University of Tennessee, Knoxville

na LINIVERSITY o

TENNESSEE TRACE: Tennessee Research and Creative
FHOREE Exchange
The Harlan D. Mills Collection Science Alliance

1986

Principles of Information Systems Analysis and Design

Harlan D. Mills
Richard C. Linger

Alan R. Hevner

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

b Part of the Software Engineering Commons

Recommended Citation

Mills, Harlan D.; Linger, Richard C.; and Hevner, Alan R,, "Principles of Information Systems Analysis and
Design" (1986). The Harlan D. Mills Collection.

https://trace.tennessee.edu/utk_harlan/10

This Book is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

PRINCIPLES OF INFORMATION SYSTEMS
ANALYSIS AND DESIGN

PRINCIPLES OF
INFORMATION SYSTEMS
ANALYSIS AND DESIGN

Harlan D. Mills

IBM CORPORATION
BETHESDA, MARYLAND
AND
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

Richard C. Linger

IBM CORPORATION
BETHESDA, MARYLAND

Alan R. Hevner

COLLEGE OF BUSINESS AND MANAGEMENT
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

ACADEMIC PRESS, INC.

Harcourt Brace Jovanovich, Publishers
San Diego New York Berkeley Boston
London Sydney Tokyo Toronto

COPYRIGHT © 1986 BY ACADEMIC PRESS. INC

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS. ELECTRONIC
OR MECHANICAL. INCLUDING PHOTOCOPY. RECORDING. OR

ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT

PERMISSION IN WRITING FROM THE PUBLISHER

ACADEMIC PRESS, INC.
San Diego, California 92101

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging in Publication Data

Mills, Harlan D., Date
Principles of information systems analysis and design.

Includes index.

1. Management information systems. 2. System
analysis. 3. System design. I. Linger, Richard C.,
Date . Il. Hevner, Alan R, Ill. Title.
T58.6.M537 1986 658.4°038 86-10954
ISBN 0—12-497545—3 (alk. paper)

PRINTED IN THE UNITED STATES OF AMERICA
%9 90 91 92 93 987 65432

et n s e

To
Lolly
Marie and Dick
Susan

Contents

Preface xiil
Acknewledgments xvii

Chapter 1 Information Systems Development

1.1 Business Information Systems 1
1.1.1 Business Systems and Information Systems |
1.1.2 Categories of Information Systems 2
1.1.3 People in Information Systems 3
1.1.4 Problems of Logic and People in Information Systems 4

1.2 Box Structures of Information Systems S
1.2.1 Historical Perspective S
1.2.2 System Structures 7
1.2.3 Box Structures in Business Operations 1
1.2.4 Box Structure Descriptions 14

1.3 The U.S. Navy Supply System Reorder Policy 15
1.3.1 The Clear Box Formulation 16
1.3.2 The State Machine Derivation 17
1.3.3 The Black Box Derivation 18
1.3.4 Analysis of the Reorder Policy 21

1.4 Managing Information Systems Development 23
1.4.1 Box Structure Hierarchies 23
1.4.2 Box Structure Derivation and Expansion 25
1.4.3 The System Development Process 28
1.4.4 Information Systems Integrity 33
Exercises 35

Chapter 2 The Black Box Behavior of Information Systems

2.1 Black Box Behavior 38

2.1.1 Discovering Black Box Behavior 40
vii

viii

2.1.2 Stimulus Histories
2.1.3 Black Box Initial Conditions
2.1.4 Finite Black Boxes
2.1.5 Black Boxes in Business Operations
2.2 The Black Box Behavicr of a Hand Calculator
2.2.1 Finding a Sum with a Hand Calculator
2.2.2 Stimulus History in Black Box Behavior
2.2.3 The Clear Key Makes History Irrelevant
2.3 Black Box Transitions and Transactions
2.3.1 Known and New Information
2.3.2 Transitions and Transactions
2.4 Any Information System Exhibits Black Box Behavior
2.4.1 A Personal Computer Exhibits Black Box Behavior
2.4.2 A Business Information System Exhibits Black Box Behavior
2.4.3 People Exhibit Black Box Behavior
2.5 Black Box Structures
2.5.1 Black Box Primitive Structures
2.5.2 Analysis of Black Box Structures
2.5.3 Black Box Structures in Business Operations
2.6 Introduction to Box Description Language
2.6.1 The Idea of Box Description Language
2.6.2 Black Boxes in BDL
2.6.3 Black Box Structures in BDL
Exercises

Chapter 3 The State Machine Behavior of Information
Systems

3.1 State Machine Behavior
3.1.1 Describing Black Boxes as State Machines
3.1.2 State Machine Transitions
3.1.3 Finite State Machines
3.1.4 The Master File Update State Machine
3.1.5 A Business Enterprise Exhibits State Machine Behavior
3.2 Strategic Uses of State Machines
3.2.1 A State Machine Model of Customer Service
3.2.2 Transaction Closure in State Machines
3.2.3 State Migration between Nested State Machines
3.3 Analysis of Black Box Behavior from State Machines
3.3.1 The Black Box Behavior of State Machines
3.3.2 Black Box Derivation of an Inventory Reorder State Machine
3.3.3 Sales Forecast State Machines
3.4 Design of State Machines for Black Box Behavior
3.4.1 State Machine Design for Black Box Behavior
3.4.2 State Machine Design for the Hand Calculator Black Box
3.4.3 State Machine Design to Deal with Improper Use
3.5 State Machines in Box Description Language
Exercises

Contents

41
43
44
45
46
46
47
48
50
50
51
s3
53
56
59
60
61
64
73
77
77
77
83
90

94
94
96

101
102
103
105
106
109
109
111
114
114
114
118
121
123
127

Contents
Chapter 4 The Clear Box Behavior of Information Systems

4.1 Clear Box Behavior
4.1.1 Clear Box Syntax
4.1.2 Clear Box Structures
4.1.3 Clear Box Expansion
4.2 Strategic Uses of Clear Boxes
4.2.1 Clear Box Business Procedures
4.2.2 The Clear Box of Schedule C
4.2.3 Deriving Clear Boxes from Natural Procedures
4.3 Analysis of State Machine Behavior from Clear Boxes
4.3.1 The Behavior of BDL Procedure Statements
4.3.2 The State Machine Behavior of Clear Boxes
4.3.3 State Machine Derivation from the Schedule C Clear Box
4.3.4 The Behavior of Iteration Clear Boxes
4.4 Design of Clear Boxes for State Machine Behavior
4.4.1 Clear Box Design Principles
4.4.2 A Clear Box Design for the Hand Calculator
4.43 Segment Structured Clear Boxes
Exercises

Chapter 5 The Box Structure of Information Systems

5.1 The Concept of Box Structures
5.1.1 Box Structure Hierarchies
5.1.2 Box Structures in Business Operations
5.1.3 The Top Level Black Box and Transaction Closure
5.1.4 Box Structure Analysis and Design
5.2 Analysis of Box Structures
5.2.1 Deriving Box Structures from Business Operations
5.2.2 Transaction Analysis
5.2.3 State Analysis
5.2.4 Procedure Analysis
5.3 Designof Box Structures
5.3.1 Designing Box Structures for Business Operations
5.3.2 Transaction Design
5.3.3 State Design
5.3.4 Procedure Design
5.4 Box Structure Design Principles
5.4.1 Intellectual Control of Complex Designs
5.4.2 State Migration in Box Structures
5.4.3 Common Services in Box Structures
5.4.4 Black Box Replacement in Box Structures
5.4.5 Concurrency Control in Box Structures
5.5 The Box Structure of The New York Times Information Bank
5.5.1 The New York Times Project
5.5.2 Getting Started on The New York Times Project
5.5.3 A Top Level System Design Decision

X

131
132
133
143
143
144
145
150
166
166
173
174
178
188
188
189
191
200

204
204
206
207
209
210
210
214
218
222
224
225
226
226
227
232
232
234
237
239
243
246
246
247
249

5.5.4 A Top Level Box Structure for the Entire System
5.5.5 A Top Level Box Structure for the On-Line System
Exercises

Chapter 6 Information Systems Management

6.1 Managing Information Systems Development
6.1.1 The System Development Process
6.1.2 System Development Illustrations
6.1.3 The Box Structure of System Development
6.1.4 Work Structuring and Scheduling
6.1.5 Scheduling Mechanics

6.2 System Development Activities
6.2.1 Activity Management
6.2.2 Investigation Activities
6.2.3 Specification Activities
6.2.4 Implementation Activities
6.2.5 Information System Operations

6.3 System Development Libraries
6.3.1 The Analysis and Design Libraries
6.3.2 The Management Library
6.3.3 The Evaluation Library
6.3.4 System Documentation

6.4 Working with People in Systems Development
6.4.1 Working with Managers
6.4.2 Working with Users and Operators
6.4.3 Working with Developers
E xercises

Chapter 7 Syntax Structures in Information Systems

7.1 Syntax Structures
7.1.1 The Syntax of Hand Calculator Inputs
7.1.2 Syntax Parse Tables
7.1.3 Parse Table Structures
7.1.4 Syntax Expressions
7.1.5 State Machine Syntax Checkers
7.1.6 Syntax Methods in Clear Box Design
7.2 Syntax Structures in Business Operations
7.2.1 The Syntax of Files, Reports, and Business Forms
7.2.2 The Syntax of User Languages
7.2.3 Grammars in Clear Box Design
7.3 The New York Times Thesaurus and Its Grammar
7.3.1 The New York Times Thesaurus of Descriptors
7.3.2 A Formal Grammar for The New York Times Thesaurus of
Descriptors
Exercises

Contents

250
255
260

262
262
266
267
271
274
277
278
281
287
290
294
297
297
298
299
299
303
304
305
310
313

315
316
318
320
321
325
327
330
330
331
334
339
341

352
364

Contents
Chapter 8 Data Structures in Information Systems

8.1 Data Structures
8.1.1 Data Analysis and Design
8.1.2 Data Representation
8.1.3 Linear Data Structures
8.1.4 Nonlinear Data Structures

8.2 File Systems
8.2.1 Sequential File Organizations
8.2.2 Direct File Organizations
8.2.3 Indexed Sequential File Organizations
8.2.4 Multiple Key Access

8.3 Database Systems
8.3.1 Database System Architecture
8.3.2 Relational Databases
8.3.3 Navigational Databases
Exercises

Index

xi

367
367
370
378
383
388
390
392
396
402
406
406
412
415
417

421

Preface

Information systems development should be practiced as a systematic
business engineering discipline. This business engineering discipline can
be based on principles of computer science and software engineering that
apply directly to business problems. The primary benefit of this is effec-
tive management control over information systems development and evo-
lution.

This book presents a systematic approach to the teaching of informa-
tion systems development. It is based on successful principles of software
engineering and systems engineering, which have been distilled to elimi-
nate extraneous complexities and simplified to bare essentials for infor-
mation systems development. This approach permits a more explicit
study of business processes and information systems than do approaches
that dwell more on details of computer systems than on the business
processes supported by information systems.

The book presents a box structure methodology for information sys-
tems development. This methodology uses just three system structures
that can be nested over and over in a hierarchical structure. These system
structures provide a way to analyze and design information systems and
their subsystems to increasing levels of detail without getting lost in that
detail.

The three system structures are called black box, state machine, and
clear box structures. They give three views of the same information sys-
tem or any of its subsystems. The black box gives the external, or user’s,
view. This view consists of stimuli to the system or subsystem and the
responses for all stimulus histories. The state machine gives an intermedi-
ate view that defines data stored from stimulus to stimulus; that is, it
opens up the system to the extent of making its state data visible. The
clear box, as the name suggests, opens up the system one more step in an
internal, or designer’s, view. This view describes how the data are pro-

xiii

Xiv Preface

cessed and will refer to smaller black boxes in that description. At this
point, the hierarchical top-down description can be repeated for each of
these other black boxes, identifying next their state machine descriptions
and then their clear box descriptions, which refer to even smaller black
boxes, and so on.

The power of these simple system structures lies in their universality.
Any information system or subsystem, no matter what subject it deals
with, can be described as a black box and a corresponding state machine,
which can be expanded into a clear box and new black boxes. Thus, these
three structures prescribe a methodology for information systems analy-
sis and design that can be studied and applied in any situation for better
management control and visibility.

We teach principles rather than appearances in information systems
development. The major innovation is the rigor with which logical princi-
ples are derived from mathematical foundations and business processes
and then taught for information systems development. We can teach a
trick dog the appearances of arithmetic but not its principles. When we
teach children the principles of arithmetic, we give them an entirely differ-
ent power than what we give trick dogs. Children, grown to adults, can
apply these principles over and over, almost without thought, while solv-
ing the real problems they meet. The principles of box structures can also
be applied, over and over, in solving the real problems in information
systems development.

Box structure principles of information systems are introduced in a
spiral approach. Chapter 1 introduces the methodology and briefly illus-
trates many of the principles. Chapters 2, 3, and 4 develop the principles
of black boxes, state machines, and clear boxes, respectively. Chapter 5
integrates these principles into a box structure methodology. Chapter 6
discusses the use of this methodology in managing information systems
development and operations. Chapters 7 and 8 develop syntax and data
structuring methods of direct use in box structured information systems
development. As indicated, Chapters 1-6 represent a course in box struc-
ture methodology for information systems development and management.
Chapters 7 and 8 can be used selectively to provide deeper techniques for
uses of syntax and data in information systems.

The intended audience of Principles of Information Systems Analysis
and Design includes university students in information systems, practic-
ing professionals, and managers. Students will learn a systematic method-
ology for information system analysis and design that can be applied
throughout their careers. With the logical principles understood, they will
be free to focus on the hardest part of information systems development,
namely, the application of these principles in business environments,

Preface Xv

working with people. Practicing professionals will recognize in box struc-
tures a means to express their work products in a more systematic and
understandable form. Box structures permit information system profes-
sionals to communicate with greater precision and completeness. Man-
agers will find box structures a sound basis for defining work, measuring
progress, and communicating with users. In every case, the result will be
better manageability and responsiveness of information systems to the
needs of the business enterprise.

Acknowledgments

The writing of this book was triggered, in part, by a concern of
Mr. Vincent N. Cook, President of the Federal Systems Division of IBM,
for the technical vitality of systems engineers in complex information
systems development at IBM. This concern led to a concerted effort to
simplify and codify central concepts of systems and software engineering
that have proven successful in the development of complex real-time
control systems, such as are reflected in the curriculum of the IBM Soft-
ware Engineering Institute.

It is a pleasure to acknowledge the encouragement of Dr. Rudolph
Lamone, Dean of the College of Business and Management at the Univer-
sity of Maryland, who saw the need to teach the principles of systems
engineering in the Information Systems curriculum.

Authors Mills and Linger appreciate the support of IBM for the re-
search and writing of this material. Author Hevner appreciates the sup-
port of the University of Maryland. The authors also appreciate the word
processing support of IBM, particularly the help of Evelyn Brown in
managing and Susan Gary in coordinating this support.

Finally, the authors acknowledge the patience and suggestions of the
several hundred students at the University of Maryland who have used
previous versions of this material in their coursework and of the many
colleagues at IBM who have repeatedly demonstrated the value of box
structures, particularly state machines, in the development of large, com-
plex real-time control systems.

Xvii

Chapter 1 Information Systems
Development

1.1 BUSINESS INFORMATION SYSTEMS

Preview: Businesses need information systems to accomplish
organizational objectives. These systems can be categorized as
Data Processing Systems, Management Information Systems, or
Decision Support Systems. The people involved with information
systems development are managers, users, operators, and the
developers themselves. The development and use of these sys-
tems require solutions for logic problems and for people prob-
lems.

1.1.1 Business Systems and Information Systems

Information processing is a common ingredient in all businesses.
Whatever else they do, make automobiles, sell real estate, run hotels, or
whatever, they all process information.

Each business is a system and has many subsystems which are sys-
tems in their own right, for example, marketing, manufacturing, financial,
and personnel systems. All of these systems are run on the basis of

4 1. Information Systems Development

to manage their own efforts to create the required and usable information
system for the managers, users, and operators.

1.1.4 Problems of Logic and People in Information Systems

The deepest and most persistent problems of information systems are
people problems. The people problems that the developers face are diffi-
cult at best. But they are made even more difficult or impossible by poorly
addressed logic problems in information systems development.

A close analogy can be seen in the operation of a bank. Banks have
people problems, in maintaining customer satisfaction and employee mo-
tivation. They also have logic problems, such as ensuring the accuracy
and integrity of accounting procedures. For example, frequent errors in
customer statements, caused by inaccurate accounting procedures, a
logic problem, could lead to unnecessary people problems in business
operations—irate customers, frustrated employees, and overworked ex-
ecutives trying to hold operations together and patch up customer rela-
tions. A wrong diagnosis to treat the symptoms rather than the source of
the problem by adding more customer relations personnel would only
aggravate and perpetuate the underlying logic problem. Indeed, it is not
farfetched to imagine customer relations personnel secretly resenting sub-
sequent efforts to eliminate customer statement errors as a threat to their
job security. The lesson here is to get the logic problem of accounting
under control. The people problems in banking are hard enough without
adding unnecessary ones.

There is a career lesson in this banking illustration, as well. If you
want to be a banker, learn about accounting in the university—get it out
of the way. Accounting principles and procedures learned in the univer-
sity will be valid throughout your career. But you will have to work at
being a banker—at its people problems—all your life. You'll never learn
enough about the people problems, but if you don’t learn enough about
the logic of accounting early you'll be dealing with unnecessary people
problems your whole career.

This simple career lesson in banking applies to information systems
analysis and design as well. Even though the people problems are the
deepest and most persistent, you should learn how to get the logic prob-
lems of information system analysis and design out of the way in your
university education. The logic problems are finite and bounded. And the
logical principles and procedures of information systems will be valid for
your whole career, even though you will be learning more about people all
your life.

1.2 Box Structures of Information Systems 5

The objective of this book is to teach you principles of information
systems analysis and design that will serve you throughout your career in
dealing with logic problems. Only after that do we discuss the people
problems, but these discussions only give you a start on the problems you
will be learning to solve all your life.

Summary: Any business has many business subsystems, includ-
ing an information system. Information systems are based on
business needs, not computer possibilities. Information systems
are used for day to day data processing, for management informa-
tion, and for decision support. Although people problems are the
most difficult, it is important to get logic problems out of the way
to avoid unnecessary people problems.

1.2 BOX STRUCTURES OF INFORMATION SYSTEMS

Preview: Box structure principles provide a disciplined means
to analyze and design business information systems under good
management control. The box structures of black box, state ma-
chine, and clear box provide different views of any information
system or subsystem. Box structures provide a rigorous form for
describing business knowledge. Box structure descriptions can be
given in graphic or text forms.

1.2.1 Historical Perspective

The introduction of computer technology into business operations
brings the potential for more management control in administrative and
analytical phases of business. But the rapid, almost pellmell, introduction
of computer technology of the past thirty years has sometimes brought a
net loss of real management control because of a necessary dependence
on personnel more versed in computers than in business operations. On
top of that, the explosive growth of the computer industry has created
problems of its own in meeting schedule, cost, and reliability targets in
information systems development.

Thirty years ago there was no such thing as the data processing sys-
tems, management information systems, and decision support systems
that dot the information systems landscape today. Even so, it is sobering

6 1. Information Systems Development

to reflect how short thirty years is in terms of intellectual development.
When civil engineering was thirty years old, the right triangle was yet to
be invented; when accounting was thirty years old, double entry princi-
ples were unknown. To be sure, many more people are working on infor-
mation systems than were working in civil engineering or accounting in
their first thirty years. But fundamental ideas and deep simplicities take
time. Even with all the excitement and progress, there is still a lot to
discover—possibly the right triangle for information systems.

The structured revolution that changed trial and error computer pro-
gramming to software engineering was triggered by a new concept called
structured programming. Structured programming cleared a control flow
jungle that had grown unchecked in dealing with more and more complex
software problems for twenty years. It replaced that control flow jungle
with the astonishing assertion that software of any complexity whatso-
ever could be designed with just three basic control structures: sequence
(begin—-end), alternation (if-then—else), and iteration (while-do), which
could be nested over and over in a hierarchical structure (the structure of .
structured programming). The benefits of structured programming to the
management of large projects are immediate. The work can be structured
and progress measured in top-down development in a direct way. Prop- ;
erly done, when a top-down development is 90% done, there is only 10% |
left to do (in contrast to projects which at 90% done often required an- |
other 90% to complete). :

Structured programming has a mathematical foundation that can be 3
used for management advantage. First, a so-called Structure Theorem °
establishes that any flow chart program can be designed as a structured
program. Therefore, a management standard of structured programming *
is technically sound. Second, a Top-Down Corollary to the Structure '
Theorem establishes that a structured program can be created in a top- °
down sequence such that each line can be verified correct by reference to
previous lines (and not to lines yet to be created). This means that soft- -
ware can be created correctly as it is developed, without a final and °
unpredictable stage of trying to make it all work together. '

The management benefits begin with standard practices for software: -
development that are based on this mathematical foundation. Software:
personnel can be uniformly educated to these practices, with improved: -
management visibility into the development process and improved com-
munication between programmers in both the design and inspection:
phases. As a result, large-scale software projects previously risky or im*
possible can be completed consistently within schedules and budgets. For
example, top-down structured programming has been used extensively in' -

1.2 Box structures of Information Systems 7

the U.S. space shuttle program; it is safe to say that the shuttle could not
be flying (orbiting) today without structured programming.

1.2.2 System Structures

Business information systems development is more than software de-
velopment. The operations of business involve all kinds of data, stored
and processed in all kinds of ways. A simple encyclopedic description of
such data and their uses leads to a data flow jungle that is even more
tangled and arcane than the control flow jungle. Once again mathematics
and engineering have come to the rescue by replacing the data flow jungle
with just three basic system structures that can be nested overand overin
a hierarchical system structure. These system structures are called black
box, state machine, and clear box.

As with structured programming, there is a mathematical foundation
for these system structures that can be used for management advantage.
They provide a disciplined way to specify, design, and implement infor-
mation systems and their subsystems to every level of detail. The data
flow becomes a by-product of the methodology and now takes its struc-
ture from the system, not as an end in itself.

The management benefits of these box structures begin with standard
practices of information systems analysis and design that are based on
this mathematical foundation. Information systems personnel can be uni-
formly educated to these practices with improved management visibility
into the systems development process and improved communication be-
tween analysts and designers. As a result, it will be possible to develop
information systems more reliably and more responsively than ever
before.

The three basic system structures are called box structures. They pro-
vide three views of the same information system or any of its subsystems.

The black box gives an external view of a system or subsystem that
accepts stimuli, and for each stimulus (S), it produces a response (R)
before accepting the next stimulus. A diagram of a black box is shown in
Figure 1.2-1. The system of the diagram could be a calculator, a computer
system, or even a manual work procedure that accepts stimuli from the
environment and produces responses one by one. As the name implies, a
black box description of a system omits all details of internal structure
and operations and deals solely with the behavior that is visible to its user
in terms of stimuli and responses. Any black box response is uniquely
determined by the system’s stimulus history.

8 1. Information Systems Development

System

S——J —» R

Figure 1.2-1. A Black Box Diagram.

The state machine gives an intermediate system view that defines an
internal system state, namely the data stored from stimulus to stimulus. It
will be established mathematically that every system described by a black
box has a state machine description. A state machine diagram is shown in
Figure 1.2-2.

The state machine part called Machine is a black box that accepts as
its stimulus both the external stimulus and the internal state and produces
as a response both the external response and a new internal state which
replaces the old state. The role of the state machine is to open up the
black box description of a system one step by making its data visible.

The clear box, as the name suggests, opens up the state machine
description of a system one more step in an internal view that describes
the system processing of the stimulus and state (stored data). The pro-
cessing is described in terms of the three control constructs of structured
programming, namely, sequence, alternation, and iteration, and a concur-
rent structure as shown in Figure 1.2-3. Machine parts M1, M2 are black
boxes; each accepts as its stimulus both a stimulus and state and produces
as its response both a response and a new state. For example, in the
sequence structure, the clear box stimulus is the stimulus to black box
M1, whose response becomes the stimulus to M2, whose response is the
response of the clear box. Machine part C is a conditional switch that
accepts a stimulus and a state, and then transmits that stimulus to one of

System

Machine

.- ———— =
I

w

v
J

=

Figure 1.2-2. A State Machine Diagram.

1.2 Box Structures of Information Systems

System

State

fo-———

:

Ml

<
to

o —

g — — — — — —

Sequence structure

System

i State

Ml

e e = e]

P NI PRS-

R il L esp——

Alternation structure

System

I
i
i
1
I
d

State

1
1
T
i

Ml

- o e
- — — — — ——

- — — — | ———

3
] A4

[teration structure

Figure 1.2-3. Clear Box Diagrams (Mi = Machines).

10 1. Information Systems Development
System
Fo-—- State - ———
| |
[1
[|
1 !
1 1
1 MlI |
| |
1 I
] |
| |
i |
1 1
s Yy . ' R
M2

Concurrent structure

Figure 1.2-3. (Continued)

two other parts but does not affect the state. For example, in the alterna-
tion structure, conditional switch C transmits the stimulus to either M1 or
M2, while in the iteration structure, C transmits the stimulus to either M 1
or the next part of the next higher structure. The concurrent structure is
an advanced form whose behavior is discussed later.

It is a consequence of the Structure Theorem of structured program-
ming that every system described by a state machine has a clear box
description.

At this point, a hierarchical, top-down description can be repeated for
each of the embedded black boxes at the next lower level of description.
Each black box is described by a state machine, then by a clear box
containing even smaller black boxes, and so on.

These views represent an increasing order of internal system detail.
The black box describes the system from a user view. The user view is
foremost since the objective of business systems is to provide user ser-
vices. The state machine adds the consideration of system data (State)
and its manipulation (Machine). The clear box completes the description
by adding internal processing details and recognizing embedded subsys-
tems. Describing each subsystem in these increasingly detailed views
provides an internal consistency that is essential in developing and man-

e

1.2 Box Structures of Information Systems 11

aging systems. The data structure must be consistent with the user view,
and the processing structure must be consistent with the data structure.
System management is helped by the thorough documentation of the
mappings between the system views.

1.2.3 Box Structures in Business Operations

Although the concept of a box structured hierarchical system is easy
to see, its use in actual business systems requires business knowledge as
well as computer knowledge. In fact, the box structures provide a form in
which to describe business knowledge in a standard way. The principal
value of a black box is that any business information system or subsystem
will behave as a black box whether consciously described as such or not.
In turn, any black box can be described as a state machine (actually in
many ways), and any state machine can be described as a clear box (also
in many ways), possibly using other black boxes. In practice, information
systems or subsystems often have their own natural descriptions that can
be reformulated as box structures.

In illustration, a 12-month running average defines a simple, low-level
black box that might be used in sales forecasting. A stimulus of last
month’s sales of an item would produce a response of the past year’'s
average monthly sales of the item; each month a new sales amount pro-
duces a new average of the last 12 months. Figure 1.2-4 shows the running
average black box diagram. Using the stimulus history, the black box
transition formula for the response R(i) at the end of month i is

Si) +SG—-1)+ - +Sa-11)
12

where for month i, S(i) is this month’s sales, S(i — 1) is last month’s sales,
and so on. Although the stimulus history of the black box may contain

R(i) =

Running average

) Average
Sales for monthly sales
last month for past year
S—>] — R

R(I=(S()+S(i~1)+---+SGi-11n/12

Figure 1.2-4. Running Average Black Box.

12 1. Information Systems Development

years of sales values, only sales from the most recent 12 months are
required in the transition formula.

A possible state machine of this black box would identify that the
previous 12 monthly sales are to be stored in the state. This state replaces
the stimulus history of the black box. The machine, upon receiving the
month’s sales, would update the state by discarding the oldest sales value
and storing the newly input sales value, then calculate the new running
average response from state data rather than from the stimulus history.
Figure 1.2-S shows the state machine diagram.

Note a distinction between S1, S2, . . ., which are data recorded in
the state and S(i), S(i — 1) which are the monthly sales. The values are the
same, but unless S(i), S(i — 1), . . .arerecorded as S1, S2, . . ., they will
be lost to the state machine which does not access the stimulus history.

A clear box will describe how the state updating process and the
averaging process are performed. One possible design is shown in Figure
1.2-6. The Update state and Find average machines are simple enough to
include their processing details directly in a sequence structure. In this
case, no further black box description is needed because neither Update
state nor Find average introduces any new state data.

In this case the assignment operator := in Figure 1.2-6 means to assign
the current value of the expression on the right side to the variable on the
left side. For example,

S12 := S11

means to assign the value of S11 at month i-1 to the variable S12 at month
i, so that for month i

S123) = SI1G — 1),

since the current value of S11 was not determined now but in the previous
month i-1. When more than one assignment appears in a box, all such

Running average
State
S1, S2, ..., Sll, S12
! 3
Sales for | : Average

last menth : \ monthly sales
| Machine l for past year
!]

S y . 1 = R

Figure 1.2-5. Running Average State Machine.

a8

| 1.2 Box Structures of Information Systems 13
[
|
Running average
State
o= SI, S2. ..., St S12 .- ——- - .
i I I
1 l A .
ale I verage
Sfdol:s : Update state : E Find average ; monthly
i
last ! 5=)l | sales for
month : SS]L‘. - 2:(])]| ! ! past year
S Y, : I B R SRR) b R
S2:=8] ' 12
S1:=8§

Figure 1.2-6. Running Average Clear Box.

assignments are simultaneous. In the second step, Find average, the
values of S1, S2,. . ., S12 have already been updated for month i, so the
assignment

_SIL+ -+ SI2

R: B

means that

S13) + -+ + S12(i)

R(@) = 2

The assignment notation allows the subscripts that identify the months to
be suppressed for simpler expressions.

Note that many other state machine and clear box designs could have
been chosen to implement the running average black box. For example,
the state data could be stored as monthly sales values divided by 12.
Then, the running average would be found by adding all the state data.

A running average black box is a simple sales forecaster. However, if
sales are seasonal or have definite trends, a more suitable black box is
required. Such a forecaster will differ in details, but can still be described
in a black box/state machine/clear box structure.

If a human forecaster is known to be successful, it will be useful to
incorporate that wisdom into a forecasting black box for an entire inven-
tory, e.g., for 10,000 items, which are beyond the ability of the human
forecaster to deal with one by one. In this case, the human forecaster may
not be able to describe a black box behavior directly. Instead, the descrip-
tion may come out as a mental process of recollections and calculations
that involve both state machine and clear box behavior. The box structure
discipline gives a systematic basis for interviewing such a human fore-

14 1. Information Systems Development

caster and converting that human wisdom into systematic form. The
result will be a forecasting black box/state machine/clear box structure
that can be analyzed as part of a larger system, e.g., an inventory control
system with its own box structure.

1.2.4 Box Structure Descriptions

Box structure descriptions will be so useful that we will express them
in two forms, called Box Description Language (BDL) and Box Descrip-
tion Graphics (BDG). We have already seen Box Description Graphics for
black boxes, state machines, and clear boxes in the previous definitions
and examples. BDG consists of standard diagrams in which descriptive
text can be embedded, such as the assignment statements and state vari-
ables in the Running average clear box. In more complex descriptions,
the text may be more general to describe data or operations in English
phrases. For example, Figure 1.2-7 illustrates a clear box that might de-
scribe a human forecaster’s approach for a seasonal product in which
each English phrase is expanded separately, as in Table 1.2-1.

Box Description Graphics will be especially useful in information sys-
tems analysis for recording current manual procedures and verifying their
correctness with managers, users, and operators. The descriptions are
readily understood by others outside the development group and help in
precise communication about current or desired procedures.

The other form of expression, Box Description Language (BDL), is in
text to serve as a formal description language. BDL describes no more

Scasonal product forecast

T Sales data "__"‘WI

1

! 1 | S !

I ' | 1o {

| ! o

| | | | \ |

I | : { | |

| Update : | Compute | } Compute :

S | sules L v, scasonal L Y. | monthly 1 >R
data adjustment forecast

Figure 1.2-7. Seasonal Product Forecast Clear Box.

13 The U.S. Navy Supply System Reorder Policy 15

Table 1.2-1

Seasonal Product Forecast Term Definitions

Term Definition
Sales Data Past five years of monthly sales
Update Sales Data Delete oldest sales and add newest sales to state
Compute Seasonal Adjustment Divide total of sales this month for the past five
years by total sales for the past five years
Compute Monthly Forecast Multiply seasonal adjustment by total sales for past
year

nor less than BDG, but is more concise and rigorous. Box Description
Language is most useful in design for recording the evolving box structure
of an information system. The various box structures and control struc-
tures are defined by use of keywords in a typographic format. BDL will be
developed in the next three chapters.

Summary: Any information system or subsystem can be de-
scribed in terms of a black box, a state machine, and a clear box.
The translations between these descriptions provide insights into
the system structure.

1.3 THE U.S. NAVY SUPPLY SYSTEM REORDER POLICY

Preview: A real life case study of the U.S. Navy Supply System
Reorder Policy demonstrates the use of box structures for infor-
mation systems analysis.

The creation of clear box descriptions out of existing business pro-
cesses and their conversions into state machine and black box descrip-
tions can be useful directly. For example, in the middle fifties, an analysis
ofthe U. S. Navy multiechelon supply system led to a radical revision and
improvement in inventory control. The basis for this analysis was the
conversion of a clear box description of inventory reordering into a state
machine, then into a black box description. At the time, the current Navy
Supply System reorder policy, called the ‘‘k months of supply” policy,

16 1. Information Systems Development

seemed sensible enough. It called for maintaining some factor k times an
average month’s demand of an item either in inventory or on order. The
factor k was chosen by the inventory manager to reflect the length of the
pipeline, the variability of demand, and the consequences of outage for
the item. This k varied from item to item, say from anchors to socks, but
once chosen, the rest of the calculation of each month’s reorder was
simple and automatic. The average demand was calculated by a 12-month
running average, so the effects of an unusual month would seem to be
averaged out. For example, if the manufacturing cycle for making a cer-
tain size anchor is 9 months, a variation of 3 month’s demand could be
expected and the consequences of outage indicate another 3 month’s
safety factor, then k would be 15 (9 + 3 + 3) months.

1.3.1 The Clear Box Formulation

The clear box of the reorder policy can be formulated directly from the
business process. The clear box description of the k months of supply
policy for a particular item has as state data the value of k for the item, the
current inventory (including items on order), and the past 12 months of
demands. With the stimulus of last month’s demand, the new state is
obtained by discarding the oldest demand, retaining the current one, and
subtracting it from last month’s inventory to get current inventory. Next,
the running average of the past 12 months is computed, multiplied by k,
and then the current inventory is subtracted to get the reorder value.
Finally, inventory (which includes items on order) is increased by adding
the reorder just calculated. This clear box is depicted next in Figure 1.3-1,

Reorder policy (clear box)
_ State

5‘ ““““““ k.1.DI,D2,...,D11,DI12 - —.'

|] T |

| | Update state : ! I :

i . [b Increase | |

i 8]112:8%6 i E Compute reorder |: =| inventory i

i i =

L oo LY, [Ri=kDI+D2+ | |y | _ il

D > D2:=DI + DI2)/12-1 = =R R
DI :=D
[:=1-D

Figure 1.3-1. Reorder Policy Clear Box.

1.3 The U.S. Navy Supply System Reorder Policy 17

using variables k, I (for invento_ry), D1, D2,. . ., Dll, and DI2 for Fhe
ast 12 months of demands; D is the current demand and R the resulting
reorder. o .

This clear box description represents an actual business process de-
veloped on a pragmatic basis that seems to make a lot of sense. Once
formulated, however, it can be converted rigorously into a state machine
and then into a black box for further understanding and insight.

1.3.2 The State Machine Derivation

The state machine of the reorder policy can be determined by replac-
ing the clear box sequence structure with a sequence-free state machine
transition. The transition can be determined by finding single expressions
forthe response R and each state variable I, D1, D2,. . . , D12 in terms
of the stimulus D and the last values of the state variables. On examina-
tion of the clear box, it can be seen that the new values of D1, D2, . . . ,
D12 are given by the Update state part because that is the only place they
are updated. The expression for I can be determined from the two parts in
which I is updated. In this case, D is subtracted from the last state value
of I in Update state, then R isadded to this intermediate value of I — D, so
the new state value for I is

[I:=1-D+R.

However, R must be worked out before I is known in terms of the
stimulus and old state. In this case, R is updated only in Compute reorder

in an expression that contains D1, D2, . . . , D12, and 1. But all these
variables were just updated in Update state, which replaces D1 by D, D2
by D1,. .. ,DI2 by D11, and I by I — D. Therefore, the expression

R:=k(Dl1 + D2+ --- + DI12)/12 = 1
in the intermediate state data becomes
R:=k(D + D1 + -+ DI11)/12 —= (I — D)
in terms of the old state data. Now, I can be finally worked out, from
I:=1-D+R
to
[:=I-D+kD+ DIl +--+DIl)I2-(1-D)
and the last term (I — D) cancels the first two terms, so I is simply

I[:=kD + DI + --- + DI1)/12

18 1. Information Systems Development

Reorder policy (state machine)

State
=" k,I,DI1,D2,..., DI1.DI2 -~~~

Machine

R:=k(D+DIl+---+DI11)/12-1+D
[=k(D+DIl+---+DI1)/12

S

DI12:=DIlI
DI1:=DI1Q
D > R
D2 :=DlI
DI =D

Figure 1.3-2. Réorder Policy State Machine.

At first glance, it may seem surprising that I is just k times the average of
the last 12 months of demands, but on second thought, that is just what
the k months of supply reorder policy should produce. The state machine
so derived above is depicted in Figure 1.3-2.

In this case, there are no real surprises in the Reorder policy state
machine. But, it has been distilled down one step by removing the sequen-
tial dependencies of the clear box. Note, however, that the so-called
‘‘material balance’’ equation—that new inventory should equal old inven-
tory plus additions minus deletions—is automatically accounted for in
this state machine; it is not a required inspiration of an analyst to remem-
ber or account for it. One simplifying action can be observed. The state
variable D12 and the assignment D12 := D11 can be eliminated since D12
is not used in the assignments for R or I.

1.3.3 The Black Box Derivation

With sequential dependencies of the clear box eliminated to get the
state machine, the next step is to eliminate the state dependencies of the
state machine to get the black box. In doing so, it will be necessary to
introduce previous demands into the single expression for the response.
Let D(m) be the demand for month m, the state data for the state machine
that accepts stimulus D(m) be Ilm — 1), DI(m — 1), D2(m - 1), . . . ,
D1ll(m — 1), and the response to this stimulus be R(m). Now, the new
state that will be updated from stimulus D(m) will be I(m), D1(m), D2(m),
. . . , DI1(m) for next month. Then, an inspection of the Reorder policy
state machine of Figure 1.3-2 shows that the response and new state
values will be as follows:

1.3 The U.S. Navy Supply System Reorder Policy 19

R(m) = k(D(m) + DI(m — 1) + --- + D1l(m — D)2 — I(m — 1)
+ D(m)

I(m) = k(D(m) + DI(m — 1) + -- + DII(m — 1))/12
DIl1(m) = D10(m — 1)

pP2(m) = DI(m — 1)
DI(m) = D(m)

Note that these are equations (=), rather than assignments (:=); the
month indexes make this possible and correct. In particular, these equa-
tions hold for m replaced throughout any equations by another expression
for m. For example, these values could be computed on a spreadsheet,
with headings for the stimulus, response and state data and initial values
for the state; then a column of stimuli values could produce the rest of the
values of the spreadsheet automatically. More concretely, given initial
values for the state

k, 1(0), D1(0), D2(0), . . ., D11(0)

in the first row of the spreadsheet and an input column of values under D,
referred to as D(1), D(2), . . ., D(m); the spreadsheet process will com-
pute first R(1), then I(1), DI(1), D2(1), . . ., and DI11(1). The second
demand, D(2), would produce the second response, R(2), and the state for
the second iteration; and so on. Of course, all of this processing is done so
rapidly that the step-by-step calculation may not be noticed by the spread-
sheet user. But, while some intuition could be obtained by trying various
columns of stimuli, we will see, in this particular case, that a symbolic
mathematical analysis of these equations will lead to a major revelation.

In order to carry out the elimination of state data from this set of
equations, it turns out to be convenient first to express D1, . . ., D1l in
terms of demands D. Since

D1(m) = D(m)
is an equation, replace m by m — 1 on both sides to get
DI(m — 1) = D(m — 1)
Next,
D2(m — 1) = DI(m - 2) = D(m — 2)
D3(m — 1) = D2(m — 2) = DI(m — 3) = D(m — 3)

DIll(m — 1) = D(m — 11)

20 1. Information Systems Development

as can be expected with a little thought. Now, both R(m) and I(m) can be
expressed in terms of demands D instead of state data D1, . . ., D11, but !
it will be convenient, also, to substitute the expression for I(m — 1)
(obtained by replacing m by m — 1 throughout the equation for I(m)) in

R(m) to obtain ;

R(m) = k(D(m) + D(m — 1) + --- + D(m — 11))/12
—k(Dm = 1)+ D(m — 2) + -+ + D(m — 12))/12
+ D(m)

Now, the surprise is that 11 terms of the first line of the right side are
exactly the same as 11 terms of the second line, but with opposite signs—
they cancel out! Therefore, R(m) reduces to

R(m) = (kD(m) — kD(m — 12))/12 + D(m)
which simplifies to
R(m) = (1 + k/12)D(m) — (k/12)D(m — 12)

That is, the Reorder policy black box is given by a weighted combination
of exactly two demands as shown in Figure 1.3-3.

The surprise is that R(m) depends on only two demands D(m) and
D(m-12), a year apart, even though a running average of these demands
was used in defining R(m) in its business process and clear box descrip-
tion. It just happens that the interactions of the material balance and the
reorder policy cancels out the effect of all the intermediate demands.
These interactions and cancellations would also be taking place, over and
over, in spreadsheet calculations, but the chances of discovering such a
pattern would be very remote. As evidence, this reorder policy had been
in use by many organizations over many decades without any hint that
such a pattern existed. That is, a lot of human thought and observation of
results did not even lead to a suspicion of this pattern!

Reorder policy (black box)

D—» — R

R(m) = (1 +k/12)D(m) - (k/12)D(m - 12)
Figure 1.3-3. Reorder Policy Black Box.

1.3 The U.S. Navy Supply System Reorder Policy 21
1.3.4 Analysis of the Reorder Policy

Even though the form of the Reorder policy black box is a surprise, is
that bad? The reorder policy is used in a multiechelon hierarchy from
many small supply points at the bottom up through a few large ones
(ultimately a few suppliers, possibly only one) at the top. The objective of
the reorder policy, beyond providing supplies, is to smooth or dampen
the demand variability necessarily expected at its bottom to get a more
level aggregate of demands higher up in each echelon, so that the ordering
to outside suppliers at the top is as level as possible. The effort of such
smoothing through several echelons is multiplicative and can be very
effective. For example, if each echelon reduced the demand variability by
a factor of two, then the effect through two echelons would reduce the
variability by a factor of four and through three echelons by a factor of 8
over the variability at the bottom. In turn, steady orders on the outside
suppliers can mean lower costs per unit because of the economics of
stable production. That is, if the k months of supply policy, used through-
out the multiechelon system smoothed demand variability at each reorder
point, it could effect the economics of supply significantly.

Now that the black box of the reorder policy has been derived, it is
possible to analyze the smoothing of reorders from demands. The reorder
R has the form (simplifying notation)

R = (1 + k/12)D — (k/12)D’

where D is last month’s demand and D’ is the demand a year ago. First of
all, if demand is constant, say DO, then

R = (1 + k/12)D0 — (k/12)D0
= (1 + k/12 - k/12)D0
= D0

so reorders will exactly match demands, a good thing because inventory
will be completely stable. Now, consider the variability of demands D and
D’. If D or D’ are unusually high or low, the other may compensate or
may not.

In order to develop a concrete numerical illustration, suppose k = 12,
so R has the especially simple form

R =(+ 12/12)D - (12/12)D’ = 2D — D’

Suppose that D and D’ average 100 units, but are 75, 100, and 125, each
with an independent probability 1/3. Then there are 9 equally likely cases
for (D, D’) values each with probability 1/9. For example, if D = 75, D’ =
125, then

22 1. Information Systems Development

R = 2(75) — 125 = 25

When these cases are listed, the values of R are given in Table 1.3-1.
Surprisingly, Table 1.3-1 shows demands D and D’ vary only at most 25
from their average value 100, but the reorder R varies up to 75 from its
average value of 100. In fact, Table 1.3-1 shows that the reorder policy
does not dampen the variability of demands at all; it amplifies them—in
this case up to a factor of 3! A more extensive statistical analysis verifies
this illustration. The standard deviation of R turns out to be V5 (=2.236
. . .) times that of the standard deviation of D and D’. That is, the k
months of supply policy is an inadvertent demand variability amplifier in
the multiechelon supply system. Just as dampening is multiplicative so is
amplification. Through 3 levels, rather than reducing variability by a fac-
tor of 8, this reorder policy in fact increases variability by a factor of
(VHVSHV5) = 1118 . . . !

This clear box to black box analysis showed that most of the variabil-
ity of inventory levels and reorders in the upper echelons of the Navy
supply system was self-induced by a seemingly sensible reordering pol-
icy. Once the problem was revealed, it was possible to devise a new kind
of reordering policy, called an exponential smoothing policy, that reduced
the variability of demands up the echelons rather than amplifying them.

It may seem a surprise in a book on information systems development
that the first major example does not even depend on a computer! There is
a good reason. The example is about a business process and its analysis.
It would be possible to automate the k months of supply policy in an
information system. The best design techniques could be used to store the
data and process it. The best documentation techniques could be used to
make the system understandable to inventory managers. The best human
factors could be employed for entering the data for k and demands. But it
would all be wrong—not wrong in the implementation, but wrong in
information systems analysis and design. This example illustrates the

Table 1.3-1
Values for R
D’:
75 100 125
75 75 50 25
D: 100 125 100 75

125 175 150 125

14 Managing Information Systems Development 23

important truth that the reason for information processing is the business
not computers. So every part of an information system must begin with a
sound analysis of the business process. Only then do computers come

into the picture.

e

Summary: This case study illustrates insights gained through
box structure analysis of existing information systems. Such anal-
ysis may reveal unsuspected behavior and lead to better informa-
tion systems designs. Sound information systems begin with
sound analysis of business processes.

1.4 MANAGING INFORMATION SYSTEMS DEVELOPMENT

Preview: Box structure hierarchies provide effective means for
analysis, design, and management in information systems devel-
opment. Black box replacement and state migration are important
techniques in developing box structure hierarchies. Analysis and
design libraries are repositories for evolving box structures. The
concepts of box structure derivation and expansion are precisely
defined in this methodology. The system development process
defines activities of investigation, specification, and implementa-
tion that are scheduled in a development plan. Providing informa-
tion systems integrity requires consideration of many system is-
sues inherent in an operational system.

1.4.1 Box Structure Hierarchies

The low level examples of a running average and the inventory reorder
policy illustrate the concepts but not the scope of box structures. Any
business information system behaves as a black box for its users. They
enter data (stimuli) and receive data (responses). Data entry may be by
keystroke, by punched cards, even by automatic sensors such as optical
scanners. Data output may be on computer displays, hard copy, even
machine readable media. For example, an airline reservation clerk uses
the reservation system as a black box. But inside is a gigantic state ma-
chine (the state is the data of the entire system) and a corresponding clear
box (the system state and top level programs of the system).

24 1. Information Systems Development

A database system such as IMS behaves as a black box, with applica-
tion programs in COBOL or PL/I as its users. The state machine can be
visualized in storage and retrieval terms, while the clear box will be
involved with storage and retrieval computation. In this case, the infor-
mation system using the database system as a black box component will
itself behave as a black box for its human users.

That is, business information systems and their subsystems all exhibit
black box behavior, and thereby admit description by black box/state
machine/clear box structures. As a result, identical structures and meth-
ods of reasoning can be used during information systems analysis and
design in a hierarchy of smaller and smaller subsystems, as shown in
Figure 1.4-1.

A box structure hierarchy itself provides an effective means of man-
agement control in developing large, complex information systems. By
identifying black box subsystems in higher levels of the system, only a
manageable amount of state data and processing needs to be handled
within each box structure.

Each subsystem becomes a well-defined, independent module in the
overall system. Although the progression from black box to state machine
toclear box at any point in the hierarchy may appear to be a triplication of
effort, this is not the case. Each subsystem should be initially described in
its most natural form, with the other forms determined as necessary for
analysis and design. Two important concepts in developing a box struc-
ture hierarchy are black box replacement at any point of the hierarchy and
state migration between points of the hierarchy.

The concept of black box replacement is key in system development
for the management flexibility it provides. A black box is a unit of descrip-

BB
SM

CB

I | | | [| |
BB BB BB BB BB BB BB

| |
SM SM

[
CB

|
CB
I—l——l !___L‘ﬁ
BB BB BB BB BB
Figure 1.4-1. A Box Structure Hierarchy.

-

1.4 Managing Information Systems Development 25

tion that can be isolated and is independent of its surroundings in a sys-
tem. In particular, a black box can be redesigned as many different state
machines and clear boxes. As long as the black box behavior of these
state machines and clear boxes is identical to the original, the rest of the
system will operate exactly as before. Such black box replacement may
be required or desirable for purposes of better performance, changing
hardware, or even changing from manual to automatic operations.

State migration in an evolving box structure hierarchy is a powerful
design technique. It permits placement of state data at the most effective
level for its use. Downward migration of state data is possible whenever
new black boxes are identified and used in a higher level clear box. Any
state data used solely within one of the new black boxes can be migrated
to the state machine expansion of that black box at the next lower level of
the box structure hierarchy. The isolation of state data through state
migration in the system hierarchy provides important criteria for the de-
sign of database systems and file systems. Upward migration is desirable
when duplicate state data is updated in identical ways in several places in
the hierarchy. This data can be migrated up to the closest common parent
subsystem for consistent update at one location.

Box structure concepts provide a solid basis for management and
control of all development activities. New information, better ideas, and
even setbacks can be expected throughout information systems develop-
ment. The box structure hierarchy provides a framework for orderly con-
trol of the development process, rather than the chaos that such new
information, better ideas, and setbacks can generate in a less disciplined
development. Black box replacement and state migration provide creative
flexibility during system development by allowing improvements in the
design without losing its integrity.

1.4.2 Box Structure Derivation and Expansion

The box structure of information systems leads to a precise definition
of the tasks of derivation and expansion, as shown in Figure 1.4-2, using a
sequence clear box for illustration (with alternation, iteration, and con-
current clear boxes possible).

It is a derivation to deduce a black box from a state machine or to
deduce a state machine from a clear box, while it is an expansion to
induce a state machine from a black box or to induce a clear box from a
state machine. That is, a black box derivation from a state machine pro-
duces a state-free description, and a state machine derivation from a clear
box produces a procedure-free description. Conversely, a state machine

26 1. Information Systems Development

Black box
— —_
S —— l—» R
Derivation Expansion
State machine
|—— = —] State }4 - -
i |
H |
| |
| |
— | Machine I —
! 1
s LA . R
Derivation Expansion
Clear box
e e I SR
| i
I
i Lo .
| L [
} Black box : | Black box :
i Lo !
S * >l | Y . i » R

Figure 1.4-2. Box Structure Derivation and Expansion.

expansion of a black box produces a state-defined description, and a clear
box expansion of a state machine produces a procedure-defined descrip-
tion. The expansion step does not produce a unique product because
there are many state machines that behave like a given black box, and
many clear boxes that behave like a given state machine. The derivation
step does produce a unique product because there is only one black box
that behaves like a given state machine and only one state machine that
behaves like a given clear box. Throughout this text, we will present
many examples of derivation and expansion steps.

These definitions of derivation and expansion allow work assignments
and reporting to be precise and comprehensive in managing information

1.4 Managing Information Systems Development 27

systems development. Each box structure derivation or expansion step
represents a discrete unit of work, which altogether create the analysis
and design of an entire system. The analysis activities of manual proce-
dure reviews and interviews fit directly into these definitions. A person
interviewed will describe procedures that the analyst will formulate as a
clear box and then convert by derivation into state machine and black box
terms. The design will then proceed from the derived black box by expan-
sion back through a state machine and clear box better suited for auto-
matic processing.

Information system development may take months or years and re-
quire from a few to a few dozen, even a few hundred, people. Each of
these people are discovering new facts about the business or the system,
identifying new problems and old problems, finding solutions to those
problems, making logical decisions about data storage and processing,
and so on, every day. Even a small information system involves a large
amount of logical structure and detail in its development. It is imperative
tokeep all this structure and detail organized and accessible for the devel-
opers in the conduct of the work.

The hierarchical box structure of black boxes, state machines, and
clear boxes is designed explicitly to keep the details of derivation and
expansion accessible during information system development. But there
still must be a physical medium for recording this structure and its details.
For this reason, this methcdology introduces two systematic documenta-
tion structures, an analysis library and a design library. The analysis li-
brary records findings about the business and its needs for the information
system in question, and is created in terms understandable to users in the
business. The design library records the logical inventions and solutions
the developers have discovered which address the needs of the business
in a potential information system and uses more a precise and concise
design language understood by the developers. Both libraries are orga-
nized in the same way, in the box structure of the information system
under development. The developers understand and create both libraries,
using the analysis library to interface with management, users, and opera-
tors in the language of the business and the design library to ensure the
completeness and consistency of the information system in more concise
language.

For example, the results of management or user interviews will appear
first in the analysis library and will be confirmed in that form with the
management or users. Such interviews may not cover unusual cases in
computer operations that the users never see, such as how files are pro-
tected during an electrical power outage. But as those results are trans-
lated into the design library, additional technical considerations may

28 1. Information Systems Development

arise, as, in this case, how power outages are to be handled. Once prob-
lems and solutions are recorded in the design library, their results may be
fed back to the analysis library by subsequent discussion with manage-
ment or operators, in this case to decide whether to provide for emer-
gency power facilities in computer operations.

1.4.3 The System Development Process

One of the obvious appearances in information systems is the life
cycle. It is certainly apparent that information systems go through vari-
ous stages of conception, specification, design, implementation, opera-
tion, maintenance, modification, and so on. But although these terms are
suggestive, real information systems do not pass through these stages in
any simple or straightforward way.

If information systems were developed for their own intrinsic worth
by people with infinite knowledge and intelligence, and given unlimited
time and budgets, such an information system life cycle might be possible
and sensible. But, as already discussed, information systems are devel-
oped for business purposes with limited time and budgets by real people,
often under conditions that are far from ideal because of business pres-
sures.

If a competitive hotel chain announces a new reservation system, the
business needs a quick response with whatever system that can be put
into operation, not a system developed to an orderly timetable that arrives
too late to save the business. If a banking law changes and more immedi-
ate financial information can save interest rates, every day spentin a fixed
development cycle is money lost.

Faced with such business pressures, it is easy to fall into a harum-
scarum, disorderly mode of operation that generates random activity but
no real progress. What are needed in information systems development in
real business environments are management principles to balance urgent
business needs with requirements for systematic work. Such principles
are not new in business and management. They involve a spectrum of
short range to long range planning. Longrange plans deal with fundamen-
tal business objectives and trends; short range plans deal with near term
needs and account for current conditions.

In information systems development these principles are embodied in
the definition of a set of limited, time phased activities to decompose and
manage the various kinds of work required, and a development plan that
defines and schedules the specific activities needed to address a specific
problem. The development plan represents long range planning for infor-
mation system development and the activity plans represent short range

1.4 Managing Information Systems Development 29

planning. As each activity is completed, the entire development plan
should be updated to account for the current situation.

Although the activities of a development plan are always specific to a
particular system’s development problem, they can be categorized into
three general classes, investigation, specification, and implementation. An
investigation is a fact finding, exploratory study, usually to assess the
feasibility of an information system. A specification is more focused to
define a specific information system and its benefits to the business. An
implementation converts a specification into an operational system. To

summarize:

The system development process is defined by a development plan
that specifies a time phased set of activities to address business
needs. The development plan should be updated at the completion of
each activity to account for progress made, lessons learned, and
changing needs of the business.

System development requires focused, creative work carried out with
strict discipline. It requires mental inspiration and mental perspiration in
the usual ratio of 5% inspiration to 95% perspiration. This need for both
creativity and discipline calls for a management process to define short
term and long term objectives, measure progress, introduce midcourse
corrections, and ensure completion and success in systems development.

Box structures provide continuity of form for managing the systems
development process. They can be used extensively and continuously in
the three activities of development:

Investigation. Do the developers understand the problem? They
can demonstrate they do by describing current operations, manual
or automated. Formulated in box structures, these descriptions
should be verified with the users and management, along with a
preliminary estimate of the costs and benefits of a new system.

Specification. Do the developers have a solution to the problem?
They can demonstrate they do by describing a possible information
system to improve current operations, with a comprehensive treat-
ment of the inputs, outputs, storage, and processing proposed.
Formulated in box structures, the proposed information system
should be augmented with benefits and firm cost and schedule
estimates.

Implementation. Can the developers make good on their proposed
solution? The box structured specification is the right foundation
for a box structured implementation in a top down hierarchical
development of the information system to meet specifications
within budgets and schedules.

30 1. Information Systems Development

Hierarchical box structures provide a natural framework for cost and
schedule control. Once analysis is completed, the initial design task is to
develop a top level black box, state machine, and clear box. The clear box
will make use of black boxes at the next level of refinement, for which the
design process will repeat. The top level design effectively partitions the
original design problem into a structure of component problems, each of
which can be dealt with independently using the same box structure meth-
odology. Each new black box in the structure represents a new top, which
must in turn be elaborated into a box structure hierarchy of its own. Since
each new black box is smaller and simpler than those above it in the
hierarchy, eventually black boxes will be reached which do not introduce
new black boxes, and the design will be complete. That is, box structures
permit a rigorous design-to-cost management process, in the stepwise
allocation and consumption of project resources. Every new black box in
the evolving hierarchy represents a new subproject to be designed to cost
given the resources available.

Each activity step, regardless of its type, can be viewed as going
through three stages, as shown in Figure 1.4-3:

(a) Planning. Planning involves a proposal detailing the objectives
and statement of work for that step and defining resources and schedules
required for completion. The proposal must be reviewed and accepted by
the appropriate individuals.

(b) Performance. The tasks involved in the activity step are per-
formed. For example, an investigation task may require interviewing sig-
nificant system users; a specification task may be to design a subsystem
from black box to state machine to clear box description; and an imple-
mentation task might be to program the resulting clear box specification.

(c) Evaluation. Within each step, an evaluation of the results must
be performed and the development plan updated. The type of evaluation
will vary based upon the tasks performed. Forms of evaluation include
management reviews, design verification, system testing, etc.

Just as box structures have their hierarchies, so do these activity
steps. A major task may define a schedule of smaller tasks, each with their
own planning, performance, and evaluation stages. These hierarchies will

Planning Performance Evaluation

i [] [1
Start Completion

Time i

Figure 1.4-3. Stages of an Activity Step.

Lo g

1.4 Managing Information Systems Development 31

correspond closely with management hierarchies in large information sys-
tems development. An upper level manager may not be fully aware of
detailed activities planned, performed, and evaluated under lower level
managers to meet upper level planning, performance, and evaluation
steps.

It is convenient to visualize the effect of the system development
process in a specific situation as a sequence of feedback driven develop-
ment activity steps, as shown in Figure 1.4-4 in the form of a system
development spiral.

In this system development spiral, eachloop of the spiral is a distinct
activity step with its three stages of planning, performance, and evalua-
tion. An approval by management, based on the development plan, is
shown preceding each activity step and at the completion of the develop-
ment. This particular spiral shows one pattern of activity steps, namely,

Investigation
Specification
Investigation
Implementation

Possibly the second investigation step was to confirm a cost/benefit
analysis produced by the specification step.
An ideal pattern is

Investigation
Specification
Implementation

but, in fact, this turns out to be too simple for most situations. In the
absence of business opportunities or pressures, it can be followed for
straightforward developments. The problem is that most information sys-
tems are developed just because there are business opportunities or pres-
sures. As noted, if a competitive hotel chain announces a new reservation
system, the business needs an implementation as soon as possible, not an
investigation. If an advanced system is being developed, the implementa-
tion may need to be carried out incrementally, with investigation and
specification steps interspersed, for example, in an intended pattern:

Investigation
Specification
Implementation
Investigation
Specification
Implementation

32 1. Information Systems Development

Start

Approval

Planning

Investigation Performance

Evaluation

Approval ,
Planning

Specification Performance

Evaluation

Approval

Planning

Performance

Investigation

Evaluation

Approval
Planning

Implementation Performance

Evaluation

Approval

Completion

Figure 1.4-4. A System Development Spiral.

Even though this pattern is intended, extra steps of investigation or speci-
fication may be required to meet unexpected problems that might arise
during the development.

The system development process can itself be described in two cou-
pled black boxes that show the interactions between the system develop-
ment group and the environment in the business as shown in Figure 1.4-5.
Each interaction consists of a single transmission of information between
the business environment and the system development group. For exam-
ple, a proposed information system specification with its benefits, cost,
and schedule estimate is simultaneously a response from system develop-
ment (to prior stimuli) and a stimulus to the business environment. That
stimulus to the business environment may produce a response to approve
the implementation of the proposed system. This approval response in
turn becomes a stimulus to system development and so on. This interac-

1.4 Managing Information Systems Development 33

Business environment

System development

Figure 1.4-5. The System Development Black Box and Its Business Environment.

tion goes on during analysis and design at lower levels, right down to
individual conversations between developers and managers, users, or op-
erators. For example, an interview about sales forecasting methods in the
business would take the form of a lengthy series of stimulus/response
messages between a developer and a forecaster. Each question or answer
will be itself a response for one person and a stimulus for the other.

Figure 1.4-5 represents the constant interaction between the system
development process and the business environment in which it exists.
The system environment includes the managers, users, and operators of
the system. The transitions of the System development black box can be
organized into activity steps—an investigation step, a specification step,
or an implementation step. The type of step taken depends upon the
development plan, which should account for results of the previous step
and the feedback received from the business environment.

1.4.4 Information Systems Integrity

Box structure descriptions of systems are conceptual representatives
ofreal systems, manual or automatic, that process information. Such box
structures describe intended data processing and storage, but between
these intentions and actual implementations there may be many system
issues. In simplest terms, information systems integrity is the property of
the system fulfilling its function, while handling all of the system issues
inherent in its implementation. For example, systems are expected to be
correct, secure, reliable, and capable of handling their applications. These

34 1. Information Systems Development

requirements may not be explicitly stated by managers, users, or opera-
tors, but it is clear that the designed system must have provisions for such
properties. Questions of system integrity are largely independent of the
function of the system, but are dependent on its means of implementation,
manual or automatic. Manual implementations must deal with the fallibili-
ties of people, beginning with their very absence or presence (so back-up
personnel may be required), that include limited ability and speed in doing
arithmetic, limited memory capability for detailed facts, lapses in perfor-
mance from fatigue or boredom, and so on. Automatic implementation
must deal with the fallibilities of computer hardware and software, begin-
ning with their total lack of common sense, that include limited processing
and storage capabilities (much larger than for people, but still limited),
hardware and software errors, security weaknesses, and so on.

Even though manual and automatic implementations of information
systems deal with quite different fallibilities, the questions of integrity can
be divided into categories that are common to manual and automatic

implementations because they are properties of systems, not of imple-

mentations. Six such categories are:

Security
Operability
Capability
Correctness
Auditability
Reliability

The means for achieving integrity in these categories vary between
manual and automatic implementations, as indicated in Table 1.4-1. Sys-
tem integrity begins with the recognition of potential system malfunctions
in analysis and design, the earlier recognized, the better. The levels of
integrity necessary should be identified during analysis and the means for
achieving it determined during design. Integrity has its own costs and
benefits, so cost/benefit trade-offs are required during analysis and design
for integrity as well as for the functions of a system. For example, secu-
rity features such as data encryption are expensive in terms of software
and system performance. A high level of security requirement should
exist before encryption is considered.

The example in the preceding section of protecting files from electrical
power failures illustrates analysis and design by integrity questions. It
also illustrates that analysis and design is usually an iterative process.
Some questions of integrity may surface only when implementation issues
are faced in design. When they do, the analysis activity should be re-
sumed to ensure their proper treatment. Of course, it is in the best interest

B

Exercises 35

Table 1.4-1

Examples of Means for Achieving Information Systems Integrity

Manual Automatic

Security Personnel Access, Passwords,

Legal Agreements Secure Systems
Operability Procedures Manuals, Operator Manuals,

Training Programs Control Consoles
Capability Adequate Staffing, Adequate Resources,

Temporary Help Archive and

Restoration Procedures

Correctness Double-checking, Domain Checking,

Reviews Consistency
Auditability Accounting Records Program Inspection,

and Practices Logs, Audit Reports
Reliability Redundancies, Checkpoint,

Cross-Checks Restart Procedures

to identify such questions as early as possible, to minimize the iterations
and backtracking required to deal with them.

Summary: The system development process is a management
paradigm for defining and scheduling work in investigation, speci-
fication, and implementation activities. The concepts and princi-
ples of the box structure methodology provide a comprehensive
and rigorous way to manage and control information systems
development. The system development spiral reflects the actual
way work unfolds in development. Integrity requirements must
be addressed together with the functional requirements of an in-
formation system.

EXERCISES

1. Give examples of a data processing system, a management informa-
tion system, and a decision support system. Identify the managers,
users, operators, and developers of each system.

2. A system accepts hourly temperature readings as stimuli. The re-
sponse is the highest and lowest readings in the past 24 hours. De-
scribe this system as a black box, a state machine, and a clear box.

36

10.

11.

1. Information Systems Development 3

A system receives a stimulus that has two possible values, YES and
NO. The response of the system is the current count of YES’s §
received and the count of NO’s received. Describe this system as a |
black box, a state machine, and a clear box. 1

Modify exercise 3 to include a CLEAR stimulus value. Upon receiv-
ing CLEAR, the system sets the YES and NO counts to zero. De- |
scribe this system as a black box, a state machine, and a clear box. $

Briefly define the box structure concepts of black box replacement
and state migration. Give an example of each. 4

State migration may be performed upward or downward in a box {
structure hierarchy. Discuss the advantages and disadvantages of a §
centralized state at a high level versus decentralized states at lower
levels.

Distinguish between the concepts of analysis and design in the box
structure methodology. How are the analysis and design libraries
used?

A company has found from experience that the best forecast of this

month’s sales is a weighted average of the last month’s sales and the
average monthly sales for the past year. The weight given to last
month’s sales is a fraction x and the weight for the past year’s
average is (1-x). Give a clear box description of this sales forecasting

method and derive the state machine and black box descriptions via 4

analysis.

List and discuss the types of activities performed by the system
development team during information systems development.

Why is the system development spiral a convenient way to describe
a system’s development?

List and describe the categories of system integrity. Find examples
of systems that have significant requirements for each type of in-
tegrity.

Propose and discuss an appropriate system development spiral for

each of the following system examples. Detail the activity step rep-

resented by each loop in the spiral.

(a) A company wants to go from a manual payroll procedure to a
computer automated payroll. They have no computer software
or hardware.

(b) You want to develop a calendar/appointment system for your
personal computer. You don’t know whether to buy a software
package or code the system yourself.

Exercises 37
An organization’s computerized tax preparation system has be-

(c)
come obsolete because of a complete overhaul of the tax laws.

(d) A computerized mailing system must be changed to accommo-
date 9 digit zip codes. Note that this simple system change will
result in a system development spiral of its own.

Chapter 2 The Black Box Behavior of
Information Systems

2.1 BLACK BOX BEHAVIOR

Preview: Any information system operates in a consistent way
based on its history of use. This history of use can be described as
its black box behavior.

We encounter information systems every day that do useful things for
us. We can learn what these systems do for us without knowing exactly
how they do it. We use information systems directly when we make
airline or hotel reservations and indirectly in automatic teller machines or
daily work. On a smaller scale, we can learn to use a hand calculator to do
arithmetic and a personal computer to do word processing without under-
standing the internal operations of their programs and circuits.

However, in order to put our trust in such a system, we must be
convinced that the system operates in a consistent way based on its
history of use. That is, the system cannot be capricious or produce differ-
ent results one time or another with the same history. For example, we
expect a hand calculator to give the same result (correct answer) every
time we give it the same problem in a history of keystrokes.

In each case, we can treat the system we are using—the calculator or
the computer—as a black box, such that each time we give it a stimulus, it
gives us a response. When a black box accepts a stimulus, it will return a

38

21 Black Box Behavior -

response before it will accept another stimulus. In the case of calculators
and computers, a stimulus is a key or a button that we press, one after
another, and the response is a display of some kind, often on a video
screen.

A diagram of a black box is shown in Figure 2.1-1. The box labeled
«System’ could be a calculator or a computer that accepts a stimulus
from and then gives a response to the user, who may then enter another
stimulus, etc. As the name implies, a black box description of a system
intentionally omits all details of internal structure and operations and
instead deals solely with behavior that is visible to its user in terms of
stimuli and responses.

Definition. Black Box: A black box is a mechanism that ac-
cepts stimuli and for each stimulus, produces a response before
accepting another stimulus; furthermore, each response is
uniquely determined by the history of stimuli accepted by the
black box.

The examples of calculators, computers, and information systems in-
volve more than providing a response to every stimulus. They involve the
predictable use of data entered by previous stimuli and possibly computa-
tions with such data in producing that response. For example, a roulette
wheel will produce a response (a number) with every stimulus (a spin),
but based on no information about previous stimuli or numbers that may
have already turned up. So a roulette wheel, even an electronic one,
would not be considered a black box. Similarly, an electronic device that
produces the temperature at the push of a button would not be regarded as
a black box.

These examples illustrate that the definition of black box behavior
should not depend on how a system is constructed—electronic, mechani-
cal, or whatever. Instead it should depend only on the stimulus, response
properties of the system.

System

Figure 2.1-1. A Black Box Diagram.

40 2. The Black Box Behavior of Information Systems
2.1.1 Discovering Black Box Behavior

Calculators and computers usually have instruction books that go 4
along with them and explain their black box behavior. However, in infor- §
mation systems development, we often encounter black box behavior that |
is not well explained, usually because certain business operations and §
practices have evolved unconsciously without explicit logical design. For 3
example, a valuable employee may be able to exercise consistent judge- |
ments without being able to explain them. In such a case, the only means
available to understand a system as a black box is to observe the re-
sponses associated with various stimuli and seek to understand how they |
are related.]

In illustration, imagine the simple hand-held device shown in Figure |
2.1-2. It has keys labeled 0 through 9 for accepting stimuli from its users, §
and a two-digit display for producing its responses. Although the device |
resembles a hand calculator, its function is not obvious. But we can study !
its function by experimenting and observing relationships between the]
responses the device produces and the stimuli that cause them. 1

A stimulus-response table is a convenient means of recording black |
box behavior. Imagine that the following table of key stimuli and display '
responses was produced by using the device in Figure 2.1-2:

Stimulus Response
3 3
6 9
1 7
9 10
6 15

Each row of the table represents an action of the black box in accept- |
ing a stimulus provided by its user and then returning a response. This }

| l i Response
display
1 2 3
4 5 ¢ Stimulus
7 8 9 keys
0

Figure 2.1-2. A Hand-Held Device That Accepts Stimuli and Produces Responses.

2.1 Black Box Behavior »

action of a black box in converting from a stimulus to a response is called
a black box transition. The sequence of individual transitions from stimu-
Jus to response in the black box tableis3—3,6—9, 1 = 7, 9— 10, and
6 — 15, where each arrow represents a transition.

Definition: Black Box Transition: A black box transition is an
ordered pair whose first member is a stimulus and whose second
member is the response to that stimulus of the black box.

2.1.2 Stimulus Histories

The transitions of a black box from stimulus to response are not neces-
sarily unique. For example, the stimulus of 6 in the table evokes a re-
sponse of 9 in one transition and 15 in another. But to be useful, a system
described as a black box must provide consistent, repeatable behavior to
its users. How is this consistency achieved? The answer is that black box
behavior may depend on more than the current transition of stimulus to
response; it may also depend on the history of transitions from stimuli to
responses.

Therefore, we consider a new table that records stimulus history and
response on each row, rather than stimulus and response alone:

Stimulus History Response
3 3
36 9
361 7
3619 10
36196 15

In each line of the new table, the current stimulus is the last number,
reading left to right in the stimulus history. Note that the current stimulus
becomes the previous stimulus on the next line of the table, as the stimu-
lus history is built up by successive transitions.

This table emphasizes the dependency of unique responses on stimu-
lus history. Thus, the table shows that a stimulus of 6 with a stimulus
history of 3 6 evokes a response of 9; an identical stimulus of 6 with a
different stimulus history of 3 6 1 9 6 evokes a response of 15.

What explanation can we offer for the behavior shown in the stimulus
history—response table? In the first transition, the stimulus is replicated
as a response, but the subsequent stimuli evoked different responses.
Since the response of a black box depends oniits stimulus history, a useful
analysis strategy is to look for relations between responses and the his-

42 2. The Black Box Behavior of Information Systems]

tory that evoked them. With a little thought, it is apparent that every }
response except the first one can be explained as the sum of the current
and previous stimuli: 3

response := current stimulus + previous stimulus

And if the first response is regarded as the sum of 3 and 0, then this j
assignment explains every transition in the table. Thus, an apparent black
box behavior of our device is to compute and display pairwise sums of }
current and previous stimuli entered by its user. Add2 seems an appropri- §
ate name for this black box that apparently represents the behavior of the
device. i

That is, when the history of transitions is taken into account, we have
found an explanation for the behavior of the device that is consistent and §
predictable. More transitions may confirm or refute this explanation, but
we have an explanation for this data.

We take this history of transitions as the means of defining black box
behavior. That is, given any stimulus history a black box will produce a 3
predictable response history. Note that roulette wheels and thermometers }
do not satisfy this property, whereas calculators and computers do.]

Does the description of black box behavior require its response history |
as well as its stimulus history? No, because each response in its response |
history simply depends on prior stimuli in its stimulus history. Thus,
although a response may appear to depend on prior responses, those !
responses can always be traced back to prior stimuli. So the stimulus
history of a black box is itself sufficient to guarantee unique responses. |

Black box behavior is an extremely important property for aninforma- |
tion system to possess, and in fact, virtually all information systems do
indeed exhibit black box behavior. Such systems can be described as
black boxes with no discussion of their internal operations required.

COMPLEX STIMULI AND RESPONSES

Although the examples so far have used a single number as a stimulus
or response for a black box, complex stimuli or complex responses are
possible for other black boxes. For example, a batch computer run may
use an entire file of data as a stimulus for black box behavior; the response
from this transition may be an entire report.

As a smaller example, consider a majority voting system where sev-
eral persons, say five, may vote on issues, one at a time. This system can
be considered a black box with a five part stimulus. On each issue, the
black box will not accept more than one vote from one person. That is,
just as defined, the black box will not accept a new stimulus (or part of a

2.1 Black Box Behavior 43

stimulus) until it has produced a response. In this case, all five persons
must vote with a stimulus to make up a complex stimulus for the voting
system. Then, the result can be broadcast to the voters as a complex
response and the next issue taken up on the next transition.

2.1.3 Black Box Initial Conditions

Now that we have defined some principles of black box behavior, we
are ready to continue our study of the device in Figure 2.1-2 to confirm
our explanation of its black box behavior. Now suppose we decide to
replicate the previous experiment with the Add2 hypothesis in order to
check results. To our surprise, the second experiment leads to the follow-
ing table:

Stimulus History Response
3 9
36 9
361 7
3619 10
36196 15

This table is identical to the previous table except for the first transition,
3— 9, where 3 — 3 was expected. We have provided the same stimulus
history, but the responses are not identical! What has happened?

Our current explanation may be inadequate, but another answer lies in
our assumptions about the initial condition of the black box. In the first
experiment, we assumed the initial condition, that is, the initial ‘‘previous
stimulus,’” was 0, so that 3 + 0 produced a response of 3. But in our
second experiment, this assumption did not hold.

In order to get a response of 9 for the first transition, we need a
“‘previous stimulus’’ of 6 to add to the current stimulus of 3.

But recall that 6 was the final stimulus in the first experiment! Thus,
the black box simply retained the final stimulus from the first experiment,
just as it had all the others, in turn, to use as the previous stimulus for the
first transition of the second experiment. Thus, the Add2 hypothesis is
still valid. Note that the term initial condition refers to the experiment,
not the black box.

Fundamental Principle: A black box will produce identical re-
sponses for identical stimulus histories only when it starts from
identical initial conditions.

44 2. The Black Box Behavior of Information Systems

In effect, the term initial condition means no more (or less) than the
(unstated) previous stimulus history. The complete stimulus history for
this second experiment is the combined history of both experiments. In
this case, the only thing that matters about the previous stimulus history
for the black box is the previous stimulus, so the initial condition depends
only on that previous stimulus. In general, however, no two distinct stim-
ulus histories in the same device can have identical complete previous
stimulus histories, because one of these previous stimulus histories will
be necessarily part of the other one. Therefore, identical initial conditions
can only be defined when the response is determined by a finite history of
stimuli, as in this example.

Alternatively, the inital condition of this device can be set to a known
value before use—for example, to 0—by entering a 0 and ignoring the
response:

Stimulus History Response
20 0+7? } Initialization
03 3
036 9
0361 7
03619 10
036196 15

The “*?”’ symbol in the table represents an unknown initial condition.
After initialization, the 0 becomes the *‘previous stimulus,’’ that is, the
initial condition, for any subsequent use, that will evoke black box behav-
ior that is repeatable from the same initial condition.

2.1.4 Finite Black Boxes

If any response of a black box depends on at most a number m of
immediately preceeding stimuli, for some finite number m, it is called a
finite black box. If k is the smallest possible number for m, it is called a
finite black box of order k. For example, Add?2 is a finite black box of
order 2.

A small set of examples illustrates these ideas (stimuli are always
digits in these examples)

1. Echo: response : = stimulus
Echo is a finite black box of order 1.

2. Previous: response : = previous stimulus
Previous is a finite black box of order 2.

3. Constant: response : = constant
Constant is a finite black box of order 0.

2.1 Black Box Behavior)

4. OddEven: if stimulus is odd digit, response := stimulus
if stimulus is even digit, response : = previous stimulus
OddEven is a finite black box of order 2.
5. First: response : = first stimulus
First is not a finite black box.
6. Max: response : = maximum of all previous stimuli
Max is not a finite black box.

We have discussed black box concepts so far in terms of a very simple
device. But as noted earlier, any information system whatsoever exhibits
black box behavior in its operation. This is because any information sys-
tem simply accepts stimuli from its users and returns responses to them,
pbased on stimulus history, and this black box behavior can be explained
without discussion of internal system structure and operations.

2.1.5 Black Boxes in Business Operations

At first glance a black box such as Add2 may seem simple and remote
from business operations, but that is not the case. A running average of
sales is frequently used in inventory control and ordering policies; for
example, a black box called RA12 can be defined to return the running
average of the past 12 months of sales of an item. Its stimulus is this
month’s sales, its response is the running average of the past 12 months of
sales. In this light, Add2 can be seen to return a running total of 2 stimuli
and to illustrate a variety of black boxes such as RA12 that abound in
business operations.

In a store with thousands of items, there will be thousands of such
inventory policy (IP) black boxes, one for each item. The inventory man-
ager may not use or know the term black box, but the inventory policy
defines a black box for each item.

As defined, RA12 is a finite black box of order 12. But a sales average
need not be defined by a finite black box. For example, a sales forecasting
method that uses a weighted average of all previous sales, but weights
more recent sales more heavily, is given by a black box called WA, which
returns 1/2 the current sales, 1/4 the last sales, 1/8 the last sales before
that, and soon (1/2 + 1/4 + 1/8 + --- = 1). The black box WA is not finite.

Another important statistic in business operations is peak activity, for
example, peak demand of electricity over a 24 hour period. In this case a
black box called Max24 can be defined that returns the maximum demand
of the past 24 hours. A simpler black box Max2, that returns the maxi-
mum of the past two stimuli, can be seen to illustrate a variety of black
boxes such as Max24 that also abound in business operations.

Any experiment with a finite black box of order k can be initialized by

46 2. The Black Box Behavior of Information Syste

a stimulus history of length k — 1. That is, the future behavior of the blac}
box will be completely determined by such an initializing stimulus histor
and the stimulus history from then on. For Add2, k — 1 happens to be g"
so the previous stimulus is a sufficient initial condition.

Summary: Black box behavior is given by stimulus histories,
and is explained by a relationship between stimulus history and
response. The stimulus history must also account for the initial
condition at the start of the history. The behavior of a finite black
box can be explained by finite stimulus histories.

2.2 THE BLACK BOX BEHAVIOR OF A HAND CALCULATOR

Preview: A hand calculator black box accepts a history of stim-
uli known to the user. Each stimulus invokes a transition and a
response, leading to a final response unknown to the user. Every
response depends on the current stimulus history and the initial
condition.

2.2.1 Finding a Sum with a Hand Calculator

As surprising as it may seem, a simple hand calculator can serve toli
illustrate most of the logical principles and procedures of information 1
systems analysis and design. At first glance this may seem impossible.
What about databases, terminals, and other complex aspects of informa-f
tion systems? The answer has two parts. First, a hand calculator can be }
used to explain the principles and procedures of information systems |
analysis and design, not to explain information systems per se. It is these
principles and procedures, applied over and over, that must be used to
deal with information systems. Second, as already noted, the logic prob- !
lems are the small part of the total problems of information systems §
analysis and design. But getting these logic problems out of the way 1}
allows you to deal with the people problems without unnecessary distrac- §
tions.

Each key on a hand calculator represents a point of entry whose £
depression creates a stimulus. Each stimulus invokes a transition of the |
hand calculator black box. Responses from these transitions are shown as
numbers on the display of the hand calculator.

.

2.2 The Black Box Behavior of a Hand Calculator 47

Toillustrate, consider the following sequence of stimuli and responses
to find the sum 14 + 43:

Stimulus Response

0
|
14
14
4
4
57

hwa+8—0

The stimuli are the successive key entries made to find the sum. The
left-hand column shows the key entries made by the user. The right-hand
column shows the responses contained in the calculator’s display follow-
ing each key entry.

Entries begin with the depression of the C (Clear) key, which produces
a display of 0. The user then depresses the keys 1 and 4. After the 1 key
the display shows the value 1, and after the 4 key the display shows the
value 14. Next, the + key is depressed, and the display retains the value
14. That is, there is no new response resulting from the + input.

Now the user depresses the 4 key and the display shows a 4. Continu-
ing, when the 3 key is depressed, the display presents the value 43.
Finally, depressing the = key leads to the display of the sum of 14 + 43,
namely, 57.

This example illustrates a fundamental property of black box behavior
already discussed: the same stimulus can produce different responses at
different times. When the first 4 stimulus was entered the response was
14, but when the second 4 stimulus was entered the response was 4. So it
is clear that the response produced by a black box depends on more than
the current stimulus alone. In fact, the history of stimuli to a black box at
the time a new stimulus is received determines the response. Because of
the stimulus history in our example, the calculator treated the first 4 as
part of a number being built, digit by digit, and that 4 was displayed in
sequence following the 1. But when the second 4 was entered, the calcula-
tor treated it as the first digit of a new number.

2.2.2 Stimulus History in Black Box Behavior

As discussed previously, the response of any black box is uniquely
determined by the history of previous stimuli it has received. But every
new stimulus, once processed by a black box transition, itself becomes
the most recent addition to the stimulus history.

48 2. The Black Box Behavior of Information Systeg

Table 2.2-1

Accumulating Stimulus History through Black Box Transitions

(stimulus, stimulus history) (response, new stimulus history)
(C , *) = (o , C)
(1, C) — (1, Ci)
(4 Cl) - (14 Cl4)
« + Cl4) - (14, Cl4+)
« 4 Cla+ y > 4, Cl4+4)
(3, Cl4+4) - (43 Cl14+43)
«C =, Cl4+43) — (57 Cl4+43=)

* The clear key makes previous history irrelevant.

Thus, black box behavior can also be defined as follows, :
(stimulus, stimulus history) — (response, new stimulus history)

where the arrow represents a black box transition. That is, a black box
takes in a stimulus and, depending on its stimulus history, produces a
particular response, and then has a new stimulus history that will influ-
ence its response to the next stimulus. So we can summarize the black
box behavior of our hand calculator example as depicted in Table 2.2-1.

Because of the dependency on stimulus history, even slight variations
in a stimulus sequence can produce totally different responses from a
black box.

For example, suppose the stimulus sequence was changed so that the
second 4 stimulus was entered immediately after the first 4 stimulus. The
display would then have shown the value 144, rather than 14. So it ap-
pears that the transition invoked by the + key in the original sequence
ended the entry of digits for the first number and conditioned the black
box to accept the digits for a second number beginning with the next
stimulus. After both the first 4 entry and the + entry, the response was to
display the value 14. Although there was no change in response after the
+ was entered, we can conclude, based on what followed, that the +
entry had a dramatic effect on the subsequent behavior of the black box.

2.2.3 The Clear Key Makes History Irrelevant

The hand calculator exhibits black box behavior, but not finite black
box behavior because there is no limit to the size of the stimulus history
that can affect the response. Nevertheless, the hand calculator has an-
other facility which can be used to guarantee identical initial conditions
for two distinct stimulus histories. It is the C key, as we discuss next.

o

32 The Black Box Behavior of a Hand Calculator 49

That is, nonfinite black boxes may (or may not) have facilities to establish
standard initial conditions at the beginning of stimulus histories. The C
key does just that for the hand calculator.

Suppose a careless user, trying to find the sum of 14 + 43, neglected to
start with the C key and to look at the display before depressing the keys 1
and 4, and so on. Suppose, further, that the previous history of stimuli
just happened to be C 31 +. Then we know that the additional history
14 + 43 = will not find the sum 14 + 43 = 57, but rather the sum 31 + 14 +
43 = 88. However, our careless user might well assume that the sum of
14 + 43 is indeed 88 because of a trust in the hand calculator. In this case,
there is an apparent history and a real history for this calculation:

Stimulus Response

C 0

3 3

1 31

+ 31

Real

i 1 —I History
4 14

+ 45 Apparent

4 4 History

3 43 '

= 88

Once the user neglected to use the C key, there is only one opportu-
nity to observe that something is amiss, namely, in the response to the
+ key, which the user should know would be 14, not 45. But it is just this
response that the user might not notice because 14 is expected. In every
other stimulus, a digit has been entered, so there is good reason to look at
the display to verify its correct entry. But the user can’t verify the correct
entry of +, instead of — or *, say, by looking at the display.

However, if the user remembers to start with the C key, the previous
history is irrelevant, and a correct calculation can be carried out:

Stimulus Response
C 0
3 3

1 31
+ 31
C 0
1 1
4 14
+ 14
4 4
3 43

57

50 2. The Black Box Behavior of Information Systey

Summary: A simple hand calculator illustrates the logical princi-
ples of a black box. It is a black box in which each keystroke is a
stimulus and each display following a keystroke is a response.
The clear key establishes a standard initial condition by eliminat- | .
ing the effect of previous stimulus history.) §

§

2.3 BLACK BOX TRANSITIONS AND TRANSACTIONS

Preview: Black box transitions can be grouped into sequences
that represent black box transactions. A transaction provides in
its last response new information for the user, while previous
responses in a transaction provide user confirmation that stimuli
are being received correctly by the black box.

2.3.1 Known and New Information

There is a fundamental distinction between two types of information
found in the stimuli and responses of a black box. Some responses are
known to the user in advance, while others are not. In the hand calculator
example, the entry stimuli C 14 + 43 = were known to the user in ad-
vance, and the corresponding responses of 0, 1, 14, 14, 4, 43 in the display
simply verified to the user that the correct digits had been entered. That
is, these responses replicated known information. But the response of 57
in the display was different. It represented new information, not known in
advance by the user. It was information that was not keyed in, but rather
was generated by the black box as an answer to the question that the user
posed. So black boxes are capable of creating new information out of old;
in fact, that is the reason for their existence!

Note, however, that not all known information was replicated in the
black box display. For example, when the + was entered, no new output
was provided—that is, the black box did not explicitly inform the user
that a + stimulus had been received. So the user was forced to assume
that the addition function had been properly recorded within the black
box. This assumption could only be based on concentration in making key
entries, so as to know that, say, the — (minus) key had not been inadver-
tently depressed when the + key was intended.

2.3 Black Box Transitions and Transactions 51

In the example, the hand calculator black box required another as-
sumption from the user. When the value 57 was displayed following entry
of the = stimulus, the user assumed that 57 was indeed the correct an-
swer. This seems an easy assumption to make because we have learned to
trust the arithmetic capabilities of hand calculators. But it is not necessar-
ily a valid one, since the answer could be affected by forgetting to start
with the C key, by a low battery, or even by an intermittent component
failure in the adder circuitry.

2.3.2 Transitions and Transactions

Now consider the overall meaning of the hand calculator stimuli and
responses. In effect, the sequence of entries serves to ask the question,
“What is the sum of 14 + 432"’ Although the user took note of successive
responses from each transition to help verify the ccrrectness of key en-
tries, it was only in the final response that the user received the answer to
the question posed. So from the user’s viewpoint, it is the entire stimulus
sequence that produces the final response of interest. Once the user has
the answer embodied in the final response, the intermediate responses,
useful at the time of their display, are of no further value and can be
forgotten. This leads to the following definitions:

Definitions. Black Box Transactions, Input, and Output: A
black box transaction is a sequence of black box transitions in
which all responses, but the last, are predictable by the user. The
last response is not predictable. The entire sequence of stimuli is
called an input, the last response is called an output.

That is, a black box transaction is a sequence of one or more black box
transitions that produces a response required, but unknown, by the user.
A black box input is a sequence of stimuli that defines a transaction. A
black box output is the final response of a transaction. Just as a black box
transition produces a single response from a single stimulus, so too a
transaction produces a single output from a single input. In effect, a
transaction is an abstract description of black box behavior.

For example, the add transaction in the hand calculator problem is:

Input

Cl4 +43 =
Output

57

52 2. The Black Box Behavior of Information Systeg

Note that this transaction says nothing about the black box itself §
how it operates, and the desired computation could as easily be carrig
out by a human as by a hand calculator. 5

The input of the add transaction corresponds to many possible stimy

lus sequences.
For example, the sequence

Stimulus

Response

hs=+wan

which reverses the order of number entry, would work just as well, a

would the sequence

Stimulus

Response

0
4
43
43
1
14
57

C

@]
Il W amMEsEw+ b

0
1
14
14
3
34
0
4
43
57

which contains a digit sequencing error that was corrected by depressing §
the CE (Clear Entry) key and entering the proper sequence before contin- i
uing with the problem. It is clear from this last example that much behav- {
ior of black boxes is directed to assisting their users in carrying out
transactions. In fact, all of the responses of the hand calculator black box]
except the last one exist just for this purpose. Thus, the following black }

box behavior

Stimulus

Response

Il was + =0

Nooocooo

W

2.4 Information Systems Exhibit Black Box Behavior 53

with no useful intermediate responses at all, is theoretically sufficient,
given a very careful user!

We observe that the add transaction specified an operation that can be
carried out on any two input numbers, nqtjust 14 and 43. So it is easy to
generalize the transaction to cover a wide range of desired black box
behavior.

It is also important to note that the definition of transactions for a
black box is based on what the user knows at each response, and depends
on how the work of the user is perceived and organized. So the definition
oftransactions is very much for the benefit and use of humans, rather than
for the black boxes that carry them out. In fact, a black box simply
performs transitions as directed, one after another in a mechanical fash-
ion, without ever knowing that it is performing the transaction that its
user has in mind.

In this case the same input will always produce the same output. But
for more complex black boxes the same input can produce different out-
puts. For example, a black box input to request a bank balance will
produce as output the current balance, which will change from time to
time. As withblack box stimuliand responses, the key to this discrepancy
is in input histories. If the history of deposits and withdrawals is taken
into account the outputs can be explained in turns of the input histories.

Summary: A hand calculator black box accepts an input known
to the user, which invokes a transaction and produces an output
unknown to the user. The output depends on the input history
and the initial condition.

2.4 ANY INFORMATION SYSTEM EXHIBITS
BLACK BOX BEHAVIOR

Preview: The behavior of any system of people and/or machines
whose responses depend on initial conditions and stimulus histo-
ries can be described as a black box.

2.4.1 A Personal Computer Exhibits Black Box Behavior

A personal computer provides another, more complex example of
black box behavior. In this case, the input devices are the keyboard keys

R ———

54 2. The Black Box Behavior of Information Systems

and the output devices include the video screen and printer. As with the j
hand calculator, these output devices can replicate information known to
the user, for example, in displaying responses to keystroke stimuli as they
are entered, and can also present new information, for example, in dis-
playing the results of a calculation or a spreadsheet analysis. 1
Much of the utility of a personal computer arises from its removable |
storage media, in diskettes or tape cassettes, which can be used to con-
figure its black box behavior to suit particular user needs of the moment. |
Thus, a personal computer exhibits the black box behavior of a text editor ;
when a word processing diskette is inserted, and the black box behavior }
of a spreadsheet analyzer when a spreadsheet diskette is inserted. In fact, |
a personal computer can be programmed to simulate the behavior of a 1
black box. For example, a personal computer can easily be programmed j
to simulate the black box behavior of the simple hand calculator discussed }
above, so that a user, suitably isolated from physical clues, could not tell |
whether a hand calculator or a personal computer was solving arithmetic
problems!]
We can illustrate the black box behavior of a personal computer
through a text editing example—namely, to enter the phrase ‘‘regional
sales.”” Consider the sequence of stimuli and responses in Figure 2.4-1 for |
a personal computer with a text editor diskette inserted. Each keystroke
stimulus results in a new display screen response as shown. Successive }
screens are numbered in the figure for ease of reference.
Each stimulus of a keyboard character at screens 1-8 and 10-14 pro-
duces a similar black box transition, '

Screen Stimulus Response
1 r r-
2 e re—
3 g reg.-.
4 i regi-.
5 o regio_
6 n region_
7 a regiona_
8 | regional_
9 <sb> regional _
10 s regional s_
11 a regional sa_
12 1 regional sal-
13 e regional sale_
14 s regional sales_

<sb> means ‘‘spacebar’’
Figure 2.4-1. Text Editor Black Box Behavior of a Personal Computer.

2.4 Information Systems Exhibit Black Box Behavior 55

Display the stimulus character at the cursor position and move the
cursor one position to the right,

while the space bar stimulus at screen 9 produces the transition,

Display a blank character at the cursor position and move the cursor
one position to the right.

Now consider the sequence of stimuli and responses that also enter
the phrase ‘‘regional sales,”” shown in Figure 2.4-2. The sequence is more
complex and reflects use of the text editor black box by an inexperienced
person. For example, the user has entered incorrect characters at screens
4 and 5 and has discovered the mistake at screen 6. The < key is de-
pressed three times, screens 7-9, each invoking the transition,

Move the cursor one position to the left.

The mistake is corrected by depressing the proper characters at screens
10 and 11, but now the cursor is positioned at n, which is a correct
character. So the — key is depressed next, to invoke the transition,

Move the cursor one position to the right

in order to resume typing. Similar mistakes and fix-ups are made at two
other points in the screen sequence.

Although the black box transition sequences of Figures 2.4-1 and 2.4-2
are very different, they both create the same final response for the user,
namely,

regional sales_

In the first case, the sequence of transitions was completed quickly and
efficiently, in the minimum possible number of keystrokes. In fact, every
keystroke became part of the final response, with no wasted effort what-
soever. In the second case, more time and effort were required, both from
the user and the black box, in terms of the many extra keystrokes entered
and processed to create the final response. Stimuli that are recognized as
errors by humans are just ordinary transitions to the black box, which
never knows when it has accepted an erroneous stimulus or the stimulus
to correct it. :
So operator skill is an important factor in the functioning of a text
editor black box. One operator may be able to enter a 20-line letter in five
minutes, whereas another may take an hour to accomplish the same job.
The slower operator may make dozens of mistakes, each of which must
be corrected through reference to the display screen. Even though the
slower, less-skilled operator makes many more keyboard entries than
does the faster operator, the result is the same. The final response is the

56 2. The Black Box Behavior of Information Systen \

Screen Stimulus Response
1 r r-
2 e re_
3 g reg_
4 o rego-
5 i regoiL
6 n regoin_
7 « regoin
8 «— regoin
9 «— regoin
10 i regiin
11 o region
12 - region.
13 a regiona_
14 | regional_
15 s regionals_—
16 - regionals
17 <sb> regional _
18 s regional s_
19 a regional sa_
20 1 regional sal_
21 e regional sale_
22 d regional saled_
23 - regional saled
24 s regional sales_

<sb> means ‘‘spacebar’’

Figure 2.4-2. An Alternate Stimulus Sequence.

completed text of a letter displayed on the screen. Thus, the ability of a
black box to provide immediate feedback to inexperienced users in a
sequence of transitions is a crucial component of the user training and
skill acquisition process, and is a significant measure of the utility of a
black box system.

2.4.2 A Business Information System Exhibits
Black Box Behavior

The same principles of black box behavior that we have described for
hand calculators and personal computers apply to more complex systems
as well. For example, the information system of an electronic parts busi-
ness, with both people and machines as components, exhibits black box
behavior in accepting stimuli from and returning responses to a variety of
users, all to accomplish the many information processingtasks required in
the conduct of business operations. While the overall information system

Vv

2.4 Information Systems Exhibit Black Box Behavior 57

itself behaves as a black box, each of its components, both persons and
machines, functions as an individual black box within it, all cooperating in
their work to achieve business objectives.

In illustration, consider an instance of black box behavior of people
and machine components in the electronic parts business ipformation
system when a custopler wants to f)rder some memory chips for her
rsonal computer. Figure 2.4-3 depicts a possible telephone conversa-
tion between a salesperson and a customer. The salesperson behaves as a
black box, accepting verbal stimuli from the customer and providing ver-
bal responses in return. The customer likewise exhibits black box behav-
jor, in accepting stimuli from and providing responses to the salesperson.

Of course, both of these people have experienced long stimulus histo-
ries extending from birth, only the latest fragments of which are shown in
the conversation. But these stimulus histories have led ultimately to this
conversation, with one person initiating a telephone query on memory
chips for a personal computer, and the other answering a telephone query
for an electronic parts company.

The purpose of the black box dialogue of Figure 2.4-3 is to establish
the part number of the desired memory chips. This requires question
asking by the salesperson, with answers provided by the customer. A
hardcopy catalog containing electronic parts information is also used by
the salesperson to identify the part number from the description provided
by the customer.

Figure 2.4-4 shows a new black box dialogue which occurs after the
customer/salesperson dialogue. In this case, the dialogue is between the
salesperson and the Computer Information System of the electronic parts
business. The initial stimulus for this person/computer dialogue is the
final response, that is, the output, of the prior customer/salesperson dia-
logue—namely, the part number of the memory chips. The salesperson

Customer Stimulus Salesperson Response
Phone Rings ‘*Hello, this is ABC Electronic Parts."’
‘Hello, I need some information on ‘‘What computer do you have?"’
memory chips for my computer.” .
“*‘An IBM Personal Computer. I want to “‘Is it a regular PC or an XT model?”’
add S12K.”
*“It’s a regular PC with two disk drives.”’ **‘My catalog shows that you will need

eight chips with 64K each. The part
number is N1076-45388.”"
*OK. I'll take them if you have them in “I'll check our inventory. Please hold.
stock.””

13

Figure 2.4-3. Customer/Salesperson Black Box Dialogue.

58 2. The Black Box Behavior of Information Syst

Keyboard Stimulus Display Screen Response
Query Inventory Part: N1076-45388

Part = N1076-45388 Quantity on Hand: 296
Quantity = 8 Bin Location: A-42

Unit Price: $20.00
Total Price: $160.00

Reserve Part Part: N1076-45388
Quantity = 8 Quantity = 8 Reserved
Print Invoice Invoice Number: 86-9471

Figure 2.4-4. Salesperson/Information System Black Box Dialogue.

enters keystrokes at a terminal for a database query on inventory status o
the requested chips, to which the machine responds with a display of the
quantity on hand (296), the warehouse bin where the chips can be foun
(A-42), the unit price ($20.00), and the total price ($160.00). The salesper-
son then reserves the chips for the customer, so that the machine will
show only 288 on hand if an identical query is entered later on, and
requests printing of an invoice.

The salesperson’s inventory query is only the latest stimulus in a long
and complex stimulus history of the Computer Information System (CIS).
At some point in its stimulus history, the CIS must have beenloaded with
software to create and maintain a database of electronic parts informa-
tion, and to answer queries such as this one on inventory status. A large
part of the stimulus history resulted from entering the initial database
contents, possibly as part of a conversion from manual to automated
inventory control. In fact, the CIS may have ‘‘worked’ in a completely
different business at some time, and experienced a different stimulus
history, which was erased by resetting the system to a fresh initial condi-
tion when it was purchased by the electronic parts company! In any case,
the stimulus history of the CIS enabled it to answer the salesperson’s
query as part of an effective black box dialogue.

Finally, Figure 2.4-5 depicts the completion of the original customer/
salesperson black box dialogue of Figure 2.4-3 to inform the customer of

Salesperson Stimulus Customer Response
‘“‘We have it in stock. The total cost is $160.00 **‘Good, I'll pick it up right away.”
plus tax.”
**0.K. Your order number is 86-9471.” *0.K. I've got it.”
*“Thanks for the call.” ““You're welcome.”’
*‘Good-bye.”’ *‘Good-bye.”’

Figure 2.4-5. Salesperson/Customer Black Box Dialogue.

i —~—

24 Information Systems Exhibit Black Box Behavior 59

the order number, and to confirm arrangements to pick up the memory
chips.

In this illustration, two black boxes of the electronic parts business
information system, one a person and the other a computer, cooperated to
achieve the objectives (_)f the two persons. The customer’s objective was
to purchase memory chips for her computer, and the salesperson’s objec-
tive was to make a sale. The computer black box supported the salesper-
son in achieving this objective. But the salesperson also relied on training
and personal knowledge, and on the business judgment of the inventory
manager, who decided that memory chips for IBM Personal Computers
were a good item to keep in stock!

2.4.3 People Exhibit Black Box Behavior

As we have seen, the definition of a black box as a representation of a
system applies to people as well as to machines. People respond to stim-
uli, act as mechanisms to handle data, and generate responses. In this
sense, of course, the black box of a person is not the whole human being.
Rather, the black box is an expression of the person’s capability to accept
and respond to stimuli. The history of a human black box is areflection of
the accumulated experiences of the person.

The black box behavior of a human, then, consists of the reflexes and
thoughts that respond to stimuli from the outside world and which pro-
duce motions and sounds as appropriate. In thinking of the black box
behavior of people, it is necessary to be selective and precise about that
portion of the person that is involved. A person is composed of many
systems, such as physiological, emotional, intellectual, and others. These
factors bear upon the capabilities and behavior of a person in accepting
and responding to stimuli.

As a black box, a person accumulates a stimulus history that evolves
continuously throughout life. Black box behavior is altered continuously
by such factors as the language that is learned, the education that is
absorbed, and other experiences.

The most striking difference between the black box behavior of people
and of devices such as hand calculators or computers lies in the fact that
the human being does not have a clear or reset key. Thus, while it is-
possible to begin an entirely new history in a hand calculator by pressing a
single key, a person retains a history that continues to be altered by
experiences without giving up any previous, cumulative effects. Under-
standing these characteristics of the black box behavior of people is im-
portant because people, in turn, are part of the black boxes of business
systems.

60 2. The Black Box Behavior of Information Systems

As these three examples illustrate, any information system whatso-
ever, small or large, simple or complex, exhibits black box behavior in its
operation. That is, the common behavioral property of all information j
systems, no matter what their function or complexity, is acceptance of }
stimuli from and return of responses to their users. This property of black }
box behavior applies whether or not the users know that their information
system is behaving as a black box and whether a black box description of 1
its behavior has ever been written down. |

Much of the value of a black box description of an information system
lies in the very fact that it omits details of internal processing. Instead, a 1
black box description focuses on external behavior, that is, ‘‘what’’ the }
information system does, without discussing ‘“how’’ it is done. This sepa- §
ration of what and how is called a separation of concerns. It represents a §
crucial strategy in information systems development, and constitutes a
major theme of this book. And it is because the black box concept ex- §
cludes descriptions of processing internals that it can be used to describe
the behavior of systems that have human as well as machine components.
As illustrated above, humans exhibit black box behavior just as do ma- ;
chines, in accepting stimuli from other humans or machines and returning |
responses to them. This behavior can be summarized in a black box !
description, without the necessity for difficult explanations of internal §
processing, that is, how humans actually process information in their §
minds. ’

Summary: Black boxes are a completely general means for de-
fining and analyzing behavior in information systems. Through
their focus on stimuli and responses, black box descriptions cor-
respond to how users actually interact with systems, with no need
for discussion of processing internals.

2.5 BLACK BOX STRUCTURES

Preview: Black boxes can be combined into larger black boxes
by organizing them into one of four box structures. The behavior
of these black box structures can be deduced from the behaviors
of their component black boxes.

In black box behavior at the stimulus (S), response (R) level of de-
scription, as depicted in Figure 2.5-1, we have restricted our discussion to
stimulus, response pairs which are initiated and used by people. But it is
possible for a response of one device to be used as a stimulus by another }

2.5 Black Box Structures "

S—=R

Figure 2.5-1. Stimulus/Response Description of a Black Box.

device. In this case the response may be in the form of an electrical
current, or other physical interaction not necessarily visible to people.
Therefore, we will consider stimuli and responses suitable for either peo-
ple or machines as the occasion requires. This possibility motivates an
investigation of how black boxes can be combined intolarger black boxes,
and how the behavior of these larger black boxes can be analyzed and
understood. A black box structure is a description of how several black
boxes are connected to achieve the behavior of a larger black box.

2.5.1 Black Box Primitive Structures

A new black box can be constructed from black boxes by one of four
primitive composition steps which define:
1. Successive transitions of two black boxes (named the sequence

structure).
2. Selected transitions of one of two black boxes (named the alterna-

tion structure).
3. Repeated transitions (zero or more) of a black box (named the

iteration structure).
4. Concurrent transitions of two or more black boxes (named the

concurrent structure).

In each of these structures, the transitions will have the same form as
the initial black boxes, namely,

S— R

THE BLACK Box SEQUENCE STRUCTURE

The sequence structure is depicted in Figure 2.5-2 below with boxes
Bl and B2

B1: S1 — Rl
B2: S2 —» R2
and allocation

R1 is renamed S2

62 2. The Black Box Behavior of Information System

Bl B2

Rl =82
S1 = R2

Figure 2.5-2. The Black Box Sequence Structure.

That is, the response R1 of B1 is used as the stimulus S2 for B2. In thig
case, a stimulus S1, submitted to B1, which returns a response R1, which
is submitted as stimulus S2 to B2, which returns a response R2. In sums]
mary, if stimulus S1 is submitted to the sequence structure, the responsef
R2 is produced. ‘

This black box sequence structure behaves like a black box. That is
any stimulus history will produce a unique response. To see that, recall
that any stimulus history for B1 will produce a unique response history (of'
R1’s), and the unique response history becomes a unique stimulus history/
(of S2’s) for B2 which will produce a unique response, as asserted.

THE BLACK BOX ALTERNATION STRUCTURE

The alternation structure is depicted in Figure 2.5-3 with a special kind ,_
of black box, called C, and two black boxes, namely, Bl and B2. Thej

BI

N RI

Figure 2.5-3. The Black Box Alternation Structure.

2.5 Black Box Structures 6

plack box C (C for Condition) is denoted by a diamond and returns re-
sponses T or F (True or False). The function of C is to switch the stimulus
S to exactly one of Bl or B2, that is, to rename S as either SI or S2. The
response R1 or R2 is automatically renamed R. In this case a stimulus S,
submitted to C is switched (as S1 or S2) to Bl or B2, eliciting response R1
or R2 which is renamed R.

This black box alternation structure behaves like a black box. That is,
any stimulus history will produce a unique response. To see that, recall
that any stimulus history for C will create a unique history of switches (to
B1 or B2) and two unique subhistories (of S1’s and S2’s). Each subhistory
will produce a unique response (whichever is called for by the current
stimulus), as asserted.

THE BLACK BOX ITERATION STRUCTURE

The iteration structure is depicted in Figure 2.5-4 with a special kind of
black box, called C, and a single black box, B. As in the alternation
structure, the black box C (C for condition) is denoted by a diamond and
returns responses T or F (True or False). The function of C is to switch
the stimulus S to black box B or to R, thatis, torename S as either S1 or
R. The response R1 of black box B is automatically renamed S for evalua-
tion by condition C. Thus, stimulus S is switched either to R directly, or
to B, which produces an internal stimulus which will in turn be switched
either to R or B, continuing in this manner until the internal stimulus is
switched to R.

This black box iteration structure also behaves like a black box, with
any stimulus history producing a unique response. To see that, observe
that any stimulus history for C will create a unique history of switches (to

Figure 2.5-4. The Black Box Iteration Structure.

64 2. The Black Box Behavior of Information Systen

Bl
S1 R1

(R1, R2)

B2
S2 R2

Figure 2.5-5. The Black Box Concurrent Structure.

B or R) and two unique subhistories (of S1’s and R’s). In the case of the]
S1 subhistory, each unique response will be determined by one or morej
internal iterations (however many are called for by the current stimulus). }
Thus, each subhistory produces a unique response, as asserted. ’

THE BLACK Box CONCURRENT STRUCTURE

The concurrent structure is shown in Figure 2.5-5. The structure has §
two black boxes labeled B1 and B2 that execute simultaneously. The i
stimulus S is sent to both boxes, labeled S1 for B1 and S2 for B2. The B1
transition produces the response R1 and the B2 transition produces the |
response R2. The response R for the concurrent structure, then, is the §
complex response (R1, R2). “

The black box concurrent structure behaves like a black box since any 3
stimulus history will also be the stimulus histories to the black boxes B1 }
and B2. The responses R1 and R2 will be uniquely determined by the]
stimulus history. Therefore R = (R1, R2) will also be uniquely determined §
by the stimulus history. .

2.5.2 Analysis of Black Box Structures

Stimulus and response patterns were analyzed above to understand 3}
the behavior of individual black boxes. The behavior of black box struc- }
tures can be analyzed and understood by combining the behaviors of their
component black boxes.

2.5 Black Box Structures 65

In illustration, recall the Add2 black box whose response R is the sum

of its last two stimuli. The transitions of Add2 can be numbered 1,

U i, where i is any integer, with corresponding stimuli S(1), S(2),

.., S(i), and responses R(1), R(2), . . . , R(i). The formula for an
Add?2 transition is thus denoted by the equation

Add2 formula: R(i) = S@G) + SGi — 1)

Also, consider the black box called Max2, which produces as a re-
sponse the maximum of its last two stimuli. The formula for a Max2
transition is denoted by the equation

Max2 formula: R(i) = max(S(@), SG — 1))

As already seen, the behavior of the Add2 black box for our example
stimulus history is, for initial condition 0:

Add2 history: S

|

A0 — W |
“n O NOo W

|
1

The behavior of the Max2 black box for the example stimulus history
is, for initial condition O:

Max2 history:

AV — W W
ooV w | X

ANALYSIS OF SEQUENCE STRUCTURES

A new black box sequence structure, called Add2;Max2, can be
formed by combining Add2 and Max2 as shown in Figure 2.5-6. A semico-
lon is used to separate black boxes in a sequential structure. The behavior
of Add2;Max2 can be worked out for our example stimulus history as
follows:

Add2;Max2 history: Rl = S2 R2

cav—aow|®
5SS wow
[v=}

66 2. The Black Box Behavior of Information Systeng

Add2 Max2

Rl =82
Sl > > »R2

Figure 2.5-6. Add2;Max2 Black Box Sequence Structure.

That is, Add2;Max2 behaves as a new black box which produces a re-}
sponse R2 for every stimulus S1. The exact form of the transition equa-{
tion of the new black box can be derived, step by step, starting with R2]
and working back to S1 as follows: '

Add2;Max2 transition: R2(i) = max(S2(i), S2(i — 1))
= max(RI1(), RI1(Gi = 1))
= max(S1@i) + St — 1), St = 1 + SiG - 2)
= S —) + max(SKi), SI(i — 2)}

The first line of the derivation is obtained by the definition of Max2 (since }
R2 is produced by Max2), the second line by the sequence structure of ;
Add2;Max2, the third line by the definition of Add2 (since R1 is produced |
by Add2) and the final line by factoring the term S1(i — 1) out of the max
operation. In this case, R2(i) depends on the three previous stimuli S1(i),
Si(i — 1), and S1(i — 2), with the initial condition that ‘‘all previous }
stimuli’” are zero. i

The formula for Add2;Max2 can be used to obtain the values of R2 }
directly, without obtaining intermediate values for Rl and S2. Thus, S1 3
and R2 can be renamed simply S and R, respectively, and the formula !
rewritten as:

Add2;Max2 transition: R(i) = S(i ~ 1) + max(S(i), S(i — 2)).
The responses of the Add2;:Max2 black box sequence structure can 1

now be computed directly from the stimulus history, and confirm the
previous computation:

Add2;Max2 history: SG = 1) + max(S(@), Sti — 2)

| =

0 + max(3, 0)
3 + max(6, 0)
6 + max(l, 3)
1 + max(9, 6)
9 + max(6, 1)

WA W - =
A0 — W Il Wn
W O ¢ O W

i

2.5 Black Box Structures 67

Max?2 Add2
R1 =82

Figure 2.5-7. Max2;Add2 Black Box Sequence Structure.

Successive transition numbers are listed in the column labeled i, and the
computation of responses from the Add2;Max2 formula is shown. In this
case, the response values for Add2;Max2 are easy to work out mentally in
an abbreviated table,

| =

A0 — W | Wwm
“n S OO W

1
1
with the same result as before, in the knowledge that the computations
can always be recorded for detailed analysis in more complex situations.

A different black box sequence structure can be created by reversing
Add?2 and Max2, as depicted above in Figure 2.5-7 with example history,

Max2;Add?2 history: S1 Rl =82 R2

3
9
12
15

3
6
1
9
6 18

OO N W

a quite different result from the Add2;Max2 sequence structure. The tran-
sition formula for Max2;Add2 is
Max2;Add?2 transition: R2(i) = S2(i) + S2(i — 1)

=RI(() +RIG—- 1)
= max(S1(), SKi — 1)) + max(Sl(Gi — 1), SI(i — 2))

which cannot be simplified any further.
A single black box such as Add2 can be reused in a sequence struc-
ture, as depicted in Figure 2.5-8. In this case, the transition formula

68 2. The Black Box Behavior of Information Syste 4

Add2 Add2

Sl —> - +R2

Figure 2.5-8. Add2;Add2 Black Box Sequence Structure.

Add2;Add?2 transition: R2(i) = S2(i) + S2(Gi — 1)
=RIG{) + RIG - 1)
= (SI() + S1G — 1)) + (S1G = 1) + SIii - 2)
= SI1() + 2*SIG — 1)+ S14G — 2)

Reuse of the Max2 black box is depicted in its black box structure of
Figure 2.5-9. The transition formula for Max2;Max2 is:]
Max2;Max2 transition: R2(i) = max(S2(i), S2(i — 1))
= max(RI1(), R1(G — 1))
= max(max(S1(i), SI(i — 1)),
max(Si(i — 1), S1G — 2))
= max(S1(i), S1G — 1), SIG — 2))

Thus, both the Add2;Add2 and Max2;Max2 sequence structures have ’
relatively simple behavior compared to the behavior of Add2;Max2 and 4
Max2;Add2.

ANALYSIS OF ALTERNATION STRUCTURES

Figure 2.5-10 illustrates a black box alternation structure called }
0Odd:Add2|Max2, where the condition Odd transfers control to the True |
(T) branch (Add2) if S is an odd number, and to the False (F) branch
(Max2) if S is an even number. In general the notation used for alternation

Max2 Max?2

S1 - = » R2

Figure 2.5-9. Max2;Max2 Black Box Sequence Structure.

ack Box Structures i

2.5 Bl
Add2
S1 R1
T
S ~— Od> >R
F
Max2
s2 R2

Figure 2.5-10. Odd:Add2[Max2 Black Box Alternation Structure.

structures is C:B1|B2, where C is the condition, Bl and B2 are black
boxes, and the straight line denotes that one of the black boxes is exe-
cuted. The example history for Odd:Add2|Max2 is as follows, where
blank entries in the table represent control branches not taken. That is,
S1, R1 or S2, R2 are only filled in when the condition Odd has switched
control to Add2 or Max2, respectively:

Odd:Add2|Max2 history: S SI Rl S2 R2 R
3 3 3 3
6 6 6 6
1 1 4 4
9 9 10 10
6 6 6 6

The transition formula for Odd: Add2|Max2 is a little harder to describe
than for Add2;Max2 or Max2;Add2. With some thought the form of
0Odd:Add2|Max2 can be seen as

0Odd:Add2|Max2 transition: If S(i) is odd then
RG) = S(i) + S(j)
where S(j) is the last odd stimulus preceding i
If S() is even then
R(i) = max(S(@), S(k))

where S(k) is the last even stimulus preceding i

70 2. The Black Box Behavior of Information Syste ‘.“

Add2

R1

Add2

Figure 2.5-11. Odd:Add2|Add2 Black Box Alternation Structure.

The Odd:Add2;Add2 black box alternation structure depicted in Figurej
2.5-11 is instructive. At first glance, Odd: Add2|Add2 may seem to do no
more than Add2 alone. After all, whether S is odd or even, control i
switched to Add2. However, look at the history of Odd:Add2|Add2

0dd:Add2]Add2 history: S SI' Rl S2 R2 R
3 3 3 3
6 6 6 6
1 1 4 4
9 9 10 10
6 6 12 12

which is quite different than for Add2 alone. The difference is that the]
upper Add2 is only sent odd numbers as stimuli and the lower Add2 is}
only sent even numbers as stimuli. As a result, the upper Add2 only adds’
odd numbers (after the first) and the lower Add2 only adds even numbers. ;
Therefore, the general form of Odd:Add2|Add2 can be seen as '

0dd: Add2|Add2 transition: If S(i) is odd then

R(i) is the sum of the last two
odd numbers in the stimulus
history

If S(i) is even then

R(i) is the sum of the last two
even numbers in the stimulus
history

k Box Structures 71

2.5 Blac

Add2
Rl Sl

S Odd —» R

Figure 2.5-12. *Odd:(Add2) Iteration Structure.

ANALYSIS OF ITERATION STRUCTURES

Figure 2.5-12 illustrates a black box iteration structure called
*0dd:(Add2), where the condition Odd transfers control to the True (T)
branch (Add2) if S is an odd number, and the false (F) branch (R) if S is an
even number. In general, the notation used for iteration structures is
*C:B, where C denotes the condition, B is a black box, and the * (star)
symbol indicates that the black box (B) will be executed zero or more
times while the condition is true before the response is produced. The
example history for *Odd:Add2 is as follows, where blank entries in the
table represent control branches not taken:

*0dd: Add?2 history: Iterations
I S SI S22 S3 R
0 3 3 6 6
3 6 6
3 1 4 4
1 9 10 10
9 6 6

The initial condition I of the Add2 black box for each stimulus is shown in
a column on the left of the table. This value is always the last stimulus
presented to Add2 by condition Odd, and is thus guaranteed to be odd,
except possibly for the first initial condition, which in this case has been
defined as zero. Given this example, the general form of *Odd:Add2 is
easy to see, as shown in the following table in three cases:

72 2. The Black Box Behavior of Information Systems}

Case
I 2 3
S() 0Odd 0Odd Even
I 0Odd Even —_
R(i) NOES! 2% S@()+1 S()
Newl S(@) S@)+i |

This formula guarantees that the *Odd: Add2 iteration structure will pro-;
duce a response for any stimulus history. However, iteration structuresf
can be defined that will not produce responses for any stimulus history.}
For example, the *Odd:Max2 iteration structure will no longer produce;
responses once Max2 has selected an odd number as the current maxi-A
mum. In this case, the iteration structure cannot complete a transition. {

ANALYSIS OF CONCURRENT STRUCTURES

Figure 2.5-13 shows the black box concurrent structure in which Add2:
and Max2 are performed concurrently on the same stimulus history. The]
notation for this structure is Add2||Max2; in general, B1||B2 where Bl and
B2 are performed concurrently. The complex response for the structure |s
the grouping of the individual black box responses, R = (R1, R2).
The example history for the concurrent structure is easily seen:

Add2||Max2 history: S SI S2 Rl R2 R
3 3 3 3 33,3
6 6 6 9 6 9, 6)
1 1 l 7 6 (7,6)
9 9 9 10 9 (10, 9)
6 6 6 15 9 (15,9)

The transition formula for a concurrent black box is simply the transition?
formulas of its black boxes. In this case the transition formula is :

R(@) = (R1(i), R2(i)) where
RI(i) = S@G) + SG — 1), and
R2(i) = max(S(@), SG — 1))

These examples of sequence, alternation, iteration, and concurrency
show that black box structures can produce complex behavior with snmplc
component black boxes.

e

2.5 Black Box Structures s

Add2
Sl R1

(R1,R2)

Max2

Figure 2.5-13. Add2||[Max2 Concurrent Structure.

Fundamental Principle. Black Box Systems: If complex behav-
ior is required in a system, it may be possible to achieve it with
sequence, alternation, iteration and concurrent structures of sim-
pler black boxes.

2.5.3 Black Box Structures in Business Operations

As we have seen, black boxes can be combined into structures that
exhibit new black box behavior. But black boxes can also be decomposed
into black box structures that exhibit equivalent behavior, by a process
called black box expansion.

When people or organizations deal at ‘‘arms length,’’ that is, without a
common organization objective or control, they are behaving as a black
box structure. Even within an organization it may be desirable to put
different units at arms length for purposes of decentralization, simplifica-
tion, security, etc., with the result of creating black box structures.

In illustration, consider the job cost function for a carpet company,
which can be represented as the black box depicted in Figure 2.5-14. The
Job cost black box accepts a carpeting job description as input and pro-
duces the total cost of the job as output. If the cost of materials and the
cost of labor are independent, the Job cost black box can be expanded
into a black box sequence structure with equivalent behavior, as shown in
Figure 2.5-15.

74 2. The Black Box Behavior of Information System

Job cost

Job —— Total cost
description of job

Figure 2.5-14. Job Cost Black Box.

Job cost
Material Labor
cost cost
Job description
and cost of materials
Job = Total 1
description cost of job

Figure 2.5-15. Sequence Expansion of the Job Cost Black Box.

The input for the Material cost black box is the job description; the output
is the job description and the cost of material. The input for the Labor}
cost black box is the output of the Material cost black box; the output is}
the total cost of the job. Note that the Material cost black box must pass}
the job description through as input to the Labor cost black box to make;
the black box sequence structure function properly. ‘

In turn, the Material cost black box may have additional structure,
based on which of two suppliers may be used for the carpeting, for exam-
ple, based on the size of the job. In this case, the Material cost black box 3
can be expanded into an alternation structure with equivalent behavior, as
shown in Figure 2.5-16. In turn, each of the Big supplier, Small supplier,f
or Labor cost black boxes might be expanded further.

Note that the communication of information in a black box structure is
strictly limited to stimuli received from and responses passed to adjacent
black boxes. A black box in a black box structure has no knowledge of the }
transitions of any other black boxes beyond the stimuli it receives, and {
conveys no knowledge of its own transitions beyond the responses it
produces. For example, the two black boxes of Figure 2.5-16 operate at §
arms length on the basis of a response-to-stimulus connection, with no §
other sharing of information possible. Thus, the Labor cost black box j
cannot know which of the two suppliers was selected for a given job.

2

5 Black Box Structures

Job cost

Material cost

Big supplier

Job -
description

Job description and
cost of materials

Labor
cost

Small supplier

75

-» Total cost

ef job

Figure 2.5-16. Alternation Expansion of the Material Cost Black Box.

design.

Fundamental Principle:

In constructing a system as a black box
structure, details of behavior can be localized to individual black
boxes for greater security, separation of concerns, and clarity of

An alternate design is possible for the Job cost box structure which
illustrates the use of concurrency in box expansions. First, Figure 2.5-17
depicts a new sequence expansion of the Job cost black box of Figure

Job cost

Job

Cost
determination

description

Cost of materials
and labor

Cost
summation

Total cost

Figure 2.5-17. A New Expansion of the Job Cost Black Box.

of job

76 2. The Black Box Behavior of Information Syst

Job cost

Cost determination

Material
cost
Cost
I Cost of summation
materials and]

Job labor > -» Total cost
description of job

Labor

cost

Figure 2.5-18. Concurrent Expansion of the Cost Determination Black Box.

2.5-14 in which the first part is to determine the cost of both materials and§
labor, the second to sum them up. §

The Cost determination black box cannow be expanded into a concuq
rent structure, as shown in Figure 2.5-18. This expansion is possibl f
because the transitions of the Material cost and Labor cost black boxeg
are independent, given the common job description stimulus. This cond
current box structure reveals an opportunity to simultaneously assign thej
costing operations to, say, two groups within a contracting department §
thereby decreasing the time required to cost a job and improving response]
to customers. 3

Fundamental Principle: The analysis of black box structures
may reveal opportunities for concurrency that result in more ef-
fective business operations.

Summary: Black boxes can be combined into new black box
sequence, alternation, iteration, and concurrent structures whose
behavior can be analyzed through transition formulas. Structures
of black boxes lead to complex behaviors. Black boxes can be
expanded into black box structures that exhibit equivalent be-
havior.

2.6 Introduction to Box Description Language 77

2.6 INTRODUCTION TO BOX DESCRIPTION LANGUAGE

Preview: A Box Description Language (BDL) is introduced to
express black boxes and black box structures. BDL consists of a
fixed outer syntax of keywords and typography and a flexible
inner syntax of business English and math appropriate to the
problem at hand.

2.6.1 The Idea of Box Description Language

Because of the size and complexity of information systems and the
number of people required to develop and use them, precise communica-
tion of system behavior and structure is crucial to success. Box structures
provide a theoretical foundation for information systems development
and use, and Box Description Language, or BDL, provides a correspond-
ing language for recording, communicating, and analyzing box structures
among developers, users, and managers of information systems.

Box Description Language is an open-ended specialization of natural
language. It contains textual forms for black box, state machine, and clear
box analysis and design. Each form is defined in terms of a fixed outer
syntax that deals with overall structure and organization and a flexible
inner syntax that deals with specific objects and operations within outer
syntax structures. Outer syntax is defined by keywords in a tabular typo-
graphic format. Inner syntax is expressed in natural language or in spe-
cialized notation appropriate to the problem at hand.

2.6.2 Black Boxes in BDL

BDL accommodates two design steps for black boxes, namely, black
box definition and black box invocation. ‘

Black Box Definition. A black box definition in BDL prescribes be-
havior in terms of transitions from stimulus history to response, with the
usual understanding that the current stimulus becomes the latest member
of the stimulus history for the current transition. The BDL syntax for a
black box definition is

define BB <BB name>
stimulus
<stimulus name>:<type>
response
<response name>:<type>
transition
<BB transition>

78 2. The Black Box Behavior of Information Syste 4

with outer syntax keywords define BB, stimulus, response, and transitiog
The fixed indentation structure serves to display the definition parts fq
better readability. The angle brackets (<,>) enclose generic names fg
parts of syntax that must satisfy further syntax rules. In this case, <B}j
name> is the name of the black box, <stimulus name> and <type:
describe the stimulus, <response name> and <type> describe the rd
sponse, and <BB transition> describes the transition of the black box.
<type> definition prescribes permissible values of a data item as, fof
example, shown in Table 2.6-1.

In BDL, the stimulus history of a black box has the form

<stimulus name>.0, <stimulus name>.1, <stimulus name>.2, ...

where <stimulus name>.0 refers to the current stimulus, <stimul '
name>.1 refers to the previous stimulds, <stimulus name>.2 refers t§
the next previous stimulus, etc. This sequence is finite for finite blac]
boxes, but otherwise can grow without limit. Where no misunderstandin]
can arise, references to the ~urrent stimulus can be abbreviated to <sting
ulus name>. Thus, for stimuli named K, K.1 and K.4 refer to the first ang
fourth predecessor stimuli, respectively. The advantage of this notation if
that the absolute index, from the beginning of the stimulus history (e.g
K(), K(i — 1), etc.) is not needed. The indexes used in the BDL languagy
are relative to the current stimulus.

In illustration, the Add2 black box can be defined in BDL as

define BB Add?2
stimulus
S:number
response
R:number
transition
R:=S.0 + S.1

where the stimulus is named S of type number and the response named R;
likewise of type number. In this case, the transition is defined by a da
assignment. A data assignment in BDL has the general form

<variable> := <expression>

where the inner syntax <expression> is computed and assigned to thd
item represented by the inner syntax <variable>. Thus, in the Add3}
example, R is assigned the value of the expression on the right, namely
the sum of the current stimulus and the latest member of the stimulug

26 Introduction to Box Description Language 79

Table 2.6-1
Data Type Examples

Type Values
Hour 1,2,...,24
Number Digit strings
Word Letter strings
Day Sun.,Mon.,...,Sat.
Weekday Mon.,Tues.,...,Fri.
Region Northeast,Northwest,

Southeast,Southwest

history. The names S and R were selected for their mnemonic value, but
such interpretations can be misleading. For example,

define BB Sub2
stimulus
R:number
response
S:number
transition
S:=R.0 +R.1 '

likewise defines the behavior of Add2! In short, names are simply place-
holders in BDL. It is the transitions themselves that define black box
behavior, and not the names used to define them. Nevertheless, names
should be chosen with care, to help suggest correct interpretations to the
reader.

The data assignment of the Add2 transition could likewise be ex-
pressed in natural language

transition
Set the response to the sum of the current and previous stimuli

with no loss of equivalence. The expressive forms chosen for defining
black box transitions depend on the subject matter and intended audience,
just as does all human communication. Another useful representation for
the Add2 transition would be the transition formula stated as an equation

transition
R(@i) = S(i) + Sti — 1)

As noted previously, the equal sign (=) denotes equality, not assign-
ment.

80 2. The Black Box Behavior of Information Sy

Whatever forms are used, the objective is completeness and precis
Any transition definition that excludes possible behavior or includes
possible behavior is simply incorrect, and can lead to confusion amgd
users and developers alike. Transition definition should be a major fog
of intellectual effort in information systems development. But, howe§
transitions are described, the same test for completeness can be appli

Transition Completeness Rule: A black box transition must de-
fine all possible responses from all possible stimulus histories.

The black box for Max2 can be defined as

define BB Max2
stimulus
S:number
response
R:number
transition
R := max(S.0, S.1)

where the reader is expected to know that max is a short name for 4
operation that produces the maximum of two arguments, namely, S.0 ax
S.1. An equivalent transition could be expressed as

transition
S0=S.1—-R:=S.0[S.0<S.1>R:=8.1

read “‘If S.0 is greater than or equal (=) to S.1, then (—) set R to the vald
of S.0, otherwise (|) if S.0 is less than (<) S.1, then (—) set R to the valu
of S.1.”” Such an expression is known as a conditional assignment, wit]
general form

condition — assignment | condition — assignment | ...

with the understanding that evaluation proceeds from left to right, and thi
first condition satisfied results in execution of the corresponding assigt
ment. Conditional assignments can be easily expressed in equivalent naf
ural language form for more general audiences, with no loss of precision}

Black boxes can be specified in BDL at various levels of abstractiof§
For example, an abstract specification of a hand calculator black bo}
could be written as follows:]

define BB Hand calculator
stimulus
I:proper string

-

2.6 Introduction to Box Description Language 81

response
O:number
transition
O := value of arithmetic expression in I

where proper string is defined as any valid arithmetic expression (without
parentheSiS) delimited by C and =. That is, the function of a hand calcula-
tor is to evaluate arithmetic expressions. A concrete specification for this
hand calculator will describe, stimulus by stimulus, how numbers are
displayed, as built up a digit at a time. But any such concrete specification
only represents a method of creating an input, using good human engi-
neering principles to assist the user in creating the input.

Note also the extra explanation of input I as a proper string. It is
possible that the term arithmetic expression needs more explanation as
well, for example, in describing the forms numbers can take (decimal
points or not, etc.) and the arithmetic functions permitted. A complete
abstract specification will settle all such questions, so that the exact
meaning of the term proper string is fully defined, rather than leaving it to
implementation. On the other hand, the concrete specification may be left
to implementation. If the abstract specification is satisfied, the function of
the hand calculator will be achieved, while the concrete specification can
be designed to make the hand calculator as easy to use as possible. The
variations in the concrete specifications of hand calculators represent
different attempts to be user friendly in concrete specification.

In further illustration, consider the carpet company example given as a
clear box structure in the preceeding section. Its black box definition is

define BB Job cost

stimulus
Job description : carpet type and dimensions

response
Total cost of the job : dollars

transition
Determine total cost of the job, including cost of labor

and materials, from job description

Note that Job cost is a finite black box of order I in this definition,
since previous job descriptions will not affect the total effect of this job.
But note, also, that a concrete specification which might be used to key-
stroke the stimulus job description into a terminal, with as many correc-
tions as required, would not be a finite black box, since any number of key
strokes might be required (with corrections) for entering the job descrip-
tion. That is, the finiteness of the black box may be relative, depending on
the granularity of the data entry defined.

78 2. The Black Box Behavior of Information Systems

with outer syntax keywords define BB, stimulus, response, and transition.
The fixed indentation structure serves to display the definition parts for
better readability. The angle brackets (<,>) enclose generic names for
parts of syntax that must satisfy further syntax rules. In this case, <BB |
name> is the name of the black box, <stimulus name> and <type>
describe the stimulus, <response name> and <type> describe the re- |
sponse, and <BB transition> describes the transition of the black box. A |
<type> definition prescribes permissible values of a data item as, for |
example, shown in Table 2.6-1.

In BDL, the stimulus history of a black box has the form

<stimulus name>.0, <stimulus name>.l, <stimulus name>.2, ...

where <stimulus name>.0 refers to the current stimulus, <stimulus |
name>>.1 refers to the previous stimulas, <stimulus name>.2 refers to .
the next previous stimulus, etc. This sequence is finite for finite black ;
boxes, but otherwise can grow without limit. Where no misunderstanding
can arise, references to the ~urrent stimulus can be abbreviated to <stim- -
ulus name>. Thus, for stimuli named K, K.l and K.4 refer to the first and
fourth predecessor stimuli, respectively. The advantage of this notation is |
that the absolute index, from the beginning of the stimulus history (e.g., |
K(i), K@i — 1), etc.)is not needed. The indexes used in the BDL language
are relative to the current stimulus.
In illustration, the Add2 black box can be defined in BDL as

define BB Add2
stimulus
S:number
response
R:number
transition
R:=S.0 + S.1

where the stimulus is named S of type number and the response named R,
likewise of type number. In this case, the transition is defined by a data
assignment. A data assignment in BDL has the general form ;

<variable> := <expression>

where the inner syntax <expression> is computed and assigned to the
item represented by the inner syntax <variable>. Thus, in the Add2
example, R is assigned the value of the expression on the right, namely
the sum of the current stimulus and the latest member of the stimulus ;

2.6 Introduction to Box Description Language 79

Table 2.6-1
Data Type Examples

Type Values
Hour 1,2,...,24
Number Digit strings
Word Letter strings
Day Sun.,Mon.,..., Sat.
Weekday Mon.,Tues....., Fri.
Region Northeast,Northwest,

Southeast,Southwest

history. The names S and R were selected for their mnemonic value, but
such interpretations can be misleading. For example,

define BB Sub2
stimulus
R:number
response
S:number
transition
S:=R.0 +R.1

likewise defines the behavior of Add2! In short, names are simply place-
holders in BDL. It is the transitions themselves that define black box
behavior, and not the names used to define them. Nevertheless, names
should be chosen with care, to help suggest correct interpretations to the
reader.

The data assignment of the Add2 transition could likewise be ex-
pressed in natural language

transition
Set the response to the sum of the current and previous stimuli

with no loss of equivalence. The expressive forms chosen for defining
black box transitions depend on the subject matter and intended audience,
just as does all human communication. Another useful representation for
the Add2 transition would be the transition formula stated as an equation

transition
R(G) = SG) + SG — 1)

As noted previously, the equal sign (=) denotes equality, not assign-
ment.

80 2. The Black Box Behavior of Information Systems .

Whatever forms are used, the objective is completeness and precision. |

Any transition definition that excludes possible behavior or includes im-

possible behavior is simply incorrect, and can lead to confusion among |
users and developers alike. Transition definition should be a major focus

of intellectual effort in information systems development. But, however
transitions are described, the same test for completeness can be applied.

Transition Completeness Rule: A black box transition must de-
fine all possible responses from all possible stimulus histories.

The black box for Max2 can be defined as

define BB Max2
stimulus
S:number
response
R:number
transition
R := max(S.0, S.1)

where the reader is expected to know that max is a short name for an
operation that produces the maximum of two arguments, namely, S.0 and '

S.1. An equivalent transition could be expressed as

transition
S0=S1—->R:=S0[S.0<S.1—>R:=8S.1

read “‘If S.0 is greater than or equal (=) to S.1, then (—) set R to the value

of S.0, otherwise (|) if S.0 is less than (<) S.1, then (—) set R to the value |

of S.1.”” Such an expression is known as a conditional assignment, with
general form

condition — assignment | condition — assignment | ...

with the understanding that evaluation proceeds from left to right, and the

first condition satisfied results in execution of the corresponding assign- |

ment. Conditional assignments can be easily expressed in equivalent nat-
ural language form for more general audiences, with no loss of precision.

Black boxes can be specified in BDL at various levels of abstraction. |

For example, an abstract specification of a hand calculator black box
could be written as follows:

define BB Hand calculator
stimulus
I:proper string

o

TP e

o~ e oy e

2.6 Introduction to Box Description Language 81

response
O:number

transition
O := value of arithmetic expression in I

where proper string is defined as any valid arithmetic expression (without
enthesis) delimited by C and =. That is, the function of a hand calcula-
tor is to evaluate arithmetic expressions. A concrete specification for this
hand calculator will describe, stimulus by stimulus, how numbers are
displayed, as built up a digit at a time. But any such concrete specification
only represents a method of creating an input, using good human engi-
neering principles to assist the user in creating the input.
Note also the extra explanation of input I as a proper string. It is
ossible that the term arithmetic expression needs more explanation as
well, for example, in describing the forms numbers can take (decimal
points or not, etc.) and the arithmetic functions permitted. A complete
abstract specification will settle all such questions, so that the exact
meaning of the term proper string is fully defined, rather than leaving it to
implementation. On the other hand, the concrete specification may be left
to implementation. If the abstract specification is satisfied, the function of
the hand calculator will be achieved, while the concrete specification can
be designed to make the hand calculator as easy to use as possible. The
variations in the concrete specifications of hand calculators represent
different attempts to be user friendly in concrete specification.
In further illustration, consider the carpet company example given as a
clear box structure in the preceeding section. Its black box definition is

define BB Job cost

stimulus
Job description : carpet type and dimensions

response
Total cost of the job : dollars

transition
Determine total cost of the job, including cost of labor

and materials, from job description

Note that Job cost is a finite black box of order 1 in this definition,
since previous job descriptions will not affect the total effect of this job.
But note, also, that a concrete specification which might be used to key-
stroke the stimulus job description into a terminal, with as many correc-
tions as required, would not be a finite black box, since any number of key
strokes might be required (with corrections) for entering the job descrip-
tion. That is, the finiteness of the black box may be relative, depending on
the granularity of the data entry defined.

82 2. The Black Box Behavior of Information Systen '
Black Box Invocation. Black boxes can be invoked in BDL by pla
box statements of the form]
use BB <BB name> (<stimulus name>; <response name>)

where the keyword use BB means ‘‘carry out a transition of the black bof
with name <BB name>, given stimulus <stimulus name> and producin
response <response name>."" For example, the black box statements 3

use BB Add2 (i;))
and
use BB First (i;))

invoke black box transitions using data objects i, j for stimulus, response‘
respectively. Thus, for stimulus history 36 196 and i = 2, :

use BB Add2 (2;))
sets j to 8, and
use BB First (2;))

sets j to 3 (sets j to the first stimulus).

In the case of the carpet Job cost black box, its invocation takes th
form g

use BB Job cost (job description; total cost of the job)
or, more indirectly

use BB Job cost (memo; cost)

where memo is some job description and cost will be regarded as the total
cost of the job. That is, the stimulus and response can be given any namesj
whatsoever, but must conform to the type of objects in the define B 3
statement. In contrast, the name Job cost is the one and only name whic
refers to the Job cost black box. ~

Figure 2.6-1. Procedure Statement.

2.6

2.

ite

Fig
do :
pro

sep.

Hor

is
tabi

2.6 Introduction to Box Description Language 33
2.6.3 Black Box Structures in BDL

Black box structures invoke black boxes in sequence, alternation, and
jteration control structures. The BDL syntax for a black box structure jg

define BB <BB name>

stimulus

<stimulus name> : <type>
response

<response name> : <type>
proc

<procedure statement>
corp

where keywords proc and corp (proc, spelled backward) delimit the syn-
tax part <procedure statement> (PS for short), and where <procedure
statement> is itself subject to additional syntax rules. A procedure state-
ment is the fundamental unit of black box structure, a single entry/single
exit structure as depicted in Figure 2.6-1. A procedure statement in a
black box may be a black box statement as defined above or a control
statement. The black box control statements of sequence, alternation,
iteration, and concurrency represent single entry/single exit control struc-
tures.

THE BDL SEQUENCE CONTROL STRUCTURE

The BDL syntax for the sequence control structure is depicted in
Figure 2.6-2 as the do statement. The statement is delimited by keywords
do and od (do, spelled backward), and defines successive invocation of
procedure statements, separated by semicolons.

Ordinarily, each keyword and procedure statement is written on a
separate line, with the procedure statements indented for readability.
However, the linear do statement

do PS1; PS2 od

is correct and has the same meaning. The linear form saves space, but the
tabular form is more useful for documentation and description in realistic

BDL Statement Control Structure
do
PS1;
PS2 PSI PS2
od
S R

Fisure 2.6-2. The BDL. do Statement.

84 2. The Black Box Behavior of Information Syste

examples. The individual procedure statements PS1, PS2, ... are call
partl, part2, ... of the do statement.
The linear statement

do PS1 od

is also correct, consisting of a do statement with only one procedur
statement. It will have the effect of PS1, itself, in any procedure. Th
linear statement

do od

is also correct, containing no procedure statements with no effect. It wil
be useful to have a name for this, namely, the null statement, literally n
procedure statement. In this case, do od contains a single null statement
In further illustration,

do PS1; PS2; PS3; od
contains four statements, the fourth one being a null statement, and
do; PS1 od

contains two statements, the first one being a null statement. As a result
of this definition of null statements, semicolons may be inserted any where
in a do statement without effect.

In illustration, the first decomposition of the black box structure for!
Job cost can be described in the form:

define BB Job cost
stimulus
Job description : carpet type and dimension
response
Total cost of job : dollars
proc
do
use BB Material cost (job description ; job description
and cost of material);
use BB Total cost (job description and cost of material;
total cost of job)
od
corp

where definition for black boxes Material cost and Total cost have been
given as follows:

define BB Material cost
stimulus
Job description : carpet type and dimensions

2.6 Introduction to Box Description Language 85

response
Job description and cost of material : carpet type and
dimensions and dollars
transition
Determine cost of materials from job description and pass
on the description
define BB Total cost
stimulus
Job description and cost of material : carpet type and
dimensions and dollars
response
Total cost of job : dollars
transition
Determine total cost of the job including labor from job
description and cost of material

Note that response from Material cost must exactly match (in name) the
stimulus to Total cost.

THE BDL ALTERNATION CONTROL STRUCTURE

Procedure statements in an alternation control structure are usually
written in indented text form, delimited by keywords if, then, else, fi (if.
spelled backward), shown in Figure 2.6-3 as the if statement.

However, the linear statement

if C then PSI else PS2 fi

BDL Statement Control Structure
if
C
then PSI
PS1
else
PS2 -
fi
T
S — C > R
PS2
F

Figure 2.6-3. The BDL if Statement.

86 2. The Black Box Behavior of Information Systenn'

is correct and has the same meaning. The thenpart (PS1) is executed if the;
condition is true, otherwise the elsepart (PS2) is executed. 3

If the else branch (PS2) is a null statement, then the else keyword and]
the null statement can be omitted. That is, ‘

if C then PS1 fi

The condition C is called the if condition, and the individual procedure]
statements PS1, PS2 are called the thenpart, elsepart of the if statement. }
In the carpet company illustration, the black box Material cost was]
itself given as a black box alternation structure in the form:

define BB Material cost
stimulus
Job description : carpet type and dimensions
response
Job description and cost of material: carpet type and
dimensions and dollars
proc
if
size is big
then
use BB Big supplier (job description; job description
and cost of material)
else
use BB Small supplier (job description; job description
and cost of material)
fi
corp

and the black boxes Big supplier and Small supplier have been defined §
accordingly. 3

THE BDL ITERATION CONTROL STRUCTURE

Procedure statements in an iteration control structure are written in:
indented text form, delimited by keywords while, do, od (do, spelled
backward), and are shown in Figure 2.6-4 as the while statement.
The linear statement

while C do PS od

is also correct and has the same meaning. The dopart (PS) is executed if
the condition is true, otherwise if the condition is false, the response is §
produced directly, and is identical to the stimulus.

2.6

itec
of
cor
wh
fori

are

troduction to Box Description Language 87

2.6 In
BDL Statement Control Structure
[E— P
while
C
do
PS
od PS
T
S ' N R
,\/ »

Figure 2.6-4. The BDL while Statement.

THE BDL CONCURRENT CONTROL STRUCTURE

The procedure statements in a concurrent control structure are delim-
ited by the keywords con and noc as shown in Figure 2.6-5. Any number
of concurrent procedure statements (PS) may be present, separated by
commas. The completion of the concurrent structure is signaled by noc, at
which point all concurrent statements are completed and all responses are
formed.

Compound BDL Structures. Because the BDL control statements
are themselves procedure statements, they can be nested and sequenced

BDL Statement Control Structure
con
PSI1,
PS2 PS|
noc
S » R
PS2
—

Figure 2.6-5. The BDL con Statement.

88 2. The Black Box Behavior of Information Systems

in any pattern whatsoever in compound control structures. The do-od
delimiters of nested sequence structures can be suppressed, if delimited
by the keywords of their containing structures. Thus, '

proc proc
do PSI;
PSI; is equivalent to PS2
PS2 corp
od
corp
and
if if
C C
then then
do PSI;
PSI1; PS2
PS2 is equivalent to else
od PS3;
else PS4
do fi
PS3;
PS4
od
fi

In illustration, the entire black box structure for Job cost is defined as:
follows: ’

define BB Job cost
stimulus
Job description : carpet type and dimensions
response
Total cost of job : dollars
proc
if
size is big
then
use BB Big supplier (job description; job description
and cost of material)
else
use BB Small supplier (job description; job description

and cost of material)
fi;

2.6

Se:
in !
stri

isa
ture
the

of tl

2.6 Introduction to Box Description Language 89

use BB Total cost (job description and cost of material:
total cost of job)

corp

Sequence and alternation control structures must ultimately be expressed
in terms of black box statements. For example, the following black box

structure

define BB Sample
stimulus
S: number
response
T: number
proc
if
S odd
then
use BB Add2(S;R)
else
use BB Max2(S;R)
fi;
if
R even
then
use BB Max2(R:T)
else
use BB Add2(R;T)
fi
corp

is a sequence structure whose partl and part2 are both alternation struc-
tures which invoke black boxes Add2 and Max2. What is the behavior of
the black box structure? To find out, first determine the behavior of each
of the sequence parts, then combine to derive the overall behavior.

Summary: Black boxes can be expressed in a clear and concise
format in BDL.. The black box stimulus and response are related
by the description of a transition in the form of English and math-
ematics appropriate to the problem. Black box structures are de-
fined in BDL by the syntax rules of sequence, alternation, itera-
tion, and concurrent structures.

90

EXERCISES

1.

Which of the following devices exhibit black box behavior?

(a)
(b)
(©
d)
(e)
43
(g)
(h)
(i)

Discover and discuss properties of black box behavior such that

(a)
(b)
(c)
(d)
(e)

Explain the following black box behaviors of devices with user inter- §
faces like that of Figure 2.1-2. What part of its stimulus history must §
each device remember in order to exhibit consistent behavior?

2. The Black Box Behavior of Information Systems?

A clock with a button to display current time

A counter with a button to add one to current count
A word processor

An automatic chess player

A human chess player

A combination lock

A key lock

A telephone

A smoke alarm

3rd previous stimulus

previous response

3rd previous response

number of stimuli since the maximum stimulus
previous response plus current stimuli

response :
response ;=
response ;=
response ;=
response :=

Device 1
Stimulus

Response
Device 2
Stimulus

Response
Device 3
Stimulus

Response

Device 4
Stimulus

Response
Device 5
Stimulus

Response

2
11

29

1 7 4
12 10 12

1 7 4

12 17 47 24 25 58

9
“wn A
wW N
W W

—
(=]
(=]
(=]

2 5 8
13 11 15

2 5 8

02240
300

91

Exercises

4.

10.

11.

Which of the following are finite black boxes, and what is the order
of each finite black box?
Min: Response is minimum of stimuli accepted
Double: Response is double the stimulus
Add3: Response is sum of previous 3 stimuli
AddEvens: Response is sum of previous 2 even stimuli

Consider a black box MaxPD (Previous Day) that returns the maxi-
mum hourly load of the previous calendar day (not the last 24 hours),
what is the order of MaxPD?

What is the difference between a transition and a transaction in a
word processing system?

Is there a difference between a transition and a transaction in Add2
(assuming the user cannot add)?

Assuming the user has a short memory and can remember only the
current stimulus, what are transactions in the black boxes of Section
2.1.4?

(a) Echo

(b) Previous

(c) Constant

(d) First

(e) Max

Some hand calculators display the last operator (+,—,...,=) keyed
in. Do they exhibit the same or different black box behavior as hand
calculators that do not display operators?

Can you develop a procedure for use of a hand calculator whose
clear key is missing?

In using a hand calculator for addition, entries are made for the first
number, the operator (+), and the second number. When the = key
is depressed, the hand calculator determines the result and displays
it. At that point, depressing the + or = key may reveal some unan-
ticipated black box behavior of the hand calculator. What responses
do you get for the following stimulus histories?

@ C3+9==-=

(b) C3+9=6 =

c) C3+9+ + +

What do the responses tell you about the black box behavior of the
hand calculator? Invent some stimulus histories of your own to in-
voke unusual black box behavior.

What is the black box behavior of your hand calculator in accepting
and calculating numbers that overflow its display?

92 2. The Black Box Behavior of Information Systems

13. Identify three black boxes you have interacted with in the pas
week. E

14. Discuss the role of education in a black box description of a person,'

Given additional black boxes Min2 (response R is the minimum of the
last two stimuli) and Prod2 (response R is the product of the last two]
stimuli), what is the behavior of the following black box compositions for
stimulus history (3 6 1 9 6)? What is the transition formula in each case?}

15. Sequence Structures
(a) Min2;Max?2
(b) Max2;Min2
(c) Prod2;Min2
(d) Prod2;Max2
(e) Max2;Prod2

16. Alternation Structures

(@) 0Odd:Min2|Max2
(b) 0Odd:Prod2|Prod2
(c) 0Odd:Min2|Prod2
(d) 0Odd:Prod2|Min2
(e) Odd:Add2|Echo

17. Iteration and Concurrent Structures

(a) #*0Odd:Prod2
(b) *0Odd:Min2
(c) Add2||Prod2
(d) Prod2||Min2
(e) =*0Odd:First
18. Compound Structures
(a) 0Odd:(Min2;Max2)|(Max2;Min2)
(b) 0Odd:(Add:Min2|Max2)|Prod2
(c) (0dd:Min2|Min2);Min2
(d) Max2;(0dd:Max2|Max2)
(e) (Add2;Add2);Add2

19. Expand the Labor cost black box in Figure 2.5-16 based upon the]
following considerations. Travel time is billed at a different rate from |
site time. In calculating labor costs at the site, big jobs (greater than §
1000 square feet) are billed at a lower rate than small jobs. 3

20. Decide which of these black box structures define the same black(
box.

(a) (Add2;Add2);Add2
(b) Add2;(Add2;Add2)

Exercises 93

21.

22.

23.

25.

(c) (Add2;Max2);Add2

(d) Add2;(Max2;Add2)

(e) (Max2;Add2);Add2

Define the black boxes Add2, Max2, Min2, Prod2, RA12, and Max24
using BDL syntax.

Describe the black box structures in exercises 15 through 18 using
the appropriate BDL syntax.

The black box Score computes the mean of the last 10 scores (stim-
uli) after eliminating the maximum and minimum scores of the last
10.

(a) Use black box BDL to describe Score.

(b) Expand Score as a black box structure with the sequence and
alternation structures using simpler black boxes. Use black box
BDL to describe Score and black box BDL for the component
black boxes.

(c) Derive Score from (b) to validate that the resulting black box
transition is identical to that of the Score black box in (a).

Consider the following BDL black box specification containing a
structured English transition.

define BB Accsmall

stimulus

S, T, U : number
response

R : number
transition

Find the smallest of the three stimuli and set R to the
running sum of the smallest numbers.

(a) Expand a black box structure for Accsmall that contains sim-
pler black box structures. Use BDL for the design. Provide
transition formuli for all black boxes used.

(b) Derive the structure from part (a) to find a transition formula for
Accsmall in terms of stimulus history and response.

We have seen that a computer system can be described as a black

box. How then can we use a computer to simulate non black-box
behaviors, such as a roulette wheel or a temperature indicator?

Chapter 3 The State Machine Behavior
of Information Systems

3.1 STATE MACHINE BEHAVIOR

Preview: A state machine is an alternate form of description of a
system that substitutes internal storage for the stimulus history of
its black box. Any system that exhibits black box behavior can be
described as a state machine.

3.1.1 Describing Black Boxes as State Machines

In Chapter 2, we learned that a black box can return different re-
sponses to the same stimulus at different points in time, and that the
response of a black box depends not only on its current stimulus, but on
its stimulus history as well. So our model of a black box in Chapter 2 can 4
be restated in the transition

(stimulus, stimulus history) — (response, new stimulus history)

where ‘‘new stimulus history’’ is simply ‘‘stimulus’’ appended to ‘‘stimu-
lus history’’, and is understood to replace ‘‘stimulus history’’ for the next
transition.

94

3.1 State Machine Behavior 95

Now a black box stimulus history can grow indefinitely large, and any
real mechanism—a hand calculator, a personal computer, or a business
jnformation system, for example—will eventually be saturated and un-
able to retain too large a history. And of course, black box descriptions of
calculator, computer, or information system behavior would quickly be-
come unwieldy for stimulus histories of any size. So as a practical matter,
it would be useful to have another description of black box behavior that
does not depend on explicit recording of stimulus histories. Fortunately,
such a description is available. It is called a state machine.

A state machine is defined by a state, which incorporates the stimulus
history, and a machine, another (usually simpler) black box that carries
out the transitions, of the state machine. So a black box that converts any
stimulus history into a response can be simulated by a state machine that
converts the stimulus and the state into a response and a new state. Of
course, only the response will be visible to the user, not the new state.
This new state will then become the current state for converting the next
stimulus into a response and another new state. Such a state machine
description is diagrammed as Figure 3.1-1.

Note that the machine in the figure takes in both the current stimulus
and state and then produces a response and a new state which replaces
the current state. The next stimulus triggers the machine to take in that
stimulus and the new state it produced on the last transition, to produce
the next response and the next new state. Thus, our previous model of a
black box,

(stimulus, stimulus history) — (response, new stimulus history)
can be replaced by a new model,

(stimulus, state) — (response, new state)

State machine

State <= 7

Machine

"
I
i

A

Figure 3.1-1. State Machine.

¢

96 3. The State Machine Behavior of Information Systems 3

where ‘‘new state’’ is understood to replace ‘‘state’’ for the next transi-
tion. That is, the machine of a state machine is itself a black box with a |
complex, two-part stimulus and a complex, two-part response. The two-
part stimulus of the machine black box is the stimulus and state of the }
state machine; the two-part response is the response and new state of the i
state machine. ‘

Does every black box have a state machine description, or is there }
some conceivable black box for which a state machine description is }
insufficient? The answer is that a state machine description is possible for }
any black box whatsoever, because in the state machine definition

(stimulus, state) — (response, new state)
the state simply represents the stimulus history, so we can write, instead,]
(stimulus, stimulus history) — (response, new stimulus history) ‘

to recover the original definition.

Fundamental Principle: Every black box can be described by a
state machine.

3.1.2 State Machine Transitions

If the state of a state machine simply replicated the entire stimulus
history of a black box, then a state machine description would be as
cumbersome as one based directly on stimulus history. So again, as a’}
practical matter, the state of a state machine description of a black box §
should be defined as a summarization, or abstraction, of the stimulus §
history. 3

In general, many different abstractions of a stimulus history are possi-
ble, and the abstraction must be defined with care, so as to permit thej
calculation of the black box responses. For example, consider again the §
Add2 black box. A natural state choice is to define the state as the pre-
vious stimulus. Given this state definition, a rule for the machine of the]
state machine to follow for each transition from (stimulus, state) to (re-}
sponse, new state) can be defined. This machine transition rule for the |
Add2 state machine is given by the following assignments: '

response := stimulus + state
state := stimulus

I/ N o)

or

for

3.1 State Machine Behavior 97

with these definitions for the state and the machine, the successive

transitions of the Add2 state machine, with initial state 0,
L]

Stimulus Response

Ao - AW
“»n O NV Ww

—_——

can be diagrammed as in Figure 3.1-2. Note that after each transition the
state value is replaced with just the right portion of the stimulus history to
permit a correct computation on the following transition. The state will
simply retain that value until the next transition is invoked by the user,
whether in the next minute or the next month. As can be seen, this simple
state definition permits behavior equivalent to an Add2 black box with
access to its entire stimulus history.

The diagrams of Figure 3.1-2 are themselves cumbersome, and the
transition sequences they depict are more conveniently expressed in the
equivalent tabular form

(stimulus, state) — (response, new state)
as follows:

(3,0) > (3,3)
(6,3) = (9,6)
1,6) — (7,1)
9,1) — (10,9)
(6,9) — (15,6)

or, even more briefly, for any values X, Y,
X, Y)->(X+Y, X

Although this state machine for Add2 is very natural, it is not the only
one possible. As a variation, consider a new state definition in which the
state is double the previous stimulus. Then, for this state definition, a new
machine is required, namely,

response := stimulus + state/2
state := 2 * stimulus

That is, if the state definition is changed, the machine must be changed
for both the response and the new state.

98

3. The State Machine Behavior of Information System

Transition 3

Figure 3.1-2. Transitions of the Add2 State Machine for Stimulus History 361 9 6.

10]

Add2 Add?2
State State
r= 0 3 <-—-] r 1 9 .=
| : | ;
| |
|
: Machine | : Machine =
] 1
v, | -3 Y - !
Transition 1 Transition 4
Add2 Add2
State State
-3 6 ftn— — -
r 7 r—1° o
: | | |
: Machine l : Machine :
! - I 1
Transition 2 Transition S
Add2
State
- -6 1 e —
r 1
| |
I I
| Machine |
I
+ - ! » 7

15

31 State Machine Behavior 99
3.1.3 Finite State Machines

we have already defined a finite black box as a black box in which
every response can be determined from a finite stimulus history (whose
minimum length is the order of the black box). A state machine with a
finite number of states is called a finite state machine. As a practical
matter, we deal with finite state machines when we implement an informa-
tion system. The essential finiteness of computers and their limitations on
data size force the system to use a finite state. For example, we can define
a state variable, X, as an integer type. Conceptually, the set of possible
values of this state is infinite. Practically, however, the magnitude of the
state of X ranges from 0 to the largest integer representation in the com-

uter.

Note that finite black boxes and finite state machines are not synony-
mous. A finite black box can be described by a finite state machine, but
the converse is not so; a finite state machine description of a black box
does not guarantee it to be a finite black box.

To see the first relation that any finite black box can be described by a
finite state machine, recall the definition of a finite black box and its order
k. Consider the set of all stimulus histories of order k. With a finite
number of possibilities for each stimulus, this set of stimulus histories of
order k will be finite, and can serve as the set of states for the state
machine. Therefore, there exists a finite state machine which describes
the finite black box.

To see that the converse does not hold, consider the black box First,
which merely responds with its first stimulus, no matter what and how
many stimuli follow. First is not a finite black box, because there is no
maximum size stimulus history required to determine a response. Yet
First can be described by a finite state machine, whose state merely
contains the first stimulus.

It turns out to be very fortunate that the converse does not hold,
because many interesting and important nonfinite black boxes can be
described as finite state machines. In particular, the hand calculator, a
nonfinite black box, can be described as a finite state machine, as we shall
see.

3.1.4 The Master File Update State Machine

A common class of data processing system is built around a single
master file of records. For example, retail hardware stores, as customers
of wholesale distributors, would each have a record in a distributor’s

100 3. The State Machine Behavior of Information Systems

accounts receivable file. Such a record could contain the amount owed,}
credit limit, address, and other information about the customer. Each}
day, the customer charges can be collected in another file, called a trans-§
action file. Then, overnight, the data in the transaction file can be used to
update the master file and produce a report file. :

The master file can be used each month to create the customer’s]
monthly bills. Then, as payments come in, they can be collected in an-}
other transaction file, and this can be used each night to update customer
records, too. Thus far, we have discussed two kinds of inputs, charges?
and payments, and one kind of output, bills. But there are many more, for
example, new customers may be added, or.old customers deleted from
the master file. The sales manager and credit manager may want various {
kinds of tabulations and reports from the master file. :

Rather than attempting to name all possible inputs and outputs, we use:
the generic name transaction file for any input and report file for any:
output of a master file update. Each transaction file can begin with the §
kind of update required for the records that follow, and the computers
program that updates the master file can be guided accordingly. '

The foregoing description of a master file update data processing sys- §
tem defines a state machine as depicted in Figure 3.1-3. A master file |
update state machine has as its state a master file, such as receivables, |
inventory, or personnel records, and takes in an update, or transaction,
file containing any additions, deletions, and changes. The state machine
applies the updates to the master file and produces a file update report as:
output. '

The master file update state machine is a completely general model of ;
a black box. That is, any black box whatsoever can be described in the’
form of a master file update state machine! At first thought, this may seem §

Master file update
State : master file
= ~ 1
I |
| |
} File update program :
| |
Input: Y . I » Qutput:
Transaction File update
file report

Figure 3.1-3. The Master File Update State Machine.

con
will
stat
inte
tion
com
that

3.1

]
fact,
not t
of th
As a
com
bank
direc

A
simil
busir
conti
cess |
happ
syste
subje
state:
the e

31 State Machine Behavior 101

a surprising statement—that such a simple and standard data processing
operation as master file update encompasses the entire range of data
processing behavior—even the behavior of the information system of an
entire business. The reason this simple idea works is that it applies to a
wide range of events and information states and the update cycle can be a
day, a minute, or a second in online systems. For example, when the
counterperson of an electronics parts business receives an input from a
customer, the state of information of the business has been changed into a
new state—if ever so slightly, it is a new state. When the counterperson
returns an output to a customer, one transaction of input and state to
output and new state has been completed in this business information
state machine.

With its wide applicability, the state machine is a general model of
computer science and engineering. For example, every hardware device
will behave as a state machine. For a computer, the state is the whole
state of memory, including mass online storage, high speed memory,
internal registers, even the instruction counter. Each instruction execu-
tion changes that state ever so slightly. Thus, an add instruction in a
computer with a million bytes of storage will change only four bytes out of
that million, but it is a new state, nevertheless.

3.1.5 A Business Enterprise Exhibits State Machine Behavior

The state machine model can be applied to business operations. In
fact, any business has a state machine description. This is true whether or
not the business is well managed or even whether or not the management
of the business is conscious of the existence of state machine behavior.
As an entity, a business accepts and responds to stimuli. These stimuli
come from the outside world, from customers, vendors, the government,
banks, and other sources. The responses produced by these stimuli are
directed, in many instances, back toward the sources of the stimuli.

As a state machine, a business has many traits and characteristics
similar to those of people. To illustrate, as with a person, the state of a
business state machine is composed of its initial state, as altered by a
continuing, ongoing history of stimuli. As with people, the learning pro-
cess leads to continuing changes in state. This can be illustrated with what
happens to a business when it undertakes to develop a new information
system. The people associated with the information system project are
subjected to a whole new series of stimuli. The stimuli, in turn, affect the
states of the individual persons. Since the business itself is a composite of
the experiences of the people, the changes to the states of the people also

102 3. The State Machine Behavior of Information Syste:

affect the state of the business. Sources for these state-changing experi
ences include the sales and educational actitivites of computer and soft
ware vendors and interactions with future system users in the busines
organization. '

As a further point of similarity, the state of a business changes with th
shifting of the cumulative experiences of its people. For example,
people are hired and fired, the state of the business—as well as the way i
which a business will react to stimuli—is changed.

To illustrate, consider the situation of a counterperson within an elec-
tronics parts business. A different set of responses will come from thi
particular business state machine for customers who are served by differ
ent counterpersons. There can be vast differences in level and quality o
services based on experience or attitude of different counterpeople. Fo
example, if an experienced, conscientious counterperson leaves the busi
ness, the pattern of responses to stimuli in the form of customer orde
will change dramatically. An outside observer of this particular busines:
state machine may not know about the internal personnel status of th
business. However, an outside observer, such as a dissatisfied customer,
can infer the reasons for the changes in the same way that a system
analyst infers the behavior of a system from observations of its stimul
and responses.

Summary: A state machine represents the stimulus history of a
system in a state that is acted upon by a machine. Any black box
can be described as a state machine. The state machine view of
any business system provides the insights gained by separating
data (state) and processing (machine).

3.2 STRATEGIC USES OF STATE MACHINES

Preview: State machines can be used to model customer service
strategies in many business processes. A state machine whose
transactions and state data are sufficient to deal with all condi-
tions of its business use exhibits the crucial property of transac-
tion closure. State migration is an important strategy in expand-
ing state machines into clear boxes which introduce new black
box/state machine/clear box structures at the next level, and is
introduced using state machines alone.

as shc
machi
differe
expect
chines
value |

3.2 Strategic Uses of State Machines 103
3.2.1 A State Machine Model of Customer Service

In many businesses, customer service strategies must be carefully
planned in order to provide the best possible facilities. For example, in
planning a new bank branch, the number of teller windows represents a
potential level of customer service. When all tellers are busy, other cus-
tomers must wait. The longer customers must wait, the more likely they
are to take their business elsewhere. Customer waiting can be decreased
by planning more teller windows, but that costs money too. The question
of planning how many servers to provide for a service facility is very
common. How many toll booths for an entrance to an expressway? How
many reservation clerks answering an airlines telephone number? How
many pump islands in a gasoline service station?

In order to see how customer service in a multiserver facility can be
analyzed as a state machine, suppose that each bank customer requires
one minute to be served. Then we can define a customer service state
machine with a number of servers N, stimulus C (customers arriving in a
given minute), response S (customers served during this minute), state W
(customers waiting at the beginning of this minute) and machine M

M: S := min(N,W)
W:=W + C — min(N,W)

as shown in Figure 3.2-1. The black box of this Customer service state
machine gives an overall view of how the service facility works. It is a
different black box for each value of N. Given a stimulus history (of
expected customer traffic), these different black boxes (and state ma-
chines) can be compared for their specific performance, and the best
value of N chosen.

Customer service

Figure 3.2-1. Customer Service State Machine.

104 3. The State Machine Behavior of Information Systemf

Table 3.2-1

Customer Service at Three Levels of Service

N

2 3 4
cC wW S cC wW S cC wW S

3 3 3
3 4 2 3 3 3 3 3 3
5 7 2 5 5 3 5 5 3
4 9 2 4 6 3 4 5 4
1 8 2 1 4 3 1 2 4
6 12 2 6 7 3 6 6 2
2 12 2 2 6 3 2 4 4
0 10 2 0 3 3 0 0 4
3 11 2 3 3 3 3 3 0
4 13 2 4 4 3 4 4 3
2 13 2 2 3 3 2 2 4

In illustration, Table 3.2-1 shows customer service for three levels of
service. The same history of ten customer arrivals over a ten-minutd
interval is shown for N values of 2, 3, 4. The average arrival rate over thig
ten-minute period is three customers per minute, varying from zero to six
per minute. The initial state (customers waiting) is three in each case. Thel
entire difference between the three cases is the maximum service rate
defined by N. 4

Case N=2: The service units are used fully, but the customers wait4
ing, W, is growing because the arrival rate, 3, exceeds the service rate, 23
Clearly, there is insufficient service and customer waiting times are grow4
ing, probably to an intolerable level. :

CaseN=3: The service units are used fully and the customer waiting
is stabilized between three and seven, at an average of five, so the average
waiting time in the system is 5/3 minutes.

Case N=4: The service units are used at a 75% level, but the numbed
of customers waiting is reduced to an average of 3.4, so the average}
waiting time will be 3.4/4, under a minute.

Both cases N=3 and N =4 probably represent acceptable operationi}
with a tradeoff between idle service units and better customer service]
which is a business decision. |

Such state machines are easily treated by spreadsheet calculations. A
shown in Chapter 1, the variables of the stimulus, state and response, ca
be given as headings in the spreadsheet table, initial values given for the

ti

ar
se
th

3.2 Strategic Uses of State Machines 105

state variables in the first row, and a column of stimuli values given. The
Spreadsheet calculations then fill out the rest of the table. In this case,
additional calculations such as service utilization, customer waiting
times, and so on can be added to the spreadsheet, as well.

3.2.2 Transaction Closure in State Machines

The analysis and description of any business process, actual or in-
tended, is simplified by using the state machine model. The first step is to
identify the transactions of the business process as a black box. The
second step is to identify the state data of a state machine that are needed
to calculate the outputs of the transactions from the inputs. Usually,
several iterations of these two steps will be required. Any state data
identified must have been acquired by previous transactions. Such pre-
vious transactions may be of types not thought of before, and must be
added to the behavior of the black box. In turn, such transactions may
require new state data not thought of before, and more new transactions
will be required.

Eventually, a set of transactions and state data will be discovered that
are self-sustaining. This condition is called transaction closure, because a
set of transactions has been found that are closed under all conditions of
the business process.

Fundamental Principle. Transaction Closure: The condition of
transaction closure is satisfied if the transactions are sufficient to
generate all state data, and the state data are sufficient to generate
all the transactions.

For example, consider a simple book location system for a library.
The primary book location transaction is an input which is the identity of
a book and an output which is the location of the book in the library. But
on reflection, the state data must include a table of book identifiers and
locations that must have been the result of a previous transaction, say a
book entry transaction. This transaction must include a book identifier
and where it will be located as input, and a confirmation of the input as
output. Also, since there are now at least two types of transactions, each
type must be identified explicitly. This means that the book location and
book entry transaction have transaction identifiers in addition to the data
used as input within each transaction type.

With a little more thought a transaction for deleting books will be
apparent, but this will require no new state data. However, deleting books
will lead to unusable data storage space that must be reclaimed by reor-
ganizing the table of book identifiers and locations. Such space reclama-

106 3. The State Machine Behavior of Information Systems {

tion will require a new transaction—a system integrity transaction. If this }
space available is not supplied by the underlying computer system, an-
other transaction to determine space available will be called for. In turn, i
the state data must be augmented to keep track of the space available, and{

to update it when book entry, book deletions, or space reclamation trans-
actions are invoked.

At this point the transactions and state data may be self-sufficient and 1
transaction closure has been reached. Beginning with a primary transac-
tion, additional transactions have been identified to reach a self-sufficient }
set. The visualization of a state machine and its state data is critical for §

this process of transaction closure.

This pattern of systematic discovery will work for any business pro-
cess for which an information system is needed. The primary transactions
will be readily identified, and the additional transactions required can be
discovered by constructing a state machine step by step until transaction |

closure is achieved.

3.2.3 State Migration between Nested State Machines

State migration is an important design strategy in expanding state |
machines into clear boxes which introduce new black box/state machine/ |
clear box structures at the next level. The concept of state migration can j

be described using state machines alone.

The machine of a state machine, as a black box, can be described as a{
state machine itself with an inner state. In this case there is an inner state !
for the nested state machine and an outer state for the original state ;

machine as illustrated in Figure 3.2-2.

The external stimulus SO is combined with the outer state to make a |
(two part) stimulus S1 for the nested state machine. In turn, the stimulus }
S1 is further combined with the inner state to make a stimulus S2 for the
inner machine. Conversely, the response R2 from the inner machine is f
decomposed into the updated inner state and response R1 of the nested }
state machine. In turn, response R1 is further decomposed into the up- §

dated outer state and response RO of the original state machine.

This nesting process can be repeated to any level with corresponding

inner states at each level.

The division of the state of a state machine among nested levels is |

entirely arbitrary. For pure state machine nestings, such nesting does not

accomplish much. But when state machines are expanded into clear |
boxes, good divisions of the state among levels can simplify descriptions }
and improve designs. Fortunately, such good divisions need not be ar-
rived at immediately in the development of a box structured system. As |
ideas and insights arise, parts of the state can be migrated from one level

3.2

to a

stat
chirn
Tha
3.2-
adde
state

3.2 Strategic Uses of State Machines 107

State machine
—_ Outer state e —

i .
I |
| |
| Nested state machine |
| |
I |
| |
| Inner state |
| [= |
I I | I
| I | |
: : Inner II :
| | machine | |

| i

S0 ySi| . ;szz R21 |RI] |RO.

Figure 3.2-2. Nested State Machines.

to another to place data for effective storage and processing.

We can use state migration to demonstrate that two special cases of
state machine structures are always possible. In the first case, the ma-
chine can be the very black box that is represented by the state machine.
That is, the state is completely migrated into the machine, as in Figure
3.2-3. In this case, the state shown in Figure 3.2-3 is trivial and nothing is
added to the stimulus to reach this inner black box. Even so, the form of a
state machine is shown as a special case.

State machine
T

Black box

I |

e R

Figure 3.2-3. State Machine with Trivial State.

108 3. The State Machine Behavior of Information Syste

Add2

r "'"l State l“'
|
|

Add2
S > » R

I

Figure 3.2-4. Add2 State Machine with Add2 Machine.

For example, an Add2 black box used as a machine in a state maching
that ignores its state will produce the same behavior as the Add2 black
box, as shown in Figure 3.2-4. This case is not a useful one, because the
machine is no simpler than the black box being represented. But, it is g
possible extreme case under the definition.

The second special case is the simplest possible, in terms of the stimu4
lus history required. For every black box, there is a state machine whosa
machine needs only its stimulus and no previous history to determine it V
response. That is, the machine of a state machine can always be a black
box of order 1.

The reason such a machine is always possible is that whatever histo ;
the machine might seem to need can in fact be migrated into the state of]
the state machine. Such a reconstruction of Figure 3.2-2 is depicted 17
Figure 3.2-5.

State machine

|

-‘—-‘l Outer state }4——

Inner state

Inner machine

T T
T
]

D

Figure 3.2-5. A State Machine with Machine State Inside the State.

Ié

at
SE

sté
3.
co

chi
(tre
sta
ter
pro
hav

33

y

3.3 Analysis of Black Box Behavior 109

We can show that this reconstruction is possible as follows. The sepa-
rate machine state can be incorporated into the original state because the
machine itself is unconcerned with the origin of the three items (a stimulus
and two states) it receives and the destination of the three items (a re-
sponse and two new states) it produces.

Therefore, the diagram of Figure 3.2-5, which depicts a state within a
state construction, is equivalent in behavior to the diagram of Figure
3.2-2. But now, the state within a state is equivalent to a single state which
contains the two substates as identifiable parts.

In illustration, the file update program (the machine of the state ma-
chine) need not retain any history data about its previous executions
(transitions). All necessary data can be retained in the master file (the
state), even data about the executions themselves. For example, the mas-
ter file could contain a record of how many times the master file update
program had been executed. Of course, the file update program would
have to update that record along with the rest of the master file.

Summary: Behavior of state machines that model customer ser-
vice can be represented and analyzed by spreadsheet calcula-
tions. Transaction closure can be achieved by identifying all busi-
ness transactions required to provide the state data of a state
machine. State migration is always possible between levels of
nested state machines and will be useful in box structure design.
As special cases, state data can always be migrated completely
into the state or the machine of a nested state machine.

3.3 ANALYSIS OF BLACK BOX BEHAVIOR
FROM STATE MACHINES

Preview: State machine behavior can be abstracted to equiva-
lent state-free black box behavior, in a process called black box
derivation.

3.3.1 The Black Box Behavior of State Machines

A state machine can be analyzed to determine its black box behavior
by eliminating references to its state in the calculation of its responses.

110 3. The State Machine Behavior of Information Systeng

Add2
1

A2

"1
I

Figure 3.3-1. A State Machine for the Add2 Black Box.

Consider the state machine just discussed for the Add2 black box wit
machine A2 and state L that holds the last stimulus as shown in Figurd
3.3-1. The machine A2 must perform on each transition from stimulus S tq
response R:]

machine A2:
R:=S+L
L:=S

We can analyze state machine behavior as we did black box behavio l‘
by considering the values of stimuli, responses, and states for variou§
transitions. For example, for the Add2 state machine of Figure 3.3-1,

R@{i) =S@G) + LG - 1)
L) = S()

and, by substitution of i — 1 for i in the second equation, then S(i — 1) fol
L(i — 1) in the first equation, we find

R(@) = S@i) + SGi — 1)

whichis the black box behavior of Add2. By eliminating references to thé¢
state L, we have derived the black box behavior, and verified that thig
state machine is a correct implementation of the Add2 black box.

Likewise, consider a state machine for the black box Max2 with mai
chine M2 and state L that holds the last stimulus, as depicted in Figure
3.3-2. The machine M2 must perform on each transition as follows: ’

machine M2:
R := max(S,L)
L:=S

3.3 And

For the

R(i)
L(i)

and, by
R()

which is

Note
behaviol
whateve
above ir
determir
behavior

332 B
R

Busis
rather th
policy, d
amplifyi
box beh:
kind of
extent p
ing reort
choice o

33 Analysis of Black Box Behavior 111

A
rql
|

Figure 3.3-2. A State Machine for the Max2 Black Box.

For the Max2 state machine of Figure 3.3-2,

R@) = max(S@), LG — 1))
L@) = S@)

and, by substitution, we find
R(@) = max(S(@i), SG — 1))

which is the black box behavior of Max2.

Note that the machines A2 and M2 completely define the black box
behavior of the state machines. The states play a passive role of storing
whatever the machines produce to be stored. However, as illustrated
above in the variation of the Add2 state machine, the state definition
determines how the machine must operate to achieve a given black box
behavior.

3.3.2 Black Box Derivation of an Inventory
Reorder State Machine

Business rules are often found in original form as state machines
rather than as black boxes. For example, the k months of supply reorder
policy, discussed in Chapter 1, proved to have the undesirable property of
amplifying demand variations in its reorders when reduced to its black
box behavior. The analysis that led to that discovery also led to a new
kind of reorder policy that reduces demand variations to the greatest
extent possible. This new reorder policy, called the exponential smooth-
ing reorder policy (for reasons that will be clear later), is based on the
choice of a single smoothing parameter s, a fraction between 0 and 1.

112 3. The State Machine Behavior of Information Systems

Each reorder R is a weighted average of the month’s demand D and last
month’s reorder L, determined by s,

R:=(1—-s)*xD+ s*L
If s = 0, then
R:=(1-0*D+0*xL=D

so no smoothing takes place and R follows D through every variation and
trend. If s = 1, then

R:=0-1D*xD+1*xL =L

and every R is exactly L so complete smoothing takes place, indepen-
dently of variations and trends in D (of course, inventory may be piling up
or disappearing). Neither of these extreme cases is useful or recom-
mended. Instead, an inventory manager must choose s for each item t
reflect the best balance between smoothing reorders and tracking de
mands. The inventory manager must also determine an initial inventory;
level because the exponential smoothing reorder policy does not deter-
mine the inventory level itself. A k months of supply calculation could b
used periodically for this purpose, say, once a year.

A state machine for the exponential smoothing reorder policy can b
defined by the machine: :

R:=(1-s)*D+s*L
L:=R

Next, references to state L can be eliminated to derive its black bo
behavior. That is, for month m,

Rm)=(1 —s)*D(m) + s*L(m—1)
L(m) = R(m)

In this case, state L can be eliminated from the expression for re-
sponse R directly, as

Rm)=(1 —s)*D(m) +s*R(m—1)

but now R(m) is defined in terms of R(m — 1). But since (replacing m b
m-— 1)

Rm—-1)=(0—-s)*D(m—-1) + s*R(m — 2)
R(m — 1) can be eliminated in the expression for R(m) by substitution,

Rm)=(0 —s)*D(m) + s*((1 —s)*D(m—1) + s * Rlm — 2))

so R(m
the exp

R(r
This
R(r

By r
R(n

If s
goes to
Therefo
policy i

R(n

The
are decr
sum of

(1 -

In ill
75, 100,
history 1

R:

where e
D.i’s (th
contrast
between

R =

and no s|
expressi
terms an
The exp:
the dem:
be show
ing reorc

3.3 Analysis of Black Box Behavior 113

so R(m) is now defined in terms of R(m — 2). Collecting the terms in D,
the expression for R becomes

R(m) = (1 — s) * (D(m) + s * D(m — 1)) + s2 * R(m — 2).
This substitution process can be continued for R(m — 2) to get

R(m) = (I —s) * (D(m) + s * D(m — 1)) + s? * ((1 — s)
*D(m — 2) + s * Rm — 3))
=0 —-s)*(D(m)+s*D(m—1) + s2+*D(m — 2)) + s?
* R(m — 3).

By now, the pattern is clear, and after n substitutions

R(m) = (I —s) * (D(m) + s * D(m — 1) + -+ + s" * D(m — n))
+ s« R(m —n — 1).

If s < 1 and n goes to infinity (becomes indefinitely large), then s"*!
goes to zero, so the final term of this expression for R goes to zero also.
Therefore, the black box behavior of the exponential smoothing reorder
policy is given by

Rm) = (1 —s)*(Dm) + s*Dm — 1) + s2* D(m — 2) +).

The coefficients for the demands, (1 —s), (1 —s) *s, (1 — s) * sZ, -+,
are decreasing exponentially, which explains the name. Furthermore, the
sum of these coefficients is 1, because if 0 < s < I, then

(I+s+s2+-)=1/(1-5).

In illustration, consider the same demands discussed in Chapter 1 of
75, 100, and 125, each with equal probability. Then, in BDL stimulus
history notation,

R=(1-s)D.0+s#*D.1+s*D2+)

where each D.i is 75, 100, or 125. Since R is a weighted average of the
D.i’s (their coefficient’s sum to 1), R must be between 75 and 129, in
contrast with the k months of supply example in which R could vary
between 25 and 175. When s is close to 1, say .9, the form of R is

R=.1*xD.0+ .09 *D.1 + .081 «D.2 + ---

and no single demand, even the most recent, represents a large term in the
expression for R. Therefore, R is a weighted average of many nearly equal
terms and will be near the average of demands, 100, with high probability.
The exponential smoothing reorder policy lives up to its name; it smooths
the demand variation in the reorders as specified by its parameter s. It can
be shown theoretically to be the best possible in simultaneously smooth-
ing reorders and inventory levels.

114 3. The State Machine Behavior of Information Syste ,i

3.3.3 Sales Forecast State Machines

The black box for RA12 (running average of 12 months sales) provide
a sales forecast. However, RA12 will follow a sales trend very slowly, inj
fact, RA12 will lag a sales trend by 6 months because the average is takeng
over 12 months. In order to follow a sales trend more closely the forecast]
should weight recent sales more heavily than older sales. One way toj
attempt such a forecast is by a straight line method of weighting, such that;
a forecast F, in terms of a sales history S.0, S.1, S.2, ... is given as 1

F=(12%S.0+ 11*S.1+ - +2x%8S.10 + S.11)/78

where the denominator 78 is the sum of digits 1 to 12. ,

Another way to weight recent sales more heavily is by exponentialj
smoothing, as used in the exponential smoothing reorder policy. In fact,‘v
the exponential smoothing reorder policy can be regarded as a demandi
forecaster instead of a reorder policy (recall that inventory levels did not}
appear in its analysis). Its parameter s can be used to balance the needs!
between a stable forecast and tracking sales directly.]

Summary: A black box is derived from a state machine by elimi-
nating state references in the calculation of responses. Derivation
of black boxes from state machines can reveal unsuspected state
machine behavior, and permit more systematic analysis of user
problems.

3.4 DESIGN OF STATE MACHINES FOR
BLACK BOX BEHAVIOR

Preview: The state and machine transitions of a state machine
can be designed from black box behavior. The state machine of a
hand calculator is finite even though its black box is not. State
machines must be designed to deal with both proper and improper
use.

3.4.1 State Machine Design for Black Box Behavior

As already noted, some business rules are stated naturally as state
machines, for example, the exponential smoothing sales forecast policy. |

d.

Th
princi
more
stimul
state

In
uli, th
with t
stimul
future
stimul

currer
name,
time, |
time. .
ey S1
is not
by S9,
11 rep

3.4 Design of State Machines for Black Box Behavior 115

Other business rules are stated more naturally as black boxes, for exam-
ple, a running average forecast of sales. In many cases, a black box
behavior is desired but it may not be obvious how to achieve it with a state
machine. That is the problem of state machine design. State machine
design requires intellectual invention, but there are three principles that
make such invention possible and practical.

The first two principles are based on the black box behavior required:

Principle 1: The black box stimulus history defines sufficient
state data.

Principle 2: The black box response defines necessary state
data.

The running average black box RA12 provides an illustration of these
principles. A stimulus history of more than 12 stimuli is sufficient, in fact,
more than sufficient. But the response requires the average of the last 12
stimuli, so at least that much information is necessary. This suggests a
state consisting of the last 11 stimuli (the current stimulus makes the
12th).

The third principle of state machine design is based on state machine
behavior.

Principle 3: The state machine transition must define both the
black box response and next state with sufficient data for future
transitions.

In the state machine with RA12 whose state contains the last 11 stim-
uli, the black box response is obtained by averaging these last 11 stimuli
with the current stimulus. However, unless the state is updated, these 11
stimuli are no longer the last stimuli, so there will be insufficient data for
future transitions. The answer, of course, is to replace the oldest of the 11
stimuli with the current stimulus. Then, at the next transition, the state
will again contain the last 11 stimuli.

The problem of how to replace the oldest of the 11 stimuli with the
current stimulus is one of design. If each of the stimuli is given a distinct
name, the one replaced this time will not be the one to replace the next
time, because the current stimulus this time won’t be the oldest the next
time. A simple solution is to store past stimuli by their ages, say S1, S2,
..., 311, so that S11 is the oldest stimulus. Then, to update the state, S11
is not replaced by the current stimulus S, but by S10, then S10 is replaced
by S9, S9 by S8, and so on to S2 by S1 and S1 by S. This update involves
11 replacements instead of 1, but automatically keeps the oldest stimulus

116 3. The State Machine Behavior of Information Syste;

in S11, the most recent in S1, etc. In this case the RA 12 state machine ca
be defined as shown in Figure 3.4-1 with machine M.

The foregoing design of a state machine for RA12 is straightforwar
and maintains the necessary history of the 11 most recent stimuli in
sequence S1, S2, ..., S11 of increasing age. Each new transition require
that all 11 members of the sequence be updated, because each is now on
period older than before. A

There is a simple alternative to this design in which the new stimulus
literally replaces the oldest stimuli at each transition. However, an addi-
tional data item is required which keeps track of which stimuli is the
oldest in each new state. That is, consider a state with 11 previous stimuli,
in a circular list with members T1, T2, ..., T11 (T1 follows T11 in the
circular list), and a data item called Oldest which identifies which of T1,
T2, ... T11 is the oldest stimulus. Oldest always has a value between 1 and
11. In a transition, the new stimulus is used with the 11 members T1, T2,
..., T11 to calculate the running average, the stimulus designated oldest.
by Oldest is replaced by the new stimulus, and the designation of Oldest is
advanced one member in the circular list (Oldest goes through the cyclel
1,2,3, ..., 11,1,2, ... in sucessive transitions).

In this case, the RA12 state machine is given in Figure 3.4-2 with M2
given as follows. That is, the RA12 state machine M2 changes only two:
data items (instead of 11) on each transition, but the description is less
straightforward. At every transition, the last 11 stimuli are contained in
the state, but a stimulus of given age is in no fixed place in the circular list.

The two state machines for RA12 already discussed calculated the
running average from the last 12 stimuli (counting the new stimulus) at
each transition. Still another alternative is to divide each new stimulus by

RA12 state machine 1

r-——iSl,S2,S3 S11 -7

| |
| I
l [
I M [
| |
I R:=(S+SI+ - +S11)/12 |
| S11:=S10 I
‘ S10 :=S9 |
S —>| S2 =8I L R
S1:=8§

Figure 3.4-1. RAI12 State Machine.

3.4 Desi

12 before
lated by
This leac

The |
there are
three pri;
states an
must the
the next

STATI

We h:
by elimin
invented
to rederi

3.4 Design of State Machines for Black Box Behavior 117

RA12 state machine 2

I————1 TILT2,.... T11, Oldest |<——————|

|
|
-

M2 |
|
|
1

|
|
|
|
|
4 Oldest T =S

R:=S+TI+T2+---+TI1)/12
S Oldest := next value of Oldest >R

Figure 3.4-2. RAI12 State Machine 2.

12 before putting it into the state. Then the running average can be calcu-
lated by simply adding the 12 values obtained from the last 12 stimuli.
This leads to RA12 State Machine 3 in Figure 3.4-3.

The lesson in these three alternative state machines for RA12 is that
there are many ways to simulate a black box with a state machine. The
three principles provide a systematic way to think about the invention of
states and transitions. In particular, principle 3 reminds us that not only
must the correct response be calculated, but also a correct state for use in
the next transition.

STATE MACHINE VERIFICATION

We have already seen how to derive the black box of a state machine
by eliminating its state from the expression for its responses. If we have
invented a state machine to simulate a black box, then we should be able
to rederive that very black box from the state machine we have just

RA 12 state machine 3

l_———l Ul,U2,...,UlI, Oldest ~————

M3
R:=S/12+Ul1+U2+ ---+Ull
Oldest U = S/12
Oldest = next value of Oldest

7}
-—————
'

Figure 3.4-3. RA12 State Machine 3.

118 3. The State Machine Behavior of Information Syste'

invented. We call this rederivation the verification of the state machine
That is, any of the three preceding state machines should lead back tqf
RA12, whether or not the design and thinking process that created them
from RA12 was known or not. For example, the machine of RA12 Stated
Machine 3 can be reexpressed to eliminate the state data in U1, U2, ...
Ul1l1, and Oldest by the following argument. The variable Oldest cycle
through the values 1,2, ..., 11,1,2, ... and therefore designates each of U1}
U2, ..., Ul1 as the oldest value added to the state. Since the stimulus S is]
always divided by 12, the U’s always contain, in no fixed places, the
values S.1/12, S.2/12, ..., S.11/12, where S.1, S.2, ..., S.11 are the 11 most]
recent stimuli. '

Therefore, the response R has the form

R =S.0/12 + Ul + U2 + --- + UlIl
= S.0/12 + S.1/12 + S.2/12 + --- + S.11/12
=(S.0+S.1+82+ -+ S.11)/12

which is the response required for RAI2. Note that we have used two!
simple facts of arithmetic in this derivation

1. The term 1/12 can be factored out of the sum. 1
2. The values S.0/12, U1, U2, ..., U1l can be added in any order with’
the same result. 1‘:

3.4.2 State Machine Design for the Hand Calculator
Black Box

The black box behavior of a hand calculator can be described as a state,
machine. But even more, we shall find a finite state machine description]
even though a hand calculator cannot be described as a finite black box;:

Recall the problem discussed in Chapter 2 of finding the sum of 14 and
43 with stimulus history C14+43=. In state machine terms, the hand
calculator is using and then changing its state with every stimulus as well §
as producing its response. For example, 3

After C: The state is cleared, expecting to receive a number in a series of stimuli }
to follow :
After Cl: The state is that a number is being received whose first digit is | .
After Cl4: The state is similar to the previous state except that the first two digits of
the number are 14 {
After Cl4+: The state is quite different from the previous state. The + stimulus has }
signified three changes: 3
. The number being received is ended and is 14
2. The number 14 is to be added to the next number to be received
3. A new number is expected in a series of stimuli to follow

3.4 Design of State Machines for Black Box Behavior 119

The state information must be retained in some form. In order to
express such a state, we in_vent a de_scription for it in‘a set of variab!es. In
this case We call these variables registers. These registers are pure inven-
tions, to explain the black box benavior of the hand calculator, not based
on its physical construction. Specifically, we invent three registers which
seem required by the preceding analysis:

Visible Register (VR). A register of digits which are identical to
whatever digits are currently displayed.

Hidden Register (HR). A register of digits which can retain a num-
ber for future calculation.

Function Register (FR). A register which holds a single arithmetic
function requested by the user,such as + or —.

The foregoing states can now be expressed by the valuesin the regis-
ters, for example,

After C14: VR =14, HR = ?, FR = ?
After C14+: VR =14, HR = 14, FR = +

where the question marks mean the current register contents are un-
known.

Now, the next stimulus of the second 4 leads to a problem we have not
yet solved, because after receiving the stimulus history C14+4 we know
that VR must become 4. How does the black box machine produce this
part of the state? For example, if it continued as before, any digit entered
would simply be added to the end of the number already in VR. In this
case, C144 would produce VR = 144, but C14+4 would produce VR = 4.
The answer has to be contained in the intervening +, which says, in
effect, ‘‘start a new number.’” One way to record this information is to
invent a new register:

Begin Register (BR). A register which holds the character B (for
Begin) or C (for Continue).

The Begin Register will solve another problem we have not noted until
now. At the very beginning, we have the sequence

AfterC: VR =0
After Cl: VR =1 .

Why isn’t VR = 01 after CI? After all, other digits are simply ap-
pended to the end of the preceding number in VR. But the behavior of the
hand calculator is such that the first digit of a number must overwrite the
initial 0 in the display.

We can use BR to denote this effect of stimulus C, as well, to get

120 3. The State Machine Behavior of Information Systeny

After C: VR = 0, BR = B (Begin)
After C1: VR =1, BR = C (Continue)

Now, when a + stimulus appears, the state machine can, among othey
things, change BR from C to B. Then the state machine can be cond
structed as follows: '

If BR = B and the stimulus is a digit, disregard the contents of V
and start a new number with that digit; otherwise, if BR = C andj
the stimulus is a digit, append that digit to the current contents of]
VR.

With this new understanding we can express the successive states of thg
hand calculator in this problem as shown in Table 3.4-1. 1
Note that each state in the Table is slightly different from its predeces4
sor, but more importantly, a machine black box of order 1 can be devised|
to go from each state to the next. That is, the machine required to carry
out these state transitions need not itself refer to a state. :
The question marks in the Table mean that no particular values i
those registers are required to explain the behavior of the hand calculator
Of course, there will be values in those registers where each question{
mark appears. But whatever the values are, they will simply reflect con-
struction details of the particular hand calculator in use, and are incidentalj
to our state machine description of black box behavior. In recognition of}
these two categories of values, we call the definite values in the Table}
intentional data, and the question mark values accidental data. 4
Notice one surprising aspect of this transaction with input C14+43=}
and output 57. The state machine works just as hard and in the same way }
with each stimulus, as it does in producing the response (adding 14 and 43}
to get 57 is just part of a transition to the hand calculator). That is, the
designation of the input as C14+43= is relative to the user of the hand}

Table 3.4-1
States of a Hand Calculator Computing
Cl4+43 =157

After: BR VR FR HR
C B 0 ? 2
Cl C 1 ? ?
Cl4 C 14 7 ?
Cig+ B 14 + 14
Cld+4 C 4 + 14
Cl4+43 C 43 + 14
Cl4+43= ? 57 2 7

3.4 Desig

calculato
stimuli—
calculato
as showr
sents a st
Blanks it
arithmeti
an arithm
and VR t
and need
machine

This 2
mentatio
flow both
problems
only the
the state
describes

3.4.3 St

The h
expresses
Cl4+43=
uli whatsc
no mattel
sponse—
possible «
of, say,

+ -

3.4 Design of State Machines for Black Box Behavior 121

Table 3.4-2

Machine Transitions for a Hand Calculator

amm———
S , 0os)= R , NS)
row BR VR FR HR BR VR FR HR
1 C 0 B 0
2 any D B f y D C D f y
3 any D C X f y D+10x C D+10x f y
4 any F X f y yfx B yfx F yfx
5 = X f y yfx yfx

—

calculator—there is no new information for the user in this sequence of
stimuli—but every one of the stimuli is new information for the hand
calculator. These machine transitions can be organized and summarized
as shown in Table 3.4-2. In each row, the left side of Table 3.4-2 repre-
sents a stimulus and old state, the right side the response and new state.
Blanks in the Table mean that data is irrelevant. Note that yfx is an
arithmetic expression, where x and y represent numbers and f represents
an arithmetic function, for example 14 + 37. Why does the Table define R
and VR to be the same? Why not just have R? Because VR is available
and needed as part of the state for the next transition, but R is not. The
machine would not operate correctly without VR.

This analysis assumes perfect arithmetic, but of course a real imple-
mentation with finite registers VR and HR would need to cope with over-
flow both from key entry by the user and from arithmetic operations. The
problems of overflow will not change the structure of the state machine,
only the rules which modify VR in rows 3 and S of the Table. In any case,
the state of this machine is finite, even though the hand calculator it
describes is a nonfinite black box.

3.4.3 State Machine Design to Deal with Improper Use

The hand calculator problem we have analyzed in Chapters 2 and 3
expresses a proper question in arithmetic with a correct expression
Cl14+43=. However, a hand calculator can accept any sequence of stim-
uli whatsoever, whether it constitutes a correct expression or not. Thatis,
no matter which key is pressed next, the display will return some re-
sponse—the hand calculator won’t blow up or stop operating under any
possible circumstances of use. For example, given a gibberish sequence
of, say,

+-3=42+=5=2

122 3. The State Machine Behavior of Information Syst 3.5 Stal

what responses will be produced? Those responses will, in fact, be unpr black
dictably different for different brands of hand calculators because the ways w
will depend on accidental data that is generated in their state registers, ., of the |
All brands of hand calculators will satisfy the same abstract specifi proper
tion, namely of converting input arithmetic expressions (suitably delim rules of
ited) into output numbers which correctly evaluate such arithmetic e Nev
pressions. But the abstract specification is not defined for stimul deal wi
histories that do not represent arithmetic expressions. Yet each brand transitic
hand calculator will realize some concrete specification as a by-product
its design and manufacture. Part of this concrete specification will Fun
intentional, as the designers seek to incorporate good human factors int
the hand calculator. But stimulus histories that are gibberish will be of ng rest
interest to the abstract specification, and therefore treated as accident | ew
As a simple example, consider the sequence of stimuli previous] In fu
analyzed, with an additional = stimuli added to the end:
an unex
Cl4 +43 == If, in fac
. . not aris
What output will this sequence produce? It turns out that many han ;
calculators will produce one of two answers—either 57 or 71. The 57 i Imprope
simply a repetition of the preceding output, while the 71 is the result of
adding 14 (in HR) to 57 (in VR). Thus, the internal rule for creating th Sunm
sum can be stated in several ways: ' mac
1. “Display HR + VR” o
2. “Store HR + VR in VR and display VR”’ S‘mt‘
3. ““Store HR + VR in HR and display HR”’ ::Sl:;
In the first case, the second = stimuli simply repeats the action of th vant
first =, but in the second case, the second = actually changes the state | mac
Note that our state machine explanation of the hand calculator woul
produce the second case.
The accidental differences of hand calculators represent ideal opportu- 35 STA
nities for treating hand calculators as laboratory machines in the study)
black box behavior and the construction of clear box explanations for thi
black box behavior. It is an interesting problem in black box analysis tol Prey
discover how a hand calculator really works for any sequence of stimuli, fortl
not just for proper questions of arithmetic. In order to go about that, a set blac]
of state registers is required, together with a machine description that will
explain exactly what state change and response will occur for every possi- BDL
ble stimulus combined with every possible state. This total state and e
machine description must explain all the observable behavior of the hand
calculator. State
The lesson in this is that it is important to distinguish between what a ior at the

3.5 State Machines in Box Description Language 123

plack box does and its proper use. A black box may behave in strange
ways when presented with unusual stimulus histories. Thus, a definition
of the behavior of a black box typically depends on a definition of its .
roper use. In the case of the hand calculator, proper use is defined by the
rules of arithmetic, which preclude gibberish stimuli altogether.
Nevertheless, the designer of a hand calculator must be prepared to
deal with both proper and improper use, to avoid failure to complete a
transition. This requirement leads to the following fundamental principle.

Fundamental Principle: A state machine must be prepared to
respond to any stimulus in any state to produce a response and a
new state.

In further illustration, a common problem in interactive systems is that
an unexpected illegal input can bring the system to an unanticipated halt.
If, in fact, the fundamental principle had been applied, this situation could
not arise. Thus, in design the possibility for every stimulus, proper or
improper, must be accommodated from every possible state.

Summary: The state of a state machine must be sufficient for the
machine to produce every possible response required by its black
box behavior. A state definition of four registers is sufficient to
simulate the black box behavior of a hand calculator. The con-
crete implementation of a hand calculator will handle any gibber-
ish history of stimuli with definite behavior which will be irrele-
vant to the abstract specification of its state machine. A state
machine design is insufficient if it deals solely with proper use.

3.5 STATE MACHINES IN BOX DESCRIPTION LANGUAGE

Preview: A state machine in BDL substitutes a state definition
for the black box stimulus history and a machine transition for the
black box transition.

BDL accommodates two design steps for state machines, namely,
state machine definition and state machine invocation.

State Machine Definition. A state machine defines black box behav-
ior at the stimulus, response level in terms of state transitions, expressed

124 3. The State Machine Behavior of Information Systems

in BDL syntax as

define SM <SM name>

stimulus

<stimulus name>: <type>
response

<response name>: <type>
state

<state data>
machine

<SM transition>

with outer syntax keywords define SM, stimulus, response, state, and]

machine, shown here in indented text form. <SM name> is the name of

the state machine, usually, the name of the corresponding black box, and
<stimulus name>, <response name>, and <type> have meanings as |
before. In this case, state denotes the <state data>, which abstracts the
stimulus history of the corresponding black box in terms of named state §
data, and machine denotes the <SM transition>, which defines the ma- |

chine transition.

In illustration, the Add2 state machine corresponding to the Add2

black box can be described as

define SM Add2
stimulus
S:number
response
R:number
state
L:number
machine
R:=S+L
L:=S

where S, R, and the single state item L are all defined as numbers. The

transition is given by an assignment of the stimulus plus the old state to
the response, and by an assignment of the stimulus to the state in prepara-
tion for the next transition.

Is the Add2 state machine a faithful description of the Add2 black
box? As already seen, the answer can be found by eliminating the state,

and expressing the response in terms of stimulus history. The response of |}

the ith state machine transition is

R@{) = SG) + LG — 1)

35 State Machines in Box Description Language 125

and the value of L(i — 1) from the previous transition is
Li—-D=SG-1)
Thus, the results of the transition can be rewritten as

R() = S@) + SG — 1)
L@) = S(@)

where the assignment to R(i) is the transition formula of the Add2 black
box expressed in terms of stimulus history, and the assignment to L(i)
ensures the availability of the required stimulus history for the next tran-
sition.
The state machine for Max2 is
define SM Max2
stimulus
S:number
response
R:number
state
L:number
machine
if L>SthenR := LelseR := S fi;
L:=S

where the state is a single number L and the transition is defined as a
conditional assignment of the maximum of the old state and the stimulus
to the response, and by an assignment of the stimulus to the state for the
next transition.

Similarly, the Odd:Add2|Max2 state machine is

define SM Odd: Add2|Max2

stimulus
S:number
response
R:number
state
L1, L2:number
machine
if S odd
thenR :=L1+ S;
L1:=8S
else R := max(L2, S);
L2:=S

fi

126 3. The State Machine Behavior of Information Syste

The hand calculator provides a special, trivial example of a state m
chine specification at an abstract level, since no data is to be stor
between transactions from clear key to clear key. Therefore, its stat
machine is trivial because no state data is to be maintained:

define SM hand calculator
stimulus
I:arithmetic expression
response
O:number
state
(none)
machine
O := value of arithmetic expression in I

However, the state machine of the hand calculator is nontrivial at the
concrete level, since data is stored between transitions from keystroke to
response, as informally described in Table 3.4-2:

define SM hand calculator
stimulus
S:key
response
R:display
state
BR:(B,C)
VR:number
FR:(+, —, %, /)
HR:number
machine
As described in Table 3.4-2

State Machine Invocation. State machines can be invoked by BDL
procedure statements of the form

use SM <SM name> (<stimulus name>; <response name>>)

where keyword use SM means carry out a transition of the state machine
with name <SM name>, given stimulus <stimulus name> and producing
response <response name>.

For example, the procedure statements
use SM Add2(; j)
and
use SM First(i; j)

Exercises 127
invoke state machine transitions using data objects i, j for stimulus, re-
sponse, respectively. Thus, for stimulus history 36 19 6 and i = 2,

use SM Add2(2;))

sets j to 2 plus the old state of Add2 and sets the new state of Add2 to 2,
and
use SM First(2, j)

sets j to 3 and leaves the old state (3) unchanged.

Summary: State machine BDL requires both state and machine
definitions. State data are given names and type definitions. The
machine transition is defined in terms of new state and response
as a function of stimulus and old state.

EXERCISES

1. Define state machine descriptions for the following black box struc-
tures:

(a) Add2;Max2

(b) Max2;Add2

(c) Max2;Max?2

(d) Odd:Add2|Max2
(e) Odd:Add2|Add2

() Odd: * (Add2:0dd)
(g) Add2||Max2

2. Determine the black box behavior of state machines with stimulus S,
response R, state L, and rules:

(@ R:=S+L

L:=2%*8§
(b) R:=L
L:=S
(c) R:=S+1L
L:=S
3. Consider a state machine with stimulus S, response F, state L, and
rule:
F := max(S, L)

L:=F

128

10.

11.

3. The State Machine Behavior of Information Syst:

Determine its black box behavior and discuss whether this statg
machine is a good sales forecaster, if not, can you think of any othe|
use for it?)

The (s,S) reorder policy is defined by two numbers s and S which
define lower levels and upper levels in the inventory level of an item,’
That is, when inventory falls below s, reorder enough to bring it up
to S. Determine the state machine for the(s,S) policy and discuss the
nature of its black box behavior.

Use Table 3.4-2 to work out the state machine transitions in the form
of Table 3.4-1 for the following stimulus histories:

(@ C324+19+1=
(b) C27—-94+82=
(c) C18%4 —36=

Consider a hand calculator which has a clear entry key (CE) that
permits the user to start over in keying in a number. Modify the hand
calculator state machine to include the clear entry key.

Consider a hand calculator which has no decimal point key (DP) and
permits arithmetic to no more than 8 significant digits. Work out a !
consistent way to deal with overflow on key entry and arithmetic |
operations. Modify the hand calculator state machine to include
your solution.

Given black box Max24 (the response is the maximum of the last 24
stimuli), develop two state machines in analogy to the first two state
machines in the chapter for RA12, namely, one state machine whose
state maintains stimuli by age in fixed places and one which mini-
mizes the state changes during a transition.

A 6 months’ sum of digits forecast forecasts sales next month as a
weighted average of the past 6 months of sales, which weights the
oldest sales (sales 6 months ago) 1, next oldest 2, ..., most recent 6.
Note that a common denominator must be found to make the weight
add up to 1. Develop a state machine to describe a 6 months’ sum of
digits forecast black box.

Can you devise a state machine for black box RA12 in which only
previous responses are retained in the state and not previous
stimuli?
A S-day stock trend indicator declares the trend +, 0, or — depend-
ing on whether the last price is above, same, or below the median of
the previous 5 prices. That s, it is a black box with daily stock prices
as stimuli, and the indicators +, 0, — as responses. Develop a state
machine for the 5-day stock trend indicator black box.

12.

14.

15.

Exercises

129

Discover, if possible, a foolproof way to do reliable calculations
without using the clear key. To state the problem more clearly,
imagine you are presented with a hand calculator with unknown
history of use, whose clear key is missing! For example, suppose the
display held 14, and you entered —14 to get the display to 0. Can you
consider the calculator cleared? What would you do if the sequence
—14 produced the display —14?

At the end of the week a manufacturer decides how many units of a
product to make during the next week. The decision is based upon
the product’s current quantity on hand and the average number of
orders for that product over the past two weeks. Outstanding orders
for the product are indicated by a negative value for quantity on
hand.

The following state machine BDL specifies the above decision
rule:

define SM Product
stimulus
S: number {orders during week}
response
R: number {products to make next week}
state
made: number {products made during week}
prev : number {previous week’s orders}
qoh : number {current quantity on hand}
machine
do
qoh := qoh + made — S;
R := (S + prev)/2 — qoh;
prev .= S;
made := R
od

Derive the black box transition formula for this state machine by
eliminating all state variables. Comment on the usefulness of the
decision rule.

Describe a system that is a
(a) finite black box—finite state machine,
(b) finite black box—nonfinite state machine,

(c) nonfinite black box—finite state machine,
(d) nonfinite black box—nonfinite state machine.

Design a state machine for a simple word processing system. De-
velop a transition table similar to the one for a hand calculator.

130

16.

17.

18.

3. The State Machine Behavior of Information Syslemg:

Discuss the difference between the bank customer service state ma-4
chine and a toll booth state machine where movement between lanes’
is not possible.

Use a state machine to model the behavior of a traffic intersection]
with a stop light. Assume initially that there is one lane of traffic}
going in each direction. How would the state machine change with}
two lanes or three lanes in each direction, turn lanes? '
Describe a database management system as a state machine. Wha‘t_
are the inputs and outputs for this system? What transactions wouldv
the machine perform? ’

Chapter 4 The Clear Box Behavior
of Information Systems

4.1 CLEAR BOX BEHAVIOR

Preview: The machine of a state machine can be expanded into
a structure of machines by one of four primitive steps, resulting in
a clear box with the same external behavior as the state machine.
In turn, a clear box machine can be expanded into an equivalent
structure of simpler machines.

In Chapter 3 we introduced an equivalent description of black box
behavior at the state machine level, as depicted in Figure 4.1-1, where the
machine of the black box transforms a stimulus (S) and old state (OS) into
aresponse (R) and a new state (NS).

A clear box is an expansion of a state machine in which the machine is
replaced by a structure of component machines. In turn, any component
machine of a clear box can be replaced by another machine structure.
Such a clear box will have the behavior of some state machine, with
transitions of the form

(S,08) - (R,NS)
131

132 4. The Clear Box Behavior of Information Systems

Machine

[U |

= ——————

(S, 0S) —= (R, NS)
Figure 4.1-1. State Machine Description of a Black Box.

4.1.1 Clear Box Syntax

As discussed in Chapter 2, a black box structure is a compound struc-
ture of black boxes expressed in sequence, alternation, iteration, and
concurrency primitive structures. By definition, the black boxes of a
black box structure share no state. We now introduce a clear box in BDL
that admits the possibility of shared states among its component ma-
chines.

A clear box defines a procedure for state machine behavior in terms of
operations and tests on state and working data. Clear boxes in BDL are
defined by the following syntax structure:

define CB <CB name>
stimulus
<stimulus name>: <type>
response
<response name>:<type>
state
<state data>
machine
data
<procedure data>
proc
<procedure>
corp

where <CB name> is the name of the clear box, usually the name of the
corresponding state machine and <stimulus name>, <response name>>,
and <type> have the same meanings as before. The keyword state de-

4.1 Clear Box Behavior -

otes <state data>, defined by a declaration of data objects that corre-
f ond to the state structure of the state machine, and that participate in
fhe operations and tests of the clear box.

The clear box procedure, denoted by keyword machine, is defined in
two parts delimited by keywords proc and corp. The first part, denoted by
keyword data, defines <procedure data>, the local, working data (if any)
used by the machine procedure. The second part is the <procedure>
itself, which defines a structure of nested and sequenced operations and
tests that carry out the transition of the corresponding state machine.

Note in comparison that the black box structure of Chapter 2 specified
no state data nor procedure data, only a transition procedure which refer-
enced component black boxes.

The procedure statements (PS) of a clear box procedure include BDL.
statements previously discussed:

Assignment Statement: <variable> := <expression>
Black Box Statement: use BB <BB name> (<stimulus name>;
<response name>>)
State Machine Statement: use SM <SM name> (<stimulus name>;
<response name>)

and the sequence, alternation, iteration, and concurrent control struc-
tures, likewise previously discussed. In addition, BDL clear box proce-
dure statements include the case control structure (a generalization of the
alternation control structure).

4.1.2 Clear Box Structures

The sequence clear box is determined by a sequence of two (or more)
machines M1, M2, as shown in Figure 4.1-2. The resulting structure is a

Ml M2

S1

R2

Figure 4.1-2. The Sequence Clear Box Structure.

134 4. The Clear Box Behavior of Information Systems

clear box, and will have the same external behavior as the state machine
whose machine is decomposed into the sequence of M1 and M2. In effect,
M1 passes its response to, and creates a new state for M2 to use as a
stimulus and an old state to produce the response of the clear box and its
new state. More precisely,

Sequence Clear Box Execution. A transition of machine M1 from
(S1, OS1) to (R1, NS1) is invoked, Rl is renamed S2 and NSI1 is
renamed OS2, then a transition of machine M2 from (S2, OS2) to
(R2, NS2) is invoked, and NS2 is renamed OS] for the next clear
box transition.

The BDL syntax for the sequence (or do) procedure statement is
do
PS1;
PS2
od

where any number of procedure statements (including none) may be
present, separated by semicolons and the do, od keywords may be omit-
ted where no misunderstanding can arise.

The alternation clear box is determined by a conditional test, denoted

b |
State |
= F
| | |
NSII |
1
MIi Pl
)

1 | Rl
1 .
T
I
|
I
I
1

: R

NSZ:
M2 !
I
|
[}

R2

Figure 4.1-3. The Alternation Clear Box Structurc.

4.1 Clear Box Behavior 135

C, which serves to switch the stimulus to exactly one of the machines M1
or M2. The test is denoted by a diamond, and may depend on the state as
well as the stimulus, as shown in Figure 4.1-3.

The resulting structure is a clear box, and will have the same external
behavior as the state machine whose machine is decomposed into cases
M1 and M2 by C. In effect, C decides on the basis of the stimulus and the
old state which machine, M1 or M2, to use for each transition.

More precisely,

Alternation Clear Box Execution. Condition C is determined by
reference to stimulus S and state OS. If C evaluates to T (true), a
transition of machine M1 from (S, OS) to (R1, NS1) is invoked, R1
is renamed R, and NS1 is renamed OS for the next transition. If C
evaluates to F (false), a transition of machine M2 from (S, OS) to
(R2, NS2) is invoked, R2 is renamed R, and NS2 is renamed OS for
the next transition.

0S)
[e——mmm———mm—em o
Stat
: F‘i ate L“l
| ! !
| i !
]
! os | Mi_ NSt
|
\ i i
] L !
I | !
| : Vi R1
i i |
[} ! Nswl
! | M2 T
| ! :
i ¥]
i ! |
i : V2 R2
]
S —f !) — R
: M3 NS3:
| |
J' {
] I
1 V3 R3
! 1
L}
']
! M4 NS4:
]
i !
V4 R4

Figure 4.1-4. The Case Clear Box Structure.

136 4. The Clear Box Behavior of Information Systems |

The BDL syntax for the alternation procedure statement (or if state-
ment) is
if
C
then
PS1
else
PS2
fi

The case clear box structure, depicted in Figure 4.1-4, is a generaliza-
tion of the alternation structure. It provides a convenient means for carry-
ing out one of a fixed number of alternative machine transitions (fixed at |
four in the example shown), corresponding to values (V1 to V4) of expres-
sion E. If no case value corresponds to the value of E, response R is setto
S. More precisely,

Case Clear Box Execution. Expression E is determined by refer-
ence to stimulus S and state OS. If the expression evaluates to any
value Vi associated with a machine Mi, a transition of that machine
from (S, OS) to (Ri, NSi) is invoked, Ri is renamed R, and NSi is
renamed OS for the next transition. Otherwise, the response R is
set to S.

The BDL syntax for the case procedure statement is

case
E

part (valuel)
PS1

part (value2)
PS2

part (value3)
PS3

part (valued)
PS4

esac

Keywords case and esac delimit the case statement, and the contained
part keywords delimit procedure statements, one of which will be exe-
cuted if expression E evaluates to the corresponding value. Otherwise, if
no values correspond, no execution occurs; that is, the case statement is
the null statement. The case statement is a convenient abbreviation for
nested alternation statements. For example, the case statement

137

4.1 Clear Box Behavior

case
E
part (1)
PS1
part (7)
PS2
part (4)
PS3
esac

corresponds to the following nested alternations
if
E=1
then
PS1
else
if
E =
then
PS2
else
if
E =
then
PS3
fi
fi
fi

Here E values 1, 7, or 4 result in execution of PS1, PS2, or PS3,
respectively. Any other E value results in no procedure statement execu-
tion.

The clear box iteration structure is depicted in Figure 4.1-5, VYIFh cas¢
C and machine M1. The effect of the iteration is to invoke transitions of
machine M1 repeatedly while case C is satisfied. More preclSely,

Iteration Clear Box Execution. Condition C is determined by refer-
ence to stimulus S and state OS; if the condition evaluates to F
(false), the response R is set to S and iteration is terminated; if the
condition evaluates to T (true), the stimulus S is renamed S1, a
transition of machine M1 from (S1, OS) to (R1, NS) is invoked, NS
is renamed OS for the next transition, Rl is renamed S, and the
iteration clear box is invoked again.

138 4. The Clear Box Behavior of Information Systems §

..+ State -—1

|
|
|
|
|
! M1
|
|
1

@]
@

Rl

1...._—....__——-__.__.'

Figure 4.1-5. The Iteration Clear Box.

The BDL syntax for the iteration procedure statement (or while state-
ment) is]

while
C
do
PS1
od

where the keyword while is used with the previously defined keywords 4

do, od. The condition C must eventually be set to false in PS1, otherwise, |

an endless loop will result. Note that if the condition is initially false, then .

PS1 will not be executed at all. :
The while statement

while C do PS1 od

can be viewed as a convenient abbreviation for a nested pattern of alterna-
tion structures ‘

if C then PS1; if C then PS1; if...fi fi fi

In this nested pattern of alternation structures, PS1 will be executed |
repeatedly while C is true, just as stated for the iteration control structure. §
The condition C is called the while condition, and the procedure statement 1
PS1 is called the do statement (of the while statement).

As surprising as it may seem, the three BDL control structures above, |
namely, sequence, alternation, and iteration, are sufficient to express the §

4.1 Clear Box Behavior 139

Echo
oS State NS oS NS
I—---— ELE L(»———‘ - lfe———— —

\ 1 Response Stimulus

' |

OS (i) = NS (i—1)
Figure 4.1-6. The State as an Echo Black Box.

design of any clear box procedure whatsoever. This fact was not always
known, and other complex and arbitrary control structures have been in
use since the early days of programming. But the opportunity now is to
design procedures with simpler and more understandable control struc-
tures than was heretofore possible.

The concurrent control structure interacts with the state in a more
complex manner than do the previous control structures. For the se-
quence, alternation, and iteration structures, the state acts as a black box
that executes the Echo transition. That is, the state accepts the new state,
NS. as a stimulus in one transition and produces it, now called the old
state, OS, as a response in the next transition, where OS = NS. Figure
4.1-6 shows this equivalent behavior.

The concurrent control structure, however, does not interact with the
state as an Echo black box. Recall that the concurrent black box structure
accepts a stimulus and directs it to each concurrent black box (Figure 2.5-
5). The response of the concurrent control structure is a complex multi-
part response from the concurrent black boxes.

In the clear box concurrent structure, each machine, Mi, (black box)
not only produces a response, Ri, but also a new state, NSi. A structure of
n concurrent machines produces a multi-part response (R1, R2,...,Rn)
and a group of new states (NSI, NS2,..., NSn). The state, as a black box,
must resolve the multiple new states into a single state. We call this black
box Resolve and illustrate its use in Figure 4.1-7. By the definition of a
state machine, the Resolve black box will behave like the Echo black box
when the stimulus (NS1, NS2,..., NSn) is simple, that is, when n = 1.

With this understanding of the state, the concurrent clear box is
shown in Figure 4.1-8, with two component machines. More precisely,

Concurrent Clear Box Execution. The stimulus S and the old state

0S| Sute NSI..... NSn 0s Resolve NSI..... NSn
= | = a— e
; i Response Stimulus

Figure 4.1-7. The State as a Resolve Black Box.

140 4. The Clear Box Behavior of Information Systems ‘

Resolve
(0] (NS1.NS2)
| et 1 [————=--- 1
| 1
1 1
: 1
1 MI :
[1
" (RI.NSD) |
: |
1 I
! |
. + i (R1.R2) .
M2
(R2,NS2)

Figure 4.1-8. The Concurrent Clear Box Structure.

OS are referenced by all concurrent machines. The complex re-
sponse is a grouping of the responses from the individual machines
(R1, R2). The new state is determined by the black box Resolve
with the complex stimulus (NS1, NS2).

The concurrent clear box synchronizes the responses of its component
machines. Note that the state black box Resolve must be specified and °
designed as well, to meet a variety of intentions in the use of the concur-
rent black boxes in its clear box. For example, serializability is a well-
known design tactic. Serializability requires that the behavior of the con-
current structure be equivalent to one of the possible orderings of its
component machines. '

As defined, the execution of a concurrent clear box is in part deter-
mined by the design of Resolve unless both (all) execution sequences
define the same behavior for all stimuli. However, there are situations in '
which ambiguous behavior represents necessary reality. For example,
suppose M1 and M2 represent two reservation attempts for the last seat °
on a flight. Then the order in which they execute determines who gets the
last seat. But these cases are typically settled in the fine details of design :
and implementation. The design of concurrency control in systems is an
advanced topic that will be discussed further in Chapter 5.

The BDL syntax for the concurrent procedure statement is

M1 M2

(A)

Ml

(B)

Ml

©

Ml

M2

(D)

Figure 4.1-9. Clear Box Abbreviations, with State References Omitted. (A) Sequence
Abbreviation, (B) Alternation Abbreviation, (C) Iteration Abbreviation, and (D) Concur-
rency Abbreviation.

141

142

. The Clear Box Behavior of Information Systemg

(S. OS) ———»

——— (R. NS)

(A)
(S.0S) ———— > I (R.NS)
(B)
T
(S.08) ———— (R.NS)
F
©)
] : N N
(S. 0S) C E » (R. NS)
(L)

(S.059)

———— (R.NS)

(k)

Figure 4.1-10. (A) A Clear Box Machine To Be Expanded. Expanding a Machine into a
(B) Sequence, (C) Alternation, (D) Iteration, or (E) Concurrent Structure.

4.2 Strategic Uses of Clear Boxes 143

with
PSO

con
PS1,
PS2

noc

where PSO plays the role of Resolve.

Once the state machine properties of a clear box are defined and
understood, the clear boxes can be abbreviated to omit the common state
references, in the realization that the full structure can always be recalled
for specific analyses and arguments. The clear box abbreviations for se-
quence, alternation, iteration, and concurrency are shown in Figure 4.1-9.

4.1.3 Clear Box Expansion

Since each machine in a clear box plays exactly the role of a machine
in a state machine (converting its stimulus and an old state into its re-
sponse and a new state), the sequence, alternation (or case), iteration, or
concurrent decomposition can be applied to each such machine. Such a
step expands the clear box by one or more additional internal machines,
permitting any original state machine to be redefined by clear boxes with
smaller and simpler individual machines. That is, any machine of a state
machine or clear box, such as depicted in Figure 4.1-10 Part A, can be
expanded, at any stage, into a sequence, alternation, iteration, or concur-
rent structure, as depicted in Parts B, C, D, and E, respectively.

Summary: The machine of a state machine can be expanded into
sequence, alternation (or case), iteration, and concurrent clear
box structures. These structures can be expressed in BDL, and in
turn expanded into more detailed BDL procedures.

4.2 STRATEGIC USES OF CLEAR BOXES

Preview: Complex business operations may be directly ex-
plained or specified as clear box structures. Such clear box struc-
tures can be used as a basis for organizing related descriptions in
user manuals and instruction guides. Procedures with arbitrary
structure can be transformed into clear boxes with equivalent
behavior and more systematic structure for better understand-
ability.

144 4. The Clear Box Behavior of Information Syst
4.2.1 Clear Box Business Procedures

As we have seen, business operations behave as black boxes and ca
be described as state machines. However, business operations are ofte
most conveniently defined directly in clear boxes. Clear box busines
procedures codify explicit rules in terms of tests and actions required t
carry out business operations.

Clear boxes can evolve naturally out of day-to-day operations in an
business, in the effective organization and distribution of work. Suc
clear boxes may never be written down, being transmitted informal]
through on-the-job training, but they are clear boxes nevertheless. F
example, in many businesses, a verbal description of required telephon
answering procedures for new employees may be sufficient. Howeve
telephone answering in operations such as mail order or airline reserva
tions will be subjected to a good deal of analysis and experimentation, t
arrive at optimum clear box procedures for structuring efficient conversag
tions, maximizing information flow, and minimizing connect time. Suc
procedures will be explicitly defined and taught to new employees, t
gether with procedures for using online information systems to answ
customer questions on costs, availability, etc., during the conversation
Such clear box procedures may be carried out by hundreds of employee
hundreds of times every working day, and even minor improvements i
their design can have major effects on business efficiency and competitiv
advantage. :

Other clear box procedures may be prescribed by law as conditio
and requirements on business operations, for example, in tax and la
laws that specify explicit practices that businesses must follow. Clear bo
procedures in these areas can be extraordinarily complex, requiring e
tensive study and analysis in both design and execution. While such pr
cedures indeed represent state machines, their transitions, typically co
plicated by large numbers of special cases and exceptions to more gene
rules, are most easily described directly in clear box form.

The tax accounting required of a business enterprise can be defined
a set of clear box procedures that specify a complex transition of t
business information system (of people and machines), to produce t
computations for the previous year. These clear boxes are specified b,
instructions compiled by federal, state, and local governments, in guide
manuals, and forms, all written in natural language. The state to whi
these clear boxes refer is the state of the business itself, and their proc
dures involve operations on the old state to compute tax liabilities a
corresponding updates to produce a new state that reflects these li
bilities.

42 strategic Uses of Clear Boxes 145

Over the course of a tax year, the information system of a business
must accumulate the state data required by the tax clear box. Many
decisions Will be made in the conduct of the business which will affect the
tax computation. For example, methods of cash management, inventory
valuation, and asset depreciation, as well as decisions on capital invest-
ment and investment credits, will all be influenced by tax laws and re-
flected in the state of the information system.

Because of the close coupling between tax laws and business opera-
tions, the information system of a business is usually designed to explic-
itly capture and retain tax-related information in its state. In fact, the tax
clear box may be incorporated directly into the information system. In
this case, periodic changes in the tax laws will be a major source of
modification to an information system. If the state of a business informa-
tion system does not contain the right historical data, the transition re-
quired by the tax clear box cannot be carried out, and the tax computation
becomes difficult indeed.

4.2.2 The Clear Box of Schedule C

In illustration, consider a small business that must account for tax
liability on Schedule C (Profit or (Loss) From Business or Profession) of
Form 1040, depicted in Figure 4.2-1. Such a business would depend on an
information system that maintains business records of inventory, sales,
costs, etc., for day-to-day management and control of operations, as well
as for annual tax computations. A clear box of such an information sys-
tem is depicted in Figure 4.2-2. Component black boxes are shown for
updating business records maintained in the state, and for computing
Schedule C based upon state data that has accumulated over a year of
business operations. In what follows, we focus on the clear box expansion
of the Schedule C computation.

The clear box procedure for completing Schedule C is specified in Tax
Guide For Small Business, published by the Internal Revenue Service.
Much of the information content of Tax Guide For Small Business is
devoted to specifying the Schedule C clear box. While the Schedule C
information is complete and comprehensive, it is distributed throughout
the guide into categories of decisions and computations, that are likewise
distributed in Schedule C. As a result, the information in the guide is not
directly expressed in the form of a clear box. However, the structure and
organization of Schedule C itself provides a basis for reorganizing the
Schedule C information in the guide into a clear box. In fact, such a
reorganization is derived on the fly every time a Schedule C is filled out, in

146 4. The Clear Box Behavior of Information Syst

SCHEDULE C Profit or (Loss) From Business or Profession OMBNo. 15450074
(Form 1040) (Sole Proprietorship) —
Department of the Trassury Partnerships, Joint Ventures, etc., Must Flle Form 1065.

internal Revenue Service () D> Attach to Form 1040 or Form 1041. P> See Instructions for Schedule C(Form 1040).

Name of proprietor Soclal security number of proprieter
A Main business activity (see Instructions) P> ; product P

B Business name and address P

])used to value closing i
M O cost @0 Lowerofcustovmarkel (3) 00 Other (attach explanation)
E Accounting method: (1) O cash @ O Accrual [£)] O oOther (specify) _.........

F Wasthere any majorchange in
If “Yes,” attach explanation.
Did you deduct expenses for an office in your home? .

8 ies, costs, or ions between i closinginventory?

C Emplayer identification number

PART I.—Income

1 8 Gross receipts or sales . 1a
b Less: Returns and allowances . . b
€ Subtractiine 1b fromline 1a and enter the balance here . 1c
2 Costof goods soid and/or operations (Part Ill, line 8) . 2
3 Subtractline 2 from line 1c and enter the gross profit here. - 3
4 a Windfall Profit Tax Credit or Ref in 1983 (see) . 4
b Otherincome a0y v owm o8 s owom | 1
5 Add lines 3, 4a, and 4b. This |sme|roulm:om' s w8 s w8 % w8 P
PART Ii.—Deductions
6 Advertising . . . 23 Repairs .
7 B8ad debts from sales or services (Casn 24 Supplies (not included in Pan III) 5 ‘
method see ions) . 25 Taxes (Do not include Windfall
8 Bank service charges . & i o Profit Tax here. See line 29.) 9
9 Carandtruck expenses . . oW 26 Traveland entertainment
10 Commissions 27 Utilities and telephone
11 Depletion . . . 28 a Wages
12 Depreciation and Sectlon 179 deduction b Jobs credit
from Form 4562 (not included in Part ¢ Subtractline 28bfrom 28a
my. S R 29 Windfall Profit Tax withheld in 1983
13 Dues and publncallons 5@ £ B G £ 30 Other (specify):
14 Employee benefit programs L

15 Freight (not included in Part Ill)
16 Insurance .
17 Interest on business
18 Laundry and cleaning

19 Legaland professional services
20 Office expense . .
21 Pension and profit-: snanng plans .
22 Rent on business property !

~

3 Mdamountsmcolumnsfovlmesstmoum 30i. These arethetotaldeductions p

32 Net profit or (loss). Subtract line 31 from line 5 and enter the result. If a profit, enter on Form 1040, line 12,

1
{
4
—4
1
1
1
p

and on Schedule SE, Part |, line 2 (or Form 1041, line 6). If a loss, go on to line 33 . 32
33 ityouhavea loss, youmust answer thi: “‘Doyouhave forwhich youare not at risk in this buslness(su lnstructnons)"'D Yes D No

It ““Yes," you must attach Form 6198. If “No," enter the | oss on Form 1040, line 12, and on Schedule SE, Part|,

line 2 (or Form 1041, line 6).

PART I1l.—Cost of Goods Sold and/or Operations (See Schedule C instr tor Part ll1)

-

inventory at beginning of year (if different from last year's closing invent y, attach explanation)

F costof items wi for personal use

Cost of labor (do not include salary paid to yourself) .

Materials and supplies

Othercosts

Addlines 1 through 5.

Less: Inventoryatend of year . .

Cost of goods sold and/or operations. Subtuct lme 7 'mm Ime 6 Enlevhueand in Pan I, Ime 2, lbove

BNOAG EWN

o|Nofalalw v -

For Paperwork Reduction Act Notice, see Form 1040 instructions.

®U.S. G.P.0. 1983-390°080 E.I.

Schedule C (Form 1040)

43°0787287

Figure 4.2-1. Schedule C, Form 1040 (Tax Guide for Small Business, Internal Revenué

Service).

42 Strategic Uses of Clear Boxes 147

o= ————————————— T --{ State: Business records e~

Update business records

—>R

Compute Schedule C

o i s e

ey 3 S S

Figure 4.2-2. A Clear Box of a Schedule C System.

the step-by-step application of rules and regulations from different parts
of the guide required at each point in the computation.

Because Schedule C is intended to record successive intermediate
stages of a cumulative computation, it is, of necessity, a logically struc-
tured form. In fact, a procedure for computing Schedule C can be defined
solely in terms of BDL control structures. The Schedule is organized into
parts, I, II, and III, dealing with income, deductions, and costs, respec-
tively. However, the parts cannot be completed in that order since Part I
depends on the outcome of Part III. In essence, Part III computes cost of
goods sold, which is then subtracted in Part I from gross sales to produce
gross income. The deductions computed in Part II are then subtracted
from gross income to arrive at net profit (or loss). Thus, the Schedule C
clear box has the structure depicted in Figure 4.2-3, namely, a sequence
of three operations on shared state data.

The state items accessed and stored by the firstpart operation of the
sequence, shown in Figure 4.2-4, can be identified by examining the Part
III computations of Schedule C. The old state, OS1, contains opening and
closing inventory valuations and various cost items; the new state, NS1,
contains the computed cost of goods sold.

Figures 4.2-5 and 4.2-6 depict state items accessed and stored for the
secondpart and thirdpart operations, respectively. The secondpart old

148

4. The Clear Box Behavior of Information Syst

e~ 1 State =0 Zzo[€-———-==-- 1,
: | S) T 1
:OSI NS1 | 1082 NS2 :OS3 NS3:
1 1 H 1
| L . :
| Part 111 Lo Part I P Part 11 :
1 | |
: |l : | ! |
s—Y R [| L 1 . R
S1 R1 S2 R2 S3 R3
Compute Compute Compute
cost of gross net profit
goods sold income or loss

Figure 4.2-3. The Schedule C Clear Box.

OS1:

Beginning inventory

Purchases

Personal use costs

Labor costs
Materials cost
Other costs
Closing invento

si——4

082:

ry

State

! ? NS1:

I' : Cost of goods sold
1

! :

! 1

! 1

: |

i i

]]

: Part 111 !

' i

Compute cost

of goods sold

Figure 4.2-4. Firstpart State Items.

Cost of goods sold

Sales
Retumns

Windf all tax received

Other income

S2— ¥

State
— —
: ,r NS2:
| : Gross profit
|| \ Gross income
|
! I
']
] I
] i
: Part I E
i] \
| . R2
Compute
gruss income

Figure 4.2-5. Secondpart State Items.

4.2 strategic Uses of Clear Boxes

149

State
i [
083: I { Ns3:
S;oss :pc_ome ! ! Total deductions
vertising, . . ., 1 Net profit
other expenses |' : prot
Amount not at risk :
! i
1
: Part 11 |
1 t
} |
S3— Y 5 —t——R3
Compute
net profit
or loss

Figure 4.2-6. Thirdpart State items.

state, OS2, contains the cost of goods sold computed by the firstpart,
together with various income items; the new state, NS2, contains gross
profit and gross income. Gross profit is not used by the thirdpart opera-
tion, but is a useful item to retain for unforeseen needs in other clear
boxes in the information system. Finally, the thirdpart old state, OS3,
contains gross income and various deduction items; the new state, NS3,
contains total deductions and net profit, both likewise useful to retain for
unforeseen needs. These state items are enumerated in the BDL clear box

definition of Figure 4.2-7.

define CB Schedule C
stimulus
Compute Schedule C
response
Schedule C
state
beginning inventory
purchases
personal use costs
labor costs
materials costs
other costs
closing inventory
cost of goods sold
sales
machine
(see Figure 4.2-8)

returns

windfall tax received

other income

gross profit

gross income

advertising, ..., other expenses*
total deductions

net profit

amount not at risk

* See Part Il of Schedule C, items 6 to 30, Figure 4.2-1, for full enumeration of these

items.

Figure 4.2-7. Schedule C Clear Box.

150 4. The Clear Box Behavior of Information Syste

With required state items defined, the three part clear box sequence of
Figure 4.2-3 can be expanded to full detail in a BDL procedure as shown
in Figure 4.2-8. The procedure has a simple and systematic structure that
uses state data to compute and assign the line items of Schedule C. In
fact, the procedure defines a basis for reorganizing the distributed Sched-.
ule C information content of Tax Guide For Small Business into logical
units that correspond to steps in the procedure, for easier reference and
application.

4.2.3 Deriving Clear Boxes from Natural Procedures

In analyzing business operations, human and machine procedures may
be encountered that exhibit complex control structures, with arbitrary
and confusing connections among operations and tests. Because such
structures are not expressed in nested and sequenced BDL control struc- |
tures, they are difficult to understand and deal with as a foundation for
new information system development. We call such structures natural
procedures.

In illustration, consider the natural procedure of Figure 4.2-9, depicted
in flowchart form, which defines operations and tests in processing job
applicants for a business enterprise. Such a clear box could emerge from
interviews of personnel employees as an explanation of existing opera-
tions, prior to designing an information system for applicant processing.

Even in this miniature example, it is difficult to identify and analyze
possible paths of applicant processing. Fortunately, a systematic process
exists to transform a natural procedure into a clear box expressed solely
in BDL control structures. Such a transformation can help answer critical’
questions of completeness and correctness of the natural procedure. And
be forewarned that the transformation will reveal some surprising behav-
ior in this case. The transformation process is defined in six steps (which
are elaborated below):

Convert to proper form.

Structure abstraction.

Sequence and alternation construction.
Clear box construction.

Clear box simplification.

Clear box expansion.

S e

Step 1: Convert to proper form. A natural procedure is in proper
form if it has a single entry and single exit. If the natural procedure is not
in proper form, a case structure can be used to collect multiple entries
and/or exits into a proper form.

proc
do [compute cost of goods sold (part I1I)]
line III.1 := beginning inventory
line II1.2 := purchases — personal use costs
line II1.3 := labor costs
line I11.4 := materials costs
line II1.5 := other costs
line IIL1.6 := line III.1 +--- + line IIL.S
line II1.7 := closing inventory
cost of goods sold := line I11.6 — line II1.7
line II1.8 := cost of goods sold
od
do [compute gross income (part [)]
line I.la := sales
line I.1b := returns
line I.1c := line I.1a — line I.1b
line 1.2 := cost of goods sold
gross profit := line I.1c — line 1.2
line 1.3 := gross profit
line [.4a := windfall tax received
line 1.4b := other income
gross income := line 1.3 + line I.4a + line 1.4b
line I.5 := gross income
od
do [compute net profit or loss (part II)]
line II.6,...,line I1.30i : = advertising, ..., other
expenses
total deductions := line I1.6 +---+ line I1.30i
line I1.31 : = total deductions
net profit := gross income — total deductions
line I1.32 := net profit
if

net profit > 0
then
enter net profit on Form 1040, line 12, and on Schedule SE,
line 1.2 or on Form 1041, line 6
else
if
amount not at risk > 0
then
check *‘yes”’
attach Form 6198
else
check *“no”’
enter net profit on Form 1040, line 12, and on
Schedule SE, line 1.2 or Form 1041, line 6

od
corp

Figure 4.2-8. Schedule C Clear Box Procedure.

Send T Send
““start date” Accept “offer"”
Send letter letter
“thanks1”
letter
F
Applied Send
for temp. “thanks2™ Conduct
position letter physical
Send “‘no Archive
opening™ application [(Exit)
letter tile
Send
“physical date™
- letter
F : F
(Entry) | Set up Position\T Select Conduct Applicant . Send Conduct T
application open interviewer interview acceptable test date™ == oy
file letter
F
T Send “still ;
interested?” R}g:t
letter o

Figure 4.2-9. A Natural Procedure for Job Applicant Processing.

4.2 Strategic Uses of Clear Boxes 153

Step 2: Structure abstraction. The second step in simplifying natu-
ral procedures is to replace any BDL control structures (sequence, alter-
nation, iteration, concurrency) in the flowchart with abstract procedure
statements. Such control structures are readily understandable as is; they
will be removed and saved in this step and reinserted in step 6, once the
arbitrary, less understandable parts of the procedure have been dealt with
in steps 3 through 5.

In flowchart terms, abstract procedure statements are simply named
boxes that represent the single-entry/single-exit BDL control structures
that have been removed. For example, with reference to Figure 4.2-9, the
sequence control structure

Select Conduct
interviewer interview

Figure 4.2-10 depicts the statement abstractions possible in the job
applicant procedure. Each abstraction is named (PS1, ..., PS4) and delim-
ited by a dashed line. In general, a statement abstraction, once made, may
permit another abstraction not possible before. For example, a structure
such as

can be replaced by

cannot be directly abstracted, but by abstracting the alternation a se-

quence emerges
T = T

which can in turn be abstracted to a single procedure statement:

Step 3: Sequence and alternation construction. The third step is to
construct a set of new sequence and alternation structures, one for every
operation and test, respectively, in the reduced natural procedure. First,
the operations and tests of the procedure must be numbered, in any
arbitrary order, and the exit line numbered 0. Next, a new variable,
known as the label variable, is introduced. Referring to Figure 4.2-10, the

Set up
application
file

_____________ 1 Send Accept Send
| ‘‘start date”| C;;'P “offer”
Send | letter OUISH letter
*“‘thanks1" |
letter
[+ | F
| T
Send |
“thanks 2" | Pass Conduct
letter | physical physical
| Send “‘no Archive 0
________] opening” application —(Exit) F
- letter file
nd
[b al date™
ter
F SN
Select Conduct "tefte::te“ Conduct Pass
interviewer interview test test
letter
F
6 Send “still
; 9
interested interested?
letter

4.2 Strategic Uses of Clear Boxes

155

new sequence and alternation structures can be constructed as shown in
Figure 4.2-11. The firstpart of every new sequence is an operation from
the procedure, the secondpart is an assignment to the label variable, L, of
the number of the next operation or test to be visited in the procedure.
Similarly, the condition of every new alternation is a test from the proce-
dure, with assignments to the label variable, L, of the number of the next
operation or test to be visited in the procedure on the true and false

branches.

New Sequence Structures

(1) do
set up application file;
L:=2
od

(3) do
PS1;
L:=

od

(6) do
send ‘‘still interested?”’
letter;
L:=7
od

(8) do
PS4;
L:=10
od

9) do
send ‘‘no opening’’ letter;
L:=10
od

New Alternation Structures

) if
position open
then
L:=3
else
L:=10
fi

(10)

(an

(13)

(15)

a7

(12)

do
archive application file;
L:=0

od
do
PS2;
L:=12
od
do
PS3;
L:=14
od
do
send ‘‘offer’’ letter;
L:=16
od
do
send ‘‘start date’’ letter;
L:=10
od
if
pass test
then
L:=13
else
L:= 9
fi

Figure 4.2-11. New Sequence and Alternation Structures (continues).

156

4 if
applicant acceptable
then
=S5
else
L:=9
fi
) if
right job
then
L:=11
else
L:=6
fi
o if
still interested
then
L:=2
else
=8
fi

Figure 4.2-11 (Continued)

Step 4. Clear box construction.
new clear box with the structure of an initialized whiledo

proc Applicant processing
L := number of first operation or test in procedure;

while
L>0
do

od
corp

which terminates if L is 0 (corresponding to the natural procedure exit

line), otherwise executes the dopart and repeats. Note that the dopart
must eventually set L to 0, or an infinite loop will result. For the dopart, a
case structure is constructed which tests and branches on values of L to
corresponding caseparts composed of the new sequence and alternation
structures of Figure 4.2-11. Such a construction is depicted in Figure 4.2-
12. This clear box exhibits behavior identical to that of the natural proce- |
dure of Figure 4.2-9; that is, they are execution equivalent. (Try some .
sample executions to verify this assertion!) Although the clear box of
Figure 4.2-12 is composed solely of nested and sequenced BDL state-

4. The Clear Box Behavior of Information Systems

The fourth step is to construct a

(14) if
pass physical

then
L:=1S5
else
L:= 9
fi

(16) if
accept offer
then
L:=17
else
L:= 9
fi

4.2 strategic Uses of Clear Boxes

proc Applicant processing
L:=1;
while
L>0
do
case
L
part (1)
set up application file;
L:=2
part (2)
if
position open
then
L:=3
else
L:=10
fi
part (3)
PS1;
L:=4
part (4)
if
applicant acceptable
then
L:=5
else
L:=9
fi
part (5)
if
right job
then
L:=11
else
=6
fi
part (6)
send ‘‘still interested?’’ letter;
L:=7
part (7)
if
still interested
then
L:=2
else
L:=8
fi

od
corp

157

part (8)
PS4,
L:=10
part (9)
send ‘‘no opening’’ letter;
L:=10
part (10)
archive application file;
L:=0
part (11)
PS2;
L:=12
part (12)
if
pass test
then
L:=13
else
L:=9
fi
part (13)
PS3;
L:=14
part (14)
if
pass physical
then
L:=15
else
L:
fi
part (15)
send ‘‘offer’’ letter;
L:=16
part (16)
if
accept offer
then
L:=17
else
L:
fi
part (17)
send ‘‘start date’’ letter;
L:=10
esac

9

9

Figure 4.2-12. New Clear Box Construction for Applicant Processing. (proc continues

in the right-hand column.)

158 4. The Clear Box Behavior of Information System34

ments, it is likely not any more understandable than its natural procedure
counterpart. However, while it is not obvious how to simplify the natural
procedure, the structure of this clear box can indeed be simplified in a
systematic manner, as we shall see in the next step.

Step 5. Clear box simplification. The clear box of Figure 4.2-12 can
now be simplified by substituting the text of caseparts for occurrences of
corresponding part number assignments to the label (L) variable, wher-
ever they occur, and then eliminating the substituted caseparts. For ex-
ample, casepart 3

PSI; l
L:=4 |

is referenced in one label variable assignment, namely, I. := 3 in casepart |
2. Thus, the text of casepart 3 can be substituted for the assignment 1
L:=3 |

part(2)
if
position open
then
PS1;
L:=4
else
L:=10
fi

and casepart 3 eliminated, since it is no longer referenced by other case-
parts. Next, casepart 4, say, can be substituted for the assignment L := 4
(and eliminated) to get

part (2)
if
position open
then
PSI;
if
applicant acceptable
then
L:=5

4.2 Strategic Uses of Clear Boxes 159

else
L:=9
fi
else
L:=10
fi
Casepart 5 can now be substituted for the assignment L := 5 to get
\
I
part(2) il
if |
position open 1
then I
PSI: HH‘
if Iif
applicant acceptable ‘ ‘
then |
if Wl
right job !
then !
L:=11 “‘
else I
L:=6 i
6 |
else |
L:=9 '
fi bl
else H‘\
L:=10 .
fi i

This process of substitution and elimination of caseparts can continue | I
until the only caseparts remaining reference themselves, in which case
they cannot be eliminated. For example, if casepart 2 above contained an
assignment L := 2, it could not be substituted anywhere (and eliminated)
since the L : = 2 reference would no longer correspond to an existing case. i

Also, a casepart substitution, if elected, must be made for all current H
references to the casepart. Thus, a large casepart could end up replicated
in a number of places, possibly resulting in an increase in complexity.
However, replication of small caseparts usually results in overall simplifi-
cation. Thus, judgement is required in selecting caseparts for substitution.

160 4. The Clear Box Behavior of Information Systems

Figure 4.2-13 depicts an intermediate step in simplification of the clear
box. The clear box is shown as a main procedure (Applicant processing),
which invokes a nested procedure (Applicant status) with a run statement.
The case structure has been simplified to two parts. Part 1 sets up an

proc Applicant processing
L:=1;
while
L>0
do
case
L
part (1)
set up application file;
L:=2
part (2)
if position open
then
PSI;
if applicant acceptable
then
if right job
then
run Applicant status
else

send “‘still interested?’’ letter;

if still interested
then
L:=2
else
PS4;
archive application file;
L:=0
fi
fi
else
send ‘‘no opening’’ letter;
archive application file;
L:=0
fi
else
archive application file;
L:=0
fi
esac
od
corp

Figure 4.2-13. An Intermediate Substitution Step.

proc Applicant status
PS2;
if pass test
then
PS3;
if pass physical
then
send “‘offer’ letter;
if accept offer
then
send ‘‘start date’’ letter;
archive application file;
L:=0
else
send ‘‘no opening’’ lette
archive application file;
L:=0
fi
else
send ‘‘no opening’’ letter;
archive application file;
L:=0
fi
else
send ‘‘no opening’’ letter;
archive application file;
L:=0
fi

cor
P cor|

4.2 Strategic Uses of Clear Boxes

proc Applicant processing
set up application file;
L:=2;
while
L>0
do
if position open
then
PSt;
if applicant acceptable
then
if right job
then
run Applicant status
else
send ‘‘still interested?'’ letter;
if still interested
then
L:=2
else
PS4;
archive application file;
L:=0
fi
fi
else
send ‘‘'no opening’’ letter;
archive application file;
L:=0
fi
else
archive application file;
L:=0
fi
od
corp

161

proc Applicant status
PS2;
if pass test
then
PS3;
if pass physical
then
send ‘‘offer’ letter;
if accept offer
then
send ‘‘start date’ letter;
archive application file;
L:=0
else

send ‘‘no opening’’ letter;

archive application file;
L:=0
fi
else
send ‘‘no opening'’ letter;
archive application file;
L:=0
fi
else
send ‘‘no opening’’ letter;
archive application file;
L:=0
fi
corp

Figure 4.2-14. The Final Substitution Step.

application file and identifies the part 2 process to be executed next. Part 2
references itself, and so cannot be substituted for the assignment L := 2 in
part 1. Casepart 1 can now be substituted for the L := 1 initialization
assignment outside the iteration. Because the case statement now con-
tains only a single part, it can be eliminated as well, to obtain the fully

substituted clear box of Figure 4.2-14.

Next, observe in Figure 4.2-14 that the operation ‘‘archive application
file’’ always appears with the operation ‘L := 0.”’ Also, a pattern of the

form

162 4. The Clear Box Behavior of Information Systems

if
then

A
else

A
fi

can be rewritten with A factored out at the end:

if

proc Applicant processing
set up application file;

L:=2;
while
L>0
do
if position open
then
PSt;
if applicant acceptable
then
if right job
then
run Applicant status
else
send ‘‘still interested?"" letter;
if still interested
then
L:=2
else
PS4,
archive application file;
L:=0
fi
fi
else

send ‘‘no opening’’ letter;
archive application file;
L:=0
fi
else
archive application file;
L:=0
fi
od
corp

proc Applicant status

PS2;
if pass test
then
PS3.
if pass physical
then
send ‘‘offer’ letter;
if accept offer
then
send ‘‘start date’’ letter
else
send ‘‘no opening’’ letter
fi
else

send ‘‘no opening'’ letter
fi
else
send ‘‘no opening’’ letter

fi;
archive application file;
L:=0

corp

4.2 Strategic Uses of Clear Boxes

then

else

fi;
A

163

These observations permit a further simplification of Figure 4.2-14 to
factor out the common operations of ‘‘archive application file’’ and *‘L : =
0’ in four places, as shown in Figure 4.2-15.

Now an additional simplification becomes possible. By adding a test
for L = 0 at the end of the procedure, the remaining operations to ‘‘ar-
chive application file’’ can be factored out, as shown in Figure 4.2-16.

proc Applicant processing
set up application file;
L:=2;
while
L>0
do
if position open
then
PSI;
if applicant acceptable
then
if right job
then
run Applicant status
else
send ‘‘still interested?’” letter;
if still interested
then
L:=2
else
PS4,
L:=0
fi
fi
else
send ‘‘no opening'’ letter;
L:=0
fi
else
=0
fi;
ifL=0
then
archive application file
fi
od
corp

proc Applicant status
PS2;
if pass test
then
PS3;
if pass physical
then
send ‘‘offer’’ letter;
if accept offer
then
send ‘‘start date’’ letter
else
send ‘‘no opening’’ letter
fi
else
send ‘‘no opening’’ letter
fi
else
send ‘‘no opening’’ letter
fi;
L:=0
corp

164 4. The Clear Box Behavior of Information Systems

With a little thought, it is clear that a final simplification is possible. By
presetting L to 0, all of the individual assignments of 0 to L become
redundant, and can be eliminated, as depicted in Figure 4.2-17.

Step 6. Clear box expansion. The final step in construction of the
new clear box is expansion of the abstract procedure statements (PS1 to
PS4) into the corresponding control structures saved in Step 1. Figure 4.2-
18 depicts the fully expanded clear box.

The clear box of Figure 4.2-18 can be read and understood in a system-
atic manner, in sharp contrast to its natural procedure counterpart of
Figure 4.2-9. The nested alternation structures explicitly define all appli-
cant processing possibilities, and reveal some questionable actions, as

proc Applicant processing

proc Applicant status

set up application file; PS2;
L:=2; if pass test
while then
L>0 PS3;
do if pass physical
L:=0 then
if position open send “‘offer’” letter;
then if accept offer
PSI; then
if applicant acceptable send ‘‘start date’ letter
then else
if right job send ‘‘no opening’’ letter
then fi
run Applicant status else
else send ‘‘no opening’’ letter
send **still interested?"" letter; fi
if still interested else
then send ‘‘no opening’’ letter
L:=2 fi
else corp
PS4
fi
fi
else
send ‘‘no opening’’ letter
fi
fi;
ifL=0
then
archive application file
fi
od
corp

Figure 4.2-17. A Final Simplification.

4.2 St

proc Ap
set ug
L:=
while
L
do
L
if |
the

od
corp

Figure

well. Fol
the appli
she is se
physical
seen in t}
to identi
natural p

4.2 Strategic Uses of Clear Boxes

proc Applicant processing
set up application file;
L:=2;
while
L>0
do
L:=0;
if position open
then
select interviewer;
conduct interview;
if applicant acceptable
then
if right job
then
run Applicant status
else
send “‘still interested?’’ letter;
if still interested

then
L:=2
else
if applied for temp position
then
send ‘‘thanksl’" letter
else
send ‘‘thanks2’’ letter
fi
fi
fi
else
send ‘‘no opening’’ letter
fi
fi;
ifL=0
then
archive application file
fi
od
corp

165

proc Applicant status
send ‘‘test date’’ letter;
conduct test;
if pass test
then
send ‘‘physical date’" letter:
conduct physical;
if pass physical
then
send ‘‘offer’’ letter;
if accept offer

then
send ‘‘start date’ letter
else
send ‘‘no opening’’ letter
fi
else

send ‘‘no opening’’ letter
fi
else
send ‘‘no opening’’ letter
fi
corp

Figure 4.2-18. The Fully Simplified and Expanded Applicant Processing Clear Box.

well. For example, if no position is open, the application is archived, but
the applicant is not notified, and if an applicant turns down an offer, he/
she is sent a ‘‘no opening’’ letter. Also, a ‘‘no opening’’ letter is sent if the
physical is not passed. Such procedures obviously make little sense when
seen in their true context in a well structured clear box, but can be difficult
to identify and correct when embedded in the contextual confusion of a

natural procedure.

166 4. The Clear Box Behavior of Information Systems

Summary: Direct use of clear boxes can help simplify and clar-
ify system behavior in complex situations. Schedule C of Form
1040 has a simple clear box structure, despite the complexity of
its explanatory materials. State items and procedure steps in the
Schedule C clear box are natural units of documentation and
refinement in instruction guides for tax preparation. The transfor-
mation of natural procedures into clear boxes provides both a
systematic process for analyzing complex business operations,
and a foundation for new system design.

4.3 ANALYSIS OF STATE MACHINE BEHAVIOR
FROM CLEAR BOXES

Preview: Clear boxes can be abstracted to equivalent proce-
dure-free state machines to better study their transition behavior,
in a process called state machine derivation. The Schedule C
clear box can be abstracted to a state machine with equivalent
behavior. An iteration clear box can also be described as a sim-
pler alternation clear box that is used to verify correct behavior of
the iteration clear box.

4.3.1 The Behavior of BDL Procedure Statements

Clear box procedures can become quite large in complex applications,
and systematic methods are required in analyzing and understanding their.
effect on data. The key to systematic analysis is the fact that any clear box
procedure, no matter how large, is composed solely of nested and se-
quenced BDL procedure statements. Every BDL procedure statement
has a single entry line and a single exit line. While this single entry/single
exit property is crucial for the nesting and sequencing of procedure state-
ments, it has a deeper significance, as well. Because it has no other entries
or exits, a BDL procedure statement simply alters data, in executing from
its entry line to its exit line, with no other unforeseen effects possible. For
example, the alternation structure,

if
a>b

3 Analysis of State Machine Behavior from Clear Boxes 167

then
m:=a
else
m:=b
fi

sets m to max(a,b). It always does exactly this, no more, no less. What a

rocedure statement does to data is called its statement function. A proce-
dure statement can be read and its effect on data analyzed, to arrive at the
equivalent statement function. The statement function can be recorded as
a function comment, delimited by square brackets ([]), immediately pre-
ceding the procedure statement text. The forms of function commentary
for the procedure statements of BDL are as follows:

Sequence:

do [sequence function]
PS1;
PS2

od

Alternation:

if [alternation function]
condition

then [thenpart function]
PS1

else [elsepart function]
PS2

fi

Case:

case [case function]
condition

part (value 1) [partl function]
PS1

part (value 2) [part2 function]
PS2

part (value 3) [part3 function]
PS3

part (value 4) [part4 function]
PS4

esac

168 4. The Clear Box Behavior of Information Syst:

Iteration:

while [iteration function]
condition

do [dopart function]
PS1

od

Concurrency:

with
Resolve

con [concurrent function]
PS1, [PS1 function]
PS2 [PS2 function]

noc

In illustration of statement functions, with a little thought the effect on
data of the sequence

do
temp := price;
price := cost;
cost := temp
od

can be seen as an exchange of the values of price and cost, which also sets
incidental data item temp to the value of cost. This statement function can |
be documented in a function comment as

do [exchange price, cost]
temp := price;
price := cost;
cost := temp

od

The sequence

do
price := price + cost;
cost := price — cost;
price := price — cost
od

also exchanges the values of price and cost, without use of an incidental
date item. (Try some values for price and cost to see how it works!)

In further illustration, the alternation structure below sets loss car-
ryover to the absolute value of net loss

4.3 Analysis of State Machine Behavior from Clear Boxes 169

if [loss carryover := absolute value (net loss)]

net loss < 0
then

loss carryover := —net loss
else

loss carryover := net loss
fi

and the iteration structure below adds loan advances in $100.00 incre-
ments, if necessary, to an account balance until it becomes nonnegative:

while [if balance is negative, add $100 increments until it
becomes non-negative]

balance < 0
do

balance := balance + 100
od

Note that in each instance the procedure statement does exactly what
the function comment says, and vice versa. Thus, the function comments
and their procedure statements are function equivalent. That is, they both
exhibit the same behavior.

Function commentary can be expressed in whatever language and
notation is appropriate to the problem at hand. In many instances, precise
natural language may be sufficient. Conditional assignments are also use-
ful, particularly in expressing statement functions of alternation struc-
tures. A conditional assignment is given by a sequence of conditions
paired by arrows (—) with assignments and separated by bars (|) in which
the first condition that evaluates TRUE denotes the assignment to be
used; an assignment with no condition is always to be used if no preceding
conditions evaluate TRUE. For example, the alternation above can be
commented with a conditional rule as

if [net loss < 0 — loss carryover := —net loss | :
loss carryover := net loss] ‘\m“‘
net loss < 0
then |
loss carryover := —net loss "
else ! ‘\\
loss carryover := net loss ‘
fi !

The conditional rule gives a branch-free abstraction of the alternation. 1
Simultaneous assignments are also useful in expressing function com- |
ments. Simultaneous assignment statements extend the idea of data as- !

170 4. The Clear Box Behavior of Information Systems §

signment to several variables concurrently, denoted by a list (of equal]
length) on both sides of the assignment symbol, 1

<variable>, <variable>, ... := <expression>, <expression>, ...

where all <expression>s are evaluated, then simultaneously assigned to §
the respective <variable>s. For example]

price, cost := list — discount, labor + material

means to compute the values of list — discount and labor + material, then
simultaneously assign these values to price and cost, respectively. In the 4
concurrent assignment ‘

a,b:=c+d, a

note that the initial value of a is assigned to b, not the value a becomes in |
this assignment.

Simultaneous assignments can be used to define a sequence-free ab- .
straction of a sequence of assignments. For example, the sequence

do
a:=b;
b:=c;
c:=d
od

will have the total effect of the simultaneous assignment
a,b,c:=b,c, d

and can be documented with the simultaneous assignment as a function
comment, as

dofa,b,c:=b,c,d

a:=b;
b :=c;
c:=d
od
These assignments in reverse sequence, namely,
do
c:=d;
b:=c;
a:=b
od

have quite a different simultaneous assignment, namely,

4.3 Analysis of State Machine Behavior from Clear Boxes 171

a,b,c:=d,d,d

Simultaneous assignments can also be placed in sequences them-
selves, for example in
do
a,b:=c+d,a;
b,c:=a,c—d
od

whose effect can be determined to be

a,bc:=c+d,c+d,c—d
and the sequence documented accordingly,

dofa,b,c:=c+d,c+d, c—d]
a,b:=c+d,a;
b,c:=a,c—d

od

The exchange can be written as a simultaneous assignment, e.g., as

do [exchange x and y]

Xy =y, X
od
or the simultaneous assignment used in a function comment, as
do [x,y:=y,x]
X:=Xx+tYy,;
yi=x-y;
X:i=X-—Yy
od

The nested and sequenced procedure statements in a clear box can be
successively abstracted to statement functions, to eventually arrive at the
statement function of the clear box itself. In illustration, the procedure

do

172 4. The Clear Box Behavior of Information Systems

then
Z:=W
else
Z:=Yy
fi
od

is composed of three procedure statements, specifically, two if statements |
comprising the firstpart and secondpart of a sequence statement. With a

little thought, the statement function of the first if statement can be seen

as

w := absolute value(x)
and the second if statement as
Z := maximum(w, y)
to give the following branch-free abstraction:

do
w := absolute value(x);
Z := maximum(w, y)
od

Next, the sequence can be abstracted by substituting the firstpart w
value for the secondpart occurrence of w to arrive at a sequence-free
statement function that defines the overall effect on data of the original
procedure:

do
z := maximum(absolute value(x), y)
od

The variable w does not appear in the final abstraction, since it is
incidental to the computation of a value for z. We note that this analysis
process can be reversed to show a design process of successive procedure
statement expansions, in going from

do
z := maximum(absolute value(x), y)
od

to an intermediate expansion

do [z := maximum(absolute value(x), y)]
w := absolute value(x);
Z := maximum(w, y)

od

4.3 Analysis of State Machine Behavior from Clear Boxes 173

and then to a final expansion:

do [z := maximum(absolute value(x), y)]
if [w := absolute value(x)]
x=0
then
W= X
else
W= —X
fi;
if [z := maximum(w, y)]
w >y
then
Z:=W
else
zZ:=y
fi
od

At each stage, successive statement functions are carried into the
corresponding expansions as function comments to document the design
during its expansion.

4.3.2 The State Machine Behavior of Clear Boxes

Clear boxes can be analyzed to determine their equivalent state ma-
chines, in a process called state machine derivation. In illustration, con-
sider a sequence clear box in which machines M1, M2 do the following
(See Figure 4.1-2):

M1: Rl := OSlI;
NSI1 := OS1 + S1

M2: R2 := 0S2; 1
NS2:= 082 — S2 i

In this case, we can derive expressions for R2 and NS2 in terms of S1 il

and OS1 as g
R2 = OS2 by M2 N

= NSI by allocation |

= 0OS1 + S1 by M1 |

NS2 = 0S2 - 2 by M2 |

= NSI1 - Rl by allocation i

= 0SI +S1 —0Sl by MI : il
= S1 by simplification ‘}‘

174 4. The Clear Box Behavior of Information Systems

That is, the clear box behaves like a state machine with the rule

R :=0S + S;
NS :=S

In turn, the behavior of this state machine can be recognized as that of
black box Add2, because, for transition i,

R@) = OS(i) + S(i)
=NSG — 1) + S(@i)
=SG — 1) + S()

That is, response R(i) is the sum of the last two stimuli S(i) and S(i — 1).

As a second example, consider an alternation clear box in which C
tests if S is odd and M1, M2 are defined as above. The equivalent state
machine is then given by the rule (see Figure 4.1-3)

if S is odd
then
R :=08S;
NS:=0S8S + S
else (S is even)
R :=0S;
NS :=0S -S
fi
That is:
do
R :=0S;
NS :=0S - ((—-1)5*S)
od

(since (—1)S = —1if S is odd,
1if Sis even)

The black box behavior of this state machine can be described quite
simply if the initial state OS = 0; in this case the black box response is the
sum of previous odd stimuli minus the sum of previous even stimuli.

4.3.3 State Machine Derivation from the Schedule C
Clear Box

The state machine of Schedule C can be derived from the clear box
definition given in Section 4.2.2. First, the state of the state machine is|
identical to that of the clear box, as defined in Figure 4.2-7. Next, the state

43 Analysis of State Machine Behavior from Clear Boxes 175

machine transition can be derived from the three part clear box sequence
structure of Figure 4.2-3, as expanded in the BDL procedure of Figure
4.2-8. Thus, the first do statement of the procedure (compute cost of
goods sold (Part III)) of Figure 4.2-8 can be abstracted to the statement

function

cost of goods sold := beginning inventory + purchases
— personal use costs + labor costs
+ materials costs + other costs
— closing inventory

by substituting state values assigned to line items for occurrences of the
same line items in right sides of subsequent assignments. The second do
statement of the procedure (compute gross income (Part I)) can be simi-
larly abstracted to a simultaneous assignment

gross profit,
gross income := sales — returns — cost of goods sold,
sales — returns — cost of goods sold
+ windfall tax received + other income

The abstraction of the third do statement of the procedure (compute
net profit (Part II)) can be carried out in steps. First, the computation of
total deductions and net profit abstracts to a simultaneous assignment

total deductions,
net profit := advertising + ... + other expenses,
gross income — (advertising + ... + other
expenses)

These three assignments define the computation up to the present point of
analysis, as depicted in Figure 4.3-1.

The sequence of Figure 4.3-1 can itself be abstracted to the single
simultaneous assignment of Figure 4.3-2, by the same substitution pro-
cess of values for variables. This final sequence abstraction is especially
illuminating, in its fully elaborated definition of computations and assign-
ments from old state to new state carried out by the Schedule C clear box.

Next, with a little thought, it can be seen that the nested alternation
structures of the procedure of Figure 4.2-8 specify three possible out-
comes, as defined by the conditional rule of Figure 4.3-3.

The procedure of Figure 4.2-8 has now been abstracted to a two part
sequence, namely a firstpart given by the concurrent assignment of Figure
4.3-2, and a secondpart given by the conditional rule of Figure 4.3-3. This
new sequence can itself be abstracted to a single operation, the transition
rule of the Schedule C state machine, as follows.

176 4. The Clear Box Behavior of Information Syste

do
cost of goods sold := beginning inventory + purchases
— personal use costs + labor costs
+ materials costs + other costs
— closing inventory
gross profit,
gross income : = sales — returns — cost of goods sold,
sales — returns — cost of goods sold
+ windfall tax received + other income
total deductions,
net profit:= advertising + ... + other expenses,
gross income — (advertising + ... + other

expenses)
od;
do
(remainder of computation)
od

Figure 4.3-1. Intermediate Abstraction of the Schedule C Clear Box.

First, the conditions of the conditional rule of Figure 4.3-3 must be
expressed in terms of old state items. Amount at risk is an item in the old:
state. However, net profit is a new state item which is not available for
testing until the transition is partially completed. Figure 4.3-2 gives an
expression for net profit in terms of old state items which can be used
directly in the conditional rule. We name this expression E:

E := (sales — returns — (beginning inventory
+ purchases — personal use costs
+ labor costs + materials costs
+ other costs — closing inventory)
+ windfall tax received + other income
— (advertising + ... + other expenses))

Next, observe that the simultaneous assignment of Figure 4.3-2 will
always be carried out, no matter which part of the conditional rule - of:
Figure 4.3-3 is executed. Thus, the concurrent assignment and the condi-:
tional rule can be combined into a new conditional rule by replicating the!
concurrent assignment in three new sequence structures, one for each
part of the rule. The firstpart of each new sequence is the concurrent
assignment of Figure 4.3-2, and the secondpart is the operation from the
conditional rule of Figure 4.3-3. Such a construction is shown in the full
Schedule C state machine abstraction of Figure 4.3-4. This procedure-free
derivation contains all possibilities for the state transition in a single con-
ditional rule. This rule could be carried out by many possible clear box

cost of goods sold, | beginning inventory

+ purchases — personal use costs
+ labor costs + materials costs

+ other costs — closing inventory,

gross profit, sales

— returns

— (beginning inventory

+ purchases — personal use costs
+ labor costs

+ materials costs

+ other costs — closing inventory),

gross income, = sales

— returns

— (beginning inventory

+ purchases — personal use costs
+ labor costs

+ materials costs

+ other costs — closing inventory)
+ windfall tax received

+ other income,

total deductions, advertising + ... + other expenses,

net profit sales

— returns

— (beginning inventory

+ purchases — personal use costs
+ labor costs + materials costs

+ other costs — closing inventory)
+ windfall tax received

+ other income

(advertising + ...

+ other expenses)

Figure 4.3-2. The Simultaneous Assignment Abstraction of the Sequence of Figure 4.3-1.

(net profit > 0 —
enter net profit on Form 1040, line 12, and on Schedule
SE, line 1.2 or on Form 1041, line 6 l

i

It If

| (amount not at risk > 0 — }l 1‘
check ‘‘yes’’, attach Form 6198

| amount not at risk = 0 — I
check ‘‘no’’, enter net profit on Form 1040, line 12 and on “
Schedule SE, line 1.2 or on Form 1041, line 6)) “‘

Figure 4.3-3. Conditional Rule Abstraction of Nested Alternations of Figure 4.2-8.

178 4. The Clear Box Behavior of Information Syste,

define SM Schedule C

stimulus
complete Schedule C
response
Schedule C
state
beginning inventory returns
purchases windfall tax received
personal use costs other income
labor costs gross profit
materials costs gross income
other costs advertising, ..., other expenses
closing inventory total deductions
cost of goods sold net profit
sales amount not at risk
machine
(E>0-—>
do

compute concurrent assignment of Figure 4.3-2;
enter net profit on Form 1040, line 12, and on
schedule SE, line 1.2 or on Form 1041, line 6
od
| (amount not at risk > 0 —
do .
compute concurrent assignment of Figure 4.3-2;
check ‘‘yes’’ and attach Form 6198
od
| amount not at risk = 0 —
do
compute concurrent assignment of Figure 4.3-2;
check ‘‘no’’ and enter net profit on Form 1040, line 12,
and on schedule SE, line 1.2 or on Form 1041, line 6
od))

Figure 4.3-4. Schedule C State Machine.

designs, of which the clear box of Figure 4.2-8, the source of this state
machine abstraction, is but one example.

4.3.4 The Behavior of Iteration Clear Boxes

Thus far in our discussion of clear box analysis, we have demonstrated
methods of eliminating procedurality from clear box sequence, alterna-
tion, and case structures. Such analyses are facilitated by knowing that:

4.3 Analysis of State Machine Behavior from Clear Boxes 179

each machine is executed once in a structure. Analyzing the iteration
structure is more difficult because the number of iterations of the machine
in the structure is unknown during analysis. One method of analyzing
iteration structures is to transform the iteration into an equivalent case
structure, which we know how to analyze. This transformation procedure
is studied in the remainder of this section.

An iteration clear box defines the behavior of a state machine, ob-
tained by abstracting the number of its iterations out and discovering the
resulting transition from stimulus and initial state to response and final
state. Once this transition is discovered, it can be used to represent the
effect of the iteration. Since this discovery can be difficult and subject to
human error, a method of verification of a candidate transition is useful
and is given below. We begin with an example to illustrate an iteration
clear box that requires a variable number of iterations to complete a
transition.

Consider an iteration clear box in which condition C tests if S is odd
and machine M1 is defined as before, namely,

Ml1: Rl := OSlI;
NSI1 := OS1 + S1

Then if S = 5, and OS1 = 3, for example, the transition of this iteration
clear box can be determined as follows:

iteration S OSI S1 Rl NSI R
0 5 3 5 3 8
1 3 8 3 8 11
2 8 11 8

namely, the transition (5,3) — (8,11). (By starting the iteration count at 0,
it counts the number of times the machine M1 is invoked.)
As a second example, if S = 4, OS1 = 3, the transition is

iteration S OS] S1 Rl NSI R

0 4 3 4

namely the transition (4,3) — (4,3). As a third example, if S = 5, OS1 = 4
the transition is

iteration

OS1 S1 Rl NSI R
4 5 4 9
9

s
0 5
1 4

namely, the transition (5,4) — (4,9).

180 4. The Clear Box Behavior of Information Systems

With a little thought, it can be seen that these three transitions repre-
sent all possible transitions in the following sense:
if Sis even
R, NS := S, OS [in iteration 0]

if Sis odd,
if OS is even
R, NS := OS, OS + S [in iteration 1]
if OSis odd
R, NS :=0S + S, 2 * OS + S [in iteration 2]

These three cases represent all possibilities for S and OS to be odd or
even (if S is even, the transition occurs in iteration 0 whether OS is odd or
even), and the three examples above are models of such transitions.

This example illustrates a general procedure for determining the tran-
sitions of an iteration clear box. It is to discover the conditions on S and
OS for transitions to occur at iterations 0,1,2, ... and then work out what
the transitions will be in each such case.

As a result, such an iteration clear box can be identified with an
equivalent state machine. In this case, the state machine has the transi-
tions as given, for S and OS odd or even.

This example shows how an iteration clear box can be determined as
equivalent to a state machine. Such a state machine will have a single
machine (different, of course, than the machine M1 of the clear box
iteration), which can depend only on the definitions for C and M1 of the
iteration clear box. Let such a machine be denoted as M(C,M1), where

M(C,M1): if Siseven: R := S; NS := OS
if S is odd:
if OSiseven: R:=0S; NS :=0S + S
if OSisodd: R:=0S + S; NS:=2*0S + S

The state machine (Abbreviated) of Figure 4.3-5A and the iteration clear
box of Figure 4.3-5B (Abbreviated) will have identical transitions.

A BoX STRUCTURE IDENTITY

Consider next an alternation clear box in which the foregoing iteration
clear box is embedded, as shown in Figure 4.3-6A, which can be seen to
carry out the first iteration, if necessary, of the iteration clear box above,
then enter the iteration clear box again, inside the alternation clear box.

With a little thought, it can be seen that this alternation clear box will
have the same transitions as the iteration clear box above, as the follow-

4.3 Analysis of State Machine Behavior from Clear Boxes 181

M(C. M)

(A)

Ml

(B)
Figure 4.3-5. State Machine (A) and Iteration Clear Box (B) with Identical Behaviors.

ing analysis shows. On entry if the outcome of case C is F, the transition
in either clear box is simply

(S,08) — (S,0S8)

On the other hand, if the outcome of condition C is T, the effect in
either clear box is to invoke a transition of M1, then reenter the iteration
clear box, from which point the iteration will be identical, with identical
results.

But now, in the alternation clear box the iteration clear box can be
replaced by its equivalent state machine, since its transitions will be iden-
tical, to get a new alternation clear box shown in Figure 4.3-6B, which by
its construction must have transitions identical with the original iteration
clear box, and therefore, with the state machine. This result is summa-
rized as the following Theorem, with a general machine M2 in place of
M(C,M1) in the example.

Iteration Theorem: For any condition definition C and machines
MI, M2, if the iteration clear box of Figure 4.3-7A and state ma-
chine of Figure 4.3-7B are equivalent, then both are equivalent to
the alternation clear box of Figure 4.3-7C.

182 4. The Clear Box Behavior of Information Systems -

MI

MI

(A)

MI M(C. M)

(B)

Figure 4.3-6. Alternation Clear Box with Embedded Iteration Clear Box (A) and Alter-
nation Clear Box (B) Exhibiting Identical Behaviors.

The significance of the Iteration Theorem is that an iteration clear box
is described as both a state machine and a simpler alternation clear box.
Thus, the hypothesis that machine M2 describes the iterative effect of C
and M1 in an iteration clear box, can be verified (or not) by reducing the °
alternation case clear box to a state machine and comparing its machine
with M2. We summarize this in the following theorem;

Theorem (Verification Theorem): If the state machine of Figure
4.3-8A describes the behavior of the iteration clear box of Figure
4.3-8B, then the behavior of the alternation clear box of Figure 4.3- |
8C can be reduced to the behavior of the state machine of Figure !
4.3-8A.

4.3 Analysis of State Machine Behavior from Clear Boxes 183

i
Ml ‘
T
S C K —» R
(A)
M2
S > » R
(B)
MI M2
T
S — » R
F

<)

Figure 4.3-7. The Iteration Theorem. (A) Iteration Clear Box; (B) State Machine; and
(C) Alternation Clear Box.

The Verification Theorem provides a means to verify the correctness
of a state machine expansion into an iteration clear box. Rather than
verifying by direct comparison of the state machine and iteration clear
box behaviors, a difficult task, the Theorem permits verifying by compari-
son of the behaviors of the state machine and an alternation clear box, a
simpler task.

184 4. The Clear Box Behavior of Information Syst,

M2
S > —R
(A)
Ml
T
S Y & F R
(B)
MI M2
. >
S — >R
F
©)

Figure 4.3-8. The Verification Theorem. (A) State Machine; (B) Iteration Clear Bof
and (C) Alternation Clear Box.

In illustration, in the example above
C: Sis odd

M1l: R,NS:=0S§,0S8 + S

43 Analysis of State Machine Behavior from Clear Boxes 185

M2: if Siseven
then
R, NS:= S, OS
else (S is odd)
if OS is even
then
R, NS:=0S§,0S8 + S
else (OS is odd)
R,NS:=0S+S,2+x0S + S
fi
fi

and M2 was discovered to describe the iterative effect of C and M1. To
verify this discovery, we need only consider the alternation clear box of
the Verification Theorem and compare its behavior with M2. We can
analyze this alternation clear box in two steps, dealing first with the
sequence M1, M2 as shown in Figure 4.3-9A. The unabbreviated se-
quence structure can be annotated as shown in Figure 4.3-9B and, by the
definitions of M1 and M2

M1: Rl := OSI
NS1 := OS1 + SI

Ml M2

(A)

="
1
|
|
|
I
|
|
|
I
P&
[
-
(¢
1
|
|
!
1
|
1
-

(@]
w
~

Ml M2

|
|
|
|
S1 *;

»n|lEe-—————
l'J‘

z

(B)
Figure 4.3-9. Abbreviated (A) and Equivalent Unabbreviated (B) Sequence Structures.

186 4. The Clear Box Behavior of Information Systems

M2: if S2is even

then
R2 :=S2; 1
NS2 := 0S2 |
else (S2 is odd) .
if OS2 is even
then
R2 := 082;

NS2:= 082 + S2
else (OS2 is odd)
R2 := 0S2 + S2;
NS2:=2 % 0S2 + S2
fi
fi

Furthermore, by the sequence structure

S2 =R,
OS2 = NSI

In order to obtain the behavior of the sequence clear box, we need to-
determine R2, NS2 in terms of S1, OS1. Now '

S2 = RI1 = OSl,
OS2 = NS1 = OS1 + SI

|
1
J
|
so the M1;M2 sequence structure can be rewritten as |
]

if OS1 is even
then
R2 := OSI;

NS2:= OS1 + SI
else (OS1 is odd)
if OS1 + Sl is even |
then |
R2 :=0S1 + SI; :
NS2 := OS1 + S1 + OS1 ?
else (OS1 + Sl is odd) |
R2 := 0OS1 + S1 + OSI; ‘
NS2 := 2 % OS1 + 2 % SI + OSI |
f |
fi |

Note that these three conditions can be simplified as follows

]
OS1 is even — OS1is even |
OSl1 is odd, OS1 + Sl is even — Sl is odd, OSI1 is odd 1

4.3 Analysis of State Machine Behavior from Clear Boxes 187

OS1 is odd, OS1 + Sl is odd — Sl is even, OS1 is odd

and the effect of this sequence structure (of Figure 4.3-9) is, with OS =
0S1, S = S1, R = R2, and NS = NS2

if OS is even
then
R, NS :=0S,0S + S
else (OS is odd)
if S is odd
then
R,NS:=0S+S5,2+*0S + S
else (S is even)
R,NS:=2%*0S+S,3«*0S +2x*S

fi
fi

Having worked out the sequence structure, we need to work out the
alternation structure which contains this sequence structure, as follows:

if S is odd
then
if OS is even
then
R, NS :=0S§,0S + S
else (OS is odd)
if S is odd
then
R,NS:=0S +S,2+*0S + S
else (S is even)
R,NS:=2+x*0S+S,3x0S +2=*8S

fi
fi
else (S is even)
R, NS := S, OS
fi

This can be simplified by recognizing that of the two innermost cases,
one condition (S is odd) is redundant and the other condition (S is even) is
a contradiction. Therefore, the alternation structure is, on rearranging:

if S is even
then

R, NS :=§, OS
else (S is odd)

if OS is even

188 4. The Clear Box Behavior of Information Syst

then
R, NS :=0S,0S + S
else (OS is odd)
R,NS:=0S +S5,2«0S + S
fi
fi

which is identical with M2. Therefore, the form of M2 has been verifiec
the application of the Verification Theorem.

4.4

Summary: State machine abstractions of clear boxes define
equivalent behavior while suppressing procedural details. The
hypothesis that an iteration clear box exhibits behavior identical
to its state machine specification can be verified by transforming
the iteration clear box into an alternation clear box, which can be
abstracted to a state machine and compared to the state machine
specification.

DESIGN OF CLEAR BOXES FOR
STATE MACHINE BEHAVIOR

Preview: Clear boxes are designed by expanding state machine
transitions into equivalent BDL procedures. The state machine
description of the hand calculator black box provides a basis for
clear box design. Clear boxes can be organized into a hierarchy of
smaller clear boxes by reusing the concept of a BDL procedure.

4.4.1 Clear Box Design Principles

The objective of clear box design is to express the transitions of a st

machine in a procedure that accesses the same state objects, and possi
refers to working data and lower level black boxes.

The state machine transitions are a specification of the required cl

box procedure. The initial expansion of any clear box procedure will k
sequence, alternation, iteration, or concurrent control structure. T
control structure will reexpress the specification in terms of a sequence
two (or more) subspecifications, a choice between two (or more) subs

4.4 Design of Clear Boxes for State Machine Behavior 189

cifications, a repetitive subspecification, or two (or more) concurrent sub-
speciﬁcations, respectively. Each subspecification will be smaller and
simpler than the original specification, and can in turn be reexpressed in
terms of new control structures and subsubspecifications. At any point in
the process a subspecification may be regarded as a black box for which
no further expansion is required.

In all but the simplest state machines, many different types of transi-
tions based on stimulus and state may be specified, all of which must be
recognized and carried out by the procedure of the clear box expansion.
This observation leads to the following fundamental principle:

Fundamental Principle: A clear box must determine which tran-
sition is required by the current stimulus and state, and then carry
it out.

Thus, a useful strategy in clear box design is to begin the expansion
process with a procedure that recognizes each stimulus and state, and
directs control to the procedure part responsible for the corresponding
transition. An alternation or case structure can be used to organize the
tests of stimulus and state, with each thenpart, elsepart, or casepart carry-
ing out a particular transition.

In some cases, individual transitions of a state machine may contain
identical parts, or parts that differ only in the state data on which they
operate, but are otherwise identical. Such commonality can be capitalized
upon in clear box design, and leads to the following fundamental prin-
ciple.

Fundamental Principle: Any operations shared by state ma-
chine transitions should be expanded into clear box subproce-
dures and invoked by the clear box where necessary in carrying
out those transitions.

For example, a file update state machine may define many possible file
update transitions, all of which depend on the proper password stimulus
for levels of file access and authorization. The shared password process-
ing can be expanded as a common clear box subprocedure invoked by the
various unique update transitions as required.

4.4.2 A Clear Box Design for the Hand Calculator

We use the hand calculator to illustrate an orderly top down step by
step process of design expansion of a state machine into a clear box. Such

190 4. The Clear Box Behavior of Information System;

an orderly expansion may not be easy to find without some analysis and
insight. It may involve restating the form of the state machine, and possi-
bly several attempts at an expansion. However, the final result provides
an easy trail for the reader, and is well worth the designer’s effort.

In Chapter 3 we developed a state machine design for the black box
behavior of a simple hand calculator with stimulus keys,

Clear Key

Digit Keys (0-9)

Arithmetic Function Keys (+, —, *, /)
Result Key

hmoan

for behavior not involving numerical overflow in either digit entry or
result display. In that explanation, we assumed a state defined by four
state registers:

BR: Begin Register (contains B for Begin or C for Continue)
VR: Visible Register (displays any number)

FR: Function Register (contains an arithmetic function)

HR: Hidden Register (contains any number)

The state machine transitions are defined in Table 3.4-2, repeated here
in Table 4.4-1.

Table 4.4-1 provides the basis for working out a clear box design for
the hand calculator. As noted, the state machine of Chapter 3 assumes
that response R is always equal to the number in the visible register VR.
Therefore, an initial clear box sequence structure can be designed as
shown in Figure 4.4-1 in both diagram and BDL form. In order to save
space in complex diagrams, black boxes are shown without internal lines.
The state registers BR (begin register) and FR (function register) are
defined as enumerated types, with permissible values listed, or enumer-
ated, as (B,C) for Begin or Continue, and (+,—,*,/), respectively. Both

Table 4.4-1

Machine Transitions for a Hand Calculator

S oS)— (R . NS)
row BR VR FR HR BR VR FR HR
1 C 0 B 0
2 any D B f y D C D f y
3 any D C X f y D + 10x C D + 10x f y
4 any F X f y yfx B yfx F yfx
S = X f y yfx yfx

4.4 Design of Clear Boxes for State Machine Behavior 191

Compute state
S—>| registersasin +» R:=VR |—» R
Table 4.4-1

define CB Hand calculator
stimulus
S:key
response
R:number
state
BR: (B,C)
FR: (+, —, *, /)
VR: number
HR: number
machine
data
(none)
proc
Compute state registers
as in Table;
R := VR
corp |

Figure 4.4-1. The Initial Hand Calculator Clear Box. [

VR and HR are defined as type number. The machine has no local data,
and the initial clear box decomposition is a sequence structure. ‘

Next, we can translate Table 4.4-1 into clear box expansions line by i
line, step by step. Figure 4.4-2 shows an alternation expansion of the first ‘
black box in the sequence, to differentiate between line 1 of the table and W
all other lines, by testing for a stimulus of *‘C.”’ Next, Figure 4.4-3 depicts ‘
an expansion of ‘‘Compute line 1 of Table’’ as a sequence of two black
boxes.

Now that line 1 of the table has been expanded, we next expand lines
2-5 by checking for a digit stimulus to differentiate between the transitions ‘
on lines 2-3 and 4-5, as shown in the alternation expansion of Figure 4.4-4.

Next, line 2 and line 3 of Table 4.4-1 can be distinguished by checking on “‘ |
SR, to get the case expansion of Figure 4.4-5. Continuing in this way, we
finally arrive at the fully expanded clear box of Figure 4.4-6. i

4.4.3 Segment Structured Clear Boxes

|
‘\
In systems of any size, clear box expansions of state machines can \
become quite large, so as a practical matter, a systematic means to break |

192 4. The Clear Box Behavior of Information Systems

Compute line 1
of Table 4.4-1

Compute lines 2-5
of Table 4.4-1

machine
data
(none)
proc [Compute state registers as in Table]
#S=C
then
Compute line 1 of Table
else
Compute lines 2-5 of Table
fi;
R := VR
corp

Figure 4.4-2. An Alternation Expansion of ‘*‘Compute state registers as in Table.”

procedures into manageable parts is required. The concept of a clear box
procedure can be reused for this purpose, by defining each part as a
procedure with a name, in the form

proc <procedure name>
data
<procedure data>
<procedure>

corp
then calling such a part into execution by a run statement of the form

run <procedure name>

4.4 Design of Clear Boxes for State Machine Behavior 193

BR =B VR:i=0

Compute lines
2-5 of
Table 4.4-1

machine
data
(none)
proc [Compute state registers as in Table]
ifS=C
then [Compute line 1 of Table]
BR := B;
VR :=0
else
Compute lines 2-5 of Table
fi;
R := VR
corp

Figure 4.4-3. A Sequence Expansion of ‘‘Compute line 1 of Table.”

The <procedure data> defined in a procedure is available only within the
procedure and not outside. Therefore data names can be reused without
confusion. Such procedures can be listed as part of a clear box, or if often
reused, as part of a library of procedures available to a clear box.
Procedures can be made even more reusable with the use of parame-
ters. A parameter list of data can be defined with a procedure in the form

proc <procedure name> (<parameter list>)
data
<procedure date>
<procedure>
corp

194 4. The Clear Box Behavior of Information Systems

» VR:=0 [—
S — > R:=VR >R
Compute
lines 2-3 of —
Table 4.4-1
Com,
Table 44-1 |
machine
data
(none)
proc [Compute state registers as in Table]
ifS=C
then (Compute line 1 of Table]
BR := B;
VR:=0
else [Compute lines 2-5 of Table]
ifS=anyD
then
Compute lines 2-3 of Table
else
Compute lines 4-5 of Table
fi
fi;
R:= VR
corp

Figure 4.4-4. An Alternation Expansion of ‘‘Compute lines 2-5 of Table.”’

BR =B » VR:=0

Compute line
2 of Table 4.4-1

Compute line 3
of Table 4.4-1

Compute lines
4-5 of Table 4.4-1

machine
data
(none)
proc [Compute state registers as in Table]
ifS=C
then [Compute line | of Table|
BR := B;
VR :=0
else [Compute lines 2-5 of Table]
if S =any D
then [Compute lines 2-3 of Table]
if BR =B
then
Compute line 2 of Table
else
Compute line 3 of Table
fi
else
Compute lines 4-5 of Table
fi
fi;
:= VR
corp

Figure 4.4-5. An Alternation Expansion of **Compute lines 2-3 of Table."

BR =B VR :=0

BR :=C VR =8 ’—— R :=VR + R

VR =10+ VR +S

VR :=HR FR VR |—» FR:=S [—» HR:=VR

VR :=HR FR VR |—

Figure 4.4-6. The Fully Expanded Hand Calculator Clear Box (continued).

197

4.4 Design of Clear Boxes for State Machine Behavior

define CB Hand calculator

stimulus
S:key
response
R:number
state
SR: (B,C)
FR: (+,—,%,/)
VR: number
HR: number
machine
data
(none)
proc [Compute state registers as in Table]
ifS=C
then [Compute line 1 of Table]
BR := B;
VR :=0
else [Compute lines 2-5 of Table]
ifS=any D
then [Compute lines 2-3 of Table]
if BR =B
then [Compute line 2 of Table]
BR := C;
VR =S
else [Compute line 3 of Table]
VR:=10* VR + S
fi
else [Compute lines 4-5 of Table]
ifS=anyF
then [Compute line 4 of Table]
BR := B;
VR := HRFR VR;
FR := §;
HR := VR
else [Compute line S of Table]
ifS==
then [Compute HR (function) VR]
VR := HR FR VR
fi
fi
fi
fi;
R := VR
corp

Figure 4.4-6. The Fully Expanded Hand Calculator Clear Box.

198 4. The Clear Box Behavior of Information Systems

and the procedure can access data in the parameter list as well as the state
and working data. A call in the form

run <procedure name> (<parameter list>)

must define a new parameter list of data known to the procedure state-
ment. This new parameter list must agree in length and data types with the
parameter list in the procedure definition. For example, given a procedure

proc Add(x, y, z:number)
X:=y+1z
corp

the statement
run Add (R, S, L)

will have the effect of the assignment
R:=S+ L

while the statement
run Add(L, S, L)

will have the effect of the assignment
L:=S+L

In illustration, the final hand calculator clear box expansion of Figure
4.4-6 can be organized into segment structured form for better under-
standability, as shown in Figure 4.4-7. Two nested control structures have
been removed and converted to named procedures invoked by outer syn-
tax run statements. In this case no additional data is defined for the
procedures so the data keyword is omitted. The result is a hierarchy of
smaller procedures, called segments, each of which can be reviewed inde-
pendently within its structural context. In a large system, the segment
structuring process can be carried out repeatedly, to ensure that all seg-
ments are small and easy to read.

Summary: Clear box designs must identify and perform transi-
tions specified by state machines. Similarities in transitions may
permit shared subprocedures in clear box design. Successive
clear box sequence and alternation expansions based on state
machine transitions define a clear box design of a hand calculator.
The BDL run statement permits segmentation of clear boxes for
better readability.

PP

4.4 Design of Clear Boxes for State Machine Behavior 199

define CB Hand calculator
stimulus
S:key
response
R:number
state
SR: (B, O)
FR: (+,—,*,))
VR: number
HR: number
machine
data
(none)
proc [Compute state registers as in Table]
ifS=C
then [Compute line 1 of Table]
BR := B;
VR :=0
else [Compute lines 2-5 of Table]
if S =any D
then [Compute lines 2-3 of Table]
run Lines 2-3
else [Compute lines 4-5 of Table]
run Lines 4-5

fi
fi;
R:= VR
corp
proc Lines 2-3 proc Lines 4-5
if BR =B ifS=anyF
then [Compute line 2 of Table] then [Compute line 4 of Table]
BR :=C; BR := B;
VR :=S VR := HR FR VR;
else [Compute line 3 of Table] FR := S;
VR :=10* VR + S HR := VR
fi else [Compute line S of Table]
corp ifS==

then [Compute HR (function) VR] [

VR := HR FR VR \

fi

fi |
corp ‘

\

|

\

Figure 4.4-7. The Hand Calculator Clear Box in Segment Structured Form. H

200 4. The Clear Box Behavior of Information Systems

EXERCISES

1. Derive statement functions for each control structure in the follow-
ing clear box BDL segments:

(@)
do
X =Xx+y+z
y:=x-y-—1z
Z:=X—Yy— 1z
X:=X—-y-—12
od
(b)]
do
x = 0; 1
y :=0; 4
k:=1;]
while k <n]
do E
x:=x-1; 1
y:=y+Kk; 1
k:=k+1 !
od
od 3
(c))
ifs<t 3
then]
fu<v
then
X:=t*v
else
X:=t*u
fi
else
fu<v
then
X:=8*vV
else
X:=§*%u
fi

Exercises 201

do
x:= 0;
y:=nm
whiley = d
do
X:=x+1;
y:i=y—-d
od
od

Enumerate the processing paths of the clear box of Figure 4.2-18 and
suggest improvements to the personnel procedures they define.

Design a BDL clear box that elaborates on the ‘‘conduct interview”’
operation,

Determine the state machine and black box behavior of a M1;M2
sequence clear box structure in which

MI: R1, NS1 := OSl1, S1 + OS1
M2: R2, NS2 := OS2, S2 — OS2

Determine the state machine and black box behavior of an alterna-
tion clear box structure in which C tests if S is odd and M1, M2 are
given as in Exercise 4.

Determine the state machine behavior of a iteration clear box when
C tests if S > OS and M1 is defined as

MI: R, NS := OS, S
Verify the result of Exercise 6 by use of the Verification Theorem.

Rewrite the description of M2 from Section 4.3.4 as a conditional
assignment:

M2:if S is even
then
R, NS := §, OS
else (S is odd)
if OS is even
then
R, NS:=0S,0S + S
else (OS is odd)
R,NS:=0S+S5,2+*0S + S
fi

202

10.

11.

4. The Clear Box Behavior of Information Systems

Revise the hand calculator clear box design by changing the order in'
which cases of stimulus S are considered. Is there a better clear box
possible?)

Create a clear box for the state machine of Exercise 6 in Chapter 3, |
which introduces a clear entry (CE) key. |

Create a clear box for the state machine of Exercise 7 in Chapter 3,
which introduces a decimal point (DP) key and permits arithmetic to
no more than 8 significant digits. The clear box must deal with over-
flow on key entry and arithmetic operations.]

No
Select 3
START — student j
file
- END Yes i
J}
Print Fill in Yes No _| Fillin
report grade incomplete
g\(/)eme?lrtc gs;ﬂ{’;[e Select next More 3
GP/; points course courses” 11
\ |
No f
]
\

More
courses

t
Compute Compu ¢
> total L
GPA for ali
quality
semester points

Figure E.4-1.

203

Exercises

12. Discuss what is meant by the verification of a clear box design. How
do you verify correct sequence, alternation, and iteration design
expansions?

13. The flowchart in Figure E.4-1 produces a semester grade report form
for a student. Transform this natural procedure into a BDL clear box
using the techniques of Section 4.2.

14. Describe in a natural procedure (e.g., flowchart, natural language)

your morning routine. Take this natural procedure and describe it in
a structured BDL procedure.

Chapter S The Box Structures
of Information Systems

5.1 THE CONCEPT OF BOX STRUCTURES

Preview: Box structures are hierarchies of black box/state ma-
chine/clear box expansions that limit complexity at each level of
decomposition. Box structure hierarchies mirror hierarchies in
business organizations. Box expansions can be limited in size and
complexity as building blocks, but combined into larger and
larger box structure hierarchies without limit, to deal with infor-
mation systems of any size and complexity. The principle of
transaction closure guides invention of the top level of the hierar-
chy. The work products of box structure analysis and design can
be recorded in analysis and design libraries.

§5.1.1 Box Structure Hierarchies

A box structure is a hierarchy of BB/SM/CB (Black Box/State Ma-
chine/Clear Box) structures, in which all black boxes used in each clear
box head a BB/SM/CB structure at the next level, as depicted in Figure .
5.1-1. That is, any black box in a clear box use BB statement will be
identified at the next level. We call a BB/SM/CB structure a box expan-
sion, depicted as shown in Fig. 5.1-2.

204

5.1 The Concept of Box Structures 205

BB
|
M
I
CB
|
[I I I I I |
BB BB BB BB BB BB BB
I |
SM SM
[I
CB CB
BB BB BB BB BB
| [I
M SM SM
I [[
CB CB CB
| I I
BB BB

BB BB
Figure 5.1-1. A Box Structure Hierarchy.

The black box at the top of a hierarchy or subhierarchy identifies the
what of an information system or subsystem. But that what is usually too
difficult to describe in one step for people to fully understand or to pro-
gram for computers. Therefore, a box structure for that black box will be
in order, beginning with a state machine, then a clear box design for the
state machine. If the description can be completed (to understandability
or programmability) with the clear box, using no unknown black boxes,
the design is completed. If not, a set of one or more new black boxes will
have been identified, and the description will proceed as above for each
new black box. In turn, more new black boxes may be identified and
described, until, after several levels, no more black boxes are required.

Fundamental Principle: A black box identifies the what of infor-
mation system or subsystem behavior, its clear box describes a
how of that behavior.

|
BB

|
SM

I
CB

Figure 5.1-2. A Box Expansion.

206 S. The Box Structure of Information Systems

A box structure is open ended in the size of the structures, but it can
use clear boxes of limited size at each expansion. That is, a hierarchica]
box structure can be scaled up to deal with a system of any complexity,
yet use limited complexity at each point in the hierarchy. In turn, viewed
from the top down, a box structure provides a systematic way to defer
details of a system description. At each level, a few more details can be |
revealed, but the remaining details can be subsumed in the black boxes :
that remain to be expanded.]

Fundamental Principle: A box structure hierarchy permits the
deferral of system details within black boxes at each level in the
hierarchy.

The progression from black box to state machine to clear box at each
expansion step in the hierarchy represents a canonical form for analysis
and design. However, in some cases, problems can be solved more di-
rectly. For example, an expansion may be most effectively expressed
directly as a state machine with no black box given. This case can arise !
where the stimulus history of a black box is especially complex, and its
transitions can be better understood when defined in terms of stimulus
and state. Or an expansion may be better defined by a clear box with no
black box or state machine given. This case can arise when the transition
rules of a state machine are especially complex, and are more easily
expressed in procedural terms, possibly referring to black boxes at the !
next level. Note, however, that a decision to bypass a step in a box
structure is reversible, but has the effects:

Black box omitted. State-free, procedure-free description unavail-
able

State machine omitted. State-defined, procedure-free description
unavailable

Clear box omitted. State-defined, procedure-defined description
unavailable; no new black boxes introduced

In these cases, there is no rule against thinking hard about the behav- |
ior of the box structure in terms of the foregone representations. And, if
necessary, the other representations can always be derived or expanded
for more detailed study and analysis.

5.1.2 Box Structures in Business Operations

Box structures are common in business operations, and mirror effec-
tive organizations in business. The box structure approach to information |

5.1 The Concept of Box Structures 207

systems analysis and design makes use of a good deal of wisdom accumu-
lated in successful business organizations.

We have already seen that black box, state machine, and clear box
behavior is common in business operations. The correspondence is even
more striking with hierarchical box structures and business operations. A
major corporation will often be organized in product and service divi-
sions, then divisions organized into major functions of marketing, finance,
engineering, manufacturing, personnel, etc., the functions organized into
departments, departments into smaller departments, and so on. This orga-
nization will be hierarchical, just as a box structure. Information will be
stored at all levels, the more detailed information in lower level depart-
ments. Information will flow from one department to another, as outputs
from the first and as inputs to the second. And information into a depart-
ment will trigger information out to other departments. That is, each
department will exhibit black box behavior in its information processing.
In turn, each function, each division, and finally the whole corporation
will exhibit black box behavior to its surroundings as it accepts, pro-
cesses, stores, and produces information.

These box structured business organizations are no accident. They are
due to no whims or aberrations of their executives. They have survived
the natural selection of economic and business competition. There are no
laws that require such organization. Corporations are free to organize
internally in any way they choose. Small businesses may organize on
some other basis than hierarchy, for example, on a communal or demo-
cratic basis, but no small business ever grows to even a medium sized, let
alone large, business so organized.

Neither is it an accident that successful information systems are box
structured as well. Box structures permit intellectual control in both
building information systems and building business organizations. The
analysis and design requirements are similar in both cases, identifying
inputs and outputs, how information should be stored and processed. So a
box structured approach to information systems analysis and design auto-
matically draws on a good deal of accumulated wisdom of the business
world.

5.1.3 The Top Level Black Box and Transaction Closure

It is one thing to describe a hierarchical box structure of an informa-
tion system. It is quite another thing to develop it from scratch, to accu-
mulate and assimilate the necessary information from the business organi-
zation, possibly by many people over many weeks or months, then to put
itall together correctly. The top level black box is not the starting place of

208 5. The Box Structure of Information Systems

such an effort, although it is the principal objective at the start. The
starting place is in the organization, to identify first hypotheses in the
intellectual climb to this top level black box.

The search for transaction closure should guide this effort. What are
the transitions and transactions required? Is that all, or are there second-
ary transitions and transactions required to make the primary ones possi-
ble? Is the top level state machine easier to describe to begin with than is
the top level black box? Are there simplifying aspects from using the data
in the description? Is the top level clear box easier to describe? There is
no uniquely best starting place; instead, the search criteria are better
focused on the objective of getting to the appropriate top level black box
with due process, rather than leaping to a faulty top level black box |
prematurely.

A useful beginning of this search for a top level black box begins with
the most obvious users of the system to be, but seldom ends there. These
most obvious users often interact with the system daily, even minute by
minute in entering and accessing data—for example a clerk in an airline §
reservations system. But usually, the data they use are provided in part
by other users that enter and access data less frequently—for example
those entering flight availability information. And other users even more
distant from the obvious users enter and access data even less fre-
quently—for example users who add route schedule information. All the: |
while, an entirely different group, the operators of the system, is entering
and accessing system control data that affects the users in terms of more
or less access to the system because of limited capacity or availability.

The top level black box must accommodate all these users and opera-
tors, not just the most obvious ones. A cross check can be made between
the top level black box and its top level state machine. Every item of data
in the top level state must have been loaded with the original system or
acquired by previous black box transactions. Are there any items not so
loaded or acquired? It is easy, in concentrating on one set of transactions |
to assume the existence of data to carry them out. A close comprehensive
scrutiny of these needed data items can discover such unwarranted as-
sumptions early.

Another aspect of transaction closure arises in system integrity. The
categories of integrity should be checked and rechecked, even in this
search for the top level black box, for example:

Security. Need users be authorized: if so how and what transactions
are needed to authorize them initially and allow them access subse-
quently?

Operability. What transactions permit system operation and deal-
ing with unforeseen events?

51 The Concept of Box Structures 209

Auditability. Are audits to be required; if so what transaction trails
are needed and how are they to be accessed by audit transactions?

Reliability. What provisions are required for system checkpoints
and recovery from unforeseen hardware or software errors and
what are the transactions needed?

Capability. Are archives and restorations necessary for dealing
with data in amounts not economical to keep on line?

In every case, the answers to these questions are to be found in the
business organization in assessing questions of integrity and their impact
on business performance.

5.1.4 Box Structure Analysis and Design

In the information system development process it is important to iden-
tify and distinguish between analysis and design. Analysis is a discovery
process. The gathering of information and the forming of that information
into descriptive box structures is a major part of analysis. The derivations
performed in a box structure from clear box to state machine to black box
are also discovery processes. Design, on the other hand, is a creative
process. Given the information discovered during analysis, a box struc-
ture hierarchy for the new information system is created. Within a box
structure, expansion from black box to state machine to clear box, then
their rederivations, provide a rigorous method of verifying the correct-
ness of the design.

The box structure diagrams of black boxes, state machines, and clear
boxes provide general forms for generating and recording the results of
information systems analysis. On the other hand, BDL provides a more
formal and precise form of recording for information systems design.
These two forms reflect the differences between analysis and design in
information systems.

Box structure diagrams provide flexible, easily understood, graphical
ways to discover and discuss ideas about information systems with man-
agers and users. These diagrams can be annotated with terms and phrases
of the business to facilitate information gathering and to ensure better
accuracy in understanding ongoing operations and processes.

In contrast to the outward directed activities of analysis, information
systems design is based on the results of analysis but is inward directed,
dealing with inner consistency and tradeoffs in order to make good design
choices. BDL provides precision and completeness, but at the price of
foregoing easy and casual treatments.

The result of an analysis phase is an analysis library, a set of annotated
diagrams and supporting documentation that covers the area of study.

210 5. The Box Structure of Information Systems

This library of diagrams is not yet a complete and precise box structure.
The diagrams are loosely compiled, and possibly overlapping, and with
possible gaps. Almost all of the information in the analysis library will be
useful in the design phase.

The result of a design phase is a design library, a set of BDL designs
and supporting documentation that describes a complete and precise box
structure. The analysis library is the raw material for the design library.
The discovery and discussions that went into the analysis library are
necessary ingredients for the construction of the design library.

Summary: A box structure hierarchy localizes and limits com-
plexity by deferring details within black boxes at each level. Box
structures permit intellectual control in building information sys-
tems and building business organizations. Transaction closure as-
sures that top level black boxes will accommodate all possible
users and uses. The analysis library contains raw material for the
design library.

5.2 ANALYSIS OF BOX STRUCTURES

Preview: Transaction analysis, state analysis, and procedure
analysis provide a basis for describing existing or intended infor-
mation systems.

5.2.1 Deriving Box Structures from Business Operations

Any information system or part, real or intended, can be described in
box structure form. The data interfaces between the part andits surround-
ings are described by black box stimuli and responses. The data stored in |
the part are given by the state of a state machine. The data processing is
given by the machines of a clear box. The same data is often created and |
used in different ways for different purposes. The box structure approach
places all these operations with the same data in a common box structure.

In illustration, consider an analysis of the charge account system of a |
department store. In this section, a preliminary box structure analysis is -
carried out to illustrate the need for a more thorough analysis to follow.

In department store operations, sales clerks may enter customer
charges for merchandise purchased. Customers receive bills at the end of

5.2 Analysis of Box Structures 211

Charge account system

Transactions:

Enter charges
—— Send bills —

Enter payments

Figure 5.2-1. Charge Account System Black Box.

the month and return payments to their accounts. For clerks and cus-
tomers alike the charge account system appears to be a black box. Clerks
merely enter charges and get confirmations (that the customer has a
charge account and has not exceeded a credit limit). Customers receive
bills as black box outputs, and return payments as black box inputs.
Figure 5.2-1 gives a box structure diagram in the form of a Charge Ac-
count System black box as a start.

The three types of transactions so identified can be described at some
length. However, in order to describe the effects of these transactions,
the data of the Charge Account System will be very useful. The charge
account data of the department store is altered every time a customer
charges an item. It is also altered every time a customer makes a pay-
ment. This charge account data is used to create customer bills, and to
make credit limit checks. All of these ways of creating, altering, or using
this charge account data can be reorganized into a state machine, as
shown in Figure 5.2-2. Part of each input to this box structure will de-
scribe the way the data is to be created, altered, or used in this transac-
tion.

Charge account system

State:
Charge account data
———— customer records [———

Transactions:

Enter charges (demand)
Send bills (monthly)
Enter payments (demand)

Figure 5.2-2. Charge Account System State Machine.

212 5. The Box Structure of Information Systems

Transactions may be periodic, as in monthly billing, or on demand, as
for entering charges and payments, whose occurrences are unpredictable |
within the system. The charge account data in the state machine of Figure
5.2-2 makes the three transactions easier to describe as more detailed
procedures:

Enter Charges:
Input Expected:
‘“‘Enter Charge’’
Customer Name
Charge Amount
if Customer Name found in Customer Records
then
if Customer Balance + Charge Amount < Credit Limit
then
Increase Customer Balance by Charge Amount
Confirm Charges to Clerk
else
Return Message ‘‘Credit Limit Exceeded”’
fi
else
Return Message ‘‘Customer Unknown’’
fi

Send Bills:
Input Expected:
“‘Send Bills’’
while more Customer Records exist
do
if Customer Balance > 0
then
Send Bill to Customer
fi
od

Enter Payment:
Input Expected:
‘“‘Enter Payment’’
Customer Name
Payment Amount
if Customer Name found in Customer Records
then
Decrease Customer Balance by Payment Amount
else
Return Message ‘‘Customer Unknown’’
fi

5.2 Analysis of Box Structures 213

These descriptions, informal as they are, illustrate the necessity for
the name of each type of transaction to be identified as part of each input,
and to follow that part with input data.

Part of the value of such a description is its understandability by
managers and users. The credit manager will immediately notice a defi-
ciency in the above description. There is no provision to raise or lower
credit limits, customer by customer, so another type of transaction
will be called for. The financial manager may want a special report in
order to anticipate future cash flows expected from current charges, and
SO on.

The foregoing example of a charge account analysis illustrates the kind
of information that is needed, but several deficiencies are already visible.
How can such deficiencies be avoided in an actual analysis? There are no
foolproof methods. It takes good judgement, common sense, good listen-
ing, and an open mind. But a systematic approach can be very useful.
Most systematic approaches to problems involve mastering a good deal of
detailed, step by step procedures. And the systematic approach presented
here is no exception. However, paradoxically, this systematic approach is
aimed at preventing you from getting bogged down in step by step detail
before you should.

The problem of systems analysis is how to discover the trees and
leaves of a forest without losing sight of the forest itself. Eventually you
will need to describe the trees and leaves, and for that you will need
precise detailed descriptions. But unless you maintain your view of the
forest, the trees and leaves don’t mean too much.

Fundamental Principle: Systems analysis is a discovery pro-
cess. It requires investigation, research, and insight into the sys-
tem to be developed. The box structure methodology provides a
framework for analysis. The results of systems analysis are dia-
grams and information that demonstrate a thorough understand-
ing of the proposed system. These results are stored in an analy-
sis library.

The next three sections deal with systems analysis more thoroughly in
the transactions, states, and procedures of box structures. The addition of
detail to an evolving box structure must be under good control and disci-
pline as much as any other use of methodology. On occasions, you may
need to go to considerable detail in one aspect of analysis before another.
But the framework for dealing with detail must be there before going
into it.

214 5. The Box Structure of Information Systems !
5.2.2 Transaction Analysis

The key to a disciplined approach to systems analysis is the use of !
context. Context plays a critical role in what we see and communicate }
with each other. Context is what we assume is common knowledge for a
conversation. Context and precision are incompatible. The broader the
context the lower the precision; the higher the precision the narrower the
context. In information systems it is easy to be precise about the wrong 4
things, and easy to be vague about the right things. The goal is to use
context to be precise about the right things. j

Box structure diagrams can be used to control context, by gradually
narrowing context through increasingly precise diagrams. A transaction
analysis provides a systematic way to narrow context and increase preci-
sion.

The objective of a transaction analysis is to identify the set of transac- |
tion types necessary for a black box. Simple black boxes may have only

one transactiontype, for example, a sales forecast black box does nothing 4§

but accept sales and issue forecasts. However, the charge account system
black box has (at least) the three types of transactions dealing with billing,
charging, and paying. In the previous example these three types of trans-
actions were identified by direct intuition about a charge account sys-
tem in a department store. The act of clerks entering charges comes §
immediately to mind, then the store sending out bills next, and finally §
customers sending in payments. But is that all? No. And how to find the
rest?

The method of transaction analysis is to identify the information needs
of the business, and the transactions that satisfy those needs, then other
transactions needed to support the original transactions, and so on until
no new transactions can be identified. Of the three transactions identified 3
for the charge account system, one is primary, the other two are second-
ary from the viewpoint of the business. The primary transaction type is
billing, to satisfy the information need of what to bill customers. But 4
in order to bill customers, previous transactions of charging and pay- }
ing are required. In other words, if billing was the only transaction §
type of the charge account black box, there wouldn’t be any bills to §
send! ;

Another way to look at these three transactions is chronological, as §
done intuitively before. Charges are first, bills are second, payments
third. That’s a good cross check, to examine chronological sequences for
completeness. But a hierarchy of information needs helps to organize a
systematic completeness search for transaction types.

5.2 Analysis of Box Structures 215

Fundamental Principle: A transaction analysis begins with in-
formation needs of the business and the primary transaction types
to satisfy those needs, then backtracks through additional trans-
action types needed to support these primary transactions, di-
rectly or indirectly.

CHARGE ACCOUNT SYSTEM REVISITED

We begin again with the charge account system of a department store.
In the broadest context, the black box merely labeled Charge Account
System, as diagrammed in Figure 5.2-3, is known to clerks and cus-
tomers. It is just the charge account system they see (and imagine) in
action. This beginning is one name and the rest context! At least nothing
has been left out so far!

Next we identify the information needs of the business and the trans-
action that satisfies it—Billing—in Figure 5.2-4. As already noted, Billing
depends on the previous presence of two types of transactions—Charge
and Payment—as shown in Figure 5.2-5.

Let’s apply the analyses to Charge and Payment transactions. Are
any prior transactions required? One has already been mentioned—Set
Credit Limit. Are there any more? Both Charge and Payment require a
customer name, which has to be acquired by the system previously. Let’s
call that transaction Open Account. This leads to the new version of
Figure 5.2-6.

Charge account system

Figure 5.2-3. Charge Account System Black Box.

Charge account system

Transactions: .
Billing

Figure 5.2-4. Charge Account System Black Box.

216 5. The Box Structure of Information Systems

Charge account system

Transactions:

Billing
Charge
Payment

Figure 5.2-5. Charge Account System Black Box.

In turn, are prior transactions required for Open Account or Set Credit
Limit? Open Account may be sufficient in itself, but the credit manager
would probably require three more transactions, namely Credit Applica-
tion, Credit Check, and Salary Check, which each provide the Charge
Account black box with information for the Credit Limit transaction. The
difference between Open Account and Credit Limit in generating new
transactions is in the nature of information that might be required for the
transaction. The store is willing to open an account for almost anyone
with almost no information, but willing to grant credit only after prudent
checks.

The credit application is required to make any checks, and a Credit
Check (willingness to pay) and Salary Check (ability to pay) seem pru-
dent. The result of these additions to transactions is given in Figure 5.2-7.

The Charge Account System may have a hierarchical structure that
would simplify or better organize its description. The Credit Limit trans-
action may be an opportunity to define a new black box in such a hierar-
chical structure. The Charge Account System would still have a Credit
Limit transaction, but its clear box may call on a Credit Limit black box to
carry it out in a hierarchical box structure. In this case, a new black box of
transactions can be defined, as in Figure 5.2-8.

Charge account system

Transactions:
Billing
= Charge >

Payment
Open account
Set credit limit

Figure 5.2-6. Charge Account System Black Box.

5.2 Analysis of Box Structures 217

Charge account system

Transactions:
Billing
Charge
Payment
Open account —
Set credit limit
Credit application
Credit check
Salary check

Figure 5.2-7. Charge Account System Black Box.

The Credit Limit black box supports the Charge Account System
black box and provides a new starting point for its own transaction analy-
sis. Each of its transactions can be examined in turn for necessary pre-
vious transactions as before. Eventually one of its transactions may be a
candidate for a separate black box, and so on.

In summary, a transaction analysis begins with transactions that sat-
isfy primary information needs of the business, then identifies necessary
previous transactions, direct and indirect, until no new transactions can
be identified. The final transactions identified obtain all information re-
quired of them from inputs to the black box. These transactions can be
diagrammed in a dependency tree, beginning with the primary transac-
tion. In the case of the Charge Account System black box, the depen-
dency tree is as diagrammed in Figure 5.2-9. The dependency tree is

suggestive of possible box structure and places to establish new black box
transaction analyses.

Fundamental Principle: Transaction analysis identifies transac-
tion types of a black box, which can be diagrammed in a depen-
dency tree and possibly organized into supporting black boxes.

Credit limit

Transactions:

Set credit limit
— Credit application —
Credit check
Salary check

Figure 5.2-8. Credit Limit Black Box.

218 5. The Box Structure of Information Systems

Billing
Charge Payment
Open Set
account credit limit
Credit Credit Salary
application check check

Figure 5.2-9. Charge Account Transaction Dependency Tree.

Once the transactions are identified the inputs and outputs of each
transaction should be identified. The inputs to a transaction consist of
stimuli from outside of the system and all required state information de-
fined at a higher level in the system box structure hierarchy. Transaction
outputs include responses to the external environment and updated state -
information internal to the system. The analysis of appropriate input and |
output formats is an important and necessary task. A user of the transac- :
tion should be prompted for essential input in a friendly manner condu-
sive to efficient use of the system. Likewise, output interfaces and reports
should promote effective system use.

In the Charge Account System, the inputs and outputs needed for each
transaction are recorded in Table 5.2-1. Note that all inputs include a
specific request to perform that transaction. This can be seen as a clerk
entering the words ‘ENTER CHARGE’ on a terminal screen or simply
pressing a single function key for entering charges. Such transaction re-
quest inputs are normally found at high levels in a system that contains
user interfaces.

5.2.3 State Analysis

The black box description of a Billing transaction for a customer can
be given as a computation of the difference between all previous charges
and all previous payments. If the result is positive, send the amount to the
customer as a bill. While the computation is correct, it is awkward and
unnecessary. Instead, each bill can present the balance to the customer,
which represents this difference between all previous charges and all
previous payments, making any further reference to, or thought about,
the latter unnecessary.

5.2 Analysis of Box Structures 219

The customer balance is state data of a state machine that simplifies
calculations for both the customer and the store. Each month the new
balance is the old balance plus all charges for the month less all payments
for the month.

The objective of state analysis is to identify state data that makes
transactions easier to describe. As already discussed in Chapter 3, the
value of state data is to reduce the dependence of transactions on entire
black box stimulus or input histories. The customer balance reduces the
billing transaction dependence on charges and payments to only those
that occurred in the past month.

The transaction analysis provides a framework for the state analysis.
For each transaction what data should be available from previous transac-
tions? In illustration, the data required for Billing can be given as:

Customer Name: The name of the customer account.

Balance: The balance of the previous month.

Current Charges: All charge transactions made in the current
month.

Current Payments: All payment transactions made in the current
month.

These are the data items produced by previous transactions that Bill-
ing requires in its old state. They will be transformed in the new state as
follows:

Balance: Set to the old state Balance plus Current
Charges minus Current Payments.

Current Charges: Set to empty to begin a new month.

Current Payments: Set to empty to begin a new month.

The output of the Billing transaction is the bills for all customer ac-
counts that have had charge or payment activity during the month. The
bills contain the customer name and the old and new balances, together
with the month’s charges and payments. On completion of the Billing
transaction, the new state data will become the old state data for the next
month’s billing.

The input to the Charge transaction is a Name and an Amount to be
charged. What state data is required to describe this transaction? With a
little thought, it can be seen that four items are required, namely,

Customer Name: The name of the customer account.

Credit Limit: The maximum credit to be extended to the cus-
tomer.

Current Charges: All charge transactions made in the current
month.

Balance: The balance of the previous month.

220 5. The Box Structure of Information Systems

If Name matches a Customer Name, the transaction will leave Cus-
tomer Name, Credit Limit, and Balance unchanged in the new state, and
Current Charges will be increased by Amount if Credit Limit is not ex-
ceeded. In this case, the output will be an approval if the limit is not
exceeded, a rejection if it is. If Name is not recognized, the charge will be
rejected.

The Payment transaction accepts Name and Amount as input and
requires two state items from previous transactions:

Customer Name: The name of the customer account.
Current Payments: All payment transactions made in the current
month.

If Name matches a Customer Name, the transaction leaves Customer
Name unchanged in the new state and increases Current Payments by
Amount. In this case, the transaction output is a confirmation of payment
acceptance. If Name does not match a known name, the output is a
rejection of the payment.

A similar state analysis can be carried out for the remaining transac-
tions. The full analysis results are summarized in Table 5.2-1. Note that
the Table reflects the transaction dependencies previously described. A
transaction cannot be carried out if the state items it requires have not
shown up previously in the input history of the Charge Account System
black box. Thus, the Open Account transaction must precede Charge,
Payment, and Billing transactions. Similarly, Charge depends on Set
Credit which in turn depends on Credit Application, Credit Check, and
Salary Check. These dependencies provide a natural structure for ex-

Table 5.2-1

Charge Account State Machine Transitions

Transaction Input Old State New State Output
Billing Billing Customer Name (same) Bills
Request Balance New Balance
Current Charges No Current
Charges
Current Payments No Current
Payments
Charge Charge Customer Name (same) Approval
Request Credit Limit (same) (or not)
Name Current Charges New Current

Amount Charges

5.2 Analysis of Box Structures 221

Table 5.2-1 (Continued)

——
Transaction Input Old State New State Output
payment Payment Customer Name (same) Confirmation
Request Current Payments New Current (or not)
Name Payments
Amount
Open Account Open Customer Name Confirmation
Account No Balance (or not)
Request No Current
Name Charges
No Current
Payments
No Credit
Limit
Set Credit Credit Customer Name (same) Credit Limit
Limit Limit Application (same) Confirmation
Request Credit Results (same) (or not)
Name Salary Results (same)
Credit Limit
Credit Credit Application Confirmation
Application App. (or not)
Request
Name
Application
Data
Credit Check Credit Application (same) Confirmation
Check Credit Results (or not)
Request
Name
Credit
Data
Salary Check Salary Application (same) Confirmation
Check Salary Results (or not)
Request
Name
Salary

Data

222 5. The Box Structure of Information Systems

plaining proper system operation to users, in instruction courses and user
guides. They are also an important topic in design, in determining how
much checking for proper transaction sequencing must be done by the
system, and at what cost in efficiency.

5.2.4 Procedure Analysis

The state definitions of the previous section can be used to create
procedural explanations of the transactions of the Charge Account Sys-
tem as shown below. These explanations make use of BDL structures,
but are not in themselves clear boxes. They are intended to be used in a
process of analysis and review with prospective owners and users of the
Charge Account System, to arrive at understanding and agreement on
system functions. Such procedures specify the function of the ultimate
system design, but are not intended to substitute for, or prescribe the
structure of, that design.

Billing:

while more Customer Records exist

do
Set Balance to Balance + sum of Current Charges — sum of

Current Payments

Send Bill
Set Current Charges to empty
Set Current Payments to empty

od

Charge:
if Name is a Customer Name
then
if Balance + Current Charges + Amount does not exceed
Credit Limit
then
Set Current Charges to Current Charges + Amount
Return message ‘‘Charge approved”’
else
Return message ‘‘Credit limit exceeded’’
fi
else
Return message ‘‘Name unknown’’
fi

5.2 Analysis of Box Structures 223

Payment:
if Name is a Customer Name
then
Set Current Payments to Current Payments + Amount
Return message ‘‘Payment confirmed’’
else
Return message ‘‘Name unknown™

fi

Open Account:
if Name is a Customer Name
then
Return message ‘‘Existing Account Open”’
else
do
Create Customer Name from Name
Set Balance to zero
Set Current Charges to empty
Set Current Payments to empty
Set Credit Limit to zero
Return message ‘‘Account for Name confirmed”’
od
fi

Set Credit Limit:
if Name is a Customer Name

then
if Application available and Credit Results and Salary Results
acceptable
then
Set Credit Limit to 0.05 * Salary
else
Return message ‘‘Credit refused”
fi
else

Return message ‘‘Name unknown’’
fi

Credit Application:
do
Create Application for Name using Application Data
Return message ‘‘Application confirmed”’
od

224 5. The Box Structure of Information Systems

Credit Check:
if Application available for Name
then
Create Credit Results from Credit Data
Return message ‘‘Credit Results confirmed”’
else
Return message ‘‘No Application for Name’’
fi

Salary Check:
if Application available for Name
then
Create Salary Results from Salary Data
Return message ‘‘Salary Results confirmed”’
else
Return message ‘‘No Application for Name”’
fi

Review of this preliminary level of transaction, state, and procedure
analysis with owners and users will likely result in still more transactions
with corresponding additions to state and procedure definitions, for an-
other iteration of analysis and review.

Summary: Annotated box structure diagrams facilitate manager
and user discussion and discovery in information systems analy-
sis. Box structure diagrams provide a basis for the effective con-
trol of the context of analysis by gradually narrowing context
with increasingly precise diagrams. Transaction analysis, state
analysis, and procedure analysis should proceed together in pro-
viding a framework for dealing with increasing detail without los-
ing perspective.

5.3 DESIGN OF BOX STRUCTURES

Preview: The results of information systems analysis, recorded
in the analysis library, are used as a basis for information systems
design, which is recorded in a design library. Transaction design,
state design, and procedure design provide a systematic basis for
developing the box structure of an intended information system.

5.3 Design of Box Structures 225
5.3.1 Designing Box Structures for Business Operations

The principal objective of system design is to create a system that
satisfies the information needs discovered in the analysis of business op-
erations. But other objectives must be satisfied as well. It does no good to
create a system that satisfies information needs if it is delivered late, costs
too much, is too difficult to use, or is error prone and unreliable. So the
right design process is design to cost and schedule and quality. Such a
process requires good intellectual control at all stages of design, to distin-
guish essential system functions from frivolous features, and to balance
the work remaining with the schedule and budget remaining. The princi-
pal objective of the box structure design process is to maintain in-
tellectual control in meeting the objective of an information system. Anal-
ysis is the art of the possible, but design must be the art of the prac-
tical.

Context is used to advantage in different ways in analysis and design.
In bottom-up analysis, the natural context of business operations is used
to simplify explanations, to promote understandability and broader par-
ticipation by prospective system owners and users. In top-down design,
precise context of box structures at each level defines the environment
and function of box structures at the next level. A black box is the context
for a state machine description, which becomes the context for a clear
box expansion.

System design culminates in a top-down recording process. The box
structure methodology enforces this process to permit good intellectual
control at each stage of design. But the box structure methodology does
not guarantee intellectual control. For example, it is foolhardy to attempt
a top-down design process without knowing where you are going. The
analysis which precedes design is intended to help you discover where the
design must go. With this understanding, the design task is to organize the
results of analysis into a coherent box structure.

Even with comprehensive analysis beforehand, design is still an itera-
tive process. Design refinements may suggest simplification at higher lev-
els, leading to redesign from the top down to take advantage of the new
insight. Unanticipated complications or simplifications encountered in de-
sign can affect analysis results as well. Slight changes in user needs, often
of little consequence to business operations, may result in significant
reductions in design complexity. Conversely, more effective user func-
tion may be possible at little or no cost as a side effect of increased design
simplicity.

226 5. The Box Structure of Information Systems

5.3.2 Transaction Design

The foregoing analysis provides a basis for a Charge Account System
design. The transactions identified can be designed one by one as required ‘
by the analysis. The input to the Charge Account System black box must |
identify the transaction type required for each transaction. This identifica-]
tion may be done automatically by the equipment (only charges from cash |
registers, etc.), but within the information system the external origin of ;
inputs may be lost, so the transaction type must be identified, whether]
added automatically or not. In illustration, we suppose transaction inputs §
are self-labeled as to transaction types (so the clear box will contain a case |
statement which handles the various transaction types as cases). The
BDL for the Charge Account System black box is given in Figure 5.3-1. }

The input of this black box includes data of the transaction type, called }
Trans, and a generic type, called In Data. The key word generic denotes ;
data of a type yet to be specified. In this case the type specification |
depends on the value of Trans, namely, the transaction type of the input, |
as given in Table 5.2-1.

The designs of input and output will make use of the information]
structures discovered during analysis. User languages for input and report
designs for output can be designed using syntax structures. Data struc-
tures provide the design for input and output data. The system design may
also include facilities for sophisticated user input/output interfaces such
as natural language processing or even voice communication.

5.3.3 State Design

The previous analysis has already identified the need for state data in
summarizing input history into such items as Balance, Credit Limit, etc.,
for ready access. Therefore, a design for the Charge Account System
state machine can proceed as shown in Figure 5.3-2.

define BB Charge Account System

input
Trans: (Billing, Charge, Payment, Open Account, Set Credit Limit)
In Data: generic

output
Out Data: generic

transaction
As given by analysis

Figure 5.3-1. Charge Account System Black Box.

5.3 Design of Box Structures 227

define SM Charge Account System

input
Trans: (Billing, Charge, Payment, Open Account, Set Credit Limit)
In Data: generic

output
Out Data: generic

state
customer file:

file of record

name: character
address: character
balance: $ value
charge file: file of $ value
payment file: file of $ value
limit: $ value
end record
machine

As given by analysis

Figure 5.3-2, Charge Account System State Machine.

5.3.4 Procedure Design

The foregoing analysis has already identified the procedures required
for the various transaction types. As noted, analysis deals with the art of
the possible, design with the art of the practical. In the Charge transac-
tion, it is possible to compare the balance plus all current charges plus the
present charge with the credit limit, even charges made ten minutes ago.
However, this will require that customer files be available for update and
access continuously in time. It may happen that the computer equipment
envisioned for the system has no provision for continuous update of cus-
tomer records, but provides for updating them at the end of the day in a
batch execution. In this case, the design may require that charges be
accumulated during the day, and added to customer records at night. A
way to do this is to define a charge transaction file in the state, and to add
a new transaction, called a merge transaction, to the black box. In turn,
this forces a return to the analysis phase, analyzing the effect of this
design with the store managers. Is it satisfactory to allow customers to
charge all day against the previous day’s running balance or not? It is a
business question on tradeoffs between the information system and the
needs of the business.

Let’s suppose that the credit manager regards such a design unsatis-
factory. Can anything else be done? The charges of the day can be re-
tained on line and each new charge transaction can search the day’s
charges for that customer, in order to get a true credit check. It will take

228 5. The Box Structure of Information System;

more processing for each charge transaction than originally planned, bu;
it allows customer records to be updated only once a day. It is a tradeof;
made between the business and the information system that is acceptable
to all parties.

There are more ramifications for this new design decision, however
The payments of the day should be retained on line, as well, because the
sales manager points out that the store could lose sales and even more
good will if payments are not current in credit checks. Furthermore, new
customer accounts will be accepted each day, but need to be added to the
customer file at night. This causes the sales manager a small problem
Customers will not be able to make charges until the day following thei;
application. But the sales manager decides that it is a tolerable solution.
These analysis/design decisions are reflected in the clear box given next.
Note that a Day Charge File, Day Payment File, and Day New Custome;
File have been added to the state, and a Merge Transactions procedure
added to the black box.

The clear box, as already noted, will contain a case statement tc
handle each transaction type separately, and is shown in Figure 5.3-3.

The procedures for these cases are given in Figures 5.3-4 to 5.3-9.
Note that Day Charge, Day Payment, and Day New Customer files are
required in the state for the Charge, Payment, and Open Account proce-
dure designs, respectively, to permit updating the Customer File just once
a day. The run BB Credit statement in the Set Credit Limit procedure
design invokes a nested box expansion which must have carried out the
Credit Application, Credit Check, and Salary Check transactions, in or-
der to have available state information required by this invoking proce:
dure. The & notation means concatenation of data.

Is this design adequate for business needs? The design process can
often reveal gaps in the analysis process that precedes it, and lead to
further analysis and design activities. It is easy to see that analysis and
design of a real charge account system could involve many additional
transactions, with corresponding state data and procedures.

Summary: A top-down box structure development, based on a
well organized analysis library, facilitates reviews and tradeoff
studies for consistency, completeness, and practicality in infor-
mation systems design. BDL box structures provide effective
control of the context of design, by creating a precise context at
each level for the next level of design. Transaction, state, and
procedure design should proceed together in providing a frame-
work for increasing detail without losing intellectual control of an
evolving design.

define CB Charge Account System
inplﬂ
Trans: (Billing, Charge, Payment, Open Account, Set Credit Limit)
In Data: generic
output
Out Data: generic
state
Customer File
Day Charge File
Day Payment File
Day New Customer File

machine
data
confirmation
procedure
case Trans
part (Billing)

run Billing (In Data; Out Data)
part (Charge)

run Charge (In Data; Out Data)
part (Payment)

run Payment (In Data; Out Data)
part (Open Account)

run Open Account (In Data; Out Data)
part (Set Credit Limit)

run Set Credit Limit (In Data; Out Data)
part (Merge Transactions)

run Merge Transactions (In Data; Out Data)
esac

Figure 5.3-3. Charge Account System Clear Box.

data
bill: record
bills: file of record bill
proc Billing(In Data: none: Out Data: bills)

while
more records in customer file
do
bill := name & address & balance;

balance := balance + sum of charges in charge file — sum
of payments in payment file;

bill := bill & charges in charge file & payments in
payment file & balance;

bills : = bills & bill;

charge file := empty;

payment file := empty

corp

Figure 5.3-4. Billing Procedure Design.

proc Charge(ln Data: name, amount; Out Data: approval)

if
name is in customer file
then
if
balance +
sum of charges for name in day charge file —
sum of payments for name in day payment file < limit
then
day charge file := day charge file. & name & amount;
approval := *‘charge approved”
else
approval := ‘‘credit limit exceeded”
fi
else
approval := ‘‘name unknown'’
fi
corp

Figure 5.3-5. Charge Procedure Design.

proc Payment(In Data: name, amount; Out Data: confirmation)

if
name is in customer file
then
day payment file := day payment file & name & amount;
confirmation := ‘‘payment confirmed’’
else
confirmation := ‘‘name unknown’’
fi
corp
Figure 5.3-6. Payment Procedure Design.
data

customer record
proc Open Account(In Data: name, address; Out Data: confirmation)

if
name is in customer file

then
confirmation := ‘‘existing account’’

else
customer record.name := name;
customer record.address := address;
customer record.balance = 0;
customer record.charge file := empty;
customer record.payment file := empty;
customer record.limit =0
add customer record to day new customer file;
confirmation := ‘‘account for name confirmed"

fi

corp

Figure 5.3-7. Open Account Procedure Design.

5.3 Design of Box Structures

data
application data
credit data
salary data
proc Set Credit Limit(In Data: name; Out Data: confirmation, limit)
if
name is in customer file
then
run BB Credit (indata: name; outdata: application data,
credit data, salary data);

if
application and credit and salary results acceptable
then
limit := 0.05 * salary;
confirmation := ‘‘credit is’" & limit
else
confirmation := ‘‘credit denied”’
fi
else
confirmation := ‘‘name unknown"’
fi
corp

Figure 5.3-8. Set Credit Limit Procedure Design.

proc Merge Transactions(In Data: none; Out Data: confirmation)

while
more charges in day charge file
do
charge file (name) : = charge file (name) & charge
od;
day charge file := empty:
while
more payments in day payment file
do
payment file (name) := payment file (name) & payment
od;
day payment file := empty;
while
more customer records in day new customer file
do
merge customer record into customer file
od;

day new customer file := empty;
confirmation := ‘‘merge completed’’
corp

Figure 5.3-9. Merge Transactions Procedure Design.

231

232 5. The Box Structure of Information System

5.4 BOX STRUCTURE DESIGN PRINCIPLES

Preview: Box structures provide intellectual control in complex
information systems development. State migration distributes
state data to appropriate levels in box structure design. Common
service box structures avoid duplication in state migration. Con-
currency control in concurrent box structures must be explicitly
designed.

—J

5.4.1 Intellectual Control of Complex Designs

It is a Chinese proverb that a journey of a thousand miles begins witl
the first step. That is certainly true, but if the traveler meanders in circle
in uncharted lands, the journey of a thousand miles may never be com
pleted, no matter how many steps are taken. Complex information sys
tems design can be subject to the same pitfalls and hardships. If th
designers meander or circle they may never complete a design. However
it is easy to ensure progress in a journey with proper maps and a plan o
travel. But it is not so easy to ensure progress in a design, because ther
are no maps.

Fundamental Principle: The function of box structures is to en-
sure progress in the design of complex information systems.

A box structure of a thousand black boxes must be traveled a step at :
time. But box structures provide the designer with a mapmaking ability tc
measure progress and refine plans as unexpected obstacles (or easy tasks
are encountered. This theory begins with the fact that every system to b
designed will have black box behavior. The usual problem is that thi:
behavior is too extensive and complex to write down in one step in ar
understandable way. Instead, the knowledge of this behavior will be dis
tributed among several or many people, and some of the behavior may no
be yet worked out or explicitly known to anyone.

What is the first step then? It is to identify this top level defining blacl
box and decide how to decompose and defer its description by a top leve
BB/SM/CB structure, depicted as follows, with several new black boxe:
identified at the next level.

5.4 Box Structure Design Principles 233

BB BB BB BB

Obviously, this first step of design must have been preceded by con-
siderable planning and analysis. Good choices of decomposition at the top
level require in-depth understanding of the activities that will make up
lower levels. So good design requires good analysis in advance, in order
to decide what data is to be defined in the state machine, and what clear
box of next level black boxes best decomposes the original black box.

Usually, each new black box will pose the same problem—it can be
identified but not adequately described. Now there are two kinds of tasks:
verification and expansion. In verification, it must be shown that if the
next level black boxes have the identified behavior, then the top level
black box, as designed in its clear box, will have the desired behavior. In
fact, this verification task serves to ensure the correct identification of
behavior for the next level black boxes. In the second task of expansion,
any black box which cannot be completely and precisely described must
be itself expanded into a BB/SM/CB structure, possibly generating new
black boxes in the process. Everyone involved with this expansion should
be thoroughly familiar with the verification step, in order to know what is
expected of the black box being expanded. Thus, each new black box
begins with its own first step. In short, there are nothing but first steps in
this design journey. At any point in the journey, the box structure hierar-
chy provides a progress map, and the black boxes remaining represent the
design work to be done. A word of caution is in order about this journey.
It defines a top-down design process, but it requires enough bottom up
analysis to ensure that each step is well chosen. This analysis should
identify the best way to ‘‘divide and conquer’’ the complexity remaining
in the black box identified. In fact the clear box forces another consider-
ation, to ‘‘divide, reconnect, and conquer,’’ so that the box structure is
solid and well founded during its development.

Fundamental Principle: The basis for intellectual control of
complex information systems design is top-down development of
its box structure, in which black box behavior is structured into a
hierarchy of box expansions, each expansion step a limited activ-
ity of analysis and design.

234 S. The Box Structure of Information Syste

5.4.2 State Migration in Box Structures

A clear box expansion of an original black box and its state machin,
into several other black boxes and their state machines already implies
distribution of state parts across the hierarchy. The state of the entire bo
structure is made up of the states of state machines defined throughout th
hierarchy. However first conceived, further analysis and study may res
veal possible improvements to the distribution of state parts across th
hierarchy of the box structure. This section discusses sound and saf
ways to migrate state parts in box structures in order to maintain thej
external behaviors.

As discussed in Chapter 3, it is possible to distribute parts of an enti
state of a hierarchy of state machines in an arbitrary way. When thi
hierarchy is generalized through clear boxes that reference several black
boxes at each expansion, the distribution of state parts must be restrict
in certain ways. For example, if a state part is accessed or altered in only
one of several black boxes in a clear box expansion, then that state part:
can be migrated to the state machine of that lower level black box. How-:
ever, if a state part is accessed or altered by more than one black box in
clear box expansion, that state part cannot be migrated downward, be<
cause the behavior of the clear box would be changed by such a migrationa:

A simple example of such an effect can be seen in the alternation'
structure of Odd:Add2|Add2. The Odd:Add2|Add2 clear box with shared}
state, depicted in Figure 5.4-1, exhibits behavior as follows, for stimulus!
history 3 6 1 9 6 and initial state value of 0:)

S S1I OS1 Rl NS1I S2 OS2 R2 NS2 R
3 3 0 3 3 3
6 6 3 9 6 9
1 1 6 7 1 7
9 9 1 10 9 10
6 6 9 15 6 15

In contrast, the Odd:(Add2)|(Add2) clear box with migrated (dupli-:
cated) state, shown in Figure 5.4-2, behaves as follows,

S S1 OSt RI NSI S22 OS2 R2 NS2 R
3 3 0 3 3 3
6 6 0 6 6 6
1 1 3 4 1 4
9 9 1 10 9 10
6 6 6 12 6 12

5.4 Box Structure Design Principles 235

—
Odd: Add21Add2
r-————~="77 i::__: State: -——=
: Lo last stimulus ~ [*—y
I I
| I
: os:| |osi NS1| i NS2
| | I
! I : I
: : | Add2 II |
I P |
I [| pi Rl
I T 1
| | |
I | |
: |
| { >R
! |
| Add2 !
I i
|
R2

Figure 5.4-1. The Odd:Add2|Add2 Clear Box with Shared State.

which is not the behavior of the shared state version at all. That is, when a
state part is migrated into two different state machines at a lower level,
they simply behave as two different state machines, not one as before.
There may be impelling reasons to migrate state parts downward in the
hierarchy to more than one state machine, say for reasons of geography (a
distributed database) or for security, however, the clear box must then be
redesigned to keep the duplicated state parts always identical in content.
For example, every invocation of one state machine (through the black
box) must trigger an identical invocation of every other state machine in
the duplicated set, say by a concurrent or sequential structure that con-
tains all of them.

Fundamental Principle. State Migration: State parts should be
migrated as low as possible in the box structure hierarchy without
requiring duplicated updating; if lower migration is necessary, the
clear box should be redesigned to ensure the duplicated updating
required.

At any point in the design of a box structure hierarchy, identification
of new black boxes in a clear box expansion of a state machine provides a

236 S. The Box Structure of Information Systemg

0dd: (Add2)1(Add2)

(Add?2)
State:
l'__- last stimulus “l
|]
OS1 : | NS1

|

|

{ Add2 |I

Sl vy ! RI

(Add2)

State:
i last stimulus [~ 1
|
|
|
|
|
|

Add2

S2

Figure 5.4-2. The Odd:(Add2)|(Add2) Clear Box with Migrated, Duplicated States.

potential opportunity for state migration. State migration permits simplifi-
cation of the clear box state, and isolates the migrated state parts into newj
subhierarchies for better control of access and update operations. The
value of state migration in limiting and organizing complexity in box
structure design leads to the following fundamental principle.

Fundamental Principle. Clear Box Design: Clear boxes should
be designed with state migration possibilities in mind, by isolating
operations on state parts into individual black boxes, whose state
machine expansions become migration opportunities.

5.4 Box Structure Design Principles 237
5.4.3 Common Services in Box Structures

When several black boxes of a clear box expansion access or alter a
common state part, it is generally inadvisable to migrate the state part to
those levels. But it may be advisable to define a new box structure to
provide access to or alter this common state part for these several black
boxes. (Of course, such a new box structure must be invoked in the clear
box expansions of these black boxes.) This new box structure thereby
provides a common service to these several black boxes. Such a common
service box structure in effect encapsulates a state part, by providing the
only means for accessing or altering it in the overall box structure.

State encapsulation requires defining a new box structure whose state
will contain the common state part, and whose transitions will provide
common access to that state part for multiple users. In essence, state
encapsulation permits state migration to be carried out in another form,
with the provision that the only possible access to the migrated state is by
invoking transitions of the new box structure that encapsulates it.

Common service box structures are ubiquitous in information sys-
tems. For example, any database system behaves as a common service
box structure to the people and programs that use it. In simple illustra-
tion, consider a clear box expansion of a master file update state machine.
Such a clear box would contain a number of black boxes which operate on
the master file, for example, to open, close, read, and write the file, as
well as black boxes to access transaction files, directory and authorization
information, etc. The master file of the clear box state cannot be migrated
to the lower level black boxes without duplication. However, the master
file can be encapsulated, without duplication, in a new box structure that
provides the required transitions to open, close, read, and write the file.
This box structure can be designed to ensure the integrity of the master
file, and all access directed to it. In fact, when the master file is migrated
to this common service, it is protected from faulty access by the box
structure in an effective way.

Imagine the box structure hierarchy for a master file update clear box,
as conceptually illustrated in Figure 5.4-3. Black boxes to open, close,
read, and write the master file appear at various points in the hierarchy,
all of which access the master file contained in the clear box state.

Figure 5.4-4 shows the same clear box, redesigned to invoke a new
box structure named Master File, which encapsulates the master file and
provides common services to open, close, read, and write the file. Note in
the hierarchy that the previous black boxes to open, close, etc., have been
replaced with invocations of the Master File box structure, where each
invocation must now identify the particular transition requested. The

238 S. The Box Structure of Information Syste

State:
Master file
Transaction file
Directory
Authorization

Read Close

Open I]

Read

Write

Write

Figure 5.4-3. A Conceptual Box Structure Hierarchy for Master File Update.

Master File box structure is depicted in Figure 5.4-5 in clear box form,
with the migrated master file as its state, and four possible transitions that
can be requested by its users. Such an encapsulation offers a number of
advantages. First, it permits state migration to proceed, to help simplify.
the original clear box and isolate the migrated state and its operations.
Second, a clean interface between the new box structure and its black box;
users is created, to permit concurrent development of both. ;

Common service box structures often require definition of permlsmble.
sequences for correct use. Any other transition sequence is incorrect and;
would result in an error response to the invoking clear box.

5.4 Box Structure Design Principles

State:

Transaction file
Directory
Authorization

239

Master Master
file file
l I (Read) I (Close)
Master [i
file
(Open)

Master
file

(Read)

T

Master
file
(Write)
Master
file
(Write)

Figure 5.4-4. A Conceptual Box Structure Hierarchy for Master File Update Using a

Common Service.

Fundamental Principle. Common Services:
one expanded black box accesses or alters a state part, it is advis-
able to consider the encapsulation of that state part in a common
service box structure to be used by these black boxes.

When more

than

5.4.4 Black Box Replacement in Box Structures

A black box is a unit of design or description that can be isolated and
treated on its own, independently of its surroundings in a system descrip-

240 5. The Box Structure of Information Systemy

Master file

State:
r Master file

Open

Close

Transaction

Read

Write

- — e — |- — — [———
—_—_——— e, e e [—_——

Figure 5.4-5. A Common Service Clear Box for Master File Update.

tion. In particular, a black box can be replaced by another black box of :
identical behavior and the rest of the system will operate exactly as be- °
fore. Such black box replacement may be required or desirable for pur-
poses of better efficiency, changing hardware, or even in changing from -
manual to automatic operations.

In some cases, however, it may be required or desirable to replace a
black box by another black box of different, improved behavior. For
example, consider the Inventory reorder rule clear box of Figure 5.4-6.
The Sales forecast black box shows responses of S (Sales), and SF (Sales
Forecast). If the sales forecast is a running average, this black box might
be replaced with another black box more efficient than this one, or by
another deemed more suitable for this particular item of inventory. Simi-
larly, if the Inventory calculation is based on the months of supply reorder

5.4 Box Structure Design Principles 241

Inventory reorder rule

Sales forecast Inventory calculation

S, SF

Figure 5.4-6. Inventory Reorder Rule Clear Box.

rule, which is known to have undesirable properties from the analysis of
Chapter 1, it could be replaced with a more suitable black box, as well.

In illustration, consider a sales forecast for a seasonal item in which
seasonal adjustments are based on a 5-year average and the forecast is
based on the past year. That is, next month’s sales are forecast as the
fraction of that month’s sales of total sales for the past 5 years times the
total sales of the past year. In particular, given the past 5 years of sales (60
months) S1, S2, ..., S60, the sales forecast SF is:

SF := (S12 + S24 + S36 + S48 + S60)
' (S1 + 82 + --- + S59 + S60)

* (SI + 82 + -+ + S12)

Similarly, consider an inventory calculation of an (s,S) type in which
L,H (Low, High) are two factors applied to sales forecast SF such that if
inventory I < L * SF, then inventory reorder R = H * SF — I, otherwise
R = 0. Such a sales forecast and inventory calculation will produce very
different and improved behavior for a seasonal item than the original k
months of supply inventory reorder rule.

Fundamental Principle: Black boxes can be freely replaced by
other black boxes of identical behavior for improved responses or
better box structures.

Note that the foregoing analysis not only suggests a simple but gen-
eral black box for inventory reordering, but also identifies the require-
ment that both sales S and a sales forecast SF are required by the inven-
tory calculation. That requirement is not itself difficult to invent
independently, but in more complex, less familiar situations, such a sys-
tematic analysis ensures sufficient data for calculations in the box struc-
ture derived.

242 5. The Box Structure of Information Syste

The principle of black box replacement is based on an important con-
cept called referential transparency, which means that, in some context, a
reference to an object by its name gives the entire effect of the object
itself, independently of how or where the name is used. Referential trans-
parency is widely used in mathematics. For example, if the object is an
arithmetic expression, say 3 + S, it can be replaced by its name, the value
8, in any larger expression, such as

B+54,0+15/3+5),3+5+7
to get new expressions
8/4,24/8, 8 + 7

regardless of where it appears. Such arithmetic expressions can also be
expressed in hierarchies, with operations denoting internal nodes and
numbers denoting end nodes. For example the expression 24 — (3 + 5))f
(6 + (5 — 3)) has the hierarchy shown that can be evaluated, by referential
transparency, a step at a time (that creates a new hierarchy with each -
step).

24 + 6 -

In box structures, a black box serves as a name (a description of
complete behavior—a specification) and its clear box is an object with |
that name. Since the clear box may reference other black boxes by name,
a hierarchical structure permits a divide, reconnect, and conquer strategy
in box structure design.

But hierarchical structures in themselves do not ensure referential
transparency. For example, it is possible to imagine hierarchies of data
flow diagrams, but they do not provide referential transparency because
data flow diagrams summarize certain aspects of system or subsystem
behavior rather than specify or describe that behavior. Such data flow
diagrams serve as artist sketches for these aspects, and are suggestive,
but not definitive, of system behavior, whose final determination is pro- -
vided by the implementation. While such ambiguity and freedom may
improve the self esteem of implementors temporarily, it usually provides
unpleasant surprises for managers, users, and operators, to the eventual

5.4 Box Structure Design Principles 243

grustration of implementors in having to rework the system into a satisfac-
tory form. The lack of referential transparency is less demanding in disci-
pline, but in the end, inhibits real creativity and productivity in system
development.

5.4.5 Concurrency Control in Box Structures

The concurrent control structure provides a means of representing
concurrency at all levels of a box structure hierarchy. The control of
concurrent subsystems requires explicit analysis and design. In a clear
box concurrent structure (Figure 4.1-8) each component machine accepts
a stimulus and old state and produces a response and new state. The
concurrent structure, then, produces a response that is a grouping of
individual machine responses and a new state that is some resolution of
the individual new states. The design of the Resolve black box will handle
the details of generating the new state.

A primary concern in analysis and design of concurrency control is
whether the concurrent machines are independent or dependent in terms
of resource requirements. Machines are dependent upon on one another
when their resource requirements overlap. Shared resources may include
state data, input/output devices such as terminals, printers, or communi-
cation lines, or even computer processing cycles and memory.

The design of concurrency control when all component machines are
independent is straightforward. All machines accept the same stimulus
and old state and independently produce a response and new state. The
overall response is a grouping of the component responses. The Resolve
black box can be designed to form a new state by recognizing the changes
in each machine’s new state and merging these changes into a single new
state. Note that the independence criteria requires that no two machines
change the same items in the state data. Thus, no conflicts are possible in
the resolution of the state.

Many. examples of concurrent, independent subsystems can be found
in business processes. For example, consider a large catering business
that has separate departments, that specialize in preparation of entrees,
salads and appetizers, desserts, and drinks. Figure 5.4-7 shows a concur-
rent clear box that describes the processing of a typical order for this
business.

A catering order is accepted by the Take order black box. The de-
tailed order is recorded in the state of the business and a stimulus is sent
to a concurrent structure for controlling the food preparation to execute
the order. Then, independently, each department prepares its portion of

A catering business
0S1 Resolve NS3
—mr—mmAm L-e-— - e - —w-——— T —_————_— e —_
| —————— > Stata.: =~ 0 |—————— = I
l { |'_ (NS21, NS22,| : |
NS23, NS24
[NSl | | 0s2)I | |
A . |
| | Salads and |

| | | appetizers | | 0S3 |
. - |
| | g R21 |

| | l NS2D) | |
I | | | | |
| | I Entrees (R22. | | |
I | I . Ns22) | I |
I | | | | I
| | | | { I
| Take | | | (R21. R22 Pricing and |
| order | | Desserts (R23, [(R23,, R24) | delivery |

Order ¥ | R1=82 ¥ N823) | =83 § | Delivery
: (R24,
Drinks NS24)

Figure 5.4-7. A Catering Business Clear Box with Concurrent Operations.

5.4 Box Structure Design Principles 245

the order. From each department, the response is the availability of pre-
pared food and the new state is an updated order status, plus pricing and
inventory information for materials and labor. The Pricing and delivery
black box prepares a final bill for the order for delivery to the customer.

The design of concurrency control for concurrent, dependent ma-
chines is necessarily more complex. As observed in Chapter 4, a common
objective of concurrency control in this situation is serializability. That is,
the behavior of a concurrent control structure must be equivalent to the
behavior of one of the possible sequential orderings of its component
machines. Note, however, that other concurrency control objectives may
be required. For example, perhaps only a few of the possible sequential
machine orderings result in acceptable behavior. In this case, additional
controls in clear box structure must be designed to ensure that the desired
behavior is produced by the concurrent structure.

The principle of transaction closure can be applied to concurrency
control analysis and design. Once control objectives for a concurrent
clear box have been determined and analyzed, additional subsystems may
be required to supply the concurrency control processing. A well-known
example is the design of locking methods for shared state data among
concurrent machines. Locking methods would require the design of a
subsystem to process request-to-lock transitions and analyze data depen-
dencies among the concurrent machines. A lock table data structure
would be required in the subsystem state. The response of the locking
subsystem would identify permissible processing actions that each con-
current machine could perform. In most cases, this would require some
form of iteration control structure to allow multiple transitions of the
concurrent control structure. For example, in modern database systems
with shared access among multiple users, a single user transaction will
require literally thousands of transitions in a box structure several levels
deep for locking, unlocking, and other checks for data integrity. In sum-
mary, a successful design and implementation of concurrency control in
systems require a thorough understanding of the concurrency control
objectives and methods.

Fundamental Principle. Concurrency Control: If component
machines in a concurrent structure exhibit dependencies, for ex-
ample, in state data or hardware resources, then a concurrency
control subsystem, such as locking, is required to support a speci-
fied concurrency control objective, such as serializability.

246 §. The Box Structure of Information Systerg]

Summary: Intellectual control in information system develop-
ment depends on a ‘‘divide, reconnect, and conquer’’ strategy
made possible by box structures. New black boxes identified in a
clear box offer opportunities for state migration to their state
machine expansions. Duplication of state data in migration can be
avoided with common service box structures. Design of concur-
rency control depends on the degree of independence among con-
current machines.

5.5 THE BOX STRUCTURE OF THE NEW YORK TIMES
INFORMATION BANK

Preview: The New York Times Information Bank was devel-
oped in 1969-1971 and set new standards of productivity and
reliability. It was developed with box structures to permit re-
porters to access the Times reference morgue on-line. A top level
system design decision helped define the top level box structure
of the Information Bank, which included both batch and on line
subsystems.

5.5.1 The New York Times Project

The New York Times Information Bank was developed in a two-year f
period in 1969-1971, by an IBM Chief Programmer Team headed by F. |
Terry Baker. It set new standards of programmer productivity and pro- §
gram reliability at the time, and represented an early demonstration of the
value of top down structured programming. It was the single greatest |
spark in the ‘‘structured revolution’’ in program and information system
development. The New York Times Information Bank was developed §
with the principles of box structures, which made top down structured
programming natural and easy. 1

The New York Times maintains many years of articles and other
material in a reference ‘‘morgue’’, for use by reporters in researching and
writing new articles for the newspaper. In order to make the reference
material more accessible in the limited time required of reporters in get- ;
ting these articles out, the Times developed over many years an extensive 1
set of abstracts of its reference material, and a large thesaurus of descrip- %
tors (words and phrases) that appear in those abstracts.]

5.5 The New York Times Information Bank 247

Although not visible to the ordinary reader, many people are involved
every day in abstracting newsworthy material as it appears, and inserting
their descriptors into the Thesaurus. The Thesaurus (literally *‘treasure’’)
is extensive, too, over a thousand pages in length. The descriptors have
many cross references, so that a reporter may enter it by looking up a
descriptor of interest, find references to the abstracts and articles contain-
ing the descriptors, find cross references to other descriptors, look them
up, and so on, in following out material for a new article.

As can be imagined, many years of articles and abstracts will occupy a
large amount of cabinet space, and represent a considerable physical job
of document retrieval, as well as logical challenge. But the value to the
newspaper is also very great. The Times morgue is critical to the quality
of its operation as a great newspaper.

Even though The New York Times Information Bank, and its remark-
able productivity and reliability, was extensively reported, this is the first
account of the box structure methodology used in its development.
Rather than reporting in retrospect the design of The New York Times
Information Bank which is itself proprietary, this account seeks to create
an understanding of the problem, beginning with the ongoing human oper-
ations of using and maintaining the morgue, and how a top level solution,
in the form of an information system, was conceived and begun.

5.5.2 Getting Started on The New York Times Project

In 1969, The New York Times decided to automate its morgue. Imag-
ine yourself in charge of the project. What do you do? You know a lot
about the computer systems available—about computers, operating sys-
tems, programming languages, and data management systems. You have
two years, and you have a customer who knows the newspaper business,
but not computers. But you do not know the newspaper business, and
even if you did, you might not know exactly how your customer wants to
conduct its business. The upshot is that, as much as you know, you’ve
still got a lot to learn—not about computers, but about how your cus-
tomer wants to conduct business with computers. The problem is that
your customer can’t tell you, because he does not know enough to visual-
ize exactly how computers can help. The result is that you are going to
have to learn a lot more about the newspaper business, and how your
customer wants to conduct it, than your customer needs to learn about
computers. You have to study all the alternatives that will effect the use
of computers, but your customer only has to use the specific alternative
that is eventually selected.

248 5. The Box Structure of Information Syst

In those two years you must accomplish three things—investigation
specification, and implementation. You might consider starting out a
just implementing the best system you can figure out. But that would
irresponsible and foolhardy, to put it mildly. (But it is surprising ho
many times that is tried!) The fact is, you’d better get your customer'y
agreement on what you’re going to implement—that’s a specification;
And in order to make a sensible proposal in the form of a speciﬁcatioﬁ}_
you’d better find out what your customer does know (no sense in rein.
venting the wheel, especially when yours may not be round and your
customer’s is!)—that’s an investigation. So, realizing that, you still need’
to allocate time to these three activities of investigation, specification, and
implementation. The longer you spend on the first two activities, the less
time you’ll have left for the last. In fact, it would seem that the more time
spent in investigation and specification, the longer it would take for imple-
mentation. So there is a balance to be achieved, which depends on the
problem.

Let’s say your allocation is 3 months investigation, 3 months specifica- |
tion, 18 months implementation. You now have these major milestones.
First, in 3 months, you must explain in good detail how the morgue
operation now works—how the morgue is used, how it is added to and
maintained, and what other things you don’t know, but need to know.
Perhaps the most difficult thing to learn is what you know and whether
that is all you need to know. Next, in 3 more months you must have an
agreement with your customer on what you are to implement. You have
to explain, in terms they can understand, what you propose to develop.
(Incidentally, it must be something within your power to develop in the
time you have left.) _

Your experience in the investigation phase will be very valuable, in
learning what language your customer speaks, and how to speak it your-
self in the specification phase. Finally, in 18 more months, you must
deliver an information system that meets the specifications you’ve agreed ;
on. If you’re in trouble in this activity, it’s of your own making. Your .
trouble may be that you have promised too much. But it’s much more ;
likely to be that your box structures are too vague, too soft, with too little *
rigor in their parts.

You can expect your box structures to be your best mental assets in
every phase. You are looking for solutions even in the investigation (not
leaping to conclusions), perhaps right out of current operations, or per- i
haps from a solution to a related problem. You had better have your
solutions in the specification—the 5% inspiration that will be followed by
the 95% perspiration. -

However, in order to make your box structures as crisp and precise as

kol g i

5.5 The New York Times Information Bank 249

possible, you should look to their inputs and outputs, and the syntax and
data structures (see Chapters 7, 8) that will help you define your box
structures as clearly as you can.

In The New York Times morgue, you discover that there are three
main classes of data. First, there are the periodicals and books of the
morgue, themselves—past editions of The New York Times, but also
many additional books, periodicals, and pamphlets not printed by the
Times. Second, there are the abstracts of the articles, which reporters
may use to decide whether to get the publications or not. Third, there is
The New York Times Thesaurus of Descriptors, two loose leaf binders of
over a thousand pages of terms (Descriptors) taken from abstracts and
organized alphabetically, but with cross references and other structures
of value for searching for abstracts and articles in the morgue.

It does not take long to discover that the Thesaurus is key to users,
and key to automation. The users reach abstracts and articles through the
Thesaurus. Further, the existing abstracts and articles are unchanged
through time, there are just new abstracts and articles added daily. But
the Thesaurus changes daily, first to accommodate new terms appearing
in the abstracts, second to reference new abstracts and articles, and third,
to correlate new and old terms appearing in new abstracts and articles
with the use of terms already in the Thesaurus.

5.5.3 A Top Level System Design Decision

The first step in the development of a system is to identify its black
box, and achieve transaction closure. For all intended users, list not only
their transactions, but also any previous transactions required to allow
their transactions to be carried out by the system, and so on. For exam-
ple, in The New York Times system, the primary users are reporters
accessing past articles and reference material through the Thesaurus.
Therefore, previous transactions are required to get the Thesaurus, ab-
stracts, and locations of full text into the system, and secondary users will
need to be entering such data. Outside users will be charged for the
service, so billing transactions will be required. Users must have proper
authorization for the information they request, so authorization transac-
tions are required. Thus, the black box for the New York Times system
will contain at least four kinds of transactions:

Data Query and Retrieval
Data Entry

User Authorization

User Billing

250 5. The Box Structure of Information Syste

In the case of The New York Times Information Bank, considering t
operations of The Times and the computer hardware/software available,
top level system design decision was required. After considerable analy
sis, it was decided to move User Authorization and User Billing transac-
tions off-line, and to break the Data Entry transactions into two parts:
part on-line and part off-line. Data entered on-line during the day can be
put into a transaction file; then the on-line database can be updated witly
the transaction file off-line overnight. Such a decision takes a joint analy::
sis of the operations of the enterprise and computer performance/eco-:
nomics of appropriate depth. It would have been possible, but economi:;
cally prohibitive, to put all transactions into a single on-line system.
However, it was satisfactory, and economically feasible, to keep the on-
line database current up to the day, not up to the last minute. '

With a decision to move some transactions or parts off-line, the on-
line system is better considered as an off-line, all day transaction itself
along with the parts moved off-line. Furthermore, with further analysis, a
new user class of system operations, and transactions for controlling and
tuning the system, were identified.

Note that this top level box structure recognizes user input and output
explicitly. The data processing techniques for storing and retrieving ab- |
stracts and Thesaurus entries are yet to be elaborated, even though they |
are critical and interesting. A natural tendency for information systems
developers is to think about their own internal problems before they think
about the users’ problems. As a result, the final integration of solutions to
their problems into a system often uncovers unsolved or unresolved user
problems. In contrast, the box structure approach forces a system view
from the very beginning that includes the users. ‘

Another tendency of information systems developers is to focus pre-
maturely on parts of a system and inadvertently to suboptimize the parts
focused on. For example, the on-line reference system is the most visible
and interesting part of The New York Times Information Bank. In con-
trast, the box structure approach forces the identification of the off-line
operations of database update, authorization, billing, etc., that need joint
consideration with the on-line system. In this way, the whole system gets
top level scrutiny by analysts, designers, and managers with fewer after-
thoughts and system patchups required.

5.5.4 A Top Level Box Structure for the Entire System

The conventional view of The New York Times Information Bank
would be a system of several programs, for example, one for its on-line

5.5 The New York Times Information Bank 251

The New York Times
Information Bank

S——» —— R

Figure 5.5-1. The New York Times Information Bank Black Box.

operations, one for incorporating the data entry transaction file into the
on-line database, one for granting authorizations, one for analyzing data-
base usage, and one for billing. In contrast, the box structure view begins
with the New York Times Information Bank as one black box as shown in
Figure 5.5-1 with stimuli and responses that accumulate into five types of
input/output as shown in Table 5.5-1.

In this box structure view, the users of The New York Times Informa-
tion Bank enter data for various purposes: as operators of the on-line
system, as users of the information services, as data entry people, as
database specialists, and as financial specialists. But the entire system
behaves as one big black box for all of them. Each of the users individu-
ally sees a part of this black box behavior; each enters stimuli (e.g.,
keystrokes) that accumulate into inputs (e.g., lines of data) and receive

Table 5.5-1

The New York Times Information Bank
Input and Output

Input Output
On-line
Control data Confirmation
Retrieval requests Information
Entry data Transaction file

Database Update
Transaction file Confirmation

Authorization Update

User data Confirmation
Billing
Control data User bills

Usage Statistics
Control data Usage statistics

252 5. The Box Structure of Information Systems

responses (e.g., character echoes) that accumulate into outputs (e.g.,
messages on screens or printers). The on-line system handles many users
concurrently, so it must interweave all these stimuli and responses in g
split second way to behave as a black box as a whole, and also to provide
seeming black box behavior to each user. For example, a hundred users at
terminals may produce stimuli that reach and are recognized by the sys.
tem in a specific sequence, even though many keystrokes are depressed in
each second. ;

Such black box behavior is impossible to comprehend without a great :
deal of structure, but it is black box behavior nevertheless. '

The next step to a box structure for The New York Times Information
Bank begins with its overall state machine shown in Figure 5.5-2. The °
state data can be classified into various categories, as described in Table
5.5-2. This data is used in different ways by different transactions of the
system. For example, a specific input (stimulus history) will serve to turn |
on the on-line system for the day’s operation. Although the users are on-
line, the on-line system itself is a batch job that takes all day to run. The -
stimuli following that will be interpreted as terminal messages from users -
signing on, entering data, retrieving data, or controlling the operation of
the system until a specific input serves to shut down the on-line system.

This entire day’s operation represents a single transaction at the sys-
tem level. The stimuli of this transaction are the collection of all stimuli
from all terminals that have occurred during the entire day. The responses
of this transaction are the collection of all terminal screens and printed
output produced during the entire day. These stimuli and responses, seg- |

The New York Times Information Bank

State:
Authorization data
Session data
Entry data
Database
Data usage data
Account data
Control data

|
I
)
I

Machine

-~———————
]

S = R

Figure 5.5-2. The New York Times Information Bank State Machine.

5.5 The New York Times Information Bank 253

Table 5.5-2

The New York Times Information Bank State Data Categories

Authorization Data Data used to grant authority for user sign ons and queries

Session Data Data used to conduct on-line sessions with individual users, e.g.,
sign on data, terminal data, user data, current mode of interac-
tion, etc.

Entry Data Data accumulated in the transaction file today

Database Thesaurus, abstracts, and locations of full text available today
(note items generated today are in Entry Data)

Data Usage Data Data used to analyze the use of data in the database

Account Data Usage data posted to user accounts for billing and analysis

Control Data Data used to control the system, allocate space to files and

database, give priorities to individual users, etc.

regated by terminals and sequenced in time, are interpreted by individual
users as the stimuli and responses for their individual transactions. The
on-line state machine transaction requires all day, from the state at the
beginning of the day to the state at the end of the day. It is a large, indeed
gigantic, transaction. But it is just one transaction of The New York
Times Information Bank.

In addition to the all day on-line transaction, another stimulus history
will invoke a (batch) database update transaction, still another will invoke
a (batch) user billing transaction, and so on. If authorizations are to be
added or deleted, another transaction will be called for. A database usage
analysis represents still another transaction for the system. In each case,
on-line or batch, a transaction must be completed before the next transac-
tion is begun, just as in any black box or state machine. For example, the
database update can not be carried out concurrently with on-line opera-
tions. The type of state changes likewise vary with the transactions, as
shown in Table 5.5-3.

The next step in the box structure of The New York Times Informa-
tion Bank is its clear box, which can be described as in Figure 5.5-3. Each
system transaction must first be recognized in a stimulus history that
defines the system transaction required. Once identified, the chosen sys-
tem transaction can be conducted on the basis of a continued stimulus
history. In the case of the all day on-line transaction, a large additional
stimulus history from many terminals is expected. In the other four batch
cases of Database Update, Authorization Update, Usage Statistics, and
Billing transactions, a relatively short additional stimulus history will fol-
low, which defines any particular conditions in a single input, and the
transaction will be completed in a single batch run of the computer.

Table 5.5-3

The New York Times Information Bank State Machine State Changes

Transaction State Changes
Authorization
Update Authorization Data
User authorities added/deleted
On-line Session Data
None—session data disappears at end of each day
Entry Data
Accumulates the day’s work of data entry personnel
Database

None—used for retrieval only
Data Usage Data

Updated for day’s usage
Account Data

Updated for day’s usage
Control Data

Updated for day’s operation

Database Update Entry Data
Emptied to database
Database
Updated with day’s entry data

Billing Account Data
Reinitialized after user billing completed

Usage Statistics Data Usage Data
Reinitialized after analysis completed

The New York Times Information Bank

State:

Authorization data

Session data

Entry data
______ Database - — — —
Data usage data
Account data
Control data

!
|
|
|
!

Conduct system
transaction

Identify system
transaction

e

|
|
|
|
Vo

Figure 5.5-3. The New York Times Information Bank Clear Box.

5.5 The New York Times Information Bank 255
5.5.5 A Top Level Box Structure for the On-Line System

The all day on-line system interacts with terminals all day, each en-
gaged in many user sessions, each a sequence of interactions between a
user and the terminal (and system). Each user session can be divided into
subsessions such as sign on, sign off, browse Thesaurus, retrieve ab-
stracts, data entry, etc. In turn, each of these subsessions is made up of
line (of data) transactions and each line transaction is made up of char(ac-
ter) transactions (keystrokes/displays) of the system. Such a structure of
transactions, including the batch transactions, of the entire New York
Times Information Bank is depicted in Figure 5.5-4. Each day the system
can expect hundreds, even thousands, of sessions, each session up to a
dozen subsessions, each subsession from dozens to hundreds of lines,
each line a few dozen characters.

The box structure of the on-line system mirrors this structure of trans-
actions. The terminal interactions are concurrent, with no sequential re-
quirements between them. But the transitions and transactions at each
terminal are sequential. Thus, the on-line system can expect from each
terminal:

A sequence of sessions, each
a sequence of subsessions, each
a sequence of lines, each
a sequence of characters

In each case the sequence is determined by a user at a terminal in an
unpredictable way, and the system must be prepared for any character
stimulus at any time—even if illegal, in which case an error message is
called for.

This structure of transitions gives a form for the box structure of the
on-line system. At the top level, every stimulus, characters and lines,
must be accepted and immediately identified by its originating terminal.
Therefore, the state of the on-line system must contain a separate file of
stimuli for each terminal. In fact, this state must contain a data area for
each terminal to record the progress of sessions and subsessions of each
terminal. Then, each terminal can be treated independently, and the box
structure for each terminal can be developed independently of other ter-
minal considerations.

The box structure of an all day terminal describes the behavior of the
terminal throughout the day, session after session and user after user.
However, to the system, the terminal behavior is defined by a large stimu-
lus history, a character at a time. The same characters are used whether
signing on, entering data, browsing in the Thesaurus, retrieving informa-

256 5. The Box Structure of Information Syst

The New York Times
Information Bank

|
[|

Online Database
update
[1
Terminal oo Terminal eee Terminal
| |
Session see Session oy Session
[| |]
Sign On Browse Retrieve . B Sign Off
[1
Line Line aee Line
f_' |
Char Char ces Char

Figure 5.5-4. The New York Times Information Bank Transaction Structure.

tion, signing off, or whatever. Rather, it is not the character keystroked in
isolation that determines the behavior of the on-line system for the user,
but the sequence of characters keystroked up to any point.

The black box behavior of a terminal can be explained in a state
machine with a general transition, Respond to Terminal, as shown in
Figure 5.5-5. At first glance, such a general transition does not seem to
explain much. But we can expand it in a clear box structure, as shown in
Figure 5.5-6. The Respond to Terminal clear box shows the basic forma-
tion of inputs out of stimuli. With each keystroke, the user sees a new
display (usually with a single character added). If the keystroke defines an
input, then Respond to Input is invoked; otherwise the last stimulus is
echoed in the display.

In turn, Respond to Input can be expanded, as in Figure 5.5-7. The
components of this clear box are illustrative of the design of the Informa-
tion Bank, but not intended to show exact details, which would require
more explanation than space permits. Mode is a part of Session Data that
specifies which mode of user interaction the terminal is engaged in. At the
start of the day the mode is Sign On (waiting for first user). After Sign On,
the mode may change (with proper authority) to one of the other modes

y

5.5 The New York Times Information Bank 257

All day terminal

State:

Authorization data
Session data

Entry data | —
Database

Data usage data
Account data
Control data

1
I
I

Respond to terminal

-]

- — — — — — ——— —

Figure 5.5-5. All Day Terminal State Machine.

by user request, then to other modes, and so on, and finally to Sign Off.
Following Sign Off, the mode reverts back to Sign On (waiting for the
next user).

At one more level of detail, a clear box expansion for Sign On is given
in Figure 5.5-8. The first step of Sign On, namely Get and Check Name,

Respond to terminal

Respond to input

Form input
S > Input? R

Echo stimulus

Figure 5.5-6. Respond to Terminal Clear Box.

258 5. The Box Structure of Information Systemy’

Respond to input

Sign on

Enter data

Browse thesaurus

Retrieve data

Control system

Sign of f

Figure 5.5-7. Respond to Input Clear Box.

can be further expanded, as given in Figures 5.5-9, 5.5-10, and 5.5-11, to |
Get Name from the terminal input and Check Name with a black box !
name file, which when given a name as input returns its authority (if any)
as input.

Summary: The New York Times Information Bank was devel-
oped according to box structure principles. Following a top level
system design decision, a top level box structure was identified
that included an all day on-line transaction along with several off-
line transactions. The top level box structure of the on-line sys-
tem was also identified.

Sign on

Get and
check name

Get mode
request

Get and
check password

-»<_OK?

Reject user,
no password

OK?> —

Reject user,
no name

Figure 5.5-8. Sign On Clear Box.

260 5. The Box Structure of Information Systems

Get and check name

Get name Check name

Figure 5.5-9. Get and Check Name Clear Box.

Get name

Accumulate name

S End? — R

Figure 5.5-10. Get Name Clear Box.

Check name

Name file

Figure 5.5-11. Check Name Clear Box.

5.6 EXERCISES

1. Develop a Delete Account transaction for the department store,
together with any state data required and a procedural explanation.

2. Reanalyze the state data definitions and transactions of Table 5.2-1
for consistency and correctness. Can you find any transaction se-.
quences that satisfy the dependency tree of Figure 5.2-9, but which :
could result in incorrect state data or output? If so, modify Table
5.2-1 to produce correct results.]

3.

Exercises 261

Imagine extending the analysis to accommodate a financial manage-
ment function that forecasts 12 months’ cash flow for the department
store management. Develop a sensible forecasting model, and the
transactions, state data, and procedural explanation to specify it.
Should the model be seasonal?

Develop a skeleton users guide based on the tree of transaction
dependencies and Table 5.2-1. How should the users and managers
of the system be organized in terms of responsibilities and accounta-
bilities? What does the human side of the work flow look like? Incor-
porate these ideas in the users guide.

Develop an analysis of transactions, state data, and procedural ex-
planations for the processes to be followed if the system breaks
down for a day.

Develop an analysis of the archive and backup requirements of the
system. That is, what information should be periodically purged
from the system, but kept for unforeseen needs?

Work out a box structure for the black box Set Credit, using the
analysis results of Section 5.2.

The sales manager of the department store wants a sales report to
determine the role of credit limits in the size of purchases. Do cus-
tomers with higher credit limits make larger individual purchases or
just more purchases? How could the sales managers request be han-
dled in the Charge Account System?

The finance manager of the department store wants a daily report on
the Charge Account System to help in cash flow management of the
store. What would you suggest in terms of data provided the finance
manager, and how would you design such services into the Charge
Account System?

Develop a sensible inventory reorder rule for a dairy product with a
shelf life of S days. Describe its state machine and clear box behav-
ior.

Develop a sensible inventory reorder rule for a set of 12 products in
a store with limited storage space. In particular, the total inventory
of the 12 products cannot be allowed to exceed a fixed amount
defined by storage capacity. Describe the state machine and clear
box behavior of such a reorder rule.

Chapter 6 Information Systems
Management

6.1 MANAGING INFORMATION SYSTEM DEVELOPMENT

Preview: The system development process is a paradigm for
generating time phased activities of investigation, specification,
and implementation, according to a development plan that is up-
dated for relevance to the business need at the completion of
every activity. System development itself can be described by
box structures whose transactions are the activities of investiga-
tion, specification, and implementation and whose state includes
the development libraries. Work structuring and scheduling is an
important aspect of activity management.

6.1.1 The System Development Process

The system development process is a paradigm for generating syste
development activities of investigation, specification, or implementatio
based on:

1. A development plan consisting of a time phased set of plann
activities to meet a specific business need.

2. At each completed activity, a development plan update to accou
for progress made, lessons learned, and changes in the business need.

262

6.1 Managing Information System Development 263

Typically, a development plan is the joint product of business manage-
ment and system development management. Frequently, the initial devel-
opment plan is quite general, beginning with an investigation whose pri-
mary purpose is to recommend a more definitive development plan.

The time phased set of activities can be strictly sequential, or it may
have concurrent activities. If a development is sequential, it can be pic-
tured, in prospect or retrospect, as a system development spiral of activi-
ties, as shown in Figure 6.1-1. In this sample case, the activity sequence is
a straightforward progression of

Investigation
Specification
Implementation

with a management approval to enter each activity and to end the entire
development. Such a progression for developing a system is an ideal, but
is not necessarily possible or even desirable. It may not be possible be-
cause the business problem is too complex and needs several investiga-
tion activities to arrive at a solution. It may not be possible because the
system development problem is too complex and needs several specifica-

Start

Approval

Investigation

Approval

Specification

Approval

Implementation

Approval

Completion

Figure 6.1-1. A Sample System Development Spiral.

264 6. Information Systems Managemeng'

tion/implementation activities in an incremental development. It may not
be desirable because the business problem is too acute and a less than besg
implementation is called for as soon as possible. It may not be desirable
because the happy outcome of the first investigation activity is the discov-
ery of an existing implementation to meet the business need.

If a development is concurrent, it can be pictured in a network of
spirals, as shown in Figure 6.1-2. In this network, activity dependencies
are shown by the approval lines (‘‘A’’ lines here). For example, Investiga-
tion 1 enables both Specification 1 and Investigation 2, while both Imple-
mentation 1 and Specification 2 must be completed before Implementa-
tion 2 can be started. The specific network pictured might, for example, |
represent the concurrent development of a database system (Implementa- |
tion 1) and an application system (Implementation 2) that uses it.

The time phased activities of a development plan will be expressed in |
calendar time, often tied to business events. In fact, many times the
system development itself will influence these events. For example, a
system to improve customer service may be advertised, and so require

Start

Investigation 1

Specification 1 Investigation 2

Implementation |

Specification 2

Implementation 2

Completion

Figure 6.1-2. Sample System Development Spiral Network.

6.1 Managing Information System Development 265

advertising copy and commercials to be developed and placed ahead of
time, customer service personnel to be trained, equipment to be pur-
chased, and so on. Needless to say, if the development is late, the busi-
ness costs may be substantial and way out of proportion to the cost of
development overrun. More and more, information systems are at the
heart of businesses and their competitive positions, so the stakes for
effective information systems development to calendar schedules can be

very large.

Fundamental Principle: The objective of information systems
development is to improve business performance, not to develop
information systems per se.

Information systems development can be successful even though no
system is developed, and can be a failure even though a system is devel-
oped.

There are several ways a development can be successful without de-
veloping a system:

1. An investigation activity can discover an existing system to meet
the business need, saving the cost of specification and implementation.

2. An investigation activity can discover how to improve the existing
business process so much that a new system cannot be cost justified.

3. A specification activity can tailor the needs of the business to a
form such that a specialized vendor can supply a system at greatly re-
duced cost.

An information system can be a technical success and still be a busi-
ness failure in several ways:

1. The system addresses the wrong problem because of insufficient
investigation and understanding of the real business process.

2. The system addresses the right problem, but is too hard to use
because of insufficient investigation of user skills.

3. The system addresses the right problem and is easy to use, but
cannot be kept on the air because of operator or integrity problems.

In short, there are any number of ways an information system devel-
opment can succeed or fail. They are rooted in the business and the final
judge of success is the business. For that reason the system development
process must be flexible and responsive to the needs of the business. The
box structure methodology provides management continuity between ac-
tivities and management capability within the activities to better ensure

266 6. Information Systems Management

progress. But it is finally up to management to focus and direct the devel-
opment to the needs of the business.

6.1.2 System Development Illustrations

As noted, a system development spiral is an apt figure for tracking the
system development process. The spiral demonstrates that activities are
mixed throughout the development process. The next activity is not au-
thorized until the previous activity is completed and its results evaluated.
For every system a unique system development spiral will be constructed
as the development progresses.

To illustrate more specific possibilities of a system development spi-
ral, consider the following simple, yet realistic cases.

Casge 1. TERMINATED PAYROLL DEVELOPMENT

A business wants to determine if a new, automated personnel/payroll
system would increase productivity and morale. A development team is
established. The team begins the system development with several loops |
of investigation. Through interviews, system objectives are established
and system requirements are analyzed. These analyses result in a final
feasibility review report presented to the management. The review con-
cludes that the proposed system would not be cost beneficial and recom-
mends the system not be developed. However, the investigations also
provide a much better understanding of the current payroll process, so |
much so that significant improvements can be recommended, as well.
Management agrees, the project is terminated, and the improved payroll
process is adopted.

The system development spiral for this case is seen in Figure 6.1-3.
Even though no specification or implementation activities were per-
formed, this is still a system development. In addition to the immediate
benefits of an improved payroll process, the libraries built during the
investigation contain useful information for future system developments.

CASE 2. A PHASED SEQUENTIAL DEVELOPMENT

A large supply company wants to automate its inventory and customer
ordering systems. After an initial investigation activity based on feasibil-
ity concerns, a decision is made to break the development into two
phases. First the inventory system is developed and then the customer
ordering system is developed, as shown in Figure 6.1-4. A phased sequen-
tial development, such as this, has several advantages. Fewer resources

r

6.1 Managing Information System Development 267

Start

A

Investigation

Investigation

Investigation

A

Completion

Figure 6.1-3. Terminated Development.

are needed at any one time; much of the work in the first development
need not be repeated in the second; and the second development phase
can learn from the experiences of the first.

CASE 3. A PHASED CONCURRENT DEVELOPMENT

The large supply company of Case 2 wants to shorten calendar time
for bringing up the full system and decides to overlap the implementation
of phase 1 with the investigation and specification of phase 2, as in Figure
6.1-5.

6.1.3 The Box Structure of System Development

The process of system development can be viewed as a box structured
system itself. Figure 6.1-6 shows the black box of system development.
The system development black box interacts continually with the busi-
ness environment of the system. The stimulus history for system develop-
ment is formed by information gathered from the environment. The pri-
mary sources of the information are business management, operators, and
users. Additional information may come from customers or vendors of
the business, business application experts, and numerous other sources.

268 6. Information Systems Man

Start
A
Investigation 1
A
Investigation 2
A
Specification 1
A
Specification 2
A
Implementation 1
A
Investigation 3
A
Specification 3
A
Implementation 2
A
Completion

Figure 6.1-4. Phased Sequential Development.

i e CERR S s wmy Bt L e,

6.1 Managing Information System Development

Start

A

Investigation 1
A

Investigation 2
A

Specification 1
A

Specification 2
A

Implementation 1

Implementation 2

Completion

Investigation 3

Specification 3

Figure 6.1-5. Phased Concurrent Development.

Each system development transaction produces a response that be-
comes a stimulus to the business environment. System development re-
sponses are requests for information or completed system components. In ‘ I
either case the environment black box accepts the stimulus and produces ‘
a response to the system development team in turn, and so on. For a \

269

270 6. Information Systems Manageme

Business environment

System development

Activities:
S Investigation R
Specification

Implementation

Figure 6.1-6. The System Development Black Box.

system component, or eventually the completed system, the response is
an acceptance, a rejection, or a request for further development.

In this way the entire system development process can be viewed as |
providing a flexible ordering of investigation, specification, and imple-
mentation transactions.

The system development process is further described by the system :
development state machine, as shown in Figure 6.1-7. The state of the
development process is held in its libraries that contain information used °
and generated by the development activities. The following four libraries
are needed for development:

Management Library. The management library holds the develop- °
ment plan and other information needed by the development team
to control and support the development effort. Control information
includes schedules, day to day correspondence, and budgets. Sup-
port information includes the documentation provided to the busi-
ness management, operators, and users, such as system proposals,
feasibility studies, and review documents.

Analysis Library. The analysis library documents the analysis per-
formed to create the new system. The box structure methodology
emphasizes the use of box structure diagrams as a creative, flexible
tool for analysis. This library is principally for communication
among the development team and with the business environment
during information system development.

Design Library. The developing system design is recorded in this:
library in a formal language such as BDL. The design library is: ¢
used by implementation activities as the basis for the system. The. i

6.1 Managing Information System Development 271

System development

State:
Management library
Analysis library
Design library
Evaluation library

Machine

Activities:

S —> Investigation
Specification
Implementation

S |

Figure 6.1-7. The System Development State Machine.

library is updated to contain any design changes that may occur
during implementation.

Evaluation Library. Evaluations of development results are re-
corded in this library. Examples of evaluation include design verifi-
cation through box structure analysis, software testing, and system
testing. These results would serve as an information resource for
proposals and review documents that are contained in the manage-
ment library.

These four libraries are at the center of the system development
process.

For sequential development, the system development clear box shown
in Figure 6.1-8 illustrates the decision of which activity to perform during
a development transaction. The stimulus history from the business envi-
ronment provides the information to concurrently update the develop-
ment plan and make the selection of an investigation, specification, or
implementation activity. For concurrent development the clear box be-
comes a concurrent structure as defined by the development plan.

6.1.4 Work Structuring and Scheduling

Information systems are planned, managed, and reviewed as a set of
time phased activities. But they are developed through their activities a

272 6. Information Systems Manage

System development

State:
Management library
Analysis library
______ Design library
i_ Evaluation library
|
|
|
|
I

Investigation I

Y

Implementation

|
I
' |
' |
i Specification |
S —— Activity | : R

I |
l |

¥ I

Figure 6.1-8. The System Development Clear Box.

person-day at a time, no matter how large the development may be. If
every person every day works and worries about the entire system in &
sizable development, the work will almost certainly founder for lack of"
effective progress and completion. In order to make effective progress,
the work and its complexity must be divided and conquered in individual
assignments. As already noted, the box structure methodology helps ad-
dress the division of work. The assignment of this work to individual
people is reflected in the work structures and schedules of development!:

The effective management of information system development re-
quires a precise decomposition of the work, and the evolving box struc-
ture of the system is an ideal basis for such work structuring. Work
structuring should not only identify parts of the work to be addressed
independently of each other, but also how these parts are to fit together:
when completed.

Fundamental Principle of Work Structuring: Information sys-
tems development work should be structured by the principle of
divide, reconnect, and conquer.

6.1 Managing Information System Development 273

That is, the plan for fitting parts of completed work together should be
developed before the parts are delegated for independent work. The ex-
pansion of a black box into a state machine, then into a clear box with new
black boxes provides a plan for fitting completed work on the new lower
level black boxes into the original black box expansion. So the box struc-
ture methodology provides a direct basis for structuring and managing
work in systems development.

Work scheduling requires an additional dimension of management
analysis and understanding in dealing with people in the development
team. Work scheduling cannot be done in a vacuum, and people have
different skills and abilities that must be accounted for in the scheduling.
What is a three-week problem for one person may be a three-month
problem for another and impossible for a third. Furthermore, the same
person can take three weeks or three months to solve the same problem
under different conditions.

First, for work scheduling both the work and the people must be there
and be understood. It does no good to schedule work if nobody is avail-
able to do it. It does no good, and can do much harm, to schedule work
which is beyond the capability of people assigned to it. It hurts the busi-
ness, because false hopes are raised and counted on. It hurts the people
who are then judged as failures. So work scheduling must take into ac-
count who is available and what their capabilities are. In some cases a
sensible work assignment is a matter of enough time. In other cases the
assignment may need to be changed to make it feasible at all.

Paradigm for Work Scheduling: With understanding and com-
mitment of those who are to do the work,

1. Make a good schedule
2. Make the schedule good

A good schedule is one that can be made good and represents an
effective response to the business need it addresses. Making the schedule
good requires constant encouragement and monitoring of progress of
work that is within the capabilities of the people assigned to it.

This paradigm for work scheduling may at first seem quite simple, but
it sets in motion a set of secondary effects. The key is that a schedule is
something to make good, not simply an estimate of how much time and
resources an activity or task should take in the abstract. As such, the
people doing the work are involved creatively as well in a work-to-sched-
ule framework. In contrast, a pure estimating approach in system devel-

274 6. Information Systems Management

opment, with no responsibility to meet the estimate, almost always leads
to late and overrun performance. Creative work is always subject to self-
criticism and rethinking, and the criteria for stopping used by people can
vary greatly. If the objective is only to provide the very best system -
possible, better thoughts are always possible and there is no telling when
the developers will come to believe the very best has been achieved. On
the other hand, if the objective is to produce a good system to a realistic
schedule, the schedule itself becomes as important as the system. That is,
the schedule should act as a check and balance on the development work,
not merely as an estimate. It is up to management to ensure that people
know the cost and benefits of meeting schedules as well as of system
operations. As already discussed, the business cost of missing schedules
can be many times the development overrun.

6.1.5 Scheduling Mechanics

As noted, work structuring and scheduling requires deep understand-
ings and sensitivities in management, but its results are very concrete,
and schedule data can be handled mechanically. In large projects such
schedule data can be usefully processed automatically by various project
management software packages. As with any other application in which
complex ideas are represented with concrete data, it is easy to generate
GIGO (Garbage In, Garbage Out) if the concrete aspects obscure the
complex meanings of the data. Two useful methods of presenting and
processing schedule data are embodied in Gantt charts and project net- :
work graphs, presented next.

GANTT CHARTS

A Gantt chart is a simple bar chart that shows for each activity its
start, duration, and end. A time scale is normally placed on the horizontal
scale and the project activities are listed along the vertical scale. Figure
6.1-9 shows a Gantt chart for a small system development project with
two people. It is possible to include additional information by having a |
separate Gantt chart for each member of the development team. Figure
6.1-10 shows a Gantt chart for the two individuals of Figure 6.1-9.

The graphic nature of the Gantt chart shows task responsibilities
clearly to managers and non-system personnel. Scheduling can be done
quickly for long-term projects and modifications to the schedule can be
easily made. The major deficiency of using a Gantt chart is that task
dependencies are not represented. This requires a project network graph.

6.1 Managing Information System Development 275

Activities Month 1 Month 2 Month 3 Month 4

Investigation 1
Investigation 2
Specification 1

Specification 2

Implementation

Figure 6.1-9. Project Gantt Chart.

PrOJECT NETWORK GRAPHS

Project network graphs provide better methods for scheduling and
tracking the progress of projects with concurrencies and dependencies.

Activities are represented in a graph by directed arcs between events
(nodes) that signify the start and end of the activity. Each activity has a
time duration (e.g., days, weeks, months). The connections in the net-
work show the dependencies among the activities. Each activity arc is
given a task name and each event is numbered in the network.

The project network in Figure 6.1-11 illustrates the notation. Activities
A through L are connected by events 1 through 11. Each activity has the
estimated duration placed beneath the arc. An activity cannot start until
all activities coming into its starting event are completed. The dashed arcs
are dummy activities with zero time duration. For example, the dummy
activity from event 3 to event 4 states that activities E and F cannot start

Smith Month 1 Month 2 Month 3 Month 4

Investigation 1
Specification 1

Implementation

Jones Month 1 Month 2 Month 3 Month 4

Investigation 2

Specification 2

Figure 6.1-10. Individual Gantt Charts.

276 6. Information Systems Managemeng

Figure 6.1-11. Example Project Network Activities and Events.

until both activities B and C are complete. This dummy activity is needed
since activity D is only dependent upon the completion of activity B.

This project can be analyzed to determine the activities most critical to
the schedule as follows.

Foreach event, we calculate an earliest event time (EET) and a latest
event time (LET). The earliest event time is the earliest time that all:
outgoing activities could begin. It is calculated for all events, beginning at
the start of the project as,

EETg = maximumy, (EETx + durationa)

for each event E, and all incoming activities A from event X to E.

The latest event time is the latest time an outgoing activity can start
without altering the schedule. LET is calculated for all events from the
end of the project as,

LETE = minimuma (LETx — duration,)

for each event E, all outgoing activities A from E to event X.

The critical path in a project network is a chain of activities that must
start and end on time for the schedule to be met. The events where EET =
LET define the critical path in the project network. The closest tracking
must be applied to activities on the critical path.

Activities not on the critical path can afford to start late or exceed the
estimated duration without altering the project schedule. This is known as
slack time. For each activity A,

SLACK TIMEA = (LETA END — EETA START — durationA)

Figure 6.1-12 shows the previous project network with all calculations
performed.

Slack time is represented in parentheses under activities in the net-
work. The identification of slack time can allow the developer to better
allocate resources. For example, a task that requires 150 person-hours, if
separable into parts, can be done by § individuals in 30 hours. However, if

6.2 System Development Activities 277

Activity name

Earliest event
E

- Critical path Event qb time
i number _JII/ Latest event

Duration Slack time time
time

Figure 6.1-12. Complete Project Network Analysis.

sufficient slack is available, the developer may assign only 3 individuals
over 50 hours to better utilize personnel. The other 2 individuals may be
assigned to another activity on the critical path to improve the schedule.

The project network graph (with minor variations) is the basis for both
PERT (Program Evaluation and Review Technique) and CPM (Critical
Path Method) scheduling.

Summary: Managing system development requires a thorough
understanding of the system development process. Every system
has a unique system development spiral. Work structuring and
scheduling should be done with understanding and commitment
of people assigned to work. Gantt charts and project network
graphs can be used to represent schedule data.

6.2 SYSTEM DEVELOPMENT ACTIVITIES

Preview: The activities of investigation, specification, and im-
plementation have much in common and some differences. The
commonality is exemplified by the applicability of the box struc-
ture methodology across these activities. The activities differ be-
cause of the state of development they represent, from fact find-
ing and feasibility concerns in investigation, to system design and
cost/benefit analysis in specification, on to completed systems
and installations in implementation.

278 6. Information Systems Manageme

6.2.1 Activity Management

The system development process generates limited, time phased, ac<
tivities of investigation, specification, and implementation that must be
managed. The stages of planning, performance, and evaluation in each
activity define an orderly process for this management. The box structure
methodology provides a great deal of commonality across these activities
for the analysis and design work that is required. The management prob-
lems are also very similar. As the names might imply, the most challeng-
ing stages for management are planning and evaluation, while the perfor-
mance stage is most challenging for professionals. We discuss these
stages next. '

PLANNING
There are three basic results from the planning stage of any activity:

1. Activity Objective. A clear statement of what the activity is to
produce.
2. Activity Statement of Work (SOW). A clear statement of how the
activity will achieve its objective.
3. Activity Schedule. A clear assignment of work items in the SOW
to professionals, together with completion dates which each of the profes- -
sionals agree to.

With such a plan, the entire development team understands the objec-
tives, statement of work, and the individual responsibilities for making
the work objectives and schedule good. Such a plan not only requires the
agreement of the professionals, but also requires their direct participation
in the planning process. But the planning process must be led by man-
agers to address the proper questions and problems for the activity in the
overall development plan.

The outputs of all previous activity loops in the development spiral
and the feedback from the business environment combine to help the
management and the development team decide what type of activity is
required next. The first task is to define an activity objective and to derive
a plan for meeting that objective.

The activity loop can be scheduled with Gantt charts and project
networks. The activity schedules are as detailed and specific as possible,
since they are the primary means of management control. At the same
time, the overall system development schedule is updated to reflect the
resources allocated to this activity.

All of the planning information, objectives, SOW, and schedules are

6.2 System Development Activities 279

included in a formal activity proposal that is presented to the managers of
the development. The proposal is accepted, modified, or rejected based
upon management analysis. The eventual acceptance of an activity pro-
posal marks the end of the planning stage and the beginning of the activity
performance. The accepted proposal is stored in the management library
for reference.

PERFORMANCE

If plans are well made, performance is focused and predictable. The
management job in performance is to assess and track progress against
the SOW and schedules, to identify unexpected problems and help profes-
sionals decide how to meet them, and to identify unexpected windfalls in
solutions that can free up people or other resources to help out with
unexpected problems. It is here that good understandings and agreements
on assignments and schedules pay off.

First, each team member understands his/her role in the activity, and
the need for completing the work to schedule. In contrast, a common
misunderstanding between managers and professionals pits the ‘‘man-
ager’s schedules’’ against the ‘‘professional’s design’’. Such disagree-
ments should be ironed out in planning, not late in performance. A com-
mon set of system values from the box structure methodology permits
managers and professionals to communicate effectively and alleviate such
disagreements. For example, a professional may be reluctant to adapt a
less than the best system to a reservation system because a better one can
be built; but if the professional understands that a quick and dirty system
means the literal survival of the business, there will be little reluctance for
a whole hearted effort to get the quick and dirty system on the air.

Second, good schedules and a common understanding of box structure
methodology make progress assessments and tracking more accurate and
more rewarding. When managers can recognize good and timely work,
they can acknowledge it privately and publicly, and when warranted,
arrange for awards for extra performance. A major morale problem
among high performance professionals is just the fact that good work is
often not recognized, and mediocre work by others is as well rewarded as
their own. Good progress assessments and tracking of well understood
assignments go a long way in recognizing good work.

EVALUATION

Evaluation is both a closing out of one activity and a basis for selecting
and commencing one or more following activities. The objectives and

280 6. Information Systems Management
results of performance can be compared and related to the business and
its situation. As illustrated in the terminated payroll development, the:
results may be surprising but still very useful for the business. Even if -
objectives are not met, the lessons learned may be useful. If the objectives
are met, so much the better and the expected next activities can be initi-,’
ated. In particular, the evaluation stage is the point where the develop-
ment plan for future activities can be assessed and modified.

These activities and stages can be organized in table form, as shown in
Table 6.2-1, that indicate typical activities in the system development :
matrix.

Table 6.2-1

Stages in Activities: Typical Tasks

Stages
Activities Planning Performance Evaluation
Investigation Activity Business Feasibility
Objective Process and Assessment
Objectives
Statement of Review and
Work Requirements Acceptance
Analysis
Scheduling Development
System Plan Update
Prototype
Specification Activity Systems Design
Objective Analysis Verification
and Design
Statement of
Work Operations Review and
Analysis Acceptance
Scheduling and Design
Development
Plan Update
Implementation Activity Resource System
Objective Acquisition Testing
Statement of Systems Review and
Work Integration Acceptance
Scheduling Operations Development
Education Plan Update

6.2 System Development Activities 281
6.2.2 Investigation Activities

The objectives of an investigation activity will be found in its activity
lan within the development plan. In general, investigation objectives are
to find facts and discover realistic opportunities for improving business
processes, often by developing new systems. In order to illustrate poten-
tial investigation activities, we discuss the following kinds of tasks:

Describe a business process
Identify a system opportunity
Develop a system prototype
Assess system feasibility

DESCRIBE A BUSINESS PROCESS

In order to improve on a business process it is imperative to under-
stand and describe it. It does little good to produce a brilliant system with
a fatal deficiency or flaw for lack of a real understanding of what goes on
in the business. Usually a business process is targeted just because a
system can be imagined that will improve the process. But in order to
substantiate such an idea, considerable information will be needed about
the business process.

The sources of this information are many and varied. The primary
sources are the managers, users, and operators of the potential system. If
current systems are in use, then documentation such as system manuals,
user manuals, system logs, and current application programs may be
useful sources of information.

Gathering business process information from individuals (managers,
users, operators) requires good interpersonal communication skills. The
two primary techniques are interviews and questionnaires.

In information systems development, the purpose of interviewing pro-
spective system managers and users is to make explicit the information
processing procedures, needs, and objectives of the business process.
The current information processing system will be some combination of
people and machines, and the planned system, some new combination of
people and machines, all of which exhibit black box, state machine, and
clear box behavior. Both the existing and planned systems will require
explicit box structure descriptions. Thus, the knowledge gained in the
interviewing process must eventually be represented in terms of box
structures.

The interviewing process is intended to reveal box structure behavior
to the interviewer. Often these box structures will emerge in fragmentary
form, and will require corroboration and elaboration through additional

282 6. Information Systems Management

interviews and feedback sessions. For this reason, interviews should not

be regarded as solitary and stereotyped events, but rather as a continual

process of discussions with individuals and groups to arrive at common

understandings and objectives. Early box structure definitions, while of- -
ten incomplete, can nevertheless be used to advantage in these discus- -

sions, as a means to focus on the correctness and completeness of
planned system behavior.

The questions asked during a interview should focus on box structure
behavior, but the words and phrases employed need not depend on box
structure terminology. Even though a person being interviewed has no
knowledge of box structure techniques, it is still possible to discuss box
structure behavior in very precise terms. Consider, for example, the fol-
lowing questions, phrased in the everyday language of business, and their
interpretation in terms of box structure concepts:

Question 1:

““Do previous transactions against a credit account affect the pro-
cessing of a current transaction?’’

Box Structure Interpretation:
‘““What is the black box behavior of credit account transaction pro-
cessing?”’

Question 2:

““What information must credit account transaction processing have
on hand in order to process a current transaction?’’

Box Structure Interpretation:

‘“What state information must be retained in the credit account pro-
cessing state machine?”’

Question 3:

‘““How does credit account processing combine the information it has
on hand with a current transaction to produce output and update the
information on hand’’?

Box Structure Interpretation:

‘““What are the transactions of the credit account processing state
machine?”’

Question 4:

i ion i i
‘““What steps are required to process a transaction in credit account
processing?’’

Box Structure Interpreta