
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

The Harlan D. Mills Collection Science Alliance

1979

Structured Programming: Theory and Practice Structured Programming: Theory and Practice

Richard C. Linger

Harlan D. Mills

Bernard I. Witt

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Linger, Richard C.; Mills, Harlan D.; and Witt, Bernard I., "Structured Programming: Theory and Practice"
(1979). The Harlan D. Mills Collection.
https://trace.tennessee.edu/utk_harlan/9

This Book is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

Structured
Programming:

Theory
and Practice

RICHARD C. LINGER
HARLAN D. MILLS
BERNARD I. WITT
IBM Corporation

.J:. ADDISON· WESLEY PUBLISHING COMPANY
Reading, Massachusetts • Menlo Park, California
London • Amsterdam • Don Mills, Ontario • Sydney

Library of Congress Cataloging in Publication Data

Linger, R C 1941-
Structured programming.

(The Systems programming series)
1. Structured programming. I.

Harlan D., 1919- joint author.
Bernard I., 1929- joint author.
QA76.6.L55 001.6'42
ISBN 0-201-14461-1

Mills,
II. Witt,

III. Title.
78-18641

Copyright © 1979 by Addison-Wesley Publishing Company, Inc. Philippines copyright
1979 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in
the United States of America. Published simultaneously in Canada. Library of Congress
Catalog Card No. 78-18641.
ISBN: 0-201-14461-1
11 12 13 14 15 16 17 18 19 20 HA 9594939291

To Juyne
Lolly
Carol

THE SYSTEMS PROGRAMMING SERIES

*The Program Development Process

Part I-The Individual Programmer

The Program Development Process
Part I I-The Programming Team

*The Structure and Design of Program

ming Languages

Mathematical Background of

Programming

*Structured Programming: Theory

and Practice

Joel D. Aron

Joel D. Aron

John E. Nicholls

Frank Beckman

Richard C. Linger

Harlan D. Mills

Bernard I. Witt

*The Environ ment for Systems Programs Frederic G. Withington

Coded Character Sets; History and

Development Charles E . Mackenzie

*An Introduction To Database Systems,

Second Edition

Interactive Computer Graphics

*Sorting and Sort S ystems

*Compi ler Design Theory

*Communications Architecture for

Distributed Systems

*Recursive Programming Techniques

Concept ual Structures: Information

Processing in Mind and Machines

*Modeling and Analysis: An Introduc

tion to System Performance Evalua

tion Methodology

*Published

IBM EDITORIAL BOARD

Joel D. Aron

Richard P. Case, Chairman

Gerhard Chroust

Robert H . Glaser

James P. Morrisse y

George Radin

David Sayre

Heinz Zemanek

C. J. Date

James Foley
Andries Van Dam

Harold Lorin

Philip M. Lewis II

Daniel J. Rosenkrantz

Richard E. Stearns

R. J. C-ypser

William Burge

John F. Sowa

Hisashi Kobayashi

Charles L. Gold William B. Gruener (Addison-Wesley)
Paul S. Herwitz

Foreword

The field of systems programming primarily grew out of the efforts of
many programmers and managers whose creative energy went into pro
ducing practical, utilitarian systems programs needed by the rapidly grow
ing computer industry. Programming was practiced as an art where each
programmer invented his own solutions to problems with little guidance
beyond that provided by his immediate associates. In 1968, the late
Ascher Opler, then at IBM, recognized that it was necessary to bring
programming knowledge together in a form that would be accessible to all
systems programmers. Surveying the state of the art, he decided that
enough useful material existed to justify a significant publication effort.
On his recommendation, IBM decided to sponsor The Systems Pro
gramming Series as a long term project to collect, organize, and publish
principles and techniques that would have lasting value throughout the
industry.

The Series consists of an open-ended collection of text-reference
books. The contents of each book represent the individual author's view
of the subject area and do not necessarily reflect the views of the IBM
Corporation. Each is organized for course use but is detailed enough for
reference. Further, the Series is organized in three levels: broad introduc
tory material in the foundation volumes, more specialized material in the
software volumes, and very specialized theory in the computer science
volumes. As such, the Series meets the needs of the novice, the experi
enced programmer, and the computer scientist.

The Editorial Board

v

Preface

THE MATHEMATICAL CHARACTER OF SOFTWARE

The objective of this book is to show practicing programming profes

sionals how to be more powerful, how to design more reliable and effi

cient software by the use of systematic methods of program analysis and

synthesis. The central theme of these IVethods is the mathematical cor
rectness of programs. There are two important by-products of this theme;

namely, 1) the discipline of mathematical correctness provides a check

and balance for the free and creative inventions that are so necessary in

software design, and 2) the ability to create logically correct designs can
be parlayed into actual programs that require little or no debugging. Since

debugging is the most error prone and expensive activity in software

development, its sharp reduction leads to more reliability and productiv

ity simultaneously. The additional intellectual control of the design proc

ess allows more concentration on questions of software efficiency, and

more capability for tuning program designs with execution experience.

Software began as an afterthought to hardware, and as long as hard

ware was small and simple, software could be handled informally by

scientifically trained people as a by-product of the use intended for the

hardware. As hardware grew in size and complexity, richer software

possibilities emerged and software specialists appeared, to produce in

ventions such as assemblers, compilers, operating systems, and data

management systems. Although there was an early recognition of math

ematical ideas in computing, for example, in mathematical logic, linguis

tics, and automata theory, the approach of most software specialists was

vii

viii Preface

pragmatic rather than mathematical. Thus, although it may seem sur
prising, the rediscovery of software as a form of mathematics in a deep
and literal sense is just beginning to penetrate university research and
teaching, as well as industry and government practices. The forcing
factor in this rediscovery has been the growth of software complexity,
and the inability of informal software practices and management to cope
with the complexity of today's challenges in software.

Of course, software is a special form of mathematics, with totally
new demands in the sheer volume of logical precision required in its
application. A single software project may occupy hundreds, even thou
sands, of people over several years, so that unique requirements exist
for documentation, communication, and management of the develop
ment. These unique requirements lead to almost all of the jargon in
software and, in fact, this jargon tends to obscure the mathematical
character of software, as people get caught up in implementation and
management details. But not understanding this mathematical character
leads to an overly complex, ad hoc view of software based on historical
and accidental ideas, which are often reinvented in ignorance and haste.

The work of E. W. Dijkstra and C. A. R. Hoare has been a major
force in this rediscovery of software as mathematics. t Dijkstra has given
an argument that sums up the case we want to make here::j:

As soon as programming emerges as a battle against unmastered
complexity, it is quite natural that one turns to that mental discipline
whose main purpose has been for centuries to apply effective struc
turing to otherwise unmastered complexity. That mental dis.cipline
is more or less familiar to all of us, it is called Mathematics. If we
take the existence of the impressive body of Mathematics as the
experimental evidence for the opinion that for the human mind the
mathematical method is indeed the most effective way to come to
grips with complexity, we have no choice any longer: we should
reshape our field of programming in such a way that, the mathema
tician's methods become equally applicable to our programming
problems, for there are no other means.

t See, for example,
O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming (Lon
don and New York, Academic Press) 1972: and C. A. R. Hoare, "An Axiomatic
Basis for Computer Programming," Communications of the ACM. vol. 12, no.
10 (October 1969): pp. 576-583.

:j: E. W. Dijkstra, "On a Methodology of Design," MC-25 Informatica sympo
sium, MC Tract 37, Mathematisch Centrum, Amsterdam, Holland, 1971: pp. 4.1-
4.10.

MENTAL WEIGHT LIFTING

Preface ix

Fifty years ago swimming champions were products of long hours of
swimming practice-swimming and swimming and swimming. But these
days, when the varsity swimming team assembles in the fall, emphasis
is also placed on running and weight lifting to build stamina and muscles
more effectively.

There is a similar lesson to learn in programming. A previous gen
eration of programmers learned by programming and programming and
programming-sometimes this led to one year of experience repeated ten
times, rather than ten years of experience. For this reason, we will stress
mental weight lifting for programming that develops capabilities for pre
cise logical expression. Precise logical expression requires a discipline of
thought that is invaluable in programming but that is easily bypassed in
simple programming problems through ignorance or intent. In either case,
the result is frustration and inability in more complex programming prob
lems because of simple lessons bypassed.

We all learned in elementary mathematics courses that it wasn't
enough just to get the right answers if we couldn't show how we got
them. There was good reason: Though we might guess the answers on
simple problems, we won't be able to do so on complex ones. But a
systematic process for getting answers to simple problems will scale up
to the complex ones. Structured programming provides a systematic
process for creating correct programs, but the steps require mental pre
cision rather than clever guesses. There is still room and reason for
insight and ingenuity, but they should be addressed to the strategy of
programming and not to its mechanics.

ABOUT THIS BOOK
This book is organized into seven chapters. Chapters 1 through 3 deal
with context-setting, and concepts and notation for precise communica
tion in the software development process. Chapter 4 defines key mathe
matical properties of programs, which are elaborated and applied to
program reading, program verification, and program writing in Chapters
5, 6, and 7, respectively.

Chapter 1 introduces the idea of programs as mathematical objects
whose correctness is subject to rules of logic and reason. A central thesis
is that, by applying tJ:te principles of structured programming and its
mathematics, programmers can expect to consistently write error-free
programs. The chapter concludes with a discussion of the need for con
ceptual integrity and rigor in program design. Chapter 2 summarizes
principles of logical expression, both in writing good English and in the

x Preface

use of mathematical logic, sets, functions, and grammars. Effective log
ical expression is essential for precise communication in software devel
opment. A process design language (PDL) is introduced in Chapter 3 as
a means for precise expression of program designs. PDL is composed of
a prescribed outer syntax of control, data, and system structures with
important mathematical properties, and a flexible inner syntax of opera
tions and tests.

Chapter 4 introduces a particular understanding of program designs
in PDL as expressions in an algebra of functions. Such an approach
permits mathematical rigor and precision in the design and development
of software systems of any size. In the Structure Theorem, a small set
of PDL control structures is shown to be sufficient to represent the logic
of any arbitrarily complex program, and the concept of a structured
program is defined. The proof of the Structure Theorem prescribes a
methodology for converting any arbitrary program into a structured pro
gram.

We believe that the quality and clarity of one's own writing, whether
for programs or prose, benefits from critical analysis of the works of
others, and so in this book we introduce principles of program reading
before program writing. In Chapter 5, function concepts are used to
develop systematic reading and documentation techniques for structured
programs, which are applied in a case study to the analysis of a published
program.

Chapter 6 develops a function-theoretic basis for the correctness of
structured programs. Correctness verification of loop-free programs is
carried out by case analysis and substitution, and the Iteration-Recursion
Lemma is introduced to reduce the verification of looping programs to
the verification of loop-free programs. The Correctness Theorem sum
marizes verification requirements for the structures of PDL, and both
formal and informal proof techniques are shown. The Invariant Status
Theorem gives a systematic means for deriving loop invariants, and an
alternate proof technique based on invariants is descfibed. Finally, the
oretical techniques for the derivation of structured programs are defined,
for insight into the program design process.

Chapter 7 describes function-based techniques for designing struc
tured programs. A central theme is the need to keep complexity intellec
tually manageable in program design. The processes of stepwise refine
ment and stepwise reorganization are illustrated as means to limit
complexity, by localizing design decisions and correctness arguments.
The chapter concludes with case studies of the critical differences be
tween program detailing and program design, and between heuristic and
rigorous design methods.

TO THE READER

Preface xi

Writing this book has been an adventure of some duration, during which
time we have come to entirely new understandings about both the subject
matter and effective means for teaching it. We have not exhausted either
of these topics, so what is here is a summing up for now. But we do
have the conviction that the subject matter is deep; we have observed
that it gives people new power to deal with complexity in software design.
This new power is crucial because, with the advent of structured pro
gramming, the standards of achievement have changed radically, just as
the standards for doing engineering changed with the introduction of
calculus.

This book is dedicated first to the new programmer beginning a
professional career in software engineering, who already knows how to
program computers and presumably has been well taught in structured
programming from the beginning. But a beginning programmer needs a
deeper foundation to cope with pressures that lie ahead-pressures from
the complexities of ill-defined problems and poorly conceived software
development tools, and most of all, pressures from large-scale, difficult
deadline projects. All of these pressures will cry out for shortcuts and
compromises. But many of these siren calls are pitfalls that lead to more
difficulties and frustrations than can be imagined. Without strong inner
discipline, based on a deep understanding of how to deal with massive
logical designs and their complexities, the best of intentions and tech
niques are soon swamped. So take heed. This boo� begins with elemen
tary notions, but just knowing about them is not enough; it is necessary
to know them deeply and to understand their relation to the practice of
large-scale logical design.

This book is also dedicated to the professional development of those
more-experienced programmers who have already made or are about to
make the transition to structured programming. The motivation for going
to structured programming is easy to see with a healthy firsthand appre
ciation for the complexities and frustrations of sizable programming proj
ects. A new look at the very foundations of programming discipline can
help experienced programmers to recognize opportunities for simplifi
cation and rigor in such large and complex projects,

Finally, this book is dedicated to programming managers. The man
agement of programming projects is a difficult and rewarding job. But the
lack of sound technical direction is as disastrous as the lack of good
organization or personnel motivation in programming management. This
book can help with the technical part of the management problem. We
believe it is vital that management be sensitive about the need to simplify
requirements and the need for adequate time to develop conceptually

xii Preface

sound designs. We also believe it is vital that management be well in
formed about technical problems and that managers be at ease with the
language of the problem-solvers. Programmers should know more than
this book covers in programming, and managers should know more than
this book covers in strategies for system development. What this book
does promote is a common methodology for precise communication be
tween programmers and managers. For in the final analysis, there is no
such thing as technical or management communication, oTlly human com
munication.

ACKNOWLEDGEMENTS
We have benefitted from the encouragement and helpful suggestions of
many people in writing this book. We wish especially to thank the fol
lowing people for their valuable comments: Joel Aron, Terry Baker,
Victor Basili, Richard Case, Jeffrey Gishen, David Gries, Matthew
Hecht, Roy Maddux, Matthew Perriens, and K. S. Shankar. It is also
our pleasure to acknowledge Penny Troutman, who did the major share
of typing on the manuscript, as well as the typing support provided by
Sharon Deason, Carolyn Duter, Sonja Ouellette, Debbie Shraga, and
Sharon Warren. Finally" we are grateful_to IBM for allowing much of
the work on the book to be done using company time and resources. We
emphasize, �owever, that the views expressed are our own and in no
way constitute an official statement on the part of IBM.

Gaithersburg, Maryland
February 1979

R. C. L.
H. D. M.

B. I. W.

Contents

CHAPTER 1
PRECISION PROGRAMMING

I. 1 Programming in the Small . 1
1.2 Programming in the Large 7

CHAPTER 2
ELEMENTS OF LOGICAL EXPRESSION

2.1 Overview 1 5
2.2 Good English 1 5
2.3 Formal Logic 19
2.4 Sets and Functions . 24
2.5 Lists and Strings . 33
2.6 Related Reading . 42

CHAPTER 3
ELEMENTS OF PROGRAM EXPRESSION

3.1 Overview . 45
3.2 Process Design Language . 45
3.3 Outer Syntax Control Structures 48
3.4 Outer Synta� Data Structures . 66
3.5 Outer Syntax System Structures. 79
3.6 I nner Syntax . 85

�
\'

xiv Contents

CHAPTER 4

STRUCTURED PROGRAMS

4. I Overview 91

4.2 Program Execution. 92

4.3 Program Functions. .. 102

4.4 Program Structures 112

4.5 A Case Study in Program Structuring 127

CHAPTER 5
READING STRUCTURED PROGRAMS

5.1 Overview 14 7

5.2 Reading Fundamentals , " '" 14 7

5.3 Logical Commentary in Structured Programs 16 2

5.4 A Case Study in Program Reading . 17 8

CHAPTER 6
THE CORRECTNESS OF STRUCTURED PROGRAMS

6. I Overview 213

6.2 Verifying Structured Programs 214

6.3 The Correctness of Prime Programs. .. 218

6.4 Techniques for Proving Program Correctness , 234

6.5 Examples of Program Verification 25 6

6.6 Loop Invariants in Correctness Proofs 280

6.7 Formulas for Correct Structured Programs 287

CHAPTER 7
WRITING STRUCTURED PROGRAMS

7.1 Overview 301

7.2 Writing Fundamentals.. 301

7.3 Programming Strategies 314

7.4 A Case Study in Detailing and Design: Long Division. 333

7.5 A Case Study in Heuristics and Rigor: Making Change. 35 1

7.6 Another Case Study in Heuristics and Rigor: Tic Tac Toe 37 3

INDEX 395

1
Precision

Programming

1 .1 PROG RAM M I N G I N T H E S M ALL

1 .1 .1 H ow to Write Co rrect Prog rams and Know It

There is an old myth about programming today, and there is a new reality.
The old myth is that programming must be an error prone, cut-and-try
process of frustration and anxiety. The new reality is that you can learn to
consistently design and write programs that are correct from the beginning
and that prove to be error free in their testing and subsequent use.
By practicing principles of structured programming and its mathema

tics, you should be able to write correct programs and convince yourself and
others that they are correct by logic and reason, rather than by trial and
error. Your programs should ordinarily execute properly the first time you
try them, and from then on. If you are a professional programmer, errors in
program logic should be extremely rare, because you can prevent them from
entering your programs by positive action on your part. Programs do not
acquire bugs as people do germs-just by being around other buggy pro
grams. They acquire bugs only from their authors.
There is a simple reason why you should commit yourself to writing

programs that are free of errors from the very start. It is that you will never
be able to establish that a program has no errors in it by testing. Since there
is no way to be certain that you have found the last error, your real oppor
tunity to gain confidence in a program is to never find the first error. The
ultimate faith you can have in one of your programs is in the thought
process that created it. With every error you find in testing and use, that faith
is undermined. Even if you have found the last error left in your program,
you cannot be certain it is the last one.

1

2 Preci sion Prog ra m m i ng

Now the new reality is that ordinary programmers, with ordinary care,
can learn to write programs which are error free from their inception. Just
knowing that this is possible is half the battle. Learning how to write such
programs is the other half. And gaining experience in writing correct pro
grams, small ones at first, then larger ones, provides a new psychological
basis for sustained concentration in programming that is difficult to appre
ciate without direct personal experience.

It will be difficult (but not impossible) to achieve no first error in a
thousand-line program. But, with theory and discipline, it will not be
difficult to achieve no first error in a fifty-line program nine times in ten. The
methods of structured programming will permit you to write that thousand
line program in twenty steps of fifty lines each, not as separate subprograms,
but as a continuously expanding and executing partial program. If eighteen
of those twenty steps have no first error, and the other two are readily
corrected, you can have very high confidence in the resulting thousand-line
program.

The basis for this new precision in programming is neither human infal
libility, nor being more careful, nor trying harder. The basis is understanding
programs as mathematical objects that are subject to logic and reason, and
rules for orderly combination (whether a program operates in numbers, text,
or whatever). People still make mistakes doing mathematical reasoning,
because people are fallible. But they make fewer mistakes, and they can
check each other's work, to let even fewer mistakes through. The result is
enough added precision in reasoning and communication to change pro
gramming from a cut-and-try ad hoc process to an orderly technical process.

1.1.2 What Is a Correct Prog ram?

A correct program defines a procedure for a stated processor to satisfy a
stated specification. Programs may require changes or corrections from
three kinds of difficulties :

1. Specification changes

2. Programming errors

3. Processor discrepancies

By processor we mean any complex of hardware and software that con
verts programs into their executions, through compiling, assembling, and so
forth, as necessary.

If you don't know what a program is supposed to do or don't know how
the processor is supposed to work, then you can't write a correct program.
So we presume a known specification and a known processor throughout.
Even so, a practicing programmer must be prepared to deal with incomplete

1.1 Programming in the Small 3

and changing specifications and with processors that do not behave the way
their software/hardware manuals say. For these external difficulties we have
no simple remedy. But a radical reduction in programming errors can help

isolate difficulties in the other areas. Nevertheless, the usual experience in

programming often fails to separate these three sources of difficulty, so that
programming errors-lumped in with everything else-seem much more
inevitable than they really are. And the logical precision you develop as a
professional programmer serves well to improve your skills in recognizing
the need for, and in developing, good specifications, and in being able to
read, understand, and anticipate difficulties in processor descriptions.

Writing correct programs does not mean that programs can be written
once and for all. It means that they can be written to do exactly what is
intended of them. But as intentions change, program changes are required as
well. The same opportunities and principles apply to the program changes ; if
programs are well designed and explained, you should be able to modify
them correctly as well as to write them correctly to begin with.

1.1.3 Proofs of Prog ra m Co rrectness

It is possible for professional programmers, with sufficient care and concen
tration, to consistently write correct programs by applying the mathematical
principles of structured programming. Those same principles also permit
mathematical proofs of program correctness to be carried out to any desired
degree of rigor, both during and after program construction.

A mathematical proof is an agenda for a repeatable experiment, just as
an experiment in a physics or chemistry laboratory. But the main subject in
each experiment is another person instead of physical objects or material.
The intended result of the experimenter is a sUbjective conviction on the part
of the other person that a given logical hypothesis leads to a given logical
conclusion. The experiment may be carried out in a conversation, or collec
tively in a lecture, or in writing. A successful experiment ends in a sUbjective
conviction by a listener or reader that the hypothesis implies the conclusion.
The conviction may be incorrect either in accepting a logical falsity or in
rejecting a logical verity. The conviction may be correct, but based on faulty
reasoning. As noted, any human fal libility may be present because reasoning
is a human activity ; that is, an agreement that a proof is correct and the
actual correctness of the proof are two quite independent things.

The conversation deals with a proof that the hypothesis leads to the
conclusion. The proof may consist of a single claim; "It is obvious," or a
sequence of such claims for a succession of intermediate conclusions, each of
which may serve as a hypothesis for a later conclusion. But in the final
analysis no other claim less than "It is obvious" is possible, because if one

4 Precision Programming

starts to explain why "It is obvious," the explanation must lead finally to a
new sub-sequence of such claims, "It is obvious," and so on. At each claim,
the subject agrees or disagrees; in the first case the experiment continues,
and in the second case the experiment terminates.

Mathematical notation plays no role in the proof, except in its effect on
the person who is the experimental subject. What mathematical notation
does is facilitate human communication and memory. It permits a succes
sion of claims to be stated and agreed to rapidly, so that more ground can be
covered for the same human effort. Mathematics also permits a person,
using pencil and paper, to extend his memory for details (e.g., doing long
division or simplifying an algebraic expression). It even permits humans to
agree on rules for agreeing about proof claims (as in mathematical logic). In
fact, the computer is itself another way of extending human effort in proof
activities, with agreed rules of proof to be used in automatic theorem
proving programs.

What is a convincing proof? Clearly that depends on the person who is
the experimental subject. There are many alternative conversations possible
about the same hypothesis and conclusion. If there are too few steps, the leap
in intuition may be too large. But if there are too many steps, human
exhaustion or lack of interest may set in. So there is a balance needed. But it
is a typically human problem whose resolution requires human experience
and judgment.

Why bother with mathematics at all, if it only leads to subjective convic
tions? Because that is the only kind of reasoned conviction possible, and
because the principal experimental subject who examines your program
proofs is yourself! Mathematics provides language and procedure for your
own peace of mind.

1.1.4 An Intuitive Approach to Program Correctness

In a small example below, we prove the correctness of a program in
flowchart form, using direct analysis and deduction. We call the approach
intuitive because it deals directly with program operations and does not
exploit the algebraic properties of structured programs. In Chapter 6, we
develop a function-theoretic approach to program correctness that utilizes
these algebraic properties, but our objective here is simply to show that a
proof of program correctness is possible in concrete terms.

Consider a program that is required to find the integer part of the
square root, say y, of a given integer, say x, as diagrammed in Fig. 1.1. (Note
that the proof method is by no means restricted to numerical problems.) First,
the specification of the program needs to be stated precisely, as shown by
the logical conditions attached to its entry and exit lines. The entry condi-

1.1 Programming in the Small 5

� • • • [x �O]

Figure 1.1

�
t . . . [x unchanged and y2 � X < (y + 1)2]

tion requires that x be zero or positive, so this particular program will not
have to cope with negative values of x. The exit condition requires that y be
the greatest integer equal to or less than the square root of x, and also that x

be unchanged. A more general program may be required to handle any value
for x, but its exit condition would merely be more complicated, and make
the illustration longer.

A simple program that purports to satisfy this specification by succes
sive incrementing is given in Fig. 1.2 (read y: = y + 1 as "y is assigned the
value y + 1 "). Some trial and error may have gone into its invention, but an
examination of initial x values 0, 1, 2, 4, 5, 9, . . . seems to indicate that the
program is correct. However, examining (and testing) such cases usually
cannot be done exhaustively, and a more general approach is needed.

Figure 1.2

Logical entry/exit conditions can now be derived for every line in the
flowchart of Fig. 1.2. After some logical invention (how is discussed later, in
Chapter 6) the annotated flowchart shown in Fig. 1.3 results, where the
conditions have been given short names for ease of discussion. It can now be
proved that this whole set of conditions will necessarily be satisfied if only
the single condition in:[x 2: 0] (read "in, defined as x 2: 0") is satisfied.

6 Precision Programming

. . . in : [x � 0)

sqrt

yes: [(y + 1)2 � x)

. . . cant: [y2 � x)

. • . out: [x unchanged and y2 � X < (y + 1)2)

Figure 1.3

Therefore, in particular, the program will correctly compute values for x and
y that satisfy the out condition, the specification of the program. The proof
will consist of a subproof for each condition except in : [x � 0], which is
assumed. The sequence of subproofs is immaterial. It is sufficient to ensure
that every condition is ultimately proved, assuming the truth of the im
mediately prior conditions in the flowchart. Thus, we state each condition
followed by a proof argument :

1. init:[x � 0 and y = 0]

The entry condition in: [x � 0] gives the first part, and y has just been
set to zero, giving the second part. Therefore, init: [x � 0 and y = 0] is
satisfied.

2. loop: [y2 � x]

The condition loop is entered either from init: [x � 0 and y = 0] in
which case loop is satisfied directly, or from the condition cont:[y2 � x],
which is identical to loop. Therefore, loop:[y2 � x] is satisfied in either
case.

3. cont: [y2 � x]

The condition cont is the exit condition when y is set to y + 1 with entry
condition yes:[(y + 1)2 � x], so y2 � x (after y is set to y + 1), and
cont: [y2 � x] is satisfied.

4. yes:[(y + 1)2 � x]

The test (y + 1)2 � x has just been passed successfully.

5. out : [x unchanged and y2 � X < (y + 1)2]

1.2 Programm i ng in the Large 7

First, an examination of the entire program shows that x is reset
nowhere, and must therefore be unchanged. Second, the test
(y + 1)2 � x has just failed, so therefore (y + 1)2 > x. Finally, the entry
condition loop: [y2 � x] for the test must still hold. The last two condi
tions can be combined into y2 � X < (y + 1)2. Therefore, condition out
is satisfied.

The foregoing is a proof of correctness for the program, given its
specification. It shows that the program will compute the correct output
whenever it terminates. That the program does terminate can be seen by
noting that y is incremented by 1 each time through the loop, and the loop
test must eventually fail.
In this example, a key logical invention is condition 2, loop : [y2 � x],

which holds every time the loop is entered (reentered). It is called an "invar
iant condition" and serves as a keystone-all of the other conditions can be
derived by direct rules of reasoning from in: [x � 0] and loop : [y2 � x] (once
loop:[y2 � x] has been invented). For simple programs the invention of
invariant conditions can often be done by inspection of operations. For
more complex programs a systematic approach is required, as described in
Chapter 6. But Chapter 6 goes beyond these ideas, to develop a theory of
program correctness based on hierarchies of mathematical functions, for
which invariant conditions are simply not required.

1 .2 PR O G R A M M I N G I N T H E LA R G E

1 .2 .1 Conceptual Integ rity

The principal lesson of the past 25 years of programming is that software
development is more difficult than it appeared to be at the outset. Without a
clean and compelling design, a large software system soon becomes a jumble
of confusion and frustration. Local details may be easily understood and
checked, but the system gets beyond intellectual control anyway.
Fred Brooks, in The M yt hical M an-Month : Essays on Software Engineer

ing, states that "conceptual integrity is the most important consideration in
system design" [po 42] and backs it up with a dramatic recollection of his
experience in managing the development of OSj360, as follows [pp. 47-48]:
It is a very humbling experience to make a multimillion-dollar mistake,
but it is also very memorable. I vividly recall the night we decided how
to organize the actual writing of external specifications for OSj360. The
manager of architecture, the manager of control program implementa
tion, and I were threshing out the plan, schedule, and division of
responsibilities.

8 Preci sion Prog rammi ng

The architecture manager had 10 good men. He asserted that they
could write the specifications and do it right. It would take ten months,
three more than the schedule allowed.
The control program manager had 150 good men. He asserted that

they could prepare the specifications, with the architecture team coordi
nating; it would be well-done and practical, and he could do it on
schedule. Furthermore, if the architecture team did it, his 150 men
would sit twiddling their thumbs for ten months.
To this the architecture manager responded that if I gave the con

trol program team the responsibility, the result would not in fact be on
time, but would also be three months late, and of much lower quality. I
did, and it was. He was right on both counts. Moreover, the lack of
conceptual integrity made the system far more costly to build and
change, and I would estimate that it added a year to debugging time. t

1 .2.2 The Di fference Between H eu ristics a n d Ri go r

The principal basis for maintaining conceptual integrity in software develop
ment is rigorous design. It was imagined in the early days of software
development that heuristic designt methods were sufficient. Observation
and experience seemed to be reliable guides to design, and indeed, the pos
sibility of rigorous design l1?-ethods was hardly considered. After all, it
seemed a simple but tedious matter for clever people to think up all the data
processing pieces that had to be done and make sure that nothing was left
out. But the trouble is that such a heuristic design is usually difficult, and
often virtually impossible, to prove correct. As Brooks points out, we now
know better.
In order to visualize the devastation of heuristic design, imagine an

important, much used, program that almost always works-the trouble is in
"almost always." Such a program must be patched as errors are reported,
and the patches patched, and so on, until its logic scarcely resembles the
original article. In fact, the program will become highly idiosyncratic, with
peculiarities that depend on the very sequence in which errors were
found-a different sequence would have led to a different program. This
error history may be prevented if designers are clever enough to foresee
all errors of a heuristic design before implementing and releasing the

t Frederick P. Brooks, The Mythical Man-Month: Essays on Software Engineering
(Reading, Mass. : Addison-Wesley, 1975).
t Note that heuristic design refers to design by trial and error, not to rigorous design
of heuristic programs, as found, for example, in automatic translation of natural
language.

1.2 Progra mming i n the Large 9

program. But the design will still be idiosyncratic, based on the imagined
error history.
In contrast, a rigorous design can be shown to be error free by its very

form, in self-evident arguments and proofs. A rigorous design may include the
form of a state machine that defines a closed set of system transitions, or a
recursive function that defines a search space, or perhaps a formal grammar
that defines all possible inputs and outputs for a program. But whatever the
logical form, a rigorous design is one that can be shown to be correct, before
getting into its implementation. A rigorous design will take more creativity
and thought than a heuristic one, but once created a rigorous design is more
stable. A rigorous design should survive its implementation, not be swamped
by it, and provide a framework for the intellectual control of changes to the
implementation as requirements change.
The difference between heuristics and rigor in design can be illustrated

in constructing a tic-tac-toe playing program. Anyone with a pad and pencil
can readily figure out what to do next in any situation. But listing all such
possibilities may be impractical. So the next step might be a heuristic
approach, based on introspection. The beginning of such a process
(oversimplified for illustration) might be "play in priority order, if possible,
center, any corner, any side." This will account for some reasonable moves
but will fail in many situations, and an analysis of these situations will
suggest additional criteria of play. But with each addition, a less obvious
situation may still lead to a failure. After many such additions, the program
may indeed be capable of perfect tic-tac-toe. But it will be difficult to prove,
except for an exhaustive analysis, which itself will be hard to prove complete.
As noted before, such a heuristically developed design, even though possibly
correct, will be highly idiosyncratic based on the history of imagined (or
real) failures encountered in play.
In Chapter 7, we contrast heuristic and rigorous designs for a change

making program and a tic-tac-toe program to illustrate this point in depth.

1 . 2 .3 Structu red Prog rams a n d Good Design

Structured programs are written for people to read and understand. At first,
they may seem a little more difficult to write than unstructured programs.
But a typical program uses up much more human effort being read than
being written (including being read by its author), so there is great value
indeed in producing readable structured programs. Readable programs are
beneficiaries of good design and good style-of good precise logical
expression.
Good design means finding a good solution to a problem that is often

10 Precision Programming

ill-defined. Therefore, there are usually two steps : (1) define a right problem,
and (2) invent a good solution. A few problems (very few) are so well known

and universal that a simple phrase will define them; for example, sort a

linear table, find the sum of a list of numbers. Most problems need to be

formulated more precisely, with respect to both what is to be done and what

logical resources are available. For example, finding a sum of a list of num

bers is one thing if an adder is available, another thing if an inner product
operation is available, and still another if only character operations are
available.

A structured program does not guarantee a good design. Structured
programming introduces the possibility of good design but not the necessity.
A good design provides a solution that is no more complex than the problem
it solves. A good design is based on deep simplicities, not on simple
mindedness. Usually, a good design is the last thing you think of, not the first
thing. A familiar example of an overcomplicated solution is the earth
centered description of the solar system. Two thousand years ago humans
attempted to explain the motion of the planets with epicycles. It took
another thousand years and much personal pain for people to put the sun at
the center and make the explanation much simpler thereby. The moral is
that if it took a thousand years for mankind's best and brightest to solve this
problem, one shouldn't feel badly about taking an extra hour to think harder
about a program design.

Good program design-finding deep simplicities in a complex logical
task-leads to work reduction. It can reduce a 500-line program that makes
sense line-by-line to 100 lines that make sense as a whole. Good design can
reduce a 50,OOO-line program impossible to code correctly to a 20,OOO-line
program that runs error free.

1.2.4 The Difference Between Detailing and Design

A computer program doesn't need its design-all it needs is its code. No
matter what lofty ideas went into the program, if the code is right, the
computer runs right. Since these facts are indisputable, it is small wonder
that program designs are usually regarded as stepping stones to executing
code-and throwaway stepping stones at that. There is only one difficulty
with this argument; although the logic is absolutely correct, no one is smart
enough to build large and complex programs that way without untold
trouble and frustration.

In fact, even though the term design is used in programming, the term
detailing is often more accurate. Detailing is writing a lot of details about
what programs have to do, what data formats are, how program parts
interact, and so on. Detailing is characterized by a preoccupation with partic-

1.2 Programming in the Large 11

ulars, tQ the exclusion of overall program structure and design. In contrast,
designing is a step-by-step expansion of a set of well-defined requirements
specifications into high-level, then successively lower-level, programs and
subspecifications, until the level of code is reached. A program design has a
hierarchical structure ; it can be viewed both vertically, from requirements
down to code, and horizontally, across the design at each level of detail.

Designing produces details, but detailing does not produce design.

One symptom of detailing, as opposed to design, is inflexibility. When

details reveal that a project schedule and budget are jeopardized, how easy is
it to subset requirements and assign new priorities to meet the challenge?
When details reveal that performance is jeopardized, how easily is reanalysis
undertaken? Are programming projects managed by working out moun
tains of details and just seeing how things come out? Or is systematic
redesign used to make development means and ends meet?

Another symptom of detailing, as opposed to design, is the system
integration crunch-the frustration of program parts not going together as
planned, along with the "last error" problem (a new "last error" every test
run). Program parts written from detailings are based on faith in human
infallibility, a notably risky proposition. The fixes undertaken in the integra
tion crunch bring new details and new idiosyncrasies not imagined in the
detailing. The more fixes, the more idiosyncratic and accidental the final
result becomes.

The final symptom of detailing is the maintenance of an idiosyncratic
system. The merit of the program is that it works most of the time. But
discovering why it doesn't work is a major detective story. In fact, one way
to solve difficult corrective maintenance is to stop using the unreliable
function-the ultimate solution is to stop using the program.

In Chapter 7, we illustrate the difference between detailing and design in
the construction of a program to do long division.

1.2.5 Design Val i dati on by Top- Down Development

The necessity of top-down development in large software systems is born out
of bitter experience with top-down design followed by bottom-up develop
ment. In bottom-up development, in which low-level code is written early
and system integration occurs late, poor design is often hidden until late in
integration, after much functional code has been written and tested only to
be discarded. Conversely, in top-down development, the control programs
that integrate functional code are written and tested first, and the functional
code is added progressively. In fact, the development proceeds on an in
cremental basis, level by level, with testing and integration accomplished

1 2 Preci sion Prog ra m m i ng

during the programming process rather than afterwards. At each level,
required common services and data are defined and developed within the
process as well.

In a software system, top-down development typically starts with a
logical design for the harmonious cooperation of several programs through
access to several shared data sets. For example, a financial information
system may include a file maintenance program, several data entry programs
(which produce transaction files for the file maintenance program), several
data retrieval/report programs that access the files, system usage and billing
programs, and so forth. Although each such program can be developed
top-down independently, top-down system testing requires cooperation be
tween them, for example, data entry programs providing input for the file
maintenance program, which in turn creates files for data retrieval
programs.

In retrospect, it is easy to see that the advantage of top-down develop
ment over bottom-up development is the advantage of a closed-loop feed
back process over an open-loop process. In a bottom-up development, the
programs are not tested as part of the final system until the end of develop
ment; in top-down development, they are tested in their system environment
right away. If there are design or programming errors, top-down develop
ment discovers them early, when freshly programmed and when the original
programmers are still on hand. But bottom-up development often leaves
errors undiscovered until integration time, when the original programmers
have often departed.

Top-down development is more difficult to design for than bottom-up
development, but the extra effort in design is made up in integration and
testing. The problem of design in top-down development is not only how the
final system will look, but also how the system under development will look
at every stage of its construction. Building a bridge illustrates the problem.
In designing a bridge on paper, a spanning girder can be drawn first, to hang
unattached until other members are drawn later to support it. But to ac
tually construct that same bridge, a construction plan is needed that allows
girders to be placed and pinned one by one in support of one another until
the bridge is completed.

Building a software system bottom-up is like building a paper bridge.
No construction plan is needed, only the final design, and everyone hopes it
all goes together as planned. If people were infallible, especially designers, no
construction plans would be needed.

Building a software system top-down is like building a real bridge.
Finding the proper tops is a significant technical task. A proper top is one
that executes as a partial system early in the development, and which pro
vides the basis for adding intermediate and final programs in a continuous
code/integrate/test iteration process.

1 . 2

1 . 2 .

It is
prol
ther
the
weI:

De5
con
rec1
mir
con
hig
10\\
des
tan
me
fie}
lev
pH

me
un
at
m�
ra1

1 . 2 Prog ramm i ng i n the la rge

1 . 2 .6 The Basis for Software Reliability Is

Design, Not Testing

1 3

It is well known that a software system cannot be made reliable by testing. If

programs are well designed in both data structure and control structure,

there is no contest between a programmer and a computer in finding errors ;

the programmer will win hands down. So the first defenses against errors are

well-designed programs and preventative proofing by authors themselves.
But effective design can do far more than make errors easy to discover.

Design can reduce the size of a system, reduce its interconnections, reduce the
complexity of its program specifications. In short, good design makes cor
rect systems possible out of correct programs. Since in structured program
ming every level of program development is conducted in identical terms (in
contrast to traditional descriptions of words at the top, code at the bottom),
high-level design can be scrutinized and critiqued for correctness as well as
low-level design. In fact, it is extremely cost effective to validate high-level
design before lower-level expansions proceed, rather than after. An impor
tant by-product of a design and validation process is traceability of require
ments in every level of the design. It is this traceability that gives the
flexibility to solve budget, schedule, or performance problems at the right
level in the design, without having to start all over with a new detailing
process.

A designer has the opportunity, using the top-down design and develop
ment discipline of structured programming, to keep the expanding design
under good intellectual control, to discover the deepest simplicities possible
at every level, step by step, before becoming swamped in a sea of details that
make the development problem one of memorizing accidentals and oddities
rather than one of clean logical design.

2
Elements of

Logical
Expression

2.1 OV E RVI EW

Programming is a specialized form of creative design in writing. At first
glance, it seems that programs need only be read and followed by machines
and that matters of taste and style are irrelevant. But quite the opposite is
true. Programs must be read and understood by people, as part of the
creation process and so that they can be trusted or modified to meet chang
ing needs. Ability in both English composition and mathematical descrip
tion is a critical requirement for good programming.

In this chapter we review some elements of English, mathematics, and
other means of logical expression. We first discuss good English because
much of your best thinking in programming will need to be expressed for
people rather than for machines. Principles for writing clear, concise English
are precisely those principles required for writing clear, concise program
designs. Next, we review standard concepts and terminology of formal logic,
sets, relations, and functions. We also remind the reader of recursive func
tions, state machines, list structures, formal grammars, and regular expres
sions. These expressive forms allow precision and rigor in design
descriptions, and permit a wide range of human creativity and imagination
to be applied in complex logical situations.

2.2 G O O D E N G LI S H

2.2.1 Structure a nd Content

It has been observed time and again that there is a high correlation between
the ability for clean written expression and the ability to program com
puters. A Japanese programming manager put it this way at a computing

1 6 Elements of log ical Expression

conference (in Japan), "The important language for the programmer to
know well is not JCL or PLjI, it is Japanese !"

This empirical observation is not hard to explain. Good English re
quires organization and structure to separate forests from trees. It requires � ..

logical organization as well as the right words. Effective technical communi
cation is achieved by a combination of structure and content. A jumbled, r,

rambling compilation of absolutely correct content may be of little value
because it is simply too difficult to understand or reference. Structure re
duces the amount of human effort required to understand content
structure does not make up for the lack of content, but neither does content
make up for the lack of structure.

A technical composition needs to be organized into sections, sections
into subsections, and so on, for human understanding. Sometimes such a
hierarchical organization can be supplemented by other devices that show
more complex relations among sections and their content. For example, it
may be useful to incorporate a precedence diagram that shows which sec
tions must be read prior to other sections. Occasionally, descriptions of
mutual dependence may be necessary that state that two or more sections
need to be understood together and that no simple ordering in their reading
is possible. For example, an operations manual of a computing system
usually discusses related subjects, such as data organization and instruction
format, which are best understood as a group rather than as a sequence of
separate topics.

Whatever way a composition is organized, whatever additional rela
tions are described to clarify its structure, the raw materials of structure are
simply the same raw materials of content itself, namely, words and diagrams.
But the words and diagrams describing structure are more important to the
reader and must be chosen with more care by the writer. In their structural
capacity, well-chosen section headings carry content in themselves-even
more content per word than the text. For example, headings such as "Intro
duction," "Discussion," and "Analysis," don't take much thinking to invent,
and don't carry much thought to the reader. But headings such as "The
Problem of Unreliable Solder Joints" or "Three Factors in Solder Joint
Failure" say a good deal more to the interested reader.

In fact, the headings, subheadings, and other means to display organiza
tion to the reader provide the writer an opportunity to index and abstract
the text. Usually the writer knows the content better than the reader (at least
at the point in time of the writing), so the usual error is to understructure,
not overstructure, because "it is all so clear." Good headings and subhead
ings take work to compose; in fact, composing good headings frequently
forces better organization of content-to put like considerations together
and to separate distinct cases otherwise jumbled together.

2.2
Good Eng l ish 1 7

A good mental guide is "the rule of five," based on the well-known

human ability to relate about five objects of thought (plus or minus two)

into a new object of thought. Management organizations frequently follow

this pattern ; for example, usually a department is made up of three to seven

other departments. Applied to composition structure, the rule of five sug

gests five (plus or minus two) sentences/paragraph, paragraphs/subheading,

subheadings/heading, and so on. From the top down, these headings can tell

a story in themselves in the organization of the subject matter. Exceptions

prove the rule : An important sentence can be a paragraph by itself. A very
regular set of topics may exceed seven in number because their regularity
permits human understanding as a pattern ; for example, natural collections
of objects, such as counties, states, or universities, may serve as SUbtopics on
a given occasion (even there, a contextual grouping may be better, such as by
region or size).

Effective writing is based on good structure-much like a program
structure-that allows the reader to execute your reasoning, maintain your
perspective, and be convinced of your conclusions. If your reasoning,
perspective, and conclusions don't hang together, it will be difficult to write
well about them. But in this case the problem isn't in the writing after all !

2 . 2 .2 The Context of Com mun icati on

The communication of content in text, headings, diagrams, whatever, is
always carried out in some context. The primary context is natural language,
but usually there are more specialized contexts, based on common experi
ence in programming, engineering, accounting, and so forth. These contexts
are defined by literature and practice; for example, the field of electrical
engineering describes a certain general context for communication. These
contextual domains are seldom clearly defined. They are based on human
activities, organizations, and sometimes on only similarities in background
and thought.

A concerted effort to define a contextual domain for discourse occurs in
mathematical logic, but even there a total definition is not possible. In
mathematics, physical sciences, and engineering, the contextual domains are
relatively rigorous, while in the somewhat general areas of social science,
management science, business practice, and so forth, broader topics involve
less well-defined contexts.

Whatever the context of communication, it is vital to understand it
explicitly-what is the audience of the composition? what can its members
be expected to know? and what kind of reasoning is meaningful to them?
Sometimes the audience is a broad one. In that case, is a single composition
the best approach, or should there be separate ones ? For example, a pro-

1 8 Elements of Logical Expression

gramming system may require quite separate documents for user's guides,
program maintenance, and operator's guides.

Specialized contexts permit more concise compositions and conciseness
is often critical to communications. But there are ways of being concise in
broader contexts, too. One way is through carefully chosen structures, which
permit a reader to select levels of detail by the organization of the composi
tion, possibly with appendices to handle full details. Another is to better
formulate the subject matter of the composition into subtopics that permit
more concise expository treatment, one by one, even though some d uplica- ;
tion occurs overall.

Effective writing uses its context to good advantage. Complex ideas are
not easy to express, and crucial assertions often need many qualifications.
But surrounding an assertion with all of its qualifications often drowns it,
instead, in a sea of words. Put the assertion up front, in few words ; then add
the qualifications, in plain sight, but not covering up the assertion.

2 .2.3 Models of Communication

The model of mathematical deduction illustrates a definite communication
strategy. In order to avoid circularity in definitions and reasoning, one
identifies undefined objects in discourse, and new objects are then defined in
terms of undefined or previously defined objects. In this way an attempt is
made to localize the appearance of undefined objects in "axioms" at the
beginning (and in "rules of inference"). In broader discourses, undefined
objects may be introduced anywhere. While logically disconcerting, it may
not be possible to do otherwise in general subjects.

And yet, good technical writing profits from the model of mathematical
deduction. The use of the "axiom-theorem-proof" model provides a strong
logical persuasion arising from the deductive aspects of a composition. The
difficulty with this model is motivation and understanding in a broader
setting. The "theorem" is typically an answer to some problem-but is it the
"right problem," or even worth knowing answers to? The "proof" often
describes constructive procedures for solving a problem, subject to the prob
lem being worth solving. So the "axiom-theorem-proof" model of math
ematics is an important model of technical communication in areas where
motivation and perspective have been accomplished in some other way,
perhaps even earlier in the same composition.

In inductive reasoning, another strategy is represented that begins with
various concrete facts and events and associates them into more general
conclu sions and laws. Program designs are frequently justified in terms of
concrete restrictions and machine availabilities. Such a program design may
solve a problem, but often the problem is not stated, being implicit in the

2.3 Formal Logic 19

mind of the designer. Right then, it is critical to take the time to state the

problem being solved. In fact, finding the right problem is often more

difficult than solving it. Thus, a very effective strategy in broad questions is a

problem definition and solution sequence : What is the problem? What are

the resources available? What is a good way to solve the problem with the

resources available?

2.3 FO R M A L LO G I C

2.3 .1 Log ical Propositions

Formal logic deals with human communication and mutual human beliefs
about the truth of statements. It does this by providing an axiomatic cal
culus (a mechanical means of calculation based on a set of axioms) for
deriving new beliefs about various combinations of such statements and
beliefs about them. Two such systems of formal logic are discussed below,
the propositional calculus, and (using an enlarged set of axioms) the predicate
calculus.

A statement is called a logical proposition, or proposition for short ; a
human belief about a proposition is called its truth value, or value for short.
The mutual beliefs may be the result of a conversation or of a written
discussion read later by others. The value of a proposition is one of two
possibilities, namely, true andJalse, for which symbols T, F, or even 1 , 0, are
often used. More precisely, propositions are regarded as names (aliases) for
the truth values true,Jalse. For example, "a circle is round" is another name
for true, just as "2 + 4" and "six" are other names for the number called 6.
Logical systems are possible with additional truth values, such as unknown,
undefined, and possibly, but we shall restrict our attention to two-value
systems.

2.3 . 2 The Propositi onal Ca lcul us

There is no simple or universal rule in logic to decide whether a statement in
natural language is a proposition or not. That decision itself reduces to a
matter of human belief. But when a collection of statements is admitted as
propositions, along with truth values for each, the propositional calculus
provides a fixed set of ways of combining old propositions into new ones,
and for calculating the truth values of the new propositions from the old
values. Conversely, the propositional calculus provides ways of breaking
down complex propositions into combinations of simpler propositions so
that the truth values of the complex propositions can be calculated system
atically from the truth values of the simpler ones.

20 Elem ents of Log ical Expression

A combination of proposItIOns is called a logical expression. The
common types of logical expressions are

not For any one proposition p, its denial, denoted '" p.
and For any two propositions p, q, the assertion of both, denoted

p 1\ q.

or For any two propositions p, q, the assertion of at least one,
denoted p v q.

equals For any two propositions p, q, the assertion that p and q name
the same logical value, denoted p +-+ q.

implies For any two propositions p, q, the assertion that if p is true then
q must be true, denoted p � q.

The truth values for these expressions, each itself a proposition, depend
on the truth values of the propositions in the expressions, and are given for
each possible case as axioms in truth tables. The truth table for these expres
sions, for any propositions p and q, is

not and or equals implies
Rule p q - p p l\ q p v q p - q p � q

1 T T F T T T T
2 T F F F T F F
3 F T T F T F T
4 F F T F F T T

Such a truth table contains a rule (row) for each possible set of truth
values of propositions in an expression. The truth table above gives truth
values that seem sensible in view of the verbalizations of the expressions, but
a word of warning is in order. It is the truth tables that are definitive in
describing truth values of expressions and not the apparent sense of the
ex pressions. t

Since logical expressions are themselves logical propositions, with truth
values derived from the truth values of their constituent propositions, they
can be used in other logical expressions to form compound logical expres
sions. Just as in compound arithmetic expressions, parentheses can be used
to specify groupings and the order in which subexpressions are to be eval
uated. A compound logical expression of several types of elementary expres
sions, such as those given above, can be evaluated a step at a time by

t The truth table for implies is not necessarily intuitive for the cases p = F, but
mathematical experience testifies to the usefulness of this definition which separates
implication and causality as independent concepts (and does not address causality in
any way).

2.3 Fo rmal Log ic 21

replacing any innermost parenthesized expression by its truth value, as il
lustrated below. The leftmost inner parenthesized expression is evaluated at
each step, and the means for reaching each new expression is explained by
the truth table row invoked :

(F /\ ("'"' T)) v ((F -+ T) v (T +--+ T))

(F /\ F) v ((F -+ T) v (T +--+ T)) not, by Rule 1

F v ((F -+ T) v (T +--+ T)) and, by Rule 4

F v (T v (T +--+ T)) implies, by Rule 3

F v (T v T) equals, by Rule 1

F v T or, by Rule 1

T or, by Rule 3

2 .3 .3 The Pred icate Ca lculus

The propositional calculus deals with the analysis of propositions composed
of simpler propositions ; but the simplest of the propositions are viewed as
undivided wholes. We can, however, view simple propositions as subject
predicate structures, and, in particular, deal with statements whose subject is
unknown. Thus, instead of the proposition

A circle is round

we might consider the predicate

is round

Instead of the (false) proposition

6500 < 5000

we might consider the predicate

salary < 5000

or even (given values for table and minimum)

(name in table) /\ (salary < minimum)

where name and salary are terms correspCimding to unspecified data. (That
is, the expression has no more information content than " (__ in table) /\

22 Elements of log i cal Expression

(__ < minimum).") A useful extension to the propositional calculus that
deals with such statements is the predicate calculus.

A statement that contains one or more variables (i.e., placeholders that
name various possibilities), each of which may occur one or more times in
the statement, is called a predicate (also proposition form, propositional
function, or open sentence). Predicates are not necessarily propositions,
because the variable may prevent assignment of a value of true orfalse. Such
a statement may, however, become a proposition when its variables are
assigned definite values. For example,

(name in table) 1\ (salary < minimum)

is not a proposition, but the assertion

(Green, Ed in table) 1\ (6500 < 5000)

is a (false) proposition.
It is often useful to convert predicates into propositions in more�eneral

ways, short of assigning definite values to their variables. Let p(x) be a
predicate that becomes a proposition when x is given a possible value. Then
we define two quantifiers for such a statement that lead to new propositions :

there exists (3.x) (Existential quantifier.) The assertion that some pos
sible value of x exists such that

for all (Vx)

p(x) = true

written 3.x p(x), or 3x(p(x)), or (3.x)(p(x))

(U niversal quantifier.) The assertion that for all pos
s ible values of x

p(x) = true

written Vx p(x), or Vx(p(x)), or (Vx)(p(x))

Both 3.x(p(x)) and Vx(p(x)) are propositions since, unlike p(x), their
evaluation (as true or false) doesn't depend upon the value of x. However

3.x(p(x, y)) and 3x(p(x)) 1\ q(x)

are not propositions. The former depends on the value of y; the latter
depends on the value of x in q(x), since q(x) is not within the scope of the
quantifier. A variable in the scope of a matching quantifier is said to be
bound ; otherwise it is said to be free. By binding the free variables of a
predicate, we can create propositions ; thus, from the examples above, we

2.3 Fo rmal Log i c 23

might obtain

Vy(3x(p(x, y))) and Vx(3x(p(x)) 1\ q(x))

or more simply

Vy3x p(x, y) and 3x p(x) 1\ 'Ix q(x)

that are propositions.t
To illustrate this notation, we state several propositions, the plausibility

of which the reader should verify, for any given p(x), q(x), and r(x, y) :

Vx('" p(x)) � '" 3x p(x)
3x('" p(x)) � '" 'Ix p(x)

3x3y r(x, y) � 3y3x r(x, y)
VxVy r(x, y) � VyVx r(x, y)

'Ix p(x) - 3x p(x)
Vx('" (p(x) 1\ q(x)) � '" p(x) v '" q(x))
Vx('" (p(x) v q(x)) � '" p(x) 1\ '" q(x))

One last word on notation is in order. We may wish to identify the
domain of a quantifier, for example, the largest domain for which JX is real.
We recognize the domain to be x � 0, and express the proposition as

('Ix, x � O)(JX is real)

With a slight abbreviation in notation, we may write

('Ix � O)(JX is real)

In general though, the domain of a quantifier will be denoted by

('Ix, p(x))(q(x)) or (3x, p(x))(q(x))

As an aside, these expressions are equivalent to

Vx(p(x) - q(x)) and 3x(p(x) - q(x))
respectively.

t Note Vx(3x(p(x)) 1\ q(x)) is of the form Vx(r 1\ q(x)), because 3x(p(x)) is a proposi
tion independent of x, and becomes r 1\ 'Ix q(x).

24 Elements o f Log ical Exp ression

2.4 S ETS A N D F U N CTIO NS

2.4.1 Sets

A set is any well-defined collection of objects, called members or elements.
The relation of membership between a member, m, and a set, S, is written

m E S

If m is not a member of S, we write

m � S

A set with no members is called the empty set, denoted �. Two sets are equal
if they have the same members.
A set of elements can be listed using braces as delimiters, for example,

fruit = {apple, grape, orange}

The order of the members listed is immaterial, as is their duplication, for
example,

fruit = {grape, apple, orange, apple}

since the members are still the same as above. The number of distinct ele
ments of a set S is denoted by I S I ' for example, I fruit I = 3. A set can be
given by a rule for generating the members of a set, using a set builder
notation, for example,

fruit = {x I x = apple or x = grape or x = orange}

where now the vertical bar reads "such that," and the expression is read
"fruit is the name of the set containing members named x such that
x = apple or x = grape or x = orange." Given two sets, say A and B, we
define their union A u B, intersection A n B, difference A - B as follows:

A u B = B u A = {x I x E A v X E B}

A n B = B n A = {x I x E A I\. X E B}

A - B = {x I x E A I\. X ¢ B}

If every member of set A is also a member of a set B, we say A is a subset of B,
written A c B. Thus,

A c A u B, A n B c A, A - B c A

1

2.4 Sets and Fu nctions 25

The cartesian product of (A 1, A2, . . . , An), where each element is a set name

and n is some integer, is a set of lists, written

Al x A2 x . . . x An = {(aI , a2, . . . , an) l a I E A I /\ a2 E A2 /\ . . . /\ an E An}

One example of a cartesian product is the familiar (x, y) rectangular coordi
nate system.

Note that whereas set union and intersection are commutative and
associative, set difference and cartesian product are not ; that is,

A u B = B u A and A rl B = B rl A

(A u B) u C = A u (B u C) and (A rl B) rl C = A rl (B rl C)

but
A - B =I= B - A and A x B =I= B x A

(A - B) - C =1= A - (B - C) and (A x B) x C =1= A x (B x C)

To illustrate the assertions about union, intersection, and difference, let

We have

and

but

A = {a, b, c, d}

B = {b, c, e, f}

C = {c, d, f, g}

A u B = B u A = {a, b, c, d, e, f}

A rl B = B rl A = {b, c}

(A u B) u C = A u (B u C) = {a, b, c, d, e, f, g}

(A rl B) rl C = A rl (B rl C) = {c}

A - B = {a, d}

(A - B) - C = {a}

and

and

B - A = {e, f}

A - (B - C) = {a, c, d}

For the assertions about cartesian product, let H be the set of heights of
a group of individuals (in inches) and W be the set of their weights (in
pounds). Then H x W consists of pairs of (height, weight). The absence of
commutativity in cartesian products merely says that (60, 150) is a quite

26 Elements of logical Expression

different thing from (150, 60). To illustrate the absence of associativity, con
sider the following sets of strings :

F = fruit = {apples, grapes}

C = color = {red, yellow}

P = package = {crate, basket}

Then

and

F x C = {(apples, red)(apples, yellow)(grapes, red)(grapes, yellow)}

C x P = {(red, crate)(red, basket)(yellow, crate)(yellow, basket)}

(F x C) x P = {((apples, red), crate)((apples, red), basket) . . . }

F x (C x P) = {(apples, (red, crate))(apples, (red, basket)) . . . }

F x C x P = { (apples, red, crate)(apples, red, basket) . . . }

Thus, each of the 3 products j ust above is a set of objects, each describing
packaged fruit. The first contains two ways of packaging 4 varieties ; the
second contains four ways of packaging 2 fruits ; the third is ambiguous.
They are clearly not equivalent.

2.4.2 Relations

A relation is a set whose members (if any) are all ordered pairs. The set
composed of the first member of each pair is called the domain ; the domain
of a relation r is denoted D(r). The members of D(r) are called arguments of r.
The set composed of the second member of each pair is called the range; the
range of relation r is denoted R(r). The members of R(r) are called values
of r.

Because first or second members may be duplicated in r, it is clear that

I D(r) 1 � I r l , I R(r) 1 � I r l

for any relation r; r is said to be a relation on the set D(r) u R(r). Since
relations are sets, they inherit set operations and properties ; for example, �
is the empty relation, and if r and s are relations, then so are r u s, r n s, and
r - s.

Relations can be classified in several useful ways :

1 . r is reflexive if x E D(r) implies that (x, x) E r, that is, r includes the
relation "is the same as."

2.4 Sets and F u nctions 27

2. r is symmetric if (x, y) E r implies that (y, x) E r, that is, r includes the
relation "is the sibling of."

3. r is transitive if (x, y) E r, (y, z) E r implies that (x, z) E r, that is, r in
cludes the relation "is the descendant of."

To illustrate, consider the relations defined by

equal {(x, y) l x = y}
less than {(x, y) l y < x}
opposite sign {(x, y) I x * y < O}

We find that

equal is a reflexive relation (7 = 7 is true)
less than is not a reflexive relation (7 < 7 is false)
equal is a symmetric relation ((2/4 = 1/2) � (1/2 = 2/4))
less than is not a symmetric relation (it is false that (2 < 7) � (7 < 2))
less than is a transitive relation (((2 < x) /\ (x < y)) � (2 < y))
opposite sign is not a transitive relation (it is false that
((3 * (- 5) < 0) /\ ((- 5) * 7 < 0) � (3 * 7 < 0))

The transpose of a relation r, denoted rT, is the set of reversed ordered
pairs of r, that is,

rT
= {(x, y) I (y, x) E r}

It is easy to see that the union of a relation and its transpose is a symmetric
relation.

2.4.3 Fu nctions

A function is a relation, say f, such that for each x E D(f) there exists a
unique element (x, y) E f We often express this as y = f(x), where y is the
unique value corresponding to x in the functionf When x and y are lists, for
example of 4 and 2 elements, respectively, we may write (y 1, y2) =
f(x1, x2, x3, x4). It is the uniqueness of y that distinguishes a function from
other relations. It is often convenient to define a function f by giving its
domain, D(f), and a rule for calculating the corresponding value for each
argument in the domain. A computer program may be such a rule. If a rule is
given that does not suffice for the domain given, we consider it a partial rule,
and regard the definition of the function insufficient. (Some writers use the
term "partial function" for such a case, but we believe that to be a misleading
phrase to describe the situation, since a function is a set, and "partial set" has

28 Elements of Log i cal Expression

no meaning.) In short, we regard function as master and rule as slave be
cause there are many possible rules for each function.
In illustration, the function

f = {(.x, y) I x E {a, I}, y = x2 + 3x + 2}t

where (x E {a, I }) denotes the domain and (y = x2 + 3x + 2) denotes the
rule, can also be given by enumeration as

f = {(a, 2), (1 , 6)}

or by a set description with rule denoted by two equations:

f= {(x, y) l x(x - 1) = 0, y - x2 - 3x - 2 = o}

Note also that the symbols x, y are convenient place holders ("dummy
variables") and irrelevant in themselves to the function f That is, no such
symbols are required at all in the enumeration of f, and an alternate
descri ption

f= { (u, v) l u E {a, I }, v = u2 + 3u + 2}

defines the same set f of ordered pairs. Functions inherit the set operations
that do not destroy the uniqueness of function values. Iff, g are functions,
then f n g, f - g are functions, but f u g need not be (since (x, y) E f,
(x, z) E g would destroy the uniqueness of function values if y =1= z). Iff and g
are functions, then the function

{(x, y) I y = f (g(x))}

is called the function composition of g and f and is denoted by f o g.
If a function f is reflexive, it is called an identity function, with f(x) = x

for every x E D(f). For example, of the three relations
{(I , 1), (2, 2), (3, I)}

{ (1, 1), (2, 2), (1 , 2)}

{ (I , 1), (2, 2), (3, 3)}

the first is a function but is not reflexive; the second is reflexive but is not a
function ; the third is both a function and reflexive and is therefore called an
identity function. If the transpose of a functionfis a function (it will surely

t Note that the comma in the set builder notation is a synonym for logical and (1\), a
common convention used throughout this book.

2.4 Sets and Fu nctions 29

be a relation), then fT(f(x)) = f(fT(X)) = x, and fT is called the inverse

function of f If the range of a function f is a one-element set, it is called a
constant function ; if the range of a function is a nonempty subset of {true,

false}, it is called a predicate function, or simply a predicate. A predicate
function is frequently denoted by a condition on the domain ; for example,

P = {(x, true) I x � O} u {(x, false) I x < O}

is simply denoted by x � 0, that is, the portion of the domain for which P is
true.
Predicate functions may be used to express rules of other functions. For

example,
f = {(x, y) 1 (x � 0 � y = 3 1 x < 0 � y = 4)}

In general, the rule of a function may take the form of a conditional rule, a
sequence of (predicate � rule) pairs separated by vertical bars and enclosed
in parentheses :

The meaning of this conditional rule is: evaluate predicates PI ' P2 , . . . , Pk in
order; for the first predicate, Pi ' which evaluates true, if any, use the rule ri ; if
no predicate evaluates true, the rule is undefined. Note that P � r is not a
logical implication ; that is, we are not concerned about the truth of P � r.
For convenience, the conditional rule above is read "if PI then r1 ; else if P2
then r2 ; . . . ; else if Pk then rk ." If Pk is the constant predicate true and all
previous predicates are false, we can be assured that rule rk will be used. For
example,

f= {(x, y) l x E D, (x divisible by 2 � y = x/2 1

x divisible by 3 � y = xl3 1

true � y = x)}

Note true � r has the effect of else � r where else means "if all else fails,
use r."

2.4.4 Recu rsi ve Fu ncti ons

A recursively defined function, or recursive function for short, is a function
that is defined by using the function itself in the rule that defines it. For
example, the integer function

oddeven = {(x, 1) 1 x odd} u {(x, 0) 1 x even}

30 E le ments of Logical Expressio n

can also be defined recursively, using a conditional rule, as

odd even = {(x, y) l (x E {O, 1} -+ y = x l x > l -+ y = oddeven (x 2) 1

x < 0 -+ y = oddeven (x + 2))}

We can evaluate the function by repeated application of the conditional rule
as follows for x = 7 :

oddeven(7) oddeven(5)

= oddeven(3)

= oddeven(l)

= 1

Recursive rules in themselves do not guarantee function definitions for
arbitrary arguments. For example, the "definition':

sign = {(x, y) I (x = 0 -+ y = 0 I x =1= 0 -+ y = sign(-x))}

defines only the one element function

sign = {(O, O)}

since repeated application for x =1= 0, say

sign(l) = �ign(- 1) sign(l) = . . .

never te�inates in a vallie.
Recursive rules can be used to describe complex functions not easily

defined otherwise. For example, let G be a railroad guide of connections
between cities, and C(x, y) be a predicate that states whether any two cities
are so connected :

G = {(x, y) l a train runs from x to y}

C(x, y) = a connection exists from x to y

Then the predicate function C can be defined recursively as

C = {((x, y), w) I (x and y are cities), w = C(x, y)}

where

C(x, y) = ((x, y) E G -+ W = true 1 3z((x, z) E G 1\ C(z, y)) -+ W true I

true -+ w = false)

2.4 Sets and Functions 31

That is, C(x, y) is true if a train runs from x to y or if a connection through
some city z can be found ; otherwise C(x, y) is false. Note that the condi
tional rule for C(x, y) can also be written as a logical proposition :

C(x, y) = ((x, y) E G) v (3z((x, z) E G " C(z, y)))

2.4. 5 Dig raphs

A relation g is also called a digraph, defined as a set of directed lines, each
line connecting a member of D(g) to a member of R(g). The term digraph
(directed graph) is used to emphasize the interpretation that the ordered

pairs of g are directed lines. (If g is symmetric, the lines of g can be thought of

as undirected.)
In illustration, the lines of the digraph of a function are partitioned into

four sets (some possibly empty) according to whether the lines originate in
D - R or D () R, and terminate in D () R or R - D, as illustrated in Fig. 2. 1 .

More formally, for any functionf (with subscripts denoting originating and
terminating partitions),

f = fD - R,D n R U fD - R,R - D U fD n R,D n R U fD n R,R - D

where, for example :

fD - R , D n R = {(x, y) E f I x E (D(f) - R (f)) " y E (D(f) () R(f))}

Fig u re 2.1

A path of g is a set of nodes (or members) of D(g) u R(g), say Xb . . . ,
xk , such that

A cycle of g is a path x b . . . , Xk such that Xl = Xk . A digraph with no cycles is
called acyclic. In further illustration, let C be the set of nodes in cycles of the
digraph of function! Then C c: (D () R), because each member x of a cycle
must be in both D(f) and R(f).

32 Elements of Logical Expression

2 .4.6 State M achi nes

A state machine is a function whose members are ordered pairs of ordered
pairs, say

m = {((x, y), (u, v))}

that is also called a transition function. These members are customarily :
given an interpretation denoted by

.

m = {((state, input), (newstate, output))}

State machines are useful in program design. For example, consider a
character-by-character examination of a string for the purpose of removing
excess blanks, so that on output all blank substrings have been reduced to a
single member. A state machine for such a purpose can be enumerated in the
following table with entries denoting (newstate, output).

input

state blank nonblank

excess excess, A nonexcess, input
nonexcess excess, input nonexcess, input

Note that A. means the empty output here. This state machine, initialized to
state "nonexcess," will remove all excess initial and interior blanks by pass
ing the first of each string of blanks found, then ignoring the rest. This state
machine can also be diagrammed as shown in Fig. 2.2, in which circles
denote states and a directed line is labeled in the form input/output, the line
itself showing the state transformation.

blank/A nonblank/input

nonblank/i nput

blank/input

Fig ure 2.2

2.5

2. 5 LISTS AN D STR I N G S

2.5 .1 Li st Structu res

Li sts and St ri ngs 33

A list is a sequence of items which are all members of a single set, called an
alphabet. The concept of list is as important in computing as the concept of
set in mathematics. Any computing process must eventually be represented
by, and be described in terms of operations on, a list. The alphabet may be
bits, characters, bytes (8 bits), words (e.g., 16 bits, 32 bits, etc.), or variable
size sublists, as discussed below. All members of the alphabet need not be
printable. The empty list, denoted by �, is a sequence of no items.

The fundamental relationship in lists is between members of the
alphabet and a list, namely, being the first item, say a, of a nonempty list, say
L, written

a = head(L), L =1= �

A nonempty list L with its first member removed is written tail(L). Note that
tail(L) can be the empty list. An item of a list, say a, is different from a
one-element list, say (a), holding that same item; head(L) is an item, while
tail(L) is a list. If L = �, then head(L) is undefined.

Two fundamental operations in lists are (1) adding a new item, a, to the
head of a list L, written

a + L

and (2) concatenating two lists L and M, written

L I I M

This leads to the following identities :

L =1= � -+ head(L) + tail(L) = L
head(a + L) = a
tail(a + L) = L
a + L = (a) I l L

A list can be structured into smaller lists, called strings, by the use of
self-defining patterns. A simple form of self-defining pattern is to reserve
certain characters as delimiters, which mark off the strings. For example,
blanks serve as delimiters for words in ordinary English text (as do periods,
commas, etc.). If the strings of the list are all disjoint, then these strings form
a list of strings in a new alphabet, namely an alphabet of strings. Then, we
can reapply the concepts of head, tail, + (prefix), and II (concatenation) to
such lists of strings.

34 Elements of Logical Expression

The list builder + , adding an item to the head of a list, permits the
insertion of a list in another list by the simple device of adding a list (as an
item) to a list. For example, with lists L, M, and item a, the expression

a + (L + M)

defines a list whose second member is the list L. Any such list built from lists
and items is called a list structure. The Dewey decimal numbers form a
natural coordinate system for such list structures. For example, 3. 1 .4 refers
to the list item (possibly a list, itself) found by finding the 3rd item of the
outer list structure (assumed to be a list), then the 1st item of the next inner
list (also assumed to be a list), then the 4th item of this latter list. If any item
cannot be found, or if any item except for the last is not a list, then 3 . 1 .4 is
undefined.

It is often convenient to be able to name lists in order to refer to them
indirectly. A list name can be attached to a list by means of a colon, for
example,

apple : (lettuce, 'McIntosh', 'Winesap')

indicates that apple is the name of a list of three elements, each element a
string. Strings within a list may be either names of lists (defined elsewhere) or
literals (usually delimited by quotes). In the list above, lettuce is the name of
a list, followed by two literals.

Next, consider the set of lists defined by

apple : (lettuce, 'McIntosh', 'Winesap')

melon : (peach, 'cantaloupe', 'honeydew')

lettuce : (melon, 'iceberg', 'romaine')

A list structure is implied by the chain of names (apple, lettuce, melon,
peach) that is independent of any written ordering among the named lists.
For example, in the list above, apple is followed by lettuce, not melon. Using
Dewey decimal notation, we have, for example,

apple. 1. 1.2 = 'cantaloupe'

From their context, the names apple, melon, lettuce are list names, but the
referent of the name peach is undefined.

The size of a list may be used as a prefix ; for example, a list of three

2.5 Lists and Strings 35

elements may be called a 3-list. Thus, we might define a 3-list named produce
as

Then

and

produce : ((lettuce, 'McIntosh', 'Winesap')
(peach, 'cantaloupe', 'honeydew')
(melon, 'iceberg', 'romaine'))

produce.2 = (peach, 'cantaloupe', 'honeydew')

produce.2.3 = 'honeydew'

Sublists may be referred to by using ordinal identifiers, for example,
apple(2 : 3) = ('McIntosh', 'Winesap').

2.5 .2 Stri ngs and La nguages

We define a language to be a set of strings. This may seem an unusual
definition for a language, but it will prove useful because as sets, languages
inherit set operations and relations, and these properties will be decisive.
Words in English (strings of characters) make up a language, say as

enumerated in a specific dictionary. Sentences in English (strings of words,
punctuation marks, etc.) are impractical to enumerate but are conceivable as
a set. In fact, simple foreign language guides will enumerate a set of English
sentences and their foreign equivalents for travel conversation. These, too,
by our definition, are languages.
However, in programming, we can define languages of our own choos

ing with convenient internal structure among members, without having to
cope with the mysteries and accidentals of languages of natural origin. And
it is only sensible to use set-theoretic operations in defining such langauges.
In fact, we define a formal language to be a set of strings that is defined
exclusively by a collection of set operations and relations with no natural
experience or language required in the definition. For example, consider the
following two set definitions

D = {O, 1, 2, 3, 4, 5, 6, 7, 8, 9}

I = D u (D x D) u (D x D x D) u . . .

where I is a language consisting of all possible decimal integers, with the two
definitions comprising the grammar of the language. In this context, the

36 Elem ents of log i cal Expression

following additional terms are useful :

1. Each of the definitions is called a production.

2. The set names being defined (e.g., D and I) are called phrases (or nonter
minal symbols).

3. The symbols of the language (e.g., 0, 1, 2, . . . , 9) are called terminal
symbols. The aggregate of all terminal symbols is called the alphabet.

4. The particular phrase (I in this example) that identifies the set that
contains all strings of the language is called the distinguished phrase.

As further illustration, if the grammar is extended with two new productions

ED = {O, 2, 4, 6, 8}

E1 = ED u (D x ED) u (D x D x ED) u . . .

and E1 is identified as the distinguished phrase of the language, then the :
revised language consists of even decimal integers. Next, if the following "
production is added

01 = 1 - E1

and 01 is defined as the distinguished phrase, then the language consists of
odd integers. Finally, if

P = { . }

and

DN = (D x . . . x D x P x . . . x D) u (D x . . . x D x P) u (P x D x . . . x D)

are added and DN is defined as the distinguished phrase, then the language
consists of all decimal numbers. Note that in the final grammar, above, the
productions defining 1, ED,.E1, and 01 are superfluous.

Since languages are sets of strings, it will be useful to introduce a new set
operation that is especially useful in forming languages, namely a language
product, defined as

A x x B = {x I a E A, b E B, x = a I I b}

That is, the language product of two sets of strings is the set formed by
concatenating each member of the first set with each member of the second
set. Note the difference between A x B and A x x B. In particular, if

a E A A b E B

2.5 Lists a nd Stri ngs 37

then

(a l l b) E A x x B but (a ll b) ¢ A x B

and

(a, b) E A x B but (a, b) ¢ A x x B

Thus, elements of A and B retain their identity in A x B, but that identity is
lost in the language product A x x B. Note also that language product x x is
associative but not commutative :

A x x (B x x C) = (A x x B) x x C but A x x B =F B x x A

In illustration of the use of the language product, we redefine the set of
decimal integers, I, in a recursion

1 = D u (I x x D)

in place of the infinite union used before. We can read this recursion as "an
integer (I) is a decimal digit (D) or an integer followed by a decimal digit."
Note in contrast that the recursion

1 = D u (I x D)

does not define the integers, but a union of list structures instead, of the form

1 = D u (D x D) u ((D x D) x D) u . . .

In further illustration, the language of alphanumeric strings headed by
an alphabetic character (the typical set of program identifiers) can be
identified by the following grammar, where the first production defines the
distinguished phrase :

1 D = A u (I D x x AD)

A = {a, b, . . . , z}
D = {O, 1, . . . , 9}

AD = A u D

The non recursive (infinite union) form of 1 D is

ID = A u (A x (A u D)) u (A x (A u D) x (A u D)) u . . .

which is rather more cumbersome.

38 Elements of Log ical Expression

2.5 .3 Fo rmal G rammars

Formal grammars are often defined with more specialized notation called
Backus Naur Form (BNF), summarized as follows :
1. Language product operations are denoted by juxtaposing phrases.
2. Juxtaposed phrases must be self-delimiting, often by use of angle
brackets (), for example, (A), (apple), (x � 3) are phrases.

3. Members of the language alphabet (i.e., the set of terminal symbols) are
denoted by their literal symbols.

4. The phrase definition symbol used in productions is : : = , rather than
= , for example,

(2-digit integers) : : = (digit)(digit)
5. The union symbol u is replaced by a vertical bar I .
6. If a phrase is defined in two places within a formal grammar, the union
of the resulting sets is intended (not the intersection as is customary in
mathematics) ; for example,

means

(integer) : : = (digit)
(integer) : : = (digit)(digit)

(integer) : : = (digit) 1 (digit)(digit)
7. Iterative language operations are denoted by a prefixed *, + , to mean
the union of zero or more, or one or more, iterations, respectively. For
example,

(integer) : : = + (digit»)
defines the decimal integers, and

*(.)
defines a string of zero or more periods. A superscript used with *,
+ denotes maximum number of iterations, for example,

(name) : : = + 5((letter») * 1 (digit»)
defines a name to be one to five letters optionally followed by a single
digit. (We realize that * has been traditionally used as a suffix itera
tion operator, but believe the additional clarity of a prefix operator for
iteration is worth the break with tradition.)
A formal grammar in which every definition is of the form

(name) : : = (any language expression)

2.5 lists and Stri ngs 39

is called a context free grammar (CFG). A CFG can be recursive, as il

lustrated for integers and identifiers above. The set of productions

(definitions) of a CFG defines a language associated with a distinguished
phrase whose defini�ion motivates the grammar itse�f. F?r example, �he
grammar for clock tImes {OO : 00, . . . , 23 : 59} can be gIven m the followmg
form, where (clocktime) serves as the distinguished phrase :

(clocktime) : : = (hour) : (minute)

(hour) : : = O(digit) 1 1(digit) 1 2(digit to 3)

(minute) : : = (digit to 5) (digit)

(digit to 3) : : = ° 1 1 1 2 1 3

(digit to 5) : : = (digit to 3) 1 4 1 5

(digit) : : = (digit to 5) 1 6 1 7 1 8 1 9

If every definition is of the form

(name) : : = x(name 1)

where x i s any character string of the alphabet and (name 1) possibly names
the empty string, �, the grammar is called a regular grammar.

A syntax diagram defines a language definition in a simple, almost self
explanatory way by providing a "graph" with "paths" that can be taken at
will in the production. For example, the grammar for identifiers of a pro
gramming language can be diagrammed as shown in Fig. 2.3 . The choice
between syntax diagrams and formal grammars depends on the use at
hand-diagrams are easier to visualize, grammars are easier to process me
chanically. In fact, there is no reason why they cannot be used interchange
ably. Grammar ideas should be used with flexibility for recording and
communicating language structures.

2 . 5.4 Regul ar Expressions

A regular expression is the right-hand side of a single production which
defines a language with operations of concatenation (language product),
union, and iteration. (But there is no good reason other than historical why
set intersection and difference operations should not be used in language
expressions if useful in a given context.) For example, the definition of
identifiers of a programming language can be given as the regular expression

(id) : : = (A I ' ' ' I Z) * ((A I " ' I Z) I (O I " ' 1 9))

A regular expression is a compact way of describing a language.

40 El ements of Logi cal Expressi on

< i d > : : =

< Iette' > : � -{�
<digit > : : =

Figu re 2.3

The notation of regular expressions permits several alternatives to rep
resent identical languages, which fact may permit certain simplifications as
needed, that is (where � names the empty string) :

+ (A) *(A) = *(A) + (A) = +(A)
* (A) *(A) = * (A)
A *(A) = * (A)A = + (A)
A� = �A = A
* (* (A)) = * (A)
A(B I C) = (AB) I (AC), (B I C)A = (BA) I (CA)
A(BC) = (AB)C

+ (A) I � = * (A)

There is an interesting application of regular expressions to program
control structures. The instructions executed in a program form a string, and
the strings formed over all possible executions form a language. The regular
expressions and program control structures shown in Fig. 2.4 correspond.

Lists and Stri ngs 41
2.5

A B -0-8--

A l B

+ (A)

Figure 2.4

Regular expressions for complex program logic composed of these or similar
structures can often be simplified, thus producing simpler program logic.
For example, the program in Fig. 2.5 has regular expression (ignoring predi-
cate values)

((BA) I (CA))((A *(A)) I �)

42 El ements of Logical Expressi on

1-- ---- ---------
I 1 I
I

Fig u re 2.5

that can be simplified to

((BA) I (CA))(+ (A) I �)
= ((BA) I (CA)) *(A)
= ((B I C)A) *(A)
= (B I C)(A *(A))
= (B I C) + (A)

yielding the simplified program shown in Fig. 2.6.

Figure 2.6

2.6 R E LATE D R EA D I N G

We suggest the following references for readers interested in further investi
gation of elements of logical expression:
On good English

Barzun, Jacques, and Georgia Dunbar. Simple and Direct: A Rhetoric
for Writers. New York: Harper & Row, 1976.

2

(

2.6
Rel ated Reading 43

Crosby, Harry H., and George F. Estey. College Writing-The Rhetori

cal Imperative. New York : Harper & Row, 1968.

Savage, Audrey. Straight Talk. Pittsburgh : Stanwix House, 197 1 .

Strunk, W., and E . B. White. The Elements of Style. New York : MacMil

lan, 1972.

On formal logic

Bochenski, I. M. A History of Formal Ingic. New York : Chelsea
Publishing, 1970.
Chang, C., and R. C. Lee. Symbolic Inglc and Mechanical Theorem
Proving. New York : Academic Press, 1 973.
Hilbert, D., and W. Ackermann. Principles of Mathematical Ingic. New
York : Chelsea Publishing, 1950.
Langer, S. Introduction to Symbolic Ingic. New York : Dover Publishing,
1953.

On sets and functions

Burge, W. H. Recursive Programming Techniques. Reading, Mass. :
Addison-Wesley, 1 975.
Halmos, P. R. Naive Set Theory. Princeton : Van Nostrand, 1960.
Lipschutz, Seymour. Set Theory and Related Topics. Schaum's Outline
Series. New York : McGraw-Hill, 1964.
Nahikian, H. M. Topics in Modern Mathematics. London : MacMillan,
1966.

On lists and strings

Berztiss, A. T. Data Structures-Theory and Practice. New York :
Academic Press, 197 1 .
Engeler, E . Introduction to the Theory of Computation. New York :
Academic Press, 1973.
Hopcroft, J. E., and J. D. Ullman. Formal lAnguages and Their Relation
to Automata. Reading, Mass. : Addison-Wesley, 1969.

3
Elements of

Program
Expression

3.1 OVE R V I EW

In this chapter we introduce language forms for the precise and concise
expression of program designs. These language forms are divided between
an outer syntax, which deals with control structure, data structure, and
system/module structure, and an inner syntax, which deals with operations
and tests on data. t Outer syntax promotes and enforces structure in pro
gram design not only with respect to control logic but also with respect to
data organization and system organization.

3.2 P R O CESS D ES I G N LA N G UAG E

3.2.1 The Idea of P O L

The development and evolution of large software systems can extend over
months, years, or even decades. Throughout this time, there is a need for
users and designers to communicate effectively about proposed and actual
system structure and operation. For this purpose, clearly written natural
language serves up to a point, but may not provide sufficient structural form
to effectively define functions in a system and all their interactions. On the

t The terms outer syntax and inner syntax were introduced by M. V. Wilkes, "The
Outer and Inner Syntax of a Programming Language," The Computer Journal 1 1
(1968) : 260-263.

The concept of module structures is due to D. L. Parnas, "A Technique for
Software Module Specification with Examples," Communications of the ACM 1 5, no.
5 (May 1972) : 330-33 6.

4�

46 El ements of Program Expressi on

other hand, programming languages often provide the required struct
forms, but within a uniformly low level of expression so that overall design
concepts become lost in a sea of details. Furthermore, programming lan
guages introduce special syntax and implementation conventions usually '
not necessary at the design level.
Thus, there is a need for a language for inventing and communicating

software designs, in rigorous logical terms, for use jointly by specialists and
nonspecialists in software development. Such a language must be capable of
expressing a continuum of design ideas-from proposals for high level "
system descriptions, to intermediate level operations, and even down to low
level details if necessary. It must facilitate data and control logic design, as
well as provide descriptive commentary ; recorded designs must be easily
maintained. For this purpose, we introduce some basic conventions for
inventing and communicating software designs in text form, summarized as
Process Design Language, or POL. POL is an open-ended specialization of
natural language and mathematics, not a closed formal language. It permits
specification of software designs from a logical point of view without getting
directly into the physical storage and operations of specific computing
systems. The structures of POL are intended to facilitate discovery and
insight during system and program design. POL permits precision for
human communication and for nearly direct human translation into typical
procedural programming languages, as well as into procedural instructions
in user's guides, operating manuals, and so forth, that are intended for
human readers.
3.2.2 Outer Syn tax and Inner Syn tax i n P O L

The principal specialization of POL from natural language occurs in an
outer syntax of control, data, and system structures, employing a few POL
keywords and a tabular typographic form. Outer syntax describes how oper
ations are sequenced and controlled, how data is organized, accessed, and
assigned, and how programs are defined and organized into modules. The
inner syntax of POL deals with data types and operations. Inner syntax is
expressed in natural language or in specialized languages, such as mathema
tics, appropriate for the problem at hand.
The POL outer syntax control structures are
sequence structures
sequence
indexed sequence (or fordo)

alternation structures
ifthenelse

3.2

ifthen
indexed alternation (or case)

iteration structures
whiledo
dountil
dowhiledo

P rocess Desi gn La nguage 47

The outer syntax of data structures provides a small set of data access
conventions to both named and anonymous data, specifically

named data
scalars
arrays
records

anonymous data, organized in
sequences
queues
stacks
sets

The outer syntax of system structures defines three levels of organiza
tion : the job, the procedure, and the module. The job describes the highest
level of program execution. Jobs are invoked on demand by an external
agency (e.g. , operator, scheduled clock time) and executed to completion.
The procedure is the executable unit of stored programs, to be invoked and
executed to completion with no internal data surviving between invocations.
The module is the system unit, in which several procedures are organized to
be invoked by users (jobs or other procedures) on demand, with access to a
common set of data that survives between successive invocations. A
procedure provides a rule for a/unction, while a module provides a rule for
a state machine. Both procedure and module are used recursively in software
system design, in wide size variations-from a three-line subprogram to
a ten-thousand-line program organized into a hierarchy of smaller programs
or procedures ; from a module that maintains a small directory for other
using procedures to a module that serves as a text processing system or
ganized into a structure of smaller modules.

Outer and inner syntax are informal terms that point up an important
distinction. Outer syntax is standard and general ; since the properties of
outer syntax structures are independent of program subject matter, these
properties can be studied and understood once and for all. Inner syntax, on
the other hand, is not so easily standardized ; it encompasses a variety of

48 El ements of Progra m Expressi on

expressive forms that deal directly with program subject matter and
may depend on specialized knowledge for effective communication. But
that outer syntax is not rigid ; nor is inner syntax imprecise. Intel11.gellt
extensions to outer syntax control and data structures may make sense
particular problems and computer architectures, and inner syntax II' np1ose:s'
full requirements for rigorous expression, whatever form it may assume.

3.2 .3 Data Assign ment in POL

The explicit assignment of data is denoted by the assignment symbol " :=", as,
for example, in

x := y + z

with meaning "x is assigned the value of y + z." The left side consists of a ;
single data name; the right side is an expression in data names, possibly
including the data name of the left side. For example,

.

X := x + 1
x := max(x, y)

x := y

are assignments.
A multiple (concurrent) assignment is denoted by a list of data names on

the left side of the assignment symbol and a list of expressions of the same ,
length on the right side, as, for example,

x, y, z := X + y, min (x, z), abs(z y)

which means to compute the values of all expressions on the right side first,
then assign these values simultaneously to the data names of the left side,
respectively. For example,

x, y := y, X

exchanges the values of x and y.

3.3 O UTER SYNTAX CO NTR O L ST R U CT U R ES

3 .3.1 Sequence Structu res

Operations carried out in a PDL sequence structure are written in sequence,
one below another, with general form

3 .3

wt
de
lal
ne
ex

tr
01
(�
o
ti
a
(I

t
h
[I

3.3

firstpart
second part

nthpart

Outer Syntax Contro l Structu res 49

$
where PDL text and flowchart correspond. This program fragment is
delimited by ellipsis symbols (. . .) to show that it could be embedded in a
larger program. Sequence is an outer syntax structure composed of compo
nent operations ; namely, firstpart, second part, . . . , nth part. In the following
example,

sort transaction file ;
update inventory file with
transactions;
print inventory report ;

the operations are specified by brief natural language statements, and the
outer syntax symbol (;) serves to separate sequence parts where necessary.
(Semicolons are usually omitted where each part in a sequence consistently
occupies one line.) Ordinarily, no outer syntax keywords appear with opera
tions in a sequence. However, it is sometimes useful during program design
and documentation to delimit sequence parts with outer syntax do and od
(do spelled backward) keywords, as follows.t

t In the PDL programs in this book, keywords are displayed in boldface format ; in
handwritten and typed PDL programs, keywords are ordinarily underlined for
readability.

50 Elements of Program Expression

do

od

sort transaction file;
update inventory file with
transactions ;

print inventory report ;

In this instance, a three-part sequence has been represented as two
with firstpart itself another two-part sequence indented for readability.
meaning of the original sequence is unchanged ; do and od simply
convenient delimiters for attaching comments, as we will see. As a separa
example, the following sequence interchanges the values of x and y (and
also sets t to the initial value of x), using explicit data assignments :

t := x
x := y
y := t

It is convenient to introduce a generalization of the sequence, called an
indexed sequence, or fordo structure, closely patterned on the well-known do :
loop (e.g., "do i = 1 to 10;" in PL/I), but renamed here to identify two
critical distinctions discussed below. The indexed sequence is abbreviated '
notation where the operations in all parts (firstpart, secondpart, . . . , nthpart)
of a fixed-length sequence are identical, although difTere,nt data may be '
operated on in each part. PDL outer syntax keywords for, do, and od delimit
the indexed sequence, written as

for
index list

do
dopart

od

3 .3 O uter Syn tax Control Structu res 51

where successive dopart executions carry out successive parts of the

sequence. The indexlist and dopart are indented to improve readability in

larger contexts. The indexlist, an inner syntax expression, defines both an

index variable and a list whose values are to be successively assumed by the

index. The list may be enumerated or given by a rule. For example, in

for

do

od

i :E 1 to 20 by 2

j := table{i) + table{i + 1)
print j

i is the index, " :E" is read "is assigned all consecutive values in the list," and
"1 to 20 by 2" describes the list; in this case, i takes on consecutive values 1 ,
3, . . . , 19. We regard the right side of an index list (following " :E ") as an
informal specification of a list; if the specification of an arithmetic list con
tains no successor rule, it is assumed to be "by 1 ." The fordo above is an
abbreviation for the following sequence :

j := table{ 1) + table(2)
print j
j := table(3) + table(4)
print j

j := table(19) + table(20)
print j

Critical distinctions between the usual do loop and the indexed se
quence are (1) in the indexed sequence, the dopart cannot alter the value of
the index, and (2) the value of the index is not available for use by program
parts following the indexed sequence. In other forms of the do loop, the
index is treated as any other variable and can be assigned new values both in
the dopart and outside the loop. We regard the index in a different way-as
a data item beyond control of the program once set up that can be read in
the dopart, much like a local clock, but that cannot be altered in the dopart
or read or altered thereafter.

As a second illustration, the indexed sequence below has an index
named pointer and assigns to each member of a ten-element array named x

52 El ements of Progra m Ex pressi on

the sum of members from that member to the tenth member :

for
pointer :E 9 to 1 by - 1

do
x(pointer) := x(pointer) + x(pointer + 1)

od

3.3.2 Alternati on Structu res

The ifthenelse structure has general form

if
if test

then
thenpart

else
else part

Ii

with outer syntax keywords if, then, else, and Ii (if spelled backward) de
limiting an inner syntax predicate named if test, an operation named thenpart
to be executed when iftest evaluates true, and an operation named else part to
be executed when if test evaluates false. In illustration, the following ifthen
else searches either an online file or an archive file, depending on the data
requested. The test and operations are given by brief natural language
statements :

if
data requested is current status

then
search online personnel file

else
search archive personnel file

Ii

3 .3 Outer Syntax Control Structures 53

The ifthenelse below sets z to the maximum of x and y, using explicit data
assignments :

if
x > y

then
z := x

else
z := y

fi

If more convenient, a PDL structure can be written in linear form, for
example,

if x > y then z := X else z := y fi

with less readability but identical meaning as above.
The if then structure, a special case of the ifthenelse in which no operation

is carried out when if test evaluates false, has general form

if
if test

then
then part

fi

The following ifthen

if

F

inventory transactions available
then

update inventory file
fi

54 El e ments of P ro g ra m Expression

carries out an update process i f inventory transactions are available. The
if then below sets x to the minimum of x and y:

if
x > y

then
x y

fi

The indexed alternation, or case structure, is a multibranch, multi join
control structure with general form

case
casetest

part(caselistl)
casepart l

part (caselist2)
casepart2

part(caselistn)
casepartn

else
elsepart

esac

The case structure delimits caseparts and inner syntax casetest and caselists
with outer syntax keywords case, part, else, and esac (case spelled back
ward). In execution, the casetest expression is evaluated and control flow is
directed to the first casepart whose corresponding caselist (list of values or
expressions) contains the current value of casetest. Caselists are scanned in
ordinal sequence; for a value appearing in multiple caselists, the casepart
corresponding to the first occurrence is always executed. The e1separt is
optional; it handles missing casetest values when present. The indexed alter
nation is of interest because of the architectures of underlying physical
machines (e.g., efficient use of indexed branch instructions) and because of
the way program logic often seems natural to describe (e.g., expressing one
of many possible alternatives, otherwise expressed as nested ifthenelse struc
tures). In illustration, the case structure below manipulates a personnel
record, based on the current value of op :

case
op

part ('ad(
add]

part('del
delet

part ('me
modi

part ('dis
displ

else
disp1

esac

3 .3.3 Itel

The whiledo

while
whil

do
dop,

od

with keywG
the dopart.
as long as t
modificatio
example, in

while
pay

do
retr
up(

od

3 .3

case
op

part('add')
add personnel record

part('delete')
delete personnel record

part('modify')
modify personnel record

Outer Syn ta x Control Structu res

part('display for salary', 'display for tenure')
display personnel record

else
display 'operation incorrectly specified'

esac

3.3. 3 Iterati on Structu res

The whiledo structure has general form

while
whiletest

do
dopart

od

55

with keywords while, do, and od delimiting the inner syntax whiletest, and
the dopart. The whiledo structure carries out the dopart zero or more times
as long as the whiletest evaluates to true. Of course, the dopart must include
modification of the whiletest condition for execution to terminate. For
example, in

while
pay updates remain

do
retrieve next pay update record
update corresponding record in master pay file

od

56 El ements of Program Ex pression

records are updated in a master pay file as long as updates remain. Note that
this structure is correct for the case where no updates exist (assuming that an
end-of-file can be detected in the whiletest). In such case, the master file
remains unchanged. The whiledo

while
x > 1

do
X := x - 2

od

converts a positive integer x into 1 if x is initially odd, into 0 if initially even ;
i t leaves non positive integers unchanged.

The dountil structure has general form

do
dopart

until
untiltest

od

with keywords do, until, and od delimiting the dopart and the inner syntax
untiltest. The dountil carries out an operation one or more times, including
modification of the untiltest condition, until that test evaluates to true, as in
the following example :

do
retrieve next pay update
update corresponding record in master pay file

until
no pay updates remain

od

3.3

Note that thi
evaluating the
the do part is I
update is preSt
x greater than
and divides at

do
x xl

until
x � 1

od

The dowh

dol
dopar1

while
whilet

do2
dopaI1

od

with PDL ke
whiletest, aD(
repeats a cal
tolerance

dol
calcul:

while
error :

do2
calcul.

od

3.3 Oute r Syn ta x Control St ructu res 57

Note that this structure, unlike the whiledo, executes the dopart before
evaluating the predicate ; therefore it is used when at least one iteration of

the dopart is required. Thus the example is correct only if at least one pay

update is present. The following dountil repeatedly divides any real number

x greater than or equal to 10 by 10 until its magnitude is reduced to 1 or less,

and divides any real number less than 10 by 10 :

do
x := x/l0

until
x ::; 1

od

The dowhiledo structure has general form

dol
dopart l

while
whiletest

do2
dopart2

od
T

with PDL keywords dol, while, do2, and od delimiting the inner syntax
whiletest, and the two doparts. For example, the following dowhiledo
repeats a calculation until some resulting value is within an allowed
tolerance

dol
calculate error in value

while
error > tolerance

do2
calculate new value

od

58 El e ments of P rogra m Ex pression

and the dowhiledo below prints individual characters from a string, up to a
blank character :

dol
get next character from string

while
character not blank

do2
prin t character

od

We consider the preceding control structures to be the fundamental
building blocks of programs. With the exception of extended sequence struc
tures (sequences of more than two parts) and fordo and case structures
(convenient alternatives to uniform sequences and multiple ifthenelses, re
spectively), the POL control structures correspond to the simple "prime
programs" to be discussed in Chapter 4. These simple structures have
properties that help limit complexity in program reading, writing, and cor
rectness demonstration, but are sufficiently powerful to express the design of
any program whatsoever, as will be shown.

3.3.4 Comments

Comments, delimited by square brackets, can appear anywhere in POL
programs, but they are particularly effective when systematically attached to
control structure keywords in order to explain operations within the struc
tures. Thus for sequence structures

do [comment]
first part
secondpart

od [comment]

the do comment can explain the function (or action) of the sequence, that is,
what firstpart followed by second part does, and the od comment can explain
the status of affairs, that is, the relations holding among data objects, after
the sequence has been carried out. For example (overcommenting for the
sake of illustration),

do [set c to max(a, abs(b))]
d abs(b)
c max(a, d)

od [c = max(a, abs(b))]

3 .3

when
the a

5

t

The
men'
the l

follo

whe

the
cat
sta
wh

3.3 Outer Syntax Control Structu res 59

where max produces the maximum of the two arguments and abs produces

the absolute value of an argument.

Similar conventions are employed for ifthenelse :

[comment]
if

iftest
then [comment]

thenpart
eJse [comment]

elsepart
fi [comment]

The leading comment can explain what the ifthenelse does, the then com
ment can explain what the thenpart does, the else comment can explain what
the else part does, and the fi comment can summarize the status of data
following the ifthenelse. For example (still overcommenting to illustrate),

[set x to min (a, b, e)]
if

a < b
then [set x to min(a, e)]

if a < e then x := a else x := e fi
eJse [set x to min(b, e)]

if b < e then x := b else x := e fi
fi [x = min(a, b, e)]

where min, of course, produces the minimum of its arguments.
For the whiledo form

[comment]
while

whiletest
do [comment]

dopart
od [comment]

the leading comment can explain what the whiledo does, the do comment
can explain what the dopart does, and the od comment can summarize the
state of affairs following the whiledo. To illustrate, the following initialized
whiledo substitutes blanks for leading zeros in a natural number stored in an

60 El ements of P rogra m Expression

array named n :

i := 1 ..
[remove leading zeros from n]
while

n{i) = '0'
do [remove ith character from n, prepare to check i + 1 character]

n{i) '�'
i i + 1

od [leading zeros removed from n]

The remaining PDL control structures are commented in similar fashion.

3 .3 .5 Expan d i n g and Pa rsin g P O L Control St ruct u res

PDL control structures are one entry-one exit structures that can be used to
expand individual operations into more and more detail, as required. Con
versely, any PDL control structure can be treated as a single operation, if i t
i s convenient to do so. For example, the PDL fragment

do
if necessary, compute tax payment or refund

for next record from tax file
until

all tax records processed
od

that computes tax payments or refunds for all records in a nonempty tax file
can be expanded to, or used to summarize, the PDL fragment shown in
Fig. 3 . 1 . The original dopart action appears as a comment at do, in Fig. 3 . 1,
to explain the expanded dopart. Notice the cumulative indentation of PDL
text to better display nesting of control structures. As a second example the
fragment

if
x > O

then
convert positive x odd or even into 1 or 0

else
convert nonpositive x odd or even into 1 or 0

fi

3 .:

C
'\

3.3 Outer Syntax Control Structu res

do [if necessary, compute tax payment or refund
for next record from tax file]
read next record from tax file
if

tax due not equal to withholding
then

fi
until

if
tax due greater than withholding

then
compute tax payment

else
compute tax refund

fi

all tax records processed
oct

Figure 3.1

61

converts an integer x (positive, zero, or negative) into 1 or 0 according to
whether x is initially odd or even, and can be expanded to, or regarded as a
summary of,

if
x > O

then [convert positive x odd or even into 1 or 0]
while

x > l
do

X := x - 2
oct

else [convert nonpositive x odd or even into 1 or 0]
while

fi

x < O
do

X := x + 2
oct

62 El ements of P rogra m Expression

Any POL control structure can be parsed uniquely into its constituent ·
parts, these parts can be parsed uniquely again, and so on, until the entire
program is described in a unique hierarchy of expansions. Parsing of POL
programs can be carried out directly in the program text, shown by a Dewey
decimal numbering of text lines to reflect control structure hierarchy. The
numbering rules are simple and standard. If a program part is itself another
control structure, begin a new level of Dewey decimal numbering and
number each outer and inner syntax statement in sequence (ignoring lines
containing only comments). Numbering is illustrated in the POL fragments
below (with m a Dewey decimal number inherited from a containing
structure) :

sequence

m. l firstpart
m.2 secondpart

m .n nthpart

ifthenelse

m. l if
m.2 iftest
m.3 then
m.4 thenpart
m.5 else
m.6 elsepart
m. 7 Ii

whiledo

m. l while
2 whiletest
3 do
4 dopart
5 od

(where a repeated digit m and the succeeding decimal point may be under
stood in context)

3 .3

Note t
single
would

m.

To ill
struct

m

3.3

dountil �

m. 1 do
2 dopart
3 until
4 untiltest
5 od

O uter Syntax Control Structures 63

Note that more than one Dewey decimal identifier can be introduced on a
single line. For example, if the first part of a sequence is itself an if then, it
would be numbered

m. l . 1 if
2 iftest
3 then
4 thenpart
5 fi

2 second part

To illustrate, the tax computation fragment previously shown has parse
structure

m. 1

2. 1
2 . 1

3
4
5

2
3
4 . 1

5

2
3
4
5
6
7

do [if necessary, compute tax payment or refund
for next record from tax file]
read next record from tax file
if

tax due not equal to withholding
then

fi
until

if
tax due greater than withholding

then
compute tax payment

else
compute tax refund

fi

all tax records processed
od

64 Elements of Progra m Expressi on

with dopart (lfne m.2) composed of a sequence (lines m.2. 1 and m.2.2).
secondpart of the sequence (line m.2.2) is an ifthen structure
m.2.2 . 1-m. 2 .2 .5), itself containing a nested ifthenelse structure. The parse
structure of the odd even fragment introduced above is

m. 1 if
2 x > 0
3 then [convert positive x odd or even into 1 or 0]
4. 1 while

2 x > l
3 do
4 x := x - 2
5 od

5 else [convert non positive x odd or even into 1 or 0]
6 . 1 while

2 x < O
3 do
4 x := x + 2
5 od

7 fi

with then part (line m.4) and elsepart (line m.6) both expanding as whiledo
structures (lines m.4. 1-m.4.5 and m.6. 1-m.6 .5, respectively).

Any PDL control structure can be diagrammed as a tree to highlight its
parse structure, using the following primitives :

sequence : SEQ

f irstpart secondpart . . • nthpart

fordo : F DO

/\
i ndex l ist dopart

3.3 Outer Syntax Control Structu res

ifthen : I T

/\
i ftest thenpart

ifthene1se : I T E

case :

casetest

i f test thenpart elsepart

CASE

(casel ist 1) (casel i stn)
casepart 1 casepartn

whiledo : W DO

/\
wh i letest dopart

dountil : DOU

/\
dopart unti ltest

dowhiledo : DWDO

dopart 1 wh i letest dopart2

elsepart

65

66 El e ments of P ro g ra m Expressi on

The tax computation fragment in tree form is as follows :

read next record
from tax f i le

SEQ

IT

DOU

al l tax records
processed

tax due not equal
to withhold ing

I T E

t a x d u e greater compute tax compute tax
than withhold i ng payment refu nd

3.4 O UT E R SY NTAX DATA ST R U CT U R ES

3 .4.1 Structu res o f Named Data

PDL provides keywords and conventions for describing collections of data
and their access functions in a few special data structures of named and
anonymous data. We begin with a discussion of named data.

Scalar. A data structure containing a single data item with no accessible
substructure is called a scalar, declared by the keyword scalar. PDL scalar
data items are referred to by name within a PD L program and are defined
separately in a data declaration prior to such use. For example,

scalar x, y, z

3.4

dec1arf
need Il
charac
descrit

Array.
indexe

is indt
be des
name,
follo\\
with i
are gi

a

that
array

1

state
assi�

stat(
enti

3.4 Outer Sy ntax Data Structu res 67

declares that x, y, z are each single data items. A scalar data item can be (but
need not be) restricted to a given type (class of values) such as numeric,
character, or logical. Data types are expressed in PDL inner syntax and are
described later.

Array. A list of PDL structures that is indexed by a Cartesian product of
indexes is called an array. For example, the array [X(l, 1) x(l , 2) . . . x(l , n)]

x(2, 1) x(2, 2) . . . x(2, n)
.

x(m, 1) x(m, 2) . . . x(m, n)

is indexed by the Cartesian product { 1, 2, . . . , m} x { 1 , 2, . . . , n}. An array can
be described as a list, or a list of lists, and so on. PDL arrays are accessed by
name, and their members are accessed as illustrated by the array name
followed by a parenthesized list of indexes, that is, integers and/or identifiers
with integer values. The dimension of an array and the limits of each index
are given in a declaration such as

array a(3), b(2, 4), c(3, 2, 4)

that declares a one-dimensional array of 3 members, a two-dimensional
array of 8 members, and a three-dimensional array of 24 members.
The PDL assignment

a(l) := b(2, 3)

states that member a(l) of a takes on the value of member b(2, 3) of b ; the
assignment

a(l) := b

states that member a(l) of a (clearly not a scalar) takes on the value of the
entire array b; that is,

a(1) := [b(l, 1), b(l, 2), b(l , 3), b(l , 4)]
b(2, 1), b(2, 2), b(2, 3), b(2, 4)

68 El ements of Program Ex pressi on

All the members of an array (or any other data structure) may have
same type of structure, for example, an array of scalars or an array of
but there is no necessity for such a restriction in PDL. Also, the term
traditionally refers to data in the main storage of a computing system.
for design purposes, random accessed storage on disks or drums (with much
longer access times) and even large main storage units are logically .
described as PDL arrays as well.

Record. A record is a data structure that can be represented by a tree, such
as

student

name address class

11\
street city state

Such structures are called Cartesian structures because parent nodes (such as
student and address above) can be identified as the Cartesian products of
their descendants. Thus

student = (name, address, class)

address = (street, city, state)

A member is any node of a tree ; a field is a member having no descendants.
Members are named by a concatenation of node names, proceeding from the
root name (i.e., the record name) and separating names with a period. In
place of a node name, the ordinal position (for any fixed ordering) of the
node with respect to other siblings can be used. In contexts in which there is
no ambiguity, it is sufficient to use the member name alone. The names of
the members in the example are

student . name = student. 1 name

student . address = student .2 = address

student. address. street = student. 2 . 1 street

student. address. city = student.2 .2 = city

3 .4

The

and De,

rec(
J

3 .4.2

Data s
withou
namely
structu
anonyr
of reco
sequen
tive1y (
fore, W

Li
data, 1
fore, VI

Li

L
(t

Note
tail 0

3.4 Outer Synta x Data St ructu res 69

student.address .state = student. 2 . 3 = state

student . class = student. 3 = class

The structure of a record is given in a PDL declaration by indentation
and Dewey decimal numbering, for example :

record student
1 name
2 address
2. 1 street
2 .2 city
2 .3 state
3 class

3.4.2 Structu res of An onymous Data

Data structures can also be defined in which members can be accessed
without individual item names. Four such data structures are defined next ;
namely, sequences, stacks, queues, and sets. A sequence is a familiar data
structure, which can be referred to by a name as a whole but which has
anonymous members, such as a deck of cards to be read, a magnetic tape file
of records, or a sequence of character lines to be printed. But even though
sequences have familiar realizations, this very familiarity disguises a rela
tively complex data structure, compared to stacks, queues, and sets. There
fore, we define stacks, queues, and sets before sequences.
List operations will be useful for defining operations with anonymous

data, but we may want to view a list from either end, front or back. There
fore, we augment the ordinary list operations as follows :

List Builders. Define list operations + (plus), Ei1 (circle plus) to mean :
a + b : add member a to the front of list b

a Ei1 b : add member b to the back of list a

List Breakers. Define operations H + , T+ (head plus, tail plus), H - , T
(head minus, tail minus) to mean :

H + (a + b) = a,

H - (a Ei1 b) = b,

T+ (a + b) = b

T- (a Ei1 b) = a

Note that + is the ordinary list builder, and H + , T+ are the ordinary head,
tail operations H, T. In what follows, H, T may be used in place of H + , T + .

70 El ements of Program Expression

In illustration, consider lists a = (A B C), b = (E F). Then

M + a = (M A B C)
b EB N = (E F N)
H + (a) = A
T+(b) = (F)
H- (b) = F
T- (a) = (A B)

(Note that (F) denotes a one-element list, F denotes a single list member.)
It is easy to verify various list identities, using concatenation (I I) and
(R) operations, such as

H - (a) = H + (R(a))
T- (a) = R(T+ (R(a)))
a EB b = a I I (b)
a EB b = R(b + R(a))

Stack. A PDL stack is a data structure that provides for LIFO (last in, first
out) access to a list by keyword top. On reading, top designates and removes .
the last member placed on the stack, if any ; on writing, top designates and
adds the new member to the top of the stack. The stack operations/tests in
list definition form are as follows for stack a (with head (H) designating the
top of the stack) :

Operation/test

c := top(a)
top(a) := d
a := empty
a = empty

List definition

c, a := H(a), T(a)
d, a := d, d + a
a :=�
a = �

(a ¥= �)

where the top read operation fails (to execute) with an empty stack.t For
example, in the program fragment

1 stack a
2 scalar b, c
3 top(a) := b
4 c := top(a)

t Anonymous data structures are generally not presumed to be empty on declara
tion ; they must be assigned empty if so desired. However, in the small examples in
this book, where context clearly indicates that a data structure is empty, no such
assignment is made.

3 .·

at
to
(rt

QI
fir
re
re
pI
01
(1

w
p

a
e
i1

r
c

3 .4 Outer Syntax Data St ructures 71

at line 1 stack a is declared ; at line 3 the value of data item b is placed at the
top of the stack ; at line 4 the top element of the stack is assigned to c

(removing it from the stack).

Queue. A PDL queue is a data structure that provides for FIFO (first in,
first out) access to a list by keyword end. On reading, end designates and
removes the first member, if any, of the list, the only member available for
reading; on writing, end designates and adds the member to the new last
place of the list, the only place available for writing. The queue
operations/tests in list definition form are as follows for queue a (with head
(H) designating the end of the queue available for reading) :

Operation/test
c := end(a)
end(a) := d
a := empty
a = empty �

List definition
c, a := H(a), T(a)
d, a := d, a ffi d
a := �
a = �

(a � �)

where the end read operation fails with an empty queue. For example, in the
program fragment

1 queue a
2 scalar b, c
3 end(a) := b
4 c := end(a)

at line 1 queue a is declared ; at line 3 the value of data item b is added to the
end of a as its last item ; at line 4 the first element of a is moved to data
item c.

Set. A PDL set is a data structure that provides access to an arbitrary
member of a list using the keyword member. The set operations/tests in list
definition form are (for set a)

Operation/test
c := member(a)
member(a) := d
a := empty
a = empty

List definition
c, a := H(a), T(a) (a � �)
d, a := d, P(d + a)
a := �
a = �

where the member read operation fails with an empty set, and P(x) is any
permutation and compression (delete all duplicates) of list x. For example,

72 Elements of Prog ra m Exp ressi on

in the fragment (a is assumed nonempty)

1 set a
2 scalar b, c
3 b := member(a)
4 member(a) c

at line 1 set a is declared ; at line 3 some arbitrary member of set a is moved
into b (and deleted from a) ; at line 4 data item c is added to set a. Set
operations have no particular access discipline, such as FIFO or LIFO, and
any member at all may be produced by an assignment such as line 3, in
particular not necessarily the last member added. Note that a set can contain
a given member only once; that is, addition of a member already present
results in no change to the set. In this, a set behaves like an index or
directory with each entry unique.

Sequence. A PDL sequence is a data structure that provides for sequential
access to a list with an implicit pointer position using keywords current,
next, and reset. A sequence is defined to be an ordered pair of lists. The first
list ("past list") designates the subsequence of members already accessed,
with head minus (H-) of the list being the most recently accessed, and so on
(e.g., cards already read, lines already printed). The second list ("future list")
designates the subsequence of members not yet accessed, with head plus (H+)
of the list being the next t o be accessed (e.g., cards yet to be read). That is, if
member C, of the sequence containing members (A B C D E F G) in order,
was most recently accessed, the sequence is represented by first list (A B C)
and second list (D E F G). The PDL keyword current refers to the last
member, if any, of the first list of the sequence (member C, above) ; the
keyword next refers to the first member, if any, of the second list of the
sequence (member D, above) . The keyword reset defines a new sequence that
is derived from an old one, and whose first list is the empty list and whose
second list is the concatenation of the two lists of the old sequence.

Given a sequence named a, its first and second lists are denoted by a
and a+ , respectively, and their composition into the sequence a is denoted by
a dot, as in

For example, the sequence with members (A B C D E F G) and pointer
between C and D (C most recently accessed) can be written

a = (A B C). (D E F G)

3 .4

that is,

Either t:

or

a =

The ke:

Operat
follows

01
re!l
c : :
CUI
c ::

ne'
a :
a :

where
operat
aut om
the ke
stroys
with c
refers '
a test.
access

o
for ex�

3.4

that is,

a - = (A B C)
a+ = (D E F G)

Outer Syntax Data Structu res

Either a- or a + can itself be replaced by a list expression, for example

or

a- = (A) " (B C)
a+ = D + (E F G)

a = (A) II (B C).D + (E F G)

The keywords current and next refer to members

current (a) = H - (a -)
next(a) = H + (a +)

73

Operations/tests on sequences can be defined in terms of list assignments as
follows (for sequence a) :

Operation/test

reset (a)
c := current(a)
current(a) : = d
c := next(a)
next(a) := d
a := empty
a = empty

List definition

a := �.a - II a+
c, a := H - (a -), a (a - =F �)
d, a : = d, T- (a -) EB d. a +
c , a := H(a +), a - EB H(a+). T(a+)
d, a := d, a- EB d.�
a := a - .�
a + = � (or, a = a - .�)

where the current read operation fails with an empty first list, the next read
operation fails with an empty second list. The keyword next implies an
automatic advance along the sequence (reflected in the sizes of a - , a +) while
the keyword current implies no advance. Note that writing with next de
stroys the second list of the sequence, if not already empty, but that writing
with current preserves the second list. For that reason, the keyword empty
refers to the second list and not the entire sequence, either in an operation or
a test. That is, the test a = empty asks if any members of a remain to be
accessed by next.

Ordinarily, the input and output of computing are in sequential form,
for example, as card input and print output. The PDL conventions make se-

74 El ements of Program Expression

quential input and output easy to describe by so naming files ; for example,

1 sequence input, output
2 c next(input)
3 next(output) := d

The keyword next specifies a single data item (e.g., scalar or record) to
be transferred to or from a sequence. For convenience such transfers can be
generalized to a list of data items using the keyword list as shorthand for a
series of next operations as in

1 scalar a, b
2 record c

1 d
2 e
2 . 1 f
2.2 g

3 sequence input, output
4 a, b, c := list(input)
5 list(output) := a, b, c

where the list read operation fails if the sequence has insufficient members.
At line 4 scalars a and b and all members of record c are assigned values
serially read from the input sequence, and at line 5 the values are serially
written to the output sequence.

3 .4.3 Seq u ence Extensi ons

The sequence (and stack) data structures are generic forms that can be
implemented directly in magnetic tape. But the implementation possibilities
may differ in details, which can be described in list notation as variants of
these generic PDL data structures. And for program designs that deal
directly with physical hardware, an accurate and detailed list description of
hardware operations is advisable. A physical file may have a backspace, or
read backward capability, which could be described as follows,

Operation

backspace(a)
c := back(a)

List definition

a := T- (a-).H - (a -) + a + (a- #: �)
c, a := H- (a -), T- (a-).H - (a -) + a+ (a- #: �)

and other physical features will have list descriptions accordingly.

3.4 O uter Synta x Data Structu res 75

In illustration of other possibly useful operations on sequences, and

their descriptions, we note the possibility of adding or deleting members of

the sequence, such as follows :

operation

;idaftercurrent(a) := d
c readanddeletenext(a)

List definition

d, a d, a- EB d.a +
c, a H(a +), a - .T(a +)

In particular, the following operations, while a little awkward t o define, are
very useful in deleting a value or inserting a new value in sorted order in an
already sorted list :

Operation

c := mid(a)
mid(a) := d

List definition

c, a := H- (a -), T- (a -).a + (a - =1= �)
d, a := d, (T- (a -) EB d) EB H - (a-) .a +

That is, current(a) i s removed by the mid read, and d i s inserted before
current(a) by the mid write. To illustrate, lines 3 through 8 of the program
fragment

1 sequence a, d [a in ascending sorted order]
2 scalar b, c, e,j, g
3 do
4 b := next(a)
5 until
6 b > c
7 od
8 mid(a) := c
9 do

10 e := next(d)
1 1 until
12 e = !
1 3 od
14 g := mid(d)

insert the value of c in a sorted sequence named a such that sorted order is
maintained (where c is guaranteed smaller than the last member of a). Lines
9 through 14 delete the first occurrence of the value of! from a sequence
named d (where! is guaranteed to occur in d).

•

76 El ements of P rogra m Expressi on

3.4.4 Set Exten si ons

In addition to defining new operations for PDL data structures, it may be :
convenient in design to extend and specialize the data structures themselves . .
In illustration, we might define a table to be a data structure that provides
access to a table of data. A table is a specialization of the set data structure,
in which all members are ordered pairs. Such a specialization permits the
construction of mathematical functions and relations (sets of ordered pairs)
in tables, in which the first member of a pair is considered a name for the
second member. Thus an anonymous data structure can be used to create
named data. In addition to the set operations/tests on tables (in which
members are defined as ordered pairs in every case), the table
operations/tests could include the ability to deal separately with the first and
second members of the ordered pairs of a table, using keywords domain,
range, argument, and value of conventional meaning in functions and rela
tions. Table operations could be given in list definition form as follows for
table a, pair (c, d) of scalars, and set b :

Operation/test

d value(a, c)
value(a, c) := d
c := argument(a, d)
argument(a, d) c
b := domain(a)
b := range(a)
c domain(a)
d E range(a)
delete(a, c, d)

where

x l E {x l (c, x) E a}
x2 P((c, d) + a)
x3 E {x I (x, d) E a}
x4 = P((c, d) + a)

List definition

a, c, d a, c, x l (a # �)
a, c, d x2, c, d
a, c, d := a, x3, d (a # �)
a, c, d := x4, c, d
a, b := a, domain(a)
a, b := a, range(a)
c E domain (a)
d E range(a)
delete pair (c, d) from a, if presentt

and where a value read or argument read operation fails when the required
member of a is not present (x l or x3 are not defined). Note that operations
value(a, c) := d and argument(a, d) := c have identical effect in table a, but

t The delete(a, c, d) operation can be expressed as a conditional rule as follows

(H(Q(a, (c, d))) = (c, d) -+ a, c, d := T(Q(a, (c, d))), c, d I true -+ a, c, d := a, c, d)

where Q(x, y) is any permutation of x such that y ¢ T(Q(x, y)).

3.4

rep

at]
(th
ass
lin I
va]

Th
an
an
the
all
S}:
pr
W
in]

A

3.4 Outer Syntax Data Structu res

resent two views for table building. For example, in the fragment
rep

1 table a
2 scalar c, d, e
3 value(a, c) := d

4 e := value(a, c)

77

at line 1 table a is declared, at line 3 the ordered pair (c, d) is added to table a

(that is, the name c is assigned the value d in table a), and at line 4 any value
associated with name c in table a is assigned to e (if table a is empty before
line 3 is executed, then d will be assigned to e in line 4, since d will be the only
value associated with name c at that time).

3.4.5 Data S paces

Thus far we have discussed PDL operations on static collections of named
and anonymous data items, that is, data items that are declared in advance
and exist until execution terminates. We now introduce dynamic changes in
the composition of the list of data items itself, in analogy with facilities for
allocation and release of storage found in some programming languages.
Specifically, let S be a list of active data items declared in or passed to a
program. (A declared data item becomes active when first assigned a value.)
We call S a data space. A data space can also be changed by use of keywords
initial and free, defined next.

Let each member of S name a stack of indefinite depth, with only top
members accessible for program operations and tests. Then initial and free
are defined as follows, where name refers to a declared data name :

initial name := value

free name

If name is a member of S, value
is placed on its stack ; otherwise
name is added to S and value is
placed on its stack.
If name is a member of S, the
top member of its stack is removed,
and if now empty, name is
removed from S; otherwise the
statement fails (to execute).

An ordinary data assignment changes the top value of a stack ; an initial data
assignment creates a new top value and makes the previous top value un
available until a corresponding free statement is executed. For example,

78 El ements of P rogra m Ex pressi on

assume that x and z are active data items and that

S : (x : ('ab'), z : (8, 1))

That is, S is a list of stacks x and z, in which the top (and only) value of stack
x is 'ab' and the top value of stack z is 8 (with previous value 1). Then the
following sequence of operations produces the data spaces indicated (y an
integer variable) :

scalar y
y := z
initial y := 3
y z
free z
initial x := 'cd'
free z
initial z := 0

s : (x : ('ab'), z : (8, 1))
S : (x : ('ab'), y : (8), z : (8, 1))
s: (x : ('ab'), y : (3, 8), z : (8, 1))
S : (x : ('ab'), y: (8, 8), z : (8, 1))
S : (x : ('ab'), y : (8, 8), z : (1))
S : (x : ('cd', 'ab'), y: (8, 8), z : (1))
S : (x : ('cd', 'ab'), y : (8, 8))
S : (x : ('cd', 'ab'), y: (8, 8), z : (0))

Given the concept of a data space S, it is possible to invent inner syntax
predicates to determine whether specified data items are currently active
(i.e., members of S). For example, the predicate (using a, b, c, d as data
names)

active(a v (b /\ c) v ('"'-'d))

is true if a is active, or if b and c are active, or if d is not active, and is false
otherwise.

To illustrate, consider a program to multiply nonnegative integers x and
y by addition and assign their product to z. The usual assumption is that the
data space is identical on entry and exit and during execution in an ini
tialized whiledo as follows :

z := O
while

x > O
do

od

z := z + y
X := x - 1

However, if x and y name stacks containing a single value and z is not active,
the following program is an alternative to the program above:

3. !

3,

3

T
g
f(
t;
g
1:
t
h
s

while
active(x A Y)

do
if

'" active(z)
then

initial z := 0
else

if
x = O

then
free x, Y

else

fi

z := z + Y
X := x - 1

fi
od

Outer Syntax S ystem Structures

3.5 O UT E R SY NTAX SYSTE M ST R U CT U R ES

3.5.1 J o bs and Procedu res

79

Thus far, PDL structures have been illustrated in terms of unnamed pro
gram fragments. We now introduce named POL programs and the means
for combining them into larger program structures. We distinguish two
types of named programs; namely, jobs and procedures. POL jobs are pro
grams intended for immediate execution ; they correspond to job control
language that invokes operating system faci lities in batch and conversa
tional processing. The use of jobs in a design language permits design of the
highest level of control of sequential processes. The structures in a POL job
should be patterned after structures available in the target job control lan
guage. (For example, a POL job to be translated into System/370 JCL would
properly contain sequence structures but no looping structures, since JCL
does not permit loops.) A job is defined by POL text listed between keywords
job and boj, with a job name following job.

POL procedures are programs intended to be stored for later invocation
by other programs. Procedures correspond to programs stored in system
libraries for execution under operating system control. A procedure is
defined by POL text listed between keywords proc and corp, with a
procedure name following proc. Procedures are invoked by jobs or by other

80 El ements of Progra m Expressi on

procedures using POL statements of the form "rlDl name," where name
identifies the procedure. To illustrate, the following job runs a program that
assigns the reverse of an input queue to an output queue by use of a s
(past data declarations and parameter lists aside):

job print reverse

boj

queue inqueue, outqueue
run reverse

proc reverse [outqueue := reverse(inqueue)]
stack a
a := empty
outqueue := empty
while

inqueue =1= empty
do

top(a) := end(inqueue)
od
while

a =1= empty
do

end(outqueue) := top(a)
od

corp

To limit complexity and enhance readability, a large POL program can
be organized not as a single procedure, but rather as a hierarchy of smaller
procedures called segments. Segments are referenced in the hierarchy by rIDJ
statements that appear in a procedure to invoke other named procedures,
which themselves may contain additional rIDJ statements. For readability,
segments should be limited to a quantity of text that can be easily com
prehended, usually a page or less, say 10 to 50 lines or so. Parameter lists are
attached to run statements, and corresponding parameter lists attached to
proc keywords, to specify data items passed from a job to a procedure or
between procedures. In a programming language implementation, a run
statement can be converted into either a call (to a closed subroutine) or
in-line code (possibly by "include" or "copy" facilities), depending on
efficiency matters. A call makes better use of space, in-line code makes better
use of time.

Similarly, although data structures can be declared within jobs or
procedures, extensive collections of data can be defined in a separate data
declaration segment, listed between keywords data and atad with a name

3 .5

follm
namt
can Ii
"use
them
use s

Data
can 1
this
that
decb

ramt
dech
pass�
oper

of d
cou]

to d
revi
age
tap

by 1
(or
pr(J

the
the

3.5 O uter Syntax System Structu res 81

following data. The data declaration is then referenced by the statement "use

name" within the corresponding job or procedure. A large data declaration

can likewise be organized as a hierarchy of declaration segments by means of
"use name" statements to specify inclusion of other declarations, which

themselves are delimited by data and atad and possibly contain additional
use statements.

All data referenced within a PDL segment must be explicitly declared.
Data structures named in a parameter list to be passed between procedures
can be declared in a data segment that is then used by both procedures. In

this case, data structures that are referenced by one of the procedures but
that do not appear in the parameter list must not be present in the shared
declaration.

Next, we distinguish between data structures appearing in the pa
rameter list of a procedure, called passed data, and all other data structures
declared in a procedure, called local data. The results of operations on
passed data correspond to the function of the procedure, whereas local data
operations are incidental to a particular implementation of that function.

Data passed to or from ajob is called external data and is shown as a list
of data names following the job name. For example, the job shown above
could be augmented as

job printreverse(inqueue, out queue)
queue inqueue, outqueue
run reverse (inqueue, out queue)

boj

to define inqueue and outqueue as external data with respect to the job print
reverse, and passed data with respect to the procedure reverse. An outside
agent is required to supply or remove external data, for example, in card or
tape input, or in tape or print output.

Data that is not external is called internal data. Such data is passed
by being named in a parameter list attached to a run statement and is named
(or renamed) in a corresponding parameter list attached to the invoked
procedure. For example, for the run statement

run squareroot(root, number, bound)

the following parameter lists correspond; the first uses the identical names,
the second renames the data items :

proc squareroot(root, number, bound)
proc squareroot(r, n, error)

82 El ements of P rog ra m Expressi on

Data passed to or from a procedure and external data passed to or from
a job can be further characterized as alterable data or fixed data, by the . .
keywords alt and fix. Alterable data can be changed in an invoked segment ;
fixed data cannot be changed.t Alterable and fixed data usage categories are
m�ed to partition parameter lists, for better readability and control of the
design process. For example,

run squareroot(alt root, fix number, bound)
proc squareroot(alt root, fix number, bound)

The following miniature segment-structured program reads a sequence
of integers and prints a 0 or 1 for each, depending on whether the integer is
even or odd. Sequences in and out are external to the job segment ; they are
passed data for the oddeven procedure, which also defines x as local data
since it is required in the design of the odd even function. In the invocation of
the procedures positive and nonpositive, x is treated as alterable passed data:

job oddeven (in, out)
sequence in, out
run oddeven(alt out, fix in)

boj

proc oddeven(alt output, fix input)
sequence input, output
scalar x
while

input =1= empty
do

od
corp

x := next(input)
if

x > O
then

run positive(alt x)
else

run nonpositive(alt x)
fi
next(output) x

t It is possible to alter and restore the values of data specified as fixed, provided
that the restoration is verified to be correct.

3.5

proc
S4
"

d

()
corp

proc
s

cOfl

3.5 .2

Jobs an4
internal
Howeve
of data
For thi:
subclas�
in subs
system
involve
workin]
system
file mai
a systel
output
itself a:
behave

In
tion of
disk fil
examp
add m,

3.5

proc positive(alt x)
scalar x
while

do

od
corp

x > l

X := x - 2

proc nonpositive(alt x)
scalar x
while

do

od
corp

x < O

X := x + 2

Outer Syntax System Structu res

3.5 .2 Systems and Modules

83

Jobs and procedures describe data processing that, despite the operations on
internal data, result ultimately in visible operations on external data.
However, data processing systems ordinarily require the permanent storage
of data between job executions as an integral part of their service to users.
For this reason, we identify a third class of data, called stored data, as a
subclass of internal data, and as the name implies, it is to be retained for use
in subsequent job execution. For example, the files of a text processing
system will be maintained as stored data. A job executed in this system will
involve external data (input/output of the job), internal data (temporary
working data), and stored data (the updated files). A typical data processing
system will be made up of several programs, say for text entry, text retrieval,
file maintenance, recovery and restart, and so on. Each job executed in such
a system will call on programs of the system and convert input data into
output data and a new state of stored data. In short, by regarding the job
itself as part of the input, such a data processing system can be seen to
behave as a finite state machine.

In contrast with a large and complex data processing system, a collec
tion of service routines for dealing with a data object such as a directory or a
disk file can be put into the same logical form, but on a smaller scale. For
example, the services of a directory may be defined in separate programs to
add members, delete members, find members, reclaim free space, and so on.

84 El ements of P rogra m Expressi on

These programs, together with the directory, also behave as a finite state
machine, under calls by other programs rather than by user jobs.

On a scale intermediate to these two examples, the mass storage subsys
tem of the text processing system can (possibly) be accessed through a small
set of programs to put data, get data, recover space, and so on. These
programs could call on the directory programs and be called on by the text
proCessing system.

This model of a small set of programs providing service to a data object
is a powerful one for organizing programs and data into data processing ·
systems. For this reason, we define a PDL module to be a named collection
of programs, datasets, and other modules by the syntax

mod name
programs program name list
datasets data name list
modules module name list

dom

The module definition implies that data segments named after datasets are
to be stored data and that access to this stored data is to be limited to the
named programs. The named programs of a module can also define and
refer to other internal and external data, as described before, and may call on
services of the named modules through their programs, as identified in their ·
corresponding module definitions.

It is evident that the text processing system, the mass storage subsystem,
and the directory services outlined above can each be described and or
ganized together in this module syntax :

mod textprocessor
programs textentry, textretrieval, filemaintenance,

recovery, restart, . . .
datasets systemdata, . . .
modules mass storage, . . .

dom

mod massstorage
programs getdata, putdata, recoverspace, . . .
datasets textfiles, archives, checkpoint, . . .
modules directoryservices, . . .

dom

3.6 I nner Synta x

mod directoryservices
programs addmember, deletemember, findmember, . . .
datasets directoryfiles, . . .

dom

85

(POL jobs would be used to invoke the programs of the textprocessor

module.) Such a data processing system could have been described in poorly

organized, difficult to understand form, as a single module. But it has been

described here in better organized, more easily understood form, as a collec

tion of interconnected modules that define system structure by higher and
higher level operations on data. In fact, the term data abstraction is used to
describe the idea of a data object that can be accessed only by a prescribed
set of operations. In this case, the actual representation of the data object is
immaterial to the user since the data is only manifested through the
operations.

3. 6 I N N ER SYNTAX

3.6.1 Inner Syntax Expressi ons

The purpose of inner syntax in POL is to allow flexible, yet precise, data
operations and tests at any point in program design, that are appropriate for
the subject matter, design level, and audience. Oata operations drawn from
arithmetic, logic, and character processing, and data objects found in high
level programming languages, such as character strings, numbers, and logical
values, are usefuL We use ordinary conventions in this book, denoting
character strings by quotes, numbers in integer or real form, and logical
values by POL keywords true or false. Oata names are (unquoted) alpha
numeric strings headed by an alphabetic character.

As described in Chapter 2, logical expressions may be written using
logical operators and quantifiers. The following are examples of the use of
logical expressions as predicates (tests) in POL :

there exists an unprocessed order (or, 3 unprocessed order)
successful (or, successful = true)
(x + y � z + limit) 1\ a ::/= b
for all transactions, n = 128 (or, V transactions (n = 128))
payfile ::/= empty

Assignment statements in POL must specify a data expression whose
evaluation produces a data value for assignment to a specified target

86 El ements of P rogram Ex pression

identifier. For example :

Arithmetic operations (a, b, c integers)

a := a - 2
a := (2*b) - (c + 2*a)!factor
b := b !

(factor is a variable name)
(set b to the factorial of b)
(set c to the integer part of c) c := int(c)

String operations (a, b, c strings, x, y integers)

C := concatenate(a, b)
or,

c := a II b

c := substring(a, x, y)

X := index(a, b)

(c becomes the string formed by
adjoining string b to string a)

(c becomes the substring of
string a that begins at character
position x and has a
length of y)

(starting position of the first
occurrence of string b in string a,
if any, is assigned to x, otherwise
x is assigned 0)

Ultimately, expressing data operations and tests comes down to finding
suitable terms for reliable communication, taking into account context
shared with the intended audience. Informal description of an operation, say
"sort transaction file," may be suited to a context where the operation is well
understood or need not be understood in more detail ; where it is not well
understood, an informal description may raise questions on details not
specified, such as, in this example, questions on sort key, timing require
ments, and file size.

3 .6 .2 Data Types

A data type is a set of objects to which is associated (1) a set of operations, (2)
a set of tests, and (3) a convenient symbol set. For example, integer ;;:: 0 is a
data type with operations + , *, tests = , > , and a symbol set such as dew.mal
or binary digit strings. A data type specification is denoted by the PDL
keyword type which identifies a type name with a table of operations and
tests. For example, a quite arbitrary data type, called "tricolor," could be
defined with symbol set {red, white, blue}, operation "brighter of," test
"brighter than," in the PDL type specification as follows :

3 .6

Wh,
tions ar
examplt:

implies

which
axioms
by thei

TIl
treatm
An em

with 4

specifi

3.6 Inner Syn tax 87

type tricolor defined by

tricolor tricolor "brighter of" "brighter than"

red red red false
red white white false
red blue red true
white red white true
white white white false
white blue white true
blue red red false
blue white white false
blue blue blue false

When the data type being specified is very familiar, the table of opera
tions and tests may be given implicitly by a name, or a reference. For
example,

type integer ;;::: 0

implies a table of operations and tests that begins

integer ;;::: 0 integer ;;::: 0 + * >

0 0 0 0 true false
0 1 1 0 false false
1 0 1 0 false true
0 2 2 0 false false
1 1 2 1 true false
2 0 2 0 false true

which is well known, and can be described in more compact forms by
axioms. Such data types of mathematical origin will be referred to frequently
by their common names.

There are two kinds of data type specification that warrant special
treatment due to their convenience-enumerated types and subrange types.
An enumerated type specification is given by listing the symbol set as

type weekday = (M, Tu, W, Th, F, Sa, Su)

with operations and tests implicit in the list form. A subrange type
specification is given by listing two members of a known ordered set to

88 El ements of Progra m Expressi on

signify all members from the first member to the second member; for
example,

type twenties
type workday

where type twenties has members

(1920 . . 1929)
(M . . F)

1920, 1921 , 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929

and type workday has members

M, Tu, W, Th, F

A subrange type inherits the operations and tests of its underlying ordered
set that apply to the subrange.

Inner syntax type assignments can be appended to outer syntax data
structures, as in

scalar a, b : integer

where the colon delimits the data list and integer is an inner syntax data type
that implies admissible values and operations ; that is, a and b are integer
values for use in ordinary arithmetic operations. The following examples
illustrate elementary data types ; in all cases outer syntax keywords are
boldface and inner syntax words are not :

scalar a: string(50)

sequence b, c: string(4)

set d: logical

stack e: string

queue f, g : integer � 0

array h : logical

(a is a string of length 50)
(each member of b and c is a
string of length 4)
(each member of d takes on
only values true or false)

(each member of e is a
string of unspecified length)

(each member off and g is a
nonnegative integer)

(each member of h takes on
only values true or false)

record k : logical, (string, integer) (k is a record with k. 1 logical,
k .2 . 1 string, and k .2 .2 integer)

3.6

record student
1 name : nametype
2 address
2. 1 street : streettype
2 .2 city : citytype
2. 3 state : statetype
3 class : c1asstype

Inner Syntax

(student is a record with
typed members student. name,
student .address.street,
student . address. city,
studenLaddress. state, and
student . class)

89

That is, a type specification applies to every member of a structure, unless
otherwise stated.

At higher levels of design, other data types may be introduced as the
need arises. In particular, high-level data types can be as useful in problem
solving and program design as are high-level program structures. For exam
ple, "chess board" and '''chess move" may be data types that permit tests
such as "black checkmate" and "white checkmate," and operations such as
"chess board" + "chess move" (= new "chess board" or "illegal move").
Such tests and operations could be implemented with corresponding module
definitions as before.

Even though sets, stacks, and queues have been used as outer syntax
data structures, they can be regarded as data types independently if useful
in a design problem. That is, sets may be regarded either as objects that
contain other objects (as defined by set membership) or as objects in an
algebra of sets (in which the concept of set membership plays no role at all).
The first view corresponds to a data structure in which members can be
stored and retrieved ; the second view corresponds to a data type that
permits set operations and tests. For example, a set data type would permit
the use of complex set expressions in assignments, tests, and procedure
arguments.

4.1 OVERVI EW

4
Structured

Programs

In Chapter 3 a small, closed set of PDL control structures was defined. But a
general branching (GOTO) statement that allows the construction of arbi
trarily complex control structures was not defined. The omission of such
structures is justified by the Structure Theorem, which shows that the effect
on data of any arbitrarily complex control structure can be accomplished by
use of the PDL control structures alone. The Structure Theorem proof
construction permits systematic transformation of programs expressed in
these arbitrarily complex control structures into equivalent programs ex
pressed in the PDL control structures. In order to make these ideas precise,
this chapter introduces three fundamental concepts : proper programs, prime
programs, and programfunctions.t Proper programs have one entry and one
exit, and include PDL programs; their effect on data can be summarized at
both the entry and the exit. Prime programs are proper programs that are
irreducible in a certain sense discussed below, and include the PDL control
structures. Program functions are precise and comprehensive statements of
the effect of a proper program on data, from an initial data state at entry to a
final data state at exit. Program functions are of fundamental importance in
program reading, writing, and correctness validation, as described in sub
sequent chapters.

t The concept of prime programs is due to Roy A. Maddux, "A Study of Computer
Program Structure," Ph.D. Thesis, University of Waterloo, Ontario, Canada, 1975.

92 St ructu red Programs

4.2 PROG RAM EXECUTIO N

4.2.1 Flowchart Programs

Aflowchart is a directed graph that depicts the flow of execution control of
program and the instructions to be executed. Each instruction of a nrr .. nr·'.lI '
corresponds to a node in the flowchart; each possible flow of control corre
sponds to a line. If an instruction node has more than one out-line, it is
control instruction. If the execution of a control instruction affects no
except an instruction counter, it is a pure control instruction ; otherwise
control instruction has side effects that change data values. (Note that if
real-time clock is part of the data, then no pure control instructions
Isolation of side effects permits better human understanding of pro
Side effects can be useful in control instructions-for example, in 100lPlIlll!'
(decrement and branch), in subroutine linkages (branch and link return),
implementing push down stacks-but we do not pursue those ideas f
here.

If a flowchart node has a single in-line and single out-line, it is called
function node

where a function named f is associated with the node, typically an assign
ment instruction. The term function node is especially appropriate since
assignment instruction can be represented entirely by a mathematical func
tion in its effect on data.

If a flowchart node has a single in-line and two out-lines and is a pure
control instruction, it is called a predicate node

where a predicate named p is associated with the node. A predicate node '

directs the flow of execution control according to whether the predicate
evaluates to true or false (T or F); it does not affect the data of a program
otherwise. In this book, where labels T and F do not appear with a predicate
node, the true out-line will always be drawn above the false out-line.

It is convenient to introduce one more node with a "no-op" instruction

4

tl
c

I
a
11

r
l3
i
l3

4.2 Prog ram Execution 93

that does not change or evaluate data, with two in-lines and one out-line,
called a collecting node :

In fact, a flowchart may join more than two in-lines at an instruction, but
any number of in-lines can be depicted by a structure of multiple collecting
nodes :

The control structure of a flowchart preserves the ordering of function
nodes, predicate nodes, and collecting nodes, but ignores the identity of
associated functions, predicates, and predicate values. The flowchart shown
in Fig. 4. 1 , with predicates named p and q and functions named g and h, has
a control structure depicted by, say, either of the diagrams in Fig. 4.2. We
note in passing that a control structure has a natural dual obtained by
reversing each line and interchanging the roles of predicate and collecting
nodes.

Figure 4.1

94 Structured Programs

Figure 4.2

4 .2 .2 Proper Prog rams

A proper program is a program with a contro) structure that

1 . has a single entry line and a single exit line, and

2. for each node, has a path through that node from the entry line to the
exit line.

Condition 2 outlaws control structures such as those shown in Fig. 4.3 that
have unleavable node sets (left) and unreachable node sets (right).

Figure 4.3

A proper program can be abstracted into a single -function node for
better human understanding. The function node summarizes the total effect
of the data operations and tests of the proper program it represents. For

4.2

exa

can

wh

an

4.2 Program Executi on 95

example, the proper program

can be redescribed as

where

-D-- abstracts the proper program

and

-D-- abstracts the proper program

98 Structured Prog rams

The reduced proper program

can then be abstracted to a single function node:

Conversely, any function node of a program can be expanded into a
proper program without affecting the function of other parts of the program.
For example, the function node just above could be expanded to, say

--------------,
I k ,
I 9 I
I I

I
I I
I I
L _ _ _ _ _ _ __ _ _ _ _ J

and g and h could be expanded to, say

r----------------------------,
I k r:--------------------, I
I I 9 I I
I I b I I
, I I I
I I I I

I I
I I
I I

I
I
I
I
I
I
I
I
L _ _ _ _ _ _ __ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ __ _ _ �

4.2 Prog ra m Execution 97

The parts of a program that are themselves proper are called proper subpro

grams. The proper subprograms of program k are g, h, a, b, c, and d. Predi

cates p, q, s, and t are not proper subprograms by themselves because they

each have two out-lines.

4.2 .3 Execution Charts a nd Trees

We will see that any proper program with arbitrary control structure can be
expressed as an equivalent program composed of only a subset of the PDL
control structures. This motivates a closer look at the concept of program
equivalence. In preparation, we now introduce execution charts and execu

tion trees, and the fundamental concept of program functions.
A flowchart program defines execution sequences along paths and

cycles. These execution sequences can often be better understood in terms of
a finite tree called an execution chart (E-chart). Given a proper flowchart, we
construct its E-chart of nodes and lines in a stepwise manner as follows :

1. Start the E-chart with the entry line of the flowchart and its adjacent
predicate, function, or collecting node.

2. At each step of construction, consider each execution path (a directed
path of lines and nodes adjoined to the entry line) in the evolving
E-chart. If an execution path currently terminates in a function, predi
cate, or collecting node not found earlier in that specific path, adjoin all
of that node's out-lines (from the flowchart) and the nodes with which
those out-lines connect, if any, to the execution path.

3. When all execution paths terminate in exit lines or in nodes that
previously appeared on the path, the E-chart is complete.

It is clear that this procedure terminates with a finite tree since each path will
eventually exhaust the nodes of the flowchart. For example, for the flowchart
shown in Fig. 4.4 (with numbered collecting nodes) the above procedure
generates the E-chart shown in Fig. 4.5.

The execution of a flowchart is given by executions along paths of its
E-chart, with the added rule that control passes from a repeated end node
back to its initial occurrence on that path. It is clear that a flowchart is loop
free if and only if its E-chart has no repeated nodes as execution path end
points. It is also clear that all occurrences of collecting nodes except those
appearing as repeated points on a path can be suppressed ; for example, the
E-chart in Fig. 4.5 can be simplified as illustrated in Fig. 4.6, where only
collecting node 2 has been retained.

An execution tree (E-tree) of a flowchart program is a tree whose paths
depict all possible execution sequences of the flowchart without retracing. If
loops are not present in the flowchart, then the corresponding finite E-chart
is the E-tree. If loops are present in a flowchart, the E-tree is the infinite tree

98 Structured P rograms

Figu re 4.4

Figure 4.5

Figu re 4.6

4.2

obtai
ning
simpl
press

has t

that

4.2 Program Execut ion 99

obtained by repeatedly replacing each repeated node by the subtree begin
ning at the first occurrence of that node earlier in the path. As a final
simplification, the first occurrence of each repeated node can itself be sup

pressed. For example, the flowchart

has the E-chart

that expands to the E-tree (with collecting nodes suppressed) :

1 00 St ructu red P rograms

EX E RCISES

1 . Which of the following programs are proper?

a)

b)

-{
c)

d)

e)

Exercises 1 01

2. Enumerate the proper subprograms with more than one node in the following

program :

3. Given a proper program with exactly 4> function nodes, 7l predicate nodes, y
collecting nodes, and A. lines, show that 7l = Y and A. = 4> + 371 + 1. (Hint : Count
heads and tails of lines and equate them.)

4. Enumerate the 1 6 distinct control structures for proper programs with two
predicate nodes and no function nodes. (Hint : Two such control structures are

and

These control structures are distinct, since the collector nodes may not be inter
changed.) Eight of the control structures are type CP; that is, entry is to a collector
node (C), exit is from a predicate node (P). Similarly, two are type CC, two are type

1 02 Structu red Prog rams

PP, and four are type Pc. How many of the 16 are direct combinations of one
predicate control structures? Identify the 10 control structures of the 16 that are their
own duals.

5. Show that the dual of a control structure with unleavable node sets has unreach
able node sets, and, conversely.

4 . 3 P R O G RAM F U N CTI O N S

4 . 3 . 1 Data :Assign ment

The assignment statement can be regarded as a program in its own right that
transforms an initial data state into a final data state in a particularly simple
way. All data not listed on the left side is to remain unchanged ; the right side

gives the rule for calculating the new value(s) for the data item(s) on the left
side. When embedded in a larger program, the assignment statement re
mains well behaved ; it does not change data of the larger program that it
does not know about.

However, in developing the concept of assignment statements at the
design level, in PDL, the behavior of assignment statements at the im
plementation level in language compilers and machines is instructive. At the
compiler and machine level, assignment statements can fail to execute for
various reasons-type incompatibility (assigning a character to integer
data), arithmetic overflow (dividing by zero), structure incompatibility
(assigning an array to a scalar), and so forth. At the design level, assignment
statements can be used to bridge these type, finiteness, and structural prQb
lems, which are then properly handled at more detailed levels. And yet, even
at the design level, assignment statements must be specified with precision,
even though with flexibility.

This precision, yet flexibility, can be achieved by a simple but fundamen
tal step. It is to understand the assignment statement as the name of a
function that defines a state transition for all data known to the program
containing it. The domain of the function corresponds to the initial data
states that are transformed by the assignment statement into final data states.
For example, in a program with data space x, y, z the assignment

x := y

corresponds to an assignment junction, that is, a set of ordered pairs of the
form

{((x, y, z), (u, v, w)) I u = Y 1\ V = Y 1\ W = z}

more easily written as

{((x, y, z), (y, y, z))}

4.:

n
x,
be

A�

le�
(x

Ir
p1

gi

11
'"
s]

a

1

1
l;
r
r

4.3 Prog ram Fu nctions 1 03

There may be additional conditions that limit the function. For example, if

Y z are declared as data type integer ;;::: 0, then the function x := y should x, ' be amended to

{((x, y, z), (y, y, z)) I x ;;::: 0 1\ Y ;;::: 0 1\ Z ;;::: O}

As an alternative, a conditional rule can name the function :

(x ;;::: 0 1\ Y ;;::: 0 1\ Z ;;::: 0, X := y)

Before proceeding to more complex assignments, however, note that the

letters x, y, z have quite different meanings on the two sides of the equation
(x I:::: y shown in parentheses for readability)

(x := y) = {((x, y, z), (y, y, z))}

In the function name "x := y", x and y refer to names of data known to a
program ; on the right side, x, y, z are names of values of data. For example,
given a data space (x, y, z) (meaning x is first, y second, z third) the definition

(x := y) = {((u, v, w), (v, v, w))}

defines the same assignment statement as before, as does

(x := y) = {((y, z, x), (z, z, x))}

In this context, assignments always map one data state into another, in
which the names used in assignments refer to ordinal positions in the corre
sponding data space.

Next, consider for scalars x, y, z with data type integer ;;::: 0, the
assignment

x y - z

In this case, the assignment function is

(x := y z) = {((x, y, z), (y - z, y, z)) I x ;;::: 0 1\ Y ;;::: 0 1\ Z ;;::: 0 1\ Y - z ;;::: O}

That is, x must be nonnegative before and after the assignment. In particu
lar, the function has no argument for which y < z. As defined, this assign
ment fails when y < z, just as real assignments fail when executing on a
machine. In this way, a function definition permits flexibility for design, but
also permits any degree of precision required in dealing with implementa
tion questions.

Assignments may use functions in their definition, but these should not

1 04 Structu red P rograms

be confused with the assignment function itself. For example

x max(y, z)

makes use of a max function defined as, say

max = {((y, z), (u)) I (y ;:::: z /\ u = y) v (z ;:::: Y /\ U z)}

but the assignment function is

(x := max(y, z)) = {((x, y, z), (max(y, z), y, z))}

which accounts for values of y, z, as well.
Assignments to arrays using variable indexes provide a reminder that

the indexes are part of the data state, as are the array members. For example,
if x is a 3-list x(l : 3) (that is, an array of 3 elements), the multiple assignment

i, x (i + 1) := x(i), i + x(i + 1)

is the name of a state transition function involving at least a 4-list

(i, x(l), x(2), x(3))

which includes the index. The complete expression of the assignment above
is therefore given by the conditional rule

(i = 1 - d, x(2) := x(l), 1 + x(2) 1 i = 2 -+ i, x(3) := x(2), 2 + x(3))

(Since x(i + 1) is not defined for i > 2, the assignment function is undefined
for any initial i not 1 or 2.) In this case, the idea of an assignment function
captures the correct use of assignment to arrays.

4.3.2 Program Effects on Data

An execution of a program may terminate (reach an end point) in its execu
tion tree, and possibly every execution will terminate, even though the
execution tree is itself infinite. Consider all possible executions defined by an
execution tree. For each initial data state X for which execution terminates,
a final data state Y is determined.t The value Y is unique, given X, so that
the set of all ordered pairs {(X, Y)} so defined is a function. We call this
function the program/unction of a program. Thus, in particular, the program
function of a single assignment statement is exactly the function that the
assignment names, as discussed above.

t In this book, upper-case letters denote data states, lower-case letters denote data
variables.

4.3

Gi
[P] (n
indivic

has pI

where
tion (

1
unioI
E-trel
neces
the c
funct
progl

4.3
Prog ram Functi ons 1 05

Given a proper program named P, we denote its program function by
[P] (read "brac�et P"). By definition then, a program P composed of an

individual functIOn node f = {(X, Y)}

has program function

x y
I I
I I
I I

P �

-L[J-L

[P] = {(X, Y) I Y = f(X)}

A sequence of two functions

p

z
I
I
,
I

where g = {(X, Y)}, h = {(Y, Z)}, has as its program function the composi
tion of the individual functions :

[P] = {(X, Z) I Z = h(g(X))}

The program function of a loop-free program can be described as a
union of function compositions that can be derived directly from its finite
E-tree. Each predicate on a path, composed with earlier functions, defines a
necessary and sufficient condition for continuing on each branch of the path ;
the composition of all functions on the path gives the part of the program
function corresponding to that path. For example, consider the flowchart
program shown in Fig. 4.7. The E-chart, with end points labeled (1) to (5), is

p =

Figure 4.7

1 06 Structured Prog rams

Figure 4.8

(2)

shown in Fig. 4.8. The program function is thus a union of five function .
compositions, each of whose domain and values are defined by a path
through the E-chart ; namely,

(1) {(X, Y) I p(X) /\ q(f(X)) /\ Y = g(f(X))}

(2) { (X, Y) l p(X) /\ "' q(f(X)) /\ r(h (f(X))) /\ Y g (h(f(X)))}

(3) { (X, Y) I p(X) /\ "' q(f(X)) /\ '" r(h (f(X))) /\ Y = h (f(X))}

(4) {(X, Y) I '" p(X) /\ r(h(X)) /\ Y = g(h(X))}

(5) {(X, Y) I '" p(X) /\ '" r(h(X)) /\ Y = h(X)}

This program function can also be defined as a conditional rule :

[P] { (X, Y) I (P(X) /\ q 0 f(X) -+ Y g 0 f(X) I

p(X) /\ ", q o f(X) /\ r o h f(X) -+ Y = g o h f(X) I

p(X) /\ "' q f(X) /\ '" r h o f(X) -+ Y = h f(X) I

'" p(X) /\ r h(X) -+ Y = g 0 h(X) I

'" p(X) /\ '" r 0 h(X) -+ Y = h(X))}

The program function of a looping program can be characterized by a
number offunction equations in a like number of functions. In particular, for
each repeated collecting node j in the E-chart of the program, define a
functionfj. Eachfj defines the function of all nodes traversed in the E-chart
from the first occurrence of collecting node j. Then, replacing each repeated
collecting node with the corresponding function, we obtain a loop-free

4.3

E-ch
tion
deter

]
as sh
fl, j
fl, j
out 1

4.3

Figure 4.9

Figure 4.1 0

Program Fu nctions 1 07

E-chart, as shown above for loop-free programs, except that the final func
tion in each composition on a path may be one of the functions to be
determined.

For example, the flowchart program P shown in Fig. 4.9 has an E-chart
as shown in Fig. 4. 10. To characterize the program function of P, associate
11, /2, /3 with collecting nodes 1, 2, 3 as shown in Fig. 4. 1 1 . Then
/1, /2, /3 satisfy the following function equations, which can be written
out by inspection, in following paths of the E-chart :

/1 = {(X, Y) I Y = /2 0 gl(X)}

/2 = {(X, Y) I (pl 0 g3(X) � Y = /1 0 g2 0 g3(X) I

'" pi 0 g3(X) � Y = /3 0 g3(X))}

1 08 Structured Programs

Irl----=--=--=--=--=--=---=--=--=--=--=----=--=----=--=--=---=--=--===-:::::_,
I I f2 I
I I
I I I
I I I
I I I
I I I
I I I

I
I
I
I
I
I
I
I
I
I
I I I I
I L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J I
l _ �

L _ �

Figure 4.1 1

/3 = {(X, Y) I (p2(X) A p3(X) � Y = /3 0 g5(X) I

p2(X) A '" p3 (X) � Y = X I
'" p2(X) � Y 0 g4(X))}

If this system of equations can be solved, then the program function of P is

[P]

To illustrate program functions in PDL, consider the following pro
grams (all data items are integers). Program functions are given by sets of
ordered pairs and by data assignments (within conditional rules where
necessary) :

a) [x := x + y; y := x - y] = {((x, y), (x + y, x))}
= (x, y := x + y, x)

b) [if x > y then x := y 6] = {((x, y), (min(x, y), y))}

= (x min(x, y))

4.3

c) [whil4

e) [do x

f) [do .x

Note ho
function
is rest ric

4.3.3

The CO]
structur
Theorer
have th'
same p
prograr

are exe�

4.3
Prog ram Functions

c) [while x > ° do x := x - I 00] = {(x, min (O, x))}
= (x := min (O, x))

d) [while x =1= ° do x := x - 1 00] = {(x, O) l x � O}
= (x � 0 -+ X := 0)

e) [do x := X + 1 until x > y 00] = {((x, y), (max (x + 1 , y + 1), y))}
= (x := max(x + 1, y + 1))

f) [do x := X + 1 until x =1= y 00] = {((x, y), (x + 1 , y)) I x =1= y - I}

u {((x, y), (y + 1 , y)) l x = y - I}
= (x =1= y - 1 -+ x := X + 1 1

x = y - 1 -+ x := y + 1)

1 09

Note how a slight change in a whiletest or untiltest can change the program
function. In (d), the whiledo does not terminate for x < 0, hence the domain
is restricted to x � 0.

4.3.3 Program Equival ence

The concept of program equivalence is important in simplifying control
structures for better understanding, as we will demonstrate in the Structure
Theorem. We now define two types of program equivalence. If two programs
have the same execution tree, they are execution equivalent; if they have the
same program function, they are function equivalent. For example, the
programs

and

are execution equivalent, while the programs

and

1 1 0 Structured Programs

are function equivalent, but not execution equivalent. Execution equivalence
implies function equivalence, but not conversely.

EXE RCISES

I. Verify the assertions above about the examples of function equivalence and
execution equivalence, by expanding their E-charts into execution trees and compar
ing them.
2. Using E-trees, verify that the following pairs are execution equivalent :

a) (do g until p -od) and (g ; while '" p do g 00)
b) (dol g while p do2 h 00) and (g; while p do h ; g 00)

3. Construct program functions for the following programs :

a)

b)

p

Exercises 1 1 1

4. Given the following programs (x and y nonnegative integers), compare program

p with programs Q, R, S, T, and U, and indicate whether each pair is execution
equivalent, function equivalent, or neither :

p == while
y > O

do

od

X := x - 1
y := y - 1

Q = (x, y := x - y, 0)

R = if
y > O

then

fi

x := x - 1
y := y - 1
while

y > O
do

X := x - 1
y := y - 1

od

S = if
y > O

then

fi

x := x - 1
y := y - 1
x, y := x - y, 0

T = if
y > O

then

fi

x := x - 1
y := y - 1

x, y := x - y, 0

U = if
y > O

then

fi

do
X := x - 1
y := y - 1

until
y � O

od

5. Determine the program function of the following programs (x, y, a, b non
negative integers ; use conditional rules to define domains such that the programs
terminate) :

P = while
x � b

do
X := x + a

od

R = do
X := x + a

until
x > b

od

Q = while
x =/= b

do
X := x + a

od

S = do
X := x + a

until
x = b

od

1 1 2 Structured Programs

T = dol
X := x + a

while
x � b

do2
X := x + a

od

U = dol
x x + a

while
x =/= b

do2

od
x x + a

4.4 PROG RAM STR U CTU R ES

4.4.1 Prime Prog rams

A proper program may contain parts that are themselves proper. As defined
earlier, such parts are called proper subprograms. A prime program is a proper
program that has no proper subprogram of more than one node. For exam
ple, programs with control structure as shown in the left column ih Fig. 4. 12
are prime, while programs with control structure as shown in the right
column are proper but not prime ; that is, the first figure in the right column
has a proper subprogram of more than one node, namely,

as does the second,

and the third :

There is an infinite number of prime control structures, as Fig. 4.13 shows.
Proper programs can be enumerated by the number of their nodes and

classified as prime or not prime. The control structures of prime programs
composed of 1, 2, 3, and 4 nodes are enumerated in Fig. 4.14. Of these 1 5
primes with up to four nodes, only seven have one or more function nodes

Program Struct ures 1 1 3

Prime Not Prime

-0-0-

Figure 4.1 2

Figure 4.1 3

1 1 4 Struct ured Programs

1 node

2 nodes

3 nodes

4 nodes

Figu re 4.1 4

4.4 Program St. uctu res 1 1 5

(and can thereby operate on data). These seven are given specific names
below ; they correspond to the control structures of PDL, as shown.t

function f

sequence g ; h

if then if p then g fi

whiledo while p do g od

dountil do g until p od

ifthenelse if p then g else h fi

dowhiledo dol g while p do2 h od

t The PDL extended sequence structure (sequence of more than two parts) and fordo
and case structures (abbreviations for uniform sequences and multiple ifthenelses,
respectively) do not appear in the following enumeration; however, we will find it
convenient to treat them as special proper programs in the remainder of the book.

1 1 6 Structured Programs

The program functions of these primes are readily derived from
functions and predicates, as shown next, where superscripts on g are
terpreted as follows :

for k = 1, 2, . . .

The program functions aret

[I] = /

[g ; h] = {(X, Y) I Y h 0 g(X)}
[if p then g 6] {(X, Y) I (p(X) 1\ Y = g(X))

v ('" p(X) 1\ Y = X)}
[while p do g od] = {(X, Y) 1 3k 2 O((Vj, 0 � j < k)(p gi(X))

1\ '" P 0 gk(X)

1\ Y = gk(X))}

(In the outer quantified expression, the loop terminates after k l'tl eraltlons ..
with predicate p testing true for k 1 iterations, then /alse. Note that if
domain of j is empty, the inner quantified expression is vacuously true.)

[do g until p od] = {(X, Y) 1 3k > O((Vj, 1 � j < k)('" p gi(X))

1\ P gk(X)

1\ Y = gk(X))}

(The loop terminates after k iterations.)

[if p then g else h 6] = {(X, Y) I (p(X) 1\ Y = g(X))

v ('" p(X) 1\ Y = h(X))}

[dol g while p do2 h od] = {(X, Y) 1 3k 2 O((Vj, 0 � j < k)(p

1\ '" P 0 g (h g)"(X)

1\ Y = g 0 (h g)"(X))}

(The loop terminates after k iterations.)

t These program functions can be written in an alternate form as, for example,

[if p then 9 else h ti] {(X, Y) I (p(X) - Y = g(X)
1\ '" p(X) - Y = h(X» }

4.4 Program Structu res 1 1 7

Fig ure 4.1 5

The program functions for the looping programs above are somewhat
tedious to describe, but can also be visualized in terms of their E-trees. For
example, the E-tree for dol g while p do2 h od is shown in Fig. 4. 15, and its
program function is the union of the subfunctions defined by each terminat
ing path. The beginning sequence of subfunctions is shown in Fig. 4. 16.

Figure 4.1 6

1 1 8 Structured Programs

4 .4.2 Com pound Programs

If a function node of a prime program is replaced by another prime program,
a new proper program results. We define a compound program to be any
program obtained by replacing function nodes of a prime program by prime
programs. As a special case, prime programs are considered compound
programs themselves.

Compound programs can be defined with arbitrary size but limited
complexity by restricting the prime programs used to a fixed set of primes
called a basis set. Any basis set of prime programs generates a specific class · ,
of compound programs, a subset of all possible proper programs. For exam
ple, the set {sequence, ifthenelse} generates a class of loop-free programs and
the set {ifthenelse, whiledo} generates a class of programs whose execution ·
trees contain at most one distinct function node (possibly repeated) along
any path. Some ofthese classes of compound programs are subsets of others;
for example, the set {sequence, dountil} generates a subset of the programs '
generated by the set {sequence, ifthen, whiledo}.

Definition. A structured program is a compound program constructed
from a fixed basis set of prime programs.

4.4.3 The Struct u re Theo rem

The motivation for studying compound programs is the fact that any proper
program, no matter how large or complex, can be simulated in its step-by
step execution by a new compound program generated by a small basis set
of prime programs. One suitable basis set consists of sequence, ifthenelse,
and whiledo programs. The simulation is accomplished by using the func
tions and predicates of the original program, and assignments to and tests
on a single new data item, namely, a "program counter." We restate these
assertions more formally as a theorem :

Structure Theorem. Any proper program is function equivalent to a
structured program with basis set {sequence, ifthenelse, whiledo}, using
functions and predicates of the original program and assignments and
tests on one additional counter.

Proof Consider an arbitrary proper program, and arbitrarily number its
function and predicate nodes 1, 2, . . . , n, say, beginning with the first such
node reached from the entry line. (If one or more collecting nodes are
incident to the entry line, continue along their out-lines until a first function
or predicate node is reached.) Number the exit line of the program O. Now,
attach to each out-line of each function and predicate node the number of
the (unique) next function or predicate node reached, if any ; otherwise (if the

4.4

exit li]
progn

constl

FolIo'
variat
each 1

constl

J:'I
of ne
out-li
Origil
inner
is sh(

I
funct
the b

4.4 Prog ram Struct u res 1 1 9

exit line is reached) attach O. Next, for each function node of the original

program numbered i, say, with function h and out-line assigned j

construct a new proper sequence program gj (with in-line assigned i) :

i _ r-=l _ � _ gi = �
Following the execution of h, this program assigns the value j to a new label
variable L (the "program counter") not in the original program. Next, for
each predicate node numbered i, say

j

-4 k

construct a new proper ifthenelse program gi :

Now construct an initialized whiledo program, with dopart composed
of nested ifthenelses testing values of L from 1 to n. Each ifthenelse true
out-line connects to gi ' which contains a function or predicate node from the
original program. The program is shown in Fig. 4. 17 (the elsepart of the
innermost ifthenelse is simply i, the identity function). The program in PDL
is shown in Fig. 4.1 8.

It is clear that whatever the structure of the original program, j is
function equivalent to it ; moreover, j is a structured program generated by
the basis set {sequence, ifthenelse, whiledo}. This completes the proof.

\

4.4

In 0
desirable
theless, t
ture The·
of a pro
needs in

f proper p
program
dountil}
the whilt
text as

Figure 4.1 7

/ = L := l or in flo'
while

L > O
do

if
L = l

then
g1

else
if

L = 2
then

g2
else

if
L = n

then
gn - 1 then

else
if

L = n
then

gn t The res
else theorems

I of a set, C

Ii two exarr

Ii dimensi01
set of fun

Ii
These ex�
Theorem

Ii ifthenelse.
Figure 4.1 8 od substituti.

4.4 Prog ram Structures 1 21

In other branches of mathematics a unique representation is often a

desirable goal ; this does not seem to be the case in programming. Never

theless, the existence of a representation theorem, t which is what the Struc
ture Theorem is, still permits the resolution of questions of the completeness
of a programming language simply and effectively. For example, all one
needs in order to show that a new set of programs will span the set of all

proper programs is the ability to represent sequence, ifthenelse, and whiledo

programs in the new set. Thus, to show that the set {sequence, ifthenelse,

dountil} can likewise represent all proper programs, it is sufficient to express
the whiledo structure using members of that set. This can be shown in PDL
text as

[while p do g 00] = [if p then do g until '" p 00 else I 6]

or in flowchart form, if

then

t The result of the Structure Theorem is similar to the result of representation
theorems in various branches of mathematics, in which it is shown that all elements
of a set, or "space," can be represented by combinations of a subset of the space. As
two examples of representation theorems, three nonplanar vectors span a three
dimensional euclidean space, and the set {sin nx, cos nx I n 0, 1, . . . } spans a wide
set of functions in the interval (0, 21t)-that is, the set spans a "function space."
These examples refer to linear combination for representation. In the Structure
Theorem it is shown that three simple classes of prime programs defined by sequence,
i fthenelse, and whiledo control structures span the set of all proper programs, using
substitution of prime programs for function nodes as the only rule of combination.

1 22 Structured Programs

2

4

Figure 4.1 9

Hence sequence, ifthenelse, and dountil are sufficient control structures to
represent all proper programs as well.

The constructive proof above permits a flowchart program with any
arbitrary structure to be translated into a program with basis {sequence,
ifthenelse, whiledo}. For example, consider the flowchart (Fig. 4. 19) with
function and predicate nodes and exit line as numbered. The proof construc
tion produces the following new sequence and ifthenelse programs,

which can be combined into the structured program shown in Fig. 4.20,
where each node of the original program corresponds to a case evaluation of
the label variable, L We call such a program a label structure program.

4

4.4 Program Structu res 1 23

Figure 4.20

4.4.4 Recursion Structu re Programs

Although structured, the programs produced in the foregoing proof of the
Structure Theorem may lack clarity and efficiency. To improve on that we
give a new construction for eliminating unnecessary settings and testings of
the counter L

The idea is to replace, for some given j > 0, all assignments L := j by the
program gj. (Note that for L = 1, the initialization L 1 preceding the
whiledo must be replaced by gl ' along with any other occurrences of L 1 .)
Since the value j will thereby never be assigned to L, the test L j can be
removed from the set of ifthenelses in f One step of this kind leads to a new
sequence of programs

where the g's have been renumbered, if necessary. The only barrier to contin
uing this process is a recursive (or self) reference, that is, some g� has in it the
assignment L := i . In such cases, the assignment L := i cannot be eliminated,
because replacing L := i by g� reintroduces L i in the text of g;. We there-

1 24 Struct u red P rograms

fore can continue substitution as long as possible until either

1. all assignments to L have been eliminated except L := 0, or

2. every g� remaining contains an assignment L := i.

If the program is loop free, then the assignment L := 0 appears on every path,
and the counter L and whiledo loop can be eliminated as well. What remains
is a compound pr.ogram that likely exhibits reasonable clarity and execution

.

efficiency.
For example, the label structure program derived above can be

improved as follows. First, choosing to substitute the program on the L = 4
path for the L := 4 assignment and to eliminate the L = 4 test, we get the new
program shown in Fig. 4.21 . (Note that on this step, programs on any of the
L 1, L 2, L = 3, or L = 4 paths could have been substituted for the
corresponding assignment to L) We choose next to substitute the program
on the L = 3 path for the L := 3 assignment and eliminate the L = 3 test {Fig.
4.22 � Next, the program on the L = 2 path can be substituted for the L := 2
assignment and the L = 2 test can be eliminated (Fig. 4.23). Finally, we
observe that the L := 1 assignment and the L = 1 test within the loop are
unnecessary, since L is initialized to 1 and becomes 0 only on exit ; thus both
can be eliminated to get a final structured program (Fig. 4.24) that exhibits
more clarity and efficiency. We call such a program a recursion structure
program. Note that it may be possible to translate a given label structure

Figure 4.21

4.4

Fig u re 4.22

Figure 4.23

Prog ram Structu res 1 25

1 26 Structured Programs

Figu re 4.24

program into a number of different function equivalent, but not execution
equivalent, recursion structure programs, depending on the order in which
substitutions are made.

EXE R CI S ES

1. Show that two distinct prime programs of a common program, with at least one
predicate between them, are disjoint.

2. Show that there are 30 prime programs with 5 nodes. (Recall the 16 control
structures with two predicate nodes and no function nodes from the exercise in
Section 4.2.)

3. Carry out the construction of the Structure Theorem to produce label structure
programs and then recursion structure programs for the following flowcharts :

a)

b)

c)

4.5 A Case Study in Program Structuring 1 27

d)

e)

4. Show that the improved construction of a recursion structure program can be
continued, even when some gj contains the assignment L := i, by

a) replacing gj by the program

when hj is obtained from gj by

1) deleting assignments L := i

2) adding the assignment K := 0 just after each assignment L := j (j =1= i), and

b) replacing all assignments L := i outside gj by Gj•

S. Show that repeated application of the construction of Exercise 4 leads to a
structured program in which the original loop on counter L is replaced by a nested
set of loops on new truth values, all of which can be maintained in a single stack.

4.5 A CASE ST U DY I N P R O G RAM ST R UCT U R I N G

4. 5.1 Prime Prog ram Pa rsi ng

The work required to convert an arbitrary program into a structured pro
gram can often be reduced by recognizing those parts, if any, of the arbitrary
program that are already structured. Recognition of structured parts can be
carried out in a completely systematic manner, as described next.

The hierarchy of prime programs that make up a compound program
can be found by a prime program parse, the process of repeatedly recognizing
and replacing a prime program by a new function node, until no prime
programs remain to be replaced. To expedite the parse, a sequence of any

1 28 Structured Programs

number of function nodes (not just two) can be replaced by a single function
node. A parse step is defined by a set of parse units that equate named new
function nodes with the prime programs they represent, and by a reduced
program made simpler by use of the new function nodes. The last such step
reduces a final prime to a single function node at the top of the hierarchy
the highest level of control structure abstraction. The flowchart program
illustrated in Fig. 4.25 parses to a single function node in a series of six parse
steps (a purely mechanical process, tedious for humans to work through in a
program of this size) as outlined below. New function nodes in parse units
are labeled

--1 identification/node count L---
�,---___ ----,I

where identification is a number assigned in sequence, beginning with 100 for
Step 1, 200 for Step 2, and so on, which names the new function, and node
count is the number of function and predicate nodes from the original
flowchart abstracted by the new function. Reduced programs corresponding
to each step are shown in Figs. 4.26 through 4.3 1 .

Step 1
Parse units :

sequence : --1 100/3 �

sequence: -D-D-- ---1 101 /2 t---

ifthen : ---1 1 0212 t---

dountil : ----1 103/2 r---

sequence: -D---D-- ----1 104/2 r---

4.5

)n

m
se
, a
ts

)r
Ie
al
19

A Case Study i n P rog ram Structuring 1 29

Figure 4.25

1 30 Structu red Programs

Reduced program :

Figure 4.26

4.5

Step 2

Parse U1

ifthl

dOt

wh

4.5 A Case Study in Program Structuring 1 31

Step 2

parse units :

ifthenelse : ----1 200/5 �

dountil : � 10312 k>- ----1 201 /3 r

whiledo: � 202/3 r

1 32 Structu red Programs

Reduced program :

Step 3
Parse units :

if then :

Figure 4.27

--1 300/4

4.5 A Case Study in Program Structuring 1 33

ifthen : ---1 30 1 /4 �

Reduced program :

Figure 4.28

1 34 St ructu red Prog rams

Step 4
Parse units :

sequence : �

Reduced program:

Figure 4.29

--1 400/5 r--

R

4.5

Step 5
parse units :

A Case Study in Prog ra m Struct u r i ng 1 35

(The prime below is not a POL prime-in fact, it has no standard name,
so we call it "unnamed !".)

unnamed! : � 500/21 �

Reduced program:

Figure 4.30

1 36 Structu red Programs

Step 6
Parse units :

sequence : �
Reduced program:

Figure 4.31

--1 600/22 �

Thus, the original program parses to a single function node in six steps. As a
simple check on correctness, the count value of the final function node .
should equal the total number of function and predicate nodes in the ori
ginal program-in this case 22 nodes.

4.5.2 An I m proved Struct u ri ng Techn ique

As we have seen, the Structure Theorem proof procedure can be used to '
convert an arbitrary proper program into a structured program with basis
{sequence, i fthenelse, whiledo}. Following the conversion, the resulting label ,'
structure program can be repeatedly simplified until it takes the form of a
recursion structure program. This process can be improved by preceding the
initial conversion to label structure with a special prime program parse that
substitutes individual function nodes for structured portions, if any, of the
arbitrary program. This reduces the work to be done in the structuring
process and preserves any parts of the arbitrary program with acceptable
structure.

To illustrate, the following primes compose the basis set of the parse just
completed :

{sequence, ifthen, ifthenelse, dountil, whiledo, unnamed 1 }

4.5

Hov
the (
is Cl
ifthe
grar
the 1

Stell

Red

At j
nan

i
e

1
e
t

t

4.5 A Case Study i n Prog ram Structuring 1 37

Ilowever, a set of basis primes can be defined prior to parsing a program, as

the only primes eligible to be recognized. In this case, the series of parse steps

is called a fixed basis parse. For example, given the basis set {sequence,

ifthen, ifthenelse, dountil, whiledo}, a fixed basis parse of the previous pro

gram would end at Step 4, since Step 5 identified a prime (unnamed 1) not in

the basis set.

Step 4
Reduced program :

Figure 4.32

At completion of the parse, the new functions (100/3, 200/5, 300/4, 400/5)
name structured islands in the original program. We now convert this parsed

-

1 38 St ru ctu red Programs

Figure 4.33

program to a label structure program and then to a recursion structure
program as usual, and finally replace the new function nodes with the
structured islands they abstract. To begin, we number the functions and
predicates of the Step 4 program in arbitrary order, and number the exit line
o (Fig. 4.33). The label structure program (shown with a case structure, as a
simpler way to write nested ifthenelses within the dopart) appears in Fig.
4.34. We decide against substituting for an L value of 1 outside the dopart,
and reject L values of 3 and 8, whose multiple occurrences would require
duplication of structure. This leaves L values of 2, 4, 5, 6, 7, and 9. When
these substitutions and resulting case eliminations are carried out in tum,
the recursion structure program is as shown in Fig. 4.35.

Further substitutions are possible; namely, case 8 for L := 8 in cases 1
and 3 (creating a recursive reference in case 3), or case 3 for L := 3 in case 8

4. !

(1
\\
4

4.5 A Case Study in Prog ram Structu ri ng 1 39

Figure 4.34

(likewise creating a recursive reference). But we elect to halt substitution
with the three cases shown. In PD L, the program so far is as shown in Fig.
4.36. The final program in flowchart form can now be constructed by sub-

1 40 Structu red P rog rams

Figure 4.35

stituting structured islands named by each new function node (Fig. 4.
To reduce the amount of consecutive PDL text, the final program can
given as a main segment that runs three segments at the next level, one
each case (Fig. 4.38).

The intertwined control logic of the original program has been
raveled into three distinct structured program parts whose execution is
trolled by assignments and tests on the label variable. With co]nplex1
interconnections abstracted out, the functional effect of each
entry/single exit program part can now be understood independently of the
others, in a systematic manner.

4.5

A Case Study i n Program Structuring 1 41

proc main
L := 1
while

L > O
do

od
corp

case
L

part(1)
a
if

p
then

400/5
L := 8

else
L := 3

fi
part(3)

100/3
if

q
then

200/5
L := 8

else
e
L :=O

fi
part(8)

if
w

then
300/4
L := 3

else
L := O

fi
esae

Figure 4.36

1 42 Struct u red Programs
4.5

-

- .. <

--.�

4.5 A Case Study i n Prog ram Structuri ng 1 43

L : = 0

Figure 4.37

proc main
L := l
while

L > O
do

case
L

part(l)
ru n caseone

part(3)
run caseth ree

part(8)
run caseeight

esac
od

corp

proc casethree
b
c

d
if

q
then

if
r

then

f
g

else
if

Ii

s

then
h

Ii

L := 8
else

Ii
corp

e

L := O

Figure 4.38

proc caseone
a

if
p

then
if

t
then

do
do

i
until

u

od
until

v

Ii
j

od

L := 8
else

L := 3
Ii

corp

proc caseeight
if

w

then
if

y
then

while
x

do
k
I

od
Ii
L := 3

else
L := O

Ii
corp

EXE RCISES

1. Use the following flowchart to complete parts (a) through (f) below.

1 46 Structu red Prog rams

a) Perform a full parse, showing parse units and resulting parsed flowchart for
each step.

b) Perform a fixed basis parse against {sequence, i f then, ifthenelse, dounti�
whiledo, dowhiledo}.

c) Diagram any structured islands identified in part (b) as tree structures.
d) Convert to a label structure program.
e) Convert to a recursion structure program.

f) Reconstruct the final structured program by expanding new function nodes
according to their structured island parse histories.

5.1 OVE R

A structured
pletely systeJ
prime progn
grams is to
recorded in
commentary,
tached to F
techniques d
logical com
stood and c
structure anc
structuring,

5.2 R EA [

5 .2.1 The

The ability t
programmiIl
programs w
from the lite
Moreover, j
of the wod
become moJ

5.1 OV E RVI EW

5
Reading

Structured
Programs

A structured program of any size can be read and understood in a com
pletely systematic manner, by reading and understanding its hierarchy of
prime programs and their abstractions. The objective of reading prime pro
grams is to discover their program functions. Program functions can be
recorded in programs to document program design by means of logical
commentary, which specifies special syntax and meaning for comments at
tached to PDL primes. When combined with the program structuring
techniques described in the previous chapter, prime program reading and
logical commentary permit large and complicated programs to be under
stood and documented. In a case study, a PL/I program with arbitrary
structure and no comments becomes readily understandable after systematic
structuring, reading, and writing of logical commentary.

5.2 R EADI N G F U N DAM E NTALS

5.2.1 The Idea of Prog ram Read i ng

The ability to read programs methodically and accurately is.a crucial skill in
programming. Program reading is the basis for modifying and validating
programs written by others, for selecting and adapting program designs
from the literature, and for veri fying the correctness of one's own programs.
Moreover, just as, say, good writers and engineers learn from critical study
of the works of other writers and engineers, so too, good programmers
become more effective through critical study of programs written by others.

1 47

1 48 Reading St ructu red Progra ms

There are two general reasons for reading a program: (1) the verification
that a program is correct with respect to a given function, and (2)
determination of the program function of a program. The verification of
program constitutes a design review for its correctness. Design reviews
be used to verify other properties than correctness, such as efficiency
compatibility with implementation requirements. The determination of
program function involves a design discovery. Such design discovery is
difficult part of fixing an unfamiliar program, or finding out how to modify
in a simple way.

Given a well-documented program (including the program functions
its intermediate abstractions), the reading process can generally proceed
down, from overall design to successively lower levels of detail, using .
mediate abstractions first as assignment statements in the overall prc.gr��
then verifying the correctness of their expansions in later reading. On
other hand, given a poorly documented program, the reading process
erally proceeds better bottom up, to discover the intermediate abstracti
successively at higher levels, by using those already found.

In either case, however, reading can seldom be strictly top down
bottom up. In reading the best-documented programs, one needs an
sional foray into details, if only to understand the context of documen
that is intended to precede the details. For example, a comment such
[check for special cases . . .] may be ambiguous without a more local frame
reference, and the program's details may clear that up more easily than
documentation. And in reading a totally mysterious program, it is useful
back out of details periodically in order to form overall hypotheses
guesses that can help fit the details together more easily.

The process of reading a poorly documented program bottom up .
called stepwise abstraction. Stepwise abstraction may be required in .

the verification of correctness or the determination of program function.
the intended function of a program is given but intermediate at>strac:uc)ns
are not, then the program function must be determined and compared
the intended function. If scattered intermediate abstractions are 'given,
can be used as anchor points, verifying them by stepwise abstraction
details below them, and using them for higher level verifications.

5.2.2 The Algebra of Structu red Prog rams

Our discussion of program reading begins with the following Axiom
Replacement :

Let P be a proper subprogram of Q, and let the replacement of P by P'
within Q result in Q'. Then

[P] = [PI] � [Q] = [Q']

5.2

There �
any Pf(
(viewin
prime I
be exp�
in a lar
from sn
larger (
previou
ters, the
tion, a1
prograt
named
writing
h else
functio:
then h I

Th
structu

5.2 Readi n g Fundamental s 1 49

There are two important implications of this axiom : first, the truth value of
any proposition involving [Q] is unchanged if P is replaced by P' ; second,

(viewing P as a function node and P' as its expansion into a prime program)
prime programs can be abstracted to function nodes, and function nodes can
be expanded to other prime programs, independently of their surroundings

in a larger control structure. That is, large structured programs are built up

from smaller ones, and small structured programs can be used to summarize

larger ones. The prime program parsing and reconstruction discussed in the

previous chapter was based on this axiom. In this and the following chap
ters, the same axiom is used to derive principles of program reading, valida
tion, and writing. Thus, in the progression of PDL programs (Fig. 5.1),
program writing is function expansion (e.g., expanding the known function
named a into the program while p do c od). Program reading, the inverse of
writing, is function abstraction (e.g., abstracting the known program if q then
h else i fi into the function d). Program validation is comparing known
functions and their expansions (e.g., is while p do c 00 equivalent to a, is if q
then h else i fi equivalent to d?).

These expansions and abstractions are algebraic operations among
structured programs. PDL prime program keywords while-do-OO, if-then-

1 proc r 1 proc r 1 proc r
2 a 2 . 1 while 2. 1 while
3 b 2 p 2 p
4 corp 3 do 3 do

4 c 4 . 1 f
5 od 2 9

3 . 1 d 5 od
2 e 3 . 1 . 1 if

4 corp 2 q
3 then
4 h
5 else
6
7 fi

2 e
4 corp

...
readi:l
writing
JIll'

validation
...

Figure 5.1

1 50 Reading St ructu red Programs

eke-fi, and so on, are operators in these expressions, just as +, - , *, and so .,
on, are operators in arithmetic expressions. In ordinary arithmetic, opera
tors are eliminated when 2 + (4*3) is abstracted to 14, and operators are
introduced when 14 is expanded into 2 + (4*3). This abstraction and expan
sion is independent of any other terms in an arithmetic expression. Likewise, '
the PD L program

if
x < O

then
y := -x

else
y := x

fi

is an expression in an algebra of programs that can be abstracted to or
expanded from

y := abs(x)

where no program operators appear. That is, their program functions are
identical :

[if x < 0 then y := - x else y := X fi] = [y := abs(x)]

This abstraction or expansion is independent of other parts in a program;
thus in

if
x < O

then
y := -x

else
y := x

fi
x := min(y, z)

abstraction of the first part does not affect the second part, and the program
below is function equivalent :

y := abs(x)
x := min(y, z)

In short, there is an algebra of structured programs that allows any
structured program, no matter how large, to be considered as a compound

5.2

prog
prog
so.

strue
to 10
gradj
plica
help5
a pr<
tion

5.2.�
One
cates
read.
unm�
Fortt
the fl
read
appe:

1
direc'
new
trans
the J:
struc'
prim

I
such
PDL
activl
exit ;
progJ
of m
Cont
rerna

�
quen

5.2 R eading Fundamental s 1 61

program expression in smaller structured programs, and any compound

program expression to be considered as a single term if it is convenient to do

so.
This algebra of structured programs is the principal source of power for

structured program reading, writing, and validation. It allows a programmer

to logically divide and conquer complex processing logic, just as it allows a
grade school student to methodically carry out the evaluation of com
plicated (for the student) arithmetic expressions. Once familiar, this algebra
helps a programmer to think in wholes-in one thought to understand what

a program does in every possible circumstance, not simply trace its execu
tion for one input at a time.

5. 2.3 Read i ng Prime Prog rams

One way to read a program is to mentally execute the functions and predi
cates on every path of the E-tree, inventing data values to stay on each path
read. But for a program of any size the number of paths quickly becomes
unmanageable. A sequence of only six ifthenelses contains 64 possible paths.
Fortunately, we have a more effective way to read a structured program; all
the functions and predicates must still be read, but with practice, they can be
read and summarized once and for all, not once for each path on which they
appear.

The object of reading a program or a program part is to recognize
directly what it does-all in one thought-or to mentally transform it into a
new one that can be recognized directly. The product of such a mental
transformation is an abstraction that summarizes the possible outcomes of
the program part under consideration, irrespective of its internal control
structure and data operations. Thus, we can regard program reading as
primarily a search for suitable abstractions.

It turns out that a prime program, particularly a small prime program
such as found in POL, is an ideal program part for abstraction. Although a
POL prime program may contain sequencing, branching, and looping, those
activities are internal to its execution and are reflected by altered data on
exit; the abstraction describes just this effect on data, and no more. A prime
program abstraction eliminates sequencing, branching, and looping in favor
of more complex, but understandable, data assignments and expressions.
Control structure operators if, do, and so forth, are abstracted out and what
remains is the program function, stated directly.

We begin reading POL primes with a branch-free program. The se
quence of assignments

X := x - y

y := x + y

1 52 Reading Structu red Programs

creates new data values for x and Y from old ones. These data relationships
can be written more explicitly using a zero SUbscript for values in the ini
data state, a one subscript for values in the data state following the . first.
assignment, and a two SUbscript for values in the final data state, following
the second assignment, as follows :

X l = Xo Yo

Y2 = X t + YO

Note that X I is used on the right side of the second equation because it has
appeared earlier on a left side. Then

= Xo - Yo
and

Y2 = XI + YO

= (xo - Yo) + Yo

= xo

With final values expressed in terms of initial values, the sequence program '

can now be represented by an equivalent sequence-free program :

[x := x - Y; y := x + y] (x, y := x - y, x)

Next, consider the branching program

if
x > Y

then
z := y

else
z := x

6

Of course, such a program can always be expressed as a conditional assign
ment, as

(x > Y � z := Y I true � z := x)

But it may be useful to find a single abstraction, if possible. In this case, we
recognize the i fthenelse as one that assigns x or Y to z, in particular the
minimum of x or y. That is

[if x > y then z 1= Y else z := X 6] (z := min(x, y))

5.2

An i fthenel
more gene]
from argur
that is, a m
means to
a means 0
else, who r
else structl
way of sa�
been writt«

or

The impor
be a preci�

Finall:

while
x :::::

do
X l:

od

As we ha,
sequence 1
conditione:
mining th(
loops, funj
of pattern:
assigns a ,
iteration l
even. If tl
program.

where odc
have abstl
investigate
programs

gn-

we
the

5.2 Rea d i n g Fundamentals 1 53

An ifthenelse abstraction is a recognition of two separate cases as part of a
more general operation. If we understand what the operator min produces
from arguments (x, y), then the second program is understandable directly ;
that is, a more complex expression in an equivalent branch-free program is a
means to understanding what the branching program does. It is also
a means of communicating what the branching program does to someone
else, who may be more familiar with the min operator than with the ifthen
else structure. Note that abstraction does not mean vagueness, but another
way of saying precisely the same thing. The abstraction above could have
been written

Z := minimum of x and y

or

assign the minimum of x and y to z

The important point is not the written form of abstraction, but rather that it
be a precise statement of a program function.

Finally, consider the looping program, for integer x

while
x > 1

do
X := x - 2

00

As we have seen, direct procedures exist for determining the functions of
sequence programs (solving equations) and branching programs (writing
conditional assignments). However, no such procedure exists for deter
mining the functions of looping programs. But in the examination of typical
loops, functions can often be determined by inspection and simple analysis
of patterns of iteration. In this case, we recognize the program as one that
assigns a value to x. If the initial value of x is positive, x is reduced by 2 each
iteration until it becomes 1 or 0, depending on whether initial x is odd or
even. If the initial value of x is negative, 0, or 1 , it is not altered by the
program. With a little thought, we can write the program function as

[while x > 1 do x := x - 2 00] = (x := min(x, oddeven(x)))

where oddeven(x) is short for "1 if initially odd, ° if initially even," and we
have abstracted the whiledo into an equivalent loop-free program. We will
investigate more systematic means for dealing with the functions of looping
programs in Chapter 6.

1 54 Reading Structu red Programs

5. 2.4 Read i ng by Stepwise Abstraction

A compound program of any size can be read and understood by .. �""1"I 1 r1' _
and understanding its hierarchy of primes and their abstractions.
process of stepwise abstraction begins at the lowest (most detailed) level,
replaces each prime by its equivalent abstraction. To illustrate, consider
program shown in Fig. 5.2 (given array t of n integer elements).

proc p(t, n, x, y)
scalar x, y, n: integer
array t(n) : integer
x, y := t(I), t(l)
for

i :E 2 to n
do

if
t(i) > x

then
x := t(i)

else
if

t(i) < Y
then

y := t(i)
fi

fi
od

corp

Figure 5.2

A quick scan reveals the overall control structure to be a sequence with
second part fordo, itself with dopart of nested alternations. We begin step
wise abstraction by reading the most deeply nested ifthen

if
t{i) < y

then
y := t{i)

fi

with hypothesized program function

(t{i) < Y ---+ y := t{i) I t{i) � Y ---+ Y := y)

5.2

whi

We
rna
pre
t{i)
tha

l .
2.

Th
t{i]
ca1
to
pa:
pre

5.2 Reading Fundamentals

which we recognize as

y := min{y, t{i))

Next, substituting this abstraction in the outer ifthenelse, we obtain

if
t{i) > x

then
x := t{i)

else
y := min{y, t{i))

fi

1 55

We note that x is increased in the thenpart if a larger t{i) is found, so that we
may write x := max{x, t{i)) as part of the function description of this
program. For the e1separt, y is decreased if a smaller t{i) is found, but only if
t{i) ::; x. What if x < t{i) < y? A reexamination of the overall program shows
that

1 . x, y �re assigned the same value t(1) before entry to the fordo, and
2. x is only increased, y is only decreased within the fordo.

Therefore, we conclude that x z y on entry to the ifthene1se. Hence, if
t{i) < y, then the ifthene1se predicate will evaluate to false, the ifthen predi
cate will evaluate to true, and the assignment of the smaller t{i) will be made
to y. Therefore, we may conclude unconditionally that y := min{y, t{i)) is
part of the program function. Hence, the program function of the ifthenelse
program is

(x z y � x, y := max{x, t{i)), min{y, t{i)))

We consider next the fordo prime :

for
i :E 2 to n

do
(x z y � x, y := max {x, t{i)), min{y, t{i)))

od

With a little thought, we form a hypothesis for the program function of the
fordo, that, for initial x z y, x is the .maximum of initial x and t(2), . . . , t{n)
and that y is the minimum of initial y and t(2), . . . , t{n). (As we will leam in
the next chapter, an inductive proof can be carried out to verify such a
hypothesis.) In this case, the hypothesized function is easy to verify by a few

1 56 Reading Struct ured Programs

mental executions of the fordo, and by substitution we arrive at the seqluell1cC
program, with first part the fordo initialization

x, y := t(1), t(1)

(x � y � x, y max(x, t(2), . . . , t(n)), min(y, t(2), . . . , t (n)))

from which the overall program function of program p is simply

x, y := max(t(l : n)), min(t(l : n))

where t(1 : n) is shorthand for t(1), . . . , t(n), and a more descriptive program
name might be "maxmin."

In retrospect, a little more insight than simple stepwise abstraction .
made this program function easy .to find. It is not unusual for a program part
to depend on a logical relation on entry. In this case, the program function
for the ifthenelse depended on the relation x � y on entry. We note that
nesting the minimum-finding i f then in the maximum-finding i fthenelse
a retest for a minimum when a new maximum is found. The simpler r\ n .. 'u· ... '
shown in Fig. 5.3 would be easier to abstract, as the reader may verify, but it
tests for both maximum and minimum at each iteration.

proc maxmin(t, n, x, y)
scalar x, y, n : integer
array t(n) : integer
x, y := t(l � t(l)
for

do
i :E 2 to n

if
t(i) > x

then

Ii
if

x := t(i)

t(i) < y
then

y := t(i)
Ii

od
corp

Figure 5.3

5.2

A (
wh
COl
Th
1 1 .
an

to

5.2 Reading Fundamentals 1 57

As a second example of stepwise abstraction, consider the program
shown in Fig. 5.4.

1 proc q
2 scalar a, b, f, g, error: real
3 sequence input, output : real
4 a, b := list(input)
5 f:= a*a + b*b
6 g 1
7 error := abs(f - g*g)
8 while
9 error > .00 1

10 do
1 1 g := (g + f/g)/2
12 error abs(f - g*g)
13 od
14 next(output) := g
15 corp

Figure 5.4

A quick scan reveals the control structure is a sequence with an initialized
whiledo part, the inputs are scalars a and b, and the output is scalar g. We
concentrate first on the whiledo on lines 8-13 and its initialization on line 7.
The dopart seems a bit mysterious, particularly the assignment to g on line
1 1 . In reading a whiledo the exit condition often provides a vital clue to the
abstraction, as going from

7 error := abs (f - g*g)
8 while
9 error > .001

10 do
1 1 g := (g + f/g)/2
12 error := abs(f - g*g)
1 3 od

to (by eliminating error as a variable)

8
7, 9, 12

10
1 1
1 3

while
abs(f - g*g) > .00 1

do

g := (g + f/g)/2
od

1 58 Rea d i n g St ructured Prog rams

from which it is clear that, at exit (presuming that the whiledo termina
abs(f - g*g) must be near zero or

(within .001)

But from the dopart, it i s clear that g i s being altered to satisfy this
condition, not f. Hence, the whiledo reduces to the assignment (sqrt
square root)

6-13 g := sqrt(f) (f = g2 within .001)

which depends only on the whiledo predicate, the presumption of .. "" , .. q-,
tion, and the observation that g and notfchanges each iteration. In n� l'T11"1._

lar, it does not depend on the dopart expression (g + f/g)/2. The red
program at this point is :

.

1
2
3
4
5

6-13
14
15

proc q
scalar a, b, f, g : real
sequence input, output :Jeal
a, b := list (input)
f:= a*a + b*b
g := sqrt(f) (within .001)
next(output) := g

corp

The sequence on lines 5, 6-13 creates the effect of

(within .001)
and as a final sequence abstraction, the function of the entire program can be
written (presuming I(input) =I: �)

1-15 next(output) := sqrt((H(input))2

+ (H(T(input)))2) (within .001)
where scalars a, b, f, g, and error, and the input sequence pointer, are
regarded as incidental to the program function. Of course, the program
function could as easily be written in English as, say,

set the next member of the output sequence to the square root (within
.001) of the sum of the squares of the next two members of the input
sequence

and a more descriptive procedure name might be "distance."

E)C

Reo

1.

2.

3

[)
:t

EXE R C I S ES

Exercises 1 59

Read the following programs to determine their program functions :

1. proc P
sequence input, output : integer [input composed of nonnegative integer pairs]
scalar a, b, c: integer
while

do
input =/= empty

a, b := list(input)
c := a
while

c � b
do

C := c - b
od
list(output) := a, b, c

od
corp

2. proc q
sequence input, output : integer [input composed of nonnegative integer pairs]
scalar a, b : integer
while

input =/= empty
do

a, b := list(input)
while

do
a =/= b

if
a > b

then
a := a - b

else
b := b - a

Ii
od
next(output) := a

od
corp

3. proc r
sequence input, output : integer [input composed of nonnegative integer pairs]
scalar a, b : integer

1 60 Read ing Structu red Programs

while
input ::/= empty

do
a, b := list(input)
while

a > b
do

a := a - b
od
while

b > a
do

b := b a
od
next(output) b

od
corp

4. proc s
sequence input : character [input non empty]
sequence output : logical
stack s : character
scalar a, b: character
scalar checking : logical
top(s) := ' # '
checking := true
while -

input ::/= empty /\ checking
do

a := next(input)
if

a = '('
then

top(s) ')'
else

fi

if
a = ')'

then

fi

b := top(s)
if

a ::/= b
then

checking := false
fi

od
next(output) := checking

corp

Exerci ses 1 61

5. proc t
sequence input, output : character [input contains two or more characters, last

scalar a, b : character
a := next(input)
do

b := next(input)
if

a =l= b
then

next(output) := a
fi
a := b

until

od
corp

b = eos

character is eos]

6. What is the program function of exercise 5 above if the if test is changed to a = b ?

7. proc u
sequence input, output: character [input contains two or more characters, last

character is eos]
scalar a, b : character
scalar i: integer
i :=O
a := next(input)
do

b := next(input)
if

a = b
then

next(output) := a
i := i + 1

else

fi

if
i =1= 0

then

fi

list(output) := a, i + 1
i := 0

a := b

1 62 Rea d i n g Structu red Programs

until

od
corp

8. proc v

b = eos

sequence input : integer [contains scalars n and k (1 ::::; k ::::; n) followed by array
t of n unique elements]

sequence output : logical
array t(n) : integer
scalar i, j, k, n, order : integer
scalar looking : logical
n, k, t Iist(input)
looking, i true, 0
while

do
i < n A looking

i i + 1
j, order := 0, 0
while

j < n A order ::::; k
do

j :=j + 1
(t(j) ::::; t(i) -+ order order + 1)

od
(order = k -+ looking, next(output) := false, t(i»

od
corp

5.3 LO G ICAL CO M M E NTA RY I N STR U CT U R E D

PROG R A M S

5 . 3 . 1 T h e Struct u re of Log ical Commentary

We introduce the idea of logical commentary in PDL as a refinement and
extension of ordinary comments found in programs. Logical commentary
documents the design of a program, amid all its details, by organizing details
into a hierarchy of abstractions. The principles of program reading we have
applied were derived from algebraic properties of programs. The placement
and intent of logical commentary are likewise determined by these algebraic
properties, and the content of logical commentary is based on the abstrac
tions of prime program reading. For poorly commented programs, the task
of program reading is to invent logical commentary, and for programs
already commented, to check correctness of comments and improve their

ns
�lr

5.3 Log i cal Commenta ry i n Structu red Programs 1 63

clarity where possible. (In Chapter 7, we will learn how to write logical

commentary during program construction.)
Two types of logical commentary are found in PDL programs, data

commentary and prime program commentary. Data commentary is attached

to data declarations to define the purpose and usage of data scalars or

structures, as illustrated in later examples. Prime program commentary
defines the prime program or prime program part to which it is attached, as
illustrated below.

Two forms of prime program commentary are associated with the
primes of PDL, namely, action comments (also calledfunction comments) that
describe program functions, and status comments that describe predicates
on data states. Action comments apply to program parts that carry out the
actions, that is, they define the effect on data of PDL statements within their
scope. Action comments can precede any primes, as well as precede
the thenparts and elseparts of alternation primes and the doparts of iteration
primes. Status comments apply to program parts that produce the status,
that is, they define valid predicates on the state produced by the PDL
statements within their scope. Status comments can succeed sequence, alter
nation and iteration primes. To illustrate, the function

f = {(a, b) I b = abs(a)}

can be carried out by an if then prime (using a single scalar, x) :

if
x < o

then
x := - x

fi

The ifthen can be described by the action comment

x := abs(x)

and the thenpart by the action comment

switch x sign

The final data state can be described by a status comment as a predicate on
x, namely,

x � o

1 64 Reading Structured Programs

and the program documented as follows. Logical commentary is delimited
by square brackets, and either precedes a prime or is attached to a keyword:

[x := abs(x)]
if

x < O
then [switch x sign]

x := -x
Ii [x z 0]

If a nested prime immediately follows a keyword in a larger program, the
leading comment is attached to that keyword, as in

if
y > O

then [x abs(x)]
if

x < O
then [switch x sign]

x := -x
Ii [x z 0]

Ii

Note use of := operators in action comments to specify data assignments,
and use of relational operators , � , > , etc.) in status comments to specify
data properties. Of course, action and status comments can be written in any
language (e.g., English or mathematical notation) suitable to a given context.

Another convenient form of status comment expresses the final state
after execution of a prime in terms of the initial state prior to execution,
where initial state values are identified by a zero subscript. For example, the ·
status comment above can be written

x = abs(xo)

where Xo is a constant that is the initial value of x. The subscripted items
always identify data values in the entry state of the containing prime.

The syntax and semantics of logical commentary are illustrated below
for the primes of PDL. In each case, the program function of the prime is
named 'J-ac�ion." The miniature examples are intentionally "over com
mented" to fully illustrate possibilities for commentary in programs.

5.3

Sequel

Extra
comm

o

where

f
a
�

(Notl
explB
gram
coml
for c

the
[x =
Eng'
tivel
suffi

N
S

5.3 logical Commentary i n Structu red Programs 1 65

Sequence
Extra keywords are required to delimit sequence primes selected for
commentary. A do-od pair is used, thus

do [faction]
g
h

od [fstatus]

where

f-action = [g; h],
and

f-action l
r- --, I I I I
I I
I I I I I I I I I I
I I
L _ _ _ _ J

f-status

g followed by h does [faction] to produce [fstatus].

(Note that the brackets in the expression [g ; h] just above, and in subsequent
explanations of logical commentary for the other primes, denote the pro
gram function. The brackets on faction and f-status, of course, are logical
commentary delimiters.) A sequence of any number of parts may be chosen
for commentary. For example, in

do [x, y := y, x]
X := x + y
y := x - y
X := x - y

od [x = Yo , Y = xo]

the sequence of assignments does action [x, y := y, x] to produce status
[x = Yo, Y = xo] . The action and status could have been written in more
English-like form, perhaps as [exchange(x, y)] and [x, y exchanged], respec
tively. For such simple sequences, either action or status may provide
sufficient description. PDL keywords proc and corp can operate like a do-od

...

1 66 Read ing Structured Prog rams

pair, to carry action and status comments for entire programs :

proc name [f-action]
g
h

corp [f-status]

Fordo

Commentary is attached to fordo primes as

f-action 1
r--- ---- -- - --,

[faction]
for

indexlist
do [g-action]

g
00 [f-status]

I
I
I
I
I

I
I f-status
I
I
I
I
I
I
I
I
I L _ _ _ _ _ _ _ _ _ _ _ _ ..J

where

f-action = [for index list do g od],
and
for each consecutive indexlist member, g does [g-action],
the sequence of g's finally producing [f-status].

For example (a an array of n elements, int short for integer part),

[a := reverse(a)]
for

i :E 1 to int(n/2)
do [exchange a(i), a(n - i + 1)]

a(i), a(n - i + 1) := a(n - i + 1), a(i)
00 [a = reverse(ao)]

6.3 Log ical Commenta ry i n Structu red Prog rams 1 67

If then

Commentary is attached to ifthen primes as

[factionl
if

p
then [g-action]
g

6 [fstatus]

where

::i:l ------,
1 F T l
I P I
I I
I I
I I
I I
I I
I I I I
L _ _ _ _ - - - - - �

{-status

faction = [if p then g 6],
and
when p is true, g does [g-action] to produce [fstatus],
and
when p is false, [fstatus] is true.

The f-status summarizes the data state at 6, whether or not g-action is
performed. To illustrate,

[(x > y � X := decr(x))]
if
x > y

then [x := decr(x)]
x := x - 1

6 [(xo > Yo � x = decr(xo))]
The ifthen below is the second part of a sequence :

do [x := abs(min(y, z))]
x :=min(y, z)
if
x < O

then [switch sign]
x := -x

6 [x = abs(xo)]
od [x = abs(min(yo , zo))]

1 68 Read i n g Structured Prog rams

Note that the status comments at 6 and 00 are not equivalent, since each
summarizes the result of a different function-an if then at 6, a sequence at
00.

Ifthenelse

Commentary is attached to ifthenelse primes as

[f-action]
if

p
then [g-action]

g
else [h-action]

h
6 [fstatus]

where

{-action 1
r--- -- - - - - - .,
I I
I I
I I
I I
I I
I I
I I
I I
I I · l______ _ ____ --1 (-status

f-action = [if p then g else h 6],
and
when p is true, g does [g-action] to produce [fstatus],
and
when p is false, h does [h-action] to produce [fstatus].

The f-status summarizes the data state at 6, whether the thenpart action or .
the elsepart action is performed. To illustrate, for z � 0

[z round (z)]
if

z - int(z) < .5
then [round z down]

z := int(z)
else [round z up]

z := int(z + 1)
6 [z = round(zo)]

5.3 Logical Commenta ry in St ructured Programs 1 69

Case

Logical commentary for the case, or indexed alternation, structure is a gen
eralization of commentary for the ifthenelse :
[I-action]
ease

p
part(case list 1) [g-action]
g

part (caselistn) [h-action]
h

else [i-action]
i

esae [I-status]
Whiledo
Commentary is attached to the whiledo prime as

[faction]
while

p
do [g-action]
g

00 [I-status]

where

f-action l
r-- - - - - - - -:- --, i 9 � g-actlon !

� � I I . I I f-status L _ _ _ _ _ _ _ _ _ _ _ ...J

I-action = [while p do g od],
and
when p is true, g does [g-action],
and
when p is lalse, [fstatus] is true.

To illustrate, the add program, for x, Y � 0, can be commented as

[x, y := x + Y, 0]
while

y > O
do [increment x, decrement y]

x, y := X + 1 , y - 1
00 [x, y = Xo + Yo , 0]

1 70 R eading Structu red Programs

Dountil

Commentary is attached to the dountil prime as

[f-action]
do [g-action]
g

until
p

00 [!-status]

where

f-ac;:J _ _ _ _ _ _ _ _ _ _ _ _ ,
I I

� g kbT I I -I g-action :J I f-status L- _ _ _ _ _ _ _ _ _ _ _ _ _ _ .J

f-action = [do g until p od],
and
g does [g-action],
and
when p is true, [f-status] is true.

Dowhiledo

The dowhiledo prime is commented as

[faction]
dol [g-action]
g

while
p

do2 [h-action]
h

00 [f-status]
where

f-action
r -J- - - - - - - :- - - -,
I .-- h-actlon I � :5:1 i I -I g-act ion --.J I f-status L _ _ _ _ _ _ _ _ _ _ _ _ _ _ .J

faction = [dol g while p do2 h od],
and
g does [g-action], h does [h-action]
and
when p is false, [fstatus] is true.

Finally, we note that in writing logical commentary, various levels
rigor are possible. In situations where reliable proofs of correctness are
required, logical commentary should provide self-sufficient definitions
program functions for use in proof arguments. But logical commentary that
falls short of program functions can provide good documentation as we1�

5.3 Logica l Comm enta ry in St ructu red P rograms 1 71

and may be appropriate in situations where the extra effort to record pro
gram functions is not justified. Thus, in expressing the results of complex,
but local, program logic, it may be useful to describe a program function
only in part, by using the phrase in part preceding a multiple assignment
statement. For example,

in part, x, y := y, X

could be used to describe an exchange program using temporary value t,
with full program function

x, y, t := y, x, X

In this instance, x, y are regarded as intentional, and t as incidental, data. In
practice, incidental assignments are usually omitted from logical commen
tary, and where the meaning is clear, in part may be dropped as well, to
simply write

x, y := y, X

We observe, however, that in producing a well-documented program, the in
part concept should not be applied excessively ; a self-sufficient definition of
the program function of each segment in a program represents a minimum
practice in the use of logical commentary.

5.3 .2 Logi cal Com menta ry in Stepwise Abstraction

Logical commentary makes programs intelligible by abstracting details into
design. The maxmin and distance programs of Section 5.2 are shown in
Figs. 5.5 and 5.6, respectively, with logical commentary based on our
previous reading. The programs can be understood and checked at any level,
from overall design, through intermediate abstractions, down to low-level
details, if necessary. Note addition of alt and fix data usage categories to the
maxmin program.

As we have seen, insights gained during program reading can be conve
niently preserved in logical commentary, to better document programs for
other readers. Consider stepwise abstraction and documentation of the pro
gram in Fig. 5.7, given array table of n integer elements.

The innermost dopart is the familiar conditional exchange, which also
sets incidental variable temp :

(table(i) > table(i + 1) � table(i), table(i + 1), temp

:= table(i + 1), table(i), table(i))

1 72 Reading Structu red Prog rams

proc maxmin(fix t, n, alt x, y) [x, y := max(t(1 : n)), min(t(1 : n))]
scalar x, y, n : integer
array t(n): integer
x, y := t(1), t(1)
[(x � y � x , y := max(x, t(2 : n), min(y, t(2 : n)))]
for

i :E 2 to n
do [(x � y � x, y := max (x, t(i)), min(y, t(i)))]

if
t(i) > x

then
x := t(i)

else [y := min(y, t(i))]
if

t(i) < y
then

y := t(i)
fi

fi
od

corp [x, y = max(t), min(t)]

Figure 5.5

proc distance [next(output) := sqrt((H(input))2 + (H(T(input)))2)
(within .(01)]

scalar a, b, f, g, error : real
sequence input, output : real
a, b := list (input)
do [g := sqrt(a*a + b*b) (within .(01)]

od

f:= a*a + b*b
g := 1
error := abs(f - g*g)
while

error > .001
do

g := (g + f/g)/2
error := abs(f - g*g)

ocI [g = sqrt(f) (within .(01)]

next(output) := g
corp

Fig ure 5.6

5.

1

5.3 Logical Commentary in Structured Prog rams 1 73

1 proc r (n, table)
2 scalar n, temp: integer
3 array table(n) : integer
4 for
5 j :E n to 2 by - 1
6 do
7 for
8 i :E 1 to (j 1)
9 do

10 if
1 1 table(i) > table(i + 1)
12 then
13 temp : = table(i)
14 table(i) := table(i + 1)
15 table(i + 1) temp
16 fi
17 od
18 od
19 corp

Figure 5.7

This program function can be documented in the program as

9 do [asort(table(i), table(i + 1))]
10 if
1 1 table(i) > table(i + 1)
12 then [exchange table(i), table(i + 1)]
1 3 temp := table(i)
14 table(i) := table(i + 1)
1 5 table(i + 1) := temp
16 fi [table(i) � table(i + 1)]
17 od

where asort names an operation that ensures elements in an argument list
are in ascending sorted order. For the inner fordo at lines 7-17 we observe
that for each dopart execution a consecutive overlapping table pair is guar
anteed to be in ascending sorted order, beginning with (table(I), table(2)),
then (table(2), table(3)), and so on, up to (tableU - 1), tableU)). Thus, the
effect of the fordo is to propagate the largest element in table(1 : j) to the head
of table(1 :j), or

tab leU) := max(table(1 :j))

1 74 Reading St ructu red Prog rams

taking the final disposition of elements in table(l : (j - 1)) as incidental. W '
document this insight as an action comment :
6 do [in part, table(j) := max(table(l :j))l

Next, the outer fordo steps j from n to 2 by - 1, and at each step
table(j) := max(table(l :j))

by the analysis just above. Thus, table entries are set in the following
sequence, corresponding to successive dopart executions :

table(n) := max(table(1 : n))

table(n 1) := max(table(l : (n - 1)))

table(n - 2) := max(table(l : (n 2)))

table(2) max (table(l : 2))

table(l) := max(table(l : l))

proc sort (n, table)
scalar

n : integer [number of elements in table array]
temp : integer

array
table(n) : integer [values to be put into ascending sorted order]

[table := asort(table)] [asort arranges elements in an argument
list in ascending sorted order]

for
j :e n to 2 by - 1

do [in part, table(j) max{table(1 :j))]
for

od
corp

i :e 1 to (j 1)
do [asort(table(i� table(i + 1))]

if
table(i) > table(i + 1)

th en [exchange(table{i), table(i + 1))]
temp := table(i)
table(i) := table(i + 1)
table(i + 1) := temp

fi [table(i) � table(i + 1)]
od

Figure 5.8

5.3 Logical Commenta ry in Structu red Prog rams 1 75

That is, following the outer fordo execution, each consecutive element from
table(2) to table(n) is greater than or equal to its predecessor, and the pro
gram function of the fordo (and the entire program) is

table : = asort(table)
The fully documented program appears in Fig. 5.8. Note that the special
name asort is defined to the side of the program. Control structure abstrac
tion clarifies data usage, and data comments have been added as well.
As an exercise, try reading and writing logical commentary for the

subroutine given in Fig. 5.9, with given integer arguments n, table (unique

1 proc s(n, table, key, i)
2 use k
3 i := 0
4 10 := 1
5 hi := n
6 while
7 10 � hi /\ i = 0
8 do
9 mid := int((1o + hi)/2)

10 if
1 1 key = table(mid)
12 then
13 i := mid
14 else
15 if
16 key > table(mid)
17 then
18 10 := mid + 1
19 else
20 hi := mid - 1
2 1 fi
22 fi
23 od
24 corp

data k
scalar

i, 10, hi, mid, key, n : integer
array

table(n) : integer [unique values in ascending sorted order]
atad

Fig u re 5.9

1 76 Readi n g St ructu red Programs

values in ascending sorted order), and key, and integer argument i to be
found (int short for integer part).
A possible set of logical comments, including more descriptive proc and

data names and alt and fix categories of data usage, appears in Fig. 5. 10.

proc binary search(fix n, table, key, alt i) [(3k(key = table(k), 1 .s; k .s; n)

2 use searchdata
3 i := 0
4 10 := 1
5 hi := n

- i := k I true - i := 0)]

6 [(3k(key table(k), 10 .s; k .s; hi) - i := k I true - i unchanged)]
7 while
8 10 .s; hi A i = 0
9 do [(key = table(k) - i := k I key > table(k) - 10 := k + 1 1

key < table(k) - hi := k - 1), where k int((/o + hi)j2)]
10 mid := int((lo + hi)j2)
1 1 if
1 2 key = table(mid)
13 th en [finish successful search]
14 i := mid
15 else [exclude irrelevant table part from search]
16 if
17 key > table(mid)
1 8 then [exclude table(/o : mid)]
19 10 := mid + 1
20 else [exclude table(mid : hi)]
2 1 hi := mid - l
22 fi [key ¢ table(l : (/0 - 1)) A key ¢ table((hi + 1) : n) since

table in ascending sorted order]
23 fi [table(i) = key I (i unchanged A hi - 10 decreased)]
24 od [table(i) = key I (hi - 10 < 0 A i = 0)]
25 corp

data searchdata
scalar

(i [search value, to be found]
10 [lower search bound]
hi [higher search bound]
mid [lookup index]
key [given search argument]
n [number of elements in table]) : integer

array
table(n) : integer [given array to search, unique values

atad
in ascending sorted order l

Figure 5.1 0

EX ER C I S ES

Exerci ses 1 77

1. Read the following program and record your abstractions as logical

commentary.

proc
sequence

a, b, c : integer [if not empty, a and b are each
in ascending sorted order]

scalar
akey, bkey: integer
aleft, bleft : logical

aleft := true
bleft := true
if

a = empty
then

aleft := false
else

fi
if

akey := next(a)

b = empty
then

bleft := false
else

bkey := next(b)
fi
while

aleft v bleft
do

if
(aleft 1\ bleft 1\ akey � bkey) v (aleft 1\ '" bleft)

then
next(c) := akey
if

a = empty
then

aleft := false
else

akey := next(a)
fi

else
next(c) := bkey
if

b = empty
then

bleft := false

1 78 Readi n g Structu red Prog ra ms

fi
od

corp

else
bkey := next(b}

fi

2. Add logical commentary to the programs in exercises 1 through 8 in Section 5.2.

5.4 A CAS E ST U DY IN PROG RAM R EA D I N G

5.4.1 The S i ngso rt Prog ram

Consider the PLjI program named Singsortt shown in Fig. 5. 1 1. (Readers
unfamiliar with PLjI will find the control structures of Singsort diagrammed
in Fig. 5. 12.) Singsort is written without indentation or comments, and
contains a number of GOTO instructions and statement labels-as it stands,
it is a formidable object for human understanding ! But suppose we need to
understand Singsort, to reliably answer critical questions on its operation
and limitations, and perhaps to make some reliable modifications. How can
we carry out the learning process in a systematic way? A good strategy is to
first unravel Singsort's control logic, restructuring if necessary into a suitable .
basis set of primes, and then to read and document Singsort's functions with
logical commentary. Then, with the program under intellectual control,
questions and improvements can be investigated without guessing and
merely hoping that we've got things right.

5.4.2 The Prime Prog ram Pa rse of Si ngso rt

Our first task in understanding Singsort is to carry out a prime program
parse. Taken in reverse order, the parse steps will reveal the program's
overall control structure and functions, the structure and functions of these
functions, and so on, down to the individual operations and tests of the PLjI
program. We begin by drawing the flowchart of Singsort, by tracing down
the PLjI code, grouping sequences of statements into function nodes and
inserting predicate nodes for conditional GOTO statements. At this stage,
we make no particular effort to identify simple primes, although they may
exist in the program in disguised form. The flowchart is shown in Fig. 5. 12.
Numbers in function and predicate nodes are PLjI line numbers, and state-

t Singsort is taken from H. Lorin, Sorting and Sort Systems (Reading, Mass. :
Addison-Wesley, 1975) A68-70. It originally appeared in FORTRAN and ALGOL
as Algorithm 347, Communications of the ACM 12, no. 3 (March 1969): 1 85-187,
submitted by Richard Singleton. The method used is a variation of Algorithm 64,
Quicksort, by C. A. R. Hoare, and Algorithm 27 1, Quickersort, by R. S. Scowen.

5.4

1
1
1
1
1
1
1
1
1
1
2
2
2

A Case Study i n Program Reading 1 79

1 SINGSORT: PROCEDURE(TOSORT, NUMBER);

2 / * ALGORITHM 347, COMMUNICATIONS OF ACM,
VOL 12, NO 3, P 1 85 * /

3 DECLARE
4 TOSORT(*) FIXED BINARY (3 1 , 0),
5 PIVOT FIXED BINARY (3 1 , 0),
6 TEMP2 FIXED BINARY (3 1 , 0),
7 LIMDEX FIXED BINARY (3 1 , O�
8 INITIAL FIXED BINARY (3 1 , 0),
9 MEDIAN FIXED BINARY (3 1 , 0),

10 BOTIND FIXED BINARY (3 1 , 0),
1 1 TOPIND FIXED BINARY (3 1 , 0),
12 LIMITS FIXED BINARY (3 1, 0),
13 I FIXED BINARY (3 1 , 0),
14 NUMBER FIXED BINARY (3 1 , O�
1 5 PARTOP FIXED BINARY (3 1 , 0) INITIAL (1) ;
16 LIMITS = 20;
17 SORT: BEGIN;
18 DECLARE
19 TOPS(LIMITS) FIXED BINARY (3 1 , 0),
20 BOTTOMS(LIMITS) FIXED BINARY (3 1 , 0);
21 LIMDEX = 1 ;
22 INITIAL = PARTOP;
23 GO TO SINKTEST;
24 SPLIT: MEDIAN = TRUNC((PARTOP + NUMBER)/2) ;
25 PIVOT = TOSORT(MEDIAN);
26 TOPIND = PARTOP;
27 BOTIND = NUMBER;
28 IF TOSORT(PARTOP) > PIVOT THEN DO;
29 TOSORT(MEDIAN) = TOSORT(PARTOP);
30 TOSORT(PARTOP) = PIVOT;
31 PIVOT = TOSORT(MEDIAN);
32 END;
33 IF TOSORT(NUMBER) < PIVOT THEN DO;
34 TOSORT(MEDIAN) = TOSORT(NUMBER);
35 TOSORT(NUMBER) = PIVOT;
36 PIVOT = TOSORT(MEDIAN);
37 IF TOSORT(PARTOP) > PIVOT THEN DO;
38 TOSORT(MEDIAN) = TOSORT(PARTOP);
39 TOSORT(PARTOP) = PIVOT;
40 PIVOT = TOSORT(MEDIAN);
41 END;
42 END ;
43 FINDSMALL: BOTIND = BOTIND - 1 ;

Figure 5.1 1 (Continued)

1 80 Readi n g Structu red Programs

44 IF TOSORT(BOTIND) > PIVOT THEN GO TO FINDSMALL;
45 TEMP2 = TOSORT(BOTIND);
46 FINDLARGE : TOPIND = TOPIND + 1 ;
47 IF TOSORT(TOPIND) < PIVOT THEN GO TO FINDLARGE;
48 IF TOPIND < = BOTIND THEN DO;
49 TOSORT(BOTIND) = TOSORT(TOPIND);
50 TOSORT(TOPIND) = TEMP2;
5 1 GO TO FINDSMALL;
52 END;
53 IF BOTIND - PARTOP < NUMBER - TOPIND THEN DO;
54 TOPS(LIMDEX) = PARTOP;
55 BOTTOMS(LIMDEX) = BOTIND;
56 PARTOP = TOPIND;
57 END;
58 ELSE DO ;
59 TOPS(LIMDEX) = TOPIND;
60 BOTTOMS(LIMDEX) = NUMBER;
61 NUMBER = BOTIND;
62 END;
63 LIMDEX = LIMDEX + 1 ;
64 SINKTEST: IF NUMBER - PARTOP > 10 THEN GO TO
65 IF INITIAL = PARTOP THEN DO;
66 IF PARTOP < NUMBER THEN GO TO SPLIT;
67 END;
68 DO 1 = PARTOP + 1 TO NUMBER BY 1 ;
69 PIVOT = TOSORT(I);
70 TOPIND = 1 - 1 ;
71 IF TOSORT (TOPIND) > PIVOT THEN DO;
72 SINK : TOSORT(TOPIND + 1) = TOSORT(TOPIND);
73 TOPIND = TOPIND - 1 ;
74 IF TOSORT(TOPIND) > PIVOT THEN GO TO SINK;
75 TOSORT(TOPIND + 1) = PIVOT;
76 END;
77 END;
78 LIMDEX = LIMDEX - 1 ;
79 IF LIMDEX > = 1 THEN DO;
80 PARTOP = TOPS(LI MDEX);
81 NUMBER = BOTTOMS(LIMDEX);
82 GO TO SINKTEST;
83 END;
84 END SORT;
85 END SINGSORT;

Figure 5.1 1 (Continued)

A Case Study i n Progra m Reading 1 81

singsort

Figure 5.1 2

ment labels are attached to the flowchart where they appear in the PLjI
code. A six-sided node (line 68) depicts the only fordo structure in the
program.

Recall that a prime program parse can be determined by a series of
flowchart reduction steps, each step abstracting existing primes into new
function nodes. As before, it is convenient to parse sequences of rriore than
two function nodes in a single step. A series of eight steps is required to
reduce Singsort to a single node, as shown in Fig. 5 . 13 ; new function nodes

�
� = �

�
� = �

�=

� =

Figure 5.1 3 Reduction 1

5.4

A Case Study i n Program Reading 1 83

Figure 5.1 3 Reduction 2

1 84 Reading Structu red Prog rams

�
� = �

� �
--§?2]-- =

�
� = �

singsort

Figure 5.1 3 (Continued) Reduction 3

--§@-=

� = �

singsort

Figure 5.1 3 (Continued) Reduction 4

Figure 5.1 3 (Continued) Reduction 5

--§2ill- =

singsort

1 85

� 601 /28 l--- � 50 1 /2 1 H 502/6 H 78 l---
singsort

Figure 5.1 3 Reduction 6

� 70 1 /30 �

� 801 /33 �

Figure 5.1 3 Reduction 7
singsort

$
Figure 5.1 3 Reduction 8

5.4

are 11
each
node
tion
tion
judg
shov

{seql
unm

Hm
into

thel
log
surl

5.4 A Case Study i n Prog ram Reading 1 87

are numbered nO l, n02, . . . , where n is the reduction step number. As before,
each node number is followed by the number of function and predicate
nodes that have been abstracted by the new node. Each successive abstrac
tion accounts for the total of 33 nodes appearing in Fig. 5. 12. This abstrac
tion process is a purely mechanical exercise. It requires no special insight or
judgment, only tracing through the flowchart to pick out primes as they
show up.
In this reduction of Singsort, all abstractions are made from basis set

{sequence, if then, ifthenelse, dountil, dowhiledo} except for the following
unnamed prime :

� 50 1 /21 �

However, a simpler prime results when the individual tests are combined
into a compound test

----I 501 /2 1 �

thereby adding whiledo to the basis set. Thus, Singsort has in fact control
logic structured in sequence and one-predicate primes (well disguised, to be
sure !) that can be expressed in PDL to produce a more readable version.

1 88 Readin g Structu red Programs

1 0 1
SEQ

singsort
801
SEQ

701
OW DO

�
1 - 1 5 1 6 1 7 - 22 79 � 80 - 81

SEQ

20 1
SEQ

1\

501
WOO
A

64, 65, 66 40 1
SEQ

24 - 27 1 02 33 202
IT SEQ

/\ 34 ts;03
28 29 - 31 IT

1\

302
OWOO

�
48 203 49 - 50

SEQ

A
1 04 45 1 05

OOU OOU

1\ 1\
37 38 - 40 44 43 47 46

502
F OO
/\

68 402
SEQ

/\
204 69 - 70 303
SEQ IT

/\ 1\
1 06 63 7 1
ITE

�
53 54 - 56 59 - 61

74

Fig u re 5.1 4 Singsort parse tree

Had our reductions turned up complex, multiple-predicate primes� we
would have converted Singsort into a label structure program and then into
a recursion structure program (as described in Chapter 4) to establish a
simpler basis set for better understanding.

The foregoing reductions can be summarized in the prime parse tree of
Singsort, given in Fig. 5. 14. It can be seen that Singsort is an initialized
dowhiledo program, up to eight abstractions deep, and the prime parse tree
provides a simple map to the individual abstractions and their relations to
the whole program. Any subtree of this prime parse tree is a candidate POL
segment-a proper program, itself. But good choice of segments requires a
look at the abstractions associated with the subtrees, in order to make the
best possible sense in programming terms.

5.4

5.4.3

By ins)
Singso:
abstra(
sequen
data dl

SO
10
10

so

with a
and er
colum
abstra
dopar

S(
H
H
7(

We CI
ShOWl
disph
tions.
decla
lines
synta
decla

5.4 A Case Study in Program Read i ng 1 89

5.4.3 Si ngso rt i n POL

By inspecting its prime parse tree and reduced flowcharts in reverse order,
Singsort can be readily transcribed into POL. Transcription begins with
abstraction 80 1, which is the sequence (101 ; 701). Abstraction 101 is itselfthe
sequence (1-15 ; 16 ; 17-22) from the original program, all written in POL,
data declarations aside, as

801
101 21
101 22

801

proc singsort(tosort, number)
limdex := 1
initial := partop
701

corp

with a column of statement numbers on the far left delimiting the beginning
and ending of each abstraction from the flowchart reductions, followed by a
column of individual statement numbers from the original program. Next,
abstraction 701 is a dowhiledo structure with whiletest 79, dopart l 601, and
dopart2 80-8 1, which give the expansion

801 proc singsort(tosort, number)
101 21 limdex := 1
101 22 initial := partop
701 dol

601
while

79 limdex � 1
do2

80 partop := tops(limdex)
81 number := bottoms (limdex)

701 od
801 corp

We continue in this fashion until all abstractions have been expanded, as
shown in the final POL program in Fig. 5. 15. (Two columns are required to
display the number pairs that delimit the beginning and ending of abstrac
tions.) Note we have recorded PLjI run-time declarations as if they were
declared in advance. (The PLjI variable "limits" is thereby eliminated ; see
lines 12, 19 and 20, and lines 4 and 14 in the PLjI program.) The POL inner
syntax word "init" is used at line 15 to indicate an initializing data
declaration.

1 90 Read ing St ructu red Prog rams

801

101
101
701

601 501

401 201

102

201 102
301

data singsortdata
array

4 tosort(number) : integer
scalar

5 (pivot
6 temp2
7 limdex
8 initial
9 median

10 botind
1 1 topind
13 i
14 number
1 5 partop init(l)) : integer

array
19 tops(20) : integer
20 bottoms(20) : integer

atad

proc singsort(tosort, number)
use singsortdata

21 limdex := 1
22 initial := partop

dol
while

64 number - partop > 10 v
65 (initial = partop /\
66 partop < number)

do
24 median := truncate((partop + number)/2)
25 pivot := tosort(median)
26 topind := partop
27 botind := number

if
28 tosort(partop) > pivot

then
29 tosort(median) := tosort(partop)
30 tosort(partop) := pivot
3 1 pivot : = tosort(median)

fi
if

33 tosort(number) < pivot

Figure 5.1 5

5.4

A Case Study i n Progra m Read i n g 1 91

then
202 34 tosort(median) := tosort(number)

35 tosort(number) := pivot
36 pivot := tosort(median)

103 if
37 tosort(partop) > pivot

then
38 tosort(median) := tosort(partop)
39 tosort(partop) := pivot
40 pivot := tosort(median)

202 103 fi
301 fi
302 dol

203 104 do
43 botind := botind - 1

until
44 tosort(botind) � pivot

104 od
45 temp2 := tosort(botind)

105 do
46 topind := topind + 1

until
47 tosort(topind) � pivot

203 105 od
while

48 topind � botind
do2

49 tosort(botind) := tosort(topind)
50 tosort(topind) := temp2

302 od
204 106 if

53 botind - partop < number - topind
then

54 tops(limdex) := partop
55 bottoms(limdex) := botind
56 partop := topind

else
59 tops(limdex) := topind
60 bottoms (limdex) := number
61 number := botind

106 fi
401 204 63 limdex := limdex + 1

50 1 od

Fig u re 5.1 5 (Continued)

1 92 Reading Structured Programs

502 for
68 i :E partop + 1 to number by 1

do
402 69 pivot := tosort(i)

70 topind := i - I
303 if

7 1 tosort(topind) > pivot
then

205 107 do
72 tosort(topind + 1) := tosort(topind)
73 topind := topind - 1

until
74 tosort(topind) � pivot

107 od
205 75 tosort(topind + 1) := pivot

402 303 fi
502 od
60 1 78 limdex := limdex - 1

while
79 limdex � 1

do2
80 partop := tops(limdex)
8 1 number := bottoms(limdex)

701 od
801 corp

Figure 5.1 5 (Continued)

5.4.4 Reading and Commenting Singsort

With Singsort's control structure made visible, we can now investigate the
operations carried out within that structure. Our approach is to perform
three types of analysis, as follows :

1. Apply the reading techniques described earlier to abstract program
parts into logical commentary-action and status comments.

2. Organize the program into a perspicuous hierarchy of segments, each a
page or less of PDL ; segments should correspond to important abstract
functions identified in the original program.

3. Perform an analysis on the resulting segment structure for fixed and
altered categories of data usage, to complete the definition of run and
proc statements.

5.4

A
The c
do (a
assigt
begin
exam
medic.
tosorl
exchCl
(part(

1

1

Neste
whicl
can b
are ic
34-3t
that
sorte<
array
point
SPOfl(

1
tainill
from
elem<

e
1

1

i
t

d
d

5.4 A Case Study in Prog ra m Read i n g 1 93

As noted, Singsort's overall control structure is an initialized dowhiledo.
The dowhiledo structure, abstraction 701, has dopart 1 composed of a while
do (abstraction 501), followed by a fordo (abstraction 502), followed by an
assignment (line 78). Reading primes and writing logical comments can
begin within the dopart 1 , proceeding roughly in execution sequence. For
example, in abstraction 201, the sequence at lines 24-27 sets the index named
median to the mean of partop and number, sets pivot to the median element of
tosort, and initializes topind and botind. Abstraction 102 is a conditional
exchange of tosort(partop) and pivot, which also sets tosort(median) to tosort
(partop). The abstraction can be commented as follows :

102 if
28 tosort(partop) > pivot

then [exchange(tosort(partop), pivot),
tosort(median) := tosort(partop)]

29 tosort(median) := tosort(partop)
30 tosort(partop) := pivot
3 1 pivot := tosort(median)

102 fi [tosort(partop) � tosort(median) = pivot]

Nested ifthen abstractions 103 and 301 are likewise conditional exchanges,
which also set new values for tosort(median). The program parts read so far
can be commented as shown in Fig. 5. 16. Note that abstractions 102 and 103
are identical ; 103 reestablishes the status of 102 if it was changed by lines
34-36. The status comment attached to fi at the end of abstraction 301 states
that tosort(partop), tosort(median), and tosort(number) are in ascending
sorted order, and that pivot is equivalent to tosort(median). (If the tosort
array consisted of only two or three elements, it would be sorted at this
point.) The effect of the sequence 201 ; 301 can also be expressed in a corre
sponding action comment as

201 ; 301 [ascending sort tosort(partop), tosort(median),
tosort(number) ; pivot := tosort(median)]

To continue reading, abstraction 302 is a dowhiledo with dopart 1 con
taining two dountil structures. The first of these, abstraction 104, searches
from tosort(botindo - 1) upward in the array (i.e., toward tosort(l)) for an
element less than or equal to pivot. (Note the relations botindo = number,

1 94 Reading Structu red Prog rams

201 24 median := truncate((partop + number)j2)
25 pivot := tosort(median)
26 topind := partop
27 botind := number

102 if
28 tosort(partop) > pivot

then [exchange(tosort(partop), pivot 1
tosort(median) := tosort(partop)]

29 tosort(median) := tosort(partop)
30 tosort(partop) := pivot
3 1 pivot : = tosort(median)

201 102 fi [tosort(partop) � tosort(median) = pivot]
301 if

33 tosort(number) < pivot
then [exchange(tosort(number), pivot),

tosort(median) := tosort(number)]
34 tosort(median) := tosort(number)
35 tosort(number) := pivot
36 pivot := tosort(median)

103 if
37 tosort(partop) > pivot

then [exchange(tosort(partop), pivot),
tosort(median) := tosort(partop)]

38 tosort(median) := tosort(partop)
39 tosort(partop) := pivot
40 pivot := tosort(median)

103 fi [tosort(partop) � tosort(median) = pivot]
301 fi [tosort(partop) � tosort(median)

= pivot � tosort(number)]

Figure 5.1 6

and tosort(number) � pivot.) Termination of this first dountil is guaranteed
on first execution of the dopartl since at least

tosort(median) = pivot

by the 201 ; 301 abstraction above. The second dountil, abstraction 105,
searches from tosort(topindo + 1) downward in the array (i.e., toward the
last tosort element) for an element greater than or equal to pivot. (Note
topindo = partop, and tosort(partop) ::; pivot.) Termination of this second
dountil on first execution of the dopart 1 is likewise guaranteed by the condi-

5.4

tio
in
an
th(

an

siJ
e)!

b
aJ
se

5.4 A Case Study i n Prog ram R eading 1 95

tion just stated. To take advantage of the mnemonic value of variable names
in Singsort, we adopt the convention that the first and last positions of the
array are the "top" and "bottom" of the array, respectively. Thus,
the dopart 1 can be commented as

104 do
43 botind := botind - 1

until
44 tosort(botind) � pivot

104 od [tosort(botind) � pivot, (tosort((botind + 1) : number)) � pivot]
45 temp2 := tosort(botind)

105 do
46 topind := topind + 1

until
47 tosort(topind) � pivot

105 od[(tosort(partop : (topind - 1))) � pivot, tosort(topind) � pivot]

and summarized in the following action comment :

dol [search bottom up for next element � pivot, top down
for next element � pivot]

If the whiletest at line 48 of dowhiledo abstraction 302 evaluates true,
dopart2 is carried out to exchange tosort(topind) and tosort(botind), and the
dowhiledo repeats. Termination of the dountil loops above is guaranteed
from then on, but not necessarily (as before) because

tosort(median) = pivot

since the original element at tosort(median) may have been involved in an
exchange. Instead, termination is guaranteed because

tosort(partop) � pivot and tosort(number) � pivot

by the 201 ; 301 abstraction above, which is sufficient to terminate the upward
and downward searches, respectively. The effect of the dowhiledo is to
segregate tosort(partop : number) into two partitions, one with elements no

1 96 Reading Structu red Programs

greater than pivot, the other with elements no less than pivot, by exchanges
of elements between partitions, if necessary. Termination of the dowhiledo is
assured, since topind and botind are increased and decreased, respectively, on '
every iteration, and eventually, topind - botind > O. Because topind and
botind are compared only when an exchange of tosort elements is to be made,
a small "overshoot" can occur and on exit from the dowhiledo, topind -
botind � 2, as in the following examples :

(pivot = 4)
tosort

partop median number
t t t

���a�
a
����e: I 1 I � I � I : I � I � I 9 I

posit ion : 2 3 4 5 6 7

topJ J J:I:I· I . I botind

(pivot = 2)

new value :
in itial value :
position :

topind 1

tosort

2 3 4 5 6

.. I I : I · I boOnd

The final partition boundary can end up anywhere inside the interval
tosort((partop + 1) : (number - 1)), and not necessarily at tosort(median).
Because topind and botind cross in the scanning process, on exit from the
dowhiledo partop and botind delimit the upper partition and topind and
number delimit the lower partition. It appears that the largest possible
partition remaining after segregating an array of n elements (n 2 4) has length
less than or equal to (n - 2).

In the commented dowhiledo fragment below, the status at od gives
relations that hold for the two partitions on loop termination, when the

5.4

while

par
sm,
par
the
tiOl
(de
act

5.4 A Case Study i n Prog ram Reading 1 97

whiletest turns false :

302

203 104
43

44
104

45
105

46

47
203 105

48

49
50

302

dol [search bottom up for next element � pivot, top
down for next element 2 pivot]

do
botind := botind - 1

until
tosort(botind) � pivot

od [tosort(botind) � pivot, (tosort((botind + 1) :
number)) 2 pivot]

temp2 := tosort(botind)
do

topind := topind + 1
until

tosort(topind) 2 pivot
od [(tosort(partop : (topind - 1))) � pivot,

tosort(topind) 2 pivot]
while

topind � boUnd
do2 [exchange(tosort(topind), tosort(botind))]

tosort(botind) := tosort(topind)
tosort(topind) := temp2

od [(tosort(partop : (topind - 1))) � pivot,
(tosort((bottnd + 1) : number)) 2 pivot,
topind > botind]

A corresponding action comment that summarizes the entire dowhiledo is

302 [segregate tosort(partop : number) into two
partitions � and 2 pivot]

Consider next abstraction 106, an ifthenelse structure. The iftest com
pares (botind - partop) and (number - topind), and stores pointers to the
smaller of these partitions in the tops and bottoms arrays. If the upper
partition (delimited by partop and botind) is saved, the lower one becomes
the new active partition (for possible further partitioning on the next itera
tion of Singsort), by setting partop to topind at line 56. If the lower partition
(delimited by topind and number) is saved, the upper one becomes the new
active partition, by setting number to botind at line 61. The ifthenelse of

1 98 Reading Structu red Prog rams

abstraction 106 can thus be commented as

106 if
53 botind - partop < number - topind

then [save endpoints of upper partition, make lower new
active partition]

54 tops(limdex) := partop
55 bottoms(limdex) := botind
56 partop := topind

else [save endpoints of lower partition, make upper new
active partition]

59 tops(limdex) := topind
60 bottoms(limdex) := number
61 number := botind

106 fi

and summarized in an action comment as

106 [set tops(limdex), bottoms(limdex) to top, bottom pointers
of smaller partition, set partop to top, or number to
bottom pointer of larger partition]

The tops and bottoms arrays are declared with 20 elements each, so up to 20
partition boundaries can be stored. What limit does this place on the maxi
mum possible size of the tosort array? This is an important question, and we
will return to it when we have learned more about Singsort's operation.

At line 63 limdex is incremented, and we have now read the entire
dopart of the whiledo abstraction 501 .

Continuing in execution sequence, consider abstraction 502, a fordo
loop. The index i has initial value (partop + 1), and for first dopart execution
the assignments at lines 69 and 70 can be written as

69 pivot := tosort(partop + 1)
70 topind := partop

and the iftest at line 71 can be written as

71 tosort(partop) > tosort(partop + 1)

If this expression evaluates to false, no further operations are carried out in

5.4 A Case Study i n Prog ra m Reading 1 99

the dopart and the loop repeats, this time wi th

68 pivot := tosort(partop + 2)
69 topind := partop + 1

and so on. Thus, we conclude the fordo loop does nothing to tosort
(partop : number) if the elements are already in ascending sort. So it seems
likely that the function of the then part, abstraction 205, is to force sorted
order for tosort elements scanned so far. That is, as the index i increments
over successive dopart executions, the then part assigns each tosort(i) not in
sorted order to that relative position in the elements already sorted which
reestablishes sorted order.

A closer look reveals the dountil structure of abstraction 107 shifts
tosort(i - 1) to tosort(i), tosort(i - 2) to tosort(i - 1), and so on, until an
element is found with value not greater than pivot. No known property of
tosort(partop : number) guarantees termination of the iteration, but with fur
ther reading we learn that topind can be decremented to point to the element
just above tosort(partop), which is guaranteed, by the partitioning abstrac
tion 302, to be not greater than any value in the partition from partop to
number now being sorted. But what if the partition being sorted has first
element tosort(1), since "tosort(O)" is not defined ? Our reading so far does
not seem to provide an answer, so we leave the question open for now, and
comment the fordo structure as shown below :

502 for
68 i :E partop + 1 to number by 1

do [ascending sort tosort(partop : i)]
402 69 pivot := tosort(i)

70 topind := i" - 1
303 if

71 tosort(topind) > pivot
then [insert pivot in sorted position]

205 107 do
72 tosort(topind + 1) := tosort(topind)
73 topind := topind - 1

until
74 tosort(topind) :::; pivot

107 od [tosort(topind) :::; pivot, tosort(topind + 2) > pivot]
205 75 tosort(topind + 1) := pivot

402 303 fi [tosort(partop) :::; ' " :::; tosort(i)]
502 od [tosort(partop) :::; · " :::; tosort(number)]

200 Read ing Structu red Programs

Abstraction 502 can now be described by an action comment as

502 [ascending sort tosort(partop : number)]

Finally, at line 78, limdex is decremented, and we have read all of dopart1 of
dowhiledo abstraction 701 .

The reading so far has resulted in action comments that summarize .
intermediate level abstractions (sequence 201 ; 301, and 302, 106, and 502) of
compound programs within the Singsort structure. An abstract version of
Singsort can now be written using these summaries in place of the com
pound programs they represent, to help understand operation of the entire '
program, as shown in Fig. 5. 17 (brackets have . been dropped to emphasize
that the summaries are now actions in the program, and not comments).

801

101 2 1
101 22
701

501 601
64
65
66

40 1 201 ; 30 1

302

106

401 63
501
502
601 78

79

80
8 1

701
801

proc singsort(tosort, number)
use singsort data
limdex := 1
initial := partop
dol

while

do

od

number - partop > 10 v
(initial = partop 1\
partop < number)

ascending sort tosort(partop), tosort(median),
tosort(number); pivot := tosort(median)
segregate tosort(partop : number)
into two partitions � and � pivot
set tops(limdex), bottoms(limdex) to top, bottom
pointers of smaller partition, set partop to top,
or number to bottom pointer of larger partition
limdex := limdex + 1

ascending sort tosort(partop : number)
limdex := limdex - 1

while
limdex � 1

do2
partop := tops(limdex)
number := bottoms(limdex)

od
corp

Figure 5.1 7

5

a
n
2
(:
r
c

5.4 A Case Study in Prog ra m Read ing 201

We begin reading the reduced program above with the whiledo of
abstraction 501. The dopart, abstraction 401 , first sorts the endpoints and
median of the active partition delimited by partop and number (abstraction
201 ; 301), next segregates the active partition based on the value of pivot
(abstraction 302), and finally saves the endpoints of the smaller partition and
recycles the larger one for further partitioning (abstraction 106). The dopart
can thus be summarized in an action comment as

do [partition the active partition, save endpoints of
smaller, make larger new active]

Partitioning by the whiledo abstraction 501 continues until the active
partition size, given by (number - partop) in the first whiletest condition at
line 64, drops below 10. Termination is guaranteed, since each new active
partition in the loop is smaller than the previous one. What about the
second whiletest condition, (initial = partop 1\ partop < number), at lines 65
and 66? Initial is set to partop (itself initialized to 1) at line 22, and never
reset. So the second condition tells us that the extent with upper boundary
partop = 1 (i.e., extent with first element tosort(l)) is partitioned until
number � partop (likewise guaranteed, by reduction in successive partition
sizes), and at least tosort(l) and tosort(2) are in sort. Remembering our open
question on the fordo loop of abstraction 502, the purpose of this second
condition now becomes clear. The active partition with first element
tosort(1) cannot be sorted by the fordo structure, as we discovered, and so is
sorted by partitioning ! The second whiletest condition handles this case.

What about a final status for the whiledo at od? A little thought reveals
that all partitions produced by the whiledo are in relative ascending sort.
Thus, we can define a predicate named relativesort, such that for, say, two
partitions delimited by Lo1, Hi1 and Lo2, Hi2,

re1ativesort((Lo1, Hi1), (Lo2, Hi2)) +-+ Lo1 � Hi ! < Lo2 � Hi2

1\ ('Vi, j) ((Lo1 � i � Hi ! 1\ Lo2 5, j � Hi2)

� tosort(i) � tosort(j))

Furthermore, at whiledo termination, endpoints of all partitions except for
the current active partition have been saved for later processing. Thus, the

202 Reading Structu red Prog rams

whiledo can be commented as

501 while
64 number partop > 10 v
65 (initial = partop A
66 partop < number)

do [partition the active partition, save endpoints of
smaller, make larger new active]

501 od [relativesort(all partitions) A all except active saved A
active S; 10 elements]

Following the whiledo abstraction 501 , the current active partition is
sorted by abstraction 502, and limdex is decremented at line 78 to complete
the dopart 1 of dowhiledo abstraction 701, all summarized as

701 dol [for active partition > 10 or starting at tosort{l),
partition, save endpoints of smaller, make larger
new active and repeat, otherwise sort active partition]

The dopart2 sets partop and number to the top and bottom, respectively,
of the last saved partition, written in summary as

do2 [make last saved partition new active partition]

and the abstractions made so far permit us next to investigate the overall
function of Singsort, embodied in the dowhiledo of abstraction 701.

As we have learned, dopart 1 produces one partition in sorted order, and
one or more partitions saved, with all partitions in relative sort. Partitions
saved (counted by limdex) are recalled by dopart2 for further partitioning.
Termination of the dowhiledo is guaranteed, whatever the size of the tosort
array, since eventually, the partitions recalled are small enough (10 or fewer
members) to be directly sorted in dopart 1, thereby generating no further
partitions to be saved. When limdex drops to 1 , all partitions have been
sorted, and the program terminates. Based on the foregoing analysis, the
status at od can be written as

od [relativesort(all partitions) A sort(partitions not
saved) A no partitions saved]

5.4

where "s

saved is
Singsort

This cor
com mer
commer

5(]

401

5.4 A Case Study i n Prog ram Reading 203

where "sort(partitions not saved)" is short for "every partition not currently
saved is in ascending sorted order," and we are able to summarize the entire
Singsort program in an action comment attached to proc :

proc singsort(tosort, number) [ascending sort tosort array]

This completes the derivation of Singsort's program function and the logical
commentary for its prime programs. The abstracted program with derived
comments appears in Fig. 5. 18.

401

501

801

101 2 1
101 22
701

601
64
65
66

20 1 ; 301

302

106

401 63
501

502
601 78

79

80
81

70 1

801

proc singsort(tosort, number) [ascending sort tosort array]
lfie singsort data
limdex := 1
initial := partop
dol [for active partition > 10 or starting at tosort(l �

partition, save endpoints of smaller, make larger
new active and repeat, otherwise sort active
partition]

while
number - partop > 10 v
(initial = partop A
partop < number)

do [partition the active partition, save endpoints
of smaller, make larger new active]
ascending sort tosort(partop), tosort(median),
tosort (n umber) ; pivot := tosort(median)
segregate tosort(partop : number) into
two partitions .::; and � pivot
set tops(limdex), bottoms(limdex) to top, bottom
'pointers of smaller partition, set partop to top,
or number to bottom pointer of larger partitior
limdex := limdex + 1

od [relativesort(all partitions) A all except active
saved A active .::; 10 elements]

ascending sort tosort(partop : number)
limdex := limdex - 1

while

limdex � 1
do2 [make last saved partition new active partition]

partop := tops(limdex)
number := bottoms(limdex)

od [relativesort(all partitions) A sort(partitions
not saved) A no partitions saved]

corp

Figure 5.1 8

204 Reading Structu red Prog rams

5.4.5 A Seg ment Structu red Si ngso rt

The intermediate abstractions (201 ; 301, 302, 106, 502) derived in the fore
going analysis summarize important functions in Singsort. They can be
given convenient names based on their abstractions as

201 ; 301
302
106
502

boundarysort
partition
save/activate
siftsort

and organized in a segment structure, shown as a segmented prime parse
tree in Fig. 5. 19, and as segmented and commented POL in Fig. 5.20. Lists of
data items in fixed- and altered-usage categories have been attached to run
and proc statements (keeping all data declarations local to the top segment).
The usage analysis is carried out by methodically recording data references
in operations and tests of each segment, according to whether each data item
is used as is or receives a new value.

1 01
SEQ

�

singsort
801
SEQ

701
DWDO

1 - 1 5 1 7 - 22 79 80 - 81
SEQ

501 502
WDO F DO

A /\
64, 65, 66 401 68 402

SEQ SEQ

r---201 302 ---1', 204 69 - �03
SEQ DWDO "" SEQ IT

1\ � "/\ 1\
24 - 27 1 02 48 203 49 - 50 1 06 "" 63 71 205

IT SEQ SEQ ITE " SEQ 1\ 34 ts;03 ' 04�05 53�- �1 , l\
28 29 - 31 IT DOU DOU 54 - 56 I DOU

1\ 1 1\ 1\ 1 1\
37 38 - 40 1 44 43 47 46 I 74 72 -

L��darYSO� ________ �artiti0'2-____ ..l�ve/activa�_J�ftso� __ _
Figure 5.1 9

5.4 A Case Study in Prog ram Reading 205

[Segment hierarchy]
singsort

singsortdata
boundarysort
partition
save/activate
siftsort

[Segments]

801

data singsortdata
array

4 tosort(number) : integer [array to be sorted]
scalar

5 (pivot [value of active partition median for

6 temp2
boundarysort]

7 limdex [pointer in tops, bottoms arrays]
8 initial
9 median [pointer to median element in active partition]

10 botind [pointer to bottom up exchange candidate]
1 1 topind [pointer to top down exchange candidate]
13 i
14 number [pointer to last element in active partition]
15 partop init(l) [pointer to first element in active

partition]): integer
array

19 tops(20) : integer [pointers to first elements in saved
partitions]

20 bottoms(20): integer [pointers to last elements in saved
partitions]

atad

proc singsort(tosort, number) [ascending sort tosort array]
lISe singsortdata

101 2 1
101 22
701

limdex := 1
initial := partop
dol [for active partition > 10 or starting at tosort(l),

partition, save endpoints of smaller, make

501 601
64
65
66

larger new active and repeat, otherwise
sort active partition]

while
number - par top > 10 v
(initial = partop "
partop < number)

do [partition the active partition, save
endpoints of smaller, make larger new active]

Figure 5.20 (Continued)

206 Reading St ructu red Pro g rams 5.4

401 201 ; 301 run boundarysort(alt median, pivot, topind,
botind, tosort, fix partop, number)

302 run partition(alt botind, topind, tosort,
temp2, fix pivot)

106 run save/activate(alt tops, bottoms, partop,
number, fix botind, topind, limdex)

401 63 limdex := limdex + 1
501 od [relativesort(all partitions) /\ all except

active saved /\ active ::; 10 elements]
502 run siftsort(alt pivot, topind, tosort, i, fix

partop, number)
601 78 limdex := limdex - 1

whi le
79 limdex � 1

do2 [make last saved partition new active partition]
80 partop := tops(limdex) 203
8 1 number := bottoms(limdex)

701 od [relativesort(all partitions) /\ sort(partitions
not saved) /\ no partitions saved]

801 corp

proc boundarysort(alt median, pivot, topind, botind,
tosort, fix partop, number) [ascending sort tosort(partop),
tosort(median), tosort(number); pivot := tosort(median)]

201 24 median := truncate((partop + number)/2)
25 pivot := tosort(median)
26 topind := partop 203
27 botind := number

102 if
28 tosort(partop) > pivot

then [exchange(tosort(partop), pivot),
tosort(median) := tosort(partop)]

29 tosort(median) := tosort(partop)
30 tosort(partop) := pivot
3 1 pivot := tosort(median)

201 102 fi [tosort(partop) ::; tosort(median) = pivot]
301 if

33 tosort(number) < pivot
then [exchange(tosort(number), pivot),

tosort(median) := tosort(number)]
34 tosort(median) := tosort(number)
35 tosort(number) := pivot
36 pivot := tosort(median)

103 if
37 tosort(partop) > pivot

Figure 5.20 (Continued)

6.4 A Case Study i n Program Readi n g 207

then [exchange(tosort(partop), pivot),
tosort(median) := tosort(partop)]

38 tosort(median) := tosort(partop)
39 tosort(partop) : = pivot
40 pivot := tosort(median)

103 fi
301 fi [tosort(partop) � tosort(median) = pivot

� tosort(number)]
corp

proc partition(alt botind, topind, tosort, temp2, fix
pivot) [segregate tosort(partop : number) into
two partitions � and � pivot]

302 dol [search bottom up for next element � pivot, top
down for next element � pivot]

203 104 do
43 botind : = botind - 1

until
44 tosort(botind) � pivot

104 od [tosort(botind) � pivot, (tosort((botind + 1 :
number)) � pivot]

45 temp2 := tosort(botind)
105 do

46 topind := topind + 1
until

47 tosort(topind) � pivot
203 105 od [(tosort(partop : (topind - 1))) � pivot,

tosort(topind) � pivot]
while

48 topind � botind
do2 [exchange(tosort(topind), tosort(botind))]

49 tosort(botind) := tosort(topind)
50 tosort(topind) := temp2

302 od [(tosort(partop : (topind - 1))) � pivot,
(tosort((botind + 1) : number)) � pivot,
topind > botind]

corp

proc save/activate(alt tops, bottoms, partop, number, fix botind,
topind, limdex) [set tops(limdex), bottoms(limdex) to top,
bottom pointers of smaller partition, set partop to top,
or number to bottom pointer of larger partition]

106 if
53 botind - partop < number - topind

Figure 5.20 (Continued)

208

205

402

Reading Struct ured Prog rams

106

502

402

303

107

107

205
303
502

54
55
56

59
60
61

68

69
70

7 1

72
73

74

75

then [save endpoints of upper partition, make lower
new active partition]

tops(limdex) partop
bottoms (limdex) := botind
partop := botind

else [save endpoints of lower partition, make upper

fi
corp

new active partition]
tops (limdex) topind
bottoms(limdex) := number
number := botind

proc siftsort(alt pivot, topind, tosort, i, fix partop,
number) [ascending sort tosort(partop : number)]

for
i :e partop + 1 to number by 1

do [ascending sort tosort(partop : i)]
pivot tosort(i)
topind i - 1
if

tosort(topind) > pivot
then [insert pivot in sorted position]

do
tosort(topind + 1) := tosort(topind)
topind topind 1

until
tosort(topind) � pivot

od [tosort(topind) � pivot,
tosort(topind + 2) > pivot]

tosort(topind + 1) := pivot
fi [tosort(partop) � . . . � tosort(i)]

od [tosort(partop) � . . . � tosort(number)]
corp

Figure 5.20

5.4.6 O pen Questions

As we have learned, the save/activate segment saves top and bottom pointers
to the smaller partition, leaving the larger one for further partitioning. The
question raised earlier is still open-what limit does a capacity for saving
only 20 partitions place on the size of the array to be sorted? The largest
possible partition of an n-element array has size n 2, and a series of such
lopsided partitions cannot be ruled out. Thus, in the worst case, a 42-element

6.4

array c
origina
overflo'

To
giving :
size lim
in this

Th
ity and

1 . Lil
it i
49.

2. Tv
pa
al�

3. In
so

4. N;
ch

5.4.7

Our f(
now f(
toms (l
permit
arrays

State

21 ti,
54 to
55 b(
59 tG
60 be
63 iii
78 Iii
80 Pi
81 nl

It
algori
partop

5.4 A Case Study in Prog ram Reading 209

array could require saving 2 1 partitions (each of the first 20 reducing the
original array by a 2-element partition up from the bottom), thereby
overflowing the save arrays.

To solve the problem, the largest partition should be saved at each step,
giving a worst case (now, for nearly equal, rather than lopsided, partitions)
size limit on tosort of (2**(k + 1)) - 1, where k is the size of the save arrays,
in this case, (2**2 1) - 1 .

There are other, less serious questions in Singsort, concerned with clar
ity and style, such as the following:

1 . Line 45 plays no role in the search for exchange candidates within which
it is embedded, and should be moved just above line 49. Then, lines 45,
49, 50 (together) make up a meaningful abstraction-exchange.

2. Two separate sorts (one for endpoints and median, another for active
partitions � 10 elements) could be carried out by a single sort
algorithm.

3. In abstraction 502, pivot is used as a temporary variable, obscuring the
sort function.

4. Number is an argument to the Singsort subroutine, but its value is
changed and not restored.

5.4.7 A Stack Oriented Si ngsort

Our reading of Singsort has uncovered a sensible algorithm, in which we
now recognize the stacking and un stacking of partitions. The tops and bot
toms arrays are used as stack data structures with limdex as a pointer,
permitting last in/first out access of stack members. Operations on these
arrays (refer to Fig. 5.20) are distributed as follows :

Statement

21 limdex := 1
54 tops(limdex) := partop
55 bottoms(limdex) := botind
59 tops(limdex) := topind
60 bottoms(limdex) := number
63 limdex : = limdex + 1
78 limdex := limdex - 1
80 partop := tops(limdex)
81 number := bottoms(limdex)

Segment

singsort
save/activate
save/activate
save/activate
save/activate
singsort
singsort
singsort
singsort

Corresponding stack operation

tops := empty ; bottoms := empty
top(tops) := partop
top(bottoms) := botind
top(tops) := topind
top(bottoms) := number
none
none
partop := top(tops)
number := top (bottoms)

It is now possible to reconstruct Singsort top down as a stack-oriented
algorithm. A start at reconstruction is shown below, with partition pointers
partop, botind, and so on, abstracted as a 2-array called "extent," and a single

21 0 Reading St ructu red P rog rams

stack, s, used to save copies of "extents" :

top(s) := array extent
while

s =1= empty
do

od

active extent := top(s)
while

active extent > 10, etc.
do

od

larger extent, smaller extent := partition(active extent)
top(s) := smaller extent
active extent := larger extent

active extent := sort(active extent)

EX E R C I SES

1. Finish writing and commenting the stack-oriented Singsort program above.
2. In parts (a) and (b) put the programst into better shape for understanding by

doing a prime program parse, restructuring into a simpler basis if necessary, and
translating into PDL; then add logical commentary, segment, and analyze data
usage for fix and alt lists :

a) 1 BSHELLSORT : PROCEDURE(TOSORT, NUMBER);
2 / * ALGORITHM 201, SHELLSORT, PUBLISHED

IN ALGOL PUBLICATION
3 LANGUAGE, COMMUNICATIONS OF ACM,

VOL 6, NO 8, AUGUST, 1963 */
4 DECLARE
5 TOSORT(*) FIXED BINARY (3 1 , 0),
6 DISTANCE FIXED BINARY (3 1, 0),
7 LIMIT FIXED BINARY (3 1, 0),
8 TEMP FIXED BINARY (3 1, 0),
9 I FIXED BINARY (3 1 , 0),

10 J FIXED BINARY (3 1 , 0),
1 1 LOGNMBR FIXED BINARY (3 1, 0),
12 NUMBER FIXED BINARY (3 1, 0);
13 LOGNMBER = LOG2(NUMBER);
14 DISTANCE = 2 ** LOGNMBER - 1 ;
15 DIST : DO WHILE (DISTANCE > 0);

t H. Lorin, Sorting and Sort Systems (Reading, Mass. : Addison-Wesley, 1975)
A64-65, A 70-72.

16 LIMIT = NUMBER - DISTANCE;
17 SETS : DO J = 1 TO LIMIT BY 1 ;
1 8 ELTS : DO 1 = J TO 1 BY - DISTANCE;
19 IF TOSORT(I + DISTANCE) > = TOSORT(I) THEN GO TO OUT;
20 TEMP = TOSORT(I);
21 TOSORT(I) = TOSORT(I + DISTANCE);
22 TOSORT(I + DISTANCE) = TEMP;
23 END ELTS;
24 OUT: END SETS ;
25 DISTANCE = DISTANCE/2 ;
26 END DIST;
27 END BSHELLSORT;

b) 1 STRINGSORT: PROCEDURE(TOSORT, NUMBER);
2 / * ALGORITHM 207, COMMUNICATIONS ACM,

VOL 5, NO to, P 215 * /
3 DECLARE
4 TOSORT(*) FIXED BINARY (3 1 , O�
5 NUMBER FIXED BINARY (3 1, 0);
6 SORT: BEGIN;
7 DECLARE
8 WORK(2 * NUMBER) FIXED BINARY (3 1, 0),
9 TOPST FIXED BINARY (3 1, 0),

10 BOTST FIXED BINARY (3 1, 0),
1 1 LIMITS (2) FIXED BINARY (3 1 , 0),
12 ADVANCE FIXED BINARY (3 1, 0),
1 3 NEXT FIXED BINARY (3 1 , 0),
14 LAST FIXED BINARY (3 1 , 0),
1 5 K FIXED BINARY (3 1, 0),
1 6 PASSW FIXED BINARY (1 , 0),
1 7 EXTEND LABEL;
18 INITIAL: DO 1 = 1 TO NUMBER BY 1 ;
1 9 WORK(I) = TOSORT(I);
20 END INITIAL;
2 1 ODDPASS : TOPST = 1 ;
2 2 BOTST = NUMBER;
23 LIMITS(I) = NUMBER + 1 ;
24 LIMITS(2) = 2 * NUMBER;
25 K = 1 ;
26 ADVANCE = 1
27 PASSW = 1 ;
28 FIRSTST: EXTEND = NONDOWN ;
29 NEXT = LIMITS(K);
30 IF WORK(TOPST) > = WORK(BOTST)

THEN GO TO BOTTOM ;
3 1 ELSE GO TO TOP;
32 TOP : WORK(NEXT) = WORK(TOPST);
33 TOPST = TOPST + 1 ;
3 4 GO TO NEWNEXT;

21 1

\

21 2 Reading Structu red Programs

35 BOTTOM : WORK(NEXT) = WORK(BOTST);
36 BOTST = BOTST - 1 ;
37 NEWNEXT: LAST = NEXT;
38 NEXT = NEXT + ADVANCE;
39 IF BOTST > = TOPST THEN GO TO EXTEND ;
40 IF PASSW = 0 THEN IF NEXT = NUMBER + 1

THEN GO TO EXIT;
4 1 ELSE GO TO ODDPASS;
42 ELSE IF NEXT = 2 * NUMBER + 1 THEN GO TO EXIT;
43 ELSE GO TO EVENPASS;
44 JDOWN: IF WORK(TOPST) > = WORK(LAST)

THEN GO TO TOP;
45 ELSE GO TO BOTHDOWN;
46 IDOWN: IF WORK(BOTST) > = WORK(LAST)

THEN GO TO BOTTOM;
47 ELSE GO TO BOTHDOWN;
48 NONDOWN: IF WORK(TOPST) > = WORK(LAST) THEN
49 IF WORK(BOTST) > = WORK(LAST) THEN
50 IF WORK(BOTST) > = WORK(TOPST) THEN GO TO TOP;
5 1 ELSE GO TO BOTTOM;
52 ELSE DO; 6
53 EXTEND = JDOWN; 1
54 GO TO TOP;
55 END; s

56 ELSE DO ; r

57 EXTEND = IDOWN; �
58 GO TO IDOWN; I
59 END; f
60 BOTHDOWN:
6 1 LIMITS(K) = NEXT;
62 IF K = 1 THEN K = 2 ;
63 ELSE K = 1 ;
64 ADVANCE = - ADVANCE ;
65 GO TO FIRSTST;
66 EVENPASS : TOPST = NUMBER + 1 ;
67 BOTST = 2 * NUMBER;
68 LIMITS(1) = 1 ;
69 LIMITS(2) = NUMBER;
70 ADVANCE = 1 ;
7 1 K = 1 ;
72 PASSW = 0;
73 GO TO FIRSTST;
74 EXIT: DO 1 = 1 TO NUMBER BY 1 ;
75 TOSORT(I) = WORK(LIMITS (1) - 1 + I) ;
76 END;
77 END SORT;
78 END STRINGSORT;

6
The Correctness

of Structured
Programs

6. 1 OVE RV I EW

This chapter develops a function-theoretic basis for the correctness of
structured programs. Correctness relationships are crucial : first, in program
reading, to know if one is interpreting a program properly ; second, in pro
gram writing, to know if one is writing a correct program; and third, in
program validation, to know if a program correctly carries out its intended
function.

Program correctness is defined as a correspondence between a program
and its intended function. Algebraic concepts are used to reduce the problem
of determining compound program correctness to the problem of deter
mining correctness of constituent primes. The correctness verification of
loop-free programs is carried out by analysis of their E-charts, and in an
Iteration Recursion Lemma, the verification of looping programs is reduced
to verification of equivalent loop-free programs. The Correctness Theorem
summarizes verification requirements for both loop-free and looping primes.
Trace tables and disjoint rules are introduced as techniques for proving
program correctness, and the function-theoretic approach to verification is
illustrated in several examples. Loop invariants are introduced for an alter
nate proof technique and as an aid to program documentation. A standard
procedure for defining invariants is given by the Invariant Status Theorem.
Finally, for insight into the design process, the derivation of correct pro
grams is described in terms of function equations for prime programs, for
which formal solutions exist.

21 4 The Co rrectness of St ructu red Programs

6.2 V E R I FYI N G ST R U CT U R E D PROG RAMS

6.2.1 Veri fying Co rrectness i n Reading, Writing,

and Val i dati on

The verification questions encountered in reading, writing, and validating
'

programs are identical.
In program reading, at each step a prime program is abstracted in the ·

form of a hypothesis for its program function. For example, given program
if p then g else h 6, we hypothesize that its program function is f The
verification task is then to show

/ = [if p then g else h 6]

That is, the task is to verify that the hypothesized function / is, in fact,
equivalent to (or possibly a subset of) the program function of the given :
program.

Next, in writing or designing a program, at each step a given function is
expanded into a suitable prime structure, and function and predicate com
ponents are invented that we hypothesize will produce a program function
identical to the given function. For example, beginning with a given fUn(:uolll�i
/ and hypothesizing that an equivalent function will be produced by, say,
ifthenelse structure using invented components p, g, and h, the

. .

task, as before, is to show

/ = [if p then g else h 6]

That is, the task is to verify that the given function / is equivalent to (
possibly a subset of) the program function of the invented program.

Finally, in program validation both a function and its alleged prog�am
expansion are given. So, once again, starting with the given function!, and a .
program, say, if p then g else h 6, we must verify that

/ = [if p then g else h 6]

Thus, in general, the needs for program verification (proving a program
correct) are identical, whether we are engaged in program abstraction in
reading, program expansion in writing, or program validation. In all three

·

cases we seek to confirm the equivalence (or subset relationship) of two
expressions, each representing the function of a program.

6.2.2 The Algebra of Co rrectness of Structu red Prog rams

Program correctness is concerned with one of two questions :

Given a function/and a program P (which is claimed to implement/�

1 . Is / = [P]? or 2. Is /e [P]?

6. 2 Verifying Structu red Programs 21 5

That is, does P compute the correct values of I from the arguments of I?

Question 1 i s called the question of complete correctness ; question 2, of
sufficient correctness. For complete correctness, P computes only the
(correct) values of I from arguments of I (i.e., P is undefined for arguments
outside of the domain of I). For sufficient correctness, P may compute
values from arguments not belonging to f

For example, for integers x, y, let

I = (x � 0 1\ Y � 0 -+ x, y := X + y, 0)

P1 = while y > 0 do x, y := X + 1, y - 1 od

P2 = while y =1= 0 do x, y := X + 1, y - 1 od

Since both P1 and P2 correctly compute/(x, y) for positive x, y, they satisfy
the requirements for sufficient correctness, but neither satisfies the require
ments for complete correctness, for they both compute values for arguments
not contained inf P1 accepts (i.e., terminates for) negative initial values for
both x, y, and P2 accepts negative initial values for x. Note that P2 is un
defined for negative initial values for y, as is f, since it does not terminate
when presented with y < O.

The requirement to achieve complete correctness leads to the concept of
defensive programming (i.e., "defending" against unexpected inputs). In this
case, the idea of defensive programming suggests a respecification of I to
include the complete domain of P, with the requirement that all arguments
thereby added to the domain result in "exception processing" by the
program. Thus, 1 and P can be redefined as

11 = (x � 0 1\ Y � 0 -+ x, y, Z := X + y, 0, z I
true -+ x, y, Z := x, y, 'error')

P3 = if (x < 0) v (y < 0) then z := 'error'
else while y > 0 do x, y := X + 1, y - 1 od fi

for complete correctness with defenses against unexpected inputs.
If P is not a prime program, its decomposition into primes provides a

way to reduce the amount of reasoning required by use of the algebraic
structure of P. In particular, the hierarchy of abstractions of P decomposes
the proof of correctness for P into a proof of correctness for each such
abstraction. For example, suppose we attempt to show that a compound
program F implements a desired function f, where

F = if p then G eise H fi (1)

21 6 The Correctness of Structu red Programs

and G and H are themselves programs. Rather than attempting at the
to prove the set equality

f = [if p then G eise H fi]

which may be quite difficult (depending on the complexity of G and H),
first hypothesize functions 9 and h and attempt to prove the complete cor
rectness of

9 = [G] and h = [H]

If successful, we can simplify (2) above, using the Axiom of Replacement
(see Section 5.2.2), and reduce the problem to proving the set equality

f = [if p then 9 else h fi]

If again successful, we will have proved the complete correctness off = [F] .
as we set out to do. However, if any of the three programs satisfy
sufficient correctness, then program F satisfies only sufficient correctness�
For example, if G computes values for arguments that are not in g, then F
may compute values for arguments that are not in f

In illustration, the subtract program (for x, y � 0)

SUB = while
x > O " y > O

do
X := x - 1
y := y - 1

od
if

y > O
then

x := - y
fi
free y

is intended to produce the assignment function

sub = [x, y := x - y, free]

(by rc
can t

x

Let I
SIGl

Thes

or

verif
expr

EXE
1.

Exerci ses 21 7

(by repeated decrementing, then checking for sign). The four primes of SUB
can be diagrammed and named as follows :

SEQ:SUB

WDO : M AG I FT : S I G N free y

� �
x > 0 II y > O SEQ: D E C R y > O x : = -y

�
x : = x - 1 y : = y - 1

Let program functions mag, decr, sign be hypothesized for MAG, DEeR,
SIGN. Then there are four subproofs to a proof of correctness that

1. sub = [SUB] or 2. sub c [SUB]

These subproofs are either

or

1 . sub = [mag; sign ; free y]
mag = [while x > 0 /\ Y > 0 do decr 00]
decr = [x := x - l ; y := y - l]
sign = [if y > 0 then x := -y fi]

2. sub c [mag; sign ; free y]
mag c [while x > 0 /\ Y > 0 do decr 00]
decr c [x := X - 1 ; y := y - 1]
sign c [if y > 0 then x := -y fi]

Thus, the correctness of a compound program can be verified by a set of
verifications of the prime programs in which the compound program is
expressed.

EXE R CIS ES

1. Given

P I = while x ;;::: y do x, y := y, X od
P2 = if x ;;::: y then x, y := y, X fi

P3 = do x, y := y, x until x =1= y od
i l = x, y := y, X

21 8 The Correctness of Structu red Prog rams

/2 = (x =1= y ---+ x, y := y, x)

/3 = (x ;;::: y ---+ x, y := y, x)

determine . the correctness relationships between each program and
(Complete, sufficient, neither?)

2. Show a proof organization for the following program and function :

P = if x < y then x, y := y, X fi while y > 0 do x, y := X - 1, y - 1 od

/ = (x ;;::: 0 1\ y ;;::: 0 ---+ x, y := abs(x - y), 0)

6.3 TH E CO R R ECT N ESS OF P R I M E P R O G RAMS

6.3.1 Progra m Term i n ati on

As we have seen, if P is a loop-free program, then [P] is determined by a
union of function compositions defined along the paths of the E-chart of
(with or without decomposing P into cQnstituent primes). In this case,
correctness questions can be answered directly by evaluating [P] and com
paring the result with the intended function of P, say f Of course, if P and
are complicated objects, this evaluation and comparison will be com
plicated, too. But, nevertheless, the logical work to be done is known
precisely.

If P is not loop free, then the correctness questions are more difficult
and, in genera� answering them may not be possible. The correctness of a .
looping program depends, i n part, on assurance that the program termin- ·
ates. This assurance will often be based on the observation that a regularly
changing variable must ultimately cause predicate evaluation to result in an
exit, or perhaps that a logical predicate variable previously true is set false to
permit an exit. However, even if no such observation can be made, we
cannot deduce in general that the program does not terminate. In fact, it
may be logically impossible (undecidable) to determine i f an execution of P
halts for any given initial argument, say X, off

Even though the termination question is undecidable in general, we can
decide to limit our consideration to programs whose termination can be
established. In fact, we define a new predicate

termer, P} = "P terminates for every initial state X E D(f)"

which we assume we can evaluate for any program P under consideration. In
short, it's a minor sin to write a program that does not terminate, but a
major sin to write one whose termination is undecidable.

6

g

VI
a
l�

t
t

The Correctness of Prime Programs 21 9

6.3 .2 The Iteration Recursion Lem ma

The verification of the three one-predicate prime programs with loops
(whiledo, dountil, dowhiledo) can be reduced to the question of termination
and the verification of loop-free programs, by converting iteration into
recursion. Thus, for example, instead of directly verifying that f is the pro
gram function of the terminating whiledo program

P = while p do g od
which can be extremely difficult, it is sufficient to verify that P terminates for
all arguments off and that f is the program function of the following non
looping ifthen program (with then part composed of dopart g followed by f)

Q = i f p then g ;f6

because [P] = [Q], as we show next. To illustrate this equivalence, consider
the whiledo program P that adds two nonnegative integers u, v :

P = while v > 0 do u , v := U + 1 , v - 1 od
We observe that P terminates and has function rule

f = (u, v := u + v, 0)

We therefore assert that P is function equivalent to

Q = if v > 0 then u, v := U + 1, v - 1 ; u, v := U + v, 0 fi

This can be demonstrated by an examination of two cases :

Case ,...., (v > 0) :

,...., (v > 0) and v nonnegative � (v = 0). Since the predicate (v > 0) fails,
both P and Q do nothing, and are therefore equivalent.

Case (v > 0) :

[Q] is a composition of two functions, and may be determined by direct
substitution, namely,

[u, V := U + 1, v - 1 ; u, v := U + v, 0] = u, V := (u + 1) + (v - 1), 0

with program function

u, v := u + v, 0

Therefore [Q] = (u, v := U + v, 0) = [P] as was to be shown.

220 The Correctness of Structu red Prog rams

In other words, if we know the program function J of looping program
P, we can find a recursive equation inJfor a loop-free program. The solution
of such a recursive equation for J may be difficult or impossible to find ; but
in this case we are verifying, not solving, the equation, and the recursion
does not add any difficulty to the verification problem. This iteration-to
recursion possibility motivates the following Lemma

Iteration Recursion Lemma. Given functions f, g, h, and predicate p:

Case a (whiledo) :

Case b (dountil) :

Case c (dowhiledo) :

(J = [while p do g ocI]) +-+
(term(f, while p do g ocI) 1\

J = [if p then g; J fi])

(J = [do g until p ocI]) +-+
(term(f, do g until p ocI) 1\
J = [g ; if '" p then Jfi])

(J = [dol g while p do2 h ocI]) +-+
(term(f, dol g while p do2 h ocI) 1\
J = [g ; if p then h ; Jfi])

Proof Case a (whiledo) : Assume, first, that

J = [while p do g ocI]

Then term (f, while p do g ocI) is necessary, otherwise the program function
[while p do g ocI] could not equal the function! Consider next the execution
equivalent programs

while p do g ocI and if p then g ; while p do g ocI fi

whose equivalence can be seen directly, by inspection of their flowchart
forms :

6.3

By
car

as

Sil
fUl

th:
fUl
nu
to

an

as
pI

6,

F

tt

6.3 The Correctness of Prime Prog rams 221

Therefore

[while p do 9 00] = [if p then g ; while p do 9 00 6]

By hypothesis and the Axiom of Replacement, the two whiledo programs
can be replaced by the single assignment program with function J, so that

/ = [if p then g ; / 6]

as was to be shown.
Conversely (to complete the if and only if requirement), assume

term(J, while p do 9 00) " / = [if p then g; / 6]

and consider the series of function equivalent programs obtained by succes
sive substitution of the ifthen program for its program function :

if p then g ; / 6
if p then g ; if p then g ; / 6 6

if p then g ; if p then g; . . . if p then g ;
(if p then g ; / 6) 6 . . . 6 6

Since term(J, while p do 9 00) is hypothesized, the limit of this series is
function equivalent to the program

if p then g ; if p then g; . . . if p then g ; I 6 . . . 6 6

that is, identical except that the innermost ifthen is replaced by the identity
function I because the predicate p must evaluate to false after a finite
number of compositions of g. But this latter program is execution equivalent
to

while p do 9 00

and hence

/ = [while p do 9 00]

as was to be shown. This concludes the proof for Case a (whiledo). The
proofs for Cases b and c are similar, and are left for the reader.

6.3.3 The Co rrectness Theo rem

For convenience and reference, we assemble the requirements for verifying
the correctness of prime programs with up to one predicate in a Correctness

222 The Correctness of Structu red Prog rams

Theorem. (Fordo and case programs are included as well.) The cOITec::tnes.
questions noted before, namely

1 . Is f = [P] ? (complete correctness)
2. Is f e [P] ? (sufficien t correctness)

can be reasoned about and answered as corresponding set-theoretic
questions. In the Correctness Theorem, we specialize these questions for
various forms of program P into standard reasoning procedures fQr
verification, based on the E-chart and Iteration Recursion Lemma discus
sions above. The problem of verifying a set relation is a mathematical prob
lem. The Correctness Theorem only defines what set relations must be
verified in order to prove the correctness of a program. It is still necessary to .
use whatever mathematical procedu,res and reasoning may be appropriate to ,
demonstrate the required relatio!}ships.

The Correctness Theorem demonstrates that, aside from termination
qlllestions, all structured programs expressed in primes of up to one predi
cate can be verified by using only those methods of reasoning required by
sequence and ifthenelse pLograms. The proof problems may exceed our time j

and patience but not our knowledge.

Correctness Theorem. For any functionfand program P, correctness is
defined by a condition C for
1 . complete correctness

(f = [P])+-+ (term(f, P) Af = {(X, Y) I C(X, Y)})

2: sufficient correctness

(f e{P]) +-+ (term(f, P) Afe {(X, Y) I C(X, Y)})

where P and C are as tabulated below. Note that term(f, P) is always
true for loop-free programs but permits a unified treatment of loop-free
and looping programs alike.

P C(X, Y)

Case a (sequence) :
g ; h Y = h 0 g(X)

Case b (fordo) :
for i, :E L(l : n) do g od Y = gL(n) 0 • • • 0 gL(l)(X)
(gL(k) is the function of the kth dopart iteration)

Case c (ifthen) :
i f p then g fi (p(X) -+ Y = g(X)) A

('" p(X) -+ Y = X)

6.3

c

c

(

(

Pro�
an a]
loop]
Itera
then

or

whel

Sine

or

t Fo
requ
desc

6 .3 The Correctn ess of Prime Prog rams 223

Case d (ifthenelse) :
if p then 9 else h 6

Case e (case) :t
case p part (CLI) 9 . . .

part (CLn) h eke t esac

(CL short for caselist)

Case f (whiledo) :
while p do 9 od

Case g (dountil) :
do 9 until p od

Case h (dowhiledo) :
dol 9 while p do2 h od

(p(X) -+ Y = g(X)) 1\
('" p(X) -+ Y = h(X))

(p(X) E CLI -+ Y = g(X)) 1\

(p(X) E CLn -+ Y = h(X)) 1\
(p(X) ¢ (CL I, . . . , CLn) -+
Y = t(X))

(p(X) -+ Y = /0 g(X)) 1\
('" p(X) -+ Y = X)

(p 0 g(X) -+ Y = g(X)) 1\
('" p 0 g(X) -+ Y = / 0 g(X))

(p 0 g(X) -+ Y = / 0 h 0 g(X)) 1\
('" p 0 g(X) -+ Y = g(X))

Proof In each case, the proof of the required equivalence can be found in
an appropriate E-chart -the E-char! of a loop-free program itself, or for a
looping program, the E-chart of its loop-free counterpart as given in the
Iteration Recursion Lemma. For example, in case c (ifthen) where P = if p
then 9 6, we must show

(/ = [P]) � (term(f, P) 1\/ = { (X, Y) I C(X, Y)})

or

(/ e [P])� (term(f, P) 1\/ e { (X, Y) I C(X, Y)})

where

C(X, Y) = ((p(X) -+ Y = g(X)) 1\ ('" p(X) -+ Y = X))

Since P is loop free, term(f, P) is true, and we must show

(/= [P])�/= {(X, Y) I C(X, Y)}
or

(/e [P]) �/e {(X, Y) I C(X, Y)}

t For purposes of this theorem, caselist elements are considered to be unique. Proof
requirements for a case structure with non-unique caselist elements are better
described by means of a conditional rule.

224 The Correctness of St ructu red Prog rams

This will follow if we can show that

[P] = {(X, Y) I C(X, Y)}

We recall that the E-chart of P is

and the function definition derived from it is

[if p then g 6] = {(X, Y) I (p(X) � Y = g(X)) /\ ('" p(X) � Y = X)}

Thus, it follows directly that C(X, Y) is the required condition, as was to be
shown.

For case g (dowhiledo) where

P = dol g while p do2 h od

we must show, first for complete correctriess,

(f = [P])� (term(f, P) /\f = {(X, Y) I C(X, Y)})

where

C(X, Y) = ((p 0 g(X) � Y = f 0 h 0 g(X)) /\ ('" p 0 g(X) � Y = g(X)))

By the Iteration Recursion Lemma, we can replace the left side (f = [P]) to
get

(term(f, P) /\f = [Q])� (term(f, P) /\f = {(X, Y) I C(X, Y)})

where

Q = (g ; if p then h ; f 6)

Since term(f, P) is common to both sides, it is sufficient to show that

[Q] = {(X, Y) I C(X, Y)}

6.3

But from

and the (

[Q] = {

from wh
shown.

Nexi

Let

Then by

Since the

and

Now for

From (1

and the)

6.3 The Correctness of Prime Prog rams 225

But from the E-chart

Q =

and the derived function of Q is

[Q] = {(X, Y) I (p 0 g(X) � Y = f 0 h 0 g(X)) A ('" p 0 g(X) � Y = g(X))}

from which it follows that C(X, Y) is the required condition, as was to be
shown.

Next, for sufficient correctness we must show

(f e [P]) +-+ (term(f, P) Af e {(X, Y) I C(X, Y)})

Let

f' = [P] (1)
Then by the complete correctness just shown

(f' = [P]) +-+ (term(f', P) Af' = {(X, Y) I C(X, Y)}) (2)

Since the left side is true by definition, the right is true as well ; that is,

term(f', P) (3)

and

f' = {(X, Y) I C(X, Y)} (4)

Now for sufficient correctness, assume first that

fe [P] (5)

From (1) and (5)

f e f' (6)

and therefore

term(f', P) � term(f, P) (7)

226 The Correctness of Structu red Programs

From (3) and (7)

term(f, P)

Also from (4) and (6)

f e {(X, Y) I C(X, Y)}

Therefore, from (5), (8), and (9)

(f e [P]) --+ (term(f, P) /\f e {(X, Y) I C(X, Y)}

Now for the converse, assume

term(f, P) /\f e {(X, Y) I C(X, Y)}

or in particular

f e {(X, Y) I C(X, Y)}

From (1), (4), and (1 1)

f e {(X, Y) I C(X, Y)} = f' = [P]

Therefore from (10) and (12)

term(f, P) /\f e {(X, Y) I C(X, Y)} --+ f e [P]

The reader is invited to verify the remaining cases.

Note that the Correctness Theorem states a relationship between three
objects, namely a function f, program P, and condition C, each concerned
with ordered pairs (X, Y). In order to see the relationship more clearly,
consider another form of the correctness questions :

1. complete correctness

(X, Y) E f� (X, Y) E [P]?

2. sufficient correctness

(X, Y) E f --+ (X, Y) E [P]?

and C(X, Y) (with term(f, P)) can be used to answer them. That is, when
applying C(X, Y) to prove, say, Y = h 0 g(X) for a sequence program, Y is
derived independently from function f for argument X.

6.3

6 .:

Th

is
els
as]

C

c

(

6.3 T h e Correctness o f P r i m e Prog rams

6.3.4 Wo rki n g Questi ons for Com pl ete Co rrectness

The ifthenelse correctness condition

C(X, Y) = ((p(X) --+ Y = g(X)) /\ ('" p(X) --+ Y = h(X)))

227

is easily put into words using the synonyms ifthenelse, if test, then part,
elsepart, for functions /, p, g, h, respectively. For all function arguments, we
ask

When iftest is true does ifthenelse equal thenpart ?

and
when if test is false does ifthenelse equal elsepart ?

Such verbalizations can be used informally in program reading, writing,
and validation, with the knowledge that more formal and deliberate
methods of reasoning are available when needed and warranted. We verbal
ize the Correctness Theorem (for complete correctness) below.

For every possible argument required by a program specification :

Case a (sequence) :
sequence = [firstpart ;

second part]
Does sequence equal firstpart followed by second part ?

Case b (fordo) :

fordo = [for
indexlist

do
dopart

00]
Does fordo equal firstpart followed by second part . . . followed by
lastpart?

Case c (ifthen):

ifthen = [if
if test

then
thenpart

6]
When iftest is true does ifthen equal then part ?
and
when if test is false does ifthen equal identity?

228 The Correctness of Structu red Programs

Case d (ifthenelse) :

ifthenelse = [if
if test

then
thenpart

else
elsepart

6]
When if test is true does ifthenelse equal thenpart ?

and
when if test is false does ifthenelse equal else part ?

Case e (case) :
case = [case

p
part(CL1)

casepartl

part(CLn)
casepartn

else
elsepart

esac]

When P E CLl does case equal casepartl ?
and

and

when P E CLn does case equal casepartn ?

and
when P ¢ (CL 1, . . . , CLn) does case equal elsepart ?

Case f (whiledo) :
whiledo = [while

whiletest
do

dopart
00]

Is loop termination guaranteed for any argument of whiledo?

6.3 Th e Correctness of Prime Programs 229

and

when whiletest is true does whiledo equal dopart followed by whiledo?

and
when whiletest is false does whiledo equal identity?

Case g (dountil) :

dountil = [do
dopart

until
untiltest

00]

Is loop termination guaranteed for any argument of dountil?
and
when untiltest after dopart isfalse does dountil equal dopart followed
by dountil?
and

when untiltest after dopart is true does dountil equal dopart?

Case h (dowhiledo) :
dowhiledo = [dol

dopart l
while

whiletest
do2

dopart2
00]

Is loop termination guaranteed for any argument of dowhiledo?
and

when whiletest after dopartl is true does dowhiledo equal dopartl
followed by dopart2 followed by dowhiledo?

and
when whiletest after dopartl is false does dowhiledo equal dopart l ?

We will make use of these questions in the following chapter.

6.3.5 Co rrectness Proof Syntax

The requirements stated in the Correctness Theorem for proving prime
programs suggest a standard format for the proofs themselves, for better

230 The Correctness of Structu red Programs

documentation and communication of proof arguments. We give next
outer syntax of keywords and indentation for the parts of prime nrn.lh""lI

proofs as extensions to PDL outer syntax, with inner syntax arg:UIIlenu
specialized and recorded to whatever level is appropriate for the nrn.lh"",, _

and proof at hand.
Specifically, the Correctness Theorem requires definition of the u' nell0ed

function (J), the program, the proof, and the proof result, identified
keywords function, program, proof, and result, respectively. The proof
come is specified by keywords :

pass or fail
suff or comp (for sufficient or complete correctness)

Proofs are written in a tabular form for any prime as follows:

function
state or refer to intended function

program
state or refer to program part

proof
state or refer to proof

result
pass or fail, suff or comp

The proof part of the proof is indented and specialized for each prime '
according to the form of condition C(X, Y) in the Correctness Theorem,
which we recast into comparisons of conditional rules in order to specify
proof rules more compactly. In illustration, consider the condition C for the
ifthenelse prime, namely

C(X, Y) = ((p(X) -+ Y = g(X)) 1\ (--p(X) -+ Y = h(X)))
First, since Y = J(X) in C(X, Y), the condition C can be restated as

C(X, J(X)) = ((p(X) -+J(X) = g(X)) 1\ (--p(X) -+J(X) = h(X)))
Next, the implication

p(X) -+ J(X) = g(X)

can be restated as an equation between conditional rules

(p(X) -+ J(X)) = (p(X) -+ g(X))

or simply

(p -+J) = (p -+ g)

6.3 The Co rrectness of Pri me Prog rams 231

This leads to a proof part for the ifthenelse of the form (with additional proof
keywords, and parenthetical relations defining what is to be proved)

if test true
(prove (p -+ f) = (p -+ g))

if test false
(prove (- p -+ f) = (- p -+ h))

The forms for each Rrime follow.

Case a (sequence) : f = [g ; h]
(provef = h o g)

Case b (fordo): f = [for i :E L(l : n) do g 00]

(prove f = gL(n) 0 • • • 0 gL(1 »)

Case c (i fthen): f = [if p then g 6]

if test true
(prove (p -+ f) = (p -+ g))
pass or fail

if test false
(prove (- p -+ f) = (- p -+ I))
pass or fail

Case d (i fthenelse) : f = [if p then g else h 6]

if test true
(prove (p -+f) = (p -+ g))
pass or fail

if test false
(prove (- p -+ f) = (- p -+ h))
pass or fail

Case e (case) : f = [ease p part(CL I) g . . , part(CLn) h else t esae]

partl
(prove (p E CLI -+ f) = (p E CLI -+ g))
pass or fail

partn
(prove (p E CLn -+ f) = (p E CLn -+ h))
pass or fail

elsecase
(prove (p ¢ (CL I, . . . , CLn) -+f) = (p ¢ (CL I, . . . , CLn) -+ t))
pass or fail

232 The Correctness of Structu red Programs

Case f (whiledo) : f = [while p do g od]
term

(prove term(f, P))
pass or fail

whiletest true
(prove (p -+ f) = (p -+ f o g))
pass or fail

whiletest false
(prove ('" p -+ f) = ('" p -+ 1))
pass or fail

Case g (dountil) : f = [do g until p 00]
term

(prove term(f, P))
pass or fail

untiltest true
(prove (p 0 g -+ f) = (p 0 g -+ g))
pass or fail

untiltest false
(prove ('" p 0 g -+ f) = ('" p 0 g -+ f o g))
pass or fail

Case h (dowhiledo) : f = [dol g while p do2 h 00]
term

(prove term(f, P))
pass or fail

whiletest true
(prove (p 0 g -+ f) = (p 0 g -+ f 0 h o g))
pass or fail

whiletest false
(prove ('" p 0 g -+ f) = ('" p 0 g -+ g))
pass or fail

These formats are demonstrated in the remainder of the book.

EXE R C I S ES

1. Show that

(I = [while p do g od]) -+
(term(f, while p do g od) /\
I = [if p then g fi /])

(Hint : Use an E-chart .)

Exercises 233

2. For each of the programs below, form a hypothesis for [P] and verify it, assum

ing (x, Y � 0):
a) P = while

x < y
do

x := y + 3
od

b) P = while
x < y

do
x, y := y, X + 2

od
3. For each of the programs below, specify the domain (for termination), and form

and verify a hypothesis for [P] :

a) P = while
x > y

do
x, y := x - 1 , y + 1

od
b) P = while

x > y
do

X := x - y
y := x + y

od
4. Verify the Correctness Theorem condition C(X, Y) given above for dountil and

dowhiledo programs.

5. Determine C(X, Y) for function /and program P, where P is defined as follows :

T

a) P =

b) P =

F

234 The Correctness of St ructu red P rog rams

c) p =

d) P =

6 .4 TECH N IQ U ES FO R P ROVI N G P RO G RA M
CO R R ECT N ESS

6 .4.1 Trace Ta bles

Proving that a sequence program G; H correctly implements a given
tion I requires verification of the set relations

1= [G ; H] and Ie [G ; H]

The verification process, which generally involves simplifying the right
side, seems deceptively easy, because at first glance sequence logic seems
simple. But consider determining the program function of the .

sequence of assignments :

1 x := x + y
2 y := x - y
3 x := x - y

At each assignment, one must mentally substitute the results of the preced
ing assignments, simplifying expressions where possible to keep what is to be
remembered as manageable as possible. For a simple sequence this may be a
reasonable approach, but as the sequence becomes more complex the pos
sibility of mental error increases. Even more importantly, the reasoning
process itself is unrecorded and un repeatable. For these reasons, we intro
dQce the concept of a trace table as a formal way to record reasoning about
sequence programs. A trace table is defined to be a table of equations-a
row corresponding to each program part of the sequence, a column corre
sponding to each data item assigned in the sequence. Each entry of the
trace table expresses the current value of a data item, denoted as a sub-

6.4 Tech niq ues fo r Provi ng Progra m Correctness 235

scripted data item, in terms of previous values of data items. Each new data
value is subscripted by the row of its new assignment, with initial data values
subscripted by zero. The sequence of assignments is written in a column at
the left of the table, along with an optional column of row numbers. For
example, the sequence above has the following trace table :

part x Y

1 x := x + Y Xl = Xo + Yo Y l = Yo
2 y := x - Y X2 = Xl Y2 = X l - Yl
3 x := x - Y X3 = x2 - Y2 Y3 = Y2

Note that each new value X l ' Y l' X2 , Y2 , . . . is defined in terms of values with
the predecessor subscripts, including the trivial definitions for items not
explicitly assigned. This table of equations now permits elimination of all
intermediate subscripts from final to initial subscripts, to systematically
derive the program function :

X3 = X2 - Y2 Y3 = Y2
= X l - (x 1 - Y 1) = Xl - Y 1
= Yl = Xo + Yo - Yo
= Yo = Xo

Thus, the program function for this sequence is simply the exchange
assignment

x, y := y, X

but the reasoning is extensive enough to bear writing out and verifying.
A more familiar form of exchange is given by the sequence (with tem-

porary data item t)
1 t := x
2 x := y
3 y := t

which has trace table

part

1 t := x
2 x := y
3 y := t

with derivations

t l = Xo
t2 = tl
t3 = t2

x

X l = Xo
X2 = Yl
X3 = X2

Y

Y l = Yo
Y2 = Yl
Y3 = t2

236 The Correctness of Structu red Prog ra ms

so that x, y are exchanged, all right, but t is set to x as well. In other
this sequence has the program function

t, x, Y := x, y, X

Because our interest is in exchanging x, y in this sequence, the final values
x, y are intentional, but the final value of t is incidental to the in
function. We eliminate incidental data by using PDL keywords initial,
as in the sequence

1 initial t := x
2 x := y
3 y := t
4 free t

which has trace table

part

1 initial t := x
2 x := y
3 y := t

tl = Xo
t2 = t l
t3 = t2

4 free t

with derivations

X4 = X3
= X2
= Yl
= Yo

Y4 = Y3
= t2
= tl
= Xo

and program function

free

x

Xl = Xo
X2 = Yl
X3 = X2
X4 = X3

x, y := y, X

y

Yl = Yo
Y2 = Yl
Y3 = t2
Y4 = Y3

as intended. Note the use of the term "free" in the table to express the
disposition of t. If t had been initialized part way through the sequence
instead of at the beginning, the term free would have appeared at all steps
prior to initialization, as well as following the free statement.

The trace table can be expanded to sequences of any size for any number
of data items, and its equations used in a deliberate process for eliminating
intermediate data values to derive the sequence program function. In simple
sequences, the trace-table operations can also be abbreviated, if reasoning
can be done reliably. Even if abbreviated, trace-table operations can be
redone in fully deliberate form if any doubt arises. For example, consider the
following sequence and partial trace table, in which only the changed data is
entered into the table.

6.4

part

1 W := x + Y
2 x := Y + Z
3 Y := z + W
4 Z := w + X
5 w := Y - Z
6 x := z - W
7 y := w - X
8 Z := x - Y

Techniq ues for Proving Prog ra m Correctness 237

W x Y Z

W1 = Xo + Yo
X2 = Y1 + Z1

Y3 = Z2 + W2
Z4 = W3 + X3

Ws = Y4 - Z4
X6 = Zs - Ws

Y7 = W6 - X6
Zs = X7 - Y7

In the derivation of assignments we make use of the fact that any blank in
the trace table denotes a trivial definition for two successively subscripted
variables, so that subscript elimination can be done by scanning up the
appropriate column to the next entry. The derivations are

Ws = Ws
= Y4 - Z4
= Y3 - W3 - X3

= Z2 + W2 - W2 - X2
= Z2 - X2
= Zo - Y1 - Z1
= Zo - Yo - Zo
= - Yo

Ys = Y7
= W6 - X6
= Ws - Zs + Ws
= 2ws - Zs
= 2Y4 - 2Z4 - Z4
= 2Y4 - 3z4
= 2Y3 - 3W3 - 3X3
= 2Z2 + 2W2 - 3W2 - 3X2
= - W2 - 3X2 + 2Z2
= - W 1 - 3 Y 1 - 3 Z 1 + 2z 1
= - W1 - 3Y1 - Z1
= - Xo - Yo - 3yo - Zo
= - Xo - 4yo - Zo

Xs = X6
= Zs - Ws
= Z4 - Y4 + Z4
= 2Z4 - Y4
= 2W3 + 2X3 - Y3
= 2w 1 + 2x 2 - Z 2 - W2
= 2W1 + 2Y1 + 2Z1 - Z1 - W1
= W1 + 2Y1 + Z1
= Xo + Yo + 2yo + Zo
= Xo + 3yo + Zo

Zs = X7 - Y7
= X6 - W6 + X6
= 2X6 - W6
= 2z s - 2w s - W S
= 2zs - 3ws
= 2Z4 - 3Y4 + 3z4
= - 3Y4 + 5z4
= - 3Y3 + 5W3 + 5X3

= - 3z2 - 3W2 + 5W2 + 5X2
= 2W2 + 5X2 - 3z2
= 2W1 + 5Y 1 + 5z 1 - 3z1
= 2w 1 + 5 Y 1 + 2z 1
= 2xo + 2yo + 5yo + 2zo
= 2xo + 7 Yo + 2zo

and the program function for this sequence is

w, x, y, z := - y, x + 3y + z, - x - 4y - Z, 2x + 7y + 2z

Even though the above derivation is a little tedious, it is carried out in steps
that can be verified independently by another person.

238 The Correctness of Structu red Prog rams

6 .4.2 Disjoint Rules

Proving that an ifthenelse program if P then G eise H 6 correctly implements
a function f requires the verification of the set relations

f = [if P then G eise H 6] and f c [if P then G eise H 6]

The verification process will involve the comparison of conditional rules,
because an ifthenelse program function can be converted exactly into the
form of a conditional rule, as in

[if P then G eise H 6] = (p --+ [G] I "" P --+ [H])

In the most general case, /, [G], and [H] may be given by conditional rules,
themselves, so we consider how conditional rules of conditional rules are to
be simplified, and how to compare conditional rules.

First, consider a conditional rule of conditional rules, say in illustration,

(P1 --+ (q1 1 --+ r1 1 1 q 12 --+ r12) I P2 --+ (q2 1 --+ r2 1 1 q22 --+ r22))

The simple distribution of the outer p/s into the inner rules, say as

(P1 " q1 1 --+ r 1 1 I P1 " q12 --+ r 12 1 P2 " q21 --+ r21 I P2 " q22 --+ r22)

is not valid because of the case P1 true, but neither q1 1 or q12 true while P2
and one of q2 b q22 true. In this case, the original rule would be undefined, .
but the later one would be defined. However, if the predicate p/s were
disjoint, that is P1 " P2 isfalse, then the outer p/s can be distributed into the
inner rules. We call a conditional rule with all predicates disjoint a disjoint
rule.

As seen above, a disjoint rule can be more convenient than a conditional
rule and is easy to derive by augmenting each predicate with the negation of
all previous predicates. That is, the conditional rule

(P1 --+ rd P2 --+ r2 1 P3 --+ r3 1 · · ·)

has identical effect as the disjoint rule

(P1 --+ r1 1 "" P1 " P2 --+ r2 1 "" P1 " "" P2 " P3 --+ r3 1 · · ·)

Conversely, the disjoint rule

(q1 --+ sd q2 --+ s2 1 q3 --+ s3 1 · · ·)

has identical effect as the conditional rule

(q1 --+ sd q1 v q2 --+ S2 / q1 V Q2 v q3 --+ s3 1 · · ·)

6.4 Techniq u es fo r Proving Prog ram Correctness 239

Note that in each predicate of this last conditional rule, any term except the
last can be omitted, so that a disjoint rule may be converted into any one of
many conditional rules.

In illustration of transformation to disjoint form, the conditional rule

(x > 0 - z := max(x, Y) I Y > 0 - z := min(x, y))

can be reexpressed as

(x > 0 - (x > y - Z := X I true - z := y) I y > 0 -

(x < y - z := X I true - z := y))

where none of the rules are disjoint rules. We convert them to disjoint rules
as

(x > 0 - (x > y - Z := X I x 5 y - z := y) I
x 5 0 1\ Y > 0 - (x < y - Z := X I x � y - Z := y))

which are equivalent to (by distributing the outer predicates into the inner
rules)

(x > 0 1\ X > Y - z := X I
x > 0 1\ X 5 Y - z := y I
x 5 0 1\ Y > 0 1\ X < Y - z := X I
x 5 0 1\ Y > 0 1\ X � Y - z := y)

Note the last predicate is false for any x, y, since it can be rewritten

and can be deleted from the disjoint rule. The remainder of the rule can be
diagrammed in the x, y plane as shown in Fig. 6. 1.

'/
I'

..=.;;;;=�==�---t--- X

Figure 6.1

240 The Cor rectness of Structu red Programs

The preceding transformations can allow the manipulation and
simplification of conditional rules. A disjoint rule has the property that ·
component rules can be permuted in any order without changing the effect
of the rule. This property, along with the conversions between conditional
and disjoint rules, provides a method for transforming conditional rules into
simpler, equivalent ones by a three-step process ; namely,

1. Given a conditional rule, convert it to an equivalent disjoint rule.
2. Transform the disjoint rule by permuting its component rules in any

convenient way.
3. Convert the transformed disjoint rule back to any simpler, equivalent

conditional rule.

In illustration, by reference to the diagram, the preceding three-part disjoint
rule can be transformed back to a two-part conditional rule different from
the original, specifically one with no min, max operations :

(y � x > 0 � Z := y I x > 0 v y > 0 � Z := x)

The verification process may require comparison of a disjoint con
ditional rule, say

(P1 � r1 I p2 � r2 1 p3 � r3)

with a function, say f, given by an unconditional rule. In this case, the
predicates of the disjoint rule can be used to partition the domain of f, to
prove, for sufficient correctness :

P1 (X) � r1 (X) = f(X)

P2(X) � r2(X) = f(X)

P3(X) � r3(X) = f(X)

To prove complete correctness, the domains of the two function rules must
be proved identical, as well.

Alternately, the verification process may require the comparison of two '
conditional rules, and, again, the disjoint form of these conditional rules
will be convenient. Suppose disjoint rules

(P1 � rd p2 � r2 I p3 � r3) and (q 1 � s 1 I q2 � S2)

are to be compared for complete correctness. Then it is necessary and suffi
cient that (1) the rules define identical domains, and (2) the rules agree on
every pairwise conjunction of the predicates of the rules. That is,

6.4 Techniques fo r Provi n g Prog ra m Correctness

and

(P3 /\ q2 -+ '3) = (P3 /\ q2 -+ S2)

In illustration, consider the conditional rules

(x � 0 /\ Y � 0 -+ X := X - Y I x � 0 /\ X + Y � 0 -+ X := X + y)

and

(x + y � 0 /\ Y � 0 -+ X := X + y I x + Y > 0 /\ X � 0 -+ X := X - y)

241

and the problem of comparing them. Step one is to convert these rules into
disjoint form. The second predicate of the first rule becomes

-- (x � O /\ y � O) /\ x � O /\ x + Y � 0
= (x < O v Y < O) /\ x � O /\ x + Y � 0
= y < O /\ x � O /\ x + y � O

while the second predicate of the second rule becomes

-- (x + y � O /\ y � O) /\ x + Y > O /\ x � 0
= (x + Y < 0 v y > 0) /\ X + Y > 0 /\ X � 0
= y > O /\ x + y > O /\ x � O

Therefore, the two rules above in disjoint form are

(x � 0 /\ Y � 0 -+ X := X - Y I y < 0 /\ X � 0 /\ X + Y � 0 -+ X := X + y)

and

(x + y � 0 /\ Y � 0 -+ X := X + y I y > 0 /\ X + Y > 0 /\ X � 0 -+ X := X - y)

The comparison of these rules leads to a domain equality check, then to rule
equality in four cases, which we number by the positions of their constitu
ents in the rules.

Domain equality :

Is (x � 0 /\ Y � 0) v (y < 0 /\ X � 0 /\ X + Y � 0)
= (x + y � 0 /\ Y � 0) v (y > 0 /\ X + Y > 0 /\ X � O)?

Case 1,1 (assignments shown in parentheses for clarity) :

x � O /\ y � O /\ x + y � O /\ y � O
Is (x := x - y) = (x := x + y)?

242 The Correctness of Structu red Prog rams

Case 1,2 :

Case 2, 1 :

Case 2,2 :

X � O A y � O A y > O A X + y > O A X � O
Is (x := x - y) = (x := x - y)? .

y < O A X � O A X + y � O A X + y � O A Y S O
Is (x := x + y) = (x := x + y)?

y < O A X � O A X + y � O A y > O A X + y > O A X � O
Is (x := x + y) = (x := x - y)?

The domain equality can be seen in the diagram in Fig. 6.2, where Ll
denotes the sector defined by the first major term of the left side, . . . , R2
sector defined by the second major term of the right side.

y

-----+����- x

Figure 6.2

In the rule equality checks, cases 1,2 and 2,1 are evidently satisfied,
because the assignments made are identical, so we investigate cases 1 ,1 and
2,2 in more detail. In case 1 , 1 the combined predicate reduces to

since y � 0 and y s O. In this case

(x := X - y) = (x := X + y)

since y = O. In case 2,2, the combined predicate reduces to
- I

(y < 0 A X � 0 A X + Y � 0 A Y > 0 A X· + Y > 0 A X � 0) = false

6.4 Tech niques fo r Provi ng Program Correctness 243

since y < 0 and y > 0, and this case holds vacuously. Therefore, since the
rules agree in all cases, we conclude that the rules define identical functions.
The three nonvacuous cases can be diagrammed in the X, Y plane (Fig.

6.3).

y

case 1 , 1
------T-�==="-- x

Figure 6.3

6.4.3 Case-Structu red Trace Ta bles

The trace tables introduced before dealt with rules of a single case each, but
it may be necessary to deal with sequences of conditional rules, as well. That
will be easily done with disjoint rules (to which conditional rules can be
readily converted). In illustration, consider a sequence of conditional rules of
the form

(x � 0 --+ x := X + y I true --+ y := y + x)
(y � 0 --+ y := X - Y I true --+ x := y - x)
(x � 0 --+ X := X - Y I true --+ y := y - x)

which we convert into a sequence of disjoint rules :
(x � 0 --+ X := X + y I x < 0 --+ y := y + x)
(y � 0 --+ y := X - Y I y < 0 --+ X := y - x)
(x � 0 --+ X := X - Y I x < 0 --+ y := y - x)

There will be eight cases, each involving a simple trace table, determined by
the component rule invoked in each of the three disjoint rules. We number
the cases by the component rules invoked in each respective part. The condi
tion associated with each case is given in a new column in the table, with
subscripts corresponding to the points of evaluation of each predicate that
makes up the total condition. Note that subscripts for conditions refer to the

244 The Correctness of Structu red Prog rams

values previous to the assignments made in the row. Intermediate SU[)SCI"lD1l
are then eliminated by substitution as was done before for the rule itself.

Case 1 , 1 , 1 :

part

x := x + Y
y := x - Y
X := x - Y

derivations :
condition :

condition

xo :2:: 0

Y I :2:: 0
X2 :2:: 0

x Y

X l = Xo + Yo YI = Yo
X2 = Xl Y2 = Xl - YI
X3 = X2 - Y2 Y3 = Y2

Xo :2:: O I\ YI :2:: O I\ X2 :2:: 0 = Xo :2:: O I\ Yo :2:: O I\ X I :2:: 0

assignments :

X3 = X2 - Y2
= Xl - (X l - yd
= YI
= Yo

Case 1 ,1 ,2 :

part

X := x + Y
y := x - Y
y := Y - X

derivations :
condition :

condition

xo :2:: 0

Y I :2:: 0
X2 < 0

= Xo :2:: 0 1\ Yo :2:: 0 1\ Xo + Yo :2:: 0

= Xo :2:: 0 1\ Yo :2:: 0

Y3 = Y2
= Xl - YI
= (xo + Yo) - Yo
= Xo

X Y

Xl = Xo + Yo YI = Yo
X2 = X l Y2 = X I - YI
X2 = X2 Y3 = Y2 - X2

xo :2:: O I\ YI :2:: O l\ X2 < 0 = Xo :2:: O I\ Yo :2:: O I\ X I < 0

= Xo :2:: 0 1\ Yo :2:: 0 1\ Xo + Yo < 0

= false

assignments : Unnecessary

Case 1 ,2, 1 :

part condition X Y

X := x + Y xo :2:: 0 X l = Xo + Yo YI = Yo
x := y - X YI < 0 X2 = YI - Xl Y2 = YI
X := x - Y X2 :2:: 0 X3 = X2 - Y2 Y3 = Y2

r
6.4 Techn iq ues fo r P roving Program Co rrectness

derivations :

condition :

Xo 2: 0 A YI < 0 A Xl 2: 0 = Xo � 0 A Yo < 0 A YI - Xl � 0

assignments :

X3 = Xl - Yl
= (YI - xd - YI
= - X l
= - Xo - Yo

Case 1 ,2,2 :

part

X := x + Y
x := Y - X
y := y - x

derivations :

condition :

condition

Xo � 0
YI < 0
Xl < 0

= Xo � 0 A Yo < 0 A Yo - (Xo + Yo) 2: 0
= Xo � 0 A Yo < 0 A Xo � 0
= Xo = O A Yo < 0

Y3 = Yl
= YI
= Yo

x

X I = Xo + Yo
Xl = YI - X l
X3 = Xl

Y

YI = Yo
Yl = YI
Y3 = Yl - Xl

Xo 2: O A YI < O A Xl < 0 = Xo � O A Yo < O A YI - Xl < 0

assignments :

X3 = Xl
= YI - Xl
= Yo - (xo + Yo)
= - Xo

Case 2, 1 , 1 :

part condition

y := Y + X Xo < 0
y := x - Y YI 2: 0
X := x - Y Xl 2: 0

= Xo � 0 A Yo < 0 A Yo - (xo + Yo) < 0
= Xo � 0 A Yo < 0 A Xo > 0
= Xo > O A Yo < 0

Y3 = Yl - Xl
= Y I - (y I - X I)
= X l
= Xo + Yo

X Y

X l = Xo YI = Yo + Xo
Xl = X l Yl = X I - YI
X3 = Xl - Yl Y3 = Yl

245

246 The Cor rectness of Structu red Programs

derivations :
condition :
Xo < O I\ YI Z O l\ X2 Z 0 = Xo < O I\ Yo + Xo Z O I\ XI Z 0

= Xo < 0 1\ Yo + Xo Z 0 1\ Xo Z 0
= false

assignments : Unnecessary

Case 2,1 ,2 :

part

y := Y + X
y := x - Y
y := Y - X

derivations :
condition :

condition

Xo < 0

YI Z 0
X2 < 0

x Y

Xl = Xo YI = Yo + Xo
X2 = Xl Y2 = X I - YI
X3 = X2 Y3 = Y2 - X2

Xo < O I\ YI Z O l\ X2 < 0 = Xo < O I\ Yo + Xo Z O I\ XI < 0

= Xo < 0 1\ Yo + Xo Z 0 1\ Xo < 0

= Xo < 0 1\ Yo + Xo Z 0

assignmen ts :

Case 2,2, 1 :

part

y := Y + X
x := Y - X
X := x - Y

derivations :
condition :

Y3 = Y2 - X2
= (X I - YI) - X I
= - YI
= - Yo - Xo

condition X

Xl = Xo
X2 = YI - Xl
X3 = X2 - Y2

Y

YI = Yo + Xo
Y2 = YI
Y3 = Y2

Xo < O I\ YI < O l\ X2 Z 0 = Xo < O I\ Yo + Xo < O I\ YI - Xl Z 0

= Xo < 0 1\ Yo + Xo < 0 1\ Yo + Xo - Xo Z
= Xo < 0 1\ Yo + Xo < 0 1\ Yo Z 0

6.4 Tech niq ues for Proving Prog ram Co rrectness

assignments :

X3 = X2 - Y2
= Y l - X l - Yl
= - X l
= - Xo

Case 2,2,2 :

part

y := Y + X
x := Y - X
y := Y - X

derivations :

condition :

condition

Xo < 0
Yl < 0
X2 < 0

Y3 = Y2
= Yl
= Yo + Xo

x

Xl = Xo
X2 = Yl - Xl
X2 = X2

Y

Yl = Yo + Xo
Y2 = Yl
Y3 = Y2 - X2

Xo < O I\ Yl < 0 l\ X2 < 0 = Xo < 0 1\ Yo + Xo < O I\ Yl - Xl < 0

247

= Xo < 0 1\ Yo + Xo < 0 1\ Yo + Xo - Xo < 0
= Xo < 0 1\ Yo + Xo < 0 1\ Yo < 0

assignments :

X3 = X2
= Yl - Xl
= Yo + Xo - Xo
= Yo

= Xo < 0 1\ Yo < 0

Y3 = Y2 - X2
= Y 1 - (y 1 - X.)
= X l
= Xo

Assembling all cases, we find a function defined by a disjoint rule with six
cases ; namely,

(X Z 0 1\ Y Z 0 -+ X, Y := y, X I
X = 0 1\ Y < 0 -+ X, Y := -X - y, Y I
X > 0 1\ Y < 0 -+ X, y := -X, X + Y I
X < 0 1\ X + Y z 0 -+ X, Y := X, -X - Y I
X < 0 1\ X + Y < 0 1\ Y Z 0 -+ X, y := - X, X + Y I
X < 0 1\ Y < 0 -+ X, Y := y, x)

which can be diagrammed in the x, Y plane as shown in Fig. 6.4.

248 The Cor rectness of Structu red Prog ra ms

y x,v : = x, -x - V I

x,v := -x,x + V

I
I
I
I
I " I "

---: : �=--�..L..x
-
--------.;.-..Jt-l �----.....1x,-v--:-�-�-x-,x-+ :

I I
I I
I I

Figure 6.4

x,v : = -x - v, v

With a little thought and study of the diagram, this disjoint rule can
converted into a conditional rule such as

(x :2: 0 /\ Y :2: 0 -+ x, Y := y, X I
x = 0 -+ x, y := -X - y, y I
x > 0 -+ x, y := - x, X + y I
y < 0 -+ x, y := y, X I
x + Y < 0 -+ x, y := -x, X + y I
true -+ x, y := x, - X - y)

Although this example has been treated as a sequence of three condi
tional assignments, it could be treated as a sequence of two parts, the first
part being a sequence of two parts itself. In this case, the program function of
the first two conditional assignments could be derived in four cases, then
combined with the thVd conditional assignment to get the same final result.

6 .4.4 Veri fy i n g Fordo P rograms

A fordo program, as described in Chapter 3, is simply an abbreviation for an '
extended sequence program, with an explicit data item (the index) under
control of the fordo. For example, the fordo program

Q = for
i :e 1 to 6 by 2

do
S := max(i, s + i)

od

6.4 Techniq ues fo r Proving Program Correctness

is an abbreviation for the extended sequence

R = S := max(1, S + 1)
s := max(3, S + 3)
S := max(5, S + 5)

249

In this case, the program function of Q or R can be readily determined by the
trace table

part

S := max(1 , S + 1)
s := max(3, S + 3)
S := max(5, S + 5)

with derivation

S
S I = max(1 , So + 1)
S2 = max(3, SI + 3)
S3 = max(5, S2 + 5)

S3 = max(5, S2 + 5)

and program function

= max(5, max(3, S I + 3) + 5)
= max(8, S I + 8)
= max(8, max(1, So + 1) + 8)
= max(9, So + 9)

S := max (9, s + 9)

However, given a more general fordo program, say with parameter n

Pn = for
i :E 1 to n by 2

do
s := max(i, s + i)

od

where n is large-say over 100-the enumeration of the sequence and its trace
table will be impractica� and we must hypothesize the program function (if
not given) and verify the hypothesis, either on the basis of a clear compelling
pattern or, if more rigor is needed, by mathematical induction.t Two
strategies are possible in using mathematical induction to determine a fordo
program function, based on the choice of the induction variable. One choice
is an integer variable in the fordo list description (for example, n in the
program above). The other choice is the size of the fordo list itself. In either
case, the procedure is to form an induction hypothesis (an intelligent guess)

t See exercise 4, Section 6.4, for an alternate fordo proof technique.

250 The Correctness of Structu red Prog rams

of the program function as it depends on the induction variable, say k, as the
hypothesis

H(k) = ([PkJ = h (k))

where h (k) is the hypothesized program function of the fordo program P".
Then, to carry out the induction, we need to show

1. H(I)
2. (k � 1 /\ H(k)) --+ H(k + 1)

from which we can deduce

3. k � 1 --+ H(k)
It may be necessary to invent the induction variable. For example, given .

the program

for
i :e 1 to 100 by 2

do
s := max(i, s + i)

od

one needs to recognize the opportunity for induction by (1) generalizing the
constant 100 to an induction variable with possible value 100, but other
possible values 1 , 2, . . . , 99, or (2) generalizing the size of the fordo list to an
induction variable with possible value 50, but other possible values 1, 2, . . . ,
49.

The choice of induction strategy depends on details of the problem. H
the dopart of program Pn happened to reference n (entirely possible and
legitimate), the induction should likely be on n, not on the size of the fordo
list ; otherwise the size of the fordo list is a natural induction variable be
cause it states the length of the trace table. Since the dopart is independent of
n in this example, we investigate the size of the fordo list as an induction
variable.

First, in terms of n the size of the fordo list

i : E 1 to n by 2 = (1 , 3, . . .)

say, size(n), is easily seen to be

size(n) = (n + odd(n))/2

where odd(n) = 1 for n odd, odd(n) = 0 for n even. In fact, this could be
proved by a separate induction on n, if necessary, but the following pattern

6.4 Tech niq ues for Provi ng Program Correctness

of values is quite compelling :

n 1 2 3 4 5 6
size(n) 1 1 2 2 3 3

and size(n) can be seen to satisfy the assertions above.

251

Next, we enumerate program functions for list sizes 1, 2, and 3 in fordo
program Pn , denoting size(n) by k. (Derivation of the function for a list of
size 3 was shown above) :

k program function

1 S := max(1 , S + 1)
2 s := max(4, s + 4)
3 s := max(9, s + 9)

We notice the progression of constants in the max operands to be squares,
and form the hypothesis

H(k) = ([Pn] = (s := max(k* *2, s + k**2))), k = size(n)

Let R be the two-assignment sequence program shown below, with the
firstpart an assignment to s that is equivalent to the first k iterations of the
fordo (the hypothesized program function); and secondpart an assignment
to s for the (k + 1) iteration. Note in the latter that the (k + 1) term is
2*(k + 1) - 1 = 2*k + 1 :

R = s := max(k**2, s + k**2) ;
s := max(2*k + 1, s + 2*k + 1)

Then

1. H(1) because k = 1 -. (s := max(1 **2, s + h*2))
2. (k � 1 /\ H(k)) -. H(k + 1)

I n this case we need to show that [R], just defined, has the value

[R] = s := max((k + 1)**2, s + (k + 1)**2)

The trace-table equations for R are

Sl = max(k**2, So + k**2)
S2 = max(2*k + 1, S l + 2*k + 1)

252 The Correctness of Structured Prog rams

and the derivation is

S2 = max(2*k + 1, k**2 + 2*k + 1, So + k**2 + 2*k + 1)
= max((k + 1)**2, So + (k + 1)**2)

Thus, the program function is

[R] = s := max((k + 1)**2, S + (k + 1)**2)

which is H(k + 1).

Therefore,

3. k :2: 1 -. H(k) = ([P] = (s := max(k**2, s + k**2)))
that is, the hypothesized program function is correct.

The reader is invited to carry out the induction directly on n in the fordo
in order to contrast the two treatments.

6 .4.5 Di rect Asserti ons a bout P rogram Functi ons

Direct assertions about program functions is a key technique in dealing with
large programs and finding the right balance in mathematical proof between
formal procedure and economy of effort. As discussed in Chapter 1, a math
ematical proof is a repeatable experiment between two persons, the success ·
of which depends on both using and keeping formality within allowable
bounds of human attention spans. A simple program part of a large program
may be better verified by a direct assertion that its program function satisfies
its specification rather than by a more detailed formal proof. Such an asser
tion is a claim that can be recorded, agreed to or not by another person, and
if need be, even verified separately on an exception basis. The level of forma
lity should depend not only on the program itself but also on the uses to
which it is put. If a life depends on its correct execution, it will be worth the
formality that will require much effort. With lower stakes, an incorrect proof
due to lower formality may be a reasonable calculated risk, compared to the
effort required otherwise. It is important to note that no level of effort
possible can guarantee the proof to be foolproof, but that even moderate
levels of effort can uncover criticisms that may correct or improve the design
in considerable ways.

In illustration, if a l00-line program combines 10 program parts into an
abstraction of 15 lines, each of the 10 program parts (under 10 lines each)
may be verified by direct assertion, leaving a IS-line program, rather than a
l00-line program to be verified more formally. It should be noted here that
the examples in a book such as this are usually chosen to be small, but hard

6.4 Tech niques for Proving Program Co rrectn ess 253

for their size. In actual programming, most small program parts are easy for
their size and should be treated accordingly.

For example, the procedure shown in Fig. 6.5 is intended to separate a
queue of integers into its odd and even members, then put its odd members

1 proc oddbeforeeven(Q) [Q := oddmembers(Q) II evenmembers(Q)]
2 queue Q, odd, even : in teger
3 scalar x : integer
4 do [Q, odd, even : = �, oddmembers(Q), evenmembers(Q)]
5 initial odd, even := empty, empty
6 while
7 Q =1= empty
8 do
9 initial x := end(Q)

10 if
1 1
12
13
14
15
16
17
18
19

20
2 1
22
23
24
25
26

27
28
29
30
3 1
32
33
34

x odd
then

eod(odd) := x
eke

end(even) := x
fi
free x

od
od
[Q, odd := Q II odd, 0]
while

do

od

odd =1= empty

initial x := eod(odd)
end(Q) := x
free x

[Q, even := Q II even, �]
while

even =1= empty
do

od

initial x : = end(even)
eod(Q) := x
free x

free odd, even
35 corp

Figure 6.5

254 The Correctness of Structured Programs

before its even members, but preserve relative order within the odd members
and within the even members.

In the logical commentary, oddmembers(Q) means the list of all odd
members of Q in their relative order in Q, and similarly for evenmembers(Q).
We now illustrate the use of direct assertions in proving that the procedure
comment provides the correct program function of the procedure. The direct
assertions corresponding to the three whiledo program parts are that their
logical commentary is correct (of course these program parts require study
to agree or disagree with the assertions). Square brackets enclosing begin
ning and ending line numbers denote program functions :

[5- 18] = (Q,odd,even := �,oddmembers(Q),evenmembers(Q))

[20-26] = (Q,odd := Q II odd,�)

[27-33] = (Q,even := Q II even,�)

Note the role of initial, free of item x in limiting the scope of these program
functions to Q, odd, and even. Using the program functions asserted for these
program parts, the procedure oddbeforeeven is now equivalent to

1 proc oddbeforeeven(Q) [Q := oddmembers(Q) II

2
3

5-18
20-26
27-33

34
35

evenmembers(Q)]
queue Q,odd,even : integer
scalar x : integer
Q,odd,even := �,oddmembers(Q),evenmembers(Q)
Q,odd := Q l lodd,�
Q,even := Q ll even,�
free odd,even

corp

Next, a direct assertion about the program function of sequence (5 -18),
(20-26), (27-33) takes the form

[5-33] = (Q,odd,even := oddmembers(Q) l l evenmembers(Q),�,�)

For an informal proof of this assertion, one can substitute backward in the
sequence, beginning with

[27-33] = (Q,odd,even := Q l leven,odd,�)

then replacing Q, odd by their assignments in [20-26] to get

[20-33] = (Q,odd,even := (Q l lodd) l l even,�,�)

and

whic

odd1

Thi�
proJ
of a
late:

EXI

(All
1.

2.

Exerci ses 255

and finally replacing Q, odd, even by their assignments in [5-18] to get

[5-33] = (Q,odd,even := � ll oddmembers(Q) l l evenmembers(Q),�,�)

which simplifies to the program function above.
As a result of this last assertion, the program function of the procedure

oddbeforeeven can be directly verified as

[oddbeforeeven(Q)] = (Q := oddmembers(Q) l l evenmembers(Q))

This trail of explicit direct assertions about program functions of specific
program parts can be recorded and scrutinized at later times, as the product
of an informal proof, and as the skeleton of a more formal proof if called for
later.

EX E R CI S ES

(All data objects are scalar integers.)
1. Determine program functions for the following sequences by means of trace

tables :

a) y := a
y := x*y + b
y := x*y + c
y := x*y + d

b) x, y := X - y, x + y
x, y := y, X
x, y := X - y, x + y

c) x, y, Z := Z, x, y
x, y, Z := y, Z, X
x, y, Z := Z, y, X
x, y, Z := y, x, z
x, y, Z := x, Z, y

2. Determine program functions for the following sequences by means of case
structured trace tables :

a) if x > 0 then x := X - Y eke y := X + y fi
if y > 0 then y := y - x eke x := y + x fi
if x + y > 0 then x, y := X - y, y - x fi

b) x, y := max(x, y), min(x, y)
x, y := max(x - y, X + y), min(x - y, x + y)
x, y := max(x, y), min(x, y)

256 The Correct ness of St ructu red Prog rams

3. Determine if the fordo program

s := 0
for

i :e 0 to n by 3
do

s := max(i, s)
00

has program function
s := 3.int(n/3)

by means of an inductive proof.

4. Verify the fordo program function

[for i :e 1 to y do x := x + 2.i 00] = (x := x + y.(y + 1))

a) by induction on i, and

b) by rewriting and verifying the fordo as a sequence with whiledo second part:

i := 1
while

do
i � y

X := x + 2.i
i := i + 1

00
free i

5. Restudy the Singsort program (Fig. 5.20) and identify the extent to which
direct assertions can be used to prove it correct, what additional logical com
mentary is required, and what program parts should be subject to formal proof.

6 .5 EXA M P LES OF P R OG RAM V E R I F I CATI O N

6 .5 . 1 Proofs of P D L Pri mes With Sca l a r Data

We illustrate next proofs of correctness for POL prime programs with ·
examples that operate on scalar data objects. (Fordo and case structures are .
not included ; fordo proofs were discussed above, and case proofs are a .
simple generalization of ifthenelse proofs. Correctness proofs with array
data and anonymous data are described in subsequent sections.) The proofs

.

satisfy the verification requirements defined by the Correctness Theorem
and are recorded in the proof syntax given in section 6.3. They are written
out in complete syntactic and logical detail, to fully illustrate both the
systematic process of recording data operations in trace tables and the appli
cation of logical rules of reasoning. Complete correctness is proven for each
of the programs, with the exception of the dowhiledo, whose proof reveals an
error.

6

1

1
t

t
c
v

6.5 Exa mpl es of Progra m Veri fication

1 . Sequence proof

function (x, y, and Z logical scalars)
x, y, Z := y, Z, X

program (v indicates the exclusive or operation)
1 x := x V Z
2 Z := x V Z
3 x := x v Z
4 y := x v y
5 x := x v Y
6 y := x v y

proof (prove f = h o g, or in this case, that f is equivalent to the
composition of six functions)t

part

1 x := x v Z
2 Z := x v Z
3 x := x v Z
4 y := x v y
5 x := x v Y
6 y :=x v y

derivations :

X6 = X s

condition

= X4 V Y4
= X3 V (X3 v Y3)
= Y3
= Y2
= Y I
= Yo

program function :
x, y, Z := y, Z, X

result
pass comp

x Y Z

X l = Xo V Zo YI = Yo Z l = Zo
X2 = X l Yz = YI Zz = Xl V ZI
X3 = X2 V Z2 Y3 = Yz Z3 = Zz
X4 = X3 Y4 = X3 V Y3 Z4 = Z3
Xs = X4 V Y4 Ys = Y4 Zs = Z4
X6 = Xs Y6 = Xs v .Ys Z6 = Zs

Y6 = Xs V Ys
= (X4 v Y4) V Y4

Z6 = Zs
= Z4
= Z3
= Zz

= X4
= X3
= X2 V Z2
= X l V (Xl v zd
= Z l
= Zo

= X l V Z l
= (xo V zo) V Zo
= Xo

257

Note that the condition column in the trace table is empty in the example,
but that predicates from conditional assignments, if any, in a sequence

t The parenthetical relations defining what is to be proved for each prime are an
optional part of the proof syntax, a useful reminder for the reader as well as the
writer.

258 The Correctness of Structu red Programs

would be recorded there. The reduction of, say, X3 V (X3 v Y3) to Y3 can be
seen in the following table :

x Y x V Y x v (x v Y)

T T F T
T F T F

F T T T
F F F F

2. If then proof

function (x an integer, abs absolute value)

x := - abs(x)

program (where "negate" operation not available)

1 if
2 x > O
3 then
4 x := x - 2*x
5 fi

proof

if test true (prove (p � f) = (p � g))

program function :

(x > 0 � X := X - 2*x) = (x > 0 � X := - x)
= (x > 0 � x := - abs(x))

pass

if test false (prove ('" p � f) = ('" p � 1))
program function :

result

(x � O � X := x) = (x � O � x := - abs(x))

pass

pass comp

3. Ifthenelse proof

function (x an integer)
x := -x

6.5 Exampl es of Prog ram Verificatio n

program (where "negate" operation not available)
1 if
2 x > O
3 then
4 x := x - 2*x
5 else
6 x := x + 2*abs(x)
7 fi

proof
if test true (prove (p -. f) = (p -. g))

program function :
(x > 0 -. X := x - 2*x) = (x > 0 -. x := - x)

pass
if test false (prove ('" p -. f) = ('" p -. h))

program function :
(x � 0 -. X := x + 2*abs(x)) = (x � 0 -. x := - x)

pass
result

p2SS comp

4. Whiledo proof

function (x, y, and a integers)
f= (x ;;::: 0 -. x, y, a := 0, a*x + y, a)

program
1 while
2 x =/= 0
3 do
4 x, y := x - 1, y + a
5 od

proof

259

term
Initial x ;;::: 0 is reduced by 1 each iteration, so eventually
whiletest x i= 0 fails.
pass

260

2
4
f

The Correctness of St ructu red P rograms

whiletest true (prove (p -+ f) = (p -+ f o g))
part

Xo =1= 0
x, Y := x - 1, Y + a
x, y, a := O, a*x + y, a

derivations :
condi tions :

condition x

Xo =1= 0 X l = Xo
Xl = Xl - 1

Xl � 0 X3 = 0

Xo =1= 0 J\ Xl � 0 = Xo =1= 0 J\ Xl - 1 � 0
= Xo =1= 0 J\ Xo - 1 � 0
= Xo =1= 0 J\ Xo � 1
= Xo > 0

assignments :
X3 = 0 Y3 = aO*x2 + Y2

program function :

= ao* (xi - 1) + YI + ao
= ao* (xo - 1) + Yo + ao
= ao*xo + Yo

(x > 0 -+ X, y, a := 0, a*x + y, a)

Y

YI = Yo
Yl = YI + ao
Y3 = aO*x2 + Y2

which agrees with the intended function when whiletest true.
pass

whiletest false (prove ('" p -+ f) = ('" p -+ 1))
(x = 0 -+ (x � 0 -+ X, y, a := X, a*x + y, a))

= (x = 0 -+ X, y, a := 0, a*O + y, a)

result

= (x = 0 -+ X, y, a := X, y, a)
that is, the identity function, as required.

pass

pass comp

Note in the trace table for whiletest true, that the whiletest and the condi
tional predicate of the intended function both appear in the condition
column to be used in deriving a conditional predicate for the program
function. The first two lines in the trace table could be combined in the
case of the whiledo, but they need to be treated separately in both the
dountil and the dowhiledo, as shown below. Also, scalar a is not changed
in the program, and need not appear in the trace table.

6.

5.

�
I
I

Examples of Program Veri fi cat ion 261

Dountil proof

function (x, y, and a integers)
f= (x > O � X, y, a := O, a*x + y, a)

program

1 do
2 x, y := x - 1, y + a

until 3
4
5 od

proof

term

x = O

Initial x > 0 is reduced by 1 each iterat ion, so eventually
untiltest x = 0 becomes true.

2
4

pass

untiltest true (prove (p 0 g � f) = (p 0 g � g))

part

x, y := X - 1, y + a
x = O

derivations :

condition :

condition

Xl = 0

X l = 0 = (xo - 1 = 0)
= (xo = 1)

assignments :

x2 = Xl Y2 = YI

x

xl = xo - l
x2 = X l

= Xo - 1 = Yo + ao

program function :

(X = 1 � x, y, a :=x - 1 , Y + a, a)

y

YI = Yo + ao
Y2 = YI

= (x = 1 � x, y, a :=0, a*x + y, a)

which agrees with the intended function for initial X = 1.

pass

Note that a trace table is used to derive the conditional predicate of the
program function, even though only one assignment is made in the program
part analyzed.

262 The Cor rectness of Structured Prog ra ms

amtiltest false (prove ('" p 0 g -+ f) = ('" p 0 g -+ f o g))
part

2 x, Y : = x - I , Y + a
4 x = o
f x, y, a := 0, a*x + y, a

derivations :
condition :

condition x

x I ::/= 0 1\ X2 > 0 = Xo - 1 ::/= 0 1\ Xl > 0

Y

YI = Yo + ao
Y2 = YI
Y3 = aO*xl + Yl

= Xo - 1 ::/= 0 1\ Xo - 1 > 0
= Xo ::/= 1 1\ Xo > 1
= Xo > 1

assignmen ts :
X3 = 0 Y3 = aO*xl + Y2

program function :

= aO*xI + YI
= ao*(xo - 1) + Yo + ao
= ao*xo + Yo

(x > 1 -+ x, y, a := 0, a*x + y, a)
which agrees with the intended function for initial x > 1 .

pass
result

pass comp

6. Dowhiledo proof

function (x, y, and a integers)
f = (x > 0 -+ x, y, a := 0, a*x + y, a)

program
1 dol
2 y := Y + a

while 3
4
5
6

do2

7 od

x ::/= 1

X := x - 1

6. 5 Examples of P rog ra m Ve rification 263

proof
term

Initial x > 0 is reduced by 1 each iterat ion, so eventually
whiletest x #= 1 fails .
pass

whiletest true (prove (p 0 g � f) = (p '.' g � f 0 h o g))

2
4
6
f

part

y := y + a
x + l
x := x - 1
x, y, a := 0, a*x + Y, a

derivations :
condition :

condition x

X l = Xo
X l + 1 X2 = X l

x3 = x2 - 1
X3 > 0 X4 = 0

X l + 1 /\ X3 > 0 = Xo + 1 /\ X2 - 1 > 0
= xo + l /\ x l - l > O
= Xo + 1 /\ Xo - 1 > 0
= Xo + 1 /\ Xo > 1
= Xo > 1

assignments :

X4 = 0 Y4 = aO*x3 + Y3

program function :

= aO*(x2 - 1) + Y2
= aO* (xl - 1) + Yl
= ao* (xo - 1) + Yo + ao
= ao*xo + Yo

(x > 1 � X, y, a : = 0, a*x + Y, a)

Y

Yl = Yo + ao
Y2 = Yl
Y3 = Y2
Y4 = aO*x3 + Y3

which agrees with the intended function for initial x > 1.
pass

whiletest false (prove ('" p 0 g � f) = ('" p 0 g � g))
part condi tion

2 y := Y + a
4 x = 1 Xl = 1

derivations :
condition :

X l = 1 = (xo = 1)

x Y

Yl = Yo + ao
Y2 = Yl

264 The Correctness of Structu red Programs

assignments :

X2 = Xl Y2 = YI
= Xo = Yo + ao

program function :

(x = 1 -. x, y, a := X, Y + a, a)
= (x = 1 -. x, y, a := 1, a* 1 + y, a)

which is not equivalent to the intended function for

fail

result

fail

initial X = 1 .

We leave correction of this program (or its intended function) as an exercise .
for the reader.

6.5.2 Proofs With Array Data

Correctness proofs of programs that alter both arrays and array indices
proceed exactly as above, by developing proof steps in terms of function
concepts, rather than program variable concepts. However, care must be
taken with index variables for elements within the array. For a fixed array
named a, with index variable named k, the name a(k) may or may not refer
to the same array element throughout program execution, since k may be
assigned new values. But the name a(ko) will refer to the same element
throughout execution, since ko is not assigned new values.

As a first illustration, consider the sequence program for integer k and
n-element array a,

1 a(k), k := a(k) + k, k + 1
2 a(k), k := a(k) - k, k - 1

with hypothesized function

(1 :::;; k < n -. k, a(k), a(k + 1) := k, a(k) + k, a(k + 1) - k - 1)

The trace table can be written as follows :

part condition a k

1 1 :::;; ko :::;; no (1 . 1) a I (1 : ko - 1) = ao (1 : ko - 1) kl = ko + 1
(1 .2) al (ko) = ao(ko) + ko
(1 .3) al (ko + 1 : no) = ao (ko + 1 : no)

2 1 :::;; k l :::;; no (2. 1) a 2 (1 : k I - 1) = a I (1 : k I - 1) k2 = kl - 1
(2.2) a2(kl) = al (kl) - kl
(2.3) a2(kl + 1 : no) = al (kl + 1 : no)

6. 5 Exa mples of Program Veri fication 265

An array assignment carries an implicit condition on the domain of the
index value, made explicit in the condition column of the table. The notation
a(r : s) denotes the array part a(r), . . . , a(s) when r s s. For convenience in
the derivations, every array element is accounted for at each assignment in
th� table, not simply the element assigned. For example, lines (1 . 1), (1 .2),
(1 .3) specify assignments to array elements with index values (1 : ko - 1),
(ko1 (ko + 1 : no), respectively, even though only al (ko) is assigned a new
value. .

The condition derivation is

(ko Z 1) /\ (ko s no) /\ (k l Z 1) /\ (kl s no)
= (ko Z 1) /\ (ko s no) /\ (ko + 1 Z 1) /\ (ko + 1 s no)
= (ko Z 1) /\ (ko s no - 1)
= 1 s ko < no

and the assignment derivation for index k is

k2 = kl - 1
= ko + 1 - 1
= ko

The assignment derivations for array a must express final values of array
elements in terms of initial values, that is, values of a2 in terms of ao . Thus,
subscripts for elements of both a2 and ao must be expressed in terms of ko .
This requires deriving new values for both sides of the assignment equations,
as follows :

(2. 1) a2(1 : k l - 1) = al (1 : kl - 1)
a2(1 : ko) = al(1 : ko) (because kl = ko + 1)

= al (1 : ko - 1), a l (ko)
= ao(1 : ko - 1), ao(ko) + ko (by (1 . 1), (1 .2))

Note that the forms chosen from line to line in the derivation of the
assignment require some insightful look-ahead in expanding and con
tracting array parts, in order to accommodate the proof steps required.
For example, the second line just above expands into two parts that
correspond to left side of equations (1 . 1) and (1 .2), thereby permitting
the derivation to proceed.

(2.2) a2(k l) = al (kl) - kl
a2(ko + 1) = al (ko + 1) - ko - 1

= ao(ko + 1) - ko - 1

(2.3) a2(kl + 1 : no) = al (kl + 1 : no)
a2(ko + 2 : no) = al (ko + 2 : no)

= ao(ko + 2 : no)

(because kl = ko + 1)
(by (1 .3))

(by (1 .3))

266 The Co rrectness of Structu red Programs

The only array elements assigned new values are a2(ko) (from deri
(2. 1)), and a2(ko + 1) (from derivation (2.2)), and the program function
thus

(1 s k < n ---+ k, a(k), a(k + l) := k, a(k) + k, a(k + 1) - k - 1)

which agrees with the hypothesized function given above.
As a second illustration, consider a proof for the whiledo program

1 while
2 i < j
3 do
4 a(i + 1), i := "La(i : i + 1), i + 1
5 od

that accumulates sums forward in an n-element array named a from
specific element up to another specific element in the array, and
"La(i : i + 1) = a(i) + a(i + 1). For example, for n = 6, i = 2, j = 5, the
gram produces the following mapping between arguments and values :

Name j a(l) a(2) a(3)

Argument 2 5 a(l) a(2) a(3)
Value 5 5 a(l) a(2) a(2) + a(3)

a(4)

a(4)
a(2) + a(3)

+ a(4)

a(5)

a(5)
a(2) + a(3)

+ a(4)
+ a(5)

The proof is shown below. Because the hypothesized function fturns out to·
be a two-part conditional rule (f 1 1 f2), case-structured trace tables are
convenient in the whiletest true part of the proof, taking first fl o g, then
f2 0 g.

function

f= (1 s i < j s n ---+ i, a(l : n) :=j, (a(l : i), "La(i : i + 1), "La(i : i + 2),
"La(i : i + 3), . . . , "La(i :j), a(j + l : n)) 1
i "? j ---+ I)

Note that all elements of array a are accounted for on both the left and right
sides of the multiple assignment.

program

whiledo, lines 1-5 above.

proof

term

Index i is incremented every iteration so whiletest i < j will
eventually fail.

6.5

ease l

par

2
4

f l

del

6.5

pass

Exam ples of Prog ram Veri fication 267

whiletest true (prove (p � f) = (p �f c g))

Case 1 (f l :; g) :
part condition a

2
4

f 1

io < jo
1 S il < no (4. 1)

(4.2)
(4.3)

(f 1 . 1)
(f 1 .2)
(f 1 .3)

a l (1 : no) = ao (l : 11o)
a2 (1 : id = a l (1 : id
a 2 (i I + 1) = �a I (i I : i I + 1)
a2(i l + 2 : no) = a l (i l + 2 : 110)

a3 (1 : i2) = a2 (1 : i2)
a3 (i2 + 1) = �a2(i2 : i 2 + 1)
a3 (i2 + 2) = �a2(i2 : i 2 + 2)

(f 1 .4) a3 (jO) = �a2 (i2 : jo)
(f 1 .5) a3 (jO + l : no) = a2(jO + 1 : 110)

i l = io
i2 = i l + 1

derivations :

condition :

(io < j 0) A (i 1 � 1) A (; 1 < no) A (i 2 � 1)
A (i2 < jo) A (jo :::;:; no)

= (io < jo) A (io � I) A (io < 110) A (io � 0)
A (io < jo - I) A (jo :::;:; 110)

= (;0 � I) A (;0 < jo - I) A (;0 < no) A (jo :::;:; 110)
= (io � I) A (;0 < jo - I) A (jo :::;:; 110)

assign men ts :

i3 = jo

(f 1 . 1) a 3 (1 : i 2) = a 2 (1 : i 2)
a3 (I : i 1 + 1) = a2 (1 : ; 1 + 1)
a3(I : io + 1) = a2(I : i d, a2 (i l + 1)

= a 1 (1 : ; 1), La 1 (i 1 : ; 1 + 1)
= ao(l : ;0), Lao(io : ;o + 1)

(f 1 .2) a3 (i2 + 1) = La2(i2 : ; 2 + 1)
a3 (i l + 2) = La2 (i 1 + 1 : ; 1 + 2)
a3 (io + 2) = L(a2 (i 1 + 1), a2 (i 1 + 2))

= L(La 1 (i l : il + 1),
a1 (il + 2))

= Lao(io : io + 2)

(f 1 .3) a3 (i2 + 2) = La2 (i2 : i 2 + 2)
a 3 (i 1 + 3) = La 2 (i 1 + 1 : ; 1 + 3)

(by (4. 1), (4.2))

(by (4.2), (4.3))

268 The Correctness of St ructu red Prog rams

a3 (io + 3) = �(a2 (i l + 1), a2(i1 + 2 : i l + 3))
= � (�a 1 (i 1 : i 1 + 1),

a l (i 1 + 2 : i l + 3)) (by (4.2), (4.3))
= �ao (io : io + 3)

(f 1 .4) a3 UO) = �a2 (i2 :jo)
= �a2 (i l + 1 :jo)
= �(a2(i l + 1), a2(il + 2 :jo))
= �(�a l (i l : il + 1), (by (4.2), (4.3))

a l (i l + 2 :jo))
= �ao (io :jo)

(f 1 .5) a3 UO + 1 : no) = a2UO + 1 : no)
= aoUo + 1 : no) (by (4.3) and io < jo)

Thus, the conditional rule for case 1 is

((i 2 1) /\ (i < j - 1) /\ U � n) � i, a(1 : n) :=j, (a(1 : i), �a(i : i + 1),

Case 2 (f2 0 g):

part condition

2
4

io < jo
1 � i l < no

f2

derivations :

condition :

(4. 1)
(4.2)
(4.3)

(f2. 1)
(f2.2)
(f2.3)

�a(i : i + 2), �a(i : i + 3), . . . ,
�a(i :j), aU + 1 : n)))

a

a l (1 : no) = ao (1 : no)
a2(1 : id = a l (1 : id
a2(i1 + 1) = �al (i l : i l + 1)
a2 (i 1 + 2 : no) = a 1 (i 1 + 2 : no)

a3 (1 : i2) = a2 (1 : i2)
a3 (i2 + 1) = a2(i2 + 1)
a3 (i2 + 2 : no) = a2(i2 + 2 : no)

i l = io
i2 = il + 1

(io < jo) /\ (il 2 1) /\ (il < no) /\ (i2 2 jo)

assignments :

i3 = i2
= il + 1
= io + 1
= jo - 1 + 1
= jo

� (io < jo) /\ (io 2 1) /\ (io < no) /\ (io 2 jo - 1)
= (io 2 1) /\ (io = jo - 1) /\ (io < no)
= (io 2 1) /\ (io = jo - 1 < no)
= (io 2 1) /\ (io = jo - 1) /\ Uo � no)

(by condition derivation, above)

6

Examples of Program Verifi cation 269

(f2. 1) a3(1 : i2) = a2 (1 : i2)
a3 (1 : i 1 + 1) = a2 (1 : i 1 + 1)
a3 (I : io + 1) = a2 (I : id, a2(i 1 + 1)

= a1 (1 : i d, r.adi 1 : i 1 + 1) (by (4. 1), (4.2))
= ao (l : io), r.ao (io : io + 1)

(f2.2) a3 (i2 + 1) = a2 (i2 + 1)
a3(i1 + 2) = a2 (i 1 + 2)
a3 (io + 2) = a l (i l + 2) (by (4.3))

= ao (io + 2)

(f2.3) a3 (i2 + 2 : no) = a2 (i2 + 2 : no)
a3 (i 1 + 3 : no) = a2 (i 1 + 3 : no)
a3 (io + 3 : no) = a l (i l + 3 : no) (by (4.3))

= ao (io + 3 : no)

Thus, the conditional rule for case 2 is

((i � 1) /\ (i = j - 1) /\ U S n) --+ i, a(l : n) :=j, (a(l : i),
r.a(i : i + 1), a(i + 2 : n)))

Inspection reveals that the data assignments for cases 1 and 2 are identical ;
therefore, the conditional rules can be combined. The conditions differ only
in the terms

i < j - 1
i = j - 1

(condition 1)
(condition 2)

which can be combined as

i s j - l = i < j

to yield

(i � 1) /\ (i < j) /\ U s n) = 1 S i < j S n

The combined conditional rule is as follows :

(1 s i < j S n --+ i, a(l : n) :=j, (a(l : i), r.a(i : i + 1), r.a(i : i + 2),
r.a(i : i + 3), . . . , r.a(i :j), aU + l : n)))

pass
whiletest false (prove ('" p --+ f) = ('" p --+ 1))

result

The program function is the required identity.

pass

pass comp

270 The Correctn ess of Structured Pro g ra m s

In summary, we have recorded systematic proofs for sequence
whiledo programs that alter arrays. These proofs proceed along the
lines as proofs for programs that alter scalar data, but require more in
in the derivation of program functions.

6.5 .3 Proofs wi th Anonymous Data

Correctness proofs of programs that operate on anonymous data nrr'I"A"'woII
exactly as the proofs given above, except that list definitions replace th
anonymous data operations. For example, the trace table of the sequence
operations

stack s
top(s) := a
b := top(s)

becomes (using the list operations H, T, and so on, defined in Chapter 3) ,

part condition b s

top(s) := a bi = bo s 1 = ao + So
b := top(s) S i :# � b2 = H(sd S2 = T(sd

derivations :

S i :# � b2 = H(sd S2 = T(sd
= (ao + So :# �) = H(ao + So) = T(ao + So)

= ao = So

which defines the program function

(a + s :# � � b := a)

or simply
b := a

since (a + s :# �) is always true.
In the case of a sequence data structure it is convenient to break the data

column into two columns, one for each list of the sequence, as in

sequence s
next(s) := a
b := current(s)

which leads to the following trace table :

part condition b

next(s) := a b i = bo
b := current(s) sl :# � b2 = H - (sl)

S

sl = So EB ao
S2 = sl

6.S

wI

or

si:

"fI
s

6.5 Examples · of Program Verification

derivations :

sl ;f �
= (so EB Qo ;f �)

b1 = H- (sl)
= H - (so EB Qo)
= Qo

which defines the program function

or simply

b, s := Q, S - EB Q.�

since (s - EB Q ;f �) is always true.

si = sl
= So EB Qo

271

In illustration of a simple looping program with anonymous data, con
sider the procedure copysequence, intended to copy one sequence into the
end of another

1 proc copysequence(alt in, out)
2
3
4
5
6
7
8

sequence in,out
while

in =1= empty
do

next(out) := next(in)
od

corp

with intended function

Note that the initial list out + will be destroyed by the first write to the
sequence out. We now want to verify this program.

First, we observe that the dopart of the whiledo program, the single line
6, can be written as a program function in list notation, as

(in + ;f � -+ in, out := in- EB H(in+).T(in +), oue EB H(in +).0)

Then, the program can be verified in the following proof:

function

272 The Cor rectn ess of Structu red Prog rams

program

3 while
4 in :F empty (that is, in+ :F �)
5 do [(in+ :F � --+ in, out := in- EB H(in+).T(in+), out- EB H(in+
6 next(out) : = next(in)
7 od

proof

term

One member is removed from in + each iteration, so that event
in+ = �.

pass

whiletest true

part condition in

4 in; # �
6 ini # �

f

in! = ina
ini = in! EEl

H(in i)
in3 = ini ll

in!

. + . + in ! = ino
in! = T(in i)

inj = �

derivations :

condition :

inti :F � /\ int :F �
inti :F � /\ inti :F �
= inti :F �

assignmen ts :

in; = inl l l ini
= in! EB H(int) I IT(ini)
= inC; EB H(int) I IT(int)
= inC; II H(int) + T(int)
= inC; I l int

in; = �

program function :

out

out! = outo
outi = out! EEl

H(ini)
oUt3 = outi l l

in!

out; = outl l l ini

outj = �

= out! EB H(ini) I IT(int
= outC; EB H(int) I IT(inti
= outC; I I H(int) + T(in.j
= outC; I I int

out; = �

(in+ :F � --+ in, out := in- I l in+ .�, out- I l in+ .�)

which agrees with the intended function for whiletest true.

pass

whiletest fake (in + = �)

6.5

intel

On
fun(
befe

6.5

The
be (
catt
sho
mi�
is tl
on
in (
be)

wis

Exam ples of Program Verificat ion 273

program function :

in, out := in- " in + .�, out - " in+ .�
= in- II �.�, out - I I �·�
= in- .�, out - .�
= in- .in + , ouC .�
¥= in, out (out ¥= out - .�)

fail

result

fail

As a result of the proof failure, it is easy to see how to correct the
intended function; namely,

(in ¥= � � in, out := in- I l in + .�, out- I l in+ .� I true � in, out := in, out)

On the other hand, a compound program to satisfy the original intended
function can be obtained by adding the assignment out := empty either
before or after the whiledo.

6 .5 .4 Proofs of la rger loo p - F ree Pri mes

The program function of any loop-free program, whether prime or not, can
be determined by using case-structured trace tables, incorporating the predi
cates of the program into the tables. In illustration, consider Fig. 6.6 that
shows a three-predicate loop-free prime, say P, and what its program function
might be. Our objective in dealing with a large loop-free prime such as this
is to illustrate that deliberate, recordable methods of reasoning can be used
on loop-free primes of large and complex structure if the need arises, either
in dealing with a special programming problem or for expanding proof rules
beyond the one-predicate primes.

Given a function I that program P purports to implement, we might
wish to show for sufficient correctness that

I e [P]

Figure 6.6

274 The Correctness of Structu red Prog ra m s

Figure 6.7

For now, we will simply derive the program function [P] and note that P
satisfies sufficient correctness of any subset of [P]' Program P has E-chart as
shown in Fig. 6.7, so that the program function for P can be described by a
conditional rule of five parts, one for each endpoint of the E-chart. In this
case however, we note some simplification is possible since the subflowchart

named, say S, appears in two places. We can substitute the conditional rule
for the program function of S in the original E-chart, thereby reducing the
paths to consider from five to three. To develop the program function for S,
we create a trace table for each path of the E-chart of S. The paths can be
labeled S1 and SO in accordance with their successive predicate outcomes, 1
indicating the true branch and 0, thefalse branch. The first trace table for S is
as follows. Where it can be done reliably, substitution of terms in the condi
tion and assignment derivations is carried out mentally, and only the final
results are shown ; otherwise, full derivations are given.

6.5

The

.)
.)

Con

E-cl

6. 5 Examples of Pro gram Veri fication

path SI

part condition x

y := x - Y X l = Xo
x > y x 1 > Yl X2 = X 1
X := x - Y X3 = X2 - Y2

derivations :

X 1 > Yl = YO > 0 X3 = YO
path function :

(y > 0 � x, Y := y, X - y)

Y

Y 1 = Xo - Yo
Y2 = Y 1
Y3 = Y2

Y3 = Xo - Yo

The second trace table for S is

path SO

part condition x Y

y := x - Y X 1 = Xo Yl = Xo - Yo
x � y X 1 � Y 1 X2 = X 1 Y2 = Y 1
y := Y - X X3 = X2 Y3 = Y2 - X2

derivations :

Xl � Y1 = YO � 0 X3 = XO Y3 = - Yo
path function :

(y � 0 � x, Y := x, - y)

Combining S I and SO, we get [S], where

[S] = (y > 0 � x, Y := y, X - Y I Y � 0 � X, Y : = X, - y)

275

Next, we replace S by [S] in the original E-chart for P to get a reduced
E-chart as shown in Fig. 6.8. The reduced E-chart has three paths, Pl l , P I0,

Figure 6.8

276 The Correctness of Structu red Programs

PO. PH has no conditional rules, so a simple trace table can be used. P
and PO each contain [S], given by a conditional rule, so each can be
mined by case-structured trace tables. However, we illustrate a more
mal treatment of cases in a conditional rule within a single trace table. If
doubt, a full treatment with case-structured trace tables can be used.
first of the three trace tables for P is

path PH

part condition x

x =/= y Xo =/= Yo X l = Xo
x := x + Y X2 = X l + YI
x < Y X2 < Y2 X3 = X2
X := x - Y X4 = X3 - Y3

derivations :

(xo =/= Yo) 1\ (X2 < Y2)
= (xo =/= Yo) 1\ ((xo + Yo) < Yo)
= (xo =/= Yo) 1\ (xo < 0)

path function :

(x =/= Y 1\ X < 0 � x, y, := x, y)

Y

YI = Yo
Y2 = YI
Y3 = Y2
Y4 = Y3

Y4 = Yo

The second trace table for P is

path PlO

part condition X Y

x =/= y Xo =/= Yo X l = Xo YI = Yo
X := x + Y X2 = X l + YI Y2 = YI
x � Y X2 � Y2 X3 = X2 Y3 = Y2
[S] (Y3 > 0 � X4 = Y3 1 (Y3 > 0 � Y4 = X3 - Y3 1

Y3 � 0 � X4 = X3) Y3 � 0 � Y4 = - Y3)
derivations :

First we derive

Xo =/= Yo 1\ X2 � Y2 X3 = Xo + Yo Y3 = Yo
= Xo =/= Yo 1\ Xo � 0

and then

case (Y3 > 0) = (Yo > 0)

6.5

The

sing]
tion:

6. 5 Examples o f P rog ra m Verification

case (Y3 � 0) = (Yo � 0)

x4 = X3 Y4 = - Y3
= Xo + Yo = - Yo

path function :

277

(x =1= Y 1\ X � 0 -+ (y > 0 -+ x, Y := y, X I Y � 0 -+ x, Y := X + Y, - y))

The third trace table for P is

part condition

x = Y Xo = Yo
[S]

derivations :

path PO
x

X l = Xo
(Y I > 0 -+ X2 = YI I
Y I � 0 -+ X2 = xd

First, we derive

Xo = Yo
and then

X l = Xo

case (Yl > 0) = (Yo > 0)

YI = Yo

Y2 = Xo - Yo

case (YI � 0) = (Yo � 0)

Y2 = -Yo

path function :

Y

YI = Yo
(y I > 0 -+ Y 2 = X I - Y I I
YI � 0 -+ Y2 = - yd

(x = Y -+ (y > 0 -+ x, y := y, X - y l y � 0 -+ x, y := x, -y))

The foregoing results for PI I, PIO, and PO can now be combined into a
single program function [P] as follows, which exactly describes the opera
tions on data carried out by program P :

[P] = (condition PI I -+ rule PI l i
condition PIO -+ rule PIO I
condi tion PO -+ rule PO)

= ((x =1= y) 1\ (x < 0) -+ x, y := x, Y I
(x =1= y) 1\ (x � 0) 1\ (y > 0) -+ x, y := y, X I
(x =1= y) 1\ (x � 0) 1\ (y � 0) -+ x, y := X + y, - y I
(x = y) 1\ (y > 0) -+ x, y := y, X - y I
(x = y) 1\ (y � 0) -+ x, y := x, - y)

278 The Correctness of St ructu red P rograms

v-axis x,v := v,x-y

x,v : = x,-v

I
I
I

x,v := x,v I

�

}

I
I
J

�� x,v : = v,x /. / /. '/
/.y

�'/
h-/ �

� '/ x,v : = v,x y
Z.

- = � - x�axis

x,v := x + v,-v

-- I ncluded in range
- -- Excluded from range

Figure 6.9

Note in passing that this program function can be diagrammed in the x,
plane as shown in Fig. 6.9.

EX E R CI S ES

(All data objects are scalar integers unless otherwise declared.)
1. Given the program

if
x > y

then
x, y := X - y, x + y
if

x < y
then

x, y := y, x
else

x, y := X + y, x - y
fi

else
x, y := y, X

fi

dete

2.
of tl

determine the program function by

Exerci ses 279

a) analyzing the E-chart directly, and
b) first determining an intermediate abstract ion, then analyzing the E-chart .

2. Hypothesize a program function and carry out a proof of correctness for each
of the following programs :

a) while
x < y + b

do
x, b, y := X + 1, b - 1, y + 1

od

b) sequence in : integer
while

in =1= empty
do

od

a := next(in)
x := x + a

c) array t(n) : integer
while

do

od

i < k

t (k) := (t(k) + t(k + 1))/2
k := � - 1

d) set s 1, s2 : integer
while

s 1 =1= empty
do

member(s2) := member(s 1)
od

e) sequence in 1 , in2, out [in 1, in2 contain same number of members]
do

a, b := next(in 1), next(in2)
if

a > b
then

next(out) := a
ehe

next(out) := b
fi

until
in 1 = empty

od

280 The Correctness of Structu red Prog rams

f) sequence in, out : character [in con tains � character]
scalar a: character
dol

a := next(in)
while

a :;i: �
do2

next(out) := a
od

3. Verify the d irect assertion made about the oddbeforeeven program (Fig. 6.5
dealing with segment [5- 18] . Then, using the direct assertions for [5- 18],
and [27-33], verify the direct assertion for the segment [5-33].

4. Verify the Singsort program (Fig. 5.20), using your own judgment of the
of d irect assertion required. (See Problem 5, Section 6.4.)

6 .6 . lOO P I NVA RIANTS I N CO R R ECTN ESS P ROOFS

6 .6 .1 loop Inva riants

We now investigate an important property of invariance in program
which gives deep insight in correctness proofs and logical commentary.
invariant of a program loop with a single predicate is a logical cond·
that is invariably true when the predicate is evaluated. For example, in
addition program (u, v 2:: 0 --+ u, v := U + v, 0)

while
v + O

do
u, V := U + 1 , v - 1

od

the predicate u + v = uo + Vo holds on entry, and furthermore holds at each.
iteration of the loop, and is therefore an invariant. We denote this in logical
commentary as an invariant status comment attached to while :

while [u + v = Uo + vo]
v + O

do
u, V := U + 1, v - 1

od

Invariants, if known, can be used in an alternative to the verification
techniques described in the Correctness Theorem, as will be shown. The
placement of the invariant status between the while keyword and the
whiletest indicates a condition that must hold, whether the whiletest evalu-

6.6 Lo op Inva ria nts i n Co rrect ness Proofs 281

ates to true or false. In order to prove that a predicate is an invariant for a
whiledo program, it is sufficient to prove, using induction, that

1. the predicate holds on entry to the whiledo loop, and

2. if the predicate holds and the whiletest holds, then the predicate holds
after the dopart is executed.

Thus, the addition program invariant holds throughout execution, since

1. u + v = uo + Vo on entry because u = Uo, v = vo , and

2. if u + v = Uo + Vo and v =1= 0, then u + v = Uo + Vo after the multiple
assignment u, v := U + 1, v - 1 .

On the other hand, if the loop terminates, the invariant still holds, and the
whi letest fails (in order for the loop to terminate). That is,

u + v = Uo + Vo /\ V = 0

But this implies that

u = Uo + Vo /\ V = 0

and the program function can be seen to be

(u, v � 0 � u, V := U + v, 0)

In general, the previous example illustrates the following idea. If q is an
invariant in

while [q] p do g od

(with logical commentary brackets delimiting q) then

(by definition) (1)

(on termination, i f termination ever occurs) (2)

Note that condition (2) above defines an automatic final status comment for
the whiledo program :

while [q] p do g od ['" P /\ q]

6 .6 .2 The Inva riant Status Theorem

In the addition program, the invariant shown was strong enough to charac
terize the program function of the whiledo loop. But weaker invariants will
not be strong enough. For example, u + v � Uo + Vo , u + v � 0, etc., are all

282 The Cor rectness of Structu red Programs

invariants, as well, but they do not characterize the program function.
order to determine invariants strong enough to characterize program

.

tions, we next study the whiledo program in more detail.

Invariant Stat� Theorem. Let

f = [while p do g 00]

If X 0 E D(f), X E D(f), and q(X) = (f(X) = f(X 0))' then

1 . q is an invariant of while p do g od
2. q characterizes f at loop termination, that is,

too.; p(X) /\ q(X) --+ X = f(X 0)

Proof For (1) we prove that q is an invariant by induction, which
requires proving

a) q(Xo) is true, and

b) q(X) /\ p(X) --+ q 0 g(X)

First note on entry that

q(X 0) = (f(X 0) = f(X 0)) = true

so that condition (a) is satisfied. Next, to prove condition (b) we note
that for X E D(f)

p(X) --+ (f(X) = f 0 g(X))

by the Correctness Theorem. Furthermore, since

q(X) = (f(X) = f(Xo))

by hypothesis, we can modify this implication as

p(X) /\ q(X) --+ (f(Xo) = f o g(X))

But the right-hand side can now be recognized as

q 0 g(X)

Therefore

p(X) /\ q(X) --+ q 0 g(X)

and condition (b) holds. Hence q is an invariant as stated.

6.E

ial

W
d(

at

01
h:

p
a:
q,

6.6 Loo p I nvaria nts in Correct ness Proofs 283

For (2), if '" p(X) then by the definition of the whiledo program we
have

x = f(X)

Furthermore, if q(X), then

f(X) =f(Xo)

Therefore, by combining these last two equations,

x =f(X) = f(Xo)
or

"' p(X) t\ q(X) --+ (X = f(Xo))

as was to be shown.

The Invariant Status Theorem permits systematic derivation of invar
iants. As a first illustration, recall the addition program

while
v + O

do
u, V := U + 1 , v - 1

od

with function (u, v � 0 --+ u, v := U + v, 0). The invariantf(X) = f(X 0) can be
derived by tabulatingf(X) and f(X 0) for each member of the data space :

X I(X) f(X 0)
u u + v Uo + Vo
v 0 0

and equating components of f(X) and f(X 0)

u + v = Uo + Vo

of which the first is of interest and, in fact, is identical to the invariant
hypothesized above.

As a second illustration, consider deriving an invariant for a whiledo
program to carry out integer division of natural numbers a and b, dividend
and divisor, respectively, by repeated subtraction (given bo > 0, quotient
qo = 0) :

while a � b do a, q := a - b, q + 1 od

284 The Correctness of Structu red Prog ra ms

After tracing through a sample execution, say

a

13
10
7
4
1

b

3
3
3
3
3

we hypothesize the program function as

q

o
1
2
3
4

a, b, q := a - (a/b)*b, b, (a/b) + q

where integer division is assumed. We next apply the Invariant Status
Theorem to derive an invariant expression for the loop, but first the reader is
invited to verify an intuitive statement of the invariant invented by inspect
ing the program; namely, that for every iteration

b*q + a = ao

A tabulation off (X) and f(Xo) gives

X f(X) f(Xo)

a a - (a/b)*b ao - (ao/bo)*bo
b b bo
q (a/b) + q (ao /bo) + qo

from which components can be equated to get

a - (a/b)*b = ao - (ao/bo)*bo

b = bo

(a/b) + q = (ao /bo) + qo

(1)

(2)

(3)

This system of equations is the required invariant, but some simplification is
possible,

to get

ao - a = b*((ao/bo) - (a/b))

(ao /bo) - (a/b) = q - qo

(from (1) and (2))

(from (3))

which is identical to the intuitive invariant, above, given the prescription of
qo = O.

6

6

1

t

v

a

v

6. 6 loop Invariants i n Correctness Proofs 285

6 .6 .3 Ful l Invariants and Limited Invariants

The last example illustrates a point we now bring out in more detail. A
whiledo invariant may hold by virtue of its initialization. In particular, given

f = [while p do g od], Xo E D{f)
we call

q{X) = (f{X) = f{Xo))

thefull invariant of the whiledo loop, and for any initialization of the whiledo

h ; while p do g od

we call

q{X) = (f{X) = f 0 h{Xo))

a limited invariant of the initialized whiledo loop.
In illustration, consider the following initialized whiledo program,

which assigns nonnegative u to v (u � 0 --+ v := u):

v := O
while

v < u
do

V := v + 1
00

An invariant status is easy to guess and verify, as v � u, shown in the
recopied program

V := O
while [v :$; u]

v < u
do

V := v + 1
00 [v = u]

with final status at 00 derived from invariant v � u, and whiledo exit condi
tion v � u.

Next consider the whiledo part of the program above; namely,

while
v < u

do
V := v + 1

00

,

286 The Correctness of St ructu red P rograms

that can be seen to have program function

v := max(u, v)

The invariant status is not so easy to guess, but we know how to derive it,
recalling the form of the invariant status as

f(u, v) = f(uo, vo)

Using this specific program function, we have the following tabulation

x f(X) f(Xo)

u u Uo
v max(u, v) max(uo , vo)

with equated components

u = Uo
max(u, v) = max(uo , vo)

The first equation can be used to rewrite the second equation as

and this second equation can be broken into two cases, according to the
value of the right-hand side, defined by the following predicate expressions :

Vo ::; Uo --+ (max(uo , v) = uo) --+ v ::; Uo
Vo > Uo --+ (max(uo , v) = vo) --+ v = Vo

We can organize these cases, along with the first equation, into an invariant
status in the recopied program :

while [(u = uo) /\ (vo ::; Uo --+ v ::; uo) /\ (vo > Uo --+ v = vo)]
v < u

do
V := v + 1

od

When Uo � 0, Vo = 0, as for the initialized whiledo, then this invariant re
duces to (u = uo) /\ (v ::; uo), which contains the invariant v ::; u guessed
above. In checking this result, the final status can now be determined as the
conjunction of the invariant and the exit condition v � u, that is

[(u = uo) /\ (vo ::; Uo --+ v ::; uo) /\ (vo > Uo --+ v = vo) /\ (v � u)]

that can be simplified to

[(u = uo) /\ (vo ::; Uo --+ v = uo) /\ (vo > Uo --+ v = vo)]

6.7 Formulas for Correct Structu red Prog rams 287

or more directly
[(u = Uo 1\ r = maX (llo . ro)]

that defines the whiledo program function

V := max (u. r)

(and not u := min (u, v), etc.).
Thus, although possibly paradoxical at first glance. the whiledo function

is more complex than its initialized counterpart. In fact. the init ialization of
the whiledo restricts its use to a subset of the whiledo function. As a result. a
limited invariant wi ll be simpler than the full invariant of the whi ledo. But
the limited invariant now depends-on the environment of the whiledo.
whereas the full invariant does not.

EXE R CI S ES

1. Show that the dountil program

f = [do g until p 00]
has invariant

q(X) = (f(X) = f " g(Xo))
and that the dowhiledo program

f = [dol g while p do2 h 00]

has invariant

q(X) = (f (X) = / 0 h 0 g(Xo))
2. Deduce the invariants of the following programs :

a) while x > 0 do x := X - 1 00
b) while x =1= 0 do x := X - 1 00
c) do x := X + 1 until x ;:::: y 00
d) do x := X + 1 until x = y od

6.7 FOR M U LAS F O R CO R R ECT ST R U CT U R E D
P R OG RAMS

6.7.1 The Fu nction Eq uati ons of Structu red Prog ra ms

Validation of structured programs involves repeated verification of function
equations of one of the several types :

f = [g ; h]

f = [if p then g fi]

(sequence)

(if then)

288 The Correctn ess of Structu red Prog rams

f = [if p then g else h 6]

f = [while p do g 00]

f = [do g until p 00]

f = [dol g while p do2 h 00]

(ifthenelse)

(whiledo)

(dountil)

(dowhiledo)

Conversely, the design of correct structured programs requires the repeated
selection and solution of these same function equations, in each case with f a
given function and unknown functions p, g, h. For example, given any func
tion f, consider first any solution (g, h) of the equation

f = [g ; h] (sequence)

Next consider any solution (p, k) of the equation

g = [if p then k 6] (ifthen)

and next any solution (q, m) of the equation

h = [while q do m 00] (whiledo)

By construction, then

f = [g ; h] = [if p then k 6; while q do m 00]

and this construction process can be continued indefinitely. Such programs
are correct by construction in a formal way.

As surprising as it may seem, each of these function equations has a
solution that can be given in closed form, if it exists at all. And it will be
evident below that the existence of solutions can be easily guaranteed in
equation selection during the construction process. A completely mechani
cal procedure for constructing a correct structured program of arbitrary
structure is not now a serious design technique, because the degrees of
freedom are so great that intelligence and insight are required to select
reasonable solutions out of those possible. Yet, in simple design problems, as
we shall see, a small amount of insight is sufficient to fix a solution. And, in
any case, the form of the solutions gives a new understanding of the general
design process.

The foregoing function equations have solutions for arbitrary given
function f except for one case, the whiledo equation. In this one case, an
existence condition is found that is both necessary and sufficient. In order to
simplify the formulas for, and theorems about, these solutions, it is conven
ient to define a least solution based on subset relations. Suppose a solution

6.7 Form u las for Correct Structured Progra ms

(p, g, h) has been found (one way or another) for the equation

f = [if p then g else h Ii]

289

Suppose another solution (p', g', h') has also been found, and further that p,
g, h are subfunctions of p', g', h' ; that is, p c p', g c g', h c h', and

f = [if p' then g' else h' Ii]

We say that (p, g, h) is a lesser solution than (p', g', h '), and that (p, g, h) is a
least solution if there exists no distinct lesser solution than it.

The formula for the i fthenelse equation is the simplest, so we begin with
it, then give the ifthen solution as a variation. Next the solution for the
sequence equation is given, followed by the solution for the whiledo
equation.

6 .7.2 The Ifthenelse Form ula

Consider the ifthenelse equation

f = [if p then g else h Ii]

and a diagram of the function f as a set, which has been partitioned arbi
trarily into two subsets, g and h :

Let p be defined as the predicate function that splits the domain off into
the domains of g and h by its values ; that is, p is true in the domain of g and
false in the domain of h. Then (p, g, h) as constructed solves the if then else
equation. This simple analysis leads to the following formula.

If th en else Formula. Given any function f, (p, g, h) is a least solution of
the ifthenelse equation

f = [if p then g else h Ii]

if and only if

(g, h) is a partition off

p = (D(g) x {true}) u (D(h) x {false})

where D(g), D(h) are the domains of g, h, respectively.

(1)

(2)

290 The Correctness of St ructu red Programs

Proof First, let (p, g, h) be a least solution of the ifthenelse equation

f = [if p then g else h fi]

First we note that

[if p then g else h fil

Then

= {(X, Y) I (p(X) 1\ Y = g(X)) v (-- p(X) 1\ Y = h(X))}
= {(X, Y) I p(X) 1\ (X, Y) E g} U {(X, Y) 1 --p(X) 1\ (X, Y) E h}

c {(X, Y) I (X, Y) E g} U {(X, Y) I (X, Y) E h}
= g u h

fc g u h

i= g u h

g n h = f;}

(as shown above)
(because (p, g, h) is a least solution)
(same reason)

therefore

(g, h) is a partition off

Also

D(p) = D(f) (because (p, g, h) is a least solution)

(X, Y) E g � p(X) (same reason)
(X, Y) E h � -- p(X)

therefore

p = (D(g) x {true}} u (D(h) x {false}}

and conditions (1) and (2) are seen to hold.
Conversely, suppose that conditions (1) and (2) hold. Then the program

function [if p then g else h fi] can be calculated directly as

{(X, Y) I (p(X) I\ (X, Y) E g) V (-- p(X) I\ (X, Y) E h)}
= {(X, Y) I (X, Y) E g V (X, Y) E h}
= g u h
=f

Further, every element of p, g, h is used in this calculation, so (p, g, h) is a
least solution. This completes the proo(

In illustration, consider the equation

Z := max (x, y) = [if p then g else h fi]

6.7

where

Formula s for Correct Structu red Prog rams

z := max (x, y) = { ((x, y, z), (x , y, max(x, y)))}
= {((x, y, z), (x , y, x)) l x � y}

u {((x, y, z), (x, y, y)) I x < y}

In this case, there is a natural partition of z := max(x, y) into subsets
g = {((x, y, z), (x, y, x)) l x � y}
h = { ((x , y, z), (x, y, y)) I x < y}

which are, in fact, defined by conditional assignments
g = (x � y � Z := x)
h = (x < y � z := y)

so that a solution is

z := max(x, y) = [if x � y then z := X else z := y fi]

Next, the if then equation
1 = [if p then g fi]

291

can be treated as a minor variation of the ifthenelse equation that requires a
solution to the equation

1 = [if p then g else I fi]

as follows.
If then Formula. Given any function f, (p, g) is a least solution of the
if then equation

f = [if p then g fi]

if and only if
(g c I) 1\ (I - g c 1) (1)
p = (D(g) x {true}) u (D(f - g) x {false}) (2)

In illustration, consider the equation

where
y := max(x, y) = [if p then g fi]

y := max(x, y) = { ((x, y), (x, max (x, y)))}
= {((x, y), (x, x)) l x � y}

u {((x, y), (x, y)) I x < y}

292 The Correct ness of Structu red Prog rams

and solution
y := max (x, y) = [if x :2: y then y := X 6]

6.7.3 The Seq uence Formula

Consider the sequence formula

f= [g ; h]

and the diagram in Fig. 6. 10 of the domains, ranges, and sample members
of f, g, h (shown as lines in the diagram). In this diagram, we show two
ways to reach a final value Z from an argument X ; directly by means of
an element (X, Z) Ef, and indirectly by elements (X, Y) E g, (Y, Z) E h. This
diagram leads to the following formula.

Sequence Formula. Given any function f, (g, h) is a least solution of the
sequence equation

if and only if
D(f) = D(g) I
R(f) = R(h) �
R(g) = D(h) I

f(X) =1= f(X') � g(X) =1= g(X')

h = fo gT

D(n n D(g)

f = [g ; h]

(where gT is the transpose of g)

R(g) n D(h)
Fig ure 6.1 0

(1)

(2)
(3)

6.7 Fo rm ulas for Correct Structu red Prog rams 293

In more informal terms, condition (2) can be restated as

g(X) = g(X') --+ f(X) = f(X') (2)

and each level sett of g must be a subset of some level set off; that is, the
level sets of g are a refinement of the level sets of f Condition (3) can
be pictured in Fig. 6. 10 as showing two alternate paths from the point Y to
the point Z, the first path being the single line Y to Z (by way of h), the second
path being composed of two lines Y to X (by way of gT, since the direction is
backward to g) and X to Z (by way of f).
Proof First, suppose that (g, h) is a least solution of the sequence equation

f = [g ; h]
and recall the definition

[g ; h] = {(X, Z) / 3Y((X, Y) E g /\ (Y, Z) E h)}

Then, certainly, for any solution (g, h)
D(f) c D(g) ,
R (f) c R(h) ,
R(g) c D(h) I

(1 . 1)

but unless each subset relation is an equality, (g, h) will not be a least
solution. Therefore

D(f) = D(g) ,
R (f) = R(h) r
R(g) = D(h) I

(1)

Next, we show condition (2) by contradiction. Suppose there exists X, X'
such that

f(X) =1= f(X') /\ g(X) = g(X')

Then (g, h) cannot be a solution for any function h since

h 0 g(X) = h c g(X')
and

f(X) = h 0 g(X) = h 0 g(X') = f(X')

but f(X) =1= f(X'). Therefore, by contradiction, (2. 1) must be false, and

f(X) =1= f(X') --+ g(X) =1= g(X')

t A level set L of function 9 is a set of arguments with the same value, e.g.,

Ly = {x I (x, y) E g}

(2. 1)

(2)

294 The Correctness of Structu red Prog rams

as was to be shown. Next, in order to show that condition (3) holds, w'
observe, if (g, h) is a least solution, that h must be characterized in the fo

h = {(Y, Z) 1 3X((X, Y) E g /\ (X, Z) E f)}

Now h can be rewritten as

h = {(Y, Z) 1 3X ((Y, X) E gT /\ (X, Z) E f)}

so that h is seen to be the composition of gT and f:

Now gT is not necessarily a function (it is surely a relation), but we will show�
with the restriction on g above, thatf 0 gT is indeed a function ; that is, given'
(Y, Z) E h, (Y, Z') E h, then Z = Z'. In order to see this, note

(Y, Z) E h -+ 3X((X, Y) E g /\ (X, Z) E f)

(Y, Z') E h -+ 3X'((X', Y) E g /\ (X', Z') Ef)

and assume Z =1= Z' instead. Then

(Z =1= Z') -+ f(X) =1= f(X')
-+ g(X) =1= g(X')

(by substitution)
(by (2) above)

-+ Y =I= Y (by substitution, using (3. l), (3.2) above)

which is a contradiction. Therefore, f 0 gT is a function whether gT is a
function or not. This completes the first part of the proof.

Conversely, suppose conditions (1), (2), and (3) hold. First, we note that
the contrapositive of condition (2)

f(X) =1= f(X') -+ g(X) =1= g(X')

is

g(X) = g(X') -+ f(X) = f(X') (2c)

Next we calculate the program function [g ; h] = h o g directly, using condi
tion (3) :

h o g = (f 0 gT) 0 g
= f 0 (gT 0 g)

which we can evaluate as follows :

fo gT 0 g(X) =f o gT(y)
=f(X')

where Y = g(X)
where Y = g(X')

6.7 Formulas for Correct Structured Programs 295

but, since g(X) = Y = g(X'), then f(X') = f(X), by condition (2c), and
therefore

h :; g(X) = f(X), or h " g =f

and (g, h) i s a solution of the sequence equation. Condition (1) ensures that
(g, h) is a least solution, because every member of g and h is required for
(g, h) to be a solution. This completes the proof.

In illustration, consider the equation

y := max(x, y) = [g ; 11]

Even though y := max(x, y) is more naturally expanded as an if then, as
above, we show that a sequence solution exists, as well. Consider the candi
date function

g = (y := x - y)

We can verify that condition (2) above holds :

(x, max(x, y)) =1= (x', max(x', y')) --+ (x =1= x') v (y =1= y')
--+ (x, X - y) =1= (x' , x ' - y')

Thus, h can be computed by condition (3) as follows :

gT = {((x, y), (x, x - y))y
, = {((x, x - y), (x, y))}

from which we see that

Therefore, by condition (3)

h = f 0 gT = (y := max(x, x - y))

In order to verify this mechanically derived function h, we observe

y := max(x, y) = [g ; h] = [y := x - y; y := max(x, x - y)]

which can be verified di rectly by use of a trace table.

6.7.4 The Whi l edo Form u la

The solution of the whiledo equation proceeds as follows. First, there is an
existence theorem.

296 The Correctness of Structu red Programs

Whiledo Existence Theorem. Given any functionf, a solution (p, g) exists
for the whiledo equation

f = [while p do g 00]

if and only if
R (f) c D(f)

X E R(f) --+ f(X) = X

Proof First, suppose a solution (p, g) exists for the whiledo equation. The
first condition follows directly from the whiledo definition. Every value off
(i.e., every member of R(f)) is an argument of p, and therefore a member of
D(f)·

Before proving the remainder of the Existence Theorem, we state and
prove a useful, and surprising, Lemma.

Whiledo Predicate Lemma. If (p, g) is a least solution for the whiledo .
equation

f = [while p do g 00]

then
p = ((D(f) - R(f)) x {true}) u (R (f) x (false})

The surprise in the Whiledo Predicate Lemma is that there is no freedom at .
all in the choice of the predicate of the whiledo expansion of a function. .
Proof of Lemma. Suppose X E (D(f) - R (f)) and ,,", p(X). Then, with argu
ment X, while p do g od terminates after one evaluation of p without reaching
R(f), so (p, g) is not a solution as hypothesized. Therefore p(X) is true.
Suppose X E R (f) and p(X). Then while p do g 00 can never compute value
X, because it will continue to iterate, so (p, g) is not a solution as hypoth
esized. Therefore p(X) is false. The foregoing two cases characterize p on the
domain off, for which a least solution p must be defined.
Continuation of Proof of Theorem. Condition (2) now follows from the
Whiledo Predicate Lemma

X E R (f) --+ ""' p(X) --+ f(X) = X

Conversely, suppose that

R (f) c D(f)

X E R (f) --+ f(X) = X

(1)
(2)

6.7 Form ulas fo r Co rrect Str uctu red Prog rams 297

To demonstrate that some solution (p, g) exists, first define predicate p on
the domain off, D(f), such that

X E (D(f) - R(f)) � p(X)

X E R(f) � - p(X)

Now it can be verified that (p,f) is a solution (albeit trivial) to the whiledo
equation, that is

[while p dof 00] = f

Note the program while p do f 00 executes f zero or one time (depending on
whether the initial value X is in R (f) or (D(f) - R(f)) and then terminates.
This completes the proof of the Existence Theorem.

In illustration of the Existence Theorem, note that the add function

add = (x 2 O A Y 2 O � x, y := x + y, 0)

satisfies the existence condition, for

so that

D(add) = {(x, y) I x, Y 2 O}

R(add) = {(x, y) l x 2 O A Y = O}

R(add) c D(add) (1)

(x, y) E R(add) � add(x, 0) = (x + 0, 0) = (x, 0) (2)

and therefore a solution to the whiledo equation is possible. The foregoing
add function destroys y. Can we amend the specification to

add2 = (x 2 0 A Y 2 0 � x, y := X + y, y)?

No ! For the function add2 violates the existence condition, for example

D(add2) = {(x, y) I x, Y 2 O}

so that

but

R(add2) = {(x, y) I x 2 Y 2 O}

R(add2) c D(add2) (1)

(x, y) E R(add2) � add2(x, y) = (x + y, y) =1= (x, y) (2)

The seemingly slight change in specification from add to add2 means the
difference between the existence or nonexistence of a whiledo program to
satisfy it.

298 The Cor rectness of Structu red Prog rams

In the case of the add function, we know from the Whiledo Predicate
Lemma that the true domain of the predicate is

D(add) - R(add) = {(x, y) l x, y � O} - { (x, y) l x � O A Y = O}
= {(x, y) l x � O A Y > O}

Thus, the whiledo program to satisfy add necessarily has the form

while y > 0 do g 00

where x and y are understood to be nonnegative throughout. We turn to the
characterization of g next.

Whiledo Formula. Given any function f that satisfies the Whiledo : .
Existence Theorem, (p, g) is a least solution of the whiledo equation

f = [while p do g 00]

if and only if p is determined by the Whiledo Predicate Lemma and g
satisfies the properties

D(g) = D(f) - R(f)

the graph of g is acyclic

X E (D(f) - R(f)) �f o g(X) = f(X)

g(X) E R(f) � g(X) = f(X)

(1)
(2)

(3)

(4)

In more informal terms, condition (3) requires that both X and g(X) are in
the same level set off; hence, with condition (2) we see that g is the "parent
function" for a system of trees on the level sets of f with roots in R(f).
Conversely, any such parent function defines a correct dopart g.

Proof of Formula. Suppose (p, g) is a least solution. For condition (1) note
that g must be defined everywhere in (D(f) - R(f)), but need not be defined
elsewhere. Condition (2) expresses termination requirements on g. For con
dition (3), note that X E (D(f) - R(f)) implies that both X and g(X) are in
D(f), and while p do g 00 will compute the same final value from initial
values X and g(X) ; therefore f(X) and f 0 g(X) must be identical, or the
whiledo program computes at least one incorrect value. For condition (4),
note that the whiledo program terminates (see the Whiledo Predicate
Lemma) when g(X) E R(f) ; therefore, g(X) must equal f(X) to compute
the correct value.

6.7 Formulas for Co rrect Structured Programs 299

Conversely, suppose g satisfies the conditions above. In particular, the
following consequences of the Whiledo Existence Theorem (E), the Whiledo
Predicate Lemma (P), and the Whiledo Formula (F), are valid :

R(f) c: D(f) (E l)
X E R(f) -+ f(X) = X (E2)
p = ((D(f) - R(f)) x {true}) u (R(f) x {false}) (P)
D(g) = D(f) - R(f) (F l)
the graph of g i s acyclic (F2)
X E (D(f) - R (f)) -+f :: g(X) = /(X) (F3)
g(X) E R(f) -+ g(X) = f(X) (F4)

Then it can be verified that the whiledo equation is satisfied by applying
the Correctness Theorem. Termination of the whiledo is guaranteed by (F l) and (F2) and the condition C(X, Y) is guaranteed by (F3) and (F4). Further
more (p, g) is a least solution, p by the Whiledo Predicate Lemma, g by
condition (F 1). This completes the proof of the Whiledo Formula.
Returning to the add function, with program solution developed thus

far
add = [while y > 0 do g 00]

we note from the Whiledo Formula that if

g(x, y) = (u, v) (i .e., g = (x, y := u, v))

then, from conditions (F3) and (F4)
y > 0 -+ f 0 g(X) = f(X)

-+ add 0 g(x, y) = add(x, y)
-+ add (u, v) = add(x, y)
-+ (u + v, 0) = (x + y, O)

y = O -+ u = x + y

Thus, the program must be of the form
add = [while y > 0 do x := u; y := X + y - u 00]

where, in addition, u must be chosen so that
u � 0, x + y - u � 0

(from (F3))

(from (F4))

300 Th e Correctness of Structured Progra ms

because the domain of the add function is composed of nonnegative integers . .

A very simple, easy choice of u to satisfy these conditions is u = x + 1,
because

x + l � O
x + y - (x + 1) = y - 1 � 0

(because x � 0)
(because y > 0)

This choice leads to the add program seen before,
while y > 0 do x := X + 1 ; y := y - 1 od

but has been derived mechanically from the intended function except for this
simple choice of the form of u above. Note u can be chosen differently, for
example as x + y. Then the program becomes

while y > 0 do x := X + y; y := 0 od

which is satisfactory (if x + y is available for assignment). Note also u can be
chosen incorrectly, for example as O. Then the program becomes

while y > 0 do x := 0; y := X + y od

and does not terminate because the graph of g is not acyclic.

EX E RCIS ES

1. Develop corresponding formulas for the dountil and dowhiledo equations,
showing also that solutions always exist for both equations.

2. Develop formulas for equations involving compound programs such as
a) Nested whiled os

f = [while p do while q do 9 00 00]

b) Nested i fthenelses

f = [if p then if q then 9 else h 6 else t 6]

7
Writing

Structured
Programs

7.1 OVE RVIEW

This chapter describes function-based techniques for writing structured pro
grams. Small structured programs and the individual segments of large ones
are wri tten by stepwise refi"eme"t, the process of expanding intended func
tions into prime programs and simpler intended functions. and then check
ing correctness, in a "divide, connect, and check" strategy. The process of
applying stepwise refinement in segment-structured programs is known as
top-down programming. Stepwise reorgalli=atiol l is the process whereby a
program, large or small, is designed for function first to keep correctness
arguments manageable, th en reorgan ized for efficiency in small steps. each
shown equivalent to its predecessor. In the examples in this chapter. cor
rectness arguments are presented at a verbal level where appropriate, in
terms of the correctness questions, and recorded more systematically where
appropriate, in terms of trace tables and more formal arguments. Finally,
design concepts for structured programs are il lustrated in comparison of
program detai ling versus program design, and in heuristics versus rigor in
design.

7 . 2 WR ITI N G F U N DA M E NTALS

7 . 2.1 Inventi ng Structu red Prog rams

Writing structured programs i s a creative mental process that requi res study
and practice for proficiency. As in other forms of expression. reading pro
vides conscious and unconscious mental models for writing. Reading

302 Writ i n g St ructu red P ro g rams

structured programs critically, for correctness and simplicity, builds judg
ment and confidence for writing. In first learning to write structured pro-.
grams though, a program idea may occur in thought or intuition without

'

structured form. As a miniature illustration, reconsider the subtract program
of Chapter 6 with intended function

(x � 0 A Y � 0 � x, y : = X - y, free)

assuming no subtract operation is available and decrementing must be used.
We might give a verbal description of a solution as follows. Reduce x and y
each by 1 a step at a time until one of them is O. Then the result of the
subtraction, not including its sign, is the other variable ; if y is 0, then x is the
result but if x is 0, then - y is the result required. This solution can be
composed as the following POL program (given previously) :

while
X > O A Y > O

do
x, y := X - 1, y - 1

od
if

y > O
then

x := - y
fi
free y

with the flowchart as given in Fig. 7. 1 .

Figure 7.1

But another way of looking at this same problem might have produced
instead a flowchart with function and predicate nodes connected as shown in
Fig. 7.2, which is not structured in terms of POL control structures. In fact,
the firstpart of this control structure is itself a prime with two predicates. The
initial POL program above combines the tests x > 0 and y > 0 into one, and
repeats the y > 0 test-slightly less efficient, but more understandable.

7 . 2 W r it i n g Fu n d a m e n t a l s 303

F i g u re 7.2

Since we want to create structured programs in the first place, we ask ,
What mental di scipline leads to structured solutions instead of unstructured
ones? The answer is to simply drop the idea of inventing individual function
and predicate node s, combined into arbitrary control structures . Instead ,
discipline yourself to expand an intended function directly into a PDL prime
or into a simple combination of PDL primes . These are the primitives of
stru ctured program design, not individual fu nctions and predicates . When
you think in terms of these primitives, the functions and predicates you
invent will be naturally combined in an evolving structured program , in

stead of being connected in some other way , onl y to be restructured later.
For example , we know that a whiledo loop requ ires in vention of a

whiletest and a do part . In the unstructured program above, a dopart (x, Y =
x - J , Y - J) appears in the loop, but the potential whi letest is actually a
sequence of tests, forming an arbi trary control structure with two e xits . The
second exit is a convenient place to handle the case of Xo < Yo, but this
creates another arbitrary structure . This is improvising with functions and

predicates : it is difficult , and ofte n impossible , to produce large programs
this way because of the complexity introduced by unrestricted branching in
large primes . The requ ired d iscipline is to design in terms of PDL prime
programs , which can be read and verified correct at each step in the design
process .

Returning to the verbal descri ption of the structured solution with this
discipline in mind, we observe that the subtract problem can be expressed as
a sequence of three subproblems- (l) to calculate the magnitude of the
difference between x and y; (2) to determine the sign of the difference; and
(3), to free y:

calculate magnitude of x - y
determine sign
free y

The sequence idea may come to mind only after some thinking about the
problem, not as a first thnught. The point is not top-down thinking, but
top-down recording of ideas. It is difficult to write a top-level design until its
expansions have been thought through, as the mind ranges over high- and
low-level operations and thei r connections.

304 Writi ng St ructu red Prog ra ms

The first part of the sequence can now be expanded as a whiledo to
out the required decrementing, and the secondpart can be expanded as
if then to determine the sign by finding out which variable, x or y, realcn4�
zero :
[calculate magnitude of x - y]
while

x > O I\ Y > O
do

x, Y := X - 1, Y - 1
od
[determine sign]
if

y > O
then

x := - Y
fi
free Y

This is an example of thinking in prime programs; it is a technique that, once
mastered, can be scaled up to design programs of any size whatsoever.

7.2.2 The Disci pl i ne of Fu nction Expansion

Structured programming is a human problem-solving process that creates
logical structures for programs. But structured programming also provides a ;
rationale for recording intermediate stages in this process, for better com-,
munication and concentration in the mental activity, itself. The principal
device for structured programming is embodied in the fundamental Axiom
of Replacement for structured programs, namely, replacement of functions
by prime programs, as in the prime expansions of PDL:

f = g ; h
f = if p then g else h fi
f = while p do g od

In sharpening one's own mental discipline, it is important to understand
the difference between program inventions that are function expansions as
defined above and those that are not. In miniature illustration, suppose an
initialized iteration program is constructed to be equivalent to a single
function program (Fig. 7.3) . That is, we are given an initial function f to
expand, and have foreknowledge (for the purpose of this illustration) that
the expanded design will end up as an initialized iteration.

7 .2 Writ i n g F u n damenta l s 305

Figu re 7.3

COR-sider two intermediate paths to construct the final design as shown
in Fig. 7.4. In the YES path, f is expanded as a sequence of g ; k, then k is
expanded as the iteration while p do h od, while in the NO path, the iteration
is developed first and the initialization is prefixed later. The NO path seems
a natural one to take, but look at the consequences. While the iteration is
probably the most interesting part of the design to be done, the first step on
the NO path involves an unrecorded insight, namely, the function k not
mentioned there; that is, the iteration "solves part of the problem," but
which part is not recorded. Getting to the final design requires this unre
corded insight, so the right g can be picked later to do the initialization.
Thus, there are two mental discontinuities on the NO path (the iteration
doesn't do f� and the initialized iteration doesn't do the iteration),

f =1= [while p do h 00]
and

[while p do h 00] =1= [g : while p do h 00]

--[]-- I,------D NO path

F igure 7.4

306 Writing Structu red Prog ra ms

which, if recognized at all, must be held in mind while designing. It will be
difficult to share this work with a colleague or conduct a design review
without the additional insights. The program is structured in final form, but
it was not derived by function expansions.
Now look at the YES path, and note that each step represents the same

function ; that is,

f= [g ; k]

and
[g ; k] = [g ; while p do h 00]

In structured programming, function equivalence is preserved, and the cor
rectness of each step can be verified before going on to the next step, in this
case by applying the sequence and then the whiledo correctness relations. If
the program design is to be written in ten minutes, this may seem a moot
point. But if it takes two years (and g takes 10,000 instructions, h takes
100,000 instructions), the point is not so moot.
The foregoing illustrates the reporting of a mental process that is known

to the world outside your mind only by what you say or write. But there is
no law against your thinking ahead. At the moment the composition

is written down, you had better know that k is going to be an iteration (in
fact, an initialized iteration happens so often it is a basic pattern of
thought-like a C-major arpeggio for a concert pianist). But what the disci
pline of writing the sequence does for you is to state what the iteration needs
to do, before going into its details. And what the nondiscipline of the NO
path often does is invite you into a sea of details before you even write down,
or possibly think through, what that sea of details is going to do.
The YES path is a sample of function expansion of a program; that is,

beginning with an intended function, a stepwise process of replacing func
tions by primes and simpler functions, to be carried out until, finally, all
functions have been expressed in sufficient detail. Every intermediate func
tion created plays a dual role as an intended function for expansion and as
an operation in the prime structure created with it.

7.2.3 Usi ng Prog ra m Veri fication i n Program Desig n

We next present a miniature illustration of the role of correctness
verification in program design. Consider a program named SUB whose

7. 2 Writi ng Fu ndamentals 307

design is motivated by the familiar subtraction by decrementing, where x, Y
are integers,

SUB = while
y > O

do
x, Y := X - 1 , Y - 1

od
and where SUB is an expansion of the intended function sub :

sub = (x, y := X - y, 0)

We will look at both questions :

1 . Is sub = [SUB]?

2. Is sub c [SUB]?

(com plete correctness)

(sufficient correctness)

Be forewarned, the answer in both instances is no. But "no" is just as impor
tant a guide to design as "yes," and it is instructive to discover how it comes
about. The proof is as follows :

function
sub = (x, Y := X - y, 0)

program
SUB = while y > 0 do x, y := X - 1 , y - 1 od

proof
term

y is decremented at each iteration so whiletest y > 0 will even
tually fail.
pass

whiletest true

part

y > O
x, y := X - 1, y - 1
x, y := x - y, 0

derivations :
Yo > 0

condition

Yo > 0

X3 = Xl - Yl

x

X l = Xo
Xl = X l - 1
X3 = Xl - Yl

Y3 = 0
= xl - 1 - (Yl - 1)
= Xo - Yo

y

Y l = Yo
Yl = Yl - 1
Y3 = 0

308 Writ i n g Structu red Programs

program function :
(y > 0 - X, y := x - y, 0)
which agrees with sub for whiletest true.

pass

whiletest false

result

The intended function is
x, y := x - y, 0

but the program function for y ::s; 0 is the identity
x, y := x, y

and (x - y, 0) =1= (x, y) as seen by counter example :
x = y = - 1 : (0, 0) =1= (- 1, - 1)

fail

fail

We see that the proof fails (for both complete and sufficient correctness)
because the domain of sub includes y < 0, which is not properly handled by
SUB. So we go back to redesign either SUB or sub, or both.

One way to solve the problem is to define a new subfunction of sub, say
sub1 , to deal only with nonnegative y as

sub1 = (y � 0 - x, y := X - y, 0)

Now we will be able to show sufficient correctness, namely that

sub1 c [SUB]

We record the proof as before :

function
sub 1 = (y � 0 - x, y := X - y, 0)

program
SUB = while y > 0 do x, y := X - 1, y - 1 od

proof
term

y is decremented at each iteration so whiletest y > 0 will even
tually fail.
pass

whiletest true
same as for [SUB] = sub proof above
pass

7 . 2 Writi ng F u n d a m entals

whiletest false (Note y < 0 is now excluded.)
The intended function is

result

x, y := x - y, 0
and for y = 0

(x - y, 0) = (x - 0, 0)
= (x, y)

i.e., the required identity.
pass

pass suff

309

Sufficient correctness is all that is possi ble for sub l , because SUB st i ll
handles negative initial values for y. What SUB computes in those cases is
not described by sub 1.

The problem can also be solved by defining another new function, say
sub2, to be identical with [SUB] :

sub2 = (y � 0 --+ x, y := X - y, 0 I y < 0 --+ x, y := X, y)
In this case, complete correctness is satisfied. These three results are sum
marized in the following table of function values for arguments x, y :

function y � O y < O

(SUB] (x - y, 0) (x, y)
sub (x - y, 0) (x - y, 0)
sub l (x - y, 0) undefined
sub2 (x - y, 0) (x , y)

Still another way to achieve complete correctness is to design a new
program, say SUB3, with program function identical with sub :

SUB3 = while
y > O

do
x, y := x - I , y - 1

od
while

y < O
do

x, y := X + 1, y + 1
od

In illustration, we will give a proof of complete correctness of SUB3 for sub.
First, SUB3 is a sequence of two whiledos, say

SUB3 = SUBPOS; SUBNEG

31 0 Writi ng Structu red Programs

where

SUBPOS = while y > 0 do x, y := x - 1, y - 1 0d
SUBNEG = while y < 0 do x, y := x + 1 , y + 1 0d

Our hypothesized program functions are

subpos = (y > 0 � x, y := X - y, 0 I y ::; 0 � x, y := x, y)
subneg = (y < 0 � x, y := X - y, 0 I y 2:: 0 � x, y := x, y)

and the three propositions we need to prove are

sub = subpos ; subneg
subpos = [SUBPOS]
subneg = [SUBNEG]

The proofs are independent of one another, and. hence the order of proof is
immaterial. Once proved, we will have completed the demonstration of
[SUB3] = sub, since

[SUB3] = [SUBPOS; SUBNEG] = [subpos ; subneg] = sub

The sequence proof is as follows :

function
sub = (x, y := x - y, 0)

program
subpos ; subneg

proof
Case 1, 1 (i.e., taking part 1 of the subpos conditional rule and taking
part 1 of the subneg conditional rule):

part

x, y := x - y, 0
x, y := x - y, 0

derivations :

condition x

Yo > 0 . Xl = Xo - Yo
Yl < 0 Xl = X l - Yl

Yo > 0 /\ Y 1 < 0 = Yo > 0 /\ 0 < 0
(impossible case)

Case 1,2 :

part

x, y := x - y, 0
x, y := x, Y

condition

Yo > 0
Yl 2:: 0

x

y

Yl = 0
Yl = 0

Y
Yl = 0
Yl = Yl

7.2 Writing Fundamenta l s

derivations :

Yo > 0 /\ Y1 � 0
= Yo > 0 /\ 0 � 0
= Yo > 0

X2 = Xl Y2 = Y1
= 0

Case 2, 1 :

part

X, y := x, y
X, Y := x - y, 0

derivations :

condition

Yo ::; 0
Y1 < 0

= Xo - Yo

X

Xl = Xo
X2 = X l - Y1

Y

Y1 = Yo
Y2 = 0

Yo ::; 0 /\ Y1 < 0
= Yo ::; 0 /\ Yo < 0
= Yo < 0

X2 = Xl - Y1
= Xo - Yo

Y2 = 0

Case 2,2 :

part

X, y := x, Y
X, y := x, Y

derivations :

condition

Yo ::; 0
Y1 � 0

X

X l = Xo
X2 = Xl

Yo ::; 0 /\ Yt � 0 X2 = Xo
= Yo ::; 0 /\ Yo � 0
= (Yo = 0)

program function :

Y

Yl = Yo
Y2 = Y1

Y2 = Yo
= 0

(y > 0 � X, Y := X - y, 0 I Y < 0 � X, Y := X - y, 0
I Y = 0 � X, Y := X, 0)

or simply,

x, Y := x - y, 0

which is identical with sub, as was to be shown.

result
pass comp

Next, the proof for subpos is as follows :

function
subpos = (y > 0 � X, Y := X - y, 0 I Y ::; 0 � X, Y := X, y)

program
SUBPOS = while Y > 0 do x, Y := X - 1 , Y - 1 od

31 1

31 2 Writi ng Structu red Prog rams

proof
term

Y is decremented at each iteration so whiletest Y > 0 will even
tually fail.
pass

whiletest true

Case 1 :

part

y > O
x, Y := X - 1, Y - 1
subpos

derivations :

condition x

Yo > 0 X l = Xo
X2 = x l - 1

Y2 > 0 X3 = X2 - Y2

Yo > 0 " Y2 > 0 X3 = X2 - Y2

Y

YI = Yo
Y2 = YI - 1
Y3 = 0

Y3 = 0
= Yo > O " YI - 1 > 0
= Yo > O " yo > 1

= X l - 1 - (YI - 1)
= Xo - Yo

= Yo > 1

Case 2 :

part condition

y > O Yo > 0
X, Y := X - 1, Y - 1
subpos Y2 � O

deri vations :
Yo > 0 " Y2 � 0
= Yo > O " YI - 1 � 0
= Yo > O " yo � 1
= (Yo = 1)

program function :

X

X l = Xo
X2 = X I - 1
X3 = X2

X3 = X2
= X l - 1
= Xo - 1

Y

YI = Yo
Y2 = YI - 1
Y3 = Y2

Y3 = Y2
= YI - 1
= Yo - 1

(Y > 1 ---+ x, y := x - y, 0 I y = 1 ---+ x, y := x - 1, y - 1)
= (y > 1 ---+ x , Y := X - y, 0 I Y = 1 ---+ x , Y := X - y, 0)
= (Y > 0 ---+ X, y := x - y, 0)
which agrees with subpos for whiletest true.

pass

whiletest false

result

Subpos is the identity by direct examination of its definition.
pass

pass comp (The domains of subpos and SUBPOS are identical.)

7.2 Writi n g Fundamentals 31 3

The proof that subneg = [SUBNEG] is symmetric with that of subpos.
In retrospect, there are several lessons in this example. First, proving

correctness not only verifies correctness if it exists, but also suggests ways of
redesigning for correctness if it doesn't exist. Second, complete correctness is
usually more expensive in program design than sufficient correctness. If a
program is well protected from unexpected inputs, sufficient correctness may
be a better solution in design economy than complete correctness. Third, the
creation of a correct program is more properly viewed as the creation of a
correct relationship between a function and a program. If the function is
given once and for all with no opportunity for negotiation, then the burden
is on the program to be correct in that relationship. But such inviolate
functions are in the minority for the simple reason that the program design
process itself specifies all the abstract functions of a structured program,
except for the highest level function of the entire program.

7. 2.4 Log ical Commenta ry i n Program Writi ng

Up to now, logical commentary has been used to describe the abstraction of
details in program reading. Given a program, we sought to discover and
document its design in a hierarchy of abstractions. In writing readable pro
grams, we reverse the process-to invent design first, details later. Logical
commentary is written to record intended functions before going into their
expansions (but not before thinking hard about those expansions). Logical
commentary for, say, an ifthen prime and its expansion is written as

[I-action]
if

p
then
g-action

fi

which
expands
to

[faction]
if

p
then [g-action]
g

fi

For example (overcommenting for illustration)
[x, y := min (x, y), max(x, y)]
if

x > y
then
exchange x, y

fi

could
expand
to

[x, y := min(x, y), max (x, y)]
if

x > y
then [exchange x, y]

initial t := x
x := y
y := t
free t

fi

31 4 Writing Structu red Prog ra ms

Logical commentary carries forward through successive expansions.
Thus, the final version of a program contains its own abstractions, and can
be read and understood to any required level of detail. It is usually the case I';
that some parts of a program are self-evident, and can be read and under- .�
stood directly. So judgment is required to select program parts for commen
tary. For self-evident operations, an occasional comment will do. But more
complex situations may require that every part of every prime be com
mented. Keep in mind that the reader is attempting to retrace your thoughts
on program function and correctness. If a program is properly commented,
the reader's reaction will likely be "It is obvious !" at each step along the way.

EX E R C I S ES

1. Design programs by function expansion, with concurrent logical commentary
development, for the following functions :

a) x, y := abs(max (x, y)), max(abs(x), abs(y))
b) x, y, z := max(y, z), max (z, x), max(x, y)
c) z : = min (max(x - y, x + y), max(y - x, y + x))

2. Design programs by function expansion, using logical commentary, to

a) exchange rows and columns of an n x n array of integers,
b) find the sum of the positive members of a set of integers, and
c) find the largest difference between members of a stack of integers.

7. 3 PROG RAM M I N G ST RATEG IES

7 . 3 .1 Prog ram m i ng by Stepw ise Refi nement

In practice, function expansion leads to the stepwise refinement of structured
programs, beginning with an intended function to be programmed and a
design strategy, proceeding through successive levels of expression, until the
entire program has been expanded in sufficient detail. Each refinement step
records an expansion of one or more functions into prime programs, or into
small structured programs of manageable size, thereby introducing new
functions for expansion, and so on. And, of course, the correctness of each
refinement is checked, and recorded if necessary, before going on.

The idea in stepwise refinement is to "divide, connect, and check" an
intended function by reexpressing it as an equivalent structure of properly
connected subfunctions, each solving part of the problem, and each simpler
than the original function to further divide, connect, and check. In carrying
out a refinement, look far enough ahead to feel comfortable. If a function is
familiar, say, sorting a small table, further thought and elaboration may be

7.3 P rog ra m m i n g St rateg ies 31 5

unnecessary. If a function is not familiar, refine it far enough to feel comfort
able. An evolv ing structured program defines a natural construction plan
for allocating thought and effort to those program parts most in need of
elaboration. Each refinement is taken as a working hypothesis for further
investigation, to be either judged sound or amended as its implications
become clear.

Stepwise refinement of a program or system of programs is undertaken
only after a good general approach has been determined and critical details
of data representation and algorithms have been settled. Stepwise refinement
is a thought-recording process, not a think ing process. In thinking about
how to write a program, many possible ideas for organizing control and data
and expressing high- and low-level operations circulate in one's mind. The
point is to sift through all this to record first major and then minor consider
ations in successive refinements. Create intermediate levels of expression
that explain each step along the way. The ideal is a coherent logical descrip
tion from summaries at the top, down to implementation in code.

The key to successful program design is rewriting, and more rewriting.
One's first design is seldom the best idea for a program. Rethinking and
reworking is the rule in good design, not the exception, and many false starts
may be made before a programmer is satisfied with the logic and clarity of a
design. Every effort should be made at each step to conceive and evaluate
alternate designs. So the ability and willingness to redo program parts, and
even whole programs, for simplicity and clarity is absolutely critical. The
best debugging technique is redesigning programs into simpler and simpler
forms.

Every refinement step in a design from highest to lowest, once written,
should be completely rigorous, that is, capable of being shown correct. Even
for PDL with operations sketched out in natural language, there is no loss of
rigor in what must be proved. The idea of rigor at all leve1s of expression is
crucial to success in structured programming. Confidence in the correctness
of structured programs is bui lt up out of checking and feeling confident
about a few lines of expansion at a time. This is as true for the few lines that
summarize the top of a large program, as it is for a few lines of details at the
lowest level in that program. Checking for correctness is not possible if
refinements are not rigorously expressed, nor is it possible in giant leaps
from an intended function to a maze of details in code. Make sure every
refinement is clearly expressed and of manageable size, then check it for
correctness before going on.

Develop program and proof together, whether the proof is a simple
mental conviction or a systematic trace table. Favor designs that are easily
verified, and be critical of those that are not. Given a function to refine,
develop correctness arguments in your mind ahead of time, for insight into

31 6 Writing St ructu red Programs

program design. Be both writer and reader of your own programs, to put
yourself in the place of someone needing to understand your work. And if
the reading gets difficult and the proofs not obvious, think harder about the .
program. Chances are a simpler, more valuable design can be found.

7.3.2 Case Study : Ai r Pol l ution

As a first example of stepwise refinement, consider the following problem :

Air pollution measurements have been made near the smokestack of a
manufacturing plant every minute for up to 24 hours. Sixty measure
ments are recorded each hour, so a total of 6O*n, 1 � n � 24, measure
ments are present, stored in a sequence named input. Measurement
values range from zero to 1000 parts per million (ppm) of pollutant ; a
value of zero represents an equipment malfunction. Design a program
to

1. Compute mean ppm values for each of the hours for which no mal
function occurred.

2. When a zero value (malfunction) is encountered, set the mean ppm
value of the current hour to -1 and stop all processing for that hour,
including further accumulation of violations (see item 3). However, /
the number of violations prior to the malfunction must be kept and
printed.

3. Keep a count of violations per hour. A violation occurs when the
pollution value is above 100 ppm for five consecutive minutes, which
are not included in some previous violation. For example, 14 con
secutive minutes above 100 ppm count as two violations. A violation
can span hour changes, and should be assigned to the hour in which
it started.

4. Print hourly mean values and hourly violations.

In thinking about a design strategy, it seems reasonable to read and
process measurements on an hourly basis, since means and violation counts ·
are associated with each hour of data. The mean can be directly computed .
for an hour's data, but the violation count for an hour is not known until the

·

next hour's data has been checked. Thus, it makes sense to accumulate
violations for all hours of data present, then print the hourly violation
counts along with the means. So a possible first program, shown in Fig. 7.5,
is an initialized whiledo reading and processing one hour's data from input
each iteration, followed by printing results. The logical commentary is writ
ten informally in natural language, which seems an adequate level of exposi
tion for this straightforward program.

7.3 Programming Strateg i es 31 7

proc air pollution [find and print means and violations for first hour to last
hour]

2 use airpoll
3 hour := 0
4 [find means and violations for next hour to last hour]
5 while
6 input =1= empty
7 do
8 increment hour; read 60 measurements ; find mean and violations
9 od

10 list(output) := means, violations for first hour to last hour
1 1 corp

data airpoll
scalar

hour: integer
sequence

atad

input : real [pollution measurements every minute for up to 24 hours]
output : real [hourly means and violation counts for up to 24 hours]

Figure 7.5 I n itial a i r pol lution program.

As this first program is written down, we apply the sequence and
whiledo correctness questions in our minds. On examination, we believe the
sequence is correct, and likewise for the whiledo, since termination is
assured, and for input =1= empty the whiledo (defined on line 4) equals the
dopart (line 8) followed by the whiledo. Finally, for input = empty, the
whiledo equals the identity. These arguments are based on operations
specified informally in natural language, and, of course, are valid only up to
our knowledge of the dopart, currently a working hypothesis for further
refinement. Note, however, that this informality does not extend to what
must be proved, nor to the necessity for doing so.

A possible elaboration for the dopart is an initialized whiledo, iterating
from 1 to 60 minutes, but terminating if a malfunction is detected. The new
dopart can add each minute's measurement to a running total and accumu
late violations as well. The refinement is shown in Fig. 7.6, a compound
program of some 29 lines. But it seems of manageable size and a reasonable
next step for this program.

As the refinement was written, it was checked for correctness with the
correctness questions in mind. The program thus far finds and prints means
and detects malfunctions. But, as always, correctness ultimately depends on
expanding the remaining function (line 8. 1 8, "violation processing") within
the existing structure.

31 8 Writ ing Struct u red Programs

proc air pollution [find and print means and violations for first hour
to last hour]

2 use airpoll
3 hour := 0
4 [find means and violations for next hour to last hour]
5 while

6 input =1= empty
7 do [increment hour; read 60 measurements; find mean and violations]
8. 1 hour := hour + 1

2 ppm := list(input)
3 violations(hour) := 0
4 sum := 0
5 malfunction := false
6 minute := 1
7 [find hour's sum and violations up to malfunction, if any]
8 while

9 minute ::::;; 60 /\ '" malfunction
10 do [ppm(minute) = 0 -+ malfunction := true I ppm(minute) =1= 0 -+ add

ppm(minute) to sum, process for violation, increment minute]
1 1 if

12 ppm(minute) = 0
1 3 then
14 malfunction := true
1 5 else
16 sum := sum + ppm (minute)
1 7 do
18 process ppm (minute) for violation
19 od
20 minute := minute + 1
21 fi
22 od
23 if
24 malfunction
25 then
26 means(hour) := - 1
27 else
28 means(hour) := sum/60
29 fi
9 od

10 list (output) := means, violations
1 1 corp

7.3 Progra m m ing Strateg i es

data airpoll

scalar

hour: integer
malfunction: logical [signals ppm{minute) = 0]
minute : integer
sum : real [sum of hour's measurements]

array

means(24): real [mean value or - 1 for each hour]
ppm(60): real [one hour's pollution measurements from input]
violations(24): integer [violation count for each hour]

sequence

31 9

input : real [pollution measurements every minute for up to 24 hours]
output : real [hourly means and violation counts for up to 24 hours]

atad

Figure 7.6 First air pol lution refinement.

The strategy in mind for violation processing is to count consecutive
measurement values over 100 ppm and to assign a violation to the proper
hour if the count ever reaches 5 ; any measurement not over 100 will cause
the count to be reset to 0, leading to the refinement shown in Fig. 7.7 (with a
new data item named over).

In checking correctness, we observe that for ppm(minute) > 100, over is
incremented. But what is the initial value of over? It has none, and this needs
to be fixed. In our dividing and connecting, the division of operations be
tween the previous refinement to process means and the current refinement
to process violations was reasonable, but the connecting was faulty. Over
must be initialized outside the hour loop, to count correctly for the first
hour, written in the initial program after line 3 (using line numbers 3a and 3b
to preserve numbering not affected) :

3a hour := 0
3b over := O

A good idea now is to recheck correctness from the top down. The
initial program looks correct, but we realize next that over must also be reset
in the first refinement when a malfunction is detected, since in that case a
potential violation cannot straddle the following hour boundary, if any.

320

8. 17
18. 1

2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20

19

Writi ng Structu red Programs

do [process ppm(minute) for violation]
if

ppm(minute) > 100
then [increment and process violation counter]

over := over + 1
[if violation found, assign it to proper hour and reset over]
if

over = 5
then [assign violation to proper hour and reset violation counter]

if

fi

minute � 4
then [assign to previous hour]

violations(hour - 1) : = violations(hour - 1) + 1
else [assign to current hour]

violations(hour) := violations(hour) + 1
fi
over : = 0

else [reset violation counter]
over : = 0

fi
od

Figure 7.7 Second air pollution refinement.

Thus, initialization of over must be added after line 8.14

8. 14a malfunction := true
8. 14b over :=0

and now the first refinement is correct. The second refinement now appears
correct as well, and the entire program has been elaborated in sufficient
detail.
Finally, we note that the air pollution program is an example of a direct .

form of design, where the details of processing are known at the outset and
the major task is to organize them into coherent refinements. Creativity is
required mainly in writing for clarity and conciseness. The program itself
documents the best evidence of its own correctness, and our mental cor
rectness arguments can be duplicated by any reader, by comparing the
intended function and logical commentary with the program text.

7.3 Pro g ra m ming Strategies 321

7. 3.3 Top- Down St ructu red Prog ra m m i ng

The stepwise refinement of large structured programs is carried out by seg
ment structuring, in a process known as top-down structured programming.
As described in Chapter 3, a segment is a small structured program, ord i
narily a page or less of POL text, say from 10 to 50 lines . A segment is
delimited by proc and corp, and may refer to other segments in run state
ments . The objective in the use of segments is to control complexity, not
only in clean control logic as forced by structured programming but also
in limiting the extent of program text the human eye and mind need com
prehend at one moment. A segment is a natural unit for recording the
stepwise refinement of large programs. It is neither too large a step, leading
to more complexity than can be comfortably dealt wi th, nor too small a step,
leading to tedium and loss of continuity. A segment typically deals with a
handful of data objects, prime programs, and logical comments that can be
organized in the mind and written down as a coherent program. Of course,
correctness proofs are still based on the prime programs found within a
segment.

The segment concept is used to create large structured programs out of
function specifications in a systematic way. We define a task of limited extent
and complexity that we can repeat until we get a whole program written to
satisfy a function specification. This task is to write a program segment that
represents the entire program whose data operations may be names of
subspecifications (subfunctions) yet to be programmed. Now we repeat this
task for each of these named (but unwritten) segments. Again, we want to
design a program segment to meet its subspecification, possibly with new
segment names at the next level, and relegate further program details to the
next level of segments. We continue to repeat this process until we have
satisfied the original specification. The end result is a program, of any size
whatsoever, that has been organized into a tree structure of named member
segments invoked by run statements, each of which can be read from top to
bottom without any side effects in control logic outside that particular
segment.

Since each segment realizes a function, it is possible to progressively
implement and test the segment control and data structures provided for
newly designated segments at the next level. This is accomplished by intro
ducing dummy versions, called program stubs, of the new segments before
their creation. The program stubs can print messages (such as ""got to seg
ment (name) OK") and internal data values, and they can seize resources in
storage and time to simulate their eventual implementation.

Several programmers may be engaged in this activity concurrently, once
some initial segments are written. Each programmer can take on a separate

322 Writing St ructu red Progra ms

segment and work independently within the structure of an overall program
design. The hierarchical structure of the segments provides a clean interface
between programmers. At any point in the programming, the segments
already in existence give a precise and concise framework for the rest of the
work to be done.
The air pollution program developed above can provide a miniature

illustration of stepwise design, implementation, and testing, using segments,
subspecifications, and program stubs. Referring to Fig. 7.6, the operation at
line 8. 18 is rewritten to invoke a segment at the next level

8. 18 rlDl violation processing (alt violations, over, fix ppm, hour, minute)

with subspecification, say
If ppm(minute) � 100, set over (the violation counter) to 0 and exit.
Otherwise, add 1 to over and if over = 5, a violation has occurred
(ppm(minute) > 100 for the last five consecutive minutes), so set over to 0
and add 1 to the violations array member corresponding to the hour in
which the violation started. That is, add 1 to violations(hour) or
violations(hour - 1).

and program stub, say
proc violation processing (alt violations, over, fix ppm, hour, minute)

if
minute = 1

then

fi
corp

list(output) := 'beginning to process violations for hour', hour

which prints a message on the first minute of an hour.
The top segment can now be implemented and tested for correct compu

tation of means and detection of malfunctions, and for linkage to the viola
tion processing stub. Next, the violating processing segment can be designed
to satisfy its subspecification, and then implemented and tested within an
existing structure already known to execute correctly.
7.3.4 Prog ra m m i ng by Stepwise Reorganization

The stepwise refinements of a program design record a problem-solving
process that is well under control, but a process which may be known more
accurately in retrospect than in prospect in complex situations. The com-

7.3 Programming Strateg ies 323

plexity of the design task can make it difficult to practice stepwise refinement
as a direct activity. Yet the benefits of stepwise refinement are substantial
enough to develop new mental procedures to retain those benefits.
In program design situations where complexity makes a stepwise

refinement difficult, stepwise reorgan ization may instead be possible. Step
wise reorganization is a programming strategy that arises out of concern for
program correctness. The strategy is to keep complexity intellectually man
ageable by programming for correct function first (ignoring efficiency) by
stepwise refinement, then reprogramming for efficiency later by stepwise
reorganization. Specifically, the strategy is as follows :
1 . Stepwise refinement

Use stepwise refinement to design a program with correct function, ignoring
matters of efficiency. It is easier said than done for experienced programmers
to ignore efficiency in creating proper function, to begin with, because the
general problem-solving experience in programming is to interrelate func
tion and efficiency. But the objective of our new mental procedure is to
divide and conquer complexity, not just programs. The idea, to begin with,
is to define data or control structures with regular, but often inefficient,
properties. Ordinarily, designs of this type would not be considered because
they do not solve the problem of computation within time and memory
constraints. But they can be used to bring complex functions under intellec
tual control to help solve the problem of design. Efficiency in computation
can then be dealt with as an additional objective.

2. Stepwise reorganization

Next, the program produced by stepwise refinement is reorganized for
efficiency in a series of steps, each small enough so that verification of
equivalent function can be done with high confidence. A reorganization step
may introduce either a new control logic to process an existing data struc
ture, or a new data structure handled by existing control logic; ordinarily,
not both data and control should be changed radically in the same step.
Each program version serves as a functional specification for its reorganized
successor. In fact, early versions can be implemented to supply inputs for
other parts of a larger system under development, once a tolerable level of
efficiency has been reached. Note that stepwise reorganization is not just fine
tuning, but construction of practical programs, more complex and useful
than their less efficient predecessors. In practice, refinement and reorganiza
tion steps may combine in an iterative process, whereby each level of a
program is designed for correctness by refinement and then reorganized for
efficiency before creating further refinements.

324 Writi ng Structured Programs

3. Correctness

Just as stepwise refinement leaves a documented trail of intermediate func
tions and expansions, stepwise reorganization should leave a trail of .
structured programs of which only the first is proved correct ab initio and
each of the others is proved equivalent to its predecessor. Each reorganiza
tion serves as a "verification platform" for the succeeding reorganization,
and ordinarily there should be no attempt to explain ab initio why the final
program is correct.

4. Modifications

In any subsequent modification. the necessary changes should be identified
at the first program version affected, and all succeeding versions changed
accordingly, with correctness demonstration proceeding as before.

7.3.5 Case Study : Wo rld Capitals

I n m in iature illustrat ion of stepwise reorganization, consider a program to
solve a word recognition puzzle :

Given a list of world capital cities in no particular order and a two
dimensional table of letters, design a program to print each city name on
the list that is present in the table, whether spelled horizontally (either
direction), vertically (either d irection), or diagonally (four poss ible di
rections), a long with its starting row and column, and d irect ion . (No
more th an one name starts from a location in a particular direction.)
For example, the fol1owing name list and table

DUBLIN 0 K E R B Y L M

TOKYO A L D G 0 C E V
LON DON

R A S M N S M B
ROME

T E L 0 N D 0 N
BONN

D U B L H L R C
PARIS

ZURICH
W R S 0 P I K J

OSLO A G I B X M U Z

LIMA H F Q G L A M V

.�
1

l

7.3

have solution :

BONN
LONDON
OSLO
LIMA
ROME

1 ,5 down
4,3 right
4,4 up left
5,6 down
5,7 up

Prog ra mming Strateg ies 325

The program is provided an input sequence containing the number of
rows and columns in the letter table. the letter table itself. the number of
names and the length of the longest name in the name list. and the name
list i tself.

The initial objective is a design that is obviously correct. even at the
expense of efficiency if necessary. One strategy is to start at every table
position and build a character string in every di rect ion. one character at a
time, and at each step look for the string in the name list. When all starting
positions have been so examined, all names present will have been found and
the program will terminate. The strategy is implemented in a first program
shown in Fig. 7.8.

In this program, nested loops on row, column. and direction guarantee
that every possible string start ing from every table element will be tested.
and printed if it appears in namelist.

Next, the dopart function at line 13 can be expanded in a refinement
step. In generating strings for testing, one character at a time can be selected
from table using a fixed displacement corresponding to one of the eight
possible directions (shown as row, column pairs) :

- 1 ,- 1 - 1 ,0 - 1 , 1

0,- 1 0, 1

1 ,- 1 1 ,0 1 , 1

The displacements can be conveniently stored and referenced as an array
named disp of row, column pairs, proceeding clockwise from vertical, that is,
first pai r is up, second pair is up right, and so on :

(- I , 0), (- I . 1), (O, 1), (I , 1), (I , 0), (I , - 1), (O, - 1), (- I , - 1)

326 Writi ng Structu red Programs

1 proc world capitals [print namelist words and locations in table, if any]
2 use capitalsdata
3 maxrow, maxcol, table, max list, maxname, namelist : = list(input)
4 for
5
6
7
8
9

10
1 1
12
13

14
15
16

row : E 1 to maxrow
do [print namelist words and locations starting table(row), if any]

for

od

col : E 1 to max col
do [print namelist words and locations starting table(row,col), if any]

for

oct

dir : E 1 to 8
do

oct

print namelist word and location starting table(row,col) in direction
dir, if any

17 corp

data capitalsdata
scalar

maxrow : integer [number of rows]
maxcol: integer [number of columns]
maxlist : integer [number of city names in name list]
maxname : integer [number of characters in longest city name]

array

atad

table(maxrow,maxcol) : character [array of letters]
namelist(maxlist,maxname) : character [city names possibly present in

table]

sequence
input
output

Figu re 7.8 I n itia l world capitals program.

Row and column displacements for some value of dir, the fordo loop index,
are thus given by disp(dir, l) and disp(dir,2), respectively. A possible refine
ment step based on this strategy is shown in Fig. 7 .9. The refinement appears
correct ; systematic application of horizontal and vertical displacements in
the disp array ensures that the proper comparison strings will be built in
each direction, up to the edge of table or to a length equal to maxname.
This completes a stepwise refinement process. We turn to stepwise re
organization next.

r

7 . 3 Pro grammin g Strategies 327

In the program of Fig. 7.9, concatenating and sea rch ing for a cha racter
string can continue beyond the possibility of a match (and, in fact, beyond a
match). So a first reorganization step might be to stop looking when the
character string formed so far in some direction is not a left substring of any
name in name list (i .e. , string fails to match the beginning of any name), and
begin a new direction or new starting point. To implement, we add a new

logical variable named looking and rewrite and renumber the expansion of

12 d o [print namelist word and location starting table(row, col) i n direction dir, if
any]

13 . 1 rowhead, colhead := row, col
2 length, string := 1 , all blanks
3 while
4 (1 :s; rowhead :s; max row) 1\ (1 :s; colhead :s; max col) 1\ (length :s; max name)
5 do [add letter in direct ion t.o string and print with location

if found in namelist]
6 string(length) := table(rowhead, colhead)
7 search for string in name list
8 if
9 string found

10 then
1 1 list(output) := string, row, col, dir
12 fi
1 3 length : = length + 1
14 rowhead, colhead := rowhead + disp(dir, 1), colhead + disp(dir, 2)
15 od

14 od

scalar
rowhead : integer [row of nex t letter added to string]
colhead : integer [column of nex t letter added to string]
length : integer [current number of characters in string]

array
string(maxname) : character [test string for comparison with namelist

names]
disp(8, 2) : integer, init ((- 1 , 0), (- 1 , 1), (0, 1), (1 , 1), (1 , 0), (1 , - 1),

(0, - 1), (- 1 , - 1) [row, column displacements for next charac
ter to be added to string]

Figure 7.9 Fi rst world capitals ref inement.

328 Writing Structured Prog rams

1 2 do [print namelist word and location starting table(row, col) i n direction dir, if
any]

13 . 1 rowhead, colhead := row, col
2 length, string := 1, all blanks
3 looking := true
4 while
5 (1 ::s;; row head ::s;; max row) 1\ (1 ::s;; colhead � max col) 1\ looking
6 do [add letter in direction to string; print with location if found in namelist

and signal end search, otherwise if left substring found continue search,
else signal end search]

7 string (length) := table(rowhead, colhead)
8 search for string in namelist
9 if

10 string found
1 1 then [print string with location and signal end search]
12 6st(output) := string, row, col, dir
13 looking := false
14 else [continue search if left substring found in name list, otherwise signal

end search]
15 search for left substring in namelist
16 if
17 left substring found
18 then [prepare to extend string, continue search]
19 length := length + 1
20 rowhead, colhead := rowhead + disp(dir, 1), colhead + disp(dir, 2)
21 else [signal end search]
22 looking := false
23 fi
24 fi
25 od

14 od

Figure 7.1 0 First world capitals reorganizat ion.

line 13 as shown in Fig. 7. 10. Note that it is no longer necessary to verify that
the substring is less than the maximum name size.

The reorganization appears to correctly carry out the action specified
on line 12. It eliminates unnecessary searches where no match is possible,
but at the expense of new searches in an unsorted namelist for left substrings.
Thus, an additional reorganization is possible to speed up the searches, by
sorting namelist to begin with, and limiting successive searches to that parti
tion of namelist, if any, that contains left substrings matching the string built

7.3 P rog ram ming Strateg ies 329

so far. For example, if left substring "rom" is present in namelist, the sub
sequent search with a character appended to "rom" need only scan that
partition of name list whose names begin with "rom". This reorganization
adds variables low and high to denote the current active partition of namelist

scalar
low : integer [location of current lowest matching substring]
high : integer [location of current highest matching substring]

and sorts namelist at the head of the program. Low and high are initialized at
the start of the "for direction" loop, and updated in a new segment named
bracket, which carries out the following subspecification :

Set low and high to first and last namelist positions, respectively, of those
names, if any, with left substrings matching string (of length characters);
otherwise set low = high = o.

When low = high = 0, or low = high and string is not found at that point in
name list, looking is set false, and the scan continues from a new direction or
starting point, all shown in the reorganized and renumbered program of Fig.
7. 1 l .

Is the reorganization correct? Scans of the original unsorted name list in
the previous program have been replaced by searches of a partition of
matching left substrings in the sorted namelist. In the reorganized program,
no match is possible above or below the matching partition, and if the
matching partition reduces to one name, that name will match string, if any
name matches. Thus, no outcome is lost, and the search process has been
speeded up.

This strategy suggests a further improvement to perform a separate
bracket search as a special case when starting at a new table element, since a
new first character heads up strings in eight possible directions, all requiring
identical first searches. Further searches beginning with that character can
be skipped if it is not found in namelist ; and if it is found, the searches can
begin with the second character in each direction. The reorganization, with
new scalar integers I and h, is shown (see Fig. 7. 12) in a renumbered program
that requires an initial successful bracket search before building and testing
strings in each direction. Again, no possible outcome is lost (assuming there
are no one-character city names), and redundant searches have been elimin
ated, to ' produce a reasonably efficient program.

1 proc world capitals [print namelist words and locations in table, if any]
2 use capitalsdata
3 maxrow, maxcol, table, max list, maxname, namelist := Iist(input)
4 run sort(alt namelist, fix max list)
5 for

row : E 1 to maxrow 6
7
8
9

do [print namelist words and locations starting table(row), if any]
for

10
1 1
12
13

14
15
16
17
18
19
20

2 1
22
23
24
25
26
27
28
29
30
3 1
32
33

34
35
36
37
38
39
40
41 od
42 corp

col :E 1 to max col
do [print namelist words and locations starting table(row, col) if any]

for
dir : E 1 to 8

do [print name list word and location starting table(row, col) in direc
tion dir, if any]
low, high := 1, maxlist
rowhead, colhead := row, col
length, string := 1, all blanks
looking := true
while

(1 � rowhead .::; max row) /\ (1 � colhead � maxcol) /\ looking
do [add letter in direction to string; print with location if found in

name list and signal end search, otherwise if left substring found
continue search, else signal end search]

od
od

od

string(length) := table(rowhead, colhead)
run bracket (alt low, high, fix string, length, name list, maxlist)
if

low > 0
then

if
namelist(low) = string

then [print string with location and signal end search]
list(output) := string, row, col, dir
looking := false

else [prepare to extend string, continue search]
length := length + 1

fi

rowhead, colhead := rowhead + disp(dir, 1),
colhead + disp(dir, 2)

else [signal end search]
looking := false

fi

Figure 7.1 1 Second world capitals reorganization.

1
2
3
4
5
6
7
8
9

,�' 10
' \; 1 1 F

12
13
14
1�
H
1 �
U
1�
2{

2
2:
2:
2·
2:
21

2
2
2
3
3
3
3
3
3
3
3
3

4

�,

1 proc world capitals [print namelist words and locations in table, if any]
2 Ifie capitalsdata
3 maxrow, maxcol, table, max list, maxname, namelist := list(input)
4 run sort (aIt namelist, fix max list)
5 for

6 row : E 1 to maxrow
7 do [print namelist words and locations starting table(row), if any]
8 for

9 col : E 1 to maxcol
10 do [print namelist words and locations starting table(row, col), if any]
1 1 low, high : = 1 , maxlist
12 length, string := 1, all blanks
13 string (length) := table(row, col)
14 run bracket (alt low, high, fix string, length, namelist, max list)
15 if
16 low > 0
17 then
18 for
19 dir : E 1 to 8
20 do [print namelist word and location · starting table(row, col) in

direction dir, if any]
2 1 rowhead, colhead := row + disp(dir, 1), col + disp(dir, 2)
22 I, h := low, high
23 length, looking := 2, true
24 while
25 (1 � row head � max row) 1\ (1 � colhead � max col) 1\ looking
26 do [add letter in direction to string ; print with location if found

in namelist and signal end search, otherwise if left substring
found continue search, else signal end search]

27 string(length) := table(rowhead, colhead)
28 run bracket (alt I, h, fix string, length, namelist, maxlist)
29 if
30 I > 0
3 1 then
32 if
33 namelist(/) = string
34 then [print string with location and signal end search]
35 list(output) : = string, row, col, dir
36 looking := false
37 else [prepare to extend string, continue search]
38 length := length + 1
39 rowhead, colhead := rowhead + disp(dir, 1),

colhead + disp(dir, 2)
40 fi
41 else [signal end search]
42 looking := false
43 fi
44 od
45 od
46 fi
47 od
48 od

332 Writing Structured Prog rams

EXE R CISES
Use stepwise refinement and reorganization to design programs for the intended
functions described in Exercises 1-10. The function definitions may be elaborated, if
necessary, to create a correspondence with their program designs.

1. Design a program to determine if an input sequence of characters is a true
palindrome (reads identically in both directions), a packed palindrome (reads iden
tically in both directions with blanks removed), or neither.

2. Consider an m x m array named crossword, in which each element is a number,
blank, or .. # ", and two sequences named across and down, in which each element is a
pair consisting of a square number and a word. It is alleged that across and down
define a solution for the crossword. Design a program to verify this allegation.

3. Consider an m x m array named solution, in which each element is a letter or
.. # ", which represents a filled-in crossword. Design a program to decompose the
crossword, by numbering squares where words begin, converting letters to blanks,
and creating the corresponding across and down lists of numbered words.

4. Consider an m-element array named box, each element an integer triple (I, w, h)
of box dimensions, and an n-element array named paper, each element an integer pair
(s, t) of paper dimensions. Design a program to determine an m x n array named
wrap, with element values T or F for the questions of whether box(i), 1 � i � m, can
be wrapped (overlap allowed) by paper(j), 1 � j � n, without cutting the paper and
with box edges parallel to paper edges.

5. Given an input sequence that contains (a) numbers separated by blanks, with
numbers in forms of decimal integer; fixed point; floating point (with decimal point
in any location); and Roman numerals (up to 9999); and (b) possible "garbage"
characters, design a program to convert numbers into standard floating point form,
and print them.

6. Given a symmetric m x m array named line, of O's and 1 's, that defines a network
among places 1, . . . , m (Iine(i,j) = 1 if a line exists between i and j), design a program
to print all complete subnetworks (that is, clusters of places in which every place
connects to every other place).

7. Given an m x m array named line, of O's and l's, that defines the control structure
of a flowchart (line(i, j) = 1 if node i connects to node j), design a program to list all
proper control structures.

8. Given an input sequence text string named t, an input sequence substring named
s, and an input sequence replacement string named r, design a program to find the
first occurence of s in t, if any, and replace it by r, then print the resulting string.
Consider t to wrap around, that is, the first character of t follows the last character
of t.

9. Consider an input sequence named input, containing telegrams (words separated
by blanks, word a string of non blank characters), each telegram ending with word
"zzzz," and the sequence ending with an additional "zzzz." Design a program to print
each telegram, omitting "zzzz" and "stop," followed by a count of words ("zzzz" and
"stop" don't count), and the word "overlength" if any word exceeds 12 characters.

7.4 A Case Study in Detai l ing and Design : long Division 333

10. Consider two large n x n sparse arrays (with a small fract ion of nonzero mem
bers) stored in two sequences of triples (i, j, v) for (row, column, value� respectively,
in sorted order (row major). Design an efficient program for minimum storage to add
and multiply such arrays and put the results into another sequence. Note that addi
tion of arrays is addition of corresponding elements ; multiplication is given by the
inner product of rows and columns, that is, for result c of the multiplication of
arrays a and b,

c(i, j) = a(i, 1)*b(l, j) + . . . + a(i, n)*b(n, j)

7.4 A CASE STU DY IN DETAI LING AN D DESIG N :
LO NG DIVISION

7 .4.1 Detai l i ng Versus Design

The invention of suitable abstractions for expressing and communicating
design ideas is a crucial aspect of structured programming. Design abstrac
tions can reduce the complexity of programs and their correctness proofs,
and provide a foundation for stepwise refinement into further details.

Detailing is programming without the benefit of design abstractions. It
is "stream-of-consciousness" programming, detailing whatever processing
requirements come to mind, inventing "flags" and "counters" to control the
accumulation of data assignments and tests, all with insufficient regard for
the impact on program structure. Detailing leads to programs that are larger
than necessary, with more data objects than necessary, and with parts that
seldom fit together as hoped. On the basis of size alone, programs produced
by detailing are ordinarily more difficult to prove correct, and less likely to
be understood by others.

Of course, in the final stages of stepwise refinement, details of local
operations must be specified, and at bottom, a stepwise-refined program is
all details. But such a program contains its own design, as well, in initial and
intermediate abstractions documented in logical commentary, and can be
verified to be correct in steps based on levels of abstraction. But a program
produced by detailing contains only its details, not its design, and document
ing details after the fact rarely uncovers a coherent design.

So if you find yourself simply enumerating details at a low level and
adding more and more data objects, with no end in sight, stop. Reflect
on the problem at hand. Go back to definitions in the problem, and look for
deeper simplicities. Search for general principles on which to base abstrac
tions. In short, be satisfied with your design at every level before filling in its
details.

334 Writing Structu red Programs

7.4.2 A Lo ng - Division Problem

In illustration of the difference between detailing and design, consider a
.

long-division problem for a "decimal processor" with roughly the same
capabilities as a human being-namely, the ability to do digit-by-digit arith
metic, and to make use of place notation for comparing decimal numbers
and for multiplying by powers of 10, etc. However, in order to provide
explicit instructions for the processor, the places of digits in numbers must
also be made explicit as other "control numbers" that are given in the same
place notation as the original numbers. And arithmetic operations will be
useful in manipulating these control numbers as well.

Specifically, given two positive integers, a divisor named a of m decimal
digits and a dividend b of n decimal digits, the requirement is to determine
a quotient q and remainder r in decimal digit form, such that

b = a*q + r, 0 s r < a

The decimal processor for long division supports only a single data
type, namely, strings of decimal data in ordinary positional notation. In
programming the processor, decimal data strings, substrings, and individual
digits may be referenced. The processor permits decimal data assignment,
addition, subtraction, and arithmetic comparison. In all such operations,
low-order digits are aligned, and the usual digit-by-digit, carry-and-borrow
operations apply. On assignment, high-order zeros fill digit positions not
explicitly assigned.

We elect to augment PDL for this processor with a special outer syntax
data structure for decimal data, declared by the keyword decimal. For
example,

decimal x(4), y(l), z(j), j(n), k(n)

declares strings named x, y, z, j, and k to be 4, 1 , j, n, and n decimal digits,
respectively. The usual convention is that the highest and lowest index
values correspond to the most and least significant digits, respectively. Thus,
if x = 2946, then

x(4) = 2, x(l) = 6, and x(3 : 1) = 946.

Decimal strings are understood to be initialized to zero on declaration,
unless otherwise specified. Arrays of decimal digit strings can be specified
by mUltiple indexes. For example,

array u(3) decimal (4)

declares an array named u of 3 digit strings, each with 4 digits. Thus, if
u = 3745,2165,3 124, then

u(2) = 2165, u(2, 3) = 1, and u(3, 4 : 2) = 3 12.

7.4 A Case Study i n Detai l i n g and Design : Lo ng Division 335

The permissible decimal string operations of the decimal processor are
summarized in the following example, for the declarations above:

j := 4

k(1) = 1

xU : k) := 2301

y := xU) + 3 - x(k)
z(3 : k) := xU : 3)*6

z(4 :1) := z(3 : 2)

if
z(1) > xU)

then

U(n : 2) = 0, j(1) = 4)

(k(n : 2) = 0, k(1) = 1)

(x = 2301)

(y = 4)

(z = 0138)

(z = 0013)

(3 > 2 = true)

y := y*y
fi

(fails to execute, since y*y = 16, which overflows on
assignment to y)

7.4.3 Deta i l i ng through Di rect Experi ence

Long division can be accomplished by repeated subtraction of the divisor
from the dividend, adding one to the quotient with each repetition. But this
is inefficient, since a large number of subtract operations may be required.
However, if the divisor is aligned with the proper leftmost digits of the
dividend, as in grade-school long division, then quotient digits are deter
mined from highest place down to lowest place, a more efficient process.
Thus, a possible programming strategy is based directly on the digit opera
tions of long division, as taught in grade-school arithmetic, and which corre
spond to operations available in the decimal processor.
The sequence of steps that produces the following display, for example,

1 0 5 3
2 1 7 12 2 8 5 9 6

2 1 7
1 1 5

o

1 1 5 9
1 0 8 5

7 4 6
6 5 1

9 5

336 Writing St ructu red P rograms

uses divisor a = 217 and dividend b = 228596 to compute quotient q = 1053
and remainder r = 95. We can describe this long-division algorithm a step at
a time in digit-by-digit operations. At each step, a new digit must be found
that most nearly divides a sequence of digits by the divisor. We decide to
use the name "partial dividend" for this sequence of digits. For example,
with partial dividend 1 15 and divisor 217, the quotient digit required is 0,
since 217 goes into 1 15 zero times; and with partial dividend 1 159, the
required quotient digit is 5, since 217 goes into 1 159 five times but not six '
times. In order to get the process started, an initial partial dividend must be
identified. It can be found by marking ofT (left to right) an equal number of
digits of the dividend as are found in the divisor, if that partial dividend
equals or exceeds the divisor ; otherwise by marking ofT one more digit. If the .
dividend does not have enough digits to form an initial partial dividend,
then the quotient is zero and the remainder is the dividend, itself. We reflect
this initialization in a new display, as follows :

1 0 5 3
2 1 7 12 2 8 5 9 6

2 2 8
2 1 7

1 1 5

o
1 1 5 9

1 0 8 5
7 4 6

6 5 1
9 5

(mark ofT initial partial dividend)
(enter hdivisor)
(subtract and bring down digit
dividend)
(enter O*divisor)
(subtract and bring down digit for next partial
dividend)
(enter 5*divisor)
(subtract and bring down digit for next partial
dividend)
(enter 3*divisor)
(remainder)

Thus, the partial dividends are, successively, 228, 1 15, 1 159, and 746.
Although a person might make a good guess of the next . digit of the

quotient at each step, a simpler, mechanical procedure is to compare succes
sive mUltiples of the divisor with the partial dividend, and to back up one
mUltiple as soon as a multiple exceeds this partial dividend. Since the same
divisor will be used at each step, we decide to store a table of mUltiples of the
divisor for use from step to step. It may be even better to build up the table
of mUltiples as needed during the division process, since not all multiples
may be needed. For example, we could define a table of multiples, say e, with
1 1 rows of m + 1 digits each for a divisor of m digits. Thus, row 1 is 0 times
the divisor, row 2 is 1 times the divisor, and so on. Note that this table can be
built up by addition, since multiplication is not available in the decimal

7.4 A Case Study in Deta i l ing and Desig n : Lo ng Division 337

processor. We can also keep track of how many multiples have been
computed and stored in e at any point in the process by an index named f
Then, at each step, if more mUltiples are required, we can update table e and
index f accordingly.

During the process each new partial dividend is formed by subtracting
the correct multiple of the divisor from the previous partial dividend and
bringing down the next digit from the dividend. We decide to store these
partial dividends in a digit string, say g, of dimension (m + 1). In terms of
data, a new partial dividend is obtained by (1) subtracting a correct mUltiple
(i.e., row of table e) from the number represented by g, (2) moving digits of g
one place to the left, and (3) bringing down the correct digit from digit string
b, which holds the dividend, into the low-order-digit position of g. The
division process stops when a partial dividend less than the divisor has been
found (possibly 0) and no more digits remain in the dividend to bring down.

The long-division strategy described above can be programmed as fol
lows. We write a top segment first, as shown in Fig. 7 .13. It runs a segment

proc long division(a(m : l), b(n : l), q(p : l), r(p : l))
use long division data
run first partial dividend
while

g(m + 1 : 1) :;1= °
do

run quotient digit
od

corp

data long division data
decimal

a(m : l)
b(n : l)
q(p : l)
r(p : l)
g(m + l : 1)
m
n
p

[divisor]
[dividend]
[quotient, most significant digit is q(1)]
[remainder]
[partial dividend]
[number of digits in divisor]
[number of digits in dividend]
[number of digit positions for quotient and remainder,
assumed sufficiently large]

f [e array pointer]
array e(O : 10) decimal (m + 1) [O.divisor in first row, up to 1O.divisor in

last row]
atad

Figure 7.1 3 Top long-division segment.

338 Writing Structu red Programs

named first partial dividend to compute an initial g, and as long as g + 0, it
runs a segment named quotient digit to compute a q digit, subtract, and form
the next partial dividend (parameter lists not shown). The development of
the first partial dividend segment, shown in Fig. 7.14, is a progression of
three steps, followed by some imagined "stream-of-consciousness" thoughts
by the programmer that led to the successive versions. The quotient digit
segment is developed in Fig. 7.15, likewise in a series of steps.

[First step]

proc first partial dividend
if

(m > n) v (m = n t\ a(m : 1 » b(n : 1))
then

q(p : 1) := 0
r(n : 1) := b(n : 1)
g(m + 1 : 1) := 0

else
if

m = n
then

g(m : 1) := b(n : 1)
g(m + 1) := 0
bp := 0 [b pointer]

else
if

b(n : n - m + 1) � a(m : 1)
then

g(m : 1) := b(n : n - m + 1.)

Programmer's thoughts. This program i s getting complicated. The first then part
is for divisor > dividend, when the partial dividend is 0, and the quotient must
be set to 0 and the remainder set to the dividend. The nested thenpart is for
divisor s dividend, but with the same number of digits. The partial dividend
here should be all the digits of the dividend. The index named bp indicates the
number of digits left in the dividend. The nested elsepart is for more digits in
the dividend than in the divisor. The expression n - m + 1 identifies the least
significant digit of the m leftmost digits of b. It seems better to stop at this
point and record these facts as comments before they are forgotten.

Figure 7.1 4 First partial dividend segment, first step.

' !

. '

7.4 A Case Study in Deta i l i ng and Design : Lo ng Division 339

[Second step]

proc first partial dividend
if

(m > n) v (m = n t\ a(m : 1) > b(n : 1))
then [set quotient to 0, remainder to dividend, partial dividend

to 0]
q(p : 1) := 0
r(n : 1) := b(n : 1)
g(m + 1 : 1) := 0

else
if

m = n
then [bring down all m digits from b into g; set b pointer to

indicate no more dividend digits available]
g(m : 1) := b(n : 1)
g(m + 1) := 0
bp := O

else [bring down necessary leftmost digits from b into g, set b
pointer to point to next available digit in dividend]

if
b(n : n - m + 1) � a(m : 1) [note : b(n - m + 1) identifies

least significant digit of the
leftmost m digits of b]

then
g(m : 1) := b(n : n - m + 1)

Programmer's thoughts. Now the program is more comprehensible. There are
two subcases remaining to be programmed. If the high-order m digits of the
dividend form a number greater than or equal to the divisor, the partial
dividend must be set to these digits, otherwise the partial dividend must be
set to the high-order m + 1 digits of the dividend. The two subcases can now
be finished and the quotient digit computation initialized .

Figure 7. 1 4 (contin ued) Fi rst partial d ividend segment, second step.

340 Writing Structu red Programs

[Third step]

proc first partial dividend
if

(m > n) v (m = n 1\ a(m : 1) > b(n : 1))
then [set quotient to 0, remainder to dividend, partial dividend to 0]

q(p : 1) := 0
r(n : 1) := b(n : 1)
g(m + 1 : 1) := 0

else
if

m = n
then [bring down all m digits from b into g; set b pointer to indicate no

more dividend digits available]
g(m : 1) := b(n : 1)
g(m + 1) := 0
bp := O

else [bring down necessary leftmost digits from b into g, set b pointer
to point to next available digit in dividend]

fi

if
b(n : n - m + 1) � a(m : 1) [note : b(n - m + 1) identifies least

significant digit of the leftmost m
digits of b]

then [bring down m leftmost digits from b into g; set b pointer to next
available dividend digit]

g(m : 1) := b(n : n - m + 1)
g(m + 1) := 0
bp = n - m

else [bring down m + 1 leftmost digits from b into g ; set b pointer to
next available dividend digit]

g(m + 1 : 1) := b(n : n - m)
bp := n - m - 1

fi

do [initialize e array and qp, the quotient pointer]

1:= 0

od
fi

corp

e(f, m + 1 : 1) := 0
qp := O

added data items :
qp [quotient pointer]
bp [dividend pointer]

Fig u re 7.1 4 (continued) First partial d ividend segment, th ird step.

[First step] proc quotient digit
qp := qp + 1
i := O
while

e(i, m + 1 : 1) � g(m + 1 : 1)
do

i := i + 1
if

i >f
then

fi
od

f:=f + 1
e(f, m + 1 : 1) := e(f - 1, m + 1 : 1) + a(m : l)

g(m + l : l) := g(m + 1 : 1) - e(i - 1 , m + 1 : 1)
q(qp) := i - 1

Programmer's thoughts. This program is also getting complicated and could
benefit from some logical commentary while the operations are still fresh in
mind. The whiledo loop must search for (and compute if necessary) the first
row of table e that exceeds the partial result g. The partial result is then
reduced by the proper row of e (the (i - 1) row, since i corresponds to the
first row of e that exceeds the partial result) and the current quotient digit is
set to i - 1.

[Second step]

Figure 7.1 5 Quotient d igit segment first step.

proc quotient digit
qp := qp + 1
i := O
while

e(i, m + 1 : 1) � g(m + 1 : 1)
do [increment i ; ensure ith row of e is available]

i := i + 1
if

i > f
then [set f to point to ith row of e ; set ith row to next

multiple of divisor]
f:=f + 1
e(f, m + 1 : 1) := e(f - 1, m + 1 : 1) + a(m : l)

fi
od [correct multiple is row i - I of e]
do [subtract correct multiple of divisor from partial

dividend and assign quotient digit]
g(m + l : l) := g(m + 1 : 1) - e(i - 1, m + 1 : 1)
q(qp) := i - I [Note : Most significant digit of

od q is q(I).]

Programmer's thoughts. The program is now more understandable. It can be
completed by computing a new partial dividend for the next iteration of the
top segment. If no digits remain in the dividend, then the remainder must be
set to the partial dividend (possibly 0) and the partial dividend set to 0 to
terminate the program.

342 Writi ng Structu red Programs

[Third step]

proc quotient digit
qp := qp + 1
i := O
while

e(i, m + 1 : 1) :s:; g(m + 1 : 1)
do [increment i; ensure ith row of e is available]

i := i + 1
if

i >f
then [set f to point to ith row of e ; set ith row to next multiple of

divisor]
f:=f + 1
e(f, m + 1 : 1) := e(f - 1, m + 1 : 1) + a(m : l)

fi
od [correct multiple is row i - I of e]
do [subtract correct mUltiple of divisor from partial dividend and assign

quotient digit]

od

g(m + 1 : 1) := g(m + 1 : 1) - e(i - 1, m + 1 : 1)
q(qp) := i - I [Note : Most significant digit of q is q(I).]

while
bp > O l\ a(m : l) > g(m + 1 : 1)

do [move partial dividend left one position and bring down next digit from
dividend ; possibly assign 0 quotient digit]
g(m + 1 : 2) := g(m : l)
g(I) := b(bp)
bp := bp - 1
if

a(m : l) > g(m + 1 : 1)
then

qp := qp + 1
q(qp) := 0

fi
od
if

bp = O
then [set remainder to partial dividend, partial dividend to 0]

r(m + 1 : 1) := g(m + 1 : 1)

fi
corp

g(m + 1 : 1) := 0

added data item :
[e table pointer]

Fig ure 7.1 5 (continued) Quotient d ig it segment, third step.

7.1.

th(
fae
in\
int
tar

eru
gn
an
WI!
im
int
tar
del
int
mu
pOI
wa
wa
COl
OUI
thi:
det

7.1J.

Ch:
tiOl
the
for

We
prc

7.4 A Case Study i n Deta i l i n g a n d Desig n : long Division 343

We now have a program for long division that has been written out to
the last detail. But if the program is correct, how will we ever know it? (In
fact, it contains a number of logical errors.) The correctness arguments will
involve at least as many details as the program itself and are sure to tax
intellectual control without an extensive and organized approach. If impor
tant, the proofs can be done, but is it worth the effort?

Although the process of grade school long division is well known and
easy to describe, the foregoing program is not. In fact, the foregoing pro
gramming process illustrates how not to program long division. It represents
an undisciplined mental process, which ignores important aspects of step
wise refinement and which compiles complexities with little thought to their
impact on intellectual control. The programs were not created by expanding
intended functions and then checking correctness, and the logical commen
tary was added after the fact, in an attempt to make sense out of all the
details. In our rush to combine function and efficiency, it was easy to digress
into the discussion of storing multiples of the divisor and of computing such
multiples only on demand by addition, but it was unwise to do so at that
point in the development. But the major flaw in the foregoing development
was in accepting the inherent complexity of dealing with strings of digits in a
way so easy for a person but which requires so much housekeeping for a
computer. We jumped into programming by "stream of consciousness," with
our heads full of the familiar digit-by-digit operations, without pausing to
think of abstractions that could organize, or even circumvent, all those
details. We turn now to a better way to formulate the long-division process.

7.4.4 Desig n t h roug h Stepwise Refi nement

Chastened by the excursion into detailing, we now look for suitable abstrac
tions that can be combined into a provable program. To begin, we return to
the definition of integer division and write the following intended function,
for divisor a, dividend b (a, b > 0, int short for integer part) :

q, r := int(bja), b - int(bja)*a

We know (and can prove) that this function can be carried out by the
program below

scalar a, b, q, r : integer

q, r := O, b
[q, r := q + int(rja), r - int(rja)*a]
while

a s r
do

q, r := q + 1 , r - a
od

344 Writing St ructured P rograms

that treats a, b, q, r as scalar integers and ignores for the moment details of
decimal digit representation. (In fact, we had this division-by-subtraction
strategy in mind all along, but lost ourselves in the details of the more
efficient grade-school implementation.) This program is inefficient ; for ex
ample, a quotient of 946 requires 946 subtractions. But by grade-school
long division, the same quotient could be obtained in just 9 + 4 + 6 = 19
subtractions. Is there a way to systematically reorganize the program into
grade-school long division ? The answer is yes.

First, with a little thought on the mathematics underlying grade school
long division, we rewrite the earlier example, 228596 ...;- 2 17, as follows,
where we recognize that the required digit alignments can be obtain¢ quite
simply, by multiplying divisor mUltiples by the proper power of ten :

divisor multiples partial dividends quotient terms

228596
1 *2 17* 10**3 217000 1 * 10**3 = 1000

1 1596
0*217*10* *2 0 0* 10**2 = 000

1 1596
5*2 1 7* 10** 1 10850 5* 10** 1 = 50

746
3*2 1 7*10**0 65 1 3* 10**0 = 3

95 1053

Thus, the problem can be described as a series of four individual division
operations, each using the divisor multiplied by a power of ten, and each
producing a quotient digit that, when multiplied by the same power of ten,
results in a quotient term. The sum of individual quotient terms is the
desired quotient. This appears to be a useful abstraction, since the decimal
processor can deal with powers of ten by simply shifting digits. Since each
quotient term is computed in the same manner, we propose a fordo frag
ment, indexing from highest quotient place, say 10**h, down to lowest
quotient place, 10**0. The dopart is composed of the integer division pro-

7.4 A Case Study in Deta i l i ng and Desig n : Lo ng Division 345

gram above, with test and operations adjusted by the required power of ten :

set h such that a* 10**h � b < a* 10**(h + 1)
q, r := O, b
[q, r := q + int(rja), r - int(rja)*a]
for

i : E h to 0 by - 1
do [q, r := q + int(rja* 10** i)* 10** i, r - int(rja* 10**i)*a* 10** i]

while
a* 10** i � r

do

od
od [b = a*q + r, 0 � r < a]

Now it remains to determine the value of the parameter /7, which is the
number of zeros required to pad the divisor to the size of the dividend. This
can be done by the following fragment :

do [set h such that a* 10**h � b < a* 10**(h + 1)]
h := O
while

a* 10**h � b
do

h := h + 1
od
h := h - 1

od [a* 10**h � b < a* 10**(h + 1)]

We are now able to combine these abstractions into a program that
carries out the required digit-by-digit determination of q, as shown in Fig.
7. 16.

346 Writi n g Structu red Programs

1 proc long division (a, b, q, r) [q, r := int(b/a), b - int(b/a)*a]
2 scalar a, b, q, r: integer [a, b > 0]
3 do [set h such that a* lO**h � b < a* lO**(h + 1)]
4 h := 0
5 while
6 a* 10**h � b
7 do
8 h := h + 1
9 od

10 h := h - 1
1 1 od
12 q, r := 0, b
13 [q, r := q + int(r/a), r - int(r/a)*a]
14 for

15 i : E h to 0 by - 1
16 do [q, r := q + int(r/a* lO**i)* lO**i, r - int(r/a* lO**i)*a* lO**i]
17 while
18 a* 10 .. i � r
19 do
20 q, r := q + lO .. i, r - a* lO .. i
2 1 od
22 od [b = a*q + r, 0 � r < a]
23 corp

Figure 7.1 6 New long -division program.

The program part of lines 3 through 1 1 that computes a value for h is correct
by direct inspection. Index h is initialized to 0 and is incremented (if at all)
until eventually a* 10**h > b, and we are guaranteed that, on exit from the
loop, h is the largest integer such that a* 10**(h - 1) � b. Note that if a > b,
h is assigned - 1 , and the fordo on lines 14 through 22 is not executed. In this
case, the assignment on line 12 sets q and r to 0 and b, respectively, as
required. Next, the whiledo of lines 17 through 21 has proof as follows :

function
f = (q, r := q + int(r/a* 10**i)* 10**i, r - int(r/a* 10**i)*a* 10**i)

program
whiledo (lines 17-21)

proof
term

r decreased by a* 10**i each iteration so whiletest a* 10**i � r
will eventually fail.
pass

'"

7.4

part

A Case Study i n Detai l i n g a n d Design : long Division

condition q ,

347

a* lO .. i � , a* lO . . i � 'o q1 = qo '1 = '0
q, , := q + 10 .. i,
, - a* lO .. i

q2 = q 1 + lO . . i '2 = '1 - a* 10**i

f

derivations :
condition :

a* lO**i :$ ro

assignments :

q3 = q2
+ int('2/a* lO . . i)*
10 .. i

q3 = q2 + int(r2/a* 10**i)* 10**i

'3 = '2
- int('2/a* 10 .. i)*
a* lO .. i

= q1 + 10**i + int((r1 - a* lO** i)/a* lO**i)* lO**i
= qo + 10**i + int((ro - a* lO** i)/a* lO**i)* lO**i

r3 = r2 - int(r2/a* 10** i)*a* 10**i
= r 1 - a* lO** i - int((r 1 - a* lO**i)/a* lO**i)*a* lO**i
= ro - a* lO**i - int((ro - a* lO** i)/a* lO**i)*a* lO**i

But int((ro - a* 10**i)/a* 10**i) = int(ro/a* 10**i) - 1 , so

q3 = qo + 10**i + int(ro/a* 10** i)* 10** i - 10**i
= qo + int(ro/a* 10**i)* 10**i

r3 = ro - a* lO**i - int(ro/a* lO** i)*a* lO**i + a* lO**i
= ro - int(ro/a* 10** i)*a* 10**i

program function :
(a* lO**i :$ r --+ q, r := q + int(r/a* lO** i)* lO**i,

r - int(r/a* lO**i)*a* lO * * i)
which agrees with the intended function for whiletest true.

pass

whiletest fake (a* lO**i > r)
for a* lO**i > r, int(r/a* lO**i) = 0
and q, r := q, r as is required.
pass

result
pass

given a, r > 0
comp

•

348 Writi ng Structu red Programs

Next, the proof for the fordo of lines 14 through 22 is as follows :

function
f = (q, r := q + int (r/a), r - int(r/a)*a)

program
fordo (lines 14-22)

proof (where dh names the quantity int(ro/a* 10**h),
dh- 1 names int(r t !a* 10** (h - 1)), . . . , do names
int(rh/a* 10** (0)))

part q r

h q, r := q + int(r/a* lOu;) q 1 = qo + dh
* 10**� * 10**h

r 1 = ro - dh
a lOuh

r - int (r/a* lOu;)
a lOu;

h - 1 q, r := q + int(r/a* lOu;) q2 = q 1 + dh - 1 r2 = r 1 - dh - 1

o

* lOu;, * lOu(h - 1)
r - int(r/a* lOu;)
a lOui

a lOu(h - 1)

q , r := q + int(r/a* lOu;) qh + 1 = qh + do
* lOu;, * lOu(O)

rh + 1 = rh - do
a lOu(O)

r - int (r/a* lOu;)
a lOu;

derivations (the leading digit of 10**h identifies the highest place
of q, by definition) :

qh+ l = qo + (dh* 10**h) + (dh+ l * 10** (h - 1))
+ . . . + (do* 10** (0))

= qo + int(ro/a)

rh + 1 = ro - ((dh* 10**h) + (dh- 1 * 10** (h - 1))
+ . . . + (do* 10** (0)))*a

= ro - int(ro/a)*a

program function :
q, r := q + int(r/a), r - int(r/a)*a

result
pass

given a, r > 0
comp

Finally, q, r are initialized to 0, b on line 1 2 (and handle the case for a > b),

/;�

. �",
0� i
" i.

7.1

an

as

di
re,
co
3
m,

N

7.4 A Case Study i n Deta i l i ng a n d Desig n : lo ng D i v i si o n 349

and the function of the program part on l i nes 12 t h rough 22 is th us

q, r := int(b/a). b - int (b/a)*a

as is requi red.
We h ave now developed an abst ract program th at d oes deci mal long

divi sion correctly. Local abst ract operations in the program can now be
reorganized into operations available in t he decimal processo r with h igh
confidence that correctness is preserved . F i rst, t he program part of l i nes
3 th rough 1 1 that com putes h can be programmed as follows, lI s ing a deci
m al string named shift :

do [set 17 such that a* 10* * 17 ::; b < a* 10* * (h + I)]
17 := 0
sh(ft(p : l) := 0
sh(ft(m : 1) := a(m : 1)
while

do

od

sh(ft(p : 1) ::; b(n : 1)

h := /1 + 1
sh(ft(p : 2) := shift(p - 1 : 1)
sh�ft(l) : = 0

17 := 17 - 1
od

Next, the fordo loop of lines 1 3 t h rough 22 can be programmed as fol lows :

[q, r := q + int (r/a), r - int (r/a)*a]
for

i : E h to 0 by - 1
do [q, r := q + int (r/a* 10** i)* 10* * i, r - int (r/a* 1 O* * i)*a* 1O** i]

shift(p : l) := 0
shift(m + i : 1 + i) := a(m : 1)
while

shift(p : l) ::; r(p : l) [a* 10* * i ::; r]
do [q, r := q + 10* * i, r - a* 10** i]

od

q(i + 1) := q(i + 1) + 1
r(p : l) := r(p : l) - shift(p : l)

od [b = a*q + r, 0 � r < a]

proc long division(a(m : 1), b(n : 1), q(p : 1), r(p : 1)) [q, r := int(b/a),
b - int(b/a)*a]

use long-division data
do [set h such that a* lO**h ::;; b < a* lO**(h + 1)]

h := 0
shift(p : 1) := 0
shift(m : 1) := a(m : 1)
while

do

od

shift(p : 1) ::;; b(n : 1)

h := h + 1
shift(p : 2) := shift(p - 1 : 1)
shift(1) := 0

h := h - 1
od
do [q, r := 0, b]

q(p : 1) := 0
r(p : 1) := 0
r(n : 1) := b(n : 1)

od
[q, r := q + int(r/a), r - int(r/a)*a]
for

i : E h to O by - 1
do [q, r := q + int(r/a* lO** i)* lO**i, r - int(r/a* lO** i)*a* lO**i]

shift(p : 1) := 0
shift(m + i : 1 + i) := a(m : 1)
while

shift(p : 1) ::;; r(p : 1) [a* lO**i ::;; r]
do [q, r := q + lO** i, r - a* lO**i]

q(i + 1) := q(i + 1) + 1
r(p : 1) := r(p : 1) - shift(p : 1)

od
od [b = a*q + r, 0 ::;; r < a]

corp

data long-division data
decimal

at ad

a(m : 1) [divisor, a > 0]
b(n: 1) [dividend, b > 0]
q(p : 1) [quotient, q(1) is low order quotient digit]
r(p : 1) [remainder]
shiJt(p : 1) [temporary]
h [divisor alignment value]
m [number of digits in div isor]
n [number of digits in dividend]
p [number of digit positions for q, r, and shift,

assumed sufficiently large]

Figure 7.1 7 Final long -division program.

350

7

c

(
C

7.5 A Case Study i n H e uri sti cs and Rigor : Making Change 351

The resulting program is shown in Fig. 7. 17, with all abstract operations
translated into operations of the decimal processor. Note that these abstrac
tions, which treat a, b, q, r as scalars, appear in the program as logical
commentary to document its design.

To summarize our experience with long division, we first tried creating a
program out of an accumulation of detai ls. When the complexity of all those
details made correctness difficult to determine, we adopted an abstract view
of the problem that y ielded a compact des ign, eas ier to understand and
verify. This design was proven correct and then expanded into operations of
the decimal processor, with design abstractions carried into the expansion
as logical commentary.

7.5 A CAS E ST U DY IN H E U R ISTICS AN D R I G O R :
M A KI N G CHA N G E

7.5.1 Heuristics Versus R i gor

In many cases, a function to be programmed is quite straightforward, even
though filling ih the details may be somewhat ted ious. In such cases, we can
simply write a structured program, using a d irect form of design for the
implementation of the function by means of a self-evident rule. For example,
the air pollution program was a product of d irect design. However, in some
cases, a rule for implementing a function may not be so evident, and an
indirect design approach may be required. In these cases, we d istinguish
between heuristic and rigorous design methods.

A rigorous design is, by definit ion, a design that adm its a self-sufficient
argument for its correctness. In contrast, a heuristic design, by definition,
admits no known self-sufficient argument for its correctness. As with any
mathematical argument, a proof of the correctness of a rigorous design may
be faulty, because of the fallibility of its designer. And indeed, a heuristic
design may be absolutely correct, even though no self-sufficient argument for
its correctness is known. B ut as mathematical experience shows, a rigorous
design wi Ii usually be correot, with reasonable care on the part of its
designers, and a heuristic design for a complex funct ional requirement will
usually lead to errors in some executions of the design. For example, a
heuristic design to prevent dead lock among a set of interrelated asyn
chronous processes, when it fai ls, will permit deadlock ; a heurist ic design to
handle all possible expressions in a programming language will break down
when it encounters an expression it cannot handle. Much current software is
heuristically designed, and then patched and repatched as experience un
covers fai lures.

However, our interest in rigor, rather than heuristics, in design goes
deeper than correctness considerations, to the stability and integrity of the

352 Writi n g Structu red Programs

design itself. A rigorous design survives its implementation and mainte
nance, whereas a heuristic design may not. In this connection, the illustration
of Chapter 1 is worth recalling. Imagine a program written heuristically that
encounters errors in executions and that is fixed as each error is discovered.
After some time, such a program will become highly idiosyncratic, depend
ing on the errors actually encountered. If the same errors occurred in a
different sequence, the resulting patched up program would be different.
Thus, the idiosyncracy depends on the sequence of errors, as well as on the
errors themselves. To continue the illustration, imagine next a designer who
conceives a heuristic design, but with great foresight, imagines every possible
error before testing the program and fixes the design for each error antic
ipated . The program will be error free, but it will still be highly idiosyncratic,
based on the error-removal sequence. I f another programmer writes an
error-free program in the same way, the second program may be entirely
different from the first one.

In contrast, a rigorous design begins with a compelling simplicity that
admits a self-sufficient argument for its correctness, and the implementation
is defined as an elaboration of this design. The design will survive the
implementation, even though mistakes may be made in carrying out the
implementation. The origin of a rigorous design is a creative human mind.
How such a design is to be invented is beyond our power to describe. But its
value is unmistakable. There are several patterns of rigorous design that
recur in programming, most notably in the systematic use of state machines,
formal grammars, and recursive functions. In what follows, we use recursive '
functions to illustrate the distinction between heuristics and rigor, first in
design of a program to make change, and second in design of a program •

to play tic-tac-toe.

7 . 5 . 2 A Change- M a ki ng Problem

Programs that deal with extensive combinatorial computation can often be
designed more easily and surely by the discovery of a recursive property of
the desired computation.

As a first il lustration, consider the problem of making change. A subpro
gram is required for a microprocessor application, to compute change in
vending machines for the Soviet system of coins, with kopeck denominations
1, 2, 3, 5, 10, 1 5, 20, and 50. Specifically, the subprogram is given three data
items :

x
q(l : 8)

result

(change to make, x > 0)

(initial quantities of coins on hand, q(l) = I rs I ,
q(2) = 1 2's I , . . . , q(8) = I 50's I)

(outcome of change-making operation, true or false)

7 . 5 A Case Study i n H e u ri st i cs a n d R i g o r : M a k i n g C h a n g e 353

If change can be made, the program is to reduce q by the required number of
coins in each denominat ion and set res II It to true. Otherwise. if change
cannot be made, q must remain unchanged and reslilt set to false. The
program will be "burned-in" to read -on ly memory, so errors can be fixed
only at great expense, by recal l ing the machines and replacing memories .
Thus, there is substant ial economic mot ivation to produce a correct
program.

7 . 5 .3 A H e u r i st i c Approach a n d Its D i ffi c u l t i es

On first thought the problem seems s imple enough. and a reasonable design
strategy might emerge as follows. Make change out of as many 50's as
possible, then as many 20's as possible. and so on. down to l ·s. i f necessary.
At any point, if the change left to make is O. the coins on hand can be
reduced by the number of co ins used , and reslilt set to trlle. The number of
50's poss ible is limited by q(8), the quantity on hand. and by . \ i tse l f. s ince we
must have (using an array 1/ (1 : 8), with st ructure ident ica l to q. for number of
coins in change)

Now returning 11 (8) 50's means the change yet to be made is

and we have a new change making problem. using only 20·s. 1 5's. l O·s. 5·s.
3's, 2's, and l 's (since no more 50's can help. or are ava i lable. by the choice of
n(8)). This strategy leads to the program of Fig. 7. 1 8 (min for minimum. int
for integer part).

Is the program correct ? As a first test case. if we attempt to make change
for, say, 67 kopecks with 20 coins of each denominat ion on hand. the pro
gram makes correct change :

I 's 2's 3's 5's 10's 1 5's 20's 50's

x q(I) q(2) q(3) q(4) q(5) q(6) q(7) q(8) result

67 20 20 20 20 20 20 20 20
1 7 20 20 20 20 20 20 20 19 (one 50 used)

2 20 20 20 20 20 1 9 20 1 9 (one I S used)
0 20 19 20 20 20 19 20 19 t ru e (one 2 used)

But what if fewer coins are on hand, as in the fo llowing test case where. for

354 Writi ng Structu red Programs

proc changernaker(alt x, q, result)
scalar x : integer
scalar result : logical
array q(8), n(8) : integer
n(8) := rnin(i nt(x/50), q(8))
x := X - (50*n(8))
n(7) := rnin(int(x/20), q(7))

x := X - (20*n(7))

n(2) := rnin(int(x/2), q(2))

x := X - (2*n(2))
n(I) := rnin(x, q(I))
x := x - n(I)
if

x = O
then

q := q - n
result := true

else

fi
corp

result := false

Fig u re 7.1 8 First heuristic change program.

x = 60, the program produces

l 's 2's 3's 5's lO's I 5's 20's 50's

x q(I) q(2) q(3) q(4) q(5) q(6) q(7) q(8) result

60 I 0 I I 0 8 4 3
10 I 0 I I 0 8 4 2
5 I 0 I 0 0 8 4 2
2 I 0 0 0 0 8 4 2
I 0 0 0 0 0 8 4 2 false

when in fact change can be made as

l 's 2's 3's 5's lO's I 5's 20's 50's

x q(I) q(2) q(3) q(4) q(5) q(6) q(7) q(8) result

(one 50 used)
(one 5 used)
(one 3 used)
(one I used)

60
o

o
o

o
o

8
8

4
I

3
3 true (three 20's used)

7.5 A Case Study in H eu ristics and Rigor : Making Change 355

We elect at this point to fix the problems for 50's and 20's, so as to k now how

to handle other similar cases that may arise. First, a fix-up for the 50's
problem is to make change with one less 50, if possible, when change cannot
be made initially, as shown in Fig. 7. 19.

But now we realize that the 50's fix-up is itself complicated, and in fact
makes fixing the 20's problem more difficult. Furthermore, similar problems
may exist with other denominations not yet tested. The attempt to fix the
original program for these fai lures has weakened our confidence in the initial
design. In fact, we are well on the way to a heuristic design that is correct
only up to the last failure discovered.

7.5.4 A R igorous Solution a nd Its Expans i o n

Our heuristic approach o f thinking u p cases to program has clearly led t o

difficulties. Heuristic thinking can work i n simple situations, but the change
problem is turning out to be more complex than anticipated. A rigorous
treatment is required, one that will solve the problem once and for all, for
every possible case, and that can be proven to be correct.

A little reflection reveals that each time a coin is added to the change, a
new problem of exactly the same type results, with a new amount of change
to be made and a new quantity of coins left on hand. Furthermore, the new
problem is smaller than the old, that is, closer to the final outcome. This
stepwise reduction to smaller and smaller problems suggests that a recursive
function can be defined to capture all possibilities for making change from
any initial problem.

356 Writing Structured Programs

proc changemaker(alt x, q, result)
scalar x, xsave, correct50 : integer

scalar result, looking: logical

array q(8), n(8) : integer

xsave := x
correct 50 := 0
looking := true

while

do

looking

n(8) := min(int(x/50), q(8)) - correct 50
x := X - (50*n(8))
n(7) := min(int(x/20), q(7))
x := X - (20* n(7))

n(2) := min(int(x/2), q(2))

x := X - (2 * n(2))
n(l) := min(x, q(l))
x := X - n(l)
if

x = O
then

q := q - n
result := true

looking := false

else

if

n(8) :2 1 /\ correct50 = 0
then

correct 50 := 1
x := xsave

else

fi

result := false

looking := false

fi
od

corp

Figure 7.1 9 Second heu ristic change program.

• J

.. : .. \.
II ,

7.5 A Case Study i n H e uristics and Rigor : Making Chang.e 357

It is not always easy to invent a recursive function. The idea is to define
a funct ion that, when applied to a set of arguments (in this case. s and q). will
yield a new set of arguments to which the fu nct ion can subsequently be
applied, and so on, until t he final outcome is known . One strategy for
inventing recursive functions is to recognize that with each red uction. if a
des ired outcome was possible for the old problem, the des ired ou tcome
shou ld still be possible for the new problem. The des ired ou tcome for the
change problem is "change poss ible," or cp for short . If cp is trlle (orfa lse)
for the original problem, it should be likewise trlle (orfa lse) for each reduced

problem, until the ultimate truth or falsity of cp is known.
A recursive defin ition for the function named change poss ible (cp) can

be written as follows, with line numbers in a column on the left :

Cp(X, q(1), . . . , q(8)) =
2 (x = 0

3 v (x ;:::: 50 1\ q(8) ;:::: I l\ cp(x - 50, q(l), q(8) - I))

4 v (x ;:::: 20 1\ q(7) ;:::: 1 1\ cp(x - 20. q(l) q(7) - L q(8)))

lO v (x 2 I 1\ q(l) ;:::: I 1\ cp(x - l , q(I) - l , q(8))))

The expression on line 1 names the function and its arguments. Line 2
defines cp true if x = 0, t hat is, no change has to be made. I f s i= 0, one of the
expressions on lines 3 th rough 10 may be true, lead ing to a recursive refer
ence to cp with a reduced problem as argument. Otherwise, cp must befalse .
Change making is a numerical problem, but su rpris ingly, th is recursive func
t ion was discovered by posing a logical problem, "Is change possible '?".
whose evaluation will produce t he desired numerical result as a byproduct .

The recursive definit ion for cp defines a "change tree" for every list, (s,
q(l), . . . , q(8)), such that (x, q(l), . . . , q(8)) is the root of the tree, and if the l ist
(y, r(1), . . . , r(8)) is a node in the tree, then every reduced problem of this list
is also a node in the tree. For example, if y 2: 50 1\ 1'(8) 2: 1, then the reduced
problem (y - 50, r(1), . . . , r(8) - 1) is also a node, and so on. Then, it can be
seen that cp(x, q(1), . . . , q(8)) = true if and only if the change tree defined by
(x, q(l), . . . , q(8)) contains a node (y, r(I), . . . , 1'(8)) such that .r = O. I n
illustration, t h e change tree for t h e last test case above

l 's 2's 3's 5's lO's I S's 20's 50's

x q(l) q(2) q(3) q(4) q(5) q(6) q(7) q(8)

30 o o 3 o o 4 5 2

is given in Fig. 7.20 in outline (indented) form. Decremented denominat ions
are in bold type in each reduced problem, and line numbers are shown in a

358 Writi ng St ructured Programs

1 (30, 0, 0, 3, 0, 0, 4, 5, 2)
2 (10, 0, 0, 3, 0, 0, 4, 4, 2)
3 (7, 0, 0, 2, 0, 0, 4, 4, 2)
4 (4, 0, 0, 1, 0, 0, 4, 4, 2)
5 (1 , 0, 0, 0, 0, 0, 4, 4, 2)
6 (1 5, 0, 0, 3, 0, 0, 3, 5, 2)
7 (0, 0, 0, 3, 0, 0, 2, 5, 2)
8 (12, 0, 0, 2, 0, 0, 3, 5 , 2)
9 (9, 0, 0, 1, 0, 0, 3, 5, 2)

10 (6, 0, 0, 0, 0, 0, 3, 5, 2)
1 1 (27, 0, 0, 2, 0, 0, 4, 5, 2)
12 (7, 0, 0, 2, 0, 0, 4, 4, 2)
1 3 (4, 0, 0, I, 0, 0, 4, 4, 2)
14 (1 , 0, 0, 0, 0, 0, 4, 4, 2)
1 5 (12, 0, 0, 2, 0, 0, 3, 5, 2)
16 (9, 0, 0, I, 0, 0, 3, 5, 2)
1 7 (6, 0, 0, 0, 0, 0, 3, 5, 2)
1 8 (24, 0, 0, 1 , 0, 0, 4, 5 , 2)
19 (4, 0, 0, 1, 0, 0, 4, 4, 2)
20 (1 , 0, 0, 0, 0, 0, 4, 4, 2)
2 1 (9, 0, 0, 1, 0, 0, 3, 5, 2)
22 (6, 0, 0, 0, 0, 0, 3, 5, 2)
2 3 (2 1, 0, 0, 0, 0, 0, 4, 5 , 2)
2 4 (1, 0, 0, 0, 0 , 0 , 4, 4, 2)
25 (6, 0, 0, 0, 0, 0, 3, 5, 2)

Figure 7.20 Change tree for (30, 0, 0, 3, 0, 0, 4, 5, 2) in outline form.

column on the left. Nodes on lines 2, 6, and 1 1 are adjacent to the root node
on line 1 ; nodes on lines 12, 15, and 18 are adjacent to the node on line 1 1 ,
etc. One node (line 7) has y = 0, so that cp(30, 0, 0, 3, 0, 0, 4, 5, 2) = true, as
found above. But the subtree on lines 1 1 through 25, with root at line 1 1, has
no node with y = 0, so that cp(27, 0, 0, 2, 0, 0, 4, 2) = false. Note that the tree
contains duplicated nodes ; for example, the nodes on lines 10, 17, 22, and 25
are all identical.

In the heuristic design of Fig. 7. 19, a strategy for an imagined subset of
reduced problems was defined, with un imagined cases added as failures were
discovered. No such fix-up is required here ; in fact, the correctness of the cp
function is self-evident. Every possible combinatior. of coins is embodied in
the function and enumerated in the tree. If change can be made for some
initial amount, it can be made by one (or more) of these combinations. Thus,
the change problem is equivalent to searching a tree for a desired outcome.
There is no guarantee against errors in writing the required tree-search
program, but its function is now known precisely, and thus its correctness
can be determined.

7 . 5 A Case Study i n H eu ristics a n d Rigor : Making Cha nge 359

There is no straightforward way to program recursive functions. In fact,
some recursive functions cannot be programmed at all, and no general
mathematical theory exists for deciding in advance whether a particular
recursive function can or cannot be programmed. But in this case the change
function definition always reduces the total number of coins considered in
the recursions ; this finite, monotonic property puts change in a class of
recursive functions that can indeed be programmed.

Our interest now is to write a program that searches the change tree
defined by (x, q(1), . . . , q(8)) for a node (y, r(1), . . . , r(8)), with y = 0. If such a
node is found, the change required is given by the path to that node. If no
such node exists, then change cannot be made. Since the outcome of a path is
known only by proceeding to its end (change possible or not), it makes sense
to carry out a depth-first search. The tree is deepest toward the smaller
denominations ; thus, for efficiency, the search should begin with the largest
denomination and work depth-first toward the smallest. Furthermore, even
though the tree contains duplicate nodes, it is sufficient to visit only the first
occurrence of such a node, since the value of cp is the same for subsequent
occurrences.

Nodes can be generated as needed, rather than computed and stored in
advance. The tree is traversed by following paths and backing up, if neces
sary, to branch to other paths. That is, when nodes on a path are exhausted
without making change, the program must retrace to a node where the
subpath of the next smaller denomination can be explored. This "depth-first,
largest-to-smallest denomination" strategy is similar to the heuristic design
above, but it is systematically applied to the entire tree. Thus, in retrospect,
the original heuristic solution is now seen to traverse only one possible path
in the change tree.

In order to simplify record keeping during the search of the change tree,
we adjoin an additional "denomination value," i, to the list (x, q(I), . . . , q(8)).
Thus, a typical node of the augmented change tree is of the form (x, q(I), . . . ,
q(8), i). The meaning of i is that denomination i is the next candidate to be
used in forming a reduced problem. For example, if i = 8, the candidate
problem is

(x - 50, q(I), . . . , q(8) - 1, 8)

(Of course, unless x � 50, q(8) � 1, this list does not represent a reduced
problem.) At each point of the search, the next smaller denomination is
found by decrementing i. Next, in order to further simplify the search, we
permit i to be decremented to 0, meaning all denominations for the corre
sponding x, q have been tried for creating candidate reduced problems.

The state of the search of the change tree will be recorded in a stack
named nodestack, which maintains the path from the root of the change tree
down to the next node to be examined for reduced problems. Going down

360 Writing Structured Programs

the tree adds members to the stack ; going across the tree preserves the size of

the stack ; backing up the tree deletes members from the stack. The search

begins with a stack of a single member, the root of the change tree; a
complete search of all nodes in the change tree results in an empty stack ; the
discovery that change possible is true results in a stack from which change

can be computed.
Finally, in order to design a provable program to carry out the search,

we define a "virtual" sequence of search states, called "tour," that is ordered

by the depth-first, largest-to-smallest denomination principle. A search state
will be a stack (nodes tack), and the sequence tour is defined as follows :

1 . The first member of the sequence tour is a stack with a single element,

the triple (x, q, m) where x, q defines the root of the change tree, and m is
the index of the maximum denomination (in this case, 8).

2. The last member of the sequence tour is the empty stack, and the empty
stack has no successor (so the first empty stack in the sequence is the last
member).

3. For any nonempty stack of the sequence tour, the next member is the

stack determined by the following three-part rule. If the topmost ele
ment of nodestack is denoted by (x, q, i), the next member is determined
in the following order of priority :

a) depth-first : next level, same denomination if possible.

If (y, r) is a reduced problem defined by (x, q, i) (that is,
x � q(i) 1\ q(i) � 1 � y = x - q(i), r = (q(1), . . . , q(i) - 1, . . . , q(8))),
form the next member of tour by adding (y, r, i) to the stack.

b) largest-to-smallest : current level, next smaller denomination, if
possible.

If (x, q, i) do_es not define a reduced problem (as in case (a) above)
but i > 0, form the next member of tour by replacing (x, q, i) by (x, q,
i - 1) on the, top of the stack.

c) back up : previous level, next smaller denomination, if possible.

If i = 0, form the next member of tour by removing the top member
from the stack and replacing the new top member (x, q, i) (if any)
with (x, q, i - 1).

It is clear, by construction, that the stacks of the sequence tour have only

elements of the form (y, r, i), where (y, r) defines a node in the change tree
defined by the initial (x, q). Furthermore, the stacks of the sequence are
necessarily distinct, because rules 3b and 3c decrement the denomination
index monotonically. Finally, every unique node (y, r) in the change tree
defined by the initial (x, q) will be represented in an element (y, r, i) of some

,
"

7 . 5 A Case Study i n H eu ristics and Rigor : Making Change 361

stack in the sequence tour. This is so because reduced problems (y, r) will be
found in depth-first, largest-to-smallest denomination order by rule 3, begin
ning with the root of the change tree given by rule 1 .

The program of Figure 7.2 1 searches the sequence tour of stacks for a
reduced problem (y, r) such that y = O. The search takes the form of an
initialized whiledo program, and its proof of correctness will involve the
standard forms for the sequence and the whiledo. In particular, the search is
carried out by a program part of the form

h ; F

where

F = while p do g od
and where the following definitions apply :

1 . [h] : initialize nodestack to the first member of the search sequence tour,
namely, a stack with a single element (x, q, m).

2. [F] : trans form nodestack either into the first member of the search se
quence tour from here on with topmost element (y, r, i) such that y = 0 or
into the empty stack if no such topmost element exists.

3 . [g] : transform the current member of the search sequence tour into the
next member, according to rules 3a, b, c, above.

4. p: provide termination of the whiledo when a member of the range of [F]
is found .

Note that the whiledo program function [F] deals solely with transforma
tions on nodes tack. The argument of [F] is an initial nodestack, the first
member of the sequence tour, and the value of [F] is the final nodestack, the
last member of the sequence tour. To emphasize this functional property,
local variables cng, coins, k are used for nodestack elements in the whiledo, in
place of x, q, i.

The program can be verified informally as follows :

1 . next node segment : By inspection, the nested alternations carry out [g] .
2. changemaker segment : The whiledo proof (Fig. 7.22) is the only one not

obvious.

The changemaker program of Fig. 7.2 1, while transparent to the fore
going search strategy, is somewhat awkward in its explicit and complete
construction of the member stacks of the sequence tour. For example, the
procedure nextnode stacks and unstacks an element (x, q, i) predictably at
the end of each invocation and the beginning of the next. The reorganized

r
362 Writing Structu red P rograms

proc changemaker(alt x, q, result) [if change can be made for x, set to 0, reduce

q by coins used, and set result to true; else set result to fake]
2 use changedata
3 do [h : initialize nodes tack to the first member of the search sequence tour,

namely, a stack with a single element (x, q, m)]
4 nodes tack := empty
5 top(nodestaek) := x, q, m
6 od
7 eng := x
8 [F : transform nodestaek either into the first member of the search sequence

tour from here on with topmost element (y, r, i) such that y = 0 or into the
empty stack if no such topmost element exists]

9 while
10 nodestaek =1= empty /\ eng > 0
1 1 do [g : transform the current member of the search sequence tour into the

next member, according to rules 3a, b, c]
12 run nextnode (alt nodestaek, eng, coins, k, fix val)
13 od
14 if
15 nodestaek =1= empty
16 then
1 7 x, q, i := top(nodestaek)
18 result := true
19 else
20 result := false
2 1 fi
22 corp

data changedata
stack

nodestaek [element is (x, q, i)]
array

eoins(8): integer [local value of q in whiledo]
q(8): integer [elements are numbers of coins on hand, i.e., l 1's l , . . . ,

1 50's I J
val(8): integer init (1 , 2, 3, 5, 10, 15, 20, 50) [elements are monetary values

of corresponding q elements]
scalar

atad

eng: integer [local value of x in whiledo]
i : integer [problem index]
k : integer [local problem index in whiledo]
m: integer init (8) [number of denominations]
result: logical [value of change possible function, true or fake]
x: integer [change to be made]

Figure 7.21 Changemaker program.

7.5 A Case Study i n H eu ri stics a n d Rigor : Maki ng Change 363

proc nextnode(alt nodestack, cng, coins, k, fix, val) [g : transform the current
member of the search sequence tour into the next member, according to
rules 3a, b, c]

2 cng, coins, k := top(nodestack) [stack read, factored out of implementation

3 if
4 k > 0
5 then
6 if

of 3a, b, c below]

7 cng � val(k) 1\ coins(k) � 1
8 then [3a. depth-first : next level, same denomination]
9 top(nodestack) := cng, coins, k

10 cng, coins(k) := cng - val(k), coins(k) - 1
1 1 top(nodestack) : = cng, coins, k
12 else [3b. largest-to-smallest : current level, next smaller denomination]
13 k := k - 1
14 top(nodestack) := cng, coins, k
1 5 fi
16 else
17 if
18 nodestack =1= empty
19 then [3c. back up: previous level, next smaller denomination]
20 cng, coins, k := top(nodestack)
2 1 k := k - 1
22 top(nodestack) := cng, coins, k
23 fi
24 fi
25 corp

Figure 7.21 (continued)

changemaker program (named changemakerl) of Fig. 7.23 eliminates such
unnecessary stacking and unstacking of nodes, but must provide a whiledo
loop exit criteria in the logical variable named looking. The program consists
of a single segment, and local variables cng, coins, k used in the whiledo of
the changemaker program have been replaced by variables x, q, i. Initial x, q
are saved in xs, qs, and restored prior to exit, if necessary. Note that with
unnecessary stacking and unstacking eliminated, the search state of the
sequence tour now involves x, q, i, as well as nodestack.
Figures 7.24 and 7.25 show PLjI implementations of the changemaker

and reorganized changemaker (changemakerl) subprograms, along with some test results for changemaker.t (The programs that invoke change
maker and changemaker 1 and print test results are not shown.) The change-

t Programs coded and tested by Larry I. Schwartz.

364 Writi ng Structu red Prog ra ms

function
F: transform nodestaek either into the first member of the search sequence tour

from here on with topmost element (y, r, i) such that y = 0 or into the empty
stack if no such topmost element exists.

program
whiledo, lines 9- 13.

proof
term

The whiletest eventually fails, either because a node is encountered such that
eng = 0, or the sequence tour is exhausted. The length of tour is finite, since (1)
stacks of tour are distinct, by definition, and (2) each stack i s o f finite depth,
because the corresponding path in the change tree is of finite depth.
pass

whiletest true (nodestaek f empty 1\ eng > 0)
g 0 F = F because F, when applied to the sequence tour as modified by g,
produces the same effect as F applied to the original sequence tour.
pass

whiletest false (nodestaek = empty v eng = 0)
The identity is required, since the transformation defined by F is complete.
pass

result
pass

Figure 7.22

maker, nextnode, and changemakerl program designs and implementations
are cross-referenced for better readability and correctness checking. Line
numbers from the PDL text appear in the PLjI programs in a column on
the left, next to the corresponding PLjI statements . Alternately, cross
referencing can be accomplished by duplicating logical commentary and
abstract operations from the PDL in the PLjI programs.

7.5.5 R edefi n i ng the Problem

Finally, reflecting on the original problem statement, we note that the vend
ing machine manufacturer may be better off with the original heuristic algo
rithm. It doesn't always make change when possible, but the manufacturer
may find it a better solution because it might require a simpler micro
processor. And besides, a vending machine customer never really knows
whether change is possible or not ! In this case, the program and its program
function should be examined more closely to make sure of their properties
and adequacy for the task.

proc changemaker l (alt x, q, result) [if change can be made for x, set x to 0,
reduce q by coins used, and set result to true ; else set result to fake]

2 use changedata
3 xs, qs := x, q
4 nodestack := empty
5 i, looking := m, true
6 [F: transform nodestack either into the first member of th(! search sequence

tour from here on with topmost element (y, r, i) such that y = 0 or into the
empty stack (and set looking to fake) if no such topmost element exists]

7 while
8 x > 0 /\ looking
9 do [g : transform the current member of the search sequence tour into the

next member according to rules 3a, b, c, and set looking to false if the
member is empty]

10 if
1 1 i > 0
12 then
13 if
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38

x � val(i) /\ q(i) � 1
then [3a. depth-first : next level, same denomination]

top(nodestack) := x, q, i
x, q(i) := X - val(i), q(i) - 1

eke [3b. largest-to-smallest : current level, next smaller
denomination]

fi
else

if

i := i - 1

nodes tack =f empty
then [3c. back up: previous level, next smaller denomination]

x, q, i := top(nodestack)
i = i - I

else[signal tour is exhausted]
looking := false

fi
fi

od
if

x = o
then

result := true
else

x, q, := xs, qs
result := fake

39 fi
40 corp

added data items for changedata:

scalar xs : integer [saved initial value of x]
scalar look ing : logical [signals tour is exhausted]
array qs(8) : integer [saved init ial values of q]

Figure 7.23 Reorganized changemaker program.

366 Writing Structu red Programs

[Changemaker segment]

CHANG E M A K ER : PH OC I X . Y . R � SU L T) ;
/ * I F C � NGE C A N s t: MADl: FOR X o S E T X T O (J . R E OUCE 0 3Y

RI:UU lR E O C O I IIIS . Ar-.u Slo 1 R I: �ULT T R UE ; OT Ht .. W I SE L t A V [X AND U U N Oi ANGED AND SE T RE SULT FAL S E . */

XI NCL l.Of_ � D A T A DI:C L AR AT I ONS * / CM D A T A;

� S T A CK I N DEX = 0 ;
5 �T ACK -I N O �X : S T A CK I ND E X + I ;

S T ACK�X I S TA C� I ND t xT = X ;
S T ACK . O I S TACK- I N D I: X . *) : 0 ;
STACK . l C S TACK- I NO l X) : M ;

7 CNI> = X ; -
9 DO WH IL E IS T ACK I NOEX > 0 L CNG > 0) ;

1 2 CALL N E XT_NODE ;
CALL PR IN T_ST AC K I S T AC K . S T A CK_ INDE X . C NG . CC I IIIS . K) ;

t,j l N O ;
1 4 I F 1 5 S T A CK I N) E X > II 1 6 T H f r-. -

vU e 1 1 X = S TA CK . X I S T ACK I N DE X) ; o : S TACK . O I � TAC � - I N DE X . *) ;
I : STACK . I I ST ACK-I NOl X) ;
s T A C K I ND E X = � T ACK I N D l X - I ; I b R E-SUL T : ° 1 ° 0 ; / * ,RuL * /

l N I.:' ;
1 9 f:: LSL 2 U kl SULT = ° U ' d ; / * F AL S f */

R E 1 UR N ;

[Cmdata segment]

0E CL A f<l 1 S TA C K (5 0)
.2 X
.2 0 1 c d . 2 I

. :.T A CK_ I N) E X

/ * S TA C K VAk l AB LE S

C � C L AkE /* �RR A Y VAR I AoLE S */
CU I NS I b)

/* L UC AL V ALUE S O� a I N DU W H I L I: */ . tl i b)
/ * E Ll: MUHS ARE It Of C l! I !'<S ON H A N D . I . � • • 1 1 5 1 • • • • • 1 5 0S I */

. VAL I S) I N 1 J I I . 2 . 3 . 5 . 1 0 . 1 5 . 20 . 50)
/* � Ll: M E N T S A R E MON� T A k Y V ALUE S O F CURR f SP O ND I � G 0 E L E M o S*/

DELL A � / * S C A L A R VA� I A b LES */
CNG

. 1
/* L OC A L V A L UE uF X I N UOW H I L E */

/* P HU 3 L E M J NO E l(*/
.K F I Xf O � I N

/ * L OC A L PHU cJL E ,� I NDl X I N DOWH I L E * / . M I N l l l e)

/* N lJI4 B t R OF DENO,., I NA T I ('N.> */
. R E S UL T b I T I I)

. X
/* V A- UE O F CHANGE I-o SS l i::ILl: F- U N C T I O N . ' f'<UE OR F ALS E * /

/'* C HA N (' t. T e BE M A UE

Figure 7.24 Changemaker in PL/I with test results.

*/

.'

t"

7.5 A Case Study i n H eu ristics a n d Rigor : M aking Change

[Nextnode segment]

� 4 5 b 7

'J

I I,
I I

1 :':-
I ;' 1 4

I t.. 1 7
I t. 1 <,1

2 "

<:J 2 2

Nf X l _ND D � : P � OC E D UH E '

L N� : S l A CX . X C S TA C K I ND E �) ;
C O I N 5 : S TA CK . o e S 1 ACK I N GE X • •) ;
K = � T A C K . l e 5T A C K I N DEX) ;
5 1 AC K _ I N D � X = S TACK_ I ND � X - I ; I f-

K > ()
l H L N

I t- L "G >= V AL e K) Co C O I N S C K) >= I
l H � N D O ;

S l A CX I ND L X = � l A LK I NDf. X + I ;
5 T A cx ; x e S 1 A C K I N o� xT : CN u ;
S l A CK . o e S 1 A CK- I NO f X • •) = C O I N S ;
S l A CK . l e S 1 A CK - I NO � X) : K ;
L N � = C NG - VAL e K) ;
C D I NS e K) : C D I N S e K) - I :
S T ACK I NOE X : 5 1 A CI<. l 'iIJ E X + I ; �l ACK;x e S T A CK I ND L XT = C N <> ;
S T A cx . u e S TA CK-I NO L X • •) = C O I N � ;
S T A UC . I C S T A C K- I ND L X) = K. ;

t ND ;
-

t L S L

t L � l I F

O U '
K = K - I ;
S l A CX I ND E � =" S T A L K I t-;LJt.X + I ;
� T A CK ; x e S T A CK I ND E X) = C N <> ;
S T A cx . v e S T A CK - I ND t X • •) = C O I N S .
S l A CK . l C S T A C K- l flV t X) = K .

t "' O ; -

::. lA C K I N u i:. X > l
l H =- N -

DO ;
P lJ T S K I P � O I T C ' o A C K I N� UI-") C A) ;
C N l.- = S T A C K . X C ::' l AC K l NDl X l ;
C u IN S =- ST ACK . O C S "f ACK I N ()t;: X • •) ;
K =- S T A CK . l e S 1 A C K _ I � D �X) ;
S T AC K I ND t X =- ST A C K l � ol X - I ;
K =- K -- I ;

-

5 T AC K I N D t- X = � T A L K I N of X + I ;
:; T N: K ; X e S T AC K I NLJ L XT =- C N(, ;
S T AC K . o e S T AC K - I N o l X • •) = CO I N S ;
::' l I£ K . l e ST ACK- I N D I X) =- K ;

t N O ; -

Figure 7.24 (continued)

367

p

368 Writing Structu red Programs

[Changemaker test results]

TL ST I : CHANGE I€EO£D � 90. MAKE CHANGE £XACTL Y . W I T HOUT B ACK I NG .

CO I N OUANT H i t S CN HAND :
5 OF VALUE I 5 OF VALUE 2 5 OF V ALUE 3 I OF VAL UE 5 � OF VALUE 10 � OF VALUE I � 0 OF V ALUE 20 5 O F VALUE SO

WORK I N G X I 01 0 2 0 3 0 4 OS 06 07 0 8 STACK X I 01 02 0 3 04 05
4 0 8 5 5 5 I 5 5 0 4 2 40 8 5 5 5 I 5

I 9 0 8 5 5 5 I 5

WORK I NC X I 01 02 03 (,,4 05 U6 Q7 0 8 STACK X I 0 1 0 2 0 3 04 0 5 0 6 0 7 Q8
4 0 7 � 5 5 I 5 5 0 4 2 4 0 7 5 5 5 I 5 5 Ii 4

I 90 8 5 5 5 I 5 5 0 5
WUHK ING X 1 01 "2 03 "4 05 06 07 0 8 S TA C K X I 0 1 02 0 3 04 05 0 6 0 7 Q8

4 0 b 5 :. 5 I 5 5 0 4 2 4 0 6 5 � � I 5 5 0 4
I 90 6 5 5 5 I � 5 0 5

WORK I NC X I 01 02 03 04 O� "6 07 0 8 S l A CK X I 0 1 0 2 0 3 04 05 " 6 07 08
25 6 5 � 5 I 5 4 0 4 3 25 b 5 5 5 I 5 4 0 4 :c 4 0 6 5 5 5 I 5 5 0 4

I 9 0 £> 5 5 5 I 5 5 0 5
WORK ING X I 01 02 03 04 O S 06 07 0 8 S l A CK X I 0 1 02 0 3 04 05 06 0 7 08 1 0 6 5 � 5 I 5 3 0 4 4 1 0 6 5 5 5 I 5 3 0 4 3 2� 6 5 5 5 I 5 4 0 4

2 40 b 5 5 5 I 5 5 0 4
I 90 b 5 5 5 I 5 5 0 5

WORK I NC X 1 "I 02 03 04 05 "6 07 0 8 S TA C K X I 0 1 02 0 3 04 05 0 6 0 7 Q8 1 0 5 5 5 5 I 5 3 0 4 4 1 0 5 5 5 5 I 5 3 0 4
3 25 6 5 5 5 I 5 4 0 "
2 40 6 5 5 5 I 5 5 0 "
I 90 6 5 5 5 I 5 5 0 5

WORK INC X I "I 02 03 04 05 06 07 08 STACK X I 0 1 0 2 0 3 04 as Ob 0 7 Q8 0 5 5 5 5 I " 3 (/ 4 5 0 5 5 5 5 1 4 3 0 "
4 1 0 5 5 5 5 I 5 3 0 "
3 25 b 5 5 t. I 5 " 0 "
2 40 b 5 5 � 1 5 5 0 "
I 9 0 8 5 5 .. I 5 5 0 5

RESULT : TRUE

CO I N QUANT I T l E S D'i HAN D :
� UF V ALUE I � OF VALUI: 2 5 OF VALUE 3 I OF VAL U f 5
4 OF VALUE 10 3 OF VALUE 1 5 0 OF V ALUE 20 " OF VALUE s o

Figure 7.24 (continued)

TEST Z : CHANGE NE � OE D � 1 0 . CAN O T MAKE C HA NGE . E V E N w i TH B ACK I NG .

CO I N QUAN T I T I E � []\I HAN D :

I OF VALUE I 0 OF VALUE Z
o OF VALUE 10 0 OF VALUE I �

WOR K ING X I (,)1 az a3 a 4 a5 a6 a7 Ob
1 0 7 I 0 Z O O 0 0 0

WORK ING X I al OZ 03 a4 a:; a6 a7 a 8
1 0 b I 0 z o o 0 0 0

WORK I NG X I al OZ a3 04 05 06 a7 ab
1 0 5 I 0 Z o o 0 0 0

WORK I N G X I 01 02 03 a4 a5 06 a7 a �
1 0 4 I 0 2 0 0 0 0 0

WORK ING X
1 0

WORK I NG X
7

WORK ltoG X
4

WORK I NG X
4

WORK ING X
4

IIIORK I NG X
3

WORK ING X
3

BACK I NG UP

WORK ING X
4

BACK I NG UP

WORK IllIG X
7

WORK ING X
7

WORK I NG X
6

WORK ING X
6

BACK I N G UP

WORK I NG X
7

BAC K I NG UP

WORK INC, X
1 0

WORK I NG X
1 0

WORK I NG X
9

WORK ING X
9

!:sACK INC, U P

WO R K I NC, X
1 0

WURK ING X
1 0

I al az (,)3 a4 a5 a6 a7 a 8
3 1 0 2 0 0 0 0 0

I 01 az 03 04 05 a6 a7 a 8
3 1 0 1 0 0 0 0 0

I al az 03 a4 05 a6 a7 08
3 1 0 0 0 0 0 0 0

I al OZ 03 0 4 05 06 07 08
Z 1 0 0 0 0 0 0 0

01 OZ 03 04 05 a6 07 o s
1 0 0 0 0 0 � 0

al az 03 04 0 5 06 07 0 8
0 0 0 0 0 0 0 0

I 01 OZ 03 04 0 5 06 07 08
o 0 0 0 0 0 0 0 0

I 0 1 az 03 04 05 06 07 0 8
o I 0 0 0 0 0 0 0

I al OZ 03 04 05 06 a7 08

Z 1 0 1 0 0 0 0 0

01 OZ 03 04 05 06 07 0 8
1 0 1 0 0 0 0 0

QI OZ a3 04 0 5 u6 07 08
0 0 1 0 0 0 0 0

I QI OZ 03 0 4 05 06 07 0 8
0 0 0 I 0 0 0 0 u

I 01 az 03 04 0 5 06 07 08
o 1 0 1 0 0 0 0 0

I 01 02 03 04 05 06 07 0 8
Z I 0 Z O O 0 0 0

01 az 03 04 05 06 07 08
I 0 Z O O 0 0 0

01 OZ 03 0 4 05 06 07 08
0 0 2 0 0 0 0 0

I 01 OZ 03 04 05 06 07 0 8
o 0 0 Z O O 0 0 0

I 01 OZ 03 04 05 06 07 08
o I 0 Z O O 0 0 0

I 01 az 03 a4 05 06 a7 0 8
o I 0 Z O O 0 0 0

RESUL T = FAL SE
CO I N OUANT I T I E S ON HAN D :

I OF VALUE I 0 OF VALUE Z
o OF VALUE 10 0 OF VALUE 1 5

Z O F V ALUE 3
o OF VALUE ZO

S TA CK
I

S TA C K
I

ST ACK
I

S T ACK
I

S TA CK
I

S T A C K Z
I

S TA C K
3
2
I

S T ACK
3
Z
I

S T ACK

3
Z
I

S T A CK
4
3
,
I

S TA CK
4
3
2
I

S TACK

3
Z
I

S TACK

Z
I

S T A C K

2
I

S T A CK

3
2
I

S T ACK
3
2
I

.STACK
Z
I

S TA CK

I
S TACK

I

STACK
Z
I

S TA CK
Z
I

STACK

I

S T ACK

X
1 0

X
1 0

X
1 0

X

1 0

X
1 0

X
7

1 0

X "
7

1 0

X
4
7

1 0

X
4
7

1 0

X
3
4
7

1 0

X
3
"
7

1 0

X
4
7

1 0

X
7

1 0

X
7

1 0

X
6
7

1 0

X
6
7

1 0

X
7

1 0

X

1 0

X
1 0

X
9

1 0

X
9

1 0

X
1 0

X

Z OF VALUE 3
o OF V ALUE Z O

o OF VAL UE 5
o OF VAL UE 50

I 01 az 0 3 0 4 05 06 0 7 08
7 1 0 Z 0 0 0 0 0

I 01 OZ 0 3 0 4 05 06 0 7 08
6 I 0 2 0 0 0 0 0

I 01 a z 0 3 04 05 ot. 07 os
5 1 0 Z O O O O O

01 0 2 0 3 04 0 5 06 0 7 08
1 0 2 0 0 0 0 0

I 01 0 2 0 3 04 05 06 0 7 a�
3 1 0 2 0 0 0 0 0

I 01 O Z 0 3 04 05 06 07 a8
3 1 0 1 0 0 0 0 0
3 I 0 2 0 0 0 0 0

I 01 a2 0 3 04 05 0 6 0 7 (,)8
3 I 0 0 0 0 0 0 0
3 1 0 1 0 0 0 (, 0
3 I 0 Z O O 0 0 0

I 01 0 2 0 3 0 4 05 06 0 7 os
2 1 0 0 0 0 0 0 0
3 1 0 1 0 (, 0 0 0
3 1 0 2 0 0 0 0 0

I 01 02 0 3 04 0 5 06 07 06
1 1 0 0 0 0 0 0 0
3 1 0 1 0 0 0 0 0
3 I 0 2 0 0 0 0 0

I 01 OZ 0 3 04 0 5 06 0 7 08
1 0 0 C O O O O O
1 1 0 0 0 0 0 0 0
3 I 0 I 0 0 0 0 0

3 1 0 2 0 0 0 0 0

I 01 02 0 3 0 4 05 0 6 0 7 as
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
3 1 0 1 0 0 0 0 0
3 1 0 2 0 0 0 0 0

I 01 02 0 3 04 0 5 ab 0 7 os
0 1 0 0 0 0 0 0 0
3 I 0 I 0 0 0 0 0
3 1 0 Z O O O O O

I 01 OZ 0 3 0 4 05 ab 0 7 os
2 1 0 1 0 0 0 0 0
3 1 0 2 0 0 0 0 0

I 0 1 0 2 0 3 04 05 0 6 0 7 08
1 1 0 1 0 0 0 0 0
3 1 0 2 <1 0 0 0 0

I 01 0 2 0 3 0 4 0 5 0 6 0 7 os
1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0
3 I 0 2 0 0 0 0 0

I 01 0 2 0 3 04 05 0 6 0 7 08
0 0 0 1 0 0 0 0 0
I 1 0 1 0 0 0 0 0
3 1 0 2 0 0 0 0 0

I 01 02 0 3 04 05 06 0 7 08
0 1 0 1 0 0 0 0 0
3 I 0 2 0 0 0 0 0

I 0 1 0 2 0 3 04 0 5 0 6 0 7 os
2 I 0 2 0 0 0 0 0

01 0 2 0 3 0 4 a5 06 0 7 08
I 0 2 0 0 0 0 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 Q8
0 0 2 0 0 0 0 0
1 0 2 0 0 0 0 0

I 01 02 0 3 04 05 06 0 7 08
0 0 0 2 0 0 0 0 0
1 1 0 2 0 0 0 0 0

I 01 OZ 0 3 0 4 0 5 06 0 7 os
0 1 0 2 0 0 0 0 0

01 0 2 0 3 04 05 06 0 7 os

o OF VAL UE 5
o OF VALUE 5 0

370 Writing Structured Programs

TEST 3 : �HANGE NEEDED ; 3 8 . MAKE CHANGE B Y BAC K I N G .

CO I N OUAN T I T IES ON HAN D :
o OF V A Lue I 4 OF VALue �
o OF V ALUE 1 0 , OF VALUE I �

WORK ING)(
36

WURK I NG)(
3 8

WORK I N(>)(
2 3

WO R K I NG)(
8

WORK ING)(
(;

WORK I NG)(
b

I 01 U2 O� 0 4 as Ub 07 Ub
7 0 4 0 1 0 2 0 0

I 01 (J2 03 (;/4 Q� 06 07 U 8
6 0 4 U I 0 2 0 0

I 01 02 03 04 as 06 07 0 8
6 0 4 0 1 0 1 U 0

I 01 02 03 04 05 U6 07 U 8
6 0 4 0 1 0 0 0 0

I , QI 02 03 04 as Ub 07 0 8
5 0 4 � I 0 0 0 0

I UI (;/2 03 04 05 06 07 0 8
4 0 4 U I 0 0 0 0

WORK I NG)(I �I 02 03 04 US Ob 07 0 8
3 4 0 4 0 0 0 0 0 0

WORK INC,)(I 01 02 03 04 O� Ob 07 0 8
3 3 0 4 � 0 0 0 0 0

WORK I N<.)(I 01 02 03 04 as 06 07 0 8
:3 2 0 4 0 0 0 1> 0 0

WONK I NG)(I 01 U2 03 04 O� U6 07 U S
I 2 0 3 0 0 0 0 I> 0

WORK I NG)(
I

WOR K I NG)(
1

BACK INC, UP

weRK ING)(
3

01 02 03 04 05 U6 07 0 8
o 3 0 0 0 0 0 0

I 01 02 U3 04 05 06 07 be
o 0 3 0 0 0 0 0 0

01 02 03 04 05 06 U7 0 8
o 4 0 0 0 0 0 0

o OF V ALUE 3
o OF V ALUE 2 0

S TA C K
1

S TA C K
I

S l ACK
2
1

S TA C K
3
2
1

STA C K
3
2
1

S l ACK
;)
2
1

STACK
4
3
2
1

S T A'CK
4
3
2
I

S TA C K
4
3
2
1

S l A C K
5
4
3
2
I

S TA C K
5
4
3
2
1

S l A C K
5
4
3
2
I

S TACK
4
3
2
I

)(
38

)(
38

)(
23
38

)(
8

2 3
3 8

)(
8

23
36

)(
8

23
38

)(
3
8

23
38

)(
3
8

23
38

)(
3
8

23
38

)(
1
3
8

23
38

)(
1
3
8

2 3
38

)(
I
3
8

23
38

)(
3
8

23
38

Figure 7.24 (continued)

I OF V ALUE 5
o OF VALUE 5 0

1 01 02 0 3 04 05 Ob 0 7 oe
7 0 4 0 1 0 2 0 0

.")

I 01 02 0 3 04 as 06 0 7 cae �.
6 0 4 0 I 0 2 0 0'

I 0 1 02 03 04 05 06 0 7 Q8 .�
6 0 4 0 1 0 1 0 0 '
6 0 4 0 1 0 2 0 0

I 0 1 02 03 04 05 06 07 Q8
6 0 4 0 1 0 0 0 0
6 0 4 0 1 0 1 0 0
6 0 4 0 1 0 2 0 0

1 01 02 03 04 as 06 07 cae
5 0 4 0 1 0 0 0 0
6 0 4 C> I 0 1 0 0
6 0 4 0 1 0 2 0 0

I 0 1 02 0 3 04 as 06 0 7 Q8
4 0 4 0 1 0 0 0 0
6 0 4 0 I 0 1 0 0
6 0 4 (> 1 0 2 0 0

I 01 02 03 04 05 Ob 0 7 cae
4 0 4 0 0 0 Ci O O
4 0 4 0 I 0 0 0 0
to 0 4 0 1 0 1 0 0
6 0 4 0 1 0 2 0 0

I 01 02 0 3 04 as 0 6 0 7 Q8
3 0 4 0 0 0 0 0 0
4 0 4 0 1 0 0 0 ..
6 0 4 0 1 0 1 0 0
(, 0 4 � 1 0 2 0 0

I 01 02 03 04 as 06 07 08
2 0 4 0 0 0 0 0 0
4 0 4 0 1 0 0 0 0
6 0 4 0 1 0 1 0 0
6 0 4 0 I 0 2 0 0

I 01 02 03 04 as Ob 0 7 Oft
2 0 3 0 0 0 0 0 0
2 0 4 C O O O O O
4 0 4 0 1 0 0 0 0
b 0 4 0 1 0 1 0 0
6 0 4 0 1 0 2 0 0

1 01 02 0 3 04 O� 06 0 7 Ott
1 0 3 0 0 0 0 0 0
� 0 4 0 0 0 0 0 0
4 0 4 0 1 0 0 0 0
6 0 4 0 1 0 1 0 0
6 0 4 0 1 0 2 0 0

• 01 02 0 3 04 05 06 0 7 06
Ci 0 3 0 0 0 0 0 0
2 0 4 0 0 0 0 0 0
4 0 4 0 1 0 0 0 0
6 0 4 0 I 0 1 0 0
6 0 4 0 1 0 2 0 0

• 01 U2 0 3 04 05 0 6 0 7 Oft
1 0 4 0 0 0 0 0 0
4 0 4 0 1 0 0 0 0
6 0 4 0 1 0 1 � 0
6 0 4 0 1 0 2 0 0

7.5 A Case Study in H euristics a n d Rigor : Maki n g Change 371

WORK I � x I 01 02 03 04 05 Q6 07 08 s n. C K x I 01 02 0 3 04 05 06 07 Q8 3 0 0 4 0 0 0 0 0 0 4 3 0 0 4 0 0 0 0 0 0 3 8 4 0 4 0 I 0 0 0 0 2 23 6 0 4 0 I 0 I 0 0
I 38 6 0 4 0 I 0 2 0 0 BACK I NC> UP

wORK I NC> X I 01 02 03 04 05 06 07 08 S TA C K X I 01 02 0 3 04 05 06 0 7 Q8 8 3 0 4 0 I 0 0 0 0 3 8 3 0 4 0 I 0 0 0 0
2 23 b 0 4 0 I 0 I 0 0
I 38 6 0 4 0 I 0 2 0 0

WORK I NG X I 01 02 03 04 05 06 07 0 8 S TACK X I 01 02 0 3 04 05 06 0 7 08 8 2 0 4 0 I 0 0 0 0 3 e 2 0 4 0 I 0 0 0 0
2 23 6 0 4 0 I 0 I 0 0

I �8 6 0 4 0 I 0 ? 0 0
WORK ING X I 01 02 03 04 05 06 07 08 S l ACK X I 01 02 0 3 0 4 05 06 07 06 6 2 0 3 0 I 0 0 0 0 4 6 2 0 3 0 I 0 0 0 0 3 8 2 0 4 0 I 0 0 0 0 2 23 6 0 4 0 I 0 I 0 0

I 38 6 0 4 0 I 0 2 0 0
WOR K I NG X I 01 02 03 04 05 06 Q7 08 S TACK X I 01 02 0 3 0 4 0 5 06 0 7 OS 4 2 0 2 0 I 0 0 0 0 5 4 2 0 2 0 I 0 0 0 0 4 6 2 0 3 0 I 0 0 0 0 3 6 2 0 4 0 I 0 0 0 0 2 23 6 0 4 0 I 0 I 0 0

I 38 6 0 4 0 I 0 2 0 0
WORK I NG X I 01 02 03 0 4 0 5 0 6 07 08 S TACK X I 01 02 0 3 04 05 06 0 7 08 2 2 0 I 0 I 0 0 0 0 6 2 2 0 I 0 I 0 0 0 0 5 4 2 0 2 0 I 0 0 0 0 4 6 2 0 3 0 I 0 0 0 0

.:} 3 8 2 0 4 0 I 0 0 0 0 2 23 6 0 4 0 I 0 I 0 0
I 38 6 0 4 0 I 0 2 0 0

'h�. WORK ING X I 01 02 03 04 05 06 07 0 8 S l A CK X I 01 02 03 04 05 06 07 08
0 2 0 0 0 I 0 0 0 0 7 0 2 0 0 0 I 0 0 0 0 ' ." 6 2 2 0 I 0 I 0 0 0 0 5 4 2 0 2 0 I 0 0 0 0 4 6 2 0 3 0 I 0 0 0 0 3 8 2 0 4 0 I 0 0 0 0 2 23 6 0 4 0 I 0 I 0 0 " , I 38 6 0 4 0 I 0 2 0 0

RESUL T = TRUE

CO I N OUANT l T I E. S 0. HAND : o OF VALUE I 0 OF VALUE 2 0 OF V ALUE 3 I O F V AL UE. 5 o OF VALUE 10 0 OF VALUE 1 5 0 OF VALUE 20 o OF VALUE 5 0

END OF HUN.

Fig u re 7.24 (continued)

.� ,.

372 Writing Structured P rograms

[Changemakerl segment]

.. 5
7 1 0 1 1 1 2 1 3 1 4

1 5
I t.

1 7

I d
I '"
2 1
2 2 2 3 , ..

,7
2 &

3 1
3 ;:
"':;S
:;S4 35 36
37
30

�HANG E M A KER l : P R O C t X . Q . W[$UL I , ;
/ * I F C hA N G � C A N B E M A De F O W X . �E T X T U O . R E D UC � 0 B Y

RE U U IR ':' D C O I NS . A N D S � T R!: '>ULT T R UE ; CT HER lIf l 5E Lt..A V E x
AN D 0 Ur.CHANGED AND S E T RE SULT F A LS t:: . */

X I NCLUOE /$ DATA DE CLAk ATI O N 5 */ CM I O A T A ;

XS = x ; us � 0; 5 T At� I N O t X � 0 ; I = M;
LOOK I Nt:. = " 1 · t3 ; 00 WH I L E � > 0 & LOO K I NG ' ;

I F
I > 0

TH� N
I F

X > = VA L (I) & U (J) > = 1
T He N

DO ;
S TA CK I N DLX = S TA C K I ND E X + 1 ;
S TA t K�X (STACK I ND E XT = x ;
S lACK . 0 (S 1 A C K

-
I ND E X • •) = a ;

5 1A C K . I (5 TACK
-

I ND £ X) = 1 ;
X = ;II - V AL (I T ; u (1) = U (I) - I ;

(.ND .
L LS E

I = I - I ; LL 5t:: I F
S T A O<._ I ND E X > 0

THfcN
DO ;

X = STACK .X (5 T AC K_ I N DEX) ; o = S T A CK .Q (S 1 ACK I N utX . *) ;
I = STACK . I (ST A C K

-
I Nu�X) ;

S TA CK I ND E X = S T ACK I ND E X - 1 ;
I = 1-- I ;

-

PUT � I L E (SYSPR I N T) SK I P (2)

E N D ;
[L5 E

E D I T (" S AC KUP : X = · .X . " 1 =. " . 1 . "
C A . F C 2) • A • F C :2) .A

LO O K I NG = " 0 " " ;
CALL PR INT_S 1 AC K C S T A C K . S T AtK_ I NO!:X . X .0 . I ' ;

LND ;
I F

X '" \I
l H�N

Rt.SULT ::. I l l S ;
ELSE 00 ;

X =- X S; u :: u s:
R l SU L T ' 0 · 11 ;

�_ND ;
ht::TUR N ;

�NO C HA "' G EM A K ER I ;

0 = " . 0 ,
.8 F (3 » ;

Figu re 7.25 Reorganized changemaker in PL/I .

'".

' ,.\

I�
' . >

�,

" .

7.6 Another Case Study i n H eu ristics and Rigor : Tic- Tac- Toe 373

[Cmldata segment]

IJ t: CL A RE 1 � T A C K (5 0) . .. X .2 0 1 b) . 2 I
. � T ACK _I "" t. X

/ . � T A CA V A R I ABLE� . /

u !:: CL ARE / . ARR A Y VA R I A B L � S . / U l b) / . E LE Mt:.NT S AkE It uF Lul NS uN HAND . I . E • • 1 1 S I • • • • • 1 5 05 1 . /

. U !> (8) / . S AV E l) C O py lJF a ./

. V AL I S) 1 " 1 T l l . ';' . 3 . 5 . 1 (' . I � . ;>O . 5,,) /. E LE M E N T S ARE M O N t T A R Y V A LUt S O P C URR l S P O N D J N � Q C L CM · S . /

UE CL A Rt. /. �C A L A R V A R I ABL t. S
I

/. P IU B L E I'4 I ND E X
. LUU K I N � b l T l l) /. S IGNA L!> T OUR 1 5 EXHhU J T t U . M I N 1 1 (6) / . NlJo48 E R OF D E N UM J N A T I U N�
. R E 5 UL T b l l l l)

/ . V AL U E O F CHA NGt. PO S � 1 9 L t. F u NCT I O N . T Rut UR F AL S E
. x

/. C HA NGE T u bE I'4AOE: . X S
/. S AVEl) C U� Y OF X

Figure 7.25 (continued)

7.6 A N OTH E R CAS E ST U DY IN H E U R IST I CS AN D
R I G O R : TIC-TAC-TO E

7.6.1 Tic-Tac-Toe

./

./

./

./

./

. /

. /

The game of tic-tac-toe provides an example for illustrating the difference
between rigor and heuristics-one that has practical meaning for today's
software design problems. Tic-tac-toe is simple enough to develop a rigorous
strategy for play, but complicated enough that many program designers,
faced with a comparable problem in software, will settle for a heuristic
strategy. While a heuristic strategy is more easily developed, such a strategy
becomes more complex and ad hoc as experience develops failures ; but a
rigorous strategy provides a coherent, permanent plan from which con
tinued optimization can be carried out in a well-controlled manner. There is
a crucial difference between fixing a program whose design has failed and
increasing the efficiency of a correct design by rigorous stepwise program
refinement or reorganization. In the first case the design has been degraded,
with more potential danger, while in the second it has been better imple
mented with no lingering liability.
In what follows, we illustrate three approaches to programming tic-tac

toe. The first, a casual solution, enumerates possible board situations and
responses, but is soon overwhelmed by the sheer number of possibilities. The
second, a heuristic solution, develops rules for play similar to rules humans
use ; for example, "win if possible, otherwise play in priority order, center
square, any comer square, any side square." Such a design accounts for some

374 Writing Structu red Programs

reasonable moves but fails in many situations, thus suggesting additional
criteria of play, leading to fixing the design, uncovering other failures, and
more fixing. The resulting design may be capable of perfect t ic-tac-toe,
but it will be difficult to prove it, short of exhaustive analysis, itself hard to
prove complete, and so on. The third approach utilizes a recursive function
for the best possible outcome of any game, which can be used to design a
program capable of playing perfect tic-tac-toe.

7.6.2 A Di rect Approach

We all know how to play tic-tac-toe from childhood experience. How do we
program it ? More precisely, how do we program a player, say taking the side
of x , to find the best move from any possible point in a game, when either
x or � plays first ? For example, the player may be asked to take over play
initiated by someone else. A reasonable start, if x has the first move to any
ofthe nine squares, is to place an x token in the center square, and we know
from experience that correct play from here on leads to a draw. If � has the
first move to any of the nine squares, the best choice for x is still the center
square (if it is open) ; otherwise, a corner square, and we have covered all
possible 0- and I-token boards (no moves entered and one move entered).

Next, consider 2-token boards. With an x move to the center square
and an � move, some positions lead to wins, some to draws, some to losses ;
for example, an � move to a corner square

leads to at least a draw because x can force a draw, as shown next, and win
if � does not block at every � move :

N *I=� NX � *x � �x � �x � tl*x �

x --+ x --+ x --+ x --+ x x --+ � x x --+ � x x

x x x x � x � x � x � x

But for an � move to a side square

7.6 Another Case Study i n H eu risti cs a n d R i gor : Tic-Tac-Toe 375

an x win can be (orced by going to an opposite corner square

and x can win on the next move, no matter how � responds. By symmetry,
we have now covered all 2-token boards if we moved to the center square
first.

But what if we were asked to take the seat of an x player who had
started on a side square, and � replied to the center ? The situation is

,1: Some diagramming shows #x WX x �x x f#x X �x x

� --+ � --+ � --+ � � --+ x � �
,

x x x

will get at least a draw. Similarly, if � replied to an adjacent comer

the forced set of moves =t4x f.l=X �x *.t=x � �x �

x --+ x --+ x --+ x --+ x x

� x � x � x �

will get at least a draw. Are there other side cases ? Yes, for example,

376 Writing Str uctu red Programs

and a win can be forced by going to

where x can win on the next move no matter how � responds. Another
corner case is

and a win can be forced from here by going to

Still another side case is

from which a draw can be guaranteed, as follows :

Are there any other side cases ? No, by symmetry, as the following board
shows :

x 6
2 4 7

3 5 8

We have considered cases 1 through 5 for the f) move and cases 6, 7, 8 are
similar by symmetry to cases 1, 2, 3, respectively.

7.6 Another Case St udy i n H e u ri st i cs a n d R i gor : T i c - Ta c - Toe 377

Next, what about the 2-token boards beginn ing with a corner square?

x 3 6
4 7

2 5 8

The cases, with symmetry accounted for. are 1 . ') 4. 5. 8 for which we
determine

gets a win

gets a win

gets at least a draw

gets a win

gets a win

By th is t ime, we have done cons iderable invest igat ion, hoping no m is
takes have been made, and have covered cases of 0-, 1 -, and 2-token boards.
We have covered

cases so far (somewhat overstated, with symmetrica l cases included). The
number of d ist inct boards to consider for 0, 1, 2, . . . , 8 tokens presen t is

378 Writing Structured Programs

cases to be covered (somewhat overstated, with winning boards included),
giving approximately 82/5920 < 2 % of cases considered thus far, so we are
not getting very far very fast ! In fact, it is now apparent that this approach
will not lead to any practical program design at all.

7.6.3 A Heu ristic Approach

Since enumerating next moves has turned out impractical, we now attempt
to develop a strategy for finding the best next moves where "best" is defined
by some heuristic evaluation of the current board status. Specifically, con
sider a strategy defined by the following program, with array argument
named b (for board) :

proc tictactoe(b)
run winifpossible
if

-- win
then

fi
corp

run bestmove

The winifpossible segment can examine each of the eight lines on a board
(three across, three down, two diagonal) to determine if a win is possible in
one move for x . If not, the bestmove segment can determine the best move
to make according to the following strategy. For any line on the board, a win
is possible for x if the line is blank or contains one x but no �'s (any line
with two x 's and no � would have been found by the winifpossible segment).
A reasonable heuristic strategy is to identify those lines where a win is still
possible and play the square where the greatest number of such lines inter
sect (in case of ties, choosing, say, the first such square looking left to right,
top to bottom). Thus, when a play is made to a square on two or more
winning lines, a multiple threat may be created, which leads to a win. For an
empty board, the line intersection counts for each square are

3 2 3

2 4 2

3 2 3

(i.e., four lines intersect at the center square, three at each corner square, and
two at each side square). This corresponds to the intuitive strategy of "play

.�

7.6 Another Case Study i n H eu ristics and Rigo r : Tie-Tae-Toe 379

center square if possible, otherwise a corner, otherwise a side" often used by
tic-tac-toe players.

In terms of data, we can represent any current board status in a one
dimensional array named b as follows, numbering squares across, then
down, with possible element values x , � or l' (for blank) :

Array b board
columns

...A...

b(l) b(2) b(3)

board
b(4) b(5) b(6)

rows

b(7) b(8) b(9)

Triples of square numbers composing each of the eight lines on the board
can be defined in a two-dimensional array named line, where the first three
rows list the square numbers on board rows, the next three rows list the
square numbers on board columns, and last two rows list the square num
bers on board diagonals :

Array line

1 2 3

line numbers 1 1 1 2 3
square numbers

assigned to 2 4 5 6
b rows 3 7 8 9

on b rows

line numbers 4 1 4 7
square numbers

assigned to 5 2 5 8
b columns 6 3 6 9

on b columns

line numbers 7 1 5 9
square numbers

assigned to 8 3 5 7
b diagonals

on b diagonals

The winifpossible segment will require a two-dimensional array that defines
the three board line configurations for which a win is possible for x on the
next move. We name the array wp (for win pattern) :

380 Writi ng Structu red Prog rams

Array wp

1
2
3

1

�
x
x

2 3

x
�
x

x

; ! win possible patterns

With these data structures in mind, the winifpossible segment can be defined
as shown in Fig. 7.26 (data declarations and parameter list not shown).
Next, the bestmove segment will require an array similar to the wp

array, but containing board line patterns for best moves, given that a win is
not possible. We name the array bp (for best pattern) :

Array bp

1 2 3

1 � � � l best move 2 x � �
3 � x � r patterns
4 � � x

Lines (see definition of array line, above) that intersect at each board square
can be defined in a two-dimensional array of line numbers named intersect.
F or example, the line numbers of those lines that intersect at square 5
(center square) are 2 (middle row), 5 (middle column), 7 (upper left to lower
right diagonal), and 8 (lower left to upper right diagonal). A zero value in
the array indicates that no third or fourth line intersects that particular
square :

Array intersect

2 3 4

1 1 4 7 0
2 1 5 0 0
3 1 6 8 0

b array 4 2 4 0 0 line numbers
square 5 2 5 7 8 that intersect
numbers 6 2 6 0 0 at given square

7 3 4 8 0
8 3 5 0 0
9 3 6 7 0

7.6 Another Case Study i n He uristics and Rigor : Tic-Tac-Toe 381

proc winifpossible
win := fake
i := O
while

i :::; 8 /\ "" win
do [(i + 1 line of board = any win pattern -. win := true)]

i := i + 1
j := O
while

j :::; 3 /\ "" win
do [(ith line of board = j + 1 win pattern -. win := true)]

j :=j + 1
if

b(line(i, 1)) = wp(j, 1) /\
b(line(i, 2)) = wp(j, 2) /\
b(line(i, 3)) = wp(j, 3)

then
win := true

fi
od

od
if

win
then [win game by placing third x in blank square of ith line of board]

if

fi
corp

b(line(i, 1)) = l'
then

b(line(i, 1)) := x
eke

if
b(line(i, 2)) = l'

then
b(line(i, 2)) = x

eke

fi
fi

b(line(i, 3)) := X

Figure 7.26 Winifpossible segment.

382 Writing Structured Programs

The status of each line of the board can be recorded in an array named best,

best(l : 8)

recording a 1 for each elemen t of best for which the corresponding board line
matches any bp array pattern, recording a 0 otherwise. Finally, a one
dimensional array named tot (for totals), numbered identically to the b
array, can be used to store intersecting line status (l or 0) totals for each
square :

Array tot

tot(1)
tot(4)
tot(7)

tot(2)
tot(5)
tot(8)

tot(3)
tot(6)
tot(9)

Based on these data definitions, the bestmove segment can be defined as
shown in Fig. 7.27. Note that two additional segments named findbestlines
and makemove are required at the next level, as shown in Figs. 7.28 and 7.29.
With these data structures and program segments in hand, we now try

out some test cases. For example, given the first board below (x moves
next) our heuristic strategy gets a win for x :
Next, given a board where a win is not possible on the next move (best
pattern intersection totals shown in blank squares) our heuristic strategy
likewise gets a win : � � 2 *� x � � x tl4� x

1 x 2 � x � � x 1 � � x
2 1 2 2 1 2 x

But what if from the second board above, � made a smarter move as follows,
blocking the x win and permitting a win for �: *H� x �� x �� x

1 x 2 � x x � � x x � 0 1 � �

" ,

,

7.6 Another Case Study i n H eu ristics and R i gor : Tic-Tac-Toe 383

proc bestmove
run findbestlines
for

i : E 1 to 9
do [tot(i) : = sum of best pattern line intersections for ith square]

tot(i) : = 0
for

j : E 1 to 4
do

if
intersect(i, j) i= 0

then

fi

if
best(intersect(i, j)) = 1

then
tot(;) : = tot(;) + 1

fi

od
od
max, move : = 0, 0
[set move to blank square number with largest tot array value]
for

k : E 1 to 9
do

if
tot(k) > max 1\ b(k) = }?

then
max, move : = tot(k), k

fi
od
run makemove

corp

Figure 7.27 Bestmove seg ment.

It now occurs to us that this situation can arise frequently ; for example, in
play from an empty board, our heuristic strategy likewise permits a win for
�:

3 2 3

2 4 2

3 2 3

384 Writ i n g Structu red Prog rams

proc findbestlines
for

i : e 1 to 8
do [(ith line of board = any best pattern -+ best(i) := 1 1 true -+ best(i) := 0)]

best(i) := 0
for

j : e l to 4
do

if
b(line(i, 1)) = bp(j, 1) 1\
b(line(i, 2)) = bp(j, 2) 1\
b(line(i, 3)) = b p(j, 3)

then

fi
od

od
corp

best(i) := 1

Figure 7.28 Fi ndbestl ines seg ment.

proc makemove
if

move =1= 0
then [make best move]

b(move) := x
else [make first available move]

k := 1

fi
corp

w,hile
k � 9 1\ move = 0

do
if

b(k) = l'>
then

move := k
else

k := k + 1
fi

od
b(move) := x

Figure 7.29 Makemove segment.

r .
I

7.6 Another C a se Study i n H e u r i st i c s a n d R i g o r : T i c -Ta c -Toe 385

The problem is easy to solve, t hough. by add ing a procedure to block
possible wins on the next move by O. before look ing for a bes t move for x . A
new array for check ing losing pat terns is required. which we name loss :

Array loss

1
2
3

2 3
loss possible
patterns

The reorgan ized top segment is as fo l lows :

proc t ictactoe(b)
run win ifpossible
if

- win
then

fi
corp

run block loss
if

- blocking
then

run bestmove
fi

The block loss segment is shown in Fig. 7.30. (The bestmove. findbest l ines,
and makemove segments are unaffected by the fix.)

We now have a program that, if correct (no minor assumpt ion at t h is
point !), wins if possible and defends against possible losses before bui ld ing
threats of i ts own . Thus, for an empty board, the program now produces, for
example,

3 2 3

� � � 2 4 2

3 2 3

�

� 2

x 2

2 2 2

� w� * x � x � x x

� �

w' � *li x x � � x x � � x x 0

� 1 0 � � �

386 Writing Structured Programs

proc blockloss
blocking := fahe
i := 0
while

i ::s; 8 1\, blocking
do [(i + 1 line of board = any loss pattern -+ blocking := true)]

i := i + 1
j := O
while

j ::s; 3 1\, blocking
do [(ith line of board = j + 1 loss pattern -+ blocking := true)]

j :=j + 1
if

b(line(i, 1)) = loss(j, 1) 1\
b(line(i, 2)) = loss(j, 2) 1\
b(line(i, 3)) = loss(j, 3)

then
blocking := true

fi
od

od
if

blocking
then [make blocking move in ith line]

if

fi
corp

b(line(i, 1)) = �
then

b(line(i, 1)) := x
else

fi

if
b(line(i, 2)) = �

then
b(line(i, 2)) = x

ehe
b(line(i, 3)) = x

fi

Figure 7.30 Blockloss segment.

7.6 Another Case Study i n H eu ristics and R i gor : Tic-Tac-Toe 387

which gets a tie, where the initial program produced a loss. Does the
fixed-up program always win if possible ? With a little thought, we realize the
answer is no, since given the following board, for example, the new program
still permits a win for �:

1

2 2

� il � N� �� �� ��
1 3 2 -+ x -+ 1 x 1 -+ x -+ x -+ x -+ x �
� 1 2 � � 1 1 � � � � x � � x �

But if the program had played x to a side square from the third board
above, a tie would have resulted instead of a loss :

#� j� I� IX � IX � x -+ x -+ x -+ x -+ x x
� � � � � x � � x � � x

So here is a new problem to be solved, perhaps by reorganizing the block loss
segment just added to anticipate this "double threat" in its symmetrical
forms and to block possible losses . But it is sure to bring more complication
to an already complicated program, and there is no guarantee that we
have found all failure cases. In fact, we are well on the way, once again, to an
idiosyncratic program that is correct only up to the last known failure.

7 .6.4 A R igorous Desig n fo r Tic-Tac -Toe

Having seen the complexities of a heuristic approach to tic-tac-toe, we now
look for a rigorous treatment, using a recursive function . A convenient
function appears to be one that defines the outcome from any possible
situation with perfect play by both players from there on (not assuming
perfect play up to that point, of course). Then the basic idea of the recursion
will be to reformulate perfect play from any point as a perfect move followed
by perfect play thereafter. But before defining the recursion in more detail,
some preliminary simplifications and abstractions will be convenient.
First, we consider only the x player problem, in order to keep the

definitions below free of player designation. (The � player problem is ob
tained simply by interchanging Ws and x 's on the board.) Next, we will use
informal abstractions of data types with convenient operations, tests, and
orderings for later programming into more concrete data types. In particu
lar, we define data types named outcome, square, and board as follows :

388 Writing St ructu red Prog ra ms

1. outcome (0 E outcome)
outcome = {win, draw, lose}
operation - (minus) is defined as

o - 0

WIn lose
draw draw
lose win

transitive relation > (greater than) is defined as

win > draw > lose

2. square (s E square)

(1 . 1)
(1 .2)

(1 .3)

square = { x , l'), f)} (2. 1)
operation - (minus) is defined as (2.2)

3. board (b E board)

s -s

board = {b I array b(3, 3) 1\ (b(i, j) E square,
1 :S; i :S; 3, 1 :S; j :S; 3)}

operation - (minus) is defined as r-b(I , I) -b(I , 2)
-b = - b(2, 1) -b(2, 2)

-b(3, 1) - b(3, 2)

-b(l , 3)] -b(2, 3)
- b(3, 3)

(3 . 1)

(3 .2)

Next, we define a function named value, to be redefined recursively later,
directly as follows :
value = {(b, 0) I b E board, 0 E outcome ; 0 is the outcome

to x player in situation defined by b with
x player to move, if possible, and with
perfect play by both players from this point on}

. .

. l�

J

7.6 Another C a se Study i n H e u r i st i cs a n d R i go r : T i c -Tac- To e 389

For example,

value (=H=)= draw value (W) = win

value (fr) = lose va lue (itt) = draw � �
In order to define value recurs ively, we furt her define a function named
result and a pred icate named end, both with domain board :

result = { (b, 0) 1 0 = win, draw, or lose, respect ively,
if b has more, equal, or less x l ines
than � l ines}

end = {(b, z) I z = true i f b has no blanks or at least
one x line or � l ine, otherwise z = false)

(3 .3)

(3 .4)

We also define a data type named move, with associated funct ions legal and
newboard :

4. move (m E move)

move = {(i , j) 1 1 S; i S; 3, 1 S; j S; 3 }
legal = { ((b, m), z) I b E board, m E move,

z = (b(m) = t6)}
newboard = { ((b, m), c) I b E board, m E move,

c E board, and c(m) = x ,

c(i, j) = b(i, j) for (i, j) =1= m)
(newboard(b, m) wi l l be abbreviated as b + m)

Then, for example,

result (: I : I :) = lose result (: I : I;) = draw

(4. 1)
(4.2)

(4.3)

390 Writing St ructu red Programs

end (#) = false

legal (�, (2, 2)) = true legal (# , (1, 2)) = false

neWbOMd (#, (2, 2)) = *
neWboard (#, (1, 2)) = #

Note that the result, end, legal, and newboard functions are defined for any
members of board and move, not just ones that can arise in legal tic-tac-toe
play.

Now the value function can be redefined with the following recursive
rule, as we explain next :

value(b) = (end(b) -+ result(b) I
'" end(b) -+ max{ - vaiue(- (b + m)) l Iegal(b, m)})

The first term of this conditional rule deals with the case that no move is
required of the x player and gives the outcome directly. The second term
requires that the x player select a perfect move to maximize the outcome
possible from b by a choice of a specific value of m from the legal moves
available. In particular, working from the inner terms out,

value(- (b + m))

is the outcome (win, lose, or draw) for the () player if the x player chooses
move m in board b ; next,

-value(- (b + m))

is the outcome for the x player ; finally, the best outcome possible for a legal
move by the x player is

max{ - value(- (b + m)) I legal(b, m)}

Any m that achieves this maximum will be a perfect move, as required. For

r

7.6 Another Case Study in H e u ristics and R i gor : Tic-Tac -Toe 391

example,

value (*¥) = win,

because

and result (*¥) = win

Also,

value (�) = m� (- value (�) , - value (�) ,

- value (iffi))
= max(- lose, - win, - win)

where the first of the max operands can be seen to be (- lose) through the
next application of the recursion, and the other two operands seen to be
(- win) by two applications of the recursion. Therefore,

value (: I ; I :) = max(win, lose, lose)

= win

by the choice of the first operand, namely move(3, 1).
In general, the recursion defines a tree of moves by both players, each

path in the tree ending when either an x line or � line arises, or when the
board becomes full. In fact, this recursive rule defines outcomes for boards
that cannot arise from legal play, for example,

value (ill¥.) = win

392 Writi ng Structu red Programs

Such an extension does no harm, avoids the cumbersome question of
r 1

defining a domain of board values reachable by legal play, and allows a
simpler function definition.

We can translate the recursive rule for the value function directly into
program form, as shown in Fig. 7.3 1 (with data as defined above), assigning
value(b) to the name val. The program produces an assignment to val of win,
draw, or lose, that is, it evaluates the recursive function for a given board.
The corresponding next move can then be determined as a reorganization of
this program, as we will see.

The program is an ifthenelse, just as specified by the recursive rule. The I thenpart gives the value of val directly ; the elsepart is a sequence that finds
.

the maximum required by the rule, using an initialized fordo followed by the
assignment of the maximum to val. Within the dopart of the fordo, the if then
considers only legal moves, and invokes the procedure recursively. The ini-
tial, free operations on b, which bracket the procedure call, save and restore
the situation known at the point of the call. Note that the fordo provides
implicit initial, free operations on m that save and restore move choices.
The initial, free operations on v, bracketing the major elsepart, save and .
restore the maximum found so far for each call of the procedure.

proc tictactoe
if

end (b)
then

val := result(b)
else

fi
corp

initial v := lose
for

m : E move
do

if
legal(b, m)

then

fi
od

initial b := - (b + m)
run tictactoe
free b
v := max(v, - val)

val := v
free v

Figure 7.31 Tictactoe program.

7.6 Another Case Study in Heuristics and Rigor : Tic-Ta c-Toe 393

An informal proof of the correctness oftictactoe can be carried out in two
inductions on the number of nonblanks in b, say I b l , the first induction to
show termination, the second induction to show the correctness of the assign
ment to val. First, if I b I = 9, the predicate end(b) is true and tictactoe term
inates. Also, if t ictactoe term inates for any initial b such that I b I = i > 0, then
tictactoe terminates for any b such that I b I = i - I , since I b I is increased
by 1 in the elsepart. Therefore, tictactoe terminates for any b such that
I b I = 9, 8, . . . , 0, that is, for any b. Second, if I b I = 9, tictactoe assigns
result(b) to val as required ; also if tictactoe assigns the correct value to val
for any initial b such that I b I = i > 0, then tictactoe assigns the correct
value to val for any b such that I b I = i - I , since val is assigned either
result(b) (in the thenpart) or the maximum required by the recursive rule (in
the elsepart). In more detail, this last requirement is to show that the elsepart
program

initial v := lose
for

m : E move
do

if
legal(b, m)

then
initial b : = - (b + m)
run tictactoe

fi
od

free b
v := max(v, - val)

val := v
free v

has program function
val := value(b)

under the following hypothesis :
1 . tictactoe assigns value(b/) to val for any b' such that I b' l = i > 0

2. end(b) is false

3. I b I = i - I

From the recursive definition of value, it will be sufficient to show that this
elsepart program has program function

val := max{ -value(- (b + m)) l Iegal(b, m)}

394 Writing Struct u red Prog rams

The initialized fordo computes and assigns this maximum to v, because only
legal moves m in b are considered, and at each invocation 1 - (b + m) I = i,
so by hypothesis (1) above (where b' = - (b + m)) val is assigned
value(- (b + m)) by tictactoe, and the assignment

v := max(v, - val)

then accumulates the maximum as required. Note that this copy of v is
undisturbed by the recursive calls of tictactoe, because each such call ini
tializes and frees its own copy of v.
The move required can be determined as a by-product of the execution

of this procedure. It will be a move m at which v achieves its maximum
during the topmost invocation of the procedure (whose execution may be
interrupted several times by further recursive invocations of the procedure).
A simple way of determining this is to introduce a level count on the depth of
the stack v, and to update a new data item, say nextmove, with the value of m
whenever this level count is 1 and a new maximum value has been found.
This procedure, while readily understood and proved correct, can be

made more efficient in various ways. First, the maximum finding fordo can
be terminated whenever a value of win has been found for v. Second, any
look ahead conceivable (including a heuristic look ahead) for determining
val can be added at the beginning of the elsepart of the program. If val is not
determined by such a look ahead, the remainder of the elsepart (presently
the entire elsepart) will determine it correctly. This look ahead need not be
complete, of course, and would be invoked with a possible speedup at each
level of recursion. For example, a win next move, a forced loss by opponent's
next move, a.nd a forced win on the second move could be programmed. In
fact, even in these cases, the look ahead need not be complete (but needs to
be correct) . This example illustrates a general idea for improving the
efficiency of a design while ensuring its continued correctness, namely to use
a correct design as a basis for stepwise reorganization that introduces
speedup parts in a fail-safe way.

EXERCISES
1. Reorganize the design of the recursive tictactoe program to determine the

requ ired move, as described above.

2. Introduce heuristic speedups to the program design of exercise 1. to

a) win next move,
b) force loss by opponent's nex t move, and
c) force win on second move,

while assuring program correctness with each add ition.

. 1

Index

Abstractions i n program design ,

contrasted with program

detai ling, 306, 333, 33 5-343

docu menting in logical commentary ,

3 1 3-3] 4

as fou ndation for stepwise

refi nement , 333 , 344-35]

Abstractions in program reading,

docu menting i n logical

commentary ,] 7] - 1 76

fu nction abstraction , 1 49

i n reading prime programs ,] 5 1 -] 53

in reading programs by stepwise

abstraction ,] 48,] 54- 1 5 8, 1 7 1 -

] 76,] 92-203

Action comments . See Logical

commentary

Acyclic digraph, 3]

Algebraic properties of programs ,

algebra of program correctness,

2 1 4-2 1 7

algebra of structured programs ,

1 48- 1 5]

Alphabet , of language symbol s , 36

of l ist items, 33

Anonymous data. See Process Design

Langu age , anonymous data

structures of

395

Argu ments, of a fu nction , 27

of a relation, 26

Assignment statements. See also
Process Design Language , data

assignments in , multi ple

assignments in

as names for fu nctions,] 02

assignment functions for, 1 02- 1 04

Axiom of Re placement, in algebra of

program correctne ss , 2] 6

in creating structured programs , 304

definition of, 1 48-] 49

in Iteration Recursion Lemma

proof, 22 1

Axiomati c calculus ,] 9

Backus Naur Form (BN F) , 38

Basis set of a program , 1] 8 , 1 36-- 1 37,

1 78 , 1 87

Bottom-up program development, 1 2

Bound variables , 22

Brooks, Fred , 7

Cartesian product, for de scribing data

stru ctures , 67-68

of sets , 25-26

Case control structure, correctness

proof syntax for, 23 1

396 Index

correctness question for. 228

Correctness Theorem for. 223

logical commentary for. 1 6 9

in PDL, 4 7 , 5 4 - 5 5

Collecting node in fl owcharts, 93

Complete correctness, alternate form
of, 226

in Correctness Theorem, 222- 226

definition of, 2 1 4 - 2 1 5

as guide to program design, 307-3 1 3

in prime program proof examples,

25 6-26 2

working q uestions for, 227- 229

Compound logical expressions, 20

Compound programs, definition of,
1 1 7 - 1 1 8

proving correctness of. 21 5

reading by stepwise abstraction, 1 5 4

Conceptual integrity in program

design, 7 - 8

Conditional rules, definition of, 29

transformation to disjoint rules,
238- 24 3

use in definition of recursive

functions, 30

Con stant functions, 29

Context free grammar (CFG) , 39

Control structure, abstraction of, 95

expansion of, 96

of a flowchart, 93-94

of prime programs, 1 1 4

Correct program defined, 2-3

Correctness proofs, anonymous data

examples, 27 0-27 3

array data examples, 26 4-27 0

of compound programs, 2 1 5

developing together with programs.

3 1 5

by direct assertion, 25 2-25 5

dountil example, 26 1 - 26 2

dowhiledo example, 26 2- 26 4

fordo example. 24 8-25 2

as guide to program design, 306- 31 3

ifthen example, 25 8

ifthenelse example, 25 8- 25 9

intuitive approach to. 4-7

of large loop-free primes, 27 3-27 8

level of formality in, 227 . 25 2

mathematics in, 3-4

sequence exampl e, 25 7 - 25 8

syntax for recording, 229- 232

w hat a proof is, 3-4

whiledo example. 25 9-26 0

Correctness questions, 227 - 229

Correctness Theorem, as basis for
program proof syntax, 230

in Invariant Status Theorem proof,
282

proof of, 223- 226

restatement as comparison of
conditional rules, 230-232

statement of, 222-223

in Whiledo Formula proof, 299

Cycle of a digraph, 3 1

Data abstraction, 85

Defensive programming, 21 5

D etailing v s. design of programs, l O-

l l . 333- 35 1

Dewey decimal numbering, of control
st ructures, 6 2- 6 4

o f record data structures, 6 9

Difference, of functions, 28

of set s, 24

Digraphs, 31

Disjoint rules, definition of, 238

derivation from conditional rules,

238

manipulation for correctness proofs,

238- 24 3

Domain, of a function. 27 - 28

of a relation, 26

Dountil control structure, correctness
proof syntax for, 232

correctness question for, 229

Correctness Theorem for, 223

Iteration Recursion Lemma for, 220

logical commentary for. 1 7 0

in PDL, 4 7 , 5 6- 5 7

a s prime program, 1 1 5

Dowhiledo control structure,

correctness proof syntax for, 232

. I

1
correctness question for , 229
Correctness Theorem for , 223
Iteration Recursion Lemma for, 220
logical commentary for , 1 70
in PDL, 47 , 57-58
as prime program, 1 1 5

Empty set , 24
Entry/exit conditions in programs, 5-7
Execution charts (E-charts),

construction of, 97-99
in Correctness Theorem proof, 223-

225
in determining looping program

functions , 1 06- 1 07
in determining program termination,

2 1 8
i n proofs of large loop-free primes,

274-276
Execution equivalence of programs,

definition of, 1 09- 1 1 0
i n Iteration Recursion Lemma

proof, 222
Execution trees (E-trees),

construction of, 97-99
in definition of program functions,

1 04- 1 05 , 1 1 7
in determination of execution

equ i valence , 1 09
i n program reading, 1 5 1

Existential quantifier, 22
Expansion of programs . See also

Stepwise refinement
expansion of prime parse

abstractions, 1 89- 1 92
function expansion, 149, 304-306

Finite state machines . See State
machines

First-in-first-out (FI FO) data access,
7 1 , 72

Fixed basis program parsing, 1 38
Flowchart programs, 92-94
Fordo control structure , correctness

proof syntax for, 23 1
correctness question for , 227

Index 397

Correctness Theorem for , 222
logical commentary for , 1 66
in PDL, 46, 50-52
proof example , 248-252

Formal grammars, as basis for
rigorous design , 9, 352

construction of, 38-39
Formal languages, alphabet of, 36

dist inguished phrase in, 36
language product in , 36-37
phrases in, 36
productions in, 36
set operations in , 35-37
terminal symbols of, 36

Formal logic, 1 9-23
Formulas for correct structured

programs , function equations of
structured programs , 287-289

If then Formula, 29 1 -292
Ifthenelse Formula, 289-291
least solutions for, 288-289
Sequence Formula, 292-295
Whiledo Existence Theorem, 296-

297, 299
Whiledo Formula, 295-300
Whiledo Predicate Lemma, 296,

298 , 299
Free variables , 22
Function abstraction, 1 49
Function composition, 28 , 1 05- 1 07
Function equivalence of programs ,

definition of, 1 09- 1 1 0
in function expansion , 306
in Structure Theorem, 1 1 8

Function expansion, 1 49 , 304-306
Function node, in flowcharts , 92

as prime program, 1 1 5
program function of, 1 1 6

Functions, 27-3 1 , 47, 92

Good program design , 9

Heuristic program design , 8-9 , 35 1 -
355 , 358 , 373-387, 394

Heuristics vs . rigor in program
design, 8-9 , 3 5 1 -394

398 Index

H ierarchical program stru ctures, 7 ,

1 1 , 6 2, 80

I dentity fu nction, 28, 1 1 9, 221

I diosyncratic programs, 8- 9, 352, 3 87

Ifthen control structu re, correctn ess
proof syntax for, 23 I

correctness question for, 227

Correctness Theorem for, 222

Ifthen Formula, 29 1 - 292

l ogical commentary for, 1 67- 1 6 8

in PDL 47 , 53-54

as prime program, 1 1 5

program fu nction of, 1 1 6

I fthenelse control structure,
abstraction of in readi ng, 1 52- 1 53

correctness proof syntax for, 23 1

correctn ess question for, 230

Correctness Theorem for , 223

Ifthenelse Formu la, 289-29 1

logical commentary for, 5 9, 1 6 8

in PDL, 46 , 52-53

as prime program, 1 1 5

program function of, 1 1 6

I ncidental data assignments, 1 7 1

I ndexed alternation control structu re.
See Case control structure

Indexed sequ ence control structu re.
See Fordo control structure

Inner Syntax. See Process Design
Language, inn er syntax of

Intended functions, 23 0, 3 07, 344

I ntentional data assignments, 1 7 1

Intersection , of functions, 28

of sets, 24-25

Invariant Status Theorem, use in

deriving l oop invariants, 283-287

proof of, 282- 283

statement of, 282

Invariants. See Loop invariants

I n verse function , 29

Iteration Recursion Lemma, as basis

for Correctness Theorem, 222

in Correctn ess Theorem proof, 223-

224

proof of, 220-221

statement of, 220

Label structure programs, 1 22- 1 24,

1 3 6- 1 38, 1 88

Language product , 3 6-37

Last-in-first-out (LI FO) data access,
70, 72

Level sets, 293

Level s of abstracti on. See
Abstractions in program design;
Abstractions in program reading

Lists, in anonymous data proofs, 270-

273 (see also Proc ess Design
Langu age, l ist operations on

anonymous data in)

concatenation of, 33

delimiters in, 33

empty list, 33

head/tail operations on , 33

list builder operations on , 34 (see
also Process Design Language,

l ist bu il der/list breaker operations
in)

n aming of, 34-35

prefixing item.� to, 33

structured into strings, 33

structures of, 34-35

Logical commentary, action
comments, 1 6 3

data comments, 1 6 3 , 1 74- 1 75

to document results of program
reading, 1 7 1 - 1 7 6 , 1 92-203

function comments, 1 63

invariant statu s comments, 280- 287

pri me program commentary , 1 63 ,

1 6 5- 1 70

in program writing, 3 1 3- 3 1 4 , 333,

35 1 , 364

statu s comments, 1 6 3

Logical expressions, 20

Logic al propositions, 1 9

Loop invariants, characterizing
program functions with, 281 - 282

deri vation of, 283- 287

I
: �

full invariants , 285-287
invariant status comments , 280
inventing invariants , 7
l imited invariants, 285-287
as proof alternative to Correctness

Theorem, 280
relation to loop status comments,

28 1

Maddux , Roy A . , 9 1
Mathematical induction , i n fordo

correctness proofs, 249-252
Modules . See Process Design

Language , modules in

Open sentence , 22
/ Outer Syntax . See Process Design

Language , outer syntax of

Parameter lists. See also Process
Design Language , parameter l i sts
in

data usage designation in, 1 76, 1 92 ,
204

Parnas, D. L . , 45
Partial rule , 27
Path of a digraph , 3 1
Predicate calculus, 1 9 , 2 1 -23
Predicate function , 29
Predicate node in flowcharts, 92
Prime control structure flowcharts,

1 1 2- 1 1 5
Prime program parsing, 1 27- 1 36, 1 49,

1 78- 1 89
Prime programs, control structures of

PDL as, 58, 1 1 5
definition of, 1 1 2
designing with , 301-308
enumeration of, 1 1 3- 1 1 5
program functions of, 1 1 6- 1 1 7

Procedures . See also Process Design
Language , procedures in

logical commentary for, 1 65- 1 66
Process Design Language (PDL),

alterable data in, 82

I ndex 399

alternation control structures of,
46-47, 52-55

anonymous data structures of, 47,
69-77

array data structures of, 47, 67-68
case control structure of, 47, 54-55
comments in, 58-60 (see also

Logical commentary)
concurrent assignments in (see

Process Design Language ,
mUltiple assignments in)

control structure indentation in, 50,
5 1 , 6 1

data assignment symbol in , 48
data assignments in, 48, 85-86
data segments of, 8�8 1
data spaces in, 77-79
data type specifications in , 86-89
dountil control structure of, 47, 56-

57
dowhiledo control structure of, 47,

57-58
enumerated types of, 87
expanding control structures of, 60-

64
external data of, 8 1 , 83
fixed data in, 82
fordo control structure of, 46, 5�52
head/tai l , head minus/tai l minus

operations in , 69-70
ifthen control structure of, 46, 53-

54
ifthenelse control structure of, 46,

52-53
i nner syntax of, 45-48, 85-89
internal data in , 8 1 , 83
jobs in, 47, 79, 83, 85
l ist builder/l i st breaker operations

in, 69-70 '
l ist operations on anonymous data

in , 69-77
local data in , 8 1
modules in, 45 , 47, 84-85
multiple assignments in , 48
named data structures of, 47, 66-69

,

400 Index

outer syntax of, 45-77

outer syntax control stru ctures of,

46-58

outer syntax data structures of, 47,

66-77

ou ter syntax system structures of,

47, 79-85

parameter l ists i n , 80

parsing control stru ctures of, 60-64

passed data in , 8 1

predicates in , 85

procedures in, 47, 79-83

program segments in , 80

queue data structure of, 47, 7 1

record data structure of, 47 , 68-69

scalar data structure of, 47 , 66-67

segment hierarchies in , 80

sequence control structure of, 46 ,

48-50

sequence data structure of, 47 , 72-

75

set data structure of, 47 , 7 1 -72 , 76-

77

stack data structure of, 47 , 70-7 1

stored data in , 83

subrange types of, 87-88

table data structure of, 76-77

type assignments in , 88

whiledo control structure of, 47 ,

55-56

Program constructi on plan , 3 1 5

Program documentati on. See Logical

commentary; Process Design

Langu age

Program equ i valence, 1 09- 1 1 0

Program fragment , 49

Program fu ncti ons , in correctness

questions, 227-229

in Correctness Theorem , 22 1 -226

definition of, 1 04

deri vati on by induction in fordo

proofs, 249-252

deri vation by trace tables , 234-237 ,

243-248

deri vation from invariant for

whiledo, 287

in determining program

equ i valence , 1 09

in formal program proofs , 256-278

in fu nction expansion , 306

i llustrations of, 1 05- 1 09

in I teration Recursion Lemma, 2 1 9-

22 1

logical commentary for recording,

1 62- 1 7 1

of prime programs , I 1 6- 1 1 7

i n program reading, writi ng and

val idation , 2 14-2 1 7

proofs b y direct asserti on about,

252-255

reading programs to discover, 1 5 1 -

1 58 , 1 7 1 - 1 76, 192-203

in using verification in design , 306-

3 1 3

Program parsing, 62-66

Program segments. See also Process

Design Language , program

segments in

organizing program into h ierarch y

of, 1 92

relation to logical commentary , 1 7 1

relation to prime parse trees , 1 8 8 ,

204

in top-down programming, 32 1 -322

Program stru cturing, 1 1 8-- 1 44

Program stubs, 32 1 -322

Program termination, 1 04 , 2 1 8-229,

232, 259 , 26 1 , 263 , 266 , 272

Program testing, 1 -2 , 1 3

Program validation , 1 49 , 2 1 4

Proper programs , 94, 97 , I 1 2

Proper subprograms, 97

Proposition form , 22

Propositional calcul us, 1 9-2 1

Propositional func tion , 22

Propositional quantifiers, 22

Range of a relation, 26

Reading structured programs ,

correctness verification i n, 2 1 4

moti vation and approach , 1 47- 1 48

reading by stepwise abstraction,
1 54- 1 58 , 1 7 1- 1 76, 1 92-203

reading prime programs , 1 5 1 - 1 53
Recursion structure programs , 1 23-

1 26, 1 37- 144, 1 88
Recursive equations , in proving

looping programs correct, 2 19-
220

Recurs ive functions , as basis for
rigorous design , 9, 352, 355-373 ,
387-394

description of, 29-3 1
Recursive rules, 30
Reflexive functions, 28
Reflexive relations, 26
Regular expressions, 39-42
Regular grammar, 39
Relations, 26-27
Rigorous program design , 9, 35 1 -352,

355-373 , 387-394
Rule of fi ve , 1 7
Rules for functions, 27-29, 47

Sequence control structure ,
abstraction of, in reading, 1 5 1-
1 52

correctness proof syntax for , 23 1
correctness question for, 227
Correctness Theorem for, 222
logical commentary for, 58, 1 65
in PDL, 46, 48-50
as prime program, 1 1 5
program function of, 1 1 6
Sequence Formula, 292-295

Set bu ilder notation , 24
Set membership, 24
Sets, 24-26
Simplicity in program design , 10
S ingle entry-single exit control

structures, 60 , 92 , 94 , 1 40
Software reliabil ity, des ign as basis

of, 1 3
State machines, as basis for rigorous

design , 9, 352
description of, 32
relation to modules, 47 , 83-84

Index 401

Status comments . See also Logical
commentary

derived from loop invariants , 286
Stepwise abstraction . See

Abstractions in program reading;
Reading structured programs

Stepwise refinement , of design
abstractions, 333

as programming strategy, 3 1 4-320
rewriting in, 3 1 5
rigor in , 3 1 5
role of segments in , 32 1
in stepwise reorganization , 323
in top-down programming, 32 1

Stepwise reorganization, correctness
proving in, 324

as programming strategy , 322-33 1
stepwise refinement in , 323

Strings , 33
Structure Theorem, improved proof

construction, 1 23- 1 26
proof of, 1 1 8- 1 1 9
statement of, 1 1 8

Structured i slands in a flowchart , 1 37-
1 39

Structured programs , relation to good
design , 9- 1 0

Structuring unstructured programs .
See Program structuring;
Structure Theorem

Subsets , 24
Sufficient correctness , alternate form

of, 226
in Correctness Theorem, 222-226
definition of, 2 1 4-2 1 5
a s guide t o program design, 307-3 1 3
in proof of large loop-free primes ,

273
Symmetric relations, 27
Syntax diagrams , 39

Top-down structured programming,
design validation by, I I

program stubs in , 3 2 1 -322
as programming strategy , 32 1-322
segments in, 32 1 -322

r
402 I ndex

subspecifications in , 32 1 -322

testing in, 322

Trace tables, case-structured , 243-

248 , 273-278

definition of, 234-235

partial form for, 236-237

u se in correctness proofs , 235-237,

257-277

Transition functions of state

machines, 32

Transiti ve relations, 27

Transpose , of a fu ncti on, 28-29

of a relation, 27

Tree structures, of PDL control

structures , 64-66

of prime program parse, 1 88

of program segments , 32 1

of recursi ve functions , 357-360

of segmented prime program parse ,

204

Truth tables, 20

U nion , of functions, 28

of set s , 24

Uni versal quantifier, 22

Values, of functions, 28

of relations, 26

Whiledo control structure , abstraction

of i n readi ng, 1 53

correctness question for, 228-229

Correctness Theorem for, 223

deriving final status com ment for,

28 1 , 286

deri v i ng invariant for, 283-287

invariant stat u s comment for, 280

I nvariant Status Theorem for, 282

Iteration Recursion Lemma for, 220

logical commentary for, 59-60, 1 69

in PDL, 47 , 55-56

as prime program, 1 1 5

program function of, 1 1 6

proof syntax for, 232

Whiledo E xistence Theorem , 296-

297

Whiledo Formula, 295-300

Whiledo Predicate Lemma, 296

Whiledo Existe nce Theorem, proof

of, 296-297

statement of, 296

Whiledo Predicate Lemma , proof of,

296

statement of, 296

Wilkes, M. V . , 45

Writing good E ngli sh , 1 5- 1 9

Writing structured programs,

correctness verification in, 2 1 4,

306-3 1 3

detail ing vs. design i n , 333-35 1

fu nction expansion in , 304-306

heuristics v s . rigor in, 35 1 -394

logical commentary in, 3 1 3-3 1 4

strategies for, 3 1 4-33 1

	Structured Programming: Theory and Practice
	Recommended Citation

