v y  

proof (prove f = h o g, or in this case, that f is equivalent to the 
composition of six functions)t 

part 

1 x := x v  Z 
2 Z := x v  Z 
3 x := x v  Z 
4 y := x v y  
5 x := x v  Y 
6 y :=x v y  

derivations : 

X6 = X s 

condition 

= X4 V Y4 
= X3 V (X3 v Y3 ) 
= Y3 
= Y2 
= Y I  
= Yo 

program function : 
x, y, Z := y, Z, X 

result 
pass comp 

x Y Z 

X l = Xo V Zo YI = Yo Z l = Zo 
X2 = X l Yz = YI Zz = Xl V ZI 
X3 = X2 V Z2 Y3 = Yz Z3 = Zz 
X4 = X3 Y4 = X3 V Y3 Z4 = Z3 
Xs = X4 V Y4 Ys = Y4 Zs = Z4 
X6 = Xs Y6 = Xs v .Ys Z6 = Zs 

Y6 = Xs V Ys 
= (X4 v Y4) V Y4 

Z6 = Zs 
= Z4 
= Z3 
= Zz 

= X4 
= X3 
= X2 V Z2 
= X l V (Xl v zd 
= Z l 
= Zo 

= X l  V Z l 
= (xo V zo ) V Zo 
= Xo 

257 

Note that the condition column in the trace table is empty in the example, 
but that predicates from conditional assignments, if any, in a sequence 

t The parenthetical relations defining what is to be proved for each prime are an 
optional part of the proof syntax, a useful reminder for the reader as well as the 
writer. 



258 The Correctness of Structu red Programs 

would be recorded there. The reduction of, say, X3 V (X3 v Y3) to Y3 can be 
seen in the following table : 

x Y x V Y  x v  (x v Y)  

T T F T 
T F T F 

F T T T 
F F F F 

2. If then proof 

function (x an integer, abs absolute value) 

x := - abs(x) 

program (where "negate" operation not available) 

1 if 
2 x > O 
3 then 
4 x := x - 2*x 
5 fi 

proof 

if test true (prove (p � f)  = (p � g)) 

program function : 

(x > 0 � X := X - 2*x) = (x > 0 � X := - x) 
= (x > 0 � x := - abs(x)) 

pass 

if test false (prove ( '"  p � f )  = ( '"  p � 1)) 
program function : 

result 

(x � O �  X := x) = (x � O � x := - abs(x)) 

pass 

pass comp 

3. Ifthenelse proof 

function (x an integer) 
x := -x 
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program (where "negate" operation not available) 
1 if 
2 x > O  
3 then 
4 x := x - 2*x 
5 else 
6 x := x  + 2*abs(x) 
7 fi 

proof 
if test true (prove (p -. f) = (p -. g)) 

program function : 
(x > 0 -.  X := x  - 2*x) = (x > 0 -.  x := - x) 

pass 
if test false (prove ( '" p -. f) = ( '" p -. h)) 

program function : 
(x � 0 -.  X := x + 2*abs(x)) = (x � 0 -.  x := - x) 

pass 
result 

p2SS comp 

4. Whiledo proof 

function (x, y, and a integers) 
f= (x ;;::: 0 -.  x, y, a := 0, a*x + y, a) 

program 
1 while 
2 x =/= 0  
3 do 
4 x, y := x - 1, y + a 
5 od 

proof 
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term 
Initial x ;;::: 0 is reduced by 1 each iteration, so eventually 
whiletest x i= 0 fails. 
pass 
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whiletest true (prove (p -+ f) = (p -+ f o g)) 
part 

Xo =1= 0 
x, Y := x - 1, Y + a 
x, y, a := O, a*x + y, a 

derivations : 
condi tions : 

condition x 

Xo =1= 0 X l = Xo 
Xl = Xl - 1 

Xl � 0 X3 = 0 

Xo =1= 0 J\ Xl � 0 = Xo =1= 0 J\ Xl - 1 � 0 
= Xo =1= 0 J\ Xo - 1 � 0 
= Xo =1= 0 J\ Xo � 1 
= Xo > 0 

assignments : 
X3 = 0 Y3 = aO*x2 + Y2 

program function : 

= ao* (xi - 1 )  + YI + ao 
= ao* (xo - 1) + Yo + ao 
= ao*xo + Yo 

(x > 0 -+ X, y, a := 0, a*x + y, a) 

Y 

YI = Yo 
Yl = YI + ao 
Y3 = aO*x2 + Y2 

which agrees with the intended function when whiletest true. 
pass 

whiletest false (prove ('" p -+ f) = ('"  p -+ 1)) 
(x = 0 -+ (x � 0 -+ X, y, a := X, a*x + y, a)) 

= (x = 0 -+ X, y, a := 0, a*O + y, a) 

result 

= (x = 0 -+ X, y, a := X, y, a) 
that is, the identity function, as required. 

pass 

pass comp 

Note in the trace table for whiletest true, that the whiletest and the condi
tional predicate of the intended function both appear in the condition 
column to be used in deriving a conditional predicate for the program 
function. The first two lines in the trace table could be combined in the 
case of the whiledo, but they need to be treated separately in both the 
dountil and the dowhiledo, as shown below. Also, scalar a is not changed 
in the program, and need not appear in the trace table. 

6. 

5. 

� 
I 
I 
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Dountil proof 

function (x, y, and a integers) 
f= (x > O � X, y, a := O, a*x + y, a) 

program 

1 do 
2 x, y := x - 1, y + a 

until 3 
4 
5 od 

proof 

term 

x = O 

Initial x > 0 is reduced by 1 each iterat ion, so eventually 
untiltest x = 0 becomes true. 

2 
4 

pass 

untiltest true (prove (p 0 g � f) = (p 0 g � g)) 

part 

x, y := X - 1, y + a 
x = O 

derivations : 

condition : 

condition 

Xl = 0 

X l = 0 = (xo - 1 = 0) 
= (xo = 1 )  

assignments : 

x2 = Xl Y2 = YI 

x 

xl = xo - l  
x2 = X l 

= Xo - 1 = Yo + ao 

program function : 

(X = 1 � x, y, a :=x - 1 ,  Y + a, a) 

y 

YI = Yo + ao 
Y2 = YI  

= (x = 1 � x, y,  a :=0, a*x + y, a) 

which agrees with the intended function for initial X = 1. 

pass 

Note that a trace table is used to derive the conditional predicate of the 
program function, even though only one assignment is made in the program 
part analyzed. 
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amtiltest false (prove ('" p 0 g -+ f) = ( '" p 0 g -+ f o g)) 
part 

2 x, Y : = x - I ,  Y + a 
4 x = o  
f x, y, a := 0, a*x + y, a 

derivations : 
condition : 

condition x 

x I ::/= 0 1\  X2 > 0 = Xo - 1 ::/= 0 1\  Xl > 0 

Y 

YI = Yo + ao 
Y2 = YI 
Y3 = aO*xl + Yl 

= Xo - 1 ::/= 0 1\  Xo - 1 > 0 
= Xo ::/= 1 1\  Xo > 1 
= Xo > 1 

assignmen ts : 
X3 = 0 Y3 = aO*xl + Y2 

program function : 

= aO*xI + YI 
= ao*(xo - 1 ) + Yo + ao 
= ao*xo + Yo 

(x >  1 -+ x, y, a := 0, a*x + y, a) 
which agrees with the intended function for initial x > 1 .  

pass 
result 

pass comp 

6. Dowhiledo proof 

function (x, y, and a integers) 
f = (x > 0 -+ x, y, a := 0, a*x + y, a) 

program 
1 dol 
2 y := Y + a 

while 3 
4 
5 
6 

do2 

7 od 

x ::/= 1 

X := x - 1 
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proof 
term 

Initial x > 0 is reduced by 1 each iterat ion, so eventually 
whiletest x #= 1 fails . 
pass 

whiletest true (prove (p 0 g � f) = (p '.' g � f 0 h o g) )  

2 
4 
6 
f 

part 

y := y + a 
x + l  
x := x - 1 
x, y, a := 0, a*x + Y, a 

derivations : 
condition : 

condition x 

X l  = Xo 
X l + 1 X2 = X l 

x3 = x2 - 1  
X3 > 0 X4 = 0 

X l + 1 /\ X3 > 0 = Xo + 1 /\  X2 - 1 > 0 
= xo + l /\ x l - l > O 
= Xo + 1 /\  Xo - 1 > 0 
= Xo + 1 /\ Xo > 1 
= Xo > 1 

assignments : 

X4 = 0 Y4 = aO*x3 + Y3 

program function : 

= aO*(x2 - 1 ) + Y2 
= aO* (xl - 1 ) + Yl 
= ao* (xo - 1 ) + Yo + ao 
= ao*xo + Yo 

(x >  1 � X, y, a : = 0, a*x + Y, a) 

Y 

Yl = Yo + ao 
Y2 = Yl 
Y3 = Y2 
Y4 = aO*x3 + Y3 

which agrees with the intended function for initial x > 1. 
pass 

whiletest false (prove ('"  p 0 g � f) = ('"  p 0 g � g)) 
part condi tion 

2 y := Y + a 
4 x = 1 Xl = 1 

derivations : 
condition : 

X l = 1 = (xo = 1 ) 

x Y 

Yl = Yo + ao 
Y2 = Yl 
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assignments : 

X2 = Xl  Y2  = YI 
= Xo = Yo + ao 

program function : 

(x = 1 -. x, y, a := X, Y + a, a) 
= (x = 1 -. x, y, a := 1, a* 1 + y, a) 

which is not equivalent to the intended function for 

fail 

result 

fail 

initial X = 1 . 

We leave correction of this program (or its intended function) as an exercise . 
for the reader. 

6.5.2 Proofs With Array Data 

Correctness proofs of programs that alter both arrays and array indices 
proceed exactly as above, by developing proof steps in terms of function 
concepts, rather than program variable concepts. However, care must be 
taken with index variables for elements within the array. For a fixed array 
named a, with index variable named k, the name a(k) may or may not refer 
to the same array element throughout program execution, since k may be 
assigned new values. But the name a(ko ) will refer to the same element 
throughout execution, since ko is not assigned new values. 

As a first illustration, consider the sequence program for integer k and 
n-element array a, 

1 a(k), k := a(k) + k, k + 1 
2 a(k), k := a(k) - k, k - 1 

with hypothesized function 

(1 :::;; k < n -. k, a(k), a(k + 1 ) := k, a(k) + k, a(k + 1 )  - k - 1 )  

The trace table can be written as follows : 

part condition a k 

1 1 :::;; ko :::;; no ( 1 . 1 )  a I (1 : ko - 1 )  = ao (1 : ko - 1 )  kl = ko + 1 
( 1 .2) al (ko ) = ao(ko ) + ko 
( 1 .3 )  al (ko + 1 : no ) = ao (ko + 1 : no ) 

2 1 :::;; k l :::;; no (2. 1 )  a 2 (1 : k I - 1 )  = a I (1 : k I - 1 )  k2 = kl - 1 
(2.2) a2(kl )  = al (kl )  - kl 
(2.3 ) a2(kl + 1 : no ) = al (kl + 1 : no ) 
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An array assignment carries an implicit condition on the domain of the 
index value, made explicit in the condition column of the table. The notation 
a(r : s) denotes the array part a(r), . . .  , a(s) when r s s. For convenience in 
the derivations, every array element is accounted for at each assignment in 
th� table, not simply the element assigned. For example, lines (1 . 1 ), (1 .2), 
(1 .3) specify assignments to array elements with index values (1 : ko - 1 ), 
(ko1 (ko + 1 :  no), respectively, even though only al (ko) is assigned a new 
value. . 

The condition derivation is 

(ko Z 1 ) /\ (ko s no ) /\ (k l Z 1 ) /\ (kl s no) 
= (ko Z 1 )  /\ (ko s no) /\ (ko + 1 Z 1 ) /\ (ko + 1 s no )  
= (ko Z 1 ) /\ (ko s no - 1)  
= 1 s ko < no 

and the assignment derivation for index k is 

k2 = kl - 1 
= ko + 1 - 1 
= ko 

The assignment derivations for array a must express final values of array 
elements in terms of initial values, that is, values of a2 in terms of ao . Thus, 
subscripts for elements of both a2 and ao must be expressed in terms of ko . 
This requires deriving new values for both sides of the assignment equations, 
as follows : 

(2. 1 )  a2(1 : k l - 1 ) = al ( 1 : kl - 1 )  
a2( 1 : ko) = al(1 : ko) (because kl = ko + 1 ) 

= al ( 1 : ko - 1 ), a l (ko) 
= ao( 1 : ko - 1 ), ao(ko )  + ko (by (1 . 1 ), (1 .2)) 

Note that the forms chosen from line to line in the derivation of the 
assignment require some insightful look-ahead in expanding and con
tracting array parts, in order to accommodate the proof steps required. 
For example, the second line just above expands into two parts that 
correspond to left side of equations (1 . 1 )  and (1 .2), thereby permitting 
the derivation to proceed. 

(2.2) a2(k l )  = al (kl )  - kl 
a2(ko + 1) = al (ko + 1) - ko - 1 

= ao(ko + 1 ) - ko - 1 

(2.3 ) a2(kl + 1 : no) = al (kl + 1 : no) 
a2(ko + 2 : no )  = al (ko + 2 : no) 

= ao(ko + 2 : no) 

(because kl = ko + 1) 
(by (1 .3 )) 

(by (1 .3 )) 
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The only array elements assigned new values are a2(ko ) (from deri 
(2. 1 )), and a2(ko + 1 )  (from derivation (2.2)), and the program function 
thus 

(1 s k < n ---+ k, a(k), a(k + l ) := k, a(k) + k, a(k + 1 )  - k - 1 )  

which agrees with the hypothesized function given above. 
As a second illustration, consider a proof for the whiledo program 

1 while 
2 i < j  
3 do 
4 a(i + 1 ), i := "La(i : i + 1 ), i + 1 
5 od 

that accumulates sums forward in an n-element array named a from 
specific element up to another specific element in the array, and 
"La(i : i + 1 )  = a(i) + a(i + 1 ). For example, for n = 6, i = 2, j = 5, the 
gram produces the following mapping between arguments and values : 

Name j a(l) a(2) a(3) 

Argument 2 5 a(l ) a(2) a(3 ) 
Value 5 5 a(l )  a(2) a(2) + a(3 ) 

a(4) 

a(4) 
a(2 ) + a(3 ) 

+ a(4) 

a(5)  

a(5) 
a(2) + a(3) 

+ a(4) 
+ a(5) 

The proof is shown below. Because the hypothesized function fturns out to· 
be a two-part conditional rule (f 1 1 f2), case-structured trace tables are 
convenient in the whiletest true part of the proof, taking first fl o g, then 
f2 0 g. 

function 

f= ( 1  s i < j  s n ---+ i, a(l : n ) :=j, (a(l : i ), "La(i : i  + 1 ), "La(i : i  + 2), 
"La(i : i  + 3 ), . . . , "La(i :j), a(j + l : n)) 1 
i "? j ---+ I) 

Note that all elements of array a are accounted for on both the left and right 
sides of the multiple assignment. 

program 

whiledo, lines 1-5 above. 

proof 

term 

Index i is incremented every iteration so whiletest i < j will 
eventually fail. 

6.5 

ease l 

par 

2 
4 

f l 

del 
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pass 
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whiletest true (prove (p � f) = (p �f c g)) 

Case 1 (f l :; g) : 
part condition a 

2 
4 

f 1 

io < jo 
1 S il < no (4. 1 ) 

(4.2)  
(4.3 )  

(f 1 . 1 )  
(f 1 .2) 
(f 1 .3) 

a l ( 1 : no) = ao ( l : 11o) 
a2 ( 1 : id = a l ( 1 : id 
a 2 (i I + 1 )  = �a I (i I : i I + 1 )  
a2( i l  + 2 : no )  = a l (i l  + 2 : 110) 

a3 ( 1 :  i2)  = a2 ( 1 : i2)  
a3 (i2 + 1)  = �a2(i2 : i 2 + 1) 
a3 (i2 + 2) = �a2(i2 : i 2  + 2) 

(f 1 .4) a3 (jO )  = �a2 (i2 : jo ) 
(f 1 .5)  a3 (jO + l : no )  = a2(jO + 1 : 110) 

i l  = io 
i2 = i l  + 1 

derivations : 

condition : 

(io < j 0 ) A (i 1 � 1 )  A (; 1 < no ) A (i 2 � 1 )  
A (i2 < jo ) A (jo :::;:; no ) 

= (io < jo ) A  (io � I ) A  (io < 110 ) A (io � 0) 
A (io < jo - I ) A  (jo :::;:; 110 ) 

= (;0 � I ) A (;0 < jo - I ) A  (;0 < no ) A (jo :::;:; 110 ) 
= (io � I ) A  (;0 < jo - I ) A  (jo :::;:; 110) 

assign men ts : 

i3 = jo 

(f 1 . 1 )  a 3 ( 1 : i 2) = a 2 (1 : i 2 ) 
a3 ( I : i 1 + 1 ) = a2 (1 : ; 1 + 1 )  
a3( I : io + 1 ) = a2( I : i d, a2 (i l + 1 )  

= a 1 ( 1 : ; 1 ), La  1 (i 1 : ; 1 + 1 )  
= ao(l : ;0 ), Lao(io : ;o + 1 )  

(f 1 .2) a3 (i2 + 1) = La2(i2 : ; 2 + 1 )  
a3 (i l + 2 )  = La2 (i 1 + 1 : ; 1 + 2) 
a3 (io + 2) = L(a2 (i 1 + 1 ), a2 (i 1 + 2)) 

= L(La 1 (i l : il + 1 ), 
a1 (il + 2)) 

= Lao(io : io + 2) 

(f 1 .3 ) a3 (i2 + 2) = La2 (i2 : i 2 + 2) 
a 3 (i 1 + 3) = La 2 (i 1 + 1 : ;  1 + 3) 

(by (4. 1 ), (4.2)) 

(by (4.2), (4.3 )) 
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a3 (io + 3) = �(a2 (i l + 1 ), a2(i1 + 2 : i l + 3)) 
= � (�a 1 (i 1 : i 1 + 1 ), 

a l (i 1  + 2 : i l + 3 )) (by (4.2), (4.3)) 
= �ao (io : io + 3)  

(f 1 .4) a3 UO) = �a2 (i2 :jo ) 
= �a2 (i l  + 1 :jo ) 
= �(a2(i l  + 1 ), a2(il + 2 :jo )) 
= �(�a l (i l : il + 1 ), (by (4.2), (4.3 )) 

a l (i l  + 2 :jo )) 
= �ao (io :jo ) 

(f 1 .5) a3 UO + 1 : no) = a2UO + 1 :  no) 
= aoUo + 1 : no ) (by (4.3) and io < jo ) 

Thus, the conditional rule for case 1 is 

((i 2 1 ) /\ (i < j - 1 ) /\  U � n) � i, a(1 : n) :=j, (a(1 : i), �a(i : i  + 1 ), 

Case 2 (f2 0 g): 

part condition 

2 
4 

io < jo 
1 � i l  < no 

f2 

derivations : 

condition : 

(4. 1 )  
(4.2) 
(4.3 )  

(f2. 1 )  
(f2.2) 
(f2.3 )  

�a(i : i + 2), �a(i : i + 3), . . .  , 
�a(i :j), aU + 1 : n))) 

a 

a l  ( 1 : no ) = ao (1 : no ) 
a2(1 : id =  a l (1 : id 
a2(i1 + 1 ) = �al (i l : i l + 1 ) 
a2 (i 1 + 2 : no ) = a 1 (i 1 + 2 :  no) 

a3 ( 1 : i2) = a2 (1 : i2) 
a3 (i2 + 1) = a2(i2 + 1) 
a3 (i2 + 2 :  no ) = a2(i2  + 2 :  no ) 

i l  = io 
i2 = il + 1 

(io < jo ) /\  (il 2 1 ) /\ (il < no) /\ (i2 2 jo )  

assignments : 

i3 = i2 
= il + 1 
= io + 1 
= jo - 1 + 1 
= jo 

� (io < jo ) /\  (io 2 1 ) /\ (io < no ) /\  (io 2 jo - 1 )  
= (io 2 1 ) /\ (io = jo - 1 ) /\ (io < no ) 
= (io 2 1 )  /\ (io = jo - 1 < no ) 
= (io 2 1 ) /\ (io = jo - 1 ) /\ Uo � no) 

(by condition derivation, above) 

6 
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(f2. 1 )  a3(1 : i2) = a2 (1 : i2 ) 
a3 (1 : i 1 + 1 )  = a2 (1 : i 1 + 1 )  
a3 ( I : io + 1) = a2 (I : id, a2(i 1  + 1 )  

= a1 ( 1 : i d, r.adi 1 : i 1 + 1 )  (by (4. 1 ), (4.2)) 
= ao (l : io ), r.ao (io : io + 1 )  

(f2.2) a3 (i2 + 1 )  = a2 (i2 + 1 )  
a3(i1 + 2) = a2 (i 1 + 2) 
a3 (io + 2) = a l (i l  + 2) (by (4.3)) 

= ao (io + 2) 

(f2.3) a3 (i2 + 2 : no)  = a2 (i2 + 2 : no) 
a3 (i 1 + 3 :  no ) = a2 (i 1 + 3 :  no ) 
a3 (io + 3 : no) = a l (i l  + 3 : no)  (by (4.3)) 

= ao (io + 3 : no)  

Thus, the conditional rule for case 2 is 

((i � 1 ) /\ (i = j  - 1 ) /\ U S n) --+ i, a(l : n) :=j, (a( l : i), 
r.a(i : i + 1 ), a(i + 2 : n))) 

Inspection reveals that the data assignments for cases 1 and 2 are identical ; 
therefore, the conditional rules can be combined. The conditions differ only 
in the terms 

i < j  - 1 
i = j  - 1 

(condition 1 )  
(condition 2) 

which can be combined as 

i s j - l = i < j 

to yield 

(i � 1 )  /\ (i < j) /\ U s n) = 1 S i < j S n 

The combined conditional rule is as follows : 

(1 s i < j  S n --+ i, a(l : n) :=j, (a( l : i), r.a(i : i  + 1 ), r.a(i : i  + 2), 
r.a(i : i  + 3), . . .  , r.a(i :j), aU + l : n))) 

pass 
whiletest false (prove ( '" p --+ f)  = ( '" p --+ 1)) 

result 

The program function is the required identity. 

pass 

pass comp 
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In summary, we have recorded systematic proofs for sequence 
whiledo programs that alter arrays. These proofs proceed along the 
lines as proofs for programs that alter scalar data, but require more in 
in the derivation of program functions. 

6.5 .3 Proofs wi th Anonymous Data 

Correctness proofs of programs that operate on anonymous data nrr'I"A"'woII 
exactly as the proofs given above, except that list definitions replace th 
anonymous data operations. For example, the trace table of the sequence 
operations 

stack s 
top(s) := a 
b := top(s) 

becomes (using the list operations H, T, and so on, defined in Chapter 3) , 

part condition b s 

top(s) := a bi = bo s 1 = ao + So 
b := top(s) S i :# � b2 = H(sd S2 = T(sd 

derivations : 

S i :# � b2 = H(sd S2 = T(sd 
= (ao + So :# �) = H(ao + So ) = T(ao + So) 

= ao = So 

which defines the program function 

(a + s :# � � b := a) 

or simply 
b := a  

since (a + s :# �) is always true. 
In the case of a sequence data structure it is convenient to break the data 

column into two columns, one for each list of the sequence, as in 

sequence s 
next(s) := a 
b := current(s) 

which leads to the following trace table : 

part condition b 

next(s) := a b i = bo 
b := current(s) sl :# � b2 = H - (sl ) 

S 

sl = So EB ao 
S2 = sl 

6.S  

wI 

or 

si: 

"fI 
s 
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derivations : 

sl ;f � 
= (so EB Qo ;f �) 

b1 = H- (sl )  
= H - (so EB Qo ) 
= Qo 

which defines the program function 

or simply 

b, s := Q, S - EB Q.� 

since (s - EB Q ;f �) is always true. 

si = sl 
= So EB Qo 
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In illustration of a simple looping program with anonymous data, con
sider the procedure copysequence, intended to copy one sequence into the 
end of another 

1 proc copysequence(alt in, out) 
2 
3 
4 
5 
6 
7 
8 

sequence in,out 
while 

in =1= empty 
do 

next(out) := next(in) 
od 

corp 

with intended function 

Note that the initial list out + will be destroyed by the first write to the 
sequence out. We now want to verify this program. 

First, we observe that the dopart of the whiledo program, the single line 
6, can be written as a program function in list notation, as 

(in + ;f � -+ in, out := in- EB H(in+  ).T(in + ), oue EB H(in + ).0) 

Then, the program can be verified in the following proof: 

function 
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program 

3 while 
4 in :F empty (that is, in+ :F �) 
5 do [(in+ :F � --+ in, out := in- EB H(in+ ).T(in+ ), out- EB H(in+ 
6 next(out) : = next(in) 
7 od 

proof 

term 

One member is removed from in + each iteration, so that event 
in+ = �. 

pass 

whiletest true 

part condition in 

4 in; # � 
6 ini # � 

f 

in! = ina 
ini = in! EEl 

H(in i )  
in3 = ini ll 

in! 

. + . + in ! = ino 
in! = T(in i )  

inj = � 

derivations : 

condition : 

inti :F � /\ int :F � 
inti :F � /\ inti :F � 
= inti :F � 

assignmen ts : 

in; = inl l l ini 
= in! EB H(int ) I IT(ini ) 
= inC; EB H(int ) I IT(int ) 
= inC; II H(int ) + T(int ) 
= inC; I l int 

in; = � 

program function : 

out 

out! = outo 
outi = out! EEl 

H(ini ) 
oUt3 = outi l l 

in! 

out; = outl l l  ini 

outj = � 

= out! EB H(ini ) I IT(int 
= outC; EB H(int ) I IT(inti 
= outC; I I H(int ) + T(in.j 
= outC; I I int 

out; = � 

(in+ :F � --+ in, out := in- I l in+ .�, out- I l in+ .�) 

which agrees with the intended function for whiletest true. 

pass 

whiletest fake (in + = �) 

6.5  

intel 

On 
fun( 
befe 
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program function : 

in, out := in- " in + .�, out - " in+ .� 
= in- II �.�, out - I I �·� 
= in- .�, out - .� 
= in- .in + ,  ouC .� 
¥= in, out (out ¥= out - .�) 

fail 

result 

fail 

As a result of the proof failure, it is easy to see how to correct the 
intended function; namely, 

(in ¥= � � in, out := in- I l in +  .�, out- I l in+ .� I true � in, out := in, out ) 

On the other hand, a compound program to satisfy the original intended 
function can be obtained by adding the assignment out := empty either 
before or after the whiledo. 

6 .5 .4 Proofs of la rger loo p - F ree Pri mes 

The program function of any loop-free program, whether prime or not, can 
be determined by using case-structured trace tables, incorporating the predi
cates of the program into the tables. In illustration, consider Fig. 6.6 that 
shows a three-predicate loop-free prime, say P, and what its program function 
might be. Our objective in dealing with a large loop-free prime such as this 
is to illustrate that deliberate, recordable methods of reasoning can be used 
on loop-free primes of large and complex structure if the need arises, either 
in dealing with a special programming problem or for expanding proof rules 
beyond the one-predicate primes. 

Given a function I that program P purports to implement, we might 
wish to show for sufficient correctness that 

I e  [P] 

Figure 6.6 
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Figure 6.7 

For now, we will simply derive the program function [P] and note that P 
satisfies sufficient correctness of any subset of [P]' Program P has E-chart as 
shown in Fig. 6.7, so that the program function for P can be described by a 
conditional rule of five parts, one for each endpoint of the E-chart. In this 
case however, we note some simplification is possible since the subflowchart 

named, say S, appears in two places. We can substitute the conditional rule 
for the program function of S in the original E-chart, thereby reducing the 
paths to consider from five to three. To develop the program function for S, 
we create a trace table for each path of the E-chart of S. The paths can be 
labeled S1 and SO in accordance with their successive predicate outcomes, 1 
indicating the true branch and 0, thefalse branch. The first trace table for S is 
as follows. Where it can be done reliably, substitution of terms in the condi
tion and assignment derivations is carried out mentally, and only the final 
results are shown ; otherwise, full derivations are given. 

6.5 

The 

.) 
.) 

Con 

E-cl 
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path SI 

part condition x 

y := x - Y X l = Xo 
x > y  x 1 > Yl X2 = X 1 
X := x - Y X3 = X2 - Y2 

derivations : 

X 1 > Yl = YO > 0 X3 = YO 
path function : 

(y > 0 � x, Y := y, X - y) 

Y 

Y 1 = Xo - Yo 
Y2 = Y 1 
Y3 = Y2 

Y3 = Xo - Yo 

The second trace table for S is 

path SO 

part condition x Y 

y := x - Y X 1 = Xo Yl = Xo - Yo 
x � y X 1 � Y 1 X2 = X 1 Y2 = Y 1  
y := Y - X X3 = X2 Y3 = Y2 - X2 

derivations : 

Xl � Y1 = YO � 0 X3 = XO Y3 = - Yo 
path function : 

(y � 0 � x, Y := x, - y) 

Combining S I  and SO, we get [S], where 

[S] = (y > 0 � x, Y := y, X - Y I Y � 0 � X, Y : = X, - y) 
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Next, we replace S by [S] in the original E-chart for P to get a reduced 
E-chart as shown in Fig. 6.8. The reduced E-chart has three paths, Pl l , P I0, 

Figure 6.8 
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PO. PH has no conditional rules, so a simple trace table can be used. P 
and PO each contain [S], given by a conditional rule, so each can be 
mined by case-structured trace tables. However, we illustrate a more 
mal treatment of cases in a conditional rule within a single trace table. If 
doubt, a full treatment with case-structured trace tables can be used. 
first of the three trace tables for P is 

path PH 

part condition x 

x =/= y Xo =/= Yo X l  = Xo 
x := x  + Y X2 = X l  + YI 
x < Y  X2 < Y2 X3 = X2 
X := x  - Y X4 = X3 - Y3 

derivations : 

(xo =/= Yo ) 1\ (X2 < Y2 ) 
= (xo =/= Yo ) 1\ ((xo + Yo ) < Yo ) 
= (xo =/= Yo ) 1\ (xo < 0) 

path function : 

(x =/= Y 1\ X < 0 � x, y, := x, y) 

Y 

YI = Yo 
Y2 = YI 
Y3 = Y2 
Y4 = Y3 

Y4 = Yo 

The second trace table for P is 

path PlO 

part condition X Y 

x =/= y Xo =/= Yo X l  = Xo YI = Yo 
X := x  + Y X2 = X l  + YI Y2 = YI 
x � Y X2 � Y2 X3 = X2 Y3 = Y2 
[S] (Y3 > 0 � X4 = Y3 1 (Y3 > 0 � Y4 = X3 - Y3 1 

Y3 � 0 � X4 = X3 ) Y3 � 0 � Y4 = - Y3) 
derivations : 

First we derive 

Xo =/= Yo 1\ X2 � Y2 X3 = Xo + Yo Y3 = Yo 
= Xo =/= Yo 1\ Xo � 0 

and then 

case (Y3 > 0) = (Yo >  0) 

6.5 

The 

sing] 
tion: 



6. 5  Examples o f  P rog ra m  Verification 

case (Y3 � 0) = (Yo � 0) 

x4 = X3 Y4 = - Y3 
= Xo + Yo = - Yo 

path function : 
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(x =1= Y 1\ X � 0 -+ (y > 0 -+ x, Y := y, X I Y � 0 -+ x, Y := X + Y, - y)) 

The third trace table for P is 

part condition 

x = Y Xo = Yo 
[S] 

derivations : 

path PO 
x 

X l = Xo 
(Y I  > 0 -+ X2 = YI I 
Y I � 0 -+ X2 = xd 

First, we derive 

Xo = Yo 
and then 

X l = Xo 

case (Yl > 0) = (Yo > 0) 

YI = Yo 

Y2 = Xo - Yo 

case (YI � 0) = (Yo � 0) 

Y2 = -Yo 

path function : 

Y 

YI = Yo 
(y I > 0 -+ Y 2 = X I - Y I I 
YI � 0 -+ Y2 = - yd 

(x = Y -+ (y > 0 -+  x, y := y, X - y l y  � 0 -+  x, y := x, -y)) 

The foregoing results for PI I, PIO, and PO can now be combined into a 
single program function [P] as follows, which exactly describes the opera
tions on data carried out by program P :  

[P] = (condition PI I -+ rule PI l i 
condition PIO -+ rule PIO I 
condi tion PO -+ rule PO) 

= ((x =1= y) 1\ (x < 0) -+ x, y := x, Y I 
(x =1= y) 1\ (x � 0) 1\ (y > 0) -+ x, y := y, X I 
(x =1= y) 1\ (x � 0) 1\ (y � 0) -+ x, y := X + y, - y I 
(x = y) 1\ (y > 0) -+ x, y := y, X - y I 
(x = y)  1\ (y � 0) -+ x, y := x, - y) 
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v-axis x,v := v,x-y 

x,v : = x,-v 

I 
I 
I 

x,v := x,v I 

� 

} 

I 
I 
J 

�� x,v : = v,x /. / /. '/  
/.y 

�'/ 
h-/ � 

� '/ x,v : =  v,x y 
Z. 

- = � - x�axis 

x,v := x + v,-v 

-- I ncluded in range 
- -- Excluded from range 

Figure 6.9 

Note in passing that this program function can be diagrammed in the x, 
plane as shown in Fig. 6.9. 

EX E R CI S ES 

(All data objects are scalar integers unless otherwise declared.) 
1. Given the program 

if 
x > y 

then 
x, y := X - y, x + y 
if 

x < y 
then 

x, y := y, x 
else 

x, y := X + y, x - y 
fi 

else 
x, y := y, X 

fi 

dete 

2. 
of tl 
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a) analyzing the E-chart directly, and 
b) first determining an intermediate abstract ion, then analyzing the E-chart . 

2. Hypothesize a program function and carry out a proof of correctness for each 
of the following programs : 

a) while 
x < y + b  

do 
x, b, y := X + 1, b - 1, y + 1 

od 

b) sequence in : integer 
while 

in =1= empty 
do 

od 

a := next(in) 
x := x + a 

c) array t( n) : integer 
while 

do 

od 

i < k  

t (k )  := (t(k ) + t(k + 1 ))/2 
k := � - 1 

d) set s 1, s2 : integer 
while 

s 1  =1= empty 
do 

member(s2 ) := member(s 1 ) 
od 

e) sequence in 1 ,  in2, out [in 1, in2 contain same number of members] 
do 

a, b := next(in 1 ), next(in2 ) 
if 

a > b  
then 

next(out) := a 
ehe 

next(out) := b 
fi 

until 
in 1 = empty 

od 
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f) sequence in, out : character [in con tains � character] 
scalar a: character 
dol 

a := next(in) 
while 

a :;i: �  
do2 

next(out) := a 
od 

3. Verify the d irect assertion made about the oddbeforeeven program (Fig. 6.5 
dealing with segment [5- 18] .  Then, using the direct assertions for [5- 18], 
and [27-33], verify the direct assertion for the segment [5-33]. 

4. Verify the Singsort program (Fig. 5.20), using your own judgment of the 
of d irect assertion required. (See Problem 5, Section 6.4. ) 

6 .6 . lOO P  I NVA RIANTS I N  CO R R ECTN ESS P ROOFS 

6 .6 .1  loop Inva riants 

We now investigate an important property of invariance in program 
which gives deep insight in correctness proofs and logical commentary. 
invariant of a program loop with a single predicate is a logical cond· 
that is invariably true when the predicate is evaluated. For example, in 
addition program (u, v 2:: 0 --+ u, v := U + v, 0) 

while 
v + O  

do 
u, V := U + 1 ,  v - 1 

od 

the predicate u + v = uo + Vo holds on entry, and furthermore holds at each. 
iteration of the loop, and is therefore an invariant. We denote this in logical 
commentary as an invariant status comment attached to while : 

while [u + v = Uo + vo] 
v + O  

do 
u, V := U + 1, v - 1 

od 

Invariants, if known, can be used in an alternative to the verification 
techniques described in the Correctness Theorem, as will be shown. The 
placement of the invariant status between the while keyword and the 
whiletest indicates a condition that must hold, whether the whiletest evalu-
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ates to true or false. In order to prove that a predicate is an invariant for a 
whiledo program, it is sufficient to prove, using induction, that 

1. the predicate holds on entry to the whiledo loop, and 

2. if the predicate holds and the whiletest holds, then the predicate holds 
after the dopart is executed. 

Thus, the addition program invariant holds throughout execution, since 

1. u + v = uo + Vo on entry because u = Uo, v = vo , and 

2. if u + v = Uo + Vo and v =1= 0, then u + v = Uo + Vo after the multiple 
assignment u, v := U + 1, v - 1 .  

On the other hand, if the loop terminates, the invariant still holds, and the 
whi letest fails (in order for the loop to terminate). That is, 

u + v = Uo + Vo /\ V = 0 

But this implies that 

u = Uo + Vo /\ V = 0 

and the program function can be seen to be 

(u, v � 0 � u, V := U + v, 0) 

In general, the previous example illustrates the following idea. If q is an 
invariant in 

while [q] p do g od 

(with logical commentary brackets delimiting q) then 

(by definition ) ( 1 )  

(on termination, i f  termination ever occurs) (2) 

Note that condition (2) above defines an automatic final status comment for 
the whiledo program : 

while [q] p do g od [ '" P /\ q] 

6 .6 .2 The Inva riant Status Theorem 

In the addition program, the invariant shown was strong enough to charac
terize the program function of the whiledo loop. But weaker invariants will 
not be strong enough. For example, u + v � Uo + Vo , u + v � 0, etc., are all 
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invariants, as well, but they do not characterize the program function. 
order to determine invariants strong enough to characterize program 

. 

tions, we next study the whiledo program in more detail. 

Invariant Stat� Theorem. Let 

f = [while p do g 00] 

If X 0 E D(f), X E D(f), and q(X) = (f(X) = f(X 0 ))' then 

1 .  q is an invariant of while p do g od 
2. q characterizes f at loop termination, that is, 

too.; p(X) /\ q(X) --+ X = f(X 0) 

Proof For ( 1 )  we prove that q is an invariant by induction, which 
requires proving 

a) q(Xo ) is true, and 

b) q(X) /\ p(X) --+ q 0 g(X) 

First note on entry that 

q(X 0 ) = (f(X 0 ) = f(X 0 )) = true 

so that condition (a) is satisfied. Next, to prove condition (b) we note 
that for X E D(f) 

p(X) --+ (f(X) = f 0 g(X)) 

by the Correctness Theorem. Furthermore, since 

q(X) = (f(X)  = f(Xo)) 

by hypothesis, we can modify this implication as 

p(X) /\ q(X) --+ (f(Xo ) = f o  g(X)) 

But the right-hand side can now be recognized as 

q 0 g(X) 

Therefore 

p(X) /\ q(X) --+ q 0 g(X) 

and condition (b) holds. Hence q is an invariant as stated. 

6.E 
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For (2), if '" p(X) then by the definition of the whiledo program we 
have 

x = f(X) 

Furthermore, if q(X ), then 

f(X) =f(Xo) 

Therefore, by combining these last two equations, 

x =f(X) = f(Xo ) 
or 

"' p(X) t\ q(X) --+  (X = f(Xo)) 

as was to be shown. 

The Invariant Status Theorem permits systematic derivation of invar
iants. As a first illustration, recall the addition program 

while 
v + O  

do 
u, V := U + 1 ,  v - 1 

od 

with function (u, v � 0 --+ u, v := U + v, 0). The invariantf(X ) = f(X 0 ) can be 
derived by tabulatingf(X) and f(X 0 ) for each member of the data space : 

X I(X) f(X 0 ) 
u u + v Uo + Vo 
v 0 0 

and equating components of f(X) and f(X 0) 

u + v = Uo + Vo 

of which the first is of interest and, in fact, is identical to the invariant 
hypothesized above. 

As a second illustration, consider deriving an invariant for a whiledo 
program to carry out integer division of natural numbers a and b, dividend 
and divisor, respectively, by repeated subtraction (given bo > 0, quotient 
qo = 0) : 

while a � b do a, q := a - b, q + 1 od 
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After tracing through a sample execution, say 

a 

13 
10 
7 
4 
1 

b 

3 
3 
3 
3 
3 

we hypothesize the program function as 

q 

o 
1 
2 
3 
4 

a, b, q := a - (a/b)*b, b, (a/b) + q 

where integer division is assumed. We next apply the Invariant Status 
Theorem to derive an invariant expression for the loop, but first the reader is 
invited to verify an intuitive statement of the invariant invented by inspect
ing the program; namely, that for every iteration 

b*q + a = ao 

A tabulation off (X) and f(Xo ) gives 

X f(X) f(Xo) 

a a - (a/b )*b ao - (ao/bo)*bo 
b b bo 
q (a/b) + q (ao /bo ) + qo 

from which components can be equated to get 

a - (a/b)*b = ao - (ao/bo)*bo 

b = bo 

(a/b) + q = (ao /bo ) + qo 

( 1 )  

(2) 

(3 ) 

This system of equations is the required invariant, but some simplification is 
possible, 

to get 

ao - a = b*((ao/bo) - (a/b)) 

(ao /bo) - (a/b) = q - qo 

(from ( 1 )  and (2)) 

(from (3 )) 

which is identical to the intuitive invariant, above, given the prescription of 
qo = O. 

6 

6 

1 

t 

v 

a 

v 
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6 .6 .3 Ful l  Invariants and Limited Invariants 

The last example illustrates a point we now bring out in more detail. A 
whiledo invariant may hold by virtue of its initialization. In particular, given 

f = [while p do g od], Xo E D{f) 
we call 

q{X) = (f{X) = f{Xo)) 

thefull invariant of the whiledo loop, and for any initialization of the whiledo 

h ; while p do g od  

we call 

q{X) = (f{X) = f 0 h{Xo)) 

a limited invariant of the initialized whiledo loop. 
In illustration, consider the following initialized whiledo program, 

which assigns nonnegative u to v (u � 0 --+ v := u): 

v := O  
while 

v < u  
do 

V := v + 1 
00 

An invariant status is easy to guess and verify, as v � u, shown in the 
recopied program 

V := O  
while [v :$; u] 

v < u  
do 

V := v + 1 
00 [v = u] 

with final status at 00 derived from invariant v � u, and whiledo exit condi
tion v � u. 

Next consider the whiledo part of the program above; namely, 

while 
v < u  

do 
V := v + 1 

00 

, 
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that can be seen to have program function 

v := max(u, v) 

The invariant status is not so easy to guess, but we know how to derive it, 
recalling the form of the invariant status as 

f(u, v) = f(uo, vo) 

Using this specific program function, we have the following tabulation 

x f(X) f(Xo) 

u u Uo 
v max(u, v) max(uo , vo) 

with equated components 

u = Uo 
max(u, v) = max(uo , vo ) 

The first equation can be used to rewrite the second equation as 

and this second equation can be broken into two cases, according to the 
value of the right-hand side, defined by the following predicate expressions : 

Vo ::; Uo --+ (max(uo , v) = uo )  --+ v ::; Uo 
Vo > Uo --+ (max(uo , v) = vo) --+ v = Vo 

We can organize these cases, along with the first equation, into an invariant 
status in the recopied program : 

while [(u = uo) /\ (vo ::; Uo --+ v ::; uo) /\ (vo > Uo --+ v = vo )] 
v < u  

do 
V := v + 1 

od 

When Uo � 0, Vo = 0, as for the initialized whiledo, then this invariant re
duces to (u = uo) /\ (v ::; uo ), which contains the invariant v ::; u guessed 
above. In checking this result, the final status can now be determined as the 
conjunction of the invariant and the exit condition v � u, that is 

[(u = uo )  /\ (vo ::; Uo --+ v ::; uo) /\ (vo > Uo --+ v = vo) /\ (v � u)] 

that can be simplified to 

[(u = uo) /\ (vo ::; Uo --+ v = uo )  /\ (vo > Uo --+ v = vo)] 
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or more directly 
[(u = Uo 1\ r = maX (llo . ro )] 

that defines the whiledo program function 

V := max (u. r) 

(and not u := min (u, v), etc. ). 
Thus, although possibly paradoxical at first glance. the whiledo function 

is more complex than its initialized counterpart. In fact. the init ialization of 
the whiledo restricts its use to a subset of the whiledo function. As a result. a 
limited invariant wi ll be simpler than the full invariant of the whi ledo. But 
the limited invariant now depends-on the environment of the whiledo. 
whereas the full invariant does not. 

EXE R CI S ES 

1. Show that the dountil program 

f = [do g until p 00] 
has invariant 

q(X) = (f(X) = f "  g(Xo)) 
and that the dowhiledo program 

f = [dol g while p do2 h 00] 

has invariant 

q(X)  = (f (X) = / 0  h 0 g(Xo)) 
2. Deduce the invariants of the following programs : 

a) while x > 0 do x := X - 1 00 
b) while x =1= 0 do x := X - 1 00 
c) do x := X + 1 until x ;:::: y 00 
d) do x := X + 1 until x = y od 

6.7 FOR M U LAS F O R  CO R R ECT ST R U CT U R E D  
P R OG RAMS 

6.7.1  The Fu nction Eq uati ons of Structu red Prog ra ms 

Validation of structured programs involves repeated verification of function 
equations of one of the several types : 

f =  [g ; h] 

f = [if p then g fi] 

(sequence) 

(if  then) 
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f = [if p then g else h 6] 

f = [while p do g 00] 

f = [do g until p 00] 

f = [dol g while p do2 h 00] 

(ifthenelse) 

(whiledo) 

(dountil) 

(dowhiledo) 

Conversely, the design of correct structured programs requires the repeated 
selection and solution of these same function equations, in each case with f a 
given function and unknown functions p, g, h. For example, given any func
tion f, consider first any solution (g, h) of the equation 

f = [g ; h] (sequence) 

Next consider any solution (p, k) of the equation 

g = [if p then k 6] (ifthen) 

and next any solution (q, m) of the equation 

h = [while q do m 00] (whiledo) 

By construction, then 

f = [g ; h] = [if p then k 6; while q do m 00] 

and this construction process can be continued indefinitely. Such programs 
are correct by construction in a formal way. 

As surprising as it may seem, each of these function equations has a 
solution that can be given in closed form, if it exists at all. And it will be 
evident below that the existence of solutions can be easily guaranteed in 
equation selection during the construction process. A completely mechani
cal procedure for constructing a correct structured program of arbitrary 
structure is not now a serious design technique, because the degrees of 
freedom are so great that intelligence and insight are required to select 
reasonable solutions out of those possible. Yet, in simple design problems, as 
we shall see, a small amount of insight is sufficient to fix a solution. And, in 
any case, the form of the solutions gives a new understanding of the general 
design process. 

The foregoing function equations have solutions for arbitrary given 
function f except for one case, the whiledo equation. In this one case, an 
existence condition is found that is both necessary and sufficient. In order to 
simplify the formulas for, and theorems about, these solutions, it is conven
ient to define a least solution based on subset relations. Suppose a solution 
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(p, g, h) has been found (one way or another) for the equation 

f = [if p then g else h Ii] 

289 

Suppose another solution (p', g', h') has also been found, and further that p, 
g, h are subfunctions of p', g', h' ; that is, p c p', g c g', h c h', and 

f = [if p' then g' else h' Ii] 

We say that (p, g, h) is a lesser solution than (p', g', h ' ), and that (p, g, h) is a 
least solution if there exists no distinct lesser solution than it. 

The formula for the i fthenelse equation is the simplest, so we begin with 
it, then give the ifthen solution as a variation. Next the solution for the 
sequence equation is given, followed by the solution for the whiledo 
equation. 

6 .7.2 The Ifthenelse Form ula 

Consider the ifthenelse equation 

f = [if p then g else h Ii] 

and a diagram of the function f as a set, which has been partitioned arbi
trarily into two subsets, g and h :  

Let p be defined as the predicate function that splits the domain off into 
the domains of g and h by its values ; that is, p is true in the domain of g and 
false in the domain of h. Then (p, g, h) as constructed solves the if  then else 
equation. This simple analysis leads to the following formula. 

If th en else Formula. Given any function f, (p, g, h) is a least solution of 
the ifthenelse equation 

f = [if p then g else h Ii] 

if and only if 

(g, h) is a partition off 

p = (D(g) x {true}) u (D(h ) x {false} ) 

where D(g), D(h) are the domains of g, h, respectively. 

(1 ) 

(2) 
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Proof First, let (p, g, h) be a least solution of the ifthenelse equation 

f = [if p then g else h fi] 

First we note that 

[if p then g else h fil 

Then 

= {(X, Y) I (p(X) 1\ Y = g(X)) v ( -- p(X) 1\ Y = h(X))} 
= {(X, Y) I p(X) 1\ (X, Y) E g} U {(X, Y) 1 --p(X) 1\ (X, Y) E h} 

c {(X, Y) I (X, Y) E g} U {(X, Y) I (X, Y) E h} 
= g u h  

fc g u h 

i= g u h 

g n h = f;} 

(as shown above) 
(because (p, g, h ) is a least solution ) 
(same reason ) 

therefore 

(g, h ) is a partition off 

Also 

D(p) = D(f) (because (p, g, h ) is a least solution ) 

(X, Y) E g � p(X) (same reason ) 
(X, Y) E h � -- p(X) 

therefore 

p = (D(g) x {true}} u (D(h) x {false}} 

and conditions ( 1 ) and (2) are seen to hold. 
Conversely, suppose that conditions ( 1 ) and (2) hold. Then the program 

function [if p then g else h fi] can be calculated directly as 

{(X, Y) I (p(X) I\ (X, Y) E g) V (-- p(X) I\ (X, Y) E h)} 
= {(X, Y) I (X, Y) E g V (X, Y) E h} 
= g u h  
=f 

Further, every element of p, g, h is used in this calculation, so (p, g, h ) is a 
least solution. This completes the proo( 

In illustration, consider the equation 

Z := max (x, y) = [if p then g else h fi] 



6.7 

where 

Formula s for Correct Structu red Prog rams 

z := max (x, y) = { ((x, y, z ), (x , y, max(x, y)))} 
= {((x, y, z), (x , y, x)) l x � y} 

u {((x, y, z ), (x, y, y)) I x < y} 

In this case, there is a natural partition of z := max(x, y) into subsets 
g = {((x, y, z), (x, y, x)) l x � y} 
h = { ((x , y, z), (x, y, y)) I x < y} 

which are, in fact, defined by conditional assignments 
g = (x � y � Z := x) 
h = (x < y � z := y) 

so that a solution is 

z := max(x, y) = [if x � y then z := X else z := y fi] 

Next, the if then equation 
1 = [if p then g fi] 
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can be treated as a minor variation of the ifthenelse equation that requires a 
solution to the equation 

1 = [if p then g else I fi] 

as follows. 
If then Formula. Given any function f, (p, g) is a least solution of the 
if then equation 

f = [if p then g fi] 

if and only if 
(g c I) 1\ (I - g c 1)  ( 1 ) 
p = (D(g) x {true}) u (D(f - g) x {false}) (2 ) 

In illustration, consider the equation 

where 
y := max(x, y) = [if p then g fi] 

y := max(x, y) = { ( (x, y), (x, max (x, y)))} 
= {((x, y), (x, x)) l x � y} 

u {((x, y), (x, y)) I x < y} 
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and solution 
y := max (x, y) = [if x :2: y then y := X 6] 

6.7.3 The Seq uence Formula  

Consider the sequence formula 

f= [g ; h] 

and the diagram in Fig. 6. 10 of the domains, ranges, and sample members 
of f, g, h (shown as lines in the diagram). In this diagram, we show two 
ways to reach a final value Z from an argument X ;  directly by means of 
an element (X, Z) Ef, and indirectly by elements (X, Y) E g, ( Y, Z) E h. This 
diagram leads to the following formula. 

Sequence Formula. Given any function f, (g, h) is a least solution of the 
sequence equation 

if and only if 
D(f) = D(g) I 
R(f) = R(h) � 
R(g) = D(h ) I 

f(X) =1= f(X') � g(X) =1= g(X') 

h = fo  gT 

D(n n D(g) 

f = [g ; h] 

(where gT is the transpose of g) 

R(g) n D(h) 
Fig ure 6.1 0 

( 1 ) 

(2) 
(3) 
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In more informal terms, condition (2 ) can be restated as 

g(X) = g(X' ) --+ f(X) = f(X' ) (2) 

and each level sett of g must be a subset of some level set off; that is, the 
level sets of g are a refinement of the level sets of f Condition (3) can 
be pictured in Fig. 6. 10 as showing two alternate paths from the point Y to 
the point Z, the first path being the single line Y to Z (by way of h), the second 
path being composed of two lines Y to X (by way of gT, since the direction is 
backward to g) and X to Z (by way of f). 
Proof First, suppose that (g, h) is a least solution of the sequence equation 

f = [g ; h] 
and recall the definition 

[g ; h] = {(X, Z) / 3Y((X, Y) E g /\ ( Y, Z) E h)} 

Then, certainly, for any solution (g, h) 
D(f) c D(g) , 
R (f) c R(h) , 
R(g) c D(h) I 

( 1 . 1  ) 

but unless each subset relation is an equality, (g, h) will not be a least 
solution. Therefore 

D(f) = D(g) , 
R (f) = R(h )  r 
R(g) = D(h) I 

( 1 )  

Next, we show condition (2) by contradiction. Suppose there exists X, X' 
such that 

f(X) =1= f(X') /\ g(X) = g(X') 

Then (g, h) cannot be a solution for any function h since 

h 0 g(X) = h c g(X') 
and 

f(X) = h 0 g(X) = h 0 g(X' ) = f(X' ) 

but f(X) =1= f(X' ). Therefore, by contradiction, (2. 1 )  must be false, and 

f(X) =1= f(X' ) --+ g(X) =1= g(X' ) 

t A level set L of function 9 is a set of arguments with the same value, e.g., 

Ly = {x I (x, y) E g} 

(2. 1 ) 

(2) 
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as was to be shown. Next, in order to show that condition (3) holds, w' 
observe, if (g, h) is a least solution, that h must be characterized in the fo 

h = {(Y, Z) 1 3X((X, Y) E g /\ (X, Z) E f)} 

Now h can be rewritten as 

h = {( Y, Z) 1 3X ((Y, X) E gT /\ (X, Z) E f)} 

so that h is seen to be the composition of gT and f: 

Now gT is not necessarily a function (it is surely a relation), but we will show� 
with the restriction on g above, thatf 0 gT is indeed a function ; that is, given' 
(Y, Z) E h, (Y, Z') E h, then Z = Z'. In order to see this, note 

(Y, Z) E h -+ 3X((X, Y) E g /\ (X, Z) E f) 

(Y, Z') E h -+ 3X'((X', Y) E g /\ (X', Z') Ef) 

and assume Z =1= Z' instead. Then 

(Z =1= Z') -+ f(X) =1= f(X') 
-+ g(X) =1= g(X') 

(by substitution) 
(by (2) above) 

-+ Y =I= Y (by substitution, using (3. l ), (3.2) above) 

which is a contradiction. Therefore, f 0 gT is a function whether gT is a 
function or not. This completes the first part of the proof. 

Conversely, suppose conditions ( 1 ), (2), and (3) hold. First, we note that 
the contrapositive of condition (2) 

f(X) =1= f(X') -+ g(X) =1= g(X') 

is 

g(X) = g(X') -+ f(X) = f(X') (2c) 

Next we calculate the program function [g ; h] = h o g directly, using condi
tion (3) :  

h o g = (f 0 gT) 0 g 
= f 0 (gT 0 g) 

which we can evaluate as follows : 

fo gT 0 g(X) =f o gT( y) 
=f(X') 

where Y = g(X) 
where Y = g(X') 
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but, since g(X) = Y = g(X'), then f(X') = f(X), by condition (2c), and 
therefore 

h :; g(X)  = f(X), or h " g =f 

and (g, h) i s  a solution of the sequence equation. Condition ( 1 )  ensures that 
(g, h) is a least solution, because every member of g and h is required for 
(g, h) to be a solution. This completes the proof. 

In illustration, consider the equation 

y := max(x, y) = [g ; 11] 

Even though y := max(x, y) is more naturally expanded as an if then, as 
above, we show that a sequence solution exists, as well. Consider the candi
date function 

g = (y := x - y) 

We can verify that condition (2) above holds : 

(x, max(x, y)) =1= (x', max(x', y')) --+ (x =1= x') v (y =1= y') 
--+ (x, X - y) =1= (x' , x ' - y') 

Thus, h can be computed by condition (3 )  as follows : 

gT = {((x, y), (x, x - y))y 
, = {((x, x - y), (x, y))} 

from which we see that 

Therefore, by condition (3 )  

h = f 0 gT = (y := max(x, x - y)) 

In order to verify this mechanically derived function h, we observe 

y := max(x, y) = [g ; h] = [y := x - y; y := max(x, x - y)] 

which can be verified di rectly by use of a trace table. 

6.7.4 The Whi l edo Form u la 

The solution of the whiledo equation proceeds as follows. First, there is an 
existence theorem. 
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Whiledo Existence Theorem. Given any functionf, a solution (p, g) exists 
for the whiledo equation 

f = [while p do g 00] 

if and only if 
R (f) c D(f) 

X E R(f) --+ f(X) = X 

Proof First, suppose a solution (p, g) exists for the whiledo equation. The 
first condition follows directly from the whiledo definition. Every value off 
(i.e., every member of R(f)) is an argument of p, and therefore a member of 
D(f )· 

Before proving the remainder of the Existence Theorem, we state and 
prove a useful, and surprising, Lemma. 

Whiledo Predicate Lemma. If (p, g) is a least solution for the whiledo . 
equation 

f = [while p do g 00] 

then 
p = ( (D(f) - R(f)) x {true}) u (R (f) x (false} ) 

The surprise in the Whiledo Predicate Lemma is that there is no freedom at . 
all in the choice of the predicate of the whiledo expansion of a function. . 
Proof of Lemma. Suppose X E (D(f ) - R (f)) and ,,", p(X ). Then, with argu
ment X, while p do g od  terminates after one evaluation of p without reaching 
R(f), so (p, g) is not a solution as hypothesized. Therefore p(X) is true. 
Suppose X E R (f) and p(X ). Then while p do g 00 can never compute value 
X, because it will continue to iterate, so (p, g) is not a solution as hypoth
esized. Therefore p(X) is false. The foregoing two cases characterize p on the 
domain off, for which a least solution p must be defined. 
Continuation of Proof of Theorem. Condition (2) now follows from the 
Whiledo Predicate Lemma 

X E R (f) --+ ""' p(X) --+ f(X) = X 

Conversely, suppose that 

R (f) c D(f ) 

X E R (f) --+ f(X) = X 

(1 ) 
(2) 
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To demonstrate that some solution (p, g) exists, first define predicate p on 
the domain off, D(f ), such that 

X E (D(f) - R(f)) � p(X) 

X E R(f) � - p(X) 

Now it can be verified that (p,f)  is a solution (albeit trivial) to the whiledo 
equation, that is 

[while p dof 00] = f 

Note the program while p do f 00 executes f zero or one time (depending on 
whether the initial value X is in R (f) or (D(f ) - R(f)) and then terminates. 
This completes the proof of the Existence Theorem. 

In illustration of the Existence Theorem, note that the add function 

add = (x 2 O A Y  2 O �  x, y := x  + y, 0) 

satisfies the existence condition, for 

so that 

D(add) = {(x, y) I x, Y 2 O} 

R(add) = {(x, y) l x  2 O A Y  = O} 

R(add) c D(add) ( 1 )  

(x, y )  E R(add) � add(x, 0 )  = (x + 0, 0 )  = (x, 0) (2) 

and therefore a solution to the whiledo equation is possible. The foregoing 
add function destroys y. Can we amend the specification to 

add2 = (x 2 0 A Y 2 0 � x, y := X + y, y)? 

No ! For the function add2 violates the existence condition, for example 

D(add2) = {(x, y) I x, Y 2 O} 

so that 

but 

R(add2) = {(x, y) I x 2 Y 2 O} 

R(add2) c D(add2) (1 ) 

(x, y) E R(add2) � add2(x, y) = (x + y, y) =1= (x, y) (2) 

The seemingly slight change in specification from add to add2 means the 
difference between the existence or nonexistence of a whiledo program to 
satisfy it. 
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In the case of the add function, we know from the Whiledo Predicate 
Lemma that the true domain of the predicate is 

D(add ) - R(add) = {(x, y) l x, y � O} - { (x, y) l x � O A Y = O} 
= {(x, y) l x � O A Y > O} 

Thus, the whiledo program to satisfy add necessarily has the form 

while y > 0 do g 00 

where x and y are understood to be nonnegative throughout. We turn to the 
characterization of g next. 

Whiledo Formula. Given any function f that satisfies the Whiledo : . 
Existence Theorem, (p, g) is a least solution of the whiledo equation 

f = [while p do g 00] 

if and only if p is determined by the Whiledo Predicate Lemma and g 
satisfies the properties 

D(g) = D(f) - R(f) 

the graph of g is acyclic 

X E (D(f ) - R(f)) �f o g(X) = f(X) 

g(X) E R(f) � g(X) = f(X) 

(1 ) 
(2) 

(3 ) 

(4) 

In more informal terms, condition (3) requires that both X and g(X) are in 
the same level set off; hence, with condition (2) we see that g is the "parent 
function" for a system of trees on the level sets of f with roots in R(f). 
Conversely, any such parent function defines a correct dopart g. 

Proof of Formula. Suppose (p, g) is a least solution. For condition (1 ) note 
that g must be defined everywhere in (D(f) - R(f)), but need not be defined 
elsewhere. Condition (2) expresses termination requirements on g. For con
dition (3 ), note that X E (D(f) - R(f)) implies that both X and g(X) are in 
D(f), and while p do g 00 will compute the same final value from initial 
values X and g(X) ; therefore f(X) and f 0 g(X) must be identical, or the 
whiledo program computes at least one incorrect value. For condition (4), 
note that the whiledo program terminates (see the Whiledo Predicate 
Lemma) when g(X) E R(f) ; therefore, g(X) must equal f(X) to compute 
the correct value. 
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Conversely, suppose g satisfies the conditions above. In particular, the 
following consequences of the Whiledo Existence Theorem (E), the Whiledo 
Predicate Lemma (P), and the Whiledo Formula (F), are valid : 

R(f) c: D(f) (E l ) 
X E R(f)  -+ f(X) = X (E2) 
p = ((D(f ) - R(f)) x {true} ) u (R(f) x {false} ) (P) 
D(g) = D(f ) - R(f) (F l ) 
the graph of g i s acyclic (F2) 
X E (D(f) - R (f )) -+f :: g(X) = /(X) (F3) 
g(X) E R(f) -+ g(X) = f(X ) (F4) 

Then it can be verified that the whiledo equation is satisfied by applying 
the Correctness Theorem. Termination of the whiledo is guaranteed by (F l ) and (F2) and the condition C(X, Y) is guaranteed by (F3) and (F4). Further
more (p, g) is a least solution, p by the Whiledo Predicate Lemma, g by 
condition (F 1 ). This completes the proof of the Whiledo Formula. 
Returning to the add function, with program solution developed thus 

far 
add = [while y > 0 do g 00] 

we note from the Whiledo Formula that if 

g(x, y) = (u, v) (i .e., g = (x, y := u, v)) 

then, from conditions (F3) and (F4) 
y > 0 -+ f 0 g(X) = f(X) 

-+ add 0 g(x, y) = add(x, y) 
-+ add (u, v) = add(x, y ) 
-+ (u + v, 0) = (x + y, O) 

y = O -+ u = x + y  

Thus, the program must be of the form 
add = [while y > 0 do x := u; y := X + y - u 00] 

where, in addition, u must be chosen so that 
u � 0, x + y - u � 0 

(from (F3)) 

(from (F4)) 



300 Th e Correctness of Structured Progra ms 

because the domain of the add function is composed of nonnegative integers . .  

A very simple, easy choice of u to satisfy these conditions is u = x + 1, 
because 

x + l � O 
x + y - (x + 1 )  = y - 1 � 0 

(because x � 0) 
(because y > 0) 

This choice leads to the add program seen before, 
while y > 0 do x := X + 1 ;  y := y - 1 od 

but has been derived mechanically from the intended function except for this 
simple choice of the form of u above. Note u can be chosen differently, for 
example as x + y. Then the program becomes 

while y > 0 do x := X + y; y := 0 od 

which is satisfactory (if x + y is available for assignment). Note also u can be 
chosen incorrectly, for example as O. Then the program becomes 

while y > 0 do x := 0; y := X + y od 

and does not terminate because the graph of g is not acyclic. 

EX E RCIS ES 

1.  Develop corresponding formulas for the dountil and dowhiledo equations, 
showing also that solutions always exist for both equations. 

2. Develop formulas for equations involving compound programs such as 
a) Nested whiled os 

f = [while p do while q do 9 00 00] 

b) Nested i fthenelses 

f = [if p then if q then 9 else h 6 else t 6] 



7 
Writing 

Structured 
Programs 

7.1 OVE RVIEW 

This chapter describes function-based techniques for writing structured pro
grams. Small structured programs and the individual segments of large ones 
are wri tten by stepwise refi"eme"t, the process of expanding intended func
tions into prime programs and simpler intended functions. and then check
ing correctness, in a "divide, connect, and check" strategy. The process of 
applying stepwise refinement in segment-structured programs is known as 
top-down programming. Stepwise reorgalli=atiol l is the process whereby a 
program, large or small, is designed for function first to keep correctness 
arguments manageable, th en reorgan ized for efficiency in small steps. each 
shown equivalent to its predecessor. In the examples in this chapter. cor
rectness arguments are presented at a verbal level where appropriate, in 
terms of the correctness questions, and recorded more systematically where 
appropriate, in terms of trace tables and more formal arguments. Finally, 
design concepts for structured programs are il lustrated in comparison of 
program detai ling versus program design, and in heuristics versus rigor in 
design. 

7 . 2  WR ITI N G  F U N DA M E NTALS 

7 . 2.1 Inventi ng Structu red Prog rams 

Writing structured programs i s  a creative mental process that requi res study 
and practice for proficiency. As in other forms of expression. reading pro
vides conscious and unconscious mental models for writing. Reading 
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structured programs critically, for correctness and simplicity, builds judg
ment and confidence for writing. In first learning to write structured pro-. 
grams though, a program idea may occur in thought or intuition without

' 

structured form. As a miniature illustration, reconsider the subtract program 
of Chapter 6 with intended function 

(x � 0 A Y � 0 � x, y : =  X - y, free) 

assuming no subtract operation is available and decrementing must be used. 
We might give a verbal description of a solution as follows. Reduce x and y 
each by 1 a step at a time until one of them is O. Then the result of the 
subtraction, not including its sign, is the other variable ; if y is 0, then x is the 
result but if x is 0, then - y is the result required. This solution can be 
composed as the following POL program (given previously) : 

while 
X > O A Y > O  

do 
x, y := X - 1, y - 1 

od 
if 

y > O  
then 

x := - y 
fi 
free y 

with the flowchart as given in Fig. 7. 1 .  

Figure 7.1 

But another way of looking at this same problem might have produced 
instead a flowchart with function and predicate nodes connected as shown in 
Fig. 7.2, which is not structured in terms of POL control structures. In fact, 
the firstpart of this control structure is itself a prime with two predicates. The 
initial POL program above combines the tests x > 0 and y > 0 into one, and 
repeats the y > 0 test-slightly less efficient, but more understandable. 
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F i g u re 7.2 

Since we want to create structured programs in the first place, we ask , 
What mental di scipline leads to structured solutions instead of unstructured 
ones? The answer is to simply drop the idea of inventing individual function 
and predicate node s,  combined into arbitrary control structures .  Instead , 
discipline yourself to expand an intended function directly into a PDL prime 
or into a simple combination of PDL primes .  These are the primitives of 
stru ctured program design, not individual fu nctions and predicates .  When 
you think in terms of these primitives,  the functions and predicates you 
invent will be naturally combined in an evolving structured program , in

stead of being connected in some other way , onl y to be restructured later. 
For example , we know that a whiledo loop requ ires in vention of a 

whiletest and a do part .  In the unstructured program above,  a dopart (x, Y = 
x - J ,  Y - J )  appears in the loop,  but the potential whi letest is actually a 
sequence of tests, forming an arbi trary control structure with two e xits . The 
second exit  is a convenient place to handle the case of Xo < Yo, but this 
creates another arbitrary structure . This is  improvising with functions and 

predicates :  it is difficult ,  and ofte n impossible , to produce large programs 
this way because of the complexity introduced by unrestricted branching in 
large primes .  The requ ired d iscipline is to design in terms of PDL prime 
programs , which can be read and verified correct at each step in the design 
process . 

Returning to the verbal descri ption of the structured solution with this 
discipline in mind, we observe that the subtract problem can be expressed as 
a sequence of three subproblems- ( l ) to calculate the magnitude of the 
difference between x and y; (2) to determine the sign of the difference; and 
(3 ), to free y:  

calculate magnitude of  x - y 
determine sign 
free y 

The sequence idea may come to mind only after some thinking about the 
problem, not as a first thnught.  The point is not top-down thinking, but 
top-down recording of ideas. It is difficult to write a top-level design until its 
expansions have been thought through, as the mind ranges over high- and 
low-level operations and thei r connections. 
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The first part of the sequence can now be expanded as a whiledo to 
out the required decrementing, and the secondpart can be expanded as 
if then to determine the sign by finding out which variable, x or y, realcn4� 
zero : 
[calculate magnitude of x - y] 
while 

x > O I\ Y > O  
do 

x, Y := X - 1, Y - 1 
od 
[determine sign] 
if 

y > O  
then 

x := - Y 
fi 
free Y 

This is an example of thinking in prime programs; it is a technique that, once 
mastered, can be scaled up to design programs of any size whatsoever. 

7.2.2 The Disci pl i ne of Fu nction Expansion 

Structured programming is a human problem-solving process that creates 
logical structures for programs. But structured programming also provides a ; 
rationale for recording intermediate stages in this process, for better com-, 
munication and concentration in the mental activity, itself. The principal 
device for structured programming is embodied in the fundamental Axiom 
of Replacement for structured programs, namely, replacement of functions 
by prime programs, as in the prime expansions of PDL:  

f = g ; h 
f = if p then g else h fi 
f = while p do g od 

In sharpening one's own mental discipline, it is important to understand 
the difference between program inventions that are function expansions as 
defined above and those that are not. In miniature illustration, suppose an 
initialized iteration program is constructed to be equivalent to a single 
function program (Fig. 7.3) . That is, we are given an initial function f to 
expand, and have foreknowledge (for the purpose of this illustration) that 
the expanded design will end up as an initialized iteration. 
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Figu re 7.3 

COR-sider two intermediate paths to construct the final design as shown 
in Fig. 7.4. In the YES path, f is expanded as a sequence of g ; k, then k is 
expanded as the iteration while p do h od, while in the NO path,  the iteration 
is developed first and the initialization is prefixed later. The NO path seems 
a natural one to take, but look at the consequences. While the iteration is 
probably the most interesting part of the design to be done, the first step on 
the NO path involves an unrecorded insight, namely, the function k not 
mentioned there; that is, the iteration "solves part of the problem," but 
which part is not recorded. Getting to the final design requires this unre
corded insight, so the right g can be picked later to do the initialization. 
Thus, there are two mental discontinuities on the NO path (the iteration 
doesn't do f� and the initialized iteration doesn't do the iteration), 

f =1= [while p do h 00] 
and 

[while p do h 00] =1= [g : while p do h 00] 

--[]-- I,------D NO path 

F igure 7.4 
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which, if recognized at all, must be held in mind while designing. It will be 
difficult to share this work with a colleague or conduct a design review 
without the additional insights. The program is structured in final form, but 
it was not derived by function expansions. 
Now look at the YES path, and note that each step represents the same 

function ; that is, 

f= [g ; k] 

and 
[g ; k] = [g ; while p do h 00] 

In structured programming, function equivalence is preserved, and the cor 
rectness of each step can be verified before going on to the next step, in this 
case by applying the sequence and then the whiledo correctness relations. If 
the program design is to be written in ten minutes, this may seem a moot 
point. But if it takes two years (and g takes 10,000 instructions, h takes 
100,000 instructions), the point is not so moot. 
The foregoing illustrates the reporting of a mental process that is known 

to the world outside your mind only by what you say or write. But there is 
no law against your thinking ahead. At the moment the composition 

is written down, you had better know that k is going to be an iteration (in 
fact, an initialized iteration happens so often it is a basic pattern of 
thought-like a C-major arpeggio for a concert pianist). But what the disci
pline of writing the sequence does for you is to state what the iteration needs 
to do, before going into its details. And what the nondiscipline of the NO 
path often does is invite you into a sea of details before you even write down, 
or possibly think through, what that sea of details is going to do. 
The YES path is a sample of function expansion of a program; that is, 

beginning with an intended function, a stepwise process of replacing func
tions by primes and simpler functions, to be carried out until, finally, all 
functions have been expressed in sufficient detail. Every intermediate func
tion created plays a dual role as an intended function for expansion and as 
an operation in the prime structure created with it. 

7.2.3 Usi ng Prog ra m Veri fication i n  Program Desig n  

We next present a miniature illustration of the role of correctness 
verification in program design. Consider a program named SUB whose 
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design is motivated by the familiar subtraction by decrementing, where x, Y 
are integers, 

SUB = while 
y > O 

do 
x, Y := X - 1 , Y - 1 

od 
and where SUB is an expansion of the intended function sub : 

sub = (x, y := X - y, 0) 

We will look at both questions : 

1 . Is sub = [SUB]? 

2. Is sub c [SUB]? 

(com plete correctness) 

(sufficient correctness) 

Be forewarned, the answer in both instances is no. But "no" is just as impor
tant a guide to design as "yes," and it is instructive to discover how it comes 
about. The proof is as follows : 

function 
sub = (x, Y := X - y, 0) 

program 
SUB = while y > 0 do x, y := X - 1 , y - 1 od 

proof 
term 

y is decremented at each iteration so whiletest y > 0 will even
tually fail. 
pass 

whiletest true 

part 

y > O  
x, y := X - 1, y - 1 
x, y := x - y, 0 

derivations : 
Yo > 0 

condition 

Yo > 0 

X3 = Xl - Yl 

x 

X l = Xo 
Xl = X l - 1 
X3 = Xl - Yl 

Y3 = 0 
= xl - 1 - (Yl - 1 ) 
= Xo - Yo 

y 

Y l  = Yo 
Yl = Yl - 1 
Y3 = 0 
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program function : 
(y > 0 - X, y := x  - y, 0) 
which agrees with sub for whiletest true. 

pass 

whiletest false 

result 

The intended function is 
x, y := x  - y, 0 

but the program function for y ::s; 0 is the identity 
x, y := x, y 

and (x - y, 0) =1= (x, y) as seen by counter example : 
x = y = - 1 :  (0, 0) =1= ( - 1, - 1 ) 

fail 

fail 

We see that the proof fails (for both complete and sufficient correctness) 
because the domain of sub includes y < 0, which is not properly handled by 
SUB. So we go back to redesign either SUB or sub, or both. 

One way to solve the problem is to define a new subfunction of sub, say 
sub1 ,  to deal only with nonnegative y as 

sub1 = (y � 0 - x, y := X - y, 0) 

Now we will be able to show sufficient correctness, namely that 

sub1 c [SUB] 

We record the proof as before : 

function 
sub 1 = (y � 0 - x, y := X - y, 0) 

program 
SUB = while y > 0 do x, y := X - 1, y - 1 od 

proof 
term 

y is decremented at each iteration so whiletest y > 0 will even
tually fail. 
pass 

whiletest true 
same as for [SUB] = sub proof above 
pass 
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whiletest false (Note y < 0 is now excluded. ) 
The intended function is 

result 

x, y := x - y, 0 
and for y = 0 

(x - y, 0) = (x - 0, 0) 
= (x, y) 

i.e., the required identity. 
pass 

pass suff 

309 

Sufficient correctness is all that is possi ble for sub l ,  because SUB  st i ll 
handles negative initial values for y. What SUB  computes in those cases is 
not described by sub 1. 

The problem can also be solved by defining another new function, say 
sub2, to be identical with [SUB] : 

sub2 = (y � 0 --+ x, y := X - y, 0 I y < 0 --+ x, y := X, y) 
In this case, complete correctness is satisfied. These three results  are sum
marized in the following table of function values for arguments x, y : 

function y � O  y < O  

(SUB] (x - y, 0) (x, y) 
sub (x - y, 0) (x - y, 0) 
sub l (x - y, 0) undefined 
sub2 (x - y, 0) (x , y) 

Still another way to achieve complete correctness is to design a new 
program, say SUB3, with program function identical with sub : 

SUB3 = while 
y > O 

do 
x, y := x - I ,  y - 1 

od 
while 

y < O 
do 

x, y := X + 1, y + 1 
od 

In illustration, we will give a proof of complete correctness of SUB3 for sub. 
First, SUB3 is a sequence of two whiledos, say 

SUB3 = SUBPOS; SUBNEG 



31 0 Writi ng Structu red Programs 

where 

SUBPOS = while y > 0 do x, y := x  - 1, y - 1 0d  
SUBNEG = while y < 0 do x, y := x  + 1 ,  y + 1 0d  

Our hypothesized program functions are 

subpos = (y > 0 � x, y := X - y, 0 I y ::; 0 � x, y := x, y) 
subneg = (y < 0 � x, y := X - y, 0 I y 2:: 0 � x, y := x, y) 

and the three propositions we need to prove are 

sub = subpos ; subneg 
subpos = [SUBPOS] 
subneg = [SUBNEG] 

The proofs are independent of one another, and. hence the order of proof is 
immaterial. Once proved, we will have completed the demonstration of 
[SUB3] = sub, since 

[SUB3] = [SUBPOS; SUBNEG] = [subpos ; subneg] = sub 

The sequence proof is as follows : 

function 
sub = (x, y := x - y, 0) 

program 
subpos ; subneg 

proof 
Case 1, 1 (i.e., taking part 1 of the subpos conditional rule and taking 
part 1 of the subneg conditional rule): 

part 

x, y := x - y, 0 
x, y := x  - y, 0 

derivations : 

condition x 

Yo > 0 . Xl = Xo - Yo 
Yl < 0 Xl = X l - Yl 

Yo > 0 /\ Y 1 < 0 = Yo > 0 /\ 0 < 0 
(impossible case) 

Case 1,2 :  

part 

x, y := x  - y, 0 
x, y := x, Y 

condition 

Yo >  0 
Yl 2:: 0 

x 

y 

Yl = 0 
Yl = 0 

Y 
Yl = 0 
Yl = Yl  
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derivations : 

Yo >  0 /\ Y1 � 0 
= Yo > 0 /\ 0 � 0 
= Yo > 0 

X2 = Xl Y2 = Y1 
= 0 

Case 2, 1 :  

part 

X, y := x, y 
X, Y := x - y, 0 

derivations : 

condition 

Yo ::; 0 
Y1 < 0 

= Xo - Yo 

X 

Xl = Xo 
X2 = X l - Y1 

Y 

Y1 = Yo 
Y2 = 0 

Yo ::; 0 /\ Y1 < 0 
= Yo ::; 0 /\ Yo < 0 
= Yo < 0 

X2 = Xl - Y1 
= Xo - Yo 

Y2 = 0 

Case 2,2 : 

part 

X, y := x, Y 
X, y := x, Y 

derivations : 

condition 

Yo ::; 0 
Y1 � 0 

X 

X l = Xo 
X2 = Xl 

Yo ::; 0 /\ Yt � 0 X2 = Xo 
= Yo ::; 0 /\ Yo � 0 
= (Yo = 0) 

program function : 

Y 

Yl = Yo 
Y2 = Y1 

Y2 = Yo 
= 0 

(y > 0 � X, Y := X - y, 0 I Y < 0 � X, Y := X - y, 0 
I Y = 0 � X, Y := X, 0) 

or simply, 

x, Y := x - y, 0 

which is identical with sub, as was to be shown. 

result 
pass comp 

Next, the proof for subpos is as follows : 

function 
subpos = (y > 0 � X, Y := X - y, 0 I Y ::; 0 � X, Y := X, y) 

program 
SUBPOS = while Y > 0 do x, Y := X - 1 ,  Y - 1 od 

31 1 
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proof 
term 

Y is decremented at each iteration so whiletest Y > 0 will even
tually fail. 
pass 

whiletest true 

Case 1 : 

part 

y > O  
x, Y := X - 1, Y - 1 
subpos 

derivations : 

condition x 

Yo >  0 X l = Xo 
X2 = x l - 1  

Y2 > 0 X3 = X2 - Y2 

Yo >  0 " Y2 > 0 X3 = X2 - Y2 

Y 

YI = Yo 
Y2 = YI - 1 
Y3 = 0 

Y3 = 0 
= Yo >  O " YI - 1 > 0 
= Yo >  O " yo > 1 

= X l - 1 - (YI  - 1 )  
= Xo  - Yo 

= Yo >  1 

Case 2 :  

part condition 

y > O  Yo >  0 
X, Y := X - 1, Y - 1 
subpos Y2 � O  

deri vations : 
Yo > 0 " Y2 � 0 
= Yo >  O " YI - 1 � 0 
= Yo >  O " yo � 1 
= (Yo = 1 )  

program function : 

X 

X l = Xo 
X2 = X I - 1  
X3 = X2 

X3 = X2 
= X l - 1 
= Xo - 1 

Y 

YI = Yo 
Y2 = YI - 1 
Y3 = Y2 

Y3 = Y2 
= YI - 1  
= Yo - 1  

(Y > 1 ---+ x, y := x - y, 0 I y = 1 ---+ x, y := x - 1, y - 1)  
= (y > 1 ---+ x ,  Y :=  X - y, 0 I Y = 1 ---+ x ,  Y := X - y, 0) 
= (Y > 0 ---+ X, y := x  - y, 0) 
which agrees with subpos for whiletest true. 

pass 

whiletest false 

result 

Subpos is the identity by direct examination of its definition. 
pass 

pass comp (The domains of subpos and SUBPOS are identical. ) 
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The proof that subneg = [SUBNEG] is symmetric with that of subpos. 
In retrospect, there are several lessons in this example. First, proving 

correctness not only verifies correctness if it exists, but also suggests ways of 
redesigning for correctness if it doesn't exist. Second, complete correctness is 
usually more expensive in program design than sufficient correctness. If a 
program is well protected from unexpected inputs, sufficient correctness may 
be a better solution in design economy than complete correctness. Third, the 
creation of a correct program is more properly viewed as the creation of a 
correct relationship between a function and a program. If the function is 
given once and for all with no opportunity for negotiation, then the burden 
is on the program to be correct in that relationship. But such inviolate 
functions are in the minority for the simple reason that the program design 
process itself specifies all the abstract functions of a structured program, 
except for the highest level function of the entire program. 

7. 2.4 Log ical Commenta ry i n  Program Writi ng 

Up to now, logical commentary has been used to describe the abstraction of 
details in program reading. Given a program, we sought to discover and 
document its design in a hierarchy of abstractions. In writing readable pro
grams, we reverse the process-to invent design first, details later. Logical 
commentary is written to record intended functions before going into their 
expansions (but not before thinking hard about those expansions). Logical 
commentary for, say, an ifthen prime and its expansion is written as 

[I-action] 
if 

p 
then 
g-action 

fi 

which 
expands 
to 

[faction] 
if 

p 
then [g-action] 
g 

fi 

For example (overcommenting for illustration) 
[x, y := min (x, y), max(x, y)] 
if 

x > y  
then 
exchange x, y 

fi 

could 
expand 
to 

[x, y := min(x, y), max (x, y)] 
if 

x > y  
then [exchange x, y] 

initial t := x 
x := y  
y := t 
free t 

fi 
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Logical commentary carries forward through successive expansions. 
Thus, the final version of a program contains its own abstractions, and can 
be read and understood to any required level of detail. It is usually the case I'; 
that some parts of a program are self-evident, and can be read and under- .�  
stood directly. So judgment is required to select program parts for commen
tary. For self-evident operations, an occasional comment will do. But more 
complex situations may require that every part of every prime be com
mented. Keep in mind that the reader is attempting to retrace your thoughts 
on program function and correctness. If a program is properly commented, 
the reader's reaction will likely be "It is obvious !" at each step along the way. 

EX E R C I S ES 

1. Design programs by function expansion, with concurrent logical commentary 
development, for the following functions : 

a) x, y := abs(max (x, y)), max(abs(x), abs(y)) 
b) x, y, z := max(y, z), max (z, x), max(x, y) 
c) z : =  min (max(x - y, x + y), max(y - x, y + x )) 

2. Design programs by function expansion, using logical commentary, to 

a) exchange rows and columns of an n x n array of integers, 
b) find the sum of the positive members of a set of integers, and 
c) find the largest difference between members of a stack of integers. 

7. 3 PROG RAM M I N G  ST RATEG IES 

7 . 3 .1 Prog ram m i ng by Stepw ise Refi nement 

In practice, function expansion leads to the stepwise refinement of structured 
programs, beginning with an intended function to be programmed and a 
design strategy, proceeding through successive levels of expression, until the 
entire program has been expanded in sufficient detail. Each refinement step 
records an expansion of one or more functions into prime programs, or into 
small structured programs of manageable size, thereby introducing new 
functions for expansion, and so on. And, of course, the correctness of each 
refinement is checked, and recorded if necessary, before going on. 

The idea in stepwise refinement is to "divide, connect, and check" an 
intended function by reexpressing it as an equivalent structure of properly 
connected subfunctions, each solving part of the problem, and each simpler 
than the original function to further divide, connect, and check. In carrying 
out a refinement, look far enough ahead to feel comfortable. If a function is 
familiar, say, sorting a small table, further thought and elaboration may be 
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unnecessary. If a function is not familiar, refine it far enough to feel comfort
able. An evolv ing structured program defines a natural construction plan 
for allocating thought and effort to those program parts most in need of 
elaboration. Each refinement is taken as a working hypothesis for further 
investigation, to be either judged sound or amended as its implications 
become clear. 

Stepwise refinement of a program or system of programs is undertaken 
only after a good general approach has been determined and critical details 
of data representation and algorithms have been settled. Stepwise refinement 
is a thought-recording process, not a think ing process. In thinking about 
how to write a program, many possible ideas for organizing control and data 
and expressing high- and low-level operations circulate in one's mind. The 
point is to sift through all this to record first major and then minor consider
ations in successive refinements. Create intermediate levels of expression 
that explain each step along the way. The ideal is a coherent logical descrip
tion from summaries at the top, down to implementation in code. 

The key to successful program design is rewriting, and more rewriting. 
One's first design is seldom the best idea for a program. Rethinking and 
reworking is the rule in good design, not the exception, and many false starts 
may be made before a programmer is satisfied with the logic and clarity of a 
design. Every effort should be made at each step to conceive and evaluate 
alternate designs. So the ability and willingness to redo program parts, and 
even whole programs, for simplicity and clarity is absolutely critical. The 
best debugging technique is redesigning programs into simpler and simpler 
forms. 

Every refinement step in a design from highest to lowest, once written, 
should be completely rigorous, that is, capable of being shown correct. Even 
for PDL with operations sketched out in natural language, there is no loss of 
rigor in what must be proved. The idea of rigor at all leve1s of expression is 
crucial to success in structured programming. Confidence in the correctness 
of structured programs is bui lt up out of checking and feeling confident 
about a few lines of expansion at a time. This is as true for the few lines that 
summarize the top of a large program, as it is for a few lines of details at the 
lowest level in that program. Checking for correctness is not possible if 
refinements are not rigorously expressed, nor is it possible in giant leaps 
from an intended function to a maze of details in code. Make sure every 
refinement is clearly expressed and of manageable size, then check it for 
correctness before going on. 

Develop program and proof together, whether the proof is a simple 
mental conviction or a systematic trace table. Favor designs that are easily 
verified, and be critical of those that are not. Given a function to refine, 
develop correctness arguments in your mind ahead of time, for insight into 
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program design. Be both writer and reader of your own programs, to put 
yourself in the place of someone needing to understand your work. And if 
the reading gets difficult and the proofs not obvious, think harder about the . 
program. Chances are a simpler, more valuable design can be found. 

7.3.2 Case Study : Ai r Pol l ution 

As a first example of stepwise refinement, consider the following problem : 

Air pollution measurements have been made near the smokestack of a 
manufacturing plant every minute for up to 24 hours. Sixty measure
ments are recorded each hour, so a total of 6O*n, 1 � n � 24, measure
ments are present, stored in a sequence named input. Measurement 
values range from zero to 1000 parts per million (ppm) of pollutant ; a 
value of zero represents an equipment malfunction. Design a program 
to 

1. Compute mean ppm values for each of the hours for which no mal
function occurred. 

2. When a zero value (malfunction) is encountered, set the mean ppm 
value of the current hour to -1 and stop all processing for that hour, 
including further accumulation of violations (see item 3 ). However, / 
the number of violations prior to the malfunction must be kept and 
printed. 

3. Keep a count of violations per hour. A violation occurs when the 
pollution value is above 100 ppm for five consecutive minutes, which 
are not included in some previous violation. For example, 14 con
secutive minutes above 100 ppm count as two violations. A violation 
can span hour changes, and should be assigned to the hour in which 
it started. 

4. Print hourly mean values and hourly violations. 

In thinking about a design strategy, it seems reasonable to read and 
process measurements on an hourly basis, since means and violation counts · 
are associated with each hour of data. The mean can be directly computed . 
for an hour's data, but the violation count for an hour is not known until the

· 

next hour's data has been checked. Thus, it makes sense to accumulate 
violations for all hours of data present, then print the hourly violation 
counts along with the means. So a possible first program, shown in Fig. 7.5, 
is an initialized whiledo reading and processing one hour's data from input 
each iteration, followed by printing results. The logical commentary is writ
ten informally in natural language, which seems an adequate level of exposi
tion for this straightforward program. 
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proc air pollution [find and print means and violations for first hour to last 
hour] 

2 use airpoll 
3 hour := 0 
4 [find means and violations for next hour to last hour] 
5 while 
6 input =1= empty 
7 do 
8 increment hour; read 60 measurements ; find mean and violations 
9 od 

10 list(output) := means, violations for first hour to last hour 
1 1  corp 

data airpoll 
scalar 

hour: integer 
sequence 

atad 

input : real [pollution measurements every minute for up to 24 hours] 
output : real [hourly means and violation counts for up to 24 hours] 

Figure 7.5 I n itial a i r  pol lution program. 

As this first program is written down, we apply the sequence and 
whiledo correctness questions in our minds. On examination, we believe the 
sequence is correct, and likewise for the whiledo, since termination is 
assured, and for input =1= empty the whiledo (defined on line 4) equals the 
dopart (line 8) followed by the whiledo. Finally, for input = empty, the 
whiledo equals the identity. These arguments are based on operations 
specified informally in natural language, and, of course, are valid only up to 
our knowledge of the dopart, currently a working hypothesis for further 
refinement. Note, however, that this informality does not extend to what 
must be proved, nor to the necessity for doing so. 

A possible elaboration for the dopart is an initialized whiledo, iterating 
from 1 to 60 minutes, but terminating if a malfunction is detected. The new 
dopart can add each minute's measurement to a running total and accumu
late violations as well. The refinement is shown in Fig. 7.6, a compound 
program of some 29 lines. But it seems of manageable size and a reasonable 
next step for this program. 

As the refinement was written, it was checked for correctness with the 
correctness questions in mind. The program thus far finds and prints means 
and detects malfunctions. But, as always, correctness ultimately depends on 
expanding the remaining function (line 8. 1 8, "violation processing") within 
the existing structure. 
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proc air pollution [find and print means and violations for first hour 
to last hour] 

2 use airpoll 
3 hour := 0 
4 [find means and violations for next hour to last hour] 
5 while 

6 input =1= empty 
7 do [increment hour; read 60 measurements; find mean and violations] 
8. 1 hour := hour + 1 

2 ppm := list(input) 
3 violations(hour) := 0 
4 sum := 0 
5 malfunction := false 
6 minute := 1 
7 [find hour's sum and violations up to malfunction, if any] 
8 while 

9 minute ::::;; 60 /\ '" malfunction 
10 do [ppm(minute) = 0 -+ malfunction := true I ppm(minute) =1= 0 -+ add 

ppm(minute) to sum, process for violation, increment minute] 
1 1  if 

12 ppm(minute) = 0 
1 3  then 
14 malfunction := true 
1 5  else 
16 sum := sum + ppm (minute) 
1 7  do 
18  process ppm (minute) for violation 
19 od 
20 minute := minute + 1 
21 fi 
22 od 
23 if  
24 malfunction 
25 then 
26 means(hour) := - 1  
27 else 
28 means(hour) := sum/60 
29 fi 
9 od 

10 list (output ) := means, violations 
1 1  corp 
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data airpoll 

scalar 

hour: integer 
malfunction: logical [signals ppm{minute) = 0] 
minute : integer 
sum : real [sum of hour's measurements] 

array 

means(24): real [mean value or - 1  for each hour] 
ppm(60): real [one hour's pollution measurements from input] 
violations(24): integer [violation count for each hour] 

sequence 
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input : real [pollution measurements every minute for up to 24 hours] 
output : real [hourly means and violation counts for up to 24 hours] 

atad 

Figure 7.6 First air  pol lution refinement. 

The strategy in mind for violation processing is to count consecutive 
measurement values over 100 ppm and to assign a violation to the proper 
hour if the count ever reaches 5 ;  any measurement not over 100 will cause 
the count to be reset to 0, leading to the refinement shown in Fig. 7.7 (with a 
new data item named over). 

In checking correctness, we observe that for ppm(minute) > 100, over is 
incremented. But what is the initial value of over? It has none, and this needs 
to be fixed. In our dividing and connecting, the division of operations be
tween the previous refinement to process means and the current refinement 
to process violations was reasonable, but the connecting was faulty. Over 
must be initialized outside the hour loop, to count correctly for the first 
hour, written in the initial program after line 3 (using line numbers 3a and 3b 
to preserve numbering not affected) : 

3a hour := 0 
3b over := O 

A good idea now is to recheck correctness from the top down. The 
initial program looks correct, but we realize next that over must also be reset 
in the first refinement when a malfunction is detected, since in that case a 
potential violation cannot straddle the following hour boundary, if any. 
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do [process ppm(minute) for violation] 
if 

ppm(minute) > 100 
then [increment and process violation counter] 

over := over + 1 
[if violation found, assign it to proper hour and reset over] 
if 

over = 5 
then [assign violation to proper hour and reset violation counter] 

if 

fi 

minute � 4 
then [assign to previous hour] 

violations(hour - 1 ) : =  violations(hour - 1 )  + 1 
else [assign to current hour] 

violations(hour) := violations(hour) + 1 
fi 
over : = 0 

else [reset violation counter] 
over : = 0 

fi 
od 

Figure 7.7 Second air pollution refinement. 

Thus, initialization of over must be added after line 8.14 

8. 14a malfunction := true 
8. 14b over :=0  

and now the first refinement is correct. The second refinement now appears 
correct as well, and the entire program has been elaborated in sufficient 
detail. 
Finally, we note that the air pollution program is an example of a direct . 

form of design, where the details of processing are known at the outset and 
the major task is to organize them into coherent refinements. Creativity is 
required mainly in writing for clarity and conciseness. The program itself 
documents the best evidence of its own correctness, and our mental cor
rectness arguments can be duplicated by any reader, by comparing the 
intended function and logical commentary with the program text. 
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7. 3.3 Top- Down St ructu red Prog ra m m i ng 

The stepwise refinement of large structured programs is carried out by seg
ment structuring, in a process known as top-down structured programming. 
As described in Chapter 3, a segment is a small structured program, ord i
narily a page or less of POL text, say from 10 to 50 lines . A segment is 
delimited by proc and corp, and may refer to other segments in run state
ments . The objective in the use of segments is to control complexity, not 
only in clean control logic as forced by structured programming but also 
in limiting the extent of program text the human eye and mind need com
prehend at one moment. A segment is a natural unit for recording the 
stepwise refinement of large programs. It is neither too large a step, leading 
to more complexity than can be comfortably dealt wi th, nor too small a step, 
leading to tedium and loss of continuity. A segment typically deals with a 
handful of data objects, prime programs, and logical comments that can be 
organized in the mind and written down as a coherent program. Of course, 
correctness proofs are still based on the prime programs found within a 
segment. 

The segment concept is used to create large structured programs out of 
function specifications in a systematic way. We define a task of limited extent 
and complexity that we can repeat until we get a whole program written to 
satisfy a function specification. This task is to write a program segment that 
represents the entire program whose data operations may be names of 
subspecifications (subfunctions) yet to be programmed. Now we repeat this 
task for each of these named (but unwritten ) segments. Again, we want to 
design a program segment to meet its subspecification, possibly with new 
segment names at the next level, and relegate further program details to the 
next level of segments. We continue to repeat this process until we have 
satisfied the original specification. The end result is a program, of any size 
whatsoever, that has been organized into a tree structure of named member 
segments invoked by run statements, each of which can be read from top to 
bottom without any side effects in control logic outside that particular 
segment. 

Since each segment realizes a function, it is possible to progressively 
implement and test the segment control and data structures provided for 
newly designated segments at the next level. This is accomplished by intro
ducing dummy versions, called program stubs, of the new segments before 
their creation. The program stubs can print messages (such as ""got to seg
ment (name) OK") and internal data values, and they can seize resources in 
storage and time to simulate their eventual implementation. 

Several programmers may be engaged in this activity concurrently, once 
some initial segments are written. Each programmer can take on a separate 
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segment and work independently within the structure of an overall program 
design. The hierarchical structure of the segments provides a clean interface 
between programmers. At any point in the programming, the segments 
already in existence give a precise and concise framework for the rest of the 
work to be done. 
The air pollution program developed above can provide a miniature 

illustration of stepwise design, implementation, and testing, using segments, 
subspecifications, and program stubs. Referring to Fig. 7.6, the operation at 
line 8. 18  is rewritten to invoke a segment at the next level 

8. 18  rlDl violation processing (alt violations, over, fix ppm, hour, minute) 

with subspecification, say 
If ppm(minute) � 100, set over (the violation counter) to 0 and exit. 
Otherwise, add 1 to over and if over = 5, a violation has occurred 
(ppm(minute) > 100 for the last five consecutive minutes), so set over to 0 
and add 1 to the violations array member corresponding to the hour in 
which the violation started. That is, add 1 to violations(hour) or 
violations( hour - 1 ). 

and program stub, say 
proc violation processing (alt violations, over, fix ppm, hour, minute) 

if 
minute = 1 

then 

fi 
corp 

list(output) := 'beginning to process violations for hour', hour 

which prints a message on the first minute of an hour. 
The top segment can now be implemented and tested for correct compu

tation of means and detection of malfunctions, and for linkage to the viola
tion processing stub. Next, the violating processing segment can be designed 
to satisfy its subspecification, and then implemented and tested within an 
existing structure already known to execute correctly. 
7.3.4 Prog ra m m i ng by Stepwise Reorganization 

The stepwise refinements of a program design record a problem-solving 
process that is well under control, but a process which may be known more 
accurately in retrospect than in prospect in complex situations. The com-
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plexity of the design task can make it difficult to practice stepwise refinement 
as a direct activity. Yet the benefits of stepwise refinement are substantial 
enough to develop new mental procedures to retain those benefits. 
In program design situations where complexity makes a stepwise 

refinement difficult, stepwise reorgan ization may instead be possible. Step
wise reorganization is a programming strategy that arises out of concern for 
program correctness. The strategy is to keep complexity intellectually man
ageable by programming for correct function first (ignoring efficiency) by 
stepwise refinement, then reprogramming for efficiency later by stepwise 
reorganization. Specifically, the strategy is as follows : 
1 .  Stepwise refinement 

Use stepwise refinement to design a program with correct function, ignoring 
matters of efficiency. It is easier said than done for experienced programmers 
to ignore efficiency in creating proper function, to begin with, because the 
general problem-solving experience in programming is to interrelate func
tion and efficiency. But the objective of our new mental procedure is to 
divide and conquer complexity, not just programs. The idea, to begin with, 
is to define data or control structures with regular, but often inefficient, 
properties. Ordinarily, designs of this type would not be considered because 
they do not solve the problem of computation within time and memory 
constraints. But they can be used to bring complex functions under intellec
tual control to help solve the problem of design. Efficiency in computation 
can then be dealt with as an additional objective. 

2. Stepwise reorganization 

Next, the program produced by stepwise refinement is reorganized for 
efficiency in a series of steps, each small enough so that verification of 
equivalent function can be done with high confidence. A reorganization step 
may introduce either a new control logic to process an existing data struc
ture, or a new data structure handled by existing control logic; ordinarily, 
not both data and control should be changed radically in the same step. 
Each program version serves as a functional specification for its reorganized 
successor. In fact, early versions can be implemented to supply inputs for 
other parts of a larger system under development, once a tolerable level of 
efficiency has been reached. Note that stepwise reorganization is not just fine 
tuning, but construction of practical programs, more complex and useful 
than their less efficient predecessors. In practice, refinement and reorganiza
tion steps may combine in an iterative process, whereby each level of a 
program is designed for correctness by refinement and then reorganized for 
efficiency before creating further refinements. 



324 Writi ng Structured Programs 

3. Correctness 

Just as stepwise refinement leaves a documented trail of intermediate func
tions and expansions, stepwise reorganization should leave a trail of . 
structured programs of which only the first is proved correct ab initio and 
each of the others is proved equivalent to its predecessor. Each reorganiza
tion serves as a "verification platform" for the succeeding reorganization, 
and ordinarily there should be no attempt to explain ab initio why the final 
program is correct. 

4. Modifications 

In any subsequent modification. the necessary changes should be identified 
at the first program version affected, and all succeeding versions changed 
accordingly, with correctness demonstration proceeding as before. 

7.3.5 Case Study : Wo rld Capitals 

I n  m in iature illustrat ion of stepwise reorganization, consider a program to 
solve a word recognition puzzle : 

Given a list of world capital cities in no particular order and a two
dimensional table of letters, design a program to print each city name on 
the list that is present in the table, whether spelled horizontally (either 
direction), vertically (either d irection ), or diagonally (four poss ible di
rections ), a long with its starting row and column, and d irect ion . (No 
more th an one name starts from a location in a particular direction. ) 
For example, the fol1owing name list and table 

DUBLIN 0 K E R B Y L M 

TOKYO A L D G 0 C E V 
LON DON 

R A S M N S M B 
ROME 

T E L 0 N D 0 N 
BONN 

D U B L H L R C 
PARIS 

ZURICH 
W R S 0 P I K J 

OSLO A G I B X M U Z 

LIMA H F Q G L A M V 



.� 
1 

l 

7.3 

have solution : 

BONN 
LONDON 
OSLO 
LIMA 
ROME 

1 ,5 down 
4,3 right 
4,4 up left 
5,6 down 
5,7 up 
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The program is provided an input sequence containing the number of 
rows and columns in the letter table. the letter table itself. the number of 
names and the length of the longest name in the name list. and the name 
list i tself. 

The initial objective is a design that is obviously correct. even at the 
expense of efficiency if necessary. One strategy is to start at every table 
position and build a character string in every di rect ion. one character at a 
time, and at each step look for the string in the name list. When all starting 
positions have been so examined, all names present will have been found and 
the program will terminate. The strategy is implemented in a first program 
shown in Fig. 7.8. 

In this program, nested loops on row, column. and direction guarantee 
that every possible string start ing from every table element will be tested. 
and printed if it appears in namelist. 

Next, the dopart function at line 13 can be expanded in a refinement 
step. In generating strings for testing, one character at a time can be selected 
from table using a fixed displacement corresponding to one of the eight 
possible directions (shown as row, column pairs ) : 

- 1 ,- 1  - 1 ,0 - 1 , 1  

0,- 1 0, 1 

1 ,- 1  1 ,0 1 , 1  

The displacements can be  conveniently stored and referenced as  an array 
named disp of row, column pairs, proceeding clockwise from vertical, that is, 
first pai r is up, second pair is up right, and so on : 

( - I , 0), ( - I . 1 ), (O, 1 ), ( I , 1 ), ( I , 0), ( I , - 1 ), (O, - 1 ), ( - I , - 1 ) 
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1 proc world capitals [print namelist words and locations in table, if any] 
2 use capitalsdata 
3 maxrow, maxcol, table, max list, maxname, namelist : = list(input) 
4 for 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 

14  
15  
16  

row : E 1 to maxrow 
do [print namelist words and locations starting table(row), if any] 

for 

od 

col : E 1 to max col 
do [print namelist words and locations starting table(row,col), if any] 

for 

oct 

dir : E 1 to 8 
do 

oct 

print namelist word and location starting table(row,col) in direction 
dir, if any 

17 corp 

data capitalsdata 
scalar 

maxrow : integer [number of rows] 
maxcol: integer [number of columns] 
maxlist : integer [number of city names in name list] 
maxname : integer [number of characters in longest city name] 

array 

atad 

table(maxrow,maxcol) : character [array of letters] 
namelist(maxlist,maxname) : character [city names possibly present in 

table] 

sequence 
input 
output 

Figu re 7.8 I n itia l world capitals program. 

Row and column displacements for some value of dir, the fordo loop index, 
are thus given by disp(dir, l ) and disp(dir,2), respectively. A possible refine
ment step based on this strategy is shown in Fig. 7 .9. The refinement appears 
correct ; systematic application of horizontal and vertical displacements in 
the disp array ensures that the proper comparison strings will be built in 
each direction, up to the edge of table or to a length equal to maxname. 
This completes a stepwise refinement process. We turn to stepwise re
organization next. 
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In the program of Fig. 7.9, concatenating and sea rch ing for a cha racter 
string can continue beyond the possibility of a match (and, in fact, beyond a 
match ). So a first reorganization step might be to stop looking when the 
character string formed so far in some direction is not a left substring of any 
name in name list (i .e. ,  string fails to match the beginning of any name ), and 
begin a new direction or new starting point. To implement, we add a new 

logical variable named looking and rewrite and renumber the expansion of 

12  d o  [print namelist word and location starting table(row, col) i n  direction dir, if 
any] 

13 . 1 rowhead, colhead := row, col 
2 length, string := 1 , all blanks 
3 while 
4 ( 1 :s; rowhead :s; max row ) 1\ ( 1 :s; colhead :s; max col) 1\ (length :s; max name ) 
5 do [add letter in direct ion t.o string and print with location 

if found in namelist] 
6 string(length ) := table(rowhead, colhead) 
7 search for string in name list 
8 if 
9 string found 

10 then 
1 1  list(output ) := string, row, col, dir 
12  fi 
1 3  length : =  length + 1 
14 rowhead, colhead := rowhead + disp(dir, 1 ), colhead + disp(dir, 2) 
15 od 

14 od 

scalar 
rowhead : integer [row of nex t  letter added to string] 
colhead : integer [column of nex t  letter added to string] 
length : integer [current number of characters in string] 

array 
string(maxname) :  character [test string for comparison with namelist 

names] 
disp(8, 2 ) :  integer, init (( - 1 ,  0), ( - 1 , 1 ), (0, 1 ), ( 1 , 1 ), ( 1 , 0), ( 1 , - 1 ), 

(0, - 1 ), ( - 1 , - 1 ) [row, column displacements for next charac
ter to be added to string] 

Figure 7.9 Fi rst world capitals ref inement. 
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1 2  do [print namelist word and location starting table(row, col) i n  direction dir, if 
any] 

13 . 1  rowhead, colhead := row, col 
2 length, string := 1, all blanks 
3 looking := true 
4 while 
5 (1 ::s;; row head ::s;; max row ) 1\ (1 ::s;; colhead � max col) 1\ looking 
6 do [add letter in direction to string; print with location if found in namelist 

and signal end search, otherwise if left substring found continue search, 
else signal end search] 

7 string (length ) := table(rowhead, colhead) 
8 search for string in namelist 
9 if 

10 string found 
1 1  then [print string with location and signal end search] 
12 6st(output) := string, row, col, dir 
13 looking := false 
14 else [continue search if left substring found in name list, otherwise signal 

end search] 
15  search for left substring in  namelist 
16 if 
17 left substring found 
18 then [prepare to extend string, continue search] 
19 length := length + 1 
20 rowhead, colhead := rowhead + disp(dir, 1 ), colhead + disp(dir, 2) 
21  else [signal end search] 
22 looking := false 
23 fi 
24 fi 
25 od 

14 od 

Figure 7.1 0 First world capitals reorganizat ion. 

line 13 as shown in Fig. 7. 10. Note that it is no longer necessary to verify that 
the substring is less than the maximum name size. 

The reorganization appears to correctly carry out the action specified 
on line 12. It eliminates unnecessary searches where no match is possible, 
but at the expense of new searches in an unsorted namelist for left substrings. 
Thus, an additional reorganization is possible to speed up the searches, by 
sorting namelist to begin with, and limiting successive searches to that parti
tion of namelist, if any, that contains left substrings matching the string built 
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so far. For example, if left substring "rom" is present in namelist, the sub
sequent search with a character appended to "rom" need only scan that 
partition of name list whose names begin with "rom". This reorganization 
adds variables low and high to denote the current active partition of namelist 

scalar 
low : integer [location of current lowest matching substring] 
high : integer [location of current highest matching substring] 

and sorts namelist at the head of the program. Low and high are initialized at 
the start of the "for direction" loop, and updated in a new segment named 
bracket, which carries out the following subspecification : 

Set low and high to first and last namelist positions, respectively, of those 
names, if any, with left substrings matching string (of length characters); 
otherwise set low = high = o. 

When low = high = 0, or low = high and string is not found at that point in 
name list, looking is set false, and the scan continues from a new direction or 
starting point, all shown in the reorganized and renumbered program of Fig. 
7. 1 l . 

Is the reorganization correct? Scans of the original unsorted name list in 
the previous program have been replaced by searches of a partition of 
matching left substrings in the sorted namelist. In the reorganized program, 
no match is possible above or below the matching partition, and if the 
matching partition reduces to one name, that name will match string, if any 
name matches. Thus, no outcome is lost, and the search process has been 
speeded up. 

This strategy suggests a further improvement to perform a separate 
bracket search as a special case when starting at a new table element, since a 
new first character heads up strings in eight possible directions, all requiring 
identical first searches. Further searches beginning with that character can 
be skipped if it is not found in namelist ; and if it is found, the searches can 
begin with the second character in each direction. The reorganization, with 
new scalar integers I and h, is shown (see Fig. 7. 12) in a renumbered program 
that requires an initial successful bracket search before building and testing 
strings in each direction. Again, no possible outcome is lost (assuming there 
are no one-character city names), and redundant searches have been elimin
ated, to ' produce a reasonably efficient program. 



1 proc world capitals [print namelist words and locations in table, if any] 
2 use capitalsdata 
3 maxrow, maxcol, table, max list, maxname, namelist := Iist(input) 
4 run sort(alt namelist, fix max list) 
5 for 

row : E 1 to maxrow 6 
7 
8 
9 

do [print namelist words and locations starting table(row), if any] 
for 

10 
1 1  
12  
13  

14 
15  
16 
17 
18 
19 
20 

2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1  
32 
33  

34 
35 
36 
37 
38 
39 
40 
41 od 
42 corp 

col :E 1 to max col 
do [print namelist words and locations starting table(row, col) if any] 

for 
dir : E  1 to 8 

do [print name list word and location starting table(row, col) in direc
tion dir, if any] 
low, high := 1, maxlist 
rowhead, colhead := row, col 
length, string := 1, all blanks 
looking := true 
while 

( 1 � rowhead .::; max row ) /\ ( 1 � colhead � maxcol) /\ looking 
do [add letter in direction to string; print with location if found in 

name list and signal end search, otherwise if left substring found 
continue search, else signal end search] 

od 
od 

od 

string(length) := table(rowhead, colhead) 
run bracket (alt low, high, fix string, length, name list, maxlist) 
if 

low > 0 
then 

if 
namelist(low) = string 

then [print string with location and signal end search] 
list(output) := string, row, col, dir 
looking := false 

else [prepare to extend string, continue search] 
length := length + 1 

fi 

rowhead, colhead := rowhead + disp(dir, 1 ), 
colhead + disp(dir, 2) 

else [signal end search] 
looking := false 

fi 

Figure 7.1 1 Second world capitals reorganization. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

,�' 10 
' \;  1 1  F 

12 
13 
14 
1�  
H 
1 �  
U 
1� 
2{ 

2 
2: 
2: 
2· 
2: 
21 

2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 

4 

�, 



1 proc world capitals [print namelist words and locations in table, if any] 
2 Ifie capitalsdata 
3 maxrow, maxcol, table, max list, maxname, namelist := list(input) 
4 run sort (aIt namelist, fix max list) 
5 for 

6 row : E 1 to maxrow 
7 do [print namelist words and locations starting table(row), if any] 
8 for 

9 col : E 1 to maxcol 
10 do [print namelist words and locations starting table(row, col), if any] 
1 1  low, high : =  1 ,  maxlist 
12 length, string := 1, all blanks 
13 string (length ) := table(row, col) 
14 run bracket (alt low, high, fix string, length, namelist, max list) 
15 if 
16 low > 0 
17 then 
18 for 
19 dir : E 1 to 8 
20 do [print namelist word and location · starting table(row, col) in 

direction dir, if any] 
2 1  rowhead, colhead := row + disp(dir, 1 ), col + disp(dir, 2) 
22 I, h := low, high 
23 length, looking := 2, true 
24 while 
25 ( 1 � row head � max row ) 1\ ( 1 � colhead � max col) 1\ looking 
26 do [add letter in direction to string ; print with location if found 

in namelist and signal end search, otherwise if left substring 
found continue search, else signal end search] 

27 string(length) := table(rowhead, colhead) 
28 run bracket (alt I, h, fix string, length, namelist, maxlist) 
29 if 
30 I >  0 
3 1  then 
32 if 
33 namelist(/) = string 
34 then [print string with location and signal end search] 
35 list( output) : =  string, row, col, dir 
36 looking := false 
37 else [prepare to extend string, continue search] 
38 length := length + 1 
39 rowhead, colhead := rowhead + disp(dir, 1 ), 

colhead + disp(dir, 2) 
40 fi 
41  else [signal end search] 
42 looking := false 
43 fi 
44 od 
45 od 
46 fi 
47 od 
48 od 
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EXE R CISES 
Use stepwise refinement and reorganization to design programs for the intended 
functions described in Exercises 1-10. The function definitions may be elaborated, if 
necessary, to create a correspondence with their program designs. 

1. Design a program to determine if an input sequence of characters is a true 
palindrome (reads identically in both directions), a packed palindrome (reads iden
tically in both directions with blanks removed), or neither. 

2. Consider an m x m array named crossword, in which each element is a number, 
blank, or .. # ", and two sequences named across and down, in which each element is a 
pair consisting of a square number and a word. It is alleged that across and down 
define a solution for the crossword. Design a program to verify this allegation. 

3. Consider an m x m array named solution, in which each element is a letter or 
.. # ", which represents a filled-in crossword. Design a program to decompose the 
crossword, by numbering squares where words begin, converting letters to blanks, 
and creating the corresponding across and down lists of numbered words. 

4. Consider an m-element array named box, each element an integer triple (I, w, h) 
of box dimensions, and an n-element array named paper, each element an integer pair 
(s, t) of paper dimensions. Design a program to determine an m x n array named 
wrap, with element values T or F for the questions of whether box(i), 1 � i � m, can 
be wrapped (overlap allowed) by paper(j), 1 � j � n, without cutting the paper and 
with box edges parallel to paper edges. 

5. Given an input sequence that contains (a) numbers separated by blanks, with 
numbers in forms of decimal integer; fixed point; floating point (with decimal point 
in any location); and Roman numerals (up to 9999); and (b) possible "garbage" 
characters, design a program to convert numbers into standard floating point form, 
and print them. 

6. Given a symmetric m x m array named line, of O's and 1 's, that defines a network 
among places 1, . . .  , m (Iine(i,j) = 1 if a line exists between i and j), design a program 
to print all complete subnetworks (that is, clusters of places in which every place 
connects to every other place). 

7. Given an m x m array named line, of O's and l's, that defines the control structure 
of a flowchart (line(i, j) = 1 if node i connects to node j), design a program to list all 
proper control structures. 

8. Given an input sequence text string named t, an input sequence substring named 
s, and an input sequence replacement string named r, design a program to find the 
first occurence of s in t, if any, and replace it by r, then print the resulting string. 
Consider t to wrap around, that is, the first character of t follows the last character 
of t. 

9. Consider an input sequence named input, containing telegrams (words separated 
by blanks, word a string of non blank characters), each telegram ending with word 
"zzzz," and the sequence ending with an additional "zzzz." Design a program to print 
each telegram, omitting "zzzz" and "stop," followed by a count of words ("zzzz" and 
"stop" don't count), and the word "overlength" if any word exceeds 12  characters. 
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10. Consider two large n x n sparse arrays (with a small fract ion of nonzero mem
bers) stored in two sequences of triples (i, j, v) for (row, column, value� respectively, 
in sorted order (row major). Design an efficient program for minimum storage to add 
and multiply such arrays and put the results into another sequence. Note that addi
tion of arrays is addition of corresponding elements ; multiplication is given by the 
inner product of rows and columns, that is, for result c of the multiplication of 
arrays a and b, 

c(i, j) = a(i, 1)*b( l, j) + . . .  + a(i, n)*b(n, j) 

7.4 A CASE STU DY IN DETAI LING AN D DESIG N : 
LO NG DIVISION 

7 .4.1 Detai l i ng Versus Design 

The invention of suitable abstractions for expressing and communicating 
design ideas is a crucial aspect of structured programming. Design abstrac
tions can reduce the complexity of programs and their correctness proofs, 
and provide a foundation for stepwise refinement into further details. 

Detailing is programming without the benefit of design abstractions. It 
is "stream-of-consciousness" programming, detailing whatever processing 
requirements come to mind, inventing "flags" and "counters" to control the 
accumulation of data assignments and tests, all with insufficient regard for 
the impact on program structure. Detailing leads to programs that are larger 
than necessary, with more data objects than necessary, and with parts that 
seldom fit together as hoped. On the basis of size alone, programs produced 
by detailing are ordinarily more difficult to prove correct, and less likely to 
be understood by others. 

Of course, in the final stages of stepwise refinement, details of local 
operations must be specified, and at bottom, a stepwise-refined program is 
all details. But such a program contains its own design, as well, in initial and 
intermediate abstractions documented in logical commentary, and can be 
verified to be correct in steps based on levels of abstraction. But a program 
produced by detailing contains only its details, not its design, and document
ing details after the fact rarely uncovers a coherent design. 

So if you find yourself simply enumerating details at a low level and 
adding more and more data objects, with no end in sight, stop. Reflect 
on the problem at hand. Go back to definitions in the problem, and look for 
deeper simplicities. Search for general principles on which to base abstrac
tions. In short, be satisfied with your design at every level before filling in its 
details. 
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7.4.2 A Lo ng - Division Problem 

In illustration of the difference between detailing and design, consider a 
. 

long-division problem for a "decimal processor" with roughly the same 
capabilities as a human being-namely, the ability to do digit-by-digit arith
metic, and to make use of place notation for comparing decimal numbers 
and for multiplying by powers of 10, etc. However, in order to provide 
explicit instructions for the processor, the places of digits in numbers must 
also be made explicit as other "control numbers" that are given in the same 
place notation as the original numbers. And arithmetic operations will be 
useful in manipulating these control numbers as well. 

Specifically, given two positive integers, a divisor named a of m decimal 
digits and a dividend b of n decimal digits, the requirement is to determine 
a quotient q and remainder r in decimal digit form, such that 

b = a*q + r, 0 s r < a 

The decimal processor for long division supports only a single data 
type, namely, strings of decimal data in ordinary positional notation. In 
programming the processor, decimal data strings, substrings, and individual 
digits may be referenced. The processor permits decimal data assignment, 
addition, subtraction, and arithmetic comparison. In all such operations, 
low-order digits are aligned, and the usual digit-by-digit, carry-and-borrow 
operations apply. On assignment, high-order zeros fill digit positions not 
explicitly assigned. 

We elect to augment PDL for this processor with a special outer syntax 
data structure for decimal data, declared by the keyword decimal. For 
example, 

decimal x(4), y(l), z(j), j(n), k(n) 

declares strings named x, y, z, j, and k to be 4, 1 ,  j, n, and n decimal digits, 
respectively. The usual convention is that the highest and lowest index 
values correspond to the most and least significant digits, respectively. Thus, 
if x = 2946, then 

x(4) = 2, x( l )  = 6, and x(3 : 1 ) = 946. 

Decimal strings are understood to be initialized to zero on declaration, 
unless otherwise specified. Arrays of decimal digit strings can be specified 
by mUltiple indexes. For example, 

array u(3) decimal (4) 

declares an array named u of 3 digit strings, each with 4 digits. Thus, if 
u = 3745,2165,3 124, then 

u(2) = 2165, u(2, 3) = 1, and u(3, 4 : 2) = 3 12. 
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The permissible decimal string operations of the decimal processor are 
summarized in the following example, for the declarations above: 

j := 4  

k(1 ) = 1 

xU : k) := 2301 

y := xU) + 3 - x(k) 
z(3 :  k) := xU : 3)*6 

z(4 :1 ) := z(3 : 2) 

if 
z(1 ) > xU) 

then 

U(n : 2) = 0, j( 1 ) = 4) 

(k(n : 2) = 0, k(1 ) = 1 ) 

(x = 2301 ) 

(y = 4) 

(z = 0138) 

(z = 0013) 

(3 > 2 = true) 

y := y*y 
fi 

(fails to execute, since y*y = 16, which overflows on 
assignment to y) 

7.4.3 Deta i l i ng through Di rect Experi ence 

Long division can be accomplished by repeated subtraction of the divisor 
from the dividend, adding one to the quotient with each repetition. But this 
is inefficient, since a large number of subtract operations may be required. 
However, if the divisor is aligned with the proper leftmost digits of the 
dividend, as in grade-school long division, then quotient digits are deter
mined from highest place down to lowest place, a more efficient process. 
Thus, a possible programming strategy is based directly on the digit opera
tions of long division, as taught in grade-school arithmetic, and which corre
spond to operations available in the decimal processor. 
The sequence of steps that produces the following display, for example, 

1 0 5 3 
2 1 7 12 2 8  5 9 6  

2 1 7 
1 1 5 

o 

1 1 5 9 
1 0 8 5  

7 4 6  
6 5 1 

9 5  
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uses divisor a = 217 and dividend b = 228596 to compute quotient q = 1053 
and remainder r = 95. We can describe this long-division algorithm a step at 
a time in digit-by-digit operations. At each step, a new digit must be found 
that most nearly divides a sequence of digits by the divisor. We decide to 
use the name "partial dividend" for this sequence of digits. For example, 
with partial dividend 1 15 and divisor 217, the quotient digit required is 0, 
since 217 goes into 1 15 zero times; and with partial dividend 1 159, the 
required quotient digit is 5, since 217 goes into 1 159 five times but not six ' 
times. In order to get the process started, an initial partial dividend must be 
identified. It can be found by marking ofT (left to right) an equal number of 
digits of the dividend as are found in the divisor, if that partial dividend 
equals or exceeds the divisor ; otherwise by marking ofT one more digit. If the . 
dividend does not have enough digits to form an initial partial dividend, 
then the quotient is zero and the remainder is the dividend, itself. We reflect 
this initialization in a new display, as follows : 

1 0 5 3  
2 1 7  12 2 8 5 9 6  

2 2 8  
2 1 7  

1 1 5 

o 
1 1  5 9  

1 0 8 5  
7 4 6  

6 5 1 
9 5  

(mark ofT initial partial dividend) 
(enter hdivisor) 
(subtract and bring down digit 
dividend) 
(enter O*divisor) 
(subtract and bring down digit for next partial 
dividend) 
(enter 5*divisor) 
(subtract and bring down digit for next partial 
dividend) 
(enter 3*divisor) 
(remainder) 

Thus, the partial dividends are, successively, 228, 1 15, 1 159, and 746. 
Although a person might make a good guess of the next . digit of the 

quotient at each step, a simpler, mechanical procedure is to compare succes
sive mUltiples of the divisor with the partial dividend, and to back up one 
mUltiple as soon as a multiple exceeds this partial dividend. Since the same 
divisor will be used at each step, we decide to store a table of mUltiples of the 
divisor for use from step to step. It may be even better to build up the table 
of mUltiples as needed during the division process, since not all multiples 
may be needed. For example, we could define a table of multiples, say e, with 
1 1  rows of m + 1 digits each for a divisor of m digits. Thus, row 1 is 0 times 
the divisor, row 2 is 1 times the divisor, and so on. Note that this table can be 
built up by addition, since multiplication is not available in the decimal 
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processor. We can also keep track of how many multiples have been 
computed and stored in e at any point in the process by an index named f 
Then, at each step, if more mUltiples are required, we can update table e and 
index f accordingly. 

During the process each new partial dividend is formed by subtracting 
the correct multiple of the divisor from the previous partial dividend and 
bringing down the next digit from the dividend. We decide to store these 
partial dividends in a digit string, say g, of dimension (m + 1 ). In terms of 
data, a new partial dividend is obtained by (1 )  subtracting a correct mUltiple 
(i.e., row of table e) from the number represented by g, (2) moving digits of g 
one place to the left, and (3 ) bringing down the correct digit from digit string 
b, which holds the dividend, into the low-order-digit position of g. The 
division process stops when a partial dividend less than the divisor has been 
found (possibly 0) and no more digits remain in the dividend to bring down. 

The long-division strategy described above can be programmed as fol
lows. We write a top segment first, as shown in Fig. 7 .13. It runs a segment 

proc long division(a(m : l ), b(n : l ), q(p : l ), r(p : l )) 
use long division data 
run first partial dividend 
while 

g(m + 1 : 1 ) :;1= ° 
do 

run quotient digit 
od 

corp 

data long division data 
decimal 

a(m : l )  
b(n : l ) 
q(p : l )  
r(p : l  ) 
g(m + l : 1 )  
m 
n 
p 

[divisor] 
[dividend] 
[quotient, most significant digit is q( 1 )] 
[remainder] 
[partial dividend] 
[number of digits in divisor] 
[number of digits in dividend] 
[number of digit positions for quotient and remainder, 
assumed sufficiently large] 

f [e array pointer] 
array e(O : 10) decimal (m + 1 )  [O.divisor in first row, up to 1O.divisor in 

last row] 
atad 

Figure 7.1 3 Top long-division segment. 
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named first partial dividend to compute an initial g, and as long as g + 0, it 
runs a segment named quotient digit to compute a q digit, subtract, and form 
the next partial dividend (parameter lists not shown). The development of 
the first partial dividend segment, shown in Fig. 7.14, is a progression of 
three steps, followed by some imagined "stream-of-consciousness" thoughts 
by the programmer that led to the successive versions. The quotient digit 
segment is developed in Fig. 7.15, likewise in a series of steps. 

[First step] 

proc first partial dividend 
if 

(m > n) v (m = n t\ a(m : 1 »  b(n : 1 )) 
then 

q(p : 1 )  := 0 
r(n : 1 ) := b(n : 1 )  
g(m + 1 : 1 ) := 0  

else 
if 

m = n  
then 

g(m : 1 ) := b(n : 1 )  
g(m + 1 )  := 0 
bp := 0 [b pointer] 

else 
if 

b(n : n  - m + 1 )  � a(m : 1 )  
then 

g(m : 1 ) := b(n : n  - m + 1. )  

Programmer's thoughts. This program i s  getting complicated. The first then part 
is for divisor > dividend, when the partial dividend is 0, and the quotient must 
be set to 0 and the remainder set to the dividend. The nested thenpart is for 
divisor s dividend, but with the same number of digits. The partial dividend 
here should be all the digits of the dividend. The index named bp indicates the 
number of digits left in the dividend. The nested elsepart is for more digits in 
the dividend than in the divisor. The expression n - m + 1 identifies the least 
significant digit of the m leftmost digits of b. It seems better to stop at this 
point and record these facts as comments before they are forgotten. 

Figure 7.1 4 First partial dividend segment, first step. 
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[Second step] 

proc first partial dividend 
if 

(m > n) v (m = n t\ a(m : 1 )  > b(n : 1 )) 
then [set quotient to 0, remainder to dividend, partial dividend 

to 0] 
q(p : 1 )  := 0 
r(n : 1 ) := b(n : 1 )  
g(m + 1 : 1 )  := 0 

else 
if 

m = n  
then [bring down all m digits from b into g;  set b pointer to 

indicate no more dividend digits available] 
g(m : 1 ) := b(n : 1 )  
g(m + 1 )  := 0 
bp := O 

else [bring down necessary leftmost digits from b into g, set b 
pointer to point to next available digit in dividend] 

if 
b(n : n  - m + 1) � a(m : 1 )  [note : b(n - m + 1 )  identifies 

least significant digit of the 
leftmost m digits of b] 

then 
g(m : 1 ) := b(n : n  - m + 1 )  

Programmer's thoughts. Now the program is more comprehensible. There are 
two subcases remaining to be programmed. If the high-order m digits of the 
dividend form a number greater than or equal to the divisor, the partial 
dividend must be set to these digits, otherwise the partial dividend must be 
set to the high-order m + 1 digits of the dividend. The two subcases can now 
be finished and the quotient digit computation initialized . 

Figure 7. 1 4  (contin ued ) Fi rst partial d ividend segment, second step. 



340 Writing Structu red Programs 

[Third step] 

proc first partial dividend 
if 

(m > n) v (m = n 1\ a(m : 1) > b(n : 1 )) 
then [set quotient to 0, remainder to dividend, partial dividend to 0] 

q(p : 1 )  := 0 
r(n : 1 ) := b(n : 1 )  
g(m + 1 : 1 ) := 0  

else 
if 

m = n  
then [bring down all m digits from b into g;  set b pointer to indicate no 

more dividend digits available] 
g(m : 1 ) := b(n : 1 )  
g(m + 1 )  := 0 
bp := O 

else [bring down necessary leftmost digits from b into g, set b pointer 
to point to next available digit in dividend] 

fi 

if 
b(n : n  - m + 1 )  � a(m : 1 )  [note : b(n - m + 1 )  identifies least 

significant digit of the leftmost m 
digits of b] 

then [bring down m leftmost digits from b into g; set b pointer to next 
available dividend digit] 

g(m : 1 ) := b(n : n  - m + 1 )  
g(m + 1 )  := 0 
bp = n - m 

else [bring down m + 1 leftmost digits from b into g ;  set b pointer to 
next available dividend digit] 

g(m + 1 : 1 ) := b(n : n  - m) 
bp := n - m - 1 

fi 

do [initialize e array and qp, the quotient pointer] 

1:= 0 

od 
fi 

corp 

e(f, m + 1 :  1 ) := 0 
qp := O 

added data items : 
qp [quotient pointer] 
bp [dividend pointer] 

Fig u re 7.1 4 (continued) First partial d ividend segment, th ird step. 



[First step] proc quotient digit 
qp := qp + 1 
i := O  
while 

e(i, m + 1 : 1 )  � g(m + 1 : 1 )  
do 

i := i  + 1 
if 

i >f 
then 

fi 
od 

f:=f + 1 
e(f, m + 1 : 1 ) := e(f - 1, m + 1 : 1 )  + a(m : l )  

g(m + l : l ) := g(m + 1 : 1 )  - e(i - 1 ,  m + 1 : 1 )  
q(qp) := i - 1  

Programmer's thoughts. This program is also getting complicated and could 
benefit from some logical commentary while the operations are still fresh in 
mind. The whiledo loop must search for (and compute if necessary) the first 
row of table e that exceeds the partial result g. The partial result is then 
reduced by the proper row of e (the (i - 1) row, since i corresponds to the 
first row of e that exceeds the partial result) and the current quotient digit is 
set to i - 1. 

[Second step] 

Figure 7.1 5 Quotient d igit segment first step. 

proc quotient digit 
qp := qp + 1 
i := O  
while 

e(i, m + 1 : 1 )  � g(m + 1 : 1 ) 
do [increment i ;  ensure ith row of e is available] 

i := i + 1 
if 

i > f 
then [set f to point to ith row of e ;  set ith row to next 

multiple of divisor] 
f:=f + 1 
e(f, m + 1 : 1 ) := e(f - 1, m + 1 : 1 )  + a(m : l )  

fi 
od [correct multiple is row i - I of e] 
do [subtract correct multiple of divisor from partial 

dividend and assign quotient digit] 
g(m + l : l ) := g(m + 1 : 1 )  - e(i - 1, m + 1 : 1 )  
q(qp) := i - I [Note : Most significant digit of 

od q is q( I ).] 

Programmer's thoughts. The program is now more understandable. It can be 
completed by computing a new partial dividend for the next iteration of the 
top segment. If no digits remain in the dividend, then the remainder must be 
set to the partial dividend (possibly 0) and the partial dividend set to 0 to 
terminate the program. 
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[Third step] 

proc quotient digit 
qp := qp + 1 
i := O 
while 

e(i, m + 1 :  1 )  :s:; g(m + 1 :  1 ) 
do [increment i; ensure ith row of e is available] 

i := i  + 1 
if 

i >f 
then [set f to point to ith row of e ;  set ith row to next multiple of 

divisor] 
f:=f + 1 
e(f, m + 1 : 1 ) := e(f - 1, m + 1 : 1 )  + a(m : l )  

fi 
od [correct multiple is row i - I of e] 
do [subtract correct mUltiple of divisor from partial dividend and assign 

quotient digit] 

od 

g(m + 1 : 1 ) := g(m + 1 : 1 )  - e(i - 1, m + 1 : 1 )  
q(qp) := i - I [Note : Most significant digit of q is q(I).] 

while 
bp > O l\ a(m : l )  > g(m + 1 : 1 )  

do [move partial dividend left one position and bring down next digit from 
dividend ; possibly assign 0 quotient digit] 
g(m + 1 : 2) := g(m : l )  
g( I ) := b(bp) 
bp := bp - 1 
if 

a(m : l )  > g(m + 1 : 1 )  
then 

qp := qp + 1 
q(qp) := 0 

fi 
od 
if 

bp = O  
then [set remainder to partial dividend, partial dividend to 0] 

r(m + 1 : 1 ) := g(m + 1 : 1 )  

fi 
corp 

g(m + 1 : 1 )  := 0  

added data item : 
[e table pointer] 

Fig ure 7.1 5 (continued)  Quotient d ig it segment, third step. 
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We now have a program for long division that has been written out to 
the last detail. But if the program is correct, how will we ever know it? (In 
fact, it contains a number of logical errors. ) The correctness arguments will 
involve at least as many details as the program itself and are sure to tax 
intellectual control without an extensive and organized approach. If impor
tant, the proofs can be done, but is it worth the effort? 

Although the process of grade school long division is well known and 
easy to describe, the foregoing program is not. In fact, the foregoing pro
gramming process illustrates how not to program long division. It represents 
an undisciplined mental process, which ignores important aspects of step
wise refinement and which compiles complexities with little thought to their 
impact on intellectual control. The programs were not created by expanding 
intended functions and then checking correctness, and the logical commen
tary was added after the fact, in an attempt to make sense out of all the 
details. In our rush to combine function and efficiency, it was easy to digress 
into the discussion of storing multiples of the divisor and of computing such 
multiples only on demand by addition, but it was unwise to do so at that 
point in the development. But the major flaw in the foregoing development 
was in accepting the inherent complexity of dealing with strings of digits in a 
way so easy for a person but which requires so much housekeeping for a 
computer. We jumped into programming by "stream of consciousness," with 
our heads full of the familiar digit-by-digit operations, without pausing to 
think of abstractions that could organize, or even circumvent, all those 
details. We turn now to a better way to formulate the long-division process. 

7.4.4 Desig n t h roug h Stepwise Refi nement 

Chastened by the excursion into detailing, we now look for suitable abstrac
tions that can be combined into a provable program. To begin, we return to 
the definition of integer division and write the following intended function, 
for divisor a, dividend b (a, b > 0, int short for integer part) :  

q, r := int(bja), b - int(bja)*a 

We know (and can prove) that this function can be carried out by the 
program below 

scalar a, b, q, r :  integer 

q, r := O, b 
[q, r := q + int(rja), r - int(rja)*a] 
while 

a s r  
do 

q, r := q + 1 ,  r - a 
od 
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that treats a, b, q, r as scalar integers and ignores for the moment details of 
decimal digit representation. (In fact, we had this division-by-subtraction 
strategy in mind all along, but lost ourselves in the details of the more 
efficient grade-school implementation.) This program is inefficient ; for ex
ample, a quotient of 946 requires 946 subtractions. But by grade-school 
long division, the same quotient could be obtained in just 9 + 4 + 6 = 19 
subtractions. Is there a way to systematically reorganize the program into 
grade-school long division ? The answer is yes. 

First, with a little thought on the mathematics underlying grade school 
long division, we rewrite the earlier example, 228596 ...;- 2 17, as follows, 
where we recognize that the required digit alignments can be obtain¢ quite 
simply, by multiplying divisor mUltiples by the proper power of ten : 

divisor multiples partial dividends quotient terms 

228596 
1 *2 17* 10**3 217000 1 * 10**3 = 1000 

1 1596 
0*217*10* *2 0 0* 10**2 = 000 

1 1596 
5*2 1 7* 10** 1  10850 5* 10** 1  = 50 

746 
3*2 1 7*10**0 65 1 3* 10**0 = 3 

95 1053 

Thus, the problem can be described as a series of four individual division 
operations, each using the divisor multiplied by a power of ten, and each 
producing a quotient digit that, when multiplied by the same power of ten, 
results in a quotient term. The sum of individual quotient terms is the 
desired quotient. This appears to be a useful abstraction, since the decimal 
processor can deal with powers of ten by simply shifting digits. Since each 
quotient term is computed in the same manner, we propose a fordo frag
ment, indexing from highest quotient place, say 10**h, down to lowest 
quotient place, 10**0. The dopart is composed of the integer division pro-
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gram above, with test and operations adjusted by the required power of ten : 

set h such that a* 10**h � b < a* 10**(h + 1 )  
q, r := O, b 
[q, r := q + int(rja), r - int(rja)*a] 
for 

i : E  h to 0 by - 1  
do [q, r := q + int(rja* 10** i)* 10** i, r - int(rja* 10**i)*a* 10** i] 

while 
a* 10** i  � r 

do 

od 
od [b = a*q + r, 0 � r < a] 

Now it remains to determine the value of the parameter /7, which is the 
number of zeros required to pad the divisor to the size of the dividend. This 
can be done by the following fragment : 

do [set h such that a* 10**h  � b < a* 10**(h + 1 )] 
h := O  
while 

a* 10**h � b 
do 

h := h + 1 
od 
h := h - 1 

od [a* 10**h � b < a* 10**(h + 1 )] 

We are now able to combine these abstractions into a program that 
carries out the required digit-by-digit determination of q, as shown in Fig. 
7. 16. 
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1 proc long division (a, b, q, r) [q, r := int(b/a), b - int(b/a)*a] 
2 scalar a, b, q, r: integer [a, b > 0] 
3 do [set h such that a* lO**h � b < a* lO**(h + 1 )] 
4 h := 0 
5 while 
6 a* 10**h � b  
7 do 
8 h := h + 1 
9 od 

10 h := h - 1 
1 1  od 
12 q,  r := 0, b 
13 [q, r := q + int(r/a), r - int(r/a)*a] 
14 for 

15 i : E  h to 0 by - 1  
16 do [q, r := q + int(r/a* lO**i)* lO**i, r - int(r/a* lO**i)*a* lO**i] 
17 while 
18  a* 10  ..  i � r 
19 do 
20 q, r := q + lO .. i, r - a* lO .. i 
2 1  od 
22 od [b = a*q + r, 0 � r < a] 
23 corp 

Figure 7.1 6  New long -division program. 

The program part of lines 3 through 1 1  that computes a value for h is correct 
by direct inspection. Index h is initialized to 0 and is incremented (if at all) 
until eventually a* 10**h > b, and we are guaranteed that, on exit from the 
loop, h is the largest integer such that a* 10**(h - 1) � b. Note that if a >  b, 
h is assigned - 1 , and the fordo on lines 14 through 22 is not executed. In this 
case, the assignment on line 12 sets q and r to 0 and b, respectively, as 
required. Next, the whiledo of lines 17  through 21 has proof as follows : 

function 
f = (q, r := q + int(r/a* 10**i)* 10**i, r - int(r/a* 10**i)*a* 10**i) 

program 
whiledo (lines 17-21 )  

proof 
term 

r decreased by a* 10**i each iteration so whiletest a* 10**i � r 
will eventually fail. 
pass 
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a* lO .. i � , a* lO . .  i � 'o q1 = qo '1 = '0 
q, , := q + 10 .. i, 
, - a* lO .. i 

q2 = q 1  + lO . .  i '2 = '1 - a* 10**i 

f 

derivations : 
condition : 

a* lO**i :$ ro 

assignments : 

q3 = q2 
+ int('2/a* lO . .  i)* 
10 .. i 

q3 = q2 + int(r2/a* 10**i)* 10**i 

'3 = '2 
- int('2/a* 10 .. i)* 
a* lO .. i 

= q1 + 10**i + int((r1 - a* lO** i)/a* lO**i)* lO**i  
= qo + 10**i + int((ro - a* lO** i)/a* lO**i)* lO**i  

r3 = r2 - int(r2/a* 10** i)*a* 10**i  
= r 1  - a* lO** i  - int((r 1  - a* lO**i)/a* lO**i)*a* lO**i 
= ro - a* lO**i  - int((ro - a* lO** i)/a* lO**i)*a* lO**i 

But int((ro - a* 10**i)/a* 10**i) = int(ro/a* 10**i) - 1 ,  so 

q3 = qo + 10**i  + int(ro/a* 10** i)* 10** i  - 10**i  
= qo + int(ro/a* 10**i)* 10**i  

r3 = ro - a* lO**i  - int(ro/a* lO** i)*a* lO**i + a* lO**i 
= ro - int(ro/a* 10** i)*a* 10**i  

program function : 
(a* lO**i :$ r --+ q, r := q + int(r/a* lO** i)* lO**i, 

r - int(r/a* lO**i)*a* lO * * i) 
which agrees with the intended function for whiletest true. 

pass 

whiletest fake (a* lO**i > r) 
for a* lO**i > r, int(r/a* lO**i) = 0 
and q, r := q, r as is required. 
pass 

result 
pass 

given a, r > 0 
comp 

• 
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Next, the proof for the fordo of lines 14 through 22 is as follows : 

function 
f = (q, r := q + int (r/a), r - int(r/a)*a) 

program 
fordo (lines 14-22) 

proof (where dh names the quantity int(ro/a* 10**h), 
dh- 1  names int(r t !a* 10** (h - 1 )), . . .  , do names 
int(rh/a* 10** (0))) 

part q r 

h q, r := q + int(r/a* lOu;) q 1  = qo + dh 
* 10**�  * 10**h 

r 1 = ro - dh 
*a* lOuh 

r - int (r/a* lOu;) 
*a* lOu; 

h - 1 q, r := q + int(r/a* lOu;) q2 = q 1 + dh - 1 r2 = r 1 - dh - 1  

o 

* lOu;, * lOu(h - 1 )  
r - int(r/a* lOu;) 
*a* lOui 

*a* lOu(h - 1 )  

q ,  r := q + int(r/a* lOu;) qh + 1 = qh + do 
* lOu;, * lOu(O) 

rh +  1 = rh - do 
*a* lOu(O) 

r - int (r/a* lOu;) 
*a* lOu; 

derivations (the leading digit of 10**h identifies the highest place 
of q, by definition ) :  

qh+ l = qo + (dh* 10**h) + (dh+ l * 10** (h - 1 )) 
+ . . . + (do* 10** (0)) 

= qo + int(ro/a) 

rh + 1 = ro - ((dh* 10**h) + (dh- 1 * 10** (h - 1 )) 
+ . . .  + (do* 10** (0)))*a 

= ro - int(ro/a)*a 

program function : 
q, r := q + int(r/a), r - int(r/a)*a 

result 
pass 

given a, r > 0 
comp 

Finally, q, r are initialized to 0, b on line 1 2  (and handle the case for a > b), 

/;� 

. �", 
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and the function of the program part on l i nes 12 t h rough 22 is th us 

q, r := int(b/a). b - int (b/a)*a 

as is  requi red. 
We h ave now developed an abst ract program th at d oes deci mal long 

divi sion correctly. Local abst ract operations in the program can now be 
reorganized into operations available in t he decimal processo r  with h igh 
confidence that correctness is preserved . F i rst,  t he program part of l i nes 
3 th rough 1 1  that com putes h can be programmed as follows, lI s ing a deci
m al string named shift : 

do [set 17 such that a* 10* * 17 ::; b < a* 10* * (h + I )] 
17 := 0 
sh(ft(p : l )  := 0 
sh(ft(m : 1 )  := a(m : 1 )  
while 

do 

od 

sh(ft(p : 1 )  ::; b(n : 1 )  

h := /1 + 1 
sh(ft(p : 2) := shift(p - 1 :  1 )  
sh�ft( l )  : =  0 

17 := 17 - 1 
od 

Next, the fordo loop of lines 1 3 t h rough 22 can be programmed as fol lows : 

[q, r := q + int (r/a), r - int (r/a)*a] 
for 

i : E  h to 0 by - 1 
do [q, r := q + int (r/a* 10** i)* 10* * i, r - int (r/a* 1 O* * i)*a* 1O** i] 

shift(p : l )  := 0 
shift(m + i :  1 + i) := a(m : 1 ) 
while 

shift(p : l ) ::; r(p : l )  [a* 10* * i ::; r] 
do [q, r := q  + 10* * i, r - a* 10** i] 

od 

q(i + 1 ) := q(i + 1 )  + 1 
r(p : l ) := r(p : l ) - shift(p : l )  

od [b = a*q + r, 0 � r < a] 



proc long division(a(m : 1 ), b(n : 1 ), q(p : 1 ), r(p : 1 )) [q, r := int(b/a), 
b - int(b/a)*a] 

use long-division data 
do [set h such that a* lO**h ::;; b < a* lO**(h + 1 )] 

h := 0 
shift(p : 1 ) := 0 
shift(m : 1 ) := a(m : 1 )  
while 

do 

od 

shift(p : 1 ) ::;; b(n : 1 )  

h := h + 1 
shift(p : 2) := shift(p - 1 :  1 ) 
shift( 1 )  := 0 

h := h - 1 
od 
do [q, r := 0, b] 

q(p : 1 ) := 0 
r(p : 1 )  := 0 
r(n : 1 ) := b(n : 1 )  

od 
[q, r := q + int(r/a), r - int(r/a)*a] 
for 

i : E h to O by - 1 
do [q, r := q + int(r/a* lO** i)* lO**i, r - int(r/a* lO** i)*a* lO**i] 

shift(p : 1 ) := 0 
shift(m + i : 1 + i ) := a(m : 1 )  
while 

shift(p : 1 ) ::;; r(p : 1 )  [a* lO**i ::;; r] 
do [q, r := q + lO** i, r - a* lO**i] 

q(i + 1 ) := q(i + 1 )  + 1 
r(p : 1 ) := r(p : 1 )  - shift(p : 1 )  

od 
od [b = a*q + r, 0 ::;; r < a] 

corp 

data long-division data 
decimal 

at ad 

a(m : 1) [divisor, a > 0] 
b(n: 1 )  [dividend, b >  0] 
q(p : 1) [quotient, q( 1 )  is low order quotient digit] 
r(p : 1) [remainder] 
shiJt(p :  1) [temporary] 
h [divisor alignment value] 
m [number of digits in div isor] 
n [number of digits in dividend] 
p [number of digit positions for q, r, and shift, 

assumed sufficiently large] 

Figure 7.1 7 Final long -division program. 
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The resulting program is shown in Fig. 7. 17, with all abstract operations 
translated into operations of the decimal processor. Note that these abstrac
tions, which treat a, b, q, r as scalars, appear in the program as logical 
commentary to document its design. 

To summarize our experience with long division, we first tried creating a 
program out of an accumulation of detai ls. When the complexity of all those 
details made correctness difficult to determine, we adopted an abstract view 
of the problem that y ielded a compact des ign, eas ier to understand and 
verify. This design was proven correct and then expanded into operations of 
the decimal processor, with design abstractions carried into the expansion 
as logical commentary. 

7.5 A CAS E ST U DY IN H E U R ISTICS AN D R I G O R : 
M A KI N G  CHA N G E  

7.5.1 Heuristics Versus R i gor 

In many cases, a function to be programmed is quite straightforward, even 
though filling ih the details may be somewhat ted ious. In such cases, we can 
simply write a structured program, using a d irect form of design for the 
implementation of the function by means of a self-evident rule. For example, 
the air pollution program was a product of d irect design. However, in some 
cases, a rule for implementing a function may not be so evident, and an 
indirect design approach may be required. In these cases, we d istinguish 
between heuristic and rigorous design methods. 

A rigorous design is, by definit ion, a design that adm its a self-sufficient 
argument for its correctness. In contrast, a heuristic design, by definition, 
admits no known self-sufficient argument for its correctness. As with any 
mathematical argument, a proof of the correctness of a rigorous design may 
be faulty, because of the fallibility of its designer. And indeed, a heuristic  
design may be absolutely correct, even though no self-sufficient argument for 
its correctness is known. B ut as mathematical experience shows, a rigorous 
design wi  Ii usually be correot, with reasonable care on the part of its 
designers, and a heuristic design for a complex funct ional requirement will 
usually lead to errors in some executions of the design. For example, a 
heuristic design to prevent dead lock among a set of interrelated asyn
chronous processes, when it fai ls, will permit deadlock ; a heurist ic design to 
handle all possible expressions in a programming language will break down 
when it encounters an expression it cannot handle. Much current software is 
heuristically designed, and then patched and repatched as experience un
covers fai lures. 

However, our interest in rigor, rather than heuristics, in design goes 
deeper than correctness considerations, to the stability and integrity of the 
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design itself. A rigorous design survives its implementation and mainte
nance, whereas a heuristic design may not. In this connection, the illustration 
of Chapter 1 is worth recalling. Imagine a program written heuristically that 
encounters errors in executions and that is fixed as each error is discovered. 
After some time, such a program will become highly idiosyncratic, depend
ing on the errors actually encountered. If the same errors occurred in a 
different sequence, the resulting patched up program would be different. 
Thus, the idiosyncracy depends on the sequence of errors, as well as on the 
errors themselves. To continue the illustration, imagine next a designer who 
conceives a heuristic design, but with great foresight, imagines every possible 
error before testing the program and fixes the design for each error antic
ipated . The program will be error free, but it will still be highly idiosyncratic, 
based on the error-removal sequence. I f  another programmer writes an 
error-free program in the same way, the second program may be entirely 
different from the first one. 

In contrast, a rigorous design begins with a compelling simplicity that 
admits a self-sufficient argument for its correctness, and the implementation 
is defined as an elaboration of this design. The design will survive the 
implementation, even though mistakes may be made in carrying out the 
implementation. The origin of a rigorous design is a creative human mind. 
How such a design is to be invented is beyond our power to describe. But its 
value is unmistakable. There are several patterns of rigorous design that 
recur in programming, most notably in the systematic use of state machines, 
formal grammars, and recursive functions.  In  what follows, we use recursive ' 
functions to illustrate the distinction between heuristics and rigor, first in 
design of a program to make  change, and second in design of a program • 

to play tic-tac-toe. 

7 . 5 . 2 A Change- M a ki ng Problem 

Programs that deal with extensive combinatorial computation can often be 
designed more easily and surely by the discovery of a recursive property of 
the desired computation. 

As a first il lustration, consider the problem of making change. A subpro
gram is required for a microprocessor application, to compute change in 
vending machines for the Soviet system of coins, with kopeck denominations 
1, 2, 3, 5, 10, 1 5, 20, and 50. Specifically, the subprogram is given three data 
items : 

x 
q( l : 8) 

result 

(change to make, x > 0) 

(initial quantities of coins on hand, q( l ) = I rs I ,  
q(2) = 1 2's I , . . . , q(8 ) = I 50's I )  

(outcome of change-making operation, true or false) 
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If change can be made, the program is to reduce q by the required number of 
coins in each denominat ion and set res II  It to true. Otherwise. if change 
cannot be made, q must remain unchanged and reslilt set to false. The 
program will be "burned-in" to read -on ly memory, so errors can be fixed 
only at great expense, by recal l ing the machines and replacing memories . 
Thus, there is substant ial economic mot ivation to produce a correct 
program. 

7 . 5 .3 A H e u r i st i c  Approach a n d  Its D i ffi c u l t i es 

On first thought the problem seems s imple enough. and a reasonable design 
strategy might emerge as follows. Make change out of as many 50's as 
possible, then as many 20's as possible. and so on. down to l ·s. i f  necessary. 
At any point, if the change left to make is O. the coins on hand can be 
reduced by the number of co ins used , and reslilt set to trlle. The number of 
50's poss ible is limited by q(8 ), the quantity on hand. and by . \  i tse l f. s ince we 
must have (using an array 1/ ( 1 : 8 ), with st ructure ident ica l to q. for number of 
coins in change ) 

Now returning 11 ( 8 )  50's means the change yet to be made is 

and we have a new change making problem. using only 20·s. 1 5's. l O·s. 5·s. 
3's, 2's, and l 's (since no more 50's can help. or are ava i lable. by the choice of 
n(8 ) ). This strategy leads to the program of Fig. 7. 1 8  (min for minimum. int 
for integer part ). 

Is the program correct ? As a first test case. if we attempt to make change 
for, say, 67 kopecks with 20 coins of each denominat ion on hand. the pro
gram makes correct change : 

I 's 2's 3's 5's 10's 1 5's 20's 50's 

x q( I ) q(2 ) q(3 ) q(4) q(5 ) q(6 ) q( 7 ) q(8 ) result 

67 20 20 20 20 20 20 20 20 
1 7  20 20 20 20 20 20 20 19 (one 50 used ) 

2 20 20 20 20 20 1 9  20 1 9  (one I S  used ) 
0 20 19 20 20 20 19 20 19 t ru e  ( one 2 used ) 

But what if fewer coins are on hand, as in the fo llowing test case where. for 
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proc changernaker(alt x, q, result) 
scalar x :  integer 
scalar result : logical 
array q(8), n(8 ) :  integer 
n(8) := rnin(i nt(x/50), q(8 )) 
x := X - (50*n(8)) 
n(7) := rnin(int(x/20), q(7)) 

x := X - (20*n(7)) 

n(2) := rnin(int(x/2 ), q(2 )) 

x := X - (2*n(2)) 
n( I ) := rnin(x, q( I )) 
x := x - n( I )  
if 

x = O  
then 

q := q  - n 
result := true 

else 

fi 
corp 

result := false 

Fig u re 7.1 8 First heuristic change program. 

x = 60, the program produces 

l 's 2's 3's 5's lO's I 5's 20's 50's 

x q( I )  q(2) q(3 ) q(4) q(5) q(6) q(7) q(8) result 

60 I 0 I I 0 8 4 3 
10 I 0 I I 0 8 4 2 
5 I 0 I 0 0 8 4 2 
2 I 0 0 0 0 8 4 2 
I 0 0 0 0 0 8 4 2 false 

when in fact change can be made as 

l 's 2's 3's 5's lO's I 5's 20's 50's 

x q( I )  q(2) q(3 ) q(4) q(5) q(6) q(7) q(8) result 

(one 50 used) 
(one 5 used) 
(one 3 used) 
(one I used) 

60 
o 

o 
o 

o 
o 

8 
8 

4 
I 

3 
3 true (three 20's used) 
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We elect at this point to fix the problems for 50's and 20's, so as to k now how 

to handle other similar cases that may arise. First, a fix-up for the 50's 
problem is to make change with one less 50, if possible, when change cannot 
be made initially, as shown in Fig. 7. 19. 

But now we realize that the 50's fix-up is itself complicated, and in fact 
makes fixing the 20's problem more difficult. Furthermore, similar problems 
may exist with other denominations not yet tested. The attempt to fix the 
original program for these fai lures has weakened our confidence in the initial 
design. In fact, we are well on the way to a heuristic design that is correct 
only up to the last failure discovered. 

7.5.4 A R igorous Solution a nd Its Expans i o n  

Our heuristic approach o f  thinking u p  cases to program has clearly led t o  

difficulties. Heuristic thinking can work i n  simple situations, but the change 
problem is turning out to be more complex than anticipated. A rigorous 
treatment is required, one that will solve the problem once and for all, for 
every possible case, and that can be proven to be correct. 

A little reflection reveals that each time a coin is added to the change, a 
new problem of exactly the same type results, with a new amount of change 
to be made and a new quantity of coins left on hand. Furthermore, the new 
problem is smaller than the old, that is, closer to the final outcome. This 
stepwise reduction to smaller and smaller problems suggests that a recursive 
function can be defined to capture all possibilities for making change from 
any initial problem. 
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proc changemaker(alt x, q, result ) 
scalar x, xsave, correct50 : integer 

scalar result, looking: logical 

array q(8), n(8) : integer 

xsave := x 
correct 50 := 0 
looking := true 

while 

do 

looking 

n(8 ) := min(int(x/50), q(8 )) - correct 50 
x := X - (50*n(8 )) 
n(7)  := min(int(x/20), q(7)) 
x := X - (20* n(7)) 

n(2)  := min(int(x/2 ), q(2)) 

x := X - ( 2 * n(2 )) 
n( l ) := min(x, q( l )) 
x := X - n( l ) 
if 

x = O  
then 

q := q - n 
result := true 

looking := false 

else 

if 

n(8) :2 1 /\  correct50 = 0 
then 

correct 50 := 1 
x := xsave 

else 

fi 

result := false 

looking := false 

fi 
od 

corp 

Figure 7.1 9 Second heu ristic change program. 
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It is not always easy to invent a recursive function. The idea is to define 
a funct ion that, when applied to a set of arguments ( in this case. s and q). will 
yield a new set of arguments to which the fu nct ion can subsequently be 
applied, and so on, until  t he final outcome is known . One strategy for 
inventing recursive functions is to recognize that with each red uction. if a 
des ired outcome was possible for the old problem, the des ired ou tcome 
shou ld still  be possible for the new problem. The des ired ou tcome for the 
change problem is "change poss ible," or cp for short . If cp is trlle (orfa lse ) 
for the original problem, it should be likewise trlle (orfa lse ) for each reduced 

problem, until  the ultimate truth or falsity of cp is known. 
A recursive defin ition for the function named change poss ible (cp ) can 

be written as follows, with line numbers in a column on the left : 

Cp(X, q( 1 ), . . . , q(8)) = 
2 (x = 0 

3 v (x ;:::: 50 1\ q(8) ;:::: I l\ cp(x - 50, q( l ), . . . .  q(8) - I )) 

4 v (x ;:::: 20 1\ q(7) ;:::: 1 1\  cp(x - 20. q( l )  . . . . .  q(7) - L q(8))) 

lO v (x 2 I 1\ q( l )  ;:::: I 1\ cp(x - l ,  q( I )  - l ,  . . . . q(8 )))) 

The expression on line 1 names the function and its arguments. Line 2 
defines cp true if x = 0, t hat is, no change has to be made. I f  s i= 0, one of the 
expressions on lines 3 th rough 10 may be true, lead ing to a recursive refer
ence to cp with a reduced problem as argument. Otherwise, cp must befalse . 
Change making is a numerical problem, but su rpris ingly, th is recursive func
t ion was discovered by posing a logical problem, "Is change possible '?". 
whose evaluation will produce t he desired numerical result as a byproduct . 

The recursive definit ion for cp defines a "change tree" for every list, (s, 
q( l ), . . .  , q(8 )), such that (x, q( l ), . . .  , q(8 )) is the root of the tree, and if the l ist 
(y, r( 1 ), . . .  , r(8) )  is a node in the tree, then every reduced problem of this list 
is also a node in the tree. For example, if y 2: 50 1\ 1'(8 ) 2: 1, then the reduced 
problem (y - 50, r( 1 ), . . . , r(8 ) - 1 )  is also a node, and so on. Then, it can be 
seen that cp(x, q( 1 ), . . . , q(8) )  = true if and only if the change tree defined by 
(x, q( l ), . . .  , q(8 )) contains a node (y, r( I ), . . .  , 1'(8 )) such that .r = O. I n  
illustration, t h e  change tree for t h e  last test case above 

l 's 2's 3's 5's lO's I S's 20's 50's 

x q( l )  q(2 ) q(3 ) q(4) q(5 ) q(6) q(7 ) q(8) 

30 o o 3 o o 4 5 2 

is given in Fig. 7.20 in outline (indented ) form. Decremented denominat ions 
are in bold type in each reduced problem, and line numbers are shown in a 
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1 (30, 0, 0, 3, 0, 0, 4, 5, 2) 
2 ( 10, 0, 0, 3, 0, 0, 4, 4, 2) 
3 (7, 0, 0, 2, 0, 0, 4, 4, 2) 
4 (4, 0, 0, 1, 0, 0, 4, 4, 2) 
5 ( 1 , 0, 0, 0, 0, 0, 4, 4, 2) 
6 ( 1 5, 0, 0, 3, 0, 0, 3, 5, 2) 
7 (0, 0, 0, 3, 0, 0, 2, 5, 2) 
8 ( 12, 0, 0, 2, 0, 0, 3, 5 , 2)  
9 (9, 0, 0, 1, 0, 0, 3, 5, 2) 

10 (6, 0, 0, 0, 0, 0, 3, 5, 2) 
1 1  (27, 0, 0, 2, 0, 0, 4, 5, 2) 
12 (7, 0, 0, 2, 0, 0, 4, 4, 2) 
1 3 (4, 0, 0, I, 0, 0, 4, 4, 2) 
14 ( 1 , 0, 0, 0, 0, 0, 4, 4, 2) 
1 5 ( 12, 0, 0, 2, 0, 0, 3, 5, 2) 
16 (9, 0, 0, I, 0, 0, 3, 5, 2) 
1 7 (6, 0, 0, 0, 0, 0, 3, 5, 2) 
1 8  (24, 0, 0, 1 , 0, 0, 4, 5 ,  2) 
19 (4, 0, 0, 1, 0, 0, 4,  4, 2 )  
20 ( 1 ,  0, 0, 0, 0, 0, 4, 4, 2)  
2 1 (9, 0, 0, 1, 0, 0, 3, 5, 2) 
22 (6, 0, 0, 0, 0, 0, 3, 5, 2) 
2 3  (2 1, 0, 0, 0, 0, 0, 4, 5 ,  2 )  
2 4  ( 1, 0, 0, 0, 0 ,  0 ,  4, 4, 2)  
25 (6, 0, 0, 0, 0, 0, 3, 5, 2)  

Figure 7.20 Change tree for (30, 0, 0, 3, 0, 0, 4, 5, 2) in outline form. 

column on the left. Nodes on lines 2, 6, and 1 1  are adjacent to the root node 
on line 1 ;  nodes on lines 12, 15, and 18 are adjacent to the node on line 1 1 , 
etc. One node (line 7) has y = 0, so that cp(30, 0, 0, 3, 0, 0, 4, 5, 2) = true, as 
found above. But the subtree on lines 1 1  through 25, with root at line 1 1, has 
no node with y = 0, so that cp(27, 0, 0, 2, 0, 0, 4, 2) = false. Note that the tree 
contains duplicated nodes ; for example, the nodes on lines 10, 17, 22, and 25 
are all identical. 

In the heuristic design of Fig. 7. 19, a strategy for an imagined subset of 
reduced problems was defined, with un imagined cases added as failures were 
discovered. No such fix-up is required here ; in fact, the correctness of the cp 
function is self-evident. Every possible combinatior. of coins is embodied in 
the function and enumerated in the tree. If change can be made for some 
initial amount, it can be made by one (or more) of these combinations. Thus, 
the change problem is equivalent to searching a tree for a desired outcome. 
There is no guarantee against errors in writing the required tree-search 
program, but its function is now known precisely, and thus its correctness 
can be determined. 
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There is no straightforward way to program recursive functions. In fact, 
some recursive functions cannot be programmed at all, and no general 
mathematical theory exists for deciding in advance whether a particular 
recursive function can or cannot be programmed. But in this case the change 
function definition always reduces the total number of coins considered in 
the recursions ; this finite, monotonic property puts change in a class of 
recursive functions that can indeed be programmed. 

Our interest now is to write a program that searches the change tree 
defined by (x, q( 1), . . .  , q(8)) for a node (y, r( 1 ), . . . , r(8 )), with y = 0. If such a 
node is found, the change required is given by the path to that node. If no 
such node exists, then change cannot be made. Since the outcome of a path is 
known only by proceeding to its end (change possible or not), it makes sense 
to carry out a depth-first search. The tree is deepest toward the smaller 
denominations ; thus, for efficiency, the search should begin with the largest 
denomination and work depth-first toward the smallest. Furthermore, even 
though the tree contains duplicate nodes, it is sufficient to visit only the first 
occurrence of such a node, since the value of cp is the same for subsequent 
occurrences. 

Nodes can be generated as needed, rather than computed and stored in 
advance. The tree is traversed by following paths and backing up, if neces
sary, to branch to other paths. That is, when nodes on a path are exhausted 
without making change, the program must retrace to a node where the 
subpath of the next smaller denomination can be explored. This "depth-first, 
largest-to-smallest denomination" strategy is similar to the heuristic design 
above, but it is systematically applied to the entire tree. Thus, in retrospect, 
the original heuristic solution is now seen to traverse only one possible path 
in the change tree. 

In order to simplify record keeping during the search of the change tree, 
we adjoin an additional "denomination value," i, to the list (x, q( I ), . . .  , q(8)). 
Thus, a typical node of the augmented change tree is of the form (x, q( I ), . . .  , 
q(8), i). The meaning of i is that denomination i is the next candidate to be 
used in forming a reduced problem. For example, if i = 8, the candidate 
problem is 

(x - 50, q( I ), . . .  , q(8 ) - 1, 8) 

(Of course, unless x � 50, q(8 ) � 1, this list does not represent a reduced 
problem.) At each point of the search, the next smaller denomination is 
found by decrementing i. Next, in order to further simplify the search, we 
permit i to be decremented to 0, meaning all denominations for the corre
sponding x, q have been tried for creating candidate reduced problems. 

The state of the search of the change tree will be recorded in a stack 
named nodestack, which maintains the path from the root of the change tree 
down to the next node to be examined for reduced problems. Going down 
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the tree adds members to the stack ; going across the tree preserves the size of 

the stack ; backing up the tree deletes members from the stack. The search 

begins with a stack of a single member, the root of the change tree; a 
complete search of all nodes in the change tree results in an empty stack ; the 
discovery that change possible is true results in a stack from which change 

can be computed. 
Finally, in order to design a provable program to carry out the search, 

we define a "virtual" sequence of search states, called "tour," that is ordered 

by the depth-first, largest-to-smallest denomination principle. A search state 
will be a stack (nodes tack), and the sequence tour is defined as follows : 

1 . The first member of the sequence tour is a stack with a single element, 

the triple (x, q, m) where x, q defines the root of the change tree, and m is 
the index of the maximum denomination (in this case, 8). 

2. The last member of the sequence tour is the empty stack, and the empty 
stack has no successor (so the first empty stack in the sequence is the last 
member). 

3. For any nonempty stack of the sequence tour, the next member is the 

stack determined by the following three-part rule. If the topmost ele
ment of nodestack is denoted by (x, q, i), the next member is determined 
in the following order of priority : 

a) depth-first : next level, same denomination if possible. 

If (y, r) is a reduced problem defined by (x, q, i) (that is, 
x � q(i) 1\ q(i) � 1 � y = x - q(i), r = (q( 1), . . . , q(i) - 1, . . .  , q(8))), 
form the next member of tour by adding (y, r, i) to the stack. 

b) largest-to-smallest : current level, next smaller denomination, if 
possible. 

If (x, q, i) do_es not define a reduced problem (as in case (a) above ) 
but i > 0, form the next member of tour by replacing (x, q, i) by (x, q, 
i - 1 ) on the, top of the stack. 

c) back up : previous level, next smaller denomination, if possible. 

If i = 0, form the next member of tour by removing the top member 
from the stack and replacing the new top member (x, q, i) (if any ) 
with (x, q, i - 1 ). 

It is clear, by construction, that the stacks of the sequence tour have only 

elements of the form (y, r, i), where (y, r) defines a node in the change tree 
defined by the initial (x, q). Furthermore, the stacks of the sequence are 
necessarily distinct, because rules 3b and 3c decrement the denomination 
index monotonically. Finally, every unique node (y, r) in the change tree 
defined by the initial (x, q) will be represented in an element (y, r, i) of some 
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stack in the sequence tour. This is so because reduced problems (y, r) will be 
found in depth-first, largest-to-smallest denomination order by rule 3, begin
ning with the root of the change tree given by rule 1 . 

The program of Figure 7.2 1 searches the sequence tour of stacks for a 
reduced problem (y, r) such that y = O. The search takes the form of an 
initialized whiledo program, and its proof of correctness will involve the 
standard forms for the sequence and the whiledo. In particular, the search is 
carried out by a program part of the form 

h ;  F 

where 

F = while p do g od 
and where the following definitions apply : 

1 .  [h] : initialize nodestack to the first member of the search sequence tour, 
namely, a stack with a single element (x, q, m ). 

2. [F] : trans form nodestack either into the first member of the search se
quence tour from here on with topmost element (y, r, i) such that y = 0 or 
into the empty stack if no such topmost element exists. 

3 .  [g] : transform the current member of the search sequence tour into the 
next member, according to rules 3a, b, c, above. 

4. p: provide termination of the whiledo when a member of the range of [F] 
is found . 

Note that the whiledo program function [F] deals solely with transforma
tions on nodes tack. The argument of [F] is an initial nodestack, the first 
member of the sequence tour, and the value of [F] is the final nodestack, the 
last member of the sequence tour. To emphasize this functional property, 
local variables cng, coins, k are used for nodestack elements in the whiledo, in 
place of x, q, i. 

The program can be verified informally as follows : 

1 .  next node segment : By inspection, the nested alternations carry out [g] . 
2. changemaker segment : The whiledo proof (Fig. 7.22 ) is the only one not 

obvious. 

The changemaker program of Fig. 7.2 1, while transparent to the fore
going search strategy, is somewhat awkward in its explicit and complete 
construction of the member stacks of the sequence tour. For example, the 
procedure nextnode stacks and unstacks an element (x, q, i) predictably at 
the end of each invocation and the beginning of the next. The reorganized 
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proc changemaker(alt x, q, result) [if change can be made for x, set to 0, reduce 

q by coins used, and set result to true; else set result to fake] 
2 use changedata 
3 do [h : initialize nodes tack to the first member of the search sequence tour, 

namely, a stack with a single element (x, q, m)] 
4 nodes tack := empty 
5 top(nodestaek) := x, q, m 
6 od 
7 eng := x 
8 [F : transform nodestaek either into the first member of the search sequence 

tour from here on with topmost element (y, r, i) such that y = 0 or into the 
empty stack if no such topmost element exists] 

9 while 
10 nodestaek =1= empty /\ eng > 0 
1 1  do [g : transform the current member of the search sequence tour into the 

next member, according to rules 3a, b, c] 
12 run nextnode (alt nodestaek, eng, coins, k, fix val) 
13 od 
14 if 
15 nodestaek =1= empty 
16 then 
1 7  x, q, i := top(nodestaek) 
18 result := true 
19 else 
20 result := false 
2 1  fi 
22 corp 

data changedata 
stack 

nodestaek [element is (x, q, i)] 
array 

eoins(8): integer [local value of q in whiledo] 
q(8): integer [elements are numbers of coins on hand, i.e., l 1's l , . . . , 

1 50's I J  
val(8): integer init ( 1 , 2, 3, 5, 10, 15, 20, 50) [elements are monetary values 

of corresponding q elements] 
scalar 

atad 

eng: integer [local value of x in whiledo] 
i :  integer [problem index] 
k :  integer [local problem index in whiledo] 
m: integer init (8) [number of denominations] 
result: logical [value of change possible function, true or fake] 
x: integer [change to be made] 

Figure 7.21 Changemaker program. 



7.5 A Case Study i n  H eu ri stics a n d Rigor : Maki ng Change 363 

proc nextnode(alt nodestack, cng, coins, k, fix, val) [g : transform the current 
member of the search sequence tour into the next member, according to 
rules 3a, b, c] 

2 cng, coins, k := top(nodestack) [stack read, factored out of implementation 

3 if 
4 k >  0 
5 then 
6 if 

of 3a, b, c below] 

7 cng � val(k) 1\ coins(k) � 1 
8 then [3a. depth-first : next level, same denomination] 
9 top(nodestack) := cng, coins, k 

10 cng, coins(k) := cng - val(k), coins(k) - 1 
1 1  top(nodestack) : =  cng, coins, k 
12 else [3b. largest-to-smallest :  current level, next smaller denomination] 
13  k := k - 1 
14 top(nodestack) := cng, coins, k 
1 5  fi 
16 else 
17  if  
18 nodestack =1= empty 
19 then [3c. back up:  previous level, next smaller denomination] 
20 cng, coins, k := top(nodestack) 
2 1  k := k - 1 
22 top(nodestack) := cng, coins, k 
23 fi 
24 fi 
25 corp 

Figure 7.21 (continued) 

changemaker program (named changemakerl ) of Fig. 7.23 eliminates such 
unnecessary stacking and unstacking of nodes, but must provide a whiledo 
loop exit criteria in the logical variable named looking. The program consists 
of a single segment, and local variables cng, coins, k used in the whiledo of 
the changemaker program have been replaced by variables x, q, i. Initial x, q 
are saved in xs, qs, and restored prior to exit, if necessary. Note that with 
unnecessary stacking and unstacking eliminated, the search state of the 
sequence tour now involves x, q, i, as well as nodestack. 
Figures 7.24 and 7.25 show PLjI implementations of the changemaker 

and reorganized changemaker (changemakerl ) subprograms, along with some test results for changemaker.t (The programs that invoke change
maker and changemaker 1 and print test results are not shown.) The change-

t Programs coded and tested by Larry I. Schwartz. 
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function 
F: transform nodestaek either into the first member of the search sequence tour 

from here on with topmost element (y, r, i) such that y = 0 or into the empty 
stack if no such topmost element exists. 

program 
whiledo, lines 9- 13. 

proof 
term 

The whiletest eventually fails, either because a node is encountered such that 
eng = 0, or the sequence tour is exhausted. The length of tour is finite, since ( 1 )  
stacks of  tour are distinct, by  definition, and (2) each stack i s  o f  finite depth, 
because the corresponding path in the change tree is of finite depth. 
pass 

whiletest true (nodestaek f empty 1\ eng > 0) 
g 0 F = F because F, when applied to the sequence tour as modified by g, 
produces the same effect as F applied to the original sequence tour. 
pass 

whiletest false (nodestaek = empty v eng = 0) 
The identity is required, since the transformation defined by F is complete. 
pass 

result 
pass 

Figure 7.22 

maker, nextnode, and changemakerl program designs and implementations 
are cross-referenced for better readability and correctness checking. Line 
numbers from the PDL text appear in the PLjI programs in a column on 
the left, next to the corresponding PLjI statements . Alternately, cross
referencing can be accomplished by duplicating logical commentary and 
abstract operations from the PDL in the PLjI programs. 

7.5.5 R edefi n i ng the Problem 

Finally, reflecting on the original problem statement, we note that the vend
ing machine manufacturer may be better off with the original heuristic algo
rithm. It doesn't always make change when possible, but the manufacturer 
may find it a better solution because it might require a simpler micro
processor. And besides, a vending machine customer never really knows 
whether change is possible or not ! In this case, the program and its program 
function should be examined more closely to make sure of their properties 
and adequacy for the task. 



proc changemaker l (alt x, q, result )  [if change can be made for x, set x to 0, 
reduce q by coins used, and set result to true ; else set result to fake] 

2 use changedata 
3 xs, qs := x, q 
4 nodestack := empty 
5 i, looking := m, true 
6 [F:  transform nodestack either into the first member of th(! search sequence 

tour from here on with topmost element (y, r, i) such that y = 0 or into the 
empty stack (and set looking to fake) if no such topmost element exists] 

7 while 
8 x > 0 /\ looking 
9 do [g : transform the current member of the search sequence tour into the 

next member according to rules 3a, b, c, and set looking to false if the 
member is empty] 

10 if 
1 1  i > 0 
12 then 
13 if 
14 
15 
16 
17 
18 

19 
20 
21  
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1  
32 
33 
34 
35 
36 
37 
38 

x � val(i) /\ q(i) � 1 
then [3a. depth-first : next level, same denomination ] 

top(nodestack) := x, q, i 
x, q(i) := X - val(i), q(i) - 1 

eke [3b. largest-to-smallest : current level, next smaller 
denomination] 

fi 
else 

if 

i := i - 1 

nodes tack =f empty 
then [3c. back up: previous level, next smaller denomination] 

x, q, i := top(nodestack) 
i = i - I 

else[ signal tour is exhausted] 
looking := false 

fi 
fi 

od 
if 

x = o  
then 

result := true 
else 

x, q, := xs, qs 
result := fake 

39 fi 
40 corp 

added data items for changedata: 

scalar xs : integer [saved initial value of x] 
scalar look ing : logical [signals tour is exhausted] 
array qs(8 ) :  integer [saved init ial values of q] 

Figure 7.23 Reorganized changemaker program. 
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[Changemaker segment] 

CHANG E M A K ER : PH OC I X . Y . R � SU L T ) ;  
/ *  I F  C � NGE C A N  s t:  MADl: FOR X o S E T  X T O  (J .  R E OUCE 0 3Y 

RI:UU lR E O  C O I IIIS .  Ar-.u Slo 1 R I: �ULT T R UE ; OT Ht .. W I SE L t A V [  X AND U U N Oi ANGED AND SE T RE SULT FAL S E . */ 

XI NCL l.Of_ � D A T A  DI:C L AR AT I ONS * /  CM D A T A; 

� S T A CK I N DEX = 0 ;  
5 �T ACK -I N O �X : S T A CK I ND E X  + I ;  

S T ACK�X I S TA C� I ND t xT = X ;  
S T ACK . O I S TACK- I N D I: X . * )  : 0 ;  
STACK . l C S TACK- I NO l X ) : M ;  

7 CNI> = X ;  -
9 DO WH IL E IS T ACK I NOEX > 0 L CNG > 0) ; 

1 2  CALL N E XT_NODE ; 
CALL PR IN T_ST AC K I S T AC K . S T A CK_ INDE X . C NG . CC I IIIS . K ) ;  

t,j l N O ;  
1 4  I F  1 5  S T A CK I N) E X  > II 1 6  T H f r-.  -

vU e 1 1  X = S TA CK . X I S T ACK I N DE X ) ;  o : S TACK . O I � TAC � - I N DE X . * ) ; 
I : STACK . I I ST ACK-I NOl X ) ;  
s T A C K  I ND E X  = � T ACK I N D l X  - I ;  I b  R E-SUL T : ° 1 ° 0 ;  / *  ,RuL * /  

l N I.:' ;  
1 9  f:: LSL 2 U  kl SULT = ° U ' d ;  / *  F AL S f  */ 

R E 1 UR N ;  

[Cmdata segment] 

0E CL A f<l 1 S TA C K ( 5 0 ) 
.2 X 
.2 0 1  c d  . 2  I 

. :.T A CK_ I N) E X  

/ *  S TA C K  VAk l AB LE S 

C � C L AkE /* �RR A Y  VAR I AoLE S */ 
CU I NS I b )  

/* L UC AL V ALUE S O� a I N  DU W H I L I: */ . tl i  b )  
/ *  E Ll: MUHS ARE It Of C l! I !'<S ON H A N D .  I . � • • 1 1 5 1 • • • • •  1 5 0S I */ 

. VAL I S )  I N 1 J I I . 2 . 3 . 5 . 1 0 . 1 5 . 20 . 50 )  
/* � Ll: M E N T S  A R E  MON� T A k Y V ALUE S O F  CURR f SP O ND I � G 0 E L E M o S*/ 

DELL A �  / *  S C A L A R  VA� I A b LES */ 
CNG 

. 1  
/* L OC A L  V A L UE uF X I N  UOW H I L E */ 

/* P HU 3 L E M  J NO E l(  */ 
.K F I Xf O  � I N  

/ *  L OC A L  PHU cJL E ,� I NDl X I N  DOWH I L E * /  . M  I N l l l e )  

/* N lJI4 B t R  OF DENO,., I NA T  I ('N.> */ 
. R E S UL T  b I T I I )  

. X  
/* V A- UE O F  CHANGE I-o SS l i::ILl: F- U N C T I O N .  ' f'<UE OR F ALS E * /  

/'* C HA N (' t.  T e  BE M A UE 

Figure 7.24 Changemaker in PL/I with test results. 
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7.5 A Case Study i n  H eu ristics a n d  Rigor : M aking Change 

[Nextnode segment] 

� 4 5 b 7 

'J 

I I,  
I I 

1 :':-
I ;'  1 4  

I t.. 1 7  
I t. 1 <,1  

2 "  

<:J 2 2  

Nf X l _ND D � : P � OC E D UH E ' 

L N� : S l A CX . X C S TA C K  I ND E � ) ; 
C O I N 5  : S TA CK . o e S 1 ACK I N GE X • •  ) ;  
K = � T A C K . l e 5T A C K  I N DEX ) ;  
5 1 AC K _ I N D � X  = S TACK_ I ND � X  - I ;  I f-

K > () 
l H L N  

I t- L "G >= V AL e K )  Co C O I N S C K )  >= I 
l H � N  D O ;  

S l A CX I ND L X  = � l A LK I NDf. X + I ;  
5 T A cx ; x e S 1 A C K  I N o� xT : CN u ;  
S l A CK . o e S 1 A CK- I NO f X  • •  ) = C O I N S ;  
S l A CK . l e S 1 A CK - I NO � X ) : K ;  
L N �  = C NG - VAL e K ) ;  
C D I NS e K )  : C D I N S e K )  - I :  
S T ACK I NOE X : 5 1 A CI<. l 'iIJ E X  + I ;  �l ACK;x e S T A CK I ND L XT = C N <> ;  
S T A cx . u e S TA CK-I NO L X  • •  ) = C O I N � ;  
S T A UC . I  C S T A C K- I ND L X )  = K. ;  

t ND ;  
-

t L S L 

t L � l  I F  

O U '  
K = K - I ;  
S l A CX  I ND E �  =" S T A L K  I t-;LJt.X + I ;  
� T A CK ; x e S T A CK I ND E X) = C N <> ;  
S T A cx . v e S T A CK - I ND t X  • •  ) = C O I N S . 
S l A CK . l C S T A C K- l flV t X ) = K .  

t "' O ;  -

::. lA C K  I N u i:. X  > l 
l H =- N  -

DO ; 
P lJ T  S K I P  � O I T C  ' o A C K I N� UI-" ) C A ) ; 
C N l.- = S T A C K . X C ::' l AC K  l NDl X l ;  
C u  IN S =- ST ACK . O C  S "f ACK I N  ()t;: X • •  ) ; 
K =- S T A CK . l e S 1 A C K _ I � D �X ) ;  
S T AC K  I ND t X =- ST A C K  l � ol X - I ;  
K =- K -- I ;  

-

5 T AC K  I N D t- X = � T A L K  I N of X + I ;  
:; T N: K ; X e S T AC K  I NLJ L XT =- C N(, ; 
S T AC K . o e S T AC K - I N o l X  • •  ) = CO I N S ;  
::' l I£ K . l e ST ACK- I N D I X )  =- K ;  

t N O ; -

Figure 7.24 (continued ) 
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[Changemaker test results] 

TL ST I :  CHANGE I€EO£D � 90. MAKE CHANGE £XACTL Y .  W I T HOUT B ACK I NG . 

CO I N  OUANT H i t S  CN HAND : 
5 OF VALUE I 5 OF VALUE 2 5 OF V ALUE 3 I OF VAL UE 5 � OF VALUE 10 � OF VALUE I � 0 OF V ALUE 20 5 O F  VALUE SO 

WORK I N G  X I 01 0 2  0 3  0 4 OS 06 07 0 8  STACK X I 01 02 0 3  04 05 
4 0 8 5 5 5 I 5 5 0 4 2 40 8 5 5 5 I 5 

I 9 0  8 5 5 5 I 5 

WORK I NC X I 01 02 03 (,,4 05 U6 Q7 0 8  STACK X I 0 1 0 2  0 3  04 0 5  0 6  0 7  Q8 
4 0 7 � 5 5 I 5 5 0 4 2 4 0  7 5 5 5 I 5 5 Ii 4 

I 90 8 5 5 5 I 5 5 0 5 
WUHK ING X 1 01 "2 03 "4 05 06 07 0 8  S TA C K  X I 0 1 02 0 3  04 05 0 6 0 7  Q8 

4 0 b 5 :. 5 I 5 5 0 4 2 4 0 6 5 � � I 5 5 0 4 
I 90 6 5 5 5 I � 5 0 5 

WORK I NC  X I 01 02 03 04 O� "6 07 0 8  S l A CK X I 0 1  0 2  0 3  04 05 " 6  07 08 
25 6 5 � 5 I 5 4 0 4 3 25 b 5 5 5 I 5 4 0 4 :c 4 0  6 5 5 5 I 5 5 0 4 

I 9 0  £> 5 5 5 I 5 5 0 5 
WORK ING X I 01 02 03 04 O S  06 07 0 8  S l A CK X I 0 1 02 0 3  04 05 06 0 7  08 1 0 6 5 � 5 I 5 3 0 4 4 1 0  6 5 5 5 I 5 3 0 4 3 2� 6 5 5 5 I 5 4 0 4 

2 40 b 5 5 5 I 5 5 0 4 
I 90 b 5 5 5 I 5 5 0 5 

WORK I NC  X 1 "I 02 03 04 05 "6 07 0 8  S TA C K  X I 0 1  02 0 3  04 05 0 6 0 7  Q8 1 0  5 5 5 5 I 5 3 0 4 4 1 0  5 5 5 5 I 5 3 0 4 
3 25 6 5 5 5 I 5 4 0 " 
2 40 6 5 5 5 I 5 5 0 " 
I 90 6 5 5 5 I 5 5 0 5 

WORK INC X I "I 02 03 04 05 06 07 08 STACK X I 0 1  0 2  0 3  04 as Ob 0 7  Q8 0 5 5 5 5 I " 3 (/ 4 5 0 5 5 5 5 1 4 3 0 " 
4 1 0  5 5 5 5 I 5 3 0 " 
3 25 b 5 5 t. I 5 " 0 " 
2 40 b 5 5 � 1 5 5 0 " 
I 9 0  8 5 5 .. I 5 5 0 5 

RESULT : TRUE 

CO I N  QUANT I T  l E S  D'i HAN D :  
� UF  V ALUE I � OF VALUI: 2 5 OF VALUE 3 I OF VAL U f  5 
4 OF VALUE 10 3 OF VALUE 1 5  0 OF V ALUE 20 " OF VALUE s o  

Figure 7.24 (continued) 



TEST Z :  CHANGE NE � OE D � 1 0 .  CAN O T  MAKE C HA NGE . E V E N  w i TH B ACK I NG .  

CO I N  QUAN T I  T I E �  []\I HAN D :  

I OF VALUE I 0 OF VALUE Z 
o OF VALUE 10 0 OF VALUE I �  

WOR K ING X I (,)1 az a3 a 4  a5 a6 a7 Ob 
1 0  7 I 0 Z O O  0 0 0 

WORK ING X I al OZ 03 a4 a:; a6 a7 a 8  
1 0  b I 0 z o o  0 0 0 

WORK I NG X I al OZ a3 04 05 06 a7 ab 
1 0  5 I 0 Z o o 0 0 0 

WORK I N G  X I 01 02 03 a4 a5 06 a7 a �  
1 0  4 I 0 2 0 0 0 0 0 

WORK ING X 
1 0  

WORK I NG X 
7 

WORK ltoG X 
4 

WORK I NG X 
4 

WORK ING X 
4 

IIIORK I NG X 
3 

WORK ING X 
3 

BACK I NG UP 

WORK ING X 
4 

BACK I NG UP 

WORK IllIG X 
7 

WORK ING X 
7 

WORK I NG X 
6 

WORK ING X 
6 

BACK I N G  UP 

WORK I NG  X 
7 

BAC K I NG UP 

WORK INC, X 
1 0  

WORK I NG  X 
1 0  

WORK I NG  X 
9 

WORK ING X 
9 

!:sACK INC, U P  

WO R K  I NC, X 
1 0  

WURK ING X 
1 0 

I al az (,)3 a4 a5 a6 a7 a 8  
3 1 0 2 0 0 0  0 0 

I 01 az 03 04 05 a6 a7 a 8  
3 1 0 1 0 0 0 0 0 

I al az 03 a4 05 a6 a7 08 
3 1 0 0 0 0 0 0 0  

I al OZ 03 0 4  05 06 07 08 
Z 1 0 0 0 0 0 0 0 

01 OZ 03 04 05 a6 07 o s  
1 0 0 0 0 0 � 0 

al az 03 04 0 5  06 07 0 8  
0 0 0  0 0 0  0 0 

I 01 OZ 03 04 0 5  06 07 08 
o 0 0 0 0 0 0 0 0 

I 0 1  az 03 04 05 06 07 0 8  
o I 0 0 0 0 0  0 0 

I al OZ 03 04 05 06 a7 08 

Z 1 0 1 0 0 0  0 0 

01 OZ 03 04 05 06 07 0 8  
1 0 1 0 0 0 0 0  

QI OZ a3 04 0 5  u6 07 08 
0 0 1 0 0  0 0 0 

I QI OZ 03 0 4  05 06 07 0 8  
0 0 0 I 0 0 0  0 u 

I 01 az 03 04 0 5  06 07 08 
o 1 0 1 0 0 0  0 0 

I 01 02 03 04 05 06 07 0 8  
Z I 0 Z O O  0 0 0 

01 az 03 04 05 06 07 08 
I 0 Z O O  0 0 0 

01 OZ 03 0 4  05 06 07 08 
0 0 2 0 0 0  0 0 

I 01 OZ 03 04 05 06 07 0 8  
o 0 0 Z O O  0 0 0 

I 01 OZ 03 04 05 06 07 08 
o I 0 Z O O 0 0 0 

I 01 az 03 a4 05 06 a7 0 8  
o I 0 Z O O 0 0 0 

RESUL T = FAL SE 
CO I N  OUANT I T I E S  ON HAN D : 

I OF VALUE I 0 OF VALUE Z 
o OF VALUE 10 0 OF VALUE 1 5  

Z O F  V ALUE 3 
o OF VALUE ZO 

S TA CK 
I 

S TA C K  
I 

ST ACK 
I 

S T ACK 
I 

S TA CK 
I 

S T A C K  Z 
I 

S TA C K  
3 
2 
I 

S T ACK 
3 
Z 
I 

S T ACK 

3 
Z 
I 

S T A CK 
4 
3 
, 
I 

S TA CK 
4 
3 
2 
I 

S TACK 

3 
Z 
I 

S TACK 

Z 
I 

S T A C K  

2 
I 

S T A CK 

3 
2 
I 

S T ACK 
3 
2 
I 

.STACK 
Z 
I 

S TA CK 

I 
S TACK 

I 

STACK 
Z 
I 

S TA CK 
Z 
I 

STACK 

I 

S T ACK 

X 
1 0  

X 
1 0  

X 
1 0  

X 

1 0  

X 
1 0  

X 
7 

1 0  

X " 
7 

1 0  

X 
4 
7 

1 0  

X 
4 
7 

1 0  

X 
3 
4 
7 

1 0  

X 
3 
" 
7 

1 0  

X 
4 
7 

1 0  

X 
7 

1 0  

X 
7 

1 0  

X 
6 
7 

1 0  

X 
6 
7 

1 0  

X 
7 

1 0  

X 

1 0  

X 
1 0  

X 
9 

1 0  

X 
9 

1 0  

X 
1 0  

X 

Z OF VALUE 3 
o OF V ALUE Z O  

o OF VAL UE 5 
o OF VAL UE 50 

I 01 az 0 3  0 4  05 06 0 7  08 
7 1 0 Z 0 0 0 0 0  

I 01 OZ 0 3  0 4  05 06 0 7  08 
6 I 0 2 0  0 0 0 0 

I 01 a z  0 3  04 05 ot. 07 os 
5 1 0 Z O O O O O  

01 0 2  0 3  04 0 5  06 0 7  08 
1 0 2 0 0 0 0 0  

I 01 0 2  0 3  04 05 06 0 7  a� 
3 1 0 2 0 0 0 0 0 

I 01 O Z  0 3  04 05 06 07 a8 
3 1 0 1 0 0 0 0 0  
3 I 0 2 0 0  0 0 0 

I 01 a2 0 3  04 05 0 6  0 7  (,)8 
3 I 0 0 0 0 0 0  0 
3 1 0 1 0 0 0 (, 0 
3 I 0 Z O O  0 0 0 

I 01 0 2  0 3  0 4  05 06 0 7  os 
2 1 0 0 0 0 0 0 0 
3 1 0 1 0 (, 0 0 0  
3 1 0 2 0 0 0 0 0  

I 01 02 0 3  04 0 5  06 07 06 
1 1 0 0 0 0 0 0 0  
3 1 0 1 0 0 0 0 0  
3 I 0 2 0  0 0 0 0 

I 01 OZ 0 3  04 0 5  06 0 7  08 
1 0 0 C O O O O O 
1 1 0 0 0 0 0 0 0  
3 I 0 I 0 0 0 0 0 

3 1 0 2 0 0 0 0 0  

I 01 02 0 3  0 4  05 0 6  0 7  as 
0 0 0 0 0 0 0 0 0  
1 1 0 0 0 0 0 0 0  
3 1 0 1 0 0 0 0 0  
3 1 0 2 0 0 0 0 0 

I 01 02 0 3  04 0 5  ab 0 7  os 
0 1 0 0 0 0 0 0 0  
3 I 0 I 0 0 0 0 0 
3 1 0 Z O O O O O  

I 01 OZ 0 3  0 4  05 ab 0 7  os 
2 1 0 1 0 0 0 0 0  
3 1 0 2 0 0 0 0 0  

I 0 1  0 2  0 3  04 05 0 6  0 7  08 
1 1 0 1 0 0 0 0 0  
3 1 0 2 <1 0 0 0 0 

I 01 0 2  0 3  0 4  0 5  0 6  0 7  os 
1 0 0 1 0 0 0 0 0  
1 1 0 1 0 0 0 0 0 
3 I 0 2 0  0 0 0 0 

I 01 0 2  0 3  04 05 0 6  0 7  08 
0 0 0 1 0 0 0 0 0  
I 1 0 1 0 0 0 0 0  
3 1 0 2 0 0 0 0 0  

I 01 02 0 3  04 05 06 0 7  08 
0 1 0 1 0 0 0 0 0  
3 I 0 2 0  0 0 0 0  

I 0 1  0 2  0 3  04 0 5  0 6  0 7  os 
2 I 0 2 0  0 0 0 0 

01 0 2  0 3  0 4  a5 06 0 7  08 
I 0 2 0  0 0 0 0  

0 1  0 2  0 3  0 4  0 5  0 6  0 7  Q8 
0 0 2 0 0 0 0 0 
1 0 2 0 0 0 0 0  

I 01 02 0 3  04 05 06 0 7  08 
0 0 0 2 0 0 0 0 0  
1 1 0 2 0 0 0 0 0  

I 01 OZ 0 3  0 4  0 5  06 0 7  os 
0 1 0 2 0 0 0 0 0 

01 0 2  0 3  04 05 06 0 7  os 

o OF VAL UE 5 
o OF VALUE 5 0  
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TEST 3 :  �HANGE NEEDED ; 3 8 .  MAKE CHANGE B Y  BAC K I N G .  

CO I N  OUAN T I T IES ON HAN D :  
o OF V A Lue I 4 OF VALue � 
o OF V ALUE 1 0  , OF VALUE I �  

WORK ING )( 
36 

WURK I NG  )( 
3 8  

WORK I N(> )( 
2 3  

WO R K  I NG  )( 
8 

WORK ING )( 
(; 

WORK I NG  )( 
b 

I 01 U2 O� 0 4 as Ub 07 Ub 
7 0 4 0 1 0 2 0 0 

I 01 (J2 03 (;/4 Q� 06 07 U 8  
6 0 4 U I 0 2 0 0 

I 01 02 03 04 as 06 07 0 8  
6 0 4 0 1 0 1  U 0 

I 01 02 03 04 05 U6 07 U 8  
6 0 4 0 1  0 0 0 0  

I , QI 02 03 04 as Ub 07 0 8 
5 0 4 � I 0 0 0 0 

I UI (;/2 03 04 05 06 07 0 8  
4 0 4 U I 0 0 0 0 

WORK I NG )( I �I 02 03 04 US Ob 07 0 8  
3 4 0 4 0 0 0 0 0 0  

WORK INC, )( I 01 02 03 04 O� Ob 07 0 8 
3 3 0 4 � 0 0 0 0 0 

WORK I N<.  )( I 01 02 03 04 as 06 07 0 8 
:3 2 0 4 0 0 0 1> 0 0  

WONK I NG )( I 01 U2 03 04 O� U6 07 U S  
I 2 0 3 0  0 0 0  I> 0 

WORK I NG  )( 
I 

WOR K I NG )( 
1 

BACK INC, UP 

weRK ING )( 
3 

01 02 03 04 05 U6 07 0 8  
o 3 0 0 0 0 0 0 

I 01 02 U3 04 05 06 07 be 
o 0 3 0 0 0 0 0 0 

01 02 03 04 05 06 U7 0 8 
o 4 0 0 0 0 0 0 

o OF V ALUE 3 
o OF V ALUE 2 0  

S TA C K  
1 

S TA C K  
I 

S l ACK 
2 
1 

S TA C K  
3 
2 
1 

STA C K  
3 
2 
1 

S l ACK 
;) 
2 
1 

STACK 
4 
3 
2 
1 

S T A'CK 
4 
3 
2 
I 

S TA C K  
4 
3 
2 
1 

S l A C K  
5 
4 
3 
2 
I 

S TA C K  
5 
4 
3 
2 
1 

S l A C K 
5 
4 
3 
2 
I 

S TACK 
4 
3 
2 
I 

)( 
38 

)( 
38 

)( 
23 
38 

)( 
8 

2 3  
3 8  

)( 
8 

23 
36 

)( 
8 

23 
38 

)( 
3 
8 

23 
38 

)( 
3 
8 

23 
38 

)( 
3 
8 

23 
38 

)( 
1 
3 
8 

23 
38 

)( 
1 
3 
8 

2 3  
38 

)( 
I 
3 
8 

23 
38 

)( 
3 
8 

23 
38 

Figure 7.24 (continued) 

I OF V ALUE 5 
o OF VALUE 5 0  

1 01 02 0 3  04 05 Ob 0 7  oe 
7 0 4 0 1 0 2 0 0 

.") 

I 01 02 0 3  04 as 06 0 7 cae �. 
6 0 4 0 I 0 2 0 0' 

I 0 1 02 03 04 05 06 0 7 Q8 .� 
6 0 4 0 1 0 1 0 0 '  
6 0 4 0 1 0 2 0 0 

I 0 1 02 03 04 05 06 07 Q8 
6 0 4 0 1 0 0 0 0 
6 0 4 0 1 0 1 0 0 
6 0 4 0 1 0 2 0 0  

1 01 02 03 04 as 06 07 cae 
5 0 4 0 1 0 0 0 0  
6 0 4 C> I 0 1 0 0  
6 0 4 0 1 0 2 0 0 

I 0 1 02 0 3 04 as 06 0 7 Q8 
4 0 4 0 1 0 0 0 0  
6 0 4 0  I 0 1 0 0 
6 0 4 (> 1 0 2 0 0  

I 01 02 03 04 05 Ob 0 7  cae 
4 0 4 0 0 0 Ci O O  
4 0 4 0 I 0 0 0 0  
to 0 4 0 1 0 1 0 0 
6 0 4 0 1 0 2 0 0  

I 01 02 0 3  04 as 0 6 0 7  Q8 
3 0 4 0 0 0 0 0 0  
4 0 4 0 1 0 0 0  .. 
6 0 4 0 1 0 1 0 0 
(, 0 4 � 1 0 2 0 0 

I 01 02 03 04 as 06 07 08 
2 0 4 0 0 0 0 0 0  
4 0 4 0 1 0 0 0 0 
6 0 4 0 1 0 1 0 0 
6 0 4 0 I 0 2 0 0 

I 01 02 03 04 as Ob 0 7  Oft 
2 0 3 0 0 0 0 0 0  
2 0 4 C O O O O O 
4 0 4 0 1 0 0 0 0  
b 0 4 0 1 0 1 0 0 
6 0 4 0 1 0 2 0 0 

1 01 02 0 3  04 O� 06 0 7  Ott 
1 0 3 0 0 0 0 0 0  
� 0 4 0 0 0 0 0 0 
4 0 4 0 1 0 0 0 0  
6 0 4 0 1 0 1 0 0 
6 0 4 0 1 0 2 0 0 

• 01 02 0 3  04 05 06 0 7  06 
Ci 0 3 0 0 0 0 0 0  
2 0 4 0 0 0 0 0 0  
4 0 4 0 1 0 0 0 0  
6 0 4 0 I 0 1 0 0 
6 0 4 0 1 0 2 0 0  

• 01 U2 0 3  04 05 0 6  0 7  Oft 
1 0 4 0 0 0 0 0 0 
4 0 4 0 1  0 0 0 0  
6 0 4 0 1 0 1 � 0 
6 0 4 0 1 0 2 0 0 
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WORK I �  x I 01 02 03 04 05 Q6 07 08 s n. C K  x I 01 02 0 3 04 05 06 07 Q8 3 0 0 4 0 0 0 0 0 0 4 3 0 0 4 0 0 0 0 0 0 3 8 4 0 4 0 I 0 0 0 0 2 23 6 0 4 0 I 0 I 0 0 
I 38 6 0 4 0 I 0 2 0 0 BACK I NC> UP 

wORK I NC>  X I 01 02 03 04 05 06 07 08 S TA C K  X I 01 02 0 3  04 05 06 0 7  Q8 8 3 0 4 0 I 0 0 0 0 3 8 3 0 4 0 I 0 0 0 0 
2 23 b 0 4 0 I 0 I 0 0 
I 38 6 0 4 0 I 0 2 0 0 

WORK I NG  X I 01 02 03 04 05 06 07 0 8  S TACK X I 01 02 0 3  04 05 06 0 7  08 8 2 0 4 0 I 0 0 0 0 3 e 2 0 4 0 I 0 0 0 0 
2 23 6 0 4 0 I 0 I 0 0 

I �8 6 0 4 0 I 0 ? 0 0 
WORK ING X I 01 02 03 04 05 06 07 08 S l ACK X I 01 02 0 3  0 4  05 06 07 06 6 2 0 3 0 I 0 0 0 0 4 6 2 0 3 0 I 0 0 0 0 3 8 2 0 4 0 I 0 0 0 0 2 23 6 0 4 0 I 0 I 0 0 

I 38 6 0 4 0 I 0 2 0 0 
WOR K I NG X I 01 02 03 04 05 06 Q7 08 S TACK X I 01 02 0 3  0 4  0 5  06 0 7  OS 4 2 0 2 0 I 0 0 0 0 5 4 2 0 2 0 I 0 0 0 0 4 6 2 0 3 0 I 0 0 0 0 3 6 2 0 4 0 I 0 0 0 0 2 23 6 0 4 0 I 0 I 0 0 

I 38 6 0 4 0 I 0 2 0 0 
WORK I NG X I 01 02 03 0 4  0 5  0 6  07 08 S TACK X I 01 02 0 3  04 05 06 0 7  08 2 2 0 I 0 I 0 0 0 0 6 2 2 0 I 0 I 0 0 0 0 5 4 2 0 2 0 I 0 0 0 0 4 6 2 0 3 0 I 0 0 0 0 

.:} 3 8 2 0 4 0 I 0 0 0 0 2 23 6 0 4 0 I 0 I 0 0 
I 38 6 0 4 0 I 0 2 0 0 

'h�. WORK ING X I 01 02 03 04 05 06 07 0 8  S l A CK X I 01 02 03 04 05 06 07 08 
0 2 0 0 0 I 0 0 0 0 7 0 2 0 0 0 I 0 0 0 0 ' ." 6 2 2 0 I 0 I 0 0 0 0 5 4 2 0 2 0 I 0 0 0 0 4 6 2 0 3 0 I 0 0 0 0 3 8 2 0 4 0 I 0 0 0 0 2 23 6 0 4 0 I 0 I 0 0 " ,  I 38 6 0 4 0 I 0 2 0 0 

RESUL T = TRUE 

CO I N  OUANT l T I E. S  0. HAND : o OF VALUE I 0 OF VALUE 2 0 OF V ALUE 3 I O F  V AL UE. 5 o OF VALUE 10 0 OF VALUE 1 5  0 OF VALUE 20 o OF VALUE 5 0  

END OF HUN. 

Fig u re 7.24 (continued ) 

.� ,. 
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[Changemakerl segment] 

.. 5 
7 1 0  1 1  1 2  1 3  1 4  

1 5  
I t. 

1 7  

I d  
I '"  
2 1  
2 2  2 3  , .. 

,7 
2 &  

3 1  
3 ;:  
"':;S 
:;S4 35 36 
37 
30 

�HANG E M A KER l :  P R O C t X . Q . W[ $UL I , ;  
/ *  I F  C hA N G �  C A N  B E  M A De F O W  X .  �E T X T U  O .  R E D UC �  0 B Y  

RE U U IR ':' D  C O I NS .  A N D  S � T  R!: '>ULT T R UE ;  CT HER lIf l 5E Lt..A V E  x 
AN D 0 Ur.CHANGED AND S E T RE SULT F A LS t:: . */ 

X I NCLUOE /$ DATA DE CLAk ATI O N 5  */ CM I O A T A ; 

XS = x ;  us � 0; 5 T At� I N O t X  � 0 ;  I = M; 
LOOK I Nt:.  = " 1 · t3 ;  00 WH I L E  � > 0 & LOO K I NG ' ;  

I F  
I > 0 

TH� N 
I F  

X > =  VA L ( I )  & U ( J ) > =  1 
T He N  

DO ; 
S TA CK I N DLX = S TA C K  I ND E X  + 1 ;  
S TA t K�X ( STACK I ND E XT = x ;  
S lACK . 0 ( S 1 A C K

-
I ND E X  • •  ) = a ;  

5 1A C K . I ( 5 TACK
-

I ND £ X ) = 1 ;  
X = ;II - V AL ( I T ; u ( 1 ) = U ( I )  - I ;  

(.ND . 
L LS E  

I = I - I ;  LL 5t:: I F 
S T A O<._ I ND E X  > 0 

THfcN 
DO ; 

X = STACK .X ( 5 T AC K_ I N DEX ) ;  o = S T A CK .Q ( S 1 ACK I N utX . * ) ;  
I = STACK . I ( ST A C K

-
I Nu�X ) ;  

S TA CK I ND E X  = S T ACK I ND E X  - 1 ;  
I = 1-- I ;  

-

PUT � I L E ( SYSPR I N T )  SK I P ( 2 )  

E N D ;  
[ L5 E  

E D I T (  " S AC KUP : X = · .X . "  1 =. " . 1 . " 
C A . F C 2 ) • A • F C :2 ) .A 

LO O K I NG = " 0 " " ;  
CALL PR INT_S 1 AC K C S T A C K . S T AtK_ I NO!:X . X .0 . I ' ;  

LND ; 
I F  

X '" \I 
l H�N 

Rt.SULT ::. I l l S ;  
ELSE 00 ; 

X =- X S; u :: u s: 
R l SU L T  ' 0 · 11 ;  

�_ND ; 
ht::TUR N ;  

�NO C HA "' G EM A K ER I ; 

0 = " . 0 , 
.8 F ( 3 » ; 

Figu re 7.25 Reorganized changemaker in PL/I .  
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[Cmldata segment] 

IJ t: CL A RE 1 � T A C K ( 5 0 )  . ..  X .2 0 1  b )  . 2  I 
. � T ACK _I "" t. X  

/ . � T A CA V A R I ABLE� . /  

u !:: CL ARE / .  ARR A Y  VA R I  A B L � S . /  U l b )  / .  E LE Mt:.NT S AkE It uF Lul NS uN HAND . I . E • •  1 1 S I  • • • • •  1 5 05 1 . / 

. U !> ( 8 )  / .  S AV E l)  C O py lJF a ./ 

. V AL I S )  1 " 1  T l l . ';' . 3 . 5 . 1 (' . I � . ;>O . 5,, )  /. E LE M E N T S  ARE M O N t T A R Y  V A LUt S O P  C URR l S P O N D J N �  Q C L CM · S . /  

UE CL A Rt. /. �C A L A R  V A R I ABL t. S  
I 

/. P IU B L E I'4  I ND E X  
. LUU K I N � b l T l l )  /. S IGNA L!> T OUR 1 5  EXHhU J T t U  . M  I N 1 1 ( 6 )  / .  NlJo48 E R  OF D E N UM J N A T  I U N� 
. R E 5 UL T  b l l l l )  

/ .  V AL U E  O F  CHA NGt. PO S � 1 9 L t.  F u NCT I O N .  T Rut UR F AL S E  
. x  

/. C HA NGE T u  bE I'4AOE: . X S  
/. S AVEl) C U� Y  OF X 

Figure 7.25 (continued) 

7.6 A N OTH E R  CAS E ST U DY IN H E U R IST I CS AN D 
R I G O R : TIC-TAC-TO E 

7.6.1 Tic-Tac-Toe 

./ 

./ 

./ 

./ 

./ 

. /  

. /  

The game of tic-tac-toe provides an example for illustrating the difference 
between rigor and heuristics-one that has practical meaning for today's 
software design problems. Tic-tac-toe is simple enough to develop a rigorous 
strategy for play, but complicated enough that many program designers, 
faced with a comparable problem in software, will settle for a heuristic 
strategy. While a heuristic strategy is more easily developed, such a strategy 
becomes more complex and ad hoc as experience develops failures ; but a 
rigorous strategy provides a coherent, permanent plan from which con
tinued optimization can be carried out in a well-controlled manner. There is 
a crucial difference between fixing a program whose design has failed and 
increasing the efficiency of a correct design by rigorous stepwise program 
refinement or reorganization. In the first case the design has been degraded, 
with more potential danger, while in the second it has been better imple
mented with no lingering liability. 
In what follows, we illustrate three approaches to programming tic-tac

toe. The first, a casual solution, enumerates possible board situations and 
responses, but is soon overwhelmed by the sheer number of possibilities. The 
second, a heuristic solution, develops rules for play similar to rules humans 
use ; for example, "win if possible, otherwise play in priority order, center 
square, any comer square, any side square." Such a design accounts for some 
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reasonable moves but fails in many situations, thus suggesting additional 
criteria of play, leading to fixing the design, uncovering other failures, and 
more fixing. The resulting design may be capable of perfect t ic-tac-toe, 
but it will be difficult to prove it, short of exhaustive analysis, itself hard to 
prove complete, and so on. The third approach utilizes a recursive function 
for the best possible outcome of any game, which can be used to design a 
program capable of playing perfect tic-tac-toe. 

7.6.2 A Di rect Approach 

We all know how to play tic-tac-toe from childhood experience. How do we 
program it ? More precisely, how do we program a player, say taking the side 
of x ,  to find the best move from any possible point in a game, when either 
x or � plays first ? For example, the player may be asked to take over play 
initiated by someone else. A reasonable start, if x has the first move to any 
ofthe nine squares, is to place an x token in the center square, and we know 
from experience that correct play from here on leads to a draw. If � has the 
first move to any of the nine squares, the best choice for x is still the center 
square (if it is open) ; otherwise, a corner square, and we have covered all 
possible 0- and I-token boards (no moves entered and one move entered). 

Next, consider 2-token boards. With an x move to the center square 
and an � move, some positions lead to wins, some to draws, some to losses ; 
for example, an � move to a corner square 

leads to at least a draw because x can force a draw, as shown next, and win 
if � does not block at every � move : 

N *I=� NX � *x �  �x �  �x �  tl*x �  

x --+ x --+ x --+ x --+ x x --+ � x x --+ �  x x 

x x x x � x � x � x � x 

But for an � move to a side square 
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an x win can be (orced by going to an opposite corner square 

and x can win on the next move, no matter how � responds. By symmetry, 
we have now covered all 2-token boards if we moved to the center square 
first. 

But what if we were asked to take the seat of an x player who had 
started on a side square, and � replied to the center ? The situation is 

,1: Some diagramming shows #x WX x  �x x  f#x X  �x x  

� --+ � --+ � --+ � � --+ x � � 
, 

x x x 

will get at least a draw. Similarly, if � replied to an adjacent comer 

the forced set of moves =t4x f.l=X �x *.t=x � �x � 

x --+ x --+ x --+ x --+ x x 

� x � x � x � 

will get at least a draw. Are there other side cases ? Yes, for example, 
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and a win can be forced by going to 

where x can win on the next move no matter how � responds. Another 
corner case is 

and a win can be forced from here by going to 

Still another side case is 

from which a draw can be guaranteed, as follows : 

Are there any other side cases ? No, by symmetry, as the following board 
shows : 

x 6 
2 4 7 

3 5 8 

We have considered cases 1 through 5 for the f) move and cases 6, 7, 8 are 
similar by symmetry to cases 1, 2, 3, respectively. 
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Next, what about the 2-token boards beginn ing with a corner square? 

x 3 6 
4 7 

2 5 8 

The cases, with symmetry accounted for. are 1 .  ') 4. 5. 8 for which we 
determine 

gets a win 

gets a win 

gets at least a draw 

gets a win 

gets a win 

By th is t ime, we have done cons iderable invest igat ion, hoping no m is
takes have been made, and have covered cases of 0-, 1 -, and 2-token boards. 
We have covered 

cases so far (somewhat overstated, with symmetrica l cases included ). The 
number of d ist inct boards to consider for 0, 1, 2, . . .  , 8 tokens presen t is 
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cases to be covered (somewhat overstated, with winning boards included), 
giving approximately 82/5920 < 2 % of cases considered thus far, so we are 
not getting very far very fast ! In fact, it is now apparent that this approach 
will not lead to any practical program design at all. 

7.6.3 A Heu ristic Approach 

Since enumerating next moves has turned out impractical, we now attempt 
to develop a strategy for finding the best next moves where "best" is defined 
by some heuristic evaluation of the current board status. Specifically, con
sider a strategy defined by the following program, with array argument 
named b (for board) :  

proc tictactoe( b )  
run winifpossible 
if 

-- win 
then 

fi 
corp 

run bestmove 

The winifpossible segment can examine each of the eight lines on a board 
(three across, three down, two diagonal) to determine if a win is possible in 
one move for x .  If not, the bestmove segment can determine the best move 
to make according to the following strategy. For any line on the board, a win 
is possible for x if the line is blank or contains one x but no �'s (any line 
with two x 's and no � would have been found by the winifpossible segment). 
A reasonable heuristic strategy is to identify those lines where a win is still 
possible and play the square where the greatest number of such lines inter
sect (in case of ties, choosing, say, the first such square looking left to right, 
top to bottom). Thus, when a play is made to a square on two or more 
winning lines, a multiple threat may be created, which leads to a win. For an 
empty board, the line intersection counts for each square are 

3 2 3  

2 4 2  

3 2 3  

(i.e., four lines intersect at the center square, three at each corner square, and 
two at each side square). This corresponds to the intuitive strategy of "play 

.� 
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center square if possible, otherwise a corner, otherwise a side" often used by 
tic-tac-toe players. 

In terms of data, we can represent any current board status in a one
dimensional array named b as follows, numbering squares across, then 
down, with possible element values x ,  � or l' (for blank) :  

Array b board 
columns 

...A... 

b(l )  b(2) b(3) 

board 
b(4) b(5) b(6) 

rows 

b(7) b(8) b(9) 

Triples of square numbers composing each of the eight lines on the board 
can be defined in a two-dimensional array named line, where the first three 
rows list the square numbers on board rows, the next three rows list the 
square numbers on board columns, and last two rows list the square num
bers on board diagonals : 

Array line 

1 2 3 

line numbers 1 1 1 2 3 
square numbers 

assigned to 2 4 5 6 
b rows 3 7 8 9 

on b rows 

line numbers 4 1 4 7 
square numbers 

assigned to 5 2 5 8 
b columns 6 3 6 9 

on b columns 

line numbers 7 1 5 9 
square numbers 

assigned to 8 3 5 7 
b diagonals 

on b diagonals 

The winifpossible segment will require a two-dimensional array that defines 
the three board line configurations for which a win is possible for x on the 
next move. We name the array wp (for win pattern) :  
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Array wp 

1 
2 
3 

1 

� 
x 
x 

2 3 

x 
� 
x 

x

; ! win possible patterns 

With these data structures in mind, the winifpossible segment can be defined 
as shown in Fig. 7.26 (data declarations and parameter list not shown). 
Next, the bestmove segment will require an array similar to the wp 

array, but containing board line patterns for best moves, given that a win is 
not possible. We name the array bp (for best pattern) : 

Array bp 

1 2 3 

1 � � � l best move 2 x � � 
3 � x � r patterns 
4 � � x 

Lines (see definition of array line, above) that intersect at each board square 
can be defined in a two-dimensional array of line numbers named intersect. 
F or example, the line numbers of those lines that intersect at square 5 
(center square) are 2 (middle row), 5 (middle column), 7 (upper left to lower 
right diagonal), and 8 (lower left to upper right diagonal). A zero value in 
the array indicates that no third or fourth line intersects that particular 
square : 

Array intersect 

2 3 4 

1 1 4 7 0 
2 1 5 0 0 
3 1 6 8 0 

b array 4 2 4 0 0 line numbers 
square 5 2 5 7 8 that intersect 
numbers 6 2 6 0 0 at given square 

7 3 4 8 0 
8 3 5 0 0 
9 3 6 7 0 
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proc winifpossible 
win := fake 
i := O  
while 

i :::; 8 /\  "" win 
do [(i + 1 line of board = any win pattern -. win := true)] 

i := i + 1 
j := O 
while 

j :::; 3 /\  "" win 
do [(ith line of board = j + 1 win pattern -. win := true)] 

j :=j + 1 
if 

b(line(i, 1 )) = wp(j, 1 )  /\ 
b(line(i, 2)) = wp(j, 2) /\ 
b(line(i, 3)) = wp(j, 3 )  

then 
win := true 

fi 
od 

od 
if 

win 
then [win game by placing third x in blank square of ith line of board] 

if 

fi 
corp 

b(line(i, 1 ) )  = l' 
then 

b(line(i, 1 )) := x 
eke 

if 
b(line(i, 2)) = l' 

then 
b(line(i, 2)) = x 

eke 

fi 
fi 

b(line(i, 3 )) := X 

Figure 7.26 Winifpossible segment. 
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The status of each line of the board can be recorded in an array named best, 

best(l :  8) 

recording a 1 for each elemen t of best for which the corresponding board line 
matches any bp array pattern, recording a 0 otherwise. Finally, a one
dimensional array named tot (for totals ), numbered identically to the b 
array, can be used to store intersecting line status ( l or 0) totals for each 
square : 

Array tot 

tot( 1 ) 
tot(4) 
tot(7) 

tot(2) 
tot(5) 
tot(8) 

tot(3 ) 
tot(6) 
tot(9) 

Based on these data definitions, the bestmove segment can be defined as 
shown in Fig. 7.27. Note that two additional segments named findbestlines 
and makemove are required at the next level, as shown in Figs. 7.28 and 7.29. 
With these data structures and program segments in hand, we now try 

out some test cases. For example, given the first board below ( x moves 
next ) our heuristic strategy gets a win for x :  
Next, given a board where a win is not possible on the next move (best 
pattern intersection totals shown in blank squares ) our heuristic strategy 
likewise gets a win : � � 2 *� x � � x tl4� x 

1 x 2 �  x � �  x 1 � �  x 
2 1 2 2 1 2  x 

But what if from the second board above, � made a smarter move as follows, 
blocking the x win and permitting a win for �: *H� x �� x �� x 

1 x 2 �  x x � �  x x � 0 1 � � 

" ,  



, 
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proc bestmove 
run findbestlines 
for 

i : E  1 to 9 
do [tot(i) : =  sum of best pattern line intersections for ith square] 

tot(i) : = 0 
for 

j : E  1 to  4 
do 

if 
intersect(i, j) i= 0 

then 

fi 

if 
best(intersect(i, j)) = 1 

then 
tot(; ) : = tot(;) + 1 

fi 

od 
od 
max, move : =  0, 0 
[set move to blank square number with largest tot array value] 
for 

k : E  1 to 9 
do 

if 
tot(k) > max 1\ b(k) = }? 

then 
max, move : =  tot(k), k 

fi 
od 
run makemove 

corp 

Figure 7.27 Bestmove seg ment. 

It now occurs to us that this situation can arise frequently ; for example, in 
play from an empty board, our heuristic strategy likewise permits a win for 
�: 

3 2 3  

2 4 2 

3 2 3  
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proc findbestlines 
for 

i : e 1 to 8 
do [(ith line of board = any best pattern -+ best(i) := 1 1 true -+ best(i) := 0)] 

best(i) := 0 
for 

j : e l to 4  
do 

if 
b(line(i, 1 ) ) = bp(j, 1 )  1\ 
b(line(i, 2)) = bp(j, 2) 1\ 
b(line(i, 3) )  = b p(j, 3 )  

then 

fi 
od 

od 
corp 

best(i) := 1 

Figure 7.28 Fi ndbestl ines seg ment. 

proc makemove 
if 

move =1= 0 
then [make best move] 

b(move) := x 
else [make first available move] 

k := 1 

fi 
corp 

w,hile 
k � 9 1\ move = 0 

do 
if 

b(k) = l'> 
then 

move := k 
else 

k := k + 1 
fi 

od 
b(move) := x 

Figure 7.29 Makemove segment. 
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The problem is easy to solve, t hough. by add ing a procedure to  block 
possible wins on the next move by O. before look ing for a bes t move for x .  A 
new array for check ing losing pat terns is required. which we name loss : 

Array loss 

1 
2 
3 

2 3 
loss possible 
patterns 

The reorgan ized top segment is as fo l lows : 

proc t ictactoe(b ) 
run win ifpossible 
if 

- win 
then 

fi 
corp 

run block loss 
if 

- blocking 
then 

run bestmove 
fi 

The block loss segment is shown in Fig. 7.30. (The bestmove. findbest l ines, 
and makemove segments are unaffected by the fix. ) 

We now have a program that, if correct (no minor assumpt ion at t h is 
point ! ), wins if possible and defends against possible losses before bui ld ing 
threats of i ts own . Thus, for an empty board, the program now produces, for 
example, 

3 2 3 

� � � 2 4 2 

3 2 3 

� 

� 2 

x 2 

2 2 2 

� w� * x � x � x x 

� � 

w' � *li  x x � � x x � � x x 0 

� 1 0 � � � 
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proc blockloss 
blocking := fahe 
i := 0 
while 

i ::s; 8 1\ ....., blocking 
do [(i + 1 line of board = any loss pattern -+ blocking := true)] 

i := i + 1 
j := O  
while 

j ::s; 3 1\ ....., blocking 
do [(ith line of board = j + 1 loss pattern -+ blocking := true)] 

j :=j + 1 
if 

b( line(i, 1 )) = loss(j, 1) 1\ 
b(line(i, 2 )) = loss(j, 2 ) 1\ 
b( line( i, 3)) = loss(j, 3)  

then 
blocking := true 

fi 
od 

od 
if 

blocking 
then [make blocking move in ith line] 

if 

fi 
corp 

b(line(i, 1 )) = � 
then 

b(line(i, 1 )) := x 
else 

fi 

if 
b(line(i, 2 ) )  = � 

then 
b(line(i, 2)) = x 

ehe 
b(line(i, 3)) = x 

fi 

Figure 7.30 Blockloss segment. 
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which gets a tie, where the initial program produced a loss. Does the 
fixed-up program always win if possible ? With a little thought, we realize the 
answer is no, since given the following board, for example, the new program 
still permits a win for �: 

1

2 2  

� il � N� �� �� �� 
1 3 2 -+ x -+ 1 x 1 -+ x -+ x -+ x -+ x � 
� 1 2 � � 1 1  � � � � x � � x � 

But if the program had played x to a side square from the third board 
above, a tie would have resulted instead of a loss : 

#� j� I� IX � IX � x -+ x -+ x -+ x -+ x x 
� � �  � � x � � x � � x 

So here is a new problem to be solved, perhaps by reorganizing the block loss 
segment just added to anticipate this "double threat" in its symmetrical 
forms and to block possible losses . But it is sure to bring more complication 
to an already complicated program, and there is no guarantee that we 
have found all failure cases. In fact, we are well on the way, once again, to an 
idiosyncratic program that is correct only up to the last known failure. 

7 .6.4 A R igorous Desig n fo r Tic-Tac -Toe 

Having seen the complexities of a heuristic approach to tic-tac-toe, we now 
look for a rigorous treatment, using a recursive function . A convenient 
function appears to be one that defines the outcome from any possible 
situation with perfect play by both players from there on (not assuming 
perfect play up to that point, of course). Then the basic idea of the recursion 
will be to reformulate perfect play from any point as a perfect move followed 
by perfect play thereafter. But before defining the recursion in more detail, 
some preliminary simplifications and abstractions will be convenient. 
First, we consider only the x player problem, in order to keep the 

definitions below free of player designation. (The � player problem is ob
tained simply by interchanging Ws and x 's on the board. ) Next, we will use 
informal abstractions of data types with convenient operations, tests, and 
orderings for later programming into more concrete data types. In particu
lar, we define data types named outcome, square, and board as follows : 
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1. outcome (0 E outcome ) 
outcome = {win, draw, lose} 
operation - (minus) is defined as 

o - 0  

WIn lose 
draw draw 
lose win 

transitive relation > (greater than ) is defined as 

win > draw > lose 

2. square (s E square) 

( 1 . 1 ) 
( 1 .2) 

( 1 .3 ) 

square = { x ,  l'), f)} (2. 1 ) 
operation - (minus) is defined as (2.2) 

3. board (b E board ) 

s -s 

board = {b I array b(3, 3 ) 1\ (b(i, j ) E square, 
1 :S; i :S; 3, 1 :S; j :S; 3 )} 

operation - (minus) is defined as r-b( I , I ) -b( I , 2) 
-b = - b(2, 1 ) -b(2, 2) 

-b(3, 1 ) - b(3, 2) 

-b( l , 3 )] -b(2, 3 ) 
- b(3, 3) 

(3 . 1 ) 

(3 .2) 

Next, we define a function named value, to be redefined recursively later, 
directly as follows : 
value = {(b, 0) I b E board, 0 E outcome ; 0 is the outcome 

to x player in situation defined by b with 
x player to move, if possible, and with 
perfect play by both players from this point on} 

. .  

. l� 



J 

7.6 Another C a se Study i n  H e u r i st i cs a n d  R i go r : T i c -Tac- To e 389 

For example, 

value (=H=)= draw value (W ) = win 

value (fr ) = lose va lue ( itt ) = draw � � 
In  order to define value recurs ively, we furt her define a function named 
result and a pred icate named end, both with domain board : 

result = { (b, 0) 1 0 = win, draw, or lose, respect ively, 
if b has more, equal, or less x l ines 
than � l ines} 

end = {(b, z ) I z = true i f  b has no blanks or at least 
one x line or � l ine, otherwise z = false) 

(3 .3 ) 

(3 .4 ) 

We also define a data type named move, with associated funct ions legal and 
newboard : 

4. move (m E move ) 

move = {(i , j )  1 1  S; i S; 3, 1 S; j S; 3 }  
legal = { ((b, m ), z ) I b E board, m E move, 

z = (b(m ) = t6 )} 
newboard = { ((b, m ), c )  I b E board, m E move, 

c E board, and c(m ) = x ,  

c(i, j )  = b(i, j )  for (i, j )  =1= m) 
(newboard(b, m )  wi l l  be abbreviated as b + m )  

Then, for example, 

result (: I : I : ) = lose result (: I : I; ) = draw 

(4. 1 ) 
(4.2)  

(4.3 ) 
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end (#) = false 

legal ( �, (2, 2) ) = true legal (# , ( 1, 2)) = false 

neWbOMd (#, (2, 2) ) = * 
neWboard (#, ( 1, 2) ) = # 

Note that the result, end, legal, and newboard functions are defined for any 
members of board and move, not just ones that can arise in legal tic-tac-toe 
play. 

Now the value function can be redefined with the following recursive 
rule, as we explain next : 

value(b) = (end(b) -+ result(b) I 
'" end(b) -+ max{ - vaiue( - (b + m)) l Iegal(b, m)}) 

The first term of this conditional rule deals with the case that no move is 
required of the x player and gives the outcome directly. The second term 
requires that the x player select a perfect move to maximize the outcome 
possible from b by a choice of a specific value of m from the legal moves 
available. In particular, working from the inner terms out, 

value( - (b + m)) 

is the outcome (win, lose, or draw) for the () player if the x player chooses 
move m in board b ;  next, 

-value( - (b + m)) 

is the outcome for the x player ; finally, the best outcome possible for a legal 
move by the x player is 

max{ - value( - (b + m)) I legal(b, m)} 

Any m that achieves this maximum will be a perfect move, as required. For 
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example, 

value ( *¥) = win, 

because 

and result (*¥) = win 

Also, 

value (�) = m� (- value (�) , - value (�) , 

- value ( iffi) ) 
= max( - lose, - win, - win) 

where the first of the max operands can be seen to be ( - lose) through the 
next application of the recursion, and the other two operands seen to be 
( - win) by two applications of the recursion. Therefore, 

value (: I ; I :) = max(win, lose, lose) 

= win 

by the choice of the first operand, namely move(3, 1). 
In general, the recursion defines a tree of moves by both players, each 

path in the tree ending when either an x line or � line arises, or when the 
board becomes full. In fact, this recursive rule defines outcomes for boards 
that cannot arise from legal play, for example, 

value ( ill¥.) = win 
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Such an extension does no harm, avoids the cumbersome question of
r 1 

defining a domain of board values reachable by legal play, and allows a 
simpler function definition. 

We can translate the recursive rule for the value function directly into 
program form, as shown in Fig. 7.3 1 (with data as defined above), assigning 
value(b) to the name val. The program produces an assignment to val of win, 
draw, or lose, that is, it evaluates the recursive function for a given board. 
The corresponding next move can then be determined as a reorganization of 
this program, as we will see. 

The program is an ifthenelse, just as specified by the recursive rule. The I thenpart gives the value of val directly ; the elsepart is a sequence that finds 
. 

the maximum required by the rule, using an initialized fordo followed by the 
assignment of the maximum to val. Within the dopart of the fordo, the if then 
considers only legal moves, and invokes the procedure recursively. The ini-
tial, free operations on b, which bracket the procedure call, save and restore 
the situation known at the point of the call. Note that the fordo provides 
implicit initial, free operations on m that save and restore move choices. 
The initial, free operations on v, bracketing the major elsepart, save and . 
restore the maximum found so far for each call of the procedure. 

proc tictactoe 
if 

end (b) 
then 

val := result(b) 
else 

fi 
corp 

initial v := lose 
for 

m : E move 
do 

if 
legal(b, m) 

then 

fi 
od 

initial b := - (b + m) 
run tictactoe 
free b 
v := max(v, - val) 

val := v 
free v 

Figure 7.31 Tictactoe program. 
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An informal proof of the correctness oftictactoe can be carried out in two 
inductions on the number of nonblanks in b, say I b l , the first induction to 
show termination, the second induction to show the correctness of the assign
ment to val. First, if I b I = 9, the predicate end(b) is true and tictactoe term
inates. Also, if t ictactoe term inates for any initial b such that I b I = i > 0, then 
tictactoe terminates for any b such that I b I = i - I ,  since I b I is increased 
by 1 in the elsepart. Therefore, tictactoe terminates for any b such that 
I b I = 9, 8, . . . , 0, that is, for any b. Second, if I b I = 9, tictactoe assigns 
result(b) to val as required ; also if tictactoe assigns the correct value to val 
for any initial b such that I b I = i > 0, then tictactoe assigns the correct 
value to val for any b such that I b I = i - I ,  since val is assigned either 
result(b) (in the thenpart) or the maximum required by the recursive rule (in 
the elsepart). In more detail, this last requirement is to show that the elsepart 
program 

initial v := lose 
for 

m : E move 
do 

if 
legal(b, m) 

then 
initial b : = - (b + m) 
run tictactoe 

fi 
od 

free b 
v := max(v, - val) 

val := v 
free v 

has program function 
val := value(b) 

under the following hypothesis : 
1 .  tictactoe assigns value(b/ ) to val for any b' such that I b' l = i >  0 

2. end(b) is false 

3. I b I = i - I 

From the recursive definition of value, it will be sufficient to show that this 
elsepart program has program function 

val := max{ -value( - (b + m)) l Iegal(b, m)} 
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The initialized fordo computes and assigns this maximum to v, because only 
legal moves m in b are considered, and at each invocation 1 - (b + m ) I = i, 
so by hypothesis ( 1 )  above (where b' = - (b + m )) val is assigned 
value( - (b + m)) by tictactoe, and the assignment 

v := max(v, - val) 

then accumulates the maximum as required. Note that this copy of v is 
undisturbed by the recursive calls of tictactoe, because each such call ini
tializes and frees its own copy of v. 
The move required can be determined as a by-product of the execution 

of this procedure. It will be a move m at which v achieves its maximum 
during the topmost invocation of the procedure (whose execution may be 
interrupted several times by further recursive invocations of the procedure ). 
A simple way of determining this is to introduce a level count on the depth of 
the stack v, and to update a new data item, say nextmove, with the value of m 
whenever this level count is 1 and a new maximum value has been found. 
This procedure, while readily understood and proved correct, can be 

made more efficient in various ways. First, the maximum finding fordo can 
be terminated whenever a value of win has been found for v. Second, any 
look ahead conceivable (including a heuristic look ahead ) for determining 
val can be added at the beginning of the elsepart of the program. If val is not 
determined by such a look ahead, the remainder of the elsepart (presently 
the entire elsepart) will determine it correctly. This look ahead need not be 
complete, of course, and would be invoked with a possible speedup at each 
level of recursion. For example, a win next move, a forced loss by opponent's 
next move, a.nd a forced win on the second move could be programmed. In 
fact, even in these cases, the look ahead need not be complete (but needs to 
be correct) . This example illustrates a general idea for improving the 
efficiency of a design while ensuring its continued correctness, namely to use 
a correct design as a basis for stepwise reorganization that introduces 
speedup parts in a fail-safe way. 

EXERCISES 
1. Reorganize the design of the recursive tictactoe program to determine the 

requ ired move, as described above. 

2. Introduce heuristic speedups to the program design of exercise 1. to 

a) win next move, 
b ) force loss by opponent's nex t move, and 
c ) force win on second move, 

while assuring program correctness with each add ition. 



. 1 

Index 

Abstractions i n  program design , 

contrasted with program 

detai ling, 306, 333,  33 5-343 

docu menting in logical commentary , 

3 1 3-3 ] 4  

as fou ndation for stepwise 

refi nement , 333 , 344-35 ] 

Abstractions in program reading, 

docu menting i n  logical 

commentary , ] 7 ] - 1 76 

fu nction abstraction , 1 49 

i n  reading prime programs , ] 5 1 - ] 53 

in reading programs by stepwise 

abstraction , ] 48, ] 54- 1 5 8, 1 7 1 -

] 76, ] 92-203 

Action comments . See Logical 

commentary 

Acyclic digraph, 3 ]  

Algebraic properties of programs ,  

algebra of program correctness,  

2 1 4-2 1 7  

algebra of structured programs ,  

1 48- 1 5 ]  

Alphabet , of language symbol s ,  36 

of l ist  items,  33 

Anonymous data. See Process Design 

Langu age , anonymous data 

structures of 

395 

Argu ments, of a fu nction , 27 

of a relation, 26 

Assignment statements. See also 
Process Design Language , data 

assignments in ,  multi ple 

assignments in 

as names for fu nctions, ] 02 

assignment functions for, 1 02- 1 04 

Axiom of Re placement, in algebra of 

program correctne ss , 2 ] 6 

in creating structured programs , 304 

definition of, 1 48- ] 49 

in Iteration Recursion Lemma 

proof, 22 1 

Axiomati c calculus , ] 9  

Backus Naur Form (BN F) , 38 

Basis set of a program , 1 ] 8 ,  1 36-- 1 37,  

1 78 ,  1 87 

Bottom-up program development, 1 2  

Bound variables , 22 

Brooks, Fred , 7 

Cartesian product, for de scribing data 

stru ctures , 67-68 

of sets ,  25-26 

Case control structure,  correctness 

proof syntax for, 23 1 



396 Index 

correctness question for. 228 

Correctness Theorem for. 223 

logical commentary for. 1 6 9  

in PDL, 4 7 ,  5 4 - 5 5 

Collecting node in fl owcharts, 93 

Complete correctness, alternate form 
of, 226 

in Correctness Theorem, 222- 226 

definition of, 2 1 4 - 2 1 5 

as guide to program design, 307-3 1 3  

in prime program proof examples, 

25 6-26 2 

working q uestions for, 227- 229 

Compound logical expressions, 20 

Compound programs, definition of, 
1 1 7 - 1 1 8 

proving correctness of. 21 5 

reading by stepwise abstraction, 1 5 4 

Conceptual integrity in program 

design, 7 - 8  

Conditional rules, definition of, 29 

transformation to disjoint rules, 
238- 24 3  

use in definition of recursive 

functions, 30 

Con stant functions, 29 

Context free grammar (CFG ) ,  39 

Control structure, abstraction of, 95 

expansion of, 96 

of a flowchart, 93-94 

of prime programs, 1 1 4 

Correct program defined, 2-3 

Correctness proofs, anonymous data 

examples, 27 0-27 3  

array data examples, 26 4-27 0 

of compound programs, 2 1 5 

developing together with programs. 

3 1 5  

by direct assertion, 25 2-25 5 

dountil example, 26 1 - 26 2  

dowhiledo example, 26 2- 26 4  

fordo example. 24 8-25 2 

as guide to program design, 306- 31 3 

ifthen example, 25 8 

ifthenelse example, 25 8- 25 9 

intuitive approach to. 4-7  

of large loop-free primes, 27 3-27 8 

level of formality in, 227 . 25 2 

mathematics in, 3-4 

sequence exampl e, 25 7 - 25 8  

syntax for recording, 229- 232 

w hat a proof is, 3-4 

whiledo example. 25 9-26 0 

Correctness questions, 227 - 229 

Correctness Theorem, as basis for 
program proof syntax, 230 

in Invariant Status Theorem proof, 
282 

proof of, 223- 226 

restatement as comparison of 
conditional rules, 230-232 

statement of, 222-223 

in Whiledo Formula proof, 299 

Cycle of a digraph, 3 1  

Data abstraction, 85 

Defensive programming, 21 5 

D etailing v s. design of programs, l O-

l l .  333- 35 1 

Dewey decimal numbering, of control 
st ructures, 6 2- 6 4  

o f  record data structures, 6 9  

Difference, of functions, 28 

of set s, 24 

Digraphs, 31 

Disjoint rules, definition of, 238 

derivation from conditional rules, 

238 

manipulation for correctness proofs, 

238- 24 3 

Domain, of a function. 27 - 28 

of a relation, 26 

Dountil control structure, correctness 
proof syntax for, 232 

correctness question for, 229 

Correctness Theorem for, 223 

Iteration Recursion Lemma for, 220 

logical commentary for. 1 7 0  

in PDL, 4 7 ,  5 6- 5 7  

a s  prime program, 1 1 5 

Dowhiledo control structure, 

correctness proof syntax for, 232 

. I 



1 
correctness question for ,  229 
Correctness Theorem for ,  223 
Iteration Recursion Lemma for, 220 
logical commentary for , 1 70 
in PDL, 47 , 57-58 
as prime program, 1 1 5 

Empty set , 24 
Entry/exit conditions in programs, 5-7 
Execution charts (E-charts), 

construction of, 97-99 
in Correctness Theorem proof, 223-

225 
in determining looping program 

functions , 1 06- 1 07 
in determining program termination, 

2 1 8  
i n  proofs of large loop-free primes, 

274-276 
Execution equivalence of programs, 

definition of, 1 09- 1 1 0  
i n  Iteration Recursion Lemma 

proof, 222 
Execution trees (E-trees), 

construction of, 97-99 
in definition of program functions, 

1 04- 1 05 ,  1 1 7 
in determination of execution 

equ i valence , 1 09 
i n  program reading, 1 5 1 

Existential quantifier, 22 
Expansion of programs . See also 

Stepwise refinement 
expansion of prime parse 

abstractions, 1 89- 1 92 
function expansion, 149, 304-306 

Finite state machines .  See State 
machines 

First-in-first-out ( FI FO) data access,  
7 1 , 72 

Fixed basis program parsing, 1 38 
Flowchart programs, 92-94 
Fordo control structure , correctness 

proof syntax for, 23 1 
correctness question for , 227 

Index 397 

Correctness Theorem for ,  222 
logical commentary for ,  1 66 
in PDL, 46, 50-52 
proof example , 248-252 

Formal grammars, as basis for 
rigorous design , 9, 352 

construction of, 38-39 
Formal languages, alphabet of, 36 

dist inguished phrase in, 36 
language product in , 36-37 
phrases in, 36 
productions in, 36 
set operations in , 35-37 
terminal symbols of, 36 

Formal logic, 1 9-23 
Formulas for correct structured 

programs , function equations of 
structured programs ,  287-289 

If then Formula, 29 1 -292 
Ifthenelse Formula, 289-291 
least solutions for, 288-289 
Sequence Formula, 292-295 
Whiledo Existence Theorem, 296-

297, 299 
Whiledo Formula, 295-300 
Whiledo Predicate Lemma, 296, 

298 , 299 
Free variables , 22 
Function abstraction, 1 49 
Function composition, 28 , 1 05- 1 07 
Function equivalence of programs , 

definition of, 1 09- 1 1 0  
in function expansion , 306 
in Structure Theorem, 1 1 8 

Function expansion, 1 49 ,  304-306 
Function node, in flowcharts , 92 

as prime program, 1 1 5 
program function of, 1 1 6 

Functions, 27-3 1 ,  47, 92 

Good program design , 9 

Heuristic program design , 8-9 , 35 1 -
355 , 358 , 373-387, 394 

Heuristics vs .  rigor in program 
design, 8-9 , 3 5 1 -394 



398 Index 

H ierarchical program stru ctures, 7 ,  

1 1 , 6 2, 80 

I dentity fu nction, 28, 1 1 9, 221 

I diosyncratic programs, 8- 9, 352, 3 87 

Ifthen control structu re, correctn ess 
proof syntax for, 23 I 

correctness question for, 227 

Correctness Theorem for, 222 

Ifthen Formula,  29 1 - 292 

l ogical commentary for, 1 67- 1 6 8 

in PDL 47 , 53-54 

as prime program, 1 1 5 

program fu nction of, 1 1 6 

I fthenelse control structure, 
abstraction of in readi ng, 1 52- 1 53 

correctness proof syntax for, 23 1 

correctn ess question for, 230 

Correctness Theorem for , 223 

Ifthenelse Formu la, 289-29 1 

logical commentary for, 5 9, 1 6 8  

in PDL, 46 , 52-53 

as prime program, 1 1 5 

program function of, 1 1 6 

I ncidental data assignments, 1 7 1  

I ndexed alternation control structu re. 
See Case control structure 

Indexed sequ ence control structu re. 
See Fordo control structure 

Inner Syntax. See Process Design 
Language, inn er syntax of 

Intended functions, 23 0, 3 07, 344 

I ntentional data assignments, 1 7 1  

Intersection , of functions, 28 

of sets, 24-25 

Invariant Status Theorem, use in 

deriving l oop invariants, 283-287 

proof of, 282- 283 

statement of, 282 

Invariants. See Loop invariants 

I n verse function , 29 

Iteration Recursion Lemma, as basis 

for Correctness Theorem, 222 

in Correctn ess Theorem proof, 223-

224 

proof of, 220-221 

statement of, 220 

Label structure programs, 1 22- 1 24,  

1 3 6- 1 38, 1 88 

Language product ,  3 6-37 

Last-in-first-out (LI FO) data access, 
70, 72 

Level sets, 293 

Level s of abstracti on. See 
Abstractions in program design; 
Abstractions in program reading 

Lists, in anonymous data proofs, 270-

273 (see also Proc ess Design 
Langu age, l ist operations on 

anonymous data in) 

concatenation of, 33 

delimiters in, 33 

empty list, 33 

head/tail operations on , 33 

list builder operations on , 34 (see 
also Process Design Language, 

l ist bu il der/list breaker operations 
in) 

n aming of, 34-35 

prefixing item.� to, 33 

structured into strings, 33 

structures of, 34-35 

Logical commentary, action 
comments, 1 6 3 

data comments, 1 6 3 ,  1 74- 1 75 

to document results of program 
reading, 1 7 1 - 1 7 6 ,  1 92-203 

function comments, 1 63 

invariant statu s comments, 280- 287 

pri me program commentary , 1 63 ,  

1 6 5- 1 70 

in program writing, 3 1 3- 3 1 4 , 333,  

35 1 , 364 

statu s  comments, 1 6 3 

Logical expressions, 20 

Logic al propositions, 1 9  

Loop invariants, characterizing 
program functions with, 281 - 282 

deri vation of, 283- 287 



I 
: � 

full invariants ,  285-287 
invariant status comments ,  280 
inventing invariants ,  7 
l imited invariants, 285-287 
as proof alternative to Correctness 

Theorem, 280 
relation to loop status comments,  

28 1 

Maddux , Roy A . ,  9 1  
Mathematical induction , i n  fordo 

correctness proofs, 249-252 
Modules .  See Process Design 

Language , modules in 

Open sentence ,  22 
/ Outer Syntax . See Process Design 

Language , outer syntax of 

Parameter lists. See also Process 
Design Language , parameter l i sts 
in 

data usage designation in, 1 76, 1 92 ,  
204 

Parnas, D. L . ,  45 
Partial rule , 27 
Path of a digraph , 3 1  
Predicate calculus, 1 9 ,  2 1 -23 
Predicate function , 29 
Predicate node in flowcharts, 92 
Prime control structure flowcharts, 

1 1 2- 1 1 5 
Prime program parsing, 1 27- 1 36, 1 49, 

1 78- 1 89 
Prime programs, control structures of 

PDL as, 58, 1 1 5 
definition of, 1 1 2 
designing with , 301-308 
enumeration of, 1 1 3- 1 1 5 
program functions of, 1 1 6- 1 1 7 

Procedures . See also Process Design 
Language , procedures in 

logical commentary for,  1 65- 1 66 
Process Design Language (PDL), 

alterable data in,  82 

I ndex 399 

alternation control structures of, 
46-47, 52-55 

anonymous data structures of, 47, 
69-77 

array data structures of, 47, 67-68 
case control structure of, 47, 54-55 
comments in, 58-60 (see also 

Logical commentary) 
concurrent assignments in (see 

Process Design Language , 
mUltiple assignments in) 

control structure indentation in,  50, 
5 1 , 6 1  

data assignment symbol in ,  48 
data assignments in, 48, 85-86 
data segments of, 8�8 1 
data spaces in,  77-79 
data type specifications in ,  86-89 
dountil control structure of, 47, 56-

57 
dowhiledo control structure of, 47, 

57-58 
enumerated types of, 87 
expanding control structures of, 60-

64 
external data of, 8 1 ,  83 
fixed data in,  82 
fordo control structure of, 46, 5�52 
head/tai l ,  head minus/tai l  minus 

operations in ,  69-70 
ifthen control structure of, 46, 53-

54 
ifthenelse control structure of, 46, 

52-53 
i nner syntax of, 45-48, 85-89 
internal data in ,  8 1 ,  83 
jobs in,  47, 79, 83, 85 
l ist builder/l i st breaker operations 

in, 69-70 ' 
l ist operations on anonymous data 

in ,  69-77 
local data in ,  8 1  
modules in,  45 , 47, 84-85 
multiple assignments in ,  48 
named data structures of, 47, 66-69 



, 

400 Index 

outer syntax of, 45-77 

outer syntax control stru ctures of, 

46-58 

outer syntax data structures of, 47, 

66-77 

ou ter syntax system structures of, 

47, 79-85 

parameter l ists i n ,  80 

parsing control stru ctures of, 60-64 

passed data in ,  8 1  

predicates in ,  85 

procedures in, 47, 79-83 

program segments in ,  80 

queue data structure of, 47, 7 1  

record data structure of, 47 , 68-69 

scalar data structure of, 47 , 66-67 

segment hierarchies in ,  80 

sequence control structure of, 46 , 

48-50 

sequence data structure of, 47 , 72-

75 

set data structure of, 47 , 7 1 -72 , 76-

77 

stack data structure of, 47 , 70-7 1 

stored data in ,  83 

subrange types of, 87-88 

table data structure of, 76-77 

type assignments in ,  88 

whiledo control structure of, 47 , 

55-56 

Program constructi on plan , 3 1 5 

Program documentati on. See Logical 

commentary; Process Design 

Langu age 

Program equ i valence, 1 09- 1 1 0  

Program fragment , 49 

Program fu ncti ons , in correctness 

questions, 227-229 

in Correctness Theorem , 22 1 -226 

definition of, 1 04 

deri vati on by induction in fordo 

proofs,  249-252 

deri vation by trace tables , 234-237 , 

243-248 

deri vation from invariant for 

whiledo, 287 

in determining program 

equ i valence , 1 09 

in formal program proofs , 256-278 

in fu nction expansion , 306 

i llustrations of, 1 05- 1 09 

in I teration Recursion Lemma, 2 1 9-

22 1 

logical commentary for recording, 

1 62- 1 7 1  

of prime programs ,  I 1 6- 1  1 7  

i n  program reading, writi ng and 

val idation , 2 14-2 1 7  

proofs b y  direct asserti on about, 

252-255 

reading programs to discover, 1 5 1 -

1 58 ,  1 7 1 - 1 76, 192-203 

in using verification in design , 306-

3 1 3  

Program parsing, 62-66 

Program segments. See also Process 

Design Language , program 

segments in 

organizing program into h ierarch y 

of, 1 92 

relation to logical commentary , 1 7 1  

relation to prime parse trees , 1 8 8 ,  

204 

in top-down programming, 32 1 -322 

Program stru cturing, 1 1 8-- 1 44 

Program stubs, 32 1 -322 

Program termination, 1 04 , 2 1 8-229, 

232, 259 , 26 1 ,  263 , 266 , 272 

Program testing, 1 -2 ,  1 3  

Program validation , 1 49 ,  2 1 4 

Proper programs ,  94, 97 , I 1 2  

Proper subprograms, 97 

Proposition form , 22 

Propositional calcul us, 1 9-2 1 

Propositional func tion , 22 

Propositional quantifiers, 22 

Range of a relation, 26 

Reading structured programs ,  

correctness verification i n, 2 1 4 

moti vation and approach ,  1 47- 1 48 



reading by stepwise abstraction, 
1 54- 1 58 ,  1 7 1- 1 76, 1 92-203 

reading prime programs , 1 5 1 - 1 53 
Recursion structure programs , 1 23-

1 26, 1 37- 144,  1 88 
Recursive equations ,  in proving 

looping programs correct, 2 19-
220 

Recurs ive functions , as basis for 
rigorous design , 9, 352, 355-373 , 
387-394 

description of, 29-3 1 
Recursive rules, 30 
Reflexive functions, 28 
Reflexive relations, 26 
Regular expressions, 39-42 
Regular grammar, 39 
Relations, 26-27 
Rigorous program design , 9, 35 1 -352, 

355-373 , 387-394 
Rule of fi ve ,  1 7  
Rules for functions, 27-29, 47 

Sequence control structure ,  
abstraction of, in  reading, 1 5 1-
1 52 

correctness proof syntax for ,  23 1 
correctness question for, 227 
Correctness Theorem for, 222 
logical commentary for, 58, 1 65 
in PDL, 46, 48-50 
as prime program, 1 1 5 
program function of, 1 1 6 
Sequence Formula, 292-295 

Set bu ilder notation , 24 
Set membership, 24 
Sets, 24-26 
Simplicity in program design , 10  
S ingle entry-single exit control 

structures, 60 , 92 , 94 , 1 40 
Software reliabil ity, des ign as basis 

of, 1 3  
State machines,  as basis for rigorous 

design , 9, 352 
description of, 32 
relation to modules, 47 , 83-84 

Index 401 

Status comments . See also Logical 
commentary 

derived from loop invariants ,  286 
Stepwise abstraction .  See 

Abstractions in  program reading; 
Reading structured programs 

Stepwise refinement , of design 
abstractions, 333 

as programming strategy, 3 1 4-320 
rewriting in, 3 1 5 
rigor in ,  3 1 5  
role of segments in ,  32 1 
in stepwise reorganization , 323 
in top-down programming, 32 1  

Stepwise reorganization, correctness 
proving in, 324 

as programming strategy , 322-33 1 
stepwise refinement in ,  323 

Strings , 33 
Structure Theorem, improved proof 

construction, 1 23- 1 26 
proof of, 1 1 8- 1 1 9 
statement of, 1 1 8 

Structured i slands in a flowchart , 1 37-
1 39 

Structured programs ,  relation to good 
design , 9- 1 0  

Structuring unstructured programs . 
See Program structuring; 
Structure Theorem 

Subsets , 24 
Sufficient correctness , alternate form 

of, 226 
in  Correctness Theorem, 222-226 
definition of, 2 1 4-2 1 5  
a s  guide t o  program design, 307-3 1 3  
in proof of large loop-free primes , 

273 
Symmetric relations, 27 
Syntax diagrams , 39 

Top-down structured programming, 
design validation by, I I 

program stubs in , 3 2 1 -322 
as programming strategy , 32 1-322 
segments in, 32 1 -322 



r 
402 I ndex 

subspecifications in , 32 1 -322 

testing in,  322 

Trace tables,  case-structured , 243-

248 , 273-278 

definition of, 234-235 

partial form for, 236-237 

u se in correctness proofs , 235-237, 

257-277 

Transition functions of state 

machines, 32 

Transiti ve relations,  27 

Transpose , of a fu ncti on, 28-29 

of a relation,  27 

Tree structures,  of PDL control 

structures , 64-66 

of prime program parse, 1 88 

of program segments , 32 1 

of recursi ve functions , 357-360 

of segmented prime program parse , 

204 

Truth tables, 20 

U nion , of functions, 28 

of set s ,  24 

Uni versal quantifier, 22 

Values,  of functions, 28 

of relations, 26 

Whiledo control structure ,  abstraction 

of i n  readi ng, 1 53 

correctness question for, 228-229 

Correctness Theorem for, 223 

deriving final status com ment for, 

28 1 ,  286 

deri v i ng invariant for, 283-287 

invariant stat u s  comment for, 280 

I nvariant Status Theorem for,  282 

Iteration Recursion Lemma for, 220 

logical commentary for, 59-60, 1 69 

in PDL, 47 , 55-56 

as prime program, 1 1 5 

program function of, 1 1 6 

proof syntax for, 232 

Whiledo E xistence Theorem , 296-

297 

Whiledo Formula, 295-300 

Whiledo Predicate Lemma, 296 

Whiledo Existe nce Theorem, proof 

of, 296-297 

statement of, 296 

Whiledo Predicate Lemma , proof of, 

296 

statement of, 296 

Wilkes, M. V . ,  45 

Writing good E ngli sh , 1 5- 1 9 

Writing structured programs, 

correctness verification in,  2 1 4, 

306-3 1 3  

detail ing vs.  design i n ,  333-35 1 

fu nction expansion in , 304-306 

heuristics v s .  rigor in, 35 1 -394 

logical commentary in,  3 1 3-3 1 4  

strategies for, 3 1 4-33 1 


	Structured Programming: Theory and Practice
	Recommended Citation


