
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

The Harlan D. Mills Collection Science Alliance

1986

Principles of Information Systems Analysis and Design Principles of Information Systems Analysis and Design

Harlan D. Mills

Richard C. Linger

Alan R. Hevner

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Mills, Harlan D.; Linger, Richard C.; and Hevner, Alan R., "Principles of Information Systems Analysis and
Design" (1986). The Harlan D. Mills Collection.
https://trace.tennessee.edu/utk_harlan/10

This Book is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

PRINCIPLES OF INFORMATION SYSTEMS
ANAL YSIS AND DESIGN

PRINCIPLES OF
INFORMATION SYSTEMS
ANAL YSIS AND DESIGN

Harlan D. Mills
IBM CORPORATION

BETHESDA, MARYLAND

AND

UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND

Richard C. Linger
IBM CORPORATION

BETHESDA, MARYLAND

Alan R. Heuner
COLLEGE OF BUSINESS AND MANAGEMENT

UNIVERSITY OF MARYLAND

COLLEGE PARK. MARYLAND

ACADEMIC PRESS, INC.
Harcourt Brace Jovanovich, Publishers
San Diego New York Berkeley Boston
London Sydney Tokyo Toronto

COPYRIGHT © 1986 BY ACADEMIC PRESS. INC

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR

TRANSMITTED IN ANY FORM OR BY ANY MEANS. ELECTRONIC

OR MECHANICAL. INCLUDING PHOTOCOPY. RECORDING. OR

ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM. WITH OCT

PERMISSION IN WRITING FROM THE PUBLISHER

ACADEMIC PRESS, INC.
San Diego, California 9210 I

United Kingdom Edition published by
ACADEMIC PRESS LIMITED

24-28 Oval Road, London NWI 7DX

Library of Congress Cataloging in Publication Data

Mills, Harlan D., Date

Principles of information systems analysis and design.

Includes index.

1. Management information systems. 2. System

analysis. 3. System design. I. Linger, Richard C.,
Date . II. Hevner, Alan R. III. Title.

T58.6.M537 1986 658.4'038 86-10954

ISBN 0-12-497545-3 (alk. paper)

PRINTED IN THE UNITED STATES OF AMERICA

X9 90 91 92 93 9 X 7 654 3 2

I
I
1

To
Lolly

Marie and Dick
Susan

Contents

Preface Acknowledgments

Chapter 1 Information Systems Development

1 . 1 Business Information Systems
1. 1 . 1 Business Systems and Information Systems
1.1.2 Categories of Information Systems
1. 1 .3 People in Information Systems
1 . 1 .4 Problems of Logic and People in Information Systems

1.2 Box Structures of Information Systems
1 .2. 1 Historical Perspective
1 .2.2 System Structures
1 .2 .3 Box Structures in Business Operations
1 .2 .4 Box Structure Descriptions

1 . 3 The U .S. Navy Supply System Reorder Policy
1 .3. 1 The Clear Box Formulation
1.3 .2 The State Machine Derivation
1 . 3 . 3 The B lack Box Derivation
1 .3.4 Analysis of the Reorder Policy

1 .4 Managing Information Systems Development
1.4. 1 Box Structure Hierarchies
1 .4.2 Box Structure Derivation and Expansion
1.4.3 The System Development Process
1.4.4 Information Systems Integrity
Exercises

Chapter 2 The Black Box Behavior of Information Systems

2 . 1 Black Box Behavior
2 .1. 1 Discovering Black Box Behavior

vii

xii i
xvii

I
2
3
4
5
5
7

II
1 4
1 5
1 6
1 7
1 8
2 1
23
23
25
28
33
35

38
40

vii i

2.1.2 Stimulus Histories

2.1.3 Black Box Initial Conditions

2.1.4 Finite Black Boxes

2.1.5 Black Boxes in Business Operations

2.2 The Black Box Behavior of a Hand Calculator

2.2.1 Finding a Sum with a Hand Calculator

2.2.2 Stimulus History in Black Box Behavior

2.2.3 The Clear Key Makes History Irrelevant

2.3 Black Box Transitions and Transactions

2.3.1 Known and New Information

2.3.2 Transitions and Transactions

2.4 Any Information System Exhibits Black Box Behavior

2.4.1 A Personal Computer Exhibits Black Box Behavior
2.4.2 A Business Information System Exhibits Black Box Behavior

2.4.3 People Exhibit Black Box Behavior

2.5 Black Box Structures

2.5.1 Black Box Primitive Structures

2.5.2 Analysis of Black Box Structures

2.5.3 Black Box Structures in Business Operations

2.6 Introduction to Box Description Language

2.6.1 The Idea of Box Description Language

2.6.2 Black Boxes in BDL

2.6.3 Black Box Structures in BDL

Exercises

Cbapter 3 The State Machine Behavior of Information
Systems

3.1 State Machine Behavior

3.1.1 Describing Black Boxes as State Mach ines

3.1.2 State Machine Transitions

3.1.3 Finite State Machines

3.1.4 The Master File Update State Machine

3.1.5 A Business Enterprise Exhibits State Machine Behavior

3.2 Strategic Uses of State Machines

3.2.1 A State Machine Model of Customer Service

3.2.2 Transaction Closure in State Machines

3.2.3 State Migration between Nested State Machines

3.3 Analysis of Black Box Behavior from State Machines

3.3.1 The Black Box Behavior of State Machines

3.3.2 Black Box Derivation of an Inventory Reorder State Machine

3.3.3 Sales Forecast State Machines

3.4 Design of State Machines for Black Box Behavior

3.4.1 State Machine Design for Black Box Behavior

3.4.2 State Machine Design for the Hand Calculator Black Box

3.4.3 State Machine Design to Deal with Improper Use

3.5 State Machines in Box Description Language

Exercises

Contents

41

43

44
45

46

46

47

48

50

50

51

53

53

56

59

60

61
64
73

77

77

77

83

90

94

94

96

99
99

101

102

103

105

106
109

109

111

114

114

114

118

121
123

127

Contents ix

Chapter 4 The Clear Box Behavior of Information Systems

4. 1 Clear Box Behavior
4 . 1 . 1 Clear Box Syntax
4. 1 .2 Clear Box Structures
4. 1 .3 Clear Box Expansion

4.2 Strategic Uses of Clear Boxes
4.2 . 1 Clear Box Business Procedures
4.2 .2 The Clear Box of Schedule C
4.2.3 Deriving Clear Boxes from Natural Procedures

4.3 Analysis of State Machine Behavior from Clear Boxes
4.3. 1 The Behavior of B DL Procedure Statements
4.3.2 The State Machine Behavior of Clear Boxes
4 .3.3 State Machine Derivation from the Schedule C Clear Box
4.3.4 The Behavior of Iteration Clear Boxes

4.4 Design of Clear Boxes for State Machine Behavior
4.4. 1 Clear Box Design Principles
4.4.2 A Clear Box Design for the Hand Calculator
4.4.3 Segment Structured C lear Boxes
Exercises

Chapter 5 The Box Structure of Information Systems

5. 1 The Concept of Box Structures
5 . 1 . 1 Box Structure Hierarchies
5. 1 .2 Box Structures in Business Operations
5 . 1 .3 The Top Leve l Black Box and Transaction Closure
5 . 1 .4 Box Structure Analysis and Design

5.2 Analysis of Box Structures
5.2. 1 Deriving Box Structures from Business Operations
5.2 .2 Transaction Analysis
5 . 2.3 State Analysis
5 . 2.4 Procedure Analysis

5.3 Design of Box Structures
5.3. 1 Designing Box Structures for Business Operations
5 . 3.2 Transaction Design
5.3 .3 State Design
5.3.4 Procedure Design

5 .4 Box Structure Design Principles
5.4. 1 Intellectual Control of Complex Designs
5.4.2 State Migration in Box Structures
5.4 .3 Common Services in Box Structures
5.4.4 Black Box Replacement in Box Structures
5.4.5 Concurrency Control in Box Structures

5 . 5 The Box Structure of The New York Times Information Bank
5.5. 1 The New York Times Project
5 .5 .2 Getting Started on The New York Times Project
5 .5.3 A Top Level S ystem Design Decision

1 3 1
1 32
1 33
143
143
144
1 45
1 50
1 66
1 66
1 73
1 74
1 78
1 88
1 88
1 89
1 9 1
200

204
204
206
207
209
2 1 0
2 10
2 1 4
2 18
222
224
225
226
226
227
232
232
234
237
239
243
246
246
247
249

=

x

5.5.4 A Top Level Box Structure for the Entire System
5.5.5 A Top Level Box Structure for the On-Line System
E xercises

Chapter 6 Information Systems Management

6. 1 Managing Information Systems Development
6. 1 . 1 The System Development Process
6. 1 .2 System Development I llustrations
6. 1 .3 The Box Structure of System Development
6. 1 .4 Work Structuring and Schedu ling
6. 1 .5 Scheduling Mechanics

6.2 System Development Activities
6.2. 1 Activity Management
6.2.2 Invest igation Activities
6.2.3 Specification Activities
6.2.4 Implememation Activities
6.2.5 Information System Operations

6.3 System Development Libraries
6.3. 1 The Analysis and Design Libraries
6 .3.2 The Management Library
6.3.3 The E valuation Library
6.3.4 System Documentation

6.4 Working with People in Systems Development
6.4. 1 Working with Managers
6.4.2 Working with Users and Operators
6.43 Working with Developers
E xercises

Chapter 7 Syntax Structures in Information Systems

7 . 1 Syntax Structures
7. 1 . 1 The Syntax of Hand Calculator Inputs
7. 1 .2 Syntax Parse Tables
7 . 1 .3 Parse Table Structures
7. 1 .4 Syntax Expressions
7.1 .5 State Machine Syntax Checkers
7. 1 .6 Syntax Methods in Clear Box Design

7.2 Syntax Structures in Business Operations
7.2. 1 The Syntax of F iles, Reports, and Business Forms
7.2.2 The Syntax of U se r Languages
7 .2.3 Grammars in Clear Box Design

7.3 The New York Times Thesaurus and Its Grammar
7.3. 1 The New York Times Thesaurus of Descriptors
7.3.2 A Formal Grammar for The New York Times Thesaurus of

Descriptors
E xercises

Contents

250
255
260

262
262
266
267
27 1
274
277
278
28 1
287
290
294
297
297
298
299
299
303
304
305
3 10
3 1 3

3 1 5
3 1 6
3 1 8
320
32 1
325
327
330
330
3 3 1
334
339
34 1

352
364

Contents xi

Chapter 8 Data Structures in Information Systems

8.1 Data Structures
8.1. 1 Data Analysis and Design
8 . 1 .2 Data Representation
8 . 1 . 3 Linear Data Structures
8 . 1 .4 Nonlinear Data Structures

8 .2 File Systems
8.2 . 1 Sequential File Organizations
8.2 .2 Direct File Organizations
8 .2 . 3 Indexed Sequential File Organizations
8 .2.4 Multiple Key Access

8. 3 Database Systems
8.3 .1 Database System Architecture
8.3 .2 Relational Databases
8 . 3 . 3 Navigational Databases
Exercises

Index

367
367
370
378
383
388
390
392
396
402
406
406
4 1 2
4 1 5
4 1 7

421

Preface

Information systems development should be practiced as a systematic
business engineering discipline . This business engineering discipline can
be based on principles of computer science and software engineering that
apply directly to business problems. The primary benefit of this is effec­
tive management control over information systems development and evo­
lution.

This book presents a systematic approach to the teaching of informa­
tion systems development . It is based on successful principles of software
engineering and systems engineering, which have been distilled to elimi­
nate extraneous complexities and simplified to bare essentials for infor­
mation systems development . This approach permits a more explicit
study of b usiness processes and information systems than do approaches
that dwell more on details of computer systems than on the business
processes supported by information systems .

The book presents a box structure methodology for information sys­
tems development . This methodology uses just three system structures
that can be nested over and over in a hierarchical structure. These system
structures provide a way to analyze and design information systems and
their subsystems to increasing levels of detail without getting lost in that
detail .

The three system structures are called black box, state machine, and
clear box structures . They give three views of the same information sys­
tem or any of its subsystems. The black box gives the external , or user's ,
view. This view consists of stimuli to the system or subsystem and the
responses for all stimulus histories . The state machine gives an intermedi­
ate view that defines data stored from stimulus to stimulus; that is , it
opens up the system to the extent of making its state data visible . The
clear box, as the name suggests , opens up the system one more step in an
internal, or designer's , view. This view describes how the data are pro-

xiii

xiv Preface

cessed and will refer to smaller black boxes in that description. At this
point , the hierarchical top-down description can be repeated for each of
these other black boxes , identifying next their state machine descriptions
and then their clear box descriptions , which refer to even smal ler black
boxes, and so on.

The power of these simple system structures lies in their universality.
Any information system or subsystem , no matter what subject it deals
with, can be described as a black box and a corresponding state machine,
which can be expanded into a clear box and new black boxes. Thus, these
three structures prescribe a methodology for information systems analy­
sis and design that can be studied and applied in any situation for better
management control and visibility.

We teach principles rather than appearances in information systems
development. The major innovation is the rigor with which logical princi­
ples are derived from mathematical foundations and business processes
and then taught for information systems development . We can teach a
trick dog the appearances of arithmetic but not its principles . When we
teach children the principles of arithmetic , we give them an entirely differ­
ent power than what we give trick dogs . Children , grown to adults , can
apply these principles over and over, almost without thought, while solv­
ing the real problems they meet . The principles of box structures can also
be applied, over and over, in solving the real problems in information
systems development.

Box structure principles of information systems are introduced in a
spiral approach . Chapter 1 introduces the methodology and briefly illus­
trates many of the principles. Chapters 2, 3 , and 4 develop the principles
of black boxes , state machines , and clear boxes , respectively. Chapter 5
integrates these principles into a box structure methodology. Chapter 6
discusses the use of this methodology in managing information systems
development and operations. Chapters 7 and 8 develop syntax and data
structuring methods of d irect use in box structured information systems
development. As indicated, Chapters 1-6 represent a course in box struc­
ture methodology for information systems development and management.
Chapters 7 and 8 can be used selectively to provide deeper techniques for
uses of syntax and data in information systems .

The intended audience of Principles of Information Systems Analysis
and Design includes university students in information systems, practic­
ing professionals , and managers . Students will learn a systematic method­
ology for information system analysis and design that can be applied
throughout their careers. With the logical principles understood , they will
be free to focus on the hardest part of information systems development ,
namely , the application of these principles in business environments,

Preface xv

working with people. Practicing professionals will recognize in box struc­
tures a means to express their work products in a more systematic and
understandable form. Box structures permit information system profes­
sionals to communicate with greater precision and completeness. Man­
agers will find box structures a sound basis for defining work, measuring
progress, and communicating with users . In every case, the result will be
better manageability and responsiveness of information systems to the
needs of the business enterprise.

Acknowledgments

The writing of this book was triggered , in part, by a concern of
Mr. Vincent N. Cook , President of the Federal Systems Division of IBM,
for the technical vitality of systems engineers in complex information
systems development at IBM. This concern led to a concerted effort to
simplify and codify central concepts of systems and software engineering
that have proven successful in the development of complex real-time
control systems, such as are reflected in the curriculum of the IBM Soft­
ware Engineering Institute .

It is a pleasure to acknowledge the encouragement of Dr. Rudolph
Lamone, Dean of the College of Business and Management at the Univer­
sity of Maryland , who saw the need to teach the principles of systems
engineering in the Information Systems curriculum.

Authors Mills and Linger appreciate the support of IBM for the re­
search and writing of this material . Author Hevner appreciates the sup­
port of the University of Maryland . The authors also appreciate the word
processing support of IBM, particularly the help of Evelyn Brown in
managing and Susan Gary in coordinating this support .

Final ly , the authors acknowledge the patience and suggestions of the
several hundred students at the University of Maryland who have used
previous versions of this material in their coursework and of the many
colleagues at IBM who have repeatedly demonstrated the value of box
structures , particularly state machines, in the development of large , com­
plex real-time control systems.

xvii

p

Chapter 1 Information Systems
Development

1.1 BUSINESS INFORMATION SYSTEMS

Preview: Businesses need information systems to accomplish
organizational objectives . These systems can be categorized as
Data Processing Systems, Management Information Systems, or
Decision Support Systems. The people involved with information
systems development are managers, users , operators, and the
developers themselves . The development and use of these sys­
tems require solutions for logic problems and for people prob­
lems .

1.1.1 Business Systems and Information Systems

Information processing is a common ingredient in all businesses .
Whatever else they do, make automobiles, sell real estate, run hotels, or
whatever, they all process information.

Each business is a system and has many subsystems which are sys­
tems in their own right, for example , marketing, manufacturing, financial,
and personnel systems. All of these systems are run on the basis of

4 1. Information Systems Development

to manage their own efforts to create the required and usable information
system for the managers, users, and operators .

1.1.4 Problems of Logic and People in Information Systems

The deepest and most persistent problems of information systems are
people problems. The people problems that the developers face are diffi­
cult at best. But they are made even more difficult or impossible by poorly
addressed logic problems in information systems development.

A close analogy can be seen in the operation of a bank . Banks have
people problems, in maintaining customer satisfaction and employee mo­
tivation. They also have logic problems, such as ensuring the accuracy
and integrity of accounting procedures. For example, frequent errors in
customer statements, caused by inaccurate accounting procedures , a
logic problem, could lead to unnecessary people problems in business
operations-irate customers , frustrated employees, and overworked ex­
ecutives trying to hold operations together and patch up customer rela­
tions . A wrong diagnosis to treat the symptoms rather than the source of
the problem by adding more customer relations personnel would only
aggravate and perpetuate the underlying logic problem. Indeed, it is not
farfetched to imagine customer relations personnel secretly resenting sub­
sequent efforts to eliminate customer statement errors as a threat to their
job security. The lesson here is to get the logic problem of accounting
under control. The people problems in banking are hard enough without
adding unnecessary ones .

There is a career lesson in this banking illustration, as well. If you
want to be a banker, learn about accounting in the university-get it out
of the way . Accounting principles and procedures learned in the univer­
sity will be valid throughout your career. But you will have to work at
being a banker-at its people problems-all your life . You'll never learn
enough about the people problems, but if you don't learn enough about
the logic of accounting early you'll be dealing with unnecessary people
problems your whole career.

This simple career lesson in banking applies to information systems
analysis and design as well . Even though the people problems are the
deepest and most persistent, you should learn how to get the logic prob­
lems of information system analysi s and design out of the way in your
university education. The logic problems are finite and bounded. And the
logical principles and procedures of information systems will be valid for
your whole career, even though you will be learning more about people aU
your life .

1.2 Box Structures of Information Systems 5

The objective of this book i s to teach you principles of information
systems analysis

.
and design that will serve you through?ut your career in

dealing with logIc problems . Onl y after that do we dISCUSS the people
problems, but these discussions only give you a start on the problems you

will be learning to solve all your life.

Summary: Any business has many business subsystems, includ­
ing an information system. Information systems are based on
business needs , not computer possibilities . Information systems
are used for day to day data processing , for management informa­
tion , and for decision support. Although people problems are the
most difficult , it is important to get logic problems out of the way
to avoid unnecessary people problems.

1.2 BOX STRUCTURES OF INFORMATION SYSTEMS

Preview: Box structure principles provide a di sciplined means
to analyze and design business information systems under good
management control . The box structures of black box , state ma­
chine, and clear box provide different views of any information
system or subsystem. Box structures provide a rigorous form for
describing business knowledge. Box structure descriptions can be
given in graphic or text forms.

1.2.1 Historical Perspective

The introduction of computer technology into business operations
brings the potential for more management control in administrative and
analytical phases of business. But the rapid , almost pellmell , introduction
of computer technology of the past thirty years has sometimes brought a
net loss of real management control because of a necessary dependence
on personnel more versed in computers than in business operations. On
top of that , the explosive growth of the computer industry has created
problems of its own in meeting schedule, cost , and reliability targets in
information systems development .

Thirty years ago there was no such thing as the data processing sys­
tems , management information systems , and decision support systems
that dot the information systems landscape today . Even so, it is sobering

6 1. Information Systems Development

to reflect how short thirty years is in terms of intellectual development.
When civil engineering was thirty years old, the -right triangle was yet to
be invented; when accounting was thirty years old, double entry princi­
ples were unknown. To be sure, many more people are working on infor­
mation systems than were working in civil engineering or accounting in
their first thirty years. But fundamental ideas and deep simplicities take
time. Even with all the excitement and progress, there is stilI a lot to
discover-possibly the right triangle for information systems.

The structured revolution that changed trial and error computer pro­
gramming to software engineering was triggered by a new concept called
structured programming. Structured programming cleared a control flow
jungle that had grown unchecked in dealing with more and more complex
software problems for twenty years. It replaced that control flow jungle
with the astonishing assertion that software of any complexity whatso­
ever could be designed with just three basic control structures: sequence
(begin-end), alternation (if-then-else), and iteration (while-do), which
could be nested over and over in a hierarchical structure (the structure of
structured programming). The benefits of structured programming to the
management of large projects are immediate. The work can be structured
and progress measured in top-down development in a direct way. Prop­
erly done, when a top-down development is 90% done, there is only 10%
left to do (in contrast to projects which at 90% done often required an­
other 90% to complete).

Structured programming has a mathematical foundation that can be
used for management advantage. First, a so-called Structure Theorem
establishes that any flow chart program can be designed as a structured
program. Therefore, a management standard of structured programming
is technically sound. Second, a Top-Down Corollary to the Structure
Theorem establishes that a structured program can be created in a top­
down sequence such that each line can be verified correct by reference to
previous lines (and not to lines yet to be created). This means that soft- -
ware can be created correctly as it is developed, without a final and
unpredictable stage of trying to make it all work together.

The management benefits begin with standard practices for software
development that are based on this mathematical foundation. Software
personnel can be uniformly educated to these practices, with improved
management visibility into the development process and improved com­
munication between programmers in both the design and inspection:!
phases. As a result, large-scale software projects previously risky or im.L'

possible can be completed consistently within schedules and budgets. For
example, top-down structured programming has been used extensively int

1.2 BOll Structures of Information Systems 7

the U.S. space shuttle program; it is safe to say that the shuttle could not

be flying (orbiting) today without structured programming.

1.2.2 System Structures

Business �nformation systems development is more than software de­
velopment. The operations of business involve all kinds of data, stored
and processed in all kinds of ways . A simple encyclopedic description of
such data and their uses leads to a data flow jungle that is even more
tangled and arcane than the control flow jungle. Once again mathematics
and engineering have come to the rescue by replacing the data flow jungle
withjust three basic system structures that can be nested over and over in
a hierarchical system structure. These system structures are called black

box, state machine, and clear box.
As with structured programming, there is a mathematical foundation

for these system structures that can be used for management advantage .
They provide a disciplined way to specify , design, and implement infor­
mation systems and their subsystems to every level of detail . The data
flow becomes a by-product of the methodology and now takes its struc­
ture from the system, not as an end in itself.

The management benefits of these box structures begin with standard
practices of information systems analysis and design that are based on
this mathematical foundation . Information systems personnel can be uni­
formly educated to these practices with improved management visibility
into the systems development process and improved communication be­
tween analysts and designers. As a result , it will be possible to develop
information systems more reliably and more responsively than ever
before.

The three basic system structures are called box structures. They pro­
vide three views of the same information system or any of its subsystems .

The black box gives an external view of a system or subsystem that
accepts stimuli , and for each stimulus (5) , it produces a response (R)
before accepting the next stimulus . A diagram of a black box is shown in
Figure 1 . 2- 1 . The system of the diagram could be a calculator, a computer
system, or even a manual work procedure that accepts stimuli from the
environment and produces responses one by one . As the name implies , a
black box description of a system omits all details of internal structure
and operations and deals solely with the behavior that is visible to its user
in terms of stimuli and responses . Any black box response is uniquely
determined by the system' s stimulus history .

-

8 1. InCormation Systems Development

I System I
S-l

'--------l

r R

Figure 1.2-1. A Black Box Diagram.

The state machine gives an intermediate system view that defines an
internal system state , namely the data stored from stimulus to stimulus . It
will be established mathematically that every system described by a black
box has a state machine description. A state machine diagram is shown in
Figure 1 .2-2.

The state machine part called Machine is a black box that accepts as
its stimulus both the external stimulus and the internal state and produces
as a response both the external response and a new internal state which
replaces the old state. The role of the state machine is to open up the
black box description of a system one step by making its data visible.

The clear box, as the name suggests , opens up the state machine
description of a system one more step in an internal view that describes
the system processing of the stimulus and state (stored data) . The pro­
cessing is described in terms of the three control constructs of structured
programming, namely , sequence , alternation , and iteration , and a concur­
rent structure as shown in Figure 1 .2-3 . Machine parts Ml , M2 are black
boxes ; each accepts as its stimulus both a stimulus and state and produces
as its response both a response and a new state . For example , in the
sequence structure , the clear box stimulus is the stimulus to black box
Ml , whose response becomes the stimulus to M2 , whose response is the
response of the clear box . Machine part C is a conditional switch that
accepts a stimulus and a state , and then transmits that stimulus to one of

System

�-I r--� State

I I
I I
I I

I I 1 I Machine I I
t : R s

Figure 1.2-2. A State Machine Diagram.

1.2 Box Structures of Information Systems

System

r----1 S tate r---'
• I I

I
I

I I
I I I
I I I
1 M l I M2 I
I I I

S _--+----1� 1---'--+-. R

Sequence s tructure

System

r----1 State
I I + I
I
I M I I
I

I
I
I

S
M2

Alternation s tructure

System

f--� State ��-1--1
�-------�

I I

M l

I I
I I
I I
I I

I

+

S ---r----L-------------------____ � __ �

Iteration structure
Figure 1 .2-3. Clear Box Diagrams (Mi = Machines).

9

R

R

10 1. Information Systems Development

System

r----� State �---:
I ,
I I
I r-- I
I ,
I M l I
I I -I ,
I , I I I '--- I I I I I

S • I R

,--
M2

i--

�

Concu rrent st ruct ure

Figure 1.2-3. (Continued)

two other parts but does not affect the state . For example , in the alterna­
tion structure, conditional switch C transmits the stimulus to either Ml or
M2, while in the iteration structure , C transmits the stimulus to either Ml
or the next part of the next higher structure . The concurrent structure is
an advanced form whose behavior i s discussed later.

It is a consequence of the Structure Theorem of structured program­
ming that every system described by a state machine has a clear box
description .

At this point , a hierarchical , top-down description can be repeated for
each of the embedded black boxes at the next lower level of description.
Each black box is described by a state machine, then by a clear box
containing even smaller black boxes, and so on.

These views represent an increasing order of internal system detai l .
The black box describes the system from a user view. The user view is
foremost since the objective of business systems is to provide user ser­
vices. The state machine adds the consideration of system data (State)
and its manipulation (Machine) . The clear box completes the description
by adding internal processing details and recognizing embedded subsys­
tems. Describing each subsystem in these increasingly detailed views
provides an internal consistency that is essential in developing and man-

f
1.2 Box Structures of Information Systems 11

aging systems. The data structure must be consistent with the user view,

and the processing structure must be consistent with the data structure.
System management is helped by the thorough documentation of the

mappings between the system views.

1.2.3 Box Structures in Business Operations

Although the concept of a box structured hierarchical system is easy

to see, its use in actual business systems requires business knowledge as
well as computer knowledge. In fact, the box structures provide a form in
which to describe business knowledge in a standard way. The principal
value of a black box is that any business information system or subsystem
will behave as a black box whether consciously described as such or not.
In turn, any black box can be described as a state machine (actually in
many ways), and any state machine can be described as a clear box (also
in many ways), possibly using other black boxes. In practice, information
systems or subsystems often have their own natural descriptions that can
be reformulated as box structures.

In illustration, a 12-month running average defines a simple, low-level
black box that might be used in sales forecasting. A stimulus of last
month's sales of an item would produce a response of the past year's
average monthly sales of the item� each month a new sales amount pro­
duces a new average of the last 12 months. Figure 1.2-4 shows the running
average black box diagram. Using the stimulus history, the black box
transition formula for the response R(i) at the end of month i is

SCi) + S(i - J) + ... + S(i - II)
12

R(i)

where for month i, SCi) is this month's sales, S(i - I) is last month's sales,
and so on. Although the stimulus history of the black box may contain

Running uvefugc

Sules for
lust month

s-

R(j) ::= (S(i) + S(i-I) +

AVNuge
monthly sales
for pust YCUf

r-t'""R

. + S(i - I I Il/ I .2

Figure 1.2-4. Running Average Black Box.

12 1. Information Systems Development

years of sales values, only sales from the most recent 12 months are
required in the transition formula .

A possible state machine of this black box would identify that the
previous 12 monthly sales are to be stored in the state . This state replaces
the stimulus history of the black box . The machine, upon receiving the
month's sales , would update the state by discarding the oldest sales value
and storing the newly input sales value , then calculate the new running
average response from state data rather than from the stimulus history.
Figure 1 .2-5 shows the state machine diagram.

Note a distinction between 51 , 52 , . . . , which are data recorded in
the state and 5(i), 50 - 1) which are the monthly sales. The values are the
same , but unless 5(i) , 5(i - I), . . . are recorded as 5 I, 52, . . . , they will
be lost to the state machine which does not access the stimulus history.

A clear box will describe how the state updating process and the
averaging process are performed . One possible design is shown in Figure
1.2-6 . The Update state and Find average machines are simple enough to
include their processing details directly in a sequence structure. In this
case , no further black box description is needed because neither Update
state nor Find average introduces any new state data.

In this case the assignment operator : = in Figure 1 .2-6 means to assign
the current value of the expression on the right side to the variable on the
left side . For example ,

512 : = 511

means to assign the value of 5 11 at month i-I to the variable 512 at month
i, so that for month i

512(i) 511(i - 1),

since the current value of 5 11 was not determined now but in the previous
month i-I. When more than one assignment appears in a box , all such

Sales
last InO

S

for
nth

Running average

I
State

S 1, S2, " ., SII, S I 2

I
I
I
I
I
I Machine

•

I
t
I
I
I
1
I

I

mon
for

Average
thly sales
past year

R

Figure 1.2-5. Running Average State Machine.

1.2 Box Structures of Information Systems

les Sa
fo r

la 5t

rnO nth

S

r------ �
I I I
I I Update state

I
J SI2 SII

t
SII := SIO

.. .
S2 := SI
SI S

Running average

�------l

State

SI, S2, ... , SII, SI2

• I
I I
I I
I I I I I I

I I
I t I

Find average

._SI+ ···+SI2
R .-

12

I I
I I I I
:

Figure 1.2-6. Running Average Clear Box.

Av

rno

erage

nthly

s for
year

sale

past

R

1 3

assignments are simultaneous . In the second step, Find average, the
values of S I, S2, . . . , S 1 2 have already been updated for month i, so the
assignment

S I + . . . + S I 2
R := ------

1 2

means that

(
.
)

_ S I (i) + . . . + S I 2(i)
R I -

1 2

The assignment notation alJows the subscripts that identify the months to
be suppressed for simpler expressions .

Note that many other state machine and clear box designs could have
been chosen to implement the running average black box. For example,
the state data could be stored as monthly sales values divided by 1 2 .
Then, the running average would be found by adding all the state data .

A running average black box is a simple sales forecaster. However, if
sales are seasonal or have definite trends, a more suitable black box is
required. Such a forecaster will differ in details, but can still be described
in a black box/state machine/clear box structure.

If a human forecaster is known to be successful , it will be useful to
incorporate that wisdom into a forecasting black box for an entire inven­
tory, e .g. , for 10 ,000 items, which are beyond the ability of the human
forecaster to deal with one by one . In this case , the human forecaster may
not be able to describe a black box behavior directly. Instead , the descrip­
tion may come out as a mental process of recollections and calculations
that involve both state machine and clear box behavior. The box structure
discipline gives a systematic basis for interviewing such a human fore-

14 1 . Information Systems Development

caster and converting that human wisdom into systematic form. The
result will be a forecasting black box/state machine/clear box structure
that can be analyzed as part of a larger system, e .g . , an inventory control
system with its own box structure .

1.2.4 Box Structure Descriptions

Box structure descriptions will be so useful that we will express them
in two forms , cal led Box Description Language (BDL) and Box Descrip­
tion Graphics (BDG) . We have already seen Box Description Graphics for
black boxes , state machines , and clear boxes in the previous definitions
and examples. BDG consists of standard diagrams in which descriptive
text can be embedded , such as the assignment statements and state vari­
ables in the Running average clear box. In more complex descriptions ,
the text may be more general to describe data or operations in English
phrases . For example , Figure 1 . 2-7 illustrates a clear box that might de­
scribe a human forecaster' s approach for a seasonal product in which
each English phrase is expanded separately, as in Table 1 . 2- 1 .

Box Description Graphics will be especially useful in information sys­
tems analysis for recording current manual procedures and verifying their
correctness with managers , users , and operators . The descriptions are
readily understood by others outside the development group and help in
precise communication about current or desired procedures.

The other form of expression, Box Description Language (BDL) , is in
text to serve as a formal description language . BDL describes no more

Seasonal product forecast

:---l Sales data r---l
I + 1 , I I I I I I I I I I I I I I I I I I I
I I I I I I I Update I I Compute I I Compute I

• : I � sales t seasonal � monthly I
data adjustment forecast

R S

Figure 1.2-7. Seasonal Product Forecast Clear Box.

1.3 The U.S. Navy Supply System Reorder Polity

Table 1.2-1

Seasonal Product Forecast Term Definitions

Term

Sales Data

Update Sales Data

Compute Seasonal Adjustment

Definition

Past five years of monthly sales

Delete oldest sales and add newest sales to state

Divide total of sales this month for the past five

years by total sales for the past five years

15

Compute Monthly Forecast Multiply seasonal adjustment by total sales for past

year

nor less than B DG, but is more concise and rigorous. Box Description
Language is most useful in design for recording the evolving box structure
of an information system. The various box structures and control struc­
tures are defined by use of keywords in a typographic format. BDL will be
developed in the next three chapters.

Summary: Any information system or subsystem can be de­
scribed in terms of a black box, a state machine, and a clear box.
The translations between these descriptions provide insights into
the system structure .

1.3 THE U.S. NAVY SUPPLY SYSTEM REORDER POLICY

Preview: A real life case study of the U .S . Navy Supply System
Reorder Policy demonstrates the use of box structures for infor­
mation systems analysis.

The creation of clear box descriptions out of existing business pro­
cesses and their conversions into state machine and black box descrip­
tions can be useful directly . For example, in the middle fifties, an analysis
of the U. S. Navy multiechelon supply system led to a radical revision and
improvement in inventory control . The basis for this analysis was the
conversiun of a clear box description of inventory reordering into a state
machine , then into a black box description . At the time , the current Navy
Supply System reorder policy, called the "k months of supply" policy ,

1 6 1. Information Systems Development

seemed sensible enough. It called for maintaining some factor k times an
average month's demand of an item either in inventory or on order. The
factor k was chosen by the inventory manager to reflect the length of the
pipeline, the variability of demand, and the consequences of outage for
the i tem. This k varied from item to item, say from anchors to socks, but
once chosen, the rest of the calculation of each month's reorder was
simpJe and automatic. The average demand was calculated by a 1 2-month
running average, so the effects of an unusual month would seem to be
averaged out . For example, if the manufacturing cycle for making a cer­
tain size anchor is 9 months, a variation of 3 month's demand could be
expected and the consequences of outage indicate another 3 month's
safety factor, then k would be 1 5 (9 + 3 + 3) months.

1.3.1 The Clear Box Formulation

The clear box of the reorder policy can be formulated directly from the
business process. The clear box description of the k months of supply
policy for a particular item has as state data the value of k for the item, the
current inventory (including items on order), and the past 1 2 months of
demands . With the stimulus of last month's demand, the new state i s
obtained by discarding the oldest demand, retaining the current one, and
subtracting it from last month' s inventory to get current inventory . Next,
the running average of the past 1 2 months is computed , multiplied by k,
and then the current inventory is subtracted to get the reorder value.
Finally, inventory (which includes items on order) is increased by adding
the reorder j ust calculated . This clear box is depicted next in Figure 1 . 3- 1 ,

Reorder policy (clear box)

D

:------- � State �-k. L DI, D2 , DII, Dil --- -,

+ I I I I 4 1 I I I
I I

I I I I
I Update state I I I I I I I

I I I I Increase I I DI2:= Dll I I I I
I I Compute reorder inventory

DII:=DIO I
I I I I I I W. I

t. ... LLL R := k(DI + D2 + ... I
D2:= DI + D 12)i12-1 1 := I + R R

DI D
I I-D

Figure 1.3-1. Reorder Policy Clear Box .

1.3 The U.S. Navy Supply System Reorder Policy 1 7

ing variables k , I (for inventory), DI, D2, . , DII, and DI2 for the �:st 12 months of demands ; D is the current demand and R the resulting

reorder.
This clear box description represents an actual business process de-

veloped on a pragmatic basis that seems to make a lot of sense. Once

formulated, however, it can be converted rigorously into a state machine

and then into a black box for further understanding and insight .

1.3.2 The State Machine Derivation

The state machine of the reorder policy can be determined by replac­
ing the clear box sequence structure with a sequence-free state machine
transition. The transition can be determined by finding single expressions
for the response R and each state variable I, DI, D2, . . . , D 1 2 in terms
of the stimulus D and the last values of the state variables . On examina­
tion of the clear box , it can be seen that the new values of Dl, D2, . . . ,
D 1 2 are given by the Update state part because that is the only place they
are updated. The expression for I can be determined from the two parts in
which I is updated . In this case, D is subtracted from the last state value
of I in Update state, then R is added to this intermediate value of I - D, so
the new state value for I is

I := I - D + R.

However, R must be worked out before I i s known in terms of the
stimulus and old state . In this case, R is updated only in Compute reorder
in an expression that contains DI, D2 , . . . , D 1 2, and I . But all these
variables were just updated in Update state, which replaces Dl by D, D2
by DJ, . . . , D 12 by Dll, and I by I-D. Therefore, the expression

R : = k(Dl + D2 + ... + DI2)/1 2 -I

in the intermediate state data becomes

R := k(D + Dl + ... + Dl 1)/ 1 2 - (I - D)

in terms of the old state data. Now, I can be finally worked out , from

I := I - D + R

to

I : = I - D + k(D + D 1 + ... + D 1 1)/ 1 2 - (I - D)

and the last term (I - D) cancels the first two terms, so I is simply

I : = k(D + Dl + ... + Dl 1)/ 1 2

1 8 1 . Information Systems Development

Reorder po licy (state m achine) �ni r--� State
k, I, DI, D2, ... , DII. D l 2

I
I I
I I I Machine I I I I I I R := keD + D I + ... + D II)/12 - I + D I I
I I k(D+DI +···+DII)/ l 2 I
I D l 2 := D l i I I I

D .i D l i :=DIO � . . . R
D 2 DI
D l D

Figure 1.3·2. Reorder Policy State Machine.

At first glance, it may seem surprising that I is just k times the average of
the last 1 2 months of demands , but on second thought, that is just what
the k months of supply reorder policy should produce . The state machine
so derived above is depicted in Figure 1 .3-2 .

In this case, there are no real surprises in the Reorder policy state
machine . But, it has been distil led down one step by removing the sequen­
tial dependencies of the clear box . Note, however, that the so-called
"material balance" equation-that new inventory should equal old inven­
tory plus additions minus deletions-is automatically accounted for in
this state machine; it is not a required inspiration of an analyst to remem­
ber or account for it. One simplifying action can be observed. The state
variable D 1 2 and the assignment D 1 2 : D 1 1 can be eliminated since D 1 2
is not used in the assignments for R or I .

1.3.3 The Black Box Derivation

With sequential dependencies of the clear box eliminated to get the
state machine, the next step is to eliminate the state dependencies of the
state machine to get the black box . In doing so , it will be necessary to
introduce previous demands into the single expression for the response .
Let D(m) be the demand for month m, the state data for the state machine
that accepts stimulus D(m) be I(m - 1) , D l (m - 1) , D2(m - I), . . . ,
D l l (m I), and the response to this stimulus be R(m). Now, the new
state that will be updated from stimulus D(m) will be I(m) , D l (m) , D2(m) ,
. . . , D l l(m) for next month . Then, an inspection of the Reorder policy
state machine of Figure 1 . 3-2 shows that the response and new state
values will be as follows:

J The U.S. Navy Supply System Reorder Policy 1.

R(m) k(O(m) + 0 1 (m - 1) + . . . + 0 1 1 (m 1) /12 - I(m - 1)
+ O(m)

I(m) = k(O(m) + 0 1 (m - 1) + . . . + O l 1 (m - 1 »/ 1 2

OI 1 (m) = O l O(m - 1)

D2(m) 0 1 (m - I)
D I (m) = O(m)

1 9

Note that these are equations (=) , rather than assignments (: =) ; the
month indexes make this possible and correct . In particular, these equa­
tions hold for m replaced throughout any equations by another expression
for m. For example, these values could be computed on a spreadsheet,
with headings for the stimulus, response and state data and initial values
for the state ; then a column of stimuli values could produce the rest of the
values of the spreadsheet automatically . More concretely, given initial
values for the state

k, 1(0), 0 1 (0), 02(0), . . . , 0 1 1 (0)

in the first row of the spreadsheet and an input column of values under 0,
referred to as 0(1), 0(2), . . . , O(m) ; the spreadsheet process will com­
pute first R(1), then 1(1), 0 1 (1), 02(1), . . . , and 0 1 1 (1) . The second
demand, 0(2), would produce the second response, R(2), and the state for
the second iteration ; and so on. Of course, all of this processing is done so
rapidly that the step-by-step calculation may not be noticed by the spread­
sheet user. But, while some intuition could be obtained by trying various
columns of stimuli, we will see, in this particular case, that a symbolic
mathematical analysis of these equations will lead to a major revelation .

In order to carry out the elimination of state data from this set of
equations, it turns out to be convenient first to express 0 1 , . . . , 0 1 1 in
terms of demands O. Since

0 1 (m) O(m)

is an equation, replace m by m 1 on both sides to get

O l (m - 1) = O(m - 1)

Next,

02(m 1) = 01(m 2) O(m - 2)

03(m - 1) 02(m - 2) = 0 1 (m - 3) = O(m 3)

OI 1 (m - l) O(m - 1 1)

=

20 1. Information Systems Development

as can be expected with a little thought . Now, both R(m) and l(m) can be
expressed in terms of demands D instead of state data D t , . . . , D II , but
it will be convenient , also, to substitute the expression for l(m - I)
(obtained by replacing m by m - 1 throughout the equation for l(m» in
R(m) to obtain

R(m) = k(D(m) + D(m - I) + .
. . + D(m 11) /12

k(D(m - l) + D(m - 2) + . . . + D(m - 12» /12

+ D(m)

Now , the surprise is that II terms of the first line of the right side are
exactly the same as I I terms of the second line, but with opposite signs­
they cancel out ! Therefore, R(m) reduces to

R(m) = (kD(m) - kD(m 12» /12 + D(m)

which simplifies to

R(m) = (l + k/12)D(m) - (k/12)D(m - 12)

That is, the Reorder policy black box i s given by a weighted combination
of exactly two demands as shown in Figure 1 .3-3 .

The surprise i s that R(m) depends on only two demands D(m) and
D(m-12) , a year apart , even though a running average of these demands
was u sed in defining R(m) in its business process and clear box descrip­
tion. It just happens that the interactions of the material balance and the
reorder policy cancels out the effect of all the intermediate demands .
These interactions and cancellations would also b e taking place , over and
over, in spreadsheet calculations , but the chances of discovering such a
pattern would be very remote. As evidence , this reorder policy had been
in use by many organizations over many decades without any hint that
such a pattern existed . That is , a lot of human thought and observation of
results did not even lead to a suspicion of this pattern !

Reorder policy (black box)

R(m) = (I + kj I 2)D(m) - (kj I 2) D(m - 1 2)

Figure 1.3·3. Reorder Policy Black Box.

- R

1.3 The U.S. Navy Supply System Reorder Policy 2 1

1.3.4 Analysis of the Reorder Policy

Even though the form of the Reorder policy black box is a surprise , is

that bad? The reorder policy is used in a multiechelon hierarchy from
many small supply points at the bottom up through a few large ones
(ultimately a few suppliers , possibly only one) at the top. The objective of
the reorder policy, beyond providing supplies , is to smooth or dampen
the demand variability necessarily expected at its bottom to get a more
level aggregate of demands higher up in each echelon, so that the ordering
to outside suppliers at the top is as level as possible . The effort of such
smoothing through several echelons is mUltiplicative and can be very
effective . For example, if each echelon reduced the demand variability by
a factor of two , then the effect through two echelons would reduce the
variability by a factor of four and through three echelons by a factor of 8
over the variability at the bottom . In turn , steady orders on the outside
suppliers can mean lower costs per unit because of the economics of
stable production . That is , if the k months of supply policy, used through­
out the multiechelon system smoothed demand variability at each reorder
point , it could effect the economics of supply significantly .

'

Now that the black box of the reorder policy has been derived, it is
possible to analyze the smoothing of reorders from demands . The reorder
R has the form (simplifying notation)

R = (l + k/1 2)D - (k/ 1 2)D'

where D is last month' s demand and D' is the demand a year ago. First of
all , if demand is constant , say DO, then

R = (l + k/ 1 2)00 - (k/ 1 2)DO

= (l + k/ 1 2 k/ 1 2)00

00

so reorders will exactly match demands , a good thing because inventory
will be completely stable . Now, consider the variability of demands D and
D' . If 0 or D' are unusually high or low, the other may compensate or
may not .

In order to develop a concrete numerical illustration , suppose k = 1 2 ,
so R has the especially simple form

R = (l + 1 2/ 1 2)D - (1 2/1 2)D' 2D - 0'

Suppose that 0 and D' average 1 00 units , but are 75, 100, and 1 25 , each
with an independent probability 1 /3 . Then there are 9 equally likely cases
for (D, D') values each with probability 1 /9 . For example, if D 75 , D '
1 25 , then

22 1. Information Systems Development

R = 2(75) - 1 25 = 25

When these cases are listed, the values of R are given in Table 1 . 3- 1 .
Surprisingly, Table 1 . 3- 1 shows demands D and D' vary only at most 25
from their average value 100, but the reorder R varies up to 75 from its
average value of 100. In fact , Table 1 . 3- 1 shows that the reorder policy
does not dampen the variability of demands at all; it amplifies them-in
this case up to a factor of 3 ! A more extensive statistical analysis verifies
this illustration. The standard deviation of R turns out to be V5 (= 2 . 236
. . .) times that of the standard deviation of D and D ' . That is, the k
months of supply policy is an inadvertent demand variability amplifier in
the multiechelon supply system. Just as dampening i s multiplicative so is
amplification. Through 3 levels , rather than reducing variability by a fac­
tor of 8 , this reorder policy in fact increases variability by a factor of
(V5)(V5)(V5) = 1 1 . 1 8 . . . !

This clear box to black box analysis showed that most of the variabil­
ity of inventory levels and reorders in the upper echelons of the Navy
supply system was self-induced by a seemingly sensible reordering pol­
icy . Once the problem was revealed, it was possible to devise a new kind
of reordering policy , called an exponential smoothing policy , that reduced
the variability of demands up the echelons rather than amplifying them.

It may seem a surprise in a book on information systems development
that the first major example does not even depend on a computer ! There i s
a good reason . The example is about a business process and i ts analysis .
I t would be possible to automate the k months of supply policy in an
information system. The best design techniques could be used to store the
data and process it . The best documentation techniques could be used to
make the system understandable to inventory managers. The best human
factors could be employed for entering the data for k and demands . But it
would all be wrong-not wrong in the implementation , but wrong in
information systems analysis and design. This example illustrates the

Table 1.3-1

Values for R

D':

75 1 00]25

75 75 50 25
D:]00 1 25 1 00 75

1 25 175 1 50 1 25

1.4 Managing Information Systems Development 23

'mportant truth that the reason for information processing is the business

�ot computers . So every part of an information system must begin with a

sound analysis of the business process . Only then do computers come

into the picture .

Summary: This case study illustrates insights gained through
box structure analysis of existing information systems. Such anal­
ysis may reveal unsuspected behavior and lead to better informa­
tion systems designs. Sound information systems begin with
sound analysis of business processes.

1.4 MANAGING INFORMATION SYSTEMS DEVELOPMENT

Preview: Box structure hierarchies provide effective means for
analysis , design , and management in information systems devel­
opment. B lack box replacement and state migration are important
techniques in developing box structure hierarchies . Analysis and
design l ibraries are repositories for evolving box structures. The
concepts of box structure derivation and expansion are precisely
defined in this methodology . The system development process
defines activities of investigation , specification, and implementa­
tion that are scheduled in a development plan. Providing informa­
tion systems integrity requires consideration of many system is­
sues inherent in an operational system.

1.4.1 Box Structure Hierarchies

The low level examples of a running average and the inventory reorder
policy illustrate the concepts but not the scope of box structures. Any
business information system behaves as a black box for its users . They
enter data (stimuli) and receive data (responses) . Data entry may be by
keystroke , by punched cards, even by automatic sensors such as optical
scanners. Data output may be on computer displays , hard copy, even
machine readable media. For example, an airline reservation clerk uses
the reservation system as a black box. But inside is a gigantic state ma­
chine (the state is the data of the entire system) and a corresponding clear
box (the system state and top level programs of the system) .

»

24 1. Information Systems Development

A database system such as IMS behaves as a black box, with applica­
tion programs in COBOL or PL/I as its users . The state machine can be
visualized in storage and retrieval terms, while the clear box will be
involved with storage and retrieval computation. In this case , the infor­
mation system using the database system as a black box component will
itself behave as a black box for its human users .

That i s , business information systems and their subsystems all exhibit
black box behavior, and thereby admit description by black box/state
machine/clear box structures. As a result , identical structures and meth­
ods of reasoning can be used during information systems analysis and
design in a hierarchy of smaller and smaller subsystems , as shown in
Figure 1 . 4- 1 .

A box structure hierarchy itself provides an effective means o f man­
agement control in developing large, complex information systems. By
identifying black box subsystems in higher levels of the system , only a
manageable amount of state data and processing needs to be handled
within each box structure.

Each subsystem becomes a well-defined, independent module in the
overall system. Although the progression from black box to state machine
to clear box at any point in the hierarchy may appear to be a triplication of
effort, this is not the case. Each subsystem should be initially described in
i ts most natural form , with the other forms determined as necessary for
analysis and design. Two important concepts in developing a box struc­
ture hierarchy are black box replacement at any point of the hierarchy and
state migration between points of the hierarchy .

The concept o f black box replacement is key i n system development
for the management flexibility it provides . A black box is a unit of descrip-

B B

I
SM

I
CB

I I I I I I I
B B B B B B B B B B B B BB

I I
SM SM

I I
CB CB

I I I
I

I ,
B B B B B B B B B B

Figure 1.4-1. A Box Structure Hierarchy.

p

1.4 Managing Information Systems Development 25

tion that can be isolated and is independent of its surroundings in a sys­

tem. In particular, a black box can be redesigned as many different state

machines and clear boxes . As long as the black box behavior of these

state machines and clear boxes is identical to the original , the rest of the

system will operate exactly as before . Such black box replacement may
be required or desirable for purposes of better performance, changing
hardware , or even changing from manual to automatic operations.

State migration in an evolving box structure hierarchy is a powerful
design technique. It permits placement of state data at the most effective
level for its use . Downward migration of state data is possible whenever
new black boxes are identified and used in a higher level clear box . Any
state data used solely within one of the new black boxes can be migrated
to the state machine expansion of that black box at the next lower level of
the box structure hierarchy . The isolation of state data through state
migration in the system hierarchy provides important criteria for the de­
sign of database systems and file systems. Upward migration is desirable
when duplicate state data is updated in identical ways in several places in
the hierarchy. This data can be migrated up to the closest common parent
subsystem for consistent update at one location.

Box structure concepts provide a solid basis for management and
control of all development activities . New information, better ideas , and
even setbacks can be expected throughout information systems develop­
ment. The box structure hierarchy provides a framework for orderly con­
trol of the development process, rather than the chaos that such new
information , better ideas , and setbacks can generate in a less disciplined
development. Black box replacement and state migration provide creative
flexibility during system development by allowing improvements in the
design without losing its integrity .

1.4.2 Box Structure Derivation and Expansion .

The box structure of information systems leads to a precise definition
of the tasks of derivation and expansion, as shown in Figure 1 .4-2, using a
sequence clear box for illustration (with alternation, iteration, and con­
current clear boxes possible) .

It i s a derivation to deduce a black box from a state machine or to
deduce a state machine from a clear box, while it is an expansion to
induce a state machine from a black box or to induce a clear box from a
state machine. That i s , a black box derivation from a state machine pro­
duces a state-free description , and a state machine derivation from a clear
box produces a procedure-free description. Conversely, a state machine

26 1. Information Systems Development

I s�,-------------,B1aCk bOX �
R

l
Derivation Expansion

State machine

r- - -1 State r .., L J I

l S

I I
I I
I I
I I
I Machine I

+ I � R I
Derivation Expansion

J l
S

Clear box
r------ - 1 State r---- - - - � I • I I I I
I I I I
I I I I
I Black box I I Black box I I I I I I

+ I • I
I R

Figure 1.4-2. Box Structure Derivation and Expansion .

expansion of a black box produces a state-defined description , and a clear
box expansion of a state machine produces a procedure-defined descrip­
tion. The expansion step does not produce a unique product because
there are many state machines that behave like a given black box , and
many clear boxes that behave like a given state machine . The derivation
step does produce a unique product because there is only one black box
that behaves like a given state machine and only one state machine that
behaves l ike a given clear box. Throughout this text , we will present
many examples of derivation and expansion steps .

These definitions of derivation and expansion allow work assignments
and reporting to be precise and comprehensive in managing information

1.4 Managing Information Systems Development 27

systems development . Each box structure derivation or expansion step
represents a discrete unit of work , which altogether create the analysis
and design of an entire system . The analysis activities of manual proce­
dure reviews and interviews fit d irectly into these definitions. A person
interviewed will describe procedures that the analyst will formulate as a
clear box and then convert by derivation into state machine and black box
terms. The design will then proceed from the derived black box by expan­
sion back through a state machine and clear box better suited for auto­
matic processing.

Information system development may take months or years and re­
quire from a few to a few dozen, even a few hundred , people . Each of
these people are discovering new facts about the business or the system,
identifying new problems and old problems , finding solutions to those
problems , making logical decisions about data storage and processing,
and so on, every day. Even a small information system involves a large
amount of logical structure and detail in its development . It is imperative
to keep all this structure and detail organized and accessible for the devel­
opers in the conduct of the work.

The hierarchical box structure of black boxes , state machines, and
clear boxes is designed explicitly to keep the details of derivation and
expansion accessible during information system development . But there
still must be a physical medium for recording this structure and its details .
For this reason, this methcJology introduces two systematic documenta­
tion structures , an analysis library and a design library. The analysis li­
brary records findings about the business and its needs for the information
system in question , and is created in terms understandable to users in the
business. The design library records the logical inventions and solutions
the developers have discovered which address the needs of the business
in a potential information system and uses more a precise and concise
design language understood by the developers . Both libraries are orga­
nized in the same way, in the box structure of the information system
under development. The developers understand and create both libraries ,
using the analysis library to interface with management , users , and opera­
tors in the language of the business and the design library to ensure the
completeness and consistency of the information system in more concise
language .

For example , the results of management or user interviews wil l appear
first in the analysis l ibrary and will be confirmed in that form with the
management or users. Such interviews may not cover unusual cases in
computer operations that the users never see, such as how files are pro­
tected during an electrical power outage . But as those results are trans­
lated into the design library , additional technical considerations may

28 1. Information Systems Development

arise , as , i n this case, how power outages are to be handled. Once prob­
lems and solutions are recorded in the design library, their results may be
fed back to the analysis library by subsequent discussion with manage­
ment or operators , in this case to decide whether to provide for emer­
gency power facilities in computer operations.

1.4.3 The System Development Process

One of the obvious appearances in information systems is the life
cycle. It is certainly apparent that information systems go through vari­
ous stages of conception, specification, design, implementation, opera­
tion, maintenance, modification , and so on. But although these terms are
suggestive , real information systems do not pass through these stages in
any simple or straightforward way.

If i nformation systems were developed for their own intrinsic worth
by people with infinite knowledge and intelligence , and given unlimited
time and budgets , such an information system life cycle might be possible
and sensible . But, as already discussed, information systems are devel­
oped for business purposes with limited time and budgets by real people,
often under conditions that are far from ideal because of business pres­
sures .

If a competitive hotel chain announces a new reservation system, the
business needs a quick response with whatever system that can be put
into operation, not a system developed to an orderly timetable that arrives
too late to save the business. If a banking law changes and more immedi­
ate financial information can save interest rates , every day spent in a fixed
development cycle is money lost .

Faced with such business pressures, it is easy to fall into a harum­
scarum, disorderly mode of operation that generates random activity but
no real progress . What are needed in information systems development in
real business environments are management principles to balance urgent
business needs with requirements for systematic work. Such principles
are not new in business and management . They involve a spectrum of
short range to long range planning. Long range plans deal with fundamen­
tal business objectives and trends ; short range plans deal with near term
needs and account for current conditions.

In information systems development these principles are embodied in
the definition of a set of limited , time phased activities to decompose and
manage the various kinds of work required , and a development plan that
defines and schedules the specific activities needed to address a specific
problem. The development plan represents long range planning for infor­
mation system development and the activity plans represent short range

1.4 Managing Information Systems Development 29

planning . As each activity is completed , the entire development plan

should be updated to account for the current situation.
Although the activities of a development plan are always specific to a

particular system's development problem, they can be categorized into
three general classes , investigation, specification, and implementation . An

investigation is a fact finding, exploratory study , usually to assess the

feasibility of an information system. A specification is more focused to

define a specific information system and its benefits to the business . An
implementation converts a specification into an operational system. To
summarize :

The system development process is defined by a development plan
that specifies a time phased set of activities to address business
needs . The development plan should be updated at the completion of
each activity to account for progress made, lessons learned, and
changing needs of the business .

System development requires focused, creative work carried out with
strict discipline . It requires mental inspiration and mental perspiration in
the usual ratio of 5% inspiration to 95% perspiration. This need for both
creativity and discipline calls for a management process to define short
term and long term objectives , measure progress, introduce midcourse
corrections , and ensure completion and success in systems development .

Box structure s provide continuity of form for managing the systems
development process . They can be used extensively and continuously in
the three activities of development:

Investigation. Do the developers understand the problem? They
can demonstrate they do by describing current operations, manual
or automated. Formulated in box structures , these descriptions
should be verified with the users and management, along with a
preliminary estimate of the costs and benefits of a new system.

Specification. Do the developers have a solution to the problem?
They can demonstrate they do by describing a possible information
system to improve current operations , with a comprehensive treat­
ment of the inputs , outputs , storage , and processing proposed .
Formulated in box s tructures , the proposed information system
should be augmented with benefits and firm cost and schedule
estimates .

Implementation. Can the developers make good o n their proposed
solution? The box structured specification is the right foundation
for a box structured implementation in a top down hierarchical
development of the information system to meet specifications
within budgets and schedules.

30 1. Information Systems Development

Hierarchical box structures provide a natural framework for cost and
schedule control . Once analysis is completed , the initial design task is to
develop a top level black box , state machine , and clear box. The clear box
will make use of black boxes at the next level of refinement , for which the
design process will repeat . The top level design effectively partitions the
original design problem into a structure of component problems, each of
which can be dealt with independently using the same box structure meth­
odology. Each new black box in the structure represents a new top , which
must in turn be elaborated into a box structure hierarchy of its own. Since
each new black box is smaller and s impler than those above it in the
hierarchy , eventually black boxes will be reached which do not introduce
new black boxes , and the design will be complete . That is , box structures
permit a rigorous design-to-cost management process , in the stepwise
allocation and consumption of project resources . Every new black box in
the evolving hierarchy represents a new subproject to be designed to cost
given the resources available .

Each activity step , regardless of its type , can be viewed as going
through three stages , as shown in Figure 1 .4-3 :

(a) Planning. Planning involves a proposal detailing the objectives
and statement of work for that step and defining resources and schedules
required for completion. The proposal must be reviewed and accepted by
the appropriate individuals .

(b) Performance. The tasks involved in the activity step are per­
formed. For example, an investigation task may require interviewing sig­
nificant system users ; a specification task may be to design a subsystem
from black box to state machine to clear box description ; and an imple­
mentation task might be to program the resulting clear box specification.

(c) Evaluation. Within each step, an evaluation of the results must
be performed and the development plan updated . The type of evaluation
will vary based upon the tasks performed. Forms of evaluation include
management reviews , design verification , system testing, etc .

Just as box structures have their hierarchies , so do these activity
steps . A major task may define a schedule of smaller tasks , each with their
own planning, performance , and evaluation stages . These hierarchies will

Pla nni ng Perfo rma nce Eva lua tio n

S ta rt Comp letio n

Time ---....

Figure 1.4-3. Stages of an Activity Step.

1.4 Managing Information Systems Development 3 1

correspond closely with management hierarchies in large information sys­

tems development . An upper level manager may not be fully aware of

detailed activities planned , performed, and evaluated under lower level

managers to meet upper level planning, performance, and evaluation

steps .
It is convenient to visualize the effect of the system development

process in a specific situation as a sequence of feedback driven develop­

ment activity steps, as shown in Figure 1 . 4-4 in the form of a system

development spiral.
In this system development spiral , each loop of the spiral is a distinct

activity step with its three stages of planning, performance , and evalua­
tion . An approval by management, based on the development plan, is
shown preceding each activity step and at the completion of the develop­
ment. This particular spiral shows one pattern of activity steps, namely,

Investigation
Specification
Investigation
Implementation

Possibly the second investigation step was to confirm a cost/benefit
analysis produced by the specification step.

An ideal pattern is

Investigation
Specification
Implementation

but, in fact, this turns out to be too simple for most situations . In the
absence of business opportunities or pressures, it can be followed for
straightforward developments . The problem is that most information sys­
tems are developed just because there are business opportunities or pres­
sures . As noted , if a competitive hotel chain announces a new reservation
system, the business needs an implementation as soon as possible , not an
investigation. If an advanced system is being developed, the implementa­
tion may need to be carried out incrementally, with investigation and
specification steps interspersed , for example , in an intended pattern:

Investigation
Specification
Implementation
Investigation
Specification
Implementation

32 1. Information Systems Development

Start

Approval
Planning

Performance

Approval

Performance

Approval

Performance

Approval

Performance

Approval
Evaluation

Com pletion

Figure 1 .4-4. A System Development Spiral .

Even though this pattern is intended , extra steps of investigation or speci­
fication may be required to meet unexpected problems that might arise
during the development .

The system development process can itself be described in two cou­
pled black boxes that show the interactions between the system develop­
ment group and the environment in the business as shown in Figure 1 . 4-5 .
Each interaction consists of a single transmission of information between
the business environment and the system development group. For exam­
ple , a proposed information system specification with its benefits , cost ,
and schedule estimate is simultaneously a response from system develop­
ment (to prior stimuli) and a stimulus to the business environment . That
stimulus to the business environment may produce a response to approve
the i mplementation of the proposed system. This approval response in
turn becomes a stimulus to system development and so on . This interac-

1.4 Managing Information Systems Development 33

Business environment

R S

System development

S R

Figure 1.4-5. The System Development Black Box and Its Business Environment.

tion goes on during analysis and design at lower levels , right down to
individual conversations between developers and managers, users , or op­
erators . For example , an interview about sales forecasting methods in the
business would take the form of a lengthy series of stimulus/response
messages between a developer and a forecaster. Each question or answer
will be itself a response for one person and a stimulus for the other.

Figure 1 .4-5 represents the constant interaction between the system
development process and the business environment in which it exists .
The system environment includes the managers, users , and operators of
the system. The transitions of the System development black box can be
organized into activity steps-an investigation step, a specification step,
or an implementation step. The type of step taken depends upon the
development plan, which should account for results of the previous step
and the feedback received from the business environment.

1.4.4 Information Systems Integrity

Box structure descriptions of systems are conceptual representatives
of real systems , manual or automatic , that process information. Such box
structures describe intended data processing and storage , but between
these intentions and actual implementations there may be many system
issues . In simplest terms , information systems integrity is the property of
the system fulfilling its function, while handling all of the system issues
inherent in its implementat ion. For example, systems are expected to be
correct , secure , reliable , and capable of handling their applications . These

F'

34 1. Information Systems Development

requirements may not be explicitly stated by managers , users , or opera­
tors , but it is clear that the designed system must have provisions for such
properties . Questions of system integrity are largely independent of the
function of the system , but are dependent on its means of implementation,
manual or automatic . Manual implementations must deal with the fallibili­
ties of people , beginning with their very absence or presence (so back-up
personnel may be required) , that include limited ability and speed in doing
arithmetic, l imited memory capability for detailed facts, lapses in perfor­
mance from fatigue or boredom , and so on. Automatic implementation
must deal with the fallibilities of computer hardware and software , begin­
ning with their total lack of common sense, that include limited processing
and storage capabilities (much larger than for people , but still limited) ,
hardware and software errors , security weaknesses , and so on.

Even though manual and automatic implementations of information
systems deal with quite different fallibilities , the questions of integrity can
be divided into categories that are common to manual and automatic
implementations because they are properties of systems, not of imple­
mentations . Six such categories are :

Security
Operability
Capability
Correctness
Auditability
Reliability

The means for achieving integrity in these categories vary between
manual and automatic implementations, as indicated in Table 1 . 4- 1 . Sys­
tem integrity begins with the recognition of potential system malfunctions
in analysis and design , the earlier recognized , the better. The levels of
integrity necessary should be identified during analysis and the means for
achieving it determined during design. Integrity has its own costs and
benefits , so cost/benefit trade-offs are required during analysis and design
for integrity as well as for the functions of a system . For example , secu­
rity features such as data encryption are expensive in terms of software
and system performance. A high level of security requirement should
exist before encryption is considered .

The example in the preceding section of protecting files from electrical
power failures illustrates analysis and design by integrity questions. It
also illustrates that analysis and design is usually an iterative process .
Some questions of integrity may surface only when implementation issues
are faced in design. When they do , the analysis activity should be re­
sumed to ensure their proper treatment. Of course , it is in the best interest

J

Exercises 35

Table 1.4-1

Examples of Means for Achieving Information Systems Integrity

Manual Automatic

Security Personnel Access, Passwords ,

Legal Agreements Secure Systems

Operability Procedures Manuals , Operator Manuals ,
Training Programs Control Consoles

Capability Adequate Staffing, Adequate Resources ,

Temporary Help Archive and

Restoration Procedures

Correctness Double-checking, Domain Checking,

Reviews Consistency

Auditability Accounting Records Program Inspection,

and Practices Logs, Audit Reports

Reliability Redundancies, Checkpoint,

Cross-Checks Restart Procedures

to identify such questions as early as possible , to minimize the iterations
and backtracking required to deal with them.

Summary: The system development process is a management
paradigm for defining and scheduling work in investigation, speci­
fication, and implementation activities . The concepts and princi­
ples of the box structure methodology provide a comprehensive
and rigorous way to manage and control information systems
development. The system development spiral reflects the actual
way work unfolds in development. Integrity requirements must
be addressed together with the functional requirements of an in­
formation system.

EXERCISES

1. Give examples of a data processing system, a management informa­
tion system, and a decision support system. Identify the managers ,
users, operators , and developers of each system.

2. A system accepts hourly temperature readings as stimuli . The re­
sponse is the highest and lowest readings in the past 24 hours . De­
scribe this system as a black box, a state machine, and a clear box .

36 1 . Information Systems Development

3. A system receives a stimulus that has two possible values , YES and
NO. The response of the system is the current count of YES's
received and the count of NO's received . Describe this system as a
black box, a state machine, and a clear box .

.

4. Modify exercise 3 to include a CLEAR stimulus value. Upon receiv­
ing CLEAR, the system sets the YES and NO counts to zero . De­
scribe this system as a black box , a state machine, and a clear box .

S. Briefly define the box structure concepts of black box replacement :
and state migration. Give an example of each.

6. State migration may be performed upward or downward in a box ,
structure hierarchy. Discus s the advantages and disadvantages of a
centralized state at a high level versus decentralized states at lower
levels .

7. Distinguish between the concepts of analysis and design in the box
structure methodology. How are the analysis and design libraries
used?

8. A company has found from experience that the best forecast of this
month' s sales is a weighted average of the last month's sales and the
average monthly sales for the past year. The weight given to last
month's sales is a fraction x and the weight for the past year's
average i s (I -x). Give a clear box description of this sales forecasting
method and derive the state machine and black box descriptions via
analysi s .

9. List and discuss the types of activities performed by the system
development team during information systems development .

10. Why is the system development spiral a convenient way to describe
a system's development?

11. List and describe the categories of system integrity. Find examples
of systems that have significant requirements for each type of in­
tegrity .

12. Propose and discus s an appropriate system development spiral for
each of the following system examples . Detail the activity step rep­
resented by each loop in the spiral .
(a) A company wants to go from a manual payroll procedure to a

computer automated payroll. They have no computer software
or hardware .

(b) You want to develop a calendar/appointment system for your
personal computer. You don't know whether to buy a software
package or code the system yourself.

Exercises 37

(c) An organization ' s computerized tax preparation system has be­
come obsolete because of a complete overhaul of the tax laws.

(d) A computerized mailing system must be changed to accommo­
date 9 digit zip codes . Note that this simple system change will
result in a system development spiral of its own.

Chapter 2 The Black Box Behavior of
Information Systems

2.1 BLACK BOX BERA VIOR

Preview: Any information system operates in a consistent way
based on its history of use . This history of use can be described as
its black box behavior.

We encounter information systems every day that do useful things for
us. We can learn what these systems do for us without knowing exactly
how they do it . We use information systems directly when we make
airline or hotel reservations and indirectly in automatic teller machines or
daily work. On a smaller scale, we can learn to use a hand calculator to do
arithmetic and a personal computer to do word processing without under­
standing the internal operations of their programs and circuits .

However, in order to put our trust in such a system, we must be
convinced that the system operates in a consistent way based on its
history of use. That is, the system cannot be capricious or produce differ­
ent results one time or another with the same history. For example , we
expect a hand calculator to give the same result (correct answer) every
time we give it the same problem in a history of keystrokes.

In each case, we can treat the system we are using-the calculator or
the computer-as a black box, such that each time we give it a stimulus, i t
gives us a response. When a black box accepts a stimulus, it will return a

38

2.1 Black Box Behavior 39

response before it will accept another stimulus . In the case of calculators

and computers , a stimulus is a key or a button that we press, one after

another, and the response is a display of some kind , often on a video

screen.
A diagram of a black box is shown in Figure 2 . 1 - 1 . The box labeled

"System" could be a calculator or a computer that accepts a stimulus

from and then gives a response to the llser, who may then enter another
stimulus, etc . As the name implies , a black box description of a system
intentionally omits all detai ls of internal structure and operations and
instead deals solely with behavior that is visible to its user in terms of
stimuli and responses .

Definition. Black Box: A black box is a mechanism that ac­
cepts stimuli and for each stimulus , produces a response before
accepting another stimulus ; furthermore , each response is
uniquely determined by the history of stimuli accepted by the
black box .

The examples of calculators , computers, and information systems in­
volve more than providing a response to every stimulus . They involve the
predictable use of data entered by previous stimuli and possibly computa­
tions with such data in producing that response . For example , a roulette
wheel will produce a response (a number) with every stimulus (a spin) ,
but based on no information about previous stimuli or numbers that may
have already turned up. So a roulette wheel , even an electronic one ,
would not be considered a black box . Similarly , an electronic device that
produces the temperature at the push of a button would not be regarded as
a black box.

These examples illustrate that the definition of black box behavior
should not depend on how a system is constructed-electronic, mechani­
cal , or whatever. Instead it should depend only on the stimulus , response
properties of the system.

s R

Figure 2.1-1. A Black Box Diagram.

40 2. The Black Box Behavior of Information Systems
'

2.1.1 Discovering Black Box Behavior

Calculators and computers usually have instruction books that go
along with them and explain their black box behavior. However, in infor­
mation systems development, we often encounter black box behavior that
is not well explained, usually because certain business operations and '
practices have evolved unconsciously without explicit logical design. For
example , a valuable employee may be able to exercise consistent judge­
ments without being able to explain them. In such a case, the only means
available to understand a system as a black box is to observe the re­
sponses associated with various stimuli and seek to understand how they ,
are related.

In illustration, imagine the simple hand-held device shown in Figure
2. 1 -2 . It has keys labeled 0 through 9 for accepting stimuli from its users,
and a two-digit display for producing its responses. Although the device
resembles a hand calculator, its function is not obvious. But we can study
its function by experimenting and observing relationships between the '
responses the device produces and the stimuli that cause them.

A stimulus-response table is ' a convenient means of recording black
box behavior. Imagi!le that the following table of key stimuli and display
responses was produced by using the device in Figure 2. 1 -2:

Stimulus Response

3 3
6 9
I 7
9 1 0
6 1 5

Each row of the table represents a n action of the black box i n accept­
ing a stimulus provided by its user and then returning a response. This

Response
display

2 3
4 5 6 Stimul us

7 8 9 keys

0

Figure 2.1-2. A H and-Held Device That Accepts Stimuli and Produces Responses.

2.1 Black Box Behavior 4 1

ction of a black box i n converting from a stimulus to a response i s called
a black box transition. The sequence of individual transitions from stimu­

�us to response in the black box table is 3 � 3 , 6 � 9, I � 7, 9 �] 0 , and
6 � 1 5 , where each arrow represents a transition .

Definition: Black Box Transition: A black box transition is an
ordered pair whose first member is a stimulus and whose second
member is the response to that stimulus of the black box .

2.1.2 Stimulus Histories

The transitions of a black box from stimulus to response are not neces­
sarily unique . For example , the stimulus of 6 in the table evokes a re­
sponse of 9 in one transition and 1 5 in another. But to be useful , a system
described as a black box must provide consistent , repeatable behavior to
its users . How is this consistency achieved? The answer is that black box
behavior may depend on more than the current transition of stimulus to
response ; it may also depend on the history of transitions from stimuli to
responses .

Therefore , w e consider a new table that records stimulus history and
response on each row, rather than stimulus and response alone:

Stimulus History

3
3 6

3 6 1
3 6 1 9

3 6 1 9 6

Response

3
9
7

1 0
1 5

In each l ine of the new table , the current stimulus is the last number,
reading left to right in the stimulus history. Note that the current stimulus
becomes the previous stimulus on the next l ine of the table , as the stimu­
lus history is built up by successive transitions.

This table emphasizes the dependency of unique responses on stimu­
lus history. Thus , the table shows that a stimulus of 6 with a stimulus
history of 3 6 evokes a response of 9; an identical stimulus of 6 with a
different stimulus history of 3 6 1 9 6 evokes a response of 1 5 .

What explanation can w e offer for the behavior shown i n the stimulus
history-response table? In the first transition , the stimulus is replicated
as a response , but the subsequent stimuli evoked different responses .
Since the response of a black box depends on i ts stimulus history , a useful
analysis strategy is to look for relations between responses and the his-

42 2. The Black Box Behavior or Inronnation Systems :

tory that evoked them. With a little thought, it is apparent that every
response except the first one can be explained as the sum of the current
and previous stimuli :

response : current stimulus + previous stimulus

And if the first response is regarded as the sum of 3 and 0, then this
assignment explains every transition in the table . Thus, an apparent black
box behavior of our device is to compute and display pairwise sums of
current and previous stimuli entered by its user. Add2 seems an appropri- .
ate name for this black box that apparently represents the behavior of the
device .

That is , when the history of transitions is taken into account, we have ..
found an explanation for the behavior of the device that is consistent and .
predictable . More transitions may confirm or refute this explanation , but
we have an explanation for this data.

We take this history of transitions as the means of defining black box
behavior. That is , given any stimulus history a black box will produce a
predictable response history . Note that roulette wheels and thermometers
do not satisfy this property, whereas ca1c'Jlators and computers do.

Does the description of black box behavior require its response history ·

as well as its stimulus history? No, because each response in its response
history simply depends on prior stimuli in its stimulus history . Thus, �
although a response may appear to depend on prior responses, those
responses can always be traced back to prior stimuli . So the stimulus
history of a black box is itself sufficient to guarantee unique responses .

Black box behavior is an extremely important property for an informa­
tion system to possess, and in fact , virtually all information systems do
indeed exhibit black box behavior. Such systems can be described as
black boxes with no discussion of their internal operations required .

COMPLEX STIMULI AND RESPONSES

Although the examples so far have used a single number as a stimulus
or response for a black box, complex stimuli or complex responses are
possible for other black boxes . For example, a batch computer run may
use an entire file of data as a stimulus for black box behavior; the response
from this transition may be an entire report .

As a smaller example, consider a majority voting system where sev­
eral persons, say five , may vote on issues , one at a time. This system can
be considered a black box with a five part stimulus . On each issue , the
black box will not accept more than one vote from one person. That is,
j ust as defined , the black box will not accept a new stimulus (or part of a

1.1 Black Box Behavior 43

stimulus) until it has produced a response . In this case , all five persons

must vote with a stimulus to make up a complex stimulus for the voting

system. Then , the result can be broadcast to the voters as a complex

response and the next issue taken up on the next transition.

2.1.3 Black Box Initial Conditions

Now that we have defined some principles of black box behavior, we
are ready to continue our study of the device in Figure 2 . 1 -2 to confirm
our explanation of its black box behavior. Now suppose we decide to
replicate the previous experiment with the Add2 hypothesis in order to

check results . To our surprise, the second experiment leads to the follow­

ing table:

Stimulus History

3

3 6

3 6 1

3 6 1 9

3 6 1 9 6

Response

9

9
7

10

15

This table is identical to the previous table except for the first transition,
3 � 9, where 3 � 3 was expected . We have provided the same stimulus
history, but the responses are not identical ! What has happened?

Our current explanation may be inadequate, but another answer lies in
our assumptions about the initial condition of the black box . In the first
experiment , we assumed the initial condition , that is , the initial "previous
stimulus , " was 0, so that 3 + 0 produced a response of 3 . But in our
second experiment, this assumption did not hold .

In order to get a response of 9 for the first transition, we need a
"previous stimulus" of 6 to add to the current stimulus of 3 .

But recall that 6 was the final stimulus in the first experiment ! Thus,
the black box simply retained the final stimulus from the first experiment ,
just as it had all the others, in turn , to use as the previous stimulus for the
first transition of the second experiment . Thus , the Add2 hypothesis is
still valid . Note that the term initial condition refers to the experiment,
not the black box .

Fundamental Principle: A black box will produce identical re­
sponses for identical stimulus histories only when it starts from
identical initial conditions.

44 2. The Black Box Behavior of Information Syste ..

In effect, the term initial condition means no more (or less) than the
(unstated) previous stimulus history. The complete stimulus history for
this second experiment i s the combined history of both experiments . In
this case, the only thing that matters about the previous stimulus hi story
for the black box is the previous stimulus , so the initial condition depends
only on that previous sti mulus. In general , however, no two distinct stim­
ulus histories in the same device can have identical complete previous
stimulus histories, because one of these previous stimulus histories will
be necessaril y part of the other one . Therefore, identical initial conditions
can only be defined when the response is determined by a finite history of
stimuli , as i n this example .

Alternatively , the inital condition of this device can be set to a known
value before use-for example , to O-by entering a 0 and ignoring the
response:

Stimulus History Response

? O 0 + ? } Initialization

0 3 3
0 3 6 9

0 3 6 1 7

0 3 6 1 9 10

0 3 6 1 9 6 1 5

The " ?" symbol i n the table represents a n unknown initial condition.
After initialization , the 0 becomes the "previous stimulus, " that i s , the
initial condition , for any subsequent use , that will evoke black box behav­
ior that is repeatable from the same initial condition.

2.1.4 Finite Black Boxes

If any response of a black box depends on at most a number m of
immediately preceeding stimuli , for some finite number m , it is called a
finite black box. If k is the smallest possible number for m , it i s called a
fi nite black box of order k . For example, Add2 i s a finite black box of
order 2 .

A small set o f examples i llustrates these ideas (stimuli are always
digits in these examples)

1. Echo: response : = stimulus
Echo is a finite black box of order 1 .

2 . Previous: response : = previous stimulus
Previous i s a finite black box of order 2 .

3 . Constant: response : = constant
Constant is a finite black box of order O.

Black Box Behavior
2.1

45

4. Odd Even: if stimulus is odd digit, response : = stimulus
if stimulus is even digit, response : = previous stimulus

OddEven is a finite black box of order 2 .
5. First: response : = first stimulus

First is not a finite black box.
6. Max: response : = maximum of all previous stimuli

Max is not a finite black box.

We have discussed black box concepts so far in terms of a very simple

device. But as noted earlier, any information system whatsoever exhibits

black box behavior in its operation . This is because any information sys­

tem simply accepts stimuli from its users and returns responses to them,

based on stimulus history , and thi s black box behavior can be explained
without discussion of internal system structure and operations .

2.1.5 Black Boxes in Business Operations

At first glance a black box such as Add2 may seem simple and remote
from business operations, but that is not the case . A running average of
sales is frequently used in inventory control and ordering policies ; for
example, a black box called RA1 2 can be defined to return the running
average of the past 1 2 months of sales of an item. Its stimulus is this
month' s sales , its response is the running average of the past 1 2 months of
sales. In this light , Add2 can be seen to return a running total of 2 stimuli
and to illustrate a variety of black boxes such as RA 1 2 that abound in
business operations .

In a store with thousands of items , there will be thousands of such
inventory policy (IP) black boxes, one for each item. The inventory man­
ager may not use or know the term black box, but the inventory policy
defines a black box for each item.

As defined, RA1 2 is a finite black box of order 1 2 . But a sales average
need not be defined by a finite black box . For example , a sales forecasting
method that uses a weighted average of all previous sales , but weights
more recent sales more heavily , is given by a black box called W A, which
returns 1 12 the current sales , 1 14 the last sales , 1 /8 the last sales before
that , and so on (1 /2 + 1 /4 + 1 18 + . . . = O. The black box W A i s not finite .

Another important statistic in business operations is peak activity , for
example, peak demand of electricity over a 24 hour period . In this case a
black box called Max24 can be defined that returns the maximum demand
of the past 24 hours . A simpler black box Max2, that returns the maxi­
mum of the past two stimuli , can be seen to illustrate a variety of black
boxes such as Max24 that also abound in business operations.

Any experiment with a finite black box of order k can be initialized by

46 2. The Black Box Behavior of Information

a stimulus history of length k - 1 . That is , the future behavior of the
box will be completely determined by such an initializing stimulus
and the stimulus history from then on . For Add2, k - 1 happens to be
so the previous stimulus is a sufficient initial condition.

Summary: Black box behavior is given by stimulus histories ,
and is explained b y a relationship between stimulus history and
response . The sti mulus history must also account for the initial
condition at the start of the history. The behavior of a finite black
box can be explained by finite stimulus histories .

2.2 THE BLACK BOX DEHA VIOR OF A HAND CALCULATOR

Preview: A hand calculator black box accepts a history of stim­
uli known to the user. Each stimulus invokes a transition and a
response, leading to a final response unknown to the user. Every
response depends on the current stimulus history and the initial
condition.

2.2.1 Finding a Sum with a Hand Calculator

As surprising as it may seem , a simple hand calculator can serve
illustrate most of the logical principles and procedures of information
systems analysis and design . At first glance this may seem impossible.
What about databases, terminals , and other complex aspects of informa­
tion systems? The answer has two parts . First, a hand calculator can be
used to explain the principles and procedures of information systems
analysis and design, not to explain information systems per se . It is these
principles and procedures , applied over and over, that must be used to
deal with information systems . Second , as already noted , the logic prob­
lems are the small part of the total problems of information systems
analysis and design . But getting these logic problems out of the way '
allows you to deal with the people problems without unnecessary distrac­
tions .

Each key o n a hand calculator represents a point of entry whose
depression creates a stimulus . Each stimulus invokes a transition of the
hand calculator black box . Responses from these transitions are shown as
numbers on the display of the hand calculator.

jiP

z.z The Black Box Behavior of a Hand Calculator 47

To illustrate, consider the following sequence of stimuli and responses

to find the sum 14 + 43 :
Stimulus Response

C 0
1 1
4 14
+ 1 4
4 4
3 43

57

The stimuli are the successive key entries made to find the sum. The
left-hand column shows the key entries made by the user. The right-hand
column shows the responses contained in the calculator's display follow­
ing each key entry.

Entries begin with the depression of the C (Clear) key, which produces
a display of O. The user then depresses the keys 1 and 4. After the 1 key
the display shows the value 1 , and after the 4 key the display shows the
value 1 4. Next, the + key is depressed, and the display retains the value
14. That is, there is no new response resulting from the + input .

Now the user depresses the 4 key and the display shows a 4. Continu­
ing, when the 3 key is depressed, the display presents the value 43.
Finally, depressing the = key leads to the display of the sum of 1 4 + 43 ,
namely, 57.

This example illustrates a fundamental property of black box behavior
already discussed: the same stimulus can produce different responses at
different times . When the first 4 stimulus was entered the response was
14 , but when the second 4 stimulus was entered the response was 4. So it
is clear that the response produced by a black box depends on more than
the current stimulus alone. In fact, the history of stimuli to a black box at
the time a new stimulus is received determines the response. Because of
the stimulus history in our example, the calculator treated the first 4 as
part of a number being built, digit by digit, and that 4 was displayed in
sequence following the 1 . But when the second 4 was entered, the calcula­
tor treated it as the first digit of a new number.

2.2.2 Stimulus History in Black Box Behavior

As discussed previously, the response of any black box is uniquely
determined by the history of previous stimuli it has received. But every
new stimulus, once processed by a black box transition, itself becomes
the most recent addition to the stimulus history .

48 2. The Black Box Behavior of Information Syst

Table 2.2-1

Accumulating Stimulus History through Black Box Transitions

(stimulus, stimulus history) (response, new stimulus history)

C * - 0 C

1 C - 1 C I

4 C I - 14 C I 4

+ C14 - 14 C14+

4 C14+ - 4 C14+ 4

3 C14+ 4 - 43 C14+ 43

C14+ 43 - 57 C14+ 43=

* The clear key makes previous history irrelevant.

Thus, black box behavior can also be defined as follows,

(stimulus , stimulus history) � (response, new stimulus history)

where the arrow represents a black box transition. That is , a black box
takes in a stimulus and , depending on its stimulus history , produces a
particular response , and then has a new stimulus history that will influ­
ence its response to the next stimulus . So we can summarize the black
box behavior of our hand calculator example as depicted in Table 2.2- 1 .

Because of the dependency o n stimulus history , even slight variations
in a stimulus sequence can produce totally different responses from a
black box .

For example , suppose the stimulus sequence was changed so that the
second 4 stimulus was entered immediately after the first 4 stimulus . The
display would then have shown the value 1 44 , rather than 14 . So it ap­
pears that the transition invoked by the + key in the original sequence
ended the entry of digits for the first number and conditioned the black
box to accept the digits for a second number beginning with the next
stimulus. After both the first 4 entry and the + entry, the response was to
display the value 14 . Although there was no change in response after the
+ was entered, we can conclude, based on what followed , that the +
entry had a dramatic effect on the subsequent behavior of the black box.

2.2.3 The Clear Key Makes History Irrelevant

The hand calculator exhibits black box behavior, but not finite black
box behavior because there is no limit to the size of the stimulus history
that can affect the response. Nevertheless , the hand calculator has an­
other facility which can be used to guarantee identical initial conditions
for two distinct stimulus histories . It is the C key, as we discuss next.

p

z.z The Black Box Behavior of a Hand Calculator 49

That is , nonfinite black boxes may (or may not) have facilities to establish

standard initial conditions at the beginning of stimulus histories . The C

key does just that for the hand calculator.

Suppose a careless user, trying to find the sum of 14 + 43 , neglected to

start with the C key and to look at the display before depressing the keys 1

and 4, and so on. Suppose , further, that the previous history of stimuli

just happened to be C 3 1 + . Then we know that the additional history

1 4 + 43 = will not find the sum 1 4 + 43 = 57, but rather the sum 3 1 + 1 4 +

43 :::: 88. However, our careless user might well assume that the sum of
1 4 + 43 is indeed 88 because of a trust in the hand calculator. In this case,

there is an apparent history and a real history for this calculation:

Stimulus Response

C 0

l 3 3
1 3 1

+ 3 1

I
Real
H istory

4 1 4

J
+ 45 Apparent
4 4 History
3 43

� 88

Once the user neglected to use the C key , there is only one opportu­
nity to observe that something is amiss, namely , in the response to the
+ key, which the user should know would be 1 4, not 45 . But it is just this
response that the user miglit not notice because 1 4 is expected. In every
other stimulus , a digit has been entered, so there is good reason to look at
the display to verify its correct entry . But the user can't verify the correct
entry of + , instead of - or * , say , by looking at the display .

However, if the user remembers to start with the C key , the previous
history is irrelevant, and a correct calculation can be carried out :

Stimulus Response

C 0

3 3
1 3 1

+ 3 1
C 0

1 1
4 1 4
+ 1 4
4 4
3 43

57

50 2. The Black Box Behavior of Information Systea

Summary: A simple hand calculator illustrates the logical princi­
ples of a black box. It is a black box in which each keystroke is a
stimulus and each display following a keystroke is a response .
The clear key establishes a standard initial condition by eliminat­
ing the effect of previous stimulus history.

2.3 BLACK BOX TRANSITIONS AND TRANSACTIONS

Preview: Black box transitions can be grouped into sequences
that represent black box transactions . A transaction provides in
its last response new information for the user, while previous
responses in a transaction provide user confirmation that stimuli
are being received correctly by the black box.

2.3.1 Known and New Information

There is a fundamental distinction between two types of information
found in the stimuli and responses of a black box . Some responses are
known to the user in advance , while others are not. In the hand calculator
example , the entry stimuli C 1 4 + 43 = were known to the user in ad­
vance , and the corresponding responses of 0, 1 , 1 4 , 14 , 4, 43 in the display
simply verified to the user that the correct digits had been entered. That
is, these responses replicated known information. But the response of 57
in the display was different. It represented new information, not known in
advance by the user. It was information that was not keyed in, but rather
was generated by the black box as an answer to the question that the user
posed. So black boxes are capable of creating new information out of old ;
in fact , that is the reason for their existence !

Note, however, that not all known information was replicated in the
black box display. For example , when the + was entered, no new output
was provided-that is , the black box did not explicitly inform the user
that a + stimulus had been received . So the user was forced to assume
that the addition function had been properly recorded within the black
box . This assumption could only be based on concentration in making key
entries , so as to know that , say , the - (minus) key had not been inadver­
tently depressed when the + key was intended.

2.3 Black Box Transitions and Transactions 5 1

In the example , the hand calculator black box required another as­

sumption from the user. When the value 57 was displayed following entry

of the == stimulus , the user assumed that 57 was indeed the correct an­

swer. This seems an easy assumption to make because we have learned to

trust the arithmetic capabilities of hand calculators . But it is not necessar­

ily a valid one, since the answer could be affected by forgetting to start

with the C key, by a low battery, or even by an intermittent component

failure in the adder circuitry .

2.3.2 Transitions and Transactions

Now consider the overall meaning of the hand calculator stimuli and
responses. In effect , the sequence of entries serves to ask the question,
"What is the sum of 1 4 + 43?" Although the user took note of successive
responses from each transition to help verify the ccrrectness of key en­
tries, it was only in the final response that the user received the answer to
the question posed . So from the user' s viewpoint , it is the entire stimulus
sequence that produces the final response of interest. Once the user has
the answer embodied in the final response , the intermediate responses ,
useful at the time of their display , are of no further value and can be
forgotten . This leads to the following definitions:

Definitions. Black Box Transactions, Input, and Output: A
black box transaction is a sequence of black box transitions in
which all responses, but the last , are predictable by the user. The
last response is not predictable . The entire sequence of stimuli is
called an input , the last response is called an output .

That is , a black box transaction is a sequence of one or more black box
transitions that produces a response required, but unknown, by the user.
A black box input is a sequence of stimuli that defines a transaction . A
black box output is the final response of a transaction . Just as a black box
transition produces a single response from a single stimulus , so too a
transaction produces a single output from a single input . In effect , a
transaction is an abstract description of black box behavior.

For example , the add transaction in the hand calculator problem is :

Input

C 14 + 43 =

Output

57

52 2. The Black Box Behavior of Information

Note that this transaction says nothing about the black box i tself
how it operates , and the desired computation could as easily be
out by a human as by a hand calculator.

The input of the add transaction corresponds to many possible s .

Ius sequences.
For example, the sequence

Stimulus Response

C 0
4 4
3 43
+ 43
I 1
4 14

57

which reverses the order of number entry, would work just as wel l ,
would the sequence

Stimulus Response

C 0
1

4 14
+ 14
3 3
4 34

CE 0
4 4
3 43

57

which contains a digit sequencing error that was corrected by depressing
the CE (Clear Entry) key and entering the proper sequence before contin· '
uing with the problem . It is clear from this last example that much behav­
ior of black boxes is directed to assisting their users in carrying out
transactions . In fact , all of the responses of the hand calculator black box
except the last one exist just for this purpose. Thus , the following black
box behavior

Stimulus Response

C 0
1 0
4 0
+ 0
4 0
3 0

57

4 Information Systems Exhibit Black Box Behavior
%. 53

with nO useful intermediate responses at all , is theoretically sufficient ,

'ven a very careful user !
gl We observe that the add transaction specified an operation that can be

arried out on any two input numbers , not just 14 and 43 . So it i s easy to ;eneralize the transaction to cover a wide range of desired black box

behavior.
It is also important to note that the definition of transactions for a

black box is based on what the user knows at each response, and depends
on how the work of the user is perceived and organized . So the definition
oftransactions is very much for the benefit and use of humans, rather than
for the black boxes that carry them out . In fact, a black box simply
petforms trans itions as directed , one after another in a mechanical fash­
ion, without ever knowing that it is petforming the transaction that its
user has in mind .

In this case the same input will always produce the same output . But
for more complex black boxes the same input can produce d ifferent out­
puts . For example, a black box input to request a bank balance will
produce as output the current balance, which will change from time to
time. As with black box stimuli and responses , the key to this discrepancy
is in input histories . If the history of deposits and withdrawals is taken
into account the outputs can be explained in turns of the input histories .

Summary: A hand calculator black box accepts an input known
to the user, which invokes a transaction and produces an output
unknown to the user. The output depends on the input history
and the initial condition.

2.4 ANY INFORMATION SYSTEM EXHIBITS

BLACK BOX BEHAVIOR

Preview: The behavior of any system of people and/or machines
whose responses depend on initial conditions and stimulus histo­
ries can be described as a black box.

2.4.1 A Personal Computer Exhibits Black Box Behavior

A personal computer provides another, more complex example of
black box behavior. In this case , the input devices are the keyboard keys

54 2. The Black Box Behavior of Information Systems

and the output devices include the video screen and printer. As with the

hand calculator, these output devices can replicate information known to
the user, for example , in displaying responses to keystroke stimuli as they
are entered , and can also present new information , for example, in dis­

playing the results of a calculation or a spreadsheet analysis .

Much of the utility of a personal computer arises from its removable

storage media, in diskettes or tape cassettes , which can be used to con­
figure its black box behavior to suit particular user needs of the moment.
Thus, a personal computer exhibits the black box behavior of a text editor

when a word processing diskette is inserted , and the black box behavior
of a spread sheet analyzer when a spreadsheet diskette is inserted. In fact,

a personal computer can be programmed to simulate the behavior of a

black box. For example , a personal computer can easily be programmed
to simulate the black box behavior of the simple hand calculator discussed
above , so that a user, suitably isolated from physical clues , could not tell

whether a hand calculator or a personal computer was solving arithmetic

problems !
We can illustrate the black box behavior of a personal computer

through a text editing example-namely , to enter the phrase " regional
sales . " Consider the sequence of stimuli and responses in Figure 2 .4- 1 for

a personal computer with a text editor diskette inserted. Each keystroke
stimulus results in a new display screen response as shown. Successive

screens are numbered in the figure for ease of reference .

Each stimulus of a keyboard character at screens 1 -8 and 1 0- 1 4 pro­
duces a similar black box transition,

Screen Stimulus Response

I r L

2 e re_

3 g res-

4 i regL

5 0 regio_

6 n regiolL

7 a region�

8 I regionaL

9 <sb> regional _

1 0 regional s-

I I a regional s�

1 2 I regional saL
1 3 e regional sale_

14 regional sales_

<sb> means "spacebar"

Figure 2.4-1. Text Editor Black Box Behavior of a Personal Computer.

11

iJ
o

....

Z.4 Information Systems Exhibit Black Box Behavior 55

Display the stimulus character at the cursor position and move the
cursor one position to the right ,

while the space bar stimulus at screen 9 produces the transition,

Display a blank character at the cursor position and move the cursor

one position to the right .

Now consider the sequence of stimuli and responses that also enter

the phrase " regional sale s , " shown in Figure 2 .4-2 . The sequence is more

complex and reflects use of the text editor black box by an inexperienced

person . For example , the user has entered incorrect characters at screens

4 and 5 and has di scovered the mistake at screen 6. The <Eo- key is de­

pressed three times, screens 7-9, each invoking the transition,

Move the cursor one position to the left.

The mistake is corrected by depressing the proper characters at screens

10 and 1 1 , but now the cursor is positioned at n, which is a correct

character. So the � key is depressed next , to invoke the transition,

Move the cursor one position to the right

in order to resume typing . Similar mistakes and fix-ups are made at two

other points in the screen sequence.
Although the black box transition sequences of Figures 2 . 4- 1 and 2 .4-2

are very different, they both create the same final response for the user,

namely ,

regional sales-

In the first case , the sequence of transitions was completed quickly and
efficiently , in the minimum possible number of keystrokes . In fact , every

keystroke became part of the final response, with no wasted effort what­

soever. In the second case, more time and effort were required , both from
the user and the black box , in terms of the many extra keystrokes entered

and processed to create the final response. Stimuli that are recognized as

errors by humans are just ordinary transitions to the black box, which

never knows when it has accepted an erroneous stimulus or the stimulus

to correct it .

So operator skill is an important factor in the functioning of a text

editor black box . One operator may be able to enter a 20-line letter in five

minutes, whereas another may take an hour to accomplish the same job.

The slower operator may make dozens of mistakes, each of which must

be corrected through reference to the display screen. Even though the
slower, less-skilled operator makes many more keyboard entries than

does the faster operator, the result is the same . The final response is the

56 2. The Bla�k Box Behavior of Information

Screen Stimulus Response

I r r_
2 e re_
3 g res.-
4 0 rego_
5 regoL
6 n regoirL
7 +- regoi,!!
8 +- rego!n
9 +- reg,Qin

10 regiin
I t 0 regio,!!
1 2 -+ regiorL
1 3 a regionlL
14 I regionaL
1 5 regionals_
16 +- regional§,
17 < sb> regional _

18 s regional L
19 a regional SlL
20 I regional saL
2 1 e regional sale_
22 d regional sale<L
23 +- regional sale!!
24 regional sales_

<sb> means "spacebar"

Figure 2.4-2. An Alternate Stimulus Sequence.

completed text of a letter displayed on the screen. Thus, the ability of a
black box to provide immediate feedback to inexperienced users in a
sequence of transitions i s a crucial component of the user training and
skill acquisition process, and is a significant measure of the utility of a
black box system.

2.4.2 A Business Information System Exhibits
Black Box Behavior

The same principles of black box behavior that we have described for
hand calculators and personal computers apply to more complex systems
as well. For example , the information system of an electronic parts busi­
ness, with both people and machines as components, exhibits black box
behavior in accepting stimuli from and returning responses to a variety of
users , all to accomplish the many information processing tasks required in
the conduct of business operations. While the overall information system

4 lofonnation Systems Exhibit Black Box Behavior 1. 57

't elf behaves as a black box , each of its components, both persons and
I

s
achines, functions as an individual black box within it , all cooperating in

�eir work to achieve business objectives .

In illustration , consider an instance of black box behavior of people

and machine components in the electronic parts business information

system when a customer wants to order some memory chips for her

personal computer. Figure 2 .4-3 depicts a possible telephone conversa­

tion between a salesperson and a customer. The salesperson behaves as a

black box , accepting verbal stimuli from the customer and providing ver­

bal responses in return. The customer likewise exhibits black box behav­

ior, in accepting stimuli from and providing responses to the salesperson.
Of course, both of these people have experienced long stimulus histo­

ries extending from birth , only the latest fragments of which are shown in
the conversation. But these stimulus histories have led ultimately to this
conversation, with one person initiating a telephone query on memory
chips for a personal computer, and the other answering a telephone query
for an electronic parts company.

The purpose of the black box dialogue of Figure 2 .4-3 is to establish
the part number of the desired memory chips. This requires question
asking by the salesperson, with answers provided by the customer. A
hardcopy catalog containing electronic parts information is also used by
the salesperson to identify the part number from the description provided
by the customer.

Figure 2 .4-4 shows a new black box dialogue which occurs after the
customer/salesperson dialogue . In this case , the dialogue is between the
salesperson and the Computer Information System of the electronic parts
business. The initial stimulus for this person/computer dialogue is the
final response , that is, the output , of the prior customer/salesperson dia­
logue-namely , the part number of the memory chips . The salesperson

Customer Stimulus

Phone Rings
"Hello, I need some information on

memory chips for my computer."
"An I B M Personal Computer . I want to

add 5 1 2K ."
" It 's a regular PC with two disk drives ."

"OK . I ' l l take them if you have them i n
stock. "

Salesperson Response

" Hel lo, this is ABC Electronic Part s . "
"What computer d o you have?"

"Is it a regular PC or an XT model?"

"My catalog shows that you will need

eight chips with 64K each. The part
number is N 1076-45388. "

' ' I ' l l check our i nventory. Please hold. "

Figure 2.4-3. Customer/Salesperson Black Box Dialogue.

58 2. The Black Box Behavior of Information

Keyboard Stimulus Display Screen Response

Query I nventory Part: N 1076-45388

Part = N I 076-45388 Quantity on Hand : 296

Quantity = 8 Bin Location: A-42

Unit Price : $20.00

Total Price : $ 1 60.00

Reserve Part Part: N 1 076-45388

Quantity = 8 Quantity = 8 Reserved

Print Invoice Invoice Number: 86-9471

Figure 2.4-4. Salesperson/Information System Black Box Dialogue.

enters keystrokes at a terminal for a database query on inventory status
the requested chips , to which the machine responds with a display of
quantity on hand (296) , the warehouse bin where the chips can be
(A-42) , the unit price ($20.00) , and the total price ($1 60.00) . The salesper­
son then reserves the chips for the customer, so that the machine will
show only 288 on hand if an identical query is entered later on , and
requests printing of an invoice.

The salesperson' s inventory query is only the latest stimulus in a long
and complex stimulus history of the Computer Information System (CIS).
At some point in its stimulus history, the CIS must have been loaded with
software to create and maintain a database of electronic parts informa­
tion, and to answer queries such as this one on inventory status . A large
part of the stimulus history resulted from entering the initial database
contents , possibly as part of a conversion from manual to automated
inventory control . In fact, the CIS may have "worked" in a completely
different business at some time , and experienced a different stimulus
history, which was erased by resetting the system to a fresh initial condi­
tion when it was purchased by the electronic parts company ! In any case,
the stimulus history of the CIS enabled it to answer the salesperson's
query as part of an effective black box dialogue.

Finally , Figure 2 .4-5 depicts the completion of the original customer/
salesperson black box dialogue of Figure 2 .4-3 to inform the customer of

Salesperson Stimulus

"We have it in stock. The total cost is $ 1 60.00
plus tax . "

" O . K . Your order number i s 86-947 1 . "

"Thanks for the call . "
"Good-bye. "

Customer Response

"Good , I ' ll pick it up right away . "

"O. K . I ' ve got it ."

"You' re welcome . "

"Good-bye. "

Figure 2.4·5. Salesperson/Customer Black Box Dialogue.

%.4 lofonnation Systems Exhibit Black Box Behavior S9

the order number, and to confirm arrangements to pick up the memory

chi)�.
this illustration, two black boxes of the electronic parts business

. formation system, one a person and the other a computer, cooperated to
l�hieve the objectives of the two persons. The customer's objective was

�o purchase memory chips for her computer, and the salesperson's objec­

tive was to make a sale. The computer black box supported the salesper­

son in achieving this objective. But the salesperson also relied on training

and personal knowledge, and on the business judgment of the inventory

manager, who decided that memory chips for IBM Personal Computers

were a good item to keep in stock !

2.4.3 People Exhibit Black Box Behavior

As we have seen, the definition of a black box as a representation of a
system applies to people as well as to machines. People respond to stim­
uli, act as mechanisms to handle data, and generate responses. In this
sense, of course, the black box of a person is not the whole human being.
Rather, the black box is an expression of the person's capability to accept
and respond to stimuli. The history of a human black box is a reflection of
the accumulated experiences of the person.

The black box behavior of a human, then, consists of the reflexes and
thoughts that respond to stimuli from the outside world and which pro­
duce motions and sounds as appropriate . In thinking of the black box
behavior of people, it is necessary to be selective and precise about that
portion of the person that is involved. A person is composed of many
systems, such as physiological, emotional , intellectual, and others. These
factors bear upon the capabilities and behavior of a person in accepting
and responding to stimuli.

As a black box, a person accumulates a stimulus history that evolves
continuously throughout life. Black box behavior is altered continuously
by such factors as the language that is learned. the education that is
absorbed, and other experiences.

The most striking difference between the black box behavior of people
and of devices such as hand calculators or computers lies in the fact that
the human being does not have a clear or reset key. Thus, while it is ­
possible to begin an entirely new history in a hand calculator by pressing a
single key, a person retains a history that continues to be altered by
experiences without giving up any previous, cumulative effects. Under­
standing these characteristics of the black box behavior of people is im­
portant because people, in turn, are part of the black boxes of business
systems .

60 2. The Black Box Behavior of Information Systems

As these three examples illustrate , any information system whatso­
ever, small or large, simple or complex, exhibits black box behavior in its
operation . That is , the common behavioral property of all information
systems , no matter what their function or complexity, is acceptance of
stimuli from and return of responses to their users . This property of black
box behavior applies whether or not the users know that their information
system is behaving as a black box and whether a black box description of
its behavior has ever been written down.

Much of the value of a black box description of an information system
lies in the very fact that it omits details of internal processing. Instead , a .
black box description focuses on external behavior, that is, "what" the
information system does, without discussing "how" it is done . This sepa­
ration of what and how is called a separation of concerns. It represents a
crucial strategy in information systems development, and constitutes a
major theme of this book. And it i s because the black box concept ex­
cludes descriptions of processing internals that it can be used to describe
the behavior of systems that have human as well as machine components.
As illustrated above, humans exhibit black box behavior just as do ma­
chines, in accepting stimuli from other humans or machines and returning
responses to them. This behavior can be summarized in a black box
description, without the necessity for difficult explanations of internal
processing, that is , how humans actual ly process information in their
minds.

Summary: Black boxes are a completely general means for de­
fining and analyzing behavior in information systems. Through
their focus on stimuli and responses, black box descriptions cor­
respond to how users actualJy interact with systems, with no need
for discussion of processing internals .

2.S BLACK BOX STRUCTURES

Preview: Black boxes can be combined into larger black boxes
by organizing them into one of four box structures. The behavior
of these black box structures can be deduced from the behaviors
of their component black boxes .

In black box behavior at the stimulus (5) , response (R) level of de­
scription , as depicted in Figure 2 .5- 1 , we have restricted our discussion to
stimulus , response pairs which are initiated and used by people. But it is
possible for a response of one device to be used as a stimulus by another

5 Black Box Structures
2.

S ____��''_ R

Figure 2.S-1. Stimulus/Response Description of a Black Box .

6 1

device. I n this case the response may be i n the form of an electrical
current , or other physical interaction not necessarily visible to people .
Therefore , we will consider stimuli and responses suitable for either peo­
ple or ma�hines as the occasion requires . T�is p�ssibility motivates an
investigatIOn of how black boxes can be combmed mto larger black boxes ,
and how the behavior of these larger black boxes can be analyzed and
understood . A black box structure is a description of how several black
boxes are connected to achieve the behavior of a larger black box .

2.5.1 Black Box Primitive Structures

A new black box can be constructed from black boxes by one of four
primitive composition steps which define :

1 . Successive transitions of two black boxes (named the sequence
structure) .

2 . Selected transitions of one of two black boxes (named the alterna­
tion structure) .

3 . Repeated transitions (zero or more) of a black box (named the
iteration structure).

4 . Concurrent transitions of two or more black boxes (named the
concurrent structure).

In each of these structures , the transitions will have the same form as
the initial black boxes , namely,

S --+ R

THE BLACK Box SEQUENCE STRUCTURE

The sequence structure is depicted in Figure 2 .5-2 below with boxes
B l and B2

B l : S I --+ R l

B 2 : S2 --+ R2

and allocation

R l is renamed S2

62 2. The Black Box Behavior of Information

B l B 2

R I 5 2
R2 5 1

Figure 2.5-2. The Black Box Sequence Structure.

That is , the response R l of B l is used as the stimulus S2 for B2. In
case, a stimulus S I , submitted to B 1 , which returns a response R 1, whi
is submitted as stimulus S2 to B2, which returns a response R2 . In s
mary , if stimulus S I is submitted to the sequence structure , the reSPO)rlse:
R2 is produced.

This black box sequence structure behaves l ike a black box . That is
any stimulus history will produce a unique response . To see that ,
that any stimulus history for B 1 will produce a unique response history
R l 's) , and the unique response history becomes a unique stimulus his
(of S2's) for B2 which will produce a unique response, as asserted .

THE BLACK Box ALTERNATION STRUCTURE

The alternation structure is depicted in Figure 2 .5-3 with a special kind
of black box , called C, and two black boxes, namel y , B l and B2. The

B I

S I R I
!--

T

5 C R

F

B2

5� r---
R2

Figure 2.5-3. The Black Box Alternation Structure.

2.5 Black Box Structures 63

black box C (C for Condition) is denoted by a diamond and returns re­

sponses T or F (True or False) . The function of C is to switch the stimulus

S to exactly one of B J or B2 , that is, to rename S as either S 1 or S2 . The

response R l or R2 is automatically renamed R. In this case a stimulus S ,

submitted t o C is switched (as S I or S2) to B J o r B 2 , eliciting response R l

or R2 which i s renamed R .

This black box alternation structure behaves like a black box . That i s ,

any stimulus history will produce a unique response . To see that , recall

that any stimulus history for C will create a unique history of switches (to
8 1 or B2) and two unique subhistories (of S1 's and S2's) . Each subhistory
will produce a unique response (whichever is called for by the current
stimulus) , as asserted .

THE BLACK Box ITERATION STRUCTURE

The iteration structure is depicted in Figure 2 .5-4 with a special kind of
black box, called C , and a single black box , B . As in the alternation
structure , the black box C (C for condition) is denoted by a diamond and
returns responses T or F (True or False). The function of C is to switch
the stimulus S to black box B or to R, that i s , to rename S as either S 1 or
R. The response R l of black box B is automatically renamed S for evalua­
tion by condition C. Thus , stimulus S is switched either to R directly , or
to B , which produces an internal stimulus which will in turn be switched
either to R or B , continuing in this manner until the internal stimulus is
switched to R .

This black box iteration structure also behaves like a black box, with
any stimulus history producing a unique response . To see that , observe
that any stimulus history for C will create a unique history of switches (to

B

5 1

5 = R I
F

s ---+--�--------------� ")---1-___�O_ R

Figure 2.5-4. The Black Box Iteration Structure.

64 2. The Black Box Behavior of Information

B I
S I R I

S
(R I , R2)

R

B2
S2 R 2

Figure 2.5·5. The Black Box Concurrent Structure.

B or R) and two unique subhistories (of S I 's and R's) . In the case of the
SI subhistory , each unique response wil l be determined by one or
internal iterations (however many are called for by the current stimulus).
Thus , each subhistory produces a unique response , as asserted.

THE BLACK Box CONCURRENT STRUCTURE

The concurrent structure is shown in Figure 2 . 5-5 . The structure has
'

two black boxes labeled B l and B2 that execute simultaneously . The
stimulus S is sent to both boxes , labeled S I for B l and S2 for B2 . The B l
transition produces the response R l and the B 2 transition produces the
response R2 . The response R for the concurrent structure, then, is the
complex response (R l , R2) .

The black box concurrent structure behaves like a black box since any
stimulus history will also be the stimulus histories to the black boxes B 1
and B2 . The responses R l and R2 will be uniquely determined by the
stimulus history . Therefore R = (R l , R2) will also be uniquely determined
by the stimulus history.

2.5.2 Analysis of Black Box Structures

Stimulus and response patterns were analyzed above to understand
the behavior of individual black boxes . The behavior of black box struc­
tures can be analyzed and understood by combining the behaviors of their
component black boxes .

l.S Black Box Structures 65

In illustration , recall the Add2 black box whose response R is the sum

of its last two stimuli . The transitions of Add2 can be numbered 1 ,
2 , . . . , i , where i is any integer, with corresponding stimuli S(1) , S(2) ,

. . , S(i) ' and responses R(1) , R(2) , . . . , R(i) . The formula for an
Add2 transition is thus denoted by the equation

Add2 formula: R(i) = SCi) + SCi - 1)

Also, consider the black box called Max2, which produces as a re­
sponse the maximum of its last two stimuli . The formula for a Max2
transition is denoted by the equation

Max2 formula: R(i) = max(S(i) , SCi 1 »

As already seen, the behavior of the Add2 black box for our example
stimulus history is , for initial condition 0:

Add2 history: S R

3 3
6 9
1 7
9 1 0
6 1 5

The behavior of the Max2 black box for the example stimulus history
is , for initial condition 0:

Max2 history: S R

3 3
6 6
1 6
9 9
6 9

ANALYSIS OF SEQUENCE STRUCTU RES
A new black box sequence structure , called Add2;Max2, can be

formed by combining Add2 and Max2 as shown in Figure 2 .5-6 . A semico­
lon is used to separate black boxes in a sequential structure . The behavior
of Add2 ;Max2 can be worked out for our example stimulus history as
follows:

Add2 ;Max2 hi story: S I R I S2 R2

3 3 3
6 9 9
1 7 9
9 1 0 I O
6 1 5 1 5

66 2. The Black Box Behavior of Information

Add2 Max2

Rl = S2
S I R2

Figure 2.5-6. Add2 ;Max2 Black Box Sequence Structure.

That is , Add2 ;Max2 behaves as a new black box which produces a re·
sponse R2 for every stimulus S 1 . The exact form of the transition equa­
tion of the new black box can be derived , step by step, starting with R2
and working back to S 1 as follows :

Add2;Max2 transition: R2(i) = max(S2(i) , S2(i I »
= max(R l (i) , R I O I))
= max(S l (i) + S l (i - I) , S l (i - 1) + S l (i - 2))

S I (i - I) + max(S I (i) , S I (i - 2»

The first line of the derivation is obtained by the definition of Max2 (since
R2 is produced by Max2) , the second line by the sequence structure of
Add2;Max2, the third line by the definition of Add2 (since R J is produced
by Add2) and the final l ine by factoring the term S J (i - J) out of the max
operation. In this case , R2(i) depends on the three previous stimuli S I (i),
S l (i - 1), and S l (i - 2) , with the initial condition that "al l previous
stimuli" are zero.

The formula for Add2 ;Max2 can be used to obtain the values of R2
directly , without obtaining intermediate values for Rt and S2. Thus , S I
and R2 can be renamed simply S and R , respectively, and the formula
rewritten as :

Add2 ;Max2 transition: R(i) = SO I) + max(S(i) , SO - 2» .

The responses of the Add2 ;Max2 black box sequence structure can
now be computed directly from the stimulus history" and confirm the
previous computation:

Add2;Max2 history: S SO - I) + max(S(i) , SO - 2» R

I 3 0 + max(3 , 0) 3
2 6 3 + max(6, 0) 9
3 I 6 + max (I , 3) 9
4 9 I + max(9, 6) \ 0
5 6 9 + max(6, I) 1 5

p

%.5 Blatk Box Strudures 67

Max2 Add 2

S l
R 1 = S2

R2

Figure 2.5-7. Max2;Add2 Black Box Sequence Structure.

Successive transition numbers are listed in the column labeled i, and the
computation of response s from the Add2 ;Max2 formula is shown. In this
case, the response values for Add2;Max2 are easy to work out mentally in
an abbreviated table ,

S R

3 3
6 9
I 9
9 10
6 1 5

with the same result a s before, i n the knowledge that the computations
can always be recorded for detailed analysis in more complex situations .

A different black box sequence structure can be created by reversing
Add2 and Max2, as depicted above in Figure 2 . 5-7 with example history ,

Max2;Add2 history: S I R I = S2 R2

3 3 3
6 6 9
I 6 1 2

9 9 1 5
6 9 1 8

a quite different result from the Add2 ; Max2 sequence structure . The tran­
sition formula for Max2 ;Add2 is

Max2;Add2 transition : R2(i) = S2(i) + S2(i I)

= R I(i) + R l (i l)

max(S I (i) , S H i - I) + max(S I (i - I) , S I (i - 2»

which cannot be simplified any further.
A single black box such as Add2 can be reused in a sequence struc­

ture, as depicted in Figure 2 .5-8. In thi s case , the transition formula

68

is

2. The Black Box Behavior o f Information

Add2 Add2

S I
R I S2

R2

Figure 2.5-8. Add2;Add2 Black Box Sequence Structure.

Add2;Add2 transition: R2(i) = S2(i) + S2(i - I)
= R 1 (i) + R l (i - I)

(S I (i) + S Hi - I)) + (S Hi I) + S l (i 2»
S I (i) + 2 * S l (i - I) + S l (i - 2)

Reuse of the Max2 black box is depicted in its black box structure
Figure 2.5-9. The transition formula for Max2 ;Max2 is :

Max2;Max2 transition: R2(i) = max(S2(i) , S2(i - I »
= max(R l (i) , R I (i - I »

max(max(S I (i) , S I (i - 1)),
max(S 1 (i - I) , S I (i - 2)))

max(S 1 (i) , S l (i I), S 1 (i - 2»

Thus, both the Add2 ;Add2 and Max2 ;Max2 sequence structures have
relatively simple behavior compared to the behavior of Add2 ;Max2 and
Max2;Add2 .

ANAL YSIS OF ALTERN ATION STRUCTURES

Figure 2 .5- 1 0 illustrates a black box alternation structure called
Odd: Add2 IMax2, where the condition Odd transfers control to the True
(T) branch (Add2) if S is an odd number, and to the False (F) branch
(Max2) if S is an even number. In general the notation used for alternation

Max2 Max2

R I S2
S I R2

Figure 2.5·9. Max2;Max2 Black Box Sequence Structure.

5 Black Box Structures
2.

S

S I

T

Odd

F

S�

Add 2

R I
!---

R

M ax 2

'--

R2

Figure 2.5·10. Odd :Add2/Max2 B lack Box Alternation Structure.

69

structures is C : B I I B2 , where C is the condition, B l and B2 are black
boxes , and the straight line denotes that one of the black boxes is exe­
cuted. The example history for Odd:Add2lMax2 is as follows, where
blank entries in the table represent control branches not taken. That is ,
S I , R l or S2 , R2 are only filled in when the condition Odd has switched
control to Add2 or Max2, respectively :

Odd:Add21Max2 history: S S l R I S2 R2 R

3 3 3
6 6
I I 4
9 9 1 0
6 6

3
6 6

6

4
1 0
6

The transition formula for Odd: Add2lMax2 is a little harder to describe
than for Add2 ;Max2 or Max2;Add2 . With some thought the form of
Odd:Add2lMax2 can be seen as

Odd :Add2/Max2 transition: If S(i) is odd then

R(O = SO) + S(j)

where S(j) is the last odd st imulus preceding i

If S(i) is even then

R(i) = max(S(i) , S(k»

where S(k) is the last even stimulus preceding i

70 2. The Black Box Behavior of Information

Ad d2

S I R I
'--

T

S Odd R
F

Add 2

S� �2

Figure 2.S-11. Odd: Add2 iAdd2 Black Box Alternation Structure.

The Odd:Add2 1Add2 black box alternation structure depicted in
2 . 5- 1 1 i s instructive . At first glance, Odd: Add2 lAdd2 may seem to do
more than Add2 alone . After al l , whether S is odd or even, control
switched to Add2 . However , look at the hi story of Odd:Add2 lAdd2

Odd : Add2 lAdd2 history: S S I R I S2 R2 R

3 3 3 3

6 6 6 6

I 4 4

9 9 I O 1 0

6 6 1 2 1 2

which i s quite different than for Add2 alone . The difference i s that the
upper Add2 is only sent odd numbers as stimuli and the lower Add2 is
only sent even numbers as stimuli . As a result , the upper Add2 only adds
odd numbers (after the first) and the lower Add2 only adds even numbers .
Therefore, the general form of Odd : Add2 lAdd2 can be seen as

Odd: Add2 lAdd2 transition: If SO) is odd then

R(i) is the sum of the last two

odd numbers in the stimulus
history

If S(i) is even then

R(i) is the sum of the last two
even numbers in the stimulus

history

Black Box Structures
l.S

s

R ! -

S = R I

Add �
SI

�F
Figure 2.5-12. *Odd :(Add2) Iteration Structure.

ANALYSIS OF ITERATION STRUCTU RES

7 1

R

Figure 2 . 5- 1 2 illustrates a black box iteration structure cal led
*Odd :(Add2) , where the condition Odd transfers control to the True (T)
branch (Add2) if S is an odd number , and the false (F) branch (R) if S is an
even number. In general , the notation used for iteration structures is
*C :B , where C denotes the condition , B is a black box, and the * (star)
symbol indicates that the black box (B) will be executed zero or more
times while the condition is true before the response is produced . The
example hi story for *Odd:Add2 is as fol lows , where blank entries in the
table represent control branches not taken:

*Odd: Add2 history : I terations

S S I S2 S3 R

() 3 3 6 6
3 6 6
3 I 4 4

9 1 0 1 0
9 6 6

The initial condition I of the Add2 black box for each stimulus is shown in
a column on the left of the table . This value is always the last stimulus
presented to Add2 by condition Odd , and is thus guaranteed to be odd ,
except possibly for the first initial condition , which in this case has been
defined as zero. Given this example , the general form of *Odd :Add2 is
easy to see , as shown in the following table in three cases :

72 2. The Black Box Behavior of Information

Case

2 3

S(i) Odd Odd Even
I Odd Even
R(i) S(i)+ I 2 * S(i)+ I S(i)
Newl S(i) S(i) + 1 I

This formula guarantees that the *Odd: Add2 iteration structure will pro­
duce a response for any stimulus history. However, iteration struct
can be defined that will not produce responses for any stimulus hist
For example , the *Odd: Max2 iteration structure will no longer p
responses once Max2 has selected an odd number as the current
mum. In this case, the iteration structure cannot complete a transition.

ANALYSIS OF CONCU RRENT STRUCTU RES
Figure 2 .5- 1 3 shows the black box concurrent structure in which

and Max2 are performed concurrently on the same stimulus history .
notation for this structure is Add21 lMax2; in general , B I I IB2 where B I
B 2 are performed concurrently. The complex response for the structure
the grouping of the individual black box responses , R = (R I , R2) .
The example history for the concurrent structure is easily seen:

Add21/Max2 history: S S I S2 R I R2 R

3 3 3 3 3 (3 , 3)
6 6 6 9 6 (9, 6)

t I 7 6 (7 , 6)
9 9 9 1 0 9 (1 0, 9)
6 6 6 1 5 9 (1 5 , 9)

The transition formula for a concurrent black box is simply the trans '
.

formulas of its black boxes. In this case the transition formula is

R(i) = (R I (i) , R2(i» where

R I (i) = S(i) + S(i - I) , and
R2(i) max(S(i) , S(i - I)

These examples of sequence, alternation, iteration, and concurrency
show that black box structures can produce complex behavior with si
component black boxes.

>

2.5 Black Box Structures

Add 2
S I R I

(R I , R2)
s R

Max2
S2 R2

Figure 2.5-13. Add211Max2 Concurrent Structure.

Fundamental Principle. Black Box Systems: If complex behav­
ior is required in a system , it may be possible to achieve it with
sequence, alternation , iteration and concurrent structures of sim­

pler blac k boxes.

2.5.3 Black Box Structures in Business Operations

73

As we have see n , black boxes can be combined into structures that
exhibit new black box behavior. But black boxes can also be decomposed

into black box structures that exhibit equivalent behavior, by a process
called black box expansion.

When people or organizations deal at "arms length , " that is , without a
common organization objective or control , they are behaving as a black
box structure. Even within an organization it may be desirable to put

different units at arms length for purposes of decentralization, simplifica­
tion, security , etc . , with the result of creating black box structures.

In illustration , consider the job cost function for a carpet company,

which can be represented as the black box depicted in Figure 2.5- 1 4. The

Job cost black box accepts a carpeting job description as input and pro­
duces the total cost of the job as output. If the cost of materials and the
cost of labor are independent, the Job cost black box can be expanded
into a black box sequence structure with equivalent behavior. as shown in
Figure 2.5- 1 5 .

74

Job
descri ption

2. The Black Box Behavior of Information

Job
description

J ob cost

Total cost
of job

Figure 2.5-14. Job Cost Black Box.

Material
cost

J ob cost

Job description
and cost of materials

Labor
cost

Figure 2.5-15. Sequence Expansion of the Job Cost Black Box.

Total
cost of job

The input for the Material cost black box is the job description; the
is the job description and the cost of material . The input for the
cost black box is the output of the Material cost black box ; the output
the total cost of the job . Note that the Material cost black box must pa�s
the job description through as input to the Labor cost black box to
the black box sequence structure function properly .

In turn, the Material cost black box may have additional structu
based on which of two suppliers may be used for the carpeting, for
pIe , based on the size of the job. In this case, the Material cost black box
can be expanded into an alternation structure with equivalent behavior, as
shown in Figure 2 .5- 16 . In turn , each of the Big supplier, Small supplier,
or Labor cost black boxes might be expanded further.

Note that the communication of information in a black box structure is
strictly l imited to stimuli received from and responses passed to adjacent
black boxes . A black box in a black box structure has no knowledge of the
transitions of any other black boxes beyond the stimuli it receives, and
conveys no knowledge of its own transitions beyond the responses it
produces . For example , the two black boxes of Figure 2 . 5- 1 6 operate at
arms length on the basis of a response-to-stimulus connection , with no
other sharing of information possible. Thus, the Labor cost black box
cannot know which of the two suppliers was selected for a given job.

Blllck Box Strudures
%.5

Job cost

Material cost

Big supplier

1---

75

Job description and
cost of materials

I
I
I
I
I
I
I Labor I
I cost
I
I

Job

descrip t ion
Size I Total cost

of job

Small s upplier

� i---

Figure 2.5·16. Alternation Expansion of the Material Cost Black Box .

Fundamental Principle: In constructing a system as a black box
structure , detai ls of behavior can be localized to individual black
boxes for greater security, separation of concerns , and clarity of
design.

An alternate design is possible for the Job cost box structure which
illustrates the use of concurrency in box expansions . First , Figure 2 .5- 1 7
depicts a new sequence expansion of the Job cost black box of Figure

Job
descript ion

Cost

determ i natio n

J ob cost

Cost of materi als

and labor

Cost

summation

I---+-_ Total cost

of job

Figure 2.5-17. A New Expansion of the Job Cost Black Box .

76 2. The Black Box Behavior of Information

J ob cost

Cost de termination

Material
cost

Cost
- - Cost of summat ion

materials and
Job
descril Hion

labor -�

Labor
cost

'---- -

Figure 2.S-18. Concurrent Expansion of the Cost Determination Black Box .

2.5- 14 in which the first part i s to determine the cost of both materials
labor , the second to sum them up.

The Cost determination black box can now be expanded into a conc
rent structure , as shown in Figure 2 . 5- 1 8 . This expansion is possi
because the transitions of the Material cost and Labor cost black
are independent , given the common job description stimulus. This
current box structure reveals an opportunity to simultaneously assign
costing operations to , say , two groups within a contracting departme
thereby decreasing the time required to cost ajob and improving respo
to customers .

Fundamental Principle: The analysis of black box structures
may reveal opportunities for concurrency that result in more ef­
fective business operations.

Summary: Black boxes can be combined into new black box
sequence , alternation, iteration, and concurrent structures whose
behavior can be analyzed through transition formulas. Structures
of black boxes lead to complex behaviors . Black boxes can be
expanded into black box structures that exhibit equivalent be­
havior.

Introduction to Box Description Language %.6

INTRODUCTION TO BOX DESCRIPTION LANGUAGE %.6

Preview: A Box Description Language (BDL) is introduced to

express black boxes and black box structures . BDL consists of a
fixed outer syntax of keywords and typography and a flexible
inner syntax of business English and math appropriate to the

problem at hand .

2.6.1 The Idea of Box Description Language

77

Because of the size and complexity of information systems and the
number of people required to develop and use them, precise communica­
tion of system behavior and structure is crucial to success . Box structures
provide a theoretical foundation for information systems development
and use, and Box Description Language , or BDL, provides a correspond­
ing language for recording, communicating, and analyzing box structures
among developers , users, and managers of information systems .

Box Description Language is an open-ended specialization of natural
language. It contains textual forms for black box , state machine , and clear
box analysis and design. Each form is defined in terms of a fixed outer
syntax that deals with overall structure and organization and a flexible
inner syntax that deals with specific objects and operations within outer
syntax structures . Outer syntax is defined by keywords in a tabular typo­
graphic format . Inner syntax is expressed in natural language or in spe­
cialized notation appropriate to the problem at hand .

2.6.2 Black Boxes in BDL

BDL accommodates two design steps for black boxes, namely , black
box definition and black box invocation .

Black Box Definition. A black box definition in BDL prescribes be­
havior in terms of transitions from stimulus history to response , with the
usual understanding that the current stimulus becomes the latest member
of the stimulus history for the current transition. The BDL syntax for a
black box definition i s

define BB <BB name>
stimulus

< stimulus name> : <type>
response

< response name> : <type>
transition

<BB transition>

78 2. The Black Box Behavior of Information

with outer syntax keywords define BB, stimulus, response, and transiltiol
The fixed indentation structure serves to display the definition parts
better readability. The angle brackets « , » enclose generic names
parts of syntax that must satisfy further syntax rules . In this case , <
name> is the name of the black box , <stimulus name> and <ty
describe the stimulus, <response name> and <type> describe the
sponse , and <BB transition> describes the transition of the black box .
<type> definition prescribes permissible values of a data item as,
example , shown in Table 2 .6- 1 .

In BDL, the stimulus history of a black box has the form

<stimulus name> .O , <stimulus name > . I , <stimulus name>.2 , . . .

where <stimulus name> .O refers t o the current stimulus , <sti
name > . 1 refers to the previous stimulus , <stimulus name>.2 refers
the next previous stimulus , etc . This sequence is finite for finite
boxes , but otherwise can grow without limit . Where no misllnl"i� .. "t"'n.+;...:
can arise , references to the �urrent stimulus can be abbreviated to <
ulus name > . Thus , for stimuli named K, K. I and K .4 refer to the first
fourth predecessor stimuli , respectively. The advantage of this notation
that the absolute index, from the beginning of the stimulus history (e.
K(i) , K(i - I) , etc .) is not needed. The indexes used in the BDL languag
are relative to the current stimulus .

In illustration, the Add2 black box can be defined in BDL as

define BB Add2
stimulus

S :number
response

R:number
transition

R : = S .O + S. l

where the stimulus is named S of type number and the response named
l ikewise of type number. In this case , the trans ition is defined by a
assignment. A data assignment in BDL has the general form

<variable> : = <expression>

where the inner syntax <expression> is computed and assigned to
item represented by the inner syntax <variable> . Thus , in the
example , R is assigned the value of the expression on the right , n
the sum of the current stimulus and the latest member of the stirn

Introduction to Box Description Language 2.6

Type

Hour

N umber
Word

Day
Weekday

Region

Table 2.6-1

Data Type Examples

Values

1 ,2 , . . . ,24

Digit strings
Letter strings

Sun. ,Mon. , . . . , Sat.

Mon. ,Tues. , . . . , Fri .

Northeast, Northwest ,

Southeast,Southwest

79

history. The names S and R were selected for their mnemonic value , but
such interpretations can be misleading. For example ,

define BB Sub2
stimulus

R:number
response

S: number
transition

S : = R.O + R . l

likewise defines the behavior of Add2 ! In short , names are simply place­
holders in BDL . It is the transitions themselves that define black box
behavior, and not the names used to define them. Nevertheless , names
should be chosen with care , to help suggest correct interpretations to the
reader.

The data assignment of the Add2 transition could likewise be ex­
pressed in natural language

transition
Set the response to the sum of the current and previous stimuli

with no loss of equivalence . The expressive forms chosen for defining
black box transitions depend on the subject matter and intended audience,
just as does all human communication. Another useful representation for
the Add2 transition would be the transition formula stated as an equation

transition
R(i) = SO) + SO - I)

As noted previously, the equal sign (=) denotes equality , not assign­
ment.

80 2. The Black Box Behavior of Information

Whatever forms are used , the objective is completeness and
Any transition definition that excludes possible behavior or includes
possible behavior is simply incorrect , and can lead to confusion
users and developers alike . Transition definition should be a major
of intellectual effort in information systems development . But ,
transitions are described , the same test for completeness can be

Transition Completeness Rule: A black box transition must de­
fine all possible responses from all possible stimulus histories.

The black box for Max2 can be defined as

define BB Max2
stimulus

S :number
response

R:number
transition

R : = max(S.O, S . 1)

where the reader is expected to know that max i s a short name for
operation that produces the maximum of two arguments , namely , S .O
S .] . An equivalent transition could be expressed as

transition
S.O � S . 1 � R : S .O I S .O < S . I � R : = S . I

read "If S .O is greater than or equal (�) to S . I , then (�) set R to the v
of S .O , otherwise (I) if S .O is less than «) S . I , then (�) set R to the v
of S . I . " Such an expression is known as a conditional assignment,
general form

condition assignment I condition � assignment I . . .
with the understanding that evaluation proceeds from left to right , and
first condition satisfied results in execution of the corresponding as

.

ment. Conditional assignments can be easily expressed in equivalent
ural language form for more general audiences , with no loss of "",r>. "'

Black boxes can be specified in BDL at various levels of abstracti
For example , an abstract specification of a hand calculator black
could be written as follows:

define BB Hand calculator
stimulus

I: proper string

Introduction to Box Description Language %.6

response

O:number

transition
o : = value of arithmetic expression in I

8 1

here proper string is defined a s any valid arithmetic expression (without w
arenthesis) delimited by C and = . That is , the function of a hand calcula­

for is to evaluate arithmetic expressions. A concrete specification for this

hand calculator will describe , stimulus by stimulus , how numbers are

displayed, as built up a digit at a time . But any such concrete specification

only represents a method of creating an input , using good human engi­

neering principles to assist the user in creating the input .

Note also the extra explanation of input I as a proper string. It is

possible that the term arithmetic expression needs more explanation as

well , for example, in describing the forms numbers can take (decimal

points or not , etc .) and the arithmetic functions permitted . A complete

abstract specification will settle all such questions, so that the exact
meaning of the term proper string is fully defined, rather than leaving it to
implementation. On the other hand, the concrete specification may be left
to implementation. If the abstract specification is satisfied, the function of
the hand calculator will be achieved, while the concrete specification can
be designed to make the hand calculator as easy to use as possible . The
variations in the concrete spedfications of hand calculators represent
different attempts to be user friendl y in concrete specification.

In further illustration, consider the carpet company example given as a
clear box structure in the preceeding section. Its black box definition is

define BB Job cost
stimulus

Job description : carpet type and dimensions
response

Total cost of the job : dollars
transition

Determine total cost of the job, including cost of labor
and materials , from job description

Note that Job cost is a finite black box of order t in this definition,
since previous job descriptions will not affect the total effect of this job.
But note, also , that a concrete specification which might be used to key­
stroke the stimulus job description into a terminal , with as many correc­
tions as required , would not be a finite black box , since any number of key
strokes might be required (with corrections) for entering the job descrip­
tion . That i s , the finiteness of the black box may be relative , depending on
the granularity of the data entry defined .

78 2. The Black Box Behavior of Information Systems

with outer syntax keywords define BB, stimulus, response, and transition.
The fixed indentation structure serves to display the definition parts for
better readabil ity . The angle brackets « , » enclose generic names for
parts of syntax that must satisfy further syntax rules . In this case , <BB
name> is the name of the black box, <stimulus name> and <type>
describe the stimulus , <response name> and <type> describe the re­
sponse , and <BB transition> Gescribes the transition of the black box . A
<type> definition prescribes permissible values of a data item as , for
example, shown in Table 2 .6- I .

In BDL, the stimulus history of a black box has the form

<stimulus name> .0 , <stimulus name> . I , <stimulus name> .2 , . . .

where <stimulus name> .O refers to the current stimulus, <stimulus
name> . 1 refers to the previous stimuh ls , <stimulus name> . 2 refers to
the next previous stimulus , etc . This sequence is finite for finite black
boxes , but otherwise can grow without limit . Where no misunderstanding
can arise, references to the -urrent stimulus can be abbreviated to <stim­
ulus name> . Thus , for stimuli named K, K . l and KA refer to the first and
fourth predecessor stimuli , respectively . The advantage of this notation is '
that the absolute index, from the beginning of the stimulus history (e .g . ,
K{i) , K(i - I) , etc .) i s not needed . The indexes used i n the BDL language
are relative to the current stimulus .

In illustration , the Add2 black box can be defined i n BDL as

define BB Add2
stimulus

S:number
response

R :number
transition

R : = S.O + S . l

where the stimulus is named S of type number and the response named R,
likewise of type number. In this case , the transition is defined by a data
assignment. A data assignment in BDL has the general form

<variable> : <expression>

where the inner syntax <expression> is computed and assigned to the
item represented by the inner syntax <variable> . Thus, in the Add2
example, R is assigned the value of the expression on the right , namely
the sum of the current stimulus and the latest member of the stimulus

1.6 Introdudion to Box Description Language

Type

Hour
Number
Word
Day
Weekday
Region

Table 2.6-1
Data Type Examples

Values

1 .2 • . . . • 24
Digit strings
Letter strings
Sun . • Mon . • Sat .
Mon . • Tues . • . . . • Fri .
Northeast , Northwest ,
Southeast ,Southwest

79

history. The names S and R were selected for their mnemonic value , but
such interpretations can be misleading. For example,

define BB Sub2
stimulus

R: number
response

S: number
transition

S : = R.O + R . l
likewise defines the behavior of Add2 ! In short, names are simply place­
holders in BDL. It is the transitions themselves that define black box
behavior, and not the names used to define them. Nevertheless , names
should be chosen with care , to help suggest correct interpretations to the
reader.

The data assignment of the Add2 transition could likewise be ex­
pressed in natural language

transition
Set the response to the sum of the current and previous stimuli

with no loss of equivalence. The expressive forms chosen for defining
black box transitions depend on the subject matter and intended audience ,
just as does all human communication. Another useful representation for
the Add2 transition would be the transition formula stated as an equation

transition
R(i) = SCi) + Sci - I)

As noted previously , the equal sign (=) denotes equality , not assign­
ment.

80 2. The Black Box Behavior of Information Systems

Whatever forms are used , the objective is completeness and precision.
Any transition definition that excludes possible behavior or includes im­
possible behavior is simply incorrect, and can lead to confusion among
users and developers alike . Transition definition should be a major focus
of intellectual effort in information systems development . But , however
transitions are described , the same test for completeness can be applied .

Transition Completeness Rule: A black box transition must de­
fine all possible responses from all possible stimulus histories .

The black box for Max2 can be defined as

define BB Max2
stimulus

S :number
response

R:number
transition

R : max(S.O , S . l)

where the reader i s expected to know that max i s a short name for an
operation that produces the maximum of two arguments , namely , S .O and
S . l . An equivalent transition could be expressed as

transition
S.O � S . l � R : S .O I S.O < S. I � R : = S. I

read "If S .O is greater than or equal (�) to S . I , then (�) set R to the value
of S .O , otherwise (I) if S .O is less than «) S . I , then (�) set R to the value
of S . l . " Such an expression is known as a conditional assignment, with
general form

condition � assignment I condition � assignment I . . .
with the understanding that evaluation proceeds from left to right , and the
first condition satisfied results in execution of the corresponding assign­
ment. Conditional assignments can be easily expressed in equivalent nat­
ural language form for more general audiences, with no loss of precision.

Black boxes can be specified in BDL at various levels of abstraction .
For example , an abstract specification of a hand calculator black box
could be written as fol lows:

define BB Hand calculator
stimulus

I : proper string

s
t
s

Introduction to Box Description Language 1.6

response
O: number

transition
o : = value of arithmetic expression in I

8 1

here proper string i s defined a s any valid arithmetic expression (without w
arenthesis) delimited by C and = . That is , the function of a hand calcula­

for is to evaluate arithmetic expressions. A concrete specification for this

hand calculator will describe , stimulus by stimulus, how numbers are

displayed, as bui lt up a digit at a time. But any such concrete specification

only represents a method of creating an input , using good human engi­

neering principles to assist the user in creating the input .
Note also the extra explanation of input I as a proper string. It is

possible that the term arithmetic expression needs more explanation as

well , for example, in describing the forms numbers can take (decimal
points or not, etc .) and the arithmetic functions permitted . A complete

abstract specification wil l settle all such questions , so that the exact
meaning of the term proper string is fully defined , rather than leaving it to
implementation. On the other hand, the concrete specification may be left
to implementation . If the abstract specification is satisfied , the function of
the hand calculator will be achieved , while the concrete specification can
be designed to make the hand calculator as easy to use as possible . The
variations in the concrete spe.cifications of hand calculators represent
different attempts to be user friendly in concrete specification .

In further i l lustration, consider the carpet company example given as a
clear box structure in the preceeding section. Its black box definition is

define BB Job cost
stimulus

Job description : carpet type and dimensions
response

Total cost of the job : dollars
transition

Determine total cost of the job, including cost of labor
and materials , from job description

Note that Job cost is a finite black box of order J in this definition,
since previous job descriptions will not affect the total effect of this job.
But note, al so, that a concrete specification which might be used to key­
stroke the stimulus job description into a terminal , with as many correc­
tions as required , would not be a finite black box , since any number of key
strokes might be required (with corrections) for entering the job descrip­
tion . That is, the finiteness of the black box may be relative, depending on
the granularity of the data entry defined .

82 2. The Black Box Behavior of Information

Black Box Invocation. Black boxes can be invoked in BDL by
box statements of the form

use BB <BB name> « stimulus name> ; <response name»

where the keyword use BB means • 'carry out a transition of the black
with name < BB name> , given stimulus <stimulus name> and p .. ,.,."'I . . ".:..:
response < response name > . " For example , the black box statements

use BB Add2 (i ;j)

and

use BB First (i ;j)

invoke b lack box transitions using data objects i, j for stimulus, respon
respectivel y . Thu s , for stimulus history 3 6 1 9 6 and i = 2 ,

use BB Add2 (2 ;j)

sets j to 8, and

use BB First (2 ;j)

sets j to 3 (sets j to the first stimulus) .
In the case of the carpet Job cost black box , its invocation takes

form

use BB Job cost (job description ; total cost of the job)

or, more indirectly

use BB Job cost (memo; cost)

where memo is some job description and cost will be regarded as the
cost of the job. That is , the stimulus and response can be given any
whatsoever, but must conform to the type of objects in the define
statement . In contrast , the name Job cost is the one and only name
refers to the Job cost black box.

PS

s R

Figure 2.6-1. Procedure Statement.

1 ••

ite

wh(
tax
stat
mel
exit
bla(
stat
iter:
tun:

Figl
do :
prol

is CI
tab,

p

6 Introduction to Box Description Language
%.

2.6.3 Black Box Structures in BDL

83

Black box structures invoke black boxes in sequence, alternation, and

iteration control structures. The BDL syntax for a black box structure is

define BB <BB name>
stimulus

< stimulus name> : < type>
response

< response name> : < type>
proc

<procedure statement>
corp

where keywords proc and corp (proc, spelled backward) delimit the syn­
tax part < procedure statement> (PS for short), and where <procedure
statement> is itself subject to additional syntax rules. A procedure state­
ment is the fundamental unit of black box structure, a single entry/single
exit structure as depicted in Figure 2.6- 1 . A procedure statement in a
black box may be a black box statement as defined above or a control
statement . The black box control statements of sequence, alternation,
iteration, and concurrency represent single entry/single exit control struc­
tures.

THE BDL SEQUENCE CONTROL STRUCTURE

The BDL syntax for the sequence control structure is depicted in
Figure 2 .6-2 as the do statement . The statement is delimited by keywords
do and od (do, spelled backward), and defines successive invocation of
procedure statements, separated by semicolons.

Ordinarily, each keyword and procedure statement is written on a
separate line, with the procedure statements indented for readability.
However, the linear do statement

do PS t � PS2 od

is correct and has the same meaning. The linear form saves space, but the
tabular form is more useful for documentation and description in realistic

BOL Statement

do
PS I ;
PS2

od

Fi r

S

Control Structure

PS I PS2

I-- R

The BOL do Statement.

84 2. The Black Box Behavior of Information

examples . The individual procedure statements PS 1 , PS2 , . . . are cal
part I , part2, ' " of the do statement .

The linear statement

do PS I od

is also correct, consisting of a do statement with only one prnl".,prt

statement . It will have the effect of PS 1 , itself, in any procedure . Th
linear statement

do od

is also correct , containing no procedure statements with no effect . It
be useful to have a name for thi'5 , namely , the null statement , literally
procedure statement . In this case, do od contains a single null statement
In further illustration ,

do PS I ; PS2 ; PS3 ; od

contains four statements , the fourth one being a null statement , and

do; PS I od

contains two statements , the first one being a null statement. As a result
of this definition of null statements , semicolons may be inserted anyw
in a do statement without effect .

In illustration, the first decomposition of the black box structure
Job cost can be described in the form:

define BB Job cost
stimulus

Job description : carpet type and dimension
response

Total cost of job : dollars
proc

do
use BB Material cost (job description ; job description

and cost of material) ;
use BB Total cost (job description and cost of material ;

total cost of job)
od

corp

where definition for black boxes Material cost and Total cost have been
given as fol lows:

define BB Material cost
stimulus

Job description : carpet type and dimensions

6 Introduction to Box Description Language Z.

response
Job description and cost of material : carpet type and

dimensions and dollars
transition

Determine cost of materials from job description and pass
on the description

define BB Total cost
stimulus

Job description and cost of material : carpet type and
dimensions and dollars

response
Total cost of job : dollars

transition
Determine total cost of the job including labor from job

description and cost of material

85

Note that response from Material cost must exactly match (in name) the
stimulus to Total cost .

THE BDL ALTERNATION CONTROL STRUCTU RE

Procedure statements in an alternation control structure are usually
written in indented text form, delimited by keywords if, then, else, fi (if.
spelled backward) , shown in Figure 2 . 6-3 as the if statement .

However, the l inear statement

if C then PS 1 else PS2 fi

B DL Statement

if
C

then
PS I

else
PS2

fi

S --t-.....-<.

Control Structure

PS I

PS ::!

.'igure 2.6-3. The BDL if Statement .

I---+-- R

86 2. The Black Box Behavior of Information Systems

is correct and has the same meaning. The thenpart (PS I) is executed if t
condition is true, otherwise the elsepart (PS2) is executed .

If the else branch (PS2) is a null statement , then the else keyword
the null statement can be omitted . That i s ,

if C then PS I fi

The condition C is called the if condition, and the individual procedure
statements PS I , PS2 are called the thenpart, elsepart of the if statement . ·

I n the carpet company illustration, the black box Material cost
itself given as a black box alternation structure in the form:

define BB Material cost
stimulus

Job descript ion : carpet type and dimensions
response

Job description and cost of material : carpet type and
dimensions and dol lars

proc
if

size is big
then

use BB Big suppl ier (job description ; job description
and cost of material)

else
use BB Small suppl ier (job description ; job description

and cost of material)
fi

corp

and the black boxes Big supplier and Small supplier have been defined '
accordingly .

THE BDL ITERATION CONTROL STRUCTURE

Procedure statements in an iteration control structure are written in
indented text form, delimited by keywords while, do, od (do, spelled
backward) , and are shown in Figure 2 .6-4 as the while statement .
The l inear statement

while C do PS od

is also correct and has the same meaning. The dopart (PS) is executed if
the condition is true , otherwise if the condition is false , the response i s
produced directly , and is identical to the stimulus .

%.6

ite(
of c

con
whi
fon

are

2.6 Introduction to Box Destription Language 87

BDL Statement Control Structure

while
C

do
PS

od PS

-

S
�F

C

Figure 2.6-4. The BDL while Statement.

THE BDL CONCURRENT CONTROL STRUCTURE

R

The procedure statements in a concurrent control structure are delim­
ited by the keywords con and noc as shown in Figure 2 .6-5 . Any number
of concurrent procedure statements (PS) may be present , separated by
commas. The completion of the concurrent structure is signaled by noc, at
which point all concurrent statements are completed and all responses are
formed .

Compound BDL Structures. Because the BDL control statements
are themselves procedure statements , they can be nested and sequenced

BDL Statement

ton
PS I ,

PS2

not

S

Control Structure

PS I

� -

PS2

� t---

Figure 2.6-5. The BDL con Statement.

R

88 2. The Black Box Behavior of Information

in any pattern whatsoever in compound control structures . The
delimiters of nested sequence structures can be suppressed , if delim
by the keywords of their containing structures . Thus,

proc
do

PS I ;
PS2

od
corp

and

if
C

then
do

PS I ;
PS2

od
else

do
PS3 ;
PS4

od
fi

is equivalent to

is equivalent to

proc
PS I ;
PS2

corp

if
C

then
PS I ;
PS2

else
PS3 ;
PS4

fi

In i l lustration , the entire black box structure for Job cost is defined
fol lows:

define BB Job cost
stimulus

Job description : carpet type and dimensions
response

Total cost of job : dollars
proc

if
size is big

then
use BB Big supplier (job description ; job description

and cost of material)
else

use BB Small supplier (job description ; job description
and cost of material)

fi;

2.6

Sel
in 1
stft

is a
ture
the
of tl

Introduction to Box Description Language
%.6

use BB Total cost (job description and cost of material :
total cost of job)

corp

89

Sequence and alternation control structures must ultimately be expressed

in terms of black box statements . For example , the fol lowing b lack box

structure

define BB Sample
stimulus

S: number
response

T: number
proc

if
S odd

then
use BB Add2(S ;R)

else
use BB Max2(S ;R)

fi;
if

R even
then

use BB Max2(R ;T)
else

use BB Add2(R ;T)
fi

corp

is a sequence structure whose part 1 and part2 are both alternation struc­
tures which invoke black boxes Add2 and Max2. What is the behavior of
the black box structure? To find out , first determine the behavior of each
of the sequence parts , then combine to derive the overall behav ior.

Summary: Black boxes can be expressed in a clear and conci se
format in BDL. The black box stimulus and response are related
by the description of a transition in the form of English and math­
ematics appropriate to the problem . Black box structures are de­
fined in BDL by the syntax rules of sequence, alternation , itera­
tion , and concurrent structures .

90 2. The Black Box Behavior of Information

EXERCISES

1. Which of the following devices exhibit black box behavior?

(a) A clock with a button to display current time
(b) A counter with a button to add one to current count
(c) A word processor
(d) An automatic chess player
(e) A human chess player
(0 A combination lock
(g) A key lock
(h) A telephone
(i) A smoke alarm

2. Discover and discuss properties of black box behavior such that

(a) response : = 3rd previous stimulus
(b) response : = previous response
(c) response : = 3rd previous response
(d) response : = number of stimuli since the maximum stimulus
(e) response : = previous response plus current stimuli

3. Explain the following black box behaviors of devices with user inter­
faces like that of Figure 2 . 1 -2 . What part of its stimulus history must
each device remember in order to exhibit consistent behavior?

Device 1

Stimulus 9 2 7 4 2 5 8

Response 9 1 1 12 10 12 13 1 1 1 5

Device 2

Stimulus 9 2 7 4 2 5 8

Response 9 29 1 2 1 7 47 24 25 58

Device 3

Stimulus 9 2

Response 9 2

Device 4

Stimulus 9 2

Response 4 5

Device 5

7 4 2 5 8

7 4 2 5 8

4 5 3 3 6

Stimulus 7 2 0 3 9 4 0 2 2 4 0

Response 0 0 0 0 0 0 3 0 0 0 2

Exercises 9 1

4. Which of the following are finite black boxes , and what is the order
of each finite black box?

Min: Response i s minimum of stimuli accepted
Double : Response i s double the stimulus

Add3 : Response i s sum of previous 3 stimuli
AddEvens : Response i s sum of previous 2 even stimuli

5. Consider a black box MaxPD (Previous Day) that returns the maxi­
mum hourly load of the previous calendar day (not the last 24 hours) ,
what i s the order of MaxPD?

6. What is the difference between a transition and a transaction in a
word processing sys tem?

7. Is there a difference between a trans ition and a transaction in Add2
(assuming the user cannot add)?

8. Assuming the user has a short memory and can remember only the
current stimulus , what are transactions in the black boxes of Section
2. 1 .4?

(a) Echo
(b) Previous
(c) Constant
(d) First
(e) Max

9. Some hand calculators display the last operator (+ , - , . . . , =) keyed
in . Do they exhibi t the same or different black box behavior as hand
calculators that do not display operators?

10. Can you develop a procedure for use of a hand calculator whose
clear key is missing?

11. In using a hand calculator for addition, entries are made for the first
number, the operator (+) , and the second number. When the = key
is depressed, the hand calculator determines the result and displays
it . At that point , depressing the + or = key may reveal some unan­
ticipated black box behavior of the hand calculator. What responses
do you get for the following stimulus histories?
(a) C 3 + 9
(b) C 3 + 9 = 6
(c) C 3 + 9 + + +
What do the responses tell you about the black box behavior of the
hand calculator? Invent some stimulus histories of your own to in­
voke unusual black box behavior.

12. What i s the black box behavior of your hand calculator in accepting
and calculating numbers that overflow its display?

92 2. The Black Box Behavior of Information

13. Identify three black boxes you have interacted with in the
week .

14. Discuss the role of education in a black box description of a pe

Given additional black boxes Min2 (response R is the minimum of
last two stimuli) and Prod2 (response R is the product of the last t
stimuli) , what is the behavior of the following black box compositions
stimulus history (3 6 1 9 6)? What is the transition formula in each case

15. Sequence Structures
(a) Min2 ;Max2
(b) Max2;Min2
(c) Prod2 ;Min2
(d) Prod2; Max2
(e) Max2;Prod2

16. Alternation Structures

(a) Odd : Min2lMax2
(b) Odd: Prod2lProd2
(c) Odd : Min2lProd2
(d) Odd: Prod2lMin2
(e) Odd:Add2lEcho

17. Iteration and Concurrent Structures

(a) *Odd :Prod2
(b) *Odd :Min2
(c) Add21 1Prod2
(d) Prod21 1Min2
(e) *Odd : First

18. Compound Structures

(a) Odd : (Min2 ;Max2)I(Max2;Min2)
(b) Odd: (Add :Min2IMax2)IProd2
(c) (Odd:Min2IMin2) ;Min2
(d) Max2 ;(Odd : Max2 IMax2)
(e) (Add2 ;Add2) ;Add2

19. Expand the Labor cost black box in Figure 2 .5- 1 6 based upon the
following considerations . Travel time is billed at a different rate from
site time . In calculating labor costs at the site , big jobs (greater than
1 000 square feet) are billed at a lower rate than small jobs .

20. Decide which of these black box structures define the same black
box .

(a) (Add2 ;Add2) ;Add2
(b) Add2 ;(Add2 ;Add2)

Exercises

(c) (Add2 ;Max2) ;Add2
(d) Add2 ;(Max2 ;Add2)
(e) (Max2 ;Add2) ;Add2

93

21. Define the black boxes Add2 , Max2, Min2 , Prod2, RA1 2 , and Max24
using BDL syntax .

22. Describe the black box structures in exercises 1 5 through 1 8 using
the appropriate BDL syntax .

23. The black box Score computes the mean of the last 1 0 scores (stim­
uli) after eliminating the maximum and minimum scores of the last
1 0.
(a) Use black box BDL to describe Score .
(b) Expand Score as a black box structure with the sequence and

alternation structures using simpler black boxes. U se black box
BDL to describe Score and black box BDL for the component
black boxes .

(c) Derive Score from (b) to validate that the result ing black box
transition is identical to that of the Score black box in (a).

24. Consider the fol lowing BDL black box specification containing a
structured English transition.

define BB Accsmall
stimulus

S , T, U : number
response

R : number
transition

Find the smallest of the three stimuli and set R to the
running sum of the smallest numbers .

(a) Expand a black box structure for Accsmall that contains sim­
pler black box structures . Use BDL for the design . Provide
transition formuli for all black boxes used .

(b) Derive the structure from part (a) to find a transition formula for
Accsmall in terms of stimulus hi story and response.

25. We have seen that a computer system can be described as a black
box. How then can we use a computer to simulate non black-box
behaviors , such as a roulette wheel or a temperature indicator?

Chapter 3 The State Machine Behavior
of Information Systems

3.1 STATE MACHINE BEHAVIOR

Preview: A state machine is an alternate form of description of a
system that substitutes internal storage for the stimulus hi story of
its black box. Any system that exhibits black box behavior can be
described as a state machine .

3.1.1 Describing Black Boxes as State Machines

In Chapter 2, we learned that a black box can return different re- ,
sponses to the same stimulus at different points in time , and that the
response of a black box depends not only on its current stimulus, but on
its stimulus history as well . So our model of a black box in Chapter 2 can
be restated in the transition

(stimulus , stimulus history) � (response , new stimulus hi story)

where "new stimulus history" is simply "stimulus " appended to "stimu­
lus history" , and is understood to replace "stimulus history" for the next
transition.

94

1 State Machine Behavior
3.

95

Now a black box stimulus history can grow indefinitely large , and any

real mechanism-a hand calculator, a personal computer, or a business

information system, for example-wil1 eventually be saturated and un- f

able to retain too large a history . And of course , black box descriptions of

calculator, computer, or information system behavior would quickly be­

come unwieldy for stimulus histories of any size . So as a practical matter,

it would be useful to have another description of black box behavior that

does not depend on explicit recording of stimulus histories . Fortunately ,

such a description is available . It is called a state machine.

A state machine is defined by a state, which incorporates the stimulus

history, and a machine, another (usually simpler) black box that carries
out the transitions , of the state machine. So a black box that converts any
stimulus history into a response can be simulated by a state machine that
converts the stimulus and the state into a response and a new state. Of
course, only the response will be visible to the user, not the new state .
This new state will then become the current state for converting the next
stimulus into a response and another new state. Such a state machine
description is diagrammed as Figure 3 . 1- 1 .

Note that the machine in the figure takes in both the current stimulus
and state and then produces a response and a new state which replaces
the current state . The next stimulus triggers the machine to take in that
stimulus and the new state it produced on the last transition, to produce
the next response and the next new state. Thus, our previous model of a
black box ,

(stimulus , stimulus history) � (response , new stimulus history)

can be replaced by a new model ,

(stimulus , state) � (response , new state)

State machine

r -4 State r- l
I I
I I

S

I Machine
I

• I
R

I
Figure 3.1-1. State Machine.

96 3. The State Machine Behavior of Information Systems

where . . new state" i s understood to replace "state" for the next transi­
tion. That is, the machine of a state machine is itself a black box with a
complex , two-part stimulus and a complex , two-part response . The two­
part stimulus of the machine black box is the stimulus and s tate of the
state machine ; the two-part response is the response and new state of the
state machine .

Does every black box have a state machine description , or is there
some conceivable black box for which a state machine description is
insufficient? The answer is that a state machine description is possible for
any black box whatsoever, because in the state machine definition

(stimulus , state) � (response, new state)

the state simply represents the stimulus history , so we can write , instead,

(stimulus , stimulus history) � (response, new stimulus history)

to recover the original definition.

Fundamental Principle: Every black box can be described by a
state machine .

3.1.2 State Machine Transitions

If the state of a s tate machine simply replicated the entire stimulus
history of a black box, then a state machine description would be as
cumbersome as one based directly on stimulus history . So again. as a
practical matter, the state of a state machine description of a black box
should be defined as a summarization , or abstraction, of the stimulus
history.

In general , many different abstractions of a stimulus history are possi­
ble , and the abstraction must be defined with care . so as to permit the
calculation of the black box responses . For example, consider again the
Add2 black box . A natural state choice is to define the state as the pre­
vious stimulus . Given this state definition , a rule for the machine of the ·
state machine to follow for each transition from (stimulus, state) to (re­
sponse, new state) can be defined . This machine transition rule for the
Add2 state machine is given by the following assignments:

response : = stimulus + state
state : = stimulus

C
SI
P
Sl
�
sf
a(

tr
e(

as

or

on
st�
m�

for

1 State Machine Behavior
3.

97

With these definitions for the state and the machine, the successive

transitions of the Add2 state machine, with initial state 0,

Stimulus Response

3 3
6 9
1 7
9 1 0
6 1 5

can be diagrammed as i n Figure 3 . 1 -2 . Note that after each transition the

state value is replaced with just the right portion of the stimulus history to

permit a correct computation on the following transition. The state will
simply retain that value until the next transition is invoked by the user,
whether in the next minute or the next month . As can be seen, this simple
state definition permits behavior equivalent to an Add2 black box with
access to its entire stimulus history .

The diagrams of Figure 3 . 1 -2 are themselves cumbersome , and the
transition sequences they depict are more conveniently expressed in the
equivalent tabular form

(stimulus, state) � (response , new state)

as follows:

(3 ,0) � (3 ,3)
(6,3) � (9 ,6)
(1 ,6) � (7 , 1)
(9, 1) � 00,9)
(6,9) � (1 5 ,6)

or, even more briefly, for any values X, Y,
(X , Y) � (X + Y, X)

Although this state machine for Add2 is very natural , it is not the only
one possible . As a variation, consider a new state definition in which the
state is double the previous stimulus. Then, for this state definition, a new
machine is required , namely ,

response : = stimulus + statel2
state : = 2 * stimulus

That is , if the state definition is changed , the machine must be changed
for both the response and the new state .

98

3

6

3. The State Machine Behavior of Information

Add2 Add 2

State

r - 0 3 -1 I I I I I I I Machine I
+ I

r-� 1 State
9 �-1

I I
I I
I I I I

I
3 9

Transition 1 Transition 4

Add2 Add2

r -� J
State 6 �-l r - -l I I I I I Machine I

1 I !

I I I I I Machine I I I
9 6

Transition 2 Transition 5

Add 2

r-- � 6 S tate 1 �-1 I I I I I Machine I I + I 7

,

Transit ion 3
Figure 3.1-2. Transitions of the Add2 State Machine for Stimulus History 3 6 1 9 6.

I
C

1 State Machine Behavior
3.

3.1.3 Finite State Machines

99

We have already defined a finite black box as a black box in which •

very response can be determined from a finite stimulus history (whose

�inimum length is the order of the black box). A state machine with a

finite number of states is called a finite state machine. As a practical

matter, we deal with finite state machines when we implement an informa­

tion system. The essential finiteness of computers and their limitations on

data size force the system to use a finite state. For example , we can define

a state variable , X, as an integer type. Conceptually , the set of possible
values of this state is infinite . Practically, however, the magnitude of the

state of X ranges from 0 to the largest i nteger representation in the com-
puter.

Note that finite black boxes and finite state machines are not synony-
mous . A fini te black box can be described by a finite state machine , but
the converse is not so; a finite state machine description of a black box
does not guarantee it to be a finite black box.

To see the first relation that any finite black box can be described by a
finite state machine, recall the definition of a finite black box and its order
k. Consider the set of all stimulus histories of order k. With a finite
number of possibilities for each stimulus , this set of stimulus histories of
order k will be finite , and can serve as the set of states for the state
machine. Therefore, there exists a finite state machine which describes
the finite black box .

To see that the converse does not hold, consider the black box First ,
which merely responds with its first stimulus , no matter what and how
many stimuli follow. First is not a finite black box , because there is no
maximum size stimulus history required to determine a response . Yet
First can be described by a finite state machine , whose state merely
contains the first stimulus .

It turns out to be very fortunate that the converse does not hold ,
because many interesting and important nonfinite black boxes can be
described as finite state machines . In particular , the hand calculator, a
nonfinite black box , can be described as a finite state machine, as we shall
see.

3.1.4 The Master File Update State Machine

A common class of data processing system is built around a single
master file of records . For example , retail hardware stores, as customers
of wholesale distributors , would each have a record in a d istributor's

1 00 3. The State Machine Behavior of Information Systems

accounts receivable file. Such a record could contain the amount owed, '
credit limit , address , and other information about the customer.
day, the customer charges can be collected in another file , called a
action file. Then , overnight . the data in the transaction file can be used
update the master file and produce a report file.

The master file can be used each month to create the customer'
monthly bills . Then, as payments come in , they can be collected in an­
other transaction file , and this can be used each night to update customer
records , too. Thus far , we have discussed two kinds of inputs, charges
and payments , and one kind of output , bill s . But there are many more , for
example , new customers may be added , or. old customers deleted from
the master file. The sales manager and credit manager may want various
kinds of tabulations and reports from the master file .

Rather than attempting to name all possible inputs and outputs , we use
the generic name transaction file for any input and report file for any
output of a master file update. Each transaction file can begin with the
kind of update required for the records that follow, and the computer
program that updates the master file can be guided accordingly .

The foregoing description of a master file update data processing sys­
tem defines a state machine as depicted in Figure 3 . 1 -3 . A master file
update state machine has as its state a master file , such as receivables ,
inventory , or personnel records , and takes in an update, or transaction,
file containing any additions , deletions , and changes. The state machine
applies the updates to the master file and produces a file update report as
output .

The master file update state machine is a completely general model of
a black box. That is , any black box whatsoever can be described in the
form of a master file update state machine ! At first thought , this may seem

Input :
Tnmsac
file

tion

r -I I I I I •

M aster file update

State : m aster file

File update program

- .., I I I I I I Output :
File update
report

Figure 3.1-3. The Master File Update State Machine.

3.1

a s
opt
pr(J
ent
wic
da}
cou
cus
nev
retl
out]
stat

COlI
will
statl
inte
tion
com
that

3.1.�

1

fact ,
not t
of th
As a
come
bank
direc

A
simil
busir
conti
cess I
happl
syste
subje
state�
the e;

3.1 State Machine Behavior 10 1

a surprising statement-that such a simple and standard data processing
operation as master file update encompasses the entire range of data
processing behavior-even the behavior of the information system of an ,
entire business. The reason this simple idea works is that it applies to a
wide range of events and information states and the update cycle can be a
day, a minute , or a second in online systems . For example , when the
counterperson of an electronics parts business receives an input from a
customer, the s tate of information of the business has been changed into a
new state-if ever so slightly, it is a new state . When the counterperson
returns an output to a customer, one transaction of input and state to
output and new state has been completed in this business information
state machine .

With its wide applicability, the state machine is a general model of
computer science and engineering. For example , every hardware device
will behave as a state machine . For a computer, the state is the whole
state of memory, including mass online storage, high speed memory,
internal registers , even the instruction counter. Each instruction execu­
tion changes that state ever so sl ightly . Thus, an add instruction in a
computer with a million bytes of storage will change only four bytes out of
that million, but it is a new state , nevertheless .

3.1.5 A Business Enterprise Exhibits State Machine Behavior

The state machine model can be appJied to business operations . In
fact, any business has a state machine description . This is true whether or
not the business is well managed or even whether or not the management
of the business is conscious of the existence of state machine behavior.
As an entity, a business accepts and responds to stimuli . These stimuli
come from the outside world, from customers , vendors , the government ,
banks , and other sources . The responses produced by these stimuli are
directed, in many instances , back toward the sources of the stimul i .

As a state machine , a business has many traits and characteristics
similar to those of people . To illustrate , as with a person , the state of a
business state machine is composed of its initial state , as altered by a
continuing, ongoing history of stimuli . As with people , the learning pro­
cess leads to continuing changes in state . This can be illustrated with what
happens to a business when it undertakes to develop a new information
system . The people associated with the information system project are
subjected to a whole new series of stimuli . The stimul i , in turn , affect the
states of the individual persons . Since the business itself i s a composite of
the experiences of the people , the changes to the states of the people also

1 02 3. The State Machine Behavior of Information

affect the state of the business. Sources for these state-changing e
ences include the sales and educational actitivites of computer and s
ware vendors and interactions with future system. users in the busi
organization.

.

As a further point of similarity , the state of a business changes with t
shifting of the cumulative experiences of its people. For example ,
people are hired and fired , the state of the business-as well as the way
which a business will react to stimuli-is changed .

To illustrate , consider the situation of a counterperson within an e
tronies parts business . A different set of responses will come from
particular business state machine for customers who are served by
ent counterpersons . There can be vast differences in level and quality
services based on experience or attitude of different counterpeople .
example , if an experienced , conscientious counterperson leaves the
ness , the pattern of responses to stimuli in the form of customer 0
will change dramatically . An outside observer of this particular busi
state machine may not know about the internal personnel status of
business . However, an outside observer, such as a dissatisfied cu, ,. ,

can infer the reasons for the changes in the same way that a sy
analyst infers the behavior of a system from observations of its s
and responses .

Summary: A state machine represents the stimulus history of a
system in a state that is acted upon by a machine. Any black box
can be described as a state machine . The state machine view of
any business system provides the insights gained by separating
data (state) and processing (machine) .

3.2 STRATEGIC USES OF STATE MACHINES

Preview: State machines can be used to model customer service
strategies in many business processes . A state machine whose
transactions and state data are sufficient to deal with all condi­
tions of its business use exhibits the crucial property of transac­
tion closure . State migration is an important strategy in expand­
ing state machines into clear boxes whieh introduce new black
box/state machine/clear box structures at the next level, and is
introduced using state machines alone.

3.2 1

3.2.1

If
plane
planr
poter
tome
are t(
by pl.
of ph
comn
many
many

In
analy:
one n
machi
given
(custo

as she
machi
differe
expecl
chines
value I

3.1 Strategic Uses of State Machines

3.2.1 A State Machine Model of Customer Service

1 03

In many businesses , customer service strategies must be carefully •

planned in order to provide the best possible facilities . For example , in

planning a new bank branch, the number of teller windows represents a

potential level of customer service . When all tellers are busy , other cus­

tomers must wait . The longer customers must wait , the more likely they

are to take their business el sewhere . Customer waiting can be decreased
by planning more teller windows, but that costs money too. The question
of planning how many servers to provide for a service facility is very
common. How many toll booths for an entrance to an expressway? How
many reservation clerks answering an airlines telephone number? How

many pump islands in a gasoline service station?
In order to see how customer service in a multi server facility can be

analyzed as a state machine , suppose that each bank customer requires
one minute to be served. Then we can define a customer service state
machine with a number of servers N, stimulus C (customers arriving in a
given minute) , response S (customers served during this minute) , state W
(customers waiting at the beginning of this minute) and machine M

M: S : = min(N,W)
W : W + C - min(N, W)

as shown in Figure 3 .2- 1 . The black box of this Customer service state
machine gives an overall view of how the service facility works. It is a
different black box for each value of N . Given a stimulus history (of
expected customer traffic) , these different black boxes (and state ma­
chines) can be compared for their specific performance, and the best
value of N chosen .

Customer service

1---1 w �- I
I I I I I I I M I I I � C s

Figure 3.2-1. Customer Service State Machine.

1 04 3. The State Machine Behavior of Information

Table 3.2·1

Customer Service at Three Levels of Service

N

2 3 4

C W S C W S C W S

3 3 3
3 4 2 3 3 3 3 3 3
5 7 2 5 5 3 5 5 3
4 9 2 4 6 3 4 5 4
I 8 2 I 4 3 I 2 4
6 1 2 2 6 7 3 6 6 2
2 1 2 2 2 6 3 2 4 4
0 t o 2 0 3 3 0 0 4
3 I I 2 3 3 3 3 3 0
4 1 3 2 4 4 3 4 4 3
2 1 3 2 2 3 3 2 2 4

In illustration , Table 3 . 2- 1 shows customer service for three levels
service . The same history of ten customer arrivals over a ten-mi
interval is shown for N values of 2, 3 , 4 . The average arrival rate over t
ten-minute period is three customers per minute , varying from zero to s
per minute. The initial state (customers waiting) is three in each case .
entire difference between the three cases is the maximum service
defined by N .

Case N = 2 : The service units are used fully , but the customers w
ing, W, is growing because the arrival rate, 3 , exceeds the service rate,
Clearly , there is insufficient service and customer waiting times are
ing, probably to an intolerable level.

Case N = 3: The service units are used fully and the customer w
is stabilized between three and seven, at an average of five , so the ave
waiting time in the system is 5/3 minutes .

Case N = 4: The service units are used at a 75% level , but the nu
of customers waiting i s reduced to an average of 3 .4 , so the ave
waiting time will be 3 .4/4, under a minute .

Both cases N =3 and N =4 probably represent acceptable operation ..
with a tradeoff between idle service units and better customer se

.

which is a business decision .
Such state machines are easil y treated by spreadsheet calculations .

shown in Chapter 1 , the variables of the stimulus , state and response,
be given as headings in the spreadsheet table , initial values given for

3

S
S:
a'
ti

3.

te
id
St
to
se
id
vi
ad
re
wi

Th
a b
on
loc
boc
am
out
typ
bo(
use

apt
will
gan

jibZ

3.2 Strategic Uses of State Machines 1 05

state variables in the first row, and a column of sti mul i values give n . The

spreadsheet calculations then fill out the rest of the table. In this case ,

additional calculations such as service utilization , customer wai ting

times , and so on can be added to the spreadsheet, as well .

3.2.2 Transaction Closure in State Machines

The analysis and description of any business process , actual or in­

tended , is simplified by using the state machine model . The first step is to
identify the transaction s of the bu siness process as a black box. The
second step is to identify the state data of a state machine that are needed

to calculate the outputs of the transactions from the inputs . Usually ,

several iterations o f these two steps will b e required. Any state data

identified must have been acquired by previous transactions . Such pre­
vious transactions may be of types not thought of before , and must be
added to the behavior of the black box . In turn, such transactions may
require new state data not thought of before , and more new transactions
will be required .

Eventual ly , a set of transactions and state data will be discovered that
are self-sustaining. This condition is called transaction closure, because a
set of transactions has been found that are closed under al l conditions of
the business process.

Fundamental Principle. Transaction Closure: The condition of
transaction closure is satisfied if the transactions are sufficient to
generate all state data, and the state data are sufficient to generate
all the transactions .

For e xample , consider a simple book location system for a library .
The primary book location transaction is an input which is the identity of
a book and an output which is the location of the book in the library . But
on reflection , the state data must include a table of book identifiers and
locations that must have been the result of a previous transaction , say a
book e ntry transaction. This transaction must include a book identifier
and where it will be located as input, and a confirmation of the input as
output. Also, since there are now at least two types of transactions , each
type must be identified explicitly. This means that the book location and
book entry transaction have transaction identifiers in addition to the data
used as input within each transaction type .

With a little more thought a transaction for deleting books will be
apparent , but this will require no new state data. However, deleti ng books
will lead to unusable data storage space that must be reclaimed by reor­
ganizing the table of book identifiers and locations. Such space reclama-

106 3. The State Machine Behavior of Information Systems

tion will require a new transaction-a s ystem integrity transaction. If this
space available is not supplied by the underlying computer system, an­
other transaction to determine space available will be called for. In tum,
the state data must be augmented to keep track of the space available, and
to update it when book entry, book deletions , or space reclamation trans­
actions are invoked .

At this point the transactions and state data may be self-sufficient and
transaction closure has been reached. Beginning with a primary transac­
tion, additional transactions have been identified to reach a self-sufficient
set . The visualization of a state machine and its state data is critical for
this process of transaction closure.

This pattern of s ystematic discovery will work for any business pro­
cess for which an information system is needed. The primary transactions
will be readily identified, and the additional transactions required can be
discovered by constructing a state machine step by step until transaction
closure is achieved .

3.2.3 State Migration between Nested State Machines

State migration is an important design strategy in expanding state
machines into clear boxes which introduce new black box/state machinel
clear box structures at the next level . The concept of state migration can
be described using state machines alone .

The machine of a state machine, as a black box , can be described as a
state machine itself with an inner state . In this case there is an inner state
for the nested state machine and an outer state for the original state
machine as illustrated in Figure 3 . 2-2 .

The external stimulus SO is combined with the outer state to make a
(two part) stimulus S 1 for the nested state machine . In turn , the stimulus
S 1 is further combined with the inner state to make a stimulus S2 for the
inner machine. Conversely , the response R2 from the inner machine is
decomposed into the updated inner state and response R 1 of the nested
state machine. In turn, response R 1 is further decomposed into the up­
dated outer state and response RO of the original state machine.

This nesting process can be repeated to any level with corresponding
inner states at each level .

The division of the state of a state machine among nested levels is
entirely arbitrary . For pure state machine nestings, such nesting does not
accomplish much. But when state machines are expanded into clear
boxes, good divisions of the state among levels can simplify descriptions
and improve designs . Fortunately , such good divisions need not be ar­
rived at immediately in the development of a box structured system. As
ideas and insights arise , parts of the state can be migrated from one level

3.2

to a

stat4
chin
Tha
3 . 2-:
add(
state

3.2 Strategic Uses of State Machines 1 07

S t a te machine

r--� Outer state �- I
I I I I
I Nested state machine I I I
I I
I r-� �l I
I I nner state I
I I
I I I I
I I I I
I I I nner

I I
I I machine

I I
I I I I

SO t S l , t S 2 R ' I ... I Rq RO

Figure 3.2-2. Nested State Machines.

to another to place data for effective storage and processing.
We can use state migration to demonstrate that two special cases of

state machine structures are always possible . In the first case , the ma­
chine can be the very black box that is represented by the state machine .
That is , the state is completely migrated into the machine, as in Figure
3 .2-3 . In this case , the state shown in Figure 3 . 2-3 is trivial and nothing is
added to the stimulus to reach this inner black box . Even so, the form of a
state machine is shown as a special case .

State mac h i ne

,--1 State I l I I
I I
I I
I B lack box I j I

I R S

Figure 3.2-3. State Machine with Trivial State .

108 3. The State Machine Behavior or Inrormation

Add2

r -1 State r"l
I I
I I

S

I Add2 I
• I

I R

Figure 3.2-4. Add2 State Machine with Add2 Machine.

For example, an Add2 black box used as a machine in a state maChInl
that ignores its state will produce the same behavior as the Add2 b
box, as shown in Figure 3 . 2-4 . This case is not a useful one , because
machine is no simpler than the black box being represented. But, it is
possible extreme case under the definition .

The second special case i s the simplest possible , in terms of the
Ius history required. For every black box , there is a state machine
machine needs only its stimulus and no previous history to determine
res ponse . That is , the machine of a state machine can always be a
box of order 1 .

The reason such a machine i s always possible i s that whatever hi
the machine might seem to need can in fact be migrated into the state
the state machine . Such a reconstruction of Figure 3 . 2-2 is depicted
Figure 3 .2-5 .

State machine

r- --1 Outer state I�- r- ,
I I
I I
I I n ner state

- I
I

I , - I
I I I I
I I I I
I I I nner machine I I
I I I I

S t t I I
I R

Figure 3.2-5. A State Machine with Machine State Inside the State.

3

m
at
sf

st�
3 . :
co

chi
(tn
sta
ter
pro
hav

3.3

3.3.1

A
by el

3.3 Analysis of Black Box Behavior 109

We can show that this reconstruction is possible as follows. The sepa­

rate machine state can be incorporated into the original state because the

machine itself is unconcerned with the origin of the three items (a stimulus

and two states) it receives and the destination of the three items (a re­

sponse and two new states) it produces .
Therefore, the diagram of Figure 3 .2-5 , which depicts a state within a

state construction, is equivalent in behavior to the diagram of Figure
3 .2-2 . But now, the state within a state is equivalent to a single state which

contains the two substates as identifiable parts .
In illustration, the file update program (the machine of the state ma­

chine) need not retain any history data about its previous executions

(transitions) . All necessary data can be retained in the master file (the

state) , even data about the executions themselves . For example, the mas­

ter file could contain a record of how many times the master file update
program had been executed . Of course, the file update program would
have to update that record along with the rest of the master file .

Summary: Behavior of state machines that model customer ser­
vice can be represented and analyzed by spreadsheet calcula­
t ions . Transaction closure can be achieved by identifying all busi­
ness transactions required to provide the state data of a state
machine. State migration is always possible between levels of
nested state machines and will be useful in box structure design .
As special cases , state data can always be migrated completely
into the state or the machine of a nested state machine .

3.3 ANALYSIS OF BLACK BOX BEHAVIOR

FROM STATE MACHINES

Preview: State machine behavior can be abstracted to equiva­
lent state-free black box behavior, in a process called black box
derivation .

3.3 .1 The Black Box Behavior of State Machines

A state machine can be analyzed to determine its black box behavior
by eliminating references to its state in the calculation of its responses.

i ','j , I I

1 10 3. The State Machine Behavior of Information

Add.:!

1 1 L 1,,-,
I I
I I
I

A 2
I

I I
s t I

I R

Figure 3.3-1. A State Machine for the Add2 Black Box.

Consider the state machine just discussed for the Add2 black box
machine A2 and state L that holds the last stimulus as shown in

.

3 . 3- 1 . The machine A2 must perform on each transition from stimulus S
response R :

machine A2:
R : = S + L
L : = S

We can analyze state machine behavior as we did black box be
by considering the values of stimul i , responses, and states for
transitions . For example , for the Add2 state machine of Figure 3 . 3- 1 ,

R(i) = SCi) + L(i - I)
L(i) = SCi)

and, by substitution of i 1 for i in the second equation, then S(i
L(i - l) in the first equation , we find

R(i) = SCi) + SCi - l)
which i s the black box behavior o f Add2. By eliminating references to
state L, we have derived the black box behavior, and verified that
state machine is a correct implementation of the Add2 black box.

Likewise, consider a state machine for the black box Max2 with
chine M2 and state L that holds the last stimulus, as depicted in

.

3 . 3-2. The machine M2 must perform on each transition as follows:

machine M2:
R : max(S ,L)
L : S

3.3 Ana

For the

R(i)
L(i)

and, by

R(i)

which is
Note

behaviOi
whateve
above ir
determir
behaviOl

3.3.2 B
�

Busir
rather th
policy , d
amplifyil
box behe
kind of
extent p(
ing reon
choice 0

3 Analysis of Black Box Behavior
3.

r -1
I
I
I I

s t

Max2

L /-l
I
I

M 2 I
I
I

R

Figure 3.3-2. A State Machine for the Max2 Black Box.

For the Max2 state machine of Figure 3 . 3-2 ,

R(i) = max(S(i) , L(i - I)

L(i) = S(i)

and , by substitution , we find

R(i) = max(S(i) , S(i - I)

which i s the black box behavior of Max2.

I I I

Note that the machines A2 and M2 completely define the black box
behavior of the state machines . The states play a passive role of storing
whatever the machines produce to be stored . However , as illustrated
above in the variation of the Add2 state machine , the state definition
determines how the machine must operate to ach ieve a given black box
behavior.

3.3.2 Black Box Derivation of an Inventory
Reorder State Machine

Business rules are often found in original form as state machines
rather than as black boxes . For example , the k months of supply reorder
policy , discussed in Chapter I , proved to have the undesirable property of
amplifying demand variations in its reorders when reduced to its black
box behavior. The anal ysis that led to that discovery also led to a new
kind of reorder policy that reduces demand variations to the greatest
extent possible. Thi s new reorder pol icy , cal led the exponential smooth­
ing reorder policy (for reasons that will be clear later) , is based on the
choice of a si ngle smoothing parameter �, a fraction between 0 and I .

1 1 2 3. The State Machine Behavior of Information Systellll

Each reorder R is a weighted average of the month ' s demand D and I
month's reorder L, determined by s ,

R : = (1 - s) * D + s * L

If s = 0, then

R : = (1 - 0) * D + 0 * L = D

so no smoothing takes place and R fol lows D through every variation and
trend . If s = 1 , then

R : = (1 - 1) * D + 1 * L = L

and every R is exactly L so complete smoothing takes place, inde
dently of variations and trends in D (of course , inventory may be piling
or disappearing) . Neither of these extreme cases is useful or
mended . Instead, an inventory manager must choose s for each item
reflect the best balance between smoothing reorders and tracking
mands. The inventory manager must also determine an initial inve
level because the exponential smoothing reorder policy does not d
mine the inventory level itself. A k months of supply calculation could
used periodically for this purpose , say , once a year .

A state machine for the exponential smoothing reorder policy can
defined by the machine:

R : = (1 - s) * D + s * L
L : = R

Next, references to state L can be eliminated to derive its black
behavior. That i s , for month m,

R(m) = (1 - s) * D(m) + s * L(m - 1)
L(m) = R(m)

In this case, state L can be eliminated from the expression for
sponse R directly , as

R(m) = (1 - s) * D(m) + s * R(m - 1)

but now R(m) i s defined in terms of R(m - 1) . But since (replacing m
m - 1)

R(m - 1) = (1 - s) * D(m - 1) + s * R(m - 2)

R(m - 1) can be eliminated in the expression for R(m) by substitution,

R(m) = (1 - s) * D(m) + s * «(1 - s) * D(m - 1) + s * R(m - 2))

3.3 Ana

so R(m:
the exp

R(r

This

R(I1

By 11

R(n

If s .
goes to
Therefo:
policy i�

R(n

The I

are decr
sum of t

(1 -/

In ill
75, 100,
history I

R =

where ei
D. i ' s (th
contrast
between

R =

and no si
expressil
terms an
The expc
the demc
be show
ing reon

3 Analysis of Black Box Behavior 3. 1 1 3

o R(m) is now defined in terms of R(m - 2) . Collecting the terms in D , :he expression for R becomes

R(m) = (1 - s) * (D(m) + s * D(m - 1) + S2 * R(m - 2) .

This substitution process can be continued for R(m - 2) to get

R(m) = (1 - s) * (D(m) + s * D(m - I) + S2 * «(1 - s)
* D(m - 2) + s * R(m - 3»

= (1 - s) * (D(m) + s * D(m - I) + S2 * D(m - 2» + S3

* R(m - 3).

By now, the pattern is clear, and after n substi tutions

R(m) = (1 - s) * (D(m) + s * D(m - 1) + . . . + sn * D(m - n»
+ sn+ 1 * R(m - n - 1) .

If s < 1 and n goes to infinity (becomes indefinitely large) , then sn+ l

goes to zero , so the final term of this expression for R goes to zero also .
Therefore , the black box behavior of the exponential smoothing reorder
policy is given by

R(m) = (1 - s) * (D(m) + s * D(m - I) + S2 * D(m - 2) + " ') .

The coefficients for the demands, (1 - s) , (1 - s) * s , (1 - s) * S2 , " ' ,
are decreasing exponentially , which explains the name . Furthermore , the
sum of these coefficients is 1 , because if 0 < s < I , then

(I + s + S2 + . . .) = 1 1(1 - s) .

In illustration , consider the same demands discussed in Chapter 1 of
75 , 100, and 1 25 , each with equal probability . Then , in BDL stimulus
history notation ,

R = (1 - s)(D.O + s * D. I + S2 * D . 2 + . . .)

where each D j is 75 , 100, or 1 25 . Since R is a weighted average of the
Dj's (their coefficient ' s sum to 1) , R must be between 75 and 1 25 , in
contrast with the k months of supply example in which R could vary
between 25 and 1 75 . When s is close to 1 , say .9 , the form of R is

R = . 1 * D.O + .09 * D. 1 + .08 1 * D. 2 + . . .

and no single demand , even the most recent, represents a large term in the
expression for R. Therefore , R is a weighted average of many nearly equal
terms and will be near the average of demands, 1 00, with high probability .
The exponential smoothing reorder policy lives up to its name ; it smooths
the demand variation in the reorders as specified by its parameter s. It can
be shown theoretically to be the best possible in simultaneously smooth­
ing reorders and inventory levels .

1 14 3. The State Machine Behavior of Information

3.3.3 Sales Forecast State Machines

The black box for RA 1 2 (running average of 1 2 months sales) provo
a sales forecast . However, RA 12 will follow a sales trend very slowly, i
fact , RA 1 2 will lag a sales trend by 6 months because the average i s
over 12 months. In order to follow a sales trend more closely the T r,�".."

should weight recent sales more heavily than older sales . One way
attempt such a forecast is by a straight line method of weighting, such
a forecast F , in terms of a sales history S .O, S . l , S .2 , . . . is given as

F = (1 2 * S. 0 + 1 1 * S . 1 + . . . + 2 * S. 10 + S. 1 1)178

where the denominator 78 i s the sum of digits 1 to 1 2 .
Another way to weight recent sales more heavily is by eXpOnelrltHll'1

smoothing, as used in the exponential smoothing reorder policy . In
the exponential smoothing reorder policy can be regarded as a aelman<l;
forecaster instead of a reorder policy (recall that inventory levels did
appear in its analysis) . Its parameter s can be used to balance the
between a stable forecast and tracking sales directly .

Summary: A black box is derived from a state machine by elimi­
nating state references in the calculation of responses . Derivat ion
of black boxes from state machines can reveal unsuspected state
machine behavior, and permit more systematic analysis of user
problems .

3.4 DESIGN OF STATE MACHINES FOR

BLACK BOX BEHAVIOR

Preview: The state and machine transitions of a state machine
can be designed from black box behavior. The state machine of a
hand calculator is finite even though its black box is not . State
machines must be designed to deal with both proper and improper
use .

3.4.1 State Machine Design for Black Box Behavior

As already noted, some business rules are stated naturally as state
machines , for example, the exponential smoothing sales forecast policy .

3.4 [

Othel
pIe , '
beha\
mach
desigl
make

Tt

P
st

Pi
de

Th
princi
more
stimul
state I

1 2th).
Th

behav �r
bl;
tn

In
uti , tho
with tl
stimul
future
stimul
will a�

Th
curren
name,
time, 1
time . J

. . . , S I
i s not 1
by S9,
1 1 rep.

4 Design of State Machines for Black Box Behavior 3. 1 1 5

Other business rules are stated more naturally as black boxes, for exam-

Ie a running average forecast of sales . In many cases, a black box

�ehavior is desired but it may not be obvious how to achieve it with a state •

machine . That is the problem of state machine design . State machine

design requires intellectual invention, but there are three principles that

make such invention possible and practical .
The first two principles are based on the black box behavior required:

Principle 1 : The black box stimulus history defines sufficient
state data.

Principle 2: The black box response defines necessary state
data.

The running average black box RA 1 2 provides an illustration of these
principles . A stimulus hi story of more than 12 stimuli is sufficient , in fact ,
more than sufficient . But the response requires the average of the last 1 2
stimuli , so at least that much information is necessary . This suggests a
state consisting of the last 1 1 stimuli (the current stimulus makes the
12th) .

The third principle of state machine design is based on state machine
behavior.

Principle 3: The state machine transition must define both the
black box response and next state with sufficient data for future
transitions .

In the state machine with RA 1 2 whose state contains the last I I stim­
uli , the black box response is obtained by averaging these last I I stimuli
with the current stimulus . However, unless the state is updated, these 1 1
stimuli are no longer the last stimuli , so there will be insufficient data for
future transitions. The answer, of course, is to replace the oldest of the I I
stimuli with the current stimulus . Then, at the next transition, the state
will again contain the last 1 1 stimuli.

The problem of how to replace the oldest of the I I stimuli with the
current stimulus is one of design. If each of the stimul i is given a distinct
name, the one replaced this time wi1l not be the one to replace the next
time, because the current stimulus this time won' t be the oldest the next
time . A simple solution is to store past stimuli by their ages , say S I , S2 ,
. . . , S 1 1 , so that S I I is the oldest stimulus . Then, to update the state , S 1 1
is not replaced by the current stimulus S , but by S 1 0, then S I O is replaced
by S9, S9 by S8, and so on to S2 by S 1 and S I by S. This update involves
I I replacements instead of 1 , but automatically keeps the oldest stimulus

1 16 3. The State Machine Behavior of Information

in S 1 1 , the most recent in S 1 , etc . In this case the RA 1 2 state machine
be defined as shown in Figure 3 .4- 1 with machine M.

The foregoing design of a state machine for RA 1 2 is straigh
and maintains the necessary history of the 1 1 most recent stimuli in
sequence S 1 , S2 , . . . , S 1 1 of increasing age. Each new transition req

.

that all 1 1 members of the sequence be updated , because each is now
period older than before .

There is a simple alternative to this design in which the new stimulus
literally replaces the oldest stimuli at each transition. However, an addi­
tional data item is required which keeps track of which stimuli is
oldest in each new state . That is , consider a state with 1 1 previous stimuli ,
in a circular list with members T 1 , T2 , . . . , TI l (T 1 follows TI l in the
circular list) , and a data item called Oldest which identifies which of Tl t

T2, . . . T I l is the oldest stimulus. Oldest always has a value between 1 and
1 1 . In a transition , the new stimulus is used with the 1 1 members T l ,
. . . , T I l to calculate the running average , the stimulus designated oldest
by Oldest is replaced by the new stimulus , and the designation of Oldest is.
advanced one member in the circular l ist (Oldest goes through the cycle
1 ,2 , 3 , . . . , 1 1 , 1 ,2 , . . . in sucessive transitions) .

In this case, the RA1 2 state machine is given in Figure 3 .4-2 with M2
given as follows. That i s , the RA 12 state machine M2 changes only two�
data items (instead of 1 1) on each transition, but the description is less
straightforward . At every transition, the last 1 1 stimuli are contained in
the state , but a stimulus of given age is in no fixed place in the circular list.

The two state machines for RA 1 2 already discussed calculated the
running average from the last 12 stimuli (counting the new stimulus) at
each transition . Still another alternative is to divide each new stimulus by

RA 1 2 state mal:hine I

�----I ,---1 s I , S 2 , S3, . . . , S I I

I I I I I M I I I I I I R : = (S + S I + . . . + S I I)/ 1 2 I

R s

I S I I : = S I O I � S I O : = S9 ! . . .
S2 := S I
S I : = S

Figure 3.4-1. RA l 2 State Machine .

3.4 Desi

s -

12 befon
lated by
This leac

The I�
there are
three pri.
states an
must the
the next

STATI

We hc:
by elimin
invented ;
to rederi,

S -

4 Design of State Machines for Black Box Behavior
3.

RA 1 2 state machine 2

,----1 T I . T2 , . . . , T I I , Oldest �--- -I
I I I I I M 2 I I I
I R : = (S + T l + T2 + . . . + T I l)/ 1 2 I
� Oldest T := S I

Oldest : = next value of Oldest S

Figure 3.4-2. RA I 2 State Machine 2.

1 1 7

R

12 before putting it into the state . Then the running average can be calcu­
lated by simply adding the 12 vaJues obtained from the Jast 12 stimuli .
This leads to RA 1 2 State Machine 3 in Figure 3 .4-3 .

The lesson in these three alternative state machines for RA 12 is that
there are many ways to simulate a black box with a state machine . The
three principles provide a systematic way to think about the invention of
states and transitions. In particular , principle 3 reminds us that not only
must the correct response be calculated, but also a correct state for use in
the next transition.

STATE MACHINE VERIFICATION

We have already seen how to derive the black box of a state machine
by eliminating its state from the expression for its responses . If we have
invented a state machine to simulate a black box , then we should be able
to rederive that very black box from the state machine we have just

RA 1 2 state machine 3

,--1 U I. U2, U I I , Oldest 1--- - - - -,
I I I I I M3 I I I

S t R := SI 1 2 + U I + U2 + . . . + U I I I
Oldest U := S/ l 2 R

Oldest := next value of Oldest

Figure 3.4-3. RA I 2 State Machine 3.

1 18 3. The State Machine Behavior of Information

invented . We call this rederivation the verification of the state machi
That is , any of the three preceding state machines should lead back
RA 1 2 , whether or not the design and thinking process that created
from RA 1 2 was known or not . For example, the machine of RA I 2 S
Machine 3 can be reexpressed to eliminate the state data in U 1 , U2, ' "

V I I , and Oldest b y the fol lowing argument . The variable Oldest cy
through the values 1 ,2 , . . . , 1 1 , 1 ,2 , . . . and therefore designates each of U I
V2, . . . , V 1 1 as the oldest value added to the state . Since the stimulus S .

always divided by 1 2 , the U ' s always contain, in no fixed places ,
values S . 1 I 1 2 , S .2/ 1 2 , . . . , S . 1 1 / 1 2 , where S . I , S .2 , . . . , S . 1 I are the 1 1
recent stimuli .

Therefore, the response R has the form

R S .0/1 2 + V I + U2 + . . . + U l 1
= S .0/ 1 2 + S . 1 I 1 2 + S .2/ 1 2 + . . . + S . 1 1 1 1 2
= (S.O + S . 1 + S .2 + . . . + S . I 1)/1 2

which is the response required for RAI 2 . Note that we have used t
simple facts of arithmetic in this derivation

1 . The term 1 1 1 2 can be factored out of the sum.
2 . The values S . 0/ 1 2 , U I , U2, . . . , U l l can be added in any order wit

the same result .

3.4.2 State Machine Design for the Hand Calculator
Black Box

The black box behavior of a hand calculator can be described as a s
machine . But even more , we shall find a finite state machine descript
even though a hand calculator cannot be described as a finite black box

Recall the problem discussed in Chapter 2 of finding the sum of 1 4
4 3 with stimulus history C I 4+ 43 = . I n state machine terms , the hand
calculator is using and then changing its state with every stimulus as well
as producing its response. For example,

After C : The state i s cleared, expecting t o receive a number in a series of stimuli

to fol low

After C 1 : The state is that a number i s being received whose first digit i s I
After C 1 4: The state is similar to the previous state except that the first two digits of

the number are 14

After C 1 4 + : The state is quite different from the previous state. The + stimulus has

signified three changes:

I . The number being received is e nded and is 14

2 . The number 1 4 is to be added to the next number to be recei ved

3 . A new number i s expected i n a series of stimuli to fol low

3.4 Design of State Machines for Black Box Behavior 1 19

The state information must be retained in some form. In order to

express such a state , we invent a description for it in a set of variables . In

this case we call these variables registers . These registers are pure inven- •

tions, to explain the black box behavior of the hand calculator, not based

on its physical construction. Specifically , we invent three registers which

seem required by the preceding analysis:

Visible Register (VR) . A register of digits which are identical to
whatever digits are currently displayed .

Hidden Register (HR) . A register of digits which can retain a num­
ber for future calculation .

Function Register (FR) . A register which holds a single arithmetic
function requested by the user, such as + or - .

The foregoing states can now be expressed by the values i n the regis­
ters , for example ,

After C 1 4 : VR = 1 4, HR = ? , FR = ?
After C I 4+ : VR = 1 4 , HR = 14 , FR +

where the question marks mean the current register contents are un­
known.

Now, the next stimulus of the second 4 leads to a problem we have not
yet solved, because after receiving the stimulus history C 14+4 we know
that VR must become 4. How does the black box machine produce this
part of the state? For example, if it continued as before , any digit entered
would simply be added to the end of the number already in YR. In this
case , C 144 would produce VR = 1 44 , but C 14+4 would produce VR = 4 .
The answer has to be contained in the intervening + , which says, in
effect , " start a new number. " One way to record this information is to
invent a new register:

Begin Register (BR) . A register which holds the character B (for
Begin) or C (for Continue) .

The Begin Register will sol ve another problem we have not noted until
now. At the very beginning, we have the sequence

After C :
After C l :

VR = 0
VR = 1

Why isn't VR 0 1 after C l ? After all , other digits are simply ap-
pended to the end of the preceding number in YR. But the behavior of the
hand calculator is such that the first digit of a number must overwrite the
initial 0 in the display .

We can use BR to denote this effect of stimulus C , as wel l , to get

1 20 3. The State Machine Behavior of Information

After C: VR 0, BR = B (Begin)
After C l : VR = 1 , BR C (Continue)

Now, when a + stimulus appears , the state machine can, among
things , change BR from C to B . Then the state machine can be
structed as follows :

If BR = B and the stimulus is a digit , disregard the contents of
and start a new number with that digit; otherwise , if BR = C
the stimulus is a digit , append that digit to the current contents
YR.

With this new understanding we can express the successive states of
hand calculator in this problem as shown in Table 3 .4- 1 .

Note that each state i n the Table i s slightly different from its predece
sor, but more importantly , a machine black box of order 1 can be devi
to go from each state to the next. That is, the machine required to
out these state transitions need not itself refer to a state .

The question marks in the Table mean that no particular values
.

those registers are required to explain the behavior of the hand vUJ'VU.1U""Jl

Of course , there will be values in those registers where each que
mark appears . But whatever the values are , they will simply reflect
struction details of the particular hand calculator in use , and are inc'
to our state machine description of black box behavior. In recognition
these two categories of values , we call the definite values in the T
intentional data, and the question mark values accidental data.

Notice one surprising aspect of this transaction with input C I4 +43 =
and output 57. The state machine works just as hard and in the same way
with each stimulus , as it does in producing the response (adding 14 and 43
to get 57 is just part of a transition to the hand calculator) . That is , the
designation of the input as C 14+43 = is relative to the user of the hand

Table 3.4·1

States of a Hand Calculator Comput i ng

C 1 4 + 43 57

After: BR V R FR H R

C B 0 'J '?
C I C .) 'J

C 1 4 C 1 4 .)

C I 4-+ B 1 4 + 14

C 1 4 + 4 C 4 + 1 4

C 1 4 + 43 C 43 + 1 4

C I 4 +4 3 = .) 57 .) .)

roW

1

2
3
4

5

(S

calculato
stimuli­
calculato
as shoWl
sents a s1
Blanks it
arithmeti,
an arithm
and VR t
and need
machine

This Ci
mentatiOJ
flow both
problems
only the I
the state
describes

3.4.3 Stl

The h
expresses
C 14+43 =
uti whats(
no matte!
sponse­
possible (
of, say ,

+ -

3.4 Design of State Machines for Black Box Behavior 1 2 1

Table 3.4·2

Machine Transitions for a Hand Calculator

-
(S OS) 4> (R NS

roW BR VR FR HR BR VR FR HR

1 C 0 B 0

2 any D B f y D C D f y

3 any D C x f y D+ lOx C D+ lOx f y

4 any F x f y yfx B yfx F yfx

5 x f y yfx yfx

calculator-there i s no new information for the user in this sequence of

stimuli-but every one of the stimuli is new information for the hand

calculator. These machine transitions can be organized and summarized

as shown in Table 3 . 4-2 . In each row , the left side of Table 3 . 4-2 repre­
sents a stimulus and old state , the right side the response and new state.
Blanks in the Table mean that data is irrelevant. Note that yfx is an
arithmetic expression , where x and y represent numbers and f represents
an arithmetic function, for example 14 + 37. Why does the Table define R
and VR to be the same? Why not just have R? Because VR is available
and needed as part of the state for the next transition, but R is not . The
machine would not operate correctly without YR.

This analysis assumes perfect arithmetic , but of course a real imple­
mentation with finite registers VR and HR would need to cope with over­
flow both from key entry by the user and from arithmetic operations. The
problems of overflow will not change the structure of the state machine ,
only the rules which modify VR in rows 3 and 5 of the Table . In any case ,
the state of this machine is finite , even though the hand calculator it
describes is a nonfinite black box .

3.4.3 State Machine Design to Deal with Improper Use

The hand calculator problem we have analyzed in Chapters 2 and 3
expresses a proper question in arithmetic with a correct expression
C I4 + 43 = . However, a hand calculator can accept any sequence of stim­
uli whatsoever, whether it constitutes a correct expression or not . That i s ,
no matter which key is pressed next , the display will return some re­
sponse-the hand calculator won' t blow up or stop operating under any
possible circumstances of use . For example. given a gibberish sequence
of. say,

+ - 3 4 2 + 5 2
I

' I i I i i �) ! r ! i

1 22 3. The State Machine Behavior of Information

what responses will be produced? Those responses wil l , in fact, be
dictably different for different brands of hand calculators because
will depend on accidental data that is generated in their state registers

All brands of hand calculators will satisfy the same abstract
.

tion, namely of converting input arithmetic expressions (suitably deli
ited) into output numbers which correctly evaluate such arithmetic
pressions . But the abstract specification is not defined for stimul
histories that do not represent arithmetic expressions . Yet each brand
hand calculator will realize some concrete specification as a by-product
its design and manufacture . Part of this concrete specification will
intentional , as the designers seek to incorporate good human factors '
the hand calculator . But stimulus histories that are gibberish will be of
interest to the abstract specification , and therefore treated as aC(;la(�ntcdi

As a simple example , consider the sequence of stimuli previous
analyzed, with an additional = stimuli added to the end :

C 1 4 + 43 = =

What output will this sequence produce? It turns out that many
calculators will produce one of two answers-either 57 or 7 1 . The 57
simply a repetition of the preceding output, while the 71 is the result
adding 14 (in HR) to 57 (in VR). Thus , the internal rule for creating t
sum can be stated in several ways:

1 . "Display HR + VR"
2 . "Store HR + VR in VR and display VR"
3 . "Store HR + VR in HR and display HR"

In the first case , the second = stimuli simply repeats the action of
first = , but in the second case, the second = actually changes the s
Note that our state machine explanation of the hand calculator wou
produce the second case .

The accidental differences of hand calculators represent ideal '"" ,""'""r·� .. _

nities for treating hand calculators as laboratory machines in the study
black box behavior and the construction of clear box explanations for t
black box behavior. It is an interesting problem in black box analysis
discover how a hand calculator really works for any sequence of stimuli
not just for proper questions of arithmetic . In order to go about that , a
of state registers is required , together with a machine description that will
explain exactly what state change and response will occur for every possi­
ble stimulus combined with every possible state . This total state
machine description must explain all the observable behavior of the
calculator.

The lesson in this is that it is important to distinguish between what a

3.5 Stal

black t;
ways \\
of the 1
proper '
rules 01

Nev
deal wi
transiti<

Fun
res!
ne\\o

In fu
an unex
If, in fae
not arisl
imprope

Sum
mac
box
siml
crett
ish I
vant
mac

3.5 STA

Pre,
for tI
blacl

BDL
state rna,

State
ior at the

3.5 State Machines in Box Description Language 1 23

black box does and its proper use . A black box may behave in strange

ways when presented with unusual stimulus histories . Thus, a definition

of the behavior of a black box typically depends on a definition of its ..

proper use . In the case of the hand calculator , proper use is defined by the

rules of arithmetic, which preclude gibberish stimuli altogether.
Nevertheless, the designer of a hand calculator must be prepared to

deal with both proper and improper use, to avoid failure to complete a

transition. This requirement leads to the following fundamental principle.

Fundamental Principle: A state machine must be prepared to
respond to any stimulus in any state to produce a response and a
new state .

In further illustration, a common problem in interactive systems is that
an unexpected illegal input can bring the system to an unanticipated halt.
If, in fact , the fundamental principle had been applied , this situation could
not arise . Thus , in design the possibility for every stimulus , proper or
improper, must be accommodated from every possible state .

Summary: The state of a state machine must be sufficient for the
machine to produce every possible response required by its blac k
box behavior. A state definition of four registers i s sufficient to
simulate the black box behavior of a hand calculator. The con­
crete implementation of a hand calculator will handle any gibber­
ish history of stimuli with definite behavior which will be irrele­
vant to the abstract specification of its state machine . A state
machine design is insufficient if it deals solely with proper use .

3.5 STATE MACHINES IN BOX DESCRIPTION LANGUAGE

Preview: A state machine in BDL substitutes a state definition
for the black box stimulus history and a machine transition for the
black box transition.

BDL accommodates two design steps for state machines, namely ,
state machine definition and state machine invocation .

State Machine Definition. A state machine defines black box behav­
ior at the stimulus, response level in terms of state transitions, expressed

l.

:!. :I,"
, i

' i !

I I

1 24 3. The State Machine Behavior of Information Systems

in BDL syntax as

define SM <SM name>
stimulus

<stimulus name> : <type>
re�ponse

<response name> : <type>
state

<state data>
machine

<SM transition>

with outer syntax keywords define SM, stimulus, response, state, and
machine, shown here in indented text form. <SM name> is the name of
the state machine , usually , the name of the corresponding black box , and
<stimulus name> , <response name> , and <type> have meanings as
before. In this case , state denotes the <state data> , which abstracts the
stimulus history of the corresponding black box in terms of named state
data, and machine denotes the <SM transition> , which defines the ma­
chine transition.

In illustration , the Add2 state machine corresponding to the Add2
black box can be described as

define SM Add2
stimulus

S :number
response

R :number
state

L:number
machine

R : = S + L
L : = S

where S , R , and the single state item L are all defined as numbers . The
transition is given by an assignment of the stimulus plus the old state to
the response , and by an assignment of the stimulus to the state in prepara­
tion for the next transition.

Is the Add2 state machine a faithful description of the Add2 black
box? As already seen, the answer can be found by eliminating the state ,
and expressing the response in terms of stimulus history . The response of
the ith state machine transition is

R(i) = S(i) + L(i - l)

3.:

ar

W
b4
el
si

w
cc
tc
m

3.5 State Machines in Box Description Language

and the value of L(i - 1) from the previous transition is

L(i - l) = S(i - 1)

Thus, the results of the transition can be rewritten as

R(i) = S(i) + S(i - l)
L(i) = S(i)

1 25

where the assignment to R(i) is the transition formula of the Add2 black
box expressed in terms of stimulus history, and the assignment to L(i)

ensures the availability of the required stimulus history for the next tran-
sition.

The state machine for Max2 is

define SM Max2
stimulus

S:number
response

R:number
state

L:number
machine

if L > S then R : = L eIse R : = S fi ;
L : = S

where the state is a single number L and the transition is defined as a
conditional assignment of the maximum of the old state and the stimulus
to the response, and by an assignment of the stimulus to the state for the
next transition.

Similarly, the Odd :Add2lMax2 state machine is

define SM Odd: Add2lMax2
stimulus

S: number
response

R:number
state

L1 , L2: number
machine

if S odd

fi

then R : = L I + S ;
L 1 : = S

else R : = max(L2, S) ;
L2 : = S

1 26 3. The State Machine Behavior of Information

The hand calculator provides a special , trivial example of a state
chine specification at an abstract level, si nce no data is to be s
between transactions from clear key to clear key . Therefore , its s
machine is trivial because no state data is to be maintained :

define SM hand calculator
stimulus

I :arithmetic expression
response

O:number
state

(none)
machine

o : = value of arithmetic expression in I

However, the state machine of the hand calculator is nontrivial at the
concrete level , since data is stored between transitions from keystroke
re sponse, as informally described in Table 3 .4-2 :

define SM hand calculator
stimulus

S : key
response

R:display
state

BR:(B ,C)
VR:number
FR: (+ , - , * , /)
HR:number

machine
As described in Table 3 .4-2

State Mach ine Invocation . State machines can be invoked by BDL
procedure statements of the form

use SM <SM name> « stimulus name> ; <response name»

where keyword use SM means carry out a transition of the state machine
with name <SM name > , given stimulu s <stimulus name> and producing
response < response name > .

For example , the procedure statements

use SM Add2(i ; j)

and

use SM First(i ; j)

Exercises 1 27

invoke state machine transitions using data objects i , j for stimulus , re­

sponse, respectively . Thus , for stimulus history 3 6 1 9 6 and i = 2 ,

use S M Add2(2 ; j)

sets j to 2 plus the old state of Add2 and sets the new state of Add2 to 2 ,

and

use SM First(2 , j)

sets j to 3 and leaves the old state (3) unchanged .

Summary: State machine BDL requires both state and machine
definitions . State data are given names and type definitions . The
machine transition is defined in terms of new state and response
as a function of stimulus and old state .

EXERCISES

1. Define state machine descriptions for the following black box struc­
tures :

(a) Add2 ;Max2
(b) Max2 ;Add2
(c) Max2 ;Max2
(d) Odd:Add2lMax2
(e) Odd :Add2 lAdd2
(f) Odd: * (Add2: 0dd)
(g) Add2 1 1Max2

2. Determine the black box behavior of state machines with stimulus S ,
response R, state L , and rules :

(a) R : = S + L
L : = 2 * S

(b) R : = L
L : = S

(c) R : = S + L
L : = S

3. Consider a state machine with stimulus S, response F , state L , and
rule:

F : = max(S , L)
L : = F

1 28 3. The State Machine Behavior of Information

Determine its black box behavior and discuss whether thi s
machine i s a good sales forecaster, i f not, can you think of any
use for it?

4. The (s ,S) reorder policy is defined by two numbers s and S
define lower levels and upper levels in the inventory level of an item
That i s , when inventory fall s below s, reorder enough to bring i t
to S . Determine the state machine for the (s ,S) policy and discuss
nature of i ts black box behavior.

s. Use Table 3 .4-2 to work out the state machine transitions in the
of Table 3 .4- 1 for the following stimulus histories:

(a) C 324 + 19 + 1 =
(b) C 27 - 94 + 82 =
(c) C 1 8 * 4 - 36 =

6. Consider a hand calculator which has a clear entry key (CE) that.
permits the user to start over in keying in a number. Modify the hand
calculator state machine to inc1ude the clear entry key .

7. Consider a hand calculator which has no decimal point key (DP) and
permits arithmetic to no more than 8 significant digits . Work out a
consistent way to deal with overflow on key entry and arithmetic ·
operations. Modify the hand calculator state machine to inc1ude
your solution.

S. Given black box Max24 (the response is the maximum of the last 24
stimuli) , develop two state machines in analogy to the first two state ·
machines in the chapter for RA 1 2 , namely , one state machine whose
state maintains stimuli by age in fixed places and one which mini­
mizes the state changes during a transition .

9. A 6 months' sum of digits forecast forecasts sales next month as a
weighted average of the past 6 months of sales , which weights the
oldest sales (sales 6 months ago) 1 , next oldest 2, . . . , most recent 6 .
Note that a common denominator must be found to make the weight
add up to 1 . Develop a state machine to describe a 6 months' sum of
digits forecast black box .

10. Can you devise a state machine for black box RA 1 2 in which only
previous responses are retained in the state and not previous
stimuli?

11. A 5-day stock trend indicator declares the trend + , 0, or - depend­
ing on whether the last price is above , same , or below the median of
the previous 5 prices . That i s , it is a black box with daily stock prices
as stimuli , and the indicators + , 0, - as responses. Develop a state
machine for the 5-day stock trend indicator black box .

r:, 1 29

Discover, if possible , a foolproof way to do reliable calculations
tz· without using the clear key. To state the problem more clearly,

imagine you are presented \\'ith a hand calculator with unknown
history of use, whose clear key is missing ! For example , suppose the
display held 1 4 , and you entered - 14 to get the display to O. Can you

consider the calculator cleared? What would you do if the sequence
- 1 4 produced the display - 14?

13. At the end of the week a manufacturer decides how many units of a
product to make during the next week. The decision is based upon
the product ' s current quantity on hand and the average number of
orders for that product over the past two weeks. Outstanding orders
for the product are indicated by a negative value for quantity on
hand .

The following state machine BDL specifies the above decision
rule :

define SM Product
stimulus

S: number {orders during week}
response

R: number {products to make next week}
state

made: number {products made during week}
prev : number {previous week' s orders}
qoh : number {current quantity on hand}

machine
do

od

qoh : = qoh + made - S;
R : = (S + prev)/2 - qoh ;
prev : = S ;
made : = R

Derive the black box transition formula for this state machine by
eliminating al l state variables . Comment on the usefulness of the
deci sion rule .

14. Describe a system that is a

(a) finite black box-finite state machine,
(b) finite black box-nonfinite state machine ,
(c) nonfinite black box-finite state machine ,
(d) nonfinite black box-nonfinite state machine .

15 . Design a state machine for a simple word processing system. De­
velop a transition table similar to the one for a hand calculator.

/
1 30 3. The State Machine Behavior of Information

16. Discuss the difference between the bank customer service state
chine and a toll booth state machine where movement between
is not possible .

17. Use a state machine to model the behavior of a traffic If'] lter'sec;tloini
with a stop light , Assume initially that there is one lane of
going in each direction , How would the state machine change w
two lanes or three lanes in each direction, turn lanes?

18. Describe a database management system as a state machine .
are the inputs and outputs for thi s system? What transactions
the machine perform?

Chapter 4 The Clear Box Behavior
of Information Systems

4.1 CLEAR BOX BEHAVIOR

Preview: The machine of a state machine can be expanded into
a structure of machines by one of four primitive steps, resulting in
a clear box with the same external behavior as the state machine.
In turn , a clear box machine can be expanded into an equivalent
structure of simpler machines .

In Chapter 3 we introduced an equivalent description of black box
behavior at the state machine level , as depicted in Figure 4. 1 - 1 , where the
machine of the black box transforms a stimulus (S) and old state (OS) into
a response (R) and a new state (NS) .

A clear box is an expansion of a state machine in which the machine is
replaced by a structure of component machines. In turn , any component
machine of a clear box can be replaced by another machine structure .
Such a clear box will have the behavior of some state machine , with
transitions of the form

(S ,OS) --+ (R,NS)

1 3 1

1 32 4. The Clear Box Behavior of Information Systems

i--1 State r-i
I I
I I
I I
I Machine

I
I I
I I

� I
I

R S

(S, OS) ----to- (R, N S)

Figure 4.1-1. State Machine Description of a Black Box.

4.1.1 Clear Box Syntax

As discussed in Chapter 2 , a black box structure is a compound struc­
ture of black boxes expressed in sequence, alternation, iteration, and
concurrency primitive structures. By definition, the black boxes of a
black box structure share no state . We now introduce a clear box in BDL
that admits the possibility of shared states among its component ma­
chines .

A clear box defines a procedure for state machine behavior in terms of
operations and tests on state and working data. Clear boxes in BDL are
defined by the fol lowing syntax structure:

define CB <CB name>
stimulus

<stimulus name> : <type>
response

<response name> : <type>
state

<state data>
machine

data
<procedure data>

proc
<procedure>

corp

where <CB name> is the name of the clear box , usually the name of the
corresponding state machine and <stimulus name> , <response name>,
and <type> have the same meanings as before . The keyword state de-

Clear Box Behavior
4.1

1 33

tes <state data> , defined by a declaration of data objects that corre­
no

nd to the state structure of the state machine, and that participate in
spo
h operations and tests of the clear box .

t e
The clear box procedure , denoted by keyword machine, is defined in

tWO parts delimited by keywords proc and corp. The first part, denoted by

keyword data, defines <procedure data> , the local , working data (if any)

sed by the machine procedure . The second part is the <procedure>

�self, which defines a structure of nested and sequenced operations and

�ests that carry out the transition of the corresponding state machine .

Note in comparison that the black box structure of Chapter 2 specified

no state data nor procedure data, only a transition procedure which refer­

enced component black boxes .
The procedure statements (PS) of a clear box procedure include BDL

statements previously discussed:

Assignment Statement: <variable> : = <expression>
Black Box Statement: use BB <BB name> « stimulus name>;

<response name»
State Machine Statement: use SM <SM name> « stimulus name> ;

<response name»

and the sequence , alternation , iteration , and concurrent control struc­
tures, likewise previously discussed. In addition , BDL clear box proce­
dure statements include the case control structure (a generalization of the
alternation control structure) .

4.1.2 Clear Box Structures

The sequence clear box is determined by a sequence of two (or more)
machines M 1 , M2, as shown in Figure 4. 1 -2 . The resulting structure is a

r- - - - - - - -1 State 1--- - - -- - - -1 : os I NS I f ! OS2 NS2 :
I I I I
: M l : : M2 :
� l � !

S I _+-_.l.....-� 1---'----.&...+1 I----'---+--. R2
R l S2

Figure 4.1-2. The Sequence Clear Box Structure.

1 34 4. The Clear Box Behavior of Information Systems

clear box , and will have the same external behavior as the state machine
whose machine is decomposed into the sequence of M I and M2. In effect,
MI passes its response to, and creates a new state for M2 to use as a
stimulus and an old state to produce the response of the clear box and its
new state . More precisely,

Sequence Clear Box Execution. A transition of machine M I from
(S I , OS 1) to (RI , NS 1) is invoked , RI is renamed S2 and NS I is
renamed OS2, then a transition of machine M2 from (S2 , OS2) to
(R2, NS2) is invoked , and NS2 is renamed OS I for the next clear
box transition .

The BDL syntax for the sequence (or do) procedure statement is
do

PS I ;
PS2

od

where any number of procedure statements (including none) may be
present , separated by semicolons and the do, od keywords may be omit­
ted where no misunderstanding can arise.

The alternation clear box is determined by a conditional test, denoted

S

r - - - - - - - - - -�::-----:B- - , r - - - ,
I I

OS l OS NS I I
I I
I M I I
I I

S t I
I R I

L I

T

t c
OS NS2

F
M 2

t I
S R2

Figure 4.1-3. The Al ternation Clear Box Structure .

R

4.1 Clear Box Behavior 1 35

C, which serves to switch the stimulus to exactly one of the machi nes M 1

or M2. The test is denoted by a diamond , and may depend on the state as
wel l as the stimulus , as shown in Figure 4. 1 -3 .

The resulting structure is a clear box , and will have the same external
behavior as the state machine whose machine is decomposed into cases
M l and M2 by C. In effect , C decides on the basis of the stimulus and the
old state which machine, M 1 or M2, to use for each transition.

More precisely ,

Alternation Clear Box Execution. Condition C is determined by
reference to stimulus S and state OS . If C evaluates to T (true), a
transition of machine M l from (S , OS) to (Rl , NS l) is invoked , Rl
is renamed R, and NSI is renamed OS for the next transition. If C
evaluates to F (fal se) , a transition of machine M2 from (S, OS) to
(R2, NS2) is invoked , R2 is renamed R, and NS2 is renamed OS for
the next transition.

r, - -�� - - - - - - - - - - --Gtate
I r-

-
,

I I I
I : I
I I I

I
os I M I NS I I

, I I
I 1 I
I _, _ I
I I I
I : V I R I I
I I

L....-_----I I

I , I
I I M 2

N S2 :
I I I : + : 1 0- ' I I V 2 R "'

S -+----'��II< E ::' L--_---' - i
M3

N S 3 :
I I � L
: V 3 R3 :
I I : I
I M4 N S4 : I I t I

V4 R4

Figure 4. 1-4. The Case Clear Box Structure .

1----1-- R

1 36 4. The Clear Box Behavior of Information Systems

The BDL syntax for the alternation procedure statement (or if state­
ment) is

if
C

tben
PS I

else
PS2

fi
The case clear box structure, depicted in Figure 4 . 1 -4 , i s a generaliza­

tion of the alternation structure. It provides a convenient means for carry­
ing out one of a fixed number of alternative machine transitions (fixed at
four in the example shown) , corresponding to values (VI to V4) of expres­
sion E . If no case value corresponds to the value of E, response R is set to
S. More preci sely ,

Case Clear Box Execution. Expression E i s determined b y refer­
ence to stimulus S and state OS . If the expression evaluates to any
value Vi associated with a machine Mi, a transition of that machine
from (S, OS) to (Ri , NSi) is invoked , Ri is renamed R, and NSi is
renamed OS for the next transition . Otherwise , the response R is
set to S .

The BDL syntax for the case procedure statement i s

case
E

part (value 1)
PS I

part (value2)
PS2

part (value3)
PS3

part (value4)
PS4

esac

Keywords case and esac delimit the case statement, and the contained
part keywords delimit procedure statements , one of which will be exe­
cuted if expression E evaluates to the corresponding value. Otherwise, if
no values correspond, no execution occurs ; that is , the case statement is
the null statement . The case statement is a convenient abbreviation for
nested alternation statements. For example , the case statement

4.1 Clear Box Behavior

case
E

part (1)
PS I

part (7)
PS2

part (4)
PS3

esac

corresponds to the fol lowing nested alternations

if
E = 1

then
PS I

else

fi

if
E = 7

then
PS2

else

fi

if
E = 4

then
PS3

fi

1 37

Here E values 1 , 7, or 4 result in execution of PS I , pS2 , or PS3 ,
respectively . Any other E value results in no procedure statement execu­
tion.

The clear box iteration structure is depicted in Figure 4. 1 -5 , with case
C and machine M I . The effect of the iteration is to invoke transitions of
machine M 1 repeatedly while case C is satisfied . More precisely ,

Iteration Clear Box Execution. Condition C is determined by refer­
ence to stimulus S and state OS ; if the condition evaluates to F
(false) , the response R is set to S and iteration is terminated ; if the
condition evaluates to T (true) , the stimulus S is renamed S 1 , a
transition of machine M l from (S I , OS) to (Rl , NS) is invoked , NS
is renamed OS for the next transition , Rl is renamed S , and the
iteration clear box is invoked again .

1 3 8

R I

s

4. The Clear Box Behavior of Information Systems

Ns :--8�':-i
-�s

- --1 os
I I

I I I

: M I I :
I

I I I I t • I
I
I

S == R l I

+ A C

Figure 4.1-5. The Iteration Clear Box .

F
R

The BDL syntax for the iteration procedure statement (or while state- .
ment) is

while
C

do
PS I

od

where the keyword while is used with the previously defined keywords
do, ode The condition C must eventually be set to false in PS I , otherwise, ;
an endless loop will result. Note that if the condition is initially false, then
PS I will not be executed at all .

The while statement

while C do PS I od

can be viewed as a convenient abbreviation for a nested pattern of alterna- ,
tion structures

if C then PS I ; if C then PS I ; if • • • fi fi fi

In this nested pattern of alternation structures, PS I will be executed 'i

repeatedly while C is true , just as stated for the iteration control structure.
The condition C is called the while condition, and the procedure statement '
PS I is called the do statement (of the while statement) .

As surprising as it may seem, the three BDL control structures above, ;
namely, sequence , alternation , and iteration , are sufficient to express the

Clear Box Behavior
4.1

as I State ���.,
r - - �'-. -----'. I I I

as Echo

Respo nse

t as (i) == NS (i - I)

Figure 4.1-6. The State as an Echo Black Box.

1 39

NS

Stim ulus

design of any c lear box procedure whatsoever. This fact was not always
known, and other complex and arbitrary control structures have been in
use since the early days of programming. But the opportunity now is to
design procedures with simpler and more understandable control struc­

tures than was heretofore possible .
The concurrent control structure interacts with the state in a more

complex manner than do the previous control structures . For the se­
quence , alternation , and iteration structures , the state acts as a black box
that executes the Echo transition . That is , the state accepts the new state ,
NS, as a stimulus in one transition and produces it , now cal led the old
state , OS, as a response in the next transition , where OS = NS . Figure
4 . 1 -6 shows thi s equivalent behavior.

The concurrent control structure , however, does not interact with the
state as an Echo b lack box. Recal l that the concurrent black box structure
accepts a stimulus and directs it to each concurrent black box (Figure 2 . 5-
5). The response of the concurrent control structure is a complex multi­
part response from the concurrent black boxes .

In the clear box concurrent structure , each machine , Mi , (black box)
not only produces a response , Ri , but al so a new state , NSi . A structure of
n concurrent machines produces a multi-part response (RJ , R2 , . . . ,Rn)
and a group of new states (NS I , NS2, . . . , NSn) . The state , as a black box,
must resolve the multiple new states into a single state . We cal l this black
box Resolve and i l lustrate its use in Figure 4. J -7. By the definition of a
state machine , the Resolve black box wil l behave like the Echo black box
when the stimulus (NS I , NS2, . . . , NSn) is simple , that is , when n = 1 .

With this understanding of the state, the concurrent clear box is
shown in Figure 4. 1 -8 , with two component machines . More precisely ,

Concurrent Clear Box Execution. The st imulus S and the old state

r��� St3te ��S
_

l� . . . N S n

I �------� I
• I

as Resolve

Response

Figure 4. 1-7. The State as a Resol ve Black Box.

N S I NSn

Stim u l u s

140

S

4. The Clear Box Behavior of Information Systems

as (NS I , NS2) = r - - - - - - - -- - - - - - - - - .

M I

(R I . NS I)

t (R I . R2)

M 2

(R 2, NS2)

Figure 4.1-8. The Concurrent Clear Box Structure,

R

OS are referenced by all concurrent machines . The complex re­
sponse is a grouping of the responses from the individual machines
(Rl , R2) . The new state is determined by the black box Res6lve
with the complex stimulus (NS 1 , NS2) .

The concurrent clear box synchronizes the responses of its component
machines . Note that the state black box Resolve must be specified and
designed as wel l , to meet a variety of intentions in the use of the concur­
rent black boxes in its clear box . For example, serializability is a well­
known design tactic . Serializability requires that the behavior of the con­
current structure be equivalent to one of the possible orderings of its
component machines .

As defined , the execution of a concurrent clear box is in part deter­
mined by the design of Resolve unless both (all) execution sequences
define the same behavior for all stimuli . However, there are situations in
which ambiguous behavior represents necessary reality. For example ,
suppose M 1 and M2 represent two reservation attempts for the last seat
on a flight . Then the order in which they execute determines who gets the
last seat . But these cases are typically settled in the fine details of design
and implementation . The design of concurrency control in systems is an
advanced topic that will be discussed further in Chapter 5 .

The BDL syntax for the concurrent procedure statement i s

M l M2
s R

(A)

M l
-

T
s C R

F M2
-

(B)

M l

F
s ---r---L------------� >--+-..... R

(C)

M l

s R M2

(D)

Figure 4.1-9. Clear Box Abbreviations, with State References Omitted. (A) Sequence

Abbreviation , (B) Alternation Abbreviation, (C) Iteration Abbreviation, and (D) Concur­
rency Abbreviation .

1 4 1

1 42 4. The Clear Box Behavior of Information Syste

(S . OS) -----+l.'-I __ � (R . NS)

(A)

(S . oS) --�·i
L-
_----'i · L-i _--ll---..... (R. NS)

(B)

(S .OS) --....... o< _--� (R. NS)

(C)

(S . OS) ___ .L-_____ +<:" �F __ .. (R. NS)

(D)

(S . OS) . (R . NS)

(E)
Figure 4.1·10. (A) A Clear Box Machine To Be Expanded. Expanding a Machine into a

(B) Sequence, (C) Alternation. (D) I teration , or (E) Concurrent Structure .

4.2 Strategic Uses of Clear Boxes

with
PSO

con
PS I ,
PS2

noc

where PSO plays the role of Resolve .

1 43

Once the state machine properties of a clear box are defined and
understood , the clear boxes can be abbreviated to omit the common state
references , in the realization that the full structure can always be recalled
for specific analyses and arguments . The clear box abbreviations for se­
quence, alternation , iteration, and concurrency are shown in Figure 4 . 1 -9.

4.1.3 Clear Box Expansion

Since each machine in a clear box plays exactly the role of a machine
in a state machine (converting its stimulus and an old state into its re­
sponse and a new state) , the sequence, alternation (or case), iteration, or
concurrent decomposition can be applied to each such machine . Such a
step expands the clear box by one or more additional internal machines ,
permitting any original state machine to be redefined by clear boxes with
smaller and simpler individual machines . That is , any machine of a state
machine or clear box , such as depicted in Figure 4 . 1 - 1 0 Part A, can be
expanded, at any stage , into a sequence , alternation , iteration , or concur­
rent structure , as depicted in Parts B , C , D , and E , respectively .

Summary: The machine of a state machine can be expanded into
sequence , alternation (or case), iteration , and concurrent clear
box structures . These structures can be expressed in BDL, and in
turn expanded into more detailed BDL procedures .

4.2 STRATEGIC USES OF CLEAR BOXES

Preview: Complex business operations may be directly ex­
plained or specified as clear box structures. Such c lear box struc­
tures can be used as a basis for organizing related descriptions in
user manuals and instruction guides . Procedures with arbitrary
structure can be transformed into c lear boxes with equivalent
behavior and more systematic structure for better understand­
abi lity.

f i i
L

I I

144 4. Th e Oear Box Behavior o f Information Syst

4.2.1 Clear Box Business Procedures

As we have seen , business operations behave as black boxes and ca
be described as state machines . However, business operations are ofte
most conveniently defined directly in clear boxes . Clear box busines
procedures codify explicit rules in terms of tests and actions required t
carry out business operations.

Clear boxes can evolve naturally out of day-to-day operations in an
business, in the effective organization and distribution of work . Sue
clear boxes may never be written down, being transmitted informaU
through on-the-job training, but they are clear boxes nevertheless . F
example , in many businesses , a verbal description of required telephon
answering procedures for new employees may be sufficient . Howeve
telephone answering in operations such as mail order or airline reserva
tions will be subjected to a good deal of analysis and experimentation , t
arrive at optimum clear box procedures for structuring efficient conversa
tions, maximizing information flow, and minimizing connect time . Sue .
procedures will be explicitly defined and taught to new employees , t
gether with procedures for using online information systems to answe
customer questions on costs , availabil ity , etc . , during the conversation
Such clear box procedures may be carried out by hundreds of employee
hundreds of times every working day , and even minor improvements .
their design can have major effects on business efficiency and competitiv
advantage.

Other clear box procedures may be prescribed by law as conditio
and requirements on business operations , for example , in tax and la
laws that specify explicit practices that businesses must follow. Clear bo
procedures in these areas can be extraordinarily complex, requiring e ,
tensive study and analysis in both design and execution . While such pr
cedures indeed represent state machines , their transitions , typically co
plicated by large numbers of special cases and exceptions to more gene
rules , are most easily described directly in clear box form.

The tax accounting required of a business enterprise can be defined
a set of clear box procedures that specify a complex transition of t
business information system (of people and machines) , to produce t
computations for the previous year. These clear boxes are specified b
instructions compiled by federal , state , and local governments , in guide
manuals , and forms , all written in natural language . The state to whi
these clear boxes refer is the state of the business itself, and their pro
dures involve operations on the old state to compute tax liabilities a
corresponding updates to produce a new state that reflects these r
bilities .

" Strategic Uses of Clear Boxes
4.", 145

Over the course of a tax year, the information system of a business

must accumulate the state data required by the tax clear box. Many

decisions will be made in the conduct of the business which will affect the

tax computation. For example , methods of cash management, inventory

valuation, and asset depreciation, as well as decisions on capital invest­

ment and investment cre�its , will . all be influenced by tax laws and re­

flected in the state of the mformatlOn system.
Because of the close coupling between tax laws and business opera­

tions, the information system of a business is usually designed to explic­
itly capture and retain tax-related information in its state . In fact, the tax
clear box may be incorporated directly into the information system . In

this case, periodic changes in the tax laws will be a major source of

modification to an information system. If the state of a business informa­

tion system does not contain the right historical data, the transition re­
quired by the tax clear box cannot be carried out , and the tax computation
becomes difficult indeed .

4.2.2 The Clear Box of Schedule C

In illustration , consider a small business that must account for tax
liability on Schedule C (Profit or (Loss) From Business or Profession) of
Form 1040, depicted in Figure 4 . 2- 1 . Such a business would depend on an
information system that maintains business records of inventory, sales ,
costs, etc . , for day-to-day management and control of operations , as well
as for annual tax computations . A clear box of such an information sys­
tem is depicted in Figure 4 . 2-2 . Component black boxes are shown for
updating business records maintained in the state, and for computing
Schedule C based upon state data that has accumulated over a year of
business operations . In what follows , we focus on the clear box expansion
of the Schedule C computation.

The clear box procedure for completing Schedule C is specified in Tax
Guide For Small Business, published by the Internal Revenue Service.
Much of the information content of Tax Guide For Small Business is
devoted to specifying the Schedule C clear box. While the Schedule C
information is complete and comprehensive, it is distributed throughout
the guide into categories of decisions and computations, that are likewise
distributed in Schedule C. As a result , the information in the guide is not
directly expressed in the form of a clear box . However, the structure and
organization of Schedule C itself provides a basis for reorganizing the
Schedule C information in the guide into a clear box . In fact , such a
reorganization i s derived on the fly every time a Schedule C is filled out, in

1 46

SCHEDULE C
(Form 1040)
Deportment of the Treuury 1nI R_ue SeN;ca (0)

A

4. The Clear Box Behavior of Information Syst�

Profit or (Loss) From Business or Profession
(Sole Proprietorship)

Partnerships, Joint Ventu,n, etc., Must File Form 1065.
� AttKII to Form 1040 or Form 1041. � See InstrudlOll' tor Schadule C (Form 1040).

; product �

.... -
-I C Employer identification :""I

o Method(s) used to value closing inventory: I : I I I I I �
(1) 0 Cost (2) 0 Lower of cost or market

E Accounting method: (1) 0 Cash (2) 0 Accrual
(3) 0 Other (attach explanation)
(3) 0 Other (specify) � . •!!!.�

F Was there any major change in determining quantities, costs, or valuations between opening and closing inventory?
If "Yes," attach explanation.

G �.
PA� I

1 . Gross receipts or sales
II Less: Returns and allowances .
c Subtract line Ib from line la and enter the balance here

2 Cost of goods sold and/or operations (Part III, line 8) .
3 Subtract line 2 from line lc and enter the Irau proftt here.

1a 1.i
111

� "1
2
3 1

4 . Windfall Profit Tax Credit or Refund received in 1983 (see Instructions) 4.

II Other income . .
5 Add lines 3. 4a. and 4b

PART II

411
: � 5

Ii Advertising . 1-------1----1 23 Repairs
7 Bad debts from sales or services (Cash

method taxpayers, see Instructions) .
I Bank service charges .
• Car and truck expenses .

10 Commissions
11 Depletion
12 Depreciation and Section 179 deduction

from Form 4562 (not included in Part
III) .

II Dues and publications
14 Employee benefit prOilrams
15 Freicht (not included in Part III)
16 Insurance
17 Interest on business indebtedness
II Laundry and cleaning
1. lApl and professional services
20 Office expense .
21 Pension and profit·shari", plans .
22 Rent on business orooertv

31

24 Supplies (not included in Part III)
25 Taxes (Do not include Windfall t-------+-

Profit Tax here. See line 29.)
26 Travel and entertainment
27 Utilities and teiephone . : . . _"l�
21 . Wages II-___ +-_

II Jobs credit 11...-___ --'--_
c Subtract line 28b from 281

29 Windfall Profit Tax withheld in 1983
30 Other expenses (specify):

f . . . • •
I . .

\------t--. •

���
p
�
ro

!i·
t
��

(I
-���P··'�ll,,�li·ne�! 2�! ,(or�r F�orml�I· ��I l�. 1�inet 6�). ,�f ,��.�_�! ��, ,;��, ���������3�2 ______ ��b--1

33 If you have a loss, you must answer this question: "Do you have amounts for which you are not at risk in this business (see InstructionS)?"O Yes 0 ,. 1
If "Yes." you must attach Form 6198. 11 "No," enter the 1 _ on Form I�O, line 12, and on Schedule SE, Part I , line 2 (or Form 1�1, line 6). . '

PART III.-Coat of Goods Sold and/or Operations (S .. Schedule C Instructions for Part III) ' "j
1 In tory at be&innilll of year (if different from last year's closing inventory, attach explanation)
2 Purchases less cost of items withdrawn for perSONI use
3 Cost of labor (do not include salary paid to yourself) .
4 Materials and supplies
5 Other costs .
6 Add lines 1 through 5 .
7 Less: Inventory at end of year
I Colt of 101cI .rtd/or operatloM. Subtract line 7 from line 6. Enter here and in Part I, line 2, above.

f-7-+------+- !
t--=-i----t-- ,
i---=-+------+-- , l

For Pa...-.. Reduction Act Notice, _ Form 1040 Inltructlons. Scheelul. C (Form 1040)

Figure 4.2-1. Schedule C , Form 1 040 (Tax Guide for Small Business, Internal Revenua
Service).

4.2 Strategic Uses of Clear Boxes

r - - - - - - - - - - - - - - - - -. -�

s t 7-
. . .

+

+

State : Business records

Update business records

Compute Schedule C

. . .

Figure 4.2-2. A Clear Box of a Schedule C System.

r-,

i

f--

. . .

1 47

� R

the step-by-step application of rules and regulations from different parts
of the guide required at each point in the computation .

Because Schedule C is intended to record successive intermediate
stages of a cumulative computation , it is, of necessity , a logically struc­
tured form. In fact, a procedure for computing Schedule C can be defined
solely in terms of BDL control structures . The Schedule is organized into
parts , I, II, and III , dealing with income , deductions , and costs , respec­
tively . However, the parts cannot be completed in that order since Part I
depends on the outcome of Part III . In essence , Part III computes cost of
goods sold, which is then subtracted in Part I from gross sales to produce
gross income. The deductions computed in Part II are then subtracted
from gross income to arrive at net profit (or loss) . Thus , the Schedule C
clear box has the structure depicted in Figure 4 .2-3 , namely , a sequence
of three operations on shared state data.

The state items accessed and stored by the firstpart operation of the
sequence, shown in Figure 4 .2-4 , can be identified by examining the Part
III computations of Schedule C . The old state, OS I , contains opening and
closing inventory valuations and various cost items ; the new state , NS 1 ,
contains the computed cost of goods sold .

Figures 4.2-5 and 4. 2-6 depict state items accessed and stored for the
secondpart and thirdpart operations, respectively. The secondpart old

I i

1 48

S

4. The Clear Box Behavior of Information

r--- - - - - - -1 State r--- - - - - - -"1
I + I

NS2 t i
NS3 : 1 0S I NS I : OS2 I OS3 I i I i I I I I I I I I I I I I I I Part I I I I I Part I Part I I i

i I I I
I I I I
I I I

S I R I S2 R2 S3 R3

Compute Compute Compute
cost of gross net profit
goods sold income or loss

Fagure 4.2-3. The Schedule C Clear Box .

OS I :
Beginning inventory
Purchases
Personal use costs
Labor costs
Materials cost
Other costs
Closing inve

S I

ntory

..

State

Part III

Compute cost
of goods sold

I

NS I :
Cost of goods sold

R I

Figure 4.2-4. Firstpart State Items.

OS2:
Cost of goods sold
Sales
Returns
Windfall tax received
Other income

State

Compute
gross income

NS2 :
Gross profit
Gross income

Figure 4.2-5. Secondpart State Items.

Strategic Uses of Clear Boxes 4.%

OS3 :
Gross income
Advertising, . . . ,

other expenses
Amount not at risk

S3 ,-

State

Part II

Compute
net profit
or loss

I
I
I
I

I

NS3 :
Total deductions
Net profit

R3

Figure 4.2-6. Thirdpart State Hems.

149

state, OS2, contains the cost of goods sold computed by the firstpart ,
together with various income items ; the new state, NS2, contains gross
profit and gross income. Gross profit is not used by the thirdpart opera­
tion, but is a useful item to retain for unforeseen needs in other clear
boxes in the information system. Finally, the thirdpart old state , OS3 ,
contains gross income and various deduction items ; the new state, NS3 ,
contains total deductions and net profit , both l ikewise useful to retain for
unforeseen needs. These state items are enumerated in the BDL clear box
definition of Figure 4 .2-7.

define CB Schedule C
stimulus

Compute Schedule C
response

Schedule C
state

beginning inventory
purchases
personal use costs
labor costs
materials costs
other costs
closing inventory
cost of goods sold
sales

machine
(see Figure 4. 2-8)

returns
windfall tax received
other income
gross profit
gross income
advertising, . . . , other expenses*
total deductions
net profit
amount not at risk

* See Part II of Schedule C, items 6 to 30, Figure 4.2- 1 , for full enumeration of these
items.

Figure 4.2-7. Schedule C Clear Box.

I I Id.1 . �

1 50 4. The Clear Box Behavior of Information Syste

With required state items defined , the three part clear box sequence of
Figure 4 .2-3 can be expanded to full detail in a BDL procedure as shown

'

in Figure 4 . 2-8 . The procedure has a simple and systematic structure that .
uses state data to compute and assign the line items of Schedule C . In,
fact , the procedure defines a basis for reorganizing the distributed Sched-.
ule C information content of Tax Guide For Small Business into logical
units that correspond to steps in the procedure , for easier reference and
application .

4.2.3 Deriving Clear Boxes from Natural Procedures

In analyzing business operations, human and machine procedures may
be encountered that exhibit complex control structures , with arbitrary
and confusing connections among operations and tests . Because such
structures are not expressed in nested and sequenced BDL control struc- .
tures , they are difficult to understand and deal with as a foundation for
new information system development. We call such structures natural
procedures.

In illustration , consider the natural procedure of Figure 4 .2-9, depicted '

in flowchart form , which defines operations and tests in processing job
applicants for a business enterpri se . Such a clear box could emerge from,
interviews of personnel employees as an explanation of existing opera­
tions , prior to designing an information system for applicant processing.

Even in this miniature example , it is difficult to identify and analyze
possible paths of applicant processing. Fortunately , a systematic process '
exists to transform a natural procedure into a clear box expressed solely ':
in BDL control structures . Such a transformation can help answer critical
questions of completeness and correctness of the natural procedure . And ':

be forewarned that the transformation will reveal some surprising behav­
ior in this case. The transformation process is defined in six steps (which
are elaborated below) :

1 . Convert to proper form.
2. Structure abstraction .
3 . Sequence and alternation construction.
4 . Clear box construction.
5 . Clear box simplification .
6. Clear box expansion .

Step 1 : Convert to proper form . A natural procedure is in proper
form if it has a single entry and single exit. If the natural procedure is not
in proper form , a case structure can be used to collect multiple entries
and/or exits into a proper form .

proc
do [compute cost of goods sold (part I I I)]

line 1 11 . 1 : = beginning inventory

od

line 111 .2 : = purchases - personal use costs
line 111 .3 : = labor costs
line 111 .4 : = materials costs
line 111 .5 : = other costs
line 111.6 : = line 111 . 1 + . . . + line 111 .5
l ine 111 .7 : = closing inventory
cost of goods sold : = l ine I I I . 6 - line 111 .7
l ine 111 .8 : = cost of goods sold

do [compute gross income (part I))
line I . l a : = sales
line 1 . 1 b : = returns
l ine L I e : = l ine 1 . 1 a - l ine I . 1 b
line 1 .2 : = cost of goods sold
gross profit : = line 1 . 1 c - line I. 2
line 1 . 3 : = gross profit
line l .4a : = windfall tax received
line l .4b : = other income
gross income : = line 1.3 + l ine 1 . 4a + line l .4b
line 1.5 : = gross income

od
do [compute net profit or loss (part I I))

od
corp

line 11 .6 , . . . , l ine I I . 30i : = advertising, other
expenses

total deductions : = line 11.6 + . . . + line 11 .30i
line 1 1 . 3 1 : = total deductions
net profit : = gross income - total deductions
line 11 .32 := net profit
if

net profit > 0
then

enter net profit on Form 1 040, line 1 2 . and on Schedule SE,
line 1 . 2 or on Form 104 1 , line 6

else
if

amount not at risk > 0
then

check "yes"
attach Form 6 1 98

else

fi
fi

check " no"
enter net profit on Form 1 040, l ine 12, and on

Schedule S E , line 1 . 2 or Form 104 1 , line 6

Figure 4.2-8. Schedule C Clear Box Procedure.

1 . [:
' . 1

,

T

(Exit)

F

T

Fipre 4.2-9. A Natural Procedure for Job Applicant Processing.

4.2 Strategic Uses of Clear Boxes 1 53

Step 2: Structure abstraction . The second step in simplifying natu­

ral procedures is to replace any BDL control structures (sequence, alter­

nation, iteration , concurrency) in the flowchart with abstract procedure

statements. Such control structures are readily understandable as i s ; they

will be removed and saved in this step and reinserted in step 6, once the

arbitrary , less understandable parts of the procedure have been dealt with

in steps 3 through 5 .
I n flowchart terms, abstract procedure statements are simply named

boxes that represent the single-entry/single-exit BDL control structures

that have been removed. For example, with reference to Figure 4 .2-9, the

sequence control structure

can be replaced by

4 PS I

Figure 4 .2- 10 depicts the statement abstractions possible in the job
applicant procedure . Each abstraction is named (PS 1 , . . . , PS4) and delim­
ited by a dashed line . In general , a statement abstraction, once made , may
permit another abstraction not possible before . For example , a structure
such as

cannot be directly abstracted, but by abstracting the alternation a se­
quence emerges

4 PS I H h �
which can in turn be abstracted to a single procedure statement:

4 PS2 �
Step 3: Sequence and alternation construction . The third step is to

construct a set of new sequence and alternation structures, one for every
operation and test, respectively, in the reduced natural procedure . First ,
the operations and tests of the procedure must be numbered, in any
arbitrary order, and the exit line numbered O. Next, a new variable ,
known as the label variable, is introduced . Referring to Figure 4 .2- 10 , the

I
I
I
I
I

_ _ _ _ _ _ _ _ _ J
9

1 7

(Exit)

Figure 4.2·10. Statement Abstractions in the Job Applicant Procedure.

T

T

1 3
r - - - - - - -,

I PS3 I
I I _ .

I I
I
I
I
I
I
I

'---r----" I L _ _ _ f _ _ _ J

4.2 Strategic Uses of Clear Boxes 1 55

neW sequence and alternation structures can be constructed as shown in
Figure 4 .2- 1 1 . The firstpart of every new sequence is an operation from

the procedure , the secondpart is an assignment to the label variable, L, of

the number of the next operation or test to be visited in the procedure .

Similarly , the condition of every new alternation is a test from the proce­

dure , with assignments to the label variable , L, of the number of the next

operation or test to be visited in the procedure on the true and false

branches.

New Sequence Structures

(1) do (10) do
set up application file ; archive application file ;

L : = 2 L : = 0

od od

(3) do (I I) do
PS I ; PS2 ;

L : = 4 L : = 1 2

od od

(6) do (1 3) do
send "still interested?" PS3 ;

letter; L : = 14

L : = 7 od
od

(8) do (1 5) do
PS4 ; send "offer" letter;

L : = 10 L : = 16

od od

(9) do (1 7) do
send "no opening" letter; send "start date" letter;

L : = 10 L : = to
od od

New Alternation Structures

(2) if (1 2) if

position open pass test

then then
L : = 3 L : = 1 3

else else
L : = 1 0 L : = 9

fi fi

Figure 4.2-11. New Sequence and Alternation Structures (continues) .

1 56 4. The Clear Box Behavior of Information Syste

(4) if (1 4) if
applicant acceptable pass physical

then then
L : = 5 L : = 1 5

else else

L : = 9 L : = 9

fi fi

(5) if (16) if
right job accept offer

then then

L : = 1 1 L : = 17

else else
L : = 6 L : = 9

fi fi

(7) if
still interested

then
L : = 2

else
L : = 8

fi

Figure 4.1-11 (Continued)

Step 4. Clear box construction. The fourth step is to construct a
new clear box with the structure of an initialized whiledo

proc Applicant processing
L : = number of first operation or test in procedure ;
while

L > O
do

od
corp

which terminates if L is 0 (corresponding to the natural procedure exit
line) , otherwise executes the dopart and repeats. Note that the dopart
must eventually set L to 0, or an infinite loop will result . For the dopart , a
case structure is constructed which tests and branches on values of L to
corresponding caseparts composed of the new sequence and alternation
structures of Figure 4 .2- I I . Such a construction is depicted in Figure 4 .2-
12 . This clear box exhibits behavior identical to that of the natural proce­
dure of Figure 4 . 2-9; that is , they are execution equivalent . (Try some
sample executions to verify this assertion !) Although the clear box of
Figure 4 .2- 1 2 is composed solely of nested and sequenced BDL state-

Strategic Uses of Clear Boxes 4.2

proC Applicant processing

L : = I ;
while

do
L > O

case
L

part (I)

set up application file;
L : = 2

part (2)
if

position open

then
L : = 3

else
L : = 1 0

fi
part (3)

PS I ;

L : = 4
part (4)

if

applicant acceptable

then
L : = 5

else
L : = 9

fi
part (5)

if

right job

then
L : = I I

else
L : = 6

fi
part (6)

send "still interested?" letter;

L : = 7
part (7)

if

still interested
then

L : = 2

else
L : = 8

fi
od

corp

part (8)
PS4;

L : = 10

part (9)
send "no opening" letter;
L : = 10

part (1 0)

archive application file ;
L : = 0

part (I I)

PS2;
L : = 1 2

part (1 2)

if

pass test

then
L : = 1 3

else
L : = 9

fi
part (1 3)

PS3 ;
L : = 1 4

part (1 4)
if

pass physical

then
L : = 1 5

else
L : = 9

fi
part (1 5)

send "offer" letter;

L : = 16
part (1 6)

if
accept offer

then
L : = 17

else
L : = 9

fi
part (1 7)

send "start date" letter;
L : = 1 0

esac

1 57

Figure 4.2-12. New Clear Box Construction for Applicant Processing. (proc continues

in the right-hand column.)

" 1 , I
.! II

' j
11 :
II, !,
" I ilf 1 , ,1, " I :

II;
1 , , 1 , 'I'i I '

i
I �

I :

1 58 4. The Clear Box Behavior of Information Systems

ments , it is likely not any more understandable than its natural procedure
counterpart. However, while it is not obvious how to simplify the natural
procedure , the structure of this clear box can indeed be simp1 ified in a
systematic manner, as we shall see in the next step.

Step 5. Clear box simplification . The clear box of Figure 4 .2- 1 2 can
now be simplified by substituting the text of caseparts for occurrences of
corresponding part number assignments to the label (L) variable , wher­
ever they occur, and then eliminating the substituted caseparts . For ex­
ample , casepart 3

PS I ;
L : = 4

is referenced in one label variable assignment , namely , L : = 3 in casepart i'
2 . Thus , the text of casepart 3 can be substituted for the assignment
L : = 3 ;

part(2)
if

position open
then

PS I ;
L : = 4

else
L : = 10

fi

and casepart 3 e1iminated , since it is no 10nger referenced by other case­
parts . Next , casepart 4, say , can be substituted for the assignment L : = 4
(and eliminated) to get

part (2)
if

position open
then

PS I ;
if

applicant acceptable
then

L : = 5

Strategic Uses of Clear Boxes

else
L : = 9

fi
else

L : = 1 0
fi

1 59

Casepart 5 can now be substituted for the assignment L : = 5 to get

part(2)
if

position open
then

PS I ;
if

applicant acceptable
then

if
right job

then
L : = 1 1

else
L : = 6

fi
else

L : = 9
fi

else
L : = 1 0

fi

This process of substitution and elimination of caseparts can continue
until the only caseparts remaining reference themselves, in which case
they cannot be eliminated . For example, if case part 2 above contained an
assignment L : = 2 , it could not be substituted anywhere (and eliminated)
since the L : = 2 reference would no longer correspond to an existing case .

Also, a casepart substitution , if elected , must be made for all current
references to the casepart . Thus, a large casepart could end up replicated
in a number of places , possibly resulting in an increase in complexity .
However, replication of smal l caseparts usual Jy results i n overall simplifi­
cation . Thus, judgement is required in selecting caseparts for substitution.

1 60 4. The Clear Box Behavior of Information Systems

Figure 4 .2- 1 3 depicts an intermediate step in simplification of the clear
box. The clear box is shown as a main procedure (Applicant processing) ,
which invokes a nested procedure (Applicant status) with a run statement .
The case structure has been simplified to two parts . Part 1 sets up an

proc Applicant processing
L : = I ;
while

do
L > O

case
L

part (l)
set u p application file ;
L : = 2

part (2)
if position open
then

PS I ;
if applicant acceptable
then

if right job
then

run Applicant status
else

fi

send "still interested?" letter;
if still interested
then

L : = 2
else

PS4 ;

fi

archive application file;
L : = 0

else

fi
else

send "no opening" letter;
archive application file ;
L : = 0

archive application file;
L : = 0

fi
esac

od
corp

proc Applicant status
PS2 ;
i f pass test
then

PS3 ;
if pass physical
then

send "offer" letter;
if accept offer
then

send "start date" letter;
archive application file;
L : = 0

else

fi

send "no opening" let
archive application file;
L : = 0

else

fi

send "no opening" letter;
archive application file;
L : = 0

else

fi
corp

send "no opening" letter ;
archive application file;
L : = 0

Figure 4.2-13. An Intermediate Substitution Step.

pro

4.2 Strategic Uses of Clear Boxes

proc Applicant processing

set up application file ;

L : = 2;

while

do

od
corp

L > O

if position open

then
PS I ;

if applicant acceptable

then
if right job

then
run Applicant status

else
send "still interested?" letter;

if still interested

then
L : = 2

else
PS4 ;

archive application file ;

L : = 0
fi

fi
else

send "no opening" letter;

archive application file;

L : = 0
fi

else

fi

archive application file;

L : = 0

1 6 1

proc Applicant status

PS2;

corp

if pass test

then
PS3 ;

if pass physical

then
send "offer" letter;

if accept offer

then
send "start date" letter;

archive application file;

L : = 0
else

fi

send "no opening" letter;

archive application file;

L : = 0

else

fi

send "no opening" letter;

archive application file ;

L : = 0

else

fi

send "no opening" letter;

archive application file;

L : = 0

Figure 4.2-14. The Final Substitution Step.

application file and identifies the part 2 process to be executed next . Part 2
references itself, and so cannot be substituted for the assignment L : = 2 in
part 1 . Casepart 1 can now be substituted for the L : = 1 initialization
assignment outside the iteration . Because the case statement now con­
tains only a single part , it can be eliminated as well, to obtain the fully
substituted clear box of Figure 4 . 2- 1 4.

Next, observe in Figure 4 .2- 1 4 that the operation "archive application
file " always appears with the operation "L : = 0. " Also, a pattern of the
form

162 4. The Clear Box Behavior of Information Syste ...

if

then

A
else

A
fi

can be rewritten with A factored out at the end :

if

proc Applicant processing
set up application file;
L : = 2 ;
while

do
L > O

if position open
then

PS I ;
if applicant acceptable
then

if right job
then

run Applicant status
else

fi

send " sti l l interested ?" letter ;
if sti l l interested
then

L : = 2
else

PS4 ;

fi

archive application file ;
L : = 0

else

fi
else

send "no opening" letter;
archive application file ;
L : = 0

archive application file ;
L : = 0

fi
od

corp

proc Appl icant status
PS2 ;
if pass test
then

PS3 ;
if pass physical
then

send "offer" letter;
if accept offer
then

send "start date" letter
else

fi
else

send "no opening" letter

send "no opening" letter
fi

else
send "no opening" letter

fi;
archive application file ;
L : = 0

corp

4.2 Strategic Uses of Clear Boxes

then

else

6;
A

1 63

These observations permit a further simplification of Figure 4 .2- 1 4 to

factor out the common operations of " archive application file " and " L : =

0" in four places , as shown in Figure 4 .2- 1 5 .
Now an additional simplification becomes possible . By adding a test

for L = 0 at the end of the procedure, the remaining operations to "ar­
chive application fi le" can be factored out, as shown in Figure 4 .2- 16 .

proc Applicant processing
set up application file;
L : = 2;
while

L > O
do

od
corp

if position open
then

PS I ;
if applicant acceptable
then

if right job
then

run Applicant status
else

send " stil l interested ? " letter;
if still interested
then

L : = 2
else

6
6

else

PS4;
L : = 0

send "no opening" letter;
L : = 0

6
else

L : = 0
6;
if L = 0
then

archive application file
6

proc Applicant status
PS2 ;
if pass test
then

PS3 ;
if pass ph ysical
then

send "offer" letter;
if accept offer
then

send · ' start date" letter
else

send "no opening" letter
6

else
send "no opening" letter

6
else

send " no opening " letter
6;
L : = 0

corp

1 64 4. The Clear Box Behavior of Information Systems

With a little thought, it is clear that a final simplification is possible . By
presetting L to 0, al l of the individual assignments of 0 to L become
redundant , and can be eliminated , as depicted in Figure 4 .2- 1 7 .

Step 6. Clear box expansion . The final step in construction of the
new clear box is expansion of the abstract procedure statements (PS 1 to
PS4) into the corresponding control structures saved in Step 1 . Figure 4 .2-
1 8 depicts the fully expanded clear box .

The clear box of Figure 4 .2- 1 8 can be read and understood in a system­
atic manner, in sharp contrast to its natural procedure counterpart of
Figure 4.2-9. The nested alternation structures explicitly define all appli­
cant processing possibi lities , and reveal some questionable actions , as

proc Applicant processing

set up application file ;

L : = 2 ;

while

do

od
corp

L > O

L : = 0
if position open

then

fi;

PS I ;

if applicant acceptable

then
if right job

then
run Applicant status

else
send "still interested?" letter;

if still interested

then
L : = 2

else
PS4

fi
fi

else
send "no opening" letter

fi

if L = 0
then

archive application file
fi

proc Applicant status

PS2 ;

if pass test

then
PS3 ;

if pass physical

then
send "offer" letter;

if accept offer

then
send "start date" letter

else
send " no opening" letter

fi
else

send "no opening" letter

fi
else

fi
«:orp

send "no opening" letter

Figure 4.2-17. A Final Simplification.

4.2 Str

proc ApI
set u�

L : =
while

L
do

od
corp

L
if I
tht

e

fi
fi;
if L
thell

al
fi

Figure

well . FOI
the appli
she is sel
physical
seen in tl
to identi1
natural p

4.1 Strategic Uses of Clear Boxes

proc Applicant processing
set up application file;
L : = 2 ;
while

L > O

do

od
corp

L : = 0;
if position open
then

6;

select interviewer;
conduct interview;
if appl icant acceptable
then

if right job
then

run Applicant status
else

6

send "sti l l interested?" letter;
if still interested
then

L : = 2
else

if applied for temp position
then

send "thanks I " letter
else

6
6

send "thanks2" letter

else
send "no opening" letter

6

if L = 0
then

archive application file
6

proc Applicant status
send "test date" letter;
conduct test ;
if pass test
then

165

send " physical date" letter;
conduct physical ;
if pass physical
then

send "offer" letter;
if accept offer
then

send "start date" letter
else

6
else

send "no opening" letter

send "no opening" letter
6

else

6
corp

send "no opening" letter

Figure 4.2-18. The Fully Simplified and Expanded Applicant Processing Clear Box.

well . For example, if no position is open , the application is archived , but
the applicant is not notified , and if an applicant turns down an offer, he/
she is sent a "no opening" letter. Also, a "no opening" letter is sent if the
physical is not passed. Such procedures obviously make little sense when
seen in their true context in a well structured clear box , but can be difficult
to identify and correct when embedded in the contextual confusion of a
natural procedure .

: ,i

: : " 'i i

1 66 4. The Clear Box Behavior of Information

Summary: Direct use of clear boxes can help simplifY and clar­
ify system behavior in complex situations. Schedule C of Form
1040 has a simple clear box structure , despite the complexity of
its explanatory materials . State items and procedure steps in the
Schedule C clear box are natural units of documentation and
refinement in instruction guides for tax preparation . The transfor­
mation of natural procedures into clear boxes provides both a
systematic process for analyzing complex business operations,
and a foundation for new system design .

4.3 ANALYSIS OF STATE MACHINE BEHAVIOR

FROM CLEAR BOXES

Preview: Clear boxes can be abstracted to equivalent proce­
dure-free state machines to better study their transition behavior,
in a process called state machine derivation . The Schedule C
clear box can be abstracted to a state machine with equivalent
behavior. An iteration clear box can also be described as a sim­
pler alternation clear box that is used to verify correct behavior of
the iteration clear box .

4.3.1 The Behavior of BDL Procedure Statements

Clear box procedures can become quite large in complex appl ications ,
and systematic methods are required in analyzing and understanding their ,
effect on data. The key to systematic analysis is the fact that any clear box
procedure , no matter how large , is composed solely of nested and se­
quenced BDL procedure statements . Every BDL procedure statement
has a single entry l ine and a single exit l ine . While this single entry/single
exit property is crucial for the nesting and sequencing of procedure state­
ments, it has a deeper significance , as well . Because it has no other entries
or exits , a BDL procedure statement simply alters data, in executing from
its entry line to its exit line , with no other unforeseen effects possible . For
example , the alternation structure ,

if
a > b

Analysis of State Machine Behavior from Clear Boxes ".3

then
m : = a

else
m : = b

fi

167

sets m to max(a,b) . It always does exactly this , no more , no less . What a

procedure statement does to data is called its statement function. A proce­

dure statement can be read and its effect on data analyzed , to arrive at the

equivalent statement function . The statement function can be recorded as

a function comment, delimited by square brackets ([D , immediately pre­

ceding the procedure statement text . The forms of function commentary

for the procedure statements of BDL are as follows :

Sequence :

do [sequence function]
PS t ;
PS2

od

Alternation :

if [alternation function]
condition

then [thenpart function]
PS t

else [else part function]
PS2

fi

Case:

case [case function]
condition

part (value 1) [part l function]
PS t

part (value 2) [part2 function]
PS2

part (value 3) [part3 function]
PS3

part (value 4) [part4 function]
PS4

esac

(
i : , ,

I
I '
" i

168

Iteration :

while [iteration function]
condition

do [dopart function]
PS I

od

Concurrency :

with
Resolve

con [concurrent function]
PS 1 , [PS 1 function]
PS2 [PS2 function]

noc

4. The Clear Box Behavior of Information

In illustration of statement functions , with a little thought the effect on
data of the sequence

do
temp : = price ;
price : = cost ;
cost : = temp

od

can be seen as an exchange of the values of price and cost , which also sets
incidental data item temp to the value of cost . This statement function can
be documented in a function comment as

do [exchange price, cost]
temp : = price ;
price : = cost ;
cost : = temp

od

The sequence

do

od

price : = price + cost ;
cost : = price - cost ;
price : = price - cost

also exchanges the values of price and cost, without use of an incidental
date item. (Try some values for price and cost to see how it works !)

In further illustration, the alternation structure below sets loss car­
ryover to the absolute value of net loss

4.3 Analysis of State Machine Behavior from Clear Boxes

if [loss carryover : = absolute value (net loss)]
net loss < 0

then
loss carryover : = - net loss

else
loss carryover : = net loss

Ii

1 69

and the iteration structure below adds loan advances in $ 1 00.00 incre­
ments , if necessary , to an account balance until it becomes nonnegative :

while [if balance is negative , add $ 100 increments until it
becomes non-negative]

balance < 0
do

balance : = balance + 1 00
od

Note that in each instance the procedure statement does exactly what
the function comment says, and vice versa. Thus, the function comments
and their procedure statements are function equivalent. That is, they both
exhibit the same behavior.

Function commentary can be expressed in whatever language and
notation is appropriate to the problem at hand . In many instances, precise
natural language may be sufficient . Conditional assignments are also use­
ful, particularly in expressing statement functions of alternation struc­
tures . A conditional assignment is given by a sequence of conditions
paired by arrows (�) with assignments and separated by bars (I) in which
the first condition that evaluates TRUE denotes the assignment to be
used ; an assignment with no condition is always to be used if no preceding
conditions evaluate TRUE. For example , the alternation above can be
commented with a conditional rule as

if [net loss < 0 � loss carryover : = - net loss I
loss carryover : = net loss]

net loss < 0
then

loss carryover : = - net loss
else

loss carryover : = net loss
fi

The conditional rule gives a branch-free abstraction of the alternation .
Simultaneous assignments are also useful in expressing function com­

ments . Simultaneous assignment statements extend the idea of data as-

170 4. The Clear Box Behavior of Information SystelllS

signment to several variables concurrently, denoted by a list (of equal
length) on both sides of the assignment symbol ,

<variable> , <variable> , . . . : = <expression> , <expression> , . . .

where all <expression> s are evaluated , then simultaneously assigned to
the respective < variable> s . For example

price, cost : = list - discount, labor + material

means to compute the values of list - discount and labor + material , then
simultaneously assign these values to price and cost, respectively. In the
concurrent assignment

a, b : c + d, a

note that the initial value of a is assigned to b , not the value a becomes in
this assignment .

Simultaneous assignments can be used to define a sequence-free ab­
straction of a sequence of assignments. For example, the sequence

do

od

a : = b ;
b : = c ;
c : = d

will have the total effect of the simultaneous assignment

a, b, c : = b, c, d

and can be documented with the simultaneous assignment as a function
comment, as .

do [a, b, c : = b, c , d]
a : = b;
b : = c ;
c : d

od

These assignments in reverse sequence, namely,

do

od

c : = d ;
b : c ;
a : b

have quite a different simultaneous assignment, namely ,

4.3 Analysis of State Machine Behavior from Clear Boxes 1 7 1

a , b , c : = d , d , d

Simultaneous assignments can also be placed in sequences them­
selves , for example in

do
a, b : c + d , a;
b , c : = a , c - d

od

whose effect can be determined to be

a, b, c : = c + d , c + d , c - d

and the sequence documented accordingly ,

do [a , b , c : = c + d , c + d , c - d]
a, b : = c + d , a;
b , c := a, c - d

od

The exchange can be written as a simultaneous assignment , e .g . , as

do [exchange x and y]
x , y : = y , x

od

or the simultaneous assignment used in a function comment , as

do [x , y : = y , xl
x : x + y ;
y : = x - y ;
x : = x - y

od

The nested and sequenced procedure statements in a clear box can be
successively abstracted to statement functions , to eventually arrive at the
statement function of the clear box itself. In illustration, the procedure

do
if

X 2: 0
then

w : = x
else

w : = - x
6;
if

w > y
i
I I
I !
I I

172

od

then
z : = w

else
z : = y

fi

4. The Clear Box Behavior of Information Systems

is composed of three procedure statements, specifically , two if statements
comprising the firstpart and secondpart of a sequence statement . With a
little thought , the statement function of the first if statement can be seen
as

w : = absolute value(x)

and the second if statement as

z : = maximum(w, y)

to give the following branch-free abstraction:

do
w : = absolute value(x) ;
z : = maximum(w , y)

od

Next, the sequence can be abstracted by substituting the firstpart w
value for the secondpart occurrence of w to arrive at a sequence-free
statement function that defines the overall effect on data of the original
procedure :

do
z : = maximum(absolute value(x) , y)

od

The variable w does not appear in the final abstraction, since It IS
incidental to the computation of a value for z. We note that this analysis
process can be reversed to show a design process of successive procedure
statement expansions, in going from

do
z : = maximum(absolute value(x) , y)

od

to an intermediate expansion

do [z : = maximum(absolute value(x), y)]
w : = absolute value(x) ;
z : = maximum(w, y)

od

4.3 Analysis of State Machine Behavior from Clear Boxes

and then to a final expansion;

do [z ; = maximum(absolute value(x) , y)]
if [w ; = absolute value(x)]

od

x � O
then

w ; = x
else

w ; = - x
6;
if [z ; = maximum(w, y)]

w > y
then

z ; = w
else

z ; = y
6

1 73

At each stage, successive statement functions are carried into the
corresponding expansions as function comments to document the design
during its expansion .

4.3.2 The State Machine Behavior of Clear Boxes

Clear boxes can be analyzed to determine their equivalent state ma­
chines, in a process called state machine derivation. In illustration, con­
sider a sequence clear box in which machines M 1 , M2 do the following
(See Figure 4. 1 -2);

M l ; Rl ; = OS I ;
NSI ; = OS I + S I

M2; R 2 ; = OS2 ;
NS2 ; = OS2 - S2

In this case, we can derive expressions for R2 and NS2 in terms of S I
and OS I as

R2 = OS2
= NSI
= OS I + S I

NS2 = OS2 - S2
= NS I - R l
= O S 1 + S 1 - O S 1
= S I

b y M 2
b y allocation
by M l
by M2
by allocation
by M l
by simplification

:: i
! !

1 74 4. The Clear Box Behavior of Information

That i s , the clear box behaves like a state machine with the rule

R : = OS + S ;
NS : = S

In turn, the behavior of this state machine can be recognized as that
black box Add2 , because , for transition i ,

R(i) = OS(i) + S(i)
= NS(i - 1) + S(i)
= S(i - 1) + S(i)

That is , response R(i) is the sum of the last two stimuli S(i) and S(i - 1) .
As a second example , consider an alternation clear box in which C ,

tests if S is odd and M 1 , M2 are defined as above . The equivalent state
machine is then given by the rule (see Figure 4. 1 -3)

if S is odd
then

R : = OS ;
NS : = OS + S

else (S is even)
R : = OS;
NS := OS - S

fi

That is :

do
R : = OS;
NS : = OS - « - 1)s * S)

od
(since (- 1)s = - 1 if S is odd ,

= 1 if S is even)

The black box behavior of this state machine can be described quite
s imply if the initial state OS = 0; in this case the black box response is the
sum of previous odd stimuli minus the sum of previous even stimuli .

4.3.3 State Machine Derivation from the Schedule C
Clear Box

The state machine of Schedule C can be derived from the clear
definition given in Section 4 .2 .2 . First , the state of the state machine i
identical to that of the clear box , as defined in Figure 4.2-7 . Next , the st

4.3 Analysis of State Machine Behavior from Clear Boxes 175

machine transition can be derived from the three part clear box sequence

structure of Figure 4 .2-3 , as expanded in the BDL procedure of Figure
4.2-8 . Thus , the first do statement of the procedure (compute cost of

goods sold (Part Ill» of Figure 4.2-8 can be abstracted to the statement

function

cost of goods sold : = beginning inventory + purchases
- personal use costs + labor costs
+ materials costs + other costs
- closing inventory

by substituting state values assigned to line items for occurrences of the
same line items in right sides of subsequent assignments . The second do
statement of the procedure (compute gross income (Part I) can be simi­
larly abstracted to a simultaneous assignment

gross profit ,
gross income : = sales - returns - cost of goods sold,

sales - returns - cost of goods sold
+ windfall tax received + other income

The abstraction of the third do statement of the procedure (compute
net profit (Part II» can be carried out in steps . First , the computation of
total deductions and net profit abstracts to a simultaneous assignment

total deductions ,
net profit : = advertising + . . . + other expenses,

gross income - (advertising + . . . + other
expenses)

These three assignments define the computation up to the present point of
analysis, as depicted in Figure 4 .3- 1 .

The sequence of Figure 4 .3- 1 can itself be abstracted to the single
simultaneous assignment of Figure 4 .3-2, by the same substitution pro­
cess of values for variables . This final sequence abstraction is especially
illuminating, in its fully elaborated definition of computations and assign­
ments from old state to new state carried out by the Schedule C clear box .

Next, with a little thought, it can be seen that the nested alternation
structures of the procedure of Figure 4.2-8 specify three possible out­
comes, as defined by the conditional rule of Figure 4 .3-3 .

The procedure of Figure 4 .2-8 has now been abstracted t o a two part
sequence , namely a firstpart given by the concurrent assignment of Figure
4 .3-2, and a secondpart given by the conditional rule of Figure 4 . 3-3 . This
new sequence can itself be abstracted to a single operation , the transit ion
rule of the Schedule C state machine , as follows .

(I i i
i I

176

do

od;
do

od

4. The Clear Box Behal'ior of Information

cost of goods sold ; = beginning inventory + purchases

gross profit,

- personal use costs + labor costs
+ materials costs + other costs
- closing inventory

gross income ; = sales - returns - cost of goods sold,
sales - returns - cost of goods sold
+ windfall tax received + other income

total deductions ,
net profit ; = advertising + . . . + other expenses,

gross income - (advertising + . . . + other
expenses)

(remainder of computation)

Figure 4.3-1. Intermediate Abstraction of the Schedule C Clear Box .

First, the conditions of the conditional rule of Figure 4 .3-3 must
expressed in terms of old state items . Amount at risk is an item in the
state . However, net profit is a new state item which is not available
testing until the transition is partially completed. Figure 4. 3-2 gives an
expression for net profit in terms of old state items which can be u
directly in the conditional rule . We name this expression E:

E : = (sales - returns - (beginning inventory
+ purchases - personal use costs
+ labor costs + materials costs
+ other costs - closing inventory)
+ windfall tax received + other income
- (advertising + . . . + other expenses»

Next, observe that the simultaneous assignment of Figure 4 .3-2 will
always be carried out , no matter which part of the conditional rule · of
Figure 4. 3-3 is executed . Thus , the concurrent assignment and the condi- '
tional rule can be combined into a new conditional rule by replicating the
concurrent assignment in three new sequence structures , one for each
part of the rule. The firstpart of each new sequence is the concurrerit
assignment of Figure 4 .3-2, and the secondpart is the operation from the
conditional rule of Figure 4. 3-3 . Such a construction is shown in the full
Schedule C state machine abstraction of Figure 4. 3-4. This procedure-free
derivation contains all possibilities for the state transition in a single con­
ditional rule . This rule could be carried out by many possible clear box

cost of goods sold,

gross profit,

gross income,

total deductions ,

net profit

beginning inventory
+ purchases - personal use costs
+ labor costs + materials costs

+ other costs - closing inventory,

sales
- returns

- (beginning inventory

+ purchases - personal use costs

+ labor costs
+ materials costs

+ other costs - closing inventory),

sales
- returns

- (beginning inventory

+ purchases - personal use costs

+ labor costs
+ materials costs

+ other costs - closing inventory)
+ windfall tax received

+ other income,

advertising + . . . + other expenses,

sales
- returns
- (beginning inventory

+ purchases - personal use costs

+ labor costs + materials costs
+ other costs - closing inventory)
+ windfall tax received

+ other income

- (advertising + . . .

+ other expenses)

Figure 4.3-2. The Simultaneous Assignment Abstraction of the Sequence of Figure 4.3- 1 .

(net profit > 0 -
enter net profit on Form 1 040, line 1 2 , and on Schedule
SE , line 1 .2 or on Form 104 1 , line 6

(amount not at risk > 0 -

check "yes", attach Form 6 198

amount not at risk = 0 -

check "no" , enter net profit on Form 1040, line 1 2 and on

Schedule SE, line 1 . 2 or on Form 1 041 , l ine 6)

Figure 4.3-3. Conditional Rule Abstraction of Nested Alternations of Figure 4.2-8.

I
I ! I I i

1 78 4. The Clear Box Behavior of Information Syste

define SM Schedule C
stimulus

complete Schedule C
response

Schedule C
state

beginning inventory
purchases
personal use costs
labor costs
materials costs
other costs
closing inventory
cost of goods sold
sales

machine
(E > 0 -

do

returns
windfall tax received
other income
gross profit
gross income
advertising, . . . , other expenses
total deductions
net profit
amount not at risk

compute concurrent assignment of Figure 4.3-2;
enter net profit on Form 1 040, line 12, and on
schedule SE, line 1 . 2 or on Form 1041 , line 6

od
I (amount not at risk > 0 -

do

od

compute concurrent assignment of Figure 4.3-2;
check "yes" and attach Form 6198

I amount not at risk = 0 -
do

compute concurrent assignment of Figure 4.3-2;
check "no" and enter net profit on Form 1 040 , l ine 1 2,
and on schedule SE, line 1 .2 or on Form 104 1 , line 6

od»

Figure 4.3-4. Schedule C State Machine.

designs, of which the clear box of Figure 4 .2-8, the source of this stat
machine abstraction, is but one example.

4.3.4 The Behavior of Iteration Clear Boxes

Thus far in our discussion of clear box analysis , we have demonstrated
methods of eliminating procedurality from clear box sequence , alterna
tion , and case structures. Such analyses are facilitated by knowing tha

4.3 Analysis of State Machine Behavior from Clear Boxes 179

each machine is executed once in a structure . Analyzing the iteration

structure is more difficult because the number of iterations of the machine
in the structure is unknown during analysis . One method of analyzing
iteration structures is to transform the iteration into an equivalent case
structure, which we know how to analyze. This transformation procedure

is studied in the remainder of this section.
An iteration clear box defines the behavior of a state machine, ob­

tained by abstracting the number of its iterations out and discovering the
resulting transition from stimulus and initial state to response and final
state. Once this transition is discovered , it can be used to represent the

effect of the iteration . Since this discovery can be difficult and subject to

human error, a method of verification of a candidate transition is useful
and is given below. We begin with an example to illustrate an iteration
clear box that requires a variable number of iterations to complete a
transition .

Consider an iteration clear box in which condition C tests if S is odd
and machine M l is defined as before, namely ,

M l : R l : = OS I ;
NS I : = OS I + S I

Then if S = 5 , and OS I = 3 , for example , the transition of this iteration
clear box can be determined as follows :

iteration S OS I S I R l NS I R

o 5 3 5 3 8
1 3 8 3 8 1 1
2 8 1 1 8

namely , the transition (5 ,3) � (8, 1 0. (By starting the iteration count at 0,
it counts the number of times the machine Ml is invoked .)

As a second example, if S = 4, OS I = 3, the transition is

iteration S OS I SI Rl NS I R

o 4 3 4

namely the transition (4,3) � (4 ,3) . As a third example, if S = 5, OS I 4
the transition is

iteration S OS I S I R l NS I R

o 5 4 5 4 9
4 9 4

namely , the transition (5 ,4) � (4 ,9) .

1 80 4. The Clear Box Behavior of Infonnation Systems

With a little thought , it can be seen that these three transitions repre­
sent all possible transitions in the following sense :

if S is even
R, NS : = S, OS [in iteration 0]

if S is odd ,
if OS is even

R, NS : = OS, OS + S [in iteration 1]
if O S i s odd

R, NS : = OS + S, 2 * OS + S [in iteration 2]

These three cases represent all possibilities for S and OS to be odd or
even (if S is even , the transition occurs in iteration 0 whether OS is odd or ,
even) , and the three examples above are models of such transitions .

This example illustrates a general procedure for determining the tran­
sitions of an iteration clear box . It is to discover the conditions on S and
OS for transitions to occur at iterations 0 , 1 , 2 , . . . and then work out what
the transitions will be in each such case .

As a result , such an iteration clear box can be identified with an
equivalent state machine . In this case , the state machine has the transi­
tions as given , for S and OS odd or even .

This example shows how an iteration clear box can be determined as
equivalent to a state machine. Such a state machine will have a single
machine (different, of course, than the machine M l of the clear box
iteration) , which can depend only on the definitions for C and M l of the
iteration clear box. Let such a machine be denoted as M(C ,M l), where

M(C,M l) : if S i s even: R : = S ; N S : = OS
if S is odd :

if OS is even: R : = OS ; NS : = OS + S
if OS is odd : R : = OS + S ; NS : = 2 * OS + S

The state machine (Abbreviated) of Figure 4 . 3-5A and the iteration clear
box of Figure 4. 3-5B (Abbreviated) will have identical transitions .

A Box STRUCTURE IDENTITY

Consider next an alternation dear box in which the foregoing iteration
clear box is embedded, as shown in Figure 4 .3-6A, which can be seen to
carry out the first iteration , if necessary , of the iteration clear box above,
then enter the iteration dear box again , inside the alternation clear box .

With a little thought , it can be seen that this alternation clear box will
have the same transitions as the iteration clear box above, as ti'e follow-

4.3 Analysis of State Machine Behavior from Clear Boxes 1 8 1

M(C. M l)

s R

(A)

M l

s A c F R

(B)

Figure 4.3-5. State Machine (A) and Iteration Clear Box (B) with Identical Behaviors.

ing analysis shows . On entry if the outcome of case C is F , the transition
in either clear box is simply

(S,OS) � (S ,OS)

On the other hand, if the outcome of condition C is T, the effect in
either clear box is to invoke a transition of M l , then reenter the iteration
clear box , from which point the iteration will be identical , with identical
results.

But now, in the alternation clear box the iteration clear box can be
replaced by its equivalent state machine, since its transitions will be iden­
tical , to get a new alternation clear box shown in Figure 4. 3-6B , which by
its construction must have transitions identical with the original iteration
clear box , and therefore , with the state machine . This result is summa­
rized as the following Theorem, with a general machine M2 in place of
M(C,M l) in the example .

Iteration Theorem: For any condition definition C and machines
M l , M2, if the iteration clear box of Figure 4 .3-7A and state ma­
chine of Figure 4.3-7B are equivalent , then both are equivalent to
the alternation clear box of Figure 4. 3-7C .

: : 1' I'

,: l i
1 : !1 ! '

. � ,

1 82 4. The Clear Box Behavior of Information Systems

M I

M I T

1--4--" R

(A)

M I M(C. M I)

�
T

s C R

F

(B)

Figure 4.3-6. Alternation Clear Box with Embedded I teration Clear Box (A) and Alter­
nation Clear Box (B) Exhibiting Identical Behaviors .

The significance of the Iteration Theorem is that an iteration clear box
is described as both a state machine and a simpler alternation clear box.
Thus, the hypothesis that machine M2 describes the iterative effect of C
and M l in an iteration clear box , can be verified (or not) by reducing the
alternation case clear box to a state machine and comparing its machine
with M2. We summarize this in the following theorem ;

Theorem (Verification Theorem): If the state machine of Figure
4. 3-8A describes the behavior of the iteration clear box of Figure
4. 3-8B , then the behavior of the alternation clear box of Figure 4 .3-
8C can be reduced to the behavior of the state machine of Figure
4 .3-8A.

4.3 Analysis of State Machine Behavior from Clear Boxes 1 83

M l

s
�F

R

(A)

M2

s R

(B)

M l M 2

1--------+ I---

s R

(C)

Figure 4.3-7. The Iteration Theorem. (A) Iteration Clear Box ; (B) State Machine ; and
(C) Alternation Clear Box .

The Verification Theorem provides a means to verify the correctness
of a state machine expansion into an iteration clear box . Rather than
verifying by direct comparison of the state machine and iteration clear
box behaviors , a difficult task, the Theorem permits verifying by compari­
son of the behaviors of the state machine and an alternation clear box , a
simpler task.

1 84 4. The Clear Box Behavior of Information

M 2

S --+-------.I � R

(A)

M l

s
�F

-- R

(B)

M l M 2

� f--

s R

(C)

Figure 4.3-8. The Verification Theorem. (A) State Machine; (B) Iteration Clear

and (C) Alternation Clear Box .

In illustration, in the example ahove

C : S is odd

M l : R , N S : = OS , OS + S

... 3 Analysis of State Machine Behavior from Clear Boxes

M2: if S i s even
then

R, NS : = S , as
else (S is odd)

fi

if as is even
then

R, NS : = as , as + S
else (aS is odd)

R, NS : = as + S, 2 * as + S
fi

1 85

and M2 was discovered to describe the iterative effect of C and M I . To
verify this discovery, we need only consider the alternation clear box of
the Verification Theorem and compare its behavior with M2. We can
analyze this alternation clear box in two steps , dealing first with the
sequence M l , M2 as shown in Figure 4. 3-9A. The unabbreviated se­
quence structure can be annotated as shown in Figure 4 . 3-9B and , by the
definitions of M 1 and M2

M l : R l : = OS I
NS I : = OS I + S I

M l M 2

S R

(A)

r - - - - - - - -1 State r---- - ---�
I t I I I I

osq NS I I I OS2 : NS2 I I
I I I I
I M l I I M 2 I
I I I I

t I I I � I
R2 S I

R l S2

(B)

Figure 4.3-9. Abbreviated (A) and Equivalent Unabbreviated (B) Sequence Structures.

1 86 4. The Clear Box Behavior of Information Syste

M2: if S2 is even
then

R2 : = S2 ;
NS2 : = OS2

else (S2 is odd)
if OS2 is even
then

fi

R2 : = OS2 ;
NS2 : = OS2 + S2

else (OS2 is odd)
R2 : = OS2 + S2 ;
NS2 : = 2 * OS2 + S2

fi

Furthermore , by the sequence structure

S2 = R l ,
OS2 = NS I

In order to obtain the behavior of the sequence clear box , we need to
determine R2 , NS2 in terms of S I , OS 1 . Now

S2 = R I = OS I ,
OS2 = NS I = OS I + S I

so the M I ;M2 sequence structure can be rewritten as

if OS I is even
then

R2 : = OS I ;
NS2 : = OS I + S I

else (OS I is odd)

fi

if OS I + S I is even
then

R2 : = OS I + S I ;
NS2 : = OS I + S I + OS I

else (OS I + S I is odd)
R2 : = OS I + S I + OS I ;
NS2 : = 2 * OS I + 2 * S I + OS 1

fi

Note that these three conditions can be simpHfied as follows

OS 1 is even � OS I is even
OS I is odd , OS I + SI is even � S I is odd , OS I is odd

4.3 Analysis of State Machine Behavior from Clear Boxes 1 87

OS I is odd , OS I + S I is odd � S I is even, OS I is odd

and the effect of this sequence structure (of Figure 4 .3-9) is , with OS =
OSI , S = S I , R = R2, and NS = NS2

if OS is even
then

R, NS : = OS, OS + S
else (OS is odd)

fi

if S is odd
then

R, NS : = OS + S, 2 * OS + S
else (S is even)

R, NS : = 2 * OS + S, 3 * OS + 2 * S
fi

Having worked out the sequence structure , we need to work out the
alternation structure which contains this sequence structure, as follows:

if S is odd
then

if OS is even
then

R, NS : = OS , OS + S
else (OS is odd)

fi

if S is odd
then

R, NS : = OS + S, 2 * OS + S
else (S is even)

R, NS : = 2 * OS + S, 3 * OS + 2 * S
fi

else (S is even)
R, NS : = S, OS

fi

This can be simplified by recognizing that of the two innermost cases,
one condition (S is odd) is redundant and the other condition (S is even) is
a contradiction. Therefore , the alternation structure is , on rearranging:

if S is even
then

R, NS : = S, OS
else (S i s odd)

if OS is even

I
I
I. .
I

1 88

fi

4. The Clear Box Behavior of Information Sys.

then
R, NS : = OS, OS + S

else (OS is odd)
R, NS : = OS + S, 2 * OS + S

fi

which is identical with M2. Therefore , the form of M2 has been verified
the application of the Verification Theorem.

Summary: State machine abstractions of clear boxes define
equivalent behavior while suppressing procedural details . The
hypothesis that an iteration clear box exhibits behavior identical
to its state machine specification can be verified by transforming
the iteration clear box into an alternation clear box , which can be
abstracted to a state machine and compared to the state machine
specification .

4.4 DESIGN OF CLEAR BOXES FOR

STATE MACHINE BEHAVIOR

Preview: Clear boxes are designed by expanding state machine
transitions into equivalent BDL procedures . The state machine
description of the hand calculator black box provides a basis for
clear box design . Clear boxes can be organized into a hierarchy of
smaller clear boxes by reusing the concept of a BDL procedure.

4.4.1 Clear Box Design Principles

The objective of clear box design is to express the transitions of a st
machine in a procedure that accesses the same state objects , and possi
refers to working data and lower level black boxes.

The state machine transitions are a specification of the required c1
box procedure. The initial expansion of any clear box procedure will b
sequence, alternation , iteration , or concurrent control structure . T
control structure will reexpress the specification in terms of a sequenc<;
two (or more) subspecifications , a choice between two (or more) subs

4.4 Design of Clear Boxes for State Machine Behavior 1 89

cifications, a repetitive subspecification , or two (or more) concurrent sub­

specifications, respectively . Each subspecification will be smaller and

simpler than the original specification, and can in turn be reexpressed in

terms of new control structures and subsubspecifications. At any point in
the process a subspecification may be regarded as a black box for which
no further expansion is required .

In all but the simplest state machines, many different types of transi­
tions based on stimulus and state may be specified, all of which must be
recognized and carried out by the procedure of the clear box expansion .
This observation leads to the following fundamental principle:

Fundamental Principle: A clear box must determine which tran­
sition is required by the current stimulus and state, and then carry
it out .

Thus , a useful strategy in clear box design is to begin the expansion
process with a procedure that recognizes each stimulus and state , and
directs control to the procedure part responsible for the corresponding
transition. An alternation or case structure can be used to organize the
tests of stimulus and state , with each thenpart , elsepart , or casepart carry­
ing out a particular transition.

In some cases , individual transitions of a state machine may contain
identical parts , or parts that differ only in the state data on which they
operate , but are otherwise identical . Such commonal ity can be capital ized
upon in clear box design , and leads to the following fundamental prin­
ciple.

Fundamental Principle: Any operations shared by state ma­
chine transitions should be expanded into clear box subproce­
dures and invoked by the clear box where necessary in carrying
out those transitions.

For example , a file update state machine may define many possible file
update transitions, al l of which depend on the proper password stimulus
for levels of file access and authorization. The shared password process­
ing can be expanded as a common clear box subprocedure invoked by the
various unique update transitions as required.

4.4.2 A Clear Box Design for the Hand Calculator

We use the hand calculator to illustrate an orderly top down step by
step process of design expansion of a state machine into a clear box . Such

I
' I , I '

190 4. The Clear Box Behavior of Information Systenu

an orderly expansion may not be easy to find without some analysis and
insight . It may involve restating the form of the state machine , and possi­
bly several attempts at an expansion. However, the final result provides
an easy trail for the reader, and is well worth the designer's effort.

In Chapter 3 we developed a state machine design for the black box
behavior of a simple hand calCulator with stimulus keys ,

C Clear Key
D Digit Keys (0-9)
F Arithmetic Function Keys (+ , - , * , /)

Result Key

for behavior not involving numerical overflow in either digit entry or
result display . In that explanation , we assumed a state defined by four
state registers :

BR: Begin Register (contains B for Begin or C for Continue)
VR: Visible Register (displays any number)
FR: Function Register (contains an arithmetic function)
HR: Hidden Register (contains any number)

The state machine transitions are defined in Table 3 .4-2 , repeated here
in Table 4.4- 1 .

Table 4.4- 1 provides the basis for working out a c lear box design for
the hand calculator. As noted, the state machine of Chapter 3 assumes
that response R is always equal to the number in the visible register VR.
Therefore, an initial clear box sequence structure can be designed as
shown in Figure 4.4- 1 in both diagram and BDL form. In order to save
space in complex diagrams , black boxes are shown without internal lines .
The state registers BR (begin register) and FR (function register) are
defined as enumerated types, with permissible values listed, or enumer­
ated , as (B ,C) for Begin or Continue , and (+ , - , * ,/) , respectively . Both

Table 4.4-)

Machine Transitions for a Hand Calculator

(S OS) - (R NS

row BR VR FR HR BR VR FR H R

I C 0 B 0
2 any D B f y D C D f y
3 any D C x f y D + l Ox C D + l Ox f y
4 any F x f y yfx B yfx F yfx
5 x f y yfx yfx

4.4 Design of Clear Boxes for State Machine Behavior

s
Compute state
registers as in
Table 4.4-1

define CB Hand calculator

stimulus
S :key

response
R:number

state
BR: (B,C)

FR: (+ , - , * . /)
VR: number

HR: number

machine
data

(none)

proc
Compute state registers

as in Table ;

R : = VR

corp

Figure 4.4-1. The Initial Hand Calculator Clear Box .

1 9 1

R

VR and HR are defined as type number. The machine has no local data,
and the initial clear box decomposition is a sequence structure .

Next , we can translate Table 4 .4- 1 into clear box expansions l ine by
line, step by step. Figure 4 .4-2 shows an alternation expansion of the first
black box in the sequence, to differentiate between line 1 of the table and
all other l ines , by testing for a stimulus of " C . " Next , Figure 4 .4-3 depicts
an expansion of • 'Compute line 1 of Table" as a sequence of two black
boxes .

Now that line 1 of the table has been expanded, we next expand lines
2-5 by checking for a digit stimulus to differentiate between the transitions
on lines 2-3 and 4-5 , as shown in the alternation expansion of Figure 4 .4-4 .
Next , l ine 2 and line 3 of Table 4 .4- 1 can be distinguished by checking on
SR, to get the case expansion of Figure 4 .4-5 . Continuing in this way, we
final ly arrive at the fully expanded clear box of Figure 4 .4-6 .

4.4.3 Segment Structured Clear Boxes

In systems of any size, clear box expansions of state machines can
become quite large, so as a practical matter, a systematic means to break

I" .·
il i

i
II
I I ·

r
1 92

s

4. The Clear Box Behavior of Information Systems

Compute line I
of Table 4.4- 1

Compute lines 2-5
of Table 4.4- 1

machine
data

(none)
proc [Compute state registers as in Table]

ir S = C
then

Compute line I of Table
else

Compute lines 2-5 of Table
6;
R : = VR

corp

R

Figare 4.4-2. An Alternation Expansion of "Compute state registers as in Table . "

procedures into manageable parts i s required. The concept of a clear box
procedure can be reused for this purpose, by defining each part as a
procedure with a name, in the form

proc <procedure name>
data

<procedure data>
<procedure>

corp
then calling such a part into execution by a run statement of the form

run <procedure name>

4.4 Design of Clear Boxes for State Machine Behavior

s

Compute lines
2-5 of
Table 4.4- 1

machine
data

(none)
proc [Compute state registers as in Table]

if S = C
then [Compute line 1 of Table]

BR : = B ;
VR : = 0

else
Compute lines 2-5 of Table

6;
R : = VR

corp

Figure 4.4-3. A Sequence Expansion of "Compute line 1 of Table. "

1 93

R

The <procedure data> defined in a procedure is available only within the
procedure and not outside . Therefore data names can be reused without
confusion . Such procedures can be listed as part of a clear box, or if often
reused , as part of a library of procedures available to a clear box .

Procedures can be made even more reusable with the use of parame­
ters . A parameter l ist of data can be defined with a procedure in the form

proc <procedure name> « parameter list»
data

<procedure date>
<procedure>

corp

194

s

4. The Clear Box Behavior of Information Systems

T

machine
data

(none)

Compute
lines 2-3 of
Table 4.4- 1

Compute
lines 4-5 of
Table 4.4- 1

proc [Compute state registers as in Table]
if S = C
then [Compute line I of Table]

BR : = B;
VR : = 0

else [Compute lines 2-5 of Table]
if S = any 0

fi;

then
Compute lines 2-3 of Table

else
Compute lines 4-5 of Table

fi

R : = VR
corp

Figure 4.4-4. An Alternation Expansion of "Compute lines 2-5 of Table . "

R

S

T

F

B R := B

Compute line
2 of Table 4 . 4- 1

T Comp ute line 3
of Table 4.4- 1

Compute Jines
'-----� 4.- 5 of TabJe 4 .4- 1

machine
data

(none)
proc [Compute state regis ters as in Table)

if S = C

then (Compute line I of Table l

BR : = B;

VR : = 0
else (Compute l ines 2-5 of Table]

if S = any D

fi;

then (Compute l ines 2-3 of Table)

if BR = B

then
Compute line 2 of Tahle

else
Compute l ine 3 of Table

fi
else

Compute l ines 4-5 of Table

Ii

R : = VR
corp

Figure 4.4-5. An Alternation Expansion of "Compute lines 2-3 of Table . . .

R

, I

I I' , i ' �
: i
" I '
I, ;

, I

I I

!
I I

�

R

s

VR := 1 0 * VR + S 1-1 -------'

VR := HR FR VR

VR := HR FR VR

Figure 4.4-6. The Fully Expanded Hand Calculator Clear Box (continued).

4.4 Design of Clear Boxes for State Machine Behavior

define CB Hand calculator
stimulus

S:key

response
R:number

state
SR: (B ,C)
FR: (+ , - ,*,1)

VR: number

HR: number

machine
data

(none)

proc [Compute state registers as in Table]

if S = C

then [Compute line I of Table]
BR : = B ;

VR : = 0

else [Compute lines 2-5 of Table]

if S = any D

6;

then [Compute lines 2-3 of Table]
if BR = B

then [Compute line 2 of Table]

BR : = C;

VR : = S

else [Compute line 3 of Table]
VR : = 10 * VR + S

fi
else [Compute lines 4-5 of Table]

if S = any F

6

then [Compute line 4 of Table]
BR : = B ;

V R : = H R F R VR ;

FR : = S ;

HR : = VR

else [Compute line 5 of Table]
if S = =

6

then [Compute HR (function) VR]

VR : = HR FR VR

6

R : = VR
corp

Figure 4.4-6. The Fully Expanded Hand Calculator Clear Box.

197

� i

198 4. The Clear Box Behavior of Information Systems

and the procedure can access data in the parameter list as well as the state
and working data. A call in the form

run <procedure name> « parameter list»

must define a new parameter list of data known to the procedure state­
ment . This new parameter list must agree in length and data types with the
parameter list in the procedure definition . For example , given a procedure

proc Add(x, y, z : number)
x : = y + z

corp

the statement

run Add (R, S , L)

will have the effect of the assignment

R : = S + L

while the statement

run Add(L, S, L)

will have the effect of the assignment

L : = S + L

In illustration , the final hand calculator clear box expansion of Figure
4.4-6 can be organized into segment structured form for better under­
standability , as shown in Figure 4.4-7 . Two nested control structures have
been removed and converted to named procedures invoked by outer syn­
tax run statements . In this case no additional data is defined for the
procedures so the data keyword is omitted . The result is a hierarchy of
smaller procedures , called segments, each of which can be reviewed inde­
pendently within its structural context . In a large system, the segment
structuring process can be carried out repeatedly, to ensure that all seg­
ments are small and easy to read.

Summary: Clear box designs must identify and perform transi­
tions specified by state machines. Similarities in transitions may
permit shared subprocedures in clear box design . Successive
clear box sequence and alternation expansions based on state
machine transitions define a clear box design of a hand calculator.
The BDL run statement permits segmentation of clear boxes for
better readabi lity .

4.4 Design of Clear Boxes for State Machine Behavior 1 99

define CB Hand calculator
stimulus

S : key
response

R: number
state

SR: (B , C)
FR: (+ , - ,* ,/)

VR: number
HR: number

machine
data

(none)
proc [Compute state registers as in Table]

if S = C
then [Compute line I of Table]

BR : = B ;
VR : =O

else [Compute l i nes 2-5 of Table]
if S = any 0

fi;

then [Compute l ines 2-3 of Table]
run Lines 2-3

else [Compute l ines 4-5 of Table]
run Lines 4-5

fi

R : = VR

corp

proc Lines 2-3
if BR = B

then [Compute l ine 2 of Table]
BR : = C ;
VR : = S

else [Compute l ine 3 of Table]
VR := to * VR + S

fi
corp

proc Lines 4-5
if S = any F

then [Compute l ine 4 of Table]
BR : = B ;

VR : = HR F R VR;

FR : = S;
HR : = VR

else [Compute l ine 5 of Table]
if S = =

fi
corp

then [Compute HR (function) VR]

VR : = HR FR VR

fi

Figure 4.4-7. The Hand Calculator Clear Box in Segment Structured Form.

I :
1 i
I i

i
. 1

200 4. The Clear Box Behavior of Information Systems

EXERCISES

1. Derive statement functions for each control structure in the follow­
ing clear box BDL segments :

(a)

(b)

(c)

do

od

x : = x + y + z ;
y : = x - y - z ;
z : = x y - z ;
x : = x y - z

do
x : = 0;
y : = 0 ;
k : = 1 ;
while k < n
do

x : x - I ;
y : = y + k ;
k : = k + 1

od
od

if s < t
then

if u < v
then

x : = t * v
else

x : t * u
fi

else
if u < v
then

x : = s * v
else

fi
fi

x : s * u

5

7
8

Esercises

(d)
do

od

x : = 0;
y : = n ;
while y � d
do

x : = x + l ;
y : = y - d

od

20 1

2. Enumerate the processing paths of the clear box of Figure 4.2- 1 8 and
suggest improvements to the personnel procedures they define .

3. Design a BDL clear box that elaborates on the "conduct interview"
operation .

4. Determine the state machine and black box behavior of a M I ;M2
sequence clear box structure in which

M I : R I , NS I : = OS I , S I + OS I
M2 : R2 , NS2 : = OS2 , S2 - OS2

S. Determine the state machine and black box behavior of an alterna­
tion c lear box structure in which C tests if S is odd and M I , M2 are
given as in Exercise 4.

6. Determine the state machine behavior of a iteration clear box when
C tests if S > as and M I is defined as

M I : R, NS : = as, S

7. Verify the result of Exercise 6 by use of the Verification Theorem.

8. Rewrite the description of M2 from Section 4 . 3 . 4 as a conditional
assignment:

M2: if S is even
then

R, NS : = S, as
else (S i s odd)

fi

if as is even
then

R, NS : = as , as + S
else (aS is odd)

R, NS : = as + S, 2 * as + S
fi

I '

\

202 4. The Clear Box Behavior of Information Syste ...

9. Revise the hand calculator clear box design by changing the order in
which cases of stimulus S are considered . Is there a better clear box
possible?

10. Create a clear box for the state machine of Exercise 6 in Chapter 3, .

which introduces a clear entry (CE) key .

11. Create a clear box for the state machine of Exercise 7 in Chapter 3,
which introduces a decimal point (DP) key and permits arithmetic to
no more than 8 significant digits . The clear box must deal with over- .
flow on key entry and arithmetic operations .

START

L--_.---_ END

Print
report

Compute
overall
GPA

Compute
GPA for
semester

Select
studen t
file

Fill in
grade

Compute
quali ty
points

Compute
total
quality
points

Yes

Select nex t
course

Figure E.4-1 .

F i l l i n
incomplete

No

Exercises 203

12. Discuss what is meant by the verification of a clear box design. How
do you verify correct sequence , alternation, and iteration design
expansions?

13. The flowchart in Figure E .4- 1 produces a semester grade report form
for a student . Transform this natural procedure into a BDL clear box
using the techniques of Section 4 . 2 .

14. Describe in a natural procedure (e .g . , flowchart , natural language)
your morning routine . Take this natural procedure and describe it in
a structured BDL procedure .

Chapter 5 The Box Structures
of Information Systems

5.1 THE CONCEPT OF BOX STRUCTURES

Preview: Box structures are hierarchies of black box/ state ma­
chine/clear box expansions that limit complexity at each level of
decomposition. Box structure hierarchies mirror hierarchies in
business organizations . Box expansions can be limited in size and
complexity as building blocks, but combined into larger and
larger box structure hierarchies without limit, to deal with infor­
mation systems of any size and complexity . The principle of
transaction closure guides invention of the top level of the hierar­
chy. The work products of box structure analysis and design can
be recorded in analysis and design libraries .

5.1.1 Box Structure Hierarchies

A box structure is a hierarchy of BB/SM/CB (Black Box/State Ma- .
chine/Clear Box) structures, in which all black boxes used in each clear
box head a BB/SM/CB structure at the next level , as depicted in Figure
5 . 1 - 1 . That is, any black box in a clear box use BB statement will be
identified at the next level. We call a BB/SM/CB structure a box expan­
sion, depicted as shown in Fig . 5 . 1 -2 .

204

5.1 The Concept of Box Structures

I
BB
I

SM I
CB

I I I
BB BB

I
BB I
SM I
CB

I
BB I
SM I
CB I
BB

I
BB

I
BB

BB
I

SM I
CB

I I
BB BB

I
BB

I
BB

Figure 5.1-1. A Box Structure Hierarchy.

I
BB I
SM
I

CB I

I
BB

I
BB I
SM I
CB I
BB

205

The black box at the top of a hierarchy or subhierarchy identifies the
what of an information system or subsystem. But that what is usually too
difficult to describe in one step for people to fully understand or to pro­
gram for computers . Therefore , a box structure for that black box will be
in order, beginning with a state machine , then a clear box design for the
state machine . If the description can be completed (to understandability
or programmability) with the clear box , using no unknown black boxes,
the design is completed. If not , a set of one or more new black boxes will
have been identified , and the description will proceed as above for each
new black box . In turn, more new black boxes may be identified and
described , until , after several levels , no more black boxes are required .

Fundamental Principle: A black box identifies the what of infor­
mation system or subsystem behavior, its clear box describes a
how of that behavior.

I
BB
I

SM I
CB
I

Figure 5.1-2. A Box Expansion.

206 5. The Box Structure of Information Systems

A box structure is open ended in the size of the structures , but it can
use clear boxes of l imited s ize at each expansion . That is , a hierarchical
box structure can be scaled up to deal with a system of any complexity,
yet use l imited complexity at each point in the hierarchy . In turn , viewed
from the top down , a box structure provides a systematic way to defer
details of a system description. At each level , a few more details can be
revealed , but the remaining details can be subsumed in the black boxes
that remain to be expanded .

Fundamental Principle: A box structure hierarchy permits the
deferral of system details within black boxes at each level in the
hierarchy .

The progression from black box to state machine to clear box at each
expansion step in the hierarchy represents a canonical form for analysis
and design . However, in some cases , problems can be solved more di- -
rectly . For example, an expansion may be most effectively expressed
directly as a state machine with no black box given. This case can arise
where the stimulus history of a black box is especially complex , and its
transitions can be better understood when defined in terms of stimulus
and state . Or an expansion may be better defined by a clear box with no
black box or state machine given. This case can arise when the transition
rules of a state machine are especially complex, and are more easily
expressed in procedural terms, possibly referring to black boxes at the
next level . Note , however, that a deci sion to bypass a step in a box
structure is reversible , but has the effects :

Black box omitted. State-free , procedure-free description unavail­
able

State machine omitted. State-defined , procedure-free description
unavailable

Clear box omitted. State-defined , procedure-defined description
unavailable ; no new black boxes introduced

In these cases, there is no rule against thinking hard about the behav­
ior of the box structure in terms of the foregone representations. And , if
necessary , the other representations can always be derived or expanded
for more detailed study and analysis.

5.1.2 Box Structures in Business Operations

Box structures are common in business operations , and mirror effec­
tive organizations in business . The box structure approach to information

5.1 The Concept of Box Structures 207

systems analysis and design makes use of a good deal of wisdom accumu­

lated in successful business organizations .
We have already seen that black box , state machine, and clear box

behavior is common in business operations . The correspondence is even
more striking with hierarchical box structures and business operations. A
major corporation will often be organized in product and service divi­
sions , then divisions organized into major functions of marketing, finance ,
engineering, manufacturing, personnel , etc . , the functions organized into
departments , departments into smaller departments , and so on. This orga­
nization will be hierarchical , just as a box structure. Information will be
stored at all levels , the more detailed information in lower level depart­
ments . Information will flow from one department to another, as outputs
from the first and as inputs to the second. And information into a depart­
ment will trigger information out to other departments . That i s , each
department will exhibit black box behavior in its information processing.
In turn , each function, each division, and finally the whole corporation
wil l exhibit black box behavior to its surroundings as it accepts , pro­
cesses , stores , and produces information .

These box structured business organizations are no accident . They are
due to no whims or aberrations of their executives . They have survived
the natural selection of economic and business competition . There are no
laws that require such organization. Corporations are free to organize
internall y in any way they choose . Small businesses may organize on
some other basis than hierarchy , for example , on a communal or demo­
cratic basis , but no small business ever grows to even a medium sized, let
alone large , business so organized.

Neither is it an accident that successful information systems are box
structured as well . Box structures permit intellectual control in both
building information systems and building business organizations. The
analysis and design requirements are similar in both cases , identifying
inputs and outputs , how information should be stored and processed. So a
box structured approach to information systems analysis and design auto­
matically draws on a good deal of accumulated wisdom of the business
world .

5.1.3 The Top Level Black Box and Transaction Closure

It is one thing to describe a hierarchical box structure of an informa­
tion system. It is quite another thing to develop it from scratch , to accu­
mulate and assimilate the necessary information from the business organi­
zation , possibly by many people over many weeks or months , then to put
it all together correctly . The top level black box is not the starting place of

I

i

208 S. The Box Structure of Information Systems

such an effort , although it is the principal objective at the start . The
starting place is in the organization, to identify first hypotheses in the
intellectual climb to this top level black box .

The search for transaction closure should guide this effort . What are
the transitions and transactions required? Is that all , or are there second­
ary transitions and transactions required to make the primary ones possi­
ble? Is the top level state machine easier to describe to begin with than is
the top level black box? Are there simplifying aspects from using the data
in the description? Is the top level clear box easier to describe? There is
no uniquely best starting place ; instead , the search criteria are better
focused on the objective of getting to the appropriate top level black box
with due process , rather than leaping to a faulty top level black box .
prematurely .

A useful beginning of this search for a top level black box begins with
the most obvious users of the system to be , but seldom ends there . These
most obvious users often interact with the system daily, even minute by
minute in entering and accessing data-for example a clerk in an airline
reservations system. But usually, the data they use are provided in part
by other users that enter and access data less frequently-for example
those entering flight availability information. And other users even more
distant from the obvious users enter and access data even less fre­
quently-for example users who add route schedule information . All the: .
while , an entirely different group, the operators of the system, is entering
and accessing system control data that affects the users in terms of more
or less access to the system because of limited capacity or availability .

The top level black box must accommodate all these users and opera­
tors , not just the most obvious ones . A cross check can be made between
the top level black box and its top level state machine . Every item of data
in the top level state must have been loaded with the original system or
acquired by previous black box transactions . Are there any items not so
loaded or acquired? It is easy , in concentrating on one set of transactions
to assume the existence of data to carry them out . A close comprehensive
scrutiny of these needed data items can discover such unwarranted as­
sumptions early .

Another aspect of transaction closure arises in system integrity . The
categories of integrity should be checked and rechecked , even in this
search for the top level black box , for example:

Security. Need users be authorized ; if so how and what transactions
are needed to authorize them initially and allow them access subse­
quently?

Operability. What transactions permit system operation and deal­
ing with unforeseen events?

5.1 The Concept of Box Structures 209

Auditability . Are audits to be required; if so what transaction trails
are needed and how are they to be accessed by audit transactions?

Reliability. What provisions are required for system checkpoints
and recovery from unforeseen hardware or software errors and
what are the transactions needed?

Capability. Are archives and restorations necessary for dealing
with data in amounts not economical to keep on line?

In every case, the answers to these questions are to be found in the

business organization in assessing questions of integrity and their impact
on business performance .

5.1.4 Box Structure Analysis and Design

In the information system development process it is important to iden­
tify and distinguish between analysis and design . Analysis is a discovery
process. The gathering of information and the forming of that information
into descriptive box structures is a major part of analysis . The derivations
performed in a box structure from clear box to state machine to black box
are also discovery processes . Design, on the other hand , is a creative
process. Given the information discovered during analysis, a box struc­
ture hierarchy for the new information system is created . Within a box
structure, expansion from black box to state machine to clear box , then
their rederivations , provide a rigorous method of verifying the correct­
ness of the design .

The box structure diagrams of black boxes, state machines , and clear
boxes provide general forms for generating and recording the results of
information systems analysis . On the other hand, BDL provides a more
formal and precise form of recording for information systems design .
These two forms reflect the differences between analysis and design in
information systems.

Box structure diagrams provide flexible, easily understood, graphical
ways to discover and discuss ideas about information systems with man­
agers and users . These diagrams can be annotated with terms and phrases
of the business to facilitate information gathering and to ensure better
accuracy in understanding ongoing operations and processes.

In contrast to the outward directed activities of analysis , information
systems design is based on the results of analysis but is inward directed ,
dealing with inner consistency and tradeoffs in order to make good design
choices . BDL provides precision and completeness, but at the price of
foregoing easy and casual treatments.

The result of an analysis phase is an analysis library, a set of annotated
diagrams and supporting documentation that covers the area of study .

2 1 0 5 . The Box Structure of Information Systems

This library of diagrams is not yet a complete and precise box structure .
The diagrams are loosely compiled , and possibly overlapping, and with
possible gaps . Almost all of the information in the analysis l ibrary will be
useful in the design phase .

The result of a design phase is a design library, a set of BDL designs
and supporting documentation that describes a complete and precise box
structure . The analysis library is the raw material for the design library .
The discovery and discussions that went into the analysis l ibrary are
necessary ingredients for the construction of the design l ibrary .

Summary: A box structure hierarchy local izes and limits com­
plexity by deferring details within black boxes at each level . Box
structures permit intellectual control in building information sys­
tems and building business organizations . Transaction closure as­
sures that top level black boxes will accommodate all possible
users and uses . The analysis library contains raw material for the
design library .

S.2 ANAL YSIS OF BOX STRUCTURES

Preview: Transaction analysis , state analysis , and procedure
analysis provide a basis for describing existing or intended infor­
mation systems.

5.2.1 Deriving Box Structures from Business Operations

Any information system or part , real or intended, can be described in
box structure form . The data interfaces between the part and its surround­
ings are described by black box stimuli and responses . The data stored in
the part are given by the state of a state machine. The data processing is
given by the machines of a clear box . The same data is often created and
used in different ways for different purposes . The box structure approach
places all these operations with the same data in a common box structure.

In illustration , consider an analysis of the charge account system of a
department store. In this section , a preliminary box structure analysis is
carried out to illustrate the need for a more thorough analysis to follow.

In department store operations, sales clerks may enter customer
charges for merchandise purchased . Customers receive bill s at the end of

5.2 Analysis of Box Structures

Charge account system

Transactions:

-
En ter charges
Send bills
Enter payments

Figure 5.2-1. Charge Account System Black Box.

2 1 1

the month and return payments to their accounts . For clerks and cus­
tomers alike the charge account system appears to be a black box . Clerks
merely enter charges and get confirmations (that the customer has a
charge account and has not exceeded a credit limit) . Customers receive

bills as black box outputs , and return payments as black box inputs.
Figure 5 . 2- 1 gives a box structure diagram in the form of a Charge Ac­
count System black box as a start .

The three types of transactions so identified can be described at some
length . However, in order to describe the effects of these transactions,
the data of the Charge Account System will be very useful. The charge
account data of the department store is altered every time a customer
charges an item. It is also altered every time a customer makes a pay­
ment. This charge account data is used to create customer bills , and to
make credit l imit checks . All of these ways of creating, altering, or using
this charge account data can be reorganized into a state machine , as
shown in Figure 5 . 2-2 . Part of each input to this box structure will de­
scribe the way the data is to be created , altered, or used in this transac­
tion.

Charge account system

State :
Charge account data

, -- - customer records 1- - - -1
I 1

I
I I
I I
I Transactions: I
I I

I I Enter charges (demand) I
, Send bills (monthly) I

Enter payments (demand)

Figure 5.2-2. Charge Account System State Machine.

2 1 2 S. The Box Structure of Information Systems

Transactions may be periodic , as in monthly billing , or on demand, as
for entering charges and payments , whose occurrences are unpredictable :
within the system. The charge account data in the state machine of Figure .
5 . 2-2 makes the three transactions easier to describe as more detailed
procedures:

Enter Charges:
Input Expected :

"Enter Charge"
Customer Name
Charge Amount

if Customer Name found in Customer Records
then

if Customer Balance + Charge Amount < Credit Limit
then

Increase Customer Balance by Charge Amount
Confirm Charges to Clerk

else
Return Message " Credit Limit Exceeded "

fi
else

Return Message " Customer Unknown"
fi

Send Bills:
Input Expected :

" Send Bills"
while more Customer Records exist
do

od

if Customer Balance > 0
then

Send Bill to Customer
fi

Enter Payment:
Input Expected :

"Enter Payment"
Customer Name
Payment Amount

if Customer Name found in Customer Records
then

Decrease Customer Balance by Payment Amount
else

Return Message " Customer Unknown"
fi

5.2 Analysis of Box Structures 2 1 3

These descriptions , informal as they are, illustrate the necessity for
the name of each type of transaction to be identified as part of each input,
and to follow that part with input data.

Part of the value of such a description is its understandability by
managers and users . The credit manager will immediately notice a defi­
ciency in the above description. There is no provision to raise or lower
credit limits , customer by customer, so another type of transaction
will be called for. The financial manager may want a special report in
order to anticipate future cash flows expected from current charges , and
so on .

The foregoing example of a charge account analysis illustrates the kind
of information that is needed, but several deficiencies are already visible .
How can such deficiencies be avoided in an actual analysis? There are no
foolproof methods. It takes good judgement , common sense , good listen­
ing, and an open mind . But a systematic approach can be very useful.
Most systematic approaches to problems involve mastering a good deal of
detailed , step by step procedures. And the systematic approach presented
here is no exception. However, paradoxically , this systematic approach is
aimed at preventing you from getting bogged down in step by step detail
before you should.

The problem of systems analysis is how to di scover the trees and
leaves of a forest without losing sight of the forest itself. Eventually you
will need to describe the trees and leaves , and for that you will need
precise detailed descriptions . But unless you maintain your view of the
forest, the trees and leaves don ' t mean too much.

Fundamental Principle: Systems analysis is a discovery pro­
cess. It requires investigation , research, and insight into the sys­
tem to be developed . The box structure methodology provides a
framework for analysis . The results of systems analysis are dia­
grams and information that demonstrate a thorough understand­
ing of the proposed system. These results are stored in an analy­
sis library .

The next three sections deal with systems analysis more thoroughly in
the transactions, states , and procedures of box structures. The addition of
detail to an evolving box structure must be under good control and disci­
pline as much as any other use of methodology . On occasions, you may
need to go to considerable detail in one aspect of analysis before another.
But the framework for dealing wit h detail must be there before going
into it .

" I

I i
1 I

II i I

I I

I
I ,

2 1 4 5. The Box Structure of Information Systems

5.2.2 Transaction Analysis

The key to a disciplined approach to systems analysis is the use of
context. Context plays a critical role in what we see and communicate
with each other. Context is what we assume is common knowledge for a
conversation. Context and precision are incompatible. The broader the
context the lower the precision ; the higher the precision the narrower the
context. In information systems it is easy to be precise about the wrong
things , and easy to be vague about the right things . The goal is to use
context to be precise about the right things .

Box structure diagrams can be used to control context, by gradually
narrowing context through increasingly precise diagrams . A transaction
analysis provides a systematic way to narrow context and increase preci­
sion .

The objective of a transaction analysis is to identify the set of transac­
tion types necessary for a black box . Simple black boxes may have only
one transaction type, for example, a sales forecast black box does nothing
but accept sales and issue forecasts . However, the charge account system
black box has (at least) the three types of transactions dealing with billing,
charging, and paying. In the previous example these three types of trans­
actions were identified by direct intuition about a charge account sys­
tem in a department store . The act of clerks entering charges comes
immediatel y to mind , then the store sending out bills next , and finally
customers sending in payments. But is that al l ? No. And how to find the
rest?

The method of transaction analysis is to identify the information needs
of the business, and the transactions that satisfy those needs , then other
transactions needed to support the original transactions, and so on until
no new transactions can be identified . Of the three transactions identified
for the charge account system, one is primary, the other two are second­
ary from the viewpoint of the business . The primary transaction type is
billing, to satisfy the information need of what to bill customers . But
in order to bill customers , previous transactions of charging and pay­
ing are required . In other words , if bill ing was the only transaction
type of the charge account black box , there wouldn't be any bi l ls to
send !

Another way to look at these three transactions is chronological , as
done intuitively before. Charges are first , bills are second , payments
third . That ' s a good cross check , to examine chronological sequences for
completeness. But a hierarchy of informat ion needs helps to organize a
systematic completeness search for transaction types .

5.1 Analysis of Box Structures 2 1 5

Fundamental Principle: A transaction analysis begins with in­
formation needs of the business and the primary transaction types
to satisfy those needs, then backtracks through additional trans­
action types needed to support these primary transactions, di­
rectly or indirectly .

CHARGE ACCOUNT SYSTEM REVISITED

We begin again with the charge account system of a department store.
In the broadest context , the black box merely labeled Charge Account
System, as diagrammed in Figure 5 . 2-3 , is known to clerks and cus­
tomers . It is just the charge account system they see (and imagine) in
action. This beginning is one name and the rest context ! At least nothing
has been left out so far !

Next we identify the information needs of the business and the trans­
action that sati sfies it-Bill ing-in Figure 5 .2-4 . As already noted , Bi l ling
depends on the previous presence of two types of transactions-Charge
and Payment-as shown in Figure 5 . 2-5 .

Let 's apply the analyses to Charge and Payment transactions . Are
any prior transactions required? One has already been mentioned-Set
Credit Limit . Are there any more? Both Charge and Payment require a
customer name, which has to be acquired by the system previously. Let ' s
call that transaction Open Account . This leads to the new version of
Figure 5 . 2-6.

Charge account system

-

Figure 5.2-3. Charge Account System Black Box.

Charge account system

Transactions:
Bil ling

Figure 5.2-4. Charge Account System Black Box.

:
I I I I

2 1 6

-

5. The Box Structure of Information Systems

Charge accoun t system

Transactions:

Billing
Charge
Payment

Figure 5.2-5. Charge Account System Black Box .

In turn , are prior transactions required for Open Account or Set Credit
Limit? Open Account may be sufficient in itself, but the credit manager
would probably require three more transactions , namely Credit Applica­
tion, Credit Check , and Salary Check , which each provide the Charge
Account black box with information for the Credit Limit transaction. The
difference between Open Account and Credit Limit in generating new
transactions is in the nature of information that might be required for the
transaction . The store is will ing to open an account for almost anyone
with almost no information , but will ing to grant credit only after prudent
checks .

The credit application is required to make any checks , and a Credit
Check (willingness to pay) and Salary Check (ability to pay) seem pru­
dent. The result of these additions to transactions is given in Figure 5 . 2-7 .

The Charge Account System may have a hierarchical structure that
would simplify or better organize its description . The Credit Limit trans­
action may be an opportunity to define a new black box in such a hierar­
chical structure . The Charge Account System would sti ll have a Credit
Limit transaction , but its clear box may call on a Credit Limit black box to
carry it out in a hierarchical box structure. In this case , a new black box of
transactions can be defined, as in Figure 5 . 2-8 .

-

Charge accoun t system

Transactions :
B illing
Charge
Paymen t
Open accoun t
Set credi t lim it

Figure 5.2-6. Charge Account System Black Box .

S.2 Analysis of Box Structures

-

Charge account system

Transactions:

Billing
Charge
Payment
Open accoun t
Set credit limit
Credi t application
Credit check
Salary check

Figure S.2-7. Charge Account System B lack Box .

2 1 7

The Credit Limit black box supports the Charge Account System
black box and provides a new starting point for its own transaction analy­
sis . Each of its transactions can be examined in turn for necessary pre­
vious transactions as before . Eventually one of its transactions may be a
candidate for a separate black box, and so on.

In summary , a transaction analysis begins with transactions that sat­
isfy primary information needs of the business , then identifies necessary
previous transactions , direct and indirect , until no new transactions can
be identified . The final transactions identified obtain all information re­
quired of them from inputs to the black box . These transactions can be
diagrammed in a dependency tree, beginning with the primary transac­
tion . In the case of the Charge Account System black box , the depen­
dency tree is as diagrammed in Figure 5 . 2-9. The dependency tree is
suggestive of possible box structure and places to establish new black box
transaction analyses .

Fundamental Principle: Transaction analysis identifies transac­
tion types of a black box , which can be diagrammed in a depen­
dency tree and possibly organized into supporting black boxes.

Credi t limit

Transactions :

Set credi t limit
_ Credit application -

Credit check
Salary check

Figure S.2-S. Credit Limit B lack Box .

! .) !

: · 1 '

. \ "

2 1 8 S . The Box Structure of Information Systems

Billing

�
Charge Payment

�
Open

account
Set

credit limit

�
Credit Credit Salary

application check check

Figure 5.2-9. Charge Account Transaction Dependency Tree.

Once the transactions are identified the inputs and outputs of each
transaction should be identified . The inputs to a transaction consist of
stimuli from outside of the system and all required state information de­
fined at a higher level in the system box structure hierarchy. Transaction
outputs include responses to the external environment and updated state
information internal to the system. The analysis of appropriate input and
output formats is an important and necessary task. A user of the transac­
tion should be prompted for essential input in a friendly manner condu­
sive to efficient use of the system. Likewise , output interfaces and reports
should promote effective system use .

In the Charge Account System, the inputs and outputs needed for each
transaction are recorded in Table 5 . 2- 1 . Note that all inputs include a
specific request to perform that transaction . This can be seen as a clerk
entering the words 'ENTER CHARGE' on a terminal screen or simply
pressing a single function key for entering charges . Such transaction re­
quest inputs are normally found at high levels in a system that contains
user interfaces .

5.2.3 State Analysis

The black box description of a Billing transaction for a customer can
be given as a computation of the difference between all previous charges
and all previous payments. If the result is positive , send the amount to the
customer as a bil l . While the computation is correct, it is awkward and
unnecessary . Instead , each bill can present the balance to the customer,
which represents this difference between all previous charges and all
previous payments, making any further reference to, or thought about ,
the latter unnecessary .

5.2 Analysis of Box Structures 2 19

The customer balance is state data of a state machine that simplifies

calculations for both the customer and the store . Each month the new

balance is the old balance plus all charges for the month less all payments
for the month.

The objective of state analysis is to identify state data that makes
transactions easier to describe . As already discussed in Chapter 3, the
value of state data is to reduce the dependence of transactions on entire
black box stimulus or input histories . The customer balance reduces the
billing transaction dependence on charges and payments to only those
that occurred in the past month .

The transaction analysis provides a framework for the state analysis .
For each transaction what data should be available from previous transac­
tions? In illustration, the data required for B illing can be given as :

Customer Name:
Balance :
Current Charges :

Current Payments:

The name of the customer account .
The balance of the previous month.
All charge transactions made in the current
month.
All payment transactions made in the current
month.

These are the data items produced by previous transactions that B ill­
ing requires in its old state . They will be transformed in the new state as
follows:

Balance :

Current Charges :
Current Payments :

Set to the old state Balance plus Current
Charges minus Current Payments .
Set to empty to begin a new month.
Set to empty to begin a new month.

The output of the Bil ling transaction is the bills for all customer ac­
counts that have had charge or payment activity during the month. The
bills contain the customer name and the old and new balances , together
with the month' s charges and payments . On completion of the Billing
transaction, the new state data will become the old state data for the next
month' s billing.

The input to the Charge transaction is a Name and an Amount to be
charged . What state data is required to describe this transaction? With a
little thought , it can be seen that four items are required , namely ,

Customer Name:
Credit Limit :

Current Charges :

Balance :

The name of the customer account .
The maximum credit to be extended to the cus­
tomer.
All charge transactions made in the current
month .
The balance of the previous month .

I ,
I

i I

pr'
220 S. The Box Structure of Information Systems

If Name matches a Customer Name , the transaction will leave Cus­
tomer Name, Credit Limit, and Balance unchanged in the new state, and
Current Charges will be increased by Amount if Credit Limit is not ex­
ceeded. In this case, the output will be an approval if the limit is not
exceeded, a rejection if it is. If Name is not recognized, the charge will be
rejected .

The Payment transaction accepts Name and Amount as input and
requires two state items from previous transactions :

Customer Name : The name of the customer account .
Current Payments: All payment transactions made in the current

month .

If Name matches a Customer Name, the transaction leaves Customer
Name unchanged in the new state and increases Current Payments by
Amount . In this case , the transaction output is a confirmation of payment
acceptance. If Name does not match a known name, the output is a
rejection of the payment.

A similar state analysis can be carried out for the remaining transac­
tions . The full analysis results are summarized in Table 5 . 2- 1 . Note that
the Table reflects the transaction dependencies previously described. A
transaction cannot be carried out if the state items it requires have not
shown up previously in the input history of the Charge Account System
black box. Thus, the Open Account transaction must precede Charge,
Payment, and Billing transactions . Similarly, Charge depends on Set
Credit which in turn depends on Credit Application , Credit Check , and
Salary Check . These dependencies provide a natural structure for ex-

Transaction

Bill ing

Charge

Table 5.2-1

Charge Account State Machine Transitions

Input

Bil l ing
Request

Charge
Request

Name
Amount

Old State

Customer Name
Balance
Current Charges

Current Payments

Customer Name
Credit Limit
Current Charges

New State

(same)
New Balance
No Current

Charges
No Current

Payments

(same)
(same)
New Current

Charges

Output

Bills

Approval
(or not)

5.2 Analysis of Box Structures 22 1 I t
Table 5.2·1 (Continued) I , ' I I

Transaction Input Old State New State Output

Payment Payment Customer Name (same) Confirmation
Request Current Payments New Current (or not) , I Name Payments

Amount 1 ,1
Open Account Open Customer Name Confirmation

Account No Balance (or not)
Request No Current

Name Charges
No Current

Payments
No Credit

Limit

Set Credit Credit Customer Name (same) Credit Limit
Limit Limit Appl ication (same) Confirmation

Request Credit Results (same) (or not)
Name Salary Results (same) , I I Credit Limit I I

Credit Credit Application Confirmation
Application App. (or not)

Request
Name
Appl ication

Data

Credit Check Credit Application (same) Confirmation
Check Credit Results (or not)
Request

Name
Credit

Data

Salary Check Salary Application (same) Confirmation I Check Salary Results (or not)
Request

Name
Salary

Data

222 5. The Box Structure of Information Systems

plaining proper system operation to users , in instruction courses and user
guides . They are also an important topic in design , in determining how
much checking for proper transaction sequencing must be done by the
system, and at what cost in efficiency.

5.2.4 Procedure Analysis

The state definitions of the previous section can be used to create
procedural explanations of the transactions of the Charge Account Sys­
tem as shown below. These explanations make use of BDL structures ,
but are not in themselves clear boxes. They are intended to be used in a
process of analysis and review with prospective owners and users of the
Charge Account System, to arrive at understanding and agreement on
system functions . Such procedures specify the function of the ultimate
system design , but are not intended to substitute for , or prescribe the
structure of, that design .

Billing:
while more Customer Records exist
do

od

Set Balance to Balance + sum of Current Charges - sum of
Current Payments

Send Bill
Set Current Charges to empty
Set Current Payments to empty

Charge:
if Name is a Customer Name
then

if Balance + Current Charges + Amount does not exceed
Credit Limit

then
Set Current Charges to Current Charges + Amount
Return message "Charge approved"

else
Return message "Credit limit exceeded"

fi
else

Return message "Name unknown"
fi

5.2 Analysis of Box Structures 223

Payment:
if Name is a Customer Name
then , I i

Set Current Payments to Current Payments + Amount
Return message " Payment confirmed"

else
Return message "Name unknown"

Ii
Open Account:

if Name is a Customer Name
then

Return message " Existing Account Open"
else

Ii

do
Create Customer Name from Name
Set Balance to zero
Set Current Charges to empty
Set Current Payments to empty
Set Credit Limit to zero
Return message " Account for Name confirmed"

od

Set Credit Limit:
if Name is a Customer Name
then

if Application available and Credit Results and Salary Results
acceptable

then
Set Credit Limit to 0.05 * Salary

else
Return message " Credit refused "

Ii
else

Return message " Name unknown"
Ii

Credit Application:
do

od

Create Application for Name using Application Data
Return message " Application confirmed"

: I
I

I I

224 5 . The Box Structure of Information Systems

Credit Check:
if Application available for Name
then

Create Credit Results from Credit Data
Return message "Credit Results confirmed "

else
Return message "No Application for Name"

fi

Salary Check:
if Application available for Name
then

Create Salary Results from Salary Data
Return message "Salary Results confirmed"

else
Return message "No Application for Name"

fi

Review of this preliminary level of transaction , state , and procedure
analysis with owners and users will l ikely result in still more transactions
with corresponding additions to state and procedure definitions , for an­
other iteration of analysis and review.

Summary: Annotated box structure diagrams facilitate manager
and user discussion and discovery in information systems analy­
sis . Box structure diagrams provide a basis for the effective con­
trol of the context of analysis by gradually narrowing context
with increasingly precise diagrams . Transaction analysis , state
analysis, and procedure analysis should proceed together in pro­
viding a framework for dealing with increasing detail without los­
ing perspective .

5.3 DESIGN OF BOX STRUCTURES

Preview: The results of information systems analysis , recorded
in the analysis library, are used as a basis for information systems
design , which is recorded in a design library. Transaction design ,
state design , and procedure design provide a systematic basis for
developing the box structure of an intended information system.

5.3 Design of Box Structures

5.3.1 Designing Box Structures for Business Operations

225

The principal objective of system design is to create a system that
satisfies the information needs discovered in the analysis of business op­
erations . But other objectives must be satisfied as well . It does no good to
create a system that satisfies information needs if it is delivered late , costs
too much, is too difficult to use , or is error prone and unreliable . So the
right design process is design to cost and schedule and quality . Such a
process requires good intellectual control at all stages of design, to distin­
guish essential system functions from frivolous features , and to balance
the work remaining with the schedule and budget remaining. The princi­
pal objective of the box structure design process is to maintain in­
tellectual control in meeting the objective of an information system. Anal­
ysis is the art of the possible, but design must be the art of the prac­
tical .

Context is used to advantage in different ways in analysis and design.
In bottom-up analysis , the natural context of business operations is used
to simplify explanations, to promote understandability and broader par­
ticipation by prospective system owners and users . In top-down design,
precise context of box structures at each level defines the environment
and function of box structures at the next level. A black box is the context
for a state machine description , which becomes the context for a clear
box expansion.

System design culminates in a top-down recording process. The box
structure methodology enforces this process to permit good intellectual
control at each stage of design. But the box structure methodology does
not guarantee intellectual control. For example , it is foolhardy to attempt
a top-down design process without knowing where you are going. The
analysis which precedes design is intended to help you discover where the
design must go. With this understanding, the design task is to organize the
results of analysis into a coherent box structure .

Even with comprehensive analysis beforehand , design is still an itera­
tive process . Design refinements may suggest simplification at higher lev­
els , leading to redesign from the top down to take advantage of the new
insight. U nanticipated complications or simplifications encountered in de­
sign can affect analysis results as well . Slight changes in user needs, often
of little consequence to business operations , may result in significant
reductions in design complexity . Conversely , more effective user func­
tion may be possible at little or no cost as a side effect of increased design
simplicity.

1: 1 · '
I I : I'

I I '

226 5. The Box Structure of Information Systems

5.3.2 Transaction Design

The foregoing analysis provides a basis for a Charge Account System
design. The transactions identified can be designed one by one as required
by the analysis. The input to the Charge Account System black box must
identify the transaction type required for each transaction. This i dentifica­
tion may be done automatically by the equipment (only charges from cash
registers , etc .) , but within the i nformation system the external origin of
inputs may be lost, so the transaction type must be identified, whether
added automatically or not . In illustration, we suppose transaction inputs
are self-labeled as to transaction types (so the clear box will contain a case
statement which handles the various transaction types as cases) . The
BDL for the Charge Account System black box is given in Figure 5 .3- 1 .

The input of this black box includes data of the transaction type, called
Trans, and a generic type, called In Data. The key word generic denotes
data of a type yet to be specified . In this case the type specification
depends on the value of Trans , namely , the tran�action type of the input,
as given in Table 5 . 2- 1 .

The designs of input and output will make use of the information
structures discovered during analysi s . User languages for input and report
designs for output can be designed using syntax structures . Data struc­
tures provide the design for input and output data. The system design may
also include facilities for sophisticated user i nput/output interfaces such
as natural language processing or even voice communication.

5.3.3 State Design

The previous analysis has already identified the need for state data in
summarizing input history into such items as Balance, Credit Limit, etc . ,
for ready access. Therefore , a design for the Charge Account System
state machine can proceed as shown in Figure 5 . 3-2 .

define BB Charge Account System

input
Trans: (Bil l ing , Charge , Payment , Open Account , Set Credit Limit)

I n Data: generic
output

Out Data: generic
transaction

As given by analysis

Figure 5.3-1. Charge Account S ystem B lack Box.

5.3 Design of Box Structures 227

define SM Charge Account System
input

Trans : (Billing. Charge, Payment, Open Account, Set Credit Limit) I In Data: generic
output I '

Out Data: generic !
state

customer file:
file of record

name :
address :
balance:
charge file :
payment file:
limit:

end record

machine
As given by analysis

character
character
$ value
file of $ value
file of $ value
$ value

Figure 5.3-2. Charge Account System State Machine.

5.3.4 Procedure Design

The foregoing analysis has already identified the procedures required
for the various transaction types. As noted , analysis deals with the art of
the possible , design with the art of the practical . In the Charge transac­
tion , it is possible to compare the balance plus all current charges plus the
present charge with the credit limit , even charges made ten minutes ago.
However, this will require that customer files be available for update and
access continuously in time . It may happen that the computer equipment
envisioned for the system has no provision for continuous update of cus­
tomer records , but provides for updating them at the end of the day in a
batch execution. In this case , the design may require that charges be
accumulated during the day , and added to customer records at night . A
way to do this is to define a charge transaction file in the state , and to add
a new transaction , called a merge transaction, to the black box . In turn,
this forces a return to the analysis phase , analyzing the effect of this
design with the store managers . Is it satisfactory to allow customers to
charge all day against the previous day's running balance or not? It is a
business question on tradeoffs between the information system and the
needs of the business .

Let ' s suppose that the credit manager regards such a design unsatis­
factory . Can anything else be done? The charges of the day can be re­
tained on l ine and each new charge transaction can search the day ' s
charges for that customer, in order to get a true credit check. I t will take

228 5 . The Box Structure of Information Systenu

more processing for each charge transaction than originally planned , bUl
it allows customer records to be updated only once a day. It is a tradeofl
made between the business and the information system that is acceptabl(
to all parties.

There are more ramifications for this new design decision, however.
The payments of the day should be retained on line , as well , because the
sales manager points out that the store could lose sales and even more
good will if payments are not current in credit checks . Furthermore , new
customer accounts will be accepted each day, but need to be added to th(
customer file at night . This causes the sales manager a small problem.
Customers will not be able to make charges until the day following the it
application . But the sales manager decides that it is a tolerable solution.
These analysis/design decisions are reflected in the clear box given next.
Note that a Day Charge File, Day Payment File , and Day New Customel
File have been added to the state, and a Merge Transactions procedure
added to the black box .

The clear box , as already noted , will contain a case statement to
handle each transaction type separately , and is shown in Figure 5 . 3-3 .

The procedures for these cases are given in Figures 5 . 3-4 to 5 . 3-9.
Note that Day Charge , Day Payment, and Day New Customer files are
required in the state for the Charge , Payment, and Open Account proce­
dure designs , respectively , to permit updating the Customer File just once
a day . The run BB Credit statement in the Set Credit Limit procedure
design invokes a nested box expansion which must have carried out the
Credit Application , Credit Check, and Salary Check transactions , in or­
der to have available state information required by this invoking proce·
dure . The & notation means concatenation of data.

Is this design adequate for business needs? The design process can
often reveal gaps in the analysis process that precedes it, and lead to
further analysis and design activities . It is easy to see that analysis and
design of a real charge account system could involve many additional
transactions , with corresponding state data and procedures.

Summary: A top-down box structure development , based on a
well organized analysis l ibrary , facilitates reviews and tradeoff
studies for consistency , completeness , and practicality in infor­
mation systems design . BDL box structures provide effective
control of the context of design , by creating a precise context at
each level for the next level of design . Transaction , state , and
procedure design should proceed together in providing a frame­
work for increasing detail without losing intellectual control of an
evolving design .

define CB Charge Account System
input

Trans : (Bi l l ing, Charge, Payment , Open Account , Set Credit Limit)
In Data: generic

output
Ou t Data: generic

state
Customer File
Day Charge File
Day Payment File
Day New Customer File

machine

data

data
confirmation

procedure

case Trans
part (Bi l l ing)

run Bil l ing (In Data ; Out Data)
part (Charge)

run Charge (In Data; Out Data)
part (Payment)

run Payment (In Data; Out Data)
part (Open Account)

run Open Account (In Data; Out Data)
part (Set Credit Limit)

run Set Credit Limit (In Data; Out Data)
part (Merge Transactions)

run Merge Transactions (In Data; Out Data)
esac

Figure 5.3-3. Charge Account System Clear Box.

hi l l : record
bills: file of record bil l

proc Bil l ing(ln Data: none ; Out Data: bi l ls)
while

more records in customer file
do

od
corp

bi l l : = name & address & balance ;
balance : = balance + sum of charges in charge file - sum

of payments in payment file;
bi l l : = bil l & charges in charge file & payments in

payment file & balance ;
bi l ls : = bil ls & bi l l ;
charge fi l e : = empty ;
payment file : = empty

Figure 5.3-4. Bil l ing Procedure Design .

proc Charge(In Data: name , amount ; Out Data: approval)
if

name is in customer file
then

if
balance +
sum of charges for name in day charge file -
sum of payments for name in day payment file :5 limit

then
day charge file : = day charge fi le . & name & amount;
approval : = "charge approved"

else
approval : = "credit limit exceeded"

fi
else

fi
corp

approval : = "name unknown"

Figure 5.3-5. Charge Procedure Design .

proc Payment(ln Data: name , amount ; Out Data: confirmation)
if

name is in customer file
then

day payment file : = day payment file & name & amount ;
confirmation : = "payment confirmed"

else

fi
corp

data

confirmation : = " name unknown"

Figure 5.3-6. Payment Procedure Design .

customer record
proc Open Account(ln Data: name, address; Out Data: confirmation)

if
name is in customer file

then
confirmation : = "existing account"

else

fi
corp

customer record. name : = name ;
customer record.address : = address;
customer record. balance : = 0;
customer record .charge file : = empty;
customer record .payment file : = empty;
customer record . l imit : = 0;
add customer record to day new customer file;
confirmation : = "account for name confirmed"

Figure 5.3-7. Open Account Procedure Design .

Design of Box Structures

data
application data

credit data

salary data

proc Set Credit Limit(ln Data: name; Out Data: confirmation, l imit)

if
name is in customer file

then
run BB Credit (i ndata: name ; outdata: application data,

credit data, salary data) ;

if
application and credit and salary results acceptable

then

l imit : = 0.05 * salary ;
confirmation : = "credit i s " & limit

else
confirmation : = " credit denied"

fi

else

fi

corp

confirmation : = " name unknown "

Figure 5.3-8. Set Credit Limit Procedure Design.

proc Merge Transactions(ln Data: none ; Out Data: confirmation)

while
more charges in day charge file

do
charge file (name) : = charge file (name) & charge

od;
day charge file : = empty ;

while
more payments in day payment file

do
payment file (name) : = payment file (name) & payment

od;
day payment file : = empty ;

while
more customer records in day new customer file

do
merge customer record into customer file

od;
day new customer file : = empty ;

confirmation : = "merge completed "

corp

Figure 5.3-9. Merge Transactions Procedure Design .

23 1

232 5. The Box Structure of Information Syste ..

5.4 BOX STRUCTURE DESIGN PRINCIPLES

Preview: Box structures provide intellectual control in complex
information systems development . State migration di stributes
state data to appropriate levels in box structure design . Common
service box structures avoid dupl ication in state migration . Con­
currency control in concurrent box structures must be explicitly
designed .

5.4.1 Intellectual Control of Complex Designs

It is a Chinese proverb that a journey of a thousand miles begins witl
the first step. That is certainly true , but if the traveler meanders in circle�
in uncharted lands , the journey of a thousand miles may never be com
pleted , no matter how many steps are taken. Complex information sys
terns design can be subject to the same pitfalls and hardships. If the
designers meander or circle they may never complete a design . However
it is easy to ensure progress in a journey with proper maps and a plan 0
travel . But it is not so easy to ensure progress in a design, because there
are no maps .

Fundamental Principle: The function of box structures is to en­
sure progress in the design of complex information systems .

A box structure of a thousand black boxes must be traveled a step at (
time . But box structures provide the designer with a mapmaking ability 1<
measure progress and refine plans as unexpected obstacles (or easy tasks:
are encountered. This theory begins with the fact that every system to b(
designed will have black box behavior. The usual problem is that thi�
behavior is too extensive and complex to write down in one step in ar
understandable way . Instead , the knowledge of this behavior will be dis­
tributed among several or many people , and some of the behavior may nO'I
be yet worked out or explicitly known to anyone .

What is the first step then? It is to identify this top level defining blad
box and decide how to decompose and defer its description by a top leve
BBISM/CB structure , depicted as follows, with several new black boxe�
identified at the next level .

5.4 Box Structure Design Principles

I I
BB BB

BB

I
SM

I
CB

I I
BB

I
BB

233

Obviously, this first step of design must have been preceded by con­

siderable planning and analysis . Good choices of decomposition at the top
level require in-depth understanding of the activities that will make up
lower levels . So good design requires good analysis in advance, in order
to decide what data is to be defined in the state machine , and what clear
box of next level black boxes best decomposes the original black box.

Usually , each new black box will pose the same problem-it can be
identified but not adequately described . Now there are two kinds of tasks:
verification and expansion . In verification, it must be shown that if the
next level black boxes have the identified behavior, then the top level
black box , as designed in its clear box, will have the desired behavior. In
fact , this verification task serves to ensure the correct identification of
behavior for the next level black boxes. In the second task of expansion,
any black box which cannot be completely and precisely described must
be itself expanded into a BB/SM/CB structure, possibly generating new
black boxes in the process . Everyone involved with this expansion should
be thoroughly familiar with the verification step, in order to know what is
expected of the black box being expanded . Thus , each new black box
begins with its own first step. In short , there are nothing but first steps in
this design journey . At any point in the journey , the box structure hierar­
chy provides a progress map , and the black boxes remaining represent the
design work to be done . A word of caution is in order about this journey.
It defines a top-down design process , but it requires enough bottom up
analysis to ensure that each step is well chosen. This analysis should
identify the best way to "divide and conquer" the complexity remaining
in the black box identified . In fact the clear box forces another consider­
ation, to "divide, reconnect , and conquer," so that the box structure is
solid and well founded during its development.

Fundamental Principle: The basis for intellectual control of
complex information systems design is top-down development of
its box structure , in which black box behavior is structured into a
hierarchy of box expansions , each expansion step a limited activ­
ity of analysis and design .

234 5. The Box Structure of Information

5.4.2 State Migration in Box Structures

A clear box expansion of an original bl ack box and its state mac
into several other black boxes and their state machines already implies
distribution of state parts across the hierarchy . The state of the entire
structure is made up of the states of state machines defined throughout
hierarchy . However first conceived , further analysis and study may
veal possible improvements to the distribution of state parts across
hierarchy of the box structure. This section discusses sound and
ways to migrate state parts in box structures in order to maintain
external behaviors .

As discussed in Chapter 3 , it is possible to distribute parts of an e
state of a hierarchy of state machines in an arbitrary way . When
hierarchy is generalized through clear boxes that reference several ma,elCl1.
boxes at each expansion , the distribution of state parts must be restnc:tecm
in certain ways . For example, if a state part is accessed or altered in
one of several black boxes in a clear box expansion , then that state
can be migrated to the state machine of that lower level black box . now� .•
ever, if a state part is accessed or altered by more than one black box in
clear box expansion , that state part cannot be migrated downward,
cause the behavior of the clear box would be changed by such a ml'� �ratlonl.;(..

A simple example of such an effect can be seen in the alt�r"''''' f·in. ... '­

structure of Odd :Add2 IAdd2 . The Odd :Add2 lAdd2 clear box with s
state, depicted in Figure 5 .4- 1 , exhibits behavior as follows , for stimullw�'.
history 3 6 1 9 6 and initial state value of 0:

S S I OS I R I N S I S2 OS2 R2 NS2 R

3 3 0 3 3 3
6 6 3 9 6 9
I I 6 7 I 7
9 9 1 0 9 10
6 6 9 15 6 15

In contrast, the Odd: (Add2) I (Add2) clear box with migrated (dupli­
cated) state , shown in Figure 5.4-2 , behaves as follows ,

S S I OSI RI NSI S2 OS2 R2 NS2 R

3 3 0 3 3 3
6 6 0 6 6 6
I 1 3 4 4
9 9 IO 9 I O
6 6 6 1 2 6 1 2

5.4 Box Structure Design Principles 235

Odd : Add 2 1Add 2

r - - - - - - - �== State : .. - -,
last st imulus -

1 I
I I

OS2 : OS I NS I I NS2
I I

I I

I Add2 I

I
I

SI I R I • I

S

t.
+

Add 2

I

R

R 2

Figure 5.4·1. The Odd:Add2lAdd2 Clear Box with Shared State .

which is not the behavior of the shared state version at all . That is, when a
state part is migrated into two different state machines at a lower level ,
they simply behave as two different state machines , not one as before.
There may be impelling reasons to migrate state parts downward in the
hierarchy to more than one state machine , say for reasons of geography (a
distributed database) or for security, however, the clear box must then be
redesigned to keep the duplicated state parts always identical in content .
For example , every invocation of one state machine (through the black
box) must trigger an identical invocation of every other state machine in
the duplicated set, say by a concurrent or sequential structure that con­
tains all of them.

Fundamental Principle. State Migration: State parts should be
migrated as low as possible in the box structure hierarchy without
requiring duplicated updating ; if lower migration is necessary, the
clear box should be redesigned to ensure the dupl icated updating
required .

At any point in the design of a box structure hierarchy, identification
of new black boxes in a clear box expansion of a state machine provides a , I i i

236 5. The Box Structure of Information

Odd : (Add 2) I (Add2)

(Add 2)

State :
r - last st imulus -,
I I , I

OS I ' , NS I , I , , , Add 2 ,
S l .� I R l I

S � F

R

(Add2)

State :
r last stimulus l ,
I I

OS2 1 : NS2
I I , I I Add2 I I I S2 t R2

Figure 5.4-2. The Odd: (Add2) i(Add2) Clear Box with Migrated, Duplicated States.

potential opportunity for state migration . State migration permits simplifi­
cation of the clear box state , and isolates the migrated state parts into
subhierarchies for better control of access and update operations. The
value of state migration in limiting and organizing complexity
structure design leads to the following fundamental principle.

Fundamental Principle. Clear Box Design: Clear boxes should
be designed with state migration possibilities in mind , by isolating
operations on state parts into individual black boxes, whose state
machine expansions become migration opportunities .

5.4 Box Structure Design Principles

5.4.3 Common Services in Box Structures

237

When several black boxes of a clear box expansion access or alter a

common state part , it is generally inadvisable to migrate the state part to

those levels . But it may be advisable to define a new box structure to
provide access to or alter this common state part for these several black
boxes . (Of course , such a new box structure must be invoked in the clear
box expansions of these black boxes .) This new box structure thereby
provides a common service to these several black boxes . Such a common

service box structure in effect encapsulates a state part , by providing the
only means for accessing or altering it in the overall box structure .

State encapsulation requires defining a new box structure whose state
will contain the common state part , and whose transitions will provide
common access to that state part for multiple users . In essence , state
encapsulation permits state migration to be carried out in another form,
with the provision that the only possible access to the migrated state is by
invoking transitions of the new box structure that encapsulates it .

Common service box structures are ubiquitous in information sys­
tems. For example , any database system behaves as a common service
box structure to the people and programs that use it. In simple illustra­
tion , consider a clear box expansion of a master file update state machine .
Such a clear box would contain a number of black boxes which operate on
the master file , for example, to open , close , read , and write the file , as
well as black boxes to access transaction files , directory and authorization
information , etc. The master file of the clear box state cannot be migrated
to the lower level black boxes without duplication . However, the master
file can be encapsulated , without duplication , in a new box structure that
provides the required transitions to open , close , read , and write the file .
This box structure can be designed to ensure the integrity of the master
file , and all access directed to it. In fact , when the master file is migrated
to this common service , it is protected from faulty access by the box
structure in an effective way .

Imagine the box structure hierarchy for a master file update clear box ,
as conceptually illustrated in Figure 5 .4-3 . Black boxes to open, close ,
read , and write the master file appear at various points in the hierarchy,
all of which access the master file contained in the clear box state .

Figure 5 .4-4 shows the same clear box , redesigned to invoke a new
box structure named Master File , which encapsulates the master file and
provides common services to open , close , read , and write the file . Note in
the hierarchy that the previous black boxes to open , close , etc . , have been
replaced with invocations of the Master File box structure , where each
invocation must now identify the particular transition requested . The

238 5. The Box Structure of Information

State:
Master file
Transaction file
Directory
Authorization

Figure 5.4-3. A Conceptual Box Structure Hierarchy for Master File Update .

Master File box structure is depicted in Figure 5 .4-5 in clear box form,
with the migrated master file as its state, and four possible transitions that
can be requested by its users . Such an encapsulation offers a number
advantages . First , it permits state migration to proceed , to help simplify.
the original clear box and isolate the migrated state and its operations .
Second , a clean interface between the new box structure and its black box
users is created , to permit concurrent development of both .

Common service box structures often require definition of permissi
sequences for correct use . Any other transition sequence is incorrect a
would result in an error response to the invoking clear box.

5.4 Box Structure Design Principles

State :
Transaction file
Directory
Au thorization

Master
file

Master
file

239

(Read) (Close)
Master

file

(Open)

(Read)

Master
file

(Write)

Master
file

(Wri te)

Figure 5.4-4. A Conceptual Box Structure Hierarchy for Master File Update Using a
Common Service.

Fundamental Principle. Common Services: When more than
one expanded black box accesses or alters a state part , it is advis­
able to consider the encapsulation of that state part in a common
service box structure to be used by these black boxes .

5.4.4 Black Box Replacement in Box Structures

A black box is a unit of design or description that can be isolated and
treated on its own, independentl y of its surroundings in a system descrip-

I . I
(

I I

240 5. The Box Structure of Information

M aster file

r - - - - - - -� State : I Master file
I • I I Open I t I I
I I I Close I

S .. 7-
t I I
I I Read I t

R

I
f
f
f
f Write f t

Figure 5.4-5. A Common Service Clear Box for Master File Update .

tion . In particular, a black box can be replaced by another black box of ,
identical behavior and the rest of the system will operate exactly as be- '
fore . Such black box replacement may be required or desirable for pur­
poses of better efficiency , changing hardware , or even in changing from
manual to automatic operations.

In some cases , however, it may be required or desirable to replace a
black box by another black box of different , improved behavior. For
example, consider the Inventory reorder rule clear box of Figure 5 .4-6.
The Sales forecast black box shows responses of S (Sales) , c:tnd SF (Sales
Forecast) . If the sales forecast is a running average , this black box might
be replaced with another black box more efficient than this one , or by
another deemed more suitable for this particular item of inventory . Simi­
larly , if the Inventory calculation is based on the months of supply reorder

5.4 Box Structure Design Principles 24 1

Inventory reorder rule

Sales forecast Inventory calculation

S S, SF
R

Figure 5.4-6. Inventory Reorder Rule Clear Box.

rule, which is known to have undesirable properties from the analysis of
Chapter 1 , it could be replaced with a more suitable black box , as well .

In illustration, consider a sales forecast for a seasonal item in which
seasonal adjustments are based on a 5-year average and the forecast is
based on the past year. That is, next month's sales are forecast as the
fraction of that month' s sales of total sales for the past 5 years times the
total sales of the past year. In particular, given the past 5 years of sales (60
months) S 1 , S2, . . . , S60, the sales forecast SF is:

(S 1 2 + S24 + S36 + S48 + S60)
SF : =

(S I + S2 + . . . + S59 + S60)
* (S I + S2 + . . . + S 1 2)

Similarly , consider an inventory calculation of an (s ,S) type in which
L,H (Low, High) are two factors applied to sales forecast SF such that if
inventory I < L * SF, then inventory reorder R = H * SF - I, otherwise
R = O. Such a sales forecast and inventory calculation will produce very
different and improved behavior for a seasonal item than the original k
months of supply inventory reorder rule .

Fundamental Principle: Black boxes can be freely replaced by
other black boxes of identical behavior for improved responses or
better box structures.

Note that the foregoing analysis not only suggests a simple but gen­
eral black box for inventory reordering, but also identifies the require­
ment that both sales S and a sales forecast SF are required by the inven­
tory calculation. That requirement is not itself difficult to invent
independently , but in more complex, less familiar situations, such a sys­
tematic analysis ensures sufficient data for calculations in the box struc­
ture derived.

i I

242 s. The Box Structure of Information

The principle of black box replacement is based on an important
cept called referential transparency, which means that, in some context,
reference to an object by its name gives the entire effect of the obj
itself, independently of how or where the name is used . Referential trans­
parency is widely used in mathematics . For example, if the object is an
arithmetic expression , say 3 + 5, it can be replaced by its name, the value
8, in any larger expression, such as

(3 + 5)/4, (9 + 15)/(3 + 5) , 3 + 5 + 7

to get new expressions

8/4, 24/8, 8 + 7

regardless of where it appears . Such arithmetic expressions can also be
expressed in hierarchies, with operations denoting internal nodes and
numbers denoting end nodes . For example the expression (24 - (3 + 5» 1

(6 + (5 - 3» has the hierarchy shown that can be evaluated, by referential
transparency, a step at a time (that creates a new hierarchy with each
step) .

+

�
24 + 6

3 5 5 3

In box structures, a black box serves as a name (a description of
complete behavior-a specification) and its clear box is an object with
that name . Since the clear box may reference other black boxes by name,
a hierarchical structure permits a divide, reconnect , and conquer strategy
in box structure design .

But hierarchical structures in themselves do not ensure referential
transparency. For example , it is possible to imagine hierarchies of data
flow diagrams , but they do not provide referential transparency because
data flow diagrams summarize certain aspects of system or subsystem
behavior rather than specify or describe that behavior. Such data flow
diagrams serve as artist sketches for these aspects , and are suggestive,
but not definitive , of system behavior , whose final determination is pro­
vided by the implementation . While such ambiguity and freedom may
improve the self esteem of implementors temporarily , it usually provides
unpleasant surprises for managers , users , and operators , to the eventual

5.4 Box Structure Design Principles 243

frustration of implementors in having to rework the system into a satisfac­

tory form. The lack of referential transparency is less demanding in disci­
pline , but in the end , inhibits real creativity and productivity in system
development.

5.4.5 Concurrency Control in Box Structures

The concurrent control structure provides a means of representing
concurrency at all levels of a box structure hierarchy . The control of
concurrent subsystems requires explicit analysis and design. In a clear
box concurrent structure (Figure 4 . 1 -8) each component machine accepts
a stimulus and old state and produces a response and new state . The
concurrent structure , then, produces a response that is a grouping of
individual machine responses and a new state that is some resolution of
the individual new states. The design of the Resolve black box will handle
the details of generating the new state .

A primary concern in analysis and design of concurrency control i s
whether the concurrent machines are independent or dependent in terms
of resource requirements. Machines are dependent upon on one another
when their resource requirements overlap. Shared resources may include
state data, input/output devices such as terminals , printers, or communi­
cation lines , or even computer processing cycles and memory.

The design of concurrency control when all component machines are
independent is straightforward. All machines accept the same stimulus
and old state and independently produce a response and new state. The
overall response is a grouping of the component responses . The Resolve
black box can be designed to form a new state by recognizing the changes
in each machine's new state and merging these changes into a single new
state . Note that the independence criteria requires that no two machines
change the same items in the state data. Thus, no conflicts are possible in
the resolution of the state.

Many. examples of concurrent , independent subsystems can be found
in business processes . For example, consider a large catering business
that has separate departments , that specialize in preparation of entrees ,
salads and appetizers , desserts , and drinks . Figure 5 .4-7 shows a concur­
rent clear box that describes the processing of a typical order for this
business.

A catering order is accepted by the Take order black box . The de­
tailed order is recorded in the state of the business and a stimulus is sent
to a concurrent structure for controlling the food preparation to execute
the order. Then, independently, each department prepares its portion of

o rder

OS I
�

� - - - - - - - - - - - -

r - - - - -

r

NS I OS2

-
Take
order

+ - I R I = S2 +
-

,-----

-

�

A catering business

Resolve

State

Salads and
appetizers

Entrees

Desserts

Drinks

- - - - -- - - - - - - - - - �

�

NS3
- - - --- -,

:-l (NS2 1 , NS22 ' 1 NS23, NS24) I
I
I
I
I

� (R2 1 , I NS2 1) 1

-

i-------

I
(R22, I NS22) I

I
I

(R23 I (R2 1 , R22,
NS23) I R23, R24)

(R24, NS24)

I = S3

OS3

Pricing and
delivery

I

Fiatn'e 5.4-7. A Catering Business Clear Box with Concurrent Operations.

1

Deli very

5.4 Box. Structure Design Principles 245

the order. From each department , the response is the availability of pre­
pared food and the new state is an updated order status , plus pricing and
inventory information for materials and labor. The Pricing and delivery
black box prepares a final bill for the order for delivery to the customer.

The design of concurrency control for concurrent , dependent ma­
chines is necessarily more complex . As observed in Chapter 4, a common
objective of concurrency control in this situation is serializability. That i s ,
the behavior of a concurrent control structure must be equivalent to the
behavior of one of the possible sequential orderings of its component
machines. Note, however, that other concurrency control objectives may
be required. For example, perhaps only a few of the possible sequential
machine orderings result in acceptable behavior. In this case , additional
controls in clear box structure must be designed to ensure that the desired
behavior is produced by the concurrent structure .

The principle of transaction closure can be applied to concurrency
control analysis and design . Once control objectives for a concurrent
clear box have been determined and analyzed , additional subsystems may
be required to supply the concurrency control processing. A well-known
example is the design of locking methods for shared state data among
concurrent machines. Locking methods would require the design of a
subsystem to process request-to-lock transitions and analyze data depen­
dencies among the concurrent machines . A lock table data structure
would be required in the subsystem state . The response of the locking
subsystem would identify permissible processing actions that each con­
current machine could perform. In most cases , this would require some
form of iteration control structure to allow multiple transitions of the
concurrent control structure . For example, in modern database systems
with shared access among multiple users , a single user transaction will
require literally thousands of transitions in a box structure several levels
deep for locking, unlocking, and other checks for data integrity . In sum­
mary , a successful design and implementation of concurrency control in
systems require a thorough understanding of the concurrency control
objectives and methods .

Fundamental Principle. Concurrency Control: If component
machines in a concurrent structure exhibit dependencies, for ex­
ample, in state data or hardware resources , then a concurrency
control subsystem, such as locking, is required to support a speci­
fied concurrency control objective, such as serializability .

246 S. The BOll Structure of Information

Summary: Intellectual control in information system develop­
ment depends on a "divide , reconnect, and conquer" strategy
made possible by box structures . New black boxes identified in a
clear box offer opportunities for state migration to their state
machine expansions. Duplication of state data in migration can be
avoided with common service box structures. Design of concur­
rency control depends on the degree of independence among con­
current machines .

5.5 THE BOX STRUCTURE OF THE NEW YORK TIMES

INFORMATION BANK

Preview: The New York Times Information Bank was devel­
oped in 1 969-1 97 1 and set new standards of productivity and
reliability. It was developed with box structures to permit re­
porters to access the Times reference morgue on-line . A top level
system design decision helped define the top level box structure
of the Information Bank, which included both batch and on line
subsystems.

5.5.1 The New York Times Project

The New York Times Information Bank was developed in a two-year
period in 1 969- 1 97 1 , by an IBM Chief Programmer Team headed by F.
Terry Baker. It set new standards of programmer productivity and pro­
gram reliability at the time, and represented an early demonstration of the
value of top down structured programming. It was the single greatest
spark in the "structured revolution" in program and information system
development . The New York Times Information Bank was developed
with the principles of box structures, which made top down structured
programming natural and easy.

The New York Times maintains many years of articles and other
material in a reference "morgue" , for use by reporters in researching and
writing new articles for the newspaper. In order to make the reference
material more accessible in the limited time required of reporters in get­
ting these articles out , the Times developed over many years an extensive
set of abstracts of its reference material , and a large thesaurus of descrip­
tors (words and phrases) that appear in those abstracts.

5.5 The New York Times Information Bank 247

Although not visible to the ordinary reader, many people are involved

every day in abstracting newsworthy material as it appears , and inserting

their descriptors into the Thesaurus. The Thesaurus (literally "treasure")

is extensive, too , over a thousand pages in length. The descriptors have

many cross references, so that a reporter may enter it by looking up a

descriptor of interest, find references to the abstracts and articles contain­

ing the descriptors , find cross references to other descriptors , look them

up, and so on , in following out material for a new article .
As can be imagined , many years of articles and abstracts will occupy a

large amount of cabinet space , and represent a considerable physical job

of document retrieval , as well as logical challenge . But the value to the

newspaper is also very great. The Times morgue is critical to the quality
of its operation as a great newspaper.

Even though The New York Times Information Bank, and its remark­
able productivity and reliability , was extensively reported , this is the first
account of the box structure methodology used in its development .
Rather than reporting in retrospect the design of The New York Times
Information Bank which is itself proprietary, this account seeks to create
an understanding of the problem, beginning with the ongoing human oper­
ations of using and maintaining the morgue , and how a top level solution ,
in the form of an information system, was conceived and begun.

5.5.2 Getting Started on The New York Times Project

In 1969 , The New York Times decided to automate its morgue . Imag­
ine yourself in charge of the project . What do you do? You know a lot
about the computer systems available-about computers , operating sys­
tems , programming languages, and data management systems. You have
two years , and you have a customer who knows the newspaper business ,
but not computers . But you do not know the newspaper business, and
even if you did , you might not know exactly how your customer wants to
conduct its business. The upshot is that , as much as you know, you 've
still got a lot to learn-not about computers , but about how your cus­
tomer wants to conduct business with computers . The problem is that
your customer can't tell you, because he does not know enough to visual­
ize exactly how computers can help. The result is that you are going to
have to learn a lot more about the newspaper business , and how your
customer wants to conduct it, than your customer needs to learn about
computers . You have to study all the alternatives that will effect the use
of computers , but your customer only has to use the specific alternative
that is eventually selected .

I
I I

248 5. The Box Structure of Information

In those two years you must accomplish three things-investigation
specification, and implementation. You might consider starting out
just implementing the best system you can figure out . But that would
irresponsible and foolhardy, to put it mildly. (But it is surpris ing
many times that is tried !) The fact is , you'd better get your customer'
agreement on what you're going to implement-that's a spe(;tn,catlO[l�·i
And in order to make a sensible proposal in the form of a specific
you'd better find out what your customer does know (no sense in rein�
venting the wheel , especially when yours may not be round and YOu�
customer's is !)-that's an investigation. So, realizing that , you still need
to allocate time to these three activities of investigation, specification, an�
implementation . The longer you spend on the first two activities, the les$
time you' l l have left for the last . In fact , it would seem that the more time
spent in investigation and specification, the longer it would take for imple�·

mentation . So there is a balance to be achieved, which depends on the
problem.

Let 's say your allocation is 3 months investigation, 3 months specifica�

tion, 1 8 months implementation. You now have these major milestones.
First, in 3 months , you must explain in good detail how the morgue
operation now works-how the morgue is used , how it is added to and
maintained, and what other things you don' t know, but need to know.
Perhaps the most difficult thing to learn is what you know and whether
that is all you need to know. Next, in 3 more months you must have an
agreement with your customer on what you are to implement . You have
to explain, in terms they can understand, what you propose to develop.
(Incidentally , it must be something within your power to develop in the
time you have left .)

Your experience in the investigation phase will be very valuable, in
learning what language your customer speaks, and how to speak it your­
self in the specification phase . Finally , in 1 8 more months , you must
deliver an information system that meets the specifications you've agreed
on . If you' re in trouble in this activity , it ' s of your own making. Your
trouble may be that you have promised too much . But it 's much more
likely to be that your box structures are too vague, too soft, with too littl�
rigor in their parts .

You can expect your box structures to be your best mental assets in
every phase . You are looking for solutions even in the investigation (not
leaping to conclusions), perhaps right out of current operations, or per:­
haps from a solution to a related problem. You had better have your ,
solutions in the specification-the 5% inspiration that will be followed by
the 95% perspiration.

However, in order to make your box structures as crisp and precise as

t

\

5

5.5 The New York Times Information Bank 249

possible, you should look to their inputs and outputs , and the syntax and
data structures (see Chapters 7, 8) that will help you define your box
structures as clearly as you can .

In The New York Times morgue, you discover that there are three
main classes of data. First , there are the periodicals and books of the
morgue, themselves-past editions of The New York Times, but also
many additional books, periodicals , and pamphlets not printed by the
Times. Second , there are the abstracts of the articles, which reporters
may use to decide whether to get the publications or not . Third, there is
The New York Times Thesaurus of Descriptors , two loose leaf binders of
over a thousand pages of terms (Descriptors) taken from abstracts and
organized alphabetically, but with cross references and other structures
of value for searching for abstracts and articles in the morgue.

It does not take long to discover that the Thesaurus is key to users ,
and key to automation. The users reach abstracts and articles through the
Thesaurus . Further, the existing abstracts and articles are unchanged
through time, there are just new abstracts and art icles added daily . But
the Thesaurus changes daily, first to accommodate new terms appearing
in the abstracts , second to reference new abstracts and articles , and third ,
to correlate new and old terms appearing in new abstracts and articles
with the use of terms already in the Thesaurus .

5.5.3 A Top Level System Design Decision

The first step in the development of a system is to identify its black
box, and achieve transaction closure . For all intended users , list not only
their transactions, but also any previous transactions required to allow
their transactions to be carried out by the system , and so on. For exam­
ple , in The New York Times system, the primary users are reporters
accessing past articles and reference material through the Thesaurus .
Therefore, previous transactions are required to get the Thesaurus, ab­
stracts , and locations of full text into the system, and secondary users will
need to be entering such data. Outside users will be charged for the
service, so billing transactions will be required. Users must have proper
authorization for the information they request , so authorization transac­
tions are required . Thus, the black box for the New York Times system
will contain at least four kinds of transactions:

Data Query and Retrieval
Data Entry
User Authorization
User B il ling

250 5. The Box Structure of Information

In the case of The New York Times Information Bank, considering
operations of The Times and the computer hardware/software available,
top level system design decision was required. After considerable
sis , it was decided to move User Authorization and User Billing t
tions off-line, and to break the Data Entry transactions into two
part on-line and part off-line . Data entered on-line during the day can
put into a transaction file ; then the on-line database can be updated
the transaction file off-line overnight . Such a decision takes a joint
sis of the operations of the enterprise and computer performance/ ec()o.
nomics of appropriate depth . It would have been possible , but economil
cally prohibitive, to put all transactions into a single on-line system�

'

However, it was satisfactory , and economically feasible, to keep the on,.
line database current up to the day, not up to the last minute.

With a decision to move some transactions or parts off-line, the on­
line system is better considered as an off-line, all day transaction itself
along with the parts moved off-line. Furthermore, with further analysis, a:
new user class of system operations , and transactions for controlling and
tuning the system, were identified .

Note that this top level box structure recognizes user input and output
explicitly. The data processing techniques for storing and retrieving ab­
stracts and Thesaurus entries are yet to be elaborated, even though they
are critical and interesting. A natural tendency for information systems
developers is to think about their own internal problems before they think
about the users ' problems . As a result , the final integration of solutions to
their problems into a system often uncovers unsolved or unresolved user
problems . In contrast , the box structure approach forces a system view
from the very beginning that includes the users .

Another tendency of information systems developers is to focus pre�
maturely on parts of a system and inadvertently to suboptimize the parts
focused on. For example , the on-line reference system is the most visible
and interesting part of The New York Times Information Bank . In con�

trast, the box structure approach forces the identification of the off-line
operations of database update, authorization, billing, etc . , that need joint
consideration with the on-line system . In this way, the whole system gets
top level scrutiny by analysts , designers , and managers with fewer after';'
thoughts and system patchups required .

5.5.4 A Top Level Box Structure for the Entire System

The conventional view of The New York Times Information Bank
would be a system of several programs , for example , one for its on-line

5.5 De New York Times Information Bank

S --+

The New York Times
Information Bank

I--- R

Figure 5.5-1. The New York Times Information Bank Black Box.

25 1

operations, one for incorporating the data entry transaction file into the

on-line database , one for granting authorizations, one for analyzing data­

base usage, and one for billing. In contrast, the box structure view begins
with the New York Times Information Bank as one black box as shown in
Figure 5 .5- 1 with stimuli and responses that accumulate into five types of

input/output as shown in Table 5 .5- 1 .
In this box structure view, the users of The New York Times Informa­

tion Bank enter data for various purposes : as operators of the on-line
system, as users of the information services, as data entry people , as
database specialists , and as financial specialists . But the entire system
behaves as one big black box for all of them. Each of the users individu­
ally sees a part of this black box behavior ; each enters stimuli (e .g. ,
keystrokes) that accumulate into inputs (e .g. , lines of data) and receive

Table 5.5-1

The New York Times Information Bank

Input and Output

Input Output

On-line

Control data Confirmation

Retrieval requests Information

Entry data Transaction file

Database Update
Transaction file Confirmation

Authorization Update
User data Confirmation

Billing
Control data User bills

U sage Statistics

Control data U sage statistics

· :1
j

, I ,

' 1 ,1. i t
' I

252 5. The Box Structure of Information

responses (e .g. , character echoes) that accumulate into outputs (e .g. '
messages on screens or printers). The on-line system handles many users
concurrently, so it must interweave all these stimuli and responses in
split second way to behave as a black box as a whole, and also to provide
seeming black box behavior to each user. For example , a hundred users at
terminals may produce stimuli that reach and are recognized by the sys­
tem in a specific sequence , even though many keystrokes are depressed in
each second .

Such black box behavior is impossible to comprehend without a great
deal of structure, but it is black box behavior nevertheless .

The next step to a box structure for The New York Times Information
Bank begins with its overall state machine shown in Figure 5 .5-2 . The
state data can be classified into various categories , as described in Table
5 .5-2 . This data is used in different ways by different transactions of the
system. For example , a specific input (stimulus history) will serve to tum '
on the on-line system for the day's operation. Although the users are on­
line , the on-line system itself is a batch job that takes all day to run . The ,
stimuli following that will be interpreted as terminal messages from users
signing on , entering data, retrieving data, or controlling the operation of
the system until a specific input serves to shut down the on-line system.

This entire day 's operation represents a single transaction at the sys­
tem level . The stimuli of this transaction are the collection of all stimuli
from all terminals that have occurred during the entire day . The responses
of this transaction are the collection of all terminal screens and printed
output produced during the entire day . These stimuli and responses, seg- '

The New York Times Information Ban k

State :

Authorization data
Session data
Entry data � - l r - - Database

I Data usage data I
I Accoun t data I I Control data I
I I
I I
I Machine

I
I I

S + I R

Figure 5.5-2. The New York Times Information Bank State Machine.

5.5 The New York Times Information Bank 253

Table 5.5-2

The New York Times Information Bank State Data Categories

Authorization Data
Session Data

Entry Data

Database

Data U sage Data
Account Data
Control Data

Data used to grant authority for user sign ons and queries
Data used to conduct on-line sessions with individual users , e .g . ,
sign on data, terminal data, user data, current mode of interac­
tion, etc .
Data accumulated in the transaction file today
Thesaurus , abstracts , and locations of full text available today
(note items generated today are in Entry Data)
Data used to analyze the use of data in the database
U sage data posted to user accounts for billing and analysis
Data used to control the system, allocate space to files and
database, give priorities to individual users , etc .

regated by terminals and sequenced in time , are interpreted by individual
users as the stimuli and responses for their individual transactions. The
on-line state machine transaction requires all day, from the state at the
beginning of the day to the state at the end of the day . It is a large, indeed
gigantic, transaction. But it is just one transaction of The New York
Times Information Bank.

In addition to the all day on-line transaction , another stimulus history
will invoke a (batch) database update transaction, still another will invoke
a (batch) user bill ing transaction , and so on . If authorizations are to be
added or deleted , another transaction will be called for. A database usage
analysis represents still another transaction for the system. In each case ,
on-line or batch, a transaction must be completed before the next transac­
tion is begun, just as in any black box or state machine . For example , the
database update can not be carried out concurrently with on-line opera­
tions . The type of state changes l ikewise vary with the transactions , as
shown in Table 5 . 5-3 .

The next step in the box structure of The New York Times Informa­
tion Bank is its clear box, which can be described as in Figure 5 .5-3 . Each
system transaction must first be recognized in a stimulus history that
defines the system transaction required . Once identified, the chosen sys­
tem transaction can be conducted on the basis of a continued stimulus
history . In the case of the all day on-line transaction, a large additional
stimulus history from many terminals is expected. In the other four batch
cases of Database Update , Authorization Update , Usage Statistics , and
Billing transactions, a relatively short additional stimulus history will fol­
low, which defines any particular conditions in a single input , and the
transaction will be completed in a single batch run of the computer.

Table 5 .5-3

The New York Times Information Bank State Machine State Changes

Transaction

Authorization
Update

On-line

Database Update

Billing

U sage Statistics

State Changes

Authorization Data
User authorities added/deleted

Session Data
None-session data disappears at end of each day

Entry Data
Accumulates the day's work of data entry personnel

Database
None-used for retrieval only

Data U sage Data
Updated for day's usage

Account Data
Updated for day's usage

Control Data
Updated for day's operation

Entry Data
Emptied to database

Database
Updated with day's entry data

Account Data
Reinitialized after user billing completed

Data U sage Data
Reinitialized after analysis completed

The New York Times Information B ank

State:
Authorization data
Session data
En try data

r - - - - - - Database 1--- - - - - -, Data usage data

S

I I Account data I Control data I I I I t I I I I Identify system I I Cond uct system I I transaction I I transaction I
I I I
+ I � I

Figure 5 .5-3. The New York Times I nformation Bank Clear Box.

s.s The New York Times Infonnation Bank

5.5.5 A Top Level Box Structure for the On-Line System

255

The all day on-line system interacts with terminals all day, each en­
gaged in many user sessions , each a sequence of interactions between a

user and the terminal (and system) . Each user session can be divided into
subsessions such as sign on , sign off, browse Thesaurus , retrieve ab­
stracts, data entry , etc . In turn , each of these subsessions is made up of
line (of data) transactions and each line transaction is made up of char(ac­
ter) transactions (keystrokes/displays) of the system. Such a structure of
transactions , including the batch transactions, of the entire New York
Times Information Bank is depicted in Figure 5 . 5-4 . Each day the system
can expect hundreds, even thousands , of sessions, each session up to a
dozen subsessions , each subsession from dozens to hundreds of lines ,
each line a few dozen characters .

The box structure of the on-line system mirrors this structure of trans­
actions . The terminal interactions are concurrent , with no sequential re­
quirements between them. But the transitions and transactions at each
terminal are sequential . Thus , the on-line system can expect from each
terminal :

A sequence of sessions , each
a sequence of subsessions , each

a sequence of l ines , each
a sequence of characters

In each case the sequence is determined by a user at a terminal in an
unpredictable way, and the system must be prepared for any character
stimulus at any time-even if illegal , in which case an error message is
called for.

This structure of transitions gives a form for the box structure of the
on-line system. At the top level , every stimulus, characters and lines,
must be accepted and immediately identified by its originating terminal .
Therefore , the state of the on-line system must contain a separate file of
stimuli for each terminal . In fact , this state must contain a data area for
each terminal to record the progress of sessions and subsessions of each
terminal . Then , each terminal can be treated independently , and the box
structure for each terminal can be developed independently of other ter­
minal considerations .

The box structure of an all day terminal describes the behavior of the
terminal throughout the day, session after session and user after user.
However, to the system, the terminal behavior is defined by a large stimu­
lus history , a character at a time . The same characters are used whether
signing on , entering data, browsing in the Thesaurus , retrieving informa-

256

I
Terminal

Session

I
Sign On Browse

I
Line Line

I I
Char Char

I
Online

I
Terminal

I
Session

5. The Box Structure of Information

The New York Times
Information Bank

Retrieve

I
Lin e

I
Char

D atabase
update

Terminal

Session

I
Sign Off

Figure 5.5-4. The New York Times Information Bank Transaction Structure.

tion, signing off, or whatever. Rather, it is not the character keystroked in
isolation that determines the behavior of the on-line system for the user,
but the sequence of characters keystroked up to any point.

The black box behavior of a terminal can be explained in a state
machine with a general transition, Respond to Terminal , as shown in
Figure 5 . 5-5. At first glance, such a general transition does not seem to
explain much. But we can expand it in a clear box structure , as shown in
Figure 5 . 5-6. The Respond to Terminal clear box shows the basic forma­
tion of inputs out of stimuli . With each keystroke , the user sees a new
display (usually with a single character added). If the keystroke defines an
input , then Respond to Input is invoked ; otherwise the last stimulus is
echoed in the display.

In turn, Respond to Input can be expanded , as in Figure 5 . 5-7 . The
components of this clear box are illustrative of the design of the Informa­
tion Bank, but not intended to show exact details , which would require
more explanation than space permits. Mode is a part of Session Data that
specifies which mode of user interaction the terminal is engaged in. At the
start of the day the mode is Sign On (waiting for first user) . After Sign On,
the mode may change (with proper authority) to one of the other modes

5.5 The New York Times Information Bank 257

All day terminal

State :
Authorization data
Session data

r - -
Entry data r+- ...,

I Database I

I
Data usage data

I Account data
I Control data I
I I
I I
I I
I Respond to terminal I
I I

S • I R

Figure 5.5-5. All Day Terminal State Machine.

by user request, then to other modes, and so on, and finally to Sign Off .
Following Sign Off, the mode reverts back to Sign On (waiting for the
next user).

At one more level of detail, a clear box expansion for Sign On is given
in Figure 5 .5-8. The first step of Sign On, namely Get and Check Name,

Respond to terminal

Respond to input

r---

Form input

S Input? R

Echo stimulus

�

Figure 5.5-6. Respond to Terminal Clear Box.

' , 1 ,
• I

258 5. The Box Structure of Information

Respond to input

Sign on

Enter data

Browse thesaurus

S

� Retrieve data

R

Control system

Sign off

Figure 5.5-7. Respond to Input Clear Box.

can be further expanded , as given in Figures 5 . 5-9, 5 . 5- 10, and 5 . 5- 1 1 , to
Get Name from the terminal input and Check Name with a black box
name file, which when given a name as input returns its authority (if any)
as input .

Summary: The New York Times Information Bank was devel­
oped according to box structure principles . Following a top level
system design decision, a top level box structure was identified
that included an all day on-line transaction along with several off­
line transactions . The top level box structure of the on-line sys­
tem was also identified .

Sign on

Get mode
request

r- I----

Get and
check password

,- f-.<€K? �

Get and Reject user,
check name no password

S � r<€K? � I--- R

Reject user,
no name

L...-..,.

Figure 5.5-8. Sign On Clear Box.

260 5. The Box Structure of Information Systems

Get and check name

Get name Check name

s R

Figure 5.5-9. Get and Check Name Clear Box.

Get name

Accumulate name

,.-- � s R

Figure 5.5-10. Get Name Clear Box.

Check name

Name file

s R

Figure 5.5-11. Check Name Clear Box.

5.6 EXERCISES

1. Develop a Delete Account transaction for the department store,
together with any state data required and a procedural explanation.

2. Reanalyze the state data definitions and transactions of Table 5 .2-1
for consistency and correctness. Can you find any transaction se­
quences that satisfy the dependency tree of Figure 5 .2-9, but which
could result in incorrect state data or output? If so, modify Table
5 .2 - 1 to produce correct results .

Exercises 26 1

3. Imagine extending the analysis to accommodate a financial manage­
ment function that forecasts 1 2 months' cash flow for the department
store management . Develop a sensible forecasting model, and the
transactions , state data, and procedural explanation to specify it .
Should the model be seasonal?

4. Develop a skeleton users guide based on the tree of transaction
dependencies and Table 5 . 2- 1 . How should the users and managers
of the system be organized in terms of responsibilities and accounta­
bilities? What does the human side of the work flow look like? Incor­
porate these ideas in the users guide .

5. Develop an analysis of transactions', state data, and procedural ex­
planations for the processes to be followed if the system breaks
down for a day .

6. Develop an analysis of the archive and backup requirements of the
system . That is , what information should be periodically purged
from the system, but kept for unforeseen needs?

7. Work out a box structure for the black box Set Credit, using the
analysis results of Section 5 .2 .

8 . The sales manager of the department store wants a sales report to
determine the role of credit limits in the size of purchases . Do cus­
tomers with higher credit limits make larger individual purchases or
just more purchases? How could the sales managers request be han­
dled in the Charge Account System?

9. The finance manager of the department store wants a daily report on
the Charge Account System to help in cash flow management of the
store . What would you suggest in terms of data provided the finance
manager, and how would you design such services into the Charge
Account System?

10. Develop a sensible inventory reorder rule for a dairy product with a
shelf life of 5 days . Describe its state machine and clear box behav­
ior.

11. Develop a sensible inventory reorder rule for a set of 12 products in
a store with limited storage space . In particular, the total inventory
of the 12 products cannot be allowed to exceed a fixed amount
defined by storage capacity. Describe the state machine and clear
box behavior of such a reorder rule.

1 \ I I

, I I ,
I !

Chapter 6 Information Systems
Management

6.1 MANAGING INFORMATION SYSTEM DEVELOPMENT

Preview: The system development process is a paradigm for
generating time phased activities of investigation , specification ,
and implementation , according to a development plan that is up­
dated for relevance to the business need at the completion of
every activity . System development itself can be described by
box structures whose transactions are the activities of investiga­
tion, specification, and implementation and whose state includes
the development libraries. Work structuring and scheduling is an
important aspect of activity management .

6.1.1 The System Development Process

The system development process is a paradigm for generating syste
development activities of investigation , specification , or implementatio
based on:

1 . A development plan consisting of a time phased set of plannt
activities to meet a specific business need .

2 . At each completed activity , a development plan update to accou
for progress made , lessons learned , and changes in the business need.

262

6.1 Managing Infonnation System Development 263

Typically , a development plan is the joint product of business manage­

ment and system development management . Frequently , the initial devel­
opment plan is quite general, beginning with an investigation whose pri­
mary purpose is to recommend a more definitive development plan.

The time phased set of activities can be strictly sequential , or it may
have concurrent activities . If a development is sequential , it can be pic­
tured , in prospect or retrospect, as a system development spiral of activi­
ties, as shown in Figure 6. 1 - 1 . In this sample case , the activity sequence is
a straightforward progression of

Investigation
Specification
Implementation

with a management approval to enter each activity and to end the entire
development. Such a progression for developing a system is an ideal , but
is not necessarily possible or even desirable . It may not be possible be­
cause the business problem is too complex and needs several investiga­
tion activities to arrive at a solution . It may not be possible because the
system development problem is too complex and needs several specifica-

Start

Approval

Approval

Approval

Approval

Completion

Figure 6.1-1. A Sample System Development Spiral .

!

I ' I

,[I i

I i
, I

264 6. Information Systems Manag:ementi

tion/ implementation activities in an incremental development . It may
be desirable because the business problem is too acute and a less than
implementation is called for as soon as possible . It may not be des'
because the happy outcome of the first investigation activity is the discov­
ery of an existing implementation to meet the business need.

If a development is concurrent, it can be pictured in a network
spirals , as shown in Figure 6. 1 -2 . In this network, activity dependencies
are shown by the approval lines ("A" lines here) . For example , Investiga­
tion 1 enables both Specification 1 and Investigation 2 , while both Imple�
mentation 1 and Specification 2 must be completed before Implementa­
tion 2 can be started . The specific network pictured might , for example,
represent the concurrent development of a database system (Implementa­
tion 1) and an application system (Implementation 2) that uses it .

The time phased activities of a development plan will be expressed in
calendar time, often tied to business events . In fact, many times the
system development itself will influence these events . For example , a
system to improve customer service may be advertised , and so require

Start

A

A

A

Specification 2

A

A

Comple tion

Figure 6.1-2. Sample System Development Spiral Network.

6.1 Managing Information System Development 265

advertising copy and commercials to be developed and placed ahead of
time, customer service personnel to be trained, equipment to be pur­
chased , and so on . Needless to say , if the development is late, the busi­
ness costs may be substantial and way out of proportion to the cost of

development overrun. More and more, information systems are at the
heart of businesses and their competitive positions , so the stakes for
effective information systems development to calendar schedules can be

very large.

Fundamental Principle: The objective of information systems
development is to improve business performance, not to develop
information systems per se.

Information systems development can be successful even though no
system is developed , and can be a failure even though a system is devel­
oped .

There are several ways a development can be successful without de­
veloping a system:

1 . An investigation activity can discover an existing system to meet
the business need, saving the cost of specification and implementation.

2 . An investigation activity can discover how to improve the existing
business process so much that a new system cannot be cost justified.

3 . A specification activity can tailor the needs of the business to a
form such that a specialized vendor can supply a system at greatly re­
duced cost .

An information system can be a technical success and still be a busi­
ness failure in several ways:

1 . The system addresses the wrong problem because of insufficient
investigation and understanding of the real business process.

2 . The system addresses the right problem, but is too hard to use
because of insufficient investigation of user skills .

3 . The system addresses the right problem and is easy to use, but
cannot be kept on the air because of operator or integrity problems .

In short, there are any number of ways an information system devel­
opment can succeed or fail. They are rooted in the business and the final
judge of success is the business. For that reason the system development
process must be flexible and responsive to the needs of the business . The
box structure methodology provides management continuity between ac­
tivities and management capability within the activities to better ensure

266 6. Information Systems Management

progress . But it is finally up to management to focus and direct the devel­
opment to the needs of the business.

6.1.2 System Development Illustrations

As noted, a system development spiral is an apt figure for tracking the
system development process. The spiral demonstrates that activities are
mixed throughout the development process. The next activity is not au­
thorized until the previous activity is completed and its results evaluated.
For every system a unique system development spiral will be constructed
as the development progresses.

To illustrate more specific possibilities of a system development spi­
ral, consider the following simple , yet realistic cases .

CASE 1 . TERMINATED PAYROLL DEVELOPMENT
A business wants to determine if a new , automated personnel/payroll

system would increase productivity and morale. A development team is
established . The team begins the system development with several loops
of investigation. Through interviews , system objectives are established
and system requirements are analyzed . These analyses result in a final
feasibility review report presented to the management. The review con­
cludes that the proposed system would not be cost beneficial and recom­
mends the system not be developed . However, the investigations also
provide a much better understanding of the current payroll process, so
much so that significant improvements can be recommended , as well .
Management agrees , the project is terminated, and the improved payroll
process is adopted .

The system development spiral for this case is seen in Figure 6. 1-3.
Even though no specification or implementation activities were per­
formed, this is still a system development . In addition to the immediate
benefits of an improved payroll process, the libraries built during the
investigation contain useful information for future system developments .

CASE 2 . A PHASED SEQUENTIAL DEVELOPMENT
A large supply company wants to automate its inventory and customer

ordering systems. After an initial investigation activity based on feasibil­
ity concerns, a decision is made to break the development into two
phases . First the inventory system is developed and then the customer
ordering system is developed, as shown in Figure 6. 1-4. A phased sequen­
tial development , such as this , has several advantages. Fewer resources

6.1 Managing Information System Development 267

Start

A

A

A

A

Completion

Figure 6.1-3. Terminated Development.

are needed at any one time ; much of the work in the first development
need not be repeated in the second ; and the second development phase
can learn from the experiences of the first .

CASE 3 . A PHASED CONCURRENT DEVELOPMENT

The large supply company of Case 2 wants to shorten calendar time
for bringing up the full system and decides to overlap the implementation
of phase 1 with the investigation and specification of phase 2, as in Figure
6. 1 -5 .

6.1.3 The Box Structure of System Development

The process of system development can be viewed as a box structured
system itself. Figure 6. 1 -6 shows the black box of system development .
The system development black box interacts continually with the busi­
ness environment of the system. The stimulus history for system develop­
ment is formed by information gathered from the environment. The pri­
mary sources of the information are business management, operators , and
users . Additional information may come from customers or vendors of
the business, business application experts, and numerous other sources .

268 6. Information Systems lYIllnll2e.

Start

A

A

A

A

A

A

A

A

A

Completion
Figure 6.1-4. Phased Sequential Development.

6.1 Managing Information System Development 269

Start

A

A

A

A

A

Im plementation I

A

A

Completion

Figure 6.1-5. Phased Concurrent Development.

Each system development transaction produces a response that be­
comes a stimulus to the business environment . System development re­
sponses are requests for information or completed system components . In
either case the environment black box accepts the stimulus and produces
a response to the system development team in turn , and so on . For a

' I

: I I

' I i

270 6. Information Systems Mana�:emle"

Business environment

R S

System development

Activities:
S I nvestigation R

Specification
Implementation

Figure 6.1-6. The System Development Black Box.

system component, or eventually the completed system, the response is
an acceptance , a rejection, or a request for further development.

In this way the entire system development process can be viewed as
providing a flexible ordering of investigation , specification, and imple­
mentation transactions .

The system development process is further described by the system
development state machine , as shown in Figure 6. 1 -7 . The state of the
development process is held in its libraries that contain information used
and generated by the development activities . The following four libraries
are needed for development:

Management Library. The management library holds the develop­
ment plan and other information needed by the development team
to control and support the development effort . Control information
includes schedules , day to day correspondence , and budgets . Sup­
port information includes the documentation provided to the busi�
ness management, operators , and users , such as system proposals , .
feasibility studies , and review documents .

Analysis Library. The analysis library documents the analysis per­
formed to create the new system. The box structure methodology
emphasizes the use of box structure diagrams as a creative , flexible
tool for analysis . This library is principally for communication
among the development team and with the business environment
during information system development.

Design Library. The developing system design is recorded in this
library in a formal language such as BDL. The design library is ·
used by implementation activities as the basis for the system. The ·

1 Managing Information System Development 6.

System development

State:

Management library
r - -

Analysis library

I Design library

I Evaluation library

I
I
I
I Machine

S
� Activities:

I nvestigation

Specification
Implementation

r- - ,
I
I
I
I
I
I
I
I

Figure 6.1-7. The System Development State Machine .

271

R

library is updated to contain any design changes that may occur
during i mplementation .

Evaluation Library. Evaluations of development results are re­
corded in this library . E xamples of evaluation include design verifi­
cation through box structure analysis, software testing, and system
testing . These results would serve as an information resource for
proposals and review documents that are contained in the manage­
ment library .

These four libraries are at the center of the system development
process .

For sequential development , the system development clear box shown
in Figure 6 . 1 -8 illustrates the deci sion of which activity to perform during
a development transaction . The stimulus history from the business envi­
ronment provides the information to concurrently update the develop­
ment plan and make the selection of an investigation , specification, or
implementation activity . For concurrent development the clear box be­
comes a concurrent structure as defined by the development plan .

6.1.4 Work Structuring and Scheduling

Information systems are planned , managed , and reviewed as a set of
time phased activities . But they are developed through their activities a

I I

, I I

272

r--- ---
I
I
I
I
I
I

6. Infonnation Systems Manag.e_.

System developmen t

S tate :
Management library
Analysis library
Design library
Evaluation library

Investigation

Specification

Implementation

I---.!-+------+- R

Figure 6.1-8. The System Development Clear Box .

person-day at a time, no matter how large the development may be .
every person every day works and worries about the entire system in
sizable development , the work will almost certainly founder for lack
effective progress and completion . In order to make effective progress,
the work and its complexity must be divided and conquered in individual
assignments. As already noted, the box structure methodology helps
dress the division of work. The assignment of this work to individual
people is reflected in the work structures and schedules of development'.

The effective management of information system development re ..
quires a precise decomposition of the work , and the evolving box st
ture of the system is an ideal basis for such work structuring.
structuring should not only identify parts of the work to be addressed
independently of each other, but also how these parts are to fit toge
when completed.

Fundamental Principle of Work Structuring: Information sys­
tems development work should be structured by the principle of
div ide , reconnect, and conquer.

6.1 Managing Information System Development 273

That is , the plan for fitting parts of completed work together should be
developed before the parts are delegated for independent work . The ex­
pansion of a black box into a state machine , then into a clear box with new
black boxes provides a plan for fitting completed work on the new lower
level black boxes into the original black box expansion . So the box struc­
ture methodology provides a direct basis for structuring and managing
work in systems development.

Work schedul ing requires an additional dimension of management
analysis and understanding in dealing with people in the development
team . Work scheduling cannot be done in a vacuum, and people have
different skills and abilities that must be accounted for in the scheduling.
What i s a three-week problem for one person may be a three-month
problem for another and impossible for a third . Furthermore, the same
person can take three weeks or three months to solve the same problem
under different conditions.

First , for work scheduling both the work and the people must be there
and be understood . It does no good to schedule work if nobody is avail­
able to do it. It does no good , and can do much harm, to schedule work
which is beyond the capability of people assigned to it. It hurts the busi­
ness, because false hopes are raised and counted on . It hurts the people
who are then judged as failures . So work scheduling must take into ac­
count who is available and what their capabilities are . In some cases a
sensible work assignment is a matter of enough time. In other cases the
assignment may need to be changed to make it feasible at all .

Paradigm for Work Scheduling: With understanding and com­
mitment of those who are to do the work ,

1 . Make a good schedule
2. Make the schedule good

A good schedule is one that can be made good and represents an
effective response to the business need it addresses. Making the schedule
good requires constant encouragement and monitoring of progress of
work that is within the capabilities of the people assigned to it.

This paradigm for work scheduling may at first seem quite simple, but
it sets in motion a set of secondary effects . The key is that a schedule is
something to make good , not simply an estimate of how much time and
resources an activity or task should take in the abstract. As such , the
people doing the work are involved creatively as well in a work-to-sched­
ule framework . In contrast, a pure estimating approach in system devel-

274 6. Information Systems Management

opment, with no responsibility to meet the estimate , almost always leads
to late and overrun performance. Creative work is always subject to self­
criticism and rethinking, and the criteria for stopping used by people can
vary greatly . If the objective is only to provide the very best system
possible , better thoughts are always possible and there is no telling when
the developers will come to believe the very best has been achieved . On
the other hand , if the objective is to produce a good system to a realistic
schedule , the schedule itself becomes as important as the system. That is,
the schedule should act as a check and balance on the devt lopment work,
not merely as an estimate. It is up to management to ensure that people
know the cost and benefits of meeting schedules as well as of system
operations . As already discussed , the business cost of missing schedules
can be many times the development overrun.

6.1.5 Scheduling Mechanics

As noted , work structuring and scheduling requires deep understand­
ings and sensitivities in management, but its results are very concrete,
and schedule data can be handled mechanically . In large projects such
schedule data can be usefully processed automatically by various project
management software packages . As with any other application in which
complex ideas are represented with concrete data, it is easy to generate
GIGO (Garbage In, Garbage Out) if the concrete aspects obscure the
complex meanings of the data. Two useful methods of presenting and
processing schedule data are embodied in Gantt charts and project net­
work graphs, presented next.

GANTT CHARTS

A Gantt chart is a simple bar chart that shows for each activity its
start, duration, and end . A time scale is normally placed on the horizontal
scale and the project activities are l isted along the vertical scale . Figure
6. 1 -9 shows a Gantt chart for a small system development project with
two people . It is possible to include additional information by having a
separate Gantt chart for each member of the development team. Figure
6. 1 - 1 0 shows a Gantt chart for the two individuals of Figure 6 . 1 -9.

The graphic nature of the Gantt chart shows task responsibilities
clearly to managers and non-system personnel . Scheduling can be done
quickly for long-term projects and modifications to the schedule can be
easily made. The major deficiency of using a Gantt chart is that task
dependencies are not represented . This requires a project network graph.

6.1 Managing Information System Development 275

Activities Month I Month 2 Month 3 Mon th 4

Investigation I

Investigation 2

Specification I

Specification 2

Implementation

Figure 6.1-9. Project Gantt Chart.

PROJECT NETWORK GRAPHS

Project network graphs provide better methods for scheduling and
tracking the progress of projects with concurrencies and dependencies .

Activities are represented in a graph by directed arcs between events
(nodes) that signify the start and end of the activity . Each activity has a
time duration (e .g . , days , weeks , months) . The connections in the net­
work show the dependencies among the activities . Each activity arc is
given a task name and each event is numbered in the network.

The project network in Figure 6. 1 - 1 1 illustrates the notation. Activities
A through L are connected by events 1 through 1 1 . Each activity has the
estimated duration placed beneath the arc . An activity cannot start until
all activ ities coming into its starting event are completed. The dashed arcs
are dummy activities with zero time duration . For example , the dummy
activity from event 3 to event 4 states that activities E and F cannot start

Smith Month I Month 2 Month 3 Month 4
Investigation I

Specification I

Implementation I I I I I
Jones Month I Month 2 Month 3 Month 4

I nvestigation 2

Specification 2

Figure 6.1-10. Individual Gantt Charts.

I
I

. ' I ,

276 6. Information Systems Malnagem1e.-i

Figure 6.1-11. Example Project Network Activities and Events.

until both activities B and C are complete . This dummy activity is needed
since activity D is only dependent upon the completion of activity B .

This project can be analyzed to determine the activities most critical to
the schedule as follows.

For each event, we calculate an earliest event time (EET) and a latest
event time (LET) . The earliest event time is the earliest time that all
outgoing activities could begin . It is calculated for all events , beginning at
the start of the project as ,

EET E = maximumA (EET x + durationA)

for each event E , and all incoming activities A from event X to E .
The latest event time is the latest time an outgoing activity can start

without altering the schedule . LET is calculated for all events from the
end of the project as ,

LET E = minimumA (LET x - durationA)

for each event E , all outgoing activities A from E to event X .
The critical path in a project network is a chain of activities that must

start and end on time for the schedule to be met . The events where EET =
LET define the critical path in the project network. The closest tracking
must be applied to activities on the critical path .

Activities not on the critical path can afford to start late or exceed the
estimated duration without altering the project schedule . This is known as
slack time. For each activity A ,

SLACK TIMEA = (LETA END - EETA START - durationA)

Figure 6 . 1 - 1 2 shows the previous project network with all calculations
performed .

Slack time is represented in parentheses under activities in the net­
work . The identification of slack time can allow the developer to better
allocate resources . For example, a task that requires 1 50 person-hours , if
separable into parts , can be done by 5 individuals in 30 hours . However,

6.1 System Development Activities

Activity name
E

----_� Critical path
6 (0)

Duration Slack time
time

Earliest event
Event t;I]\ time
number \:J!Y Latest event

time

Figure 6.1-U. Complete Project Network Analysis.

277

sufficient slack is avai lable, the developer may assign only 3 individuals
over 50 hours to better utilize personnel. The other 2 individuals may be
assigned to another activity on the critical path to improve the schedule .

The project network graph (with minor variations) is the basis for both
PERT (Program Evaluation and Review Technique) and CPM (Critical
Path Method) scheduling.

Summary: Managing system development requires a thorough
understanding of the system development process . Every system
has a unique system development spiral . Work structuring and
scheduling should be done with understanding and commitment
of people assigned to work. Gantt charts and project network
graphs can be used to represent schedule data.

6.2 SYSTEM DEVELOPMENT ACTIVITIES

Preview: The activities of investigation, specification, and im­
plementation have much in common and some differences. The
commonality is exemplified by the applicability of the box struc­
ture methodology across these activities . The activities differ be­
cause of the state of development they represent , from fact find­
ing and feasibility concerns in investigation, to system design and
cost/benefit analysis in specification, on to completed systems
and installations in implementation.

, I I
i

278 6. Information Systems Malnag�emt!"

6.2.1 Activity Management

The system development process generates limited, time phased ,
tivities of investigation , specification , and implementation that must
managed. The stages of planning, performance, and evaluation in
activity define an orderly process for this management . The box struc
methodology provides a great deal of commonality across these activities
for the analysis and design work that is required. The management prob­
lems are also very similar. As the names might imply, the most challeng­
ing stages for management are planning and evaluation, while the perfor­
mance stage i s most challenging for professionals. We discuss these
stages next.

PLANNING
There are three basic results from the planning stage of any acti vity:

1 . Activity Objective . A clear statement of what the activity is to
produce .

2. Activity Statement of Work (SOW) . A clear statement of how the
activity will achieve its objective .

3 . Activity Schedule . A clear assignment of work items in the SOW
to professionals , together with completion dates which each of the profes­
sionals agree to .

With such a plan , the entire development team understands the objec­
tives , statement of work , and the individual responsibilities for making
the work objectives and schedule good . Such a plan not only requires the
agreement of the professionals, but also requires their direct participation
in the planning process . But the planning process must be led by man­
agers to address the proper questions and problems for the activity in the
overall development plan .

The outputs of all previous activity loops in the development spiral
and the feedback from the business environment combine to help the
management and the development team decide what type of activity is
required next. The first task is to define an activity objective and to derive
a plan for meeting that objective.

The activity loop can be scheduled with Gantt charts and project
networks. The activity schedules are as detailed and specific as possible,
since they are the primary means of management control . At the same
time, the overall system development schedule is updated to reflect the
resources allocated to this activity .

All of the planning information , objecti ves , SOW, and schedules are

6.2 System Development Activities 279

included in a formal activity proposal that is presented to the managers of

the development . The proposal is accepted , modified, or rejected based

upon management analysis . The eventual acceptance of an activity pro­

posal marks the end of the planning stage and the beginning of the activity

performance . The accepted proposal is stored in the management library
for reference.

PERFORMANCE

If plans are well made , performance is focused and predictable . The
management job in performance is to assess and track progress against
the SOW and schedules, to identify unexpected problems and help profes­
sionals decide how to meet them, and to identify unexpected windfalls in
solutions that can free up people or other resources to help out with
unexpected problems . It is here that good understandings and agreements
on assignments and schedules pay off.

First, each team member understands his/her role in the activity, and
the need for completing the work to schedule. In contrast, a common
misunderstanding between managers and professionals pits the "man­
ager's schedules" against the "professional 's design" . Such disagree­
ments should be ironed out in planning, not late in performance . A com­
mon set of system values from the box structure methodology permits
managers and professionals to communicate effectively and alleviate such
disagreements . For example , a professional may be reluctant to adapt a
less than the best system to a reservation system because a better one can
be built ; but if the professional understands that a quick and dirty system
means the literal survival of the business, there will be l ittle reluctance for
a whole hearted effort to get the quick and dirty system on the air.

Second , good schedules and a common understanding of box structure
methodology make progress assessments and tracking more accurate and
more rewarding. When managers can recognize good and timely work ,
they can acknowledge it privately and publicly, and when warranted ,
arrange for awards for extra performance . A major morale problem
among high performance professionals is just the fact that good work is
often not recognized , and mediocre work by others is as well rewarded as
their own. Good progress assessments and tracking of well understood
assignments go a long way in recognizing good work.

EVALUATION

Evaluation is both a closing out of one activity and a basis for selecting
and commencing one or more following activities . The objectives and

280 6. Information Systems MalDal=en:leDli.l

results of performance can be compared and related to the business and
its situation. As illustrated in the terminated payroll development, the '
results may be surprising but still very useful for the business . Even if ,
objectives are not met, the lessons learned may be useful. If the objectives
are met, so much the better and the expected next activities can be initi-.
ated. In particular, the evaluation stage is the point where the develo�
ment plan for future activities can be assessed and modified.

.

These activities and stages can be organized in table form , as shown in
Table 6.2- 1 , that indicate typical activities in the system development
matrix.

Table 6.2·1
Stages in Activities: Typical Tasks

Stages

Activities Planning Performance Evaluation

Investigation Activity Business Feasibility

Objective Process and Assessment

Objectives

Statement of Review and

Work Requirements Acceptance

Analysis

Scheduling Development

System Plan Update

Prototype

Specification Activity Systems Design

Objective Analysis Verification

and Design

Statement of

Work Operations Review and

Analysis Acceptance

Scheduling and Design

Development

Plan Update

Implementation Activity Resource System

Objective Acquisition Testing

Statement of Systems Review and

Work Integration Acceptance

Scheduling Operations Development

Education Plan Update

6.2 System Development Activities 28 1

6.2.2 Investigation Activities

The objectives of an investigation activity will be found in its activity

plan within the development plan . In general , investigation objectives are

to find facts and discover realistic opportunities for improving business

processes , often by developing new systems . In order to illustrate poten­

tial investigation activities, we discuss the following kinds of tasks:

Describe a business process
Identify a system opportunity
Develop a system prototype
Assess system feasibility

DESCRIBE A B USINESS PROCESS

In order to improve on a business process it is imperative to under­
stand and describe it. It does little good to produce a brilliant system with
a fatal deficiency or flaw for lack of a real understanding of what goes on
in the business . Usually a business process is targeted just because a
system can be imagined that will improve the process . But in order to
substantiate such an idea, considerable information wil l be needed about
the business process .

The sources of this information are many and varied. The primary
sources are the managers , users , and operators of the potential system. If
current systems are in use, then documentation such as system manuals ,
user manuals , system logs, and current application programs may be
useful sources of information.

Gathering business process information from individuals (managers ,
users , operators) requires good interpersonal communication skills . The
two primary techniques are interviews and questionnaires.

In information systems development , the purpose of interviewing pro­
spective system managers and users is to make explicit the information
processing procedures , needs, and objectives of the business process .
The current information processing system will be some combination of
people and machines , and the planned system, some new combination of
people and machines , all of which exhibit black box , state machine, and
clear box behavior. Both the existing and planned systems will require
explicit box structure descriptions . Thus, the knowledge gained in the
interviewing process must eventually be represented in terms of box
structures .

The interviewing process is intended to reveal box structure behavior
to the interviewer. Often these box structures will emerge in fragmentary
form, and will require corroboration and elaboration through additional

282 6. Information Systems Management

interviews and feedback sessions . For this reason, interviews should not
be regarded as solitary and stereotyped events, but rather as a continual
process of discussions with indiv iduals and groups to arrive at common
understandings and objectives . Early box structure definitions , while of­
ten incomplete, can nevertheless be used to advantage in these discus­
s ions, as a means to focus on the correctness and completeness of
planned system behavior.

The questions asked during a interview should focus on box structure
behavior, but the words and phrases employed need not depend on box
structure terminology . Even though a person being interviewed has no
knowledge of box structure techniques, it is still possible to discuss box
structure behavior in very precise terms. Consider, for example , the fol­
lowing questions , phrased in the everyday language of business , and their
interpretation in terms of box structure concepts :

Question 1 :
"Do previous transactions against a credit account affect the pro­
cessing of a current transaction?"

Box Structure Interpretation:
"What is the b lack box behavior of credit account transaction pro­
cessing?"

Question 2 :

" What information must credit account transaction processing have
on hand in order to process a current transaction?"

Box Structure Interpretation:

"What state information must be retained in the credit account pro­
cessing state machine?"

Question 3 :

"How does credit account processing combine the information it has
on hand with a current transaction to produce output and update the
information on hand" ?

Box Structure Interpretation:

" What are the transactions of the credit account processing state
machine?"

Question 4:

"What steps are required to process a transaction in credit account
processing?' ,

Box Structure Interpretation:

"What is the clear box behavior of credit account processing?

6.2

Que:

Box

I
tion .
pant
ever
pers
mini

1
ratic

resu
pers

2
ever
dow
idea

3
wor1

4
ever
ual i

)
the (
the i

I
ques
reco
tervi

1
ques
inter
any

(
grou
nain

6.2 System Development Activities 283

Question 5 :

"Is account verification performed before , during, or after credit
account processing?"

Box Structure Interpretation :
" How are account verification and credit account processing related
in terms of a box structure hierarchy?"

Interviews are an effective way to gather accurate and timely informa­
tion. Questions can be asked and responses clarified on the spot. Partici­
pants in an interview feel actively involved in system development. How­
ever, interviews are time-consuming for both the developers and the
persons interviewed, so the number of interviews should be kept to a
minimum and each interview should be short and to the point.

The effectiveness of an interview is directly proportional to the prepa­
ration for it . The following guidelines support effective preparation.

1 . Define the purpose of the interview. Fishing expeditions rarely
result in quality information . Know the system area within which the
person interviewed is expert, and stick to that area.

2 . Only interview selected individuals . It is not necessary to interview
everyone and time is l imited. Start with upper management and work
down the organization hierarchy. This provides the developers with an
idea of how the system fits into the overall organization.

3. Be prepared with specific questions for each interview. Do home­
work and be ready to guide the direction of the interview .

4 . Schedule the interview at the interviewee' s convenience. How­
ever, set a strict deadline for all interviews to be completed . If an individ­
ual is not available in that time frame , schedule an acceptable substitute .

An interview has three phases, namely opening, body, and closing. In
the opening, state the purpose of the interview, establish the legitimacy of
the interview, and achieve a rapport with the person interviewed.

In the body, move from general, open questions to specific , detailed
questions . Vague answers should be clarified . Take clear notes or ask to
record the discussion. The notes should be summarized after the in­
terview.

The closing should leave both parties satisfied with the interview. If
questions remain , schedule another interview. Offer to send a copy of the
interview summary to the person interviewed . Prompt feedback allows
any misunderstandings to be discovered and rectified.

Questionnaires are used when information is needed from a large
group of individuals , usually system users . The design of the question­
naire is very important. The questionnaire must be clearly written and

284 6. Information Systems MalllaR4eme.

easy to complete or it will be ignored by most users . It should be Cm::a';Kc!�
for clarity and misunderstandings as carefully as a computer program,
test cases run to verify its effectiveness . Analysis of the completed qu
tionnaires is facilitated by the use of computers to tally and statis .

analyze responses .
Another important source of information is the current system, man ..

ual or automatic , that handles the work of the proposed system. A Com-"
plete understanding of the details in the existing system is important for
the development of a system that will replace it . Box structures can
used to describe and analyze current system operations . Transactions,
input , output , data states , and processing in the existing system can be
identified and placed into an overall system context. This information can
be found in system manuals, users manuals, program code, or even the
system specifications left by the development team of the current system.

The results of the analysis of a current system are to be used as
requirements information, not as a starting point for the box structure
design of the new system. Additional system requirements should dictate
an original design for the new system; otherwise why replace the current
system?

IDENTIFY A SYSTEM OPPORTUNITY

This is the most obvious task of an investigation-invent or check out
a good systems idea for the business . Such good systems ideas depend on
a good knowledge of the business and an equally good knowledge of
information systems possibilities . There is little value in thinking up sys­
tems that cannot be developed, just because the business has a difficult
problem. And there is little value in thinking up systems that solve prob­
lems the business doesn't have. Usually , a proposed information system
suIfaces early in a development , often in its first investigation activity .

It is critical for a development team to identify the objectives of the

proposed information system. It is important to document these objec­
tives in order to obtain a consensus among all parties . Obtaining agree­
ment on system objectives may be difficult because different groups
people may have different expectations. Figure 6.2- 1 lists sample objec­
tives of management, users , and operators .

Reconciling these objectives may be difficult , but it must be done
before further system development can proceed. A clearly worded docu­
ment should state the objectives of the proposed system in as much detail
as possible . The developers should define priorities to force individuals to
make decisions on system objectives . Management , users , and opera
should review the document and agree on its content . Figure 6. 2-2 shows

6.2 System Development Activities

Management Objectives

Increase Productivity

Reduce Costs

Improve Quality

Improve Work Environment

User Objectives

Easy to Learn

Easy to Use

Produces Correct Results

Efficient

Improves Working Conditions

Improves Personal Productivity

Operator Objectives

Easy to Understand

Easy to Operate

Reliable

Secure

Adaptable to Changes

Figure 6.2-1. System Objectives .

285

the outline of a System Opportunity Document that reconciles such objec­
tives with development realities .

DEVELOP A S YSTEM PROTOTYPE

For complex or especially innovative systems, it may be difficult or
impossible to find the information needed to perform an adequate require­
ments or operations analysis . A prototype is a limited version of the
desired system built to provide requirements and operations information .
Prototypes can range in scope from a simple study to see i f two software
packages can interchange data correctly to a large scale prototype of the
complete system to answer feasibility questions before resources are allo­
cated for detailed system development.

Once the decision is made to prototype a portion of the system, the
prototype development takes on a life of its own. The prototype has its
own system development process with investigation, specification, and

1 . System Function: A description of what functions the system is to perform.

2. System Objectives: A prioritized list of objectives gathered from management, users,

and operators .
3. System Realization: A description of how the system can be created.

Figure 6.2-2. A System Opportunity Document.

286 6. Information Systems Management

implementation activItIes . Separate development libraries are con­
structed . When the prototype is completed , objective information is gath­
ered from its operation and used in the analysis of requirements and
operations for the planned system.

Opportunities may exist to use portions of the prototype development
in the system development. The best possible outcome is to evolve the
prototype into the desired system. If the prototype, as a limited study ,
does not incorporate the full functionality of the real system, reusability
may not be practical . However , the prototype development libraries will
contain much helpful experience and information . These libraries should
be integrated into the system development libraries .

ASSESS SYSTEM FEASIBILITY

One goal of investigation is to answer questions of feasibility that arise
during system development . The feasibility answers determine the scope
of the proposed system.

It is important to deal with the feasibility questions in order to define
the scope of the system right at the beginning of development. There are
several types of feasibility that must be considered :

Economic Feasibility. What costs are sensible for the development
and the continued operation of the system? Can an adequate sys­
tem be developed for the costs?

Equipment Feasibility. Do adequate hardware and software exist in
the organization or must new hardware and software be pur­
chased?

Personnel Feasibility. Does the organization employ qualified per- ,
sonnel to support the operation of the new system or must new
personnel be hired?

Time Feasibility. Can the system be developed within the time that
an organization requires?

Organizational Feasibility. Considering the organizational effect of
implementing the new system, will managers , users , operators ,
and others effectively use the system?

Technical Feasibility. Does adequate , state-of-the-art technology
exist in order to accomplish the system objectives? Must the devel­
opment include a component of research to discover new and inno­
vative hardware and software techniques ?

6.2 System Development Activities 287

Development Feasibility. Does the development team have the
knowledge and skills to develop the required system? What con­
sultant expertise is needed? Are more development personnel
needed?

6.2.3 Specification Activities

The objectives of a specification activity will be found in its activity
plan within the development plan . In general , specification objectives are
to define information systems that can be used for improving business
processes . In order to illustrate potential specification activities , we dis­
cuss the following kinds of tasks :

Systems Analysis and Design
Operations Analysis and Design
Cost/Benefit Analyses

SYSTEMS ANALYSIS AND DESIGN

System analysis takes as input the requirements information found in
the analysis library and forms a box structure hierarchy for the system .
The analyses of transactions , state , and processing throughout the hierar­
chy provide a rigorous method of system discovery . The principles of
state migration, transaction closure , common service black boxes , and
black box replacement guide the final structure of the new system.

The findings of system analysis are recorded in the analysis library .
Analysis tools , such as box structure diagrams, can be used to structure
the results of the analysis activity .

System design uses the results of system analysis and builds top-down
design specifications for the system. A structured specification language ,
such as Box Description Language , is used for this purpose .

For each box structure in the system hierarchy, design decisions must
be made in how to specify the implementation of that subsystem . Design
skill and creativity play a significant role in building a good system design .
Examples of design decisions for a given box structure include :

1 . Should this portion of the system be automated or manual?
2 . If the subsystem is automated , what hardware is needed? Should

commercial software be purchased or should the software be designed
and programmed as part of development?

3. If commercial software is used, which package is best?

I I

288 6. Information Systems Manage ell

4 . What common service box structures are possible in the sut
system?

5 . What integrity issues are inherent in the subsystem design and wh,
measures should be used to handle them?

The final design specifications for the system, along with all of th
design decision analyses , are included in the design library for use durin
system implementation.

OPERATIONS ANALYSIS AND DESIGN

The information gathered on system operations in investigation is usel
during specification to analyze and design operations for the new system
Issues that should be studied include :

System Administration. What individuals are needed to administe
the system? What qualifications are needed? How does the systell
administration fit into the business organization?

Staffing. What are the requirements for system operators, applica
tion programmers , maintenance personnel, and other system sup
port staff? How is the staff scheduled to provide the most effectiv
use of the system?

Facilities. What renovation or new construction is needed to pro
vide adequate facilities for the system? Are air conditioning
power, heat , etc . , adequate?

User Access. Are user access capabilities appropriate? What arl
the best procedures for user identification and authentication?

Work Flow. Does work flow efficiently into the system, through thl
system, and out of the system to other parts of the business?

The analysis of these and other operational issues should lead to a specifil
operations design for a system. The result of an operations design shoull
be placed in the design library along with the analysis that supports it .

COST/BENEFIT ANALYSES

With the system and operations design available, the costs and bene
fits of the proposed system can be analyzed in more depth . Costs occur il
two ways, as shown in Figure 6 .2-3 .

The primary justification for each activity commitment by managers i�
a proposal (and credible past performances) that must contain or imply �
cost/benefit analysis . Such a cost/benefit analysis , as it is assessed by the

6.2 System Development Activities

One-Time, Development Costs
Personnel

Development Team
Expert Consultants

Equipment
New Hardware and Software
Installation

Facilities Renovation
Materials and Supplies
System Conversion and Training

Continuing, Operational Costs
Personnel

Operators, Application Programmers
Hardware/Software Maintenance
Overhead-Heat, Power
Materials and Supplies

Figure 6.2-3. System Costs.

289

managers for credibility and accuracy, is the principal basis for the com­
mitment . The size of the activity in time and resources is often specified
by the managers , but should represent a good balance between significant
goals and predictability in meeting those goals .

The cost/benefit analysis usually compares estimates of costs to the
completion of the development with the benefits of the development . The
closer to the end of development , the more credible the cost estimates;
successive activities should produce improved credibility in the cost esti­
mates.

As with schedules, there are two parts to an effective cost estimate ;
first, make a good estimate ; second, make the estimate good. Stated
another way , a good cost estimate is one you can make good . The box
structure hierarchy can help you make estimates good , because you can
measure progress and the work remaining against the hierarchy . Both
time and resources can be allocated top down through the hierarchy, and
then managed to the allocations as work progresses.

Each black box in the hierarchy represents an opportunity to delegate
responsibility for and to allocate resources to, in analysis or design. As
progress is made in top-down specification or implementation, resources
can be reallocated to black boxes remaining to be expanded, or even
responsibilities redelegated . The benefits of black box replacement in the
system apply to its development by people, as well .

The best way to establish credibility with managers i s to meet your
estimates and milestones of progress scrupulously . To do this , you need
to keep your eye on the activity while in it, and let the remainder of the

290 6. Information Systems Management

development take care of itself in due time . At every activity , the remain­
ing development costs and benefits must be defined anyway . So, when
properly planned, a sequence of properly executed activities will produce
the desired system. The alternative temptation is to spend undue time
thinking (and dreaming) about the system and the remainder of the devel­
opment to the detriment of the activity . But it pays to concentrate on the
task at hand , even though it requires discipline and diligence , compared to
great thoughts about the future .

While the costs and cost estimates are always tangible , the benefits are
not always so tangible . In some cases , direct cost savings or additional
profits can be deduced as benefits . But in many cases, tangible benefits
are harder to deduce.

Even so, intangible benefits can be stated in ways to permit more
direct human judgment . There is a profound difference between emo­
tional judgments and business judgments, and there are many ways to
present intangible benefits to make business judgments with more confi­
dence . For example, consider the question of preserving files from electri­
cal power outages as discussed in Chapter 1 . An auxiliary power supply
will have a cost and a benefit, but what benefit? It can be proposed
because it is the best thing to do , simply calling for an emotional judg­
ment . A better way is to determine the actual costs of recovering files lost
from a power outage and compare those with the cost of the auxiliary
power supply . Even better is to include the cost of business lost while
recovering files lost. These benefit costs may be difficult to determine and
take some work , so there is a trade-off between the cost of the analysis
and the accuracy of the results . That is, there are also trade-offs in making
trade-off analyses .

But even with the effort put into trade-off analyses, some thought on
how to present them can help managers make better business judgments.
For example , simply determining break-even points can help in a judg­
ment . In this case , the break-even time between electrical power outages
to make the auxiliary power supply worthwhile will be a single number­
say eight months . Now, people can make judgments more directly-even
consult power outage history data (which should be brought in by the
analyst)-taking into account improvements planned in power availabil­
ity by the utility company, etc . , in a business judgment that has been
helped by an intelligent and perceptive analysis of an intangible benefit .

6.2.4 Implementation Activities

The objectives of an implementation activity will be found in the activ­
ity plan within the development plans . In general, implementation objec-

s
t
t.
n

a
n
�
m
w

6.1 System Denlopment Activities 29 1

tives are to create specified systems and prepare users and operators for

operation . In order to illustrate potential implementation activities , we

discusS the following kinds of tasks :

Resource acquisition
Software development
System integration and testing
Operations education

RESOURCE ACQUISITION

The acquisition of system resources , such as hardware , software , and
site renovation materials , requires exact information and planning. Acqui­
sition tasks should occur as early as possible once system design deci­
sions have been made . Figure 6 .2-4 provides a brief listing of system
resources that may be needed in building and operating an information
system. The development team may or may not be responsible for all
types of acquisition . For example , the business organization may perform
the site renovations and the personnel hiring. However, such activities
must be closely coordinated and should appear in the activity schedule .

Early and effective coordination with hardware and software vendors
and utility companies is essential . Delivery and installation delays can
ruin a carefully planned implementation schedule . Vendor obligations and
warranties must be clearly understood and documented . The develop­
ment team may become involved in the negotiation of hardware and soft­
ware maintenance contracts if so desired .

Hardware

Computer Systems

Peripheral Devices-Disks , Printers

Maintenance Contracts

Software

Operating Systems

Application Software

Physical Facilities

Communications

Networks

Phone Lines

Personnel

Operators

Application Programmers

Figure 6.1-4. System Resources .

; I

i
, I

I I �I

292 6. Information Systems ManagelD

SOFTWARE DEVELOPMENT

The development of software may be a large or small part of th
implementation . The advances in software engineering over the past dec.;
ade provide excellent guidance for writing software from design specifica�
tions . The use of the Box Description Language for the system desi
specifications greatly facilitates software development . The BDL can be.:
translated into high-level structured programming languages, such as',
Ada, C, Pascal , Structured FORTRAN , and Structured COBOL.
Through rigorous software engineering, the program coding can be per-:
formed to standards of clean modularity and high reliability .

SYSTEM INTEGRA nON AND TESTING

System integration is the process of bringing together all of the syste�'
components and making them work as an integrated whole. The box"
structure hierarchy in the design library is used as a guide for this process:
The system top should be integrated and tested first , using "program'
stubs" to represent the subsystems it invokes . Individual subsystem tops' , can then be integrated and tested in the system environment , using pro-'
gram stubs of their own , which will in turn be replaced by their tops . With
each integration step, the evolving system acquires new functionality , '
which can be tested in a stepwise manner as well. Each integration step' I
verifies that the interfaces between the evolving system and the new ,:
increment are correct , and introduces new interfaces to be verified in \

subsequent steps.
System testing should test the capabilities of the total , integrated sys­

tem . The system testing plan should include the following types of testing:

System Objective Test. The system objectives , developed in inves­
tigation, are recalled. In the order of priority, each objective
should be tested on the system. Operators , managers, users , and
developers should be satisfied that the objectives are fulfilled on
the system .

Volume and Stress Test. The limits of the system, in terms of per­
formance and capacity , should be tested . The system can be
loaded with computer-generated test data to and beyond its normal
operating capacity . Jobs can be submitted to drive the system to
maximum utilization . Performance objectives can be studied with
these limiting conditions .

Operational Test. A system environment that approximates normal
operations should be tested . All managers , users , and operators

6.Z System Development Activities 293

should "walk through" a normal day ' s (week's) activities . This
test studies normal system performance as well as such important
factors as site planning , adequate personnel , and operational pro­
cedures.

Documentation Test. The documentation developed for the system
(System's Manual , User's Manual , and Manager's Manual) should
be tested for completeness and accuracy by selected personnel in
the organization.

A comprehensive system test plan should be developed before the
system is complete . The system specification provides adequate informa­
tion upon which to construct the test plan. The system test plan should be
reviewed and agreed upon by the organization before testing begins .

During the actual system testing a detailed record of all tests and
results must be maintained . Any unsatisfactory results must be addressed
before the system testing is complete. This may require a reiteration of
previous activities. Additional requirements gathering , system analysis,
and system design may be needed to rectify system problems .

Upon completion of a comprehensive system test, all testing docu­
mentation is added to the evaluation library. When the system is accepted
as meeting its objectives, the implementation is complete .

OPERATIONS EDUCATION

Building the information system is not the only implementation re­
sponsibility of the development team. Equally important is educating the
people in the business in how to operate and use the system to the greatest
effectiveness. Management , operator, and user groups should be identi­
fied along with their different education needs.

The objective of operations education is to instruct the business orga­
nization in implementing the operations design specifications . As part of
the educational process, system case studies and tutorials can be devel­
oped and retained for future educational activities in the organization .

Seminars and classes can be scheduled throughout the development
period. Hands-on system training is best scheduled when the system is
operational at the end of the development process.

Operators require an in�depth period of training in order to become
completely familiar with system operations . Based upon the complexity
of the system , this training may require from a few hours to several
months of intensive study.

The system development team may provide this training or skilled
instructors may be hired to construct training materials and course out-

' I

i l
! I i" j l

1 ,': 1 j ' I :� i ' ;,

I

i I

294 6. Information Systems Management

lines. A standard procedure for ongoing operator training must be studied ,
and planned .

Users require education on how to execute the system and retrieve
and interpret results . User tutorials can be an effective method for user ·
instruction. Tutorials may take the form of a documented walk-through of
applications using sample data. Interactive tutorials , walking through
a simulated application on the system, are conducive to rapid user
learning.

Managers must be educated in the objectives of the system. They
should understand what the system does and how it works. The use of the
system as a management information system and as a decision support
system is necessary knowledge for middle and upper managers .

6.2.5 Information System Operations

As the system development progresses to completion, plans are
needed to bring the new system into operation . The new system is
brought into operation by being placed into interaction with the business
environment . The system development team remains active until the busi­
ness organization has fully accepted the operational responsibility for the
system. While the system is being brought to full operation , the develop­
ment team has responsibilities in managing the system conversion , estab­
lishing operations assurance , and planning for system evolution and obso­
lescence .

SYSTEM CONVERSION

When a system currently exists that is to be replaced by the new
system, then a method of conversion from the old system to the new
system is required. Three conversion methods have been used with differ­
ent advantages and disadvantages .

Parallel Conversion. A s illustrated i n Figure 6 .2-5 , the old and new
systems are run side-by-side until the new system has been satis­
factorily tested and accepted by the organization . The advantage of
this method is that the old system is still on-line during the conver­
sion procedure . Operations can be maintained normally while the
new system is being tested and corrected. This provides a non­
threatening conversion . The disadvantages are the expense of op­
erating two parallel systems and the fact that the two systems may
not be comparable in terms of results .

6

th
dl
in
ar

6.2 System Development Activities 295

New system
New system
response

r----
Compare resu lts

� f----
Stimulus -

r-Old system
Old system
response

�

Figure 6.2-5. Parallel Conversion .

Phased Conversion. The new system is gradually phased in a sub­
system at a time. When each new subsystem is tested and ac­
cepted , it takes the place of the old subsystem. The concept of
phased conversion is critically important for large and complex
systems. In fact, it may be decided during initial planning in inves­
tigation to structure the entire system project into phases . Each
phase would be developed and implemented on its own schedule .

Direct Conversion. This is a one-time changeover from the old sys­
tem to the new system . This technique also applies when no pre­
vious system exists . The advantage of direct conversion is that it is
clean, quick, and relatively inexpensive . However, the risk is
higher that the new system may develop problems-and no backup
system will be available . This fact stresses the importance of thor­
ough system testing before a direct conversion.

OPERATIONS ASSURANCE

Operations assurance concerns the correct and efficient handling of
the system integrity issues during operation. Standard Operating Proce­
dures (SOPs) are establ ished to utilize the devices and techniques for
integrity control in the system . For example, the fol lowing system topics
are important components of operations assurance :

Privacy and Security Control s

System Backup and Recovery Facilities

296 6. Information Systems Management

Performance Monitoring and Tuning Capabilities

Preventive Maintenance

Reviews and Audits

During operations , managers , operators , and users will have responsi- .
b ilities for maintaining the integrity and effectiveness of the system.

SYSTEM EVOLUTION

Evolution and change are inevitable during a system's operational
lifetime. New requirements and objectives will require alterations to the
operational system.

System modifications will be managed in the same manner as the
original system development . Each modification will go through the activ­
ities of investigation , specification , and implementation , in the context of
the operational system. The analysis details and the design specifications
will be added to the analysis and design libraries , respectively , of the
original system.

The box structure diagrams and the BDL designs for the original sys­
tem will be modified based upon the system changes.

SYSTEM OBSOLESCENCE

Obsolescence occurs when the current system can no longer fulfill the
organizational objectives demanded of it. Additional modifications will
not substantially enhance the system. The system is t�en declared obso­
lete and investigation must begin on a new system to replace it .

The new system begins its own system development process. The
obsolete system will continue to run until the replacement system is ac­
cepted as adequate . Note that requirements gathering on the old system
will provide useful documentation in the form of the system development
libraries to support the investigation of the new system.

Summary: Performing system development well requires
knowledge, skill , and experience in the activities of investigation ,
specification , and implementation . Effective management control
can be exercised by identifying the stages of planning, perfor­
mance, and evaluation in each activity .

6.3 System Development Libraries

6.3 SYSTEM DEVELOPMENT LIBRARIES

Preview: System development libraries contain the information
discovered through analysis (analysis library) and created
through design (design library) . The management library holds
information pertinent to the business environment . The evalua­
tion l ibrary records the results of system verification tests . The
contents of the development libraries are used to create the sys­
tem documentation .

297

The system development libraries are the central repositories for in­
formation in the system development process . The two principal libraries
are the analysis library and the design library. The analysis library holds
information discovered during investigation activities and specification
analysis . The design library contains the information created during speci­
fication , design, and implementation activities . The management library
and the evaluation library play special roles during system development as
discussed later in this section .

It is a major responsibility of the development team to establish and
maintain the libraries . All of the materials added during development
should be dated to provide a historical record of the system development .

In a small development project the libraries can be handled manually .
For example , each library can be maintained as a looseleaf notebook.
However, even moderately sized projects will require computerized sup­
port for storage , retrieval , and updating of documents in the libraries . A
majority of the information will be stored as text or in specialized form,
such as box structure diagrams , project schedule networks, and Box De­
scription Language .

6.3.1 The Analysis and Design Libraries

These two libraries contain the information central to the system de­
velopment process . Throughout the discussion of the system develop­
ment activities , we have seen how information is gathered and used in
analysis and how information is created in design . The management of
this information takes place through the respective analysis and design
libraries .

The analysis library is used extensively during investigation activities .
All of the system requirements information and the system operations

298 6. Information Systems Management

information are structured and stored . The results of interviews , ques­
tionnaires, and prototypes, along with details of prev ious systems are
maintained in the analysis library . Considerable storage capacity may be
needed to hold all of the raw information gathered for system analysis .

System analysis and operations analysis tasks then analyze this infor­
mation to discover new methods of satisfying the system objectives . The
details of these analyses are included in the analysis library . Box structure
derivations could be stored in terms of box structure diagrams. The box
structure hierarchies that include transaction , state , and procedure analy­
ses would be managed in the analysis library . Further analysis tasks per­
formed during specification or implementation activities would add to or
update the information in the analysis l ibrary.

The design l ibrary holds the design of the new system. The system
design specifications and the system operations design are included in this
library. The analysis library is used to create the designs. For large sys­
tems , the design l ibrary should offer designers automated support for the
structured specification language (e .g. , BDL) . Design decisions should be
documented together with the resulting design .

The result of system design will be a complete , top-down specification
of the system to be implemented . During implementation, any design
alterations must be recorded in the design library before they are imple­
mented . The result of system operations design will be detailed standard
operating procedures for the system.

6.3.2 The Management Library

The management l ibrary contains information for the management and
control of the system development. It serves as the interface between the
development team and the business management, operators , and users
during the system development process .

At the start of development the system opportunity document and the
deve lopment plan are stored in the library. Then with each activity loop in
the system development spiral the following information is added:

Activity Evaluation. The results of the activity and their evaluation,
with management acceptance , are placed in the management l i­
brary .

Development Plan Update. The development plan is updated and,
with management acceptance , is added to the library.

Activity Planning. The next activity plans , after management ac­
ceptance , are added to the management l ibrary.

6.3

1
of tt
men
obje,
addi
such
libra

6.3.2
1

tion
tion
acti,
ade�
ing t

6.3.4
V

excll
for r

6.3 System Development Libraries 299

The management library , thus , records the chronological development

of the system from the business perspective . Decisions based on agree­

ments between the business and the development team , such as system
objectives , schedules, resources , budget, and scope are recorded here . In
addition , the day-to-day management information for the development,
such as activity schedules and SOW, are maintained in the management
library.

6.3.3 The Evaluation Library

The evaluation library has the special role of documenting the evalua­
tion stages of all activity loops in the system development . This evalua­
tion information provides the data on which the recommendations of the
activity management review are based. This library also documents the
adequacy of the evaluations performed during development . The follow­
ing types of evaluation information are stored.

Feasibility Assessment. During investigation activities the results of
the system feasibility studies are recorded in the evaluation library .
The feasibility results are presented in the review documents from
which the system scope is defined.

Design Verification. As the design is created , verification is used to
guarantee that the specifications meet the objectives of the system.
The verification procedures and the result s are placed in the evalu­
ation library .

Software Verification. Programs written during implementation
should be verified for correctness based on their specifications .
Test data is generated and the software is tested under controlled
conditions . The testing results , along with the test data, are in­
cluded in the evaluation library .

System Testing. System testing should be comprehensive and rigor­
ous , as discussed earlier in this chapter. The type of tests per­
formed and the results of the tests are part of the evaluation li­
brary .

6.3.4 System Documentation

While the system development libraries are built and used almost
exclusively by the development team, the libraries serve as a solid basis
for required system documentation. The preparation of system documen-

'I I !

i
I , I I ' I I

300 6. Information Systems Management

tation is an ongoing activity throughout all of the system development
process. However, during the system implementation , a formal documen·
tation activity must exist . This activity must have well-defined objectives
and assigned resources . Based upon the documentation requirements of
the organization , the following manuals should be produced by the docu·
mentation activity .

SYSTEM MANUAL

The System Manual will be drawn from information in the analysis
library, design library , and evaluation library . It is to be used by system
operators and system programmers who require a technical understand�

ing of the system and the design decisions. The goals of the manual are:

Enable operators and programmers other than the developers , to use,
enhance , and maintain the system.

Record technical information that enables system changes to be
made quickly and effectively .

Facilitate auditing and verification of the system .

Reduce dependency on individual developers and operators , to in
turn reduce the effects of personnel turnover.

A suggested outline for the System Manual is :

1 . Introduction

Background
Underlying Business Process
System Objectives

2 . System Description

Box Structure Hierarchy
Box Structures
Analysis and Design Considerations

3. System Transactions

Input/Output
Transaction Use

4. System Data

Syntax Structures
Data Structures

5. System Integrity

6.3 System Development Libraries

6. System Evaluation

Design Verification
Software Verification
System Testing

7. System Evolution

Modification

8. Appendices

Glossary
Error Messages
Source Listings
Bibliography

USER MANUAL

301

The purpose of the User Manual is to provide users with an under­
standing of the system's purposes, capabilities , and limitations . The de­
tails of analysis and design need not be presented to the user. The user
should be presented with the overall structure and logic of the system,
input requirements , output formats , and the use of system results . The
goals of a User Manual are :

Assist the user in understanding what the system does, that is , its
black box behavior.

Provide all information necessary to use the system accurately and
effectively .

Enable potential users to determine whether the system will serve
their needs .

Present system tutorials for users for self-learning.

A suggested outline for a User Manual is :

1 . Introduction

Background
Underlying Business Process
System Objectives

2. Description of System

Transactions
Input/Output
Data

I ; I '

I

I '

302

3. Use of System

Input Requirements
Output Reports
Sample Executions
Tutorials

4. Appendices

Glossary
Error Messages

MANAGER MANUAL

6. Information Systems Malna!lemt_

This manual provides managers and executives with an appreciation
and understanding of how the system is used in the organization. Man­
agers will be required to use and interpret the results of the system and
support its continued use and maintenance. The role of the system in
organizational decision making must be clearly discussed. Portions of
information can be drawn from the management library and the
library. In particular, the system operations design should be
stated in this manual . The goals of the Manager Manual are to

Provide managers with information so they may determine whether
system objectives have been met .

Provide plans and schedules for system operations, training, and
evolution .

Demonstrate the system's role in organizational decision making.

A suggested outline for the Manager Manual is:

1 . Introduction

Background
Underlying Business Process
System Obj�ctives

2. Description of System

Box Structure Hierarchy
System's Role in Organization
Transactions
Decision-Supporting Results
Manager' s Use of System

3. Development and Operation of System

System Development Summary

Working with People in Systems Development

System Operations Design
Standard Operating Procedures

4. Evolution of System

Future Applications

5. Appendices

Glossary
Bibliography

Summary: The system development libraries are the central re­
pository of all development information . The libraries are de­
signed to support the goals of completeness, consistency , and
efficiency during system development . System documentation is
developed from the information in the libraries .

6.4 WORKING WITH PEOPLE IN SYSTEMS DEVELOPMENT

Preview: While box structures help with logic problems in infor­
mation systems development, the people problems are still the
deepest and most persistent , and require the same interpersonal
skills as for any other field . Managers , users , operators , and de­
velopers each pose different problems because of their roles in
the business , but the box structure methodology provides an ef­
fective basis for addressing these problems.

303

As noted in Chapter 1 , the deepest and most persistent problems of
information systems development are people problems , not logic prob­
lems. However, faulty solutions to logic problems can create unnecessary
people problems. This book has concentrated on the logic problems be­
cause they can be treated comprehensively and gotten out of the way by
systematic use of logical principles . Every person deals with people prob­
lems continuously , at home, in school , at work . The same skills and
sensitivities for interpersonal communication and cooperation apply in
information systems development . It is up to you to use all you know
about dealing with people in information systems development, and you
will have to work at it during your whole career. Getting good logic
solutions is not enough without a sensitive understanding of everyone you
deal with . But this is nothing new as a requirement for success in any
field .

, !

' ll . l. I : ' I I
I I ' j

: 1

304 6. Information Systems Management '

6.4.1 Working with Managers

The managers of a business have an obl igation to make the business
succeed , namely , to survive and prosper, as well as to meet additional
objectives set down by its owners or directors . More and more, busi­
nesses voluntarily accept social and national responsibilities, but without
first surviving and second prospering, such social and national objectives
are irrelevant . In particular, the managers of a business have no obligation
to use information systems , or to have information systems developed at
the expense of the business , except as secondary requirements to meet
their primary objectives of business survival and success.

In a small business , managers can be in on most decisions and make
them on the spot . However, in large businesses, the upper level managers
cannot be everywhere the business is , so they cannot be in on most
decisions. There are two general ways to try to cope with size in business
operations . One way is for each level of management to make as many
decisions as possible , then leave the rest to the lower levels. The second
way is for each level of management to spend part of its time defining
business processes at lower levels rather than in direct decision making.
The higher the level , the higher the fraction of time that goes into defining
business processes . Almost every large successful business copes with
size in this second way . In a large corporation, the top levels of manage­
ment will spend 80% or more of their time on business processes rather
than in direct decisions .

Information systems represent a way to implement and reinforce busi­
ness processes, so it is no wonder that businesses use them extensively.
However, it is worth noting that the reason for information systems is to
implement business processes , whose reason, in turn, is business perfor­
mance . As a result , discussions about potential information systems
should begin with business performance and business processes , not with
data processing systems of hardware and software , no matter how excit ..
ing they may be .

Although there is an ideal development plan , with successive activities
of investigation, specification, and implementation, development plans
and commitments are usually tied into a larger business process , so that
managers of the business seldom commit to the entire development with­
out milestones and options at several points in time. There are two main
reasons :

1 . It makes good business sense to check progress and make Gol
Nogo decisions at frequent intervals . Over time , progress may be slower
or faster than expected , and lessons learned can be incorporated into

6.4 Working with People in Systems Development 305

future planning. One lesson may be to halt the development entirely ;
another may be to speed it up by increasing the level of resources applied
to it.

2. The business exists in a real world that creates its own set of
problems and opportunities that may be addressed by information sys­
tems development . For example, a competitor may announce a new on­
line reservation system and an immediate competitive response is urgent.
Or a change in banking laws may permit a better use of financial assets if
an information system can provide more rapid , more current financial
data immediately.

For these reasons , even though an ideal development plan exists , it
may not always be followed , indeed , will not usually be followed in
changing times for the business . For example , faced with a competitive
reservation system, a business will not have the time for an investigation ,
specification, and implementation stretched out and interspersed with Gol
Nogo decision periods . Instead, these activities must be bypassed or
abbreviated to the greatest extent possible, possibly by choosing a less
than best solution in existing hardware and software packages to get on
the air as soon as possible. Once on the air , a more orderly transition can
be planned to get to a more satisfactory long-term system solution . But by
this time , reservation clerks will have been trained , customers grown
used to , and considerable costs sunk into the initial quick and dirty sys­
tem. So the planning must take these factors into account , as well as the
ideal questions of information systems development.

In short , the reasons for information systems are in their businesses,
and their development takes place under business conditions , not ideal
conditions .

Even �o , the principles of box structures are as valid as before . They
simply need to be applied more flexibly than in the absence of business
forces and pressures . For example, the quick and dirty reservation sys­
tem can be described from the beginning in box structure terms, even
though the people who created the hardware and software packages did
not think of them that way . The situation is similar to discovering a clear
box for a human sales forecaster who does not know of box structures .
The box structures are there to discover and use , whether put there
consciously or not.

6.4.2 Working with Users and Operators

Even though a system may provide all the capability required of it , it
may be hard to use . When it is , its effective capability is reduced , perhaps

I '

306 6. Information Systems Maillag.�mel"

in drastic ways. It is of li ttle value to have the internals all worked out
people are not able to make use of them. Frequently, these in

represent the most interesting and challenging problems of analysis and
design for the developers. But if the developers become so absorbed in
these problems that the user interlaces are worked out as afterthoughts,
the usual result is poor usability and a system with seriously reduced
effective capability, even though it is all there inside.

It is relatively easy, even as afterthoughts , to add input/output support
to make systems user friendly in entering commands and data and observ­
ing the results of such entries. And such user friendly facilities can help
increase the effective capabilities of the system. But if that must be done
as an afterthought, the major opportunities for providing system usability
have already been missed.

INHERENT SYSTEM RATIONALITY

The major opportunity for providing system usability is in the inherent
rationality of the system itself-not the rationality of the developer, but
the rationality of the user . This inherent rationality permits the user to be
in charge of the si tuation, whatever it is , to use the system intelligently
and to best advantage. Without this inherent rationality , the user is forced
to use the system by rote, often without realizing better possible solutions
for the problem at hand. Even if the input/output is user friendly, if input!
output data are being conceived by rote, the potential capability of the
system is not being used .

It is a job of perceptive analysis from the very beginning of develop­
ment (in investigation and specification) to discover the rationality of the
user and to embody that rationality in the design. The internals of the ,
system may be challenging, but if they are not firmly rooted in the user
rationality, and that rationality is not clearly visible to the user in the
completed system, then the internals will not be used effectively.

For example , many problems of decision analysis can be formulated
either in terms of mathematical optimization or in terms of spreadsheets �
If the users are accustomed to spreadsheets and use them daily for other
purposes, i t is dangerous to just solve such problems in terms of mathe-

'

matical optimization models, then specify inputs/outputs to suit these
models , say as a matrix of coefficien ts . The system may solve the prob­
lem, all right, but the users will need to provide inputs in a form they do
not well understand and have little intuition about . No matter how user
friendly the input task can be made, the input data must be prepared by
rote. Occasionally, in such situations, anomalies in input data not recog­
nized because of the lack of intuition can lead to ridiculous results , even

6.4 Working with People in Systems Development 307

though they are mathematically correct . Hopefully , common sense will

prevail and the user will regard the system as failed ; even worse , common

sense does not prevail and it is the business or part of it that fails instead

of just the system.
In summary , to provide effective system visibility, the first require­

ment is to provide inherent system rationality for the user, a rationality

that must be discovered and built into the system from the very start of
development. Once inherent system rationality is achieved , the system
should be designed as user friendly as possible for input/output , but not
before inherent system rationality has been accounted for.

EFFECTIVE USER MANUALS

The foremost tangible item for user support in a system is the user
manual . It should contain all the information a user needs to know to use
the system. User manuals should be written before the implementation ,
not afterwards . The user manual should provide guidance for the imple­
mentation, not the other way around .

In many cases, early user experience will lead to better understand­
ings of the best user interfaces . Even so , this is no reason not to write user
manuals before the implementation . In such cases , a system and user
manual revision should be planned at the outset , as an immediate evolu­
tionary step, possibly before full use of the system. The user manual , in
such a case , represents the best working hypothesis of the required user
services and interfaces available . Without such a crisp , definitive working
hypothesis , the implementation can easily degenerate into an undisci­
plined trial and error process in which accountability for effective perfor­
mance is lost between developers and users .

The specification and implementation activities of information sys­
tems development have good analogies in medical diagnosis and surgery .
When internists diagnose a medical condition and prescribe surgery , it is
up to them to specify the exact surgery required , for example , to remove
an appendix or to remove gall stones . The surgery is required to be quick
and clean, not to continue the diagnosis . For example , if an appendec­
tomy is required , out comes the appendix , good or bad . The alternative
temptation is to slice a little bit, diagnose a little bit , and so on, only to
discover that the appendix is alright after all . The problem may be that the
patient is dead by this time , but who is accountable , the internist or the
surgeon? In information systems development , such an-implement a
little bit , specify a l ittle bit-process may discover a very good user
interface , only to find the system has been terminated because of a lack of
confidence by the managers due to missed schedules and budgets .

308 6. Information Systems Ma.nag,em'ent':

There is another fundamental reason why user manuals should be
written before implementation , even when it is virtually certain that the,'
user interfaces will need to be changed . It is to capture the inherent
system rationality .

As already noted , the first priority in ensuring system usability is to
create an inherent system rationality from the viewpoint of the user. Only
then should the actual user interfaces be considered in detail . This means
that a user manual for a system with good inherent rationality will be at
risk primarily in its details ; if the user interfaces must be changed , it will
be the details of the user manual that must be changed. Its overall struc ..
ture and rational ity should survive such a change . Therefore , writing the
user manual before implementation is not as risky or foolish as it may
seem at first glance . Most of the work , particularly the conceptual work,
will already be done, and the rework of the details will be sharpened
considerably by the initial user experience.

The alternative temptation to wait for implementation and experimen­
tation to write the user manual will be more expensive and far less effec­
tive in the long run, for several reasons :

1 . After implementation, there will be pressure to use the system
without adequate time and effort to get the user manuals into the best
possible shape .

2 . The implementation process itself produces an amnesia (for devel­
opers) in the rationality of the system caused by dealing with all the
details and possible surprises of implementation itself.

3 . Late user manuals mean skimpy attention to user training plans and
facilities .

4. The process of writing user manuals should tie into the box struc­
ture descriptions available at specification and ensure that the inherent
user rationality is reflected in the implementation.

TRAINING FOR EFFECTIVE USE

User training begins with a good system and a good user manual . Its
objective is to help users be effective in their business purpose, not just to
use the system well . If the system is well conceived, effective business
performance and the good use of the system is usually synonymous, but
not necessarily is this always the case . For example , if the system breaks
down or produces nonsensical results, the user should use common sense
on behalf of the business . That is, the system should be the servant of the
users , not their master.

The analysis library may be useful in training or in development of
training materials for users . The box structures in the analysis library will

6.4 Working with People in Systems Development 309

be described in user terms and should document the inherent rationality
of the users . As a result, it may be useful to better ensure that all users see
their own activities in a uniform, documented form , rather than depending
on word of mouth or example to achieve standard practices among users .

CONSULTING AND HELP

A development team that has discovered the inherent user rationality
of the system before implementing it will be in a good position to help and
consult in its usage . Conversely, a development team that has made up its
own rationality from the computer point of view rather than the business
point of view will not be in a good position to help and consult in the use
of the system to achieve business objectives . Yet , it is not always easy to
see the difference in practice. Users are frequently intimidated or im­
pressed with pure technology and may blame themselves (or be blamed by
the managers) for ineffective use of a system. Indeed , users may make
good use of a poorly conceived system without realizing the missed op­
portunity that the system could have been even more useful if better
conceived. In short , the very principle of business first , system second,
that produces superior business systems automatically produces the best
ability to help and consult in the usage of the system.

SYSTEMS OF PEOPLE AND COMPUTERS

We have already noted that people and computers both store and
process information , at greatly different rates but , nevertheless, they pro­
vide the same function . For that reason, it is most effective to conceive of
systems and subsystems implementation in a flexible way to best use
people and computers in cooperative ways. While computers and soft­
ware must be specified and realized , so also must people and training be
specified and realized as well .

The joint implementation of systems by people and computers is
easier said than done . A common mistake is to concentrate on the com­
puter side , and treat the people side-the users-as after thoughts , so
that people merely fill in those parts the developers were unable to imple­
ment in computers . Such a mistake leads to poor interfaces , but even
more importantly , to the wrong systems rationality-designed for the
computer rather than people .

When a system is conceived as a flexible arrangement between people
and computers , the system functions should be divided so that computers
do as much of the clerical data processing as reasonable , and people do
critical decision making and recognition functions . For example , an air-

. I
i ; � i \

,.
': t, :

i i I I

3 10 6. Information Systems Malna2em4�.

line reservation clerk serves as a voice to keyboard translator and a d·
display to voice translator among other functions . The technology is
to move from digital display to voice automatically because little re
tion is involved . For example , many telephone exchange information
vices use automatic digital display to voice translation . But the trans
from voice to keyboard will come much later.

The airline reservation clerk also provides critical decision making in
helping customers decide on flights or to answer other questions on fares,
connections , and seat assignments . However, for the customer on a tele­
phone , the airline reservation clerk is part of a system of people and
computers whose immediate interface is the clerk. A good airline reserva­
tion system makes best use of people and computers with no precon­
ceived notions of what either should be doing.

In advanced systems planning and development it is especially impor­
tant to keep both people and computer developments in mind. A common
mistake in advanced systems is to think very hard about what computers
can do , but to take peop�e for granted-to conceive of ' 'future computers
and present people" . The reality is that people are usually the most ad­
vanced part of any new system. It is relatively easy to predict the future
abilities of computers-their speed and storage capabi lities , their input!
output capabilities . But it is much harder to predict the future abilities of
people.

As a simple example in another technology , seventy years ago it was
easy for experts to predict that production automobiles would one day go
seventy miles an hour. But how many of these experts could have pre­
dicted that seventy-year-old grandmothers would be driving them? In
conceiving systems it is even more important and difficult to visualize
what people can do than what computers can do.

Another example , the advent of networks of microcomputers is lead­
ing to entirely new methods of doing business in large organizations,
where most communications become instantaneous and paperless . The
ability to organize microcomputers into such networks has long been
known, but the use of such networks by people is developing on a scale
and in ways never predicted .

6.4.3 Working with Developers

DEVELOPMENT ORGANIZA nONS

The product of information systems development is largely invisible .
Unlike the computers that they use , the system design and software that

6.4 Working with People in Systems Development 3 1 1

implements an information system is a sea of details that only the devel­

opers see and understand . The user guides and manuals reflect the system

rationality , but the ultimate result is the dynamic operation of the system,

not in any static structure , such as a cathedral or a building. As a result ,

progress in system development is much harder to understand than for a

static product . This difficulty must be dealt with in the development orga­

nization .
In a static structure , it may be possible to divide the structure itself for

assignment to various suborganizations . For example, one might divide a
building into four parts , and for each part use masons, carpenters , and
painters in the same proportions . The interfacing walls between the parts
could be worked out , and anyone not working on a common wall need not

know anything of the other parts .
Unfortunately , things are not so simple with an information system . .

The box structures allow a good deal of isolation and delegation at every
point in a box structure hierarchy . But even so, one cannot divide an

information system up as simply as a building .
The guiding principle in organizing information system development

work is to divide up the work , not the systems to be developed . The
surgical analogy already used is a good one to start with here . A surgical
team could be imagined in which a set of co-equal surgeons were all
operating together, each steril izing their own tools , providing their own
sponges, checking the status of the patient , and so on . Of course , we
know that is not the right way .

A surgical team does not divide up a patient , it divides up the work .
One person does the surgery , another provides anesthesia, another radiol­
ogy , another steril izes scalpels and sponges , and so on . The rationality of
the surgery is held in one mind, that of the surgeon . The remainder of the
team helps guarantee the integrity of the operations. As with information
systems , the integrity of the surgery is largely independent of the particu­
lar function of the surgery . Anesthesia, scalpel and sponge steril ization ,
and so on proceed similarly for a wide class of surgical procedures. The
radiology and other services may be more closely related to the surgical
procedure itself.

In a similar way , the rationality of an information system must be as
consistent and thereby as closely held among a few minds as possible . To
divide up the rationality, as one might divide up a building, is a serious
mistake . But how can one divide up the work without dividing up the
system? The surgical team gives some clues . Find supporting tasks that
are not so specific to the rationality of a particular system.

A major divis ion is to divide the work between conceptual and clerical

3 12 6. Information Systems MalnaRem ••

activities . The clerical tasks will not be specific to the system, but
require general skills for entering and verifying designs and data, just
general skills for sterilizing scalpels and sponges are required for s
Both conceptual and clerical tasks can be divided further. Clerical
for entering and verifying designs will be different than those for da�
Again, data entry skills may be divided according to specific system re�.:

quirements .
'

The conceptual skills can be divided along lines discussed in this book,
'

The box structures provide a di stinction between analysis and desip
activities-between working with managers , users , and operators , and'

working with procedures and computers . Each black box identified pro.
vides an opportunity to delegate a task of design and analysis to a group or
a person. Upper level black boxes can be analyzed for consistency

.

appropriateness by several groups or persons when desirable . In fact, the
box structure methodology can be regarded as a work structuring method·
ology as well , and has been largely motivated by the management problem
from the outset.

INFORMATION SYSTEMS ENGINEERING PRACTICES

The basis for consistent high quality information systems development
work is a set of systems engineering practices to provide uniformity and
repeatability in analyses and designs. The box structure methodology of
this book represents a set of practices for analysis and design . Additional
business specific practices are needed for the activities of investigation,
specification, and implementation . These additional practices should be
augmented with management practices to ensure good use of personnel
and close cooperation with the managers , users , and operators in the
business .

Engineering practices can be viewed as straight jackets or as liberating
disciplines . Well conceived , they provide a basis for a more creative,
more productive work by highly capable information systems personnel.
Without good engineering practices , groups face much rework, many
misunderstandings at interfaces , and many frustrations and disappoint­
ments in going from idea to implementation . The marks of good practices
are high morale and well deserved self-esteem from the effective informa­
tion systems development they help make possible.

Information systems development is a challenging and creative activ­
ity . But variability should not be confused with creativity in system analy­
sis and design. If a definite system is called for in a given business situa-

E

ti
il
q
C
t
t

t:sercises 3 1 3

tion, then any creative person should invent that same system . And just

inventing a different system does not make it a better, or even an ade­

quate system. The box structure methodology begins with business pro­

cesses and ends with better business processes, very possibly supported

by new information systems. The chaIlenge and creativity is to keep the
business processes in mind even whi le navigating in the deepest waters of

system development and the logical problems of computer hardware and

software it represents .

Summary: Box structures provide a framework for addressing
the needs of managers , users , operators , and developers . Infor­
mation systems exist to support management-defined business
processe s , and their development takes place under business con­
ditions , not ideal conditions. The usability of an information sys­
tem depends on the extent to which it embodies the inherent
rationality of its users and operators . Information system devel­
opers should divide up the work , not the system.

6.S EXERCISES

1. You are hired by a smaIl business to perform a systems development
for a computerized word processing system . Currently a single secre­
tary does all typing manually. Business is expanding and a second
secretary may be hired . Three officers of the business produce the
work to be typed . They expect the developed word processing system
to cost less than $ 1 0 ,000 (including your fees) and to be ready for full
use in one month.

(a) Hypothesize and illustrate a typical system development plan
for this project. What tasks would be performed in each activity ?
What planning and evaluation would be needed in each activity?

(b) Discuss the feasibility issues found in the investigation activity .
(c) Describe the contents of the four libraries for this proj ect.

2. A system development is planned for a bank to provide first , branch
teller services , then automatic teIler machines in grocery stores.
However, a network system i s needed to support these teller facili­
ties . Construct a development plan for this situation .

3 14 6. Information Systems Manage

3. Construct a project network for the following activity information

Immediate Duration

Activity predecessor (weeks)

A 4

B A 20

C A to

D B ,C 5

E D to

F D 7

G E,F 12

H F to

G,H I

For each event calculate the EET and LET. Find the critical path
the project and indicate slack times for non-critical activities .

4. Develop scenarios in which each of the three types of system conve
sion would be the most advantageous .

Chapter 7 Syntax Structures
in Information Systems

7.1 SYNTAX STRUCTURES

Preview: Syntax structures of stimulus histories and responses
lead to simpler and clearer descriptions of black box , state ma­
chine , and clear box behavior. A formal grammar is given by rules
of syntax which describe all possible stimulus and response histo­
ries of a given class .

The common property of black boxes , state machines , and clear boxes
is that they all accept stimulus histories and produce responses . The
responses of simple black boxes , state machines , or clear boxes are easy
to describe in terms of stimulus histories . But for more realistic ones, the
responses are not so easy to describe . In these more realistic problems,
more powerful methods are needed for describing stimulus histories , in
order to specify what responses are required . This chapter introduces
methods of syntax-how stimulus histories can be structured by their
syntax for better understanding of the black box , state machine , or clear
box behavior required .

As seen in the hand calculator, while many black boxes and state
machines will accept any stimulus history , only certain histories make
sense and provide intelligible responses . These histories need to be de­
scribed for user guidance and information-without user knowledge of
what information systems do , what they do is useless .

3 1 5

I I "
,

i , I

3 16 7 . Syntax Structures in Inrormation

Fortunately , there is a simple, but powerful , method for de
intelligible user input . It is a method of long human history , based on
syntax of natural language and speech. But , whereas syntax methods
only deal with natural language to some approximate degree , they
deal with explicitly designed user languages in information systems
pletely and exactly.

7.1.1 The Syntax of Hand Calculator Inputs

The hand calculator provides a simple example of syntax methods ..
The inputs which will provide dependable outputs are arithmetic expres­
sions preceded by a clear key and followed by an = key. There is no limit
to the number of stimulus histories which satisfy this requirement-liter­
ally, an infinite number of such histories . But even so, we can define a
finite set of syntax rules among syntax parts (as parts of speech) which aU
these stimulus histories must satisfy . Such a set of syntax rules is called a
formal grammar.

These rules are written using special symbols , known as metasymbois,
to distinguish the parts of the rules. The metasymbols < and > are called
angle brackets , and are used to bracket names of syntax parts . Two
additional metasymbols required to define syntax rules are : : = (a three
character symbol), and I (a vertical bar) . The : : = metasymbol means "is
an instance of" and the I metasymbol means "or" . Thus, for example,
the syntax rule

<HC Input> : : = C = I C <expression> =

means that a syntax part named "HC Input" (HC for hand calculator) is
an instance of " C = " (the sequence of a Clear key and = key) , "or" (an
instance 00 . . c <expression> = " (a sequence where a new syntax part
named "expression" appears between C and =) . In this case, <expres­
sion> must be defined elsewhere , but C and = are literals that stand for
themselves . Note that the answer provided by the hand calculator for the
stimulus history C = is always 0, but that is an intelligible response to the
user nevertheless .

The stimulus history for <expression> (an arithmetic expression),
must be of the form

<number> <operator> <number> . . . <operator> <number>

where each <number> is a sequence of digits , and each <operator> is
one of + , - , *, I.

Another way to describe an <expression> stimulus history is as a

I

1.1 Syntax Structures 3 1 7

<:::number> followed by zero or more <operator> <number> pairs. The
repetition metasymbol * which precedes a syntax part means "zero or
more" such parts. (Note the distinction between * as metasymbol and as
a literal multiplication operator, which will be clear from their context .)
Thus, if we first define the syntax rule « operator number> : : = <opera­
tor> <number» , we can then define <expression> in the syntax rule

<expression> : : = <number> *<operator number>

which means, expanding the repetition part,

<expression> : : = <number> I
<number> <operator number> I
<number> <operator number> <operator

number> I

which means , in turn, expanding the <operator number> parts

<expression> : : = <number> I
<number> <operator> <number> I
<number> <operator> <number> <operator>
<number> I

as was intended for <expression> .
Numbers are sequences of digits 0 through 9 . Thus , all of the syntax

parts needed to define <HC Input> can be expressed as follows:

1 . <HC Input> : : = C = I C <expression> =
2. <expression> : : = <number> *<operator number>
3. <operator number> : : = <operator> <number>
4. <number> : : = <digit> *<digit>
5. <operator> : : = + I - I * 1 /
6 . <digit> : : = 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

These six syntax rules constitute a grammar that defines all possible
proper stimulus histories to our example hand calculator . Every syntax
rule in the grammar has a left side and one or more possible right side
expansions. Each alternative is a possible right side. Thus, for example ,
rule 5 has four alternative expansions, as + , - , *, or /, which we can label
5 . 1 , 5 . 2 , 5 . 3 , and 5 .4, respectively.

Every left side is a syntax part (named with angle brackets) that is
ultimately expressed in keystrokes to the hand calculator. For example ,
the following expansion steps produce a sequence of keystrokes to solve
the problem C 7 + 29 = :

3 1 8 7. Syntax Structures i n Information SystelDS

<HC Input> : : = C <expression> = (by rule 1 .2)
<HC Input> : : = C <number> <operator number> = (by rule 2)
<HC Input> : : = C <number> <operator> <number> =

(by rule 3)
<HC Input> : : = C <digit> <operator> <number> = (by rule 4)
<HC Input> : : = C <digit> <operator> <digit> <digit> =

(by rule 4)
<HC Input> : : = C <digit> + <digit> <digit> = (by rule 5. 1)
<HC Input> : : = C 7 + 29 = (by rules 6 .8 , 6 . 3 , and 6. 10)

7.1.2 Syntax Parse Tables

A syntax parse tree is a diagram of the syntax parts which spell out a
given syntax part . For example, the parse tree for C 7 + 29 = is given in
Figure 7. 1 - 1 .

For better readability from the top down, the tree is shown in inverted
form. The syntax parts used to make up the problem C 7 + 29 = make up
the interior points (nodes) of the tree . The literal keystrokes are the leaves
of the tree. In fact, the leaves are (from left to right) C, 7, + , 2 , 9, == ,

which spell out the problem C 7 + 29 = .
Syntax parse trees are easy to understand at a glance , but become

unwieldy and awkward for larger problems. Therefore , we introduce an
equivalent , but more concise form for the same information, by convert­
ing trees to tables in outline form . Each node of a tree is regarded as an
item of an outline . The nodes next below each node in the tree are re­
garded as items at the next level of outline , and are indented accordingly.
The outline starts with the top node of the tree . The result is called a parse

C

(HC I n p u t)

(e xpression)

I
(n umber)

(operator)

7 +

(operator n u m ber)

I

(digit)

I
2

(n umber)

I

Figure 7.1-1. A Syntax Parse Tree For C 7 + 29 = .

I
(d igi t)

I
9

7.1 Syntax Structures 3 1 9

Table 7.1-1

A Syntax Parse Table for C 7 + 29 =

< HC Input> 1 .2
C
<expression> 2

<number> 4
< digit> 6.8

7
<operator number> 3

<operator> 5 . 1
+

<number> 4
<digit> 6.3

2
<digit> 6 . 1 0

9

table. For the problem C 7 + 29 = , whose syntax parse tree is given in
Figure 7. 1 - 1 , the parse table is as given in Table 7 . 1 - 1 .

The parse table also admits the explanation of each part expansion by
listing the syntax rule that describes how the next level of the table is
obtained .

This parse table can be constructed directly and systematically , with­
out first inventing the parse tree . For example , the l ine

<HC Input> 1 . 2

means that <HC Input> is expanded at the next level by the rule 1 . 2 ,
which i s of the form

C <expression> = 1 . 2

Therefore , indented next below <HC Input> must be exactly (no
more , no less) the items C, <expression> , and = , namely,

<HC Input>
C
<expression>

1 . 2

Now C and = are l iterals , so no further expansion is necessary. But
<expression> is a syntax part that must be expanded . It has but one rule ,
but that rule , namely ,

<expression> : : = <number> *<operator number>

320 7. Syntax Structures in Information

permits any of the expansions

<number>
<number> <operator number>
<number> <operator number> <operator number>

For the problem at hand , C 7 + 29 = , the second expansion is needed, :'
so the parse table becomes

<HC Input> 1 .2
C
<expression> 2

<number>
<operator number>

The first <number> is 7 (which is also a <digit» , so, by rule 4, we
obtain

<number>
<digit>

4

and (since 7 is given by the rule 6.8 of digit) ,

<number>
<digit>

7

4
6 .8

The expansions for <operator> and the second <number> follow in a
similar way , and will result in the original parse table shown for C 7 + 29
= in Table 7. 1 - 1 .

7.1.3 Parse Table Structures

Although the parse table above begins with the syntax part
Input> , every new syntax part, i .e . , <expression> , <operator num"
ber> , <number> , <operator> , and <digit> , begins a new parse table of
its own, which fits into the <HC Input> parse table . In each of these new
parse tables , the reasoning is localized . That is , the parse table for <ex­
pression> is correct or not , independently of how it is used in <He
Input> . For example , the expression

< HC Input>
C
<expression>

7.1 Syntax Structures 32 1

(missing the final =) is incorrectly formed , but the expansion of <expres­

sion> itself can be judged correct or not independently of this error.
A syntax part is expressed correctly in a parse table only if rules exist

for every line of the table. For example, the expansion

<number>
7

is incorrect , even though "everyone knows that 7 is a number" . The
reason is that there is no syntax rule that states "7 is a number" . Instead ,
<number> is one or more <digits>s and 7 is a <digit> . Therefore the
correct expression is

<number>
<digit>

7

with the rules to show for it.

4
6 .8

In summary , as shown above , the syntax components of a syntax part
are listed below and indented one level-the components are defined by
the rule given at the right. The literals have no rules and spell out the
syntax part being parsed . The parse table gives a compact way to prove
the correctness of a syntax part , as defined in the following principle .

Fundamental Principle: A syntax part is correct (correctly
formed) if a parse table can be constructed in which

1 . each syntax part in the table is correctly formed by compo­
nents at the next level according to the rule given .

2 . the literals of the parse table spell out the syntax part .

7.1.4 Syntax Expressions

The rules of grammar discussed above use only the metasymbols < ,
> , : : = , I , * . If any of these symbols were to b e used i n the language being
defined , it would be necessary to distinguish between them as metasym­
boIs and symbols in some way . For example , if " < " , " > " were to be
used as "less than " , "greater than" symbols , the string "< digit > "
could mean a syntax part , or a part of some expression i n the language ,
such as (if digit is the name of a variable) " 7 < digit > 9" , meaning digit is
greater than both 7 and 9 . Ordinarily , such double uses of symbols can be
distinguished by the context of their appearances . For example , it is clear
that

322 7. Syntax Structures in Information Syste

<digit> : : = 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

represents a use of < , > as metasymbols and

<comparison> : : = < I = I >

represents a use of < , > as metasymbols on the left side and as symbols
on the right side of the rule . When confusion is possible , an explanation
should be given in English.

The ordinary parentheses (,) are commonly used symbols , but are
also very useful in arithmetic and mathematics to group operations . For
example , the expression 4 + 3 * 5 can mean

(4 + 3) * 5 = 35

or

4 + (3 * 5) = 1 9

depending on how the terms are grouped . This ability to group operations
is so useful that parentheses are often used as metasymbols as well as
ordinary symbols .

As discussed above, these distinctions must be clear in context or else
explained separately . The use of parentheses permits rules of syntax to be
simplified in many cases . For example , two of the rules of grammar used
above for < HC Input>

2 . <operator number> : : = <operator> <number>
3 . <expression> : : = <number> *<operator number>

can be expressed in a s ingle rule using parentheses as metasymbols

<expression> : : = <number> *(<operator> <number»

and the syntax part <operator number> is no longer needed . The part
rule of <HC Input> was given in the form

1 . <HC Input> : : = C = I C <expression> =

and can be expressed with parentheses as

< HC Input> : : = C (I <expression» =

That i s , <HC Input> always begins and ends with C and =
, but in

between can consist of nothing or an <expression> . In this case the
standard rules of C and = are easier to see in the rule with parentheses,
than in the original rule without parentheses.

Note that parentheses can be used to show the possibility of nothing as
a syntax part in a rule of syntax .

7.1 Syntax Structures 323

Parentheses can be used to simplify grammars originally written with-
out them. For example, the grammar for <HC Input>

1 . <HC Input> : : = C = I C <expression> =
2. <expression> : : = <number> * <operator number>
3. <operator number> : : = <operator> <number>
4. <number> : : = <digit> *<digit>
5. <operator> : : = + I - I * I /
6. <digit> : : = 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

can be transformed step by step using parenthesized expressions, as fol­
lows :

Step 1. Reform HC Input:

<HC Input> :: = C (I <expression» =

Step 2. Expand <expression> :

<HC Input > : : = C (I <number> * (<operator> <number>)) =

Step 3. Expand <operator> :

<HC Input> : : = C (I <number> *« + I - I * I /) <number>)) =
Step 4. Expand <number> :

<HC Input> : : = C (I « digit> * <digit» *« + I - I * I I)
« digit > *<digit>») =

At this point , each <digit> can be expanded to express <HC Input>
entirely in literals , with no other syntax parts at all . While possible, the
result would not be easy to read . The best , most easily understood ,
grammar for a syntax part is usually a happy medium between extremes
of no parentheses and no other syntax parts . In this case , perhaps the
simplest grammar is defined by Step 2, with the resulting (complete) gram­
mar

<HC Input> : : = C (I <number> *« operator> <number») =
<number> : : = <digit> *<digit>
<operator> : : = + I - I * I /
<digit> : : = 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

The grammar defined by Step 3 is al so very understandable,

<HC Input > : : = C (I <number> *« + I - I * I /) <number>)) =
<number> : : = <digit> *<digit>
<digit> : : = 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

I
I : , I

l., \: I ,
I ,

i
j

324 7. Syntax Structures in Information Systeraa

The choice between these two grammars is close . The first gives a
name <operator> which helps in explanations to users ; the second is one
rule shorter. Either is simpler to understand than the original .

The final metasymbols we will use are brackets ([]) to denote an
optional element of a grammar rule. For example the original rule for
<HC Input> could be written as

<HC Input> : : = C [<expression>] =

The brackets mean that the enclosed syntax part may or may not be
used when the rule is applied .

RECURSION IN GRAMMARS

It is often natural and convenient to define language constructs recur­
sively , i . e . , in terms of themselves . A recursive production rule is one
which contains the phrase being defined in its defining string of phrases
and/or characters . For example , consider the following definition of a
sequence control structure :

If S l , S2 , . . . ,Sn are statements , then · ·do S I ; S2 ; . . . ;Sn od " is a se­
quence of statements .

To describe this structure in a grammar, we could write the following
production rule :

<sequence> : : = do <statement> ; . . . ; <statement> od

but the use of ellipses (. . .) would create problems when we attempt to
define translations based on this description . A better way to define this
structure is to introduce a new syntactic entity named <statement list> ,
denoting any sequence of statements separated by semicolons . Then a
possible set of productions is

<sequence> : : = do <statement list> od
<statement list> : : = <statement> I <statement> ; <statement

list>

The rule for <statement list> is read · ·a <statement list> is either a
<statement> or a <statement> followed by a semicolon followed by a
<statement list> . " From this recursive definition it follows that any se­
quence of statements separated by semicolons is a statement list.

In this example , we have seen how a programming language structure
can be described precisely in terms of a grammar. In fact, an entire
programming language can be effectively described by a set of production
rules in a larger, more complex grammar. Such a grammar describes the

7.1 �

struc
stan(
error

7.1.5
A

acce]
InpUi
kind�
and (
acro�
FigUl

B
eral ·
bilitic
C mt
next
digit ,
open
sions

N
Ius hi

c

r 7.1 Syntax Structures 325

I structure of programs written in the language , as an aid to human under-� standing and to mechanical translation into object code . Detection of
errors in a program is also simplified when a grammar is available .

7.1 .5 State Machine Syntax Checkers

As surprising as it may seem, we can build a state machine which
accepts one keystroke stimulus at a time , and decides if a proper <HC
Input> has appeared in the immediate stimulus history . There are four
kinds of literals possible in the <HC Input> syntax, namely C, =

, digits,
and operators . A proper input of the form <HC Input> will trace a path
across the leaves of some syntax parse tree, for example, as shown in
Figure 7. 1-2 .

By examining this tree and recalling what variations are possible (sev­
eral <operator number>s, several <digit>s) it is easy to see what possi­
bilities exist in the successive appearance of these literals . For example,
C must appear first . Then fol lowing C, either an = or a digit must appear
next (= from rule 1 . 1 , digit from rule 1 . 2) . After a digit can appear another
digit , an operator, or (as on the far right side of the tree) an = . After an
operator a digit must appear. We can summarize these necessary succes­
sions in the following table :

After

C
digit
operator

Can Appear

digit 1 =
digit I operator I =
digit

Now, consider a state machine which accepts a hand calculator stimu­
lus history defined by this grammar and produces for each stimulus one of

I
(nu m ber)

(digit)

I
C 4

(digit>

I
5

(HC I n put)

(expression)

I

(operator)

+

I
(o perator number)

I
(num ber)

(d igit) (d igit)

I I
3 7

Figure 7.1-2. A Syntax Parse Tree for C 45 + 372 = .

I
(d igit)

I
2

326 7. Syntax Structures in Information �.J�"_�

three responses , P, Q, or N :

P: A correct problem has been entered .
Q: Part of a correct problem has been entered .
N : No correct problem is possible with the preceeding stimuli .

For a response of P , the stimulus must be =
, because that is the

way to complete a correct problem . If the last response was Q, then the
table of successors gives all the ways the next response is Q or P. There­
fore , we can organize the required responses of the state machine by
considering the last stimulus and the last response together, as shown in
Table 7 . 1 -2 . The start column shows responses for the first stimulus.

With these responses known, the state is also easy to define . It is just
the information needed to determine its responses , namely , the last stimu­
lus and the last response . That i s , the state can be the pair ,

state = last stimulus, last response

and the machine must determine the response by Table 7 . 1 -2 and the new
state as the current stimulus and response .

While this state machine recognizes the given grammar, it also reveals
shortcomings in the grammar as a specification of useful hand calculator
behavior. For example , the grammar permits only a single expression to
be evaluated , even if no syntax errors are present . In this case, a modified
grammar beginning with the production

<HC input> : : = *(C = I C <expression> =)
permits a C stimulus fol lowing an = stimulus to begin a new expression,
provided no intervening syntax errors have occurred . In addition, a hand

Table 7.1-2

State Machine Recognizer for Hand Calculator Input

Last Response

Q N or P

Current Last st imulus Last sl imulus
stimulus Starl C

C Q N
d N Q
0 N N

N P

Ke y: C: Clear Key
d: digit
0 : operator

d

N
Q
Q
P

0 C d

N N N N
Q N N N
N N N N
N N N N

Table enl ries are response
required .

0

N
N
N
N

N
N
N
N

7.1 Syntax Structures 327

calculator should reinitialize its state on any occurrence of a C stimulus ,
even after a syntax error, to permit a correct expression to be entered.
Such behavior would require additional modifications to the grammar, for
better usability in hand calculator operation .

7.1.6 Syntax Methods in Clear Box Design

The net effect of invoking a clear box is to invoke a' series of transi­
tions of its component machines . If alternation or iteration clear box
structures are contained in the overall clear box , the number and identity
of machine transitions invoked will be variable , depending on the (initial)
stimulus . It turns out that these machine transitions satisfy rules of syn­
tax , which can be derived directly from the nested set of structures within
the clear box . In particular, each sequence , alternation , and iteration
structure corresponds to a syntax rule of concatenation, choice , or repeti­
tion .

For example , consider the clear box of Figure 7. 1 -3 , with 3 conditions
and 5 machines . Let <transition> be the series of conditions and ma­
chines invoked in an invocation of the entire cl ear box . Then it can be
seen that

<transition > : : = C] < upper transition> I
C] <lower transition >

<upper transition > : : = M I *(C2 M2) C2

<lower transition > : : = (C3 M3 M5) I
(C3 M4 M5)

Figure 7.1-3. A Clear Box,

I
i I

I i

328 7. Syntax Structures in Information

In fact , <transition> can be written in a single expression:

<transition> :: = (C 1 M 1 *(C2 M2) C2) I
(C I C3 M3 M5) I
(C I C3 M4 M5)

That is, <transition> describes the syntax of all possible sequences ·
which the conditions and machines of the clear box can be invoked. F
example, the syntax of <transition> shows exactly which machines
be invoked in sequence : at most two machines can be invoked in a
tion, namely , M I before M2 (which may be repeated) , M3 before M5,
M4 before M5 . These relationships can also be observed in the clear
but the syntax is much more compact, and for larger clear boxes,
syntax is more easily analyzed .

FILE SYNTAX AND CLEAR Box DESIGN

The property that machine transitions in clear box executions s
rules of syntax can be used in a decisive way for processing seq
files . The contents of sequential files also satisfy rules of syntax . Is
possible that the syntax of a sequential file is related to the syntax of
clear box which inspects or creates it? The answer is yes indeed ! In fact
the clear box structure should be derived from the syntax of the
exactly as follows:

I . For every concatenation of file parts in a syntax rule, there "",JU&''''-\

exist a sequence clear box structure which deals with these file parts .
2 . For every choice between file parts in a syntax rule, there s

exist an alternation clear box structure which deals with these file
3. For every repetition of a file part in a syntax rule , there should exist

an iteration clear box structure which deals with this file part.

That i s , in order to design a clear box to inspect or create a sequential
file, a systematic design strategy is to :

I . develop a set of syntax rules to describe the sequential file
2. derive the clear box from the syntax rules exactly as prescribed

above .

In illustration, consider the problem of designing a black box to create
an exception report , say , of employees who have not provided social
security numbers . The report is to be extracted from a personnel file
which is stored in a sequential file organization. Note that there are two
sets of syntax rules that will be critical in this problem-the syntax of the
personnel file and the syntax of the report. As noted before, a report may
not seem to have syntax, but in fact it wil l .

7.1 Syntax Structures 329

Inspect Determine Print
personnel r----- exceptions r- personnel
file report

Figure 7.1-4. Exception Report Clear Box Structure.

A user will not ordinarily say "I want my report to have the fol lowing
syntax . " But users will frequently say "the report should be in this
form, " and discuss a title page , an information page , a summary page,
and so on . That i s , the report is to have a syntax such as

<report> : : = <title page> *<info page>

<title page>
<info page>
<info line>

<summary page>
: : = <date> <department> <division>
: : = <top line> <info line> <bottom line>
. . -

<summary page> : : = . . .

The black box which creates an exception report from a personnel file
will treat every character of the personnel file as a stimulus, and the entire
personnel file as an input. Recall that the hand calculator recognizes an
input when a proper arithmetic problem has been stated in a stimulus
history , and produces the answer as its output . In this case , the output of
the black box is the entire exception report.

At the next level , we consider the state machine of this black box . Its
state will be accumulated , stimulus by stimulus, while the personnel file is
being inspected . Its machine is very complicated , and most easily de­
scribed in terms of a clear box structure .

There are several possibilities for the clear box structure , depending
on how much storage is available to maintain the state . In illustration,
assume there is adequate storage to inspect the personnel file entirely ,
then determine the exceptions , and finally print the report . In this case the
top level clear box structure will be as shown in Figure 7 . 1 -4 .

The first and third of these component clear boxes can now be de­
signed exactly as prescribed above . In each case a file is to be inspected or
created, and its syntax can be used to derive the clear box structure .

Summary: Syntax structures are a simple , yet powerful formal­
ism for describing inputs , outputs , and state structures . Syntax
specifications can be used in the design of system procedures that
accept and validate input , organize data in storage , and prepare
output reports .

(, !

I ·
I I
, I '

330 7. Syntax Structures in Information

7.2 SYNTAX STRUCTURES IN BUSINESS OPERATIONS

Preview: Syntax structures are common in business operations,
whether explicitly recognized or not . Business reports and forms
can be analyzed and designed as syntax structures , as can the
user languages of business information systems . User language
syntax structures prescribe clear box designs for language pro­
cessing.

The ability to make use of syntax structures is very valuable , nAr· n

they can simplify and clarify black box , state machine , and clear
descriptions to significant degrees . In fact , practically all business
munications and records have syntax structures that permit sy "�l.n,"

analysis and description, even though they are quite different from
examples of ordinary English and arithmetic expressions that
syntax methods in the first place .

7.2.1 The Syntax of Files, Reports, and Business Forms

Syntax rules can be used to describe a wide variety of informa
structures of which proper hand calculator input is a simple case.
example, any information file is ultimately a file of characters which
organized into fields and records . A personnel file might contain a he
record , a variable number of personnel records , and a summary rAro·"'r ·•

according to the syntax rules

<personnel file> : : = <header> *<personnel record> <summary

That i s , the file is composed of a single syntax part <header> , zero
more syntax parts <personnel record> , and a single syntax part <s
mary> . If the header record contains information about the OnZa1111ZCl",
tional unit , it might have the form

<header> : : = <organization name> <organization address> . . .

the personnel record the form

<personnel record> : : = < name> *<dependents> <address> . . .

(zero or more dependents) , and the summary record the form

<summary> : : = <number of records> <average salary> . . .

In this way the entire syntax of the personnel file can be defined .
complete detai l .

A generated personnel report will also have a syntax , such as

<report> : : = <front page> *<data page> <summary page>

7.2 Syntax Structures in Business Operations

(zero or more data pages) , with front page of the form

<front page> : : = <title> <date> . . .

data page of the form

<data page> : : = <top line> *<data l ine>

and so on .

33 1

A word processing file will have a simpler structure of blanks and

words , say

<text> : : = <word> <blanks> <word>

<word> : : = <nonblank> *<nonblank>

<blanks> : : = <blank> * <blank>

and so on .
The use of lines as syntax parts permits the description of business

forms of all kinds with syntax structures . A blank l ine (line of blank
characters) can be used to take up space when space is needed. Within
lines , tabs and columns can be defined by syntax parts , and so on . Syntax
methods can be used to define a family of business forms , say personnel
application forms , which have variations for permanent or temporary job
applications.

7.2.2 The Syntax of User Languages

One of the most powerlul uses of syntax is in the definition of user
languages for interlacing with information systems . A grammar for a user
language serves three purposes:

1 . a test of completeness and consistency for the definer,
2 . a basis for explaining the language to users , and
3 . a basis for implementing the language by designers .

Unfortunately , user languages in information systems often grow
"like Topsy" , from a few commands thought up by programmers to
permit the user to use a program , up through piecemeal capabilities added
as afterthoughts in response to user needs and suggestions . From the
point of view of a programmer trying to do some specific thing, the user
language is often an afterthought. What the information systems designer
must know is that the user language is as critical as the internals of the
system, and must be considered from the very beginning of analysis and
design. This understanding can be strengthened with an automatic recog­
nition of the fol lowing principle.

332 7. Syntax Structures in Information

Fundamental Principle: Every user facil ity , no matter how sim­
ple it may seem , will require a user language , and that language
should be defined with much foresight .

Defining the syntax of a user language forces a systematic analysis
what is to be required, and provides a basis for the three purposes
tioned above .

Data entry is a frequent need in information systems, and s
methods apply to user languages needed for data entry . Consider part of
Management Information System that processes and stores data on
tomer calls . In addition to direct information about sales , suppose
business was also interested in customer opinions about the ec()nc)m�v:
business climate , etc . , for its own forward planning of production , inve
tory levels , credit extensions, etc .

To be more specific , suppose the business expects a customer opi
report from each call for direct entry into the Management Informat
S ystem, in order to allow nationwide and regional tabulation of cu
opinions and their trends .

At first glance , there may seem to be no user language definition at
But that is not the case . From the description above , one might surmise
language of customer reports such as given by the following grammar:

<customer report>

<customer number>
<sales trend >
<trend>
<amount>
<econom:' trend>
<inventory plans>
<credit needs>

: : = <customer number> <sales trend >
<economy trend > <inventory plans>
<credit needs>

: : = <digit > *<digit >
: : = sales < trend> <amount> I none
: : = up I down
: : = <digit> I <digit> <digit>
: : = economy <trend> <amount > I none
: : = inventory <trend > < amount > I none
: : = credit <trend > <amount> I none

In illustration , one customer report in this language might be :

37 1 sales up 1 5 economy up 1 0 inventory up 5 credit up 1 0

Another customer report might be

42 1 none none none none

StilI another

73 1 sales up 1 5 none none credit down 5

'I

7.2 Syntax Structures in Business Operations 333

and so on . The language has the literals "sales" , "economy" , "inven­
tory" , "credit" , "up" , "down" , "none " , "0" , " I " , "2" , . . . , "9" . It
requires a one or two digit <amount> , but any number of digits can be a
<customer number> .

Such a report could be processed automatically in a Management

Information System and customer opinion reports developed from them.
But before going further, the three purposes above can be examined in
more detai l .

1 . A test of completeness and consistency for the definer. Such cus­
tomer reports are the result of some business thinking. Do the reports
cover the issue of interest? Do they cover all possibilities? E.g . , the
function of literal "none" handles a no opinion or not asked-should
those two cases be distinguished in the language? The decisions are ulti­
mately business decisions , but the language definition gives a focus to
them.

2 . A basis for explaining the language to users . This language is
simple enough to explain , and one probably would not show users the
rules of syntax directly . Instead, a tabular form such as

Customer
Down x x Down x x

-{Up XXj{ -{UP X X1-
-{ Sales Economy

number
• • •

None None ---___ ----'

would be more easily understood. (Lesson: don 't try to show users all you
know in your notations ; invent simpler notations for them.)

3 . A basis for implementing the language by designers . The language
should be checked for implementability . Is it always possible to get the
meaning out of a customer report? Are there ambiguities possible? The
literals "sale" , "economy" , "inventory" , and "credit" ensure that the
information following can be tabulated correctly . For example , the cus­
tomer report

37 1 sales up 1 2 1 5 economy . . .

is improper (not i n the language) so deciding between 1 2 and 1 5 i s unnec­
essary.

In summary, a grammar for a user language provides many benefits in
analysis and design , and in making business judgments about its use and
purpose .

: 1 ! 1 , 1
! I

r
334 7. Syntax Structures in Information

7.2.3 Grammars in Clear Box Design

The structure of a grammar defining the input to a clear box can often'
suggest a natural structure for the design of the clear box itself. For
example, the input file grammar on the left side of Figure 7 .2- 1 I
naturally to the clear box structure on the right . The start symbol of the
grammar « input » is defined as a three-part sequence

<header>
<body>
<trailer>

as is the corresponding clear box . The secondpart expansion of the cleaP.
box sequence is an iteration suggested by the recursive definition I

<body> given in the second production rule of the grammar.
As a more complex illustration , consider the design of an on-line sys�

tern to support user transactions with a banking terminal equipped with
standard keyboard and display screen. In what follows , we will (1)
struct a grammar for the user input language , (2) combine elements of that
grammar with elements of a grammar for the display output language to
create a definition of conversational access to the terminal , and (3)
a clear box design based on the grammar structures .

A user interacts with the terminal by conducting a session, defined as a

signon and zero or more requests followed by signoff. There are four
types of request : withdraw , deposit , balance , and transfer, each with
appropriate inputs as required. The signon allows five tries for correct
user identification, and five tries for correct password . The user-language,
grammar is shown in Figure 7 . 2-2 . In a specific implementation, s

.

characters may be required between certain syntactic entities , for exam-

Input Grammar

I . <inpu t > :: = < header>
< bod y >
<trailer>

2 . <bod y > : : = <record > I
<record >
< bod y >

3 . < record > " = . . .
4 . < header> " = ' "
5 . <traile r> . . = . . .

Corresponding
Program

process header
while

more records
do

process record

od
process t railer

Figure 7.2-1. Corres ponding G rammar and Program Structures.

7.2 Syntax Structures in Business Operations

I . <session>
2 . < signon>
3. < signotT>
4. < request>

5. < withrequest>
6. < balrequest>

: : = <signon> *« request» <signotT>
: : = + 5« id» + '« password»
: : = OFF

:: = < withrequest> <account> <amount> 1
<balrequest> <account> 1
<transrequest> <fromacct> <toacct> <amount> 1
<deprequest> <account> <amount> <envelope>

: : = W
: : = B

7 . <transrequest > : : = T
8. <deprequest > : : = 0
9. <id> : : = <letter> 1 + « Ietter> I <digit»

10 . <password> : : = + <digi t>
1 1 . <account> : : = <number>
1 2 . <amount> : : = <number> . <digit> <digit>
13 . <toacct> : : = <number>
14. <fromacct> : : = <number>
1 5 . <number> : : = <digit> 1 <digit> <number>
1 6. <digit > : : = 0 1 1 1 2 1 · · · 1 9
1 7 . <letter> :: = A l B 1 C 1 . . . ! Z
1 8 . <envelope> : : = cash 1 check (physical objects)

Figure 7.2-2. Bank Terminal User Language Grammar.

335

pie , in production 4 , but they are omitted here for the sake of simplicity .
The characters W, B , T, D , and OFF denote withdraw, balance , transfer,
deposit, and signoff operations , respectively . Note the use of the new
metasymbol + in this grammar. Plus (+) is used in front of a syntax
structure to denote the appearance of one or more instances of the struc­
ture in a valid string. The metasymbol + 5 means that up to five repetitions
of the syntax structure can appear. Thus only five attempts are allowed to
provide a valid user <id> or a <password > .

Figure 7 .2-3 depicts the design of al l possible conversations between
the user and the system. The User Input entities are taken from the user
language grammar; the Display Output entities are taken from a grammar
for clear box output . The clear box output grammar is not shown ; the
reader may find it interesting to construct such a grammar from the infor­
mation in the Display Output column of Figure 7 .2-3 . Note that the two
grammars share many metasymbols , for example , < id> and <account> ,
as well as the same set of literal s .

Each Display Output item is given as a set of possible responses
enclosed in brackets and separated by commas , any one of which may
occur depending on the current status of the conversation and the user
input . This corresponds to state machine behavior, where each output
depends on both input and state , and each transition produces a new state

336

User Input

I . (no user present)
2. <id >

3. <password>

4. <signotT>
5. <withrequest><account>

<amount>

6. <balrequest > < account >

7. <transrequest> <fromacct>
<toacct> < amount >

8. <deprequest > <account>
<amount>

7. Syntax Structures in Information Systems

Display Output

{enter id}
{invalid id <id> try again,
invalid id <id> session terminated ,
enter password}

{invalid password <password> try again ,
invalid password <password> session
terminated, enter request}

{thank you}
{ invalid request <withrequest> try again.
invalid account <account> try again,
overdrawn,
pick up envelope}

{invalid request <balrequest> try again,
invalid account <account > try again,
balance is <amount>}

{invalid request <transrequest > try again,
invalid from account <fmmacct>
try again,
invalid to account <toacct> try again,
overdrawn from account <fromacct> ,
transfer completed}

{invalid request <deprequest> try again ,
invalid account <account > try again,
insert envelope-pick up deposit slip}

Figure 7.2-3. Bank Terminal Conversational Access.

in addition to an output . Note especially that the conversation is designed
to accommodate both correct and incorrect user input . That i s , there is no
presumption of infallibility on the part of the user; the state machine must
produce an appropriate output from any state of the conversation , no
matter what input the user provides .

This example illustrates the fact that grammars permit exhaust ive and
terse specification of all known transactions across an interface , before
clear box design is begun . As a consequence , the designer is forced to
address all possible user actions in developing the clear box structure.
This stepwise approach can help forestall the programmer's complaint
(when system operation breaks down) that " the user is doing unpredicta­
ble things" , since in the definition of conversational access , nothing is
unpredictable !

Figure 7 . 2-4 depicts the top level design of the bank terminal clear
box . The structure of the conversational access has been used to help
derive the clear box structure . Reading from the top down, note that the
logical commentary refers to. syntactic entities in the conversational ac-

Syntax Structures in Business Operations

I proc terminal [process <session> J
2 data
3 ok: logical

4 transactions: logical

5 request : character

6 display enter id

7 [process <signon>]

8 run sign on (ok) [refined in Figure 7 .2-5]

9 [process remainder of <session>]

10 if

1 1 ok

1 2 then [process * (<request» <signoff>]

I 3 d o [process *« request»]

1 4 transactions : = true
1 5 while
16 transactions
1 7 do
1 8 set timer interrupt

19 read request when entered

20 disable timer interrupt

2 1 if

22 request = OFF

23 then
24
25

26

27

28

29

30

3 1

32

33

34

35

36

37

38

39
40

41 od
od

transactions : = false
else [process <request>]

case

fi

request

part (W) [process <withrequest>]
run withdraw

part (B) [process <balrequest >]

run balance

part (T) [process <transrequest>]
run transfer

part (D) [process <deprequest>]

run deposit

part (other)

display invalid request <request> try again

esac

42 [process <signoff>]

43 run signoff
44 fi
45 corp

Figure 7.2-4. A Clear Box Design for Bank Terminal Conversational Access.

1 , 1 ,

337

1 proc sign on (ok) [process < signon>]

2 data
3 ok: logical

4 count: 0 . . 5

5 do [process +5 « id» +5 « password»]

6 count : = 0

7 do
8 count : = count +
9 [« id> legal � ok : = true I true � ok : = false)]

10 run validate id (ok)

1 1 while
1 2 -ok and count < 5

1 3 do
1 4 display invalid id < id> try again

1 5 od
16 ff
1 7 -ok

1 8 then
19 display invalid id < id > session terminated

20 wait k seconds

2 1 display enter i d

22 else
23 display enter password

24 do [process +5 « password»]

25 count : = 0

26 do
27 count : = count +
28 [(<password> legal � ok : = true I true �

29
30
3 1
32

33
34
35
36
37
38

39
40
4 1
42
43
44
45 fi
46 od
47 corp

od

ok : = false)]
run validate password (ok)

while
-ok and count < 5

do
display invalid password <password> try again

od

if
-ok

then
display invalid password <password>

session terminated

wait k seconds

display enter id

else
display enter request

fi

Figure 7.2-5. A Clear Box Design for the Signon Procedure.

7.3 The New York Times Thesaurus and Its Grammar 339

cess in a top-down fashion as well . That is, the design of the clear box
reflects the design of the conversational access .

Output from this clear box is produced by the display operation on line
37 . This output corresponds to the first response in each of the Display
Output sets of Figure 7 .2-3 for inputs numbered 5 through 8. A time-out
interrupt has been incorporated into the design to avoid tieing up the
terminal (something the grammar cannot account for) .

Figure 7 .2-5 depicts an expansion of the signon procedure . (The proce­
dure illustrates use of a do-while-do control structure , a variation of the
while-do structure, in which procedure statements also appear before the
while test .) Again, note the grammar structures named in the logical com­
mentary , and the display output corresponding to possible conversations
between a customer and the system during the signon process .

Figures 7.2-2-7.2-5 are worth some study as a miniature example of
how to handle definition and control of user interfaces in a real system.
Explicit interface design such as this can clarify questions and resolve
issues for users and designers alike, and can help avoid surprises as
systems move into operational use .

Summary: Business files , reports , and forms can naturally be
defined by syntax structures for more effective analysis and de­
sign . Syntactic definition of user languages for information sys­
tems permits tests for completeness and consistency , and pro­
vides a basis for explanation and implementation . Syntax
structures can define possibilities for conversational access to
information systems , to help guide clear box design to support
such access .

7.3 THE NEW YORK TIMES THESAURUS

AND ITS GRAMMAR

Preview: A formal grammar was found for the New York Times
Thesaurus of Descriptors that greatly facilitated the analysis and
design required for the New York Times Information Bank. The
grammar was written in terms understandable for the managers of
the Information Bank.

The next two subsections are historical documents. The first of these
two subsections is a New York Times document , namely the first thirteen

340 7. Syntax Structures in Information �"Clt .. __ ,

pages of the New York Times Thesaurus of Descriptors , which serves to'
explain the more than thousand pages that fol low it . It was an important
document for the system development team , because it represented an
authoritative view of the Thesaurus . It was basic to understanding the
needs in automating the morgue.

The second of these two subsections is an IBM developed document
used in developing the New York Times Information Bank. It is repeated
here , verbatim , just as the Thesaurus description, in order to show an
actual work of information systems analysis . That is, these two sections ·
were not made up for this book . They show a problem ':lnd a solution as
they actually arose in practice .

This second document is called "A Formal Grammar for the New
York Times Thesaurus . " Its very title is a surprise-that the New York .
Times Thesaurus has a formal grammar at all . At first glance a formal .
grammar might seem an impossibility-for example, a formal grammar
for ordinary English is beyond human capability to create or understand.
It might seem of l ittle use, even if by some miracle it could be produced.
But it took no miracle and it was of much use in dealing with the Thesau­
rus in the system development .

In reading the first document, The New York Times Thesaurus of .
Descriptors , imagine facing it (with its over thousand pages of terms
following) as a problem in systems analysi s . It is part of the manual
system which is to be automated . Can you find guiding principles or .
patterns in it to exploit? Instead of hand and eye scanning these pages at
will , only a few lines can be shown a terminal user at a time . If you merely ··
automate page turning, the system will be useless because there is far too
much material to examine by these methods.

In reading the second document , A Formal Grammar for the New
York Times Thesaurus , realize that it was written for both the system
development team and for the customer. Not onl y is a formal grammar
given for the Thesaurus , but also a tutorial explanation of what a formal
grammar is and how it can be used to separate problems of specification
from problems of implementation. A tutorial is frequently needed when a
system analyst discovers that a new description method is applicable to a
user problem .

I n such a case , the tutorial and new description method should require
less effort together than the old description method , or the new method
shouldn 't be used. It is obvious that tutorials should never be used to
impress users , or because it is good for them on general grounds.

You will notice a set of metasymbols in this document that differ from
those used in this book so far. In fact , the analyst discovered the formal
grammar in notation very similar to that used in this book , and decided to

7.3 The New York Times Thesaurus and Its Grammar 34 1

simplify the notation in certain ways for easier understanding. It should

be standard practice to simplify and adapt general notation to the specific

needs of users . U sually , the analyst should think better and work faster in
more compact and concise notation than the user understands , this is the
right thing to do. But the second mile of the analyst is to find a simpler
notation to translate results to, and to explain to the user.

7.3.1 The New York Times Thesaurus of Descriptors*

FOREWORD

The project to devise a thesaurus as an aid in processing and searching
information from newspaper files was undertaken as part of an effort by
The New York Times to coordinate all its information facilities . It grew
out of preparations for the application of computer technology to the
production of The New York Times Index . The vocabulary and structure
of the Thesaurus are therefore based largely on those of the Index, but
include many additional terms from the subject card file of The Times
clipping " morgue" and from the vertical file catalogue of The Times
Editorial Reference Library .

The following works were consulted in designing the format of the
Thesaurus: The ASTIA Thesaurus of Descriptors, 2nd edition, Decem­
ber, 1 962 ; the Department of Defense Manual for Building A Technical
Thesaurus , Project LEX, Office of Naval Research, April , 1 966; and the
Engineers Joint Council ' s Guide for Source Indexing and Abstracting of
the Engineering Literature , February , 1 967 . The Subject Headings Used
in the Dictionary Catalog of the Library of Congress , 7th edition , 1 966,
was consulted in solving certain problems of terminology .

The work is a cooperative effort of the staff of The New York Times
Index under the general direction of Dr. John Rothman, editor. The huge
task of compiling and annotating the entries was handled by the following
staff members :

Robert A. Barzilay , coordinator
Marvin M. Aledort
William F. Marshall
Robert S. Olsen
Daniel Pinzow
Susan L. Pinzow
George D. Trent

* © 1 969 by The New York Times Company. Reprinted by permission.

: ,1

342 7. Syntax Structures in Information Systems

The job of final editing was shared by Dr. Rothman and Thomas R.
Royston , assistant editor.

Computer programming and operations were done by Central Media
Bureau , Inc . , of New York .

ABOUT THE SECOND EDITION

Within a few months after publication of the Thesaurus , enough cor­
rections and additions had accumulated to make it advisable to publish a
complete revision rather than the individual pages with changes originally
planned .

In all , almost a thousand changes were made by the time this Second
Edition was ready for its final computer run. Many of them were based on
suggestions received from Thesaurus users .

The physical format has also been improved . This edition is printed on
heavier paper, which will turn more easily and be more resistant to tear­
ing. In addition, continuation headings have been added where required .

The act ive interest of Thesaurus users has helped make th is new edi­
tion a more useful reference tool . Your comments will always be welcome
and sincerely appreciated .

INTRODUCTION

The word "thesaurus" derives from a Greek word meaning "trea­
sure . " As applied to the conventional dictionary of synonyms and ant­
onyms, such as Rogel's , it is most apt ; such a thesaurus is indeed a
treasure , displaying the riches , fullness, and diversity of the language .

The kind of thesaurus that has evolved in the last decade or two in the
field of information processing and retrieval is not a treasure so much as
the key to one . The riches lie in a file of information-a collection of
books, pamphlets , reports, photographs, or newspapers-and the thesau­
rus is a means for their exploitation . A thesaurus of this kind is a device
for ordering and controlling the file , so that new items may be added
consi stently to related items, and so that all relevant items are made
readily and quickly accessible .

The New York Times Thesaurus of Descriptors i s a structured vocab­
ulary of terms designed to guide information special ists in processing and
organ izing materials from newspapers and other works dealing with cur­
rent events and public affairs , and to guide users in searching collections
of such material s . Because it covers the same vast variety of subject
matter as the daily press, it will prove a valuable tool , we trust , not only
for newspaper libraries but al so for general reference libraries , educa-

:
' f' � t-.

7.3 The New York Times Thesaurus and Its Grammar 343

tional institutions, government agencies , business and financial organiza­
tions-in short, for any organization that collects , stores , and uses infor­
mation on the events of today and yesterday.

The Thesaurus consists of terms (descriptors) , in a single alphabetical
sequence , which denote the diverse subjects that may be found in the
collection. For each descriptor, some or all of the following data are
given, in the order indicated:

1 . Qualifying Terms
2. Scope Notes
3 . "See" or " See also" References (l isted alphabetically)
4. "Refer from" References (listed alphabetically)
5. Subheadings (listed alphabetically)

These are designed to define descriptors and to correlate them with
one another.

A model page appears in Figure 7 .3- 1 . The remainder of the introduc­
tion explains the various features of the Thesaurus in detail and discusses
the major principles of organizing such a file of information. It also in­
cludes some general guidelines for certain types of material (for example,
foreign names and corporation names) that are not covered item by item
in the Thesaurus itself. A brief index to the contents of the introduction
follows.

1. Descriptors. Descriptors are primarily subject headings. Geo­
graphic names , personal names, names of companies , institutions and
organizations, and other proper names are included only when they re­
quire the use of qualifying terms , scope notes , a regular pattern of cross
references , or a regular pattern of subdivisions .

The Thesaurus does not include a descriptor for each individual mem­
ber of a family . There would be little purpose in listing every item of
furniture , every kind of weapon , or every kind of animal , vegetable , or
mineral . Descriptors are given for typical items and for those requiring
any special or unusual handl ing; and these will serve, it is hoped , as
models for any similar items that are not listed.

Synonyms. Preferences between synonymous or nearly synonymous
terms are indicated by "see" references (AVIATION . See Aeronautics) .

Non-Standard Terms and Recent Coinages. Descriptors include
terms current in the news (such as B LAC K Power or BRAIN Drain) even
though they are not found in standard library catalogues or dictionaries.
Descriptors do not include brand names or trademarks , technical terms
not normally used in newspaper articles , slang words, and terms used

344

MODEL PAGE

See South Arabia. Federation o f

Refer from Children a n d Y o u t h (BT)

Sce also

Mass Com m u nications (for

inclusion)(BT)

Premiums. Coupons and Trading

Stamps (NT)

Public Relations and Publicity (RT)

Trademarks and Trade Names (RT)

company names

subjects advertised

Refer from

Marketing and Merchandising (BT)

Public Relations and Publicity (RT)

Publications (BT)

Retail Stores and Trade (BT)

Subheadings

foreign countries

United Stales

Awards

Direct Mail

Refer from

Direct Mail Advertising

Mail Order Companies (BT)

Mailing Lists (BT)

Postal Service (BT)

Magazine

Refer from

Magazines (BT)

Misleading and Deceptivc

Advertising

Newspaper

Refer from

News and Newspapers (BT)

7. Syntax Structures in Information Systems

(BT)-Broadcr Term

Hierarchical Notations: (NT)-Narrowcr Tcrm

(RT)-Relatcd Term

Outdoor

Rcfer from

Billboards (NT)

Outdoor Advertising

Roads (for billboards)(BT)

Television and Radio

Refer from

Tclevision and Radio (BT)

AMERICA (Continent)

AMERICA (Jesuit Publication)

AMERIKA (Soviet Publication)

BIRTH Control and Planned Parenthood

Note : Material here deals largely with

medical. legal. moral and social

aspects as they concern individual

family

Sec also

Abortion (NT)

Population and Vital Statistics

(for link between birth

control and population

explosion) (BT)

geographic headings (specific)

(for link between birth

control and population

explosion) (NT)

Refer from

Births (BT)

Children aand Youth (BT)

Contraception

Families and Family Life (BT)

Parenthood Planned

Planned Parenthood

Population and Vital Statistics (BT)

Pregnancy. Obstetrics and Maternal

Welfare (RT)

Reproduction (Biologica l)(RT)

BLACK Muslims

Refer from Muslim Sects (B T)

"BLACK" Power

Sce Negroes (BT)

Figure 7.3-1. The Model Page .

:.1
,

t
t
t
I,
\
f
l
t
(
�
a

I
a
f
(

t
a
s
c
v
Ii
e
a
a
v
c
1

7.3 The New York Times Thesaurus and Its Grammar 345

exclusively in professional jargon. When colloquialisms , slogans, or un­
usual coinages are used as descriptors , they usually appear in quotation
marks . Archaic or obsolete terms are included when this is considered
helpful .

Abbreviations and Acronyms. Abbreviations and acronyms are used
as descriptors, usually with " see" references to the name spelled out
(NATO. See North Atlantic Treaty Organization) . The practice may be
reversed when the abbreviation is much better known and more widely
used than the term it represents (DICHLORO-Diphenyl-Trichloroethane.
See DDT) . No attempt has been made to compile an exhaustive list of
abbreviations and acronyms .

Alphabetization. To give a complete description of the alphabetiza­
tion scheme followed in the Thesaurus would go far beyond the scope of
this introduction; but the following are the major rules applied in alpha­
betizing entries here , and recommended: word-by-word order rather than
letter-by-Ietter (AIR Pol lution before AIRLINES) ; abbreviations filed as
words (NATO between NATIONAL a:ld NATURE) ; inverted headings
filed before uninverted headings (NEW York , State University of, before
NEW York Airways) ; homographs filed in the order of person, place,
thing (BROOKLYN, William; BROOKLYN , NY ; BROOKLYN Bridge)
or in the alphabetical order of qualifying terms (MERCURY (Metal) ;
MERCURY (Planet» ; numbers filed as though spelled out (20th Century
as TWENTIETH Century) , except where the numerical order is clearly
preferable (HENRY VII before HENRY VIII) ; and compound terms filed
as though two words (REAL-Time before REALISM), except when the
first component is a prefix (TRANS World after TRANSIT) or a term of
direction (SOUTH-West) after SOUTHERN).

Specificity. In general, files of information must be so organized as to
bring together all items relevant to a given inquiry and yet permit prompt
access to any single , specific item . In this Thesaurus, the choice of de­
scriptors and their degree of specificity reflect the vocabulary and scope
of current journalistic writing and seek to anticipate the needs of users
who consult files of newspapers , magazines , pamphlets , reports and the
like for information . When the amount of material on a subject is large (for
example, AERONAUTICS), separate descriptors for specific aspects are
advisable (AIRLINES , AIRPLANES , AIRPORTS , etc .) . When the
amount of material is relatively small and should not be scattered , or
when its separate aspects are not readil y segregated, the use of a more
comprehensive descriptor is advised . (For example, the descriptor PLAS­
TICS is used for all kinds of plastic materials , since these are rarely

[I � '
I ' i
I I

! i

, 1 r

346 7. Syntax Structures in Information

differentiated in newspaper stories ; obviously, such a comprehensive
scriptor would be inadequate for the literature of organic chemistry.)

Generics. Because the subject fields in current events tend to over:

lap widely and terms are often vague and imprecise in meaning, a hierar�

chical or classed arrangement of descriptors was impossible to achieve.
Where feasible , hierarchical relationships between descriptors are indi­
cated by means of "broader term" (BT) and " narrower term" (NT) nota .. '
tions in cross references .

Geographic vs. Subject Terms. The problem of whether to organize a
file by subject or by place is one of the most difficult confronting a librar­
ian (HOUSING-New York City or NEW York City-Housing?) . Ex­
cept in mechanized coordinate files , the effort and expense required for
complete duplication are prohibitive , and a choice between the two ap­
proaches must be made. Our preference for the subject approach is re­
flected in the Thesaurus. It is based on the fact that most news develop­
ments have regional rather than uniquely local significance . Much of the

political and economic news deals with broad geographical areas; cities
throughout the world have similar traffic, air pollution , water supply and
slum housing problems ; and so forth. Hence , geographic terms are used :
mostly for general descriptions and for general material on the economics,

'

politics, defenses , population, history , and customs of an area ; in short,
for material too broad to fit under subject descriptors . Organizational
material on specific government agencies (formation, budget , personnel) .
is covered under geographic terms; their activities are covered under
appropriate subjects. N ames of government agencies (except for interna�
tional and American interstate agencies) are not gi ven as descriptors . An
attempt has been made to provide a list of United States (Federal) agen­
cies (as subheadings under UN ITED States) , but because their names
change frequently and the status of some is now in doubt , the list may not
be complete and is subject to frequent revision.

Word Order in Multiple-Word Descriptors. For most subject de­
scriptors consisting of more than one word , the natural word order is
preferred and given here (AIR Pollution , not POLLUTION , Air) . For
personal names , the last name is always given first (JOHN SON , Lyndon
Baines) . For foreign personal names, determination of the correct Blast
name" is often troublesome ; see the next section for some general rules.
Geographic names usually invert from and are alphabetized under the
proper-name element (PHILIPPINES, Republic of the ; not REPUBLIC
of the Philippines) . Company names should be in natural word order
(NATIONAL Broadcasting Company; not BROADCASTING Company,

7.3 The New York Times Thesaurus and Its Grammar 347

National) except when inversion from a proper-name element is clearly
preferable (MACY, R. H. , & Co. ; not R. H . Macy & Co.) (for dubious
cases , the stock market tables often provide a useful guide) . Names of
schools , universities , and museums should generally be in natural word
order (MASSACHUSETTS Institute of Technology), but there are some
obvious exceptions (CHICAGO, University of; not UNIVERSITY of
Chicago) . Names of business , trade , civic and professional associations,
labor unions, foundations , and certain other organizations should invert
from an appropriate subject term or personal name (KANSAS City,
Chamber of Commerce of; ADVERTISING Agencies, American Associ­
ation of; CIVIL Liberties Union , American ; LONGSHOREMEN'S As­
sociation, International ; SLOAN , Alfred P . , Foundation) . It is often help­
ful to use inversions of word order to bring together, in the same
alphabetical location , all organizations concerned with the same subject
that use the descriptor for this subject as part of their names (for example ,
all organizations whose names contain the word EDUCATION). When
the inversion is not obvious , or when there is a choice between two or
more possible inversions , alternatives should be covered by "see" refer­
ences to the preferred version (BROADCASTERS , National Association
of Educational . See Educational Broadcasters , National Association of) .
Some "see" references of this type are included in the Thesaurus, espe­
cially under common words such as American, General , or International .

Foreign Names. Foreign names present problems both in determin­
ing the proper word order and in determining proper spelling for translit­
erations . Authoritative reference works such as Who's Who should be
consulted, but even these are not always in agreement , and , of course,
they cover only a limited number of names. Helpful advice can be ob­
tained from information officers of foreign consulates, trade missions and
delegations to the United Nations and other international organizations .
The following rules are offered as a general guide, but they are not ex­
haustive, and there are many exceptions .

a . British names including two "last" names (Anthony Wedgwood
Benn) usually invert from the second of these (BENN, Anthony
Wedgwood) .

b . Spanish names including two "last" names (Eduardo Frei Mon­
talva) usual ly invert from the first of these (FREI Montalva, Eduardo) .

c. European and Latin-American names containing a partitive (de, di ,
van, von) usually invert from the name following the partitive (GAULLE,
Charles de ; HASSEL, Kai-Uwe von) .

d. Names containing a definite article usually invert from the article if
they are French , Italian , Spanish, or Portuguese (LA Guardia, Er-

348 7. Syntax Structures in Inrormation Systems

nesto de) and from the name following the article if they are German or
Dutch (HEIDE, Gottfried von der) .

e. Arabic names containing a partitive (aI , el , ben , ibn) usually invert
from the name following the partitive (ATTASSI , Fadhil al ; BELLA,
Ahmed ben) .

f. Chinese , Indochinese, and Korean names invert from the last ele- ,
ment if they have been Westernized (PARK, Chung He) , but run unin-

'

verted if not (MAO Tse-tung ; NGUYEN Cao Ky) . (If such names become
popularly known in an incorrect form, such as "Premier Ky" instead of
"Premier Nguyen Cao Ky , " appropriate "see" references should be run ;
from the incorrect form to the correct form.)

,

g. When foreign names may be transliterated in several different
ways , the preferred transliteration should be determined , if possible, and
"see " references to it should be run from alternate transliterations�,
Among the more common instances are the following: In Arabic names"
use ai instead of ei (F AISAL, not FEISAL) and use kh instead of q as the;
first letter (KHALIDI , not QALIDI) . In Russian names, use ch instead of
tch or tsch (CHERNISHEV , not TCHERNISHEV or TSCHER­
NISHEV) and use v instead of ff as the last letter (SUVOROV , not
SUVOROFF). In Greek names , use k instead of c or ch as the initial letter
(KARAMANLIS not CARAMANLIS , KRYSOSTOMOS, not CHRY­
SOSTOMOS). However, names for which the alternative transliteration
is wel l established (TCHAIKOVSKY, PROKOFIEFF, CONSTAN­
TINE) should be retained thus.

Corporation Divisions and Subsidiaries. The question of whether to
establish separate descriptors for corporate divisions and subsidiaries, or
to carry material about them under the name of the parent company,
poses another major problem. In general , separate descriptors should be
established for subsidiaries that issue their own stock, have well-known,
names distinct from those of the parent company , or have otherwise a
separate identity (CHEVROLET Division of General Motors Corp. ; IBM
World Trade Corp .) , and then the parent company should be linked to the
subsidiary by a " see also" reference . When the subsidiaries do not have a
clearly distinct identity , it is advisable to carry material about them under

'

the name of the parent company, especially when the material does not
consistently identify them by name . For example , it is virtually impos­
sible to use separate descriptors for the overseas operating units of the
major international oil companies . These are referred to sometimes by
their own names (ESSO Libya Ltd .) and sometimes merely as units of the
parent company (Standard Oil of New Jersey' s Libyan affiliate) , and there'

may be no way of determining whether the same unit or two different ;

7.3 The New York Times Thesaurus and Its Grammar 349

units are involved. Even when the distinction can be made, it may be
better to keep material about the company together under one name than
to scatter it among several names , some of which may be quite unfamiliar
to the users .

Religious Denominations. When the amount of material is relatively
small , material on branches , regional bodies , and other agencies of a
denomination is carried under the collective name of the denomination,
and not under separate descriptors . (For example, Greek Orthodox
Church under ORTHODOX Churches ; Southern Baptist Convention un­
der BAPTIST Churches .) Individual congregations and parishes , if not
intersectarian, should also be included under the name of the denomina­
tion, rather than given separate descriptors ; but the names of well-known
churches (such as St. Patrick 's Cathedral in New York) should be cov­
ered by "see" references to the name of the denomination.

2. Qualifying Terms. Qualifying terms are parenthetical expressions
given after certain descriptors to distinguish between homographs . For
example :

MERCURY (Metal)
MERCURY (Planet)

Qualifying terms may also be used to resolve other contextual ambigu­
ities in some descriptors . For example :

FIFTH Amendment (U .S . Constitution)

3. Scope Notes. Scope notes are notes appearing after certain de­
scriptors to define or describe the range of subject matter encompassed by
the descriptor. For example :

DRUG Addiction, Abuse and Traffic.
Note : Material here includes narcotics , stimulants , hallucinatory

drugs, and others deemed socially undesirable .

Scope notes may be used at subheadings for the same purpose , and
may also be used to describe the system of subdividing material under
certain descriptors .

4. Cross References. Cross references serve as substitutes for multi­
ple entries and as guides between descriptors encompassing related mate­
rial . They are also used at subheadings as required.

Contrary to usual l ibrary practice, cross references have not usually
been established between related descriptors that are immediately adja­
cent in the alphabet . (For example , there is no cross reference from

350 7. Syntax Structures in Information Systems

ARMORED Vehicles to ARMORED Car Services .) It was felt that the
connection between such adjacent descriptors is self-evident and that
cross references there would be superfluous .

See References. • • See" references guide from descriptors not used
for "entries" in the system to equivalent descriptors used in preference .
They are used mainly between synonyms (AVIATION . See Aeronau­
tics) , and when material denoted by one descriptor is subsumed under
another (ORCHESTRAS. See Music) .

See also References. " See also" references guide from descriptors
used for certain "entries" in the system to other descriptors where re­
lated material is entered . They may lead from more general , broader
terms to more specific , narrower terms (REAL Estate . See also Housing) ,
or vice versa (THEATER. See also Amusements) . They may also lead
from one descriptor to another on the same hierarchical level which may
cover tangential topics or different aspects of the same topic (ROADS.
See also Traffic) .

Refer from References. "Refer from" references are the inverse of
"see" and " see also" references . They show all the descriptors linked by
"see" and " see also" references to the descriptor consulted (AERO­
NAUTICS. Refer from Aviation) .

Qualified Cross References. Numerous "see ," "see also, " and "re­
fer from" references are followed by parenthetical expressions defining
the particular aspect of a topic covered by the cross reference, as in
DOGS. See also Blindness and the Blind (for seeing-eye dogs) .

Hierarchical Notations. Many cross references are annotated to
show hierarchical relationships, as follows: (NT) when the reference
leads from a broader term to a narrower term (REAL Estate . See also
Housing) ; (BT) when the reference leads from a narrower term to a
broader term (THEATER. See also Amusements); and (RT) when the
reference leads from one term to another on the same hierarchical level
for related material (ROADS. See also Traffic) . The use of these notations
could not be sustained throughout the Thesaurus, however, because the
subject fields covered in newspapers and other current-events publica­
tions tend to overlap widely and the vocabulary is extremely varied ,
complex and often imprecise ; and hierarchical relationships could there­
fore not always be determined. (For example , CRIME and Criminal s . See
also Courts-which of these is the narrower descriptor, and which the
broader?) In many cases, the question of hierarchy was moot , and the
choice was finally governed by the descriptor from which the cross refer-

7.3

enct:
ever
refe]
dent
enct:
desc
cros
prod
cultt

5
seriI
subt
nam
not :

,
els (
ally
diffi,
usua
that ,
estal

�
divi5
subjl
pie ,
level
CaW
shou
subjl

S
refe.

6

eabu
neee
Thw
head
Ne\\;
have
for I
Timt
tiom

7.3 The New York Times Thesaurus and Its Grammar 35 1

ence runs . (For example : HOUSING . See also Zoning is annotated (NT) ,
even though zoning encompasses all kinds of land uses, because the cross
reference is intended to cover a specific aspect of housing, namely , resi­
dential zoning .) Also, no attempt has been made to include cross refer­
ences from all specific descriptors in a given subject field to the broader
descriptor denoting the field as a whole. (For example, no broader term
cross references have been made from the many specific agricultural
products , such as GRAIN , to the descriptor AGRICULTURE and Agri­
cultural Products .)

5. Subheadings. The Thesaurus lists suggested subheadings for de­
scriptors encompassing a large amount of material . Where a category of
subheadings consists of names of individual components (for example,
names of countries , states, or motion pictures), only the category is given,
not an inclusive list of all components .

With few exceptions, subheadings are limited to two hierarchical lev­
els (main subheadings and sub-subheadings) . Further subdivision is usu­
ally not advisable ; it makes the heading structure too complex and too
difficult to search. When the need for further subdivision arises , it is
usual ly an indication that the main heading (descriptor) is too broad , and
that , instead of subdividing it further, narrower descriptors should be
established .

Most descriptors lend themselves to both geographic and subject sub­
divisions . However, it is usual ly not advi sable to mix geographic and
subject subheadings at the same level . (If under EDUCATION , for exam­
ple , both Elementary and California are used as subheadings at the same
level, which one would be used for material on elementary schools in
California? .) The nature of the material and the interests of the users
should determine whether subdivi sions should be geographical or by
subject .

Subheadings may appear with qualifying terms, scope notes , and cross
references, just l ike descriptors .

6. Orientation and Format. Since the Thesaurus is based on the vo­
cabulary used in processing information from The New York Times, it
necessarily reflects the fact that The Times is published in New York.
Thus , the descriptors NEW York City and NEW York State have sub­
headings not given for other cities and states , and New York City and
New York State are used as subheadings under many descriptors that
have no other city and state names as subheadings . Similarly , descriptors
for local institutions (such as COLUM BIA University or NEW York
Times) are shown with a detailed structure not given for similar institu­
tions elsewhere . However, the structure outlined under NEW York City ,

352 7. Syntax Structures in Information Syste ...

NEW York State , and some local institutions may be easily applied to
other cities and states and their institutions in processing local newspa ..
pers and other collections there .

In this context, it should be pointed out also that the detailed structure
shown under PRESIDENTIAL Election of 1968 applies to the election in
any current Presidential election year. Similarly , the structure shown
under JOHNSON , Lyndon Baines, applies to any President and may be
applied , with any necessary modifications , to governors, mayors , heads
of foreign governments, and other prominent figures.

Generally , the Thesaurus is intended , as its subtitle states , as a guide
in processing and searching materials rather than as a body of firm and
strict rules. Deviations from the guidelines set forth here should be made .
as the nature of the materials processed and the interests of their users
require . In processing newspapers and other current events materials Jor
information retrieval , flexibility is mandatory , and therefore frequent
changes in the Thesaurus are envisaged . These changes may be initiated
by us , or they may be made by individual users to cope with the specific '
problems and meet their specific needs.

It i s for these reasons that the Thesaurus has been issued in looseleaf
form. Even-numbered pages have been left blank to enable users to write
their own notes at will opposite the appropriate Thesaurus material. .

Changes initiated by us will be on individual pages to be substituted or
inserted . The looseleaf format permits users to insert separate sheets with
their own material as desired .

. ,

7.3.2 A Formal Grammar for The New York Times Thesaurus
of Descriptors

TH E STRUCTURE OF TH E TIMES THESAU RUS

An important objective of The New York Times Thesaurus of De- .

scriptors appears on p. 1 3 :

Generally , the Thesaurus is intended , as its subtitle states, as a guide
in processing and searching materials rather than as a body of firm
and strict rules . Deviations from the guidelines set forth here should
be made as the nature of the materials processed and the interests of
their users require . In processing newspapers and other current
events material s for information retrieval , flexibility is mandatory�
and therefore frequent changes in the Thesaurus are envisaged!
These changes may be initiated by us , or they may be made by­
individual users to cope with their specific problems and meet their
specific needs .

7.3 The New York Times Thesaurus and Its Grammar 353

In order to provide the kind of flexibility desired in on-line files , it is
important that the computer programs not be based on a set of implicit or
hidden assumptions about how the Thesaurus is handled at the present
time. For this reason , a structural description (that is , a grammar) of the
Thesaurus is developed here to promote future flexibility and growth
through a commonly understood interface between the designers of the
Thesaurus and the programmers .

The final definition for a Thesaurus , when pursued through all the
intermediate definitions of the structural description , reduces to a (gigan­
tic) natural language sequence , accessible and alphabetized on the basis of
certain subsequences-Descriptors, See also References, etc . It is just
that .

How this large character string is to be formatted and stored in a
computing system (with auxiliary directories, pointers , counts, separator
characters , etc .) is a matter of programming strategy and tactics . It is an
important matter, but designers of the Thesaurus need not get tangled up
with it . Rather, they need only be concerned with the Thesaurus in its
external form, as a structured natural language sequence which can be
queried on , and added to or deleted from, with certain automatic cross­
referencing carried out thereby .

Thus , the important question for the designer i s , " Is this the structure
I want for the Thesaurus?" in contrast to questions of content , criteria for
placing content , etc . The objective of the following description is to per­
mit the designer to examine that question with confidence and precision .
The tools may seem a l ittle formal and formidable at first glance . But it is
believed that concern will disappear with a little familiarity . The purpose
is not to obscure , but to make analyses more precise and comprehen­
sive-so that the designer can see the Thesaurus structure per se e

In this connection , the description developed below is somewhat more
general than the present Thesaurus structure . It frequently happens that
the simplification and unification desirable for automatic processing
comes only with a certain degree of generalization . And it frequently
happens that more flexibility , rather than less , accompanies such general­
izations. Not all the flexibility inherent in the proposed file structure is
used in present Thesaurus activities , and it is not expected that all of it
will ever be used . But it is there to use , and , more important , known to be
there.

TH E STRUCTURAL DESCRIPTION

The structural description for the Thesaurus will be given through a
series of syntactic definitions (or "syntactic equations") , each of which

III 1 , 1 1 . ' I · I 'I

354 7. Syntax Structures in Information Syste

expands a Thesaurus term (a generic form for a part of the Thesaurus) ,
which is being defined, into one or more patterns using simpler and more
basic parts. Any term so defined is ultimately expanded thereby into
natural language text, which is the unspecified primitive for the Thesau­
rus. As noted, the description concerns itself only with the structure of
the Thesaurus and not with its contents.

The syntactic terms , or entities , used i n the description are given in
Table 7 . 3- 1 , first as natural language terms , and second, in a briefer sym­
bolic form which will be used for convenience later . Notice the Thesaurus
terms are in three categories . First , there is a primitive term from which
the Thesaurus is ultimately constructed, which is simply natural language
text . All subsequent terms are eventually decomposable into this natural
language text, which is the responsibility of the designers of the Thesau­
rus. Second , there is a set of terms used by The New York Times which
are i ntended to be used in the structural description exactly as The Times
personnel mean them. Explanations and examples of these terms are
included , based on descriptions in The New York Times Thesaurus of
Descriptors . Third , there is a set of additional terms (which will be defined
by syntactic equations) which serve as intermediate syntactic entities

Term

Primitive Term
Natural Language Text

New York Times Terms
Descriptor
Qualifying Term
Scope Note
Hierarchical Notation
See Reference
See also Reference
Refer from Reference
Subheading

Table 7.3-1

Thesaurus Terms

New York Times Thesaurus of Descriptors

Syntactic entity

<TEXT>

<TERM >
<QT>
<SN>
<HN>
<SR>
<SAR>
<RFR>
<SUBH>
<THESAURUS>

Additional Terms (defined by equations in Table 7.3-2)
Text List <TL>
Qualifying Terms List <QTL>
Term Extension <TE>
Term Extension List <TEL>
Term Structure <TS>
Term Structure List <TSL>

"

7.3 The New York Times Thesaurus and Its Grammar 355

between some of the lower and higher level terms used by The New York
Times . These intermediate entities are , in fact , known in various forms to
The Times personnel as well ; the reason for treating them more rigorously
is to improve on the precision possible over natural language descriptions .

The 16 syntactic equations of the description are given (and num­
bered) in Table 7 . 3-2, and a brief word of explanation is in order, so that
the equations in Table 7 . 3-2 can be understood. Each equation consists of
a " left-hand side" and a " right-hand side . " The left-hand s ide consists of
the syntactic entity being defined by that equation. The right-hand side is
its definition.

There are two major ways a definition is made in Table 7 .3-2 . The first
way is through an informal definition, given in natural language between
asterisks. This kind of definition may be used when no ambiguities or
misunderstandings are likely. In any case , at least one term (a primitive
term such as the first one in Table 7 . 3-2) must be defined in some informal
way or else the whole system of definitions will be circular. The second
method of definition is by syntactic formula, which expresses one or more
possible patterns of terms , using notation which we describe next .

1 . <TEXT>
2. <TERM>
3 . < QT>
4. <SN>
5 . <HN>
6 . < SR >
7. <SAR>
8. <RFR >
9. < S U B H >

10 . <THESA U R U S >
1 1 . <TL>
1 2 . <QTL>
1 3 . <TE >
1 4. <TEL >
1 5 . <TS>
1 6. <TSL>

Table 7.3-2

Thesaurus Equations

= *Natural Language Text*
= <TEXT>
= « TEXT»
= Note : <TEXT>
= {(BT) . (NT) , (RT)}
= See [<TEL» [<TL»
= See also [<TEL» [<TL»
= Refer from <TEL>
= Subheadings [<TSL» [<TL»
= <TSL>
= *Alphabetized list of <TEXT> items*
= * List of <QT> items*
= <TERM > [< QTL» [< SN » [< H N »
= *Alphabetized list of <TE> items*
= <TE > [(<SR> < SAR>}) [< RFR» [< S U BH »
= *Alphabetized list of <TS> items*

Notation used in constructing the grammar: "
= read " i s defined as"
, separates items in a list.
[) enclosed item is optional
{ } precisely one item from the enclosed list be selected

a Note that parentheses () are terminal symbols in grammar.

;

1' 1 r!' I ,

356 7. Syntax Structures in Information Syste

Note that each syntactic entity in Table 7 . 3-2 begins and ends with an
angle bracket « ,» , which seems to enclose a meaningful acronym or
word . In fact , the whole string, including the angle brackets , is to be
regarded as a single symbol, and the internal sequence of characters is of
mnemonic significance only . In addition to the angle brackets (which are
used to construct multicharacter symbols thereby) we also use as meta­
symbols equals (=) , comma (,) , square brackets ([,D, and braces ({ ,}) . The
equals has already been informally explained above, in the definition of
syntactic equation. The comma is used merely to separate items in a list.
The square brackets are used to enclose an item , and mean that the
appearance of that item is optional , that is , it may or may not appear in the
pattern given by the formula. The braces are used to enclose a list and
mean that precisely one item of the list must be used in the pattern.
Natural language text appearing by itself, that is , not within angle brack­
ets or asterisks , stands for itself. For reasons that are apparent with a little
reflection, such occurrences of natural language are called syntactic con­
stants . (The expression "See also" is a frequently recurring syntactic
constant in the Thesaurus, for example .) The formula of a right-hand side
of a syntactic equation can thus vary , by use of brackets and braces, over '
several forms : the meaning of the syntactic equation is that the syntactic
entity on the left is defined as any and all forms on the right side which are .
possible .

To illustrate these ideas , note that Equation 4 of Table 7 .3-2 states that
<SN> (i .e . , Scope Note) consists of the five characters , "Note : " , fol­
lowed by the syntactic entity <TEXT>, which by Equation I, is simply
natural language text. That is , Equation 4 sets up the syntactic constant,
"Note : " , as the opening 5 characters of a Scope Note , followed by the
syntactic variable <TEXT>, which stands for any text (sense or non­
sense) desired . The first four syntactic equations can be translated back
into the descriptions in the New York Times Thesaurus of Descriptors
very readily. Note <QT> (Qualifying Term) is placed between parenthe­
ses in Equation 3 . Equation 5 illustrates the use of braces . The entity
<HN> (Hierarchical Notation) is one of the three strings of four charac­
ters , " (BT)" , "(NT)" , or "(RT) " .

Just to check understanding, note that an equivalent form of Equation
5 is

<HN> = ({BT,NT,RT})

or even

<HN> = ({B ,N ,R}T)

7.3 The New York Times Thesaurus and Its Grammar 357

Table 7 .3-2 i s a reference table rather than an exposition table . Its
virtue is its conciseness and precision in defining the Thesaurus structure .
But the equations leading up to Equation 1 0 , for <THESAURUS> , take
a little more examination and explanation which we go into next. The
motivation for so doing i s that , once understood , Table 7 . 3-2 is a complete
and authoritative map of the structure of the Thesaurus .

MORE ON TABLE 7 . 3-2

The idea of leading up through the higher-level entities in Table 7 . 3-2 ,
to <THESAURUS > , can be illustrated by examining several instances of
a <SAR>-a "See also Reference . " We note a <SAR> consists of the
phrase "See also" , followed by one or more references to Descriptors .
But , a reading of the New York Times Thesaurus of Descriptors reveals
that , along with the Descriptors , may or may not come a list of <QT>
(Qualifying Terms) items , a <SN> (Scope Note) , and a <HN> (Hierar­
chical Notation) . We build up these possibilities in Equation 1 3 (using
Equation 1 2 first to define a list of <QT> items, in contrast to a single
<QT» . Now, with each single Reference defined by Equation 1 3 , as
<TE > , we use Equation 14 to define an alphabetized list of such Refer­
ences , naming it <TEL> . Also , since some references may be non­
descriptors ("See also foreign countries") , we build an alphabetized list
of such References , naming it <TL > . Now, finally we can form <SAR>
in Equation 7 , as the syntactic constant "See also" followed (optionally)
by a l ist of Descriptor References and/or a list of nondescriptor refer­
ences .

We used the expansion (or synthesis) of Equation 7 to illustrate a
similar process for Equations 6 and 8. Equation 9, defining Subheadings,
is a little more complex , and uses what is known as a "syntactic recur­
sion" in its definition . First , we define the structure possible under a
"main heading" of the Thesaurus as <TS> (Term Structure) in Equation
1 5 . It is a <TE> , already defined , followed (all optionally) by either or
neither of <SR> or <SAR> , by <RFR > , and by <SUBH> . Next we
note that a Subheading can be defined in this way , itself, if we realize two
crucial points :

1 . The options available include all possibilities in Subheadings , and
then some-we can choose to ignore the additional possibilities if we
please .

2 . The relation of being a Subheading (to a Heading) can be relative
rather than absolute , so that a <S UBH> under a <SUBH> (i .e . , in its
syntactic expansion) is an (absolute) subheading, etc .

i i i

I

(

I
; ' 1

358 7. Syntax Structures in Information

Thus , the right-hand side of Equation 9, which defines <SUBH
when expanded through Equations 1 6, 1 5 , in turn , includes an fl' t:IQIJ"
< S UBH > , which is the entity being defined. This is called , thereby, �,
recursive definition. �

In more abstract topics, there are inherent theoretical difficulties with
recursive definitions, but no practical ones here . What Equations 9, 15 , 16
say , together, is that any number of "subhead nestings" are possible in
the structural description-and this is an instance of the generality of this
description . But in practice, the user will create only a given number
such nestings: t?e lowest su�head�ng in the ne�ting will have the te�
<SUBH> mlssmg on the nght Side of EquatIOn 1 5 (the whole terril
[<SUBH>] is optional) . Thus the full expansion of Equation 9 (or 1 5) in i
realized file will always terminate. ,�':

It now may be somewhat of a surprise at first glance, but in defining a
<TSL> in Equation 1 6, originally conceived to be the List of Teort '

Structures that may be contained in a Subheading, we have, indeed:
defined the Thesaurus , and Equation 1 0 merely records this fact. Ther�
may be a far greater number of characters and entries in the entire The�
saurus than in a typical Term Structure (the appendage to a Descriptorl�
but their structures are identical and that is all we are defining at this
point .

CONVERSATIONAL ACCESS
Access to the Thesaurus in printed form is by page turning and by eye,

using the alphabetized structure inherent in its definition. The human
hand and eye represent a potent search mechanism as long as the material
is not voluminous and nothing further is done with the results.

In on-line conversational access , however, we must be more explicit
and precise in calling for sections of the Thesaurus, at most a few lines at
a time , by explicit commands rather than page turning and scanning.
Therefore, we outline here a specific system for conversational access.

The basic format of the conversational access is " Request and Dis­
play . " The user will enter a request at a terminal for some section of the
Thesaurus and the system will display the results of that request. The
results will be the section requested or else an error message , either
dealing with the format of the request itself, or else stating that the section
requested could not be located . The basic entry point into the Thesaurus·
is through Descriptors , possibly further specified by Qualifying Terms,
and possibly at subheading level s in the Thesaurus. If the Descriptor
entered is not a preferred term , its request wi l l bring an automatic display
of a "See Reference" list . If a Descriptor has been located which is a

7.3 The New York Times Thesaurus and Its Grammar 359

preferred term, it will bring a display containing Qualifying Terms , a
Scope Note , and a Hierarchical Notation , to the extent present . We call
this a "Base Descriptor. " Now, given such a Descriptor, the user may
request access to any of three lists possibly associated with it: the See
al so References, the Refer from References , and the Subheadings. Hav­
ing requested one of these three lists , the user may then request Refer­
ences or Subheadings simply by asking for the " Next" item on the list , or
by asking for the Descriptor itself. The display response to the "Next"
request is the next Reference or Subheading, if available. A reference
may be either a definite Descriptor, or an indefinite reference to a generic
category of Descriptors . If no more items remain on the list (the user
presumably having scanned some previously) , the message "End of List"
is displayed . Attention can be changed from one of the three lists to any of
the others by a simple request instead of " Next" or by a Descriptor
request.

The user who wants to follow out a Referenced or Subheading De­
scriptor (e .g . , to examine its "See also References , " etc .) can make a
"Transfer" request , which replaces the original Base Descriptor by its
Referenced or Subheading Descriptor, and access continues from the
latter as indicated previously. After one or more requests for such a
"Transfer, " a "Return" request can be made , which replaces the current
base Descriptor by the Descriptor which produced it by "Transfer. "
Thus, after a series of "Transfer" requests , an equal number of "Return"
requests will proceed (in reverse order) through the same set of Descrip­
tors , back to the original one .

The foregoing Requests and Displays are summarized (and numbered)
in syntax form in Table 7 . 3-3 . An examination of the table will show how
each of the commands leads to a specific display . Note the only syntactic
variable which can be used in a request is a <TERM> (a Descriptor)

Table 7.3-3

Conversat ional Access to the Thesaurus

Request

1 . Entry <TERM> I <QTL> J
2. See also
3 . Refer from
4. Su bheading
5. Next
6. Transfer
7. Return

Display

{<TE> . < S R > . no Entry }
{See also . n o See also. n o Entry}
{ Refer from. no Refer from. no Entry}
{ Subheading. no Subheading. no Entry}
{ <TE>. <TEXT> . end of l i s t }
{<TE> . no Reference/Subheading}
{ <TE> . original Entry}

360 7. Syntax Structures in Information SysteIiIW
' i

followed optionally by a <QTL> (Qualifying Term List) . The syntactiC
'·

variables displayed are l imited to <TE> (Term Extension) , <SR> (See',;
References), and <TEXT> (for generic references) ; but of course, jUSf .
these displays permit the user to browse through any part and detail of the :,
Thesaurus desired . The remaining requests and displays are syntactic(j
constants . In practice , this small vocabulary of request items , all but one �
of which are constants, represents a simple, readily understood means for (.�
accessing any information desired in the Thesaurus .

'

THESAURUS CREATION AND MAINTENANCE

·t
1
.�

We define Thesaurus creation and maintenance in terms of the syntac- �
tic entities of Table 7 . 3- 1 , above the level of the primitive Natural Lan. J
guage Text . That is , we consider only the addition and deletion of entire ' �
Thesaurus items and not portions of text. The addition and deletion of �
characters in text making up a file item is considered text editing, rather �
than Thesaurus maintenance, in this context. It is recognized that text
editing is a desirable future facility in the overall process of Thesaurus '3
maintenance, and the present emphasis reflects merely a time phasing of ·�
ultimate interests .

The process of Thesaurus creation is simply the construction of a .

<TSL> which is to be defined as the Thesaurus . (The problem of how ;

such a Thesaurus is to be physically loaded into storage , with directories, :
etc . , is a programming question not dealt with here .) For example, the 1
New York Times Thesaurus of Descriptors , by definition , and barring 1
typographical or logical deviations from its designer' s intentions , is a ',�
<TSL> . �

The process of Thesaurus maintenance is, likewise, very simple in i
syntactic terms . A Thesaurus addition or deletion can be defined by giving ;
a location and a syntactic entity which is to be added or deleted. The :
location can be given in the Conversational Access requests , namely,

Entry <TERM> [<QTL>]
See also
Refer from
Subheading
Transfer

to prescribe the destination of the syntactic entity to be added or the ,
entity to be deleted . In the case of unique items, such as a Scope Note, or ,:

a Hierarchial Notation, addition is taken to mean replacement if already • 1
present. In case of listed items, such as See or See also References , ot J Subheadings , addition is done automaticall y in alphabetized form. In the :

\�

7.3 The New York Times Thesaurus and Its Grammar 36 1

case of deletion , deleting a Descriptor automatically deletes all file items
accessed by that Descriptor as wel l .

ILLUSTRATIONS
We use the Model Page of The New York Times Thesaurus of De­

scriptors , as shown in Figure 7 .3- 1 , to i l lustrate the foregoing ideas con­
cretely .

First , regard the contents of the Model Page as a miniature Thesaurus .
It has the structure of the entire New York Times Thesaurus of Descrip­
tors , only with far less text in it . It i s , in fact , a <TSL> (Term Structure
List) of alphabetized <TS> (Term Structure) items, which begin with
Descriptors :

ADEN Protectorate
ADOPTIONS
ADVERTISING
AMERICA
AMERIKA
BIRTH Control and Planned Parenthood

(note Equations 10 , 1 6 of Table 7 . 3-2 express this structural fact) .
Next , any one of these <TS> consists of a <TE> (Term Extension)

followed optionally by References and Subheadings (Equation I S) . Some
<TS> have no References or Subheadings at al l , and some <TE> con­
sist only of a <TERM> item (a Descriptor) , but these are admissible
possibilities in the equations . Nevertheless , in order to keep matters
straight , we recognize each syntactic entity represented in the miniature
(or full) Thesaurus , even though one section of natural language text may
stand for several entities at once . For example , the first <TS > ,

ADEN Protectorate
See South Arabia, Federation of

represents the diagrammed entities in Figure 7 . 3-2. Similarly , the eighth
<TS> has the structure of Figure 7 . 3-3 .

In fact , the Model Page (by design) exhibits nearly every structure that
can occur in the Thesaurus ; it can be instructive to locate the syntactic
equation in Table 7 . 3-2 that defines any given structural relationship on
the Model Page .

Now, consider the miniature Thesaurus given by the Model Page to be
"on-line" for conversational access. Although the eye can take in the
entire page , imagine it cannot-and that only one item is available for
inspection at a time . We will invoke the "Request and Display" mode of

I
I

I I
i ! I

362

ADEN Protectorate

L < TERM) �

L- (TE) �

7. Syntax Structures in Information Systena ·

See South Arabia. Federa tion of

� <TERM) ---....J

� (TE) ---------'
� (TEL) -----�

�-------- (S R) ------�

�-------------- (TS) ------------�

Figure 7.3-2. Diagramming the First <TS> From the Model Page of Figure 7 .3- 1 .

conversational access to browse , i n illustration , through this miniature ·
Thesaurus . We show a conversation in Table 7. 3-4 .

I n the conversation , the actual language itself i s terse and skeletal­
because we are interested only in structural aspects of the Thesaurus , and
how Request and Display operations can permit a user to browse and
examine the Thesaurus item by item. In practice , the Display side would
be more complete , maintaining "backtrack status" information , etc . , as
display space permits .

Thesaurus creation i s illustrated by the model page itself: natural lan­
guage text with structural characteristics satisfying the equations of Table
7 . 3-2. For Thesaurus maintenance we consider an addition and a deletion
(noting that a modification can be considered a deletion followed by an
addition) . Suppose we wish to add Television (NT) to the Refer from
References of ADVERTISING. We form the Locator

Entry ADVERTISING , Refer from

and the item

<TE> = <TERM> <HN> = Televi sion (NT)

BLACK Muslims

L <TE RM) �

L. <TU �

Re fer from M usl im Sects (BT)

L(TERM) J(HN)J
� <TE) �

L <TEL> .---J
1......------- (R FR) �

�-------- (TS) -----------�I
Figure 7.3-3. Diagramming the Eighth <TS > From the Model Page of Figure 7 .3- 1 .

' .

'"
,e:

- ,

./ .

.�

Table 7.3-4

A Sample Conversation

Request
Display

Entry ADEN Protectorate
ADEN Protectorate

See South Arabia, Federation of
Entry ADEN

No Entry
Entry B LACK Muslims

B LACK Muslims
See also

No See also
Refer from

Refer from
Next

Musl im Sects mT)
Next

End of List
Subheadings

No Subheadings
Entry ADVERTISING

ADVERTISING
Transfer

No Reference/Subheading
Subheadings

Subheadings
Next

Mass Communications (for inclusion) (BT)
Transfer

Mass Communications (for inclusion) (BT)
Refer from

Refer from
Next

ADVERTISING
Transfer

ADVERTISING
Return

Mass Communications (for i nclusion) (BT)
Return

ADVERTISING
Return

Original Term
Subheadi ngs

Subheadings
Next

foreign countries
Transfer

No Reference/Subheading
Next

U nited States
etc.

' I

! i,

· i ' !

364 7. Syntax Structures in Information Systems

for addition . Then Television (NT) would be automatically added (in al­
phabetized order) to the Refer from References of ADVERTISING . Simi­
larly , to delete the Hierarchical Notation (BT) in the "BLACK Power"
See Reference , we locate by

Entry "BLACK Power"

and delete item

< HN > = (BT)

therein .

Summary: Analysis of the New York Times Information Bank
led to a description of the Thesaurus in a formal grammar that
was surprisingly simple yet powerful . A user language for the
Thesaurus was discovered and stated in a formal grammar.

EXERCISES

1. Create parse trees and parse tables for the following hand calculator
inputs :

(a) C 6 =
(b) C 3 1 + 42 =
(c) C 3 + 42 - 6 =

2. A grammar for decimal numbers is given as

1 . <decimal number> : : = <number> . <number>
2. <number> : : = <digit> *<digit>
3 . <digit> : : = 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

Determine which of the following strings are decimal numbers as
defined here by writing parse tables for them, if possible :

(a) 32 .45
(b) 0.456
(c) 23
(d) 23 .
(e) . 23

3. Modify the grammar of Exercise 2 so that all cases will be defined as
decimal numbers .

4. An < identifier> in many programming languages is defined as any
letter followed by zero or more letters or digits (letters and digits in

Exercises 365

any order) . Define a grammar for < identifier> , first without paren­
theses , and second with parentheses , to make the grammar most
readable .

5. Provide a grammar for dates , in three forms (three grammars) :

(a) 7-4-76
(b) 4 July 1976
(c) July 4, 1 976

6. In Table 7 . 1 -2 , several columns are identical . Can you express the
response required in a s impler, more compact form? Can you sim­
pl ify the state?

7. Design a grammar for an <identifier> in a programming language
such that the first character must be a letter followed by zero or
more letters , digits, or special characters (e.g. , %, $, #, etc .) . Define
a state machine that recognizes legal identifiers for your grammar.
Let the stimuli be characters in a string and the response be the last
complete identifier. All possible character strings should be handled .

8. Consider defining a state machine for a spelling checker.

9. Given the grammar for HC input , design a clear box from the gram­
mar which will determine its output .

10. Gi ven the grammar for dates of the form
July 4, 1984

design a clear box from the grammar which will copy all dates in a
character string.

11. Given a list of dates (in the form of Exercise 1 0) in a character string,
design a clear box to determine for each adjacent pair which is
earlier or if they are the same date .

12. A (modified) simple expression in Pascal is defined in syntax as :

I . <simple expression> : : = <term> l<sign><term> 1
<simple expression>
<add operator> <term>

2 . <sign> : : = + I -
3 . <add operator> : : = + I -
4 . <term> : : = <factor> l<term> <multiply operator>

<factor>
5 . <multiply operator> : : = * 1 /
6 . <factor> : : = <variable> l<number> I « simple

expression>)
7 . <variable> : : = <letter> *<letter or d igit>
8. < letter or digit> : : = <letter> l<digit>

[1 1,:1 ' :, 1 ,, 1, . , I
I I

366 7. Syntax Structures in Information

9. <number> : : = <digit> *<digit>
1 0. <letter> : : = a I b I c I . . . I z
1 1 . <digit> : : = I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 0

Build the parse table for the following legal simple expressions:
(a) abc - (20 * xyz)
(b) 80/n/65
(c) - ((20 * x) + (y - z»
(d) x * y + z/5 * w

13. Based on your own imagination , invent a personnel fi le for a b
ness and give its syntax .

14. Based on your own imagination , invenf a personnel report based '"

the information in the personnel file of Exercise 13 and give
syntax .

15. Define a syntax for reserved seat tickets to a series of concerts in
auditorium with a main floor (orchestra) , rows A to
(A, . . . ,Z,AA, . . . ,MM), seats I L , . . . , 30L, I R, . . . ,30R , and
rows A to K, seats I L ,25L, 1 R, . . . ,25R. The dates of the corlcel�{
are August 3 , 4 , 5 , 1987 .

16. Design an input grammar for set expressions. Elements of a set
single letters and sets are represented by brackets (e .g. , [A, P,
X]) . Null sets , [] , are legal . Three set operations are used in the
expressions

U Union,
n Intersection , and
- Difference

Parentheses are used to group operations.
U sing the designed grammar, build a parse tree (or table) for t
expression

([A, B] U [A, C, D]) - [A]

Chapter 8 I>ata Structures
in Information Systems

8.1 DATA STRUcrURES

Preview: The analysis and design of state data representations
are critical tasks in information systems development . Data struc­
tures , file systems , and database systems are three levels of data
design that provide increasing data independence to the user.
Data design requirements include techniques and information to
support data access, retention , and control . The basic data struc­
tures are data items , arrays , records , lists , trees , and graphs .

8.1.1 Data Analysis and Design

Effective representation of state data is a crucial aspect of box struc­
ture design . A large part of information system implementation is devoted
to the mechanics of accessing, updating, and managing data. Efficient
system implementations depend on good data representations , to simplify
and systematize these operations. Data representation possibilities can be
organized into three levels of design , namely , data structures, file sys­
tems , and database systems , as illustrated in Figure 8 . 1 - 1 . Each level of
data design is built upon the levels below it in the hierarchy . The use of
data at one level is independent of implementation details of the lower
levels . More precisely:

367

368 8. Data Structures in Information

-------- Logical irHkre lHklH:e

f------------'r - - - - - - Physical indepe lHknCt.'
File systems . " . .

/----------+- - - - - Access independence
Data structures

Figure 8.1·1 . Hierarchy of Data Design .

Yo
Data Structures. Data is represented and stored in terms of the " ; ;

'

storage media of an information system . Data structures allow sim- \�
ilar, and dissimilar but related, data items to be accessed and re .. ·. 'i:
tained as coherent units . Access independence rel ieves the user ',1

Cf
from storage detai ls . .. ;

File Systems. Files group col lections of similar data structures for .�. "
common access and retention. File systems provide physical inde-

'
:

pendence to users . Physical independence hides detai ls of underly­
ing file organization . Detai ls of data structure representation and
storage in a file are managed by the file system and need not be '. i

visible to the user.

Database Systems. A database is a grouping of data files and a rep- . .
resentation of the re lationships among the files . A database system . '\ . '

manages details of access , retention , and control to present the �
user with a greater degree of data independence , in a high-level <.
conceptual view of the data environment. In addition to physical }\'.
independence , database systems also provide logical indepen- .�t
dence, through multiple user controls , that allow users to view only �;.
the data needed for their appl ications .

The objective of state data analysis and design is to provide effective
and efficient use of data in an information system. However, the data
design problem must not be separated from the overall system design.
Otherwise , unforeseen consequences can arise , as these examples iI Ius- � .

trate :

A new information system is to be built based upon the functions of }I{ .

one or more existing systems , both manual and automated. To .!
avoid data restructuring, the designer adopts the data designs in):�
the current systems, and attempts to integrate them into a new data / . 1.� deSign. l�1

�'
A designer has a preconceived idea that a database system should be . 1 '

used for data management . Thus , the data design will influence the
.

system design to justify use of the database system.

8

r
r

8.1 Data Structures 369

A designer has considerable expertise and experience with one type
of data design , for example , file systems , or one particular data
management package . The system design will be tailored to fit a
data design compatible with the designer' s experience.

Hardware and software for an information system is selected before
systems analysis and design is completed . The system design , and
thus , the data design, is severely constrained by hardware and
software capabilities .

In short , data design must be based on analysis of state requirements
in the box structure hierarchy , and not necessarily on preconceived or
pre-existing designs , as summarized in the fol lowing fundamental princi­
ple .

Fundamental Principle: Data design is an integral part of box
structure design and must not be considered separately .

State definitions play a major role in box structure methodology. A
black box is a state-free description of behavior in terms of stimulus
history . However, at the state machiae level , state definitions replace
stimulus histories in describing behavior. State and machine definitions
are separate yet interdependent , and must be analyzed and designed to­
gether. At the clear box level , state definitions exist (although always
subject to better ideas) and procedures are created to carry out machine
transitions .

Data design is the process of selecting data representations for all of
the state information in a box structure design . Two fundamental princi­
ples guide data design in the box structure methodology .

Fundamental Principles. Data Design:

1 . Data design proceeds top-down in a box structure hierar­
chy . The top level state should be designed first , followed by al l
other states in top-down fashion.

2 . The functionality of all machines within the clear box ex­
pansion under a state should guide the data design for that state .

Top-down data design is intrinsic to the box structure methodology .
Common states at higher levels in a box structure contain the most widely
shared states in the system . Thi s implies the need for strong controls on
data integrity , consistency, reliabi lity , and access efficiency. Effective

I ,
i
I '

370 8. Data Structures in Information

data representation of these states i s crucial for good system design.
corollary to the top-down design principle is that higher level data U��>IIZI1I��
can influence lower level data designs , but not vice versa.

The state transitions carried out by the machine of a state macnln�
guide data design to support those transitions. That is , data design is
predicated upon requirements for state operations defined by the state
machine and carried out by its clear box expansion. These data require_
ments can be categorized in three levels , as shown in Figure 8 . 1 -2 :

1. Data Access. Box structure data access requirements include the
ability to store and retrieve state data. Any data representation must
support these functions .

2. Data Retention. Box structures retain state data between transi4:
tions. Retention must be supported by a data representation that main1
tains data integrity while providing for data access . The effective organi- ·
zation of data in storage is also a goal of data retention support .

3. Data Control. An information system may require special con-:' ·
troIs for access to information . In such a case , box structures must sup­
port control functions , including data sharing among multiple users with­
out compromising data integrity , providing data security , and providing '
mechanisms for data recovery in the event of system failure .

Data access requirements are the most fundamental in an information
system. Data retention requirements imply data access . (What good is
information that cannot be accessed?) Data control requirements imply
data retention . (Why control information that is not saved?) A data repre­
sentation that meets the outer data requirements in Figure 8 . 1 -2 must also
meet the inner requirements as well . Thus , data design involves more
than selection of data structures for state items . It also requires design of
data structures to support machine processing for access , retention, and
control of those state items . This observation is generalized in the follow­
ing fundamental principle:

Fundamental Principle: Data to support data access, retention,
and control is itself part of the state in box structure design . The
design of a data representation for a state must include consider­
ation of these data requirements .

8.1.2 Data Representation

Data in an information system is represented in a variety of forms . All
data representation is based upon a standard building block, namely , a
data item. Just as a brick can be used to construct many different forms of

8.1 Data Structures 37 1

Data control

Data retention

I Data I access

Figure 8.1-2. Levels of Data Requirements .

Data system

I--� State : �--, Data
I I I I I I
l Machine I

Access : I
Retrieve S R
Store

Figure 8.1-3. Data State Machine.

buildings, from a simple house to a complex mansion , data items can be
used to construct many different forms of data support, from simple data
structures to complex database systems.

Figure 8. 1 -3 illustrates a state machine representation of a system that
accesses state data. The principal access capabilities are storage and re­
trieval . The remainder of this section discusses state data representation
and corresponding storage and retrieval techniques .

DATA ITEMS

Data items are atomic units of information to be represented in a
system . Their physical representations depend upon the medium on
which it is recorded . An employee number, for example , may be repre­
sented as typed numbers on a payroll check , as a magnetic strip on an
identification card , or as a sequence of bits in a computer system .

Data items are defined on a domain. A domain definition has two
parts ; a data type and a range. T:le data type specifies the form of the data
item . Standard data types include :

' I I "

372

INTEGER (X):
REAL (X . Y) :

CHAR (X) :
BOOLEAN :

8. Data Structures in Information

Integer with X digits
Real number with X digits before the decimal

point and Y digits after
Character string with X places
One of {TRU E, FALSE}

Many systems al low special data types to be defined ; for example,

DATE (XX/YY/ZZ): Date in the form month (XX) , day (YY) ,
year (ZZ)

TIME (XX: YY:ZZ): Time in the form hour (XX) , minute (YY),
and second (ZZ)

COLOR: One of {red , blue , white , . . . }

The range of data items specifies the allowed values that data .· L "'lIll".
may hold . AGE data may have a range of 0- 1 00, SALARY data may
a range of $ 100-$ 1 00 ,000, and GRADE data may have a range of A, B,
D, F , I , W.

Data items are specified in BDL as a combination of a name and
domain . Data items are referred to by name in a BDL procedure, and
defined separately in a data declaration prior to use . Thus ,

a, b, c :
d :

INTEGER
CHAR

e: hand calculator key

are data item declarations that associate a data type with each name (a, b,
c as integers , d as a character, e as a hand calculator key) . Simple
types are part of BDL syntax , to be defined according to problem needs
The general criteria for simple data types is that they refer to units of
not ordinarily decomposed further . In addition to identifying data fu .. � .. a ·.

by a term (integer) or phrase (hand calculator key) , a data type can
described by an enumeration of al l possible values , for example ,

BR: (B , C)
weekday : (Mon , Tue , Wed , Thu , Fri , Sat , Sun)

or by describing a range of items in a known list , by stating the first
last members separated by a double period , for example ,

workday :
digit :
nonzerodigit :

(Mon . . Fri)
(0 . . 9)
(I . .9)

A data type and a range can be specified together in BDL, for
ample ,

r
8.1 Data Structures

SSN: CHAR (1 1)
Range = (000-00-0000 . . 999-99-9999)

DEPT# : INTEGER (2)
Range = 0 . . 99)

SIZE : REAL

373

A range specification (e .g . , SIZE) in a domain is optional . The default
range would be only l imited by the ability of the system to handle data
values. Thus, computer systems can only accommodate numbers to a
certain precision , and business forms typically place constraints on the
number of characters that can be entered on each line .

Systems should provide a means of ensuring that a data item only
contains v alues in its domain . Operat ions that insert a new value or up­
date an old value should be monitored to guarantee the validity of the new
value, otherwise the operation should not be allowed . These checks main­
tain the domain integrity of data items.

The Box Structure of Data Items. As surprising as it may seem, even
simple data storage and retrieval operations on data items can be repre­
sented by a black box , specifical ly, a common service black box . The
black box of data items has a complex stimulus defined in two parts,
namely, the operation, or service, to be performed on the variable, and the
variable value itself. The services are storage (ST for short) and retrieval
of a value (RT for short) . In illustration, the sequence of assignment
statements

do

od

c : = 2 ;
b : = 1 ;
a : = b + c ;
b : = a ;
c : = c + b;
d : = b

defines the following stimulus/response history for the black box of b:
S R

service value

ST

RT

ST

RT

RT

3
3
3

374 8. Data Structures in Information

where blanks in the table signify a null value . That is , the black box
and retains a value for b through successive retrievals until a new value
stored. The black box specification for b is as follows:

define BB b
stimulus

S : (ST,RT)
V :number

response
R:number

transition
if S = ST then

R : = null
fie ,
if S = RT then

fi

R : = V(k) , where V(k) represents the last value
stimulus , such that S(k) = ST.

. . ,
Note that the storage service produces no response , and depends 01\ ··

the definition of a black box transition to append the stimulus to the "
stimulus history for use by the next retrieval service .

. � A data item is thus a pure storage and retrieval black box , the simplest :.;
one possible . The corresponding state machine description is

.

define SM b
stimulus

S : (ST,RT)
V :number

response
R:number

state
E :number

machine
if S = ST then

E : = V
fie ,
if S = RT then

R : = E
fi

where b is the black box name and E is the state variable .
Thus , when a data item appears on either side of a data assignment as ,

for b ,

8.1 Data Structures

a : = b
b : = 2

375

we can interpret the appearances as shorthand for transition invocations
of a common service state machine , either to retrieve its state value or to
store a new state value . Also, proper use of the state machine requires a
retrieval transition to be preceded by a storage transition. Failure to do so
results in the common mistake known as an "uninitialized value" . Note
too, that successive storage transitions without an intervening retrieval
represent a somewhat subtler mistake known as an "unreferenced
value, " where a stored state value is not used in some transition before it
is overwritten.

ARRAYS

An array is an ordered set of identical data elements of finite length.
Arrays can be organized into 1 - , 2- , 3- , . . . dimensional structures . A list of
5 numbers

3 6 1 9 6

can be stored in an array

stimulus :array(1 . . . 5) of number

such that

stimulus(4) = 9, stimulus(1) = 3

and so on. The expression stimulus(6) is undefined because of the array
bounds 1 . . . 5 given in the declaration .

A magic square

1 1 4
1 5 4
1 0 5
8 1 1

7 1 2
9 6

1 6 3
2 1 3

(what 's magic about it?) can be stored i n an array

magic square :array(1 . . .4 , 1 . . .4) of number

such that

magic square(2 , 3) = 9
magic square(4, 4) = 1 3
magic square(3 , 1) = 1 0

I Ii r ' 1 , I i i i
,I,' ,

, 1 \: I I I i

376 8. Data Structures in Inrormation Sy

RECORDS

A record is a grouping of data elements that , together, describe objects �
in an information system . The objects are termed entities, and are de.!:
scribed by attributes. Entities and attributes describe information at "',a ­
conceptual level . At the data design level , data items represent attributes <
and records represent instances of entities . �

BDL records are data structures that permit collections of data ele .. i�
ments to be named and organized into a hierarchy . For example, t� '.:
hierarchical structure

.

Employee

I
Name Address Department

I I
Street City State

can be declared by keyword record and a tabular typographic form,

employee: record
name : text
address: record

street : text
city : text
state : text

end record
department: number

�
. ,

•
.A

�d rero� �
�

where employee names a collection of three items (name, address, and' .
city), as does address (street, city , state) . Elements in a record can be 1
referred to in a procedure by a dot notation , for example J

employee . name : = 'Jones , John'

or simply

name : = 'Jones , John'
1 !j

where no ambiguity results (that is, name is not used as a variable or as �
another record qualifier in the procedure) .

'

VARIANT RECORDS

Variant records general ize the idea of a record to include multiple;
possibilities . In BDL, variant records permit records of varying structure,.�

.:i

I
....

8.1 Data Structures 377

depending on data found in the record itself. A variant record contains a
tag field, which defines the specific variant of the record . Variant records
are especially useful in dealing with generic information that can occur in
different forms . For example , an employee record may be quite different
for permanent and temporary employees . A variant record could be de­
fined in this situation with tag field named employee type :

employee : variant record

FILES

case employee type : (perm , temp) of
perm:record

employee number:number

end record
temp:record

esac
end record

end record

Files group records of the same entity-type . For example, all employee
records of business constitute an employee file . Records can be organized
into a file in several different ways as described in the next section .

In BDL, files can be described as , for example,

emp: file of employee records

The concept of a key is of great importance for file organization . A
candidate key (or simply a key) is an attribute or group of attributes of an
entity that has a unique value for each instance of the entity . An entity
may have many candidate keys . Consider an employee entity with attrib­
utes employee number (EMP#), social security number (SSN), name
(NAME), address (ADDR), and department number (DEPT#) . Based
upon standard semantic assumptions, we could state that EMP#, SSN , or
even NAME are each candidate keys of the employee entity . In fact, any
grouping of attributes, as long as the group contained one of {EMP# .
SSN , NAME}, would meet the definition of a candidate key . However,
candidate keys are normally considered to be minimal, such that no candi­
date key contains another candidate key as a subset of its attributes .

A primary key is a candidate key selected to serve as the unique access
key of the entity. Only one primary key exists for an entity . Most file
organizations store and retrieve data based upon the value of the primary

378 8. Data Structures in Information �VS1I_ .. 1

key. In the employee entity , defined above , the logical choice for a pri..,
mary key would be EMP#, since values of employee numbers are Con,.
trolled by the organization and can be guaranteed to be unique . ,

A secondary key is any attribute in an entity that is not , by itself, a .
candidate key . Secondary keys provide the potential for secondary in� .

dexes to be constructed for a file . Such indexes allow access to groups of
records that contain the same value in the secondary key . In the employee
entity the attributes ADDR and DEPT# are considered secondary keys.

8.1.3 Linear Data Structures

Sequential access of data requires that each data item be available to a
process in a well-defined order. This order can be determined in a number
of ways . The value of the data item may determine the order, for example,
a sorted list of test scores . Data items may also be ordered by time of
entry into the data structure , for example, a first-in-first-out (FIFO) queue
at a bank. When a well-defined order of data items is required for sequen­
tial processing, a linear data structure is appropriate . This section de-)
scribes the principal forms of linear data structures , namely , lists , queues ,
and stacks .

LISTS

Lists are a flexible data structure in which data are maintained in a
particular order; however, individual elements can be accessed , inserted,
deleted , or updated at any position . Lists can grow and shrink to arbitrary
sizes . List applications include lists of tasks to perform, lists of past
months' sales and purchases , lists of customers , etc . A l ist is defined in
BDL as :

1 : list of number
x, y :number

A list data design includes the necessary functions to satisfy the data
. requirements of the system. The following functions for a list state ma- . .

chine represent list processing possibilities :

insert(l ,x) :

delete(l ,x) :
locate(l ,x) :
first(l,x):

Insert element x into the list I at its correct position
based upon list ordering.

Delete element x from list I .
Locate the e lement x in the list l .
Retrieve the first element from l ist I and place i t in

element x .

8.1 Data Structures 379

oext(l , x) : B ased upon the last transition, retrieve the next ele-

prior(l ,x) :

ment i n order from l ist I and place it in element x .

Based upon the last transition, retrieve the previous
element in order from list 1 and place it in element x .

These functions provide a range of processing capabilities o n lists . The
most effective use of lists comes in organizing and retrieving data in a
linear order. While retrieval of arbitrary data elements can be done, for
example with the locate function, the search requires retrieval of all data
elements up to the desired element in order.

The ordering of a list is defined by the data designer, and must be
maintained by insertion, deletion, and update transitions designed into the
system. Queues and stacks are two special types of l ists . In these struc­
tures, special ordering and access disciplines are enforced.

QUEUES
A queue is a dynamic data structure with a FIFO (First-In-First-Out)

access discipline . A value stored in a queue goes to the back of the queue,
a value is retrieved from the froot of the queue . In BDL, after declarations

q:queue of number
x, y : number

the assignment

back(q) : = x

stores the value of x at the back of the queue q ; the assignment

y : = froot(q)

moves the value at the front of q, if any, to y (removing that value from q) .
If q is empty the assignment has no effect . The condition

isempty(q)

is true or false depending on whether q is empty.
In i llustration , representing a queue as a l ist with front at the left, back

at the right,

if q = (3 6 1 9) , x = 6

after back(q) : = x ,

q = (3 6 1 9 6) , x = 6,

I I
I

I ' i !

380

and after x : = front(q) ,

q = (6 1 9 6) , x = 3

and

isem�ty(q) = fal se .

The Box Structure of a Queue.

8. Data Structures in Information Systea.

Data storage and retrieval operations
for a queue can be represented by a black box. In illustration, consider the
following two histories for a given black box , with ST for store , RT for
retrieve:

S R S R

service value service value

ST 3 ST 3

ST 6 RT 3
ST I ST 6
RT 3 RT 6
RT 6 ST I
ST 9 ST 9
ST 6 RT I

RT I RT 9

RT 9 ST 6
RT 6 RT 6

In both cases , the order of val ues retrieved (3 6 1 9 6) corresponds to
the order of values stored (3 6 1 9 6) , although the two sequences of
storage and retrieval stimuli are different . With a little thought the black
box specification can be written as

define BB queue
stimulus

S : (ST , RT)
Y :number

response
R:number

transition
if S = ST then

R : = null
fi;
if S = RT then

fi

R : = Y(j) , where Y(j) indicates the first stimulus history mem­
ber not yet retrieved such that S(j) = ST.

Any black box that exhibits this behavior i s called a queue .

;:..

. ... �

' .
. �

. ..;. ,

8.1 Data Structures

The state machine for a queue black box can be written as ,

define SM queue
stimulus

S: (ST, RT)
V: number

response
R: number

state
Q: queue of number

machine
if S == ST then

back(Q) : = V
fi· ,
if S == RT and not isempty (Q) then

R := front(Q)
fi

with behavior identical to the black box above.

38 1

Many uses of queues exist in information sy stems . For example , cus­
tomer service sati sfaction is dependent upon perception of fair treatment .
The fairest scheduling discipline for customer service is the FIFO disci­
pline of a queue .

An important variation on a queue is a priority queue, where the
element at the front of the queue depends on a priority formula. For
example , the next order to be processed at a warehouse may depend upon
the total cost of the order, the number of items in the order, the size and
weight of the items , and the location to which the order must be sent. A
formula based upon these factors would assign a priori ty to each order as
it is entered into the queue . The arrangement of elements in the priority
queue is based upon the priori ty value .

The BDL descri ption of a priority queue requires a different function
for queue assignment . If Q is a queue , then

priority(Q) : = E

places element E into its correct priority position in Q. The front(Q)
function operates as before , by accessing the first queue element (i .e . ,
with highest priori ty) and deleting the element from the queue .

STACKS

A stack is a dynamic data structure with a LIFO (Last- In-Fi rst-Out)
access discipline . Values are stored at , and retrieved from , the top of a
stack. In BDL, after declarations

, I

382

s : stack of number
x, y : number

8. Data Structures in Information Systems

the assignment

top(s) : = x

stores the value of x at the top of the stack ; the assignment

y : = top(s)

moves the value at the top of s, if any , to y (removing that value from s) . If
s is empty the assignment has no effect . The condition

isempty(s)

is true or false depending on whether s is empty . In illustration, represent­
ing a stack as a l ist with top at the left ,

if s = (6 1 9 6) , x = 3 , y = 6

after top(s) : = x ,

s = (3 6 1 9 6) , x = 3 , y = 6

and after y : = top(s)

s = (6 1 9 6) , x = 3 , y = 3

and

isempty(s) = false .

The black box and state machine representations for a stack of num­
bers are as follows:

define BB stack
stimulus

S : (ST,RT)
V: number

response
R:number

transition
if S = ST then

R = null
fi;
if S = RT then

fi

R : = V(j) , where V(j) is the last stimulus not yet retrieved
such that S(j)=ST.

I

8.1 Data Sin

define
stimt

resp�

statf

macl

8.1.4 NOI
While I

processing
processing
classes of
sets , trees

SETS

A set i
order. It is
be accom]
orders to t
a set is de

v , s , t
x , y

The fol
ing possib

null(s
insert
deletl

I

8.1 Data Structures

define SM stack
stimulus

S : (ST , RT)
V: number

response
R: number

state
T: stack of number

machine
if S = ST then

top(T) : = V
fi;
if S = RT and not isempty(T) then

R : = top(T)
fi

8.1.4 Nonlinear Data Structures

383

While linear data structures provide access efficiencies for sequential
processing of ordered data, many processing applications require random
processing of ordered data, or deal with unordered data. Three important
classes of nonlinear data structures are useful in these cases, namely,
sets , trees , and graphs .

SETS

A set is a structure in which the data items have no distingui shed
order. It is a grouping of similar data items, for example, a set of tasks to
be accompli shed in no particular order, or a group of newly received
orders to be assigned order numbers and placed into a database . In BDL,
a set is declared as , for example,

v , s , t :set of number
x , y : n umber

The following functions for a set state machine represent set process­
ing possibil ities.

null(s) :
insert(s , x) :
delete(s , x) :

Makes set s empty .
Insert element x into set s .
Delete el ement x from set s .

! i

I ,

384 8. Data Structures in Information Syste

member(s, x) : Logical function returns true if element x is in
set s, otherwise returns false.

isempty(s) : Logical function returns true if set s is empty,
otherwise returns false .

union(v ,s ,t): Set v becomes the union of elements in sets s
and t .

intersection(v ,s ,t): Set v becomes the intersection of elements in
sets s and t.

difference(v ,s ,t) : Set v becomes the result of eliminating all ele-
ments of set t from set s .

select(s ,x): If set s is not empty an arbitrary element i s se-
lected from s and placed into x (the element is
not removed from set s).

Sets provide clear advantages for access and storage of unordered
data . The set operations of union , intersection , and difference provide
powerful data manipulation capabilities . Processing all elements of a set
can be accomplished by repeatedly selecting (select(s , x» an arbitrary ele­
ment of the set, processing it , and then deleting the element (delete(s ,x» .
Retrieving a specific element in a set is less efficient , however. Since a set
is maintained in no particular order, a search over al l set elements may be
required , in the worst case .

The implementation of a set data structure depends upon the storage
medium and the size of the set . A bit-vector can be used for sets in a
limited value range . For example , if set elements are known to have
values in the range I . . N , the set can be implemented as an N bit vector.
The ith bit will be 1 if that element is in the set. More general sets will
require some form of linked-list implementation, where each element is
defined and l inked in a list in no particular order.

TREES

A tree data structure places data elements in a hierarchical arrange­
ment . Tree structures provide improved access efficiency on ordered data
and the abi lity to represent hierarchical relationships among data.

Each data element is termed a node in a tree . A tree has a single root
node . A tree i s defined recursivel y as (Figure 8 . 1 -4):

1 . A single node is a tree .
2. Given a root node , all remaining nodes are part itioned into disjoint

sets , TJ , . . . , Tn , and each of these sets is in turn a tree .

8.1 Data Structures 385

T2
Figure 8.1-4. A Tree.

Tree data structures are common in information systems . For exam-
i pie , trees can be used to represent organization charts or parts explosion

diagrams . The outline of this book can itself be represented by a tree . The
book is divided into eight chapters (e.g. , C3), each chapter into major
sections (e.g. , C 3 . 1) , and each major section into minor sections (e .g . , C
3 . 1 .2) .

A tree data structure can also be used with ordered data to improve
access efficiency on random retrievals . By structuring ordered data into a
tree, sequential search is no longer required to find a particular element .
The requested element is compared to an element in a tree node (a search
would begin at the root) . Based upon the comparison, either the requested
element is found or one of the subtrees of the node is identified as contain­
ing it ; that subtree is then searched, continuing in this fashion until the
element is located .

This retrieval principle is illustrated by the binary tree in Figure 8. 1 -5 .
A binary tree contains one element per node and each node has at most
two subtrees . Data elements are ordered such that elements with value
less than the current node are placed in the left subtree , elements with
value greater are placed in the right subtree .

1 0

�
8 1 5

� � 4 9 1 2 20

�
2 6

Figure 8. 1-5. A Binary Tree.

386 8. Data Structures in Information Syste ..

Sequential processing of the data elements requires an inorder tra- .
versal of the tree . The traversal is defined recursively at each node as

1 . Perform an inorder traversal of the left subtree .
2. Process the current node .
3 . Perform an inorder traversal of the right subtree .

Using the algorithm on the example binary tree in Figure 8 . 1 -5 , the
processing order of the nodes is (as expected) : 2 , 4 , 6, 8 , 9, 1 0 , 1 2 , 1 5 , 20.

Random retrieval on the example binary tree requires, at most , four
comparisons . Whereas a random retrieval on a linear structure of this data
would require , at most, nine comparisons . Tree structures provide signifi­
cant performance advantages for applications that include random pro­
cessing requirements.

The following variations of tree data structures are widely used:

Balanced Binary Trees. These variations of the binary tree follow
insertion and deletion rules that maintain approximately the same
number of data elements in both subtrees of all tree nodes. Tree
balancing provides close to optimal random retrieval performance.

B-Trees and 2-3 Trees. By allowing more than one data element in
each tree node , multiple branching from each node occurs . For
structures with a large number of elements , this grouping is impor­
tant to decrease the number of levels in the tree . However, several
comparisons are now required at each node to identify the proper
subtree to search next (if necessary) . The simplest form of B-Tree
is a 2-3 Tree wherein each node contains two data elements and
three subtrees per node . Figure 8 . 1 -6 shows the example data from
Figure 8 . 1 -5 in a 2-3 tree structure .

TRIES

Tries (from re trieval) are used primarily for searches on character
strings . Each element in the string defines the path in the trie to follow.

Figure 8.1-6. A 2-3 Tree.

8.

T
fi

h
ti
u

�
e
il
p

s
o
a
o

8.1 Data Structures 387

Figure 8.1-7. A Trie.

The search continues until the data element required is uniquely identi­
fied . Figure 8. 1 -7 illustrates a trie structure .

GRAPHS

Graphs or network data structures do not restrict data to a linear or
hierarchical structure. Graphs are used to represent more complex rela­
tionships among data elements . The data elements in a graph may be
unordered or ordered .

Unordered graphs can be represented with data elements as nodes ,
with undirected arcs representing direct relationships between nodes . For
example, a route map with pickup and delivery nodes and arcs represent­
ing (two-way) routes between nodes is an unordered graph . The shortest
paths in the graph would determine a routing schedule .

If the data elements have a defined ordering or dependency relation­
ship , then a directed graph can be used . In a directed graph , each arc is
one-way , denoted by a directed arrow. An example of an ordered graph is
a project network, in which the nodes are events and the dependency
ordering among events is represented by the directed arcs .

Summary: Data structures provide a basis for storing and re­
trieving data in information systems . Linear data structures facili­
tate sequential retrieval by ordering data in l ists , queues , or
stacks . Nonlinear data structures provide faster retrieval capabil­
ities on ordered data or handle unordered data. Nonlinear data
structures include sets , trees, and graphs .

" i :

I i ll
I

I i

388

8.2 FILE SYSTEMS

Preview: File organizations provide methods for data retention
and access . Various file organizations have advantages and disad- ·
vantages based on capabilities for data storage , sequential and
random access , and insertion , deletion , and update . Inverted in­
dexes provide additional access paths for files .

Files are groupings of similar records . These records are maintained
together as a unit in a system over time. The long-term state of a system is
normally made up of a number of files. Files are stored in a file organiza­
tion. The primary distinction between various file organizations is the
ability to support sequential access of records versus random access of
records . Sequential processing of a file requires that each record be ac­
cessed in a defined logical order. This order is normally defined by the
value of the primary key in the file. All records are accessed and pro­
cessed in this order . Random processing requires the individual retrieval
of records given their primary keys . Certain file organizations are de­
signed to provide rapid sequential access of records ; while some organiza­
tions are designed for rapid random access of records. Other file organiza­
tions provide both sequential and random access capabil ities .

Businesses have varying requirements for file retention and access . In
addition to sequential and random access, requirements for record inser­
tion, modification , and deletion must be handled . The amount of storage
in memory and on secondary storage devices must also be considered.
This section describes advantages and disadvantages of popular file orga­
nizations .

Figure 8 . 2- 1 shows a state machine representation of a generic file
system. File systems provide access and retention functionality .

If F is declared as a file in the state , X is declared as a record variable,
and key(X) is the primary key of the record type , then the following
operations represent file processing possibilities in a file system �tate
machine:

Sequential Retrieval :

X : = getfirst(F)

X : = getnext(F)

Retrieve the first record of file F and as­
sign it to X

Based on the last record retrieved , re­
trieve the next record in primary key
order and assign it to X

8.2

R�

In

u

D

r
8.2 File Systems 389

File system

State :

, - - - - - Files -- - - - - ,
I I
I I
I I
I I
I

M achine I
I I

S , Access: I R
Sequential retrieval
Random retrieval

Retention :
Insertion
Update
Deletion

Figure 8.2-1. File System State Machine .

X : = getprior(F)

Random Retrieval :

Based on the last record retrieved , re­
trieve the prior record in primary key
order and assign it to X

X : = getrandom(key(X)) Given the primary key of record , retrieve
that record and assign it to X

Insertion :

insert(F , X)

Update:

replace(F, X)

Deletion:

delete(F , key (X))

Insert record X into file F

Locate the record with key(X) in file F
and replace it with record X

Delete record with key(X) from file F

These operations could be provided by a common service box struc­
ture , whose users would remain independent of the file organizations and
access methods employed . The user would not be independent , however,

I I [I I

/1
, I

)

390 8. Data Structures in Information Systems

of poor system performance resulting from inappropriate file design deci­
sions .

In what follows , the three principal file organizations, namely , sequen­
tial , direct, and indexed sequential, are described together with advan­
tages and disadvantages of each. The section concludes with a discussion
of access paths on attributes using inverted indexes.

8.2.1 Sequential File Organizations

Sequential files are widely used because of their simple structure and
easy use in applications . The file structure is based upon record access in
order of primary key value. For many file applications, this is the natural
and preferred method of accessing records . The characteristics of a se­
quential file organization vary depending upon its implementation as a
table or as a linked list.

TABLE IMPLEMENT A nON
In a table implementation , records are stored in order by physical

contiguity . A record physically follows the previous record in the file in
logical order. A sequential file stored in this manner can be placed on
all types of storage media, including tapes, disks , and random access
memory .

The table implementation of a sequential file has a simple storage
structure . Sequential record access is inherent in the structure . The major
disadvantages are poor random access capability and the cost of maintain­
ing physical record contiguity in the presence of insertions , deletions , and
updates .

1 . Storage. An advantage of the sequential file in a table implemen­
tation is that no storage space is wasted . No pointers , indexes, or free
space are used in the file structure .

2. Sequential Access. Table implementations of sequential file pro­
vide rapid sequential record access.

3 . Random Access. Sequential files have poor random record access
performance . Locating a particular record , given a primary key value,
requires a sequential search through the file until the key is matched. On
average , such a search requires accessing one half of the records in the
file.

4. Insertion. Inserting a new record requires first locating the posi­
tion in the file to place the record . This is similar to a single record random

8.2 FiI

acces�
in ord
difficu

5 .
doml�
Note 1
reCOf(
updatl
Varial
date t
varia!
imple

6.
recon
freed
efficit
delett
perio�
on th
colle(
operCl

L
111

in tht
This
logic;
recOl
recOl
recol

A
vide(
spac.
tions
of th
how«
letiol

�
poin'
tion

8.2 File Systems 39 1

access . Next , al l records after the new record must be physically moved
in order to open space for the new record to be inserted . This can be a
difficult and costly operation.

5 . Update. Once a record is accessed , either sequentially or ran­
domly, the values of the nonprimary key attributes may be updated.
Note that updating a primary key is considered to be a deletion of the old
record and an insertion of a new record . For fixed-length records, the
updated record can then be written back into the same storage location.
Variable-length records may require shifting other records to accommo­
date the larger or smaller record size. Since such shifting may be costly ,
variable-length records are rarely used in a sequential file using a table
implementation .

6 . Deletion. For deletion , first the record must be located . Next , the
records after the deleted record must be moved forward into the newly
freed space . Again, moving records can be a costly operation . A more
efficient technique that can be applied to all file organizations is to mark
deleted records. A marked record is treated as nonexistent in the file . At
periodic intervals a procedure known as garbage collection is performed
on the files to physically delete the marked records. Periodic garbage
collection is essential , since marked records degrade performance on all
operations.

LINKED-LIST IMPLEMENT A nON

In this form of sequential file implementation , records are maintained
in the logical order of their primary keys by means of pointers (or links) .
This implementation need not maintain physical contiguity of records in
logical order. Each record contains one or more pointer fields to provide
record ordering. A forward pointer links a record to the next logical
record in the file . A backward pointer l inks a record to the previous logical
record in the file .

A storage area dedicated to a linked-list sequential file would be di­
vided into two lists : a list of file records and a list of free space . The free­
space list provides access to areas of storage that are not used . The opera­
tions of insertion , update , and deletion are handled efficiently through use
of the free-space list . Only forward pointers are needed in a linked-list ;
however, backward pointers provide efficiencies during insertion and de­
letion of records .

Maintenance of a linked-list file structure places major importance on
pointer integrity . An incorrect pointer value can destroy the file organiza­
tion and render the data inaccessible to the user. The file system must

. i
i, I

I
I i

I '
I

392 8. Data Structures in Information

maintain pointers ; users are rarely given access to the pointer fields in
records. Linked-list implementations offer advantages in dealing
variable-length records and in file modification operations (insertion, ut¢
date , and deletion) .

.

1 . Storage . Pointer fields require additional space in each recort
For efficient op�ration, a certain amount of storage must be dedicated �
the free-space lIst.

.

2. Sequential Access. Records are accessed sequentially from on�
record to the next by means of the forward pointers. This may be les�
efficient than the table implementation if linked records reside in difIere�t

'

areas of storage .
.

3 . Random Access. As in the table implementation , random access
of a record would require a sequential search of the file . On average, one
half of the records would be accessed .

4. Insertion. First the position of the new record must be located . .
Storage from the free-space list would be used to hold the data of the new
record , which would be linked into the file by updating the forward
pointer of the previous record , the backward pointer of the next record,
and the pointers of the new record . Both fixed and variable-length records
can be handled in this manner.

5 . Update. First, the record must be accessed and the appropriat�
'

attribute values changed . The record is then written back into the same
location . If the size of the record is increased or decreased substantially,
adjustments must be made to the free-space list.

6. Deletion. A record to be deleted , once located, must be removed
from the file and the storage added to the free-space list. The forward
pointer of the previous record must be set to the address of the ne�t
record , and the backward pointer of the next record set to the address of '

the previous record .

8.2.2 Direct File Organizations

Many applications require random access of records based upon the
primary key value (e .g. , retrieval of a specific employee ' s information
given an employee number) . For an information system that handles a·

significant number of random access requests, a file structure that sup­
ports rapid , direct access to individual records is needed .

In this section , two methods of random access are discussed: directory
access and hashing. A third method of random access, indexing, is de­
scribed in the context of indexed sequential file s .

8.2 File Systems 393

DIRECTORY ACCESS

For directory access , records are physically stored in secondary stor­
age without regard to logical ordering. A directory is constructed in main
memory that records the primary key of each record and the address at
which it is stored . The directory is maintained in logical record order for
rapid retrieval of a required record based on primary key value.

This file organization is effective for smaller files . However, as the size
of the directory grows , large amounts of memory must be used and
searching the directory becomes costly.

1 . Storage. Efficient use is made of secondary storage. The direc­
tory, however, requires allocation of more costly main memory .

2 . Sequential Access. Sequential access of records in the directory is
fast since the directory is sorted on primary keys . The access of records
from secondary storage , though, is done one at a time from, perhaps,
different storage areas .

3 . Random Access. Random access is efficient since the search for a
required record is carried out in main memory . Fast searching techniques
(e .g . , binary search) can be used to locate the key . The address is then
used to directly access the record . Directory search time becomes signifi­
cant when the file size is large .

4. Insertion. Insertion is performed by adding the record in a free
location in secondary storage and placing the (key , address) values in the
directory in sorted order of the key .

5 . Update. The record is randomly accessed , updated , and returned
to its position in storage. The directory need not be modified.

6. Deletion. Deletion returns the record storage to free space and
the (key , address) entry is removed from the directory .

HASHING

The hashing access method achieves the goal of retrieving a single
record of a file in time independent of the size of the file . Note that this is
not the case in directory access . Searching the directory requires time
proportional to the number of entries (i .e . , number of records in the fi le) in
the directory .

Hashing achieves this file size independence by directly incorporating
the primary key value of a record into its physical storage address . Thus ,
if x represents the key of a record , then a function f(x) calculates the
address of the record ; f is cal led the hash function. The secondary storage
area in which the records are placed is called a hash table. A hash table , as

I ;

394 8. Data Structures in Information Syste

shown in Figure 8 . 2-2, contains b buckets, numbered 0 to b - 1 , with each
bucket capable of holding s records. The parameters b and s are chosen
based upon the size of storage available for the file and the optimal block­
ing size for the system . The hash function f is chosen to be easily comput­
able and to minimize collisions. A collision occurs when the hash function
maps two different keys , x * y , into the same bucket, f(x) = fey). The
goal is to find a hash function such that f(x) = i, 0 s i s b - 1 , with
probability l ib , for all values in the primary key domain. In this way, an
equal number of records would be placed in each bucket, and collisions
minimized.

A number of hash functions have been proposed and analyzed. The
technique that has proven to be the most useful is division hashing. In
division hashing, the primary key value is divided by the number of buck­
ets . The remainder of the division is taken as the bucket address in which
the record is stored . Thus , f(x) = x MOD b. Within the limits of available
storage, the parameter b must be chosen to enhance the goal of giving f(x)
a uniform distribution of values . Analysis results i ndicate that b should be
a prime number that is not close in value to a power of 2 .

The hashing file organization must have a technique for handling colli­
sions. Records can hash into the same bucket until the bucket becomes
full (i . e . , it contains s records) . Further records in the same bucket are
handled by one of two overflow techniques: open addressing or overflow
linking.

Hash

function

x =>

Primary Hash

key table

Buckets

o

2

3

b-- l

Figure 8.2-2. Hashing.

Records

8.2 1

I
the I
next
that

1
acce
An (
flow
bud

1
nee(
rity

I
men

area
begi
betv
at al

rec(
has I
seq1
to s

ces�
and
niql
are,

in �
teet
rec(
to �
sevi
for
allo
has

salT

a re

8.2 File Systems 395

In l inear open addressing, the overflow record would be placed into
the next bucket in the table . If that bucket is ful l , then it is placed in the
next bucket, and so on. Note that buckets are considered a cycle , such
that the next bucket after b - 1 is O.

The more popular overflow linking technique provides better record
access performance, but requires additional storage for overflow records.
An overflow area i s designated to hold file records. When a record over­
flows its hash bucket , it is placed in the overflow area and linked to the
bucket in the hash table .

The disadvantages of overflow l inking are the additional storage
needed for overflow and pointers , and the need to maintain pointer integ­
rity in the file structure .

Hashing is an excellent file organization for random access require­
ments.

1 . Storage. Hashing requires space for a hash table and an overflow
area if overflow linking is used. This storage must be allocated at the
beginning of file design. In general , the loading factor of a hash table runs
between 50% and 80% ful l . Thus, a significant amount of space is unused
at any time.

2 . Sequential Access. A hash file is not designed for sequential
record access . Sequential access requires each primary key , in turn, to be
hashed and the record retrieved individually. Another method to achieve
sequential access is to retrieve the entire hash table and overflow area and
to sort all records in memory . This is al so a costly operation.

3. Random Access. Hashing is extremely effective for random ac­
cess . Random record access requires only the primary key to be hashed
and the designated bucket to be retrieved. Based upon the overflow tech­
nique used , additional record accesses may be required in the overflow
area or in further buckets in the hash table .

4. Insertion. Insertion is performed by locating the hash table bucket
in which the new record is to be placed . If that bucket is ful l , the overflow
technique is used to place the record in storage . As more and more
records are inserted, the hash table may approach a loading factor of 80%
to 90%. At this point , the performance of the file organization will be
severely degraded because of the additional overflow accesses required
for an arbitrary record. In this situation , the file can be reorganized by
allocating more storage and altering the file parameters of b, s, and the
hash function f.

5 . Update. The record i s retrieved , updated, and replaced into the
same storage location.

6. Deletion. If open addressing is used for overflow, then deletion of
a record from a hash table requires marking the new free space as previ-

396 8. Data Structures in Information Systems

ously used . This is essential since retrieval of overflow records continues
until a nonfull bucket is found . The marked space can be reused by insert­
ing new records . For overflow linking, a deleted record in the overflow
area requires returning the space to the free list and modifying the chain
from the appropriate bucket . If a record is deleted from the hash table
bucket, then an overflow record (if any) can be moved into the bucket to
improve performance.

8.2.3 Indexed Sequential File Organizations

The indexed sequential file organization is widely used to provide both
efficient sequential and random access to records. Records in secondary
storage are organized in logical , primary key order. In addition , a multi­
level index is constructed based upon the primary key values. A random
access uses the index, usually placed in memory , to isolate the block of
storage in which the required record is located. Thus , both sequential
processing and individual record processing can be performed efficiently
at the expense of an index structure .

There are two methods of implementing an indexed sequential file
organization : Indexed Sequential Access Method (lSAM) and Virtual Se­
quential Access Method (VSAM) .

INDEXED SEQUENTIAL ACCESS METHOD (lSAM)

The ISAM architecture is presented in Figure 8 . 2-3 . The ISAM termi­
nology corresponds closely with the physical description of a disk. While
the terms are suggestive, however, there need not be a direct mapping
between the ISAM architecture and its physical representation on a disk.

The design of the ISAM file organization takes into account the size
and volatility of the file to be stored. In each cylinder, the storage area is
divided among data tracks, overflow tracks, and a small area that holds the
track index. For files that have a higher rate of insertions and deletions , a
proportionally larger overflow area is needed . The larger the file , the more
levels of indexes are needed to provide fast access to individual records .

Loading an ISAM file requires the records to be i n logical order of the
primary key. Records are placed on data tracks in order, completely
filling one track and then going to the next. The entire file is loaded across
as many cylinders as necessary . No data are placed into the overflow
tracks during loading. The index structure is built as the records are
loaded . The track index contains one entry for each data track in the
cylinder and an overflow pointer to the next free record position in over­
flow . Each data track entry has four fields :

-�

8.2

I
key
on t

1
the 1

1
the �

(
in I(
mov
by Ii

8.2 Fde Systems 397

High Key. A1I records with a primary key value greater than the high
key of the previous track and less than or equal to thi s high key are placed
on this track or in its overflow. This value does not change over time .

Track High Key. As records from this track are placed in overflow,
the high key value physically on the data track will decrease.

Track Pointer. This pointer defines the address of the beginning of
the data track. This value does not change over time.

Overflow Pointer. This pointer defines the address of the first record ,
in logical order, in overflow controlled by this data track. As records
move into overflow, each data track maintains its records in logical order
by linking.

Master index

Cylinder index Cyli nder index

Track index

Data tracks Data trac ks

Overnow tracKs Ove rnow tracks

Cylinder I Cylinder 2

Figure 8.2-3. ISAM File Organization.

Track index

D ata tracks

Ove rtlow tracks

Cylinder n

I '

398

The higher level i ndexes , Cylinder Index and Master Index, are built , .

by recording the high key and address for each index at the next lower
level .

ISAM organizations require periodic reorganizations . A reorganiza_
tion is triggered by running out of overflow space or by recognizing a .'

performance degradation caused by lengthy overflow chains . A reorgani­
zation is performed by copying the file in logical order onto another stor­
age device (e.g . , tape storage) . Then the ISAM organization is rede­
signed, the file is reloaded in logical order, and the new index structures
are built.

ISAM provides efficient sequential and random access at the cost of
index overhead and pointer chains through secondary storage .

Storage. In addition to data tracks, ISAM allocates space for over­
flow tracks and index structures . The index structures above the
track index are normally mai ntained in memory .

Sequential Access. A sequential pass of the file does not use the
high level index structure ; only the track indexes are us�d . Each ' :�:
data track is accessed in order. For each track, the tnck index ,�

entry is used . The Track Pointer points to the beginning of the data,
track, and these records are accessed . The Overflow Pointer points
to the beginning of the overflow chain for the track. This chain is
followed by accessing each record in turn until the chain is com- ' I

plete. Thus, sequential processing can be done efficiently. ISAM ., .
is slightly less efficient for sequential process ing than sequential
file organizations because of the use of track indexes and the need
to follow the overflow chains .

Random Access. A random record can be located with knowledge I

of its primary key by use of the index structures . Beginning at the
topmost index, the key val ue is compared with each index entry
until it is less than or equal to the High Key field . The next level '
index is accessed from the entry 's Pointer field . Finally, at the
track index, the appropriate data track is found by comparing the
record key to the High Key field ; then the record key is compared
to the Track High Key. If it is less than or equal to the Track High
Key , the record is found on the data track. If it is greater, the
overflow chain is fol lowed to find the record .

The use of indexes makes random ret rieval s in I SAM quite
efficient . Note that the number of index accesses does vary with
the size of the file . Therefore , the use of indexes does not provide a
direct access cost independent of file size as does a hashing file

, -
. . �

8.2

pe
lui
wi
8 . :

(

8.2 File Systems 399

organization. However, by placing the higher index levels in main
memory, the index access time can be small.

Insertion. Insertion is performed by locating the correct position of
the record through the indexes. The record is then placed on the
data track or the overflow chain as previously discussed . The
movement of data on the data track can be costly.

Update. The record to be updated is retrieved through the indexes ,
and updated and replaced in the same storage location.

Deletion. Marking is an efficient means of deletion. The disadvan­
tage is the growth of unused space throughout the file organization .
Reorganization performs the garbage collection of this unused
space.

VIRTUAL SEQUENTIAL ACCESS METHOD (VSAM)
VSAM is an indexed sequential file organization that does not require

periodic reorganization. The techniques of distributed free space and cel­
lular splitting allow the file and index structures to expand and contract
with the fi le . The VSAM architecture and terminology is given in Figure
8 .2-4.

Index set

Sequence set Sequence set

Control interv<lls Con trol i n tervals Control in terv<lls

Con trol <lrc<I I Control <lre<l 2 Con trol <lrc<I n

Figure 8.2-4. V SAM File Organization .

I ,
I

400 8. Data Structures in InCormation �YSll_'·.!

The design of VSAM includes the distribution of free space throUgh_
out the file organization. Based upon the volatility of the file , the initial
VSAM design would allocate a certain percentage of free control areas.
Within each control area, a percentage of control intervals would be
unused. Within each control interval , a percentage of storage would be
unused. Normally 10% to 40% of the space in control intervals and con­
trol areas would be initially allocated to free space .

Once the free space percentages are established, the file is loaded by
inserting records in logical order into control intervals and control areas.
VSAM indexes are built as the load is performed . The sequence set is the
lowest level of index. The sequence set for each control area is built with
an entry for each control interval . Each entry contains the High Key in
that control interval and a Pointer to the beginning of the interval. The
control interval entries are maintained in logical order of the High Key
values . The higher level indexes in the index set contain the High Keys of
and Pointers to the indexes at the next lower level .

The procedure for new record insertion uses cellular splitting. The
control interval for the new record is found by comparing the primary key
of the record to the high keys in the indexes . The new record is placed in
the control interval in its logical position . If sufficient space is free on the
interval , the records are moved to accommodate the new record in its
correct position. If insufficient space is available in the interval , then a
control interval split occurs.

In a control interval split, a free control interval is used . The records in
the full control interval , including the newly inserted record in its logical
position , are divided in two parts. One half is placed in the free interval
and one half remains in the old interval . The sequence set is updated to
include the new High Key and is sorted .

If a control interval split is necessary and no free intervals exist in the
control area, then a control area split is required . Using the same proce­
dure , a free control area is used . First , the control interval split is per­
formed as if a virtual free control interval were available. A virtual control
interval entry is placed in the sequence set and sorted . Then , based on the
ordering of control interval entries in the sequence set , one half of the
control intervals is moved into the new control area, and one half remains
in the old control area. In a control area split , a new entry is placed in the
index level above the sequence sets.

The concept of cellular splitting has a number of advantages for a file
organization . The file organization is essentially self-organizing. After
each split on control intervals and control areas, approximately 50% free
space is left in both the old and new intervals and areas . Note that control

8.2 File Systems 401

intervals within control areas and control areas do not need to be main­
tained in logical order. Indexes serve to maintain logical order among and
within control areas . The principles behind cellular splitting can also ap­
ply to cellular merging when adjacent intervals or areas are both less than
50% ful l .

VSAM provides the advantages of dynamic self-organization in addi­
tion to efficient sequential and random access.

Storage. The use of distributed free space requires a considerable
storage allocation in secondary storage. Space for high-level in­
dexes is also required in memory .

Sequential Access. Different from ISAM , the VSAM organization
requires using the index set to locate each control area in logical
order. Within each control area, the sequence set must be used to
access each control interval in logical order. Records in the inter­
vals are maintained in sequential order. Overal l , however, the cost
of sequential access is similar between ISAM and VSAM , since
VSAM does not require the access of overflow chains as does
ISAM.

Random Access. Given the primary key of a record , it can be re­
trieved by following through the i ndex levels to the control interval
containing the record . VSAM has more efficient random access
characteristics than ISAM . At most, only the records within a
control interval need to be searched, as overflow chains are
avoided .

Insertion. Insertion involves placing new records in logical order in
control intervals . Cellular splitting dynamically reorganizes the file
organization and provides distributed free space .

Update. The record is randomly accessed , updated , and replaced in
the file organization .

Deletion. A record to be deleted is located in a control interval. The
storage used by the record is denoted as free space in the interval
and reused as subsequent records are inserted in the interval . U n­
der conditions when adjacent control intervals have a high percent­
age of free space, a cellular merging procedure can be used to
create a free control interval . Likewise , control areas can be
merged to form a free control area.

I !

! I

402 8. Data Structures in Information Syste

8.2.4 Multiple Key Access

The retrieval of specified records from a file can be formally stated as a
query on the file . A query is made up of one or more attribute value
clauses connected by the boolean operators AND, OR, and NOT. Each
clause specifies a value or range of values that an attribute must contain.
The clause is evaluated on each file record to be TRUE or FALSE.

To illustrate, consider the following attribute value clauses for a soft­
ball team file ; TEAM (Player Number, Player Name , Position , Games
Played , Batting Average , Runs-Batted-In) :

C 1 : (Position = IF)

C2: (Batting Average � . 300)

C3 : (Games Played < 10)

Each of these clauses will be TRUE or FALSE for each of the records in
the file . For a record (Player Number = 17 , Player Name = Ellis , Position
= OF, Games Played = 8 , Batting Average = .350, Runs-Batted-In = 9),
clause C l is FALSE , clause C2 is TRUE , and clause C3 is TRUE.

A query forms clauses into a boolean formula that evaluates into a
TRUE or FALSE value for each file record. The boolean operators and
their respective truth tables for clauses P and Q are found in Table 8 .2- 1 .

A query on the softball team file could be

Q l : (Position = IF) AND (Batting Average � .300)
OR (Runs-Batted-In > 10) .

To evaluate this query on each record, the precedence of the boolean
operators must be determined . In most systems, the precedence order is
NOT, then AND , then OR. Parentheses may also be used to establish the
order of operator evaluation . The use of parentheses is highly recom- .
mended to clarify the semantic meaning of a query . With operators of
equal precedence , the order of operation is from left to right. Query Q 1 ,

Table 8.2-1

Boolean Truth Tables

P Q P AND Q P OR Q NOT P

T T T T F
T F F T F
F T F T T

F F F F T

. J
'.

8.2 File !

then, ca
average�
than 10

The
theses a

Q2 :

Quel
average
greater

Que]
based UI
of the fi
ary key
structUl
access
retrieve
implem
nizatiol

An
attribut
ally m�
quency
in retri
versus
tions, 1
for inv�

An
direct
storage
value .

En1
attribu
record
fore, s
and di
update

8.2 File Systems 403

then, can be stated , "Retrieve players who are infielders with batting
averages greater than or equal to .300 or players who have batted in more
than 10 runs . "

The semantic meaning of the query can be changed by adding paren­
theses as

Q2: (Position = IF) AND
((Batting Average � . 300) OR (Runs-Batted-In > 10» .

Query Q2 is "Retrieve players who are infielders and whose batting
averages are greater than or equal to . 300 or whose runs-batted-in are
greater than 1 0 . "

Queries can contain clauses involving any attribute i n a file . Clauses
based upon primary keys (e .g. , (Player Number � 30» will require the use
of the file organization structure to retrieve records. Clauses on second­
ary keys (e .g . , (Position = IF» , however, cannot make use of the file
structure since it is based solely on the primary key . The secondary key
access structures of inverted indexes provide an efficient capability to
retrieve records based upon secondary key values . This structure can be
implemented in conjunction with any of the previously described file orga­
nizations.

An essential part of file design is to decide which of the secondary
attributes should have an access path on its values. The decision is usu­
ally made based upon the characteristics of the attribute and the fre­
quency of its use in file queries . The decision trade-off is the improvement
in retrieval time for queries that use the secondary access structures
versus the cost of maintaining and updating the structures during inser­
tions , updates , and deletions on the file. This analysis will be discussed
for inverted indexes .

An inverted index uses a directory of record addresses to provide
direct access to all records having a specific attribute value. In main
storage, the directory is maintained with one entry for each attribute
value. Each entry is of the form:

I Attribute Value Record Addresses

Entries are variable length since the number of records having the
attribute value varies among values . Insertions, deletions , and updates of
records in the file will cause the directory entries to be updated. There­
fore, significant directory storage space is required for an inverted index
and directory maintenance is needed during insertions, deletions , and
updates .

r
I

404 8. Data Structures in Information Systeaa.

Position Inverted Index Directory

Value Record Addresses

I F A(I), A(23), A(32), A(34), A(49)

OF A(5) , A(7), A(27), A(45)

P A(1 6), A(4 1)

c A(38)

Batting Average Inverted Index Directory

Value Record Addresses

0.000 TO 0.250 A(l 6) , A(4 1)

0.25 1 TO 0.300 A(23) , A(34), A(49)

0.30 1 TO 0.350 A(I) , A(27), A(32)

0.3 5 1 TO 0.400 A(38)

0 .40 I TO 1 .000 A(5) , A(7) , A(45)

Figure 8.2-5. Inverted Index Example.

Figure 8 . 2-5 shows sample inverted indexes for Position and Batting
Average on the softball team file with 1 2 players . The notation A(l) is the
address of the record for player number 1 . The following queries demon­
strate the use of inverted indexes .

Query 1 (Position = OF) :

The Position directory is searched for the outfielder entry . The de­
sired records are directly retrieved via the entry address list.

Query 2 (Batting Average � . 325) :

The player records are retrieved for the final three entries in the
Batting Average directory . The records in the .301 to . 350 range are
checked for averages less than .325 .

Query 3 (Runs-Batted-In = 1 0) :

Since Runs-Batted-In i s not indexed , all records must be retrieved
and checked .

Query 4 (Position = OF) AND (Batting Average > .400) :

A principal advantage of inverted indexes is that addresses for all
records are in the directory . Address lists can be compared among
indexes on different attributes . To solve AND conditions, the record

r

8.2 File Systems 405

addresses that satisfy each clause can be intersected to find those
records that satisfy both clauses . Then these records are retrieved.
For this query, the required players would be found by:

(A(5), A(7) , A(27) , A(45» n (A(5) , A(7), A(45»
, ". ", ' "

Position = OF Batting Average > .400

= (A(5) , A(7) , A(45»

Query 5 (Position = P) OR (Batting Average � .300) :

The OR condition uses a union of record addresses satisfying each
clause to find the query result . Thus, the result of this query is :

(A(1 6), A(4 l) U (A(1 6) , A(23) , A(34) , A(4 l) , A(49»
� , ... �

Position = P Batting Average s; .300

= (A(1 6) , A(23) , A(34) , A(4 l) , A(49»

Query 6 (Position = IF) AND (Games Played < 10) :

Since Games Played i s not indexed, the infielder records would be
retrieved and checked for the Games Played value.

Query 7 (Batting Average > .350) OR (Runs-Batted-In � 1 0) :

All records must b e retrieved i n an O R operation i f one or both of the
attributes in the clauses are not indexed.

The above query optimization guidelines are also used in more complex
queries. Once the precedence order of the boolean operations is estab­
lished , then an overall strategy for the query can be formulated. For
example, given the inverted indexes on Position and Batting Average,
consider the following two queries .

Query 8 : (Position = IF) OR
« Games Played = 10) AND (Position = OF»

The AND operator is performed first . The Position index is used to
retrieve outfielders whose records are checked for Games Played
value. This result is then combined (unioned) with all infielder rec­
ords for the result .

Query 9: (Runs-Batted-In � 1 0) OR
« Position = P) AND (Batting Average > .250»

The AND operation can use the indexes on Position and Batting
Average. However, retrieving the records that satisfy the AND oper­
ation is wasted effort since executing the OR operation requires that
all player records be retrieved anyway. Thus, query optimization
would find that the best way to perform this query is to retrieve all
records and check the appropriate attribute values.

I

406 8. Data Structures in Information Systems

Inverted indexes provide efficient access capabilities at the expense of
directory storage in memory .

Storage. The directory can require considerable memory for large
files. No extra secondary storage space is needed in the file organi­
zation.

Record Access. Records are directly accessed via their pointers in
the directory. The ability to perform intersect (for AND) , union
(for OR) , and complement (for NOT) on address sets provides
efficient query optimization on files .

Record Retention. The insertion, deletion , and update of records
will require maintenance of the inverted index directory . This
expense may be large for volatile files . The inverted index struc­
ture is relatively independent of file reorganization . The only
changes occur in the directories since the file structure does not
include index information.

Summary: Files should be organized to best satisfy system re­
quirements for storage , access , and maintenance . Sequential files
are designed for storage efficiency and sequential access . Direct
files provide excellent random access . Indexed sequential files
allow efficient sequential and random access . Inverted indexes
provide additional access paths on files for query optimization.

8.3 DATABASE SYSTEMS

Preview: Database systems manage information about entities
and relationships in an application environment . Provisions for
data access, retention, and control are included in database
systems .

8.3.1 Database System Architecture

A database forms information from an application environment into an I

integrated representation. The information is described in terms of the
entities involved and the relationships among the entities . A database can
be defined in a three level database architecture as shown in Figure 8 .3- 1 .

8.3 Database Systems

Application I

Conceptual
Level

Internal
Level

Conceptual schema

Physical

database

description

Data storage

Figure 8.3-1. A Three Level Database System Architecture.

407

Application 4

The Internal Level describes the organization of data in secondary stor­
age . The file organizations and access paths (e .g. , indexes) are recorded in
the physical database description. The Conceptual Level represents the
database as an integrated schema, or picture , of the entities and relation­
ships. The schema provides a semantic understanding of the information
that is independent of the actual data storage details of the physical level .
This concept is called physical data independence. The database system
provides thi s independence by the automatic mapping from the concep­
tual schema into the physical database description . The External Level
supports subschema declarations for application programs. Subschemas
are specialized views of the schema designed for different applications. A
mapping that provides logical data independence is performed between

, I I

408 8. Data Structures in Information Syste_

the subschema and schema descriptions. This form of independence al­
lows a user to be independent of conceptual schema details that are irrele­
vant or unavailable to that user because of security and integrity consider­
ations .

A database system i s composed of

Hardware. A general purpose computer system or a specially
designed database machine is used for database processing and
storage .

Software. The Database Management System (DBMS) is a sophisti­
cated software system that manages and controls all database ac­
tivities .

Data. The information in the database is of two types. The data
values of the application environment are stored at the physical
level on secondary storage devices . Other information, or meta­
data, is needed to allow the management and control of the data­
base . For example , descriptions of each level in the database archi­
tecture are required for the mappings between the levels . This
meta-data is usually stored and maintained in a Data Dictionary!
Directory System.

Users. A database system is used by different groups that have
different user requirements. A superuser group includes a database
administrator and system operators . They are responsible for de­
scribing the data at all levels of the database system. They require
intimate access to the complete system. Application users need a
programming level of access to the database system. They need
facilities for declaring subschemas and accessing the database
through high-level programming languages such as COBOL and
PL/I . Newer capabilities for application generation, such as form
interfaces and report writers , are becoming more available . Casual
users make use of query language interfaces to the database . These
interfaces include easy-to-Iearn, easy-to-use nonprocedural lan­
guages , such as SQL and QBE, for manipulation of the database.

As a box structure , a database system can be viewed in a state ma­
chine diagram as shown in Figure 8 . 3-2. In addition to the access and
retention capabilities provided to users through host languages and query
languages , a major responsibility of database systems is to provide exten­
sive control facilities . The control processing includes automatic schema
mapping and integrity provisions. The database user may not be aware of
this control , but these control functions are what support the implementa-

8.3 Database Systems 409

Database system

State :

Data dictionary/

------1 r---- ----
directory

I Database I
I I I I I I
I I
I

Machine I
I I

S t Access and retention : I R
Query languages

Host languages

Control:

I ntegrity subsystem

Schema mapping I

Figure 8.3-2. Database System State Machine.

tion of the database concept . The database concept , as embodied in data­
base systems, provides substantially more capability and control over
data than do file systems . The most important objectives of a database
system are as fol lows .

DATA INTEGRATION

A database is viewed by the user as a centralized repository of all
organizational information. Access paths provide for the efficient integra­
tion of data from multiple files . Harmful redundancy of data can be elimi­
nated by only recording a unit of information once and allowing all appli­
cations access to the data. Boundaries that inhibit information flow, such
as departments or geographical areas , are removed in the database
concept.

DATA SHARING

Database systems of reasonable size provide multiple user capabili­
ties . Multiple retrieval applications are allowed. However, control must
be provided for update operations on the same data. Database systems
provide methods of mutual exclusion (e.g. , locking) so that data integrity
is not corrupted by losing valid updates or reading invalid data.

I , I
i I

: 1

I
, I

410 8. Data Structures in Information Syste ...

DATA INDEPENDENCE
The provisions of physical and logical data independence relieve the

user of knowing database system details . File organizations may be
changed, indexes may be added or deleted , and the conceptual schema
may even be modified without a user having to alter a functional applica­
tion program.

DAT A INTEGRITY
A database system controls and monitors the correctness of the data­

base . Data attributes are declared to have a domain, a data type , and a
range of values . Operations that attempt to insert or update values that
violate the domain constraints are detected and not allowed . When redun­
dant data is used in a database, consistency of values among the data
instances must be maintained . Methods are also provided to recover the
database to a correct state in the event of a system failure . Techniques,
such as logging, backups , and checkpointing , are used to minimize the
database damage and lost work when a failure occurs .

DATA SECURITY
The centralization of information presents a threat for the compromise

of all information during a breach of security . Therefore a database sys­
tem must have strong security measures. Such measures include
password authentication on subschemas , data encryption, and user ac­
cess lists that limit the capabilities (e.g . , read, write , insert , delete , up­
date) a user has on parts of the database. The use of subschemas allows
the user to only view the portion of the database in the subschema. These
software techniques are used with physical security measures (e.g. , lock­
ing doors and terminals , shielding transmission lines) to provide a com­
prehensive data security plan.

ApPLICATION GENERATION
The important concept of data independence supports a wide range of

application generation capabilities. Nonprocedural query languages have
become very popular because of their English-like syntax (e .g. , SQL) and
use of two-dimensional screen presentation (e .g. , QBE). A new genera­
tion of application generators , so-called Fourth Generation Languages
(4GL) , include sophisticated forms systems, report writers , and icon­
based office information systems. The goals of such database interfaces

J
8.3 Database Systems 41 1
are to improve productivity in developing appll' t' d all . ca Ions an to ow casual users to access the database with more powerful capabilities.

SYSTEM PERFORMANCE
The .extensive capabilities of a database system require considerable

processmg and storage resources . System performance is an important
measure of effectiveness in any organization . The database algorithms for
query processing, integrity control , concurrency control , recovery , and
security must be efficient. The selection and tuning of file organizations
and indexes is a critical component of performance. Database systems
normally maintain hardware and software monitors to measure system
performance.

SYSTEM ADMINISTRATION
Responsibility for the administration and control of a database system

l ies in the role of the Database Administrator (DBA). The DBA may be
one or more individuals depending upon the size of the organization. The
responsibilities of this role include day-to-day system operation, user
liaison and support , and system maintenance and control . The DBA must
ensure that the system delivers adequate levels of integrity , security ,
reliability , and performance to the users . Provisions for auditing the sys­
tem may also be required in many environments .

DATA MODELS
Database systems differ in the type of data model used to describe the

conceptual schema of the database. A database designer uses a schema to
represent the required semantics in an application environment. A data
model supports this conceptual modeling task, while leaving the physical
database details for the next step of database design . The three prevalent
data models are the relational, hierarchical, and network data models.

To illustrate these models , a simple application environment will be
considered . An organization has a number of departments, defined by
department number (D#) , name (DNAME) , a manager (MGR#), and
location (LaC). A department has employees , defined by employee num­
ber (E#), name (ENAME) , position (PaS) , and salary (SAL). An em­
ployee works in one department. Each department is responsible for an
equipment inventory. Each piece of equipment has attributes inventory
number (INV#) , description (DESC) , and cost (COST) . Employees work

4 1 2 8. Data Structures in Information Syste.

on projects , defined by project number (P#), project name (PNAME),
and work site (SITE) . An employee may work on many projects. The
hours (HRS) worked on each project are recorded . Each project is admin­
istered by one department, and a department can administer many
projects .

This description allows the designer to recognize the entities and rela- <
tionships in this environment . With each relationship the functionality of
the relationship must also be discovered . Three types of relationships
exist:

One-to-One Relationship. An instance of one entity is related to at
most one instance of the other entity and vice versa. For example,
an employee can manage at most one department and a department
is managed by at most one employee.

One-to-Many or Many-to-One Relationship. An instance of the one
entity is related to any number of instances of the many entity.
However, an instance of the many entity is related to at most one
instance of the one entity. For example , a department has many
employees but an employee is in at most one department .

Many-to-Many Relationships. An instance of an entity is related to
any number of instances of the other entity and vice versa. For
example, a project is worked on by many employees and an em­
ployee can work on many projects .

Table 8 . 3- 1 lists the entities and relationships found in the example
application environment . As we describe the manner in which the differ­
ent data models handle this example, note that each represents relation­
ships differently.

8.3.2 Relational Databases

In the relational data model the mathematical concept of a relation is
used to conceptually structure data . A relation is a two-dimensional ,
tablelike structure as shown in Figure 8 .3-3 . The number of columns of
the relation is known as the degree of the relation , and the number of rows
(called tuples) is known as the cardinality of the relation . The similarity of
a relation and a flat file can easily be observed where columns represent
attributes and tuples represent records in the file .

For relational data modeling, each entity forms a separate relation.
Relationships are represented by adding attributes to entity relations for
one-to-one and one-to-many relationships or building new relations for

8.3 Database Systems

Table 8.3-1

Entities and Relationships

ENTITIES

Name

Department
Employee
Equipment
Project

Attributes

D#, DNAME, MGR#, LOC
E#, ENAME, POS , SAL
INV# , DESC, COST
P#, PNAME, SITE

RELATIONSHIPS

Name

Employees manage departments
Employees work in departments
Equipment is inventoried in departments
Employees work on projects
Departments administer projects

Type

One-to-One
Many-to-One
Many-to-One
Many-to-Many
One-to-Many

413

Attributes

HRS

many-to-many relationships. By matching the values of attributes among
relations the relationships in the database are modeled . Relational data
modeling is illustrated for the example database.

Each entity , as shown in Table 8 .3- 1 , becomes a relation with appro­
priate attributes.

Relation Column I Column 2 Column n

Tuple I

Tu ple 2

Tuple 3

Tuple 4

Tuple 5

Tuple 6

Tuple m

Figure 8.3-3. A Relation.

! .

4 1 4 8 . Data Structures in Information Systems

DEPARTMENT (D# , DNAME , MGR# , LOC)
EMPLOYEE (E# , ENAME, POS, SAL)
EQUIPMENT (lNV#, DESC , COST)
PROJECT (P# , PNAME , SITE)

The one-to-one "manages" relationship is already represented in
DEPARTMENT by including the attribute MGR#. MGR# and E#
in EMPLOYEE are defined on the same domain allowing values to be
matched across these two attributes. Thus, a department can be related to
the employee who manages it, and vice versa.

One-to-many relationships are represented by placing a new attribute
in the "many" entity that uniquely identifies the instance of the "one"
entity to which it is related. For the "works-in" relationship between
EMPLOYEE and DEPARTMENT, and attribute D# , the unique primary
key of DEPARTMENT, would be added to EMPLOYEE.

EMPLOYEE (E# , ENAME, POS , SAL, D#)

This new attribute is termed a foreign key, since it relates to a primary key
in another relation . Now an employee is related to a unique department
and a department is related to a set of employees. In the same way the
"inventory" and "administers" relationships are represented as follows:

EQUIPMENT (lNV#, DESC, COST, D#)
PROJECT (P#, PNAME, SITE, D#)

A many-to-many relationship requires the construction of a new rela­
tion that contains an attribute for the primary key of both involved en­
tities. Data that is recorded based upon the relationship of specific
instances of each entity is stored as an attribute in this relation. For
example, the " works-on" relationship between EMPLOYEES and
PROJECTS generates a new relation with foreign keys E# and P#
and intersection data of the hours that a specific employee works on a
specific project .

WORKS-ON (E#, P#, HRS)

By integrating data across the three relations EMPLOYEE, WORKS­
ON , and PROJECT, information on what project an employee works on
and information on what employees work on a project can be obtained in
a symmetric manner. The complete relational schema for the example
database is shown in Figure 8 . 3-4.

The relational data model has many attractive features for conceptual
modeling. Its basis in mathematical theory provides several advantages .
A relational algebra and a relational calculus have been modified into
user-friendly query languages such as SQL, QUEL, and QBE. Relational

8.3

the<

opti
oth4
the
to I
con

8.3,

mo
dat
in
mo
to 1
wh
ph:
ree

pel!
of
on
me
re�

ge

tUI
rel
arl

ml

ar
tn
re
se

8.3 Database Systems

DEPARTMENT
E M PLOYEE
EQUIPMENT
PROJECT
WORKS-ON

(D#, DNAME, MGR# , LOC)
(E # , E N A M E , POS, SAL. D#)
(l N V # . DESC , COST. D#)
(P#. PN A M E . SITE. D#)
(E#. P# . HRS)

Figure 8.3-4. Relational Schema.

4 1 5

theory also is used to develop and analyze methods to achieve query
optimization, data integrity , concurrency control , and recovery , among
others . Finally the data model uses only one consistent data structure at
the conceptual level , the relation . The ability of this simple structure
to represent all forms of semantic meaning is an extremely powerful
concept.

8.3.3 Navigational Databases

The hierarchical and network data models are called navigational
models because they exhibit explicit access paths through the conceptual
data representation . Users , thus , navigate the database along these paths
in applications . Relationships among entities in the navigational data
models are represented by the existence of an access path from one entity
to the other. The explicit representation of relationships as access paths ,
while providing navigational guidance to application programmers and
physical database designers , hampers the goal of data independence by
requiring that physical data structures support the access paths .

The hierarchical data model represents all information in tree-like ,
parent-child structures . A parent entity instance is related to any number
of child entity instances. A child entity instance is related to one and only
one parent entity instance . Thus , the parent-child relationship is one-to­
many or one-to-one. Many-to-many relationships cannot be directly rep­
resented in a tree structure . A hierarchical database system , such as IMS,
gets around this problem by describing a database as a set of tree struc­
tures with logical access paths between trees to allow many-to-many
relationships . Each tree in the physical database can be clustered in hier­
archical sequence for access efficiency. Logical access paths are imple­
mented as pointers between records in secondary storage .

Figure 8. 3-5 shows the example database represented in the IMS hier­
archical data model . The example database can be represented by two
trees with two logical access paths between them . The many-to-many
relationship requires that the employee entity and the project entity be in
separate trees . The • 'works-on " information then is stored in TRE E 2 as a

4 1 6 8 . Data Structures in Information Systems

TREE I

DEPARTMENT
(0#, DNAM E. MGR#.
LOC)

4- - - - - - - - - _
Logical paths

Figure 8.3-5. Hierarchical Schema.

TREE 2

PROJ ECT
(P#. PNAME. SITE)

WORKS-ON
(E#. P#. HRS)

child of the appropriate project with a pointer from each "works-on"
record to the appropriate employee record in TREE 1 . Pointers in the
other direction allow an employee to be related to his or her appropriate
" works-on" records . Since the complete project information is stored in
TREE 2 there is no reason to duplicate this data in TREE 1 . However,
project records must appear in TREE 1 to show the one-to-many relation­
ship between departments and projects. This is done by placing skeleton
project records in TREE 1 that have pointers to the corresponding com­
plete project record in TREE 2 .

The network data model uses access paths between entities in a gen­
eral network structure . Each access path , called a set, links an owner
entity with a member entity in a one-to-many relationship . As in the
hierarchical data model , a many-to-many relationship cannot be directly
implemented . However, in a network this relationship can be easily repre­
sented with two access paths . A group of intersection records is formed
into an entity . This entity then serves as the member entity through ac­
cess paths from both owner entities .

The structures in the network data model can be observed in the
example database as modeled in Figure 8 .3-6 . Each set is implemented in
the physical database as follows . In the owner entity , each instance is the
head of a linked list that connects it to each of its member instances in
the member entity . Access efficiencies can be gained by physically clus­
tering an owner entity with one of the member entities to which it is
related .

We note that both of the navigational data models rely on some form
of pointer implementation in the physical database design . Careful main­
tenance and control of these pointers and the resulting access paths are
essential.

Exerdses

DEPT-EQUIP
SET

DEPARTMENT
(D#, DNAME,
MGR#, LOC)

EQUIPMENT
(INV#, DESC, COST)

DEPT-PRO]
SET

EMPLOYEE
(E#, ENAME, POS , SAL)

Figure 8.3-6. Network Schema.

PROJECT
(P#, PNAME, SITE)

WORKS-ON
(E#, P#, HRS)

Summary: Database systems implement the database concept .
Principal features of the database concept are data sharing, data
independence, and control over all information in an application
environment . The relational data model presents a conceptually
clean (e .g. , no pointers) method of viewing information . Naviga­
tional data models (i . e . , hierarchical and network) represent rela­
tionships as access paths in the conceptual schema.

EXERCISES

1. Construct record declarations for

(a) dates
(b) baseball teams
(c) coefficients of quadratic expressions

2. Given the declarations

q: queue of number
s : stack of number
x, y : number

4 17

and q = (3 6 1) , s (3 6) , x = 9, y 6 , describe the effects of each of
the following sequences

(a) do

od

back(q) : = x ;
back(q) : = y ;
y : = front(q)

r 418

(b) do

od

(c) do

back(q) : = x ;
y : = front(q) ;
back(q) : = y

top(s) : = x ;
top(s) : = y ;
x : = top(s) ;
y : = top(s)

od

(d) do
x : = back(q) ;
y : = top(s) ;
top(s) : = x ;
front(q) : = y

od

8. Data Structures in Information Systems

3. Specify the set operations of Union , Intersection, and Difference as
black boxes and state machines for the set data structure . Consider
the stimulus to be the appropriate operator, the response to be the
resulting set , and the state to include the sets participating in the
operation .

4. You are asked to develop an effective file organization for your local
softball team data. The file has the following attributes :

TEAM (PLAYER#, PNAME, POS , GAMES, B A , RBI)

You decide to compare the methods of sequential files , ISAM files,
and hash files. The structure of each file is as follows :

(i) Sequential File . Records are stored and maintained in a physi­
cally contiguous manner. There is sufficient space to store all
records .

(ii) ISAM File. There are four tracks per cylinder (1 track is over­
flow) and each track holds four fixed length records. The track
index is stored in the first record of the first track.

(iii) Hash File . There are 1 3 buckets in the hash table, each hold­
ing one record. There are additional record locations in an over­
flow area. U se the hash function f(x) = x mod 1 3 , and overflow
chaining for col lisions.

(a) Load the following example data into each file organization. Use
diagrams with addresses and pointers to best convey the file

; , ' .
;'. ;

r

Exercises 4 1 9

organization. Discuss briefly the advantages and disadvantages
of each organization in terms of storage space required.

SOFTBALL TEAM

PLAYER# PNAME POS GAMES BA RBI

5 Abel IF 8 .290 6
1 2 Baker OF 9 . 320 1 0
19 Jones C 9 .275 5
25 Mills IF 7 .3 10 I I

29 Smith P 5 . 1 50 2
32 Hill OF 9 .333 15
33 Mars IF 9 .295 1 0

3 8 North OF 8 .380 1 2
49 Lopes IF 9 .265 8
50 Toms P 4 . 1 90 2

(b) Perform the following operations on each file organization. Dis­
cuss briefly the advantages and disadvantages of each organiza­
tion in terms of ease of insertion and deletion.
• Insert record (23 , Giles , OF, 7, . 325 , 5).
• Insert record (3 , Rowe, IF, 8 , . 288 , 8) .
• Delete record with PLAYER# = 38.
• Insert record (6, Wicks, P, 3 , . 200, 4)

(c) Describe how each file organization supports i) sequential pro­
cessing of the entire file and ii) random retrieval of a single
record . Discuss the advantages and disadvantages of each orga­
nization on these operations .

S. Consider the file in problem 4 . as initially loaded (i .e . , before any
insertions or deletions) in the ISAM file organization.

(a) Construct inverted indexes on attributes position (POS) , games
played (GAMES) , and batting average (BA) .

(b) Given the indexes in (a) design the best access method (i .e . ,
minimize the number of records accessed) to find the PLAYER
records that satisfy the following queries :

(i) List infielders (IF) who have a batting average less than
. 300.

(ii) List players who have played in 9 games and who are bat­
ting over . 300 or have 10 or more RBI 's .

420

6.

8. Data Structures in Information Systems

Consider the EMPLOYEE file given below:

EMPLOYEE

ADDRESS E# NAME D# SKILL SAL (xK)

1 0 1 73 1 Smith 1 0 PL 32
102 745 Jones 10 AD 28
1 03 752 Wilson 20 PL 35
1 04 780 Bell 20 SE 40
1 05 802 Walker 1 0 AD 26
1 06 8 1 0 Hill 20 AD 24
1 07 820 Jones 20 PL 36
1 08 83 1 Thomas 20 FI 3 1
109 850 Heck 40 AD 22
1 10 853 Miller 20 AD 42

(a) Construct inverted indexes on attributes D# and SKILL.
(b) Given the index structures that you constructed in a. design the

best access method (i .e . , minimize the records accessed) to find
the EMPLOYEE records that satisfy the following queries:
• List all employees who work in department 10 or who earn

between 30K and 40K salary .
• List all plumbers (PL) in department 20.
• List all adjusters (AD) who do not work in department 20.

7. Briefly discuss the differences between database systems and file
systems.

8. Consider the following description of a database for a small college .

(i) The college is divided into departments defined by a department
name [DN AME] and the chairman [CHAIR] who is a faculty
member.

(ii) Faculty members are assigned to a department. Faculty are
identified by a faculty number [F#] , a name [FNAME] , and a
phone number [PH #] .

(iii) Students are defined by their student number [S#] , name -
[SNAME] , address [ADDR] , and grade point average [GPA] . A
student is assigned to a department as a major.

(iv) Courses are given within departments. A course has a course
number [C#] and a title [TITLE] .

(v) A class is defined as a course taught by a faculty member during
a specific semester [SEM] . Students attend classes and receive
a grade [GRADE] in the class.

Design the small college database in the following data models :

(a) Relational Data Model
(b) Hierarchical Data Model
(c) Network Data Model

Index

A

Abstract procedure statements, definition

of, 1 53

Accidental data, definition of, 120

Activities

management of, 278-280

in project networks, 275

in system development process, 28-29,

262

in system development spiral, 263

Activity

objective, 278

proposal, 279

schedule, 278

stages, 278-280

statement of work, 278

Activity evaluation, in management li­

brary, 298

Activity plans, in management library, 298

Add2 example

BDL black box of, 79

black box definition of, 42

initial conditions in , 43-44

state machine definition of, 97-98, 1 24

Alternation control structure

in BDL, 1 36

as black box structure, 68-7 1

as clear box construct, 8, 135

Analysis

of black box structures , 64-72

of box structures, 2 1 0-224

definition of, 209

in specification, 287

use of derivation in, 27

Analysis library

definition of, 209, 270

introduction to, 27

use of, 297-298

Applicant processing example

clear box construction for, 1 56- 1 58

clear box expansion for, 164- 1 65

clear box simplification for, 1 58- 164

natural procedure of, 152

sequence and alternation construction,

1 53- 1 56

structure abstraction of, 1 53- I 54

Arms length relationships, in organiza-
tions, 73

Arrays, definition of, 375

Attributes, in data representation, 376

Auditability

as category of integrity, 34

in transaction closure, 209

B

Bank terminal example

conversational access in, 336-337

sign on clear box, 338-339

user language formal grammar, 335

Black box

definition of, 38-39

expression in BDL, 77

finite form of, 44

initial conditions of, 43

input of, 5 1

introduction to, 7

order of, 44

output of, 5 I
state machine description of, 94

stimulus history in, 47-48

top level of, 207-208

transactions of, 5 1

transitions of, 4 1 , 5 I
Black box derivation, process of, 109- 1 I I
Black box replacement

42 1

in box structures, 239-243

introduction to, 24

Black box structures

analyzing behavior of, 64-73

definitions of, 6 1 -64

equivalent behavior of, 73

expansion of, 73-76

introduction to, 6 1

Box description graphics (BOG), introduc­

tion to, 1 4

422

Box description language (BDL)

abstract specification in, 80

alternation structures in, 85-86

black box invocation in, 82

black box structures in, 83-89

black box definition in, 77

clear box procedures in, 192-193

clear box structures in, 1 32

compound structures in, 87-89

concrete specification in, 8 1

concurrent structures i n , 87

function comments in, 167

introduction to, 14

iteration structures in , 86

run statement in, 160, 192, 198

sequence structures in, 83-85

state machine definition in, 1 23- 1 26

state machine invocation in, 1 26-1 27

Box expansion, definition of, 204

Box structures

analysis of, 209-224

of data items, 374

derivation of, 25

design of, 209, 224-23 1

expansion of, 25

hierarchy of, 204-206

introduction to, 7

of a queue, 380-381

services on, 373

of a stack, 382-383

as views of an information system, 7

Business procedures, as clear boxes, 144-

145

Business process description, in investiga­
tion, 28 1 -284

c

Capability

as category of integrity , 34

in transaction closure, 209

Case control structure

as clear box construct, 1 36

in BDL, 1 36

Catering business example, box structure

of, 243-245

Charge account example

analysis of, 2 1 5-224

BDL clear box of, 229-23 1

description of, 2 1 0-2 1 3

design of, 224-23 1

Clear box

abbreviated structures, 14 1

analyzing behavior of, 166- 1 88

control structures in, 1 33-143

definition of, 1 3 1

design principles for, 1 88- 1 89

Index

design using file syntax, 328-329

formal grammars in design of, 334-339

introduction to, 8

procedures in , 19 1 - 1 92

state design for, 236

Clear box expansion, process of, 142- 143

Common services, box structure of, 237-

239
Computer information systems (CIS) ,

categories of, 2

Complex responses, in systems, 42

Complex stimuli, in systems, 42

Concurrency control

box structure of, 243-245

locking methods in, 245

serializability in, 245

using Echo black box, 1 39

using Resolve black box, 1 39

Concurrent control structure

in BDL, 143

as black box structure, 72

as clear box construct, 10 , 1 39

Conditional assignment, definition of, 169

Consulting, during system use, 309

Context

use in analysis, 2 14

use in design, 225

Control flow jungle, existence of, 6

Correctness, as category of integrity, 34

Cost/benefit analysis

intangible benefits in, 290

in specification, 288-290

system costs in, 289

Customer service example, state machine

model of, 1 03

D

Data

access requirements in, 370

control requirements in, 370

retention requirements in, 370

Data design, top-down process of, 369

Data domain

Index

data types of, 37 1-372
range of, 37 1 -373

Data flow jungle, existence of, 7
Data independence

access aspect of, 368
logical aspect of, 368
physical aspect of, 368

Data item

box structure of, 373-375
definition of, 370-37 1

Data models

entities in, 4 1 2
hierarchical type of, 4 1 5-4 16
navigational type of, 4 15-4 1 7
network type of, 4 1 6
relational type of, 4 1 2-4 1 5
relationships in, 4 1 2

Data processing systems (DPS), a s cate­

gory of CIS, 2
Data structures

definition of, 368
linear type of, 378-383
nonlinear type of, 383-387

Database system

architecture of, 406-407
components of, 408
objectives of, 409-4 1 2

Decision support systems (DSS), as cate-

gory of CIS, 3
Dependency tree, use in analysis, 2 1 7
Derivation, of box structures , 25
Design

of box structures, 224-23 1
definition of, 209
intellectual control of, 232-233
in specification, 287-288
use of expansion in, 27

Design to cost, definition of, 225
Design verification, in evaluation library ,

299
Developers

in development organizations, 3 1 0-3 1 3
of information systems, 3
working with, 3 10-3 1 3

Development plan

definition of, 28, 262
in management library , 298
updates to, 262

Directory, type of direct file organization,

393
Documentation

definition of, 299-300
manager manual, 302-303
system manual, 300-30 1
user manual, 301 -302

E

423

Electronic parts store example, black box

behavior of, 57-59
Employee-project example

description of, 41 1 -4 1 3
i n hierarchical data model, 41 5-4 1 6
i n network data model, 416-4 1 7
in relational data model , 4 1 4-4 1 5

Entities, in data representation, 376
Evaluation, as development activity stage,

30, 279-280
Evaluation library

definition of, 27 1
use of, 299

Events , in project networks , 275
Expansion, of box structures, 25

F

Feasibility assessment

in evaluation library , 299
types of feasibility, 286-287

File organizations

direct, directories , 393
direct, hashing, 393-396
indexed sequential (ISAM), 396-399
indexed sequential (VSAM), 399-401
sequential, linked list , 39 1 -392
sequential, table , 390-39 1

File system

definition of, 368
random access in, 388-389
sequential access in , 388-389

Files

definition of, 377
keys in, 377-378

Finite black box, definition of, 44
Finite state machine, definition of, 99
Formal grammars

clear box design using, 334-339
definition of, 3 1 6
of New York Times Thesaurus, 352-

364
recursion in, 324-325

424

Function comments, in BOL, 167
Function equivalent, definition of, 1 69
Fundamental principles

black box behavior, 43
black box replacement, 24 1
black box systems, 73
clear box design, 236
clear box procedures , 1 89
common services, 239
completeness in state machine design,

1 23
concurrency control, 245
concurrency opportunities, 76
correctness of, syntax parts , 32 1
data design as part of system design, 369
data support for access, retention, and

control, 370
deferral of system detail, 206
designing clear box transitions, 1 89
ensuring design progress , 232
intellectual control of complexity, 233
localized behavior in black boxes, 75
objectives of information systems, 265
state machine description, 96
state machine design, 1 1 5
state migration, 235
top-down data design, 369
transaction analysis, 2 1 5
transaction closure, 105
transaction dependency tree, 2 1 7
user language requirements , 332
what and how of system behavior, 205
work scheduling, 273
work structuring, 272

G

Gantt charts , use in scheduling, 274-275
Garbage collection, in file organizations,

391
Graphs , definition of, 387

H

Hand calculator example
BDL black box description of, 8 1
BOL state machine description of, 1 26
black box behavior of, 46-49
clear box design of, 1 89- 1 99
registers i n , 1 19

Index

state machine design of, 1 1 8- 1 23
state machine recognizer for input, 325-

327
state machine transitions for, 1 2 1
syntax of inputs for, 3 1 6-324

Hashing
open addressing overflow technique,

394-395
overflow linking overflow technique,

394-395
type of direct file organization, 393-396
use of hash function, 393-394

Implementation
as system development activity, 29
in the system development process, 262
tasks in , 290-294

Improper use , in state machine design,
1 2 1- 123

Indexed sequential access method (ISAM) ,
type of indexed sequential file organi­
zation, 396-399

Informal definition, use in formal gram­
mars , 355

Information systems , black box behavior
of, 53-60

Information systems engineering, practices
in, 3 1 2-3 1 3

Inherent system rationality, definition of,
306-307

Initial conditions
of black box, 43-44
in hand calculator example, 48-49

Input
definition of, 5 1
i n transaction analysis , 2 1 8
i n transaction design , 226

Integrity
categories of, 33
in transaction closure, 208-209

Intellectual control, of complex designs,
232-233

Intentional data, definition of, 1 20
Interviews

box structure interpretation of, 282-283
in investigation, 28 1 -283

Inventory reorder example, black box
derivation of, 1 1 1 - 1 1 3

.�.

Index

Inverted index

definition of, 403

directories in, 403-404

Investigation

as system development activity, 29

in the system development process, 262

tasks in, 281 -287

Iteration control structure

in BOL, 1 38

as black box structure, 63-64

as clear box construct, 8, 1 37

state machine derivation of, 178- 1 80

Iteration theorem, statement of, 1 8 1 - 1 83

J

Job cost example

BOL black box description of, 8 1 -89

black box expansions of, 73-76

K

Keys

of data, 377

types of, 377-378

L

Life cycle, appearances in systems devel­

opment, 28

Linked-list, type of sequential file organi­

zation, 391 -392

Lists

definition of, 378-379

operations on , 378-379

Local data, in clear box structure, 1 33

Logic problems, in information systems, 4

Machine

definition of, 95

transition of, 96

M

Management information systems (MIS),

as category of CIS, 2

Management library

definition of, 270

use of, 298-299

Manager manual

content of, 302-303

goals of, 302

Managers

of information systems, 3

working with, 304-305

Master file update example

state machine of, 99- 1 0 1

u s e o f common services in, 237-239

Max2 example

BOL black box of, 80

in black box structures, 65

in state machine structure s , 1 25

Max24 example, order of, 45-46

Metasymbols

in New York Times Thesaurus, 356

in syntax definitions , 3 1 6

N

Natural procedures

described as clear boxes, 1 50- 166

proper form of, 1 50

New York Times information bank ex-

ample
box structure of, 246-260

input and output in, 25 1

state in, 253

425

top level on-line system design, 255-260

top level system design, 250-254

thesaurus design in, 249

transactions in, 249-250

New York Times Thesaurus example

conversational access to, 358-360

creation and maintenance of, 360-361

cross references in, 349-35 1

descriptors in, 343-349

formal grammar of, 352-364

format of, 35 1 -352

illustrations of, 361 -364

introduction to, 339-352

qualifying terms in, 349

scope notes in , 349

subheadings in, 350

o

Operability

as category of integrity, 34

in transaction closure, 208

426

Operations , in information systems, 294-
296

Operations analysis and design, in specifi­
cation, 288

Operations assurance, in system opera­
tions, 295-296

Operations education
in implementation, 293-294
use of tutorials , 294

Operators
in information systems, 3
working with, 305-3 1 0

Output
definition of, 5 1
in transaction analysis , 2 1 8
i n transaction design, 226

p

People
black box behavior of, 59-60
in systems development, 303-3 1 3

People problems, i n information systems ,
4

Performance, as development activity
stage, 30, 279

Personal communication, need for, 303
Personal computer example, black box

behavior of, 53-56
Planning, as development activity stage,

30, 278-279
Procedure analysis, definition of, 222-224
Procedure design, definition of, 227-23 1
Procedure-defined description, in expan-

sion, 26, 206
Procedure-free description, in derivation ,

25 , 206
Project networks

critical path of, 276
earliest event times in, 276
latest event time in, 276
for scheduling, 275-277
slack time in, 276

Prototyping, in investigation, 285-286

Q
Query, definition of, 402
Questionaires, in investigation, 283-284

Queues
box structure of, 380-38 1
definition of, 379
operations on, 379

R

Index

Random access, operations on files, 389
Records

definition of, 376
fixed-length form of, 39 1
variable-length form of, 39 1
variant form of, 376-377

Recursion, in formal grammars, 324-325
Referential transparency, definition of, 242
Relation

cardinality of, 4 1 2
definition of, 4 1 2-4 13
degree of, 4 1 2

Relationships, in data representation, 4 1 2
Reliability

as category of integrity , 34
in transaction closure, 209

Report file , syntax of, 100
Resource acquisition, in implementation,

29 1
Response

histories of, 42
from systems, 38

Running average example
black box of, I I
clear box of, 13
state machine of, 12
state machine design of, 1 15- 1 1 8

s

Sales forecast example
black box derivation of, 1 14
use of running average in, 14

Schedule C example
in clear box structures, 1 45- 1 5 1
state machine derivation in, 174- 178

Scheduling
definition of, 273
use of Gantt charts for, 274-275
use of project networks for, 275-277

Security
as category of integrity , 34
in transaction closure, 208

. �

J

Index

Segments , definition of, 198
Separation of concerns, through black

boxes , 60

Sequence control structure

in BDL, 1 34
as black box structure, 6 1 -62

as clear box construct, 8 , 1 35

Sequential access, operations on files,

388-389

Sets

definition of, 383-384

operations on, 383

Simultaneous assignments

definition of, 1 69

examples of, l 70- l 7 1

Sottball team example, use of inverted

indexes, 402-405

Software development, in implementation,
292

Software engineering, historical perspec­

tive on, 5-7
Software verification, in evaluation library,

299

Specification
as system development activity, 29

in system development process,

262
tasks in, 287-290

Spreadsheets, use in U .S . Navy supply

system example, 19

Stacks
box structure of, 382-383

definition of, 381 -382

operations on , 382

State
analysis of, 2 18-222

definition of, 95
design of, 226

State encapsulation, definition of, 237

State machine

in BDL, 1 23- 1 27
black box derivation from, 109- 1 14

definition of, 95

design of, 1 14- 1 17

introduction to , 8

state migration in, 106- 109

transitions of, 96-98
verification of, 1 1 7-1 1 8

State migration

in box structures , 234-236

427

introduction to , 25

in state machines, 1 06-1 09

State-defined description, in expansion, 26,

206

State-free description , in derivation, 25,

206

Statement function
definition of, 1 67
examples of, 1 68- 1 73

Stimulus, to systems , 38
Stimulus history

apparent form of, 49
in black box behavior, 4 1 , 47
real form of, 49

syntax of, 3 1 5
Stimulus history-response table, i n black

box behavior, 4 1

StimUlus-response table , i n black box
behavior, 40

Structured programming, foundations and

benefits of, 6

Structure theorem

relation to clear box structures, 1 0
statement of, 6

Syntactic constant, definition of, 356

Syntactic formula, definition of, 355

Syntactic variable, definition of, 356

Syntax

of business forms , 330-33 1

definition of, 3 1 5-3 1 6

of expressions, 32 1-324

of files , 328-329

of hand calculator example, 3 1 6-324

literals in, 32 1

parse tables in, 3 1 8-3 19

parse trees in, 3 18

parts of, 32 1

rules of, 3 1 6

of user languages , 33 1 -339

System conversion

definition of, 294-295

direct conversion, 295
parallel conversion, 294

phased conversion, 295

System development examples

phased concurrent development, 267
phased sequential development, 266

terminated development, 266

System development process

black box of, 32-33 , 267

428

clear box of, 27 1 -272
definition of, 262
development plans in, 262
introduction to, 29
state machine of, 270-27 1

System development spiral
definition of, 263
introduction to, 3 1
use of concurrent activities, 264

System evolution, during system opera­
tion, 296

System integration , in implementation,
292

System manual
content of, 300-301
goals of, 300

System objectives, definition of, 285
System obsolescence, during system oper­

ation, 296
System opportunities

document of, 285
in investigation, 284-285

Systems of people and computers, capabil­
ities of, 309-3 1 0

System structures, a s replacement for data
flow jungle, 7

System testing
in evaluation library, 299
in implementation, 292-293
types of system tests , 292-293

T

Table, type of sequential file organization,
390-391

Text editor example, black box behavior
of, 54-56

Top-down corollary, statement of, 6
Transaction analysis , definition of, 2 14-2 1 8
Transaction closure, definition of, 1 05,

207-209
Transaction design, definition of, 226
Transaction file, in master file example,

1 00
Transactions, definition of, 5 1

Transitions
of black box , 4 1
of state machine, 96

Trees
definition of, 384
types of, 386

Tries, definition of, 386-387

u

User languages, syntax of, 3 3 1 -339
User manual

content of, 30 1 -302
development of, 307-308
goals of, 30 1

Users
in database systems, 408
in information systems , 3
working with, 305-3 1 0

Index

User training, during system development,
308-309

U.S . Navy supply system example
black box derivation of, 1 8-20
clear box formulation of, 16
demand variability analysis of, 2 1 -23
k months of supply policy, 1 5
spreadsheet analysis of, 1 9
state machine derivation of, 17- 1 8

v

Verification
clear box iteration example, 184- 1 88
of iteration expansions, 1 83

Verification theorem, statement of, 1 82-
1 84

Virtual sequential access method (VSAM),
type of indexed sequential file organi­
zation, 399-401

use of cellular splitting, 400

w

Work structuring, in system development,
27 1 -272

	Principles of Information Systems Analysis and Design
	Recommended Citation

