
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

About Harlan D. Mills Science Alliance

1999

Cleanroom Software Engineering: Technology and Process Cleanroom Software Engineering: Technology and Process

Stacy J. Prowell

Carmen J. Trammell

Robert C. Linger

Jesse H. Poore

Follow this and additional works at: https://trace.tennessee.edu/utk_harlanabout

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Prowell, Stacy J.; Trammell, Carmen J.; Linger, Robert C.; and Poore, Jesse H., "Cleanroom Software
Engineering: Technology and Process" (1999). About Harlan D. Mills.
https://trace.tennessee.edu/utk_harlanabout/4

This Book is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in About Harlan D. Mills by an authorized administrator of
TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlanabout
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlanabout?utm_source=trace.tennessee.edu%2Futk_harlanabout%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlanabout%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

Clean room
Software
Engineering
Technology and Process

Stacy J. Prowell

Carmen J. Trammell

Richard C. Linger

Jesse H. Poore

Addison-Wesley
An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts Menlo Park, California

New York Don Mills, Ontario Wokingham, England

Amsterdam Bonn Sydney Singapore Tokyo

Madrid San Juan Paris Milan

Software Engineering Institute

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For
more information, please contact:

Corporate, Government, and Special Sales
Addison Wesley Longman, Inc.
One Jacob Way
Reading, Massachusetts 01867
(781) 944-3700

Library of Congress Cataloging-in-Publication Data

Cleanroom software engineering : technology and process I Stacy Prowell
... [eta!.].

p. em.
Includes bibliographical references and index.
ISBN 0-201-85480-5
1. Software engineering. I. Prowell, Stacy.

QA76.758.C535 1998
005.1-dc21 98- 38520

CIP

Portions of the following publications are used in this book with the permission of CMU/SEI:
Linger, R.C. and Trammell, C.J., Cleanroom Software Engineering Reference Model Version
1.0, CMU/SEI-96-TR-022.
Linger, R.C. , Paulk, M.C., and Trammell , C.J., Cleanroom Software Engineering
Implementation of the Capability Maturity ModeJ'M for Software, CMU/SEI-96-TR-023.
®CMM is registered in the U.S. Patent and Trademark Office.
sMCapability Maturity Model is a service mark of Carnegie Mellon University.

Copyright© 1999 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

ISBN 0-201-85480-5
Text printed on recycled and acid-free paper.
I 2 3 4 5 6 7 8 9 10--MA-0302010099
First printing, February 1999.

1

This book is dedicated to the founder of Cleanroom software engineering,

Dr. Harlan D. Mills (1919-1996),

whose insights into the mathematical foundations of software

have had a profound and enduring impact on countless students,

practitioners, managers, organizations,

and the entire software engineering profession.

~STACY J. PROWELL,

CARMEN J. TRAMMELL,

RICHARD C. LINGER,

JESSE H. PooRE,

1999

Contents

Part I

Preface IX

Introduction xi

Cleanroom Software Engineering
Fundamentals

1 Cleanroom Overview 3

1.1 Economic Production of High-Quality Software 3

1.2 Cleanroom Foundations 4

1.3 Cleanroom Technologies 8

1.4 The Cleanroom Process 13

1.5 Relationship of Cleanroom to Other Practices 15

1.6 Cleanroom Project Experience 18

1. 7 References 18

1.8 Suggested Reading 19

2 Cleanroom Management by Incremental
Development 21

2.1 Benefits of Incremental Development 22

2.2 Theoretical Foundations of Incremental Development 25

2.3 Increment Planning in Practice 28

2.4 Incremental Development in Practice 30

2.5 References 32

1

v

vi Contents

3 Cleanroom Software Specification 33

3.1 Box Structures for Cleanroom Specification and Design 34

3.2 The Sequence-Based Specification Process 43

3.3 Example: Specification of a Security Alarm 46

3.4 References 59

4 Cleanroom Software Development 61

4.1 Box Structure Development 61

4.2 Clear Box Development 63

4.3 Clear Box Verification 72

4.4 Example: The Security Alarm Clear Box 81

4.5 References 90

5 Cleanroom Software Certification 91

5.1 Benefits of Statistical Testing Based on a Usage Model 91

5.2 Theoretical Foundations of Statistical Testing 93

5_3 Statistical Usage Testing in Practice 95

5.4 Example: Security Alarm 99

5.5 References 1 08

Part II The Cleanroom Software Engineering
Reference Model

6 The Cleanroom Reference Model 113

6.1 An Introduction to the CRM 113

6.2 Cleanroom Process Definition Format 125

6.3 Common Cleanroom Process Elements 126

6.4 References 129

7 Cleanroom Management Processes 131

7.1 Project Planning Process 131

7.2 Project Management Process 136

7.3 Performance Improvement Process 139

7.4 Engineering Change Process 142

8 Cleanroom Specification Processes 145

8.1 Requirements Analysis Process 145

8.2 Function Specification Process 149

8.3 Usage Specification Process 154

8.4 Architecture Specification Process 160

8.5 Increment Planning Process 163

8.6 References 167

111

Contents vii

9 Cleanroom Development Processes 169

9.1 Software Reengineering Process 169

9.2 Increment Design Process 173

9.3 Correctness Verification Process 178

9.4 References 182

10 Cleanroom Certification Processes 183

10.1 Usage Modeling and Test Planning Process 183

10.2 Statistical Testing and Certification Process 191

10.3 References 197

11 Cleanroom and the Capability Maturity Model
for Software 199

11.1 The CMM for Software 199

11.2 Cleanroom Process Mappings to CMM KPAs 202

11 .3 Integrating CRM Technology and CMM Management 206

11 .4 References 207

Part Ill A Case Study in Cleanroom Software
Engineering

1 2 Satellite Control System Requirements 211

12.1 The Satellite Control System Case Study 211

12.2 Satellite Operations Software Requirements 212

12.3 Reference 219

209

13 Satellite Control System Black Box Specification 221

13.1 Black Box Sequence-Based Specification 221

13.2 Step 1: Define the System Boundary 224

13.3 Step 2: Enumerate Stimulus Sequences 229

13.4 Step 3: Analyze Canonical Sequences 256

13.5 Step 4: Define Specification Functions 257

13.6 Step 5: Construct the Black Box Tables 260

13.7 Removing Abstractions 269

13.8 Common Sequence Abstraction Techniques 272

14 Satellite Control System State Box Specification 277

14.1 State Box Specification 277

14.2 Step 1 : Invent the State Data 278

14.3 Step 2: Construct the State Box Tables 283

viii Contents

15 Satellite Control System Clear Box Design 293

15.1 Clear Box Implementation 293

15.2 Step 1: Select a High-Level Software Architecture 294

15.3

15.4

15.5

Step 2: Select an Implementation for Stimulus Gathering

Step 3: Select an Implementation for Response Generation

Step 4: Select an Implementation for the State Data Items

15.6 Step 5: Select an Implementation for Each Entry in the
State Box Table 317

312

313

316

15.7 Step 6: Reorganize the Implementations into Executable Code 338

16 Satellite Control System Testing and Certification 349

16.1 Statistical Testing 349

16.2 Step 1: Define Certification Plan 350

16.3 Step 2: Bui ld Model Structure 352

16.4 Step 3: Determine State Transition Probabil ities 377

16.5 Step 4: Val idate the Usage Model 378

16.6 Step 5: Generate Test Cases, and Execute and Evaluate Results 380

Index 383

Preface

This book is about Cleanroom software engineering technology and manage­
ment. It provides an overview of Cleanroom for application to software engi­
neering projects, and a road map for software management, development, and
testing as disciplined engineering practices. It serves as an introduction for
those who are new to Cleanroom software engineering and as a reference guide
for the growing practitioner community.

The book is organized into three parts as follows:

1. Part I: Cleanroom Software Engineering Fundamentals is a presenta­
tion of Cleanroom theory and engineering practice. The principal
Cleanroom practices are described: incremental development under
statistical quality control; function-based specification, development,
and verification; and statistical testing based on usage models. The
Cleanroom Reference Model (CRM) is introduced as a framework for
an overall Cleanroom engineering process. A small example, the secu­
rity alarm, is used in Part I to illustrate practices and work products.

2. Part II: The Cleanroom Software Engineering Reference Model pro­
vides a process model that can be adopted, tailored, and elaborated by
a software engineering organization. The CRM is expressed in 14
Cleanroom processes and 20 work products. Each process is defined in
terms of an augmented ETVX (Entry, Tasks, Verification, Exit) model.
The CRM is a guide for Cleanroom project performance and process
improvement. Chapter 11 relates the CRM to the Key Process Areas of
the Capability Maturity Model for Software.

3. Part III: A Case Study in Cleanroom Software Engineering presents a
large example, the satellite control system, that includes key technical

ix

x Preface

work products produced in a Cleanroom project: a box structure speci­
fication and design, a usage model and usage model analysis.

In many situations, Cleanroom technologies can be applied without special
tools. For example, box structure specifications and designs can be recorded
using conventional word processors and templates. It is often the case, however,
that tools can simplify and improve Cleanroom practice, and help enable scale­
up to larger systems. Accordingly, the principal examples in this book are aug­
mented with output from Cleanroom tools to provide additional analysis and
insight.

This book is intended to give managers and technical practitioners an
understanding of Cleanroom technologies, and to provide an overall process
framework for managing Cleanroom projects. Part I describes the underlying
theory and the methods of practice, and is recommended for all readers . Part II
defines Cleanroom processes and may be used as both a reference and as a
guide for management activities. The large case study in Part III will help read­
ers to understand what is produced in a Cleanroom project and to envision how
Cleamoomcan be applied to their own projects.

We also recommend this book for both undergraduate and graduate stu­
dents in computer science and software engineering programs. It is important
for students to understand the value and necessity for intellectual control in
large-scale software engineering, and the importance of the technologies and
processes used to achieve it. Of special importance for students is an apprecia­
tion of the incremental development life cycle, methods for precise specifica­
tion, design, and verification, and application of usage-based testing to certify
software.

Acknowledgments

The authors thank Ingrid Biery, Laura Prados, and Kirk Sayre for their valuable
assistance in the verification of various work products presented herein.

We also thank Helen Goldstein, our editor at Addison-Wesley, for her
patience and support in working with us to produce this book.

Introduction

Our Software Society

From its modest beginnings some 50 years ago, computer software has become
a critical element of modern society, with global reach and impact on virtually
every aspect of human endeavor. Software technology is a principal enabling
agent in business, industry, government, and defense, and permeates products
and services of all kinds. Every day, trillions of tasks are performed by soft­
ware, ranging from personal computer applications to large-scale, worldwide
networked systems of astonishing complexity. Economic sectors such as manu­
facturing, banking and financial services, communications, health care, energy,
transportation, and education, as well as national defense and government, rely
on software for the conduct of daily operations. It is no exaggeration to say that
the progress of modern society is dependent totally and irrevocably on software.

As a result, software has become a pivotal component in the global econ­
omy. The computer hardware industry relies on software to bring its machines
to life, and industries and services of all kinds depend on software to increase
productivity and unleash the creativity of millions of workers. Software is a
profound agent of change, enabling reengineering of corporations and jobs on
an unprecedented scale. It is driving deep structural changes in the global econ­
omy through automation and augmentation of mental tasks, much as the indus­
trial revolution in the past century transformed society through automation of
physical tasks. In short, software has become a critical resource- vital to well­
being and competitiveness.

With the increasing societal dependence on software has come increasing
risks of software failure. The vast majority of software today is handcrafted by

xi

xii Introduction

artisans using craft-based techniques that cannot produce consistent results.
These techniques have little in common with the rigorous, theory-based pro­
cesses characteristic of other engineering disciplines. As a result, software fail­
ure is a common occurrence, often with substantial societal and economic
consequences. Many software projects simply collapse under the weight of
unmastered complexity and never result in usable systems at all.

Software development is a task that challenges the limits of human under­
standing and control. There is, however, a substantial body of science and engi­
neering knowledge that points the way to disciplined processes for software
engineering. This body of science and engineering knowledge is the foundation
for Cleanroom software engineering.

Cleanroom Software Engineering

Cleanroom is a theory-based, team-oriented process for the economic produc­
tion of high-quality software. Cleanroom is theory based because sound theo­
retical foundations are essential to any engineering discipline, and no amount of
good management can substitute for their absence. Cleanroom is team oriented
because software is developed by people, and theory must be reduced to practi­
cal application to harness human creativity and cooperation. Cleanroom deals
with economic production of software because real-world business constraints
and resource limitations must be satisfied in software engineering. Finally,
Cleanroom deals with production of high-quality software because high quality
improves manageability, reduces risks and costs, satisfies customers, and pro­
vides a competitive advantage.

Development and Demonstration

The theoretical foundations of Cleanroom were established in the late 1970s
and early 1980s, when Harlan Mills, an accomplished mathematician and IBM
Fellow, related fundamental ideas in mathematics, statistics, and engineering to
software. Influenced by Edsger Dijkstra on structured programming, Nicholas
Wirth on stepwise refinement, and David Parnas on modular design, Mills
defined the scientific foundations for an engineering approach to software.

Two fundamental insights drove Mills' work: first, that programs are rules
for mathematical functions and second, that potential program executions are
infinite populations requiring statistical sampling for quality certification. The
first insight opened all of function theory to software development and led to
the technologies of box structure specification and design, function- theoretic
correctness verification, and incremental development. The second insight
opened all of statistical theory to software testing and led to the technology of
statistical usage testing and quality certification.

Introduction xiii

Mills' ideas were refined and demonstrated in collaborations with col­
leagues Alan Currit, Michael Dyer, Alan Hevner, Richard Linger, Bernard Witt,
and others in IBM's Federal Systems Division. Structured Programming:
Theory and Practice (by Linger, Mills, and Witt), published in 1979 by
Addison-Wesley, introduced function-theoretic methods for software specifica­
tion, design, verification, and reengineering. Principles of Information Systems
Analysis and Design (by Mills, Linger, and Hevner; Academic Press, Inc., 1986)
introduced box structure methods for system specification, design, and verifica­
tion, and introduced incremental development for project management. In 1987
these ideas were integrated under the masthead Cleanroom- a term borrowed
from the semiconductor industry to reflect an emphasis on defect prevention
rather than defect removal. "Cleanroom Software Engineering" (by Mills, Dyer,
and Linger) was published in the May 1987 issue of IEEE Software.

The first Cleanroom software project was managed by Richard Linger of
IBM in the mid 1980s. The COBOL Structuring Facility project developed a
commercial software reengineering product that exhibited remarkable levels of
quality and reliability in customer use, and provided an initial validation of the
Cleanroom process.

Validation and Practice

In 1990 Richard Linger established the IBM Cleanroom Software Technology
Center, where further improvements in Cleanroom methods, automation, and
technology transfer were achieved. In the early 1990s a mass storage control
unit adapter developed using Cleanroom was introduced by IBM. Thousands of
units were sold, and after an extended life the product was retired in 1997 with­
out a single field failure reported against the Cleanroom microcode. The devel­
opment was led by Mike Brewer, and included Paul Fisher, Dave Fuhrer, Karl
Nielson, and other team members. Certification testing was led by Joe Ryan and
Mike Houghtaling. Today, the testing laboratory in IBM's Storage Systems
Division is arguably the world leader in the practice of statistical usage testing
of software.

In the late 1980s and early 1990s the highly regarded Software Engineering
Laboratory (SEL) at theN ational Aeronautics and Space Administration (NASA)
Goddard Space Flight Center (GSFC) conducted a series of Cleanroom experi­
ments under the guidance of Vic Basili, Scott Green, Rose Pajerski, Jon Valett,
and others. The SEL series of Cleanroom experiments are considered by some
to be the single most complete research study conducted to date in the field of
software engineering. Four ground-control software systems of increasing size
were developed using Cleanroom engineering, with results showing consistent
improvement in quality and productivity over the already impressive NASA
GSFC baseline.

During the formative period of the US Department of Defense (DoD)
ARPA STARS Program (Software Technology for Adaptable, Reliable Systems)

xiv Introduction

in the mid 1980s, Cleanroom was selected as a key technology for development
and commercialization by STARS leaders, including Dave Ceely, Dick Drake,
BillEtt, Joe Greene, John Foreman, Jim Moore, and others. The company Dr.
Mills founded with Arnie Beckhardt to advance Cleanroom-Software Engi­
neering Technology, Inc. (SET)-was selected as the STARS vehicle for com­
mercializing Cleanroom technology. Significant advances in Cleanroom methods
and tools were made by SET under STARS support.

At the same time, Dr. Mills was consulting with L.M. Ericsson AB in
Europe on the use of Cleanroom in their establishment of a company called
Q-Labs that would transfer new software engineering technologies from the
research laboratories of the world into Ericsson. Q-Labs and SET were business
partners from the early days of both companies, and the two enterprises were
merged into Q-Labs in 1998.

In the early 1990s the US Army Picatinny Arsenal conducted a Cleanroom
project during which a 20:1 return on investment in Cleanroom technology
introduction was realized. In 1996 the DoD Data and Analysis Center for
Software reported a substantial cost and quality advantage for Cleanroom in a
comparative analysis of software methods. Other organizations with historical
data on software productivity and quality have conducted large projects using
Cleanroom and have published the results in the open literature. Cleanroom
practices have produced dramatic improvements in software project outcomes
in IBM, Ericsson, NASA, the DoD, and many other organizations. The data on
Cleanroom are in, and they consistently show that substantial improvement in
software team performance is possible under Cleanroom discipline.

The Software Engineering Institute (SEI) at Carnegie Mellon University
has provided substantial national leadership for improvement in software engi­
neering practice. The SEI Capability Maturity Model for Software (CMM) has
become an accepted and widespread management model for improving soft­
ware engineering practices. In 1996 the SEI completed a project to define a
Cleanroom Reference Model and map the engineering technologies of Clean­
room into the management processes of the CMM. The principal finding of this
work was that Cleanroom and the CMM are compatible and mutually support­
ing. This work was disseminated in two SEI technical reports: Cleanroom
Software Engineering Reference Model (by Linger and Trammell 1996), and
Cleanroom Software Engineering Implementation of the Capability Maturity
Model (CMM) for Software (by Linger, Paulk, and Trammell 1996). The
Cleanroom Software Engineering Reference Model is incorporated in this book
with the permission of Carnegie Mellon University.

Cleanroom technology has been taught by Mills and his colleagues Vic
Basili, Alan Hevner, Richard Linger, Jesse Poore, Dieter Rombach, Shirley
Becker, Richard Cobb, Michael Deck, Chuck Engle, Philip Hausler, Ara
Kouchakdjian, John Martin, Dave Pearson, Mark Pleszkoch, Stacy Prowell,
Steve Rosen, Kirk Sayre, Alan Spangler, Carmen Trammell, Gwen Walton, and

Introduction xv

James Whittaker in university and industrial courses throughout the world.
Numerous others have contributed to advances in practice through extensive
field application, including Mike Brewer, John Gibson, Mike Houghtaling,
David Kelly, Jenny Morales, Rob Oshana, Jason Selvidge, Wayne Sherer, and
Tom Swain. Each of these persons has contributed to the maturation of
Cleanroom as a true engineering discipline for software.

Continuing Evolution

The evolution of an engineering discipline is based on its grounding in science.
Refinements in practice flow from following first principles to derive practices
and from the thread of connections between bodies of science. Refinements and
advances in Cleanroom practice have occurred in exactly this manner, and are
ongoing.

A major stream of research to refine the Cleanroom specification method
has come to fruition and is incorporated in this book. Mills' use of function the­
ory, inspiring David Parnas' work on sequence (trace) analysis and domain par­
titioning, in turn inspiring Hailong Mao's work on canonical sequence histories,
have all paved the way for Stacy Prowell and Jesse Poore's definition of
sequence-based specification that is presented in this book.

In a separate stream of research, Gwen Walton and Jesse Poore have con­
nected Markov chain-based usage models to optimization methods in operations
research. Their work on a constraint-based approach to usage modeling holds
great promise for increasing control and value in Cleanroom statistical testing
practice.

Other work is in progress to harness decision theory, advanced statistical
designs, modeling and simulation, and other relevant areas of theory and engi­
neering practice. Continuing improvements to Cleanroom software engineering
are certain to follow.

PART I

Cleanroom Software
Engineering Fundamentals

1
Cleanroom Overview

1.1 Economic Production
of High-Quality Software

Cleanroom software engineering is the practical application of mathematical
and statistical science to produce high-quality software in an economical man­
ner. The Cleanroom name was borrowed from the hardware cleanrooms of the
semiconductor industry, where defect prevention rather than defect removal is
pursued through rigorous engineering processes. The emphasis in Cleanroom is
on development of software that is correct by design, followed by certification
of software quality in testing. Cleanroom methods are rooted in science, and
constitute an engineering process that can be applied to achieve productivity in
software development and reliability in software performance. Cleanroom soft­
ware engineering is designed to achieve two critical goals: a manageable devel­
opment process and no failures in use.

1.1.1 Manageable Development

Cleanroom methods enable managers and technical teams to maintain intellec­
tual control of software development projects. Intellectual control requires that
at each step in development, the status of work in progress is absolutely clear.
It requires that work products accumulate into the final product in a predic­
table way during development, and that the integrity of the product is main­
tained throughout its life. Intellectual control requires teamwork based on
well-defined engineering processes. It results in managing complexity, reduc­
ing risks, avoiding rework, and meeting business objectives for schedule and
budget performance.

3

4 Cleanroom Overview

Intellectual control depends on the technologies employed by development
teams. Inadequate technologies and processes can result in perplexing and frus­
trating muddles in software development, where nothing works and no one is
to blame, and no amount of good management seems to set things straight.
Cleanroom provides methods for precise specification and design, correctness
verification, usage testing, and measurement of software quality and reliability.
Cleanroom is rooted in theoretical foundations that help guarantee the critical
properties of work products that are essential for project manageability and suc­
cess: mathematical completeness and consistency, verifiable correctness, and
traceability among work products.

1.1.2 No Failures in Use

The contemporary attitude toward software failures is to regard them as in­
evitable. Postproduction defect correction is an institutionalized and accepted
process in many software organizations, involving substantial operations that
drain productivity and profitability. The tangible costs of software failures­
tracking problems, finding and correcting defects, distributing fixes, and so on­
are not quantified in most organizations, and are far greater than most people
imagine. The intangible costs of software failures in diminished customer con­
fidence and loyalty are difficult to quantify, but obviously drive the total cost
even higher.

Most software failures are avoidable. Software failures are the result of
ineffective specification and development practices that permit introduction and
survival of defects, and testing practices that permit defects to remain unde­
tected, only to be discovered in field use. In Cleanroom, development teams use
rigorous specification, design, and verification practices, coupled with testing
practices that provide valid measures of development performance in approach­
ing the goal of zero defects. The payoff is improved manageability, reduced
rework, and sharp reductions in direct and opportunity costs of defect correc­
tion over the market lifetime of products.

1.2 Cleanroom Foundations

Cleanroom theoretical foundations are drawn from mathematics. Harlan Mills
identified the appropriate science base for software development with his in­
sight that a computer program implements a mathematical function. His early
papers, such as "Mathematical Foundations for Structured Programming," "The
New Math of Computer Programming," and "How to Write Correct Programs
and Know It," explained that software development is based in mathematical

·~Jto ..

1.2 Cleanroom Foundations 5

function theory. Similarly, Mills identified the appropriate science base for soft­
ware testing with his insights about its statistical nature; in other words, soft­
ware testing amounts to sampling from a usually infinite population of possible
uses. His early papers, such as "On the Statistical Validation of Computer Pro­
grams," enabled the application of statistical science to software certification.
Mills ' recognition of the scientific foundations for software has enabled Clean­
room software engineering to evolve as a true engineering discipline for soft­
ware. The reader who would like firsthand exposure to Mills' foundational ideas
may be interested in the 1988 publication of these and other early papers in
book form in Software Productivity (published by Dorset House) .

1.2.1 Function Theory

Cleanroom development methods are based on mathematical function theory. A
function defines a mapping from a domain set to a range set. Each element in
the domain is mapped to exactly one element in the range. A deterministic pro­
gram likewise defines a mapping from a domain set (with elements that are
every possible input sequence for the program) to a range set (with elements
that are the corresponding outputs). The specification for a program is thus the
specification of a function , describing the intended mapping from the program's
domain (or input sequences) to its range (or output space).

A well-defined function exhibits properties of completeness, consistency,
and correctness. Because the specification for a program describes an intended
function , the specification should also be complete, consistent, and correct.

Mathematical completeness requires that each element of the domain
be mapped to at least one element of the range. That is, every possible
input history must be defined and associated with an output.
Mathematical consistency requires that each domain element be
mapped to at most one value in the range. That is, every input history
must be mapped to only one output.
Correctness of specifications against requirements is a matter of judg­
ment by domain experts. Given a correct specification, however, the
correctness of a design with respect to its specification is verifiable
using reasoning based on function theory.

The application of mathematical function theory to software development
as presented by Linger, Mills, and Witt (1979) was recast as the box structure
method for Cleanroom software development by Mills, Linger, and Hevner
(1986), in which three functional forms of black box, state box, and clear box
were treated explicitly.

------=

6 Cleanroom Overview

1.2.2 Statistical Theory

Cleanroom testing methods are based on statistical science. Statistical testing
methods have enjoyed decades of extensive and successful application in engi­
neering. In situations when it is economically or technically infeasible to test all
items in a large population, statistical sampling methods are used instead. If the
statistics reveal that quality goals are not being met, the production process
can be adjusted as necessary. This feedback loop from product measurement to
production process is well understood, widely applied, and supported by a sub­
stantial body of statistical theory. How can it be applied to software? In manu­
facturing, the statistics lie in physical variation of items produced; in processes
(like package delivery), the statistics lie in deviations from prescribed handling.
Where are the statistics in software?

In software, the population to be sampled is the set of all possible scenarios
of use. Each element of the population represents a possible execution of the
system. The statistics lie in measuring the ability of the system to carry out cor­
rectly a sample of these executions. Because this population is infinite, exhaus­
tive testing is impossible, and statistical methods must be used to obtain valid
inferences regarding system performance for the entire population. No testing
process, no matter how extensive, can sample more than a minute fraction of
possible input sequences. All software testing is really sampling from an infi­
nite population.

In Cleanroom, statistical testing supports both product measurement (results
of a single development process cycle) and process measurement (results across
multiple development process cycles). Cleanroom employs the iterative process
of incremental development, which permits the consistency of performance to
be measured and improved.

1.2.3 Cleanroom Team Operations

Cleanroom teams perform three principal operations- namely, system spec­
ification, development, and certification. Teams are generally small, often on
the order of three to eight people, to minimize coordination and to simplify
communication. A team member is designated as the team leader. Tasks are
assigned and agreed to within a team according to overall team responsibili­
ties and schedule priorities. For small-scale projects, a single team may be
sufficient. In this case, all members of the team may perform specification,
development, and certification activities at various phases during system devel­
opment. For medium-scale projects, a team-of-teams approach may be neces­
sary. An initial team is formed, typically comprised of the most experienced
people, to specify and define an architecture for the system, to develop and cer­
tify an initial increment or two, and to create specifications for subsystems.
These team members can then serve as leaders for new teams formed to develop
and certify the subsystems. The initial team can always be reconstituted as nee-

~

1.2 Cleanroom Foundations 7

essary, for a day or a month or more, to deal with changes in user requirements
or development strategies at the system level. For large-scale systems, the team­
of-teams approach is required, perhaps with specializations such as specifica­
tion teams, development teams, and certification teams. Thus, three initial
teams might be formed: one to specify a system, one to develop its initial
increments, and one to certify the increments. Members of these teams can
then lead new specialized teams at the subsystem level. Whatever the organi­
zation, all team members require education in Cleanroom technologies. Ed­
ucation can be augmented with on-the-job training under the guidance of
experienced team leaders.

Reviews are a crucial part of Cleanroom team operations. Every work
product is subject to repeated team review as it is developed from initial concept
to final form. Two types of reviews are employed. The first type is called a
development review. Development reviews focus on technical strategies, better
ideas, and team education and communication. For example, a team member
may convene a development review for an initial program design strategy sum­
marized in a page or two. The discussion at this point is on strategies for control
and data structures, algorithm trade-offs, and so on. The best ideas are then
incorporated, perhaps leading to a five-page elaboration for the next develop­
ment review. Initial development reviews can be short, often on the order of a
half hour or so, and may gradually increase in duration as work products evolve.
A given work product may go through many development reviews. Efficiencies
are gained and time is saved through cumulative knowledge transfer at succes­
sive reviews, so that evolving work products become increasingly familiar to
team members as the reviews progress. Final work products produced by a team
member ultimately incorporate the best ideas of all team members.

Simplification of all work products is an explicit objective in team reviews.
The first idea is almost never the best idea, and a key goal of reviews is to
develop better ideas in specification, design, and certification. For example, a
better idea found early may result in a 1,000-line design instead of a 5,000-line
design. It is far easier to verify (and maintain) 1,000 lines than 5,000, and
redesign for simplicity and better ideas is almost always an efficient strategy.
Simplification often results from identification and reuse of systematic struc­
tures, the verification of which can be done once and for all.

The second type of review is called a verification review. These reviews
focus on correctness and completeness of work products through a formal veri­
fication process. These verifications are usually carried out through verbal
assertions, with the designer articulating the reasoning required to show that
function-based correctness conditions are met. Every condition is checked by
the team in turn, with unanimous agreement required. Any changes required
must be reverified at a subsequent review. A work product is regarded as correct
and complete when no changes are necessary as a result of a verification review.
At this point, the entire team assumes ownership of the work product, and any

8 Cleanroom Overview

subsequent errors are the responsibility of the team. Verification reviews gain
efficiency through the previous knowledge transfer that occurred during devel­
opment reviews, whereby every participant becomes familiar with the structure
and content of the work product being verified. In addition, reused patterns of
specification and design can often be employed, with substantial portions of
their verifications likewise reusable.

1.3 Cleanroom Technologies

Cleanroom software engineering is characterized by three principal technolo­
gies: incremental development under statistical process control; function-based
specification, design, and verification; and statistical testing and software certi­
fication. These technologies can be used separately or together, and can be
introduced in any order to improve software practice.

1.3.1 Incremental Development under
Statistical Process Control

Incremental development is based on the engineering principle of controlled
·nera:iron ·m product deve1opment. Rather than a single pass through the develop­
ment process, incremental development involves a series of smaller, cumulative
development passes. Each pass (increment) is cumulative, involving all work in
previous increments plus some new work. Incremental development is essential
to the ability of the development team to maintain intellectual control of a proj­
ect. Team members thus focus on only a portion of the work at any given time
rather than trying to keep all things in mind at once.

An incremental development plan organizes a Cleanroom project into an
orderly sequence of development cycles, with some amount of end user func­
tion developed in each cycle. The evolving product can be demonstrated to the
customer at the end of each increment. With such concrete visibility into a proj­
ect, the customer can reconfirm or clarify requirements in an informed way,
minimizing surprises for either party at the project's completion.

The driver in increment planning is the system architecture. In a mature
product line, a reference architecture may dictate the high-level structure and
interfaces so that increments are devoted to reusing, modifying, or developing
components with a known place in the architecture. In new developments, the
top-level architecture will either precede the first increment or be the focus of
the first increment, and subsequent increments elaborate stubs (placeholders) in
the architecture. In a legacy system, the increment plan may dovetail with a
reengineering plan, enabling changes that improve rather than destabilize the

1.3 Cleanroom Technologies 9

system over time. In a maintenance environment, fixes and enhancements are
treated as a continuation of incremental development, using the same process
discipline that would be applied in new development.

Given a system architecture, numerous factors remain as considerations in
increment planning. In an embedded system, coordination with the hardware
development schedule may be a factor. In a graphical user interface (GUI)
system, the first increment is often devoted to prototyping the user interface,
arguably the most volatile aspect of requirements. Because scaffolding is avoided
in incremental development, allocation of development tasks across increments
nearly always involves some consideration of functional dependencies: A file
must be parsed, for example, before its individual tokens can be used for other
purposes. Risk, complexity, novelty, reuse, and usage frequency are other fac­
tors that may affect increment planning. If possible, the greatest areas of un­
certainty are addressed in early increments so that impact on the schedule is
understood sooner rather than later.

In addition to the benefits of intellectual control, customer feedback, and
risk management, incremental development enables the project team to employ
tatistical process control. Product quality is measured at the end of each incre­

ment and is compared with the team's quality goals. The deviation between
actual results and goals is used to determine whether the development process is
under control. A minor deviation confirms that the project is on track, whereas
an unacceptable deviation occasions a careful performance review. If problems
are identified, the team can make process changes to improve performance in
the next increment.

1.3.2 Function-Based Specification, Design,
and Verification

Cleamoom employs development methods that are both theoretically sound and
highly practical. Specification begins with an external view (called the black
box), is transformed into a state machine view (called the state box), and is fully
developed into a procedure (called the clear box). These distinct but behav­
iorally equivalent forms are known collectively as box structures. Box struc­
rures are object based and support key software engineering principles of
information hiding and separation of concerns.

A black box specification defines the required external behavior of a sys­
tem or system component in terms of a mapping from the stimulus history
input) to its correct response (output). Only the external behavior is defined;

no descriptions of internal state or implementation details are necessary or
included. A black box focuses exclusively on defining the user view of a system
or system part, where the user may be a person, hardware unit, or another pro­
gram. Figure 1.1 depicts a conceptual view of a black box. SH represents the
stimulus history and R represents the corresponding response.

10 Cleanroom Overview

SH R

Figure 1.1 Conceptual view of a black box

A stimulus sequence is a series of individual inputs that might be presented
to the system. A single stimulus may originate with a human user (e.g., a key
press or a mouse click), a hardware component (e.g., a clock pulse or a signal
from a sensor), or another software component (e.g., the operating system or a
database). A series of these stimuli forms a unique stimulus sequence, which
must be mapped to a single response. The black box consists of the stimulus list,
the response list, and a stimulus history to response mapping rule for all possi­
ble histories of use. A black box is a state-free, procedure-free representation of a
function, and the mapping must be complete, consistent, and traceably correct.

The state box specification, derived from the black box, is the first step
toward implementation. The state box defines the elements of stimulus history
that must be stored as state data to achieve the external behavior specified by the
black box. A state box defines the required behavior of a system or system part
as a mapping (transition) from the current stimulus and old state to the corre­
sponding response and new state. After state data have been defined, it is no
longer necessary to consider the stimulus history. Figure 1.2 depicts a concep­
tual view of a state box.

The state box describes only the response and state update of a system or
system component. Procedural implementation details are neither necessary

State

s R
Transition

Figure 1.2 Conceptual view of a state box

.

1.3 Cleanroom Technologies 11

s R

Figure 1.3 Conceptual view of a clear box

nor included. As with the black box, the state box must be complete, consistent,
and traceably correct.

A clear box specification implements the corresponding state box in proce­
dures that carry out the state box mapping rule, and may introduce new black
boxes to represent major operations. The procedure must be sufficient to per­
form necessary state updates and to create required responses. Figure 1.3 de­
picts a conceptual view of a clear box, shown as a sequence control structure.
Alternation (branching), iteration (looping), and concurrent control structures
can appear in clear boxes as well. Any new black boxes introduced are subse­
quently refined into state and clear boxes.

As with the black box and the state box, the clear box must be complete,
consistent, and traceably correct. Clear boxes can be defined in design lan­
guages or in the target language for a system.

1.3.3 Correctness Verification

In box structure specification and design, a black box is defined to record re­
quired behavior, then a state box is refined from the black box to define required
state data, and finally a clear box is refined from the state box to define required
processing. Each box structure is subject to correctness verification in develop­
ment team reviews. The team verifies the correctness of each refinement step
with respect to the previous step using reasoning based on function theory. In
other words, the development team confirms that the stimulus- response map­
ping defined in one step is preserved in each subsequent step.

For example, in clear box procedure verification, a function-theoretic Cor­
rectness Theorem defines conditions to be met for achieving correct programs
(Linger, Mills, and Witt 1979). These correctness conditions are verified in men­
tal and verbal proofs of correctness in development team verification reviews.
Clear box procedures can contain an infinite number of paths that cannot all be
checked by path-based inspections or software testing. However, the Correctness
Theorem is based on verifying individual control structures rather than tracing

12 Cleanroom Overview

paths. Because procedures contain a finite number of control structures, the Cor­
rectness Theorem reduces verification to a finite number of checks, and permits
all software logic to be verified completely in all possible circumstances of use.

All Cleanroom-developed software is subject to function-theoretic correct­
ness verification by the development team prior to release to the certification
test team. A practical and powerful process, verification permits development
teams to verify completely the correctness of software with respect to specifica­
tions. The verification step is remarkably effective in eliminating defects, and is
a major factor in the quality improvements achieved by Cleanroom teams.

1.3.4 Statistical Testing and Software Certification

Cleanroom testing methods are grounded in the fundamental statistical princi­
ple that sampling must be used when a population is too large for exhaustive
study. A usage model is developed to represent the (usually infinite) population
of all possible system uses, and test cases are generated from the usage model.
Because the test cases are a random sample of the population, valid statistical
inferences can be made about expected operational performance of the system.

A usage model represents all possible events in system use and their proba­
bilities of occurrence. Usage models can be conveniently expressed in a number
of forms, including Markov models and formal grammars. In the Markov
approach, a usage model consists of a set of usage states connected by transition
arcs that represent possible stimuli to the system under test, with a probability
value associated with each arc. The probability represents the likelihood of
choosing a specific transition arc from a given usage state. Test cases are gener­
ated by traversing the model from start state to end state, randomly selecting
stimuli to include in the test case based on the transition probabilities. Figure
1.4 depicts the look and feel of a usage model. The arcs represent stimuli and
the nodes represent usage states. The arcs are labeled with stimuli and probabil­
ities of occurrence.

Usage models are reusable project assets capable of generating any number
of test cases. In practice, a number of usage models may be developed to test a
system, and various probability distributions may be employed with a given
model. For example, many systems provide infrequently used functions with
high consequences of failure, such as functions to shut down the reactor in a
nuclear power plant. Such functions are typically associated with low probabil­
ities of execution in models of normal usage. Models of safety-critical usage,
hazardous usage, malicious usage, or other special usage circumstances are
developed when required for focused testing on high-consequence functions.
Statistical usage testing can be readily combined with other forms of testing.

1.4 The Cleanroom Process 13

(stimulus, probability)

(d, .4)

Figure 1.4 A simple usage model

1.4 The Cleanroom Process

The Cleanroom Reference Model (CRM), developed by the Software Engineer­
ing Institute (Linger and Trammell 1996), defines a set of integrated processes
and work products for Cleanroom project performance. The CRM process flow
· depicted in Figure 1.5. The CRM is composed of 14 individual processes for
oftware management, specification, development, and certification:

The management processes are Project Planning, Project Management,
Performance Improvement, and Engineering Change.
The specification processes are Requirements Analysis, Function Speci­
fication, Usage Specification, Architecture Specification, and Increment
Planning.
The development processes are Software Reengineering, Increment
Design, and Correctness Verification.
The certification processes are Usage Modeling and Test Planning, and
Statistical Testing and Certification.

14 Cleanroom Overview

The four management processes shown at the top of Figure 1.5 affect all
other processes. During the Project Planning process, the team tailors the
Cleanroom process for the project environment, and creates and maintains soft­
ware development plans. These plans are used during the Project Management
process for managing and controlling incremental development and certifica­
tion. The Performance Improvement process is used to assess project perfor­
mance continually and to identify and to implement improvements. The
Engineering Change process provides configuration management and engineer­
ing discipline for all change activity.

The Architecture Specification process likewise spans the life cycle and
defines architectural structures and strategies. Aspects of a project from require­
ments to low-level design may be affected by architecture.

The Requirements Analysis process is used to create an initial definition of
customer requirements. This definition is then expressed in precise terms in the
Function Specification process (producing a specification of external behavior)
and the Usage Specification process (producing a specification of users, usage
environments, and patterns of use of the software system). The Increment
Planning process allocates specified software functions to a series of incre­
ments, and schedules their development and certification within the structure of
the overall project schedule.

The development and certification processes are shown on the right side
of Figure 1.5 in "stacked" boxes, which represent successive increments. The

Architecture Specification

Customer
------1

Figure 1.5 Cleanroom Reference Model

Software Reengineering,
Increment Design,

Correctness Verification

Usage Modeling and
Test Planning

Accumulating
certified
increments
for customer
evaluation

1.5 Relationship ofCleanroom to Other Practices 15

Software Reengineering process prepares existing software for use in an incre­
ment. The Increment Design and Correctness Verification processes are em­
ployed to develop the design and code for an increment, and to verify their
correctness. The Usage Modeling and Test Planning process is conducted in
parallel with development activity in each increment, and produces test cases
generated from usage models. The Statistical Testing and Certification process
is employed to assess an increment's fitness for use. On completion of each
increment, the customer evaluates the executing system and provides feedback
for requirements validation. As shown by the feedback loop from the completed
increment to the beginning of the process, high-level specification processes
may be revisited prior to each increment to incorporate clarifications to require­
ments resulting from customer evaluation of an increment.

1 .5 Relationship of Cleanroom
to Other Practices

Many of the best software engineering practices currently in use are strongly
supported by the Cleanroom process.

1.5.1 Object Orientation

Cleanroom processes provide manageability and technical rigor for object­
oriented development (Ett and Trammell 1995). Objects are essentially state
machines with encapsulated data and a set of services. A Cleanroom component
is defined in a black box view (an object's external behavior), a state box view
(an object's encapsulated data), and a clear box view (services that process
external requests and access encapsulated data). A Cleanroom component is an
object in the most technical sense. Cleanroom box structures can help produce
complete, consistent, and correct specification of object behavior. Moreover,
box structures help define and manage data and control flow among objects.

In Cleanroom, mathematical formalisms underlie specification, design,
correctness verification, and certification testing. These mature formalisms
can add rigor and predictability to comparatively heuristic object-oriented
approaches. Cleanroom is a process for application engineering rather than
domain engineering. The common strength of object-oriented methods is their
pursuit of abstractions and relationships that are characteristic of applications in
a domain. Cleanroom application engineering can be complemented by object­
oriented domain analysis.

16 Cleanroom Overview

1.5.2 Software Reuse

Successful reuse of software components requires precise definition of compo­
nent functional semantics, and certification of component quality and reliability
for particular usage environments. Without this knowledge, reuse can be an
unpredictable and risky undertaking.

Cleanroom black box specifications can be used to define component
semantics in all possible circumstances of use. If the scope of intended reuse is
narrower than the scope ofthe component (e.g., reduced variable range), a spec­
ification of reduced scope can be developed by restricting the domain of the
black box function. A "wrapper" (a component to contain the reused compo­
nent) may be created to enforce preconditions for component invocation.

More often, the fitness of an existing component for reuse is assessed
through execution experiments. Cleanroom certification through statistical usage­
based testing can provide measures of component quality and reliability for
given environments of use. Statistical testing allows assessment of component
reliability at specified levels of confidence for specified usage conditions.

A quantitative approach to reuse analysis has been advanced by Poore,
Mills, and Mutchler (1993) in connection with Cleanroom reliability planning.
With this approach, component reliabilities and transition probabilities in the
top-level design are established. A quantitative analysis of the top-level compo­
nent network is performed, yielding information about the upper bound on sys­
tem reliability given the reliability of components. The results of this analysis
may be used to evaluate the viability of component reuse.

1.5.3 Software Architectures

Among the many definitions of software architecture, one theme is constant: An
architecture defines primary system components and their connections. Clean­
room provides a process for precise definition of the functional semantics of an
architecture-what the components are and what kind of connections they have.

The high-level internal design issues in the Cleanroom state box and clear
box concern primary system components and their connections: Primary data
objects are invented in state box design, and primary operations on data objects
are invented in clear box design. The final, high-level clear box design embod­
ies major elements of the system architecture.

Cleanroom specification and design involves systematic exploration of a
system's solution space. The black box to state box relationship is one to many.
A set of objects must be chosen. The state box to clear box relationship is
also one to many. A set of object operations must be chosen. Classifications of
design patterns are emerging from the evolving field of software architectures,
and the Cleanroom practitioner's design choices during box structure system
design will be facilitated as design patterns are cataloged.

1.5 Relationship ofCleanroom to Other Practices 17

In short, Cleanroom systems have always had explicit architectures, but
they have been unnamed (other than "system top-level clear box"). The naming
and characterization of design patterns that is occurring in the study of software
architectures will expedite the evaluation of design choices in Cleanroom proj­
ects as it will in software projects in general.

1.5.4 Inspections and Reviews

Cleanroom correctness verification permits additional technical rigor and pre­
cision in inspections and reviews. Beyond local checklists that may be used,
a Cleanroom review of design and code artifacts employs reasoning based on
function theory: A program (the code) implements a function (the specifica­
tion). The purpose of a Cleanroom review is to verify that the correctness of the
function specification has been preserved in the implementation. Code is never
reviewed in a vacuum; it is always reviewed against the function specification it
implements.

Cleanroom specification and design produce artifacts with built-in traceabil­
ity. Peer review is employed at each step in box structure specification and
design. Every work product is reviewed; every team member is responsible for
the correctness of every work product. Ultimate successes are regarded as team
successes, and failures as team failures. The combination of technically sound
practices and team accountability for correctness results in an extremely effec­
tive approach to defect prevention.

1.5.5 Software Testing Methods

Cleanroom testing based on usage models produces statistically valid infer­
ences about expected operational performance of a given version of the soft­
ware. Cleanroom usage models can be configured for other testing objectives as
well, such as maximizing coverage or emphasizing critical functions. Usage
models provide a scientific basis for model coverage testing, random testing,
importance testing, partition testing, and other forms of testing.

Crafted testing can be used within a Cleanroom process as well. There are
compelling reasons for creating special test cases that can remove uncertainty
about how the system will perform under specific circumstances. Additionally,
code coverage tools that run in the background may be used as a complement to
usage testing. Regression testing, structural (white box) testing, and other tradi­
tional testing approaches are compatible with Cleanroom.

18 Cleanroom Overview

1.6 Cleanroom Project Experience

First demonstrated in the IBM Federal Systems Division in the early 1980s,
Cleanroom methods have now been used in industry and government software
organizations around the world. The award-winning National Aeronautics and
Space Administration Software Engineering Laboratory (SEL) at the Goddard
Space Flight Center conducted a well-documented series of Cleanroom proj­
ects, concluding that Cleanroom results improved on the SEL baseline. The US
Army Picatinny Arsenal demonstrated a return on investment in Cleanroom
technology of more than 20:1 over a five-year period. Ongoing research and
technology transfer by the University of Tennessee has produced a stream of
advances in Cleanroom methods that have extended Mills' original ideas, with
powerful connections to related areas of science.

The effectiveness of the Cleanroom process has been demonstrated in proj­
ects from embedded software systems for computer hardware and telephone
switches to software language and computer-aided software engineering tool
products. Published accounts of Cleanroom projects by AT&T, Ericsson, IBM,
Texas Instruments, the US Army, the US Navy, and others are listed in the read­
ing list at the end of this chapter.

Organizations have reported significant gains in productivity and quality,
as well as additional benefits in improved development team morale and confi­
dence. In an era when software projects are notoriously unpredictable, Clean­
room organizations are exhibiting not just control but steady improvement.

1 . 7 References

W.H. Ett and C.J. Trammell. "A Guide to Integration of Object-Oriented
Methods and Cleanroom Software Engineering." 1995. URL: http://source.
asset.com/start/loral/cleanroom/guide.html.

R.C. Linger, H.D. Mills, and B.l. Witt. Structured Programming: Theory and
Practice. Reading, MA: Addison-Wesley, 1979.

R.C. Linger and C.J. Trammell. Cleanroom Software Engineering Reference
Model. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1996.

H.D. Mills, R.C. Linger, and A.R. Hevner. Principles of Information Systems
Analysis and Design. Orlando, FL: Academic Press, 1986.

H.D. Mills. Software Productivity. New York: Dorset House, 1988.
J.H. Poore, H.D. Mills, and D. Mutchler. "Planning and Certifying Software

System Reliability." IEEE Software vol. 10 (January 1993): 88-99.

1. 8 Suggested Reading 19

1.8 Suggested Reading

K. Agrawal and J.A. Whittaker. "Experiences in Applying Statistical Testing to
a Real-Time, Embedded Software System," in Proceedings of the Pacific
Northwest Software Quality Conference, Pacific Northwest Software
Quality Conference (Portland OR: October 1993), 154-170.

Air Force Space and Warning Systems Center and the DoD Software Tech­
nology for Adaptable, Reliable Systems (STARS) Program. "Demonstra­
tion project on a product-line approach to the development and evolution of
software systems in two command and control (C2) systems." 1996. URL:
http://www.asset.com/stars/loral/pubs/exprpt96/main.htm.

V.R. Basili, et al. "SEL's Software Process-Improvement Program." IEEE Soft­
ware vol.l2 (November 1995): 83- 87.

V.R. Basili and S.E. Green. "Software Process Evolution in the SEL." IEEE
Software vol. 11 (July 1994): 58- 66.

M. Brewer, P. Fisher, D. Fuhrer, K. Nielsen, and J.H. Poore. "The Application
of Cleanroom Software Engineering to the Development of Embedded
Control System Software," in Proceedings of the 2nd European Industrial
Symposium on Cleanroom Software Engineering, Lund, Sweden: Q-Labs,
(March 1995) paper#12.

M. Donnelly, B. Everett, J. Musa, and G. Wilson. "Best Current Practice of
SRE," in Handbook of Software Reliability Engineering, ed. M.R. Lyu
(New York: McGraw-Hill, 1995), 219-254.

P.A. Hausler, R.C. Linger, and C.J. Trammell. "Adopting Cleanroom Software
Engineering with a Phased Approach." IBM Systems Journal vol. 3, no. 1
(1994): 89-109.

D. Kelly and R. Oshana. "Integrating Cleanroom Software Methods into an SEI
Level4-5 Program," Crosstalk vol. 9 (November 1996): 16-22.

R.C. Linger and H.D. Mills. "A Case Study in Cleanroom Software Engi­
neering: The IBM COBOL Structuring Facility," in Proceedings of the 12th
Annual International Computer Software and Applications Conference
(COMPSAC '88) , (Los Alamitos, CA: IEEE Computer Society Press,
1988), 10- 17.

R.C. Linger. "Cleanroom Process Model." IEEE Software vol. 11 (March
1994): 50-58.

H.D. Mills, M. Dyer, and R.C. Linger. "Cleanroom Software Engineering."
IEEE Software vol. 4 (September 1987): 19-24.

R. Oshana. "Quality Software via a Cleanroom Methodology." Embedded Sys­
tems Journal vol. 9 (September 1996): 36- 52.

R. Oshana. "Software Testing with Statistical Usage-Based Models." Embedded
Systems Journal vol. 10 (January 1997): 40-55.

20 Cleanroom Overview

D.L. Parnas. "On the Criteria To Be Used in Decomposing Systems into
Modules." Communications of the ACM vol. 15, 12 (December 1972):
1053-1058.

R.W. Selby, V.R. Basili, and FT. Baker. "Cleanroom Software Development:
An Empirical Evaluation." IEEE Transactions on Software Engineering
vol. SE-13 (September 1987): 1027-1037.

S.W. Sherer, A. Kouchakdjian, and P.G. Arnold. "Experience Using Cleanroom
Software Engineering." IEEE Software vol. 13 (March 1996): 69-76.

A.M. Stavely. Toward Zero-Defect Programming. Reading, MA: Addison­
Wesley, 1999.

L.G. Tann. "OS32: A Cleanroom Success Story," in Proceedings of the 1st
European Industrial Symposium on Cleanroom Software Engineering
(Lund, Sweden: Q-Labs, 1993), paper #5.

C.J. Trammell, L.H. Binder, and C.E. Galbraith. "The Automated Production
Control Documentation System: A Case Study in Cleanroom Software
Engineering." ACM Transactions on Software Engineering and Manage­
mentvol. 1 (January 1992): 81-94.

J.A. Whittaker and K. Agrawal. "A Case Study in Software Reliability Mea­
surement," in Proceedings of the Seventh International Software Quality
Week (San Francisco, CA: Software Research, Inc. 1995).

2
Cleanroom Management
by Incremental Development

Incremental development under statistical quality control is the Cleanroom
approach to establishing and maintaining management control of a software
project. Incremental development was proposed by Mills in the early 1970s, but
did not gain prominence until the late 1980s when Cleanroom articles and field
reports by Mills and associates began to appear. In his influential commentary
on software practice, "No Silver Bullet: Essence and Accidents of Software
Engineering," Fred Brooks described the profound effects of the incremental
development approach.

Some years ago Harlan Mills proposed that any software system should be
grown by incremental development [Mills 1971]. That is, the system should
first be made to run, even if it does nothing useful except call the proper set of
dummy subprograms. Then, bit by bit, it should be fleshed out, with the sub­
programs in turn being developed-into actions or calls to empty stubs in the
level below.

I have seen most dramatic results since I began urging this technique.
Nothing in the past decade has so radically changed my own practice, or its
effectiveness. The approach necessitates top-down design, for it is a top-down
growing of the software. It allows easy backtracking. It lends itself to early
prototypes. Each added function and new provision for more complex data or
circumstances grows organically out of what is already there.

The morale effects are startling. Enthusiasm jumps when there is a run­
ning system, even a simple one. Efforts redouble when the first picture from a
new graphics software system appears on the screen, even if it is only a rectan­
gle. One always has, at every stage in the process, a working system. I find that
teams can grow much more complex entities . .. than they can build. (Brooks
1987, p. 18)

Brooks' observations have been borne out in industrial practice. Incre­
mental development enables early and continual quality assessment and user

21

22 Cleanroom Management by Incremental Development

feedback, and facilitates process improvements as development progresses. The
incremental approach avoids risks inherent in component integration late in the
development cycle. Incremental development also permits systematic incorpo­
ration of requirements changes throughout the development cycle.

The technical basis for incremental development is the property of refer­
ential transparency. In the context of software development, this property re­
quires that a specification and its implementation define the same mathematical
function. When this property holds, a design can be shown to be correct with
respect to its specification. The key ideas in incremental development are sum­
marized in the following section.

2.1 Benefits of Incremental
Development

Large software systems are organized collections of parts. The way a system is
composed from parts has a critical impact on project success. Incremental
development is a top-down approach to development in which a software sys­
tem is developed and tested as a succession of cumulative subsets of function. A
minimal system is developed in the first increment, and function is added in
each successive increment until the system is complete. This controlled growth
of a software system benefits customers, managers, and technical staff alike.

2.1.1 Visibility into Progress

With incremental development, each increment implements one or more end
user functions . Each increment contains all previously developed functionality
plus some new function; the system is "grown" in cumulative increments. At the
end of the first increment, for example, one can be confident that 20% of the
system is 100% complete, rather than speculating that 100% of the system is
20% complete.

2.1.2 Intellectual Control

Incremental development enables intellectual control over system development
through referential transparency. This property-substitution of equals for
equals-is satisfied when subspecifications for functions to be implemented in
later increments are embedded in the procedural logic of the current increment.
When referential transparency holds, a system part can be implemented from its
subspecification with no need for backtracking. There is no rework of previous
increments. This strategy enables correctness verification of each increment
within a complete system context.

2.1 Benefits of Incremental Development 23

2.1.3 Incremental System Integration

Cleanroom incremental development permits continual integration of referen­
tially transparent user- function increments over the entire development life
cycle. Because the design of each increment is based on a verified subspecifica­
tion and a tested interface in a prior increment, deep design and interface errors
are rare. The system evolves in well-defined increments throughout the devel­
opment process. Testing and certification activities begin early in the develop­
ment cycle.

2.1.4 Continual Quality Feedback through
Statistical Process Control

Incremental development as practiced in Cleanroom provides a basis for sta­
tistical process control. Each Cleanroom increment is a complete cycle of the
process, involving specification, development, and verification of new user
function plus testing of all work completed to date. As is typical in statistical
process control, measures of performance in each iteration of the process are
compared with performance targets to determine whether or not the process is
"in control" (i.e., occurring as expected).

Typically, a Cleanroom team uses measures of product performance in test­
ing as a gauge of process control. Measures such as errors per 1,000 lines of
code, mean time to failure (MTTF), or reliability and confidence are commonly
used. Other measures of process control might relate to management issues
rather than product quality. Schedule conformance, budget conformance, con­
formance to the staffing plan, and so forth, all compare actual performance with
performance goals in the increment. The standards against which Cleanroom
increments are measured represent the specific level of process control a team
requires to continue a project as planned. If standards are not met, the team can
examine performance data from the increment to identify problems, adjust proj­
ect plans if necessary, and modify the software development process to prevent
recurrence of the problems identified. For example, if testing of an increment
reveals that the process is "out of control" (i.e., quality standards are not being
met), testing ceases and developers return to the design stage. If the process is in
control, work on the next increment can continue.

Statistical process control (SPC) is a mature engineering practice affording
well-developed techniques for data collection and analysis . A wealth of meth­
ods and tool support is available to those who wish to pursue advanced practice.
Rudimentary practice of SPC, however, requires little investment or effort, and
can result in substantial payoffs. The essential events in any application of sta­
tistical process control are simple: Measure performance in each process cycle,
compare actual performance with predefined performance targets, identify the
causes of unacceptable deviation, and address causes through process changes
intended to improve future performance.

24 Cleanroom Management by Incremental Development

For example, if a Cleanroom team customarily produces a product that
exhibits three or fewer failures per 1,000 lines of code in testing, then an incre­
ment exhibiting five failures per 1,000 lines is likely to represent an unaccept­
able deviation. On investigation, the team may discover that the failures were
caused by errors that were in fact found during verification, but that the code
was not reverified to confirm the correctness of changes. From this analysis, the
team realizes that verification should not be regarded as complete until all
changes to erroneous code have been verified to be correct. The team modifies
the verification process accordingly, determined to prevent failures caused by
incorrect fixes in future increments. In this way, feedback produced in each
increment is used to improve the process in the next increment.

The strength in SPC lies in the ongoing examination of actual versus
planned performance, identifying the causes of unacceptable deviations, and
making specific process changes to regain or improve control. A Cleanroom
team practices these fundamentals, and goes further. Each Cleanroom incre­
ment is tested against expectations of perfection. Any failure is regarded as
unacceptable. Errors causing failures are analyzed carefully for what they
reveal about the development process. What was the source of the error? Why
was the error missed in team review? How can the process be improved so that
similar errors are not made in the future? Cleanroom teams genuinely strive for
perfection, and SPC is the engineering discipline for gauging and advancing the
team's efforts.

2.1.5 Continual Functional Feedback
through Customer Use

Incremental development enables early and continual feedback by customers
on the executing functionality of an evolving system, to permit changes if nec­
essary. Because the increments execute in a system environment and represent
subsets of user function, early increments can be exercised by users for feed­
back on system functionality and usability. Such feedback helps avoid develop­
ing the wrong system and builds user acceptance of the eventual product.

2.1.6 Accommodation of Change

Incremental development allows systematic accommodation of inevitable
changes in system requirements and the project environment. At the completion
of each increment, the impact of accumulated changes in system requirements
can be assessed in terms of current specifications and increment designs. If
changes are isolated to future increments, they can often be incorporated within
the existing incremental development plan, with possible adjustments to sched­
ules and resources. If changes affect completed increments, modified system
development can begin from the top down, usually with substantial (often total)

2.2 Theoretical Foundations of Incremental Development 25

reuse of code from existing increments, with adjustments to schedules and
resources as required.

2.1.7 Schedule and Resource Management

Project resources can be allocated in a controlled manner through incremental
development. The available schedule is a factor in determining the number of
increments to be developed and their size. With a short schedule, a small num­
ber of increments will help maintain sufficient intervals between increment
deliveries to the certification team to permit an orderly testing process.
However, this places a greater burden on the development teams to design and
implement larger, more complex increments. Schedule and complexity trade­
offs can be reflected in the incremental development plan. In addition, feedback
from successive increments provides management with objective measures of
process and product performance to permit accommodation of shortfalls or
windfalls in development and testing.

2.2 Theoretical Foundations
of Incremental Development

Incremental development as practiced in the Cleanroom process is based on the
principle of referential transparency. Referential transparency means that the
only thing that matters about an expression is its value, and any subexpression
can be replaced by any other that is equal in value. Referential transparency
implies that the relevant lower level details of an entity are abstracted rather
than omitted in a particular system of higher level description, so that the higher
level description contains everything needed to understand the entity when
placed in a larger context. The concept of referential transparency has been
applied in a wide range of areas, such as computer science, linguistics, mathe­
matics, and logic.

2.2.1 Referential Transparency in Arithmetic

Referential transparency is the property that guarantees that evaluation of
lengthy arithmetic expressions one term at a time will produce the right answer.
For example, in the expression (6 + 2) X (5 -3), because 6 + 2 = 8, the expres-
ion is equivalent to 8 x (5 - 3), and because 5 - 3 = 2, it is also equivalent to

8 x 2. Finally, because 8 x 2 = 16, it is equivalent to 16. Referential trans­
parency guarantees that one can replace (6 + 2) by 8 unconditionally; without
worrying, for example, about whether the result will go on to be multiplied by

26 Cleanroom Management by Incremental Development

(5 - 3), or subtracted from 17, or whatever. Referential transparency is estab­
lished once and for all in the formal logic of arithmetic.

Note that because of referential transparency, each step, properly done,
progresses toward the correct answer. Thus, in this three-step problem we can
say with confidence that after the first step is finished, the solution is one-third
complete; that is, previous steps need not be revisited to complete subsequent
steps. In addition, because each step has no side effects on other steps, terms at
the same level can be evaluated in any order. Thus, the property has analogs to
important software concepts of abstraction, specification, progress toward solu­
tion, and absence of side effects.

2.2.2 Referential Transparency in Software

The basis for incremental development in software lies in the view of programs
and program parts as rules for mathematical functions (Linger, Mills, and Witt
1979). This view regards program development as a top-down refinement of
functions (specifications) into control structures and subfunctions (subspecifi­
cations). Such refinement may result in object-based or functional decomposi­
tions, or a combination of the two. For example, a given function (specification)
f could be refined into any of the following

do fl; f2 e nddo

i f p t hen fl else f2 endif

whi l e p do fl enddo

Sequence
Alternation
Iteration

where fl and f2 represent subfunctions (subspecifications) for further refine­
ment. The successive function refinements must maintain functional equivalence
for correctness verification at each step. For example, in the previous sequence
refinement, the composition of subfunctionsfJ and/2 must be equivalent in net
effect on data to the original function f Referential transparency requires that
any function (f, fl, or f2) specify completely the required net effect of process­
ing at the point it appears in the design, and no further information or reference
to other design parts be required for its independent refinement.

Because of referential transparency, the verification of any refinement step
can be conducted independently of any other refinement step. This means that
the system architecture can be verified in early increments, before most of the
system components have been written, and that the architecture need not be
reverified in later increments. Note, however, that the specifications of system
components enter into the architecture verification, and in fact provide the pre­
cise interface documentation required to guarantee that the system as a whole
will perform as required when coding is complete.

.~»'

2.2 Theoretical Foundations of Incremental Development 27

An illustration of function refinement with referential transparency at the
programming level is shown in Figure 2.1. The two-step refinement on the right
side of the figure maintains function equivalence at each step. First, the initial
specification f is refined into loop initialization code g and subspecification k,
where k completely specifies interfaces and the required net effect of processing
at that point in the design. Next, subspecification k is refined into an iteration in
a second step. These expansion steps are referentially transparent, and represent
possible increment definitions. In this case, the first increment would contain
the loop initialization code represented by g, with the subspecification k defined
and connected in the sequence for verification against f, but stubbed off in the
code. A crucial point is that the sequence of code gfollowed by subspecification
k is functionally equivalent to the original specification f The second increment
would refine k into the whiledo iteration, which is functionally equivalent to k.
Other design strategies, such as the one given on the left side of Figure 2.1,
would violate referential transparency and forfeit intellectual control of top­
down design. The difference between these approaches may seem minor in this
simple example, but if g and k represent 50,000 lines of code (KLOC) and 500
KLOC respectively, with a complex interface between them, referentially trans­
parent increments could mean the difference between success and failure of
the project.

--
NO path f: YES th

---~ Specification ~ pa

If '---------' ~

g:
-- Initialization

code

NO path

--

[f] of- [whil e p do h enddo]

g:
Initialization
code

k: -- Loop
subspecification

YES path

[f] = [g; k]

f--+

[while p do h enddo] of- [g; while p do h enddo] [g; k] = [g; while p do h enddo]

Figure 2.1 An illustration of referential transparency in refinement

28 Cleanroom Management by Incremental Development

2.3 Increment Planning in Practice

The overall objective of and constraint on incremental development is to grow a
system with each new increment as an elaboration of the functions implemented
in prior increments. That is, new functions in an increment should "plug in" to
the previous increment at predefined points in its structure and should satisfy
the subspecifications associated with the processing requirements at those
points. This process of function allocation is the practical application of refer­
ential transparency to incremental development planning. Thus, logical alloca­
tion of functions to increments based on relationships among functions and
intrinsic functional dependencies will predominate in the definition of incre­
ment content. In a database system, for example, functions to add data would
typically precede functions to delete data. In a statistical system, functions to
collect and enter data would ordinarily precede functions to analyze data and
report results .

Within the framework of functional dependencies exhibited by a system,
increment planning is also influenced by a wide range of management and tech­
nical factors in a project. These factors are discussed in the following pages.

2.3.1 Customer Needs

The customer may wish to place certain system functions into operational use
prior to system completion. Such functions are likely candidates for early in­
crements.

2.3.2 Clarification of Requirements

The common motivation behind iterative development methods is the fact that
requirements can rarely be established with certainty at the outset of a project.
With incremental development, customers provide feedback on an evolving
system by direct operation of user-executable increments. The relative clarity of
requirements may influence an increment plan in two ways. Volatile require­
ments may be implemented in an early increment so they can be clarified.
Alternatively, unstable requirements may be planned for later implementation,
when questions affecting the requirements have been settled. If the user inter­
face is not well established, for example, it is an ideal candidate for an early
increment. (Some would say that the user interface is invariably the most vola­
tile aspect of the system and should always be implemented in the first in­
crement.) On the other hand, requirements to be settled by concurrent research
(e.g., performance benchmarking) might be scheduled for a later increment,
after research results are known.

2.3 Increment Planning in Practice 29

2.3.3 Operational Usage Probabilities

A functional usage distribution is developed as part of a top-level Cleanroom
specification. Expected usage probabilities of system functions are established
from historical data and estimates provided by customers. System functions
with high expected usage probabilities will receive the greatest exposure in the
field and may therefore benefit from the greatest exposure to testing. Because
increments are cumulative, the functions developed in early increments will be
tested every time a new increment enters the testing process. System functions
expected to receive the greatest operational usage by customers, therefore, are
candidates for early increments. Some functions expected to receive low usage
may even be regarded as optional, and may be scheduled for development in the
final increment if time permits.

2.3.4 Reliability Management

Increasingly, customers are specifying formal software reliability requirements.
Poore, Mills, and Mutchler (1993) described an approach to increment planning
based on reliability requirements for subsystems in a high-level design. Given a
total system reliability requirement and transitional probabilities between sub­
systems, the reliability requirement for each subsystem may be calculated. Sub­
systems with the highest reliability requirements will have the greatest impact
on total system reliability, and may be candidates for early increments.

2.3.5 Systems Engineering

Controlled iteration is a key engineering principle in hardware development.
The minimal machine is often constructed in the first iteration and then
enhanced in subsequent iterations until the complete machine has been built.
Incremental development of software is entirely compatible with this standard
approach to hardware development. Machines with embedded software must be
developed as a coordinated effort between hardware and software engineers,
and incremental development is an ideal framework for this coordination. A
machine must be powered on, for example, before it can be used. The software
for system start-up, therefore, would likely be among the functions imple­
mented in the first increment of an embedded software project.

2.3.6 Technical Challenges

~ ovel or particularly complex components may pose a risk to the schedule or
even the viability of a project. If such work is scheduled for an early increment,
the experience obtained will either lend support to existing plans or suggest
revisions. If aspects of a project are not novel or complex in absolute terms, but
are indeed novel or complex relative to the experience of the team, an early
gauge of team performance and schedule feasibility is still desirable.

30 Cleanroom Management by Incremental Development

2.3.7 Leveraging Reuse

The Cleanroom process emphasizes economy of effort through reuse of com­
ponents across projects, and identifies opportunities to develop "common ser­
vices" for use in multiple places within a system. When existing components
are identified as potentially reusable, the development team must evaluate the
relative effort required to tailor them for use in the new system versus develop­
ment of new components from scratch. If the evaluation is in favor of reuse, the
team may want to include the components in an early increment to validate their
expected performance. New common services may be desirable candidates for
an early increment as well. Because common services are used in multiple
places in a system, they may have a greater impact on system reliability relative
to other single-instance components. Because existing objects may be reusable
components, the rationale for object development in an incremental develop­
ment plan follows the rationale for reusable components in general.

2.4 Incremental Development in Practice

An illustration of an application developed under incremental development is pre­
sented in Figure 2.2. The successive increments in Figure 2.2 represent an un­
folding of the "stacked" increments in the CRM work flow diagram in Figure 1.5.

The incremental development plan in Figure 2.2 divides the project into
four increments with reuse of existing components in several increments. The
top-level architecture is established during increment 1. Three lower level sub­
systems are defined, and one is implemented. The implemented subsystem in­
cludes a reused component. Stubs are used for the subsystems that will be
implemented during later increments. The stubs are not merely placeholders;
they include an interface specification and function specification so the rela­
tionship between implemented functions and stubbed functions is well defined.
On completion, increment 1 is evaluated by the user. As a consequence of user
feedback, a component in increment 1 is slated for change during increment 2.

A second subsystem is implemented during increment 2, replacing a stub in
increment 1. Another preexisting component is used in increment 2, and modi­
fied to accommodate one additional function. The additional function is speci­
fied in increment 2, but is not slated for implementation until the final increment.

Implementation ofthe third subsystem begins during increment 3. The
third subsystem includes one new component, one reused component, and one
stub. User evaluation of increment 3 results in a change to one component dur­
ing increment 4.

Increment 4, like all preceding increments, is the accumulation of all work
so far, plus some new work. During increment 4, all remaining stubs are imple­
mented. As the final increment, increment 4 represents the completed system.

..,

2.4 Incremental Development in Practice 31

The treatment of stubbed parts of the system is critical to the integrity of
the design. Correctness verification of each increment requires that specifica­
tions for later increments appear in the procedural logic at their proper points of
execution. The completeness of the design in each increment ensures the smooth
integration of new work as development progresses.

Figure 2.3 shows the incremental development portion of the schedule for
the project. After top-level specification, an incremental development plan is
established. Both the specification and the incremental development plan are
subject to revision after each increment based on development experience, qual­
ity measures, and customer feedback. After each increment is fully specified,
designed, and verified, it is submitted for independent certification testing. The
measures of quality in certification testing (e.g., MTTF, reliability, errors per
KLOC) are gauges of development process control. If measured quality meets
established standards, development proceeds. If not, problems are assessed and
action is taken to improve the development process.

After increment 1 is submitted for certification testing, development of
increment 2 begins based on its embedded specification in increment 1. If more
than one development team is available, parallel development of increment 3
may also begin.

Incremental development affords customer feedback on the evolving sys­
tem, intellectual control of the technical work, and.management control of the

Incremental
Development Plan

Increment 1:
top-level architecture
defined, one
component reused,
two stubs defined

Customer/User
Feedback

Top-Level
Specifications

Increment 2:
component changed
from user feedback;
stub replaced by new,
reused, and stub
components

Customer/User
Feedback

System
Requirements

Increment 3:
stub replaced by
new, reused, and
stub components

Customer/User
Feedback

Completed System

I
Increment 4:
component changed
from user feedback,
final two stubs replaced
by new and reused
components

Key:
D New

D Reused

~Stub
-Changed

Figure 2.2 An example of incremental development and feedback

32 Cleanroom Management by Incremental Development

Tasks

-------------, 1 Function Specification 1 _ _ _ _ _ _ _ _ _ _ _ _ _ J

Usage Specification

Increment 1
statistics

Increment 1-2
statistics

t
Increment 1-3

statistics

t
Product Assessment and Process Improvement

Time

Figure 2.3 A sample increment construction plan

Increment 1-4
statistics

t

schedule and budget. User feedback on each increment is a gauge of whether
the right system is being built, and quality measures in each increment are a
gauge of whether the system is being built right. Product quality and process
control are both supported.

2.5 References

F.P. Brooks. "No Silver Bullet: Essence and Accidents of Software Engineer­
ing." Computer vol. 20, no. 4 (April1987): 10-19.

R.C. Linger, H.D. Mills, and B.l. Witt. Structured Programming: Theory and
Practice. Reading, MA: Addison-Wesley, 1979.

H.D. Mills. "Top-Down Programming in Large Systems." In Debugging Tech­
niques in Large Systems. ed. R . Ruskin, Englewood Cliffs, NJ: Prentice
Hall, 1971.

J.H. Poore, H.D. Mills, and D. Mutchler. "Planning and Certifying Software
System Reliability." IEEE Software vol. 10, no. 1 (January 1993): 88-99.

3
Cleanroom Software
Specification

A fundamental change in the way computer programs were written occurred
in the 1970s. Prior to that time, the absence of engineering foundations for
program development, coupled with the increasing demand for large pro­
grams, had led to growing use of arbitrary control logic, with a complexity that
defied human understanding. This complexity was addressed by the theory and
practice of structured programming. Programs of any complexity whatsoever
could be designed by nesting and sequencing just three fundamental control
structures-namely, sequence (do), alternation (ifthenelse), and iteration
(whiledo)-again and again in a hierarchical structure. Structured program­
ming was an engineering process that benefited not only developers, but man­
agers as well. In particular, managers of large software projects found that work
could be structured and measured through top-down development in a system­
atic way.

Software system development, however, requires more than systematic
control flow. Today's large-scale systems involve massive amounts of data and
operations to store, retrieve, transmit, and process data on an enterprise-wide
basis. In the absence of engineering foundations for system development, these
operations can accumulate into data complexities with a similar loss of intellec­
tual control. This chapter describes three system structures for specification and
design-black box, state box, and clear box-known collectively as box struc­
tures (Mills 1988; Mills, Linger, and Hevner 1986, 1987). These structures
embody important concepts of data encapsulation and information hiding. Box
structures are developed in a stepwise refinement and verification process that
integrates both system control and data operations. Systems can be developed
by nesting and sequencing these structures again and again in a provable way.
As a result, both developers and project managers benefit from improved intel­
lectual control of software development projects.

33

34 Cleanroom Software Specification

3.1 Box Structures for Cleanroom
Specification and Design

Box structures are descriptions of functions that exhibit properties essential for
effective system specification and design. Figure 3.1 depicts the three box struc­
tures of black box, state box, and clear box. These structures exhibit identical
external behavior but increasing internal visibility. A black box specifies the
external behavior of a system or system component. A state box refinement of
a black box specifies state data required to achieve the black box behavior.
A clear box refinement of a state box specifies procedure designs required to
achieve the state box behavior, and may reuse existingblack boxes or introduce
new black boxes for subsequent refinement. (Clear boxes are composed of pro­
gram control structures. A sequence structure is shown in Figure 3.1) Each

t/)
t/)

8
~
Q.

E
Cll
E
Cll s:
~
a:

SH

s

s

Black box: behavior view

R

State box: data view

-i State r-
R -' Transition I I

Clear box: procedure view

R

Figure 3.1 Box structure refinement and verification. 88 =black box.

t/)
t/)
Cll
u
~
Q.
s:
0

i
~ ·;:

~

3.1 Box Structures for Cleanroom Specification and Design 35

refinement is verified against the previous step. Box structures thus separate
three aspects of system development (specification of behavior, data, and proce­
dures) yet relate them in a coherent process of refinement and verification.

3.1.1 Black Box Behavior

The black box specification of a system or system component defines its
required external behavior. A system accepts a stimulus, S, as input from its
environment and produces a response, R, as output to its environment. The
response depends not only on the current stimulus, but also on the history of
stimuli received so far. For example, consider the external behavior of a hand
calculator. Suppose a computation is in progress, and a current stimulus of 5
is entered on the keypad. If the history of stimuli when the 5 is entered is,
say, C718 (C for clear), then the response is 7185; that is, the calculator will
shift the current digit display one place to the left and insert the 5 in the units
position. However, suppose instead that the history of stimuli is C718+. In
this case, based on a different stimulus history, the calculator will begin a new
digit string with 5 in the units position. Thus, the response of a system is
uniquely determined by the current stimulus and the history of stimuli received
up to that point.

Systems and their constituent components can be viewed in terms of their
behavior. For example, a workstation accepts stimuli from keystrokes and
mouse clicks, and produces corresponding responses that may change the con­
tent of current windows or display new windows. The user experiences only the
timulus- response behavior, and may have no knowledge of internal operations

in the workstation itself, or in other machines to which it may be linked in a
communications network, all of which support the behavior experienced.

The mathematical semantics of black box behavior is a function written as

stimulus history ~ response

or simply

SH~R

where SH is the complete stimulus history, including the current stimulus.
A black box definition is state free and procedure free. It defines externally

\isible behavior experienced by users solely in terms of history of use. As such,
a black box focuses on the user view in addressing questions of system behav­
ior, and does not require decisions on state and procedure design. A black box
specification defines required behavior in all possible circumstances of use.
That is, the correct responses for all possible combinations of current stimuli
and stimulus histories are defined in a black box specification. Black box speci­
fications have three principal uses in Cleanroom projects, all of which are criti­
cal to effective system development:

36 Cleanroom Software Specification

1. For system owners and users, black boxes define required behavior for
analysis and agreement prior to committing resources to development
and testing.

2. For system developers, black boxes define required behavior to be de­
signed and implemented.

3. For system testers, black boxes define required behavior to be vali­
dated during testing.

Black boxes can be defined in a tabular format, with columns organized by
stimulus, condition on history, and response. The tables can be specified in any
appropriate form-from natural language to set theory. Consider the informal
black box definition depicted in Table 3 .1. This low-level black box specifies a
sales forecasting system based on a simple 12-month running average, which
might be used to forecast sales for thousands of items in an inventory control
system. The sales forecasting system accepts stimuli composed of a monthly
sales value for a particular product, and produces appropriate responses. Black
box rule 1 specifies correct behavior for fewer than 12 months of sales values
for a product. Rule 2 specifies correct behavior when at least 12 months of sales
values are available. The table expresses behavior in an informal manner and
distinguishes important entities in angle brackets for later refinement and defin­
ition. Such a table might be developed in the early stages of system specifica­
tion for discussion and analysis with users to reach a consensus on required
behavior before committing resources to a more precise specification. For
example, discussions of rule 1 could lead to additional requirements to com­
pute, say, three- and six-month running averages as well. Discussions of rule 2
could result in requirements to include, say, a month designation with each
stimulus for use in identifying inadvertent omissions in the set of sales values
prior to computing their average. These changes could result in new behavior to
be specified. Black box specifications are intended to encourage such discus-

Table 3.1 Black box excerpt: sales forecasting system

Black Box
Rule No.

2

Stimulus History
Condition

History contains less than 11
monthly <sales> values for
<product>

History contains at least 11
monthly <sales> for
<product>

Current
Stimulus

<sales>,
<product>

<sales>,
<product>

Response

"<sales> for <product>
accepted, running
average not available"

average of most recent
11 monthly <sales>
plus current <sales>
for <product>

3.1 Box Structures for Cleanroom Specification and Design 37

sions early in development, both to avoid wasting resources and to prevent
developing the wrong system for the user.

3.1.2 State Box Behavior

The state box specification of a system or system component provides an inter­
mediate view that defines its state space. State boxes encapsulate stimulus his­
tory as state data, but are procedure free. A state box maps an old state, OS, and
a stimulus, S, to a new state, NS, and a response, R. The new state thus becomes
the old state for the next transition. The semantics of state box behavior is a
transition function written as

(old state, stimulus) -7 (new state, response)

or simply

(OS, S) -7 (NS, R)

A state box is refined from and verified against the corresponding black
box. The state represents information from the black box stimulus history that
must be retained to preserve the black box specification. By retaining this infor­
mation as state, the state box does not require stimulus history in its definition.
Every black box has a state box description because every stimulus history can
be represented as a state. Also, many different state boxes can be designed to
satisfy the requirements of a given black box because different representations
and access methods are possible for the state.

State boxes can be defined in a tabular format, with columns for old state,
stimulus, new state, and response, plus a column to trace back to the corre­
sponding black box rule. Consider the state box of the sales forecasting system
shown in Table 3.2, which corresponds to the black box specification in Table
3.1. In this case, analysis of the black box stimulus history conditions leads to
the straightforward definition of a state item named <sales file> to retain the 11
most recent sales values for each product. Each record of <sales file> can be
identified by <product>, and can contain an array of 11 sales <value>. Only 11
months of sales values are required because the current stimulus will complete
the total of 12 values required to compute the running average. No earlier stim­
uli need be retained, thus subsequent monthly stimuli will result in deletion
from the state of sales values older than 11 months. Transition 1 in Table 3.2
defines the behavior required when the stimulus introduces a new product.
Transition 2 defines the behavior when the product is known to the state box,
but 11 months of sales values have not yet been accumulated. Transitions 1 and
2 produce literal messages as responses to the user. Lastly, transition 3 defines
teady-state behavior in computing running average responses. Note that each

transition requires appropriate state updates to prepare for processing sub­
sequent stimuli. For example, transition 3 manages accumulation of state by

38 Cleanroom Software Specification

Table 3.2 State box excerpt: sales forecasting system

Black Box
State Box Trace
Transition Rule

No. Old State Stimulus New State Response No.

<sales fi le> <sales>, In <sales file>, "<sales> for
does not con- <product> record is added <product>
tain record for for <product> accepted,
<product> and <sales> is running

added as its average not
newest <value> available"

2 <sales file> <sales> For <product> "<sales> for
contains record <product> record in <sales <product>
for <product> fi le>, <sales> accepted,
with less than 11 is added as its running
monthly <value> newest <Value> average not
entries available"

3 <Sales fi le> <sales>, For <product> Average of 2
contains record <product> record in <sales current <sales>
for <product> file>, oldest stimulus plus
with 11 monthly <value> is 11 monthly
<value> entries deleted and <value> entries

<sales> is for <product>
added as its
newest <Value>

deleting the oldest <value> and adding the current stimulus as the newest
<value> in the <product> record in <sales file>.

A state box is verified by deriving its black box behavior and comparing
the derived black box for equivalence to the original black box from which the
state box was refined. The black box behavior of a state box is derived by trans­
forming its state operations into stimulus history form.

3.1.3 Clear Box Behavior

The clear box design of a system or system component defines the processing
required to achieve its corresponding state box behavior. A clear box is a com­
puter program or set of programs that accepts a stimulus, S, and, based on the
program's internal state, OS, produces a new internal state, NS, and a response,
R. The processing is defined in terms of the fundamental control structures of
structured programming-namely, sequence, alternation, and iteration-plus a
concurrent structure if parallelism is to be introduced. A clear box defines the
computation of the response and new state in terms of these control structures.

3.1 Box Structures for Cleanroom Specification and Design 39

Many different clear boxes can be defined to satisfy the behavior of a given state
box. The semantics of clear box behavior is a transition function written as

(old state, stimulus)~ (new state, response) by procedure

or simply

(OS, S) ~ (NS, R) by procedure

Clear box procedures may reuse the services of existing black boxes, and
may introduce new black boxes for subsequent refinement into state and clear
box forms. Definition of a clear box is a critical step because it defines the pro­
cedure that organizes and connects the usage of the black boxes of subsystems
and components at the next level in the box structure hierarchy. This explicit
connection helps maintain intellectual control as development proceeds by
defining the precise context of every black box use. In addition, components
and their connections are derived from local processing requirements in a clear
box design. In essence, the message of box structures is not "divide and con­
quer," but rather "divide, connect, and conquer."

A clear box is verified by abstracting its operations into a derived state box
form and comparing the derived state box for equivalence with the original state
box from which the clear box was refined. Clear box design and verification are
discussed in detail in Chapter 4.

3.1.4 Box Structure Hierarchies

A box structure hierarchy evolves through stepwise refinement and verification
as described earlier. This is a usage and not a parts hierarchy; that is, every use
of a box occupies a distinct place in the hierarchy, and all processing is defined
by sequential and concurrent uses of boxes. Of course, a usage hierarchy does
not imply that the code is replicated wherever it is used in the implementation.

The example in Figure 3.2 depicts an initial black box that is refined into a
tate box and then into a clear box, with a control structure that embeds and

coordinates the operations of, in this case, six black box uses at the next level.
These uses could all reference the same black box, different black boxes, or
some combination. Usage hierarchies of system components are helpful for
maintaining intellectual control in managing system development.

3.1.5 Box Structure Principles

Four key principles that guide development and analysis of box structures
Ylills, Linger, and Hevner 1986, 1987) are summarized in this section. The first

o principles are enforced by the box structure refinement process; the last two
rinciples articulate good design practices.

40 Cleanroom Software Specification

Figure 3.2 A box structure usage hierarchy. BB = black box; SB = state box;
CB = clear box.

Principle of Referential Transparency: During the delegation of
a system component for development, all requirements for the com­
ponent should be specified completely, so that no further specification
is logically required to complete the component.

A black box should define all required external behavior for a system or
system component. Referential transparency is maintained when a state box
implements correctly the behavior required by the black box, and similarly
when a clear box implements correctly the behavior required by the state box.
These three forms focus on behavior, state, and procedure respectively, yet are
complete and behaviorally equivalent definitions of a system or system compo­
nent, with no behavior left out. This referentially transparent hierarchy permits
deferring details without losing them. Clear boxes play a key role in maintain­
ing referential transparency by organizing and connecting the operations of
embedded subsystems and components at the next level.

Effective project management requires organizing myriad details into coher­
ent structures for delegation and development. Referential transparency in box
structures permits crisp delegation and accountability by providing complete and
consistent specifications of work to be done. Components can be delegated to
development teams with confidence that all component commitments are spec­
ified and accounted for. In addition, referential transparency simplifies and

3.1 Box Structures for Cleanroom Specification and Design 41

streamlines communication among project members by eliminating much of
the discussion and coordination required by imprecise definitions of responsi­
bilities.

Principle of Transaction Closure: The transactions of a system or
system component must be sufficient for the acquisition and retention
of all its state data, and its state data must be sufficient for the comple­
tion of all its transactions.

A transaction is a description of high-level behavior that may be composed
of a series oflow-level transitions. For example, the transaction "reconcile bank
statement" might be composed of individual transitions such as "access
account," "reconcile deposits," "reconcile withdrawals," and so forth. Trans­
action closure defines an iterative analysis process that ensures the sufficiency
of the transactions and the retained state of a system or system component dur­
ing its specification. The process begins with the principal transactions carried
out by primary users , and the definition of the state data needed to support those
transactions. The supporting state data will require additional transactions for
initialization and update, leading to more state data, and so on. The iteration
continues until no additional state data requirements are identified, at which
point transaction closure has been achieved.

Principle of State Migration: System data should be migrated to
and encapsulated in the smallest system parts that do not require
duplicating updates.

State migration enables the location and encapsulation of state data items at
their proper level in a system to limit the complexity of both system specifica­
tions and the resulting system structures. For example, consider a clear box that
contains state data item Tthat invokes a black box at the next level. If Tis refer­
enced only within the state box refinement of that black box, it can be migrated
downward and encapsulated there with no duplicate updates necessary. Alter­
nately, upward migration to a common parent box may be necessary, as a design
unfolds, to eliminate duplicate updates.

Principle of Common Services: System parts with multiple uses
should be considered for definition as common services. As many
opportunities as possible for reuse should be created within and
among system parts.

Common services are found everywhere in software systems. For example,
a GUI acts as a common service for the programs that use it in managing inter­
nal state representations of user interfaces and updating displays as required.
Opportunities for common service definition emerge frequently in box structure

42 Cleanroom Software Specification

development. For example, a weather forecasting system may process measure­
ments from a large set of distributed sensors. Operations to initialize, update,
retrieve, and delete measurement data will be required at many points in the
system. The measurements could be encapsulated as state in a new box struc­
ture hierarchy that provides these common services to all using programs. This
design decision isolates and protects the measurement data, enhances integrity
by providing controlled access, and helps prepare for future, unforeseen uses of
the data. Such reuse of software components affords an opportunity to improve
productivity and reliability.

3.1.6 The Box Structure Development Process

The general development process for box structure refinement and verification
is summarized in the following list based on the foregoing descriptions. This
process is illustrated in the security alarm example presented in this chapter and
in a more extensive satellite control system example in Part III.

Box Structure Development Process

1. Define the system requirements.

2. Specify and validate the black box.
• Define the system boundary and specify all stimuli and responses.
• Specify the black box mapping rules.
• Validate the black box with owners and users.

3. Specify and verify the state box.
• Specify the state data and initial state values.
• Specify the state box transition function.
• Derive the black box behavior of the state box and compare the

derived black box to the original black box for equivalence.

4. Design and verify the clear box.
• Design the clear box control structures and operations.
• Embed uses of new and reused black boxes as necessary.
• Derive the state box behavior of the clear box and compare the

derived state box to the original state box for equivalence.

5. Repeat the process for new black boxes.

It is important to note that this process can be tailored and adapted to par­
ticular project environments and objectives to make the best use of project
resources. For example, behavior-rich systems may be best specified and ana­
lyzed in terms of their external behavior. In this case, black box specification
should be emphasized. Subsystems that implement extensive data operations
may embody simple black box behavior, but may exhibit complexities in state
structure, storage, and retrieval. In this case, state box definition should be

3.2 The Sequence-Based Specification Process 43

emphasized. Components that implement extensive mathematical operations
may exhibit simple black box behavior and use simple state definitions, but
exhibit considerable complexity in their clear box structure and operations. In
this case, clear box design should be emphasized.

Large-scale systems composed of many subsystems and components will
thus adopt various approaches in carrying out this process. But whatever the
emphasis, system development should begin with the best possible understand­
ing of required external behavior and agreement among stakeholders before
committing further resources. It is important to note that comprehensive require­
ments are almost never known at the outset of system development. The box
structure method is compatible with a requirements discovery and elicitation
process, often carried out through incremental development of prototypes with
user feedback. Even for prototypes, however, the partial set of requirements to
be implemented should be known at the outset, both to achieve effective use of
resources and to minimize risk.

3.2 The Sequence-Based
Specification Process

A number of approaches can be used to develop specifications. The new theory
of sequence-based specification defines one process for stepwise construction
of complete, consistent, and correct black box and state box specifications, and
this is the approach that is discussed in this book.

In the sequence-based specification process, all possible sequences of
timuli (stimulus histories) are enumerated systematically in a strict order, as
timulus sequences of length zero, length one, length two, and so on. As each
equence is mapped to its correct response, equivalent sequences are identified

by applying a reduction rule, and the enumeration process terminates when the
ystem has been defined completely and consistently.

Based on the work of Mills (1975), Parnas (1992), Mao (1993), Prowell
1996) , and Poore (Prowell and Poore, 1998), sequence-based specification

makes a tractable problem of the astronomical number of use cases arising from
the combinatorial effects of software use. Through sequence enumeration, de­
\·elopers consider all combinations and permutations of system stimuli. Each
sequence represents a scenario of use. During the stepwise process of enumera­
tion, possible scenarios are distinguished from impossible scenarios, intended
uses from erroneous uses, and reducible sequences from irreducible sequences.
These irreducible sequences- canonical sequences- are the basis for a precise
-pecification of software behavior that is mathematically complete and consis­
ent, and traceably correct:

44 Cleanroom Software Specification

The literal enumeration of sequences provides straightforward verifi­
cation of completeness. One can follow the sequences of length one,
length two, length three, and so on, to verify that all combinations and
permutations of stimuli have been mapped to a response.
The orderly enumeration of sequences ensures that a given scenario of
use (i.e., sequence of stimuli) appears only once. Consistency, like
completeness, is a direct consequence of enumeration.
Every element of a sequence-based specification is traced to its origin
in the requirements. If the correct response for a sequence cannot be
found in the requirements, the expected behavior must be clarified and
the requirements modified.

The work flow in sequence-based specification supports requirements anal­
ysis, black box specification, and state box specification in a seamless process
with a substantial possibility of automated support. The steps in the work flow,
described briefly in the following subsection, are exemplified in Section 3.3 .

3.2.1 Black Box Definition

Tagged Requirements. Requirements are tagged (numbered) for use in veri­
fying the correctness of each element of subsequent work products. The
methodical consideration of sequences in the enumeration process forces the
exposure of ambiguities and omissions in the requirements. Clarification of
requirements is a natural by-product of sequence-based specification.

System Boundary Definition. The system boundary determines which com­
ponents are inside and outside the system to be specified. The entities outside
the system are the sources of stimuli and the destinations of responses.
Identification of stimuli and responses often begins at an atomic level. After fur­
ther consideration (including, perhaps, an initial enumeration), abstractions are
often invented to simplify the enumeration process.

Abstractions are used to hide well-understood details, to reflect natural par­
titions in the problem, or to reduce a large set of elements to a smaller set. The
elements of the larger set must have a well-defined mapping to the elements of
the smaller set. A stimulus set (or response set) may be of mixed granularity­
some atomic, some abstract. Whatever the level of granularity, the elements of
the stimulus set (or response set) must be mutually exclusive.

Sequence Enumeration. Sequences are enumerated in order of length (zero
stimuli, one stimulus, two stimuli, etc.), with all combinations and permutations
considered systematically. As each sequence is examined, the following evalua­
tions occur:

3.2 The Sequence-Based Specification Process 45

1. Sequences that are impossible (e.g., a stimulus prior to system start)
are marked as "illegal." Any extension of an illegal sequence will itself
be illegal, so sequences marked illegal are not extended further in the
enumeration.

2. The correct response for each sequence is documented, as is the re­
quirement on which it is based. If there is no requirement that addres­
ses the sequence in question, a derived requirement is stated. Derived
requirements represent assumptions or clarifications, and must be con­
firmed with the originator of the requirements.

3. Two sequences are equivalent if their responses to future stimuli are
identical. Since extensions of the two equivalent sequences exhibit the
same behavior, it is not necessary to extend both, and only the shorter
is extended.

The enumeration stops when all sequences of a given length are either illegal or
equivalent to a previous sequence.

The completed enumeration represents the mathematically complete and
consistent, verifiably correct black box specification for the system. The speci­
fication is complete because all sequences have been mapped to a response, it is
consistent because each sequence has been mapped to only one response, and it
is correct on verification by domain experts that the behavior specified for each
sequence and traced to the requirements is the intended behavior.

Canonical Sequence Analysis. Legal sequences in the enumeration that are
not equivalent to any previous sequence are the canonical sequences. The
canonical sequences represent the unique conditions of system usage, and
analysis of the canonical sequences yields the state space for the system, given
the level of abstraction of the black box.

In canonical sequence analysis, variables are invented to encapsulate the
conditions in each sequence of stimuli. These variables may be viewed as the
state data for the system. The range of values for each variable is discovered as
each canonical sequence is examined relative to each variable. The combination
of variable values must be unique for each canonical sequence, such that the
canonical sequences are disjoint when the analysis is complete.

3.2.2 State Box Definition

Each sequence in the black box specification may be thought of as a tuple (cur­
rent stimulus, previous stimuli). The previous stimuli in each sequence in the
black box are, in fact, canonical sequences. Given this fact, the creation of the
state box specification for the system is a matter of assembly. Each valid
(sequence --7 response) mapping in the black box can be replaced with a (cur­
rent stimulus, state --7 response, state update) mapping in the state box. The

46 Cleanroom Software Specification

Current Stimulus: ___ _ _ _

Black Box Trace:
Sequence Prior

Current State Response State Update to Current Stimulus

Figure 3.3 State box mapping table format

state box can be generated automatically from the black box, and need not be
verified if generated by a certified tool.

The final form of the state box is a set of mapping tables, one per stimulus.
Each mapping table is of the form shown in Figure 3.3.

The state box specification is the final specification work product. The
Cleanroom box structure specification and design method continues with
refinement of the state box to the clear box, in terms of full procedural design,
as described in Chapter 4.

3.3 Example: Specification
of a Security Alarm

A simple software-controlled security alarm depicted in Figure 3.4 is to be cre­
ated for use on doors, windows, boxes, and so forth, to detect unauthorized
entry. The security alarm has a detector that sends a trip signal when motion is
detected. The security alarm is activated by pressing the Set button. A light in
the Set button is illuminated when the security alarm is on. If a trip signal occurs

Figure 3.4 Security alarm

3.3 Example: Specification of a Security Alarm 47

while the device is set, a high-pitched tone (alarm) is emitted. A three-digit code
must be entered to turn off the alarm. Correct entry of the code deactivates the
security alarm. If a mistake is made when entering the code, the user must press
the Clear button before the code can be reentered. The security alarm will not be
programmable; each unit will have a hard-coded deactivation code.

A sequence-based specification will be created for the security alarm using
the stepwise process described in the preceding subsection.

3.3.1 Black Box Definition

Tagged Requirements. Tagging of requirements is the first step in creating a
traceable specification, as shown in Table 3.3. Subsequent elements of the spec­
ification will be traced to their origin in the requirements through these tags.

As each step in the specification is traced to the relevant requirement,
ambiguities and omissions in the requirements will be discovered. When there
is no requirement to cite in a trace, a "derived" requirement will be stated and
tagged as D 1, D2, and so on.

System Boundary Definition. There are two possible sources of stimuli to the
ecurity alarm: the detector and the human user. The detector sends a trip stimu­

lus and all other stimuli originate with the human user, as shown in Table 3.4.
The stimuli Trip, Set, and Clear are all atomic stimuli (i.e., discrete, low­

level stimuli). The stimuli GoodDigit and BadDigit are both abstractions, repre­
senting correct and incorrect entry of digits in the three-digit code. GoodDigit
represents each digit in the sequence of three digit entries that deactivate the
device. BadDigit represents a digit in any other sequence of digit entries.

Table 3.3 Tagged requirements for the security alarm

Tag
No. Requirement

The security alarm has a detector that sends a trip signal
when motion is detected.

2 The security alarm is activated by pressing the Set button.

3 The Set button is illuminated when the security alarm is set.

4 If a trip signal occurs while the security alarm is set, a high­
pitched tone (alarm) is emitted.

5 A three-digit code must be entered to turn off the alarm tone.

6 Correct entry of the code deactivates the security alarm.

7 If a mistake is made when entering the code, the user must
press the Clear button before the code can be reentered.

48 Cleanroom Software Specification

Table 3.4 Security alarm stimuli

Requirement
Stimulus Description Trace No.

Set Device activator 2

Trip Signal from detector

Bad Digit Incorrect entry of a digit in the code 7

Clear Clear entry 7

Good Digit A digit that is part of the correct entry
of the three-digit code that deactivates
the alarm and device 5,6

Table 3.5 Security alarm responses

Requirement
Response Description Trace No.

Light on Set button illuminated 3

Light off Set button not illuminated 6

Alarm on High-pitched sound activated 4

Alarm off High-pitched sound deactivated 5

Abstraction in this instance serves the purpose of hiding well-understood
atomic-level details (i.e., whether a particular digit is "good" or "bad" in the
context of its entry).

Two external responses are mentioned in the requirements: a light (the Set
button) and an alarm. The system must start and stop each of these, as summa­
rized in Table 3.5.

In addition to responses that are explicitly defined in the requirements, two
other values are often used in sequence-based specification: the null response
and illegal. The null response occurs when there is no external system response,
such as when a system is ignoring or perhaps accumulating stimuli. Illegal is
used when a sequence is impossible, such as when stimuli are presented before
invocation.

Sequence Enumeration. Sequence enumeration involves consideration of
all possible scenarios of use: sequences of length zero (the empty sequence),
length one (single stimulus), length two (single-stimulus extensions of the
sequences of length one), and so on. Enumeration ends when all sequences of a
given length are either illegal or equivalent to a previous sequence. Again, an
illegal sequence is one that is "impossible," such as SBG in Table 3.6 (pressing

3.3 Example: Specification of a Security Alarm 49

the Set button, and then a BadDigit results in there being no such thing as
GoodDigit, given the definition of that abstraction). Also, one sequence is
equivalent to another if the two sequences have identical future behavior. The
sequence 55 (pressing the Set button twice), for example, is marked as equiva­
lent to the sequence 5 (pressing the Set button only once), because all future
responses are the same. Note that in Table 3.6 the current responses are differ­
ent. The response to 5 is to turn on the light, whereas the response to 55 is null
(because the light is already on). After the current response, however, the
responses to future stimuli will be the same whether they are preceded by 5 or
SS. Therefore, SS is marked as equivalent to S in the enumeration and need not
be extended. ·

Questions about requirements invariably arise as sequence scenarios are
considered systematically. All questions, assumptions, and so forth, are docu­
mented so that outstanding issues can be addressed and resolved.

The following symbols will be used to represent the stimuli in the enumer­
ation given in Table 3.6.

s Set
T Trip
B BadDigit
c Clear
G GoodDigit

In the Equivalence column, the equivalence is to a previously considered
equence. In the Requirements Trace column, a number denotes an original

requirement from Table 3.3 ; a number prefixed with the letter D denotes a
derived requirement.

Table 3.6 Security alarm sequence enumeration

Sequence Response Equivalence Requirements Trace No.

Length Zero

Empty Null 01
The security alarm is initially deactivated.

Length One

s Light on 2,3

I Illegal 01

B Illegal 01

c Illegal 01

G Illegal 01

continued

50 Cleanroom Software Specification

Table 3.6 continued

Sequence Response Equivalence Requirements Trace No.

Length Two

ss Null s 02
After the device has been set, the Set
button has no further effect until the
device has been deactivated .

ST Alarm on 4

SB Null 03
The device produces no external
response to an erroneous entry.

sc Null s 04
The device produces no external
response to a Clear entry.

SG Null 05
The device produces no external response
to correct entry of the code until all three
digits of the code have been entered.

Length Three

STS Null ST 02

STT Null ST 06
After the trip signal has set off the alarm,
the trip signal has no further effect unti l
the device has been deactivated.

STB Null 03

STC Null ST 04

STG Null 05

SBS Null SB 02

SBT Alarm on STB 4

SBB Null SB 03

SBC Null s 04,7

SBG Illegal 7

SGS Null SG 02

3.3 Example: Specification of a Security Alarm 51

Sequence Response Equivalence Requirements Trace No.

SGT Alarm on STB 4
07
Incomplete entry of the code prior to a trip
signal will be regarded as an erroneous
entry that requires a Clear and a reentry
of the correct code to deactivate
the alarm.

S GB Null SB 03

S GC Null s 04

S GG Null 05

Length Four

STBS Null STB 02

STET Null STB 06

ST BB Null STB 03

ST BC Null ST 04,7

S T BG Illegal 7

ST GS Null STG 02

ST GT Null STG 06

ST GB Null STB 03

ST GC Null ST 04

S TGG Null 05

SGGS Null SGG 02

GGT Alarm on STB 4, 07

-G GB Null SB 03

GGC Null s 04

-e GG Light off Empty 6

_ength Five

Null STGG 02

Null STGG 06

Null STB . 03

Null ST 04

~T G GG Alarm off, Empty 3, 5,6
light off

52 Cleanroom Software Specification

The black box function specification for the security alarm is now mathe-
matically complete and consistent, and subject to correctness verification.

Every scenario has been mapped to a response, so the specification is
complete.
Every scenario has been mapped to only one response (or response set),
so the specification is consistent.
Requirements engineers can now confirm that assumptions documented
as derived requirements are correct, and that the specification correctly
implements both the original and the derived requirements.

In practice, the dialog between requirements engineers and specification
engineers is ongoing, and issues are clarified as they arise.

Canonical Sequence Analysis. State data encapsulates and retains the com­
ponents of stimulus history that must be preserved for the system to produce
correct responses. The essential components of stimulus history are identified
by examining the canonical sequences in the enumeration (i.e., sequences that
are not equivalent to any previous sequence). Each canonical sequence is exam­
ined to identify the unique conditions in the sequence, and state variables are
invented to represent the conditions.

For example, the canonical sequence Sin Table 3.7 is different from the
Empty sequence in that the security alarm has gone from power-off to power­
on. The state variable Device, with values OFF and ON, was therefore invented
to encapsulate that condition. Similarly, when the sequence ST was examined, it
was discovered to contain a condition that was not present in either the Empty
or S sequences: The alarm has been tripped. The state variable Alarm was in­
vented to represent the new condition, with associated values OFF and ON.

Table 3.7 contains the canonical sequences, the state variables that are
required to represent the conditions in the canonical sequences, and the values
of the state variables before and after the current stimulus in the sequences.

3.3.2 State Box Definition

All state variables and their possible values have now been defined. No further
invention will be needed to produce the state-based specification. Table 3.8 lists
the names, ranges, and initial values of the state data.

3.3 Example: Specification of a Security Alarm 53

Table 3.7 Canonical sequence analysis

Value before Value after
Canonical State Current Current
Sequence Variables Stimulus Stimulus

Empty

s Device OFF ON
The user has pressed the Set button to
activate the device.

ST Device ON ON
The device has been set and the trip Alarm OFF ON
signal has occurred, setting off the alarm.

SB Device ON ON
The device has been set and the user Code NONE ERROR
has entered an invalid digit.

SG Device ON ON
The device has been set and the user Code NONE 1_0K
has entered the first digit in the code.

STB Device ON ON
The device has been set, the trip Alarm ON ON
signal has set off the alarm, and the Code NONE ERROR
user has entered an invalid digit.
The Clear button must be pressed before
the code can be entered to turn off the
alarm.

STG Device ON ON
The device has been set, the trip Alarm ON ON
signal has set off the alarm, and the Code NONE 1_0K
user has entered the first digit in the
code.

SGG Device ON ON
The device has been set and the user Code 1_0K 2_0K
has entered the first two digits in the
code.

S TGG Device ON ON
The device has been set, the trip Alarm ON ON
signal has set off the alarm, and the Code 1_0K 2_0K
user has entered the first two digits in
the code.

54 Cleanroom Software Specification

Table 3.8 State variables

State
Variable Range Initial Value

Device {OFF, ON} OFF

Alarm {OFF, ON} OFF

Code {NONE, 1_0K, 2_0K, ERROR} NONE

The completed sequence-based specification can now be recast as a state-
1{,<!_~~<! ~~~i_f;i_cation. Whereas the black box view is expressed in terms of
sequences of user inputs and system responses, the state box view is expressed
in terms of (current stimulus, state) and (system response, state update). All
sequences in the enumeration that end in a given stimulus will be grouped, and

. mapping rules of the following form will be stated:

When the system receives the stimulus _ and the state data values
are _ , the system response is _ and the state update is _ . This
use can be traced to black box sequence _ .

These mapping rules are summarized by Tables 3.10 through 3 .14, one table
per stimulus. As an example, the sequences needed to construct the state-based
specification for stimulus Tare given in Table 3.9. This excerpt from the enu­
meration contains only the sequences ending in T (Trip) and their responses.

Table 3.9 Excerpt from enumeration:
sequences ending in T

Sequence Response

T Illegal

ST Alarm on

STT Null

SET Alarm on

SGT Alarm on

STET Null

STGT Null

SGGT Alarm on

STGGT Null

3.3 Example: Specification of a Security Alarm 55

Table 3.10 Current stimulus: Trip (T)

Tag Current Black Box Trace:
No. State Response State Update Sequence Prior to T

Device=ON Alarm on Alarm= ON s
Alarm =OFF
Code= NONE

2 Device= ON Null ST
Alarm=ON
Code= NONE

3 Device= ON Alarm on Alarm=ON SB
Alarm= OFF
Code= ERROR

4 Device= ON Alarm on Alarm=ON SG
Alarm =OFF Code= ERROR
Code= 1_0K

5 Device= ON Null STB
Alarm= ON
Code= ERROR

6 Device =ON Null STG
Alarm =ON
Code= 1_0K

7 Device= ON Alarm on Alarm= ON SGG
Alarm= OFF Code= ERROR
Code =2_0K

8 Device=ON Null STGG
Alarm =ON
Code= 2_0K

The black box mapping rules of Table 3.9 are recast as a state-based speci­
fication in Table 3 .l 0 for system behavior when the current stimulus is T.

Note that the sequences in the rightmost column of the table (the sequences
prior to T) are all canonical. This is no accident. Because only the canonical
sequences are extended during black box sequence enumeration, it stands to
reason that any sequence prior to T is canonical. It is not necessarily the case
that all canonical sequences will appear in the rightmost column, however. The
canonical sequence Empty followed by Twas marked as illegal in the black box
enumeration, for example, so it is not included in the state box. Once a sequence
has been identified as illegal (i.e., impossible), it is not carried forward in the
specification.

The Current State column in Table 3.10 is populated with the state data
derived during canonical sequence analysis. Because the sequences prior to T

56 Cleanroom Software Specification

(the rightmost column) are all canonical, the current state for each row is given
by the state data associated with the canonical sequence.

An inspection of the details of the state-based specification for current
stimulus T makes it apparent that there are only a few scenarios for which the
system actually needs to do something. This insight will be used in the eventual
implementation. The following tables are the mapping tables for the remaining
stimuli. Each mapping table was derived in the manner just shown for current
stimulus T.

Table 3.11 Current stimulus: Set (5)

Tag Current Black Box Trace:
No. State Response State Update Sequence Prior to 5

9 Device= OFF Light on Device= ON None
Alarm=OFF
Code= NONE

10 Device= ON Null - 5
Alarm=OFF
Code= NONE

11 Device= ON Null - 5T
Alarm =ON
Code= NONE

12 Device= ON Null - 5B
Alarm= OFF
Code= ERROR

13 Device =ON Null 5G
Alarm=OFF
Code= 1_0K

14 Device= ON Null - 5TB
Alarm=ON
Code= ERROR

15 Device= ON Null 5TG
Alarm =ON
Code= 1_0K

16 Device =ON Null - 5GG
Alarm=OFF
Code =2_0K

17 Device= ON Null - 5TGG
Alarm=ON
Code= 2_0K

3.3 Example: Specification of a Security Alarm 57

Table 3.12 Current stimulus: BadDigit (B)

Tag Current Black Box Trace:
No. State Response State Update Sequence Prior to B

18 Device= ON Null Code= ERROR s
Alarm= OFF
Code= NONE

19 Device= ON Null Code= ERROR ST
Alarm= ON
Code= NONE

20 Device= ON Null SB
Alarm=OFF
Code= ERROR

21 Device= ON Null Code= ERROR SG
Alarm=OFF
Code= 1 OK -

22 Device= ON Null STB
Alarm=ON
Code= ERROR

23 Device= ON Null Code= ERROR STG
Alarm=ON
Code= 1_0K

24 Device= ON Null Code= ERROR SGG
Alarm= OFF
Code= 2_0K

25 Device =ON Null Code= ERROR ST GG
Alarm= ON
Code= 2_0K

Table 3.13 Cu rrent stimulus: Clear (C)

Tag Current Black Box Trace:
No. State Response State Update Sequence Prior to C

26 Device= ON Null s
Alarm=OFF
Code= NONE

27 Device= ON Null ST
Alarm=ON
Code= NONE

28 Device= ON Null Code= NONE SB
Alarm= OFF
Code= ERROR

continued

58 Cleanroom Software Specification

Table 3.13 continued

Tag Current Black Box Trace:
No. State Response State Update Sequence Prior to C

29 Device =ON Null Code= NONE SG
Alarm =OFF
Code= 1_0K

30 Device= ON Null Code= NONE STB
Alarm =ON
Code= ERROR

31 Device= ON Null Code= NONE STG
Alarm=ON
Code= 1_0K

32 Device= ON Null Code= NONE SGG
Alarm =OFF
Code =2_0K

33 Device= ON Null Code= NONE STGG
Alarm=ON
Code =2_0K

Table 3.14 Current stimulus: GoodDigit (G)

Tag Current Black Box Trace:
No. State Response State Update Sequence Prior to G

34 Device=ON Null Code= 1_0K s
Alarm =OFF
Code= NONE

35 Device= ON Null Code= 1_0K ST
Alarm= ON
Code= NONE

36 Device= ON Null Code= 2_0K SG
Alarm= OFF
Code= 1_0K

37 Device= ON Null Code =2_0K STG
Alarm =ON
Code= 1_0K

38 Device= ON Light off Device= OFF SGG
Alarm =OFF Code= NONE
Code =2_0K

39 Device= ON Alarm off Device= OFF STGG
Alarm=ON Light off Alarm=OFF
Code= 2 OK Code= NONE

3.4 References 59

The state box specification for the security alarm is now complete, consis­
tent, traceable, and verifiably correct.

• The state data values, system response, and state update requirements
for every scenario have been defined, so the specification is complete.
The state data values, system response, and state update requirements
for every scenario have been unambiguously defined, so the specifica­
tion is consistent.
Each element of the state-based specification can be compared to the
corresponding element of the previously verified sequence-based spec­
ification to confirm that correctness has been preserved.

3.4 References

H. Mao. The Box-Structure Development Method. Ph.D. diss ., University of
Tennessee, 1993.

H.D. Mills. "The New Math of Computer Programming." Communications of
the ACM vol. 18 (January 1975): 43-48.

H.D. Mills. "Stepwise Refinement and Verification in Box-Structured Systems."
IEEE Computer vol. 21 (June 1988): 23- 36.

H.D. Mills, R.C. Linger, and A.R. Hevner. Principles of Information Systems
Analysis and Design. New York: Academic Press, 1986.

H.D. Mills, R.C. Linger, and A.R. Hevner. "Box-Structured Information Sys­
tems." IBM Systems Journal vol. 26 (1987): 395-413.

D.L. Parnas andY. Wang. The Trace Assertion Method of Module Interface
Specification. CRL Report No. 244. Hamilton, Ontario: Communications
Research Laboratory, McMaster University, 1992.

S.J. Prowell. Sequence-based Software Specification. Ph.D. diss., University of
Tennessee, 1996.

S .J. Prowell and J.H. Poore. "Sequence-Based Specification of Deterministic Sys­
tems." Software-Practice and Experience vol. 28 (March 1998): 329-344.

4
Cleanroom Software
Development

4.1 Box Structure Development

The previous chapter described two functional views of a system or program,
the first based on external behavior alone (black box) and the second based on a
state machine (state box). This chapter describes a third view- the procedure or
algorithm (clear box) to implement the state box and exhibit the specified exter­
nal behavior.

The top-down iterative process by which the highest level specification of a
complex system becomes a body of code that executes on a computer must
address many design decisions. The box structure method does not make design
decisions; however, it does encourage designers to consider the entire solution
space. The solution space consists of all possible implementations-the good,
the bad, and the ugly. There are solutions with fast execution times and solu­
tions that are slow, solutions that require a lot of memory and solutions that are
memory misers, solutions that will be easy to revise and maintain, as well as
olutions that will be very difficult to maintain. A solution that is acceptable in

one circumstance may be unacceptable in another, so the design decisions must
take into account many, often conflicting, considerations.

The top-level black box description of behavior should be unique given the
requirements. There is a one-to-many relationship between the black box and
the possible state boxes that will mirror the required behavior. There is both
control state information and data state information, and often a trade-off
between the two. Minimal control state information might imply unacceptable
performance, leading to a design decision with richer control information.

61

62 Cleanroom Software Development

Likewise, there is often a trade-off between storing data in tables and recom­
puting values when needed. Figure 4.1 shows the general solution space with
the unique black box leading to several possible state boxes, all of which will
mirror the black box behavior. Box structures highlight this relationship
and remind the designer to think about alternative state boxes relative to all
aspects of the design. The selection of a specific state box forecloses (tempo­
rarily) many solutions and constrains, but does not fully determine, the clear
box options.

There is a one-to-many relationship between a given state box and the
many clear boxes or algorithms that would implement the state box. Again, the
choice of clear box will constrain but not fully determine the final solution. As
described in this chapter, the clear box is always defined as a structured pro­
gram that may contain and connect lower level\black boxes. Each of these black
boxes is in turn unique, given the specifications it must meet to be referentially
transparent to the clear box of which it is a part. This process of stepwise refine­
ment results in a hierarchy of box structures, as was illustrated in Figure 3 .2.

It is important always to consider a design in progress to be open to revi­
sion and reconsideration. One should never lose sight of the fact that there is an
entire solution space to be considered, and a path to be chosen from the top­
level black box to the final working system. It is the rule rather than the excep­
tion that better design ideas will emerge as work progresses. The first idea is

CB

.
/

CB

BB<SB • .
BB

BB : SB

SB

BB

C8
88<S:B< C:B

C8

88 • SB

S8

Figure 4.1 Box structure solution space. BB == black box; SB == state box;
CB == clear box.

4.2 Clear Box Development 63

rarely the best idea. It is better to let go of a design that is working out badly, to
revisit earlier design decisions and to take a better path, than to drive a bad
design doggedly to conclusion. The design process should be viewed as a mat­
ter of analysis and selection-a series of choices to be made, evaluated, and
possibly reconsidered.

Architecture is a powerful force in constraining the choices. If a product
line architecture exists, then it is likely that certain functionality, state, and algo­
rithms will be imposed on the solution. The designer will be required to make
decisions that lead to reuse rather than new development. The box structure
method does not in itself produce an architecture and does not make design
decisions; these tasks are up to the designer. However, by creating an awareness
of the entire solution space, box structures clarify architectural qualities and
alternatives for analysis and informed decision making.

4.2 Clear Box Development

4.2.1 Clear Box Structures

A clear box defines the procedures required to implement the transition func­
tion of a state box. The stimulus and response sets, external behavior, and state
of a clear box are identical to those of the corresponding state box. Clear box
designs may reuse existing black boxes and introduce new black boxes, and
may also define local data with no persistence. The procedures of a clear box
are often organized around external services that its users (people, hardware, or
other clear boxes) can invoke. For example, a data management clear box might
provide services for adding, deleting, and retrieving data.

The focus of clear box design is on algorithm development. State box spec­
ifications that require little algorithmic elaboration can often be implemented
directly in clear box procedures composed of case statements. The statements
test the current stimulus and old state to determine the proper response and new
state. In essence, such procedures amount to state box table look-ups that deter­
mine the appropriate transition, and verification can often be achieved by com­
paring individual state box transitions for equivalence with their localized
implementations in the clear box statements.

However, state box specifications of algorithm-intensive systems will
require extensive clear box analysis, design, and correctness verification. Such
systems may exhibit simple state box specifications that nevertheless require
ubstantial effort to implement in clear box form. These clear boxes can often

result in large procedure designs, and may require definition of many new, and
reuse of many existing, black boxes in their elaboration.

64 Cleanroom Software Development

Clear boxes are composed of sequence, alternation, and iteration control
structures, examples of which are depicted in Table 4.1 in graphic and design
language form (Mills, Linger, and Hevner 1986). Concurrent control structures
can also be introduced. The control structures are themselves composed of func­
tion nodes, represented in the table by g and h, and predicate nodes, represented
by p. (Collector nodes represented by circles join the flow of control.) A func­
tion node can represent any operation, from a single assignment to an extensive
computation. Any function node may itself be a new or reused black box. Every
function node in a clear box may access the current state as input and may pro­
duce an updated state as output. Every predicate node may access the current
state as input, but can make no changes to it. Sequence control structures can be
generalized to any number of function nodes (a two-part sequence is shown in
Table 4.1), or to indexed sequences that repeat execution of a function node
under control of an index variable, as in a fordo structure. Ifthenelse struc­
tures can be generalized to case structures with multiple branches.

For ease of reference, the parts of these control structures can be given
names. For example, for the sequence, g and hare referred to as fi rstpart and
secondpart respectively. For the i f thenel se, p, g, and hare referred to as the
iftes t , thenpart, and elsepart. And for the whi ledo, p and g are referred to
as the whiletest and dopart .

Every clear box control structure exhibits a single entry line and a single
exit line, with no side effects in control flow. From its entry line to its exit line, a
control structure simply carries out a transformation on data. Because of this
single-entry/single-exit property, these control structures correspond to mathe­
matical functions. To illustrate, the following three-part sequence of assign­
ments on integers t, x, and y (: ~ represents the assignment operation)

do
t : ~ X

X : ~ y

y :~ t

enddo

can be diagrammed as shown in Figure 4.2. At point 1 in Figure 4.2, an initial
domain of t , x , and y is defined (o's represent initial values; for example, to is
the initial value of t). The first assignment t : ~ x changes the value of t to the
initial value of x to produce the range at point 2, which in tum becomes the
domain for the second assignment x : = y, which produces the range at point 3,
continuing in this manner until the final range at point 4 is reached. The overall
effect of the sequence, from the domain at point 1 to the range at point 4 can
thus be defined in natural language as

Table 4.1 Clear box control structures

Control
Structure

Sequence

If then

Ifthenelse

Whi ledo

:Jountil

:Jowhi ledo

Graphic Form

4.2 Clear Box Development 65

Design
Language Form

do
g;
h

enddo

if
p

then
g

end if

i f
p

then
g

else
h

endif

while
p

do
g

enddo

do
g

until
p

enddo

do
g

while
p

do
h

enddo

66 Cleanroom Software Development

Set t to the initial value of x and exchange the initial values of x and y

or equivalently in terms of a concurrent assignment as

t , X, y := X , y, X

In a concurrent assignment, all variables or expressions on the right are
assigned simultaneously to the position-respective variables on the left. That is,
simultaneous assignments are made of x tot, y to x, and x toy. In set notation,
{ (<t , x, y> , <x, y, x>)} is the sequence-free function definition for the three-part
sequence. The definition is independent of context. Even if the sequence was
embedded in a large clear box, the function definition would be identical. All
clear box control structures implement domain-to-range mappings as illustrated
in the sequence example in Figure 4.2.

4.2.2 Clear Box Abstraction and Documentation

Control structures can be read and understood in terms of their net effect on data
from entry to exit and documented as function definitions. These definitions,
called program functions, express the final values of variables as functions of
initial values, and are determined by function abstraction. They can be expressed
in a variety of forms, from natural language to mathematics. Program functions
are function equivalent to their corresponding control structures.

The systematic process of reading and abstracting programs can be used to
recover missing or incomplete documentation. In particular, legacy systems and
reused components that are expressed in structured form can be read and ab­
stracted to document their designs and to help recover embedded business rules
for improved maintenance and evolution.

To illustrate, the control structures in Table 4.2 (w, x, y, and z are positive
integers) can be read and analyzed to abstract their program functions as shown.
The program function of sequence can be determined by mental composition of
its individual operations. In this case, the value of w computed by the first oper­
ation can be substituted into the occurrence of w in the second operation.
An ifthenelse program function can be determined by summarizing its true
and false operations into a single expression. In this case, the true and false
operations are seen to carry out a common mathematical operation. Deterrnina-

Point 1 Point 2 Point 3 Point 4

Figure 4.2 Domain-to-range mappings for the three-part sequence

Most Recent A Head 67

tion of program functions for whi 1 e do and other iteration control structures may
require more analysis, but can often be derived by summarizing the results of
mental execution of several iterations in a single expression. In this case, if x is
initially odd, its value is reduced by two each iteration until it reaches one and
the loop terminates. If x is initially even, its value is reduced by two each itera­
tion until it reaches zero, and the loop likewise terminates. This program function
is conveniently expressed in the table as a two-part conditional rule of the form

(condition 1 ~rule 11

condition 2 ~rule 2)

where each condition is a predicate that defines the circumstances under which
the corresponding rule (assignment) is to be executed, and the vertical bar (I)
represents "or." In this case, if x is initially odd, its final value is set to one; oth­
erwise, if x is initially even, its final value is set to zero. (In general, conditional
rules can have any number of parts.)

When all conditions of a conditional rule are pairwise disjoint for all pairs,
the rule is called a disjoint rule, and the order of evaluation of the conditions
does not affect the outcome. Disjoint rules are very useful in expressing program
functions. Note also that a state box defines a possibly large disjoint rule with
conditions that evaluate the stimulus and old state to determine the response and
new state.

The program functions of the sequence, i ft h e nelse, and whi ledo struc­
tures in Table 4.2 are sequence free, alternation free, and iteration free respec­
tively. That is, the program functions of these structures abstract control flow to
define their net effect on data in a single step from entry to exit.

Table 4.2 Program function examples

Control Structure

do
w . - abs (x)

z . - max(w , y)
e..>ddo

X< y

:::ien
Z := X

~::.se

z : = y
E__"'!dif

X .- X - 2

e::1ddo

Program Function

w, z : = abs(x}, max(abs(x}, y)

z : = min(x, y}

(initial x odd__... x : = 1 1

initial x even__... x : = o)

68 Cleanroom Software Development

The single-entry/single-exit property of control structures and their func­
tion nodes is critical to scalability in clear box abstraction, design, and verifica­
tion. For this reason, clear box designs should avoid language features that can
interfere with this property (e.g., goto statements that permit arbitrary branch­
ing logic). Single-entry/single-exit control structures enable a natural scalabil­
ity for creating large designs while retaining intellectual control over their
structure and function . Specifically, control structures can be nested and
sequenced again and again in clear box designs as necessary to implement a
state box transition function.

To illustrate, consider the clear box procedure design in Figure 4.3. At the
lowest level of design, the net effect from entry to exit of while q do i enddo

can be abstracted to a loop-free program function named A, and the net effect
of do g; h enddo can be abstracted to a sequence-free program function named
B. Now the i fthene lse can be treated at a higher but function-equivalent level
of abstraction as if p then A e lse B endi f, with no details of its constituent
sequence and whiledo required, and in tum can be abstracted to a program
function named C. Now do C; k enddo can be treated at a higher but again
function-equivalent level of abstraction with no details of the constituent
i f thenelse required. The net effect of this sequence can be abstracted to pro­
gram function D to define the overall program function of the entire clear box.
Thus, clear box designs define a natural hierarchy of abstractions that record the

I

D-+-1
I

v- J -- J J

I ~---=====---====-------: ~-----=====--------L-----

Program Function Defines Effect of

A whiledo: while q do i enddo
B sequence: do g; h enddo
c ifthenelse: if p then A else B endif
D sequence : do C; k enddo

Figure 4.3 Abstraction hierarchy of a clear box

4.2 Clear Box Development 69

full functional effect of abstracted operations at each level, with no reference to
their procedural details required, but no behavior unaccounted for in the abstrac­
tions. This hierarchy of abstractions exists within an algebra of functions , where
replacement of a control structure by its program function is the sole operation,
and keywords d o, if , and so forth, act as function operators. Function abstrac­
tion is a complete and systematic method for recovering program documenta­
tion for understanding and maintenance.

4.2.3 Clear Box Design with Intended Functions

The process of reading and abstracting control structures to recover the previ­
ously described program functions is reversed for procedure design. In this
case, the functions are called intended functions. Clear box designs are elabo­
rated through stepwise refinement of intended functions, which define the
required net effect on data of their subsequent control structure refinements.
The initial intended function for a clear box refinement is a state .box specifica­
tion. Intended functions internal to clear box refinements may be embedded in
their design text according to the design language syntax depicted in Table 4.3.

quare brackets ([]) are used in Table 4.3 to delimit the intended functions .
Comment delimiters can be employed for this purpose in implementation lan­
guages. The overall intended function of each control structure, denoted by [f),
· attached to its entry point. Intended functions internal to control structures are
attached to their keywords. For example, in the if thene 1 s e structure, intended
functions [g] and [h] are attached to keywords t h e n and else respectively to
document the net effect of operations g and h respectively.

Table 4.3 Intended functions in
control structures

Control
Structure

O::equence

Intended Function
Placement

[f l
do

g;
h

enddo

=::zhen [f l
if

p
then g]

g
endif

continued

70 Cleanroom Software Development

Table 4.3 continued

Control Intended Function
Structure Placement

Ifthenelse [f l
if

p
then [g]

g
e l se [h]

h
endif
-

Whil edo [f l
whil e

p
do [g]

g
enddo --

Dount il [f l
do [g

g
until

p
enddo
--

Dowhi ledo [f l
do [g

g
whil e

p
do [h l

h
enddo

Figure 4.4 depicts the refinement process for an intended function on the
left operating on integer variables, itself embedded in a larger design not shown.
This function is refined in the first step into a sequenc e of two operations in the
center of the figure, themselves expressed as intended functions for further
refinement. (Variable b is local to the design and not referenced outside it, and
thus is not mentioned in the original intended function.) Note that the original
intended function propagates to this s equence refinement to document its net
effect on data. The two new intended functions are next refined in the second
step into, in this case, i f t hene 1 s e control structures on the right of the figure,
and are likewise propagated to these refinements to document their designs.

First Refinement Step

[set d to minimum
· of c and absolute

value of a]

[set d to minimum
of c and absolute
value of a]

do
[set b to absolute
value of a]

[set d to minimum
of c and bl

enddo

Second Abstraction Step

4.2 Clear Box Development 71

Second Refinement Step

[set d to minimum
of c and absolute
value of a]

do
[set b to absolute
value of a]

if a < 0
t hen

b : ~ -a
el s e

b :~ a
endif
[set d to minimum
of c and b]

if b < c

then
d : ~ b

else
d : ~ c

e nd if
end do

First Abstraction Step

Figure 4.4 Stepwise refinement with intended functions

Figure 4.4 also depicts two abstraction steps that correspond to reading the
control structures to derive their program functions . The abstracted program
functions and the intended functions should be equal. Although this simple
example can be readily understood by direct reading of its control structures, in
larger designs intended functions play a critical role in preserving design inten­
tion for verification and maintenance. It is easy for the eye and mind to summa­
rize five or 10 lines of design mentally, but not so easy to summarize 50 or 100
lines. It is clear that a correctness relationship exists between intended functions
and their control structure refinements, as discussed next.

It is also important to note that clear box refinement is not a lockstep
process. The top-level structure of a design cannot be created without a good
understanding of how it will be refined into lower level structures. Design is an
iterative, creative process; as understanding improves, better ideas emerge.
Insights at lower levels may lead to revisions at higher levels. The critical point
is that the last intellectual pass through a design should be top down to validate
and verify its intended function definitions and refinement steps.

72 Cleanroom Software Development

4.3 Clear Box Verification

4.3.1 The Correctness Questions

Clear box correctness verification is a mathematics-based method for demon­
strating that a procedure meets its specification. Just as the correctness of a
long-division computation is not demonstrated by rechecking the division, but
rather by multiplication, so too the correctness of a procedure is not demon­
strated by rechecking its refinement, but rather by other means. The clear box
verification method widely used in Cleanroom development is called function­
theoretic correctness verification. Using the function-theoretic approach, every
control structure in a procedure is verified to do what its intended function spec­
ifies. An entire procedure has been verified when all its constituent control
structures have been verified. Verifications are typically carried out in team
reviews.

The Correctness Theorem (Linger, Mills, and Witt 1979) defines correct­
ness questions for every clear box control structure, as depicted in Table 4.4.
The number of questions to be asked and answered for each control structure is
one for sequence structures, two for alternation structures, and three for itera­
tion structures . Because procedures of any size contain a virtually infinite num­
ber of execution paths, verification by tracing paths is impossible. However,
despite the number of paths they define, procedures are composed of a finite
number of control structures. By verifying every control structure in a few steps
(three or fewer for the structures in Table 4.4), procedure verification is reduced
to a systematic process with a practical total number of steps. The correctness
questions can be applied at varying levels of rigor, ranging from verbal proofs in
team reviews to detailed written proofs. The level of rigor employed is a busi­
ness decision based on risks and rewards. Experience has shown that verbal
proofs in team reviews are very effective in developing high-quality software.

The correctness questions in the table follow directly from analysis of exe­
cution paths in the corresponding control structures. For the sequence, the only
path that exists is g followed by h; so for correctness, the composition of these
function nodes must do f , the intended function of the sequence.

For the i fthen, when pis true, the only path is through g; so for correctness,
g must do fin this case. When p is false, the only path is through nothing (the
identity function), so for correctness doing nothing must do fin this case; that
is, f must already have been done when p is false. Analysis of the i f t h e nelse

is similar, except when p is false, the only path is through h, so for correctness h
must do fin this case.

The correctness of iteration structures can often be difficult to prove
directly. Fortunately, the correctness of an iteration that terminates can be deter-

4.3 Clear Box Verification 73

Table 4.4 Correctness questions for clear box control structures

Control
Structure

Sequence

=:chen

Design
Language

[f l
do

g;
h

enddo

[f l
if

p
then

g
endif

=:thenelse [f l
if

:::Ountil

:::Owhiledo

p
then

g
else

h
endif

[f l
while

p
do

g
enddo

[f l
do

g
until

p
enddo

[j J
do

g
while

p
do

h
enddo

Correctness Question
(for all possible inputs to/)

(1) Composition question:
Does g followed by h do j?

(1) If tes t true question:
When p is true, does g do f?

(2) If test false question:
When p is false, does doing nothing do j?

(1) Iftest true question:
When p is true, does g do j?

(2) If test false question:
When,p is false, does h dof?

(1) Temiination question:
Is termination guaranteed?

(2) Whi letest true question:
When p is true, does g followed by f do j?

(3) Whiletest false question:
When p is false, does doing nothing do j?

(1) Termination question:
Is termination guaranteed?

(2) Whiletest true question:
When p after g is false, does g followed by f do j?

(3) Whiletest false question:
When p after g is true, does g do j?

(1) Termination question:
Is termination guaranteed?

(2) Whiletest true question:
When p after g is true, does g followed by h followed
byjdoj?

(3) whiletest false question:
When p after g is false, does g do j?

74 Cleanroom Software Development

!=

!=--

!=-- ~
Figure 4.5 Deriving the whiledo correctness question

mined by verifying a simpler but equivalent ifthene lse structure derived
through transformations on execution paths of the iteration. For example, con­
sider the whiledo control structure shown in graphic form in the top display of
Figure 4.5. In the middle display, an equivalent ifthenelse has been con­
structed with the whiletest (p) as its predicate. For the true branch of the
ifthenelse, one step (g) of the iteration is executed, followed by reentry to the
whiledo itself, just as in execution of the original whiledo. For the false branch,
nothing is done, likewise just as in execution of the original whiledo. This new
if thene lse is thus execution equivalent to the whiledo in the top display. But
the whiledo on the true branch of the new ifth e nel s e is postulated to be equiv­
alent to f; so in the lower display, it is replaced by f Thus, the correctness of a
whil e do is reduced to the correctness of an ifthenelse and a seque nce . The
correctness questions for the whiledo can now be derived by analysis of the
execution paths of the ifthenelse. The true path requires that g followed by f
must do f, and the false path requires that doing nothing must do f

In illustration of the true-case correctness question, consider the following
whiledo:

[read remaining records from file, if any l
while

[records remain]
do

[read next record]
e nddo

4.3 Clear Box Verification 75

The correctness question is: When the whilet es t is true, does g followed by f
do f? It is expressed as

When [records remain] is true,

does [read next record] followed by [read remaining records from file, if any]

do [read remaining recordsfromfile, if any]

The answer is yes, because given an initial nonempty state of the file (guaran­
teed by the predicate evaluation of true), [read next record] (representing g)
will result in one fewer record left to be read, resulting in either an empty or
nonempty file, and [read remaining records from file, if any] (representing f)
will either complete the reading of a nonempty file or do nothing if the file is
already empty. Thus the s equen ce (g followed by f) has the same effect as the
intended function r read remaining records from file, if any l (f), given the same
initial state of the file.

Note that in addition to the true and false questions for the whi l edo , a third
question is required to show that the iteration terminates. Termination argu­
ments are often based on some monotonic property of the iteration that eventu­
ally results in failure of the test. For example, the iteration here that reads
consecutive records from a file is guaranteed to terminate when the file is
exhausted. Analysis for the daunt il and dowh i l edo structures is similar.

4.3.2 A Correctness Verification Example

Consider the following clear box procedure and how to verify it. Such a proce­
dure could be a low-level subroutine in a large clear box design. As such, its
overall intended function (lines 1-2) would be involved in verification of the
higher level procedures that invoke it. The procedure accepts as arguments an
integer array named emp (for employee number) of n elements, an integer
named id (for identification), and an integer named i. (Array emp is guaranteed
to be in ascending sorted order.) The intended function of the procedure
requires that i be set to the location in emp that matches i d, if any; otherwise, i
is to be set to o. The procedure implements a binary search for the value of id in
e:np . The intended functions of th.e procedure, delimited by square brackets, are
expressed in an informal yet concise style. Because some operations are self­
evident, not every control structure carries an intended function.

76 Cleanroom Software Development

1 [if possible , set i s uch that emp(i) = id and 1 <= i <= n ,

otherwise set i to 0]

2 procedure search(id , i: int eger ; emp(l .. n): array o f integer)

3 bot, top , mid : integer

4 i : = 0

5 bot : = 1

6 top : = n

7

8

[if possible , set i so that emp(i)

otherwise leave i unchanged]

9 while

10 bot <= top & i = 0

id and bot <= i <= top ,

11 [if id = emp((bot+ top)/2), set ito (bot+ top)/2,

otherwise

12 if id > emp((bot + top)/2), set bot to (bot+ top)/2 + 1,

otherwise

13 if id < emp((bot + top)/2), set top to (bot+ top)/2 - 1]

14 do

15 mid : = (bot + top)/2

16 if

17 emp(mid) = id

18 then

19 i := mi d

20 else [if id > emp (mid) , set bot to mid + l, otherwise

21 if id < emp(mid), set top to mid - 1]

22

23

24

25

26

27

if

emp(mid) < id

then

bot := mid + 1

else

top : = mid - 1

28 endif

29 endif

30 enddo

31 endprocedure

The verification will be carried out by asking and answering the correct­
ness questions, just as is done in a team review. The control structures can be
verified in any order (e.g., top down, bottom up, or in some combination). After
all the control structures have been verified, no matter the order, the entire pro­
cedure is verified. The following verification is carried out in top-down order.

4.3 Clear Box Verification 77

The sequence at lines 4 through 8. Consider the sequence of three assign­
ments at lines 4 through 6, followed by the intended function at lines 7 and 8:

4 i : = 0

5 bot . - 1

6 top . - n

7 [if possible, set i so tha t emp(i)

8 otherwise leave i unchanged]

id and bot <= i <= top,

The sequence correctness question requires that the composition of opera­
tions in this four-part sequence satisfy the intended function given at line 1:

1 [if possible, set i such that emp(i) = id and 1 <= i <= n,

otherwise set i to 0]

Proof reasoning: At line 7, bot and top can be replaced by their prior val­
ues from lines 5 and 6; namely, 1 and n respectively. Then the intended function
at lines 7 and 8 becomes

7 [if possible, set i such that emp(i) id and 1 <= i <= n,

8 otherwise leave i unchanged]

as is required by the intended function at line 1. Also, i is set to o at line 4 and is
left unchanged by the intended function at lines 7 and 8 unless i d is found in
e mp, also as required. Thus, the sequence appears to be correct.

The whiledo at lines 9 through 13, 30. The intended function for the
-wh i ledo is given at lines 7 and 8, and for its dopart at lines 11 through 13. Note
that the dopart intended function defines the net effect of all the operations in
its refinement at lines 14 through 29, and thus participates in the verification in
place of these operations. The structure to be verified is thus

9 while

: o bot <= top & i = 0

(do)

:1 [if id = emp((bot+ top)/2), set ito (bot + top)/2,

otherwise

:2 if id > emp((bot + top) /2), set bot to (bot + top) /2 + 1,

otherwise

-:_3 if id < emp((bot + top)/2), set top to (bot+ top)/2- 1]

30 enddo

78 Cleanroom Software Development

The whiledo correctness question is composed of three parts that must be
proved to show that the whiledo satisfies its intended function at lines 7-8:

7 [if possible , set i so that emp(i) = id and bot <= i <= top ,

8 otherwise leave i unchanged]

Proof reasoning: First, termination (while tes t evaluates false) is guaran­
teed because on each iteration, either id is found in emp and i is set to a nonzero
value, or either bot is increased or top is decreased, so that eventually the
whil etest will fail and the loop will terminate. Second, for the whil etest true
case, the two-part sequence of operations defined by the dopart intended func­
tion (g) followed by the whiledo intended functionf(recall the definitions off
and g from Table 4.4)

11 [if id = emp((bot + top) /2) , set i to (bot+ top)/2,

otherwis e

12 if id > emp ((bot + top)/ 2), se t bo t to (bot+ t op)/2 + 1 ,

otherwise

13 if id < emp((bot + top) /2) , set top to (bot+ top)/2 - 1]

7 [if poss ible, set i s o that emp(i) = i d and bot <= i <= top ,

8 otherwise leave i unchanged]

must satisfy the whiledo intended function (f):

7 [if possible , set i so that emp(i) id and bot <= i <= top,

8 otherwise leave i unchanged]

To see this, note that performing the first part of the sequence (the dopart

intended function at lines 11- 13) will either find i in e mp (line 11) or will
exclude a portion of emp from further search (where i is guaranteed not to be
found) by adjusting the value of top or bot as required (lines 12 and 13). Thus,
the dopart function may find i , but if not it will not prevent finding i if possible
in performing the second part of the sequence (the whiledo intended function at
lines 7- 8), which now searches that part of emp where i may still be found.
Also, the dopart intended function (lines 11- 13) and the whiledo intended
function (lines 7 and 8) do not change the value of i unless it is found in emp.

Thus, the two-part sequence appears to be equivalent to the whi l edo intended
function, as is required.

Third, for the whiletes t false case, doing nothing must do the intended
function. When the whil etest is false, either i has already been set to the
appropriate value (line 11) or the entire array has been searched (each iteration,
lines 11 and 12 exclude successive portions of the sorted array where id is guar­
anteed not to be found, until finally no portions remain to be excluded- the

4.3 Clear Box Verification 79

entire array has been searched) and id has not been found. In either case, doing
nothing is the appropriate action to satisfy the intended function.

The depart at lines 11 through 21, 30. The intended function for the dopart

is given at lines 11 through 13, and the intended function for the nested
i fthenelse is given at lines 20 and 21. Note that a sequence with firstpart

an assignment to mid and secondpart an i fthenel·se is verified here. Such
combined analysis of control structures in verification is useful when proof
arguments are simplified as a result:

:1 [if id = emp((bot+ top)/2), set ito (bot+ top)/2 ,

otherwise

: 2 if id > emp((bot + top)/2), set bot to (bot+ top)/2 + 1,

otherwise

:3 i f id < emp((bot + top)/2), set top to (bot+ top)/2 - 1]

:4 do

:s mid := (bot+ top)/2

: 6 if

emp(mid) id

: s then

: 9 i := mid

0 else [if id > emp(mid), set bot to mid+ 1 , otherwise

2 : if id < emp(mid), set top to mid - 1]

29 endif

30 enddo

Proof reasoning: Given the assignment at line 15, the ifthenelse can be
rewritten as

emp(bot + top)/2 = id

: 8 t hen

:_g i :=((bot+ top)/2)

: o else [if id > emp((bot + top)/2), set bot to ((bot+ top)/2) + l ,

otherwise

if id < emp((bot + top) /2), set top to ((bot + top) /2) - 1]

::'9 endif

Thus, the iftest at line 17 and assignment at line 19 perform the first part of
dle intended function at line 11, and the embedded intended function at lines 20
and 21 performs the remaining two parts ofthe intended function at lines 12 and
13, as required.

80 Cleanroom Software Development

The ifthenelse at lines 20 through 28. This control structure is correct by
direct inspection of the true and false correctness questions.

20 e lse [if id > emp (mid) , se t bot to mi d + 1 , othe rwise

21 if i d < emp(mid), s e t top to mid - 1]

22 if

23 emp (mi d) < i d

24 then

2 5 bo t : = mid + 1

26 el se

27 t op : = mid - 1

28 endif

Having completed the proof arguments for all the control structures in the
search procedure, the correctness of the entire procedure can now be asserted.
The level of proof reasoning illustrated here is typically carried out verbally in
team reviews, stepping through each correctness question in turn, with group
agreement required for correctness. This process of acquiring team consensus is
extremely effective in producing high-quality software because team fallibility
is far less than individual fallibility. Additional rigor is always available for ver­
ifying life-, mission-, and enterprise-critical software through mathematics­
based intended functions and written proofs of the correctness questions.

4.3.3 Verification in Practice

To make verification as practical as possible (fast and effective), several aspects
of formal verification described earlier must be adapted to each situation. For
example, one would need a correctness condition for every language construct
used to have a formal basis for doing function abstraction correctly in terms of
transformations on the data space visible to the structure. It is often beneficial
for a team to agree to use a limited subset of the programming language and to
write constructs uniformly. As a practical matter, it would be wise to have a
style guide for team coding practices that is as simple and as limited as the situ­
ation allows.

The methods described earlier for verification are the very same methods
used to reverse-engineer code. However, there is a vast difference in level of
effort between verification of code that has been designed in full knowledge
that its authors must verify the code, and verification of code written by others
with no verification anticipated (reverse engineering). The sequence enumera­
tion leads to black box and state box specifications that can serve as the
intended functions to be coded. Further design decisions made at the clear box
level may change these intended functions somewhat; however, in general,
intended functions can be represented in the code by reference to the state box
specifications.

4.4 Example: The Security Alarm Clear Box 81

Finally, the verification process will be conducted by a team reading the
code, mentally posing and answering correctness questions, abstracting the pro­
gram function of various constructs, and comparing that program function with
the intended function. Function abstraction and comparison with the intended
function is the essence of verification. Given straightforward and uniform cod­
ing practices, teams become very effective at the cognitive pattern matching of
mental and verbal verification, which is also known as proof by direct assertion.
In practice, a team would only "go to the board" when there is controversy regard­
ing the actual transformation on data or the comparison with the specification.

Successful verification does not mean that the code will not change.
Verification sessions often lead to insights for better designs, and sometimes the
better idea justifies redesign of the code, which should be reverified. Errors
found, of course, lead to code changes and repeated verification. The verifica­
tion process can consume substantial resources; however, this resource alloca­
tion is very cost-effective because of the nearly total elimination of rework after
the code goes into testing.

Stavely (1999) gives an intuitive and thorough treatment of design and ver­
ification using intended functions.

4.4 Example: The Security Alarm
Clear Box

The state-based specification for the security alarm will now be used for clear
box design. The security alarm illustrates a clear box that can be developed
from the state box with little algorithmic elaboration required. However, as the
example illustrates, substantial thought should be applied to the architecture of
clear boxes to provide flexibility for future business needs.

4.4.1 Design Strategies

An obvious design strategy, though not necessarily the best one, is simply to use
a high-level switch structure to send each stimulus to a lower level component.
Four lower level components would be needed: one each for Trip, Set, Digit,
and Clear. The lower level components would perform the actions specified in
the tables presented earlier. Another obvious design strategy, again not neces-
arily the best one, is to use a high-level switch structure based on the current

values of state data. There is no compelling reason for this choice, but it would
be easy to produce.

These two options are so straightforward that the code could be generated
directly from the tables, with no design decisions required. As modifications
and enhancements are made in the future, only the specification needs to be

82 Cleanroom Software Development

maintained. Code could always be generated at the level of abstraction of the
specification. If, on the other hand, the product is to be part of a product line,
with related products containing similar components, then separation of con­
cerns may be a design priority to facilitate reuse across the product line. A mod­
ular, extensible architecture based on device objects may be desired.

4.4.2 Flexible Architecture for Product Evolution

The simple security alarm might be the base product in a prospective line of
consumer security devices. The following features might be included in the plan
for derivative products:

User-programmable codes
A device status window
Event data storage
Devices with multiple trip mechanisms
Alarms with various characteristics (e.g. , time-out, signal type, volume
level)
Connectivity to other devices

This list could be elaborated to all conceivable features of derivative prod­
ucts. A software architecture that isolates each aspect of the device will accom­
modate product evolution by allowing changes to parts while preserving the
integrity of the whole. The important aspects of the security alarm might be
described as the device display, the code, and the alarm. Three principal com­
ponents will be defined for the security alarm clear box architecture: a
DisplayManage r, a Cod eMana ger, and an AlarmManager .

4.4.3 Security Alarm Clear Box Design

The clear box for the security alarm is a set of components that collectively
implements the state box specification developed in Chapter 3 and summarized
in Tables 3.10 to 3.14. The clear box is expressed in an object-oriented pseudo
code. The pound symbol (#) precedes each comment in the clear box. Some
comments include numbers that are preceded by SB (for state box), followed by
tag numbers as defined in Tables 3.10 through 3.14. These comments are traces
to the intended functions.

The security alarm state box can be considered as a disjoint conditional
rule that defines 39 transitions. Examination shows that transition 9 defines ini­
tialization whereas transitions 38 and 39 define finalization. After initialization,
a loop will monitor events and produce responses as indicated in all other transi­
tions of the state box.

A clear box implementation of state variables invented during state box
development often involves some variation on their state box form. In this
example, the state variables are implemented as follows.

4.4 Example: The Security Alarm Clear Box 83

1. The Set stimulus activates the device. All device behavior occurs when
the device is active, as seen in the state box tables by the fact that the
Device state variable is always ON and corresponds to LightStatus.

2. The state variable Alarm is implemented as the variable AlarmStatus

in the AlarmManager component.

3. The state variable Code is implemented as the variable EntryStatus

in the codeManager component.

Security Alarm;

#--

Declarations

#--

Constants

CLEAR constant 0;

STOP constant -1;

TRIPSIGNAL constant -99;

SET constant -100;

Variables

no error or alarm

stops main loop on correct code

hardware trip wire signal

Set button on keypad pressed

Event integer init (CLEAR); #any keypad entry or hardware signal

SecurityStatus boolean init (CLEAR); #alarm on or off

#--

Main Program

#--

start the device; SB 9

DisplayManager (Start);

while (Event != STOP)

do

get next user input or hardware signal

get (Event);

switch (Event) ;

SB 10-17

case (SET);

do nothing

SB 1-8

case (TRIPSIGNAL)

AlarmManager (Query, SecurityStatus);

if (SecurityStatus

then

CLEAR)

84 Cleanroom Software Development

SB 1,3,4,7

A1armManager (Start);

SB 4,7

CodeManager (Alert, Event);

else do nothing; SB 2,5,6,8

endif

SB 18-37

default

CodeManager (Evaluate, Event);

CodeManager will return STOP if code entry is

complete

endswitch

enddo

SB 38,39

AlarmManager (Stop);

DisplayManager (Stop);

end of Security Alarm main program

OBJECT TEMPLATES

DisplayManager (Service)

AlarmManager (Service, Data)

CodeManager (Service, Data)

DisplayManager (DisplayService);

#--

Data

#--

Constants

ON constant 1;

OFF constant 0;

State data

light is on

light is off

LightStatus boolean static init (OFF); # device activation light

#-----------------------------,----------------------------------

Services

#--

SB 9

Start;

LightStatus :~ ON;

SB 38-39

Stop;

LightStatus .- OFF;

end DisplayManager

4.4 Example: The Security Alarm Clear Box 85

AlarmManager (AlarmService, Status);

#--

Data

#--

Constants

ON constant l;

OFF constant 0;

State data

alarm is on

alarm is off

AlarmStatus boolean static init (OFF); # alarm activation status

#--

Services

#------------~---

SB 1,3,4,7

Start;

AlarmStatus .- ON;

Query;

Status

SB 39

Stop;

AlarmStatus;

AlarmStatus .- OFF;

end AlarmManager

CodeManager (CodeService, Event);

#--

Data

#--

Constants

NONE constant 0;

1_0K constant 1;

2_0K constant 2;

CLEAR constant 0;

COMPLETE constant -1;

ERROR constant -2;

no keypad entry

first correct digit in code entered

second correct digit in code entered

Clear button on keypad pressed

correct code entered

error in code entry

86 Cleanroom Software Development

State data

CodeCombination array static init([1] :=7; [2] :=5; [3] :=7]) #code is 757

EntryStatus integer static init (NONE); # code entry status

#--

Services

#--

SB 4,7

Alert;

if ((EntryStatus = 1_0K)

then EntryStatus := ERROR;

endif

SB 18-37

Evaluate;

if (Event

then

CLEAR)

(EntryStatus 2_0K))

clear button has been pressed; SB 26-33

EntryStatus := NONE;

else

digit has been pressed

switch (EntryStatus);

case (NONE)

SB 34,35

if (Event= CodeCombination[1])

then EntryStatus := 1_0K;

SB 18,19

else EntryStatus := ERROR;

endif

case (1_0K)

SB 36,37

if (Event = CodeCombination[2])

then EntryStatus := 2_0K;

SB 21,23

else EntryStatus := ERROR;

endif

case (2_0K)

SB 38,39

if (Event

then

CodeCombination[3])

4.4 Example: The Security Alarm Clear Box 87

EntryS t atus := NONE;

Event : = COMPLETE;

SB 24 , 25

else EntryStatus = ERROR;

endi f

de fau l t;

if EntryStatus ERROR, do no thing ; SB 20 , 22

endswit ch

endif

e nd CodeManager

4.4.4 Correctness Verification of Clear Box

Verification of the security alarm clear box is done by abstracting the program
function and then comparing the results with the state box specification, fol­
lowed by analyzing the correctness conditions. At the risk of belaboring the
issue, many details are written out here that in practice would be dispatched
quickly in team review. Increasingly, however, full documentation of correct­
ness verification is being required in safety-critical and high-business-risk
applications.

The verification fundamentals described earlier are used, with effects on
data presented in <before, after> and tabular forms. The column titles in Tables
4.5 through 4.7 give the names of all the variables mentioned in the code of the
object. Each row of the table represents the status of all variables on exit. The
rightmost column contains a trace to the state box row being implemented, and
an asterisk is used to flag partial or distributed implementation. Thus the effects
on data are fully summarized and the effect of any use of the object is easily
seen. The program function of each of the three objects is abstracted before that
of the main program. Logic symbols are & for logical and, I for or, and - for not.
Dashes indicate no change and x represents don't know or don't care. All tables
are written out here; in practice, perhaps only that of the codeManager would be
written.

The program function of CodeManager is a bit more complex than the oth­
ers . Each numbered row has two rows within it; the upper represents the data
space before execution and the lower represents the data space after execution.

codeManager makes essentially 10 transformations in monitoring user
attempts to enter a correct three-digit code to tum off the device. Row 8 changes
=:vent to -1 to indicate success. Row 1 shows that an alarm signal will disrupt a
disarm code in progress, whereas row 2 shows that no code in progress results
in no change to the data space. Row 3 shows that SET initializes and CLEAR resets
progress status, and a newly entered, correct three-digit code is required. Row 4

~~================-----------

88 Cleanroom Software Development

Table 4.5 Program function of DisplayManager

Display
Service

Start

Stop

LightStatus

0

State Box Trace
Row No.

9

38*, 39*

Table 4.6 Program function of AlarmManager

Alarm State Box Trace
Service Status AlarmStatus Row No.

Start 1 1, 3, 4*,7*

Query 'i)',.,

Stop 0 39*

shows that a good first digit (meaning the correct digit at the right time) records
progress, otherwise it results in an error (row 5). Row 6 shows that a good sec­
ond digit records progress, otherwise it results in an error (row 7). As noted ear­
lier, a good third digit results in Event being set to -1; otherwise, it results in an
error (row 9). All other inputs result in no change to the data space, as indicated
in row 10.

The visible data space of the device is a pair <Li ght Status, AlarmSt atus >.

The overall structure of the top-level procedure is a four-part sequence with
correct behavior:

< OFF, OFF>

Di sp layMa n a g er

<ON, OFF >

While-do-loop

< ON, x>

Al armMa nag e r

<ON, OFF >

DisplayManager

<OFF, OFF >

When the device is turned on, DisplayManager turns on the light <OFF,

OFF> to <ON, OFF> . Event is defaulted to CLEAR, and so the loop is always
entered.

Within the loop, (1) further instances of SET have no effect; (2) TRIPSIGNAL

will tum on the alarm and tell the CodeManager (so that if disarming is in

4.4 Example: The Security Alarm Clear Box 89

Table 4.7 Program function of CodeManager

() () ()
0 0 0
p, p, p,
(0 (0 (0
() () ()
0 0 0 !a trl fr 8 8

t1 t1 I» ::; f-' · f-' · f-'· it " ::; ::; ::;
11 PJ PJ PJ OJ :c '< rr rr " 0

0 (/) r.n f-' · f-' · f-'· ><
:t!

(1) trl rr 0 0 0 ~ < < PJ ::; ::; ::; z c;· (0 rr
~ ~ ~ I»

p ::; c f-' tv w 0
(1) rr w ~ ~ ~

(1)

1 Alert X 112 7 5 7 4*, 7*
- -2 - - -

2 Alert X -(112) 7 5 7 1*, 3*
- - - - -

3 Evaluate & 0 X 7 5 7 26-33
- 0 - - -

4 Evaluate & 7 & 0 7 5 7 34,35
- 1 - - -

5 Evaluate & -7 & 0 7 5 7 18, 19
- -2 - - -

6 Evaluat e & 5 & 1 7 5 7 36,37
- 2 - - -

7 Evaluate & -5 & 1 7 5 7 21,23
- -2 - -

8 Evaluate & 7 & 2 7 5 7 38,39
-1 0 - - -

9 Evaluate & -7 & 2 7 5 7 24,25
- -2 - - -

10 Eva l uat e & other & other 7 5 7 20,22
- - - - -

progress it will be interrupted, if the alarm is off; if the alarm is on, then it will
have no effect); (3) all other values of Events will be given directly to the
codeManager to evaluate. It is possible for the loop to terminate. This happens
when and only when CodeManager sets Event to -1 , whereupon the loop termi­
nates immediately and the device behavior is <oN, x>.

On exiting the loop, AlarmManager is called and the device goes from
< ON, x > to < ON, OFF>. Di splayManager is called and the device goes from < ON,

OFF> to < OFF, OFF>. This analysis is easily restated directly in terms of correct­
ness questions in a further illustration of verification methods.

90 Cleanroom Software Development

The overall structure of the top-level procedure is a four-part sequence,

with firstpart , thirdpart , and fourthpart object service invocations and
with s econdpart a whil e do. The sequence correctness question requires that
the composition of these four parts must carry out the intended function; in this
case, successive transitions of the state box itself. Inspection shows that f irst ­

part correctly implements transition 9, start-up. Likewise thirdpart and
fourthpart correctly implement transitions 38 and 39, with the assumption
that whi ledo terminates. For correctness, secondpart whi ledo must carry out
all state box transitions other than 9, 38, and 39, and must also terminate on
completion of a correct code only. These assumptions define the required,
intended function of the wh i ledo .

The dopart of whiledo is a two-part sequence, with firstpart a get

statement that obtains the current stimulus, and secondpart a swit ch statement
that processes it. This sequence is correct by inspection with the provision that
secondpart processing is correct.

secondpart is comprised of three cases that are based on the current stim­
uli. The first case deals with the Set stimulus, and inspection shows that this
case correctly implements transitions 10 through 17.

The second case, TRIPSIGNAL, is composed of a sequence of AlarmManager

and an ifthenelse. The if test composes the AlarmManager with either the
thenpart or the el separt. If the alarm is off, it is turned on no matter what
the current state, as required by transitions 1, 3, 4, and 7, and codeManager is
invoked to set Entrystatus to -2 if a code entry was in progress, as required by
transitions 4 and 7. If the alarm is on, there is no response or state change as
required by transitions 2, 5, 6 and 8. Thus, the second case correctly handles
transitions 1 through 8.

The third case deals with all other stimuli and is composed of CodeManager,

which directly implements transitions 18 through 37. Thus, dopart correctly
implements transitions 1 through 8 and 10 through 37, and sets the loop exit
conditions. Given this analysis, the three whiledo correctness conditions-ter­
mination, whiletest true, and while t est false-can be addressed. The clear
box appears to be a correct implementation of the state box.

4.5 References

R.C. Linger, H.D. Mills, and B.l. Witt. Structured Programming: Theory and
Practice. Reading, MA: Addison-Wesley, 1979.

H.D. Mills, R.C. Linger, and A.R. Hevner. Principles of Information Systems
Analysis and Design. Orlando, FL: Academic Press, 1986.

A.M. Stavely. Toward Zero-Defect Programming. Reading, MA: Addison­
Wesley, 1999.

5
Cleanroom Software
Certification

A statistical approach to software testing was developed both by Harlan Mills
(Mills, Dyer, and Linger 1987) and colleagues at IBM, and by John Musa
(1993) and colleagues at AT&T. The terminology used by Mills and Musa dif­
fered slightly, but their ideas were similarly drawn from scientific approaches to
product testing and certification in mature engineering disciplines. In other in­
dustries, products are typically certified under protocols in which random sam­
ples of the product are drawn, tests characteristic of operational use are applied,
analytical or statistical inferences are made, and products meeting a standard
are "certified" as fit for use.

The Cleanroom approach to software testing and certification-statistical
resting based on a usage model-is the application of such a protocol to soft­
ware (Poore and Trammell 1998). In statistical testing, an operational usage
model of the software is developed, test cases are generated randomly from the
usage model, and test results are interpreted according to mathematical and sta­
tistical models to yield measures of software quality and test sufficiency.
Traditional forms of structural testing are complementary with Cleanroom sta-
. tical usage testing, and need not be abandoned. However, many organizations

have found that usage testing is a more economical and efficient approach to
c!evelopmental testing, and it results in higher reliability of fielded software.

5.1 Benefits of Statistical Testing
Based on a Usage Model

ratistical usage testing of a software system produces measures of product
d process quality for management decision making throughout the life cycle.

91

92 Cleanroom Software Certification

Because a usage model is based on specifications rather than code, the insights
that result from model building can be used to make informed management
decisions in the early stages of a project when the opportunity to prevent prob­
lems is greatest. The following are key benefits of usage modeling and statisti­
cal testing.

Validation of Requirements. A usage model is an external view of the sys­
tem specification that is readily understandable by system engineers, develop­
ers, customers, and end users. Interfaces and requirements are often simplified
or clarified when the usage model (including possible inputs, possible sequenc­
ing of inputs, and expected outputs) is reviewed systematically in the context of
operational use.

Resource and Schedule Estimation. Standard calculations on a usage
model provide data for effort, schedule, and cost projections, such as the mini­
mum number of tests required to cover all states and transitions in the model.
"What-if" analyses can be conducted to bound the best and worst case out­
comes of testing based on failure data.

Crafted, Nonrandom Test Cases. Special test cases, perhaps required by
contract or regulation, can be determined by examining the model to be sure
that certain sequences are tested. Existing test cases can be mapped to the
model to assess omissions or redundancy. The usage model becomes a refer­
ence model for all testing required or desired.

Automated Test Case Generation. A minimal coverage test script (the
minimal number of test events for complete coverage of the usage model) and
random test cases (based on the usage probability distribution) can be generated
automatically from a usage model. Model coverage testing ensures a minimal
level of function before random testing begins, and random testing provides a
basis for estimating operational reliability.

Effective, Efficient Testing. Faults are not equally likely to cause failures.
Faults that are on frequently traversed paths have a higher probability of causing
failures than faults that are on infrequently traversed paths. This simple fact is the
primary motivation for random testing: Faults are discovered in roughly the order
in which they would cause failures in the field. The test budget is spent in a way
that maximizes the increase in operational reliability resulting from testing.

Focused Testing (Biased Sampling). Usage models support biased sam­
pling of sequences of special interest, such as infrequently used but critical
functions. Separate models can be developed for these functions, or the origi­
nal model may be transformed, sampled, and the results corrected to remove
the bias.

5.2 Theoretical Foundations of Statistical Testing 93

Quantitative Test Management. Statistical testing based on a usage model
provides quantitative criteria for management decisions about completion of
testing and system release. The sufficiency of testing can be measured as the
statistical difference between expected usage (as represented in the usage model)
and tested usage (as recorded in testing) .

Estimate of Rel iabil ity. Using a statistical testing protocol, a valid estimate of
expected operational performance can be derived from the performance of the
software during testing. The actual test results (i.e., correct and incorrect perfor­
mance on each input) are recorded as weights on the usage model, and calcula­
tions on the model provide estimates of reliability in operational use.

5.2 Theoretical Foundations
of Statistical Testing

5.2.1 Populations and Samples

In statistical testing, software testing is viewed as a problem to be solved by
statistical methods. A subset of all possible uses of the software is generated,
and performance on the subset is used as a basis for conclusions about general
operational performance. In other words, a "sample" is used to draw conclu­
sions about a "population."

The premise that must be accepted as a starting point in this analogy is that
it is not possible to test all ways in which software may be used. This is appar­
ently not a premise that can be assumed as obvious. In discussing software test­
ing strategies with testing practitioners, it is not uncommon to hear someone
ay, "We have to test every possible use of the software; the kind of software we

develop could have catastrophic consequences if it is not tested completely."
The following simple examples are intended to demonstrate the impossibility of
testing all possible scenarios of use.

Software with a bounded but large input sequence length has a finite but
astronomical number of possible usage scenarios. The combinatorial growth in
possible input sequences yields a testing problem of surprising magnitude for
even a small application, as shown in the example in Table 5.1 from Wiener
(1 994). The example assumes a system in which (1) a usage scenario has at
least one input and at most 10 inputs, (2) 20 different inputs are possible, and
(3) inputs may be repeated. Such a system would be small indeed by today's
standards.

If each scenario in this example could be tested in one second, the system
would require more than 300,000 years to test. If 100 scenarios could be tested
per second, the testing time is reduced to 3,000+ years. If 100 scenarios could

94 Cleanroom Software Certification

Table 5.1 Scenarios

Length of
Input

Sequence No. of Possible Usage Scenarios

20 = 20

2 20x20 =400

3 20 X 20 X 20 = 8,000

4 20 X 20 X 20 X 20 = 160,000

5 20 X 20 X 20 X 20 X 20 = 3,200,000

6 20 X 20 X 20 X 20 X 20 X 20 = 64,000,000

7 20 X 20 X 20 X 20 X 20 X 20 X 20 = 1 ,280,000,000

8 20 X 20 X 20 X 20 X 20 X 20 X 20 X 20 = 25,600,000,000

9 ~x~x~x~ x~x~x~x~x~ = 512,000,000,000

10 ~x~x~x~x~x~ x ~x~x~x~ = 10,240,000,000,000

Total usage 10,778,947,368,420
scenarios

be tested per second on each of I 00 copies of the software, testing time is
reduced to 30+ years. Exhaustive testing is simply an impossible task, even
when the number of usage scenarios is finite.

Software with an unbounded input sequence length has a theoretically infi­
nite number of possible usage scenarios. For software with only two user
inputs, A and B, the possible scenarios of use (i.e. , scenarios that begin with
invocation and end with termination) are A, B, AA, AB, BB, BA, AAA, AAB,
ABA, BAA, BBB, and so on.

There is really no question about whether all possible scenarios of use will
be tested. They will not. The only questions are how the population of uses will
be characterized and how a subset of test cases will be drawn. A random sample
of test cases from a properly characterized population, if applied to the software
with proper experimental control, will allow valid generalization of conclusions
from testing to operational use. Any other set of test cases, no matter how
thoughtfully constructed, will not.

5.2.2 Stochastic Nature of Software Use

Software use can be viewed as a stochastic process (i.e., a series of events that
unfold over time in a probabilistic way). A Markov process is a stochastic
process that obeys the Markov property, in which the next event in a series can

5.3 Statistical Usage Testing in Practice 95

be determined based on the present, without reference to the past. Markov the­
ory has been applied to developing and analyzing software usage models
(Whittaker and Poore 1993, Whittaker and Thomason 1994), and mathematical
programming has been applied to model optimization (Walton, Poore, and
Trammell 1993). Software use can be modeled as a finite state, discrete-para­
meter Markov chain, and the standard analytical results for Markov chains can
be interpreted to yield insights about long-term operational use. Given a usage
model as a system of constraints (Walton 1995), mathematical programming
can then be used to generate the optimal model for an objective function (for
example, the model that "covers" all usage states and state transitions with the
fewest test cases). The formalisms used in Cleanroom software certification
provide a sound theoretical foundation for current practice and ongoing
advances in technology.

5.3 Statistical Usage Testing
in Practice

A software usage model characterizes operational use of a software system (i.e.,
the population from which a statistically correct sample of test cases can be
drawn). Statistical testing is ordinarily discussed within the context of normal
usage conditions, but other usage contexts (e.g., stress conditions, hazardous
conditions, maintenance conditions) may be specified as well.

5.3.1 Usage Specification

The first step in usage model development is to characterize general operational
conditions and perhaps stratify classes of usage. Software is "used" by a "user"
in some "environment." The definitions of user, use, and environment define the
operational environment to which inferences about the software apply. If multi­
ple usage contexts are important, separate models that are tailored for each con­
text may be used. Stratification of usage is a technique for characterizing usage
in as granular a fashion as necessary to describe the variation in operational
conditions.

A user of the software may be a person, a hardware device, or other soft­
ware, and each user type may be further stratified if necessary. Human users,
for example, might be classified by job type, access privileges, or experience in
the domain.

A use of the software may be a work session, a transaction, a telephone
call, or any other unit of service. A use may be bounded by power-on/power-off,
invocation/termination, switcQ.hook-up/switchhook-down, or any other appro­
priate start/finish events defining an instance of usage.

96 Cleanroom Software Certification

A usage environment can be characterized by platform, single user versus
multiuser, concurrent applications, system load, integrity of externally provided
data, and other factors.

5.3.2 Usage Model Development

The initial structure of a usage model follows directly from the software speci­
fication. The Cleanroom approach to specification provides a common point
of departure for both the development work described in the previous chapter
and the certification work described in this chapter. In particular, the canonical
sequences identified during specification define the initial state space for the
usage model.

A usage model may be represented as a graph in which the nodes represent
usage states and the arcs represent stimuli that cause transitions between usage
states. Note that it is states of use (e.g., "signed on," "transaction initiated," etc.)
that are referred to here, and not internal states of the software. Graphical usage
models are easily understood by developers and potential users, who often
participate in usage model review. Graphical representation aids in system
understanding but is generally only used for small systems or for high-level rep­
resentation of large systems. Usage models for large systems are often defined
abstractly at first, with automated support for model expansion through sub­
models and transformation of abstract stimuli to associated atomic stimuli.
Usage models may also be represented as tables or matrices, with rows and
columns representing states, and each cell representing the probability of the
row state being followed by the column state.

The structure of a usage model represents possible use of the software. A
probability distribution is next imposed on the structure to represent expected
use of the software under specified conditions. Transition probabilities between
states in the usage model may be based on field data if available, on estimates
from customer interviews, or on instrumentation of prior system versions. The
probabilities associated with states and state transitions in a usage model may
be set to reflect either routine or nonroutine conditions.

5.3.3 Usage Model Analysis and Test Planning

As mentioned, state transition graphs or matrices are common forms for repre­
senting usage models. Such structures are also common forms for representing
Markov chains. Although usage models may be represented in other forms,
Markov chain usage models are prominent in Cleanroom practice due to the
insights that may be gained from calculations on a Markov chain. Standard cal­
culations on a Markov chain provide expected values for measures that are
highly useful in test planning, such as

5.3 Statistical Usage Testing in Practice 97

Average number of events in a use (test case)
Longcrun state occupancy (i.e., percentage of total usage time)
Average number of uses (test cases) before a given usage state occurs

These results-available from the model alone (i.e., prior to software
design and implementation)-have application throughout the software life
cycle. They may be used to prune the specification, gauge complexity, focus
verification efforts, identify frequencies of events, plan the test schedule, and
determine the upper bound on inferences about reliability.

5.3.4 Test Case Generation and Testing

After the usage model has been developed, test cases can be generated automat­
ically by traversing the usage states of the model, guided by the transition prob­
abilities associated with the exit arcs from each state. Because each arc is
associated with a particular stimulus to the system, the traversal results in an
accumulation of successive stimuli that represents a particular test case. The test
cases constitute a script for use in testing. They may be annotated during test
planning to include instructions for conducting and evaluating tests, and they
may be annotated during testing to record results and observations. Test cases
may be applied by human testers or used as input to an automated test tool.

Several assumptions underlie the validity of inferences from a statistical
experiment. In general, proper control of the testing process may be safe­
guarded by the following four practices.

1. Each version of the software is tested in a unique statistical experi­
ment. Data from a given version may be used to estimate the reliability
of that version only. Data across versions are used to characterize the
testing process. Data used in reliability models are used to estimate the
reliability of the product; data used in reliability growth models are
used to estimate the effectiveness of the process.

2. The specification, environmental conditions, and the basis for evalua­
tion of performance are held constant for each version of the software
that is tested.

3. Test cases are run as generated. One does not "pick and choose" among
test cases.

4. Test staff members are trained to ensure a common understanding of
all test materials and policies. Performance of human testers is moni­
tored throughout testing to prevent "drift." Regular communication
among test team members is scheduled to review results and discuss
matters that may affect test judgment.

The actual behavior of the software under test is compared with the speci­
fied behavior by either human or automated means. The behavior of the soft-

98 Cleanroom Software Certification

ware is checked on each transition, and failures are recorded by software ver­
sion, test case number, and transition number. All test data and test scripts are
archived.

5.3.5 Metrics for Test Sufficiency and Product Quality

The usage model that generates test cases is called the usage chain. The ex­
pected long-run occupancy of each state is calculated from the usage chain dur­
ing model analysis. During the testing phase, a second chain (called the testing
chain) is used to track actual state traversals during testing. The testing chain
begins as a copy of the usage chain structure, with a counter on each arc that is
initially zero (indicating that no use of the software has yet occurred). As test
cases are applied, the counters associated with the arcs are incremented to
record state transitions (if the software performs the transition to the usage state
successfully) during testing.

A comparison of the usage and testing chains is made on an ongoing basis
during testing to gauge the difference between expected and actual usage. The
difference is given as the value of a measure called the discriminant, which
reflects the degree to which the testing experience has become representative of
expected usage. The value for the discriminant generally tends toward zero (but
not monotonically) as testing progresses without failures. The value will
plateau at stages of testing, with the specific values dependent on the specific
models and the amount of testing done. When, in the judgment of the test engi­
neers, the value is low enough to indicate that the testing experience is suffi­
ciently similar to expected field performance such that further testing is not
worth its cost, testing should stop.

As testing progresses and failures occur, the structure of the testing chain is
augmented with failure states. The reliability of the software, which may be cal­
culated at any point in testing, is the probability of taking a random walk
through the testing chain from invocation to termination without encountering a
failure state. In other words, reliability is the probability that every event in a
complete usage scenario will be processed successfully. Reliability is calcu­
lated from the testing chain.

If no failures occur during testing, the reliability calculation yields 1.0,
which must be interpreted as "no information" and not as a reliability estimate.
When testing shows no failures, other reliability measures should be used, such
as presented by Poore, Mills, and Mutchler (1993) or Miller (1992).

Statistical testing based on a usage model is an appropriate protocol for
software testing. It is grounded in sound scientific principles, has been reduced
to reasonable engineering practice, and produces conclusions that are indepen­
dently confirmable.

5.4 Example: Security Alarm 99

5.4 Example: Security Alarm

5.4.1 Usage Model

The canonical sequences identified during security alarm specification define
the state space for the usage model. The canonical sequences for the security
alarm that were discovered in Chapter 3 are presented again in Table 5.2. Each
canonical sequence is named to represent the usage state.

The usage model may be drawn using the canonical sequences as states.
The ordering of states can be determined by referring to the canonical
sequences , and the full set of possible stimuli given in the sequence enumera­
tion in Chapter 3 can be used to define all possible transitions (arcs) among
states. Figure 5.1 is a graphical depiction of the usage model for the security

Table 5.2 Canonical sequences for the security alarm

Canonical Usage
Sequence Description State Name

Empty Software Not
Invoked

s The user has pressed the Set button to activate Ready
the device.

ST The device has been set and the trip signal has Alarm
occurred, setting off the alarm.

SB The device has been set and the user has entered Entry Error
an invalid digit.

SG The device has been set and the user has entered 1_0K
the first digit in the code.

S TB The device has been set, the trip signal has set off Alarm and Entry
the alarm, and the user has entered an invalid digit. Error
The Clear button must be pressed before the code
can be entered to turn off the alarm.

STG The device has been set, the trip signal has set off Alarm and
the alarm, and the user has entered the first digit 1 - OK
in the code.

S GG The device has been set and the user has entered 2_0K
the first two digits in the code.

STGG The device has been set, the trip signal has set off Alarm and
the alarm, and the user has entered the first two 2_0K
digits in the code.

100 Cleanroom Software Certification

other

~ All states except Software Not Invoked and Software Terminated also "----.J · have self-loops, which represent application of all other legal inputs.

Figure 5.1 Usage model for security alarm

alarm. Stimuli that have no effect on the usage state are represented in a
self-loop in each state. From the Alarm state, for example, the Set button may
be pressed, but it has no effect (does not change state of use); the usage state is
still Alarm.

The next step in usage modeling is assignment of usage probability values
for each arc in the model. In this case, all stimuli that can produce a state change
will be regarded as equally likely except for the Trip stimulus, which will be
assumed to be less likely than other stimuli. The Trip stimulus will be assigned
a 0.05 probability from the Ready, Entry Error, l _OK, and 2_0K states. The
Trip stimulus has no effect in other states because the alarm is already on.
(Stimuli that do not produce state changes are the "other" stimuli associated
with self-loops in Figure 5.1.)

In the Ready state, for example, the Trip stimulus has a 0.05 probability of
occurring, a GoodDigit and BadDigit in the security code each has a 0.45 prob­
ability of occurring, and all other stimuli (in this case, Set and Clear) have a
(collective) 0.05 probability of occurring. Probabilities are assigned to all the
outgoing arcs of each state.

Given the usage model structure and the usage probabilities, an analysis of
the usage model can be performed to produce data that can be used throughout
the life cycle. Table 5.3 presents the analytical values for the model. Formulas
for all analytical results presented in this chapter are found in Whittaker and
Thomason (1994).

5.4 Example: Security Alarm 101

Test planning is one primary use of analytical data from the usage model.
The average length of a test case, for example, may be used to establish upper
and lower bounds on the testing schedule. The expected average test case length
for the security alarm is 48. Each test case might be estimated to require 15 min­
utes to test. The target level of system reliability to be demonstrated in testing
might be 0.95 reliability at the 99% confidence level. Using simple hypothesis
testing, a total of 90 test cases must be performed to meet that requirement
(Poore, Mills, and Mutchler 1993). Assuming there are no failures during test­
ing, a total of 22.5 hours will be needed to perform the 90 test cases. If an equiv­
alent amount of time is needed for pre- and post -test activity, then the minimum
total test schedule may be estimated to be 45 hours. An upper limit may be esti­
mated as well by assuming longer elapsed time for test cases and/or a distribu­
tion of failures across test cases.

The minimum amount of random testing required to visit all usage states is
being driven by the 2_0K state. Fifty-eight usage events (transitions) are
expected before its first occurrence-a greater number than for any other state.
A reduction in time to achieve state coverage is possible if the probability of
stimuli leading to the 2_0K state is increased. Further consideration of this
probability assignment is warranted (and may or may not lead to a decision to
alter the probability to achieve a shorter schedule for state coverage).

Data from model analysis may also be used to focus development activity.
For example, the expected long-run occupancy of the Alarm, and Alarm and
Entry Error states represent half the usage probability mass (0.293 + 0.215 =

Table 5.3 Analysis of the security alarm usage model

Expected Transitions Probability of
Long-run until State First Occurrence in

State Occupancy Occurs a Single Use

Software Not Invoked 0.020 48.860 1.000

Ready 0.111 1.000 1.000

Entry Error 0.074 9.763 0.835

1_0K 0.053 13.820 0.832

2_0K 0.017 58.330 0.527

Alarm 0.293 18.363 0.756

Alarm and 1 OK 0.147 21.521 0.756 -

Alarm and 2_0K 0.049 32.047 0.756

Alarm and Entry Error 0.215 21.102 0.714

Software Terminated 0.020 47.860 1.000

102 Cleanroom Software Certification

0.508). The development activity related to these usage states should receive
particularly rigorous verification. Conversely, states with extremely low occu­
pancy rates may represent functions that might even be pruned from the specifi­
cation in some applications.

5.4.2 Testing

After the usage model and the analysis have been reviewed and determined to
be a viable basis for testing, test cases are generated. The first test suite gener­
ated is usually the minimal arc coverage suite, which traverses the model in the
fewest possible steps required to achieve model coverage. Model coverage test­
ing accomplishes several goals. The model is further confirmed to be accurate,
the ability to evaluate all responses is confirmed, and the readiness of the soft­
ware for random testing is established. Random testing enables measurement
of the reliability of the software. If the quality of the software is so poor that it
cannot survive arc coverage testing in a reasonable period of time, then the soft­
ware is not ready for random testing.

After the software has successfully passed the arc coverage test, random
test cases are generated. Each test case is a random walk through the usage
model. Each state in the model has a set of exit arcs, with each arc representing
a stimulus. During a random walk through the model, a random number is gen­
erated at each state, and a stimulus is chosen based on the probabilities associ­
ated with the exit arcs from that state.

Table 5.4 depicts a sample test case for the security alarm that was gener­
ated randomly from the usage model. The initial state is Software Not Invoked.
The only stimulus that is possible in that state is Set, so regardless of the random
number generated, Set will be the next stimulus. The Set stimulus leads to the
Ready state, which has four exit arcs (i.e., four possible stimuli). As mentioned
earlier, the probabilities associated with the exit arcs are T (Trip), 0.05; G
(GoodDigit), 0.45; B (BadDigit), 0.45; and any other stimulus, 0.05. In the fol­
lowing test case, the random number generated at the Ready state resulted in the
G stimulus being selected. Random selection of stimuli continues at each state
until the Software Terminated state is reached, signaling the end of the test case.

As testing proceeds, the performance of the software on each test case is
recorded. If the software processes each test event correctly, the test case is
recorded as a "pass." If there is a failure, the test case number and the transition
number of the failure are recorded. Failure data and usage model analyses are
used together to produce metrics for test sufficiency and product quality.

5.4.3 Measures of Test Sufficiency

The sufficiency of testing for the security alarm is quantified in two ways. The
simplest measure of sufficiency is model coverage. Only two random test cases

5.4 Example: Security Alarm 103

Table 5.4 A randomly generated test case

Stimulus No. Stimulus Next State

s Ready

2 G 1_0K

3 G 2_0K

4 c Ready

5 B Entry Error

6 c Ready

7 B Entry Error

8 c Ready

9 G 1_0K

10 G 2_0K

11 G Software Terminated

will be required to cover all states in the model on average. Fifteen test cases will
be required to cover all arcs in the model. Again, a test case is a random walk
through the usage model beginning with Software Not Invoked and ending with
Software Terminated.

The column headed D(U,T) in Table 5.5 is the discriminant described ear­
lier. The value is not defined until all arcs have been traversed; consequently,
this column has no value for the first 14 scripts. When test cases are generated
randomly from the model, they are of course generated in a manner that reflects
the probabilities in the usage model. As the randomly generated test cases con­
tinue to accumulate usage events in proportion to usage probabilities, the use
of the software in testing becomes more and more like the profile of usage that
· expected to occur in the field. The discriminant- a measure of the similarity
between expected and tested use-decreases during testing and eventually

ops changing at some significant digit of interest. In the example in Table 5.5,
lhe value of the discriminant is generally decreasing, but has not yet converged.
The specific stopping criterion is a matter of experience in a particular domain,
~ngineering judgment, and the testing budget and schedule.

In Table 5.5 no failures were assumed to have occurred during testing. An
alternative scenario will now be assumed, in which a failure in the software's
recessing of the trip signal occurs . In this scenario, the software fails to set off
e alarm when a trip signal occurs immediately after a bad digit has been

entered.
The same 30 randomly generated test cases will again be considered, with

- · ures as recorded in Table 5.6. The failures are stop failures rather than continue

104 Cleanroom Software Certification

Table 5.5 Test sufficiency: no-failures case

%States %Arcs
Script No. Result D(U,T) Visited Traversed

Pass 60.000 22.581

2 Pass 100.000 58.065

3 Pass - 100.000 67.742

4 Pass - 100.000 67.742

5 Pass 100.000 70.968

6 Pass 100.000 77.419

7 Pass 100.000 87 .097

8 Pass 100.000 90.323

9 Pass 100.000 93.548

10 Pass - 100.000 96.774

11 Pass - 100.000 96.774

12 Pass 100.000 96.774

13 Pass - 100.000 96.774

14 Pass - 100.000 96.774

15 Pass 0.0059 100.000 100.000

16 Pass 0.0055 100.000 100.000

17 Pass 0.0036 100.000 100.000

18 Pass 0.0035 100.000 100.000

19 Pass 0.0037 100.000 100.000

20 Pass 0.0037 100.000 100.000

21 Pass 0.0037 100.000 100.000

22 Pass 0.0036 100.000 100.000

23 Pass 0.0039 100.000 100.000

24 Pass 0.0036 100.000 100.000

25 Pass 0.0037 100.000 100.000

26 Pass 0.0038 100.000 100.000

27 Pass 0.0034 100.000 100.000

28 Pass 0.0028 100.000 100.000

29 Pass 0.0020 100.000 100.000

30 Pass 0.0019 100.000 100.000

5.4 Example: Security Alarm 1 OS

fa ilures, meaning that a test case is discontinued on failure, and the remaining
transitions in the test case are not executed.

The failure data indicate that the software failed six times. In test cases 3, 7,
12, 27, 28, and 29, a trip signal immediately followed a bad digit, and the soft­
ware did not set off the alarm. Given this scenario, the measures of test suffi­
ciency are different. As shown in Table 5.7, all arcs in the model have not been
"covered after 30 test cases, and the value of the discriminant cannot be com­
puted. Clearly, the measures of test sufficiency do not support product release.

As is apparent by the presentation of the no-failure and the one-failure sce­
narios, it is possible to pose what-if scenarios and determine bounds on the test­
ing schedule given assumptions about the performance of the software during

Table 5.6 Failure data

Test Case Transition Stop or
No. No. Continue?

3 5 Stop

7 21 Stop

12 27 Stop

27 16 Stop

28 9 Stop

29 16 Stop

Table 5.7 Test sufficiency: one-failure case

%States %Arcs
Script No. Result D(U,T) Visited Traversed

Pass 60.000 22.581

2 Pass 100.000 58.065

3 Fail 100.000 58.065

4 Pass 100.000 58.065

5 Pass 100.000 61 .290

6 Pass 100.000 70.968

7 Fail 100.000 77.419

8 Pass 100.000 83.871

9 Pass 100.000 90.323

continued

106 Cleanroom Software Certification

Table 5.7 continued

%States %Arcs
Script No. Result D(U,T) Visited Traversed

10 Pass - 100.000 93.548

11 Pass - 100.000 93.548

12 Fail - 100.000 93.548

13 Pass 100.000 93.548

14 Pass - 100.000 93.548

15 Pass - 100.000 96.774

16 Pass - 100.000 96.774

17 Pass - 100.000 96.774

18 Pass - 100.000 96.774

19 Pass - 100.000 96.774

20 Pass 100.000 96.774

21 Pass - 100.000 96.774

22 Pass - 100.000 96.774

23 Pass - 100.000 96.774

24 Pass - 100.000 96.774

25 Pass - 100.000 96.774

26 Pass - 100.000 96.774

27 Fail - 100.000 96.774

28 Fail 100.000 96.774

29 Fail - 100.000 96.774

30 Pass - 100.000 96.774

testing. Measures of test sufficiency may be used prior to testing, in test plan­
ning, and during testing for test management.

5.4.4 Measures of Product Quality

Continuing the scenario in which one failure occurs during testing, measures of
product quality are generated and summarized in Table 5.8 for the same 30 ran­
dom test cases. As noted earlier, the reliability calculation will be 1.0 (no infor­
mation) until a failure is recorded.

5.4 Example: Security Alarm 107

Because no failures occurred in the first two test cases, there is no failure
data to use in calculating the MTTF for those two test cases. Similarly, the reli­
ability of the software is reported as 1.0 as long as the software has exhibited no
failures.

The first failure occurs in test case 3, so the MTTF (the average number of
test cases until a fai lure occurs) at that point is approximately three. By the fifth

Table 5.8 Security alarm: one-failure case

Script No. Result

Pass

2 Pass

3 Fail

4 Pass

5 Pass

6 Pass

7 Fail

8 Pass

9 Pass

10 Pass

11 Pass

12 Fail

13 Pass

14 Pass

15 Pass

16 Pass

17 Pass

18 Pass

19 Pass

20 Pass

21 Pass

22 Pass

23 Pass

MeanTime
to Failure Reliability

1.000

1.000

3.000 0.667

4.000 0.750

5.000 0.800

6.000 0.833

3.500 0.714

4.000 0.750

4.500 0.778

5.000 0.800

5.500 0.818

4.000 0.750

4.333 0.769

4.667 0.786

5.000 0.800

5.333 0.813

5.667 0.824

6.000 0.833

6.333 0.842

6.667 0.850

7.000 0.857

7.333 0.864

7.667 0.870

continued

108 Cleanroom Software Certification

Table 5.8 continued

MeanTime
Script No. Result to Failure Reliability

24 Pass 8.000 0.875

25 Pass 8.333 0.880

26 Pass 8.667 0.885

27 Fail 6.750 0.852

28 Fail 5.600 0.821

29 Fail 4.833 0.793

30 Pass 5.000 0.800

test case, the MTTF has risen to five, because only one failure has been seen in
five test cases. When the second failure occurs in test case 7, the MTTF de­
creases sharply because two failures have now been seen in seven test cases, for
a MTTF of 3.5.

Because statistical testing is based on a model of the specification, these
measures of product quality, like measures of test sufficiency, may be generated
for various scenarios of software performance long before the software actually
exists. Product quality projections (based on what-if scenarios) provide data for
reliability planning early in the software life cycle, and product quality esti­
mates (based on performance during testing) provide additional stopping crite­
ria for testing.

5.5 References

K. W. Miller, et al. "Estimating the Probability of Failure When Testing Reveals
No Failures." IEEE Transactions on Software Engineering vol. 18 (January
1992): 33-43.

H.D. Mills, M. Dyer, and R.C. Linger. "Cleanroom Software Engineering."
IEEE Software vol. 4 (September 1987): 19- 24.

J. Musa. "Operational Profiles in Software Reliability Engineering." IEEE
Software vol. 10 (March 1993): 14-32.

J.H. Poore, H.D. Mills, and D. Mutchler. "Planning and Certifying Software
System Reliability." IEEE Software vol. 10 (January 1993): 88-99.

5.5 References 109

J.H. Poore and C.J. Trammell. "Application of Statistical Science to Testing and
Evaluating Software Systems," in Statistics, Testing, and Defense Acquisi­
tion, ed. M. Cohen, et. al. (Washington: National Academy Press, 1998).

G.H. Walton. Generating Transition Probabilities for Markov Chain Usage
Models. Ph.D. diss. , University of Tennessee, 1995.

G.H. Walton, J.H. Poore, and C.J. Trammell. "Statistical Testing of Software
Based on a Usage Model." Software Practice and Experience vol. 25
(January 1993): 97-108.

J.A. Whittaker and J.H. Poore. "Markov Analysis of Software Specifications."
ACM Transactions on Software Engineering and Methodology vol. 2
(January 1993): 93-106.

J. Whittaker and M. Thomason. "A Markov Chain Model for Statistical Soft­
ware Testing." IEEE Transactions on Software Engineering vol. 20 (Octo­
ber 1994): 812-824.

L.R. Wiener. Digital Woes: Why We Should Not Depend on Software. Reading,
MA: Addison-Wesley, 1994.

PART II

The Cleanroom
Software Engineering

eference Model

6
The Cleanroom
Reference Model

6.1 An Introduction to the CRM

The Cleanroom Software Engineering Reference Model (Linger and Trammell
1996), or CRM, was developed at the Software Engineering Institute, Carnegie
~lellon University, as part of a study to map Cleanroom into the Capability
~1aturity Model for Software, or CMM (Linger, Paulk, and Trammell 1996).
The CRM is expressed in terms of a set of 14 Cleanroom processes and 20 asso-
iated work products. It embodies the principal technologies and processes of

O eanroom, and is intended as a guide for Cleanroom project management and
performance, process assessment and improvement, and technology transfer
and adoption, as well as a baseline for continued evolution of Cleanroom
practice. It is a comprehensive road map to Cleanroom project performance for
software teams trained in Cleanroom methods. The CRM is organized into
processes for software project management, specification, development, and

ting. Other processes essential to product success, such as marketing, distri­
bution, installation, and customer support are beyond the scope of the project
management and technology focus of the CRM. The 14 processes are as follows:

Cleanroom Management Processes
Project Planning Process
Project Management Process
Performance Improvement Process
Engineering Change Process

113

114 The Cleanroom Reference Model

Cleanroom Specification Processes
Requirements Analysis Process
Function Specification Process

• Usage Specification Process
• Architecture Specification Process
• Increment Planning Process

Cleanroom Development Processes
Software Reengineering Process
Increment Design Process
Correctness Verification Process

Cleanroom Certification Processes
• Usage Modeling and Test Planning Process
• Statistical Testing and Certification Process

The CRM is a high-level process template that is intended to be tailored and
adapted for specific organizational environments and project requirements.
Existing organizational and project policies and standards should be taken into
account in defining the tailored processes. For example, if a requirement exists
to program in a specific language, the relationship of that language to box struc­
ture specification and design semantics and formats should be defined, and any
specializations of the correctness conditions for verifying language constructs
should be specified and documented. Such process adaptations and implemen­
tation procedures should be documented in the Cleanroom Engineering Guide.
Tables 6.1 through 6.4 provide summaries of key tasks in each process, and enu­
merate the principal work products produced.

Table 6.1 Cleanroom management processes

Cleanroom
Process

Project
Planning

Project
Management

Process
Description

Define and document plans for a Cleanroom
project, and revise as necessary to accom­
modate changes. Review plans with the
project team, peer groups, and the customer
for agreement.

Manage the Cleanroom incremental develop­
ment and certification process to deliver
software and associated work products on
schedule and within budget. Establish and
train Cleanroom teams, and define quality
objectives and team performance expecta­
tions. Initiate and track Cleanroom processes.

Principal
Work Products

Clean room
Engineering
Guide,

Software
Development Plan

Project Record

6.1 An Introduction to the CRM 115

Cleanroom
Process

Performance
Improvement

Engineering
Change

Process
Description

Meet process performance standards and
product quality objectives, and improve team
performance. Use the quantitative measure­
ments of product and process performance
produced by statistical testing and certification
of successive increments for objective
management decision making.

Evaluate and improve Cleanroom team per­
formance continually, based on conformance
with the Software Development Plan, process
control standards, and causal analysis of
software failures. Analyze and pilot promising
improvements in software processes and tools,
and introduce them to the project as appropriate.

Correct and change the evolving software
system and associated work products using
a protocol that preserves correctness and
integrity. Implement engineering change
control for all changes.

Table 6.2 Cleanroom specification processes

Clean room
Process

Requirements
Analysis

unction
Specification

Usage
Specification

Process
Description

Analyze and define initial customer require­
ments for the software system, as well as
requirements changes arising from customer
assessment of evolving increments. Express
requirements in user terms and review with
the customer for agreement.

Define the required external behavior of a
software system in all possible circumstances
of use based on the Software Requirements.
Express the specification in box structure form.
Create complete, consistent, and correct
specifications, and review with the customer
for agreement.

Define all classes of users, major patterns of
usage, and usage environments for a soft­
ware product based on the Software Require­
ments. Create complete, consistent, and
correct usage specifications, and review with
the customer for agreement.

Principal
Work Products

Performance
Improvement Plan

Engineering
Change Log

Principal
Work Products

Software
Requirements

Function
Specification

Usage
Specification

continued

116 The Cleanroom Reference Model

Table 6.2 continued

Clean room
Process

Architecture
Specification

Increment
Planning

Process
Description

Analyze architectural assets and define the
architectural strategy for the software product,
including major components, high-level
structure, and software design strategies
and conventions. Review with the customer
for agreement.

Create an incremental development and
certification plan for the software product such
that the increments implement user function,
accumulate into the final system, execute in
the system environment, and permit system­
atic feedback on process control and product
function and quality. Maintain referential
transparency between increment specifications
and their design decompositions. Use incre­
mental development to reduce or eliminate
risks and to maintain intellectual control.

Table 6.3 Cleanroom development processes

Clean room
Process

Software
Reengineering

Process
Description

Prepare reused software for incorporation into
a software product. Restructure and document
the functional semantics of the reused soft­
ware as necessary to maintain intellectual
control and to avoid unforeseen failures in
execution. Determine the fitness for use of
reused software as necessary through sta­
tistical testing to achieve project certifica-
tion goals.

Principal
Work Products

Software
Architecture

Increment
Construction Plan

Principal
Work Products

Reengineering Plan,
Reengineered

Software

Increment
Design

Design and code the increments for a soft- Increment Design
ware product through stepwise decomposition
of box structures, typically from stimulus
history-based black box specifications into
state-based state box specifications, and
then into procedure-based clear box designs
containing lower level black boxes for further
refinement. Prepare designs for correctness
verification by embedding intended function
definitions that specify the effect on data of
corresponding control structure decompositions.

6.1 An Introduction to the CRM 117

Clean room
Process

Correctness
Verification

Process
Description

Carry out function-theoretic correctness
verification of designs, typically through
verbal proofs of correctness in team reviews,
to identify and to correct software faults prior
to first execution. Document all faults found
and rereview their corrections.

Table 6.4 Cleanroom certification processes

Clean room
Process

Usage Modeling
and
Test Planning

Statistical
Testing and
Certification

Process
Description

Create the usage models to be used for soft­
ware testing and certification. Express the
models in terms of software usage states and
probabilities of transition between them.
Develop the models to satisfy objectives such
as certification for expected operational use or
certification of infrequently used functions with
high consequences of failure. Employ usage
model statistics to provide insight into system
complexity and the testing effort required to
meet quality objectives. Develop a statistical
test plan , p\epare the test environment, and
generate the statistical test cases.

Demonstrate the fitness for use of the
software in a formal statistical experiment.
Execute statistical test cases under experi­
mental control, evaluate results, and initiate
engineering change activity if failures are
encountered. Compare the values of certifica­
tion measures obtained in statistical testing
with certification goals to assess the software's
fitness for use. Compare measures of testing
progress to process control standards to
assess the likelihood of reaching certification
goals with planned schedules and resources.

Principal
Work Products

Increment
Verification
Report

Principal
Work Products

Usage Models,
Increment Test Plan,
Statistical Test

Cases

Executable System,
Statistical Testing

Report,
Increment

Certification
Report

118 The Cleanroom Reference Model

The purpose and content of the work products produced by the Cleanroom
processes are defined in the following sections.

Cleanroom Engineering Guide. The Cleanroom Engineering Guide is cre­
ated in the Project Planning Process. It defines the adaptation and refinement of
the Cleanroom processes to meet project-specific requirements. It includes pro­
cess definitions; work product definitions; and local policies, procedures, tem­
plates, and forms that define how a project will be conducted. It identifies the
facilities, hardware and software environments, and tools to support Cleanroom
operations, and defines guidelines for their use. It also defines relationships
among Cleanroom processes.

An organization-level Cleanroom Engineering Guide constitutes the "stan­
dard software process" required by the CMM Level 3 Organization Process
Definition Key Process Area (KPA). The Cleanroom Engineering Guide may
be successively refined and elaborated for use by organizational divisions,
product lines, and specific projects. At each level, the guide is tailored for stan­
dards, technologies, languages, and other aspects of the development environ­
ment at that level.

The Cleanroom Engineering Guide for a project constitutes the "tailored
version of the organization's standard software process" required by the CMM
Level 3 Integrated Software Management KPA. The tailored guide also docu­
ments the "plans for the project's software engineering facilities and support
tools" required by the CMM Level 2 Software Project Planning KPA.

Configuration Management Plan. See Software Development Plan.

Engineering Change Log. The Engineering Change Log is created and
maintained in the Engineering Change Process. It is the record of all engineer­
ing change requests, along with their evaluations, impacts, and status.

Executable System. The Executable System is created in the Statistical
Testing and Certification Process. It is the executable form of the accumulating
increments to be used for testing and customer evaluation.

Function Specification. The Function Specification is created in the Func­
tion Specification Process. It documents (1) software boundaries and interfaces
with hardware, other software, and human users, and (2) the external view of a
system in terms of mapping all possible stimuli to their corresponding re­
sponses in all possible circumstances of use, including correct and incorrect,
frequent and infrequent, and nominal and stress usage conditions.

The Function Specification is a precise statement of the Software Require­
ments often expressed as a mathematical function. The domain of the function

6.1 An Introduction to the CRM 119

is all possible stimulus histories and the range is all correct responses. The
mathematical form of the Function Specification as a set of mapping rules pro­
vides a flexible yet verifiable basis for function decomposition.

From the customer's perspective, the Function Specification is the defini­
tive statement of functional requirements for the software. From a development
perspective, the Function Specification is the top-level black box in the box
structure usage hierarchy that will be fully realized in the Increment Design.

Increment Certification Report. The Increment Certification Report is cre­
ated in the Statistical Testing and Certification Process. It contains values for
measures of certification goals (the desired "ends") and measures of process
control (the efficiency of "means" based on historical performance). Certifi­
cation measures may include reliability and confidence, MTTF, representative­
ness of the test case sample, and other measures of product quality. Process
control measures may include reliability growth rate, error rate per unit volume
of code, and other measures of process performance.

The Increment Certification Report documents the quantitative basis for
management decisions made regarding the testing process. Continuation of
testing, cessation of testing for engineering change or reengineering, and certi­
fication of the software are justified on the basis of product and process mea­
sures. The Increment Certification Report documents the "analysis of data on
defects identified in testing" required by the CMM Level 3 Software Product
Engineering KPA. It also documents the "results of the project's quantitative
process management activities" required by the CMM Level 4 Quantitative
Process Management KPA.

Increment Construction Plan. The Increment Construction Plan is created
in the Increment Planning Process. It specifies the number of increments into
which a Cleanroom Project will be divided, the functions that will be imple­
mented in each increment, and the schedule and resources allocated for each
increment. The Increment Construction Plan is used by management to assign
tasks, track progress, and monitor product quality and process control.

The earliest version of the Increment Construction Plan may be based on
the customer's Statement of Work and/or the Software Requirements. This ver­
sion will contain assumptions that will be explored further in the course of
preparing the Risk Analysis Plan and the Reuse Analysis Plan. A sound basis for
increment planning will exist when the Function Specification and the Usage
Specification have been prepared. The Increment Construction Plan should be
considered preliminary until these two work products are available. The Incre­
ment Construction Plan is also influenced by the Software Architecture. The
Increment Construction Plan documents the "software life cycle with pre­
defined stages of manageable size" required by the CMM Level 2 Project
Planning KPA.

120 The Cleanroom Reference Model

Increment Design. The Increment Design is created in the Increment Design
Process. It is the box structure implementation of a set of functions na~ed in the
Increment Construction Plan and defined in the Function Specification. The
Increment Design is a hierarchy of components in which each component is
represented in black box (history-based), state box (state-based), and clear box
(procedure-based) forms .

Clear boxes in the Increment Design may contain new black boxes that are
either implemented or stubbed. In each Increment Design, some previously
stubbed functions are implemented.

Increments are cumulative. An Increment Design is the sum of all specifi­
cation, design, and code to date. The final Increment Design is the completed
product.

Increment Evaluation Report. The Increment Evaluation Report is origi­
nated by the customer. It is the customer's documentation of feedback from
increment execution and evaluation.

Increment Test Plan. The Increment Test Plan is created in the Usage
Modeling and Test Planning Process. It contains all information needed by the
certification team for the Statistical Testing and Certification Process, including
schedules, staffing, training, hardware and software environments, data collec­
tion forms, test case evaluation procedures, certification goals, and statistical
models. The Increment Test Plan is the "plan for system testing to demonstrate
that the software satisfies its requirements" required by the CMM Level 3
Software Product Engineering KPA.

Increment Verification Report. The Increment Verification Report is created
in the Correctness Verification Process. It is the record of experience during the
Correctness Verification Process, including participants, number of verification
sessions, time spent in each session, faults found during each session, and any
other information relevant to the assessment of the correctness of the design.
Data for sessions in which engineering changes are verified are also included in
the Increment Verification Report.

In addition to raw data, the Increment Verification Report may contain other
measures that provide indications of process control. Such measures may
include percentage of engineering changes that are found to be incorrect, the dis­
tribution of faults with regard to severity and type, and the number of faults
found per unit volume of code. The Increment Verification Report constitutes the
"data on the conduct and results of peer reviews" required by the CMM Level 3
Peer Reviews KPA. It also documents the "data on defects identified in peer
reviews" required by the CMM Level3 Software Product Engineering KPA.

Measurement Plan. See Software Development Plan.

6.1 An Introduction to the CRM 121

Performance Improvement Plan. The Performance Improvement Plan is
created in the Performance Improvement Process. It defines plans to improve
team performance by refining the current Cleanroom Engineering Guide and/or
exploring the use of new software technologies.

The Performance Improvement Plan contains an analysis of the cause of
each failure that occurred during statistical testing and includes plans to prevent
the recurrence of the underlying problem. It also documents the comparison of
current performance with planned or historical performance for the measures
defined in the Measurement Plan.

The Performance Improvement Plan documents the "causal analysis meet­
ings" and "revisions to the project's defined software process resulting from
defect prevention actions" required by the CMM Level 5 Defect Prevention
KPA, the "incorporation of appropriate new technologies into a project's
defined software process" required by the CMM Level 5 Technology Change
Management KPA, and the "plan for software process improvement" required
by the CMM Level 5 Process Change Management KPA.

Project Mission Plan. See Software Development Plan.

Project Organization Plan. See Software Development Plan.

Project Record. The Project Record is created in the Project Management
Process and is updated in all processes. It includes actions, reviews, decisions,
measures, and other events throughout a project. The Project Record contains
formal documents, such as contracts and reports, and informal correspondence,
such as meeting notes or records of phone conversations. It is the archive of
documentation about all project events that are not captured in other Cleanroom
work products . It is a flexible, tailorable work product that is the Cleanroom
vehicle for fulfilling project documentation requirements not met by other work
products.

Reengineering Plan. The Reengineering Plan is created in the Software
Reengineering Process. It includes the tasks, schedules, and resources required
to prepare existing artifacts for reuse in the current project. The Reengineering
Plan elaborates the technical aspects of the Reuse Analysis Plan. It defines spe­
cific investigations required to make decisions about the reusability of a compo­
nent and/or adaptations required to reuse a component in the current system.

Reuse Analysis Plan. See Software Development Plan.

Reengineered Software. The Reengineered Software is created in the
Software Reengineering Process. It consists of specifications, designs, code,
usage models, and/or testing artifacts produced during the reengineering of
reused components.

122 The Cleanroom Reference Model

Risk Analysis Plan. See Software Development Plan.

Schedule and Resource Plan. See Software Development Plan.

Software Architecture. The Software Architecture is created in the Archi­
tecture Specification Process. The Software Architecture identifies the concep­
tual architecture, expressed in terms of principal software components and their
relationships; the module architecture, expressed in terms of layers of func­
tional decomposition; and the execution architecture, expressed in terms of
dynamic software operation (Soni, Nord, and Hofmeister, 1995).

The Software Architecture serves as a vehicle for analyzing application and
service domains, reference architectures, reusable assets, communication pro­
tocols, standards, and software design strategies. It is a principal input to the
Increment Planning and Increment Design Processes.

Software Development Plan. The Software Development Plan is created in
the Project Planning Process, and is used in the Project Management Process
for task initiation, performance tracking, and quantitative process management.
The Software Development Plan is the "software project plan" required by the
CMM Level 2 Software Project Planning KPA, and is the "software develop­
ment plan" to be used in the CMM Level 2 Software Project Tracking and
Oversight KPA. The Software Development Plan consists of the following pro­
ject management plans.

The Project Mission Plan defines the overall mission, goals, and objectives
of the system and the Cleanroom development project.

The Project Organization Plan defines the structure, responsibilities, and
relationships of the Cleanroom project organization and peer organizations. It is
the "documented plan to communicate intergroup commitments and coordinate
and track the work performed" required by the CMM Level 3 Intergroup
Coordination KPA.

The Work Product Plan defines the Cleanroom work products to be pro­
duced by the project. It constitutes the "identification of software work prod­
ucts" required by the CMM Level 2 Software Project Planning KPA.

The Schedule and Resource Plan defines estimates for overall tasks, sched­
ules, milestones, budgets, and resources for Cleanroom work product develop­
ment. It documents the "estimates of size, effort, schedule, cost, and critical
computer resources" required by the CMM Level 2 Software Project Planning
KPA.

The Measurement Plan defines product and process measurements, stan­
dards, and goals for managing the project, including those for Cleanroom
software certification and statistical process control. It defines the "plan for
quantitative process management" and the "strategy for data collection and
analysis" required by the CMM Level4 Quantitative Process Management KPA.

--

6.1 An Introduction to the CRM 123

The Reuse Analysis Plan identifies sources of reusable assets, and asset
acquisition and evaluation tasks. It also identifies opportunities to reuse domain
models, reference architectures, software specifications, designs, code, and
usage models. The Reuse Analysis Plan is a management plan for identification
of assets. A related work product, the Reengineering Plan, is a technical plan
for evaluation and adaptation of assets.

The Risk Analysis Plan defines methods for risk analysis, identifies project
risks, and describes strategies for risk management and avoidance. It constitutes
the "identification, assessment, and documentation of risks associated with the
cost, resource, schedule, and technical aspects of the project" required by the
CMM Level 2 Software Project Planning KPA.

The Standards Plan identifies and defines the application of external stan­
dards that will be used in the project.

The Training Plan identifies project training requirements, including train­
ing in the application domain, development environments, and Cleanroom tech­
nology and processes. This plan is the "training plan" required by the CMM
Level 3 Training Program KPA.

The Configuration Management Plan defines requirements for change
control of designated work products. This plan is the "software configuration
management plan" required by the CMM Level 2 Software Configuration
Management KPA.

Software Requirements. The Software Requirements are created in the Re­
quirements Analysis Process. They define the functional, usage, performance,
and environmental requirements for a software system to be developed using
the Cleanroom process. Included among these requirements are operational
constraints such as dependencies on other systems, capacity requirements, and
reliability requirements. The Software Requirements are typically documented
in user terms, and are the principal input to the Function Specification and
Usage Specification Processes, in which requirements are defined in the more
precise terms essential to software development and certification.

The Software Requirements are the "documentation of allocated require­
ments" required by the CMM Level2 Requirements Management KPA.

Standards Plan. See Software Development Plan.

Statement of Work. The Statement of Work is originated by the customer. It is
the "documented and approved statement of work for the software project"
required by the CMM Level 2 Software Project Planning KPA.

Statistical Test Cases. The Statistical Test Cases are created in the Usage
Modeling and Test Planning Process. Statistical Test Cases are generated ran­
domly from a usage model for use in statistical testing of an increment. Once

124 The Cleanroom Reference Model

generated, test cases may undergo postprocessing to add information for human
testers or for an automated test tool. Such information may include additional
instructions (e.g., events to initiate in the background), invocation of indepen­
dent data feeds, or pointers to the relevant "oracle" for evaluation of responses.

Each statistical test case is a complete usage scenario given as a sequence
of user inputs, beginning with a predefined initial event and ending with a pre­
defined terminal event. The Statistical Test Cases become a script for testing,
and may be annotated during testing to record responses and their evaluations.

Statistical Testing Report. The Statistical Testing Report is created in the
Statistical Testing and Certification Process. It is the record of experience in test­
ing, and includes participants, number of compilation sessions, faults found dur­
ing compilation, number of testing sessions, number of test cases executed during
each session, failures observed during test case executions, faults found during
investigation of failures, time required to correct each fault, and any other infor­
mation relevant to assessment of the correctness of the executing software.

The Statistical Testing Report documents the "data on defects identified in
testing" and the "performance of system testing to demonstrate that the soft­
ware satisfies its requirements" required by the CMM Level 3 Software Product
Engineering KPA.

Training Plan. See Software Development Plan.

Usage Models. The Usage Models are created in the Usage Modeling and
Test Planning Process. A usage model is a formal representation of software
use, often expressed as a Markov chain. It defines the usage states of the soft­
ware and the probabilities of transitions between usage states. When software is
to be certified for normal operational use, usage probabilities are based on
expected use. When the customer requires certification for other usage condi­
tions, the probabilities reflect those conditions. Usage model analysis provides
numerous insights into software usage characteristics that are useful in making
management and technical decisions. Usage models are also used as test case
generators.

Usage Specification. The Usage Specification is created in the Usage
Specification Process. It is a description of the expected users, usage scenarios,
and usage environments of the software. It contains definitions of high-level
usage models that record this information, as well as the results of model analy­
sis for management decision making.

Work Product Plan. See Software Development Plan.

6.2 Cleanroom Process Definition Format 125

6.2 Cleanroom Process
Definition Format

The 14 Cleanroom processes are defined in Chapters 7 through 10 in terms of
the following augmented entry, task, verification, exit (ETVX) format:

Objectives- The objectives section defines the outcomes of effective pro­
cess performance.

Entry-The entry section defines the entry criteria that must be satisfied
for the process to be initiated, and lists the work products that must be
available as inputs to the process.

Tasks-The tasks section defines work to be carried out in performing the
process. The order of the tasks is generally, but not strictly, sequential.
Some tasks may be concurrent with other tasks.

Verification-The verification section defines steps for verifying that the
process has been properly executed and the associated work products meet
project objectives.

Measurement- The measurement section defines Cleanroom measures
for assessing the performance of the process and the characteristics of the
work products. The measures provided in the measurement section are
either characteristic of or integral to Cleanroom software engineering.
Many other measures not provided in the measurement section may also be
useful or even required in a given project.

Exit-The exit section defines the exit criteria that must be satisfied for the
process to be terminated. The exit criteria generally involve completion and
verification of work products, but may also be stated in terms of quantita­
tive or qualitative conditions of work products.

In addition to these formatting conventions, boxed text appears in the pro­
cess definitions to (1) explain Cleanroom terms and concepts, (2) recommend
specific implementation techniques, (3) provide examples, and (4) point to fur­
ther information. Accordingly, the boxes are labeled Explanation, Recommen­
dation, Example, or Reference. In some instances the boxed text summarizes
key Cleanroom principles and technologies discussed in Part I. This sum­
marization is intended to make the Cleanroom process definitions more self­
contained, and helps to relate specific technologies to their application points in
the process.

126 The Cleanroom Reference Model

6.3 Common Cleanroom
Process Elements

The common objectives, participants, entry criteria, tasks, verification, mea­
sures, and exit criteria in Cleanroom processes are defined here as common
Cleanroom process elements. These elements are part of every Cleanroom
process. Rather than being restated in each process, the common elements have
been "factored out" and stated once to avoid repetition and to achieve more com­
pact definitions of the Cleanroom processes described in the remaining chapters
in Part II. The people responsible for each of the Cleanroom management, spec­
ification, development, and certification processes (i.e., the "process owners")
should include these common elements in their process responsibilities.

Common Objectives

Objective 1

Objective 2

Common Entry

Entry 1

Entry 2

Work products created or updated in the process are
traceable to the entry work products from which they
were derived.

Defects in work products created or updated in the pro­
cess are identified through peer review and are eliminated.

The Cleanroom Engineering Guide and the Software Devel­
opment Plan (developed in the Project Planning Process),
and the Project Record are available.

When the process is reentered for changes to work prod­
ucts, the reentry is consistent with the Engineering
Change Process and the Configuration Management Plan.

Common Tasks

Task 1

Task2

Ensure that all participants understand process require­
ments as documented in the Cleanroom Engineering Guide.

Create work products according to the formats defined in
the Cleanroom Engineering Guide.

Task 3

Task 4

6.3 Common Cleanroom Process Elements 127

Make changes to work products in compliance with the
Engineering Change Process and the Configuration Man­
agement Plan.

Document project activity in the Project Record.
Document information that will not be recorded in other

work products in the Project Record. Specifically, document
process beginning and ending dates, staff assignments, process
review dates and data, measurements, and other key events
and decisions.

Common Verification

Verification 1

Verification 2

Review the status of the process with management, the
project team, peer groups, and the customer.

These verification activities include confirming that the
process was performed as defined in the Cleanroom Engi­
neering Guide.

Revjew work products created or updated during the
process with the project team.

Work products are verified against properties defined for
them in the Cleanroom Engineering Guide. Work products
under review are verified to be fully traceable to the work
products from which they were derived.

EXPLANATION: Peer review

Peer review is a key to intellectual control of work by Clean­

room teams. The work of an individual team member is

regarded as a draft until there is team consensus that the work

is correct and of acceptable quality.

Every Cleanroom work product is peer reviewed, yielding

substantial benefits. Differing interpretations of requirements

are uncovered, conventions are established, errors are detected,

opportunities for economy are identified, understandability is

tested, and expertise is shared. The results benefit the project,

the product, and the team members alike.

128 The Cleanroom Reference Model

REFERENCE: CMM Peer Reviews and Defect Prevention

KPAs

If compliance with these KPAs is an organizational objective,

their specific requirements should be reviewed when this ver­

ification step is tailored for organizational or project use.

Common Measurement

Measurement 1 Measure the process.
Measure process performance in terms such as deviations

in resource and schedule actuals from plans.
Measure the effectiveness of a review in terms of the per­

centage of all defects originating prior to the review that are
found in the review. These percentages are determined, of
course, after execution testing.

Measurement 2 Measure the product.

Common Exit

Exit 1

Measure the size and stability of work products that define
the software (i.e., the Software Requirements, the Function
Specification, the Usage Specification, the Software Archi­
tecture, the Usage Models, the Increment Design, and the
Executable System).

Measure the quality of work products that define the soft­
ware in terms of the percentage of execution failures that are
traced to defects in the work products. These percentages are
determined, of course, after execution testing.

Tasks and verification activities have been completed and
the Project Record has been updated.

6.4 References 129

6.4 References

R.C. Linger and C.J. Trammell. Cleanroom Software Engineering Reference
Model, Version I.O. CMU/SEI-96-TR-022. Pittsburgh: Software Engineer­
ing Institute, Carnegie Mellon University, 1996.

R.C. Linger, M.C. Paulk, and C.J. Trammell. Cleanroom Software Engineering
Implementation of the CMM for Software. CMU/SEI-96-TR-023. Pitts­
burgh: Software Engineering Institute, Carnegie Mellon University, 1996.

D. Soni, R. Nord, and C. Hofmeister. "Software Architecture in Industrial
Applications," in Proceedings of the 17th International Conference on Soft­
ware Engineering, ed. R. Jeffrey and D. Notkin (New York: Association for
Computing Machinery, 1995), 196-207.

7
Cleanroom Management
Processes

7.1 Project Planning Process

The purpose of the Project Planning Process is to tailor the CRM (or the organi­
zational reference model) for the project, to define and document plans for the
Cleanroom project, and to review the plans with the customer, the project team,
and peer groups for agreement. The work products of the Project Planning Pro­
cess are the Cleanroom Engineering Guide and the Software Development
Plan. Both are revised as necessary during the project to accommodate cus­
tomer needs and project performance. The Cleanroom Engineering Guide
defines a tailoring of the Cleanroom processes to meet project-specific process
requirements . The Software Development Plan is the repository for project
management plans, including mission, organization, work products, schedules,
resources, measurements, reuse analysis, risk analysis, standards, training, and
configuration management. The Software Development Plan is used in the
Project Management Process for task initiation, performance tracking, and
quantitative process management. The Cleanroom Engineering Guide and the
Software Development Plan form the basis for defined, repeatable, managed,
and optimized performance of Cleanroom activities.

131

132 Cleanroom Management Processes

Objectives

Objective 1

Objective 2

Objective 3

Entry

Entry 1

Entry 2

Tasks

Task 1

Cleanroom software engineering processes are tailored
for the project and documented.

The software project plans are defined and documented.

The customer, the project team, and peer groups agree to
the Cleanroom processes and project plans.

The process begins when one of the entry criteria is satis­
fied.

A new or revised Statement of Work and/or Software Require­
ments exist for the software project.

The Software Development Plan and/or Cleanroom Engineer­
ing Guide require revision or elaboration at the beginning of a
new increment or as necessary.

Entry work products are available.

Create the Cleanroom Engineering Guide.
Use the CRM or the organizational Cleanroom Software

Engineering Reference Model, if any, as the basis for defin­
ing or revising the project's Cleanroom Engineering Guide,
including

1. Project-specific tailoring and refinement of the Clean­
room processes. Define and document clear process im­
plementation guidance for the Cleanroom project.

2. Identification and documentation of facilities, hardware
and software environments, and tools to support Clean­
room processes, with guidelines for their use.

7.1 Project Planning Process 133

REFERENCE: CMM Organization Process Definition,
Integrated Software Management, Software
Product Engineering, and Software Quality
Management KPAs

If compliance with these KPAs is an organizational objective,
their specific requirements should be reviewed when the

Cleanroom processes are tailored for organizational or proj­
ect use.

Create the Software Development Plan.

REFERENCE: CMM Software Project Planning KPA

If compliance with this KPA is an organizational objective,
its specific requirements should be reviewed when the Soft·
ware Development Plan is developed.

Use the Statement of Work and/or Software Requirements
to define or revise the Software Development Plan, including
the following plans:

1. Project Mission Plan: Define the overall mission, goals,
and objectives of the software product and the Clean­
room development project.

2. Project Organization Plan: Define the structure, respon­
sibilities, and relationships of the Cleanroom project
organization. Identify points of contact in customer and
peer organizations.

REFERENCE: CMM Intergroup Coordination KPA

If compliance with this KPA is an organizational objective,
its specific requirements should be reviewed when the Proj­
ect Organization Plan is developed.

3. Work Product Plan: Define the Cleanroom work prod­
ucts and customer deliverables to be produced during the
project.

134 Cleanroom Management Processes

4. Schedule and Resource Plan: Define estimates for over­
all schedules, milestones, and budgets. Define staffing,
system, and other resource requirements. These esti­
mates will be refined in the Increment Planning Process.

5. Measurement Plan: Define product and process mea­
sures for managing the project, including goals for Clean­
room software certification and standards for statistical
process control. Define the u se of measures in project
reviews and decision making.

ExPLANATION: Quantitative management decisions

A quantitative basis for management decisions regarding

product quality and process control is a hallmark of Clean­
room. The organizational database of project measures that
accumulates over time becomes increasingly useful in plan­
ning and managing activities. A historical baseline of product
measures (e.g. , size, stability, and quality) and process mea­
sures (e.g., conformance to plans and effectiveness of re­
views) provides a basis for estimating schedules, budgets,
and resources; defining process control standards for work in

progress; and defining certification goals for increment and
product certification.

REFERENCE: CMM Quantitative Process Management KPA

If compliance with this KPA is an organizational objective,
its specific requirements should be reviewed when the Mea­

surement Plan is developed.

6. Reuse Analysis Plan: Define methods for identifying and
evaluating opportunities to reuse existing assets and cre­
ate new, reusable assets. Reusable assets include domain
models, reference architectures, software specifications,
designs, implementations, and usage models. Define
specific opportunities for reuse ..

7. Risk Analysis Plan: Define methods for identifying and
managing risks throughout the project. Define specific
management and technical risks associated with the
project.

Verification

Verification 1

Verification 2

7.1 Project Planning Process 135

8. Standards Plan: Identify and define the application of
external standards that will be used in the project.

9. Training Plan: Identify project training requirements,
including training in the application domain, develop­
ment environments, and Cleanroom technology and
processes.

REFERENCE: CMM Training Program KPA

If compliance with this KPA is an organizational objective,
its specific requirements should be reviewed when the

Training Plan is developed.

10. Configuration Management Plan: Identify the work
products to be maintained under configuration control.
Define procedures for change management and configu­
ration control of the work products.

REFEREN CE: CMM Software Configuration Management KPA

If compliance with this KPA is an organizational objective,
its specific requirements should be reviewed when the Con­

figuration Management Plan is developed.

Review the Cleanroom Engineering Guide for agreement.
Review the Cleanroom Engineering Guide with the proj­

ect team and peer groups to obtain commitments to Clean­
room processes and team performance objectives.

Review the Cleanroom Engineering Guide with the cus­
tomer. Modify and rereview as necessary to obtain concurrence.

Review the Software Development Plan for agreement.
Review the Software Development Plan with the project

team and peer groups to obtain commitments to project plans
and schedules.

Review the Software Development Plan with the customer.
Modify and rereview as necessary to obtain concurrence.

136 Cleanroom Management Processes

Measurement

Exit

Exit 1

(See Section 6.3, Common Cleanroom Process Elements.)

The process is complete when the exit criteria are satisfied.

The Software Development Plan and the Cleanroom Engi­
neering Guide have been completed and reviewed with the
project team, peer organizations, and the customer, and com­
mitments have been obtained.

7.2 Project Management Process

The purpose of the Project Management Process is to manage the Cleanroom
project to deliver the software on schedule and within budget. Management
responsibilities include managing interactions with the customer and peer orga­
nizations; establishing and training Cleanroom teams; initiating, tracking, and
controlling planned Cleanroom processes; eliminating or reducing risks; revis­
ing plans as necessary to accommodate changes and actual project results; and
continually improving Cleanroom team performance. Cleanroom management
is guided by quantitative measurements of process and product performance as
defined in the Measurement Plan- in particular, the measurements produced
by statistical testing and certification of successive increments throughout the
project life cycle.

Overall project processes, schedules, and resource allocations are managed
according to the Schedule and Resource Plan. The Increment Construction
Plan, created in the Increment Planning Process, provides detailed schedules
for managing increment development and certification within the overall sched­
ules. The Risk Analysis Plan defines risks to be managed.

An important aspect of Cleanroom project management is establishing
and enforcing standards of performance for Cleanroom operations. The Clean­
room development process is designed for defect prevention through mathemat­
ically based specification, design, and correctness verification. Development
teams are expected to produce fault-free software that implements specified
behavior. The Cleanroom testing process is designed for scientific certification
of software fitness for use through statistical testing. Certification teams are ex­
pected to produce valid statistical estimates of software quality, not to attempt
to test in quality.

Objectives

Objective 1

Objective 2

Objective 3

Entry

Entry 1

Tasks

Task 1

Task2

Task 3

7.2 Project Management Process 137

The project plan is implemented using a tailored Clean­
room process, and schedules, budgets, and quality objec­
tives are met.

The project is performed under statistical quality control.

The delivered software meets the customer's requirements
and is statistically certified to be fit for its intended use.

The process begins when the entry criteria are satisfied.

The Software Development Plan and the Cleanroom Engi­
neering Guide have been completed, reviewed, and agreed to
by the project team, peer groups, and the customer.

All project work products are available for use in this
process as they are developed.

Manage customer interaction.
Establish and maintain communication with points of con­

tact in customer organizations. Maintain all information re­
ceived from the customer.

Conduct reviews with the customer on project status and
plans.

Establish procedures for customer evaluation of completed
software increments.

Manage peer organization interaction.
Establish and maintain communication with points of con­

tact in peer organizations.
Conduct reviews with peer organizations on project status

and plans.

Form, staff, and train the Cleanroom teams.
Create a Cleanroom organizational structure composed of

four functions:

138 Cleanroom Management Processes

Task4

TaskS

1. Management team led by the project software manager

2. Specification team led by the chief specification engineer

3. Development team led by the chief development engineer

4. Certification team led by the chief certification engineer

Provide team training in the application domain, develop­
ment environment, and Cleanroom software engineering as
defined in the Training Plan.

Initiate Cleanroom processes.
Initiate Cleanroom processes defined in the Cleanroom

Engineering Guide, as required by the Software Development
Plan- in particular, the processes, schedules, and resource
allocations defined in the Schedule and Resource Plan and
the Increment Construction Plan. Document process initia­
tion in the Project Record.

Monitor Cleanroom process performance and work prod­
ucts through measurement, and take corrective action
when necessary.

Record measurements of process and product performance
over the life of the project as defined in the Measurement Plan.

Use measurements to monitor performance with respect to
plans. Inspect work products to assess adherence to the pro­
cess. Measurements from the Correctness Verification and the
Statistical Testing and Certification Processes are especially
important in assessing product quality and team performance.

Address performance shortfalls or windfalls. Identify sched­
ule and quality deviations, and implement corrective actions.
Revise project plans when necessary through the Project
Planning, Increment Planning, Project Management, and
Performance Improvement Processes.

Maintain consistency among related work products pro­
duced by the Cleanroom processes in accordance with the
Configuration Management Plan.

REFERENCE: CMM Software Project Tracking and Oversight
and Quantitative Process Management KPAs

If compliance with these KPAs is an organizational objective,
their specific requirements should be reviewed when this task
is tailored for organizational or project use.

Task6

Task?

Verification

Measurement

Exit

Exit 1

7.3 Performance Improvement Process 139

Manage project risks.
Identify and manage risks according to the Risk Analysis

Plan. Use the Cleanroom incremental development and certi­
fication process as a risk management strategy.

Manage Cleanroom team performance.
Manage team performance and implement improvements

in Cleanroom processes defined in the Peiformance Improve­
ment Plan.

(See Section 6.3, Common Cleanroom Process Elements.)

(See Section 6.3, Common Cleanroom Process Elements.)

The process is complete when the exit criteria are satisfied.

The Cleanroom software development project has been com­
pleted and the Project Record has been completed.

7.3 Performance Improvement Process

The purpose of the Performance Improvement Process is to evaluate and
improve team performance continually in the application of Cleanroom and
other software technologies and processes, and to evaluate and introduce appro­
priate new technologies and processes.

Frequent and objective evaluation of team performance is essential to
achieve continuous improvement. Causal analysis of deviations from plans can
provide early identification of risks. Causal analysis of faults found through the
Correctness Verification and the Statistical Testing and Certification Processes
can identify areas that require improvement through better process definition,
increased emphasis, and/or additional training.

140 Cleanroom Management Processes

Process and product evaluations during review, verification, testing, and
certification activities provide an objective basis for justifying and targeting
process improvements. Improvements can be introduced within a project at spe­
cific milestones, such as initiation of successive increments, and across projects
through coordinated organizational process improvement. New technologies
and processes can be evaluated in pilot applications for their impact on produc­
tivity and quality, and introduced in a systematic manner if proved effective.

Objectives

Objective 1

Objective 2

Entry

Entry 1

Entry 2

Entry 3

The performance of the Cleanroom team is continuously
improved.

New Cleanroom and other software technologies and
processes are evaluated and introduced as appropriate,
and produce improvement in process performance and
product quality.

The process begins when one of the entry criteria is
satisfied.

A process step, a software increment, or a work product has
been completed and a team review is scheduled.

New Cleanroom technologies and/or processes are to be eval­
uated.

Shortfalls in Cleanroom process performance orwork prod­
uct quality have been identified.

Supporting work products are available.
The Increment Verification Report, Statistical Testing Re­

port, Increment Certification Report, and Engineering Change
Log, if any, define measures of Cleanroom process perfor­
mance and software product quality.

New Cleanroom or other software technology and process
documentation, if any, may be evaluated.

Tasks

Task 1

7.3 Performance Improvement Process 141

Evaluate Cleanroom team performance and develop im­
provement plans.

Evaluate project performance with respect to the Software
Development Plan, and apply trend and causal analysis to
deviations.

Apply causal analysis to faults found in the Correctness
Verification and the Statistical Testing and Certification
Processes to identify the steps in which they were introduced
and to determine why they occurred.

Compare process and product measurements with histori­
cal team performance to assess process control.

Develop plans to improve team performance, including
additional training, improved tools and procedures, and revised
Cleanroom processes, and document the plans in the Peifor­
mance Improvement Plan.

REFERENCE: CMM Process Change Management KPA

If compliance with this KPA is an organizational objective,
its specific requirements should be reviewed when this task is

tailored for organizational or project use.

Evaluate new technologies and processes, and develop im­
plementation plans.

Identify new Cleanroom and other software technologies
and processes, and evaluate their impact on current Clean­
room processes. Conduct experiments in the project environ­
ment to measure their effectiveness.

Develop plans for the introduction of proved new tech­
nologies and processes, and document them in the Perfor­
mance Improvement Plan work product.

Schedule new technology and process introductions for
the start of subsequent increments or subsequent projects as
appropriate.

REFERENCE: CMM Technology Change Management KPA

If compliance with this KPA is an organizational objective,

its specific requirements should be reviewed when this task is

tailored for organizational or project use.

142 Cleanroom Management Processes

Verification

(See Section 6.3, Common Cleanroom Process Elements.)

Measurement

Measurement 1 Measure performance improvement.

Exit

Exit 1

Assess the effect of process and technology changes by
examining trends in measures defined in the Measurement
Plan across successive increments.

The process is complete when the exit criteria are satisfied.

The Performance Improvement Plan has been applied and the
recommendations have been implemented. Any changes,
such as revisions to the Software Development Plan or Clean­
room Engineering Guide, have been completed.

7.4 Engineering Change Process

The purpose of the Engineering Change Process is to plan and perform addi­
tions, changes, and corrections to work products in a manner that preserves cor­
rectness and is consistent with the Configuration Management Plan.

Proposed changes to work products are documented in the Engineering
Change Log. The status of the changes (e.g., proposed, approved, rejected,
scheduled, in progress, completed) is updated throughout the process. Changes
are made with full engineering rigor and discipline using the Cleanroom pro­
cesses. The highest level of specification or design affected by a change is iden­
tified as the starting point for any respecification, redesign, reverification,
recertification, and any other revision activity.

Objectives

Objective 1 Additions and changes to work products occur in a man­
ner that preserves correctness and is consistent with the
Configuration Management Plan.

Entry

Entry 1

.=ntry 2

Tasks

ask4

7.4 Engineering Change Process 143

The process begins when one of the entry criteria is
satisfied.

An Increment Verification Report, Statistical Testing Report,
or report from field use identifies software faults or failures
that require correction.

New requirements or insights require engineering changes to
be made to work products.

Entry work products and the following work products are
available.

The Software Development Plan, Increment Construction
Plan, and Reengineering Plan may be affected by engineer­
ing change activity.

Document proposed engineering changes in the Engineer­
ing Change Log.

Evaluate the impact of proposed engineering changes.
Analyze the scope and impact of proposed changes on

project work products, and approve or reject them based on
the analysis.

Identify the Cleanroom processes required to perform the
engineering changes.

Define the Cleanroom process sequencing and scheduling
required to perform approved engineering changes, and if
necessary revise the Software Development Plan, the Incre­
ment Construction Plan, and/or the Reengineering Plan.

Apply the Cleanroom processes to perform the engineer­
ing changes.

Apply Cleanroom processes to incorporate the engineer­
ing changes at the highest level of specification affected,
reengineer subsequent levels of decomposition, and reverify
all affected work products for correctness. Maintain the cor­
rectness and integrity of all affected work products as the
engineering changes are made, and satisfy the requirements
of the Configuration Management Plan.

144 Cleanroom Management Processes

Verification

Verification 1

Measurement

Confirm the consistency of engineering change decisions
with the Configuration Management Plan.

Measurement 1 Use measurements from other Cleanroom processes.

Exit

Exit 1

Use measurements defined for each Cleanroom process
initiated through the Engineering Change Process.

The process is complete when the exit criteria are satisfied.

The required engineering changes have been completed, the
necessary work products have been revised, and the Engi­
neering Change Log has been updated.

8
Cleanroom Specification
Processes

8.1 Requirements Analysis Process

The purpose of the Requirements Analysis Process is to define requirements for
dte software product, including function, usage, environment, and performance;
and to obtain agreement with the customer on the requirements as the basis for
function and usage specification. The specification team creates the Software
Requirements document as the repository of all requirements information.
Elicitation and analysis of requirements is carried out in close cooperation with
dte customer and peer engineering organizations, and the requirements are typi-
ally documented in user terms.

Requirements analysis may identify opportunities to simplify the cus­
mmer's initial product concept and to reveal requirements that the customer has
not addressed. Early simplification and clarification of requirements can result
in schedule and resource savings throughout the development process.

The Software Requirements are the customer's requirements. They are the
basis for customer acceptance of the product. The Software Requirements are
dte principal input to the Function Specification and Usage Specification Pro­

ses, in which they are elaborated into the mathematically complete and con-
. tent form essential to intellectual control over development and certification.

These processes in tum produce the Function Specification and Usage Specifi­
cation, which serve as the developer's technical specifications for the software
product.

145

146 Cleanroom Specification Processes

Requirements are reconfirmed or clarified throughout the incremental
development and certification process. The customer executes completed incre­
ments and provides feedback on the evolving system.

Objectives

Objective 1

Objective 2

Objective 3

Entry

Entry 1

Entry 2

Entry 3

Software requirements-including function, usage, envi­
ronment, and performance-are clearly stated, internally
consistent, technically feasible, and testable.

The customer agrees with the software requirements as
the basis for software specification.

The software requirements are reconfirmed or clarified
at the completion of software increments through cus­
tomer evaluation.

REFERENCE: CMM Requirements Management KPA

If compliance with this KPA is an organizational objective,
its specific requirements should be reviewed when the Re­

quirements Analysis Process is tailored for organizational or

project use.

The process begins when one of the entry criteria is
satisfied.

The Statement of Work or other initial artifact, such as a state­
ment of allocated system requirements, is available.

Changes, including additions and corrections to the Software
Requirements, are proposed.

A completed increment is ready for customer execution and
evaluation.

Entry work products and the following supporting work
products are available.

The Engineering Change Log and the Increment Evalua­
tion Report, if any, contain customer feedback from increment
execution and may identify proposed changes to requirements.

Tasks

Task 1

8.1 Requirements Analysis Process 147

Define the software requirements.
Understand and analyze the Statement of Work, the cus­

tomer's environment, and the context and mission of the
product to be developed.

Define requirements, including software function and
usage, hardware and software configurations and environ­
ments, interfaces, operational constraints, dependencies, and
goals for reliability, capacity, and performance.

ExPLANATION: Sources of requirements

Requirements come from many different sources depending
on the nature of the product.

Software that is part of an embedded system or larger
software system will be defined on the basis of allocated
requirements from the system of which it is a part.

A product that is part of a product line may inherit re­
quirements related to architecture, interfaces, standard

components, and so forth .

• Marketing, manufacturing, distribution, and other peer
organizations may be a source of requirements.

• Industry standards, regulatory standards, export standards,

and other commercial or contractual standards can influ­
ence requirements.

All relevant sources of requirements should be identified for

the system under development.

ExPLANATION: Prototyping

If the requirements definition is 'insufficient for software

specification, initial software increments can be specified

and developed as prototypes to obtain user feedback for
establishing the requirements .

Simplify requirements and investigate alternatives to
improve usability and to reduce development and certifica­
tion effort.

148 Cleanroom Specification Processes

Task2

Verification

Verification 1

Verification 2

Measurement

Exit

Exit 1

Document requirements and associated assumptions in the
Software Requirements work product.

On completion of each increment, reconfirm or clarify
requirements through customer evaluation of the exe­
cutable system.

Monitor customer execution and evaluation of completed
software increments to confirm existing Software Require­
ments or to identify proposed changes.

Review the evolving Software Requirements work product.
Conduct frequent specification team reviews of the evolv­

ing Software Requirements for clarity, consistency, feasibil­
ity, and testability. Make simplification of requirements an
explicit objective.

Validate the Software Requirements work product with
the customer and peer organizations.

Review the Software Requirements with the customer and
affected peer organizations for agreement on the basis for
software specification.

(See Section 6.3 , Common Cleanroom Process Elements.)

The process is complete when the exit criteria are satisfied.

The new or changed Software Requirements are complete and
verified, and approved by the customer as the basis for further
development.

8.2 Function Specification Process 149

ExPLANATION: Formal baselining of requirements

It is often the case that requirements cannot be "baselined"
and established as the basis for acceptance of the product by
the customer until well into the Function Specification, Usage
Specification, and Architecture Specification Processes. The
Requirements Analysis Process and the aforementioned
processes are often concurrent-not sequential-processes.

8.2 Function Specification Process

The purpose of the Function Specification Process is to specify the complete
functional behavior of the software in all possible circumstances of use and to
obtain agreement with the customer on the specified function as the basis for
oftware development and certification.

The specification team creates the Function Specification document to sat­
isfy the software requirements. It expresses the requirements in a mathemati­
cally precise, complete, and consistent form. The required behavior of the
oftware for every user scenario, however likely or unlikely to occur, is defined

in the specification. The specification is an unambiguous definition of the exter­
nal behavior of the software. No invention of external behavior should be
required in subsequent software development.

The Function Specification is based on the Software Requirements. After
the specification has been completed and validated, it becomes the definitive
statement of functional behavior for the software. The specification defines the
capabilities to be created through incremental software development. It also
erves as the basis for usage specification and usage model development in

incremental software certification.
For large systems, a strategy of incremental specification is usually neces­

sary. In this approach, software increments are iteratively specified, developed,
and certified. This permits user feedback on observed increment behavior in
execution, and can help to elicit requirements that may have proved difficult to
define. The Function Specification Process is ongoing. Whenever the evolving
Function Specification is sufficient to support increment planning and develop­
ment of an increment, that development can be initiated.

150 Cleanroom Specification Processes

Objectives

Objective 1

Objective2

Objective 3

Entry

Entry 1

Entry 2

The required behavior of the software in all possible cir­
cumstances of use is defined and documented.

The function specification is complete, consistent, correct,
and traceable to the software requirements.

The customer agrees with the function specification as the
basis for software development and certification.

The process begins when one of the entry criteria is
satisfied.

The Software Requirements have been partially or fully
completed.

ExPLANATION: Incremental function specification

All software requirements must eventually be defined to per­

mit complete function specification. Often, all requirements

are not fully understood at the outset, and a strategy of incre­

mental function specification based on partial requirements

definition may be necessary.
In large-scale developments, incremental function speci­

fication is often a desirable strategy for pacing development,

maintaining intellectual control, and eliciting customer feed­

back.

The Function Specification requires revision for changes to
the Software Requirements or for changes from increment
specification, development, or certification.

Entry work products and the following supporting work
products are available.

The Engineering Change Log describes proposed changes,
if any. The Usage Specification, if any, is used as a check on
the completeness and consistency of the Function Specifi­
cation.

... asks

- .:si(1

-55 2

8.2 Function Specification Process 151

Define the format and notation of the Function
Specification.

ExAMPLE: Function Specification format

The mathematical definition of a black box specification pre­
scribes certain elements with a format that must be specified.

For example, a black box specification can be formatted as

tables (with columns for current stimulus, conditions on stim­

ulus history, and responses), enumerations of input sequences

and responses, disjoint conditional rules, or other formalisms

appropriate to the application. The notation definition should

include project conventions for naming and typing.

Define all software boundaries and stimulus-response in­
terfaces with hardware, other software, and human users.

Specify stimuli from hardware devices and associated
responses and protocols.

Specify stimuli from external software and associated
responses, including formats of files and messages.

Specify stimuli from user interfaces and associated
responses, including details of presentation and interaction.

REcoMMENDATION: Specification of human user interfaces

The details of human user interfaces should be established

during function specification, not deferred for completion

during development. The Function Specification defines the

complete external behavior of the software, which is closely

coupled to user interfaces.

Document the software boundaries and external stimuli
and responses in the Function Specification work product.

Specify the required external behavior of the software in
the black box function form of stimulus history mappings
to corresponding responses.

Specify the required external behavior of the software in
all possible circumstances of use.

152 Cleanroom Specification Processes

ExPLANATION: "All possible circumstances of use"

The Function Specification defines the required behavior of

the software for all uses, including correct and incorrect,

frequent and infrequent, and nominal and stress conditions.

Responses for all possible stimulus histories should be

specified.

EXPLANATION: Mathematical function

"Function" refers to a mathematical function. A mathemati­

cal function defines a mapping from a domain to a range. In a

black box specification, the domain is the set of all possible

sequences of inputs (all stimulus histories), and the range is

the set of all correct responses. A mathematically "complete"

specification is one in which all possible stimulus histories

have been mapped to their corresponding responses. A math­

ematically "consistent" specification is one in which no his­
tory has been mapped to more than one response. A "correct"

specification is one in which the domain, range, and mapping

have been properly specified in the judgment of domain

experts.

REFERENCE: Software specification based on mathematical

function theory

See Mills (1986, 1988) and Mills, Dyer, and Linger (1987).

REcoMMENDATION: Prudent exceptions to black box

specification

The black box specification has a state- and procedure-free

form that is extremely useful for validating requirements and

driving incremental development and certification. In some

cases, however, state box and even clear box specifications
can be considered when they are more natural alternatives.

Black box specifications are generally best, and are well worth

the effort to develop.

Verification

Verification 1

Verification 2

8.2 Function Specification Process 153

Use abstractions such as specification functions in the
black box specification to maximize understandability, limit
complexity, and maintain intellectual control.

ExPLANATION: Specification functions

"Specification functions" are a common form of abstraction
used in scaling up black box specifications for large systems.
Specification functions define conditions or operations that
are used to simplify function mappings . They appear in the
mappings as named placeholders. For example, in a specifi­
cation for a database, a specification function named "delete­

ok" operating on stimulus history might define conditions for
which a "delete" stimulus should produce a deletion; namely,
that the record to be deleted had been added somewhere in
the history of use and not subsequently deleted.

Simplify external software behavior whenever possible to
improve usability and to reduce the development and certifi­
cation effort.

Document the black box mapping of stimulus histories to
responses and associated assumptions in the Function Speci­
fication work product.

Verify the completeness, consistency, correctness, and clar­
ity of the evolving Function Specification work product in
frequent team reviews.

Verify the completed Function Specification work prod­
uct with the customer and the project team.

Review the Function Specification with the customer, the
development and certification teams, and affected peer groups
for agreement as the basis for incremental development and
certification.

154 Cleanroom Specification Processes

Measurement

Exit

Exit 1

(See Section 6.3, Common Cleanroom Process Elements.)

The process is complete when the exit criteria are
satisfied.

The Function Specification has been completed, verified
against the Software Requirements, and agreed to by the cus­
tomer as the basis for software development.

8.3 Usage Specification Process

The purpose of the Usage Specification Process is to identify and to classify
software users, usage scenarios, and environments of use; to establish and to
analyze the highest level structure and probability distributions for software
usage models; and to obtain agreement with the customer on the specified usage
as the basis for software certification.

The specification team creates the Usage Specification based on the
Software Requirements and the evolving Function Specification. The informa­
tion in the Usage Specification defines the scope of the testing effort and serves
as the basis for incremental usage model development. It also assists in com­
pleting and validating the Function Specification.

Analysis of high-level usage models provides early guidance for allocation
of development and testing resources. The analysis can provide estimates of rel­
ative long-run usage of specified software functions, which can help prioritize
development activities. It can also help estimate testing resource and schedule
requirements. Usage model analysis can be carried out prior to software devel­
opment, before resources are committed to increment development and certifi­
cation. This analysis is an effective management tool for reducing the risk of
inaccurate resource and schedule estimates.

Objectives

Objective 1 The users, usage scenarios, and usage environments of the
software are defined and documented to clarify the speci­
fication, establish development priorities, and provide a
basis for initial test planning.

Objective 2

Entry

Entry 1

Entry 2

Tasks

Task 1

8.3 Usage Specification Process 155

The customer agrees with the usage specification as the
basis for usage model development and software certifi­
cation.

The process begins when one of the entry criteria is
satisfied.

The Software Requirements and the Function Specification
have been partially or fully completed.

ExPLANATION: Incremental usage specification

All software requirements and function specifications must
eventually be defined to permit a complete usage specifica­
tion. Often, all requirements are not fully understood at the
outset, and the strategy of incremental usage specification
based on a partial requirements definition may be necessary.
In large-scale developments, incremental usage specification
is often a desirable strategy for pacing development, main­
taining intellectual control, and eliciting customer feedback.

The Usage Specification requires revlSlon for changes to
the Software Requirements or Function Specification, or for
changes from increment specification, development, or certi­
fication.

Entry work products and the following supporting work
product are available.

The Engineering Change Log describes proposed changes,
if any.

Define the format and notation of the Usage Specification.
The Usage Specification is often represented as a high­

level Markov chain. Naming and documentation conventions
are established for encoding usage information as elements
of the chain.

156 Cleanroom Specification Processes

Task2

EXPLANATION: Markov chain

Software use is treated as a stochastic process that can be
described as a Markov chain. A Markov chain can be repre­
sented as a directed graph, in which the nodes are states of
use and the arcs are stimuli that cause transitions between

states.
In the Usage Modeling and Test Planning Process, the

high-level Usage Specification is refined to produce detailed
Markov chain Usage Models. Additional explanation of Mar­
kov chains is given in that process.

Specify the expected usage of the software through pro­
gressive stratification of usage characteristics.

ExPLANATION: Stratification of usage characteristics

Variation in usage can be described as a hierarchy of progres­
sively narrower categories of usage. A heterogeneous user
population, for example, may be subdivided into a set of more
homogeneous user classes. This stratification of usage results

in a better understanding of software usage requirements and
provides a high-level basis for test planning.

Identify and classify all hardware, software, and human
users of the software.

Identify the expected proportion of each class of user
within the set of expected users.

ExAMPLE: User classifications

Hardware user classifications include sensors, actuators, and
other peripheral devices. Software user classifications include
operating systems, databases, and other controlling or sup­
porting software. Human user classifications include job
type, access privileges, and experience level.

8.3 Usage Specification Process 157

ExPLANATION: Contribution of usage specification to
function specification

Identification of users, usage scenarios, and environments of
use in the Usage Specification Process contributes to the
completeness and correctness of function definition in the
Function Specification Process.

The users of the software are the sources of stimuli and
the targets of responses. The completeness of the set of iden­
tified users is a necessary condition for the correctness of the
domain defined in the Function Specification. The principle

of transaction closure in Cleanroom black box specification
refers to the requirement that all possible uses by all possible
users be identified.

For each class of user, identify and classify all scenarios of
use, including starting and ending events.

Identify the expected proportion of each class of scenarios
within the set of expected scenarios.

ExAMPLE: Use classifications

Usage scenarios are defined by considering main and sup­
porting user functions, routine and nonroutine use, safe and
hazardous use, and other dimensions that stratify and orga­
nize usage patterns.

Because statistical testing is based on random sampling of
the population of possible uses, the definition of a "use" is
critical to the validity of the testing process . A use begins and

ends with predefined events that are appropriate to the appli­
cation; for example, invocation to termination, switchhook­
up to switchhook-down, power-up to power-down, main menu
to main menu, transaction start to transaction end, and so on.

For each class of user and class of use, identify and clas­
sify expected hardware and software environments for the
software system.

Identify the expected proportion of each class of environ­
ment within the set of expected environments.

158 Cleanroom Specification Processes

Task 3

EXAMPLE: Environment classifications

Usage environments can be classified in terms of characteris­

tics such as computer and network configuration, capacity, and

performance; system and support software capabilities and

resource requirements; data rates and volumes; and support

for concurrency.

ExPLANATION: Operational use as the context for certification

Cleanroom testing is performed as a statistical experiment in

which tested use of the software should reflect operational

use to the greatest extent possible. Careful characterization of

operational environments permits their accurate simulation

in testing, which in tum permits valid estimates of fitness for

use of the software in the operational environments.

REFERENCE: Usage specification

See Walton, Poore, and Trammell (1995).

Document the results in the Usage Specification work product.

Represent usage information as high-level Markov chains.
Analyze the models, and make recommendations based
on analysis of usage model statistics.

EXPLANATION: Relationship of usage specification to usage

modeling

Usage specification is a system-level activity. Detailed usage

modeling parallels lower-level development activity. The

high-level usage model developed during the Usage Speci­

fication Process is the top level of the usage model(s) devel­

oped during the Usage Modeling and Test Planning Process.

Verification

Verification 1

Verification 2

Measurement

8.3 Usage Specification Process 159

Identify any areas in which the functions defined in the
Function Specification result in excessive complexity and
cost in usage model development. Make recommendations
for possible simplification.

Evaluate software functions in terms of probability of use.
Make recommendations on development priorities.

Analyze usage statistics to estimate resources and sched­
ules required to achieve certification goals.

Verify the evolving Usage Specification work product in
specification team reviews.

Conduct frequent specification team reviews of the evolv­
ing Usage Specification for completeness, consistency, cor­
rectness, and clarity.

Verify the completed Usage Specification work product
with the customer and the project team.

Review the Usage Specification with the customer, the
certification team, and affected peer groups for agreement
as the basis for usage model development and software
certification.

Measurement 1 Apply standard calculations to Markov chain usage mod­
els to derive high-level operational profiles of the software.

ExPLANATION: Usage model calculations

Standard calculations on Markov chain usage models pro­
vide estimates of long-term software usage behavior. The
calculations may be interpreted to identify patterns of use,
usage features, probabilities of particular usage events, and
insights relevant to both development and test planning.
Further discussion of usage model analysis is provided in the
discussion of the Usage Modeling and Test Planning Process.

160 Cleanroom Specification Processes

Exit

Exit 1

The process is complete when the exit cr iteria are satisfied.

The Usage Specification has been completed, verified, and
agreed to by the customer as the basis for detailed usage
modeling and test planning.

8.4 Architecture Specification Process

The purpose of the Architecture Specification Process is to define the concep­
tual model, the structural organization, and the execution characteristics of the
software. Architecture definition is a multilevel activity that spans the life cycle
of the project. Architecture may be inherited from a domain or product line,
evolve within the constraints of the system of which it is a part, or wholly origi­
nate in the software project.

The Cleanroom aspect of architecture specification is in decomposition of
the history-based black box Function Specification into state-based state box
and procedure-based clear box descriptions. This high-level box structure of the
software identifies and connects principal components, including their state
encapsulations and operations. It is the beginning of a referentially transparent
decomposition of the Function Specification into box structure hierarchies, and
will be used during increment development. The architecture may take a variety
of forms , including functional, object based, and so on.

Key dimensions of an architecture are a conceptual architecture, expressed
in terms of major software components and their relationships; a module archi­
tecture, expressed in terms of layers of functional decomposition; and an exe­
cution architecture, expressed in terms of dynamic software operation (Soni,
Nord, and Hofmeister 1995). The architecture is a vehicle for incorporating
existing reference models, components, protocols, standards, and software
design strategies. Architecture specification spans the development life cycle.

The Software Architecture is a principal input to the Increment Planning
and the Increment Design Processes.

Objectives

Objective 1 The architectural strategy leverages existing assets and
supports reuse plans.

Objective 2

Objective 3

Entry

Entry 1

Entry 2

Tasks

Task 1

Task2

8.4 Architecture Specification Process 161

The architectural structure of the software is defined as
the complete behavior and interaction of its principal
components.

The customer agrees with the software architecture as the
basis for software development.

The process begins when one of the entry criteria is
satisfied.

The Software Requirements and the Function Specification
are partially or fully completed.

The Software Architecture requires revision for changes to
the Software Requirements or Function Specification, or for
changes from increment specification, development, or certi­
fication.

Entry work products and the following supporting work
products are available.

The Engineering Change Log describes proposed changes,
if any. The Usage Specification is used to clarify requirements
and constraints on the software architecture.

The Reengineered Software, if any, is used to define the
use of reengineered components in the architecture.

Identify architectural assets.
Identify and analyze architectural assets applicable to the

software, including existing domain models, reference archi­
tectures, components, communication protocols, standards,
and design strategies and conventions.

Record the asset analysis in the Software Architecture
work product.

Define a strategy for the software architecture.
Define a strategy for the architecture based on the Soft­

ware Requirements, the Function Specification, the analysis
of the architectural assets, and the requirements derived from
higher level system or subsystem design.

Document the strategy in the Software Architecture.

162 Cleanroom Specification Processes

Task 3 Specify the top-level box structure of the software archi­
tecture.

Task4

Verification

Verification 1

Verification 2

Decompose the history-based black box specification of
required external behavior defined in the Function Specifi­
cation into top-level, state-based state box and procedure­
based clear box forms based on the architecture strategy.

For the state box, invent principal state elements and oper­
ations required to achieve specified black box behavior.

For the clear box, invent procedures for operations on state
elements required to achieve specified state box behavior.
Within the clear box, invent and connect principal software
components, usually defined as black boxes, whose subse­
quent state box decompositions will encapsulate state at the
next level.

Continue the decomposition until the architecture is fully
elaborated.

The completed software architecture represents hierar­
chies of box uses, wherein every use of a box is represented
explicitly in a hierarchy.

Document the architecture in the Software Architecture
work product.

Analyze and validate the software architecture.
Perform simulations and analysis as necessary to ensure

that performance, reliability, usability, and other software
requirements can be met by the architecture.

Document the analysis in the Software Architecture work
product.

Verify the evolving Software Architecture work product in
team reviews.

Conduct frequent team reviews of the evolving Software
Architecture to ensure that it meets requirements.

Use the Correctness Verification Process to verify that the
representation of the Software Architecture in top-level box
structure form is complete, consistent, and correct.

Verify the completed Software Architecture work product
with the customer and the project team.

Review the Software Architecture with the customer, the
development and certification teams, and the affected peer

Measurement

Exit

Exit 1

8.5 Increment Planning Process 163

groups for agreement as the basis for incremental develop­
ment and certification.

(See Section 6.3, Common Cleanroom Process Elements.)

The process is complete when the exit criteria are satisfied.

The Software Architecture has been completed, verified, and
agreed to by the customer.

8.5 Increment Planning Process

The purpose of the Increment Planning Process is to allocate customer require­
ments defined in the Function Specification to a series of software increments
that satisfy the Software Architecture, to define schedule and resource alloca­
tions for increment development and certification, and to obtain agreement with
the customer on the increment plan.

The Increment Construction Plan is created by the specification team for
use by management to assign tasks, track progress, and monitor product quality
and process control in the Project Management Process. It is revised as neces­
sary to incorporate changes or to accommodate actual project performance. In
the incremental process, a software system grows from initial to final form
through a series of increments that implement user function, execute in the sys­
tem environment, and accumulate into the final system. The first increment is
an end-to-end executable subset (i.e., initial user state to final user state) of the
functional behavior on which later increments can be built. When the final
increment is in place, the system is complete. By providing a series of accumu­
lating subsets of the software that grow in capability, the incremental process
reduces risk and permits early and continual user evaluation and feedback. If
the customer prefers delivery of the final system only, incremental development
can still be used by the development organization for management control, risk
mitigation, and to support development needs such as hardware and software
co-design.

Incremental development and certification avoids the risks associated with
a separate integration step late in a project life cycle. Increments are typically

164 Cleanroom Specification Processes

developed in top-down fashion, often with concurrent engineering of incre­
ments . Each increment is a composition of functions and interfaces specified in
prior increments. This approach permits continual testing and quality assess­
ment as the software evolves into final form.

Objectives

Objective 1

Objective 2

Objective 3

Entry

Entry 1

Entry 2

Tasks

Task 1

The incremental development and certification plan sup­
ports intellectual control of the work, statistical quality
control of the process, and risk management of the overall
project.

The increment plan ensures ongoing clarification of re­
quirements through user execution and evaluation of
increments.

The customer agrees with the increment plan as the basis
for software development and certification.

The process begins when one of the entry criteria is
satisfied.

The Software Requirements, Function Specification, Usage
Specification, Software Architecture, Reuse Analysis Plan,
Risk Analysis Plan, and Schedule and Resource Plan are
partially or fully complete. These work products are the basis
for developing the Increment Construction Plan, as well as a
source of revisions to it.

The Increment Construction Plan requires revision for
changes from development or certification activity, or as a
result of new or changed requirements.

Entry work products are available.

Partition software functions into a series of increments
for development and certification.

8.5 Increment Planning Process 165

Define the functional content of a series of software incre­
ments that implement user function, execute in the system
environment, and accumulate into the final system.

ExPLANATION: "Accumulate into the final system"

Cleanroom increments accumulate in a top-down fashion.
The Function Specification and Software Architecture pro­
vide the high-level structure for a series of increments that
grow from the structure. From the beginning, embedded
specifications with executable stubs are used as placeholders
for functions planned for later increments. In this way, all

testing occurs in a system environment. Traditional integra­
tion testing is unnecessary.

Use the Software Requirements to identify software require­
ments or system engineering factors that may influence the
definition of increment content.

Use the Function Specification and the Software Architec­
ture to identify required software functions and their depen­
dent relationships as a basis for defining increment content.

Use the Reuse Analysis Plan to identify reused compo­
nents and allocate them to appropriate increments.

Use the Risk Analysis Plan to identify risks that influence
increment content. Plan increment content to avoid or manage
risks, with emphasis on addressing risks early in the project.

Use the Usage Specification to define increment content in
consideration of usage probabilities; specifically, to incorpo­
rate functions with high usage probabilities into early incre­
ments .

Identify special components, such as complex algorithms
requiring extensive analysis, for independent development
and certification prior to incorporation into the accumulating
increments. These components can be incorporated as reusa­
ble assets in the overall increment plan.

Document the required functional content of the incre­
ments in the Increment Construction Plan.

166 Cleanroom Specification Processes

Task 2 Refine the Schedule and Resource Plan by allocating
schedules and resources to incremental development and
certification.

Verification

Verification 1

Measurement

Exit

Exit 1

Within the overall constraints of the Schedule and Re­
source Plan, allocate development and certification schedules
and resources for each increment.

Provide for overlapping or parallel development of incre­
ments as necessary to meet schedules based on the availability
of development resources.

Define schedule points for measurement of software
quality and process control, and for customer evaluation of
increments.

Document schedule and resource allocations in the Incre­
ment Construction Plan work product.

REFERENCE: Increment planning

See Trammell, Pleszkoch, Linger, and Hevner (1996).

Review the Increment Construction Plan with the cus­
tomer, the development and certification teams, and
affected peer groups for agreement as the basis for incre­
mental development and certification.

(See Section 6.3, Common Cleanroom Process Elements.)

The process is complete when the exit criteria are satisfied.

The Increment Construction Plan has been completed, veri­
fied, and agreed to by the customer as the plan for software
development and certification.

8.6 References 167

8.6 References

H.D. Mills. "Mathematical Foundations for Structured Programming," in Soft­
ware Productivity (New York: Dorset House, 1988), 115-178.

H.D. Mills . "Structured Programming: Retrospect and Prospect." IEEE Soft­
ware vol. 3 (November 1986): 58-66.

H.D. Mills, M. Dyer, and R.C. Linger. "Cleanroom Software Engineering."
IEEE Software vol. 4 (November 1987): 19-25.

D. Soni, R. Nord, and C. Hofmeister. "Software Architecture in Industrial
Applications" in Proceedings of the 17th International Conference on Soft­
ware Engineering, eds. R. Jeffrey and D. Notkin (New York: Association
for Computing Machinery, 1995): 196-207.

C.J. Trammell, M.G. Pleszkoch, R.C. Linger, and A.R. Hevner. "The Incre­
mental Development Process in Cleanroom Software Engineering." Deci­
sion Support Systems vol. 17 (April1996): 55-71.

G.H. Walton, J.H. Poore, and C.J. Trammell. "Statistical Testing Based on a
Usage Model." Software-Practice and Experience vol. 25, no. 1 (January
1995): 97-108.

9
Cleanroom Development
Processes

9.1 Software Reengineering Process

The purpose of the Software Reengineering Process is to prepare reused soft­
·are for incorporation into the software product. Reused software can originate

in Cleanroom or non-Cleanroom environments, and can include commercial
roducts, customer-furnished software, and components from previous soft­

. ·are developments. Software may be reused as is, reused through interface
controllers such as wrappers, or reused after reengineering.

Reused software must satisfy two principal Cleanroom requirements. First,
ihe functional semantics and interface syntax of reused software must be under­
~tood and documented, to maintain intellectual control and to avoid unforeseen
failures in execution. If specification and design documentation for reused soft­
ware is incomplete, its functional semantics can be recovered through function
abstraction and correctness verification. The completeness and correctness of
pecifications for reused software must satisfy project specification standards.

Second, the fitness for use of reused software must be either known or
determined to achieve the project's certification goals. Usage models can be
developed for reused software, and its fitness for use can be determined through
illltistical testing. The reliability of reused software must satisfy project certifi­
cation goals.

The results of the Software Reengineering Process are recorded in the
Reengineering Plan and Reengineered Software work products.

169

170 Cleanroom Development Processes

Objectives

Objective 1

Objective 2

Objective 3

Entry

Entry 1

Entry 2

Tasks

Task 1

Reengineered software satisfies requirements for the soft­
ware product in which it is used.

Reengineering activity enables intellectual control over
the reengineered software.

Reengineered software is certified to be fit for its intended
use as necessary to meet certification goals for the soft­
ware product in which it is used.

The process begins when one of the entry criteria is
satisfied.

Candidate reusable assets identified in the Reuse Analysis Plan
are to be evaluated and possibly reengineered for use in the
software product.

The Reengineering Plan and/or the Reengineered Software
require revision for changes from specification, development,
or certification activities.

Entry work products and the following supporting work
products are available.

Reused software and its supporting documentation are used
as the basis for creating the Reengineered Software.

The Engineering Change Log describes proposed changes.
The Software Requirements, Function Specification, Usage
Specification, Software Architecture, and Increment Construc­
tion Plan are used to define requirements for reengineering
reused software.

Analyze candidate reused software and its documentation
to develop a reengineering plan.

Analyze specifications, designs, and implementations of
reused software to evaluate the completeness and correctness

Task2

ask3

ask4

9.1 Software Reengineering Process 171

of documentation of its functional semantics, and the extent
of reengineering necessary to satisfy software product re­
quirements.

Analyze the usage models, test plans, test procedures, test
results, and actual usage of reused software to evaluate the
basis for its reliability estimates.

Conduct a cost/benefit analysis with respect to project
certification goals and future software maintenance responsi­
bilities to determine appropriate resource allocations to re­
engineering activities.

If necessary, develop a plan for reengineering reused soft­
ware to satisfy functional requirements, recover functional
semantics, and/or assess fitness for use.

Define and document reengineering tasks, schedules, and
resources in the Reengineering Plan work product.

Recover the functional semantics of reused software using
function abstraction techniques.

If reused software implementations are not structured,
transform them into structured form using program structur­
ing techniques to permit function abstraction.

Carry out stepwise abstraction of structured implementa­
tions as necessary and document embedded intended func­
tions. Continue abstraction until specifications of external
behavior in all possible circumstances of use have been
defined.

Document the functional semantics of reused software in
the Reengineered Software work product.

Reengineer reused software to meet software product re­
quirements.

Respecify, redesign, and reimplement reused software as
necessary to meet requirements using the Function Specifi­
cation, Increment Design, and Correctness Verification Pro­
cesses.

Document the reengineering of reused software in the
Reengineered Software work product.

Recover the functional semantics of reused software using
experimental execution.

If the source code of reused software is not available, con­
duct experimental executions as necessary to derive an under­
standing of its functional semantics.

172 Cleanroom Development Processes

TaskS

Verification

Verification 1

Measurement

RECOMMENDATION: Use of Commercial Off-the-Shelf
Software (COTS) or Application

Program Interfaces (APis)

If neither specifications nor source code are available, execu­

tion experiments can be used to understand the semantics of
the software. The use of COTS, API, or otherwise "sealed"
software in the product under development should be

restricted to functions that are well understood.

Document the functional semantics of reused software in
the Reengineered Software work product.

Certify the fitness for use of reused software.
Create usage models and conduct statistical testing as nec­

essary to certify the fitness for use of reused software with
respect to project certification goals. Use the Usage Model­
ing and Test Planning Process and the Statistical Testing and
Certification Process.

Document certification results in the Reengineered Soft­
ware work product.

Verify the Reengineered Software work product.
Carry out correctness verification in team reviews as

necessary to ensure correctness of abstracted specifications
and/or redeveloped software. Use the Correctness Verifica­
tion Process.

Measurement 1 Measure the fitness for use of the reengineered software
using the Cleanroom certification processes and associated
measures.

Exit

Exit 1

Exit 2

9.2 Increment Design Process 173

The process is complete when one of the exit criteria is
satisfied.

The Reengineered Software has been completed, including
any necessary redevelopment to meet requirements, abstrac­
tion of functional semantics, and certification of fitness for
use.

Reengineering activity has revealed that the candidate soft­
ware is not fit for use in the product, and project plans must
be changed.

9.2 Increment Design Process

The purpose of the Increment Design Process is to design and code a software
increment that satisfies the Increment Construction Plan, Function Specifica­
Tion, and Software Architecture; and conforms to Cleanroom design principles
and quality criteria. The development team documents each increment in the
Increment Design work product.

Increments are designed and implemented as usage hierarchies through
box structure decomposition. This process preserves referential transparency
between successive decompositions to maintain intellectual control. Increment
designs can be expressed in object, functional, or other forms. Each increment
· based on a prior specification. Increment specifications are expressed in stim­
ulus history-based black box and state-based state box forms. Increment

igns and implementations are expressed in procedure-based clear box forms
that can introduce new black boxes for further decomposition. Reused or
reengineered components are incorporated as planned.

Team reviews during the Increment Design Process focus on issues such
design strategies, simplification, verifiability, maintainability, reuse, and con­

formance to style. In the complementary Correctness Verification Process, the
Learn. focuses exclusively on correctness. Specifications, designs, and imple­
mentations evolve in the Increment Design Process, and intended functions are
anbedded in clear box procedure decompositions to permit effective correct-
ess verification. The team performs correctness verification as the last intellec­

Lnal pass through the work.
The development team does not execute the increment implementation.

:::USt execution is performed by the certification team in the Statistical Testing
:md Certification Process after the development team has completed verifica­
·on in the Correctness Verification Process.

174 Cleanroom Development Processes

Objectives

Objective 1

Objective 2

Objective 3

Entry

Entry 1

Entry 2

Tasks

Task 1

The increment design and implementation satisfy the
Function Specification, the Software Architecture, and the
Increment Construction Plan.

The increment design and implementation are a verifi­
ably correct decomposition of required functions.

Intellectual control over increment design and implemen­
tation is maintained through team reviews.

The process begins when one of the entry criteria is
satisfied.

The Software Requirements, Function Specification, Usage
Specification, Software Architecture, Reengineered Software,
and Increment Construction Plan are sufficient for increment
design, and a software increment is scheduled for develop­
ment or change. These work products are the basis for devel­
oping the Increment Design, as well as a source of revisions
to it.

An Increment Verification Report or Increment Certification
Report identifies faults or failures requiring correction of the
Increment Design.

Entry work products and the supporting work product
are available.

The Engineering Change Log describes proposed changes.

Review the work products that are the basis for the incre­
ment design.

Review the Increment Construction Plan to identify the
user functions to be implemented in the increment.

Review the Function Specification for definitions of the
user functions to be implemented in the increment.

Review the Software Architecture for the architectural
strategy to be maintained in the increment.

Task2

9.2 Increment Design Process 175

Design and implement the software increment as a usage
hierarchy through box structure decomposition.

E XPLANATION: Box structure usage hierarchy

Box structure decomposition results in a usage hierarchy of
objects, modules, and other units of code. The box structure

hierarchy for an increment is the completed increment. The
box structure hierarchy for the final increment is the com­
pleted software product.

Decompose history-based black box specifications into
state-based state box specifications with equivalent behavior
in all circumstances of use.

Decompose state box specifications into procedure-based
clear box designs with equivalent behavior in all circum­
stances of use. Introduce new black box uses in clear box
designs as necessary.

Create clear box designs as structured procedures that
fully define control and data relationships among new black
box uses and other design elements.

Repeatedly decompose new black boxes into state box and
clear box forms. Continue decomposition until designs can
be implemented with no further invention required.

Maintain referential transparency between decomposi­
tions for intellectual control.

ExPLANATION: Referential transparency

Cleanroom minimizes the risk of integration faults through
development based on the mathematical principle of referen­
tial transparency. Referential transparency in box structure
hierarchies requires that the black box specifications embed­
ded in clear boxes at each level of decomposition define pre­

cisely the required functional behavior of their subsequent
decompositions into state and clear boxes. With referential
transparency, intellectual control is maintained and indepen­
dent work at lower levels can proceed without concern for

functional interactions at higher levels.

176 Cleanroom Development Processes

Task3

Incorporate components from the Reengineered Software
work product into the increment as planned.

Attach intended functions to the control structures in clear
box procedure designs for use in correctness verification.

EXPLANATION: Intended functions

Intended functions are a key Cleanroom concept and are
essential to achieving Cleanroom objectives. An intended
function is a definition of the full functional effect on data of

the control structure (s equence, i fthenelse, whi ledo, etc.)

to which it is attached. Intended functions typically appear as

comments in the clear box. They are often expressed in black
box or state box form, particularly as conditional rules, and

are used in verifying their control structure expansions.

If necessary, translate designs into the implementation
language and review for correct translation.

Refer to the Usage Specification document for informa­
tion about the operational environment. Refer to the Increment
Verification Report or Increment Certification Report for
faults or failures requiring correction.

Document the design and code in the Increment Design
work product.

REFERENCE: Box structure specification and design

See Mills (1986, 1988) and Mills, Dyer, and Linger (1987).

Improve the Increment Design through team reviews.
Conduct frequent development team reviews of the

evolving Increment Design to discuss design strategies and
improvements, and to assess characteristics including under­
standability, verifiability, and maintainability. Make design
simplification and style compliance explicit review objec­
tives for efficient correctness verification. Redesign for sim­
plicity when cost effective.

9.2 Increment Design Process 177

ExPLANATION: Writing for verification

Correctness verification is only possible if designs are verifi­

able. This is not to say that designs are not correct unless they

are verifiable, only that they are not verifiably correct.
Cleanroom designs are written for verification. The step­

wise unfolding of specification and design in box structure

decompositions ensures traceability of design to specifica­

tion at every level of the usage hierarchy. Each specification

is "distributed" as intended functions for design components

during the Increment Design Process, and design compo­

nents are verified against their intended functions during the

Correctness Verification Process.

Identify opportunities for state migration and use of com­
mon services.

EXPLANATION: State migration

State migration is a Cleanroom strategy for improving and

simplifying designs. It concerns placement of state data at the

most effective level of decomposition for its use. State migra­

tion implements the software engineering principle of infor­

mation hiding for limitation of data scope. State migration

places data based on its scope of usage at as low a level in a

system hierarchy as possible, but at as high a level as necessary.

Migration of state data may be possible whenever new black
boxes are created in a given clear box. Any state data item
used solely by one lower level box can be migrated to it.

EXPLANATION: Common services

Use of common services is another Cleanroom strategy for

improving and simplifying designs. Common services are

reusable components. They may be newly created for a given
system, or drawn from a reuse library. Common services

afford economy in system size, effective use of development

resources, efficient verification, and increased reliability.

178 Cleanroom Development Processes

Task 4 Perform individual correctness verification.

Verification

Verification 1

Measurement

Exit

Exit 1

Apply function-theoretic correctness verification on an
individual basis to evolving designs, with the objective of
entering the Correctness Verification Process with few faults.

Verification of the correctness of the Increment Design is so
critical to Cleanroom objectives that an entire process is de­
voted to it (see Section 9.3 , Correctness Verification Process).

(See Section 6.3, Common Cleanroom Process Elements.)

The process is complete when the exit criterion is satisfied.

The Increment Design has been completed.

9.3 Correctness Verification Process

The purpose of the Correctness Verification Process is to verify the correctness
of a software increment using mathematically based techniques. Correctness
verification is carried out in development team reviews using function-theoretic
reasoning. Black box specifications are verified to be complete, consistent, and
correct. State box specifications are verified with respect to corresponding
black box specifications. Clear box procedures are verified with respect to cor­
responding state box specifications. Every control structure in every clear box
procedure is verified against its intended function using the Correctness
Conditions of the Correctness Theorem (Linger, Mills, and Witt 1979). Faults
found during verification reviews are documented in the Increment Verification
Report and are corrected by the specification and development teams under
engineering change control. The specifications and designs are then reverified.
Written proofs of correctness based on function- theoretic techniques provide
additional rigor if necessary for life-, mission-, and enterprise-critical software.

9.3 Correctness Verification Process 179

The Correctness Verification Process is concurrent with the Increment
Design Process. Correctness verification is the last intellectual pass at each
level of decomposition-the last line of defense against failures encountered
during statistical testing and certification. The objective of correctness verifica­
tion is to enter the testing phase with no faults in the implemented design.
Following completion of verification by the development team, the increment is
turned over to the certification team for first execution.

Objectives

Objective 1

Objective 2

Entry

Entry 1

Entry 2

The team agrees that the software increment is correct
with respect to its specification; in other words, that it
contains no remaining faults.

Faults and inadequacies found in correctness verification
are documented to permit subsequent analysis for process
improvement.

REFERENCE: CMM Defect Prevention KPA

If compliance with this KPA is an organizational objective,
its specific requirements should be reviewed when the Cor­
rectness Verification Process is tailored for organizational or
project use.

The process begins when one of the entry criteria is
satisfied.

A new Increment Design has been completed or is in progress.

A reengineered or corrected Increment Design has been com­
pleted or is in progress.

Entry work products and the following supporting work
products are available.

The Function Specification defines the required external
behavior of the functions allocated to the increment in the
Increment Construction Plan.

The Software Architecture defines the architectural strat­
egy to be used in the Increment Design.

180 Cleanroom Development Processes

Tasks

Task 1

Task2

Verify the correctness of the software increment using
mathematically based verification techniques.

Verify the correctness of every specification and design
structure in the Increment Design.

Carry out verbal proofs of correctness based on function­
theoretic techniques in team verification reviews. A consen­
sus of team members is required to establish correctness.

For black box verification, determine the completeness,
consistency, and correctness of its specification.

For state box verification, compare state box behavior to
corresponding black box behavior for equivalence.

For clear box verification, apply the Correctness Condi­
tions of the Correctness Theorem to determine the correct­
ness of every control structure (including embedded black
box specifications) with respect to its intended function.

RECOMMENDATION: Correctness conditions for other

recurring constructs

Modern software development environments employ a wide

variety of features and constructs that reduce to, but are often

not easily recognizable as, standard control structures such as

sequence, if thenel s e, and whi 1 edo. Visual programming

languages have graphical elements. Real-time facilities have

timing mechanisms such as process rendezvous. Application

generators have high-level resources such as GUI builders.

Multitasking, multiuser, multithreaded applications use such

control mechanisms as resource locking, and so on.

A project team should establish the correctness condi­

tions for such recurring constructs using function-theoretic
reasoning. The development of standard verification proto­

cols for recurring idioms or patterns is precisely the sort of
process tailoring that needs to be done to adapt the Clean­

room process to a given project and environment.

Document findings of team verification reviews.
Create an Increment Verification Report that documents

all faults, problems, and improvements identified in verifica­
tion reviews, and assign corrective actions.

Task 3

Task 4

Verification

Verification 1

Measurement

9.3 Correctness Verification Process 181

Create written proofs of correctness as necessary for crit­
ical software.

Develop written proofs of correctness as necessary for
life-, mission-, and enterprise-critical software, and verify the
proofs in team reviews.

Document the proofs in the Increment Design work
product.

Reverify all corrections to faults.
Perform reverification reviews on corrections to faults,

including reverification of the full context of corrections to
avoid unforeseen side effects.

Confirm that every box structure has been verified as cor­
rect by team consensus.

Confirm that each black box, state box, and clear box in
the new and changed portions of the Increment Design has
been verified to be correct.

Measurement 1 Measure the Increment Design and the Increment Design
Process.

Exit

Exit 1

Exit 2

The Correctness Verification Process is a focused team
review of the Increment Design. Measure the quality of the
Increment Design and the effectiveness of the Increment
Design Process in terms such as the number, type, and sever­
ity of faults found during the verification reviews.

The process is complete when one of the exit criteria is
satisfied.

The increment has been verified with no faults found.

The increment has been verified and contains faults that must
be corrected and the engineering changes verified.

182 Cleanroom Development Processes

Exit 3 The black box, state box, or intended function definitions are
insufficient for effective verification, and must be revised
before verification can be accomplished.

Exit4 Initial verification has found faults in sufficient quantity and
severity that the process must be terminated and the incre­
ment redesigned.

In each case, the Increment Verification Report is created.
Written proofs, if any, are added to the Increment Design.
The Correctness Verification Process cannot be completed
until the Increment Design is completed.

9.4 References

R.C. Linger, H.D. Mills, and B.I. Witt. Structured Programming: Theory and
Practice. Reading, MA: Addison-Wesley, 1979.

H.D. Mills . "Mathematical Foundations for Structured Programming," in
Software Productivity (New York: Dorset House, 1988), 115- 178.

H.D. Mills. "Structured Programming: Retrospect and Prospect." IEEE
Software vol. 3 (November 1986): 58- 66.

H.D. Mills, M. Dyer, and R.C. Linger. "Cleanroom Software Engineering."
IEEE Software vol. 4 (November 1987): 19- 25 .

10
Cleanroom Certification
Processes

10.1 Usage Modeling and
Test Planning Process

The purpose of the Usage Modeling and Test Planning Process is to refine the
Usage Specification into usage models for software testing, to detine test plans,
to obtain customer agreement on the usage models and test plans as the basis
for software certification, and to generate statistical test cases and prepare the
test environment.

The certification team creates the Usage Models and Increment Test Plan,
and generates the Statistical Test Cases. Usage models are used to generate sta­
tistical test cases and monitor the progress of testing in the Statistical Testing
and Certification Process. A usage model for a software system represents an
infinite population of possible uses. It consists of a structure that defines pos­
sible traversals of states of use by users, together with probabilities that define
the likelihood that particular traversals will occur. In statistical testing, test
cases are generated from the usage model based on its transition probabili­
ties. Multiple usage models may be required for multiple classes of users and
environments. Models are developed incrementally in accordance with the
Increment Construction Plan, and accumulate into final form in parallel with
increment designs. The customer reviews the usage models and agrees that they
will generate all scenarios of use, are correctly weighted, and are appropriate
for certification.

Usage model statistics provide a great deal of information about the testing
effort that will be required to achieve certification goals given projected failure

183

184 Cleanroom Certification Processes

rates in testing. Usage model analysis provides a basis for test planning and is
an effective management tool for reducing the risk of inaccurate resource and
schedule estimates.

Objectives

Objective 1

Objective 2

Objective 3

Entry

Entry 1

Entry 2

Valid usage models are defined that represent all possible
uses of the software under expected or other usage condi­
tions.

A statistical testing plan based on the usage models is
defined and validated through model analysis and simu­
lation.

The customer agrees to the usage models and statistical
test plan as the basis for software certification.

The process begins when one of the entry criteria is
satisfied.

The Usage Specification, Function Specification, and/or In­
crement Construction Plan have been completed or changed.
They are the basis for developing the Usage Models and In­
crement Test Plan, as well as a source of revisions to them.

The Usage Models or Increment Test Plan require revision
for changes from increment development or certification.

Entry work products and the following supporting work
products are available.

The Software Architecture and the Reengineered Software
may also provide information for development of the Usage
Models.

The Engineering Change Log describes proposed changes.

Tasks

Task 1

Task2

10.1 Usage Modeling and Test Planning Process 185

Define the usage models to be developed.
Use the Usage Specification to define the usage models to

be elaborated, and the scope and purpose of each.
Include special-purpose models as necessary (e.g., forcer­

tification of infrequently used functions with high conse­
quences of failure).

EXPLANATION: Special-purpose models

A usage model represents the conditions under which soft­
ware is used. In general, expected usage conditions are mod­
eled. In addition, other usage conditions may be of interest as
well, and are modeled for special purposes. Hazardous usage
conditions, for example, may be of interest for safety-critical
software. Malicious usage conditions might be modeled for
software with special security requirements. Usage can be
characterized in whatever terms are important in the certifi­
cation context.

Consider use of actual user input when available. Real­
time data feeds or the output of automated usage capture
facilities can be used as components of usage models.

Define the structure of each usage model.
Refine the Usage Specification to develop the Usage

Models. For each model, define all possible usage states and
their transitions based on the functions required by the In ­
crement Construction Plan and as defined by the Function
Specification.

Define the structure of each model in the Usage Models
document.

RECOMMENDATION: Markov chain usage models

The structure of a usage model can be represented as a
Markov chain. A Markov chain usage model reflects the sto­
chastic nature of software use, and permits analysis of usage
and automation of test activity.

continued

186 Cleanroom Certification Processes

Task3

REcoMMENDATION: continued

The usage model structure represents all possible uses of

the software-expressed in terms of the initial usage state,

subsequent sequences of possible usage states, and the termi­

nal usage state. The model can be represented as a directed

graph, with nodes (usage states) that are connected by arcs

(possible transitions in use) . Any usage scenario can be gen­

erated from a traversal of the model structure.

Ambiguity, inconsistency, or complexity in the Function

Specification is often identified during creation of usage model

structures.

REFERENCE: Usage modeling

See Whittaker and Poore (1993), and Whittaker and Agrawal

(1994).

REcoMMENDATION: Early planning for test automation

It is crucial to anticipate test automation requirements during

usage modeling. Linkage with test tools, pre- and postpro­

cessing steps, live data feeds, response capture facilities, and

numerous other aspects of automated testing are likely to be

simpler if test automation is considered during usage modeling.

Define the transition probabilities of each usage model.
Determine transition probabilities between usage states

based on usage information and certification goals.
Employ user estimates and experience with similar sys­

tems and prior versions as sources of information about usage
probabilities.

Define transition probabilities for each model in the Usage
Models.

EXPLANATION: Transition probabilities

While the structure of the usage model defines possible use, the

transition probabilities define expected use. The probabilities

continued

Task4

10.1 Usage Modeling and Test Planning Process 187

ExPLANATION: continued

associated with the transitions in the usage model may be

known, partially known, or unknown. If they are known, as is

often the case with well-instrumented systems in mature
domains, the probabilities can be assigned directly. If they are
not known, they can be estimated or made uniform. If they are

pmtially known, a combination of these strategies can be used.

Probabilities can also be defined for other than expected
use; for example, to emphasize testing of infrequently used

functions with high consequences offailure.

The validity of conclusions drawn in statistical testing is

entirely related to the usage models employed. Systematic

acquisition of knowledge about expected usage is essential

for developing accurate usage models.

REFERENCE: Optimization of usage models

Cleanroom practice is evolving toward automatic generation

of transition probabilities from usage constraints. Operations
research techniques can be applied to optimize usage models
for an objective function, such as minimum testing cost, sub­

ject to usage constraints that characterize available knowl­
edge about expected use. See Walton (1995).

Validate the usage models.
Generate statistics for each usage model. Evaluate the

statistics to validate the overall usage profile, and to estimate
resources and schedules required to achieve certification goals.

Develop recommendations based on the analysis (e.g., cost­
saving simplifications for the user functions defined by the
Function Specification).

ExPLANATION: Practical interpretation of usage model analysis

Important information is available through standard calcula­

tions on a Markov chain usage model; for example,

• The expected length of a usage scenario (i.e., test case

length)

continued

188 Cleanroom Certification Processes

TaskS

EXPLANATION: continued

• The expected minimum number of usage scenarios until a

given usage state occurs for the first time

• The expected occupancy of each state of use (as a propor­

tion of all states of use) in the long-term use of the software

• The expected minimum number of test cases required to
cover all states and all transitions of the model

• The expected number of test cases required to achieve tar­

get levels of reliability and confidence

Interpretations of these calculations provide insights about

potential hazards in use, allocation of development and test­

ing resources, and other information for management deci­

sion making.

REFERENCE: Usage model analysis

See Whittaker and Thomason (1994).

Develop a plan for certification testing of the software
increment.

Develop a test plan, including schedules, staffing, training,
hardware and software environment, certification goals, use of
statistical test cases, use of operational input, procedures for
verifying correct software performance, and documentation.

Define the test plan to ensure experimental control,
including test procedures, test monitoring, results recording,
failure evaluation, and engineering change control.

EXPLANATION: Experimental control

Cleanroom testing is conducted as a statistical experiment to

permit scientifically valid conclusions about the fitness for

use of the software. During a statistical experiment, a series

of random trials is performed under specified conditions, the
outcomes of the trials are determined according to specified

continued

10.1 Usage Modeling and Test Planning Process 189

EXPLANATION: continued

criteria, and conclusions about the probabilities of the out­

comes are drawn.
In statistical testing, the trials are test cases that are gener­

ated randomly from the usage models, the outcomes corre­
spond to the performance of the software, and the conclusions
concern the probability of correct and incorrect software per­
formance. Conclusions are used to make informed decisions
regarding test management and product release.

Many aspects of statistical testing must be controlled to
preserve the properties of the statistical experiment. Perform­
ing trials under specified conditions means, for example, that
the same software version must be used in each test case; a
new software version marks the beginning of a new experi­
ment. Determining the outcomes of the trials according to
specified criteria means, for example, that the judgments by
the testers and the evaluations by the test oracles must be
consistent across all test cases. Explicit policies and operat­
ing procedures are required to ensure experimental integrity
in statistical testing.

REFERENCE: Experimental control

See Trammell (1995) and Trammell and Poore (1994).

Plan for additional testing techniques to be applied in con­
junction with statistical testing as necessary.

EXPLANATION: Other testing strategies

Statistical testing for reliability certification is a form of ran­
dom testing. Statistical methods for nonrandom testing are

often used to accomplish specific objectives as well. Test
cases producing the fastest coverage of the usage model, for
example, might be generated for use at the beginning of test­
ing to reveal any immediate problems with the software.
Some forms of nonstatistical testing may be included in the
test plan as well, such as specific tests that are required by the

customer, by a standard, or by law.

190 Cleanroom Certification Processes

Task6

Task?

Verification

Verification 1

Verification 2

Document testing plans in the Increment Test Plan work
product.

Generate the statistical test cases.
Use the Usage Models to generate the Statistical Test Cases

to be used during statistical testing.

ExPLANATION: Manual versus automated testing

For manual testing, the generated test cases might be "scripts"

of instructions to human testers. For automated testing, the

scripts might be command sequences.

Prepare the statistical testing environment.
Establish the hardware configuration and software envi­

ronment required to test the software.

EXPLANATION: Test environment

Preparation of the test environment may be a resource­

intensive task. In such cases it will receive special emphasis

in the Schedule and Resource Plan developed during the Proj­

ect Planning Process, and in the Usage Specification devel­

oped in the Usage Specification Process .

Verify the evolving Increment Test Plan and Usage Models
work products in team reviews.

Conduct frequent certification team reviews of the evolv­
ing Increment Test Plan and Usage Models for complete­
ness, consistency, correctness, and simplicity. Confirm through
quantitative analysis of usage model properties, such as the
long-run probabilities of state occurrence, that the models are
consistent with user estimates and experience.

Verify the completed Increment Test Plan and Usage
Models work products with the customer and the project
team.

Measurement

10.2 Statistical Testing and Certification Process 191

Review the Increment Test Plan and Usage Models with
the customer, the specification and certification teams, and
affected peer groups to obtain agreement on them as the basis
for software certification.

Measurement 1 Measure the Usage Models work product.

Exit

Exit 1

Measure the size ofthe Usage Models in terms such as the
number of usage states, state transitions, and statistically typ­
ical paths.

The process is complete when the exit criterion is satisfied.

The Increment Test Plan and the Usage Models have been
completed and agreed to by the customer as the basis for soft­
ware certification.

1 0.2 Statistical Testing and
Certification Process

The purpose of the Statistical Testing and Certification Process is to demonstrate
the software's fitness for use in a formal statistical experiment. Fitness for use is
defined with respect to the usage models and certification goals employed in the
testing process. The certification goals, first established in the Measurement
Plan, and refined in the Increment Test Plan, may be expressed in terms such as
software reliability, reliability growth rate, and coverage of the usage defined in
the usage models.

Software increments undergo first execution in this process. The incre­
ments are compiled, the Executable System is built, the statistical test cases are
executed under experimental control, and the test results are evaluated. The suc­
cess or failure of test cases is determined by comparison of actual software
behavior with the required behavior defined in the Function Specification.
Failures found during statistical testing are documented in the Statistical Test­
ing Report. Intermediate and final test results are evaluated to make informed
test management decisions. As testing proceeds, the values of certification

192 Cleanroom Certification Processes

measures are compared with certification goals . The results of the comparisons
drive decisions on continuing testing, stopping testing for engineering changes,
stopping testing for reengineering and reverification, and final software certifi­
cation.

In addition to measuring software quality and reliability, certification met­
rics are also used as measures of process control. Cleanroom team performance
standards based on historical data, such as failure rates in statistical testing of
prior systems, are compared with current metrics to make informed manage­
ment decisions. Evaluations and decisions regarding product quality and
process control are documented in the Increment Certification Report.

Objectives

Objective 1

Objective 2

Objective 3

Objective 4

Entry

Entry 1

Software testing is conducted using a formal statistical
design under experimental control.

The software is demonstrated to perform correctly with
respect to its specification.

Statistically valid estimates of the properties addressed by
the certification goals are derived for the software.

Management decisions regarding continuation of testing
and certification of the software are based on statistical
estimates of software quality.

The process begins when the entry criteria are satisfied.

The Increment Test Plan has been completed, the Statistical
Test Cases have been generated, and the test environment has
been prepared.

A new or corrected Increment Design is available for com­
pilation.

The Function Specification and Usage Models are avail­
able for use in evaluating observed behavior against specified
behavior.

Tasks

Task 1

Task2

Task 3

Task 4

10.2 Statistical Testing and Certification Process 193

Prepare the software increment for testing.
Compile the software increment. If corrections are neces­

sary, initiate the Engineering Change Process. After success­
ful compilation, create the Executable System containing the
load modules required for execution.

Perform other types of testing if necessary.
Perform other types of testing if necessary prior to statisti­

cal testing. For example, special testing may be required to
demonstrate specific scenarios of use or to achieve complete
usage model coverage with the minimum number of test cases.

ExPLANATION: Order of statistical and other testing

The key consideration in determining whether to perform
other types of tests before or after statistical testing is the
effect on certification. When a reliability estimate is made at
the conclusion of statistical testing, it applies to the specific

version of the software that was tested. If changes are made
as a result of subsequent testing, the reliability estimate may
require revision. It is generally preferable to perform any
nonstatistical tests prior to statistical testing. Nonstatistical
tests performed after statistical testing may complicate the
reliability certification if the software is changed.

Execute the statistical test cases in the test environment.
Execute the Statistical Test Cases according to the proce­

dures defined in the Increment Test Plan.

Evaluate the statistical test case results.
Evaluate the correctness of the software responses with

respect to the behavior defined in the Function Specification.
If failures are observed, evaluate their impact on the con­

tinuation of testing, experimental control, and the validity of
certification results. If corrections are necessary, initiate the
Engineering Change Process.

194 Cleanroom Certification Processes

Task 5

ExPLANATION: Independent trials

A key requirement in a statistical experiment is that the trials
be independent-that is, the outcome of one trial must have
no effect on the outcome of any other trial. Although ran­
domly generated test cases may ensure independent trials in
statistical testing, the requirement for independence can still
be undermined by failures in testing. For example, if a failure
on a test case "blocks" access to functions required by a sub­
sequent test case, testing should be stopped and the problem
fixed.

Document test results in the Statistical Testing Report.
Record data for each failure, including the test environment,
test case, test results, failure type and severity, and any other
information that will assist in determining its cause.

Derive certification measures.
Use the Usage Models, Statistical Test Cases, Statistical

Testing Re_port, and results of other testing to derive measures
of the fitness for use of the software with respect to certifica­
tion goals.

Measures can include reliability and confidence, relia­
bility growth rate, MTTF, representativeness of the test case
sample, and other measures derived from comparison of
expected and observed software performance.

Use statistical methods such as hypothesis testing, interval
analysis, and analysis of failure data with reliability models.

ExPLANATION: Reliability measurement

Software reliability measurement is a hallmark of Cleanroom.
Reliability estimation based on Markov chain usage models
is a prominent approach to reliability measurement in Clean­
room practice. The Markov chain approach provides mea­
sures of reliability, confidence, and other stopping criteria.

Classic statistical hypothesis testing is also used in Clean­
room for reliability estimation. Models of reliability growth
can be used when their underlying assumptions are justified.

Task 6

Task 7

10.2 Statistical Testing and Certification Process 195

REFERENCE: Certification measures

See Whittaker and Thomason (1994).

Document certification measures in the Increment Certifi­
cation Report.

Compare certification measures with certification goals.
Compare the values of trends in the certification measures

with project goals for product quality and process control.
If appropriate, combine certification measures from the

current statistical testing experiment with measures from
other experiments.

ExPLANATION: Conditions for combining test information

If test conditions (e.g., software version, usage model, execu­
tion environment) are the same, data from various statistical

testing experiments can simply be combined. If testing con­
ditions are not the same, more complex approaches to com­
bining information must be used to ensure the validity of
conclusions.

Document evaluations in the Increment Certification Report.

Decide whether to stop testing.
Positive case: Testing can be stopped and the software cer­

tified as fit for use if the current values of the certification
measures satisfy certification goals and if no failures have
been observed during testing of the current software version
(or none worth the cost and risk of correction).

Negative case: Testing should be stopped and the software
reengineered and reverified if process control standards have
been violated. Violation of process control standards occurs
when certification goals cannot be achieved given current
values of the certification measures and the remaining sched­
ule and resources for testing.

196 Cleanroom Certification Processes

Verification

Verification 1

Verification 2

Measurement

ExPLANATION : Certification goals and process control

standards

Certification goals are targets for final results. Process con­

trol standards are gauges of intermediate progress toward
certification goals. The certification goals answer the ques­

tion: Is the software currently fit for its intended use? Process
control standards answer the question: Is the software likely
to be certified as fit for use on the expected schedule? In gen­
eral, certification goals are defined by the customer, process
control standards are defined by the developer, and both exist

within the context of the predefined certification protocol in

the test plan.

Document decisions in the Increment Certification Report.

Verify that the tests were executed according to the test
plan.

Verify the correctness of statistical calculations.

Measurement 1 Measure the Statistical Test Cases and the results of their
execution.

Measure the Statistical Test Cases in terms such as the
number and size of the test cases, and the execution times for
each.

Measure the number and severity of failures reported.

Measurement 2 Measure the Statistical Testing and Certification Process.
Measure the sufficiency of testing in terms such as the

coverage of the usage models employed and the statistical
similarity between expected usage and tested usage.

Exit

= . 1

= · 2

10.3 References 197

The process is complete when one of the exit criteria is
satisfied.

The software increment satisfies certification goals.

The software increment has failed to satisfy certification
goals and must be reengineered and reverified before testing
can resume.

In either case, the Statistical Testing Report and Increment
Certification Report are completed.

1 0.3 References

C.J. Trammell. "Quantifying the Reliability of Software: Statistical Testing
Based on a Usage Model," in Proceedings of the Second IEEE Interna­
tional Symposium on Software Engineering Standards (Los Alamitos, CA:
IEEE Computer Society Press, 1995), 208-218.

C.J. Trammell and J.H. Poore. "Experimental Control in Software Reliability
Certification," in Proceedings of the Seventeenth Annual NASA/Goddard
Software Engineering Workshop (Greenbelt, Maryland: NASA, November
3D-December 1, 1994).

G.H. Walton. Generating Transition Probabilities for Markov Chain Usage
Models. Ph.D. diss. University of Tennessee, 1995.

G.H. Walton and J.H. Poore. Measuring Complexity and Coverage of Software
Specifications. Technical report. Knoxville, TN: Department of Computer
Science, University of Tennessee, 1995.

J.A. Whittaker and K.K. Agrawal. "A Case Study in Software Reliability
Measurement," in Proceedings of the 7th International Quality Week, ed.
(San Francisco: Software Research, Inc., 1994).

J.A. Whittaker and J.H. Poore. "Markov Analysis of Software Specifications."
ACM Transactions on Software Engineering and Methodology, vol. 2, no. 1
(January 1993): 93-106.

J.A. Whittaker and M.G. Thomason. "A Markov Chain Model for Statistical
Software Testing." IEEE Transactions on Software Engineering, vol. 20, no.
10 (October 1994): 812-824.

11
Cleanroom and the
Capability Maturity
Model for Software

11.1 The CMM for Software

As use of Cleanroom software engineering becomes more widespread, interest
in its relationship to the Software Engineering Institute's Capability Maturity
Model (CMM) for Software (Paulk, Weber, Curtis, and Chrissis 1995) has in­
creased. The CMM provides a well-defined paradigm for software process
improvement that has experienced successful application in many organiza­
tions. Cleanroom software engineering provides well-defined theoretical foun­
dations and practices for software specification, development, testing, and
certification. The principal focus of the CMM is on management and organi­
zation; the principal focus of Cleanroom is on technology and engineering
practices. Effective management processes are an essential prerequisite for
successful software development. However, technology-based solutions to prob­
lems of software development can often produce results that no amount of good
management can achieve in their absence. For example, the introduction of
structured programming technology in the 1970s swept away a sea of complex­
ity in software development that had made management of large-scale projects
a risky proposition indeed. It is for this reason that the integration of technology
and management in software development is so important and so effective. The
right technology has the potential to improve and often reshape management
processes while reducing software development risks and uncertainties.

199

200 Cleanroom and the Capability Maturity Model for Software

Table 11 .1 CMM maturity levels

Level Description

Level 1: Initial The software process is characterized as ad hoc, and occasion­
ally even chaotic. Few processes are defined, and success
depends on individual effort and heroics.

Level 2: Repeatable Basic project management processes are established to track
cost, schedule, and functionality. The necessary process disci­
pline is in place to repeat earlier successes on projects with
similar applications.

Level 3: Defined The software processes for both management and engineering
activities are documented, standardized, and integrated into a
standard software process for the organization. All projects use
an approved, tailored version of the organization's standard
software process for developing and maintaining software.

Level 4: Managed Detailed measures of the software process and product quality
are collected. Both the software process and products are quan­
titatively understood and controlled.

Level 5: Optimizing Continuous process improvement is enabled by quantitative
feedback from the process and from piloting innovative ideas
and technologies.

Table 11.1 characterizes the five CMM maturity levels and highlights the
primary process changes made at each level. Except for level 1, each maturity
level is decomposed into several KPAs that indicate the areas on which an orga­
nization should focus to improve its software process. KPAs identify the issues
that must be addressed to achieve a maturity level. Each KPA identifies a cluster
of related activities that, when performed collectively, achieve a set of goals
considered important for enhancing process capability. The six level 2 KPAs
focus on basic project management controls, as summarized in Table 11 .2. The
seven KPAs at level 3 address both project and organizational issues, as the or­
ganization establishes an infrastructure for institutionalizing software engineer­
ing and management processes across all projects, as summarized in Table 11.3 .

The two KPAs at level4 focus on establishing a quantitative understanding
of both the software process and the software work products being built, as
summarized in Table 11.4. The three KPAs at level 5 cover the issues that both
the organization and the projects must address to implement continuous and
measurable software process improvement, as summarized in Table 11.5 .

11.1 The CMMfor Software 201

Table 11.2 CMM level 2 KPAs

Key Process Area

Requirements
Management

Software Project
Planning

Software Project
Tracking and
Oversight

Software Subcontract
Management

Software Quality
Assurance

Software Configuration
Management

Description

Establish a common understanding between the customer
and the software project of the customer's requirements
that will be addressed by the software project.

Establish reasonable plans for performing the software
engineering and for managing the software project.

Establish adequate visibility into actual progress so that man­
agers can take effective actions when the software project's
performance deviates significantly from the software plans.

Select qualified software subcontractors and manage
them effectively.

Provide management with appropriate visibility into the
process being used by the software project and the
products being built.

Establish and maintain the integrity of the products of the
software project throughout the project's software life cycle.

Table 11.3 CMM level 3 KPAs

Key Process Area

Organization Process
Focus

Organization Process
Definition

Training Program

Integrated Software
Management

Software Product
Engineering

Intergroup Coordination

Description

Establish the organizational responsibility for software
process activities that improve the organization 's overall soft­
ware process capability.

Develop and maintain a usable set of software process
assets that improve process performance across the proj­
ects and provide a basis for cumulative, long-term benefits
to the organization .

Develop the skills and knowledge of individuals so they can
perform their roles effectively and efficiently.

Integrate the software engineering and management
activities into a coherent, defined project software process
that is tailored from the organization's standard software
process and related process assets.

Consistently perform a well-defined engineering process
that integrates all the software engineering activities to
produce correct, consistent software products effectively
and efficiently.

Establish a means for the software engineering group to
participate actively with the other engineering groups so
the project is better able to satisfy the customer's needs
effectively and efficiently.

continued

202 Cleanroom and the Capability Maturity Model for Software

Table 11.3 continued

Key Process Area

Peer Reviews

Description

Remove defects from the software work products early
and efficiently. An important corollary effect is to develop
a better understanding of the software work products and
of the defects that can be prevented.

Table 11 .4 CMM level 4 KPAs

Key Process Area

Quantitative Process
Management

Software Quality
Management

Description

Control the process performance of the software project
quantitatively.

Develop a quantitative understanding of the quality of
the project's software products and achieve specific
quality goals.

Table 11.5 CMM level 5 KPAs

Key Process Area

Defect Prevention

Technology Change
Management

Process Change
Management

Description

Identify the root causes of defects and prevent them from
recurring.

Identify beneficial new technologies (e.g., tools, methods,
and processes) and transfer them into the organization
in an orderly manner.

Continually improve the software processes used in the
organization with the intent of improving software quality,
increasing productivity, and decreasing the cycle time for
product development.

11.2 Cleanroom Process Mappings
to CMM KPAs

A number of general process management attributes cut across the KPAs. The
coverage of these attributes by the Cleanroom processes and work products is
summarized in Table 11.6. The left column lists the KPA process management
attributes and the right column lists their location in terms of Cleanroom
process names, sections, and work products (in italics).

11.2 Cleanroom Process Mappings to CMM KPAs 203

Tables 11.8 through 11.11 describe the overall mapping of the Cleanroom
processes, defined in Chapters 7 through 10, to each of the CMM KPAs. De­
scriptions and references to the CMM can be found in Paulk, Weber, Curtis, and
Chrissis (1995), and details of the mapping can be found in Linger, Paulk, and
Trammell (1996). The tables list the KPAs in the left column, principal Clean­
room processes in the middle column, and an assessment of the overall corre­
spondence in the right column, based on the categories identified in Table 11.7.

There is a scope consideration in mapping Cleanroom to the organizational
KPAs (i.e., Organizational Process Focus, Organizational Process Definition,

Table 11.6 Process attribute coverage

Key Process Area Process
Management Attribute

A written policy to do the work exists.

A documented procedure for doing the
work exists.

Responsibility for doing the work has
been established.

Affected groups agree to their roles.

Resources and funding for the work
exist.

People are trained to perform the work.

Work products documenting the work
are created.

Baselines for data and work products
are established.

Changes to work products occur in a
controlled fashion.

The status of work is measured.

The status of work is reviewed by
senior management.

The status of work is reviewed by the
project manager.

The status of work is reviewed by the
software quality assurance (SQA) group.

Location in
Cleanroom Processes

Organization's Clean room Engineering
Guide

Project Planning: Cleanroom Engineering
Guide tailored to the specific project

Project Planning: Project Organization Plan

Project Planning: Verification section

Project Planning: Schedule and Resource
Plan; Project Management

Project Planning: Training Plan;
Project Management

Project Planning: Work Product Plan;
all processes: Exit sections

Project Planning: Configuration
Management Plan

Project Planning: Configuration Management
Plan; Project Management; Engineering
Change

All processes: Measurement section

All processes: Verification section

All processes: Verification section

Intent is addressed by the Verification and
Exit sections of all processes, and indepen­
dent statistical testing and certification

204 Cleanroom and the Capability Maturity Model for Software

Training Program, Technology Change Management, and Process Change
Management). If Cleanroom is the only process standardized by an organiza­
tion, it could fully address the concerns of an organizational KPA, and the cor­
respondence would be high. The case is more likely, however, that multiple
methodologies are supported by an organization, one of which is Cleanroom. In
that case, the implementation of the organizational KPAs goes beyond the
Cleanroom processes, and the Cleanroom mapping to these KPAs cannot be
more than partial. This latter case is reflected in the following tables.

Table 11.7 Cleanroom/CMM correspondence definitions

Correspondence Category

The KPA is consistent with Cleanroom, and implementation
by Cleanroom processes is high.

The KPA is consistent with Cleanroom, and implementation
by Cleanroom processes is partial.

The KPA is consistent with Cleanroom, and implementation
by Cleanroom processes is low.

The KPA is consistent with Cleanroom, but is not implemented in
the Cleanroom processes, or is implemented in an indirect way.

Table 11.8 Cleanroom/CMM level 2 correspondence

Key Process Area

Requirements Management

Software Project Planning

Software Project Tracking
and Oversight

Software Subcontract
Management

Software Quality Assurance

Software Configuration
Management

Principal Cleanroom Processes

Requirements Analysis

Project Planning

Project Management

Project Management

Project Planning,
Project Management

All processes, especially Project
Planning, Project Management, and
Engineering Change

Rating

High

Partial

Low

Consistent

Rating

High

High

High

Consistent

Partial

Partial

11.2 Cleanroom Process Mappings to CMM KPAs 205

Table 11.9 Cleanroom/CMM level 3 correspondence

Key Process Area

Organization Process Focus

Organization Process
Definition

Training Program

Integrated Software
Management

Software Product
Engineering

Intergroup Coordination

Peer Reviews

Principal Cleanroom Processes

Project Planning, Project Management,
Performance Improvement

Project Planning, Project Management,
Performance Improvement

Project Planning, Project Management

Project Planning, Project Management

Requirements Analysis, Function
Specification, Usage Specification,
Architecture Specification, Increment
Planning, Increment Design, Correctness
Verification, Software Reengineering ,
Engineering Change, Usage Modeling
and Test Planning, Statistical Testing
and Certification

Project Planning, Project Management

All processes, especially
Correctness Verification

Table 11.10 Cleanroom/CMM level 4 correspondence

Key Process Area

Quantitative Process
Management

Principal Cleanroom Processes

Project Planning, Project Management,
Statistical Testing and Certification,
Pe-rformance Improvement

Rating

Consistent

Partial

Partial

High

High

High

High

Rating

High

Software Quality Management Project Planning, Project Management, High
Statistical Testing and Certification ,
Performance Improvement

Table 11.11 Cleanroom/CMM level 5 correspondence

Key Process Area Principal Cleanroom Processes Rating

Defect Prevention Correctness Verification, High
Performance Improvement

Technology Change Performance Improvement Partial
Management

Process Change Performance Improvement Partial
Management

206 Cleanroom and the Capability Maturity Model for Software

As these tables illustrate, Cleanroom and the CMM are compatible and
mutually supportive. The technology-based practices of Cleanroom provide
much of the "how" for the "what" defined by the CMM.

11.3 Integrating CRM Technology
and CMM Management

As noted earlier, technology-based solutions to problems of software develop­
ment can often produce results that no amount of good management can
achieve in their absence. A principle objective of CMM management processes
is informed decision making based on measurements of software products and
processes. Quantitative management is particularly important at higher levels of
the CMM. The technical basis and validity of the measurements is thus very
important. For example, quality and reliability measurements are vital to effec­
tive and timely management decisions, such as whether to release a software
product for customer use. Cleanroom testing and certification technologies pro­
vide a scientific basis for such decisions, for which no amount of good manage­
ment based on anecdotal information can substitute.

As described earlier, Cleanroom statistical usage-based testing is con­
ducted as a fonnal statistical experiment. The infinite population of possible
executions is sampled by generating test cases randomized against usage distri­
butions, the quality and reliability of the software are measured by executing
the test cases, and the results are interpreted at a defined level of confidence to
the entire population of possible executions. In effect, statistical testing pro­
vides a means of estimating system performance for all the usage scenarios in
the population that could not be executed (which field use will be sampling
throughout the life of the system). The two Cleanroom processes involved in
statistical testing and certification are the Usage Modeling and Test Planning
Process and the Statistical Testing and Certification Process.

The Usage Modeling and Test Planning Process requires that the system
usage environment be modeled as a basis for deriving statistical test cases. The
usage models can represent a variety of conditions, including nominal and
expected usage, stress situations, and use of infrequently invoked functions
with high consequences of failure. The Statistical Testing and Certification
Process requires that testing proceed under experimental control in a formal sta­
tistical design to produce valid statistical measures of software performance
with respect to certification goals.

The scientific measurements of quality and reliability produced by these
processes provide a rigorous basis for informed decision making, and can liter­
ally transform the technical basis of management action. Decision makers

11.4 References 207

can move from nagging uncertainty (which may force additional and perhaps
unnecessary resource expenditures in testing in an effort to reduce risk) to con­
fidence that software quality and reliability have been measured scientifically
and that decisions based on these measurements are indeed supported by the
evidence. Cleanroom technology can provide a useful foundation for the CMM
management objective of measurement-based decision making.

11 .4 References

R.C. Linger, M.C. Paulk, and C.J. Trammell. Cleanroom Software Engineering
Implementation of the CMM for Software. CMU/SEI-96-TR-023. Pitts­
burgh: Software Engineering Institute, Carnegie Mellon University, 1996.

M.C. Paulk, C.V. Weber, B. Curtis, and M.B . Chrissis. The Capability Maturity
Mode l: Guidelines for Improving the Software Process. Reading, MA:
Addison-Wesley, 1995.

PART Ill

A Case Study in Clean room
Software Engineering

12
Satellite Control System
Requirements

12.1 The Satellite Control
System Case Study

A case study is presented in Part III for a sufficiently large system to illustrate
scalability of Cleanroom processes and their associated work products. The
case study involves development of embedded software for a Satellite Control
System (SCS), and is based on requirements and specifications included in the
Object-Orientation/Cleanroom Integration Study by Ett and Trammell (1996).
The case study includes:

Black box specification, Chapter 13
State box specification, Chapter 14
Clear box design, Chapter 15
Statistical testing plans and models, Chapter 16

The case study does not contain examples of all work products from Part II, due
to space limitations.

The SCS consists of four components:

1. The ground control system (GCS) initiates and terminates connec­
tions, and monitors satellite health.

2. The space vehicle (SV) processes commands from the GCS and sup­
plies half-duplex communications between two other ground sites.

3. The uplink site (UL) transmits data to the SV when connected.

211

212 Satellite Control System Requirements

4. The downlink site (DL) receives data from the UL through the half­
duplex connection supplied by the SV.

The following requirements address only the software component of the
SV, known as the Satellite Operations Software (SOS), which is used during
normal operation. Launch, orbital insertion, and deployment are not addressed
in these requirements.

12.2 Satellite Operations
Software Requirements

The requirements are initially described here in natural language, a form in
which requirements often first appear. They are subsequently restated in more
precise terms to support further study and analysis.

The SOS is initialized by the initialization (IN) command from the GCS.
On receiving the IN command, the SOS replies with an initialization acknowl­
edgment (INA). The GCS must next command the SOS to enter maintenance
mode with the maintenance time-slot go (MG) command, and then request the
SV health with a health request (HR). If a successful health check (HS) is
reported, the GCS will then send any bandwidth/location (B/L) table update
requests (BR) and firing requests (FR).

After successfully completing SV maintenance, the GCS may put the SOS
into transmit mode by sending UL and DL information in a transmit time-slot
go (TG) message. The SOS forwards the TG (TGF) to both the ULand DL. The
two sites complete connection by sending uplink go (UG) and downlink go
(DG) messages. When both sites have connected, the SOS sends a start data
transmit (SDT) command to the UL, which then starts sending packets (data
packet in, or DI).

The SOS forwards all data packets from the UL (i.e., Dl) to the DL (i.e. ,
data out, or DO). If the DL detects a corrupted packet, it sends a packet bad
(PB) message with the packet identifier to the SOS. The SOS forwards the
packet bad message (PBF) to the UL. The ULand DL are responsible for nego­
tiating packet transmit failures.

When the UL has sent all packets, it sends the transmit-end (TE) message
to the SOS, which forwards the TE (TEF) to the DL. When the DL site has
received the TEF and all packets (including any re-sent due to PB messages), it
sends downlink transmit-end (DTE) to the SOS, which forwards this to the UL
site as TEF. The connection is then closed, and the SOS informs the GCS of this
by sending it a TEF.

12.2 Satellite Operations Software Requirements 213

During transmit mode, the GCS may send a time-slot cancel (TC) to the
SOS to indicate that the transmit window has expired or the GCS operator has
requested that the SOS exit transmit mode. The SOS immediately forwards the
time-slot cancel (TCF) to the UL and the DL, and then replies to the GCS with
TEF and exits transmit mode.

Protocol errors detected by the SOS should be reported to the GCS using
an error report (ERR). The SOS should always attempt recovery if possible. If
the SOS cannot recover, it should exit the mode in which it is currently working
and send a fatal error (FE) report to the GCS (and the ULand DL if connected).

Natural language statements such as these must be analyzed and refined by
systems engineers in consultation with customers to produce a complete set of
requirements expressed in traceable form. Such a requirements analysis is pro­
vided in Table 12.1 for the SOS, subject to revision as development proceeds.
Mnemonics are introduced as work progresses, and each requirement is num­
bered for tracing purposes. Many of these requirements were not in the original
natural language specification, but were derived during analysis. The natural
language specification could be updated, if desired.

This statement of requirements is employed in the sequence-based specifi­
cation process used in Chapter 13. A summary of acronyms used is presented in
Chapter 13.

Table 12.1 SOS requirements

Requirement
No. Requirement

1.1

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.1.6

1.1.7

1.2

SOS inputs

GCS commands

The SOS shall accept the IN (initialize) command from the GCS.

The SOS shall accept the HR (health request) command from the GCS.

The SOS shall accept the MG (maintenance time-slot go) command
from the GCS.

The SOS shall accept the BR (bandwidth/location table update
request) command from the GCS.

The SOS shall accept the FR (firing request) command from the GCS.

The SOS shall accept the TG (transmit time-slot go) command from the
GCS.

The SOS shall accept the TC (time-slot cancel) command from the
GCS.

On-board system signals
continued

214 Satellite Control System Requirements

Table 12.1 continued

Requirement
No. Requirement

1 .2.1 The SOS shall accept the OTE (on-board timer expired} signal from
the on-board countdown timer.

1.2.2 The SOS shall accept firing report signals from the reaction control
subsystem (RCS).

1.2.3 The SOS shall accept ISF (internal/subsystem failure) and ISN
(internal/subsystem nominal) reports from all internal subsystems.

1.3 Uplink inputs

1.3.1 The SOS shall accept inputs from the UL only after a successful TG
from the GCS.

1.3.2 The SOS shall accept the UG (uplink go) message from the UL.

1.3.3 The SOS shall accept the Dl (data packet in) message from the UL.

1.3.4 The SOS shall accept the TE (transmit end} message from the UL.

1.3.5 The SOS shall accept the UB (uplink site fail} message from the UL.

1.4 Downlink inputs

1.4.1 The SOS shall accept inputs from the DL only after a successful TG
from the GCS.

1.4.2 The SOS shall accept the DG (downlink go) message from the DL.

1.4.3 The SOS shall accept the PB (data packet bad) message from the DL.

1.4.4 The SOS shall accept the DTE (downlink transmit end) message from
the DL.

1.4.5 The SOS shall accept the DB (downlink site fail} message from the DL.

2 SOS outputs

2.1 GCS messages

2.1 .1 The SOS shall output the INA (initialization acknowledgment)
message.

2.1.2 The SOS shall output the HF (health check fail} message.

2.1.3 The SOS shall output the HS (health check success) message.

2.1.4 The SOS shall output the FF (firing failure) message.

2.1.5 The SOS shall output the FS (firing success) message.

2.1 .6 The SOS shall output the TSCAN (time-slot canceled) message.

2.1.7 The SOS shall output the TEF (transmit end forwarded) message.

2.1 .8 The SOS shall output the ERR (error report) message.

2.1.9 The SOS shall output the FE (fatal error) message.

Requirement
No.

2.2

2.2.1

2.2.2

2.2.3

2.3

2.3.1

2.3.2

2.3.3

2.3.4

2.3.5

2.3.6

2.4

2.4.1

2.4.2

2.4.3

2.4.4

2.4.5

3

3.1

3.2

4

4.1

4.2

4.3

4.3.1

4.3.2

12.2 Satellite Operations Software Requirements 215

Requirement

Internal hardware interface

The SOS shall output the CDI (countdown timer initialize) command.

The SOS shall output the HT (hardware test) command.

The SOS shall output the FRF (firing request forwarded) command.

Uplink messages

The SOS shall output the TGF (time-slot go forwarded) message.

The SOS shall output the SDT (start data transmit) message.

The SOS shall output the TCF (time-slot cancel forwarded) message.

The SOS shall output the TEF (transmit end forwarded) message.

The SOS shall output the PBF (packet bad forwarded) message.

The SOS shall output the FE (fatal error) message.

Downlink messages

The SOS shall output the TGF (time-slot go forwarded) message.

The SOS shall output the TCF (time-slot cancel forwarded) message.

The SOS shall output the TEF (transmit end forwarded) message.

The SOS shall output the DO (data out) message.

The SOS shall output the FE (fatal error) message.

System initialization

During system initialization the SOS shall process the IN command
from the GCS.

The SOS shall respond to the IN command within TBD seconds.

System maintenance

The SOS shall enter maintenance mode when it receives the MG
command from the GCS.

The SOS shall require the HR as the first command after entering
maintenance mode.

Health request

The SOS shall process the HR command from the GCS only during
maintenance mode.

On receiving the HR command from the GCS, the SOS shall query its
internal hardware systems (i.e. , HT).

continued

216 Satellite Control System Requirements

Table 12.1 continued

Requirement
No. Requirement

4.3.3 If the SOS detects a problem during processing of a HR command, or
if a component does not respond within TBD seconds of the query, the
SOS shall report an HF to the GCS.

4.3.4 If the SOS does not detect any problems during processing of an HR
command, the SOS shall report an HS to the GCS.

4.4 BL table update

4.4.1 The SOS shall process the BR command from the GCS only during
maintenance mode.

4.4.2 The BA command will specify an index in the SOS B/L table and
information to overwrite the specified index of the table.

4.4.3 On receiving a BA command, the SOS shall update its internal B/L
table with the information specified in the command, overwriting any
previous information for the specified index.

4.4.4 B/L table size shall be chosen such that all indices are a fixed number
of bits and none are illegal (the B/L table size shall be an integer power
of 2) .

4.5

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

4.5.6

5.

5.1

5.2

5.3

Thruster firing request

The SOS shall process the FA command from the GCS only during
maintenance mode.

The FA command will specify pitch, yaw, and roll information for the
sos.

On receiving an FA command, the SOS shall initiate the firing by
passing an FAF message to the ACS.

If the ACS reports a successful firing, the SOS shall send an FS report
to the GCS.

If the ACS reports a failed firing, the SOS shall send an FF report to
the GCS.

If the ACS fails to report firing information to the SOS within TBD
seconds of the FAF message, then the SOS shall send an FF report
to the GCS.

Transmit mode

The SOS shall only enter transmit mode from maintenance mode.

The following commands are transmit mode commands and shall only
be accepted by the SOS during transmit mode: TC, UG, Dl, TE, UB,
DG, PB, DTE, and DB.

A site is considered valid only if its information is present in the B/L
table.

12.2 Satellite Operations Software Requirements 217

Requirement
No. Requirement

5.4 The SOS shall enter transmit mode on receiving a TG with valid UL
and DL sites.

5.5 On entering transmit mode, the SOS shall send a TGF to both the UL
and DL.

5.6 The SOS shall send the TSCAN(1) failure message to the GCS if it
receives a TG with an invalid ULand a valid DL.

5.7 The SOS shall send the TSCAN(2) failure message to the GCS if it
receives a TG with a valid ULand an invalid DL.

5.8 The SOS shall send the TSCAN(3) failure message to the GCS if it
receives a TG with an invalid ULand DL.

5.9 Connecting

5.9.1 As soon as both the ULand DL are connected, the connection is
considered fully open and the GCS shall send the SDT command
to the UL.

5.9.2 Uplink connection

5.9.2.1 If the SOS does not receive a UG or UB message from the UL within
TBD seconds of sending the TGF to the ULand DL, it shall send the
TSCAN(1) failure message to the GCS and send TCF to both the UL
and the DL. The SOS shall then exit transmit mode.

5.9.2.2 If the SOS receives a UB message from the UL within TBD seconds of
sending the TGF to the ULand the DL, it shall send the TSCAN(1)
failure message to the GCS and send TCF to both the ULand the DL.
The SOS shall then exit transmit mode.

5.9.2.3 If the SOS receives a UG message from the UL within TBD seconds of
sending the TGF to the ULand the DL, the UL is considered
connected.

5.9.3 Downlink connection

5.9.3.1 If the SOS does not receive a DG or DB message from the DL within
TBD seconds of sending the TGF to the ULand the DL, it shall send
the TSCAN(2) failure message to the GCS and send TCF to both the
ULand the DL. The SOS shall then exit transmit mode.

5.9.3.2 If the SOS receives a DB message from the DL within TBD seconds of
sending the TGF to the ULand the DL, it shall send TSCAN(2) failure
message to the GCS and send the TCF to both the UL and the DL.
The SOS shall then exit transmit mode.

5.9.3.3 If the SOS receives a DG message from the DL within TBD seconds of
sending the TGF to the ULand the DL, the DL shall be considered
connected.

continued

218 Satellite Control System Requirements

Table 12.1 continued

Requirement
No. Requirement

5.10 Data transmit

5.1 0.1 If both the ULand the DL are connected , the SOS shall accept Dl
messages from the UL.

5.1 0.2 Within TBD seconds of receiving a Dl message from the UL, the SOS
shall forward the data in a DO message to the DL.

5.1 0.3 If the SOS receives a PB message from the DL, the SOS shall forward
the message (i.e. , PBF) to the UL for packet repeat.

5.11 Disconnecting

5.11 .1 On exiting transmit mode, the SOS shall send the TEF message to the
GCS.

5.11 .2 The SOS shall ignore messages from the ULand the DL if not in
transmit mode.

5.11 .3 Transmit end

5.11 .3.1 On receiving aTE message from the UL, the SOS shall forward the
message to the DL as a TEF message.

5.11.3.2 The SOS shall continue to process Dl and PB messages from the UL .
and the DL after receiving aTE message from the UL.

5.11 .3.3 On receiving a DTE message from the DL, the SOS shall forward the
message to the UL as a TEF message. The SOS shall then exit
transmit mode.

5.11.4 Transmit cancel

5.11.4.1 On receiving the TC message from the GCS, the SOS shall send TCF
messages to the ULand the DL, and immediately exit transmit mode.

6 Protocol errors

6.1 If the SOS detects a protocol error due to an unexpected message, it
shall immediately send an ERR to the GCS.

6.2 If recovery from a protocol error is not possible, the SOS shall send an
FE to the GCS and exit any mode in which it is operating.

6.3 Recovery from a protocol error is declared not possible if the SOS is
unable to determine how to proceed.

6.4 The SOS shall attempt recovery from a protocol error by ignoring the
packet that resulted in the protocol error.

12.3 Reference 219

Requirement
No. Requirement

6.5 If the UL and/or the DL are connected and a protocol error occurs from
which recovery is not possible, the 808 shall send an FE to the
connected sites.

12.3 Reference

W. Ett and C. Trammell . Object-Orientation/Cleanroom Integration Study.
1996. http://source.asset.com/stars/loral/cleanroom/oo/study.htm

13
Satellite Control System
Black Box Specification

13.1 Black Box Sequence-Based
Specification

The basic work flow for the sequence-based specification process was pre­
sented in Chapter 3 and referenced in the function specification process defined
in Chapter 8. The instantiation of that work flow used to produce the SOS black
box specification is summarized in the following steps.

Step 1: Define the system boundary.

1. Identify all components of the system to be developed and then iden­
tify all other components in the environment with which the system
communicates directly.

2. Identify each interface between a system component and an environ­
ment component, and define the stimuli and responses associated with
the interface.

3. Identify any assumptions about each interface.

Step 2: Enumerate stimulus sequences.

1. Enumerate sequences in order by length.

2. Document and trace each sequence (legal and illegal) in the enumera­
tion to the requirements that define its expected response and equiva­
lence (if any).

221

222 Satellite Control System Black Box Specification

3. If there is no requirement associated with a sequence, document a
derived requirement subject to confirmation.

4. Invent and use abstractions as needed to keep the work at a productive
level.

5. Stop when every sequence of the longest length is either illegal or
equivalent to a previous sequence.

Step 3: Analyze canonical sequences.

1. Extract all canonical sequences from the enumeration.

2. Identify and name the system properties and values that will make all
canonical sequences pairwise distinguishable.

Step 4: Define specification functions.

Step 5: Construct the black box tables.

1. Create one table for each stimulus that contains one row for each
response in the enumeration.

2. Enter canonical sequence conditions based on the enumeration and
canonical sequence analysis.

With the tagged system requirements from Chapter 12 in hand, develop­
ment of the black box specification can begin. It will be necessary to revise the
requirements during the specification process; this is natural and desirable.
Conflicts among requirements and omissions may be identified early in a proj­
ect through development of complete, consistent, and traceably correct black
box specifications. This emphasis on up-front specification and resolution of
conflicts and omissions helps to eliminate later requirements changes. The
black box derivation provides feedback to revise requirements in a controlled
and documented fashion.

Two techniques are mentioned earlier in the list of process steps for the
SCS black box derivation that are used to maintain a productive level of abstrac­
tion in the work flow. First, black box specification functions are mappings
from the domain of the black box to a co-domain of convenience. The co­
domain is often {true, false} for specification functions that answer a question
about the sequences. Specification functions may, but need not, map to a subset
of the black box responses. It is critical that an effective process for actually
evaluating each specification function be known that could be written if neces­
sary. Some specification functions will be displaced later by state data, others
will be transformed into state box specification functions, and some might actu­
ally be implemented in code.

Second, black box abstractions are many-to-one mappings from the do­
main of atomic sequences to a co-domain of convenience. The co-domain often
consolidates atomic stimuli or represents specific strings to reduce the number
of items active in an enumeration.

13.1 Black Box Sequence-Based Specification 223

The case study is large and necessarily table and acronym intensive. The
following acronyms are used in the tables and code throughout the remaining
chapters in Part III.

ASN all subsystems nominal

BIL bandwidth/location

BR BIL table update request

BRA BIL table update request acknowledge

CDI countdown timer initialize

DB downlink bad

DG downlink go

DI data packet in

DL downlink site

DO data packet out

DTE downlink transmit end

ERR error report

FE fatal error

FF firing failure

FFR firing failure report

FR firing request

FRF firing request forwarded

FS firing success

FSR firing success report

GCS ground control system

HF health check fail

HR health request

HS health check success

HT hardware test

IH interrupt handler

IN initialization

INA initialization acknowledgment

ISF internal subsystem failure

ISN internal subsystem nominal

MG maintenance time-slot go

OTE on-board timer expired

PB packet bad

224 Satellite Control System Black Box Specification

PBF packet bad forwarded

RCS reaction control subsystem

SDT start data transfer

SF subsystem failure

sos satellite operations software

TC time-slot cancel

TCF time-slot cancel forwarded

TE transmit end

TEF transmit end forwarded

TG transmit time-slot go

TGF time-slot go forwarded

TSCAN time-slot canceled

UB uplink bad

UG uplink go

UL uplink site

13.2 Step 1 : Define the
System Boundary

The system consists of only the SOS. The environment consists of the GCS, the
hardware controllers (which contain the RCS), the UL, and the DL.

The stimuli and responses for each of the interfaces are listed in Tables 13.1
through 13.8. The mnemonics for stimulus and response names in the SOS
requirements defined in Table 12.1 are used here with the exception of
responses FE, TEF, and TCF, which may have multiple destinations. It is neces­
sary to distinguish among the different possible destinations of these responses,
so an additional letter (u for UL, d for DL, and g for GCS) will be appended
to these responses. On-board signals FSR (firing successful report) and FFR
(firing failure report) are introduced to allow on-board communication to be
specified in more detail than given in the requirements.

Even this rudimentary requirements analysis identifies potential problems.
In this case, requirements 5.11.2 and 5.2 are found to be redundant. This is a
problem because if one is changed and not the other, the requirements may be
contradictory. To resolve this problem, requirement 5.11.2 is dropped (the
requirements are not renumbered).

Requirements concerning exiting transmit mode (e.g., 5.11.1 and 6.2) are
in conflict. The following modification is introduced to resolve this: 5.11.1, On

13.2 Step 1: Define the System Boundary 225

exiting transmit mode, the SOS shall send the TEF message to the GCS unless
there is another message (FE, TSCAN, or INA) pending for the GCS, which
indicates exit of transmit mode.

Table 13.1 SOS stimuli from the GCS

Stimulus Associated
Name

IN

HR

MG

BR

FR

TG

TC

Table 13.2

Stimulus
Name

OTE

FSR

FFR

ISN

ISF

Description

Initialization command

Health request command

Maintenance time-slot go command

8/L table update request command
Two parameters:

i. Table index (0- 8191)
ii . Site information

Firing request command
Three parameters :

i. Pitch
ii. Yaw
ii i. Roll

Transmit time-slot go command
Two parameters:

i. Uplink site identifier
ii. Downlink site identifier

Transmit time-slot cancel command

SOS stimuli from on-board subsystems

Description

On-board timer expired (from
on-board timer)

Firing successful report (from RCS)

Firing failure report (from RCS)

Internal subsystem nominal
(from any subsystem)
One parameter:

i. Subsystem identifier

Internal subsystem failure
(from any subsystem)
One parameter:

i. Subsystem identifier

Requirements

1.1.1 ' 3.1 ' 3.2

1.1.2, 4.2, 4.3.1 ' 4.3.2, 4.3.3,
4.3.4

1.1 .3, 4.1

1.1.4,
4.4.1 ' 4.4.2 , 4.4.3, 4.4.4

1.1 .5,
4.5.1' 4.5.2, 4.5.3

1.1.6,
5 .1' 5.3, 5.4, 5.5, 5.6, 5.7, 5.8

1.1 .7, 5.11.1, 5.11.4.1, 5.2

Associated
Requirements

1.2.1' 4.3.3, 4.5.6,
5.9.2.1' 5.9.3.1

1.2.2, 4.5.4

1.2.2, 4.5.5

1.2.3, 4.3.4

1.2.3, 4.3.3

226 Satellite Control System Black Box Specification

Table 13.3 SOS stimuli from UL

Stimulus Associated
Name

UG

Dl

TE

UB

Description

Uplink go message

Data packet in message
Two parameters:

i. Packet identifier
ii. Packet payload

Transmit end message

Uplink bad message

Table 13.4 SOS stimuli from DL

Requirements

1.3.1' 1.3.2,
5.2, 5.9.2.1' 5.9.2.3, 5.1 0.1 '
6.5

1.3.1' 1.3.3,
5.2, 5.1 0.1' 5.1 0.2, 5.11.3.2

1.3.1' 1.3.4, 5.2, 5.11.3.1'
5.11.3.2

1.3.1' 1.3.5,
5.2, 5.9.2.1 ' 5.9.2.2

Stimulus Associated
Name

DG

PB

DTE

DB

Description

Downlink go message

Packet bad message
One parameter:

i. Packet identifier

Downlink transmit end message

Downlink bad message

Requirements

1.4 .1 ' 1.4.2,
5.1.1 ' 5.2, 5.9.3.1' 5.9.3.3,
6.5

1 .4.1' 1.4.3,
5.2, 5.1 0.3, 5.11.3.2

1.4.1' 1.4.4,
5.2, 5.11.3.3

1.4.1' 1.4.5,
5.2, 5.9.3.1 ' 5.9.3.2

Requirements 6.3 and 6.4 do not appear in the table because they are cur­
rently too ill-defined to map unambiguously to stimuli or responses. They will
be properly defined during the process of sequence enumeration.

The following assumption is made. In the SOS system, the BIL table is
maintained by an external subsystem, but the subsystem's responses are com­
pletely predictable from the point of view of the system (the system's stimulus
sequence completely determines the behavior of the BIL table subsystem). The
subsystem is very simple and highly reliable, so it will be treated as part of the
system. Treating this component as internal to the system eliminates the inter­
face and consequently reduces the complexity of the specification.

13.2 Step 1: Define the System Boundary 227

Table 13.5 SOS responses to the GCS

Stimulus Associated
Name Description Requirements

INA Initialization acknowledgment message 2.1.1, 3.2

HF Health check fail message 2.1 .2, 4.3.3

HS Health check success message 2.1.3, 4.3.4

FF Firing failure message 2.1.4, 4.5.5 , 4.5.6

FS Firing success message 2.1.5, 4.5.4

TSCAN Time-slot canceled message 2.1.6,
One parameter: 5.6, 5.7, 5.8,

i. Reason 5.9 .2.1' 5.9.2.2,
(1 = invalid UL) 5.9.3.1' 5.9.3.2
(2 = invalid DL)
(3 = invalid ULand DL)

TEFg Transmit-end forwarded message to GCS 2.1.7,5.11.1

ERR Error report message 2.1 .8, 6.1

FEg Fatal error message 2.1.9, 6.2

Table 13.6 Responses to on-board subsystems

Stimulus Associated
Name Description Requirements

CD\ Countdown timer initialize command 2.2.1
(to on-board timer)
One parameter:

i. Duration

HT Hardware test command (to all 2.2.2, 4.3.2
subsystems)

FRF Firing request forwarded command 2.2.3, 4.5.3, 4.5 .6
(toRCS)
Three parameters:

i. Pitch
ii. Yaw
iii. Roll

228 Satellite Control System Black Box Specification

Table 13.7 Responses to the UL

Stimulus Associated
Name Description Requirements

TGFu Time-slot go forwarded command 2.3.1' 5.5, 5.9.2.1' 5.9.2.2,
to uplink 5.9.2.3, 5.9.3.1 ' 5.9.3.2,

5.9.3.3

SOT Start data transmit command 2.3.2, 5.9.1

TCFu Time-slot cancel forwarded 2.3.3, 5.9.2.1' 5.9.2.2,
command to uplink 5.9.3.1' 5.9.3.2, 5.11 .4.1

TEFu Transmit end forwarded command 2.3.4, 5.11.3.3, 5.11.1
to uplink

PBF Packet bad forwarded command 2.3.5, 5.1 0.3
One parameter:

i. Packet identifier

FEu Fatal error message 2.3.6, 6.5

Table 13.8 Responses to the DL

Stimulus Associated
Name Description Requirements

TGFd Time-slot go forwarded command 2.4.1' 5.5, 5.9.2.1 ' 5.9.2 .2,
to downlink 5.9 .2.3, 5.9.3.1 ' 5.9 .3.2,

5.9.3.3

TCFd Time-slot cancel forwarded 2.4.2, 5.9.2.1 ' 5.9.2.2,
command to downlink 5.9.3.1 ' 5.9.3.2, 5.11.4.1

TEFd Transmit end forwarded command 2.4.3, 5.11.3.1
to downlink

DO Data packet out command 2.4.4, 5.1 0.2
Two parameters:

i. Packet identifier
ii . Packet payload

FEd Fatal error message 2.4.5, 6.5

13.3 Step 2: Enumerate Stimulus Sequences 229

13.3 Step 2: Enumerate
Stimulus Sequences

The organization of the SV functionality into subsystems is likely to change
because future versions of the SV are likely to have additional subsystems. The
specification can be made independent of the final decision about the subsystem
list by using abstract stimuli. Specifically, two abstract stimuli are required:

1. All subsystems nominal (ASN). This abstract stimulus corresponds to
one ISN from every subsystem (and no ISFs from any subsystem) fol­
lowing the most recent HR that led to an HT not followed by an OTE.

2. Subsystem failure (SF). This stimulus corresponds to either an ISN or
an ISF from every subsystem (with at least one ISF following the most
recent HR that led to an HT) or an OTE with at least one subsystem not
responding following the most recent HR that led to an HT.

The first part of the sequence enumeration is provided in Table 13.9.
Derived requirements are assigned numbers and explained in the Derived
Requirements and Notes column.

During the enumeration of Table 13.9, a potential problem is discovered.
All BR stimuli must be kept in the enumeration so that the UL and the DL can
be validated for a TG (in accordance with requirement 5.3). However, keeping
these stimuli in the enumeration will make it very long. There are really only
four cases for a TG:

1. Neither the UL nor the DL is valid.

2. The UL is valid but the DL is not.

3. The DL is valid but the UL is not.

4. Both the ULand the DL are valid.

If abstract stimuli could be introduced to capture these four cases, the enu­
meration could be shortened substantially. For the purpose of illustration, these
abstract stimuli are defined formally, hiding any unknowns in as-yet undefined
specification functions. Given a sequence, it is possible to determine if a partic­
ular site has been added (and not overwritten) with a BR stimulus.

All specification functions will be given in prefix recursive form; that is,
they will be written as recursive functions computed on prefixes of sequences.
This is a very natural way to write functions over sequences, and has valuable
theoretical properties. In the following function definitions, h will always be a
stimulus sequence. The variable p denotes the prefix of h, up to but not includ­
ing the last stimulus. The variable s denotes the last (most recent) stimulus.
Thus h = ps. The tables can be read as follows: Given that prefix conditions

Table 13.9 Initial enumeration
1\)
w
0 Sequence Response Equivalence Trace Derived Requirements and Notes

IN INA 3.1 , 3.2, 3.3 3.3
The SOS shall respond to the IN
command with the INA message.

illegal 3.4 3.4
Power-on is observed by the SOS
as an IN message.

Note: All other length-one
sequences are illegal because
power must be on before the SOS
can observe messages.

IN IN INA IN 3.1 , 3.2, 3.3, 3.5
3.5 IN messages subsequent to the

first shall cause the SOS to exit
immediately any mode it might be
in without issuing any messages
other than an INA.

IN HR ERR IN 3.6, 4.3.1, 6.1, 3.6
6.4 Initially the SOS shall not be con-

side red to be in any mode.

INMG null 4.1, 4.1.1 4.1.1
The system shall issue no
response for an MG.

IN BR ERR IN 4.4.1, 6.1, 6.4

IN FR ERR IN 4.5.1, 6.1, 6.4

IN TG EAR IN

13.3 Step 2: Enumerate Stimulus Sequences 231

Table 13.10 Specification function B/L(h, n)

Stimulus Prefix Conditions Value Trace

h = empty empty 4.4.5
The B/L table is initially empty.

BR(n, s) Mode(p) = maintenance s 4.4.2, 4.4.3

s otherwise (h = ps) 8/L(p, n) Method

hold, then for stimulus the function evaluates to value. Table 13.10 presents a
specification function to determine the site information at a particular index in
the B!L table.

Note that the function of Table 13.10 references another specification func­
tion, "Mode," which has not been defined. This is because there is not yet
enough information to determine precisely the current mode of the SOS.

Now the abstract stimuli can be defined:

1. TG will denote both the UL and the DL invalid. Let TG denote TG(u,
d) when there are no indices m and n in the table such that BIL(h, m) =
u and B/L(h, n) = d for current stimulus sequence h.

2. TGu will denote a valid UL and an invalid DL. Let TGu denote TG(u,
d) when there exists index m such that B!L(h, m) = u and there is no
index n such that B!L(h, n) = d for current stimulus sequence h.

3. TGd will denote an invalid UL and a valid DL. Let TGd denote TG(u,
d) when there exists index m such that B!L(h, m) = d and there is no
index n such that B!L(h, n) = u for current stimulus sequence h.

4. TGud will denote both the UL and the DL valid. Let TGud denote
TG(u, d) when there exists indices m and n in the table such that B!L(h,
m) = u and BIL(h, n) = d for current stimulus sequence h.

Using these four abstract stimuli, there is no longer a need to keep the BR stim­
uli in the abstract enumeration. Note that none of the omitted atomic stimuli are
used in Table 13.9, so there is no need to restart enumeration.

The enumeration proceeds in Table 13.11 , completing the extensions of IN.
A new derived requirement (1.2.4) is required to deal with unexpected signals
from the internal subsystems.

Only one sequence of Table 13.9 must be extended. Sequence IN MG is
canonical and is extended in Table 13.12. The sequence IN MG OTE presents
a problem. When the SOS has received MG, it expects to receive an HR.
However, it instead receives OTE. Although this is an on-board signal and
not (strictly speaking) a protocol error, it does illustrate the problem. It is better
in this case to ignore the signal, in keeping with requirement 1.2.4, than to

1\) Table 13.11 Remaining extensions of IN (continued from Table 13.9) w
1\)

Sequence Response Equivalence Trace Derived Requirements and Notes

INTGu ERR IN 5.1' 6.1' 6.4

INTGd ERR IN 5.1 ' 6.1' 6.4

INTGud ERR IN 5.1' 6.1' 6.4

INTC ERR IN 5.2, 6.1' 6.4

!NOTE null IN 1.2.4 1.2.4
The SOS shall ignore any unex-
peeled interrupts or signals from
internal subsystems.

IN FSR null IN 1.2.4

IN FFR null IN 1.2.4

INASN illegal Definition of ASN Note: The definition of the abstract
stimulus cannot be satisfied
because no HR has occurred. The
situation is impossible.

IN SF illegal Definition of SF Note: The definition of the abstract
stimulus cannot be satisfied
because no HR has occurred. The
situation is impossible.

IN UG null IN 5.2 Policy: Ignoring a command is
preferable to generating a protocol
error.

IN Dl null IN 5.2

U
l

Q
)

0 z '0

c: Cll
U

l
c Q

)

E

~

·:; C"
Q

)

a:
'0

Q

)

.2:: Q;
c Q

)
U

l
c: 0 c.
U

l
Q

)

a: Q
)

(J

1:
Q

)
::J
C"
Q

)
en

'5

'5

c
c

lJ
j

cc
f-

::J
z

z

'5

'5

'5

'5

c
c

c
c

lJ
j

<.!)
cc

f-
cc

0
0...

0
0

~

z
~

~

233

N Table 13.12 Extensions of IN MG (.,)
Sequence Response Equivalence Trace Derived Requirements and Notes

INMGIN INA IN 3.5

INMG HR CDI, HT 4.3.2, 4.3.3

INMGMG ERR INMG 4.2, 4.2.1' 6.1' 4.2.1
6.4 MG commands issued in

maintenance mode shall be
treated as protocol errors.

IN MG BR ERR INMG 4.2, 6.1' 6.4

IN MG FR ERR INMG 4.2, 6.1' 6.4

IN MGTG ERR INMG 4.2, 6.1' 6.4

IN MGTGu ERR INMG 4.2, 6.1 ' 6.4

IN MGTGd ERR INMG 4.2, 6.1' 6.4

IN MGTGud ERR INMG 4.2, 6.1 ' 6.4

IN MGTC ERR INMG 4.2, 6.1' 6.4

IN MG OTE null INMG 1.2.4

IN MG FSR null INMG 1.2.4

IN MG FFR null INMG 1.2.4

IN MGASN illegal Definition of ASN Note: The definition of the abstract
stimulus cannot be satisfied
because no HR has occurred. The
situation is impossible.

1\)
(,.)
U1

Sequence

IN MGSF

IN MGUG

INMGDI

IN MGTE

IN MG UB

INMG DG

IN MG PB

IN MG DTE

IN MGDB

Response

illegal

null

null

null

null

null

null

null

null

Equivalence Trace Derived Requirements and Notes

Definition of SF Note: The definition of the abstract
stimulus cannot be satisfied
because no HR has occurred. The
situation is impossible.

INMG 5.2

INMG 5.2

INMG 5.2

INMG 5.2

INMG 5.2

INMG 5.2

INMG 5.2

INMG 5.2

236 Satellite Control System Black Box Specification

generate a protocol error, in keeping with requirement 6.1. This is a policy deci­
sion and it is documented in the enumeration.

Again, only one sequence of Table 13.12 must be extended. IN MG HR is
extended in Table 13.13. A number of new cases of behavior are encountered in
Table 13.13; specifically, the interruption of commands (such as FR), which
require time to execute. Derived requirements and a new policy are documented
to resolve this.

Only IN MG HR ASN of Table 13.13 is canonical. It is extended in Table
13.14. On reaching the sequence IN MG HR ASN BR, a question arises: How
will the GCS know if the BR was received and processed by the SOS? This is
resolved by adding the new response BRA.

The enumeration continues with extensions of IN MG HR ASN FR in
Table 13.15, and extensions of IN MG HR ASN TGud in Table 13.16.
Significant new behavior is discovered in Table 13.16, including information
about when the mode of the SOS changes and when it does not. Without this
information, attempts to define precisely many of the abstractions presented
earlier could not proceed. There are two canonical sequences to be extended: IN
MG HR ASN TGud UG and IN MG HR ASN TGud DG. These are shown in
Tables 13.17 and 13.18 respectively.

More missing but important requirements are discovered when IN MG
HR ASN TGud UG DG is extended in Table 13.19. What happens if UB or
DB is sent on a fully open connection? These situations are handled with
derived requirements, and the single canonical sequence IN MG HR ASN
TGud UG DG TE is extended in Table 13.20, completing the enumeration. The
complete enumeration denotes a complete, consistent, and traceably correct
specification of system behavior at the given level of abstraction.

Table 13.13 Extensions of IN MG HR

Sequence Response Equivalence Trace Derived Requirements and Notes

INMGHR IN INA IN 3.5

INMGHRHR ERR IN MG HR 4.3.5, 4.3.5
6.1, 6.4 If the 808 receives a command

(other than IN) from the GC8 dur-
ing processing of a previous com-
mand, a protocol error shall be
generated and processing of the
previous command shall continue.

Policy: Avoid interrupting com-
mands that require processing
(such as thruster firings).

INMG HRMG ERR IN MG HR 4 .3.5, 4.3.6, 4.3.6
6.1 , 6.4 MG commands issued during

maintenance mode that otherwise
would be ignored shall generate a
protocol error if they interrupt a
command.

IN MG HR BR ERR IN MG HR 4.3.5 , 6.1 ' 6.4

IN MG HR FR ERR IN MG HR 4.3.5, 6.1 ' 6.4

IN MG HRTG ERR INMGHR 4.3.5, 6.1' 6.4

IN MG HRTGu ERR IN MG HR 4.3.5, 6.1' 6.4

N continued
(,)
--I

N Table 13.13 continued w
00

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HRTGd ERR IN MG HR 4.3.5, 6.1, 6.4

IN MG HRTGud ERR IN MG HR 4.3.5, 6.1, 6.4

IN MG HRTC ERR IN MG HR 4.3.5, 6.1, 6.4

IN MG HROTE HF IN MG HRASN 4.3.3, 4.3.7 4.3.7
The outcome of an HT shall be re-
ported by the SOS but shall not at-
feet subsequent SOS functionality.

IN MG HR FSR null IN MG HR 1.2.4

IN MG HR FFR null IN MG HR 1.2.4

IN MG HRASN HS 4.3.4

IN MG HR SF HF IN MG HRASN 4.3.3, 4.3.7

IN MG HR UG null IN MG HR 5.2

IN MG HR Dl null IN MG HR 5.2

IN MG HRTE null IN MG HR 5.2

IN MG HR UB null IN MG HR 5.2

IN MGHRDG null IN MG HR 5.2

IN MG HR PB null IN MG HR 5.2

IN MG HR DTE null IN MG HR 5.2

IN MG HR DB null IN MG HR 5.2

Table 13.14 Extensions of IN MG HR ASN

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN IN INA IN 3.5

IN MG HR ASN HR COl, HT IN MG HR 4.3.2, 4.3.3

IN MG HR ASN MG ERR IN MG HRASN 4.2.1 ' 6.1' 6.4

IN MG HR ASN BR BRA IN MG HRASN 4.4.6 4.4.6
The SOS shall respond to the BR
with an acknowledgment message
(i.e., BRA).

IN MG HR ASN FR COl, FRF 4.5.3, 4.5.6

IN MG HR ASN TG TSCAN(3) IN MG HRASN 5.8, 5.6.1 5.6.1
The SOS shall not enter transmit
mode on receipt of a TG with an
invalid UL or OL.

IN MG HR ASN TGu TSCAN(2) IN MG HRASN 5.7, 5.6.1

IN MG HR ASN TGd TSCAN(1) IN MG HRASN 5.6, 5.6.1

IN MG HR ASN TGud COl, TGFu, TGFd 5.4, 5.5, 5.9.2.1'
5.9.2.2 , 5.9.3.1'
5.9.3.2

IN MG HR ASN TC ERR IN MG HRASN 5.2, 6.1' 6.4

IN MG HR ASN OTE null IN MG HR ASN 1.2.4

continued
N
w
U)

N Table 13.14 continued .,..
0

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN FSR null IN MG HRASN 1.2.4

IN MG HR ASN FFR null IN MG HRASN 1.2.4

IN MG HR ASN ASN illegal Definition of ASN Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported. The situation is
impossible.

IN MG HR ASN SF illegal Definition of SF Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported . The situation is
impossible.

IN MG HR ASN UG null IN MG HRASN 5.2

IN MG HR ASN Dl null IN MG HRASN 5.2

IN MG HR ASN TE null IN MG HRASN 5.2

IN MG HR ASN UB null IN MG HRASN 5.2

IN MG HR ASN DG null IN MG HRASN 5.2

IN MG HR ASN PB null IN MG HR ASN 5.2

IN MG HR ASN DTE null IN MG HRASN 5.2

IN MG HR ASN DB null IN MG HRASN 5.2

Table 13.15 Extensions of IN MG HR ASN FR

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN FR IN INA IN 3.5

IN MG HR ASN FR HR ERR IN MG HR ASN FR 4.3.5, 6.1' 6.4

IN MG HR ASN FR MG ERR IN MG HR ASN FR 4.3.5, 6.1' 6.4

IN MG HR ASN FR BR ERR IN MG HR ASN FR 4.3.5, 6.1 ' 6.4

IN MG HR ASN FR FR ERR IN MG HR ASN FR 4.3.5, 6.1' 6.4

IN MG HR ASN FR TG ERR IN MG HR ASN FR 4.3.5, 6.1' 6.4

IN MG HR ASN FR TGu ERR IN MG HR ASN FR 4.3.5, 6.1' 6.4

IN MG HR ASN FR TGd ERR IN MG HR ASN FR 4.3.5, 6.1' 6.4

IN MG HR ASN FR TGud ERR IN MG HR ASN FR 4.3.5, 6.1' 6.4

IN MG HR ASN FR TC ERR IN MG HR ASN FR 4.3.5, 6.1' 6.4

IN MG HR ASN FR OTE FF IN MG HRASN 4.5.6

IN MG HR ASN FR FSR FS IN MG HRASN 4.5.4

IN MG HR ASN FR FFR FF IN MG HRASN 4.5.5

IN MG HR ASN FR ASN illegal Definition of ASN Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported. The situation is
impossible.

1\) continued

1\) Table 13.15 continued
""" 1\)

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN FR SF illegal Definition of SF Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported. The situation is
impossible.

IN MG HR ASN FR UG null IN MG HR ASN FR 5.2

IN MG HR ASN FR Dl null IN MG HR ASN FR 5.2

IN MG HR ASN FR TE null IN MG HR ASN FR 5.2

IN MG HR ASN FR UB null IN MG HR ASN FR 5.2

IN MG HR ASN FR DG null IN MG HR ASN FR 5.2

IN MG HR ASN FR PB null IN MG HR ASN FR 5.2

IN MG HR ASN FR DTE null IN MG HR ASN FR 5.2

IN MG HR ASN FR DB null IN MG HR ASN FR 5.2

N

"" w

Table 13.16 Extensions of IN MG HR ASN TGud

Sequence Response

IN MG HR ASNTGud IN INA

IN MG HR ASN TGud HR ERR

IN MG HR ASN TGud MG ERR

IN MG HR ASN TGud BR ERR

IN MG HR ASN TGud FR ERR

IN MG HR ASN TGud TG ERR

IN MG HR ASN TGud TGu ERR

IN MG HR ASN TGud TGd ERR

IN MG HR ASN TGud TGud ERR

IN MG HR ASN TGud TC TCFu, TCFd, TEFg

IN MG HR ASN TGud OTE TSCAN(3), TCFu, TCFd

Equivalence Trace

IN 3.5

IN MG HR ASN TGud 4.3.1, 6.1, 6.4

IN MG Ht:l ASN TGud 4.1.2 , 6 .1, 6.4

IN MG HR ASN TGud 4.4.1, 6.1, 6.4

IN MG HR ASN TGud 4 .5.1, 6.1 ' 6.4

IN MG HR ASN TGud 5.1, 6 .1, 6.4

IN MG HR ASN TGud 5.1' 6.1, 6.4

IN MG HR ASN TGud 5.1 ' 6.1 , 6.4

IN MG HR ASN TGud 5.1' 6.1, 6.4

IN 5.11 .1, 5.11.4.1

IN 5.9.1.1

Derived Requirements and Notes

4.1.2
The SOS shall not enter mainte­
nance mode from transmit mode.

5.9.1 .1
If the UL fails to respond with UB
or UG within TBD seconds of
sending TGFu, and the DL also
fails to respond with DB or DG
within TBD seconds of sending
TGFd, the SOS shall send the
TSCAN(3) failure message to the
GCS and send TCF to both the UL
and the DL. The SOS shall then
exit transmit mode.

continued

N Table 13.16 continued
""' ""'

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN TGud FSR null IN MG HR ASN TGud 1.2.4

IN MG HR ASN TGud FFR null IN MG HR ASN TGud 1.2.4

IN MG HR ASN TGud ASN illegal Definition of ASN Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported. The situation is
impossible.

IN MG HR ASN TGud SF illegal Definition of SF Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported in. The situation
is impossible.

IN MG HR ASN TGud UG null 5.9.2.3

IN MG HR ASN TGud Dl ERR IN MG HR ASN TGud 5.10.1.1 ' 5.10.1.1
6.1 , 6.4 If either the UL or the DL is not

connected, Dl and PB messages
will result in a protocol error.

IN MG HR ASN TGud TE FEg IN 5.11 .3.4, 6.2 5.11.3.4
Unexpected TE and DTE mes-
sages shall be declared unrecov-
erable protocol errors.

IN MG HR ASN TGud UB TSCAN(1), TCFu, TCFd IN 5.9.2.2

N .,.
c.n

Sequence

IN MG HR ASN TGud DG

IN MG HR ASN TGud PB

IN MG HR ASN TGud DTE

IN MG HR ASN TGud DB

Response

null

ERR

FEg

TSCAN(2), TCFu, TCFd

Equivalence Trace Derived Requirements and Notes

5.9.3.3

IN MG HR ASN TGud 5.10.1 .1'
6.1' 6.4

IN 5.11.3.4, 6.2

IN 5.9.3.2

1\) Table 13.17 Extensions of IN MG HR ASN TGud UG
""" en

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN TGud UG IN INA IN 3.5

IN MG HR ASN TGud UG HR ERR IN MG HR ASN TGud UG 4.3.1, 6.1, 6.4

IN MG HR ASN TGud UG MG ERR IN MG HR ASN TGud UG 4.1.2, 6.1, 6.4

IN MG HR ASN TGud UG BR ERR IN MG HR ASN TGud UG 4.4.1, 6.1, 6.4

IN MG HR ASN TGud UG FR ERR IN MG HR ASN TGud UG 4.5.1, 6.1, 6.4

IN MG HR ASN TGud UG TG ERR IN MG HR ASN TGud UG 5.1, 6.1, 6.4

IN MG HR ASN TGud UG TGu ERR IN MG HR ASN TGud UG 5.1 , 6.1, 6.4

IN MG HR ASN TGud UG TGd ERR IN MG HR ASN TGud UG 5.1 , 6.1, 6.4

IN MG HR ASN TGud UG TGud ERR IN MG HR ASN TGud UG 5.1, 6.1, 6.4

IN MG HR ASN TGud UG TC TCFu, TCFd, TEFg IN 5.11 .1 , 5.11 .4.1

IN MG HR ASN TGud UG OTE TSCAN(2), TCFu, TCFd IN 5.9.3.1

IN MG HR ASN TGud UG FSR null IN MG HR ASN TGud UG 1.2.4

IN MG HR ASN TGud UG FFR null IN MG HR ASN TGud UG 1.2.4

IN MG HR ASN TGud UG ASN illegal Definition of ASN Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported. The situation is
impossible.

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN TGud UG SF illegal Definition of SF Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported. The situation is
impossible.

IN MG HR ASN TGud UG UG null IN MG HR ASN TGud UG 5.9.2.4 5.9.2.4
Any UG subsequent to an initial
UG shall be ignored.

IN MG HR ASN TGud UG Dl ERR IN MG HR ASN TGud UG 5.10.1 .1,
6.1' 6.4

IN MG HR ASN TGud UG TE FEg,FEu IN 5.11 .3.4, 6.2, 6.5

IN MG HR ASN TGud UG UB TSCAN(1), TCFu, TCFd IN 5.9.2.2

IN MG HR ASN TGud UG DG SOT 5.9.1' 5.9.2.3,
5.9.3.3

IN MG HR ASN TGud UG PB ERR IN MG HR ASN TGud UG 5.1 0.1 .1'
6.1' 6.4

IN MG HR ASN TGud UG DTE FEg, FEu IN 5.11.3.4, 6.2, 6.5

IN MG HR ASN TGud UG DB TSCAN(2), TCFu, TCFd IN 5.9.3.2

1\)

:!j

1\) Table 13.18 Extensions of IN MG HR ASN TGud DG
~
():)

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN TGud DG IN INA IN 3.5

IN MG HR ASN TGud DG HR ERR IN MG HR ASN TGud DG 4.3.1 ' 6.1' 6.4

IN MG HR ASN TGud DG MG ERR IN MG HR ASN TGud DG 4.1.2, 6.1' 6.4

IN MG HR ASN TGud DG BR ERR IN MG HR ASN TGud DG 4.4.1 ' 6.1 ' 6.4

IN MG HR ASN TGud DG FR ERR IN MG HR ASN TGud DG 4.5.1 ' 6.1' 6.4

IN MG HR ASN TGud DG TG ERR IN MG HR ASN TGud DG 5.1 , 6.1 , 6.4

IN MG HR ASN TGud DG TGu ERR IN MG HR ASN TGud DG 5.1 ' 6.1' 6.4

IN MG HR ASN TGud DG TGd ERR IN MG HR ASN TGud DG 5.1 ' 6.1 ' 6.4

IN MG HR ASN TGud DG TGud ERR IN MG HR ASN TGud DG 5.1, 6.1, 6.4

IN MG HR ASN TGud DG TC TCFu, TCFd, TEFg IN 5.11 .1' 5.11 .4.1

IN MG HR ASN TGud DG OTE TSCAN(1), TCFu, TCFd IN 5.9.3.1

IN MG HR ASN TGud DG FSR null IN MG HR ASN TGud DG 1.2.4

IN MG HR ASN TGud DG FFR null IN MG HR ASNTGud DG 1.2.4

IN MG HR ASN TGud DG ASN illegal Definition of ASN Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported. The situation is
impossible.

N

""' ID

Sequence

IN MG HR ASN TGud DG SF

IN MG HR ASN TGud DG UG

IN MG HR ASN TGud DG Dl

IN MG HR ASN TGud DG TE

IN MG HR ASN TGud DG UB

IN MG HR ASN TGud DG DG

IN MG HR ASN TGud DG PB

IN MG HR ASN TGud DG DTE

IN MG HR ASN TGud DG DB

Response

illegal

SOT

ERR

FEg, FEd

TSCAN(1), TCFu, TCFd

null

ERR

FEg, FEd

TSCAN(2) , TCFu, TCFd

Equivalence Trace Derived Requirements and Notes

Definition of SF Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported. The situation is
impossible.

IN MG HR ASN TGud 5.9.1 , 5.9.2.3,
UG DG 5.9.3.3

IN MG HR ASN TGud DG 5.10.1.1 ,
6.1 , 6.4

IN 5.11.3.4, 6.2, 6.5

IN 5.9.2.2

IN MG HR ASN TGud DG 5.9.3.4 5.9.3.4
Any DG subsequent to an initial
DG shall be ignored.

IN MG HR ASN TGud DG 5.10.1.1,
6.1, 6.4

IN 5.11.3.4, 6.2, 6.5

IN 5.9.3.2

1\) Table 13.19 Extensions of IN MG HR ASN TGud UG DG U1
0

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN TGud UG DG INA IN 3.5
IN

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud 4.3.1' 6.1' 6.4
HR UG DG

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud 4.1.2, 6.1' 6.4
MG UGDG

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud 4.4.1' 6.1' 6.4
BR UGDG

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud 4.5.1 ' 6.1' 6.4
FR UGDG

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud 5.1 ' 6.1' 6.4
TG UGDG

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud 5.1' 6.1 ' 6.4
TGu UGDG

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud 5.1' 6.1 ' 6.4
TGd UGDG

IN MG HR ASN TGud UG ERR IN MG HR ASN TGud 5.1' 6.1 ' 6.4
DGTGud UG DG

IN MG HR ASN TGud UG DG TC TCFu, TCFd, TEFg IN 5.11 .1' 5.11.4.1

IN MG HR ASN TGud UG DG null IN MG HR ASN TGud 1.2.4
OTE UGDG

1\)
t1l

Sequence

IN MG HR ASN TGud UG DG
FSR

IN MG HR ASN TGud UG DG
FFR

IN MG HR ASN TGud UG DG
ASN

IN MG HR ASN TGud UG DG
SF

IN MG HR ASN TGud UG DG
UG

IN MG HR ASN TGud UG DG
01

IN MG HR ASN TGud UG DG
TE

Response

null

null

illegal

illegal

null

DO

TEFd

Equivalence Trace Derived Requirements and Notes

IN MG HR ASN TGud 1.2.4
UG DG

IN MG HR ASN TGud 1.2.4
UGDG

Definition of ASN Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported. The situation is
impossible.

Definition of SF Note: The definition of the abstract
stimulus cannot be satisfied
because all subsystems have
already reported. The situation is
impossible.

IN MG HR ASN TGud 5.9.2.4
UGDG

IN MG HR ASN TGud 5.10.2, 5.10.1
UG DG

5.11.3.1

continued

~ Table 13.19 continued
1\)

Sequence Response Equivalence

IN MG HR ASN TGud UG DG UB TSCAN(1) , TCFu, TCFd IN

IN MG HR ASN TGud UG DG DG null IN MG HR ASN TGud UG
DG

IN MG HR ASN TGud UG DG PB PBF IN MG HR ASN TGud UG
DG
-

IN MG HR ASNTGud UG FEg,FEu,FEd IN
DG DTE

IN MG HR ASN TGud UG DG DB TSCAN(2). TCFu, TCFd IN

Trace

5.9.2.5

5.9.3.4

5.10.3

5.11 .3.4, 6.2, 6.5

5.9.3.5

Derived Requirements and Notes

5.9.2.5
If the UL reports UB during trans­
mit mode on a fully open connec­
tion, the SOS shall send TCF
messages to the ULand the DL,
shall send TSCAN(1) to the GCS,
and shall exit transmit mode.

5.9.3.5
If the DL reports DB during trans­
mit mode on a fully open connec­
tion , the SOS shall send TCF
messages to the ULand the DL,
shall send TSCAN(2) to the GCS,
and shall exit transmit mode.

Table 13.20 Extensions of IN MG HR ASN TGud UG DG TE

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN TGud UG DG INA IN 3.5
TEIN

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud UG 4.3.1' 6 .1 ' 6.4
TEHR DGTE

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud UG 4.1.2, 6.1 ' 6.4
TEMG DGTE

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud UG 4.4.1' 6.1' 6.4
TEBR DGTE

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud UG 4.5.1 ' 6.1' 6.4
TEFR DGTE

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud UG 5.1' 6.1 ' 6.4
TETG DGTE

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud UG 5.1' 6.1' 6.4
TETGu DGTE

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud UG 5.1 ' 6.1 ' 6.4
TETGd DGTE

IN MG HR ASN TGud UG DG ERR IN MG HR ASN TGud UG 5.1 ' 6.1' 6.4
TETGud DGTE

IN MG HR ASN TGud UG DG TCFu, TCFd, TEFg IN 5.11.1 ' 5.11 .4.1
TETC

1\) continued
U1
(,.)

1\) Table 13.20 continued (11
Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN TGud UG DG null IN MG HR ASN TGud UG 1.2.4
TEOTE DGTE

IN MG HR ASN TGud UG DG null IN MG HR ASN TGud UG 1.2.4
TE FSR DGTE

IN MG HR ASN TGud UG DG null IN MG HR ASN TGud UG 1.2.4
TEFFR DGTE

IN MG HR ASN TGud UG DG illegal Definition of ASN Note: The definition of the abstract
TEASN stimulus cannot be satisfied

because all subsystems have
already reported. The situation is
impossible.

IN MG HR ASN TGud UG DG illegal Definition of SF Note: The definition of the abstract
TESF stimulus cannot be satisfied

because all subsystems have
already reported . The situation is
impossible.

IN MG HR ASN TGud UG DG null IN MG HR ASN TGud UG 5.9.2.4
TEUG DGTE

IN MG HR ASN TGud UG DG DO IN MG HR ASN TGud UG 5.1 0.2, 5.11.3.2
TEDI DGTE

IN MG HR ASN TGud UG DG TEFd IN MG HR ASN TGud UG 5.11.3.1
TETE DGTE

Sequence Response Equivalence Trace Derived Requirements and Notes

IN MG HR ASN TGud UG DG TSCAN(1), TCFu, TCFd IN 5.9.2.5
TEUB

IN MG HR ASN TGud UG DG null IN MG HR ASN TGud UG 5.9.3.4
TEDG DGTE

IN MG HR ASN TGud UG DG PBF IN MG HR ASN TGud UG 5.1 0.3, 5.11.3.2
TEPB DGTE

IN MG HR ASN TGud UG DG TEFu, TEFg IN 5.11 .1' 5.11 .3.3
TEDTE

IN MG HR ASN TGud UG DG TSCAN(2), TCFu, TCFd IN 5.9.3.5
TEDB

N

8l

256 Satellite Control System Black Box Specification

13.4 Step 3: Analyze
Canonical Sequences

Canonical sequence analysis is an iterative process for identifying and naming
important system properties. During analysis of the SOS enumeration's canoni­
cal sequences, the following properties are chosen. Other choices are possible.
The choice made will depend on domain architectures and how designers view
the importance of various aspects of the system.

1. Has the system been initialized for the first time? Call this "Initialized"
and assign values of true (the system has been initialized) and false
(the system has not been initialized).

2. In what mode is the system currently operating? Call this "Mode" and
assign it values of transmit, maintenance, and none.

3. Has the initial health check required on entry to maintenance mode
been performed? Call this "HealthCheck" and assign it values of done

Table 13.21 Sequence analysis

Health
Sequence Initialized Mode Processing Check Connected

Empty false

IN true none

INMG true maintenance idle pending

IN MG HR true maintenance health pending

IN MG HRASN true maintenance idle done

IN MG HRASN true maintenance firing done
FR

IN MG HRASN true transmit none
TGud

IN MG HRASN true transmit uplink
TGud UG

IN MG HRASN true transmit downlink
TGud DG

IN MG HRASN true transmit full
TGud UG DG

IN MG HRASN true transmit half
TGud UG DGTE

13.5 Step 4: Define Specification Functions 257

(the health check has been performed) and pending (a health check is
in progress or has not been performed).

4. Is the system currently processing a GCS command (i.e., waiting for
internal signals before replying to the GCS)? Call this "Processing"
and assign it values of idle (not processing), firing (waiting for a reply
from the RCS), and health (waiting for replies to an HT from internal
subsystems).

5. Is the system partially or completely connected? Call this "Con­
nected" and assign it values of none (no connection), uplink (the
uplink is connected but not the downlink), downlink (the downlink is
connected but not the uplink), full (both uplink and downlink are con­
nected), and half (the connection is half-closed because the uplink has
sent TE).

The complete analysis is provided in Table 13.21.

13.5 Step 4: Define
Specification Functions

Additional specification functions identified during canonical sequence analy­
sis are defined in this step. All information necessary for this step is provided by
the canonical sequence analysis and the sequence enumeration. The resulting
specification functions are given in Tables 13.22 through 13.26.

Table 13.22 Specification function: lnitialized(h)

Stimulus Prefix Conditions Value

h= empty false

IN any true

s otherwise (h = ps) lnitialized(p)

258 Satellite Control System Black Box Specification

Table 13.23 Specification function: Mode(h)

Stimulus

MG

IN

TGud

OTE

TC,UB, DTE, DB

TE

s

Prefix Conditions

h= empty

lnitialized(p} =true
Mode(p) = none

Any

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) = idle
HealthCheck(p) = done

lnitialized(p) =true
Mode(p) =transmit
(Connected(p) = none or
Connected(p) = downlink or
Connected(p) = uplink)

lnitialized(p} =true
Mode(p} = transmit

lnitialized(p) =true
Mode(p) =transmit
(Connected(p) =none or
Connected(p) = downlink or
Connected(p) = uplink)

otherwise (h = ps)

Table 13.24 Specification function: Processing(h)

Stimulus

HR

IN , OTE, ASN, SF

FR

IN, OTE, FSR, FFR

s

Prefix Conditions

h= empty

lnitialized(p} =true
Mode(p} = maintenance
Processing(p) = idle

lnitialized(p} =true
Mode(p) = maintenance
Processing(p) = health
HealthCheck(p) = pending

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) = idle
HealthCheck(p) = done

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) =firing
HealthCheck(p) = done

otherwise (h = ps)

Value

none

maintenance

none

transmit

none

none

none

Mode(p)

Value

idle

health

idle

firing

idle

Processing(p)

13.5 Step 4: Define Specification Functions 259

Table 13.25 Specification function: HealthCheck(h)

Stimulus

OTE,ASN,SF

HR

IN

TE, OTE

TC, UB, DTE, DB

s

Prefix Conditions

h= empty

lnitialized(p) =true
Mode(p) =maintenance
Processing(p) = health
HealthCheck(p) = pending

lnitialized(p) =true
Mode(p} = maintenance
Processing(p) = idle
HealthCheck(p) = done

Any

lnitialized(p) =true
Mode(p) = transmit
(Connected(p) = none or
Connected(p) = uplink or
Connected(p) = downlink)

lnitialized(p) =true
Mode(p) = transmit

otherwise (h = ps)

Table 13.26 Specification function: Connected(h)

Stimulus Prefix Conditions

h= empty

UG lnitialized(p) =true
Mode(p) = transmit
Connected(p) = none

DG lnitialized(p) =true
Mode(p) = transmit
Connected(p) = none

IN, TC, UB, DTE, DB lnitialized(p) =true
Mode(p) = transmit
(Connected(p) = uplink or
Connected(p) = downlink or
Connected(p) = full or
Connected(p) = half)

OTE, TE lnitialized(p) =true
Mode(p) = transmit
(Connected(p) = uplink or
Connected(p) = downlink)

Value

pending

done

pending

pending

pending

pending

HealthCheck(p)

Value

none

uplink

downlink

none

none

continued

260 Satellite Control System Black Box Specification

Table 13.26 continued

Stimulus

DG

UG

TE

s

Prefix Conditions

lnitialized(p) =true
Mode(p) =transmit
Connected(p) = uplink

lnitialized(p) =true
Mode(p) = transmit
Connected(p) =downlink

lnitialized(p) =true
Mode(p) =transmit
Connected(p) =full

otherwise (h = ps)

13.6 Step 5: Construct
the Black Box Tables

Value

full

full

half

Connected(p)

All information necessary to construct the black box tables is provided by the
canonical sequence analysis and the sequence enumeration. The resulting tables
make reference to the specification function tables generated in the previous
step.

First, a black box table is defined for each abstract stimulus. Second, the
table rows are defined directly from the enumeration and canonical sequence
analysis as a mechanical process; no other information is necessary. The result­
ing tables are included here as Tables 13.27 through 13.49. These tables define
the intended software response for each of the stimuli. As with the specification
function tables, p denotes the prefix up to but not including the current stimulus
(which is fixed for a given table) .

Note that every property has been replaced with a reference to the corre­
sponding specification function . The black box tables are now complete.

13.6 Step 5: Construct the Black Box Tables 261

Table 13.27 Current stimulus: IN

Prefix Conditions

any

Table 13.28 Current stimulus: HR

Prefix Conditions

lnitialized(p) =false

lnitialized(p) =true
(Mode(p) =f. maintenance or
Processing(p) =f. idle)

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) = idle

Table 13.29 Current stimulus: MG

Prefix Conditions

lnitialized(p) =false

lnitial ized(p) =true
Mode(p) = none

lnitialized(p) =true
Mode(p) =f. none

Table 13.30 Current stimulus: BR

Prefix Conditions

lnitialized(p) =false

lnitialized(p) =true
(Mode(p) = none or Mode(p) = transmit)

lnitialized(p) =true
Mode(p) = maintenance
(Processing(p) =f. idle or
HealthCheck(p) =f. done)

lnitialized(p) =true
Mode(p) =maintenance
Processing(p) = idle
HealthCheck(p) = done

Response

INA

Response

illegal

ERR

CDI , HT

Response

illegal

null

ERR

Response

illegal

ERR

ERR

BRA

Trace

3.1 , 3.2, 3.3, 3.5

Trace

3.4

3.6, 4.3.1, 4.3 .5, 6 .1,
6.4

4.3.2, 4.3.3, 4.3.1

Trace

3.4

4.1, 4.1 .1

4 .1 .2, 4.2, 4.2.1 , 4.3.5,
4.3.6, 6.1, 6.4

Trace

3.4

4.4.1, 6.1 , 6.4

4.2, 4.3.5, 6.1 , 6.4

4.4.6

262 Satellite Control System Black Box Specification

Table 13.31 Current stimulus: FR

Prefix Conditions

lnitialized(p) =false

lnitialized(p) =true
(Mode(p) = none or Mode(p) = transmit)

lnitialized(p) =true
Mode(p) = maintenance
(Processing(p) * idle or
HealthCheck(p) * done)

lnitialized(p) = true
Mode(p) = maintenance
Processing(p) = idle
HealthCheck(p) = done

Table 13.32 Current stimulus: TG

Prefix Conditions

lnitialized(p) =false

lnitialized(p) =true
(Mode(p) = none or Mode(p) = transmit)

lnitialized(p) =true
Mode(p) = maintenance
(Processing(p) * idle or
HealthCheck(p) *done)

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) =idle
HealthCheck(p) = done

Response

illegal

ERR

ERR

CDI, FRF

Response

illegal

ERR

ERR

TSCAN(3)

Trace

3.4

4.5.1, 6.1 , 6.4

4.2, 4.3.5, 6.1, 6.4

4.5.3, 4.5.6

Trace

3.4

5.1, 6.1 , 6.4

4.2, 4.3.5, 6.1, 6.4

5.8, 5.6.1

13.6 Step 5: Construct the Black Box Tables 263

Table 13.33 Current stimulus: TGu

Prefix Conditions Response Trace

lnitialized(p) =false illegal 3.4

lnitialized(p) =true ERR 5.1 ' 6.1 ' 6.4
(Mode(p) = none or Mode(p) = transmit)

lnitialized(p) =true ERR 4.2, 4.3.5 , 6.1' 6.4
Mode(p) = maintenance
(Processing(p) * idle or
HealthCheck(p) *done)

lnitialized(p) =true TSCAN(2) 5.7, 5.6.1
Mode(p) = maintenance
Processing(p) = idle
HealthCheck(p) = done

Table 13.34 Current Stimulus: TGd

Prefix Conditions Response Trace

lnitialized(p) =false illegal 3.4

lnitialized(p) =true ERR 5.1, 6.1, 6.4
(Mode(p) = none or Mode(p) = transmit)

lnitialized(p) =true ERR 4.2, 4.3.5, 6.1 ' 6.4
Mode(p) = maintenance
(Processing(p) * idle or
HealthCheck(p) *done)

lnitialized(p) =true TSCAN(1) 5.6, 5.6.1
Mode(p) = maintenance
Processing(p) = idle
HealthCheck(p) = done

264 Satellite Control System Black Box Specification

Table 13.35 Current stimulus: TGud

Prefix Conditions

lnitialized(p) =false

lnitialized(p) =true
(Mode(p) = none or Mode(p) =transmit)

lnitialized(p) =true
Mode(p) = maintenance
(Processing(p) * idle or
HealthCheck(p) * done)

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) = idle
HealthCheck(p) = done

Table 13.36 Current stimulus: TC

Prefix Conditions

lnitialized(p) =false

lnitialized(p) =true
Mode(p) * transmit

lnitialized(p) =true
Mode(p) = transmit

Table 13.37 Current stimulus: OTE

Prefix Conditions

lnitialized(p) =false

lnitialized(p) =true
Mode(p) = none

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) =idle

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) = health
HealthCheck(p) = pending

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) =firing
HealthCheck(p) = done

Response

illegal

ERR

ERR

CDI, TGFu,
TGFd

Trace

3.4

5.1 , 6.1, 6.4

4.2, 4.3.5, 6.1, 6.4

5.4, 5.5, 5.9.2 .1, 5.9.2 .2,
5.9 .3.1, 5.9.3.2

Response Trace

illegal 3.4

ERR 4.2, 4.3.5, 5.2, 6.1, 6.4

TCFu, TCFd, 5.11.1, 5.11.4.1
TEFg

Response Trace

illegal 3.4

null 1.2.4

null 1.2.4, 4.2, 6.1, 6.4

HF 4.3.3, 4.3.7

FF 4.5.6

13.6 Step 5: Construct the Black Box Tables 265

Prefix Conditions Response Trace

lnitialized(p) = true TSCAN(3), 5.9.1.1
Mode(p) =transmit TCFu, TCFd
Connected(p) = none

lnitialized(p) = true TSCAN(2), 5.9.3.1
Mode(p) = transmit TCFu, TCFd
Connected(p) = uplink

lnitialized(p) = true TSCAN(1) , 5.9.3.1
Mode(p) = transmit TCFu, TCFd
Connected(p) = downlink

lnitialized(p) = true null 1.2.4
Mode(p) = transmit
(Connected(p) =full orConnected(p) = half)

Table 13.38 Current stimulus: FSR

Prefix Conditions Response Trace

lnitialized(p) = false illegal 3.4

lnitialized(p) =true null 1.2.4
(Mode(p) = none or Mode(p) =transmit)

lnitialized(p) =true null 1.2.4
Mode(p) = maintenance
Processing(p) * firing

lnitialized(p) = true FS 4.5.4
Mode(p) = maintenance
Processing(p) =firing

Table 13.39 Current stimulus: FFR

Prefix Conditions Response Trace

lnitialized(p) = false illegal 3.4

lnitialized(p) =true null 1.2.4
(Mode(p) = none or Mode(p) = transmit)

lnitialized(p) = true null 1.2.4
Mode(p) = maintenance
Processing(p) * firing

lnitialized(p) =true FF 4.5 .5
Mode(p) = maintenance
Processing(p) = firing

266 Satellite Control System Black Box Specification

Table 13.40 Current stimulus: ASN

Prefix Conditions

lnitialized(p) =false

lnitialized(p) =true
(Mode(p) = none or Mode(p) = transmit)

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) * health

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) =health

Table 13.41 Current stimulus: SF

Prefix Conditions

lnitialized(p) = false

lnitialized(p) =true
(Mode(p) = none or Mode(p) = transmit)

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) * health

lnitialized(p) =true
Mode(p) = maintenance
Processing(p) =health

Table 13.42 Current stimulus: UG

Response

illegal

illegal

illegal

-
HS

Response

illegal

illegal

illegal

-
HF

Prefix Conditions Response

lnitialized(p) = false illegal

lnitialized(p)= true null
(Mode(p) =none orMode(p) =maintenance)

lnitialized(p) =true null
Mode(p) = transmit
Connected(p) * downlink

lnitialized(p) =true SDT
Mode(p) = transmit
Connected(p) = downlink

Trace

3.4

Definition of ASN

Definition of ASN

4.3.4

Trace

3.4

Definition of SF

Definition of SF

4.3.3, 4.3.7

Trace

3.4

5.2

5.9.2.3, 5.9.2.4

5.9.1 , 5.9.2.3, 5.9.3.3

13.6 Step 5: Construct the Black Box Tables 267

Table 13.43 Current stimulus: Dl

Prefix Conditions Response Trace

lnitialized(p) =false illegal 3.4

lnitialized(p)= true null 5.2
(Mode(p) =none orMode(p) =maintenance)

lnitialized(p) =true ERR 5.10.1.1 , 6.1, 6.4
Mode(p) = transmit
(Connected(p) * full and Connected(p) * half)

lnitialized(p) =true DO 5.10.1, 5.10.2
Mode(p) = transmit
(Connected(p) = full or Connected(p) = half)

Table 13.44 Current stimulus: TE

Prefix Conditions Response Trace

lnitialized(p) =false illegal 3.4

lnitialized(p)= true null 5.2
(Mode(p) =none orMode(p) =maintenance)

lnitialized(p) =true FEg 5.11 .3.4, 6.2
Mode(p) = transmit
Connected(p) = none

lnitialized(p) =true FEg, FEu 5.11 .3.4, 6.2, 6.5
Mode(p) = transmit
Connected(p) =uplink

lnitialized(p) =true FEg, FEd 5.11.3.4, 6.2, 6.5
Mode(p) = transmit
Connected(p) = downlink

lnitialized(p) =true TEFd 5.11.3.1
Mode(p) = transmit
(Connected(p) =full orConnected(p) =half)

Table 13.45 Current stimulus: UB

Prefix Conditions Response Trace

lnitialized(p) =false illegal 3.4

lnitialized(p)= true null 5.2
(Mode(p) =none orMode(p) =maintenance)

lnitialized(p) =true TSCAN(1), 5.9.2.2, 5.9.2.5
Mode(p) = transmit TCFu, TCFd

268 Satellite Control System Black Box Specification

Table 13.46 Current stimulus: DG

Prefix Conditions Response

lnitialized(p) =false illegal

lnitialized(p)= true null
(Mode(p) =none orMode(p) =maintenance)

lnitialized(p) =true null
Mode(p) = transmit
Connected(p) * uplink

lnitialized(p) =true SDT
Mode(p) = transmit
Connected(p) = uplink

Table 13.47 Current stimulus: PB

Prefix Conditions Response

lnitialized(p) =false illegal

lnitialized(p)= true null
(Mode(p) =none orMode(p) =maintenance)

lnitialized(p) =true ERR
Mode(p) = transmit
Connected(p) * full
Connected(p) * half

lnitialized(p) =true PBF
Mode(p) = transmit
(Connected(p) =full orConnected(p) =half)

Table 13.48 Current stimulus: DTE

Prefix Conditions

lnitialized(p) =false

lnitialized(p)= true
(Mode(p) =none orMode(p) =maintenance)

lnitialized(p) =true
Mode(p) = transmit
Connected(p) = none

lnitialized(p) =true
Mode(p) = transmit
Connected(p) = uplink

lnitialized(p) =true
Mode(p) = transmit
Connected(p) = downlink

Response

illegal

null

FEg

FEg, FEu

-
FEg,FEd

Trace

3.4

5.2

5.9.3.3, 5.9.3.4

5.9 .1, 5.9.2.3, 5.9.3.3

Trace

3.4

5.2

5.10.1 .1, 6.1, 6.4

5.1 0.3, 5.11 .3.2

Trace

3.4

5.2

5.11.3.4, 6.2

5.11 .3.4, 6.2, 6.5

5.11.3.4, 6.2, 6.5

Prefix Conditions

lnitialized(p) = true
Mode(p) = transmit
Connected(p) = full

lnitialized(p) =true
Mode(p) = transmit
Connected(p) = half

Table 13.49 Current stimulus: DB

Prefix Conditions

lnitialized(p) = false

lnitialized(p)= true
(Mode(p) =none orMode(p) =maintenance)

lnitialized(p) = true
Mode(p) = transmit

13.7 Removing Abstractions 269

Response Trace

FEg, FEu, FEd 5.11.3.4, 6.2, 6.5

TEFu, TEFg

Response

illegal

null

TSCAN(2),
TCFu, TCFd

5.1 1.1, 5.11.3.3

Trace

3.4

5.2

5.9.3.2, 5.9.3.5

13.7 Removing Abstractions

Although the black box is finished, it contains abstractions. As noted earlier,
formal definitions could be created for abstractions after a system's function is
understood. Although this is seldom necessary, it will be done in this case to
illustrate the technique.

Recall that the definition of specification function B/L required a specifica­
tion function Mode to determine whether the system was in maintenance mode.
A specification function Mode was defined earlier, but is at the wrong level of
abstraction (it mentions TGud, which depends on B/L, which depends on
Mode, etc.). Fortunately, all recursion is to prefixes, and the abstraction defini­
tions can be composed with the specification function definition (a benefit of
the referential transparency of abstractions and specification functions) by sim­
ple substitution. The changes are shown in bold type in Table 13.50.

This leaves abstract stimuli ASN and SF. Formal definitions for these are
now very simple. Let Sys denote the set of all SV subsystems. Let p denote the
previous stimulus sequence in the following definitions. Let Good_Systems(p)
and Bad_Systems(p) be the sets consisting of systems that have passed their
health check and that have failed their health check respectively for history p
(these will be defined as specification functions later).

Let ASN denote ISN (x) when x is in Sys, Good_Systems(p) = Sys - { x},
Bad_Systems(p) = {} , and Processing(p) = health. Thus the SOS has just
received a positive health report from every subsystem.

270 Satellite Control System Blw;k Box Specification

Table 13.50 Specification function revisited: Mode(h)

Stimulus Prefix Conditions Value

MG

IN

h= empty

lnitialized(p) =true
Mode(p) = none

any

none

maintenance

none

TG(u, d) lnitialized(p) =true
Mode(p) = maintenance
Processing(p) = idle
HealthCheck(p) = done

transmit

OTE

There exist indices m and n such that
8/L(p, m) = u and 8 /L(p, n) = d

lnitialized(p) =true
Mode(p) = transmit
(Connected(p) = none or
Connected(p) = downlink or
Connected(p) = uplink)

none

TC, UB, DTE,
DB

lnitialized(p) =true
Mode(p) = transmit

none

TE

s

lnitialized(p) = true
Mode(p) = transmit
(Connected(p) = none or
Connected(p) =downlink or
Connected(p) = uplink)

otherwise (h = ps)

Let SF denote any of the following conditions:

none

Mode(p)

1. ISN(x) when xis in Sys, Good_Systems(p) U Bad_Systems(p) = Sys
- { x}, Bad_Systems(p) * { } , and Processing(p) = health. Thus the
SOS has just received a success or failure report from every subsys­
tem, and at least one failed.

2. ISF(x) whenx is in Sys, Good_Systems(p) U Bad_Systems(p) = Sys­
{ x}, and Processing(p) = health. Thus the SOS has just received a suc­
cess or failure report from every subsystem, and at least one failed.

3. OTE when Processing(p) = health. Thus the timer has expired prior to
completion of a health check.

These definitions make use of the Processing specification function, which
is written in terms of abstract stimuli ASN and SF. Again, the recursion is
always to proper prefixes, and the specification function can be rewritten by
substitution. The result is shown in Table 13.51.

13. 7 Removing Abstractions 271

Table 13.51 Specification function : Processing(h)

Stimulus Prefix Conditions Value

h= empty idle

HR lnitialized(p) =true health
Mode(p) = maintenance
Processing(p) = idle

ISF(x) , ISN(x) lnitialized(p) =true idle
Mode(p) = maintenance
Processing(p) = health
HealthCheck(p) = pending
xis in Sys
Good_Systems(p) u Bad_Systems(p)
= Sys-{x}

IN, OTE lnitialized(p) =true idle
Mode(p) = maintenance
Processing(p) = health
·HealthCheck(p) = pending

FR lnitialized(p) =true firing
Mode(p) = maintenance
Processing(p) = idle
HealthCheck(p) = done

IN, OTE, FSR, lnitialized(p) =true idle
FFR Mode(p) = maintenance

Processing(p) = firing
HealthCheck(p) = done

s otherwise (h = ps) Processing(p)

Finally, there are two new specification functions mentioned:
Good_Systems and Bad_Systems. They must return the sets of subsystems
reporting good health and bad health respectively. Their definitions are
very simple, given what is now known. The specification function for
Good_Systems is defined in Table 13.52, and the function for Bad_Systems is
defined in Table 13.53.

Every specification function and every black box table could be easily
rewritten in terms of the atomic stimuli. This would give a black box at the
atomic level and would reveal any details that might have been overlooked
because of the abstraction. In short, it is always possible to remove all abstrac­
tions at the black box level, but this requires formally defining all abstractions.
The abstractions will be left in for this case study so that removal at a later stage
can be illustrated.

272 Satellite Control System Black Box Specification

Table 13.52 Specification function: Good_Systems(h)

Stimulus Prefix Conditions Value

h =empty {}

ISN(x) Processing(p) = health Good_Systems(p) u {x}

any Processing(p) * health {}

s otherwise (h = ps) Good_Systems(p)

Table 13.53 Specification function: Bad_Systems(h)

Stimulus Prefix Conditions Value

h= empty {}

ISF(x) Processing(p) = health Bad_Systems(p) u {x}

any Processing(p) * health {}

. S otherwise (h = ps) Bad_Systems(p)

This completes the black box development, and work continues with state
box specification in Chapter 14. This chapter concludes with comments on
abstraction techniques.

13.8 Common Sequence
Abstraction Techniques

Sequence abstraction is a fundamental technique in sequence-based specifica­
tion. There are many different ways to define abstract stimuli to solve problems.
Practitioners should use the abstract stimuli that seem, to them, most natural,
and then document their choices. This section describes common forms of
abstract stimuli that are often used in sequence-based specification. It also pro­
vides guidance for constructing informal abstract stimulus definitions.

13.8.1 Informal Abstract Stimulus Definitions

When an informal abstract stimulus definition is constructed, it is important to
ensure that it is in fact a proper abstract stimulus. A proper abstract stimulus
must satisfy three properties:

13.8 Common Sequence Abstraction Techniques 273

1. The abstract stimulus definition must depend only on stimulus
sequences. If an abstraction needs information that cannot be obtained
from the atomic stimulus sequence, the system boundary must be
revisited.

2. The abstract stimulus definition must depend only on stimulus history,
never future stimuli, and must be computable.

3. All abstract stimuli used simultaneously must be disjoint. That is, two
abstract stimuli can never apply at the same time because this gives a
one-to-many relation, and not a many-to-one mapping as required. If it
must be decided whether two or more conditions apply simultane­
ously, invent a single abstract stimulus for that case, or use an abstract
stimulus along with specification functions.

Any informal definition used must be sufficiently precise to show that these
criteria are satisfied. (Obviously, it must also be defined precisely enough to
communicate its meaning unambiguously.) Condition 3 is the easiest to miss.
Here is an example of two abstract stimuli that fail to be disjoint:

1. Let V denote every fifth clock pulse.

2. Let X denote every tenth clock pulse.

Which abstract stimulus corresponds to the tenth clock pulse, X or V? Given the
definitions, both do. The definitions provide the opportunity to introduce incon­
sistency into the enumeration. If this error is missed, the sequences "abc V V"
and "a b c V X" might be mapped to different responses, resulting in an incon­
sistent enumeration. This can be resolved by changing the definitions:

1. Every tenth clock pulse is denoted X.

2. Every fifth clock pulse which is not also a tenth clock pulse is de­
noted V.

13.8.2 Stimulus-Based Abstractions

Stimulus-based abstractions are commonly used early in the process, often
before enumeration has even started. There are three common forms:

1. A bundle abstraction replaces ("bundles") several atomic stimuli
under a single abstract stimulus. For example, a program may provide
several ways to save a file. A user might choose Save from a File
menu, click an icon of a disk, type Control+S, or press F6. These may
be very different events from the point of view of the software, but all
are intended to have the same result. These could be "bundled"
together, replacing them with the abstract stimulus Save. This reduces
the number of stimuli to be enumerated.

274 Satellite Control System Black Box Specification

2. A partition abstraction partitions a collection of stimuli into one of
several abstract stimuli. For example, there are many different possi­
bilities for file names, but for the purposes of specification only valid
(properly constructed) and invalid file names need be considered. Each
file name is really a different stimulus, however these can be parti­
tioned into valid and invalid, replacing the many different stimuli with
only two abstract stimuli. This can reduce significantly the number of
stimuli to be enumerated.

3. A deletion abstraction deletes all but a particular collection of distin­
guished stimuli. There are two primary forms: indexed and nonin­
dexed. A nonindexed deletion abstraction allows developers to focus
on one interface or aspect of system behavior. For example, there may
be a particular dialog with an operation that is largely independent of
all other dialogs. The stimuli for only that dialog may be enumerated
to determine its behavior independently of the rest of the system or to
identify those instances in which its behavior depends on the rest of
the system.

An indexed deletion is used when a software system has a large
number of identical interfaces. For example, a disk array might have
several identical small computer systems interfaces (SCSis) . To deter­
mine the behavior for the system, enumerate stimuli for a single
instance of the interface, with the knowledge that the results will appl
equally to all interfaces.

13.8.3 Sequence-Based Abstractions

Sequence-based abstractions are commonly invented during enumeration. A
useful heuristic is to observe when practitioners invent a name for a particular
sequence of events (just opened a valid project, just closed the last open file, just
completed entering the number, just entered the correct combination). In such a
case, an abstract stimulus can be invented for that event sequence, and refer­
enced as work proceeds. This makes an abstraction that practitioners were
already using an explicit part of the specification. Sequence-based abstractions
are primarily introduced to allow equivalences to be created and thus allow the
enumeration to be completed. There are three common forms of sequence­
based abstraction:

1. A counting abstraction is invented whenever the nth occurrence of an
event is significant. The simplest example is a time-out, when the
behavior is directly tied to some large number of clock pulses.

2. A history-encapsulating abstraction eliminates the need to keep cer­
tain events in the sequence by encapsulating those events into other

13.8 Common Sequence Abstraction Techniques 275

stimuli. For example, a request for a network connection might gener­
ate an error message if there are already, say, 16 open connections. To
map a request for a network connection to a response, therefore, all
network connection information must be kept in the sequence. This
results in very long sequences before the behavior is revealed.
Alternately, an abstraction can be invented that breaks the network
connection request stimulus into two abstract stimuli (one for which
there are fewer than 16 open connections, and one for which there are
16). The network connection events can then be discarded from the
abstract sequence. The TG, TGu, TGd, and TGud abstract stimuli used
earlier are examples of this.

3. An accumulating abstraction is one that collects information from the
sequence into a single abstract stimulus. For example, a software sys­
tem might deal with entering a phone number. The atomic sequence
would then contain single-digit presses, although the primary concern
is the phone number dialed. An abstract stimulus might be constructed
that replaces history "Off-hook 4 clock_pulse clock_pulse 4
clock_pulse 2 clock_pulse clock_pulse clock_pulse 1 clock_pulse 2
7" with abstract stimulus "Dial(442-127)."

14
Satellite Control System
State Box Specification

14.1 State Box Specification

With the black box completed in Chapter 13, development of the state box spec­
ification can begin. The state box progresses toward the implementation by
moving from an external, sequence-based view of the system to a state-based
view. The state box is derived from the black box. Completeness and consis­
tency were established at the black box and need only be preserved.

The basic work flow for creating a state-based specification from a
sequence-based specification is given in Chapter 4 and in the Cleanroom
Specification Process defined in Chapter 8. The instantiation used to produce
the SOS state box is summarized in the following list:

Step 1: Invent the state data.

1. Invent an item of state data for each specification function used in the
black box.

2. Invent any additional state required to compute each abstraction.

3. Invent any additional state required to compute the black box mapping
rule.

4. Invent any additional state required to compute responses.

Step 2: Construct the state box tables.

1. Replace every reference to previous stimuli with a reference to state data.

2. Introduce additional information required for state update.

277

278 Satellite Control System State Box Specification

Step 3: Verify the state box to the black box.

1. Transform each state-based entity into a sequence-based function.

2. Compare the derived sequenced-based function to the corresponding
black box function.

(Because of space considerations and because the verification artifacts add
no new information for the reader, verification of the state box is not presented
for the case study.)

14.2 Step 1 : Invent the State Data

The black box sources of state data are the following:

1. Each specification function can be transformed into an item of state
data, although all may not be required. This transformation will be
direct if the specification functions are written in prefix-recursive
form.

2. Abstractions may also reference stimulus histories and may require
state data to remove the dependency on prior stimuli.

3. The mapping rule may also reference stimulus histories, and these ref­
erences must be replaced with state data references.

4. If abstract responses were used, these can be removed at this stage by
adding any necessary state data to compute the response.

It is not necessary to remove all abstractions at this stage. Abstractions
may be left until later in the process, especially if they have a natural, well­
established representation as a procedure. For example, algorithms are known
to exist for determining whether or not a number is prime, and thus an abstrac­
tion into prime and composite numbers can be left in until code is written. An
abstraction from individual bits or bytes to packets might even be left in the
clear box to be removed in a lower level black box.

14.2.1 Specification Functions

Tables 14.1 through 14.4 are derived directly from the specification function
tables presented in Chapter 13. The initial state value is given in the first row of
each table.

Note that the original specification functions with the abstract stimuli were
used because not all specification functions were converted to atomic stimuli in
the previous section.

These tables reveal how the state data items must be updated. They may be
integrated into the state box tables or they may remain separate. The primary

14.2 Step 1: Invent the State Data 279

Table 14.1 State data item: Mode

Stimulus

MG

IN

TGud

OTETE

TC UB DTE DB

Current State

initial value = none

Mode= none

any

Mode = maintenance
Processing = idle
HealthCheck = done

Mode = transmit
(Connected = none or
Connected= uplink or
Connected = downlink)

Mode = transmit

Table 14.2 State data item: Processing

Stimulus Current State

initial value = idle

HR Mode = maintenance
Processing = idle

IN, OTE, ASN, SF Mode = maintenance
Processing = health
HealthCheck = pending

FR Mode = maintenance
Processing = idle
HealthCheck = done

IN, OTE, FSR, FFR Mode = maintenance
Processing = firing
HealthCheck = done

New Value

maintenance

none

transmit

none

none

New Value

health

idle

firing

idle

benefit of integrating them is that the state box tables are more representative of
the final code. The primary benefits of leaving them separate is that the tables
more closely resemble the black box tables.

14.2.2 Abstractions

Abstractions may also be a source of state data if they are to be removed. At this
step, the TG, TGu, TGd, and TGud abstract stimuli will be removed as an illus­
tration. (Note that this illustration will duplicate some of the work done in the
black box.)

280 Satellite Control System State Box Specification

Table 14.3 State data item: HealthCheck

Stimulus

OTE, ASN, SF

HR

IN

TE,OTE

TC, UB, DTE, DB

Current State

initial value= pending

Mode = maintenance
Processing= health
HealthCheck = pending

Mode = maintenance
Processing = idle
HealthCheck = done

any

Mode = transmit
(Connected= none or Connected= uplink or
Connected = downlink)

Mode = transmit

Table 14.4 State data item: Connected

Stimulus

UG

DG

Current State

initial value = none

Mode = transmit
Connected = none

Mode = transmit
Connected = none

New Value

done

pending

pending

pending

pending

New Value

uplink

downlink

IN, TC, UB, DTE, DB Mode= transmit none
(Connected= uplink or Connected= downlink or
Connected= full or Connected= half)

OTE, TE Mode= transmit none
(Connected= uplink or Connected= downlink)

DG

UG

TE

Mode = transmit
Connected= uplink

Mode = transmit
Connected =downlink

Mode = transmit
Connected = full

full

full

half

14.2 Step 1: Invent the State Data 281

The definitions of the TG abstract stimuli could be rewritten using only
state data if the BIL specification function were converted to state data. This
has been done in Table 14.5. (This is only required if the abstraction is to be
removed.)

The state data item definition for BIL says nothing about how the data are
to be stored. It simply reports the initial value of a given index n, and records
that the value is changed by BR(n, s). At the state box level one should say what
must be stored, but avoid saying how. Although it may seem obvious that BIL
should be implemented as an array, there may be time constraints on determin­
ing whether a site is stored in BIL. In this case the item might be implemented
as a hash table, tree, or some other structure to optimize the look-up. There is
seldom enough information at the state box level to determine the exact imple­
mentation of each state data item, and this decision should be deferred.

This definition makes use of the state data item Mode, which has an update
table that is based on abstract stimuli. The definition for state data item Mode is
rewritten in Table 14.6.

Table 14.5 State data item: B/L[n]

Stimulus

BR(n, s)

Current State

initial value = empty

Mode = maintenance
Processing = idle
Health Check = done

Table 14.6 State data item: Mode (revisited)

Stimulus

MG

IN

TG(u, d)

OTE, TE

TC, UB, DTE, DB

Current State

initial value = none

Mode= none

any

Mode = maintenance
Processing = idle
HealthCheck = done
There are indices m and n such
that 8/L[m] = u and 8/L[n] = d

Mode = transmit
(Connected = none or Connected= uplink or
Connected = downlink)

Mode = transmit

New Value

s

New Value

maintenance

none

transmit

none

none

282 Satellite Control System State Box Specification

The abstract stimuli ASN and SF may also be removed at this stage by intro­
ducing state data. To do this, the specification functions Processing,
Good_Systems, and Bad_Systems must be rewritten to use state data and atomic
stimuli. Processing is rewritten in Table 14.7, Good_Systems is rewritten in Table
14.8, and Bad_Systems is rewritten in Table 14.9.

Table 14.7 State data item: Processing (revisited)

Stimulus

HR

IN,OTE

ISN(x)

ISF(x)

FR

IN, OTE, FSR, FFR

Current State

initial value = idle

Mode = maintenance
Processing = idle

Mode = maintenance
Processing = health
HealthCheck = pending

New Value

health

idle

Mode = maintenance idle
Processing = health
HealthCheck = pending
xis in Sys
Good_ Systems u Bad_ Systems = Sys- {x}

Mode = maintenance idle
Processing = health
HealthCheck = pending
xis in Sys
Good_ Systems u Bad_ Systems = Sys- {x}

Mode = maintenance
Processing = idle
HealthCheck = done

Mode = maintenance
Processing = firing
HealthCheck = done

firing

idle

Table 14.8 State data item: Good_Systems

Stimulus Current State New Value

initial value = { }
ISN(x) Processing = health Good_System u {x}

any Processing * health {}

14.3 Step 2: Construct the State Box Tables 283

Table 14.9 State data item: Bad_Systems

Stimulus Current State New Value

initial value = { }

ISF(x) Processing =health Bad_Systems u {x}

any Processing i= health {}

It is now possible to remove the ASN and SF abstract stimuli from the spec­
ification, and this will be done in the next section when the state box tables are
constructed.

14.2.3 Responses

Other state data may be associated with responses. For example, an HF may
include a list of all subsystems that reported their health to allow the ground
crew to diagnose the problem. The necessary state data are already available;
Good_Systems and Bad_Systems capture these data.

14.3 Step 2: Construct the
State Box Tables

State box construction involves rewriting each black box table to eliminate
stimulus history references:

1. Replace every reference to previous stimuli with a reference to state
data. In the case of specification functions, this is often direct, as illus­
trated in the previous section. There may be other references. It is not
uncommon to use expressions such as "there has been an X stimulus
more recently than all Y stimuli" or "the argument of the most recent A
stimulus." Such expressions are references to previous stimuli and
must be replaced with references to state data items.

2. Introduce additional information for state update. Under what condi­
tions must the value of the state data item change? This additional
information most often comes directly from the specification function
tables, as illustrated in the previous section.

Several specification function tables were transformed into state data item
tables in the previous section. HealthCheck and Connected are transformed
here as Tables 14.10 and 14.11 respectively.

284 Satellite Control System State Box Specification

Table 14.10 State data item: HealthCheck

Stimulus

OTE

ISN(x)

ISF(x)

HR

IN

TE, OTE

TC, UB, DTE, DB

Current State

initial value= pending

Mode = maintenance
Processing = health
Health Check = pending

Mode = maintenance
Processing = health
HealthCheck = pending
xis in Sys
Good_ Systems u Bad_ Systems= Sys- {x}

Mode= maintenance
Processing = health
Health Check= pending
xis in Sys
Good Systems u Bad_ Systems = Sys- {x}

Mode = maintenance
Processing = idle
HealthCheck = done

any

Mode =transmit
(Connected = none or Connected = uplink or
Connected = downlink)

Mode =transmit

Table 14.11 State data item: Connected

Stimulus

UG

DG

Current State

initial value = none

Mode = transmit
Connected = none

Mode = transmit
Connected = none

IN, TC, UB, DTE, DB Mode= transmit

OTE, TE

(Connected= uplink or Connected= downlink or
Connected= full or Connected= half)

Mode = transmit
(Connected= uplink or Connected= downlink)

New Value

done

done

done

pending

pending

pending

pending

New Value

uplink

downlink

none

none

14.3 Step 2: Construct the State Box Tables 285

Stimulus Current state New value

DG Mode = transmit full
Connected = uplink

UG Mode = transmit full
Connected = downlink

TE Mode = transmit half
Connected = full

Next the black box tables are transformed into state box tables. Note that it
is now possible to construct state box tables for the atomic stimulus TG(u, d).
The response information will be integrated with the state update information
from the state data item tables because this helps advance the specification
toward code. The state data item tables should still be kept, however, because
they will be useful in correctness verification of the clear box. The resulting
state box tables, one per stimulus, appear in Tables 14.12 through 14.31. Note
that several rows had to be split to accommodate the state data changes, and that
rows for illegal behavior have been dropped. Because of the strong correspon­
dence between state box rows and black box rows, the trace information is the
same as for the black box and is not repeated here.

In the following tables, an asterisk in the New State column indicates that a
state data item may already have the indicated value (in other words, two or
more rows of the table have been combined to reduce the table length).

Table 14.12 Current stimulus: IN

Current State Response New State

any INA Mode:= none
Processing := idle
HealthCheck := pending
Connected := none
Good_ Systems := {}
Bad_Systems := { }

Table 14.13 Current stimulus: HR

Current State Response New State

(Mode * maintenance or ERR no change
Processing * idle)

Mode = maintenance CDI, HT Processing := health
Processing = idle HealthCheck := pending*

Good_Systems := { }*
Bad_ Systems:= { }*

286 Satellite Control System State Box Specification

Table 14.14 Current stimulus: MG

Current State Response

Mode= none null

Mode i= none ERR

Table 14.15 Current stimulus: BR(n, s)

Current State Response

(Mode = none or Mode = transmit)

Mode = maintenance
(Processing i= idle or
HealthCheck i= done)

Mode = maintenance
Processing = idle
HealthCheck = done

Table 14.16 Current stimulus: FR

Current State

(Mode= none or Mode= transmit)

Mode = maintenance
(Processing i= idle or
HealthCheck * done)

Mode = maintenance
Processing = idle
Health Check = done

ERR

ERR

BRA

Response

ERR

ERR

COl , FRF

Table 14.17 Current stimulus: TG(u, d)

Current State

(Mode = none or Mode = transmit)

Mode = maintenance
(Processing i= idle or
HealthCheck i= done)

Mode= maintenance
Processing = idle
HealthCheck = done
There is no index m such that B/L[m] = u
There is no index n such that B/L[n] = d

Response

ERR

ERR

TSCAN(3)

New State

Mode := maintenance

no change

New State

no change

no change

B/L[n] = s*

New State

no change

no change

Processing :=firing
Good_Systems := { }*
Bad_ Systems := { }*

New State

no change

no change

no change

14.3 Step 2: Construct the State Box Tables 287

Current State

Mode = maintenance
Processing = idle
Health Check = done
There is an index m such that
B/L[m] = u
There is no index n such that
B/L[n] = d

Mode = maintenance
Processing = idle
HealthCheck = done
There is no index m such that
B/L[m] = u
There is an index n such that
B/L[n] = d

Mode = maintenance
Processing = idle
HealthCheck = done
There is an index m such that
B/L[m] = u
There is an index n such that
B/L[n] = d

Table 14.18 Current stimulus: TC

Current State

Mode * transmit

Mode = transmit

Response

TSCAN(2)

TSCAN(1)

CDI, TGFu,
TGFd

Response

ERR

TCFu, TCFd,
TEFg

Table 14.19 Current stimulus: OTE

Current State

Mode= none

Mode = maintenance
Processing = idle

Mode = maintenance
Processing = health
HealthCheck = pending

Response

null

null

HF

New State

no change

no change

Mode := transmit

New State

no change

Mode:= none
HealthCheck := pending
Connected := none*

New State

no change

no change

Processing := idle
HealthCheck := done
Good_Systems := { }
Bad_ Systems := {}

continued

288 Satellite Control System State Box Specification

Table 14.19 continued

Current State

Mode = maintenance
Processing= firing
HealthCheck = done

Mode = transmit
Connected = none

Mode = transmit
Connected = uplink

Mode = transmit
Connected= downlink

Mode = transmit
(Connected = full or
Connected = half)

Response

FF

TSCAN(3) ,
TCFu, TCFd

TSCAN(2) ,
TCFu, TCFd

TSCAN(1),
TCFu , TCFd

null

Table 14.20 Current stimulus: FSR

Current State

(Mode = none or Mode = transmit)

Mode = maintenance
Processing * firing

Mode = maintenance
Processing= firing

Response

null

null

FS

Table 14.21 Current stimulus: FFR

Current State

(Mode= none or Mode= transmit)

Mode = maintenance
Processing * firing

Mode= maintenance
Processing =firing

Response

null

null

FF

New State

Processing := idle
Good_ Systems := {}
Bad_ Systems := {}

Mode:= none
HealthCheck := pending

Mode:= none
HealthCheck := pending
Connected := none

Mode:= none
HealthCheck :=pending
Connected := none

no change

New State

no change

no change

Processing := idle
Good_ Systems := { }*
Bad_ Systems := { }*

New State

No change

No change

Processing := idle
Good_ Systems := { }*
Bad_ Systems := { }*

14. 3 Step 2: Construct the State Box Tables 289

Table 14.22 Current stimulus: ISN(x)

Current State

Mode = none or Mode = transmit

Mode= maintenance
Processing * health

Mode = maintenance
Processing = health
Good_Systems U Bad_Systems

* Sys-{x)

Mode = maintenance
Processing = health
Good_Systems u Bad_Systems
= Sys-{x)
Bad_Systems * { }
Mode = maintenance
Processing = health
Good_ Systems= Sys- {x}

Response

null

null

null

HF

HS

Table 14.23 Current stimulus: ISF(x)

Current State

Mode = none or Mode = transmit

Mode = maintenance
Processing * health

Mode = maintenance
Processing = health
Good_Systems u Bad_Systems

* Sys-{x)

Mode = maintenance
Processing = health
Good_Systems u Bad_Systems
= Sys- {x)

Response

null

null

null

HF

New State

no change

no change

Good_Systems :=
Good_Systems u {x}

Processing := idle
HealthCheck := done
Good_ Systems := {}
Bad_ Systems := {}

Processing := idle
HealthCheck := done
Good_ Systems := {}
Bad_ Systems:= { }*

New State

no change

no change

Bad_Systems :=
Bad_Systems U {x}

Processing := idle
HealthCheck := done
Good_ Systems := {}
Bad_ Systems := {}

290 Satellite Control System State Box Specification

Table 14.24 Current stimulus: UG

Current State Response New State

(Mode = none or Mode = null no change
maintenance)

Mode = transmit null Connected := uplink
Connected = none

Mode = transmit null no change
Connected * none
Connected * downlink

Mode = transmit SOT Connected := full
Connected= downlink

Table 14.25 Current stimulus: Dl

Current State Response New State

(Mode = none or Mode = null no change
maintenance)

Mode = transmit ERR no change
Connected * full
Connected * half

Mode = transmit DO no change
(Connected= full or Connected
=half)

Table 14.26 Current stimulus: TE

Current State Response New State

(Mode = none or Mode = null no change
maintenance)

Mode = transmit FEg Mode:= none
Connected = none HealthCheck :=pending

Mode =transmit FEg,FEu Mode:= none
Connected = uplink HealthCheck := pending

Connected := none

Mode = transmit FEg, FEd Mode:= none
Connected = downlink HealthCheck := pending

Connected := none

14.3 Step 2: Construct the State Box Tables 291

Current State Response New State

Mode = transmit TEFd Connected := half
Connected = full

Mode =transmit TEFd no change
Connected = half

Table 14.27 Current stimulus: UB

Current State Response New State

(Mode = none or Mode = null no change
maintenance)

Mode = transmit TSCAN(1} , Mode:= none
TCFu, TCFd HealthCheck := pending

Connected :=none*

Table 14.28 Current stimulus: DG

Current State Response New State

(Mode = none or Mode = null no change
maintenance)

Mode = transmit null Connected :=downlink
Connected = none

Mode = transmit null no change
Connected * none
Connected * uplink

Mode = transmit SOT Connected := full
Connected = uplink

Table 14.29 Current stimulus: PB

Current State Response New State

(Mode = none or Mode = null no change
maintenance)

Mode = transmit ERR no change
Connected * full
Connected * half

Mode = transmit PBF no change
(Connected= full or Connected
=half)

292 Satellite Control System State Box Specification

Table 14.30 Current stimulus: DTE

Current State

(Mode = none or Mode =
maintenance)

Mode= transmit
Connected= none

Mode = transmit
Connected = uplink

Mode = transmit
Connected = downlink

Mode = transmit
Connected = full

Mode = transmit
Connected = half

Table 14.31 Current stimulus: DB

Current State

(Mode= none or Mode=
maintenance)

Mode = transmit

Response

null

FEg

FEg, FEu

FEg, FEd

FEg,FEu, FEd

TEFu, TEFd

Response

null

TSCAN(2),
TCFu , TCFd

New State

no change

Mode := none
HealthCheck := pending

Mode:= none
HealthCheck := pending
Connected := none

Mode:= none
HealthCheck := pending
Connected := none

Mode:= none
HealthCheck := pending
Connected := none

Mode:= none
HealthCheck := pending
Connected := none

New State

no change

Mode:= none
HealthCheck := pending
Connected := none*

15
Satellite Control System
Clear Box Design

15.1 Clear Box Implementation

Following the completion of the state-based specification, clear box procedures
and algorithms can be developed to implement the state box. The fundamentals
of clear box design were provided in Chapter 4.

A summary of the work flow used in the portion of the SOS implementa-
tion presented in this chapter is provided in the following list:

Step 1: Select a high-level software architecture.

Step 2: Select an implementation for stimulus gathering.

1. For each stimulus, elaborate specifically how the running software
will obtain the stimulus.

2. Plan for interrupt handlers, callbacks, or other mechanisms required to
get stimuli .

Step 3: Select an implementation for response generation.

1. For each response, elaborate specifically how the running software
will generate the response.

Step 4: Select an implementation for the state data items.

Step 5: Select an implementation for each entry in the state box table.

1. Rewrite each cell of the state box tables using the chosen state imple­
mentations.

Step 6: Reorganize the implementations into executable code.

293

294 Satellite Control System Clear Box Design

15.2 Step 1: Select a High-Level
Software Architecture

15.2.1 Invocation and Termination

All software systems must deal with invocation; however, some software sys­
tems may be intended never to terminate. In the case of the SOS, termination of
the embedded software is unacceptable.

Software invocation of the SOS happens whenever the system receives
power. The BIL table need not be initialized because it will be stored in non­
volatile memory, which is initialized prior to satellite launch. All other state
data items will be reset to their initial values on invocation.

Because software termination is unacceptable, practitioners must consider
each potential source of termination and exclude it. This includes ensuring that
all software exceptions are caught, that power supplies are adequate and suffi­
ciently responsive to changes in power demands, and that no execution path
exists that exits or returns from the main program.

15.2.2 Target Hardware Architecture

The SOS will execute on a single processor on a Java virtual machine, and will
be driven by hardware and software interrupts.

On software invocation, a Java virtual machine is started and the main ()

method of the Control object is invoked. The main (l method first instantiates
the interrupt handler (IH), then all other objects. Each object that is to process
an interrupt registers itself during construction with the IH by invoking the
IH. addObserver () method, telling it which interrupt it is interested in. When all
objects are instantiated, the processor enters power save mode until an interrupt
occurs. This start-up sequence is shown in Figure 15.1.

When an interrupt is generated by internal hardware (possibly in response
to a signal from ground, uplink, or downlink) the processor is switched on and
the i rqNot ify () method of the IH is invoked. The IH then invokes the
no tify () method of each object registered for the interrupt, in sequence. These
objects may emit responses, invoke methods of other objects, and so on. When
all registered objects have been notified and have completed execution, the IH
returns and, if no further events are pending, the processor enters power save
mode. The execution sequence is shown in Figure 15.2.

15.2.3 Hardware Interface

The hardware interfaces will be implemented by classes consisting only of static
native methods (i.e., they need not be instantiated and are implemented in

15.2 Step 1: Select a High-Level Software Architecture 295

ware Soft
lnvoc at ion

I main()

Java Virtual Machine

n
IH constructor

-.-1 n addObserver ()
object 1 constructor

-.-1
• .
•

: addObserver ()
o 1ect n constructor

-.-1

power Save ()

Figure 15.1 SOS start-up

Java Virtual Machine

Interrupt

~
H
:r:
f.' · n " .0 z ObJeCt l.notify ()
0
rr -.-1 f.'·

'"" '< . -- .
•

~
ObJeCt n . notify ()

-.-1

power Save ()

Figure 15.2 SOS execution

IH

: ~

~}

..
1\

..

/~

1 .. ,

~.

' . ·~

,;~,

~ ~

296 Satellite Control System Clear Box Design

firmware). Only the classes, methods, variables, and constants required for the
discussion are presented. All classes presented here are part of the scs. kernel

package, and constitute the "operating system" for the satellite hardware. The
reader may skip the class definitions here and return only as necessary to under­
stand the software implementation .

Kernel Interface to the Impulse Control Subsystem (ICS). The ICS Is
accessed through the methods of the ICS class.

II Impulse control subsystem interface.

package scs.kernel;

I** This class encapsulates the low-level interface to the impulse

control subsystem. *I
public final class ICS

II This class has no constructor.

II All methods are class methods.

I** Request firing. The controller hardware must have been armed

first. Success or failure is reported through a hardware

interrupt after the firing is completed.

@param pitch The change in pitch (wrt SV body)

@param yaw The change in yaw (wrt SV body).

@param roll The change in roll (wrt SV body). *I
public static native void fire(double pitch, double yaw, double

I** Arm the reaction control hardware for a firing. The hardware

is disarmed at the end of the firing. *I
public static native void arm();

I** Return current status. See the constants defined in this class

for the various possible return values.

@return Current status of impulse control system. *I
public static native int getStatus();

II The following are public class constants that define

II the various possible statuses of the impulse control

II subsystem, as reported by the getStatus() method.

II These must be the same as the native code.

public static final int SUCCESS = 0;

public static final int FAILURE = 1;

public static final int NOT_READY = 2;

public static final int IN_PROGRESS = 3;

,.

15.2 Step 1: Select a High-Level Software Architecture 297

Kernel Interrupt Controller Interface. The Interrupt class encapsulates all
low-level interrupt handling.

II Interrupt handler.

package scs.kernel;

import java.util.Vector;

I** This class encapsulates the low-level interrupt controller

interface. *I
public final class Interrupt (

II This class has no constructors.

II All methods are class methods.

I** Set the interrupt vector to the irqNotify() method

of an object. The object must implement the IRQObserver

interface.

@param o The object to notify.

@return The previously stored vector as a long. *I
public static native long setiRQVector(IRQObserver o);

I** This interface must be implemented by any object that wishes

Lo have interrupt events vectored to it. *I
public interface IRQObserver

I** Notify an object that an interrupt has occurred. *I
public void irqNotify();

I** Push the specified value onto the return stack so that

the next return directs control to the address specified

by the argument.

@param v The address as a long. *I
public static native long redirectStack(long v);

I** Get the type of the most recent IRQ event.

@return The most recent IRQ event type. *I
public static native int getiRQID();

I** Get any arguments for the most recent IRQ event. These

will be stored in a Java vector.

@return A Java Vector that holds the arguments, or null

if there are no arguments. *I
public static native Vector getiRQArguments();

. i

;. -~',

,.

~ ,.

', ~ '

298 Satellite Control System Clear Box Design

I** Return true if the most recent interrupt is a maskable hardware

interrupt. Return false if the most recent interrupt is a

nonmaskable interrupt (NMI) or a software interrupt (SWI).

@return True if the last interrupt is a hardware interrupt. *·

public static native boolean isHWI();

I** Return true if the most recent interrupt is a software

interrupt.

@return True if the last interrupt is a software interrupt. *.
public static native boolean isSWI();

I** Schedule a timer event.

@param o The object requesting the timer

implement the TimerObserver interface.

@param c The number of milliseconds from now to generate the

timer event. *I
public static native void scheduleTimer(TimerObserver o, long c);

I** This interface must be implemented by any object that wishes

to receive timer events. *I
public interface TimerObserver

I** Notify the caller that a requested timer has expired. *I
public void timerNotify();

I** Clear any scheduled timer events. *I
public static native void resetTimer();

II The following are public class constants that define

II the various types of interrupt events. These values

II should be used for the irqid.

public static final int HWI_TRANSMIT_GROUND = Ox00010001;

public static final int HWI_TRANSMIT UPLINK Ox00010002;

public static final int HWI_TRANSMIT_DOWNLINK = Ox00010003;

public static final int HWI_DATA_RECEIVED = Ox00020001;

public static final int HWI FIRING_COMPLETE = Ox00030005;

public static final int HWI_ONBOARD_TIMER_EXPIRED = Ox00050001;

public static final int HWI_INTERNAL_SUBSYSTEM_NOMINAL

public static final int HWI INTERNAL_SUBSYSTEM_FAILURE OxOOOOOO

15.2 Step 1: Select a High-Level Software Architecture 299

Kernel Interface to the System Data Bus for Internal Messaging

II Handle internal messaging.

package scs.kernel;

import java.util.Vector;

I** This class encapsulates access to the internal data bus. *I
public final class Message {

II This class has no constructor.

II All methods are class methods.

I** Set all lines high to signal system initialization to all

devices on the bus. This method may only be used if the

bus has been captured; otherwise it will be ignored. *I
public static native void initialize();

I** Capture the bus. Other devices are forbidden to send signals on

the bus during a capture. *I
public static native void capture();

I** Release the bus. Devices may resume signaling on the bus. *I
public static native void release();

I** Send a message on the bus. No capture is required.

@param id The id of the device or group to which the message

is being sent.

@param message The message to be sent. *I
public static native void send(long id, long message);

II The following are public class constants that define

II the various destinations for messages and the messages

II themselves.

public static final long BROADCAST= Ox80000000;II Send to everyone.

public static final long HEALTH_TEST = OxOOOOOOOl;

Kernel Nonvolatile Memory Manager

II Nonvolatile Memory Manager Interface

package scs.kernel;

import java.util.Vector;

,.

t"'

Co

o.;

r

1;,

~.,

~ l"'"'

'tt
:)p

' .

~ 1"

<~ '

.1·

300 Satellite Control System Clear Box Design

I** This class encapsulates the nonvolatile memory manager. *I
public final class NVMM (

II This class has no constructor.

II All methods are class methods.

I** Put information into nonvolatile memory, associating it wit~

both a string and an integer. The integer must be unique; if

there is already an item associated with the integer, it wil~

be overwritten.

@param id The unique integer identifying this item.

@param name A (possibly nonunique) name for this item.

@param o The data to store. *I
public static native void put(long id, String name, Object o);

I** Get the data item for a given id. If the id does not exist,

null is returned.

@param id The unique integer identifying the item.

@return The item, if found, and null if not. *I
public static native Object getData(long id);

I** Get the name for a given data item. If no matching item is

found, null is returned.

@param id The unique integer identifying the item.

@return The item's name, if found, and null if not. *I
public static native String getName(long id);

I** Get a data item for a given string. The id of the first

item is returned. If no matching item is found, null is

returned.

@param name The name to find.

@return The unique id of a data item with the specified name,

or a negative value if none can be found. *I
public static native long search(String name);

Kernel Interface to Transmitter Hardware

II Transmitter hardware interface.

package scs.kernel;

import java.util.Vector;

I** This class encapsulates the low-level transmitter hardware

interface. *I

""

-
15.2 Step 1: Select a High-Level Software Architecture

public final class Transmit {

II This class has no constructor.

II All methods are class methods.

I** Transmit a stream of bytes to the selected destination.

301

An interrupt will be generated when transmit is completed.

@see scs.kernel.Interrupt for interrupt information.

@param data The data to send.

@param count The number of bytes in the data. *I
public static native void transmit(byte[] data, long count);

I** Select a particular destination for future transmit requests.

@param i The destination, provided by one of the constants

defined in this class. *I
public static native void select(int i);

I** Specify uplink site information. The transmit hardware will

attempt to locate and establish communication with the uplink

site, which should then send either UG or UB.

@param si The site information. *I
public static native void setUplink(Siteinfo si);

I** Specify downlink site information. The transmit hardware will

attempt to locate and establish communication with the downlink

site, which should then send either DG or DB.

@param si The site information. *I
public static native void setDownlink(Siteinfo si);

I** A class for encapsulating all necessary site information. *I
public final class Siteinfo;

I** Forget the uplink site connection. *I
public static native void detachUplink();

I** Forget the downlink site connection. *I
public static native void detachDownlink();

II The following are public class constants that define the

II various destinations for transmit. These values should be

II used with the select () method.

public static final int GROUND 0;

public static final int UPLINK 1·

public static final int DOWNLINK = 2;

·,

·"~

...

~-·.

~I
~

..

'" '~ .

: fc
"~:

~~

'"

..
·,~ :

302 Satellite Control System Clear Box Design

15.2.4 Software Architecture

The software implementation will be a Java application. It is assumed that suffi­
cient prototyping work has been done to ensure that all processing speed,
response time, capacity, and precision requirements can l;>e met. All data flow
will be push, based on the observer design pattern, with only a few exceptions
for state-encapsulating objects such as Mode.

The SOS will be implemented using a single-threaded architecture. Object
creation will be tightly constrained so that memory management issues are min­
imized. The incoming data stream is read by hardware decoders, which queue
their input until it can be processed. This is not expected to be a problem
because processor speeds far outstrip maximum transmission bandwidth.

The state machine represented by the state box will be allocated to several
top-level classes. These are described in Table 15.1. Following the table is the
Java code for each class. Most of these classes are incomplete. The behavioral
information from the state box tables will be merged with the architectural
information to complete the definitions by implementing each of the methods .

Table 15.1 Top-level classes

Object Name

IH

Control
--
Mode

HealthCheck

BLTable

FiringControl

Connection

PacketParser

PacketScheduler

Description

Handles all interrupts and dispatches events to registered
callers.

Manages invocation and sets up interrupt handling.

Preserves the mode globally. This class maintains the mode in
a class variable accessible everywhere through class acces­
sor and mutator methods.

The Health Check object administers the health check via the
interrupts passed to it from the I H.

The BLTable object handles all updates to the B/L table stored
in nonvolatile memory.

The FiringControl object handles all firing requests.

The Connection class handles construction of a new connec­
tion as well as shutdown of an existing connection. In addition,
the Connection class will handle events that change mode
(such as IN and MG).

The PacketParser object transforms information from the
receiver hardware into packets for consumption by the other
classes. It receives hardware interrupts from the IH and gener­
ates software interrupts.

The PacketScheduler object handles sending of packets to
uplink, downlink, and ground sites.

15.2 Step I: Select a High-Level Software Architecture 303

Class: scs.sos.IH

II Interrupt handler.

package scs.sos;

import java.util.Vector;

import java.util.Hashtable;

import java.util.Enumeration;

import scs.kernel.Interrupt;

I** This class is the "top level" of the SOS. Interrupt events (stimuli)

arrive here and are dispatched to the appropriate class. *I
public final class IH implements Interrupt.IRQObserver {

I** Construct a new interrupt handler and install it as a "wedge." *I

public IH ()
II Install the interrupt handler, saving the previous vector.

oldvector = Interrupt.setiRQVector(this);

I** Register an object to receive forwarded interrupt events.

@param o The object wishing to receive event notification.

This object must implement the InterruptObserver interface.

@param irqid The event (from constants defined in the

Interrupt class or here). *I
public void addObserver(InterruptObserver o, int irqid)

II Change the irqid into a Java object so we can get its

II hash code.

Integer Irqid new Integer(irqid);

II Get the list of registered observers from the hash table.

Vector obs = (Vector)registry.get(Irqid);

if(obs ==null)
II The list of observers is empty. Create a new list.

obs = new Vector();

registry.put(Irqid, obs);

II Add this object to the list of observers.

obs.addElement(o);

I** This interface must be implemented by any object wishing to

receive interrupt notification. *I

··,

.~~

,_,
,,
~'

..
~

'}

'""

'"

304 Satellite Control System Clear Box Design

public interface InterruptObserver {

I** This method is invoked to notify an object that an eve~~

has occurred.

@param irqid The event type (from the constants definea

in the Interrupt class or here) .

@param args A Vector of any additional arguments for t~e

event, or null if none. *I
public void notify(int irqid, Vector args);

I** Interrupts are directed here. This code then dispatches the

event to the appropriate object(s). *I
public void irqNotify()

II Get the interrupt id.

int irqid = Interrupt.getiRQID();

II Get any arguments for the interrupt.

Vector args = Interrupt.getiRQArguments();

II Now get the list of observers for this event.

Integer Irqid = new Integer(irqid);

Vector obs = (Vector)registry.get(Irqid);

if(obs !=null)

II There are observers for this event. Notify all

II of them.

Enumeration e = obs.elements();

while(e.hasMoreElements())

II Notify an observer.

InterruptObserver o = (InterruptObserver)e.nextEl

o.notify(irqid, args);

II Now return control to the previously installed interrupt

II handler.

Interrupt.redirectStack(oldvector);

II Private data.

private long oldvector = 0;

private Hashtable registry= new Hashtable();

II The following are public class constants that define

II the various types of software interrupts. These values

15.2 Step 1: Select a High-Level Software Architecture 305

II are defined here because the kernel doesn't know about
II software interrupts.

public static final int SWI IN OxOOOlFOOl;

public static final int SWI - HR Ox0001F002;
public static final int SWI _MG Ox0001F003;
public static final int SWI - BR Ox0001F004;
public static final int SWI - FR OxOOOlFOOS;
public static final int SWI - TG Ox0001F006;
public static final int SWI TC Ox0001F007;
public static final int SWI _UG Ox0002F001;
public static final int SWI - DI Ox0002F002;

public static final int SWI - TE Ox0002F003;

public static final int SWI _UB Ox0002F004;
public static final int SWI DG Ox0003F001;

public static final int SWI PB Ox0003F002;
public static final int SWI - DTE = Ox0003F003;
public static final int SWI _DB = Ox0003F004;

Class: scs.sos.Control

II Start-up for SOS.

package scs.sos;

I** This class starts execution of the SOS by installing the

interrupt handler. *I
public final class Control

II This class has no constructor.

II All methods are class methods.

I** This is the main method, which executes on start-up. It

creates and installs the interrupt handler, then creates

all other required objects. *I
public static void main() {

II Create a new interrupt handler. The constructor installs

II the interrupt handler.

IH ih =new IH();

Class: scs.sos.Mode

II The systemwide mode.

".

·.·

··.

f,

·,

\. ,

..,;.~. 0

,,

.

,,

".)~~

~-

z
~ ...;...:
-~··

• " ,,

306 Satellite Control System Clear Box Design

package scs.sos;

I** This class encapsulates the state data item Mode. *I

public final class Mode {

II This class has no constructor.

II All methods are class methods.

I** Set the system mode.
@param m The new mode, from the constants defined in this cl

public static void setMode(int m)

mode = m;

I** Get the system mode.
@return One of the constants defined in this class. *I

public static int getMode()

return mode;

II The following are public class constants that define the

II various system modes.

public static final int NONE = 0;

public static final int MAINTENANCE = 1;

public static final int TRANSMIT= 2;

II A private class variable that holds the current mode.

private static int mode = NONE;

Class: scs.sos.HealthCheck

II Administer the health check.

package scs.sos;

I** This class administers the health check through

interrupts. *I
public final class HealthCheck

implements IH.InterruptObserver

I** Interrupt notification arrives here.

@param irqid The interrupt id.
@param args Any arguments associated with the interrupt. *I

15.2 Step I: Select a High-Level Software Architecture

public void notify(long irqid, Vector args);

II Will be implemented later.

307

I** Force the health check object to reset its state and halt

any current checks. *I
public void reset(); II Will be implemented later.

I** Return the current status of the health check.

@return The current status as one of the class constants. *I
public int getStatus(); II Will be implemented later.

II These are public class constants that define the statuses for

II the HealthCheck object.

public static final int PENDING = 0;

public static final int PROCESSING 1·

public static final int COMPLETE= 2·

Class: scs.sos.BLTable

II Manage the BIL table.

package scs.sos;

I** This class manages the BIL table updates and accesses. *I
public final class BLTable

implements IH.InterruptObserver

I** Interrupt notification arrives here.

@param irqid The interrupt id.

@param args Any arguments associated with the interrupt. *I
public void notify(long irqid, Vector args);

II Will be implemented later.

I** Request for a BIL entry for a site. If there is an entry, the

site data is returned. Otherwise, null is returned. *I
public Transmit.Siteinfo findSite(String name)

II Look for the site.

long id = NVMM.search(name);

if(id < 0) return null;

II Return the site information.

return (Transmit.Siteinfo)NVMM.getData(id);

..

f'" '1,

,o,_

0~ <

f
'f'F

~ "'

,.
~

;~

•• 0
...

;.

-t'

,,;

."';:

308 Satellite Control System Clear Box Design

Class: scs.sos.FiringControl

II Handle thruster firings.

package scs.sos;

I** This class handles thruster firing requests. *I
public final class FiringControl

implements IH.InterruptObserver

I** Interrupt notification arrives here.

@param irqid The interrupt id.

@param args Any arguments associated with the interrupt. *I
public void notify(long irqid, Vector args);

II Will be implemented later.

I** Force the firing/control object to reset its state and halt

any firings. *I
public void reset(); II Will be implemented later.

Class: scs.sos.Connection

II Manage the connection.

package scs.sos;

I** This class manages the connection. *I
public final class Connection

implements IH.InterruptObserver

I** Interrupt notification arrives here.

@param irqid The interrupt id.

@param args Any arguments associated with the interrupt. *I
public void notify(long irqid, Vector args);

II Will be implemented later.

Class: scs.sos.PacketParser

II Parse incoming packets.

package scs.sos;

I** This class parses the incoming data streams into packets, and

then generates appropriate software interrupts. *I
public final class PacketParser

implements IH.InterruptObserver

15.2 Step 1: Select a High-Level Software Architecture 309

I** Interrupt notification arrives here.

@param irqid The interrupt id.

@param args Any arguments associated with the interrupt. *I
public void notify(long irqid, Vector args);

II Will be implemented later.

Class: scs.sos.PacketScheduler

II Schedule packets to be sent.

package scs.sos;

import scs.kernel.Transmit;

import scs.kernel.Interrupt;

import scs.kernel.Queue;

import java.io.ByteArrayOutputStream;

import java.io.ObjectOutputStream;

import java.util.Vector;

I** This class handles construction and transmit of packages to

the uplink I downlink I ground. *I
public final class PacketScheduler implements IH.InterruptObserver

II This class uses the default constructor.

I** Interrupt notification arrive~ here.

@param irqid The interrupt id.

@param args Any arguments associated with the interrupt. *I
public void notify(int irqid, Vector args)

II See what happenned.

Queue q = null;

int destination = 0;

if(irqid == Interrupt.HWI_TRANSMIT_DOWNLINK)

q = downlink;

destination = Transmit.DOWNLINK;

else if(irqid == Interrupt.HWI_TRANSMIT_UPLINK)

q = uplink;

destination Transmit.UPLINK;

else if(irqid == Interrupt.HWI_TRANSMIT_GROUND)

q = ground;

destination Transmit.GROUND;

0.

f',_7-

·'>

.
•,
!if-:'

~d

,.

:

'

oi
to

310 Satellite Control System Clear Box Design

else return;

II A packet was just sent. See if another

II packet is waiting to be sent to the same

II destination.

q.pop();

if(!q.isEmpty())

II Another packet is waiting to be sent. Send it now.

Transmit.select(destination);

Transmit.transmit(

((ByteArrayOutputStream)q.next()) .toByteArray(),

((ByteArrayOutputStream)q.next()) .size());

I** Construct and queue a packet for transmit.

@param destination The destination of the packet, from

the constants defined in Transmit.

@param type The type of packet to send, from the constants

defined in this class.

@param args Any additional arguments to include in the packe~.

public void send(long destination, long type, Vector args)

II Figure out the destination.

Queue q = null;

if(destination == Transmit.DOWNLINK) q =downlink;

else if(destination

else if(destination

Transmit.UPLINK) q

Transmit.GROUND) q

else II Can't send; ignore request.

return;

uplink;

ground;

II This serializes each of the objects to a byte output stre~ .

II This will be correctly handled by the kernel transmit metcod_

ByteArrayOutputStream baos =new ByteArrayOutputStream();

II Wrap the stream in an object output stream.

ObjectOutputStream oos = null;

try

oos =new ObjectOutputStream(baos);

II Write the packet type.

oos.writeLong(type);

II Now write the arguments.

-

'"'ft•;ry':"'P!i~'f'/1<

', .

15.2 Step 1: Select a High-Level Software Architecture 311

oos.writeObject(args);

catch(Exception e)

II If there is an exception, then just ignore the packet.

return;

II If the appropriate queue is empty, this data can be

II sent now.

II Otherwise, just queue it. Packets are dequeued only

II after being sent.

if(q.isEmpty()) {

q.push(baos);

Transmit.transmit(baos.toByteArray(), baos.size());

else

q.push(baos);

II Private queues.

Queue downlink= new Queue();

Queue uplink new Queue();

Queue ground new Queue();

II The following are public class constants that define the

II various types of packets that can be sent.

public static final long INA OxOOOlOOOO;

public static final long HF

public static final long HS

public static final long FF

public static final long FS

public static final long TSCAN

public static final long TEF

public static final long ERR

public static final long FE

public static final long TGF

public static final long SDT

public static final long TCF

public static final long PBF

public static final long DO

Ox00010001;

Ox00010002;

Ox00010003;

Ox00010004;

Ox00010005;

Ox00070001;

Ox00010006;

Ox00010007;

Ox00070002;

Ox00020001;

Ox00060001;

Ox00020002;

Ox00040001;

312 Satellite Control System Clear Box Design

15.3 Step 2: Select an Implementation
for Stimulus Gathering

The list of stimuli to the SOS is provided in Table 15.2, along with the mechanism
by which the stimulus will be collected. Each stimulus from the GCS, UL, or DL
is actually a packet that contains security information (to avoid unauthorized
access to the satellite), and any required parameters. The design of the packet
parser is beyond the scope of this case study, but is a well-studied problem (there
are many powerful parser generators available, including JavaCC for developing
Java parsers- it is seldom necessary to create such a parser from scratch). The
packet parser will be driven by hardware interrupts from the decoders.

Table 15.2 Stimuli and stimulus gathering

Stimulus Stimulus-Gathering Mechanism

Stimuli received from GCS

IN Processor power-on vector stored in read-only memory, and message from
ground site decoded through the PacketParser and made available as soft­
ware interrupt IH. SIH IN.

HR Message from ground decoded through PacketParser and made available as
software interrupt IH. SWI HR.

MG Message from ground decoded through PacketParser and made available as
software interrupt IH . SWI MG.

BR(i, s) Message from ground decoded through PacketParser and made available as
software interrupt IH. SWI_ BR with arguments i and s.

FR(p, y, () Message from ground decoded through PacketParser and made available as
software interrupt IH . SW I _FR with arguments p, y, and r.

TG(u, d) Message from ground decoded through PacketParser and made available as
software interrupt I H . SWI_TG with arguments u and d.

TC Message from ground decoded through PacketParser and made available as
software interrupt IH. SWI_TC.

Stimuli received from on-board subsystems

OTE Implemented by internal hardware interrupt
Interrupt. HWI_ONBOARD_TIMER_EXPIRED. When the timer interrupt
occurs, the kernel IH will pass control to the requesting object. If no object
has requested the timer, the kerneiiH will ignore the event per requirement
1.2.4.

15.4 Step 3: Select an Implementation for Response Generation 313

Stimulus Stimulus-Gathering Mechanism

Stimuli received from on-board subsystems

FSR
FFR

ISN(id)

ISF(id)

Implemented by internal hardware interrupt
I n terrup t. HWI_FIRI NG_ COMPLETE . If ICS. g e tStatu s () returns
SUCCESS , FSR is intended; if ICS . ge t status () does not return
SUCCES S, FFR is intended.

Implemented by internal hardware interrupt
Interrupt . HWI_INTERNAL_SUBSYSTEM_NOMINAL with argument id.

Implemented by internal hardware interrupt
Interr upt. HWI_INTERNAL_ SUBSYSTEM_ FAI LURE with argument id.

Stimuli received from UL

UG

Dl(id, p)

TE

UB

Message from uplink decoded through PacketParser and made available as
software interrupt IH . swi_ UG.

Message from uplink decoded through PacketParser and made available as
software interrupt I H. SWI_DI with arguments id and p.

Message from uplink decoded through PacketParser and made available as
software interrupt IH . SWI_TE.

Message from uplink decoded through PacketParser and made available as
software interrupt IH . SWI_UB.

Stimuli received from DL

DG

PB(id)

DTE

DB

Message from downlink decoded through PacketParser and made available
as software interrupt IH. SWI_DG.

Message from downlink decoded through PacketParser and made available
as software interrupt IH. SWI_PB with argument id.

Message from downlink decoded through PacketParser and made available
as software interrupt IH . SWI_DTE.

Message from downlink decoded through PacketParser and made available
as software interrupt IH . SWI_DB.

15.4. Step 3: Select an Implementation
for Response Generation

The list of SOS responses is provided in Table 15.3 along with a description of
how each response will be generated by the running software.

314 Satellite Control System Clear Box Design

Table 15.3 Responses and response generation

Response Response Generation Mechanism

Responses to GCS

INA

HF

HS

FF

FS

TSCAN(n)

The INA message will be sent to the GCS via the
PacketScheduler.send(Transmit.GROUND,
Packet Scheduler. INA, null) method.

The HF message will be sent to the GCS via the
PacketScheduler.send(Transmit.GROUND,
Packet Scheduler. HF, l) method, where l is a vector composed of
the lists of subsystems reporting a successful health check and the list of
subsystems reporting a failed health check.

The HS message will be sent to the GCS via the
PacketScheduler.send(Transmit.GROUND,
Packet Scheduler . HS, null) method.

The FF message will be sent to the GCS via the
PacketScheduler.send(Transmit.GROUND,
PacketScheduler. FF, null) method.

The FS message will be sent to the GCS via the
PacketScheduler.send(Transmit.GROUND,
Packet Scheduler. FS, null) method.

The TSCAN message will be sent to the GCS via the
PacketScheduler.send(Transmit.GROUND,
Packet Scheduler. TSCAN, n) method, where n is a vector containing
one of the values 1, 2, or 3.

TEFg The TEF message will be sent to the GCS via the
PacketScheduler.send(Transmit.GROUND,
Packet Scheduler. TEF, null) method.

ERR The ERR message will be sent to the GCS via the
PacketScheduler . send(Transmit.GROUND,
Packet Scheduler. ERR, null) method.

FEg The FE message will be sent to the GCS via the
PacketScheduler.send(Transmit . GROUND,
Packet Scheduler. FE, null) method.

Responses to on-board subsystems

CDI(d)

HT

The CDI message will be sent to the on-board countdown timer via invoca­
tion of the Interrupt. scheduleTimer (caller, d) method of the ker­
neiiH, where dis the requested duration, and caller is the object
requesting the countdown. The object caller must implement the
Interrupt. TimerObserver interface.

The HT command is sent to all subsystems by the
Message . send (Message. BROADCAST, Message. HEALTH_ TEST) ker­
nel method.

15.4 Step 3: Select an Implementation for Response Generation 315

Response Response Generation Mechanism

Responses to on-board subsystems

FRF(p, y, i) The FRF command is sent to the impulse control hardware via the
res . arm () and the res . fire (p, y, r) kernel methods.

Responses to UL

TGFu The TGF command is sent to the UL by the
PacketScheduler.send(Transmit . UPLINK,
Packet Schedule r . TGF , null) method.

SDT The SOT command is sent to the UL by the
PacketScheduler . send(Transmit . UPLINK,
Packet Scheduler . SDT, null) method.

TCFu The TCF command is sent to the UL by the
Pac ketScheduler . send (Transmit . UPL I NK,
Packet Scheduler . TeF , null) method.

TEFu The TEF command is sent to the UL by the
Packe t Scheduler . send(Transmit . UPLINK,
Packet Schedul e r . TEF, null) method.

PBF(idj

FEu

The PBF command is sent to the UL by the
PacketScheduler .send(Transmit . UPLINK,
Packet Schedul er . PBF, id) method, where id is a vector containing
the packet identifier of the bad packet.

The FE message is sent to the UL by the
PacketScheduler.send(Transmit . UPLINK,
Packet Scheduler . FE, null) method.

Responses to DL

TGFd

TCFd

The TGF command is sent to the DL by the
PacketScheduler . send(Transmit.DOWNLINK,
Packet Schedu l er . TGF , null) method.

The TCF command is sent to the DL by the
PacketScheduler.send(Transmit.DOWNLrNK,
Packet Scheduler . TeF, null) method.

TEFd The TEF commana is sent to the DL by the
PacketSchedul e r .send (Transmit . DOWNLrNK,
Packet Schedul er. TEF, null) method.

DO(id, p)

FEd

The DO command is sent to the DL by the
PacketScheduler . send(Transmit.DOWNLINK,
Packet Sche dul e r . DO, x) method, where xis a vector containing id
and p .

The FE message is sent to the DL by the
PacketScheduler . send(Transmit.DOWNLrNK,
Packet Scheduler. FE, null) method.

316 Satellite Control System Clear Box Design

15.5 Step 4: Select an Implementation
for the State Data Items

15.5.1 Allocation of Data to Objects

The state data items may now be allocated to the objects (Table 15.4). All access
to the encapsulated state will be through accessor and mutator methods (there
are no public variables).

Table 15.4 State data allocation to objects

State Data Item Owner

Mode Mode class

Processing HealthCheck object
FiringControl object

HealthCheck HealthCheck object

Connected Connection object

B/L[n] BLTable object

Good_Systems HealthCheck object

Bad_ Systems Health Check object

15.5.2 State Tests and Updates

Every case of a test of state data or an update to state data must be accounted for
(Table 15.5). State data items have been migrated to objects and, in some cases,
completely hidden from the top level.

Table 15.5 State data access and modification

State Data Item Testing

Mode

Processing

Mode .getMode()

Hea l thCheck . getStatus()
ICS . getStatus()

Updating

Mode . s etMode ()

Heal thCheck. reset () sets to
pending; otherwise, maintained
internally by the HealthCheck
object.

FiringControl . reset()
sets to idle; otherwise, main­
tained internally by the ICS ker­
nel class object.

15.6 Step 5: Select an Implementation for Each Entry in the State Box Table 317

State Data Item Testing Updating

HealthCheck Hea l t h Check.getS t atu s() Heal thCheck. r e set () sets to
pending; otherwise, maintained
internally by the HealthCheck
object.

Connected Maintained internally by the Handled internally by the
Connection object. No public Connection object.
access required.

Good_ Systems Maintained internally by the Handled internally by the
Health Check object. No public HealthCheck object.
access required.

Bad_ Systems Maintained internally by the Handled internally by the
HealthCheck object. No public Health Check object.
access required.

B/L BLTable . get (I Handled internally by the
BLTable object.

15.6 Step 5: Select an Implementation
for Each Entry in the
State Box Table

Each of the state box tables can now be rewritten as Java code based on the cho­
sen implementation. Each stimulus implementation has been chosen, and each
state data item is encapsulated in an object. The behavior described by each
state box table is now allocated to an object. Additional object constraints are
indicated in a Notes section in Tables 15.6 through 15.25, as appropriate. Each
cell of the table must be verified against the corresponding state box cell (which
is the intended function) to ensure correctness.

~ Table 15.6 Current stimulus: IN Implemented in Connection. notify () with irqid == swr_IN
():)

Current State Response State Update

any I I Initialize hardware.
Message . capture() ;
Message. ini tial ize() ;
Message . release ();

I I Send INA.
t his .ps.send (Transmi t . GROUND,

PacketScheduler.INA,null) ;

I I Set Mode to none.
Mode . setMode(Mode .NONE) ;

I I Set Processing to idle,
llandHeal thCheckto
I I pendi ng, a nd both
I I Good_Sy s t ems and
I I Bad_Sys terns to (} .
this .fc. reset() ;
this .hc.reset ();

I I Set Connected to none .
this .conn = Connect ion . NONE;

Notes: The PacketScheduler, FiringControl, and HealthCheck objects will be provided to the Connection object constructor, and will be maintained in private
instance variables-ps, fc, and he respectively.

The connection status will be maintained as a local variable, conn, with values equal to the class constants NONE, UPLINK, DOWNLINK, FULL,
and HALF.

w ...
co

Table 15.7 Current stimulus: HR
Implemented by HealthCheck.notify () with irqid == SWI _ HR

Current State

Mode . get Mode () ! = Mode . MAINTENANCE I I
this . get Status () ==Heal thCheck. PROCESSING I I
ICS. getStatus () == I CS. IN_ PROGRESS

Mode. get Mode () ==Mode . MAINTENANCE &&

this . get Status () ! = HealthCheck. PROCESS ING &&

ICS. getStatus () ! = ICS. IN_PROGRESS

Response

I I Send ERR to GCS.
this . ps . send(

Transmit . GROUND,
PacketScheduler . ERR, null);

I I Send the heal th test .
Message.send(

Message . BROADCAST,
Message.HEALTH_TEST) ;

I I Initialize the
I I countdown t imer.
I n terrupt . schedu l eTimer(

this ,
HealthCheck . HCTIME);

State Update

no change

I I Set the
I I HealthCheck to
I I pend i ng and
I I Process ing to
I I health.
this. status=

Heal thCheck.PROCESSING;

I I Set both
I I Good_ Systems
I I and
I I Bad_Systems
I I to { l.
this. good= new Vector ();
this . bad= new Vec tor ();

Notes: The PacketScheduler object will be provided to the HealthCheck object constructor and will be maintained in private instance variable ps.

HCTIME will be a class constant equal to the number of milliseconds allowed for a health test.

The HealthCheck object will maintain a private instance variable status that will hold the current health check status, and private instance variables
good and bad, which will hold the list of subsystems reporting good health and bad health respectively.

w
1\)
0

Table 15.8 Current stimulus: MG
Implemented in Connection. notify () with irq id = = SWI_MG

Current State Response State Update

Mode.ge tMode () == Mode.NONE null Mode.setMode(Mode.MAINTENANCE);

Mode .getMode () != Mode.NONE II Send ERR to GC S.

t h is.ps.send(

Transmi t.GROUND, PacketScheduler. ERR null);

Table 15.9 Current stimulus: BR(n, s)

no change

Implemented in BLTable .notify () with i r qid == SWI_BR and args == (n, s)

Current State

Mode . getMode () ==Mode. NONE I I
Mode . getMode() ==Mode.TRANSMIT

Mode. getMode () == Mode. MAINTENANCE &&

(thi s .hc.getS t atu s () ! =

HealthCheck.COMPLETE I I
ICS .getSta tus() == ICS.IN_ PROGRESS)

Mode. getMode () ==Mode. MAINTENANCE &&

this .hc. ge tS tatus () ==

Heal t hCheck. COMPLETE &&

ICS. ge tS tatus () ! = ICS . IN_PROGRES S

Response

I I Send ERR to GCS

t his.ps.send(

Transmit . GROUND, PacketScheduler . ERR, nul l) ;

I I Send ERR to GCS

t his.ps . s end(

Transmi t.GROUND,

PacketSchedul er. ERR, null);

I I Send BRA to GCS

thi s.ps . s end(

Transmit . GROUND,

PacketScheduler.BRA,

null);

State Update

no change

no change

I I Save the d ata

I I in the BIL

I I tab le.

NVMM .put (n ,

s . ge tName ()., s);

I I The n and s are

I I obtained from

I I the a rgsVec tor.

Notes: The PacketScheduler and HealthCheck objects will be provided to the BLTable object constructor and stored in private instance variables ps and he
respectively.

w ,..,

Table 15.10 Current stimulus: FR(p, y, r)
Implemented in FiringCont rol.notify with irqid == SWI _ FR and a rgs == (p, y , r)

Current State

Mode . getMode () == Mode. NONE I I
Mode . getMode() ==Mode.TRANSMIT

Mode. getMode () == Mode. MAINTENANCE &&

(this .hc.ge tStatus () ! =

HealthCheck.COMPLETE I I
ICS .getS t atus () == ICS. IN_PROGRESS)

Mode . getMode () ==Mode . MAINTENANCE &&

this . he. getStatu s () ==
Heal thCheck . COMPLETE &&

I CS . getS t atus () ! = ICS. I N_PROGRESS

Response

I I Sen d ERR to GCS
thi s . ps . send(

Transmit . GROUND, PacketScheduler. ERR, null);

I I Sen d ERR to GCS
t his.ps.send(

Transmit.GROUND, Pac ketSchedu l er.ERR, null);

1 I send FRF to res.
I CS . arm();
ICS. fire (p, y; r);

I I I ni tial i ze the
I I countdown time r .
Interrupt . scheduleTi mer(
this , Fi ringControl.FRTIME);

State Update

no change

no change

no change

(ICS will change status.)

Notes: The PacketScheduler and HealthCheck objects will be provided to the BLTable object constructor and stored in private instance variables ps and he
respectively.

FRTIME will be a class constant equal to the number of milliseconds allowed for a firing.

w
N
N

Table 15.11 Current stimulus: TG(u, d)
Implemented in Connection. notify () with irqi d == SWI_TG and args == (u, d)

Current State

Mode. getMode (} == Mode. NONE I I
Mode.getMode(} ==Mode .TRANSMIT

Mode. getMode (} ==Mode . MAINTENANCE &&
(this.hc.getStatus(} ! =

HealthCheck.COMPLETE I I
ICS. getStatus (} == ICS. IN_PROGRESS}

Mode. getMode (} ==Mode . MAINTENANCE &&
this .he .ge t Status (} ==

Heal thCheck . COMPLETE &&
ICS. getSta tus (} ! = I CS . IN_PROGRESS &&
this.blt. findSite (u.getName(}} ==null &&

this .blt. findS ite (d.getName(}} ==null

Mode. ge t Mode (} ==Mode. MAINTENANCE &&

this. he . getStatus (} ==
HealthCheck . COMPLETE&&

I CS . getStatus (} ! = ICS . IN_ PROGRESS &&

this .blt. fi n dSite (u. getName (}} ! = null &&
t his .blt. findSite (d.ge tName (}} ==null

Response

I I Send ERR to GCS
thi s . ps.send(

Transmit.GROUND, PacketScheduler.ERR, n ull};

I I Sen d ERR to GCS
thi s . ps.send(

Transmit.GROUND, PacketScheduler .ERR, null};

I I Send TSCAN (3 } t o GCS
Vector v =new Vector (};
v.addElement (new Integer (3}};

t hi s . ps . send(

Transmit.GROUND, Pac ke tSch edul er.TSCAN,v};

I I Send TSCAN (2} to GCS

Vector v = new Vector (};
v. addElement (new Integer (2} } ;
this.ps .send(

Tran smi t.GROUND, PacketScheduler.TSCAN,v};

State Update

no change

no change

no change

no change

w
N w

Current State

Mode. getMode () ==Mode. MAINTENANCE &&
this.hc.getStatus() = =
HealthCheck . COMPLETE&&
ICS. getStatus () ! = ICS. IN_PROGRESS &&
this .bl t. f i n dSi te (u. getName ()) ==nul l &&
this . b l t. f indS i te (d . getName ()) ! =null

Mode. getMode () ==Mode . MAI NTENANCE &&
this . he. getStatus () ==
Heal thCheck. COMPLETE &&
ICS. getStatus () ! = ICS. IN_PROGRESS &&
this . bl t. findSi te (u. getName ()) ! = null &&
this . blt. findSite (d. getName ()) ! =nul l

Response

I I Send TSCAN (1) to GCS
Vector v =new Vector ();
v. addEleme n t (new Integer (1)) ;
this.ps.send(

Transmi t.GROUND, PacketScheduler . TSCAN, v);

I I Send TGF to both the
I I UL and the DL.
t hi s .ps . send(

Transmi t.UPL I NK, Packet Scheduler . TGF,null) ;
this.ps.send(

Transmit.DOWNLINK, PacketScheduler.TGF,nul l) ;

I I Initial ize the
I I countdown timer.
I n ter rupt.scheduleTimer(
this , Connection . CTIME);

State Update

no change

Mode.setMode
(Mode . TRANSMIT);

Notes: The BLTable object will be provided to the Connection object constructor and wi ll be maintained in private instance variable bit.

CTIME will be a class constant equal to the number of milliseconds allowed for connection .

w
N
~

Table 15.12 Current stimulus: TC
Implemented in Connection. notify () with i rq i d == SWI_ TC

Current State

Mode . get Mode () ! =Mode . TRANSMIT

Mode . getMode() ==Mode.TRANSMIT

Response

I I Send ERR to GCS .
this . ps .send (

Transmit .GROUND,PacketScheduler.ERR,null) ;

//Send TCFtotheUL
I I a n d the DL, then send
I I TEF to the GCS .
this . ps . send(

State Update

no change

I I Se t Connected
I I to non e .
this . conn= Connection . NONE ;

Transmit . UPLINK, PacketScheduler . TCF, nul l); //Reset the
this . ps . send(//HealthCheck

Transmit . DOWNLINK, Packet Scheduler. TCF , null); I I and Mode .
this . ps . send(Mode . setMode(Mode .NONE);

Transmit . GROUND, PacketScheduler .TEF, n u l l); this . hc . reset();

I I Reset the timer , i f
I I waiting for OTE.
if (t his . conn ! = Connec t ion . FULL && this . conn ! =
Connection . HALF)

Interrupt . timerReset();

w
1\)
U1

Table 15.13 Current stimulus: OTE
Implemented in Heal thCheck. timerNotify (), in FiringControl. timerNotify (), and in
Connection.timerNotify()

Current State

Mode. getMode () ==Mode. NONE

Mode. getMode () ==Mode. MAINTENANCE &&
ICS . getStatus () ! = ICS. IN_PROGRESS &&
this.hc.getStatus() !=

HealthCheck.PROCESSING

If in Health Check object and

Mode.getMode() ==Mode.MAINTENANCE&&
this.hc.getStatus() ==
HealthCheck.PROCESSING

If in FiringControl object and

Mode.getMode() ==Mode .MAINTENANCE&&
this.hc.getStatus() ==
HealthCheck.COMPLETE

Response

null

null

I I Send HF to GCS.
this.ps.send(

Transmit.GROUND,PacketScheduler.HF,null);

I I Send FF to GCS.
this.ps.send(

Transmit.GROUND,PacketScheduler.FF,null);

State Update

no change

no change

I I Set HealthCheck
I I to done.
this . status=
HealthCheck . COMPLETE;

I I Reset good and
I I bad systems
I I lists.
this. good= new Vector () ;
this .bad= new Vector ();

no change

(ICS has set status.)

continued

~ Table 15.13 continued
01

Current State

If in Connection object and

Mode . get Mode () ==Mode. TRANSMIT &&

this .con n == Connec tion.NONE

If in Connection object and

Mode . getMode () ==Mode . TRANSMIT &&

t his . conn== Connection. UPLINK

Response

I I Send TSCAN (3) to GCS
Vector v = new Vee tor () ;
v.addElement(new
I nteger (3)) ;
this .ps . send(

Tr ansmit . GROUND,PacketSchedu ler . TSCAN, v) ;

I I Send TCF to UL a nd DL
this .ps. send(

Transmi t . UPLINK, Pac ketSchedule r .TCF, null) ;
this .ps . send (

Transmit.DOWNLINK, PacketScheduler . TCF, nul l);

I I Send TSCAN (2) to GC S
Vec tor v = new Vec tor ();
v . addElement(new
Integer (2)) ;
this . ps. send (

Transmit .GROUND,Packe tSchedu l er.TSCAN, v) ;

I I Send TCF to UL a nd DL
this .ps.send(

State Update

I I Set Mode to
I I none and
I I Hea l thCh eck
I I to p endin g .
Mode . s etMode(Mode.NONE);
thi s.hc . reset();

I I Set Mode to
I I n one and
I I Heal thCheck
I I t o pending.
Mode . s e tMode(Mode . NONE) ;
this . hc . reset() ;

I I Re s et
I I c onnection.

Transmit . UPL INK, Packet Scheduler . TCF, null); this . conn=
this .ps . send(Connec tion .NONE;

Transmit . DOWNLINK, PacketSched u l er .TCF, nul l) ;

(,)

"' ~

Current state

If in Connection object and

Mode . getMod e () ==Mode . TRANSMIT &&

t his. c onn == Connec tion . DOWNL I NK

If in Connection object and

Mode. getMode () == Mode . TRANSMI T & &

(this . conn == Connection . FULL I I
t h i s . c onn == Conn ec t i on . HALF)

Response

I I Send TSCAN (1) t o GCS

Ve ctor v =new Vec t or () ;
v . addElemen t (new
I n t e g er (1)) ;

t his . p s . send (
Transmit . GROUND, Pa c k etSchedu ler .TSCAN, v) ;

State update

I I Set Mode to
I /non e and

I I Hea l t hCheck
I I t o p endin g .
Mode . setMode(Mode . NONE) ;
t h is . hc . r e se t () ;

I I Re set
I I Sen d TCF to UL and DL I I con n ect i on.
t h is . p s . s end (t h is . conn =

Tr an smi t . UPLI NK, Pa ck e t Schedu l e r . TCF, nul l); Con nec tion. NONE;

thi s . p s . s end (
Transmit . DOWNL I NK, Pa cket Sc hedu l er . TCF', null) ;

null no change

Note: For FF it does not make sense to check res. g etStatus == res . IN_ P:<.OGRESS because the ICS class may reset the status prior to generating
the interrupt. Because of the way the timer is handled, however, this does not cause any problems.

(o)
1\)
co

Table 15.14 Current stimulus: FSR
Implemented in Firi ngControl. notify () with irqid == HWI_F IRING_COMPLETE and ICS . getStatus ()

==SUCCESS

Current State

Mode. getMode () ==Mode . NONE I I
Mode.getMode() ==Mode.TRANSMIT

Mode . getMod e() ==Mode.MAINTENANCE

Response

null

I I Send FS to GCS .
this.ps.send(

Transrnit . GROUND,PacketScheduler .FS,null);

I I Reset the timer.
Interrupt. timerReset ();

Note: An ICS status of SUCCESS ensures that the firing is complete.

Processing is equal to firing, since execution is in firing control.

Table 15.15 Current stimulus: FFR

State Update

no change

no change

(ICS has set status.)

Implemented in FiringContro l . notify () with irqid == HWI_FIRING_COMPLETE and ICS. getStatus ()

== FAIL

Current State

Mode. getMode () == Mode . NONE I I
Mode. getMode () == Mode. TRANSMIT

Mode.getMode() ==Mode.MAINTENANCE

Response

null

I I Send FF to GCS .
this.ps . send(

Transmit.GROUND,PacketScheduler .FF, nu l l) ;

I I Reset the timer.
Interrupt . timerReset ();

State Update

no change

no change

(ICS has set status.)

Table 15.16 Current stimulus: ISN(x)
Implemented in HealthCheck.noti fy () with irqid == HWI_INTERNAL_SUBSYSTEM_ NOMINAL and
args == (x)

Current State

Mode . getMode () ==Mode. NONE I I
Mode. get Mode () ==Mode . TRANSMIT

Mode . getMode () ==Mode . MAINTENANCE &&
this . get Status () ! =PROCESSING

Mode . get Mode () ==Mode. MAINTENANCE &&
this . get Status () == PROCESSING &&
if(! this . good . contains(x)) this.good . addElement(x)

&& this . good. size () +this . bad . size ()
< Heal thCheck. NUMSYS

Mode . getMode () ==Mode. MAINTENANCE &&
this . get Status () == PROCESSING &&
if(! this.good . contains(x)) this . good . addElement(x)
&&this .good.s ize() +this.bad .size() >=

Heal thCheck. NUMSYS &&
thi s.bad . size() ! = 0

Mode . get Mode () ==Mode . MAINTENANCE &&
this . getStatus () ==PROCESSING &&
if(!this . good.contains(x)) this.good . addElement(x)
&&this . good . size () >= HealthCheck . NUMSYS &&

this.bad .size() ==0

Response

null

null

null

I I Send HF to GCS .
Vector v =new Vector ();
v. addElement (this. good) ;
v . addElement(this.bad) ;
this.ps.send(

Transmit . GROUND,
PacketScheduler . HF , v) ;

I I Send HS to GCS .
t h is.ps.send(

Transmit. GROUND,
PacketScheduler.HS,
null) ;

State Update

no change

no change

no change

(good was modified
in the condition .)

I I Reset the
I I Heal thCheck
this. reset () ;
I I Reset good and
I I bad system
I I lists .
this. good= new Vector () ;
this . bad= new Vector () ;

I I Reset the
I I Heal thCheck
this . reset ();
I I Reset good and
I I bad system
I I lists.

w th i s. good= new Vector () ;
~ this . bad= new Vector ();

Notes: NUMSYS is a class constant that is equal to the number of subsystems participating in the health check.

w w
0

Table 15.17 Current stimulus: ISF(x)
Implemented in HealthCheck.not ify (} with irqid == HWI _INTERNAL_SUBSYSTEM_FAILURE and
a rgs == (x}

Current State

Mode . g etMode () ==Mode. NONE I I
Mode . getMode() == Mode . TRANSMIT

Mode . g etMode () ==Mode . MAINTENANCE &&

this . getStatus () ! = PROCESSING

Mode . g etMod e () ==Mode. MAI NTENANCE &&

this . g etStatus () == PROCESSING &&

i f (!thi s . b a d . contains (x)) t his . bad . addElement (x) &&

this. bad. s i ze () + thi s. good . size () < HealthCheck. NUMSYS

Mode . g etMod e () ==Mode. MAINTENANCE &&

this .getSta tus () ==PROCESSING &&

i f (! th is . good. con tains (x)) this . good . addElement (x) &&

thi s . good . si ze () + this. bad. size () >= Hea l thCheck . NUHSYS

Response

null

null

null

I I Send HF to GCS .
Vect or v =new Ve ctor () ;
v.addElemen t(thi s . good) ;
v.addElement(th is.ba d);
this . ps . send(

Tr a n smi t. GROUND,
PacketSc hedul er . HF, v) ;

State Update

no change

no change

no change

(b ad was modified in the
condition.)

I I Reset the
I I Heal thCheck
thi s . reset ();

I I Reset good a n d
I I bad sys tem
I I l ists .
this . good= new Vec t or () ;
thi s. bad= new Vect or ();

w w

Table 15.18 Current stimulus: UG
Implemented in Connection . noti fy () with i rqid == swr_UG

Current State

Mode. getMode () == Mode . NONE I I
Mode.getMode() == Mode .MAINTENANCE

Mode . getMode () == Mode . TRANSMIT &&

this. conn== Connection . NONE

Mode . getMode () ==Mode . TRANSMIT &&

t h is . conn ! =Connection . NONE &&

t h is . conn ! =Connection . DOWNLINK

Mode . getMode () ==Mode. TRANSMIT &&

t his . conn == Connection. DOWNLINK

Table 15.19 Current stimulus: Dl(id, p)

Response

null

null

null

I I Send SDT to UL.
this . ps . send(

Transmit . UPLI NK, Packe tScheduler .SDT,
nu ll) ;

Implemented in Connection . notify () with irqid == SWI_DI and args == (id, p)

Current State

Mode . getMode () ==Mode . NONE I I
Mode. getMode () ==Mode . MAINTENANCE

Mode . getMode () ==Mode. TRANSMIT &&

this . conn ! = Connection . FULL &&

this . conn ! =Connection. HALF

Response

null

I I Send ERR to GCS.
thi s . ps . send(

Transmit . GROUND,PacketScheduler .ERR,
null) ;

State Update

no change

this. conn=
Connection . UPLINK;

no change

this . conn=
Connection.FULL

State Update

no change

no change

Mode . getMode () ==Mode . TRANSMIT &&

(this . conn ==Connection.FULL II
this. conn== Connection . HALF)

1 I Send DO to DL. no change
this . ps. sen d (

Transmit.DOWNLINK, PacketScheduler .DO,
args);

Note: The interrupt arguments (args) are exactly the required arguments for the DO message.

w w
1\)

Table 15.20 Current stimulus: TE
Implemented in Connect ion.notify() with irqid == SWI_TE

Current State

Mode. getMode () == Mode. NONE I I
Mode.getMode() == Mode.MAINTENANCE

Mode. getMode () ==Mode. TRANSMIT &&

this .conn== Connection.NONE

Mode. ge tMode () == Mode . TRANSMIT &&

this. conn == Connection . UPLINK

Mode. getMode () == Mode. TRANSMIT &&

this. conn== Connec tion. DOWNLINK

Response

null

I I Send FE to GCS .
this.ps.send(

Transmit.GROUND,PacketScheduler.FE,
null);

I I Send FE to GCS and UL.
this.ps.send(

Transmit.GROUND,PacketScheduler.FE,
null);

this . ps . send (
Transmi t .UPLINK,PacketScheduler . FE,
null);

I I Send FE to GCS and DL.
this.ps.send(

Transmit.GROUND,PacketScheduler.FE,
null);

this.ps.send(
Transmit.DOWNLINK,PacketScheduler . FE,
null);

State Update

no change

I I Reset mode .
Mode.setMode(Mode.NONE);

I I Reset HealthCheck.
this . hc.reset();

I I Reset mode.
Mode . setMode(Mode.NONE);

I I Reset Hea l thCheck.
this.hc.reset();

I I Reset
I I connection.
this. conn= Connection. NONE;

I I Reset mode.
Mode .setMode(Mode.NONE);

IIResetHealthCheck.
this .hc. reset();

I I Reset
I I connection.
this . conn = Connection . NONE;

C.:l
C.:l
C.:l

Current State

Mode . g etMode () ==Mode. TRANSMIT &&

this . conn == Connec tion . FULL

Mode. getMode () == Mod e . TRANSMIT &&

this. conn == Connection . HALF

Table 15.21 Current stimulus: UB

Response

I I Send TEF t o DL.
t hi s . ps . send(

Transmit. DOWNLINK, PacketScheduler . TEF,
null);

I I Send TEF to DL.
this .ps .send(

Transmi t.DOWNLI NK, PacketSchedu ler . TEF,
null);

State Update

this . conn= Connection . HALF

no change

Implemented in Connection . n o tify () with irqid == SWI_UB

Current State

Mode . g etMode () ==Mo de . NONE I I
Mode .getMode() ==Mode .MAINTENANCE

Mode .getMode() ==Mode . TRANSMIT

Response

null

I I Send TSCAN (1) to GCS .
Vector v =new Vector ();
v . addE lement(new Integer(l)) ;
this . ps.send(

Transmit . GROUND,PacketSchedu l er.TSCAN, v);
I I Send TCF to ULand DL.
this.ps .send(

State Update

no change

I I Reset mode.
Mode .s etMode(Mode .NONE);

I I Re s et
I I Heal thCheck.
this.hc.reset();

Tran smit. UPLINK, Packet Scheduler . TCF, null); I I Reset
this . ps . sen d (I I connection.

Transmit . DOWNLINK, PacketScheduler . TCF, null) ; this . conn= Connection . NONE;

(.)
(.)

Table 15.22 Current stimulus: DG
Implemented in Connect ion. not ify () with irqid == SWI DG

""" Current State Response State Update

Mode . getMode () ==Mode . NONE I I
Mode . getMode () ==Mode . MAINTENANCE

Mode . ge t Mode () ==Mode . TRANSMI T &&

this. c onn= = Connect ion . NONE

Mode. getMode () ==Mode . TRANSMIT &&

this. conn ! =Connection . NONE &&

thi s . c onn ! = Connect ion . UPLINK

Mode . getMode () ==Mode . TRANSMIT &&

this. conn== Connection . UPLINK

Table 15.23 Current stimulus: PB(id)

null

null

null

I I Send SDT to UL.
t his.ps . send(

Trans mit . UPLINK, PacketScheduler. SDT,
null) ;

no change

this . conn= Connec t ion . DOWNLINK;

no change

this.conn= Connec tion .FULL

Implemented in Connect ion. noti fy () with irqid == SWI _ PB and args == (id)

Current State

Mode . getMode () ==Mode . NONE I I
Mode . getMode () == Mode . MAINTENANCE

Mode. get Mode () == Mode. TRANSMIT &&

thi s . conn ! =Connection . FULL &&

this . conn ! =Connec t ion. HALF

Mode . getMode () == Mode . TRANSMIT &&

(this. conn == Connection . FULL I I

Response

null

I I Send ERR to GCS.
this . ps .send (

Transmi t.GROUND,PacketScheduler .ERR, null) ;

I I Send PBF to UL.
this . ps . send(

----- . --···· -------- _____ . . ·--- - , • -- ·· - ····· _ . _ , . _ckeLSch e duJ er . PBP, a rgs) ;

State Update

no change

no change

no change

(o)
(o)
(11

Table 15.24 Current stimulus: DTE
Implemented in Connection .notify () with irqid == SWI _DTE

Current State

Mode . g etMode () == Mode . NONE I I
Mode . getMode() ==Mode. MAINTENANCE

Mode . getMode () ==Mode . TRANSMIT &&

this . conn== Connection .NONE

Mode . g et Mode () ==Mode . TRANSMIT &&

this. conn== Connection . UPL I NK

Mode. getMode () == Mode . TRANSMIT & &

this . conn== Connection. DOWNLINK

Response

null

I I Send FE to GCS .
this.ps . send(

Transmit .GROUND, PacketScheduler . FE,
null);

I I Send FE to GCS and DL.
this . ps . send(

Transmit.GROUND,PacketScheduler . FE,
null) ;

this.ps . send(
Transmit.UPLINK,PacketScheduler . FE,

null);

I I Send FE to GC S and DL.
this .ps. send(

Transmi t . GROUND, Pa.cketScheduler. FE,
n ull);

this.ps.send(
Transmit.DOWNLINK,PacketSchedu l er . FE,
null);

State Update

no change

I I Reset mode.
Mode . setMode(Mode.NONE) ;

I I Reset Heal thCheck.
this.hc . reset();

I I Reset mode.
Mode.setMode(Mode.NONE);

I I Reset HealthCheck.
this . hc . reset() ;

I I connection.
th i s . conn= Connection .NONE;

I I Reset mode .
Mode . setMode(Mode.NONE) ;

I I Reset Hea l thCheck.
this. he. reset ();

I I Reset
I I connection.
thi s. c onn= Conne ction .NONE;

continued

~ Table 15.24 continued
Ol

Current State

Mode. getMode () == Mode. TRANSMIT &&

this. conn== Connection . FULL

Mode . getMode () ==Mode. TRANSMIT &&

this. conn== Connect i on . HALF

Response

I I Send FE to GCS, UL, DL.
this . ps .send(

Tran smi t. GROUND, PacketScheduler . FE,
n ul l);

this. ps.sen d(
Tr ansmi t.UPLINK,PacketScheduler .FE,
n ull);

this . ps .send(
Trans mit.DOWNLINK, Pac ketScheduler.FE,
null);

I I Send TEF to ULand DL .
this.ps.send(

Transmi t. UPLI NK, PacketScheduler .TEF,
nul l);

this.ps .send(
Transmit.DOWNLINK, PacketScheduler . TEF,
null);

State Update

I I Reset mode .
Mode.setMode(Mode.NONE);

I I Reset Heal thCheck.
t hi s .hc . reset();

I I Reset
I I connection.
t hi s. conn= Connection . NONE;

I I Reset mode .
Mode.setMode(Mode.NONE);

I I Reset Heal thCheck.
this.hc.reset();

I I Reset
I I connection.
thi s. conn= Conn ec tion. NONE;

w w

Table 15.25 Current stimulus: DB
Implemented in Connect ion. notify(} with irqi d == SWI_DB

Current State Response

Mode . getMode () == Mode. NONE I I null
Mode .getMode() ==Mode . MAINTENANCE

Mode . getMode () ==Mode . TRANSMI T I I Send TSCAN (2) to GCS .
vector v = new Vec t or () ;
v . addElement(new I nteger(2));
this . ps . send(

Transmit .GROUND, PacketScheduler.TSCAN, v) ;

I I Send TCF to ULand DL.
this . ps . send(

Transmit . UPLINK, PacketScheduler.TCF,
null);

this.ps.send(
Transmit . DOWNLINK, PacketScheduler.TCF,
null);

State Update

no change

I I Reset mode.
Mode . setMode(Mode . NONE) ;

I I Reset
HealthCheck.this.hc.reset() ;

I I Rese t
I I connect ion.
this . conn= Connection.NONE;

(!' li,

. •.

•;
~

~t

: f\·.

~

~ "'

'"

.;o

?

338 Satellite Control System Clear Box Design

15.7 Step 6: Reorganize the
Implementations into
Executable Code

When the implemented state box tables are complete, they may be transformed
to executable code. In this step the architecture is merged with the behavioral
specification of the state box. The resulting code may be reorganized to meet
efficiency, performance, or other goals.

The transformation of Connection class to code is shown in the following
pages. The stimuli with tables that have functionality allocated to Connection
are IN, MG, TG(u, d), OTE, UG, DI(id, p), TE, UB, DG, PB(id), DTE, and DB.
Collecting the information from these tables leads to the following final expan­
sion of the Connection class.

Class: scs.sos.Connection

II Manage the connection .

package scs.sos;

import scs.kernel.ICS;

import scs.kernel.Message;

import scs.kernel.Transmit;

import scs.kernel.Interrupt;

import java.util.Vector;

I** This class manages the connection. *I
public final class Connection

implements IH.InterruptObserver, Interrupt.TimerObserver

I** Constructor for the connection object.

@param he A health check object.

@param ps A packet scheduler object.

@param fc A firing control object.

@param blt A bll table object. *I
public Connection(HealthCheck he, PacketScheduler ps,

FiringControl fc, BLTable blt) {

II Save the objects passed in.

this.hc he;

this.ps = ps;

this.fc = fc;

this.blt = blt;

II Initially not connected .

,,

- IIIII

-
15.7 Step 6: Reorganize the Implementations into Executable Code 339

this.conn Connection.NONE;

I** Interrupt notification arrives here. Interrupts indicate that

the most recent request to the transmit hardware has completed.

@param irqid The interrupt id.

@param args Any arguments associated with the interrupt. *I
public void notify(int irqid, vector args)

II The following implements table 15.6.

if(irqid == IH.SWI_IN)

II Initialize hardware.

Message.capture();

Message. initialize();

Message.re1ease();

II Send INA.

this.ps.send(Transmit.GROUND, PacketScheduler.INA, null);

II Set mode to none.

Mode.setMode(Mode.NONE);

II Reset HealthCheck and FiringControl.

this.fc.reset();

this.hc.reset();

II Set the connection to none.

this.conn = Connection.NONE;

return;

II The following implements table 15.8.

else if(irqid == IH.SWI_MG)

if(Mode.getMode() == Mode.NONE) Mode.setMode(Mode.MAINTENANCE);

else this.ps.send(Transmit.GROUND, PacketScheduler.ERR, null);

return;

II The following implements table 15.11.

else if(irqid == IH.SWI_TG)

Transmit.Siteinfo u

Transmit.Siteinfo d

try

null;

null;

II Get the arguments.

u

d

this.blt.findSite((String)args.elementAt(O));

this.blt.findSite((String)args.elementAt(1));

' ·~

''
#'I.

•'>

·~

'·

' ~

" .

';

340

,.

0 ~---<{,"'

Satellite Control System Clear Box Design

catch(Exception e)

II Do nothing.

return;

II Make sure the command is allowable here.

if(Mode.getMode() == Mode.NONE I I

Mode. getMode () Mode. TRANSMIT I I

(Mode.getMode() == Mode.MAINTENANCE &&

(this.hc.getStatus() != HealthCheck.COMPLETE I I

ICS.getStatus() == ICS.IN_PROGRESS))) {

II Send ERR to GCS.

this.ps.send(Transmit.GROUND, PacketScheduler.ERR, n~22t

return;

else

if(u ==null && d == null) {

II Send TSCAN(3) to GCS.

Vector v =new Vector();

v.addElement(new Integer(3));

this.ps.send(Transmit.GROUND,

PacketScheduler.TSCAN, v);

return;

else if(d ==null) {

II Send TSCAN(2) to GCS.

Vector v =new Vector();

v.addElement(new Integer(2));

this.ps.send(Transmit.GROUND,

PacketScheduler.TSCAN, v);

return;

else if (u == null) {

II Send TSCAN(l) to GCS.

Vector v =new Vector();

v.addElement(new Integer(l));

this.ps.send(Transmit.GROUND,

PacketScheduler.TSCAN, v);

return;

else

II Send TGF to both the ULand the DL.

,.0 \\

·~~

-
15.7 Step 6: Reorganize the Implementations into Executable Code

this.ps.send(Transmit.UPLINK,

PacketScheduler.TGF, null);

this.ps.send(Transmit.DOWNLINK,

PacketScheduler.TGF, null);

341

II Initialize the countdown timer.

Interrupt.scheduleTimer(this, Connection.CTIME);

II Set mode to transmit.

Mode.setMode(Mode.TRANSMIT);

return;

II IH.SWI_TG case

II The following implements table 15.12.

else if(irqid IH.SWI_TC)

II See if the command is valid now.

if(Mode.getMode() !~ Mode.TRANSMIT)

else

II Send ERR to the GCS.

this.ps.send(Transmit.GROUND,

PacketScheduler.ERR, null);

return;

II Send TCF to the ULand the DL, then send TEF to

the GCS.

this.ps.send(Transmit.UPLINK,

PacketScheduler.TCF, null);

this.ps.send(Transmit.DOWNLINK,

PacketScheduler.TCF, null);

this.ps.send(Transmit.GROUND,

PacketScheduler.TEF, null);

II Reset the timer, if waiting for OTE.

if(this.conn !~ Connection.FULL &&

this.conn !~ Connection.HALF)

Interrupt.resetTimer();

II Set connected to none.

this.conn ~ Connection.NONE;

II Reset HealthCheck and Mode.

Mode.setMode(Mode.NONE);

,-' "-

'
,•

,,·

.
. ,_"

: f \\

'"

;-...

342 Satellite Control System Clear Box Design

~

this.hc.reset();

II IH.SWI_TC case

II The following implements table 15.18.

else if(irqid == IH.SWI_UG)

II See if the command is valid now.

if(Mode.getMode() != Mode.TRANSMIT) return;

II If the downlink has connected, the connection is complete.

if(this.conn == Connection.DOWNLINK)

II Send SDT to the UL.

this.ps.send(Transmit.UPLINK,

PacketScheduler.SDT, null);

this.conn Connection.FULL;

else if (this.conn == Connection.NONE)

this.conn = Connection.UPLINK;

return;

II IH.SWI_UG case

II The following implements table 15.19.

else if(irqid == IH.SWI_DI)

II See if the command is valid now.

if(Mode.getMode() != Mode.TRANSMIT) return;

II If not fully connected, generate an error.

if(this.conn != Connection.FULL I I
this.conn != Connection.HALF)

else

II Send ERR to GCS.

this.ps.send(Transmit.GROUND,

PacketScheduler.ERR, null);

return;

II Send DO to the DL.

this.ps.send(Transmit.DOWNLINK,

PacketScheduler.DO, args);

return;

II IH.SWI_DI case

II The following implements table 15.20.

else if(irqid == IH.SWI_TE)

II See if the command is valid now.

if(Mode.getMode() != Mode.TRANSMIT) return;

II If connection is full or half, forward the message.

"'

·~

15.7 Step 6: Reorganize the Implementations into Executable Code 343

if(this.conn Connection.FULL I I

this.conn Connection.HALF) {

else

II Send TEF to the DL.

this.ps.send(Transmit.DOWNLINK,

PacketScheduler.TEF, null);

II The connection is now half open.

this.conn = Connection.HALF;

return;

II Send FE to GCS.

this.ps.send(Transmit.GROUND,

PacketScheduler.FE, null);

II Send FE to a connected site.

if(this.conn == Connection.UPLINK)

this.ps.send(Transmit.UPLINK,

PacketScheduler.FE, null);

if(this.conn == Connection.DOWNLINK)

this.ps.send(Transmit.DOWNLINK,

PacketScheduler.FE, null);

II Reset mode.

Mode.setMode(Mode.NONE);

II Reset HealthCheck.

this.hc.reset();

II Reset the connection.

this.conn = Connection.NONE;

return;

II IH.SWI_TE case

II The following implements table 15.21.

else if(irqid IH.SWI_UB)

II See if the command is valid now.

if(Mode.getMode() != Mode.TRANSMIT) return;

II Send TSCAN(l) to GCS.

Vector v =new Vector();

v.addElement(new Integer(l));

this.ps.send(Transmit.GROUND,

.·

"'",,

.,

"'=

'.

,'~

>fl',

~

'

·.

344 Satellite Control System Clear Box Design

"'

PacketScheduler.TSCAN, v);

II Send TCF to the ULand the DL.

this.ps.send(Transmit.UPLINK,

PacketScheduler.TCF, null);

this.ps.send(Transmit.DOWNLINK,

PacketScheduler.TCF, null);

II Reset mode.

Mode.setMode(Mode.NONE);

II Reset HealthCheck.

this.hc.reset();

II Reset the connection.

this.conn = Connection.NONE;

return;

II IH.SWI_UB case

II The following implements table 15.22.

else if(irqid == IH.SWI_DG)

II See if the command is valid now.

if(Mode.getMode() != Mode.TRANSMIT) return;

II If the uplink has connected, the connection is complete.

if(this.conn == Connection.UPLINK)

II Send SDT to the UL.

this.ps.send(Transmit.UPLINK,

PacketScheduler.SDT, null);

this.conn = Connection.FULL;

else if (this.conn == Connection.NONE)

this.conn = Connection.DOWNLINK;

return;

II IH.SWI_DG case

II The following implements table 15.23.

else if(irqid == IH.SWI_PB)

.
'" ,•,

II See if the command is valid now.

if(Mode.getMode() != Mode.TRANSMIT) return;

II If not fully connected, generate an error.

if(this.conn != Connection.FULL I I
this.conn != Connection.HALF) {

II Send ERR to GCS.

this.ps.send(Transmit.DOWNLINK,

PacketScheduler.ERR, null);

: ,' ~

....,_ ... __ _

15.7 Step 6: Reorganize the Implementations into Executable Code

else

return;

II Send PBF to UL.

this.ps.send(Transmit.UPLINK,

PacketScheduler.PBF, args);

returni

II IH.SWI PB case

II The following implements table 15.24.

else if(irqid IH.SWI_DTE)

II See if the command is valid now.

if(Mode.getMode() != Mode.TRANSMIT) return;

II If connection is half, close the connection.

if(this.conn == Connection.HALF) {

II Send TEF to the ULand the DL.

this.ps.send(Transmit.UPLINK,

PacketScheduler.TEF, null);

this.ps.send(Transmit.DOWNLINK,

PacketScheduler.TEF, null);

II Reset mode.

Mode.setMode(Mode.NONE);

II Reset HealthCheck.

this.hc.reset();

else

II The connection is now closed.

this.conn = Connection.NONE;

return;

II Send FE to GCS.

this.ps.send(Transmit.GROUND,

PacketScheduler.FE, null);

II Send FE to any connected sites.

if(this.conn Connection.UPLINK I I

this.conn Connection.FULL)

this.ps.send(Transmit.UPLINK,

PacketScheduler.FE, null);

345

" ~.

,.

~

,"<::::.''

t~ ,,

G ftl

'

346 Satellite Control System Clear Box Design

if(this.conn

this.conn

Connection.DOWNLINK I I

Connection.FULL) {

this.ps.send(Transmit.DOWNLINK,

PacketScheduler.FE, null);

II Reset mode.

Mode.setMode(Mode.NONE);

II Reset HealthCheck.

this.hc.reset();

II Reset the connection.

this.conn = Connection.NONE;

return;

II IH.SWI_DTE case

II The following implements table 15.25.

else if(irqid == IH.SWI_DB)

II See if the command is valid now.

if(Mode.getMode() != Mode.TRANSMIT) return;

II Send TSCAN(2) to GCS.

Vector v =new Vector();

v.addElement(new Integer(2));

this.ps.send(Transmit.GROUND, PacketScheduler.TSCAN, v);

II Send TCF to the ULand the DL.

this.ps.send(Transmit.UPLINK, PacketScheduler.TCF, null);

this.ps.send(Transmit.DOWNLINK, PacketScheduler.TCF, null);

II Reset mode.

Mode.setMode(Mode.NONE);

II Reset HealthCheck.

this.hc.reset();

II Reset the connection.

this.conn = Connection.NONE;

return;

II IH.SWI_DB case

,,

·~· ~I,aJ.¥e~~~~tf'r: ··

--~CP< __ _

15.7 Step 6: Reorganize the Implementations into Executable Code 347

I** On-board timer interrupts arrive here to be processed.

This implements parts of table 15.13. *I
public void timerNotify()

II If mode is not transmit, ignore this.

if(Mode.getMode() != Mode.TRANSMIT) return;

II Take action depending on who has connected.

if(this.conn

this.conn

return;

Connection.FULL I I

Connection.HALF)

Vector v =new Vector();

if(this.conn == Connection.NONE)

II Send TSCAN(3) to GCS.

v.addElement(new Integer(3));

else if(this.conn == Connection.UPLINK)

II Send TSCAN(2) to GCS.

v.addElement(new Integer(2));

else if(this.conn == Connection.DOWNLINK)

II Send TSCAN(l) to GCS.

v.addElement(new Integer(l));

this.ps.send(Transmit.GROUND, PacketScheduler.TSCAN, v);

II Send TCF to the ULand the DL.

this.ps.send(Transmit.UPLINK, PacketScheduler.TCF, null);

this.ps.send(Transmit.DOWNLINK, PacketScheduler.TCF, null);

II Set mode to none and reset HealthCheck.

Mode.setMode(Mode.NONE);

this.hc.reset();

II Reset the connection.

this.conn = Connection.NONE;

II The following are public class constants that correspond

II to the various connection statuses.

public static final int NONE 0;

public static final int UPLINK 1;

public static final int DOWNLINK = 2;

1\~ ;,

1'1, >1.

•"

,,
-~!(\. ~

>';:;:,"

..
;'~

; ..

' •'

"

;o,

348 Satellite Control System Clear Box Design

public static final int FULL 3;

public static final int HALF = 4·

II Private instance variables.

private HealthCheck he = null;

private PacketScheduler ps = null;

private FiringControl fc = null;

private BLTable blt = null;

private int conn = Connection.NONE;

II The following is a private class constant for the number

II of milliseconds to wait for a connection.

private static final long CTIME = 30000;

Production of final code follows the process just shown. All code should be
verified to confirm that the Java implementation of the state box is correct. The
verified code would then be tested as described in Chapter 16.

..

",;;-

[.~~>;.!~:!.~: ... ,.~.

~-.;;r><..,.~

16
Satellite Control System
Testing and Certification

16.1 Statistical Testing

The fundamentals of statistical testing based on usage models were provided in
Chapter 5. The work flow for testing and certifying the SOS is summarized in
the following list:

Step 1: Define certification plan.

1. Set goals.

2. Define users, uses, and environments.

Step 2: Build model structure.

1. Determine the states of use.

2. Determine allowable state transitions.

Step 3: Determine state transition probabilities.

1. Establish constraints on arc probabilities.

2. Generate probabilities.

Step 4: Validate the usage model.

1. Validate with respect to known or anticipated usage.

2. Validate with respect to test plans.

Step 5: Generate test cases, and execute and evaluate results.

1. Perform nonrandom testing.

2. Perform random testing.

349

350 Satellite Control System Testing and Certification

16.2 Step 1 : Define Certification Plan

16.2.1 Goals

The goals for the statistical testing of the SOS software are the following:

To visit every state of use and experience every transition at least one
time
To demonstrate that the SOS correctly processes every canonical
sequence
To test every requirement
To demonstrate that the software reliability exceeds 0.999 with at least
95% confidence in expected general field operations
To demonstrate that the software reliability exceeds 0.95 with at least
95% confidence for each error situation
To acknowledge that the SOS will not be accepted with a known error,
even if the reliability goals are met

16.2.2 Users, Uses, and Environments

The test boundary determines the system under test. All interfaces that are cut
by the boundary must be "driven" by the test in the following sense: All inputs
should be controllable by the testers, and all outputs must be observable by the
testers. If inputs cannot be controlled, the software will not be in a well-defined
state of use, and results cannot be predicted. If outputs cannot be observed, then
software success or failure on a test case cannot be determined.

For the SOS, the test boundary will cut the following external interfaces:

• The interface between the receiver hardware and the packet parser
All interfaces to the transmit hardware

A "use" of the SOS will be either a completion (all events beginning with
initialization of the SOS through to completion of a successful transmission by
exiting transmit mode) or a failure (all events from initialization of the SOS to a
fatal error or reset). Thus, the initial and final states for a use will be software
initialized prior to entering maintenance mode. A use shall be a nonempty
sequence of events beginning in the initial state and ending in the final state.

There are three classes of users: GCS, UL, and DL. These user classes are
further subdivided and defined as shown in Table 16.1.

16.2 Step 1: Define Certification Plan 351

Table 16.1 Classes of SOS user

User Class Description

GCS normal Normal GCS user; initiates valid communications, allows transmissions
to complete

GCS error Error-prone GCS user; initiates communications with out-of-sequence
commands (such as transmit mode commands during maintenance
mode), invalid sites, and transmission interrupts

UL good Good uplink site; sends correct sequence of packets with correct infor­
mation, no out-of-sequence messages or transmission interrupts

UL bad Bad uplink site; sends packets out of sequence or with incorrect check­
sums, sends transmission interrupts and out-of-sequence messages
(such as UG during Dl packet sequence)

DL good Good downlink site; all packets received, no out-of-sequence messages,
only requests resending valid packets, no transmission interrupts

DL bad Bad downlink site; some packets dropped, PB sent for nonexistent pack­
ets, transmission interrupts

For certification testing purposes there is only a single environment of use
for the SOS. Operations under adverse environmental circumstances (e.g., poor
atmospheric conditions) will be represented through the "bad" user classes.

General field operations, for which the reliability must be shown to exceed
0.999, include all eight of the following strata:

1. GCS normal, UL good, DL good

2. GCS normal, UL good, DL bad

3. GCS normal, UL bad, DL good

4. GCS normal, UL bad, DL bad

5. GCS error, UL good, DL good

6. GCS error, UL good, DL bad

7. GCS error, UL bad, DL good

8. GCS error, UL bad, DL bad

The error situations, each of which must be certified separately to have a
reliability exceeding 0.95, are strata 2 through 8. Statistical sampling will be
used for all strata to meet testing goals. As will be seen in the following pages,
the testing goals imply that error situations must be tested far in excess of their
expected frequency in general operations. The general field operations reliability
and confidence calculations will include the testing performed for the individual
error strata but will discount each to its correct proportions. One usage model
will be developed to guide testing and generate test cases for all strata, and will
be built with special "bookkeeping" states to facilitate correct sampling.

352 Satellite Control System Testing and Certification

16.3 Step 2: Build Model Structure

The most likely scenario is given at the start of Chapter 12. Based on this sce­
nario, Figure 16.1 is a high-level view of the SOS use.

Figure 16.1 Initial usage model

Mode: MG
None---

Figure 16.2 Expansion of Mode: Maintenance

Figure 16.3 Expansion of Mode: Transmit

Mode:
Transmit

Mode:
None

16.3 Step 2: Build Model Structure 353

The high-level model will be refined to the necessary level of detail by suc­
cessively refining states and transitions. The state designated [Mode:
Maintenance] can be expanded as shown in Figure 16.2, and the state desig­
nated [Mode: Transmit] can be expanded as shown in Figure 16.3.

Many arcs were excluded from these figures so that the essential structure
of the model would not be obscured. The complete usage model consists of 68
states and 1,071 arcs. The model was designed to facilitate sampling control by
strata, and this required that the basic model be replicated. The replication is
described, but details are omitted because of space limitations.

The model is presented in a usage modeling notation. Comments are indi­
cated by II, state names are enclosed in square brackets, arc names are enclosed
in quotation marks, and probability values or relative frequencies are enclosed
in parentheses. The general pattern is

[from state]

(probability) "arc name" [to state]

(probability) "arc name" [to state]

Each state has a probability distribution over its exit arcs, and when probabil­
ity or frequency values are omitted from exit arcs of a state, a default value set by
the "assume" command in the modeling notation is used. Probabilities are always
normalized so that the exit arcs have a legitimate probability distribution.

The model presented reads as follows . Begin in state [Software Not Invoked].
There is only one exit arc "IN," therefore it has probability 1.0 of being taken
(defaulted to 0.0005 and then normalized to 1.0), which will lead to state
[Mode: None]. There are 21 exit arcs from [Mode: None] . Arc "MG" will be
taken with probability 0.99 and the remaining 0.01 probability mass will be dis­
tributed equally across the remaining 20 arcs. The arcs are classified and identi­
fied by the comment lines.

The very last section of the model is a set of bookkeeping states that will be
used for stratification of sampling. They are named according to the following
conventions:

Axxx means GCS aborts
• xBxx means GCS causes an error
• xxBx means UL causes an error

xxxB means DL causes an error

Stratum 1 is represented by [GGG] and [AGGG], stratum 2 by [GGB] and
[AGGB], and so forth. Many state names throughout the model include a suffix
that indicates the bookkeeping states through which the model will ultimately
pass. Usage model analysis shows for each state its probability of appearing in a
random walk through the model, in the long run. This reveals, for example, the

354 Satellite Control System Testing and Certification

percentage of test cases that will result in [BBB] in the long run, given the prob­
abilities in the model.

The model as presented is compiled into a format that is accepted by analy­
sis and script generation tools. Usage models are treated as directed graphs for
some purposes and as stochastic matrices for other purposes. As directed
graphs, multiple arcs from one state to another are permitted (see, for example,
the eight arcs from [Mode: None] to [Mode: None, BGG]). However, when the
model is represented as a stochastic matrix, only one arc is permitted from one
state to another and the probability mass on that single arc is the sum of the
masses on the individual arcs.

Notice that just above the bookkeeping states, comments indicate that half
the model has been omitted because of space limitations. The omitted section is
a replication of the upper half of the model for the case in which the GCS has
caused a protocol error (i.e., all the states of the form [. .. ,BGG], [... ,BGB],
[. .. ,BBG], and [... ,BBB]).

II Usage model for Sat ellite Operations Software (SOS)

assume (. 000 5)

[Software Not Invoked]

"IN" [Mode:None]

II IN

[Mode:None]

(. 99)

II Reinitializat ion ends the use.

"IN" [AGGG]

II Moves t o maintenance mode. A health check is required.

"MG" [Health Check Pending]

II The following commands from the GCS generate protocol err ors.

"HR" [Mode:None,BGG]

"BR" [Mode:None ,BGG]

"FR" [Mode: None,BGG]

"TG " [Mode :None ,BGG]

"TGu " [Mode:None,BGG]

"TGd" [Mode:None,BGG]

"TGud" [Mode: None ,BGG]

"TC" [Mode:None,BGG]

II The fol l owing signals are ignored.

"OTE" [Mode :None]

"FSR"

"FFR"

[Mode:None]

[Mode : None]

•
16.3 Step 2: Build Model Structure 355

II The following commands are ignored if not in transmit mode.

"UG" [Mode:None]

"DI"

"TE"

"UB"

[Mode:None]

[Mode:None]

[Mode:None]

"DG" [Mode :None]

"PB"
11 DTE"

"DB"

[Mode:None]

[Mode:None]

[Mode:None]

II IN MG

[Health Check Pending]

"IN" [AGGG]

II The health check is expected.

(. 99} "HR" [Checking Health]

II The following commands from the GCS generate protocol errors.

"MG" [Health Check Pending, EGG]

"BR"

''FR 1
'

11 TG"

"TGu"

"TGd"

"TGud"

"TC"

[Health

[Health

[Health

[Health

[Health

[Health

[Health

Check Pending,BGG]

Check Pending,BGG]

Check Pending,BGG]

Check Pending,BGG]

Check Pending,BGG]

Check Pending,BGG]

Check Pending,BGG]

II The following signals are ignored.

II

"OTE" [Health Check Pending]

''FSRrt

11 FFR"

[Health Check Pending]

[Health Check Pending]

The following commands are ignored

"UG" [Health Check Pending]

"DI" [Health Check Pending]

"TE, [Health Check Pending]

"UBI/ [Health Check Pending]

"DG" [Health Check Pending]
11 PB" [Health Check Pending]
11 DTE" [Health Check Pending]

''DB" [Health Check Pending]

II IN MG HR

[Checking Health]

"IN" [AGGG]

if not in transmit mode.

.. . ,

. }

~ " "

;

'.

~· ,,"
~ , ~;

~ ~

";,.

356 Satellite Control System Testing and Certification

II The health check completion signals.

(. 4 9 5) "ASN"

(.495) "SF"

[Health Check Complete]

[Health Check Complete]

II The following commands from the GCS generate protocol errors.

"HR" [Checking Health,BGG]

"MG" [Checking Health,BGG]

"BR" [Checking Health,BGG]

"FR" [Checking Health,BGG]

"TG" [Checking Health,BGG]

"TGu" [Checking Health,BGG]

"TGd" [Checking Health,BGG]

"TGud" [Checking Health,BGG]

"TC" [Checking Health,BGG]

II The following signals are ignored.

"OTE" [Checking Health]

"FSR" [Checking Health]

"FFR" [Checking Health]

II The following commands are ignored if not in transmit mode.

"UG" [Checking Health]

"DI" [Checking Health]

"TE" [Checking Health]

"UB" [Checking Health]

"DG" [Checking Health]

"PB" [Checking Health]

"DTE" [Checking Health]

"DB" [Checking Health]

II IN MG HR ASN

[Health Check Complete]

"IN" [AGGG]

II Another health request is valid.

"HR" [Checking Health]

II BIL table update requests are valid.

"BR" [Health Check Complete]

II Thruster firing requests are valid.

"FR" [Firing Thrusters]

II The following commands from the GCS generate protocol errors.

"MG" [Health Check Complete,BGG]

"TC" [Health Check Complete,BGG]

~-~,· *"'

"

•

(. 99)

16.3 Step 2: Build Model Structure 357

II The GCS can signal a switch to transmit mode.

"TG"

"TGu"

"TGd"

[Health Check Complete,BGG]

[Health Check Complete,BGG]

[Health Check Complete,BGG]

"TGud" [No Connection]

II The following signals are ignored.

"OTE"
11 FSR"

"FFR"

[Health Check Complete]

[Health Check Complete]

[Health Check Complete]

II The following commands are ignored if not in transmit mode.

"UG" [Health Check Complete]

"DI" [Health Check Complete]

"TE" [Health Check Complete]

"UB" [Health Check Complete]

"DG" [Health Check Complete]

"PB"

"DTE"

"DB"

[Health Check Complete]

[Health Check Complete]

[Health Check Complete]

II IN MG HR ASN FR

[Firing Thrusters]

"IN" [AGGG]

II Thruster firings can succeed or fail.

(. 33) "OTE" [Health Check Complete]

(. 33) "FSR" [Health Check Complete]

(. 33) "FFR" [Health Check Complete]

II The following commands from the GCS generate protocol errors.

"MG" [Firing Thrusters,BGG]

"TC" [Firing Thrusters,BGG]

"HR" [Firing Thrusters,BGG]

"BR" [Firing Thrusters,BGG]

"FR" [Firing Thrusters,BGG]

"TG" [Firing Thrusters,BGG]
11 TGu" [Firing Thrusters,BGG]

"TGd" [Firing Thrusters,BGG]

"TGud" [Firing Thrusters,BGG]

II The following commands are ignored if not in transmit mode.

"UG" [Firing Thrusters]

"DI" [Firing Thrusters]

''

\

-,./!> ~

'. ,~

;;,

; f lt

~

358 Satellite Control System Testing and Certification

liTE" [Firing Thrusters]

"UB" [Firing Thrusters]

"DG" [Firing Thrusters]
11 PB" [Firing Thrusters]

"DTE" [Firing Thrusters]
II DB" [Firing Thrusters]

II IN MG HR ASN TGud

[No Connection]

"IN" [AGGG]

II The GCS can cancel the transmission at any time.

"TC" [AGGG]

II If the connection experiences a time-out, both sites fail.
11 0TE" [GBB]

II Either site can connect now.

(.495) "UG"

(.495) "DG"

[UL Connected]

[DL Connected]

II Either site can fail.

"UB" [GBG]

"DB" [GGB]

II The following commands from the GCS generate protocol erro~-
11 HR" [No Connection,BGG]

"MG" [No Connection,BGG]
IIBR" [No Connection,BGG]

"FR" [No Connection,BGG]

"TG" [No Connection,BGG]

"TGu" [No Connection,BGG]

"TGd" [No Connection,BGG]
11 TGud" [No Connection,BGG]

II The following signals are ignored.
11 FSR"

"FFR"

[No Connection]

[No Connection]

II The following commands generate an error if not fully

"DI" [No Connection,GBG]

"TE"

"PB 11

"DTE"

[GBG]

[No Connection,GGB]

[GGB]

'\

\:, ~ ' '~ .. '
"Q, : k&

16.3 Step 2: Build Model Structure 359

II IN MG HR ASN TGud UG

[UL Connected]

II IN II [AGGG]

II The GCS can cancel the transmission at any time.

"TC" [AGGG]

II If the connection experiences a time-out now, DL fails.

(. 99)

11 0TE" [GGB]

II Either site can connect now.

"UG"
11 DG"

[UL Connected]

[Connected]

II Either site can fail.
11 UB"

"DB"

II The
11 HR"

"MG"

"BR"

"FR"
11 TG"

IITGull

"TGd"
11 TGud"

[GBG]

[GGB]

following commands

[UL Connected, EGG]

[UL Connected,BGG]

[UL Connected, EGG]

[UL Connected, EGG]

[UL Connected, EGG]

[UL Connected,BGG]

[UL Connected, EGG]

[UL Connected, EGG]

from the GCS

II The following signals are ignored.
11 FSR"

"FFR"

[UL Connected]

[UL Connected]

generate protocol errors.

II The following commands generate an error if not fully connected.

"DI''

11 TE"
"PB"

IIDTErt

[UL Connected,GBG]

[GBG]

[UL Connected,GGB]

[GGB]

II IN MG HR ASN TGud DG

[DL Connected]

"IN 11 [AGGG]

II The GCS can cancel the transmission at any time.

I'TCu [AGGG]

<: >

'

":
' 0

_,,

360

(. 99)

Satellite Control System Testing and Certification

II If the connection experiences a time-out now, UL fails.

"OTE" [GBG]

II Either site can connect now.

"UG"
11 DG"

[Connected]

[DL Connected]

II Either site can fail.

"UB" [GBG]

"DB" [GGB]

II The following commands from the GCS generate protocol errors.

"HR" [DL Connected,BGG]

"MG" [DL Connected,BGG]

IIBR" [DL Connected,BGG]

"FR 11 [DL Connected,BGG]
"TGtt [DL Connected,BGG]

"TGu" [DL Connected,BGG]

"TGd" [DL Connected,BGG]

"TGud" [DL Connected,BGG]

II The following signals are ignored.

"FSR" [DL Connected]

"FFRu [DL Connected]

II The following commands generate an error if not fully connec

"DI" [DL Connected,GBG]
liTE"

11 PB"

"DTE 11

[GBG]

[DL Connected,GGB]

[GGB]

II IN MG HR ASN TGud UG DG

[Connected]

(. 09)

"IN" [AGGG]

II The GCS can cancel the transmission at any time.

"TC" [AGGG]

II Either site can send good status.

"UG" [Connected]

"DG" [Connected]

II Either site can fail.

"UB"
11 DB"

[GBG]

[GGB]

,~ Q,

- '"""'Illi

\'> '

16.3 Step 2: Build Model Structure 361

II Data can be transferred now.

(. 5) 11 DI" [Connected]

(.2) 11 PB" [Connected]

II The UL can signal end of data.

(. 2) "TE" [Half-Closed]

II The following commands from the GCS generate protocol errors.

"HR" [Connected,BGG]

"MG" [Connected,EGG]

"ER" [Connected, EGG]

"FR" [Connected, BGG]

"TG" [Connected,EGG]

"TGu" [Connected,EGG]

"TGd" [Connected, EGG]

"TGud" [Connected,EGG]

II The following signals are ignored.

''FSR"

"FFR"
11 0TE''

[Connected]

[Connected]

[Connected]

II The following commands generate an error if not fully connected.

"DTE" [GGE]

II IN MG HR ASN TGud UG DG TE

[Half-Closed]

"IN" [AGGG]

II The GCS can cancel the transmission at any time.

"TC" [AGGG]

II Either site can send good status.

"UG" [Half-Closed]

"DG" [Half-Closed]

II Either site can fail.

"UB"

"DB''

[GBG]

[GGE]

II Data can be transferred now.

(.245) "DI"

(. 245) "PE"

[Half-Closed]

[Half -Closed]

• 't~

'. ·~

~ "

, "

'·.

'•

362 Satellite Control System Testing and Certification

(. 5)

II The UL can signal end of data.

"TE" [Half-Closed]

II The DL can signal end of data .

"DTE" [GGG]

II The following commands from the GCS generate protocol errors_

"HR" [Half-Closed,BGG]

"MG" [Half-Closed,BGG]

"BR" [Half-Closed,BGG]

"FR" [Half-Closed,BGG]

"TG" [Half-Closed,BGG]

"TGu" [Half-Closed, EGG]

"TGd" [Half-Closed, EGG]

"TGud" [Half-Closed,BGG]

II The following signals are ignored.

"FSR" [Half-Closed]

''FFR"
11 0TE"

[Half-Closed]

[Half-Closed]

II IN MG HR ASN TGud (with UL error)

[No Connection,GBG]

"IN" [AGBG]

II The GCS can cancel the transmission at any time.

"TC" [AGBG]

II If the connection experiences a time-out, both sites fail.

"OTE" [GBB]

II Either site can connect now.

(.495) "UG"

(.495) "DG"

[UL Connected,GBG]

[DL Connected,GBG]

II Either site can fail.

"UB" [GBG]

"DB" [GBB]

II The following commands from the GCS generate protocol errors.

"HR" [No Connection,BBG]

"MG" [No Connection,BBG]

"BR" [No Connection,BBG]

"FR"

"TG"

''TGu"

[No Connection,BBG]

[No Connection,BBG]

[No Connection,BBG]

.,,

...

16.3 Step 2: Build Model Structure 363

"TGd" [No Connection,BBG]

"TGud" [No Connection,BBG]

II The following signals are ignored.

"FSR 11

11 FFR 11

[No Connection,GBG]

[No Connection,GBG]

II The following commands generate an error if not fully connected.

"DI"

"TE"

"PB"

"DTE"

[No Connection,GBG]

[GBG]

[No Connection,GBB]

[GBB]

II IN MG HR ASN TGud UG (with UL error)

[UL Connected,GBG]

(. 99)

"IN" [AGBG]

II The GCS can cancel the transmission at any time.

"TC" [AGBG]

II If the connection experiences a time-out now, DL fails.

"OTE" [GBB]

II Either site can connect now.

"UG"

"DG"

[UL Connected,GBG]

[Connected,GBG]

II Either site can fail.
IIUB"

"DB"

[GBG]

[GBB]

II The following commands from the GCS generate protocol errors.
"HRrt [UL Connected, BEG]
IIMG'I [UL Connected, BEG]

"BR" [UL Connected, BEG]

"FR" [UL Connected, BEG]
11 TG 11 [UL Connected, BEG]

'ITGulf [UL Connected, BEG]

"TGd" [UL Connected, BEG]

"TGud" [UL Connected, BEG]

II The following signals are ignored.
11 FSR"
11 FFR"

[UL Connected,GBG]

[UL Connected,GBG]

' •'

r.;,_.,

"'

'~
~

!""

,-

364 Satellite Control System Testing and Certification

II The following commands generate an error if not fully conne

"DI" [UL Connected,GBG]

"TE"

"PB"
11 DTE"

[GBG]

[UL Connected,GBB]

[GBB]

II IN MG HR ASN TGud DG (with UL error)

[DL Connected,GBG]

(. 99)

"IN" [AGBG]

II The GCS can cancel the transmission at any time.

"TC" [AGBG]

II If the connection experiences a time-out now, UL fails.
"OTE" [GBG]

II Either site can connect now.

"UG"

"DG"

[Connected,GBG]

[DL Connected,GBG]

II Either site can fail.

"UB"
11 DB"

[GBG]

[GBB]

II The following commands from the GCS generate protocol errors.
"HR" [DL Connected,BBG]

"MG" [DL Connected,BBG]

"BR" [DL Connected,BBG]

"FR" [DL Connected,BBG]

"TG// [DL Connected,BBG]

"TGu" [DL Connected,BBG]

"TGd" [DL Connected,BBG]

"TGud" [DL Connected,BBG]

II The following signals are ignored.

"FSR"

"FFR"

[DL Connected,BBG]

[DL Connected,BBG]

II The following commands generate an error if not fully connectec_
"DI"

"TE"

"PB"

"DTE"

"-~

[DL Connected,GBG]

[GBG]

[DL Connected,GBB]

[GBB]

~ \1

I

16.3 Step 2: Build Model Structure 365

II IN MG HR ASN TGud UG DG (with UL error)

[Connected,GBG]

''IN" [AGBG]

II The GCS can cancel the transmission at any time.

(. 09) "TC" [AGBG]

II Either site can send good status.

"UG" [Connected, GBG l

"DG" [Connected,GBG]

II Either site can fail.

"UB" [GBG]

[GBB]

II Data can be transferred now.

(.5) "DI" [Connected,GBG]

(. 2)

(. 2)

"PB" [Connected,GBG]

II The UL can signal end of data.

"TE" [Half-Closed,GBG]

II The following commands from the GCS generate protocol errors.

"HR" [Connected,BBG]

"MG" [Connected, BEG]

"BR" [Connected, BEG]

"FR" [Connected, BEG]

"TG" [Connected,BBG]

"TGu" [Connected, BEG]

"TGd" [Connected,BBG]

"TGud" [Connected,BBG]

II The following signals are ignored.

"FSR" [Connected,GBG]

''FFR 11

"OTE"

[Connected,GBG]

[Connected,GBG]

II The following commands generate an error if not fully connected.

"DTE" [GBB]

II IN MG HR ASN TGud UG DG TE (with UL error)

[Half-Closed,GBG]

"IN" [AGBG]

~· ;

' ' <

',o

'"

'"

:

(·

?'

,.

366 Satellite Control System Testing and Certification

II The GCS can cancel the transmission at any time.

"TC" [AGBG]

II Either site can send good status.

"UG" [Half-Closed,GBG]

"DG" [Half-Closed,GBG]

II Either site can fail.

"UB" [GBG]

"DB" [GBB]

II Data can be transferred now.

(.245) "DI"

(.245) "PB"

[Half-Closed,GBG]

[Half-Closed,GBG]

II The UL can signal end of data.

"TE" [Half-Closed,GBG]

II The DL can signal end of data.

(.5) "DTE" [GBG]

II The following commands from the GCS generate protocol errors.

"HR" [Half-Closed, BEG]

"MG" [Half-Closed, BEG]

"BR" [Half-Closed,BBG]

"FR" [Half-Closed,BBG]

"TG" [Half-Closed, BEG]

"TGu" [Half-Closed, BEG]

"TGd" [Half-Closed,BBG]

"TGud" [Half-Closed,BBG]

II The following signals are ignored.

"FSR" [Half-Closed,GBG]
11 FFR"

"OTE"

[Half-Closed,GBG]

[Half-Closed,GBG]

II IN MG HR ASN TGud (with DL error)

[No Connection,GGB]

"IN" [AGGB]

II The GCS can cancel the transmission at any time.

"TC" [AGGB]

II If the connection experiences a time-out, both sites fail.

"OTE" [GBB]

.. , ~

-~ cq

(.495)

(. 495)

16.3 Step 2: Build Model Structure 367

II Either site can connect now.

"UG" [UL Connected, GGB]

"DG" [DL Connected,GGB]

II Either site can fail.

"UB" [GBB]

"DB" [GGB]

II The following commands from the GCS generate protocol errors.

"HR" [No Connection, BGB]

"MG" [No Connection,BGB]

"BR" [No Connection, BGB]

"FR"

"TG"

"TGu"

"TGd"

[No Connection,BGB]

[No Connection,BGB]

[No Connection,BGB]

[No Connection,BGB]

"TGud" [No Connection, BGB]

II The following signals are ignored.

"FSR" [No Connection,GGB]
11 FFR" [No Connection,GGB]

II The following commands generate an error if not fully connected.

"DI" [No Connection,GBB]

"TE" [GBB]
11 PB 1

'

"DTE"

[No Connection,GGB]

[GGB]

II IN MG HR ASN TGud UG (with DL error)

[UL Connected,GGB]

"IN" [AGGB]

II The GCS can cancel the transmission at any time.

"TC" [AGGB]

II If the connection experiences a time-out now, DL fails.

"0TE 11 [GGB]

II Either site can connect now.

"UG" [UL Connected,GGB]

(. 99) 11 DG" [Connected,GGB]

II Either site can fail.

"UB" [GBB]

"DB" [GGB]

. ,;. '

' '

; ~

·'>'

.,

,.

., '

368 Satellite Control System Testing and Certification

II The following commands from the GCS generate protocol erro~.
11 HR" [UL Connected,BGB]

"MG" [UL Connected,BGB]

"BR 11 [UL Connected,BGB]

"FR" [UL Connected,BGB]

"TG" [UL Connected,BGB]

"TGu" [UL Connected,BGB]

"TGd 11 [UL Connected,BGB]

"TGud" [UL Connected,BGB]

II The following signals are ignored.

"FSR" [UL Connected, GGB]
11 FFR 11 [UL Connected,GGB]

II The following commands generate an error if not fully coD~ec%1

"DI" [UL Connected, GBB]

"TE"

"PB"

"DTE"

[GBB]

[UL Connected,GGB]

[GGB]

II IN MG HR ASN TGud DG (with DL error)

[DL Connected,GGB]

(. 99)

'-

"IN" [AGGB]

II The GCS can cancel the transmission at any time.

"TC" [AGGB]

II If the connection experiences a time-out now, UL fails.

"OTE" [GBB]

II Either site can connect now.
11 UG"

"DG"

[Connected,GGB]

[DL Connected,GGB]

II Either site can fail.
11 UB"

"DB"

[GBB]

[GGB]

II The following commands from the GCS generate protocol errors.

"HR" [DL Connected,BGB]
11 MG"

"BR"

"FR"
11 TG"

[DL Connected,BGB]

[DL Connected,BGB]

[DL Connected,BGB]

[DL Connected,BGB]

·:;~Q4 4

16.3 Step 2: Build Model Structure 369

"TGu" [DL Connected, 8GB]

"TGd" [DL Connected,BGB]

"TGud" [DL Connected,BGB]

II The following signals are ignored.

"FSR" [DL Connected,GGB]

"FFR" [DL Connected,GGB]

II The following commands generate an error if not fully connected.

"DI" [DL Connected,GBB]

"TE" [GBB]

"PB" [DL Connected,GGB]

"DTE" [GGB]

II IN MG HR ASN TGud UG DG (with DL error)

[Connected,GGB]

(. 09)

(. 5)

(. 2)

(.2)

"IN" [AGGB]

II The GCS can cancel the transmission at any time.

11 TC" [AGGB]

II Either site can send good status.

"UG" [Connected,GGB]

"DG" [Connected, GGB]

II Either site can fail.

"UB" [GBB]

"DB" [GGB]

II Data can be transferred now.

11 DI"

"PB"

[Connected,GGB]

[Connected,GGB]

II The UL can signal end of data.

"TE" [Half-Closed,GGB]

II The following commands from the GCS generate protocol errors.

"HR" [Connected,BGB]

"MG"

"BR"

"FR"

"TG"
11 TGu"

[Connected,BGB]

[Connected,BGB]

[Connected,BGB]

[Connected,BGB]

[Connected,BGB]

~ ~

,·

,,

"'!'

i-

'
'" $

;·
.y·~

370 Satellite Control System Testing and Certification

"TGd" [Connected, BGB]

"TGud" [Connected, BGB]

II The following signals are ignored.

"FSR" [Connected, GGB]
11 FFR"

"OTE"

[Connected,GGB]

[Connected,GGB]

I I Th.e following commands generate an error if not fully connec-~

''DTE" [GGB]

II IN MG HR ASN TGud UG DG TE (with DL error)

[Half-Closed,GGB]

"IN" [AGGB]

II The GCS can cancel the transmission at any time.

"TC" [AGGB]

II Either site can send good status.

"UG" [Half-Closed, GGB]

"DG" [Half-Closed,GGB]

II Either site can fail.

"UB" [GBB]

"DB" [GGB]

II Data can be transferred now.

(.245) "DI"

(.245) "PB"

[Half-Closed,GGB]

[Half-Closed,GGB]

II The UL can signal end of data.

"TE" [Half-Closed,GGB]

II The DL can signal end of data.

(.5) "DTE" [GGB]

II The following commands from the GCS generate protocol errors.

"HR" [Half~Closed,BGB]

"MG" [Half-Closed, BGB]

"BR" [Half-Closed,BGB]

"FR" [Half-Closed,BGB]

"TG" [Half-Closed,BGB]

''TGu" [Half-Closed,BGB]

,_..._
"'

16.3 Step 2: Build Model Structure 371

"TGd" [Half-Closed,BGB]

"TGud" [Half-Closed,BGB]

II The following signals are ignored.

"FSR" [Half-Closed,GGB]

"FFR" [Half-Closed,GGB]

"OTE" [Half-Closed,GGB]

II IN MG HR ASN TGud (with ULand DL error)

[No Connection,GBB]

"IN" [AGBB]

II The GCS can cancel the transmission at any time.

"TC" [AGBB]

II If the connection experiences a time-out, both sites fail.

"OTE" [GBB]

II Either site can connect now.

(.495) "UG"

(.495) "DG"

[UL Connected,GBB]

[DL Connected,GBB]

II Either site can fail.

"UB"

''DB"

[GBB]

[GBB]

II The following commands from the GCS generate protocol errors.

"HR" [No Connection,BBB]

"MG" [No Connection,BBB]

"BR" [No Connection,BBB]

"FR" [No Connection, BBB]

"TG" [No Connection,BBB]

"TGu" [No Connection,BBB]

"TGd" [No Connection,BBB]

"TGud" [No Connection, BBB]

II The following signals are ignored.

"FSR"

''FFR 11

[No Connection,GBB]

[No Connection,GBB]

II The following commands generate an error if not fully connected.

"DI"

''TE"

[No Connection,GBB]

[GBB]

:"

:),'

0 ~ ~'

c•

:,

372 Satellite Control System Testing and Certification

"PB"

"DTE"

[No Connection,GBB]

[GBB]

II IN MG HR ASN TGud UG (with ULand DL error)

[UL Connected,GBB]

"IN" [AGBB]

II The GCS can cancel the transmission at any time.

"TC" [AGBB]

II If the connection experiences a time-out now, DL fails.

"OTE" [GBB]

II Either site can connect now.

"UG" [UL Connected,GBB]

(. 99) "DG" [Connected, GEE]

II Either site can fail.

"UB" [GBB]

"DB" [GBB]

II The following commands from the GCS generate protocol erro~s-

J/HR" [UL Connected,BBB]

"MG" [UL Connected,BBB]

"BR" [UL Connected,BBB]

"FR" [UL Connected,BBB]

"TG" [UL Connected,BBB]

"TGu" [UL Connected,BBB]

"TGd" [UL Connected,BBB]
11 TGud" [UL Connected,BBB]

II The following signals are ignored.

"FSR" [UL Connected,GBB]

"FFR" [UL Connected,GBB]

II The following commands generate an error if not fully

"DI" [UL Connected,GBB]

"TE" [GBB]

"PB" [UL Connected,GBB]

"DTE" [GBB]

II IN MG HR ASN TGud DG (with ULand DL error)

[DL Connected,GBB]

"IN" [AGBB]

II~

I

(. 99)

16.3 Step 2: Build Model Structure 373

II The GCS can cancel the transmission at any time.

"TC" [AGEE]

II If the connection experiences a time-out now, UL fails.

"OTE" [GBB]

II Either site can connect now.

"UG"
11 DG"

[Connected,GBB]

[DL Connected,GBB]

II Either site can fail.

11 DB"

II The

"HR"

"MG"

"BR"

"FR"

"TG"

'
1 TGu"

"TGd"

"TGud"

[GBB]

[GBB]

following commands

[DL Connected, BEE]

[DL Connected, EBB]

[DL Connected, BilE]

[DL Connected, EBB]

[DL Connected, EBB]

[DL Connected, EBB]

[DL Connected, EBB]

[DL Connected, EBB]

from the GCS

II The following signals are ignored.

"FSR" [DL Connected,BBB]

"FFR" [DL Connected,BBB]

generate protocol errors.

II The following commands generate an error if not fully connected.

'
1 Dl"

"TE 11

''PB"
11 DTE"

[DL Connected,GBB]

[GBB]

[DL Connected,GBB]

[GBB]

II IN MG HR ASN TGud UG DG (with ULand DL error)

[Connected, GEE]

(. 09)

"IN" [AGEE]

II The GCS can cancel the transmission at any time.

"TC" [AGEE]

II Either site can send good status.

"UG"
11 DG 11

[Connected, GEE]

[Connected, GEE]

'<

· ..
. •'

~ Ji

''"

•.
·,.,·
.~

: -~'

"fll

~., ~

' ~-

374 Satellite Control System Testing and Certification

II Either site can fail.

"UB" [GBB]
11 DB" [GBB]

II Data can be transferred now.

(. 5) "DI" [Connected, GEE]

(. 2) "PB" [Connected, GEE]

II The UL can signal end of data.

(. 2) "TE" [Half-Closed,GBB]

II The following commands from the GCS generate protocol errors.

"HR" [Connected, EBB]

"MG" [Connected, EBB]

"BR" [Connected, EBB]

"FR" [Connected, EBB]

"TG" [Connected, EBB]

"TGu" [Connected,BBB]

"TGd" [Connected, EBB]

"TGud" [Connected, EBB]

II The following signals are ignored.
11 FSR"

"FFR"
11 0TE"

[Connected, GEE]

[Connected, GEE]

[Connected, GEE]

II The following commands generate an error if not fully connected.
11 DTE" [GBB]

II IN MG HR ASN TGud UG DG TE (with ULand DL error)

[Half-Closed,GBB]

"IN" [AGBB]

II The GCS can cancel the transmission at any time.

"TC" [AGBB]

II Either site can send good status.

"UG" [Half-Closed,GBB]

"DG" [Half-Closed,GBB]

II Either site can fail.

"UB" [GBB]

"DB" [GBB]

·~'!ill'.'!,~~

I

(. 245)

(. 245)

(. 5)

16.3 Step 2: Build Model Structure 375

II Data can be transferred now.

"DI" [Half-Closed,GBB]
11 PB" [Half-Closed,GBB]

II The UL can signal end of data.

''TE" [Half-Closed,GBB]

II The DL can signal end of data.

"DTE" [GBB]

II The following commands from the GCS generate protocol errors.
IIHRII

"MG"

IIBRII

"FR"

''TG"

''TGu"

[Half-Closed,BBB]

[Half-Closed, EBB]

[Half-Closed,BBB]

[Half-Closed,BBB]

[Half-Closed,BBB]

[Half-Closed, EBB]

"TGd" [Half-Closed, EBB]

"TGud" [Half-Closed, EBB]

II The following signals are ignored.

"FSR"

"FFR"

"OTE"

[Half-Closed,GBB]

[Half-Closed,GBB]

[Half-Closed,GBB]

II SECOND HALF OF MODEL GOES HERE

II Structure of second half is identical to that of first half, and

consists of the following states:

II [Mode:None,BGG], [Health Check Pending,BGG], [Checking Health,BGG],

II [Health Check Complete,BGG], [Firing Thrusters,BGG],

II [No Connection,BGG], [UL Connected,BGG], [DL Connected, EGG],

II [Connected,BGG], [Half-Closed,BGG],

II [No Connection,BBG], [UL Connected,BBG], [DL Connected,BBG],

II [Connected,BBG], [Half-Closed,BBG],

II [No Connection,BGB], [UL Connected,BGB], [DL Connected,BGB],

II [Connected,BGB], [Half-Closed,BGB],

II [No Connection, EBB], [UL Connected,BBB], [DL Connected,BBB],

I I [Connected, BBB], [Half-Closed, BBB],

II Bookkeeping states.

[GGG]

"End of Use" [Software Terminated]

[GBG]

"End of Use" [Software Terminated]

'b,:;

376 Satellite Control System Testing and Certification

[GGB]

"End of Use" [Software Terminated]

[GBB]

"End of Use" [Software Terminated]

[BGG]

"End of Use" [Software Terminated]

[BBG]

"End of Use" [Software Terminated]

[BGB]

"End of Use" [Software Terminated]

[BBB]

"End of Use" [Software Terminated]

[AGGG]

"End of Use" [Software Terminated]

[AGBG]

"End of Use" [Software Terminated]

fr • [AGGB]

"End of Use" [Software Terminated]

[AGBB]
~ ~ ~

'''" "End of Use" [Software Terminated]
0 0

., [ABGG] .
,;~ "End of Use" [Software Terminated] ,.

[ABBG]

"End of Use" [Software Terminated]

[ABGB]

"End of Use" [Software Terminated]
; r r,

·'- [ABBE]

"End of Use" [Software Terminated] ·•
0 0

·:- ...

'· .

·""

I

16.4 Step 3: Determine State Transition Probabilities 377

16.4 Step 3: Determine State Transition
Probabilities

Transition probabilities must be assigned to every arc in the usage model. The
model structure can be used with different sets of transition probabilities to
make different models. Multiple models will be needed to plan and to conduct
testing according to the certification criteria.

The usage model notation shows assigned probabilities in parentheses. The
arcs with no probabilities shown have been defaulted to 0.0005. In other words,
the model explicitly accounts for 99% of the probability mass of the exit arcs
for each state. The controlling probabilities use the following pattern:

[No Connection]

(0. 495) 11 UG"

(0. 495) "DG"

[UL Connected]

(0. 990) "DG"

[DL Connected]

(0.990) "UG"

[Connected]

(0. 010) "TC"

(0. 900) "DI"

(0. 070) "PB"

(0.010) "TE"

[Half-Closed]

(0. 245) "DI"

(0. 245) "PB"

(0.500) 11 DTE"

The probability values shown in the usage model represent the expected use of
the system in general field operations. These values were determined by instru­
mentation of a similar predecessor system.

Different usage models can be generated with this same structure but with
different probability values. The directed graph would remain the same but the
stochastic matrix would be different. A usage model can also be represented as
a system of equations (constraints). A solution to the system of constraints
yields the stochastic matrix of the Markov chain.

. "

378 Satellite Control System Testing and Certification

16.5 Step 4: Validate the Usage Model

The first step in model validation is to examine all the states of use and allow­
able transitions in terms of tagged requirements for the system. Next, examine
requirements in terms of scenarios of use (paths through the model). Then, con­
sider various paths through the model in terms of operational implications for
the system.

Analytical calculations on the Markov chain can help to validate the model.
All such results describe long-run behavior (i.e., what to expect on average in
the long run). For example, the expected sequence length for the model pre­
sented above is 55 events. Does this make sense in terms of the application? If
not, then the controlling probabilities must be changed. One could set a con­
straint to determine the expected sequence length and then generate a set of
model probabilities that will necessarily satisfy the constraint.

The expected number of test cases (uses) required to cover the least likely
state is almost 74 million, and, of course, far more will be required to cover all
states in strictly random testing, and even far more will be required to cover all
arcs. In this instance, the requirement to visit every state and to experience
every transition will not be met through random testing. An efficient way to sat­
isfy the requirements is presented next.

Analytical results for the 12 mainstream states and the 16 bookkeeping
states are presented in Table 16.2. Not all states of the model are included in the
table. All those not included have a long-run occupancy of less than 0.0001 .

Validation of the model should proceed by checking the reasonableness of
these long-run results. The bookkeeping states consume 3.64% of the long-run
occupancy, which is not enough to distort the picture. More than 94% of the
time the system will be in one of the mainstream states: Does this agree with
experience? Should the system be in the Connected state 68% of the time? All
values should be checked for reasonableness in the application. If they disagree
with experience and reason, then the model must be changed.

The bookkeeping states are mutually exclusive, and every test case runs
through exactly one of them. A successful test case (no errors of any kind in
operation) passes through GGG (36.7% of them) or AGGG (39.5% of them),
thus 76.2% of the test cases in long-run random sampling will represent error­
free operations. The percentages of uses that will occur in the various strata dur­
ing general field operations are represented in Table 16.3.

Using the binomial model 2,995 test cases must pass for certification of
general field operation, and 60 are needed to certify an error stratum. Thus any
stratum getting more than 2% of the traffic should be certified as a consequence
of certification for general field operations. It would appear safe to assume that
strata 2, 3, and 5 will be so certified. The other error strata will require prior,
additional testing.

16.5 Step 4: Validate the Usage Model 379

Table 16.2 Analysis of the SOS usage model

Expected Transitions Probability of
Long-run Until State First Occurrence in a

State Occupancy Occurs Test Case

Software Not Invoked 0.018195 55 1.000000

Mode: None 0.018295 2 1.000000

Health Check Pending 0.018212 3 0.995475

Checking Health 0.018139 4 0.990971

Health Check Complete 0.018066 5 0.985991

Firing Thrusters 0.000009 110,710 0.000496

No Connection 0.017903 6 0.983007

UL Connected 0.008880 64 0.487319

DL Connected 0.008880 64 0.487319

Connected, BGG 0.141452 273 0.171296

Connected 0.675212 9 0.966342

Half-Closed, BGG 0.002926 677 0.080800

Half-Closed 0.013351 144 0.371669

GGG 0.006682 148 0.367262

GGB 0.000728 1,372 0.040015

GBG 0.000392 2,550 0.021544

GBB 0.000012 85,564 0.000642

BGG 0.001464 681 0.080478

BGB 0.000147 6,799 0.008082

BBG 0.000075 13,378 0.004108

BBB 0.000001 1,936,574 0.000028

AGGG 0.007186 138 0.394946

AGGB 0.000005 206,648 0.000266

AGBG 0.000007 139,800 0.000393

AGBB <0.000001 4,564,512 0.000012

ABGG 0.001492 669 0.081978

ABGB 0.000003 345,155 0.000159

ABBG 0.000002 652,418 0.000084

ABBB <0.000001 23,595,426 0.000002

Software Terminated 0.018194 54 1.000000

380 Satellite Control System Testing and Certification

Table 16.3 Expected use versus strata

Stratum Bookkeeping States

GGG AGGG

2 GGB AGGB

3 GBG AGBG

4 GBB AGBB

5 BGG ABGG

6 BGB ABGB

7 BBG ABBG

8 BBB ABBB

16.6 Step 5: Generate Test Cases, and
Execute and Evaluate Results

Percent Use

76.22%

4.03%

2.19%

0.07%

16.28%

0.82%

0.42%

0.003%

Because of the certification requirement that the product will not be accepted
with a known error, and because of the high degree of reliability required, the
cost of a failure (in terms of additional testing) after random testing has begun
will be very expensive. Consequently, a testing protocol will be followed that
will minimize this possibility. Under less stringent certification requirements, a
different protocol might be followed.

16.6.1 Model Coverage

A graph algorithm was used to generate the "least cost" set of scripts to experi­
ence each transition at least one time. Performing this test will ensure that the
testers know how to recognize and to evaluate each state of use, and to experi­
ence and to evaluate each transition. Because this is a graph algorithm, multiple
arcs between two states are recognized and all will be covered.

Because arc coverage is achieved by "walking the graph," each state and
arc is reached in a legitimate scenario of use of the system. This means that
some states and arcs will be visited many times before every arc has been vis­
ited at least once. If the cost of conducting and evaluating each arc test differs
from arc to arc, this cost can be taken into account so that arc coverage will be
achieved at the least cost of testing. Using unit costs on the arcs, the least cost
coverage test consists of 332 test cases with a total of 3,679 transitions and state
visitations. (These are obviously atypical because the long-run average random
test case length is about 55 transitions , which would imply more than 18,000

16.6 Step 5: Generate Test Cases, and Execute and Evaluate Results 381

transitions.) A copy of the usage model structure can be marked to show exactly
the paths taken.

If failures are seen during model coverage testing, the test engineers will
have to decide when to stop testing and when to order engineering changes to
the code. Find-one-fix-one is the safest policy, but is often too time-consuming
and expensive to be followed. Ideally, the model coverage scripts should be
repeated until they are run without failure.

16.6.2 Requirements Coverage

Each canonical sequence is a use case that should be run. These sequences will
exercise the mathematically essential control state, regardless of how the sys­
tem is implemented. It is likely that the model coverage scripts will have actu­
ally covered some of the canoncial sequences and, if so, they need not be run
again. If any failures occur, engineering changes should be made and testing
repeated until the canonical sequences run failure free.

Each requirement can now be checked against testing already done. If a test
case for a requirement has not already been run, a suitable test case can be
traced on the model, produced, and executed on the system.

Any additional testing that results from requirements coverage should be
recorded on the usage model to update the testing record and to show the paths
taken and the number of times each state and arc have been visited.

16.6.3 SOS Error Strata

Four of the seven error strata must be tested using test cases generated randomly
from the model to satisfy the certification criteria. To demonstrate a reliability
in excess of0.95 with 95% confidence, 60 randomly generated test scripts must
be run without failure. (This is using the binomial model; other models are pos­
sible. The purpose of the case study is to illustrate general technique, rather than
advocate any particular models .) If a failure occurs, then additional analysis is
necessary.

A model to generate test cases for stratum 8, [BBB] and [GBBB] , could be
realized in two ways. One could alter the structure of the SOS usage model by
working backward from the bookkeeping states and deleting arcs and states that
cannot lead to these two to produce a new model. Alternatively, one could add a
new constraint, that bookkeeping state [BBB] appears in 100% of the test cases,
to all other constraints on arc probabilities, and solve the system of equations.
The solution variables would be the cells in the stochastic matrix of a Markov
chain usage model suitable for this test. This will be a submodel of the full
usage model.

382 Satellite Control System Testing and Certification

There will be four such submodels, one for each error stratum requiring
additional testing. Testing of the error strata should be done in the following
order: stratum 8, run 60 test cases; stratum 4, run 58 test cases; stratum 7, run 48
test cases; and stratum 6, run 36 test cases. This plan is based on expected, aver­
age results from sampling. As mentioned, if a failure is seen, additional analysis
will be necessary, and generally more tests must be run (successfully) to wash
out the bad news of the failure.

16.6.4 General Field Operations

This is the final phase of testing and is based on the full usage model. Using the
binomial model to demonstrate that the system exceeds a reliability of 0.999
with 95% confidence, it will be necessary to run 2,995 randomly generated
sequences without failure. This amount of testing, following the error strata
testing, is expected to satisfy both certification goals regarding reliability and
confidence. If the sampling does not conform to the expectations, supplemental
sampling in the error strata will be necessary. Again, all testing experience
should be recorded on the model. The cumulative test history can be seen in
terms of paths taken, and the number of times each state is visited and each arc
is taken. The cumulative testing history can be compared with the usage model
using the discriminant as testing progresses to measure the degree to which the
testing experience differs from expected general field operations.

Index

A
Abstract stimuli, 229, 231

defining black box table, 260-269
informal definitions, 272-273

Abstractions
accumulating, 275
black boxes, 222
bundle, 273
clear boxes, 66-69
counting,274
deletion, 274
history-encapsulating, 274-275
partition, 274
removing black box, 269-272
sequence-based, 274-275
state data, 279-283
stimulus-based, 273-274

Agrawal, K., 19-20, 186
APis (Application Program Interfaces), 172
Arc names and usage models, 353
Arnold , P. G. , 20

B
Baker, F. T. , 20
Basili, V. R., 19-20
Biased sampling, 92
Binder, L. H., 20
Black boxes, 9-10, 33-34

abstractions, 222
analyzing canonical sequences, 256- 257

behavior, 35-37
canonical sequences, 45
constructing tables, 260-269
defining specification functions, 257-260
defining system boundary, 224-228
definition, 35-36
enumerating stimulus sequences, 229-255
mathematical semantics, 35
one-to-many relationship, 61
prudent specification exceptions, 152
removing abstractions, 269-272
required external behavior, 40
sequence abstraction techniques, 272
sequence enumeration, 44-45
sequence-based abstractions, 274-275
sequence-based specification, 44-45,

221-224
specification functions, 222
specifications, 35-36
state box description, 37
stimulus-based abstractions , 273-274
system boundary definition, 44
tabular format, 36
tagged requirements, 44

Box structures, 9, 33-43
black box behavior, 35- 37
clear box behavior, 38- 39
common services, 41-42
development, 61-63
development process, 42-43
hierarchies, 39

383

384 Index

Box structures (cont.)

principles, 39- 42
referential transparency, 40-41
solution space, 61-62
specification and design, 11
state box behavior, 37- 38
state migration, 41
transaction closure, 41
usage hierarchy, 175

Brewer, M., 19
Brooks, F. , 21

c
Canonical sequences, 43-44

analyzing, 256-257
black boxes, 45
defining black box table, 260-269
disjoint, 45

Carnegie Mellon University, 113
Certification

defining plan, 350-351
environments, 350-351
goals, 196, 350
users, 350-351
uses, 350- 351

Chrissis, M. B. , 199,203
Classes and users, 351
Cleanroom

certification processes, 114, 117
correctness verification, 11-12
design, 9-11
development processes, 114,

116-117
foundations, 4-8
function-based specification, 9-11
function theory, 5
history, xiii- xv
incremental development, 8-9
manageable development, 3-4
management processes, 114- 115
process measurement, 6
product measurement, 6
software certification, 12
specification processes, 114-116
statistical testing, 12
statistical theory, 6
team operations, 6-8
testing methods, 6
verification, 9-11

Cleanroom/CMM correspondence
definitions, 204- 205

Clear boxes, 9, 11, 33- 34
abstraction, 66-69
behavior, 38-39
control structures, 64- 66
correctness questions, 72- 75
Correctness Theorem, 72
correctness verification, 72- 75
correctness verification example, 7 5- 80
defining, 39
definition of intended functions, 69- 70
design with intended functions, 69- 72
development, 63-72
documentation, 66-69
focus, 63
hierarchy of abstraction, 68-69
implementation, 293
implementing behavior, 40
procedures, 63
refinement, 71
reorganizing implementations into

executable code, 338-348
response generation implementation,

313-315
selecting high-level software architecture,

294-311
state data items implementation,

316- 317
stimulus gathering implementation,

312-3 13
top-level classes in software architecture,

302-311
verification, 39, 72-81

CMM (Capability Maturity Model) for
Software

Cleanroom process mappings to K.PAs,
202- 206

integrating technology and management,
206- 207

Level 2 Requirements Management K.PA,
123,146, 201

Level 2 Software Configuration
Management K.PA, 123, 135, 201

Level 2 Software Project Planning KPA,
122- 123, 133, 201

Level 2 Software Project Tracking and
Oversight K.PA, 122, 138,201

Level 2 Software Quality Assurance K.PA,
201

Level 2 Software Subcontract Management
K.PA, 201

Level 3 Integrated Software Management
K.PA, 133, 201

Level3 Intergroup Coordination KPA, 122,
133, 201

Level 3 Organization Process Definition
KPA, 201

Level 3 Organization Process Focus KPA,
118, 133, 201

Level3 Peer Reviews KPA, 120, 128, 202
Level 3 Software Product Engineering

KPA, 119, 120, 133, 201
Leve13 Training Program KPA, 123, 135,

201
Level 4 Quantitative Process Management

KPA, 119,122,134,138, 202
Level 4 Software Quality Management

KPA, 122, 133, 202
LevelS Defect Prevention KPA, 121, 128,

179,202
Level 5 Process Change Management KPA,

121,141,202
Level 5 Technology Change Management

KPA, 121 , 141, 202
maturity levels, 200

Common Services, 177
box structures, 41

Components and black box behavior, 35
Conditional rule, 67
Continual quality feedback, 23-24
Control structures, 11, 64-66

correctness questions, 72-75
function equivalence, 66
function nodes, 64
intended functions, 69
naming parts of, 64
nesting, 68
order of verification, 76-78
predicate nodes, 64
program functions , 66
reading to derive program functions, 71
single-entry/single-exit property, 68

Coordination with hardware development, 9
Correctness conditions, II , 72-75

recurring constructs, 180
Correctness of specifications, 5
Correctness questions, 72-7 5
Correctness Theorem, 11-12, 72, 178
Correctness verification, 11-12, 72-81

function-theoretic, 12
security alarm clear box, 87- 90

COTS (Commercial Off-the-Shelf Software),
172

CRM (Cleanroom Reference Model)
processes

Index 385

Architecture Specification Process,
160

common elements, 126-129
Correctness Verification Process, 17 8
Engineering Change Process, 142
entry, 126
entry, task, verification, exit (ETVX)

format, 125
exit, 129
Function Specification Process, 149
Increment Design Process, 173
Increment Planning Process, 160
measurement, 128
objectives, 126
Performance Improvement Process,

139
Project Management Process, 136
Project Planning Process, 131
Requirements Analysis Process, 145
Software Reengineering Process, 169
Statistical Testing and Certification

Process, 191
tasks, 126-127
Usage Modeling and Test Planning

Process, 183
Usage Specification Process, 154
verification, 127-128

CRM (Cleanroom Reference Model) work
products

Cleanroom Engineering Guide, 118
Engineering Change Log, 118
Executable System, 118
Function Specification, 118-119
Increment Certification Report, 119
Increment Construction Plan, 119
Increment Design, 120
Increment Evaluation Report, 120
Increment Test Plan, 120
Increment Verification Report, 120
Performance Improvement Plan, 212
Project Record, 121
Reengineered Software, 121
Reengineering Plan, 121
Software Architecture, 122
Software Development Plan, 122- 123
Software Requirements, 123
Statement of Work, 123
Statistical Test Cases, 123-124
Statistical Testing Report, 124
Usage Models, 124
Usage Specification, 124

Curtis, B. , 199, 203

386 Index

D
Derived requirement, 45
Design, 9-11
Development reviews, 7
Discriminant, 98
Disjoint rules, 67
Donnelly, M., 19
Dyer, M., 19, 91, 152, 176

E
Enumeration sequences defining black box

table, 260-269
Environments, 95- 96

certification, 350-351
classifications, 158

Equivalent sequences, 45
error strata, 381-382
Ett, W., 15, 211
Everett, B., 19
Exit arcs in usage models, 353
Experimental control, 188-189

F
Failure states, 98
Feedback and incremental development,

31
Fisher, P., 19
Formal baselining of requirements, 149
Fuhrer, D., 19
Function abstraction, 66
Function equivalents, 66
Function nodes, 64
Function-based specification, 9- 11,

221-222
Function-theoretic correctness verification,

12, 72

G
Galbraith, C. E., 20
Graphical usage models, 96
Green, S. E., 19

H
Hausler, P. A., 19
Hevner, A. R., 5, 33, 39, 64, 166
High-level software architecture, 294-311
Hofmeister, C., 122, 160

Increment planning, 8-9
clarification of requirements, 28
customer needs, 28
leveraging reuse, 30
operational usage probabilities, 29
reliability management, 29
systems engineering, 29
technical challenges, 29

Incremental development, 8-9, 21-22
accommodation of change, 24- 25
benefits, 22-25
continual functional feedback through

customer use, 24
continual quality feedback, 23-24
feedback, 31
incremental system integration, 23
intellectual control, 22
planning, 28-30
schedule and resource management, 25
SPC (statistical process control),

23-24
system architecture, 8
theoretical foundations , 25- 27
visibility into progress, 22

Incremental function specification, 150
Incremental system integration, 23
Increments, top-down accumulation, 165
Independent trials, 194
Informal abstract stimulus definitions,

272-273
Inspections, 17
Intellectual control, 3-4, 22
Intended functions , 176

clear box design, 69-71
Control structures, 69
refinement process, 70

Iteration, 8
controlled, 29

K

correctness of structures, 72-74
termination arguments, 75

Kelly, D. , 19
Kouchakdjian, A., 20

L
Linger, R. C. , 5, 11 , 13, 19, 26, 33, 39, 64, 72,

91,113,152,166,176,178,203

M
Malicious usage conditions, 185
Manual versus automated testing, 190
Mao, H.,43
Markov chains, 95, 156

applying standard calculation to usage
model, 159

high-level, 155, 158
reliability, 194
stochastic matrix, 377
usage models, 96- 97, 185- 186

Markov process, 94- 95
Markov theory, 95
Markov usage model, 12, 349
Mathematical completeness, 5
Mathematical consistency, 5
Mathematical function, 152
Measurement, 163
Miller, K. W., 98
Mills, H. D. , 4- 5, II, 16, 19, 21, 26, 29, 33,

39, 43, 64, 72, 91, 98, 152,176, 178
Minimal arc coverage suite, 102
MTTF (mean time to failure), 23
Musa, J., 19,91
Mutchler, D. , 16, 29, 98

N
NASA (National Aeronautics and Space

Administration) SEL (Software
Engineering Laboratory), 18

Nielsen, K., 19
Nonrandom testing, 189
Nonstatisticai testing, 189
Nord, R. , 122, 160

0
Object -Orientation/Cleanroom Integration

Study, 211
Operational use as context for certification, 158
Oshana, R., 19

p
Pamas, D. L., 20, 43
Paulk, M. C., 113, 199,203
Peer review, 127
Pleszkoch, M.G., 166
Poore, J. H. , 16, 19, 29, 43, 91, 95, 98, 158,

186, 189

Populations, 93- 94
Predicate nodes, 64
Procedures

clear boxes, 63
control structures, 72
correctness, 80

Index 387

Process mappings to CMM KPAs,
202-206

Program functions, 66-67
Programs as rules for mathematical functions,

xii, 5, 64- 65
Proof by direct assertion, 81
Prototyping, 147

user interface, 9
Prowell, S. J. , 43

Q
Quantitative management decisions, 134

R
Recurring constructs and correctness

conditions, 180
Reference architecture, 8
Referential transparency, 25, 17 5

box structures, 40-41
software, 26-27

Reliability
confidence and, 23
management, 29
Markov chain, 194
measurement, 194

Requirements
clarification, 28
formal baselining, 149
sources, 147
tagged, 44

Resource management, 25
Responses

selecting implementation for generation,
313-315

state data, 283
Reuse, 30
Reviews, 7-8, 17, 128

s
Samples, 93- 94
Schedule management, 25
Scripts, 97

388 Index

SCS (Satellite Control System)
acronyms, 223-224
black box sequence-based specification,

221-224
black box specification, 221-275
certification, 349-382
clear box design, 293-348
requirements, 211- 219
state box specification, 277-292
statistical testing, 349
testing, 349- 382

Security alarm
abstraction, 48
black box definition, 47-52
canonical sequences, 52- 53, 99
design, 82- 87
design strategies, 81-82
discriminant, 103
failures, 103, 105
mapping tables, 54-59
measures of product quality, 106-108
measures of test sufficiency, 102- 106
minimal arc coverage suite, 102
model coverage, 102- 103
no failures, 103- 104
random testing, 102
sequence enumeration, 48-52
state box definition, 52-59
state variables, 54, 82-83
system boundary definition, 47- 48
tagged requirements, 47
test cases, 103
usage model, 99- 102

Selby, R. W. , 20
Sequence-based specification process

black box definition, 44-45, 221-222
clear box definition, 293
state box definition, 45-46, 277-278

Sequences
canonical, 43-44
correct response, 45
derived requirement, 45
enumerating, 44-45
equivalency, 45
impossible, 45

Sherer, S. W. , 20
Software Engineering Institute, 13, 113,

199
Software Productivity, 5
Soni, D. , 122, 160
SPC (statistical process control), 23- 24

Specification functions, 153
defining, 257- 260
state data, 278- 279

State boxes, 9-11 , 33-34
behavior, 37-38
black box tables transformed into tables

for, 285-292
constructing tables, 283-292
defining, 37
implementing behavior, 40
implementing table items, 317-338
inventing state data, 278-283
mapping tables, 46
one-to-many relationship, 62
process definition, 45
representing, 302
rewriting black box tables, 283- 292
sequenced-based,45
specification, 45
verifying, 38

State data, 45
abstractions, 279-283
allocation to objects, 316
inventing, 278-283
mode, 279
responses, 283
selecting implementation for items,

316-317
specification functions , 278- 279
tests and updates, 316-317

State migration, 41 , 177
State names and usage models, 353
State variables

security alarm specifications, 54
States, refining, 353
Statistical process control, 9
Statistical testing, 12, 189,206

benefits, 91-93
building model structure, 352-377
defining certification plan, 350- 351
discriminant, 98
error strata, 381- 382
executing and evaluating results, 380- 382
failure states, 98
general field operations, 382
generating test cases, 380-382
metrics for sufficiency product quality, 98
model coverage, 380-381
order of, 193
populations and samples, 93-94
in practice, 95-98

requirements coverage, 381
scripts, 97

stochastic nature of software use, 94- 95
test case generation and testing, 97- 98
testing chain, 98
theoretical foundations , 93-95
transition probabilities, 377
usage chain, 98
usage model analysis and test planning,

96-97
usage model development, 96
usage specification, 95-96
user classes, 351
validating usage model, 378- 379

validity of inferences, 97
Stavely, A.M., 20, 81

Stimulus
abstract, 229. 231
enumerating sequences, 229-255
history references, 293
selecting implementation for gathering,

312-313
Stochastic process, 94
Stratification of usage characteristics, 156
Structured programming, 33, 199
System boundary definition, 44, 47-48
Systems

architecture, 8
black box behavior, 35
components, 39
data bus, 299
specifications, 34
state data, 45
usage, 45

Systems engineering, 29

T
Tagged requirements, 44, 47
Tann, L. G., 20
Teams, 6- 8
Technical challenges, 29
Testing

automation and early planning, 186
chain, 98
environment, 190
manual versus automated, 190
order of, 193

Tests
combining information, 195
usage model planning, 101

Index 389

Thomason, M. G., 95, 188, 195
Top-level architecture, 8
Top-level classes in software architecture,

302-311
Trammell, C. J. , 13, IS, 19- 20, 91, 95, 113,

158, 166, 189, 203, 211
Transaction closure, 41
Transactions, 41
Transition probabilities, 186-1 87

statistical testing, 377

u
University of Tennessee, 18
US Army Picatinny Arsenal, 18
Usage chain, 98
Usage hierarchy system components,

39
Usage models, 12, 185

analysis, 96-97
analytical values, 100- 101
arc names, 353
assignment of usage probability values,

100
biased sampling, 92
building structure, 352-377
calculations, 159
canonical sequences as states, 99
comments, 353
development, 96
exit arcs, 353
expected use, 96
graphical, 96
large systems, 96

Markov chains, 96-97, 185-186
optimization, 187
possible use, 96
practical interpretation of analysis,

187-188
as reference model for testing, 92
resource and schedule estimation,

92
security alarm, 99-102
state names, 353
states and arcs, 353
statistical testing benefits, 91-93
structure, 96
test cases, 97-98
test planning, 96-97, 101
transition probabilities, 377
usage specification, 95- 96

390 Index

Usage models (cont.)

validating, 378- 380
validation of requirements, 92

Usage probabilities, 29
Usage specifications

contribution to function specification,
157

relationship to usage modeling, 158
Use, 95

certification, 350- 35 i
classifications, 157

Users , 95
certification, 350-351
classes, 351
classifications, 156
interface specification, 151

v
Validating usage model, 378-380
Verification, 9-11,72-75

designs written for, 177

w
Walton, G. H., 95, 158, 187
Webber, C. V. , 199,203
Whittaker, J. A. , 19-20,95, 186, 188, 195
Wilson, G., 19
Witt, B. 1., 5, 11, 26, 72, 178
Wrapper, 16

	Cleanroom Software Engineering: Technology and Process
	Recommended Citation

	tmp.1325705552.pdf.u2DwN

