11 University of Tennessee, Knoxville
i LN IWERSITY of

TENNESSEE TRACE: Tennessee Research and Creative
FHOREE Exchange
About Harlan D. Mills Science Alliance

1999

Cleanroom Software Engineering: Technology and Process

Stacy J. Prowell
Carmen J. Trammell
Robert C. Linger

Jesse H. Poore

Follow this and additional works at: https://trace.tennessee.edu/utk_harlanabout

b Part of the Software Engineering Commons

Recommended Citation

Prowell, Stacy J.; Trammell, Carmen J.; Linger, Robert C.; and Poore, Jesse H., "Cleanroom Software
Engineering: Technology and Process" (1999). About Harlan D. Mills.
https://trace.tennessee.edu/utk_harlanabout/4

This Book is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in About Harlan D. Mills by an authorized administrator of
TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlanabout
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlanabout?utm_source=trace.tennessee.edu%2Futk_harlanabout%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlanabout%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

4.4 Example: The Security Alarm Clear Box 83

1. The Set stimulus activates the device. All device behavior occurs when
the device is active, as seen in the state box tables by the fact that the
Device state variable is always ON and corresponds to 1.ight Status.

2. The state variable Alarm is implemented as the variable alarmstatus
in the alarmManager component.

3. The state variable Code is implemented as the variable Entrystatus
in the codeManager component.

Security Alarm;

Constants

CLEAR constant 0;

STOP constant -1;
TRIPSIGNAL constant -99;
SET constant -100;

Variables

no error or alarm
stops main loop on correct code

hardware trip wire signal

HH H H I

Set button on keypad pressed

Event integer init (CLEAR); # any keypad entry or hardware signal
SecurityStatus boolean init (CLEAR); # alarm on or off

start the device; SB 9
DisplayManager (Start);

while (Event != STOP)
do
get next user input or hardware signal

get (Event);

switch (Event);

SB 10-17
case (SET);
do nothing

SB 1-8

case (TRIPSIGNAL)
AlarmManager (Query, SecurityStatus);
if (SecurityStatus = CLEAR)
then

84 Cleanroom Software Development

8B 1,3,4,7

AlarmManager (Start);

SB 4,7

CodeManager (Alert, Event);
else do nothing; SB 2,5,6,8
endif

SB 18-37
default
CodeManager (Evaluate, Event);
CodeManager will return STOP if code entry is
complete

endswitch
enddo

SB 38,39
AlarmManager (Stop);
DisplayManager (Stop);

end of Security Alarm main program
OBRJECT TEMPLATES
DisplayManager (Service)

AlarmManager (Service, Data)

HH I FH I H*

CodeManager (Service, Data)

DisplayManager (DisplayService);

__
Data

__
Constants

ON constant 1; # light is on

OFF constant 0; # light is off

State data
LightStatus boolean static init (OFF); # device activation light

Start;
LightStatus := ON;

SB 38-39
Stop;

LightStatus := OFF;

end DisplayManager

4.4 Example: The Security Alarm Clear Box 85

AlarmManager (AlarmService, Status);

Constants
ON constant'l;
OFF constant 0;

State data

alarm is on

alarm is off

AlarmStatus boolean statlc init (OFF); # alarm activation status

#'SB 1,3.,4,7
Start;
AlarmStatus‘:: ON;

Query;

Status = AlarmStatus;

SB 39
Stop;

AlarmStatus := OFF;

end AlarmManager

CodeManager (CodeService,

Constants

NONE constant 0;
1_OK constant 1;
2_0OK constant 2;

CLEAR constant 0;
COMPLETE constant -1;
ERROR constant -2;

no keypad entry
first correct digit in code entered

second correct digit in code entered

Clear button on keypad pressed
correct code entered

error in code entry

86 Cleanroom Software Development

State data
CodeCombination array static init({11:=7;[2]1:=5;[31:=7)) # code is 757
EntryStatus integer static init (NONE); # code entry status

if ((EntryStatus = 1_OK) | (EntryStatus = 2_OK))
then EntryStatus := ERROR;

endif

SB 18-37
Evaluate;
if (Event = CLEAR)
then
clear button has been pressed; SB 26-33
EntryStatus := NONE;

else
digit has been pressed

switch (EntryStatus);

case (NONE}

SB 34,35

if (Event = CodeCombination{1l])
then EntryStatus := 1_0OX;

SB 18,19

else EntryStatus := ERROR;
endif

case (1_OK)

SB 36,37
if (Event = CodeCombination([271)
then EntryStatus := 2_0K;
SB 21,23
else EntryStatus := ERROR;
endif
case (2_OK)
SB 38,39
if (Event = CodeCombination(3])

then

296 Satellite Control System Clear Box Design

firmware). Only the classes, methods, variables, and constants required for the
discussion are presented. All classes presented here are part of the scs.kernel
package, and constitute the “operating system” for the satellite hardware. The
reader may skip the class definitions here and return only as necessary to under-
stand the software implementation.

Kernel Interface to the Impuise Control Subsystem (ICS). The ICS is
accessed through the methods of the ICS class.

// Impulse control subsystem interface.
package scs.kernel;

/** This class encapsulates the low-level interface to the impulse
control subsystem. */

public final class ICS {
// This class has no constructor.

// All methods are class methods.

/** Request firing. The controller hardware must have been armed
first. Success or failure is reported through a hardware
interrupt after the firing is completed.

@param pitch The change in pitch (wrt SV body).
@param yaw The change in yaw (wrt SV body) .
@param roll The change in roll (wrt SV body). */

public static native void fire(double pitch, double yaw, double ro__:ijz

/** Arm the reaction control hardware for a firing. The hardware
is disarmed at the end of the firing. */

public static native void arm();

/** Return current status. See the constants defined in this class
for the various possible return values.
@return Current status of impulse control sYstem. */
public static native int getStatus();
// The following are public class constants that define
// the various possible statuses of the impulse control
// subsystem, as reported by the getStatus() method.
// These must be the same as the native code.
public static final int SUCCESS = 0;
public static final int FAILURE = 1;
public static final int NOT_READY = 2;
public static final int IN_PROGRESS = 3;

15.2 Step 1: Select a High-Level Software Architecture 297

Kernel Interrupt Controller Interface. The Interrupt class encapsulates all
low-level interrupt handling.

// Interrupt handler.
package scs.kernel;
import java.util.Vector;

/** This class encapsulates the low-level interrupt controller
interface. */

public final class Interrupt {
// This class has no constructors.
// All methods are class methods.

/** Set the interrupt vector to the irgNotify () method
of an object. The object must implement the IRQObserver
interface.
@param o The object to notify.
@return The previously stored vector as a long. */

public static native long setIRQVector (IRQObserver o) ;

/** This interface must be implemented by any object that wishes
Lo have interrupt events vectored to it. */

public interface IRQObserver {
/** Notify an object that an interrupt has occurred. */

public void irgNotify();

/** Push the specified value onto the return stack so that
the next return directs control to the address specified
by the argument.

@param v The address as a long. */
public static native long redirectStack(long v);

/** Get the type of the most recent IRQ event.
@return The most recent IRQ event type. */
public static native int getIRQID();

/** Get any arguments for the most recent IRQ event. These
will be stored in a Java vector.
@return A Java Vector that holds the arguments, or null
if there are no arguments. */

public static native Vector getIRQArguments{();

208

Satellite Control System Clear Box Design

/** Return true if the most recent interrupt is a maskable hardwaza
interrupt. Return false if the most recent interrupt is a
nonmaskable interrupt (NMI) or a software interrupt (SWI).
@return True if the last interrupt is a hardware interrupt. */

public static native boolean 1isHWI{);

/** Return true if the most recent interrupt is a software
interrupt.
@return True if the last interrupt 1s a software interrupt. */

public static native boolean isSWI();

/** Schedule a timer event.
@param o The object reguesting the timer event. The object musz
implement the TimerObserver interface.
@param ¢ The number of milliseconds from now Lo generate the
timer event. */

public static native void scheduleTimer (TimerObserver o, long c);

/** Thig interface must be implemented by any object that wishes
to receive timer events. */ ‘
public interface TimerObserver |
/** Notify the caller that a requested timer has expired. */
public void timerNotify();

/** Clear any scheduled timer events. */

public static native void resetTimer () ;

// The following are public class constants that define

// the various types of interrupt events. These values

// should be used for the irgid.

public static final int HWI_TRANSMIT_GROUND = 0x00010001;
public static final int HWI_TRANSMIT_UPLINK = 0x00010002;
public static final int HWI_TRANSMIT_DOWNLINK = 0x00010003;
public static final int HWI_DATA_RECEIVED = 0x00020001;

public static final int HWI_FIRING_COMPLETE = 0x00030005;
public static final int HWI_ONBOARD_TIMER_EXPIRED = 0x00050001;
public static final int HWI_TINTERNAL_SUBSYSTEM_NOMINAT, = 0x000000CIs
public static final int HWI_INTERNAL_SUBSYSTEM_FAILURE = 0x000000027

15.2 Step 1: Select a High-Level Software Architecture 299

Kernel Interface to the System Data Bus for Internal Messaging
// Handle internal messaging.
package scs.kernel;

import java.util.Vector;

/** This class encapsulates access to the internal data bus. */
public final class Message {
// This class has nc constructor.

// All methods are class methods.

/** Set all lines high to signal system initialization to all
devices on the bus. This method may only be used if the
bus has been captured; otherwise it will be ignored. */

public static native void initialize();

/** Capture the bus. Other devices are forbidden to send signals on
the bus during a capture. */

public static native vold capture();

/** Release the bus. Devices may resume signaling on the bus. */

public static native void release();

/** Send a message on the bus. No capture is reguired.
eéparam id The id of the device or group to which the message
is being sent.
@param message The message to be gent. */

public static native void send(long id, long message) :

// The following are public class constants that define

// the various destinations for messages and the messages

// themselves.

public static final long BROADCAST = 0x80000000;// Send to everyone.
public static final long HEALTH_TEST = 0x00000001;

Kernel Nonvolatile Memory Manager
// Nonvolatile Memory Manager Interface
package scs.kernel;

import java.util.Vector;

300 Satellite Control System Clear Box Design

/** This class encapsulates the nonvolatile memory manager. */
public final class NVMM {

// This class has no constructor.

// All methods are class methods.

/** Put information into nonvolatile memory, associating it with
both a string and an integer. The integer must be unigue; if
there is already an item associated with the integer, it wilZ:
be overwritten.

@param id The unigue integer identifying this item.
@param name A (possibly nonunigue) name for this item.
@param o The data to store. */

public static native void put{long id, String name, Object o);

/** Get the data item for a given id. If the id does not exist,
null is returned.
@param id The unigue integer identifying the item.
@return The item, if found, and null if not. */

public static native Object getData(long id);

/** Get the name for a given data item. If no matching item is
found, null is returned.
@param id The unigue integer identifying the item.
@return The item’s name, if found, and null if not. */

public static native String getName(long id);

/** Get a data item for a given string. The 1d of the first matchisz
item is returned. If no matching item is found, null is
returned.

@param name The name to find.
@return The unique id of a data item with the specified name,
or a negative value if none can be found. */

public static native long search(String name);

Kernel Interface to Transmitter Hardware

// Transmitter hardware interface.
package scs.kernel;
import java.util.Vector;

/** This class encapsulates the low-level transmitter hardware

interface. */

15.2 Step 1: Select a High-Level Software Architecture 301

public final class Transmit {
// This class has no constructor.

// A1l methods are class methods.

/** Transmit a stream of bytes to the selected destination.
An interrupt will be generated when transmit is completed.
@see scs.kernel.Interrupt for interrupt information.
@param data The data to send.

@param count The number of bytes in the data. */
public static native void transmit (byte[] data, long count);

/** Select a particular destination for future transmit requests.
@param 1 The destination, provided by one of the constants
defined in this class. */

public static native void select(int 1i);

/** Specify uplink site information. The transmit hardware will
attempt to locate and establish communication with. the uplink
site, which should then send either UG or UB.

@param si The site information. */
public static native void setUplink(SiteInfo si);

/** Specify downlink site information. The transmit hardware will
attempt to locate and establish communication with the downlink
site, which should then send either DG or DB.

@param si The site information. */

public static native void setDownlink(SiteInfo si);

/** A class for encapsulating all necessary site information. */

public final class SiteInfo;

/** Forget the uplink site connection. */

public static native void detachUplink();

/** Forget the downlink site connection. */

public static native void detachDownlink({);

// The following are public class constants that define the
// various destinations for transmit. These values should be
// used with the select () method.

public static final int GROUND .= 0;

public static final int UPLINK 1
public static final int DOWNLINK

;

I}
[N

302 Satellite Control System Clear Box Design

15.2.4 Software Architecture

The software implementation will be a Java application. It is assumed that suffi-
cient prototyping work has been done to ensure that all processing speed,
response time, capacity, and precision requirements can be met. All data flow
will be push, based on the observer design pattern, with only a few exceptions
for state-encapsulating objects such as Mode.

The SOS will be implemented using a single-threaded architecture. Object
creation will be tightly constrained so that memory management issues are min-
imized. The incoming data stream is read by hardware decoders, which queune
their input until it can be processed. This is not expected to be a problem
because processor speeds far outstrip maximum transmission bandwidth.

The state machine represented by the state box will be allocated to several
top-level classes. These are described in Table 15.1. Following the table is the
Java code for each class. Most of these classes are incomplete. The behavioral
information from the state box tables will be merged with the architectural
information to complete the definitions by implementing each of the methods.

Table 15.1 Top-level classes

Object Name Description

IH Handles all interrupts and dispatches events to registered
callers.

Control Manages invocation and sets up interrupt handling.

Mode Preserves the mode globally. This class maintains the mode in

a class variable accessible everywhere through class acces-
sor and mutator methods.

HealthCheck The HealthCheck object administers the health check via the -
interrupts passed 1o it from the IH.

BiTable ‘ The BLTable object handles all updates to the B/L table stored
in nonvolatile memory.

FiringControl The FiringControl object handles alt firing requests.

Connection The Connection class handles construction of a new connec-

tion as well as shutdown of an existing connection. In addition,
the Connection class will handle events that change mode
(such as IN and MG).

PacketParser The PacketParser object transforms information from the
receiver hardware into packets for consumption by the other
classes. It receives hardware interrupts from the IH and gener-
ates software interrupts.

PacketScheduler The PacketScheduler object handles sending of packets to
uplink, downtlink, and ground sites.

15.2 Step 1: Select a High-Level Software Architecture 303

Class: scs.sos.IH

// Interrupt handler.

package scs.s0S;

import
import
import

import

java.util.Vector;
java.util.Hashtable;
java.util.Enumeration;

scs.kernel.Interrupt;

/** Thig class is the “top level” of the SOS. Interrupt events (stimuli)

arrive here and are dispatched to the appropriate class. */

public

final class IH implements Interrupt.IRQObserver {

/** Construct a new interrupt handler and install it as a “wedge.” */
public IH() {

/**

// Install the interrupt handler, saving the previous vector.
oldvector = Interrupt.setIRQVector(this);

Register an object to receive forwarded interrupt events.
@param o The object wishing to receive event notification.
This object must implement the InterruptObserver interface.
@param irgid The event (from constants defined in the

Interrupt class or here). */

public void addObserver (InterruptObserver o, int irgid) {

/**

// Change the irgid into a Java object so we can get its
// hash code.

Integer Irqid = new Integer (irgid);

// Get the list of registered observers from the hash table.
Vector obs = (Vector)registry.get (Irgid};
if(obs == null) {
// The list of observers is empty. Create a new list.
obs = new Vector();

registry.put (Irgid, obs);

// BAd this object to the list of observers.
obs.addElement (o) ;

This interface must be implemented by any object wishing to

receive interrupt notification. */

304 Satellite Control System Clear Box Design

public interface InterruptObserver {
/** This method is invoked to notify an object that an event
has occurred.
@param irgid The event type (from the constants defined
in the Interrupt class or here).
@param args A Vector of any additional arguments for the
event, or null if none. */

public void notify(int irgid, Vector args);

/** Interrupts are directed here. This code then dispatches the
event to the appropriate object(s). */

public void irgNotify () {
// Get the interrupt id.
int irgid = Interrupt.getIRQID():

// Get any arguments for the interrupt.
Vector args = Interrupt.getIRQArguments();

// Now get the list of observers for this event.
Integer Irgid = new Integer(irgid);
Vector obs = (Vector)registry.get (Irgid);
if(obg != null) {
// There are observers for this event. Notify all

// of them.
Enumeration e = obs.elements();
while (e.hasMoreElements ()) {

// Notify an observer.
InterruptObserver o = (InterruptObserver)e.nextEleme-t

o.notify(irgid, args);

// Now return control to the previously installed interrupt
// handler.
Interrupt.redirectStack(oldvector);

// Private data.
private long oldvector = 0;

private Hashtable registry = new Hashtable();

// The following are public class constants that define

// the various types of software interrupts. These values

15.2 Step 1: Select a High-Level Software Architecture 305

// are defined here because the kernel doesn’t know about
// software interrupts.

public static final int SWI_IN = 0x0001F001;
public static final int SWI_HR = 0x0001F002;
public static final int SWI_MG = Ox0001F003;
public static final int SWI_BR = 0x0001F004;
public static final int SWI_FR = 0x0001F005;
public static final int SWI_TG = 0x0001F006;
public static final int SWI_TC = 0x0001F007;
public static final int SWI_UG = Ox0002F001;
public static final int SWI_DI = 0x0002F002;
public static final int SWI_TE = 0x0002F003;
public static final int SWI_UB = 0x0002F004;
public static final int SWI_DG = 0x0003F001:
public static final int SWI_PB = 0x0003F002;
public static final int SWI_DTE = 0x0003F003;
public static final int SWI_DB = 0x0003F004;

Class: scs.sos.Control
// Start-up for SOS.
package scs.sos;

/** This class starts execution of the SOS by installing the
interrupt handler. */

public final class Control {
// This class has no constructor.
// All methods are class methods.

/** This is the main method, which executes on start-up. It
creates and installs the interrupt handler, then creates
all other reqguired objects. */

public static void main{) {

// Create a new interrupt handler. The constructor installs
// the interrupt handler.
IH ih = new TH();

Class: scs.sos.Mode

// The systemwide mode.

306 Satellite Control System Clear Box Design

package SCS.S0S;

/%% This class encapsulates the state data item Mode. */
public final class Mode {

// This class has no constructor.

// All methods are class methods.

/** Set the system mode.
@param m The new mode, from the constants defined in this class
public static void setMode(int m) {

mode = m;

/** Get the system mode.
@return One of the constants defined in this class. */
public static int getMode () {

return mode;

// The following are public class constants that define the
// various system modes.

public static final int NONE = 0;

public static final int MAINTENANCE = 1;

public static final int TRANSMIT = 2;

// A private class variable that holds the current mode.

private static int mode = NONE;

Class: scs.sos.HealthCheck

// Administer the health check.

package SCs8.S0S;

/** This class administers the health check through
interrupts. */
public final class HealthCheck

implements IH.InterruptObserver {

/** Interrupt notification arrives here.
@param irgid The interrupt id.
@param args Any arguments associated with the interrupt. */

15.2 Step 1: Select a High-Level Software Architecture 307

public void notify(long irgid, Vector args):
// Will be implemented later.

/** Force the health check object to reset its state and halt
any current checks. */
public void reset(); // Will be implemented later.

/** Return the current status of the health check.
@return The current status as one of the class constants. */
public int getStatus(); // Will be implemented later.

// These are public class constants that define the statuses for
// the HealthCheck object.

public static final int PENDING = 0;

public static final int PROCESSING = 1;

public static final int COMPLETE = 2;

Class: scs.sos.BLTable

// Manage the B/L table.
package scs.sos;

/** This class manages the B/L table updates and accesses. */
public final class BLTable
implements IH.InterruptObserver {
/** Interrupt notification arrives here.
@param irgid The interrupt id.
@param args Any arguments associated with the interrupt. */
public void notify(long irgid, Vector args);
// Will be implemented later.

/** Request for a B/L entry for a site. If there is an entry, the
site data is returned. Otherwise, null is returned. */
public Transmit.SiteInfo findSite(String name) {
// Look for the site.
long 1d = NVMM.search (name) ;
if(id < 0) return null;

// Return the site information.
return (Transmit.SiteInfo)NVMM.getData(id);

308 Satellite Control System Clear Box Design

Class: scs.sos.FiringControl

// Handle thruster firings.
package sCs.S08;

/** This clasé handles thruster firing requests. */
public final class FiringControl
implements IH.InterruptObserver f{
/** Interrupt notification arrives here.
@param irgid The interrupt id.
@param args Any arguments associated with the interrupt. */
public void notify (long irgid, Vector args);
// Will be implemented later.
/** Force the firing/control object to reset its state and halt
any firings. */
public void reset{); // Will be implemented later.

Class: scs.sos.Connection

// Manage the connection.
package scs.s80S;

/** This class manages the connection. */
public final class Connection
implements TH.InterruptObserver {
/** Interrupt notification arrives here.
@param irgid The interrupt id.
@param args Any arguments associated with the interrupt. */
public void notify(long irgid, Vector args);
// Will be implemented later.

Class: scs.sos.PacketParser
// Parse incoming packets.

package sSCs.sS08;

/** This class parses the incoming data streams into packets, and
then generates appropriate software interrupts. */
public final class PacketParser

implements IH.InterruptObserver {

15.2 Step 1: Select a High-Level Software Architecture 309

/** Interrupt notification arrives here.

@param irqgid The interrupt id.

@param args Any arguments associated with the interrupt. */
public void notify{long irgid, Vector args);
// Will be implemented later.

Class: scs.sos.PacketScheduler

// Schedule packets to be sent.
package sCs.s0s;

import scs.kernel.Transmit;

import scs.kernel.Interrupt;

import scs.kernel.Queue;

import java.io.ByteArrayOutputStream;
import java.lio.ObjectOutputStream;
import java.util.Vector;

/** This class handles construction and transmit of packages to
the uplink / downlink / ground. */
public final class PacketScheduler implements IH.InterruptObserver ({

// This clasg uses the default constructor.

/** Interrupt notification arrives here.
@param irgid The interrupt id.
@param args Any arguments associated with the interrupt. */
public void notify{int irqgid, Vector args) ({
// See what happenned.
Queue g = null;
int destination = 0;
if(irgid == Interrupt.HWI_TRANSMIT_DOWNLINK) {
g = downlink;
destination = Transmit.DOWNLINK;
}
elgse if(irgid == Interrupt.HWI_TRANSMIT UPLINK) {
g = uplink;
destination = Transmit.UPLINK;
}
else if(irgid == Interrupt.HWI_TRANSMIT_GROUND) ({
q = ground;
destination = Transmit.GROUND;

310 Satellite Control System Clear Box Design

/**

public void send(long destination, long type, Vector args) {

else return;

// A packet was just sent. See i1f another
// packet i1s waiting to be sent to the same
// destination.
q.pop(};
if(!lg.isEmpty ()) {
// Another packet is waiting to be sent. Send it now.
Transmit.select (destination);
Transmit.transmit (
((ByteArrayOutputStream)qg.next ()).toByteArray (),
{ (ByteArrayOutputStream)g.next {(}).size());

Construct and gueue a packet for transmit.

@param destination The destination of the packet, from

the constants defined in Transmit.

@param type The type of packet to send, from the constants

defined in this class.

@param args Any additional arguments to include in the packez. ™

// Figure out the destination.

Queue g = null;

if (destination == Transmit.DOWNLINK) g = downlink;
else if(destination == Transmit.UPLINK) g = uplink;
else if(destination == Transmit.GROUND) g = ground;

else // Can’'t send; ignore reqguest.

return;

// This serializes each of the objects to a byte output strea—-.
// This will be correctly handled by the kernel transmit method.
ByteArrayOutputStream baos = new ByteArrayOQutputStream() ;

// Wrap the stream in an object output stream.
ObjectOutputStream oos = null;
try {

oos = new ObjectOutputStream(baocs) ;

// Write the packet type.
oos.writelLong(type) ;

// Now write the arguments.

15.2 Step 1: Select a High-Level Software Architecture 311

oos.writeObject (args) ;
}
catch(BException e) {
// If there is an exception, then just ignore the packet.

return;

// If the appropriate queue is empty, this data can be
// sent now.
// Otherwise, just gueue it. Packets are deqgueued only
// after being sent.
if(g.isEmpty ()) {

d.push (baos) ;

Transmit.transmit (baos.toByteArray (), baos.size());
}
else {

g.push (baocs) ;

// Private queues.
Queue downlink = new Queue();
Queue uplink = new Queue();

Queue ground = new Queue() ;

// The following are public class constants that define the

// various types of packets that can be sent.

public static final long INA = 0x00010000;
public static final long HF = 0x00010001;
public static final long HS = 0x00010002;
public static final long FF = 0x00010003;
public static final long FS = 0x00010004;
public static final long TSCAN = 0x00010005;
public static final long TEF = 0x00070001;
public static final long ERR = 0x00010006;
public static final long FE = 0x00010007;
public static final long TGF = 0x00070002;
public static final long SDT = 0x00020001;
public static final long TCF = 0x000600071;
public static final long PRF = 0x00020002;

public static final long DO = 0x00040001;

338 Satellite Control System Clear Box Design

15.7 Step 6: Reorganize the
Implementations into
Executable Code

When the implemented state box tables are complete, they may be transformed
to executable code. In this step the architecture is merged with the behavioral
specification of the state box. The resulting code may be reorganized to meet
efficiency, performance, or other goals.

The transformation of Connection class to code is shown in the following
pages. The stimuli with tables that have functionality allocated to Connection
are IN, MG, TG(y, 4), OTE, UG, DI(id, p), TE, UB, DG, PB(id), DTE, and DB.
Collecting the information from these tables leads to the following final expan-
sion of the Connection class.

Class: scs.sos.Connection
// Manage the connection.
package scs.sos;

import scs.kernel.ICS;
import scs.kernel.Message;
import scs.kernel.Transmit;
import scs.kernel.Interrupt;

import java.util.Vector;

/** This class manages the connection. */
public final class Connection
implements IH.InterruptObserver, Interrupt.TimerObserver {
/** Constructor for the connection object.
@param hc A health check object.
@param ps A packet scheduler object.
@param fc A firing control object.
@param blt A b/l table object. */
public Connection(HealthCheck hc, PacketScheduler ps,
FiringControl fc, BLTable blt) {
// Save the objects passed in.
this.hc = hc;
this.ps = ps;
this.fc = fc;
this.blt = blt;

// Initially not connected.

15.7 Step 6: Reorganize the Implementations into Executable Code 339

this.conn = Connection.NONE;

/** Interrupt notification arrives here. Interrupts indicate that
the most recent request to the transmit hardware has completed.
@param irgid The interrupt id.

@param args Any arguments associated with the interrupt. */

public void notify(int irgid, Vector args) f{

// The following implements table 15.6.
if(irgid == IH.SWI_IN) {
// Initialize hardware.
Message.capture();
Message.initialize();

Message.release();

// Send INA.
this.ps.send(Transmit.GROUND, PacketScheduler.INA, null) ;

// Set mode to none.
Mode . setMode (Mode .NONE) ;

// Reset HealthCheck and FiringControl.
this.fc.reset();
this.hc.reset ()

// Set the connection to none.
this.conn = Connection.NONE;
return;
}
// The following implements table 15.8.
else if{irqgid == IH.SWI_MG) {
if (Mode.getMode() == Mode.NONE) Mode.setMode (Mode . MAINTENANCE) ;
else this.ps.send(Transmit.GROUND, PacketScheduler.ERR, null);
return;
}
// The following implements table 15.11.
else if(irgid == IH.SWI_TG) {
Transmit.8iteInfo u = null;
Transmit.SiteInfo d = null;
try {
// Get the arguments.
u = this.blt.findSite((String)args.elementAt (0));
d = this.blt.findSite((String)args.elementAt(1));

340 Satellite Control System Clear Box Design

catch (Exception e} ({
// Do nothing.

return;

// Make sure the command is allowable here.

if (Mode.getMode () == Mode.NONE ||
Mode.getMode () == Mode.TRANSMIT ||
(Mode.getMode () == Mode.MAINTENANCE &&
(this.hc.getStatus () != HealthCheck.COMPLETE | |
ICS.getStatus () == ICS.IN_PROGRESS))) {

// Send ERR to GCS.

this.ps.send(Transmit.GROUND, PacketScheduler.ERR,
return;

}

else {
if(u == null && d == null) {

// Send TSCAN(3) to GCS.
Vector v = new Vector();
v.addElement (new Integer(3));
this.ps.send(Transmit.GROUND,
PacketScheduler .TSCAN, v);
return;
}
else 1f(d == null) {
// Send TSCAN(2) to GCS.
Vector v = new Vector();
v.addElement (new Integer(2));
this.ps.send(Transmit .GROUND,
PacketScheduler.TSCAN, v);
return;
}
else 1if(u == null) {
// Send TSCAN(1l) to GCS.
Vector v = new Vector();
v.addElement (new Integer{l));
this.ps.send(Transmit .GROUND,
PacketScheduler.TSCAN, v);
return;
}
else {
// .Send TGF to both the UL and the DL.

niz1>

15.7 Step 6: Reorganize the Implementations into Executable Code 341

this.ps.send{Transmit.UPLINK,
PacketScheduler.TGF, null);

this.ps.send(Transmit.DOWNLINK,
packetScheduler.TGF, null);

// Initialize the countdown timer.

Interrupt.scheduleTimer (this, Connection.CTIME) ;

// Set mode to transmit.
Mode . setMode (Mode . TRANSMIT) ;

return;

}
} // IH.SWI_TG case
// The following implements table 15.12.
else if(irgid == IH.SWI_TC) {
// See if the command is valid now.
if (Mode.getMode () != Mode.TRANSMIT) ({
// Send ERR to the GCS.
this.ps.send(Transmit.GROUND,
PacketScheduler.ERR, null);
return;
}
else {
// Send TCF to the UL and the DL, then send TEF to
the GCS.
this.ps.send(Transmit.UPLINK,
PacketScheduler .TCF, null);
this.ps.send (Transmit .DOWNLINK,
PacketScheduler.TCF, null);
this.ps.send(Transmit .GROUND,
packetScheduler.TEF, null);

// Reset the timer, if waiting for OTE.
if(this.conn != Connection.FULL &&
this.conn != Connection.HALF) {

Interrupt.resetTimer();
// Set connected to none.
this.conn = Connection.NONE;

// Reset HealthCheck and Mode.
Mode . setMode (Mode . NONE) ;

342 Satellite Control System Clear Box Design

this.hc.reset();
}
} // IH.SWI_TC case
// The following implements table 15.18.
else if(irgid == IH.SWI_UG) {
// See if the command is valid now.
if (Mode.getMode() != Mode.TRANSMIT) returmn;

// If the downlink has connected, the connection is complete.

if (this.conn == Connection.DOWNLINK) {
// Send SDT to the UL.
this.ps.send{Transmit .UPLINK,
PacketScheduler.SDT, null);
this.conn = Connection.FULL;
}
else if (this.conn == Connection.NONE)
this.conn = Connection.UPLINK;
return;
} // IH.SWI_UG case
// The following implements table 15.19.
else if(irgid == IH.SWI_DI) {
// See if the command is valid now.
if (Mode.getMode () != Mode.TRANSMIT) return;

// If not fully connected, generate an error.
if(this.conn != Connection.FULL ||
this.conn != Connection.HALF) {
// Send ERR to GCS.
this.ps.send(Transmit .GROUND,
PacketScheduler.ERR, null);

return;

}

else {
// Send DO to the DL.
thig.ps.send(Transmit.DOWNLINK,

PacketScheduler.DO, args);

return;

}

} // IH.SWI_DI case
// The following implements table 15.20.
else if(irgid == IH.SWI_TE) {
// See if the command is valid now.
if (Mode.getMode() != Mode.TRANSMIT) return;

// If connection is full or half, forward the message.

15.7 Step 6: Reorganize the Implementations into Executable Code 343

if(this.conn == Connection.FULL ||
this.conn == Connection.HALF) ({
// Send TEF to the DL.
this.ps.send(Transmit .DOWNLINK,
PacketScheduler.TEF, null);

// The connection is now half open.
this.conn = Connection.HALF;
return;

}

else
// Send FE to GCS.
this.ps.send(Transmit.GROUND,

PacketScheduler .FE, null);

// Send FE to a connected site.
if(this.conn == Connection.UPLINK) {
this.ps.send(Transmit.UPLINK,
PacketScheduler.FE, null});
}
if(this.conn == Connection.DOWNLINK) {
this.ps.send(Transmit .DOWNLINK,
PacketScheduler.FE, null);

// Reset mode.
Mode.setMode (Mode .NONE) ;

// Reset HealthCheck.
this.hc.reset();

// Reset the connection.
this.conn = Connection.NONE;
return;
}
} // IH.SWI_TE case
// The following implements table 15.21.
else if(irqgqid == IH.SWI_UB) {
// See if the command is valid now.
if (Mode.getMode () != Mode.TRANSMIT) return;
// Send TSCAN(1l) to GCS.
Vector v = new Vector();
v.addElement (new Integer(1));
this.ps.send(Transmit .GROUND,

344 Satellite Control System Clear Box Design

PacketScheduler.TSCAN, V);

// Send TCF to the UL and the DL.

this.ps.send(Transmit.UPLINK,
packetScheduler.TCF, null);

this.ps.send (Transmit .DOWNLINK,
PacketScheduler.TCF, null);

// Reset mode.
Mode . setMode (Mode .NONE) ;

// Reset HealthCheck.

this.hc.reset{();

// Reset the connection.
this.conn = Connection.NONE;
return;
} // IH.SWI_UB case
// The following implements table 15.22.
else if(irgid == IH.SWI_DG) {
// See if the command is valid now.
if (Mode.getMode () != Mode.TRANSMIT) return;

// If the uplink has connected, the connection is
if (this.conn == Connection.UPLINK) ({
// Send SDT to the UL.
this.ps.send(Transmit.UPLINK,
PacketScheduler.SDT, null);

thig.conn = Connection.FULL;

}

else if (this.conn == Connection.NONE)
this.conn = Connection.DOWNLINK;

return;

} // IH.SWI_DG case
// The following implements table 15.23.
else if(irgid == IH.SWI_PB) {
// See if the command is valid now.
if (Mode.getMode() != Mode.TRANSMIT) return;

// If not fully connected, generate an error.
if(this.conn != Connection.FULL ||
this.conn != Connection.HALF) {
// Send ERR to GCS.
this.ps.send (Transmit .DOWNLINK,
PacketScheduler.ERR, null);

complete.

15.7 Step 6: Reorganize the Implementations into Executable Code

return;
}
else {
// Send PBF to UL.
this.ps.send(Transmit.UPLINK,
PacketScheduler.PBF, args);
return;
}
} // IH.SWI_PB case
// The following implements table 15.24.
else if(irgid == IH.SWI_DTE) {
// See if the command is valid now.
if (Mode.getMode{) != Mode.TRANSMIT) return;

// If connection is half, close the connection.
if(this.conn == Connection.HALF) {
// Send TEF to the UL and the DL.
this.ps.send(Transmit .UPLINK,
PacketScheduler.TEF, null);
this.ps.send{Transmit . DOWNLINK,
PacketScheduler.TEF, null);

// Reset mode.
Mode. setMode (Mode .NONE) ;

// Reset HealthCheck.

this.hc.reset ();

// The connection is now closed.
this.conn = Connection.NONE;
return;

}

else {
// Send FE to GCS.
this.ps.send{Transmit.GROUND,

pPacketScheduler.FE, null);

// Send FE to any connected sites.
if(this.conn == Connection.UPLINK I
this.conn == Connection.FULL) {
this.ps.send(Transmit .UPLINK,
pPacketScheduler.FE, null);

345

346 Satellite Control System Clear Box Design

if(this.conn == Connection.DOWNLINK ||
this.conn == Connection.FULL) ({
this.ps.send(Transmit .DOWNLINK,
PacketScheduler.FE, null);

// Reset mode.
Mode. setMode (Mode . NONE) ;

// Reset HealthCheck.
this.hc.reset();

// Reset the connection.
this.conn = Connection.NONE;
return;
}
} // IH.SWI_DTE case
// The following implements table 15.25.
else if(irgid == IH.SWI_DB) {
// See if the command is valid now.
if (Mode.getMode () != Mode.TRANSMIT) return;

// Send TSCAN(2) to GCS.

Vector v = new Vector();

v.addElement (new Integer(2));
this.ps.send(Transmit.GROUND, PacketScheduler.TSCAN, v);

// Send TCF to the UL and the DL.
this.ps.send{Transmit.UPLINK, PacketScheduler.TCF, null);
this.ps.send(Transmit.DOWNLINK, PacketScheduler.TCF, null};

// Reset mode.
Mode.setMode (Mode .NONE) ;

// Reset HealthCheck.
this.hc.reset ();

// Reset the connection.
this.conn = Connection.NCNE;
return;

} // IH.SWI_DB case

15.7 Step 6. Reorganize the Implementations into Executable Code 347

/** On-board timer interrupts arrive here to be processed.
This implements parts of table 15.13. */

public void timerNotify () {
// If mode is not transmit, ignore this.
if (Mode.getMode () != Mode.TRANSMIT) return;

// Take action depending on who has connected.

if(this.conn == Connection.FULL ||
this.conn == Connection.HALF)
return;

Vector v = new Vector();

if(this.conn == Connection.NONE) {
// Send TSCAN(3) to GCS.
v.addElement (new Integer(3));

}

else if(this.conn == Connection.UPLINK) {
// Send TSCAN(Z2) to GCS.
v.addElement (new Integer(2)):

}

else if{this.conn == Connection.DOWNLINK) {
// Send TSCAN(1l) to GCS.
v.addElement (new Integer(l));

}

this.ps.send(Transmit.GROUND, PacketScheduler.TSCAN, v);

// Send TCF to the UL and the DL.
this.ps.send(Transmit .UPLINK, PacketScheduler.TCF, null);
this.ps.send{Transmit.DOWNLINK, PacketScheduler.TCF, null);

// Set mede to none and reset HealthCheck.
Mode.setMode (Mode .NONE) ;
this.hc.reset ();

// Reset the connection.
this.conn = Connection.NONE;

// The following are public class constants that correspond
// to the various connection statuses.

public static final int NONE = 0;

public static final int UPLINK = 1;

public static final int DOWNLINK = 2;

348 Satellite Control System Clear Box Design

public static final int FULL = 3;
public static final int HALF

I
I

// Private instance variables.
private HealthCheck hc = null;
private PacketScheduler ps = null;
private FiringControl fc = null;
private BLTable blt = null;

private int conn = Connection.NONE;

// The following 1s a private class constant for the number
// of milliseconds to wait for a connection.

private static final long CTIME = 30000;

Production of final code follows the process just shown. All code should be
verified to confirm that the Java implementation of the state box is correct. The
verified code would then be tested as described in Chapter 16.

16.3 Step 2: Build Model Structure 355

// The following commands are ignored if not in transmit mode.

“uG” [Mode:None]
“DI” [Mode:None]
“TE"” [Mode:None]
“UB” [Mode:None]
“DG” [Mode:None]
“PB” [Mode:None]
“DTE” [Mode :None]
"DB”" [Mode :None]l

// IN MG

[Health Check Pending]
“IN" [AGGG]

// The health check is expected.
(.99) “HR” [Checking Health]

// The following commands from the GCS generate protocol errors.

“MG” [Health Check Pending, BGG]
“BR" [Health Check Pending, BGG]
"FR” [Health Check Pending,BGG]
“TG” [Health Check Pending, BGG]
“TGu” [Health Check Pending, BGG]
“TGd” [Health Check Pending, BGG]
“TGud” [Health Check Pending, BGG]
“TCcH [Health Check Pending, BGG]

// The following signals are ignored.

“OTE" [Health Check Pending]
“FSR” [Health Check Pending]
“FFR” [Health Check Pending]

// The following commands are ignored if not in transmit mode.

“UG” [Health Check Pending]
“DI” {Health Check Pending]
“TE” [Health Check Pending]
“UB" [Health Check Pending
“DG" Health Check Pending

]

[]
“PB” [Health Check Pending]
“DTE" [Health Check Pending]
“DB*" [Health Check Pending]

// IN MG HR
[Checking Health]
“IN” [AGGG]

356

(.495)
(.495)

Satellite Control System Testing and Certification

// The health check completion signals.
“ASN” [Health Check Complete]
“SE” [Health Check Complete]

// The following commands from the GCS generate protocol errors. |
“HR” [Checking Health, BGG]

“MG” [Checking Health, BGG]
“BR*” [Checking Health, BGG]
“TR* [Checking Health, BGG]
TG [Checking Health, BGG]
“TGu” [Checking Health,BGG]
“TGA” [Checking Health, BGG]
“TGud” [Checking Health, BGG]
#TC [Checking Health, BGG]

// The following signals are ignored.

“OTE” [Checking Health]
“FSR” [Checking Health]
“FFR” [Checking Health]

// The following commands are ignored if not in transmit mode.
“UG” [Checking Health]

“DI” [Checking Health]
“TE" [Checking Health]
“UB” [Checking Health]
“DG” [Checking Health]
“PB” [Checking Health]
“DTE” {Checking Health]
“DB” [Checking Health]

// IN MG HR ASN
[Health Check Complete]

“IN” [AGGG]

// Another health request i1s valid.
“HR” [Checking Health]

// B/L table update requests are valid.
“BR" [Health Check Complete]

// Thrugter firing requests are valid.
“FR" [Firing Thrusters]

// The following commands from the GCS generate protocol errors.
“MG” [Health Check Complete,BGG]
T [Health Check Complete,BGG]

16.3 Step 2: Build Model Structure 357

// The GCS can signal a switch to transmit mode.

4G [Health Check Complete, BGG]

“TGu” [Health Check Complete, BGG]

2TGAa” [Health Check Complete,BGG]
(.99) “TGud” [No Connection]

// The following signals are ignored.
“OTE" [Health Check Complete]
“FSR” [Health Check Completel
"FFR” [Health Check Complete]

// The following commands are ignored if not in transmit mode.

“uG” [Health Check Completel]
“DI” [Health Check Complete]
AR {Health Check Complete]
“UB” [Health Check Complete]
“DG” [Health Check Complete]
“PB" [Health Check Complete]
“DTE" [Health Check Complete]
“DB” [Health Check Complete]

// IN MG HR ASN FR
[Firing Thrusters]
“IN* [AGGG]

// Thruster firings can succeed or fail.

(.33) “QTE" [Health Check Complete]
(.33) “FSR” [Health Check Complete]
(.33) “FFR” [Health Check Complete]

// The following commands from the GCS generate protocol errors.

“MG” [Firing Thrusters, BGG]
“TcH [Firing Thrusters, BGG]
“HR" [Firing Thrusters,BGG]
“BR” [Firing Thrusters, BGG]
7FR” [Firing Thrusters, BGG]
aTG” [Firing Thrusters, BGG]
“TGu” [Firing Thrusters, BGG]
“Tea” [Firing Thrusters, BGG]

“Tcud” [Firing Thrusters, BGG]

// The following commands are ignored if not in transmit mode.
“UG” [Firing Thrusters]

“DI” [Firing Thrusters]

358

Satellite Control System Testing and Certification

“TR” [Firing Thrusters]
“UB” [Firing Thrusters]
“DG" [Firing Thrusters]
“PB" [Firing Thrusters]
“DTE” [Firing Thrusters]
“DB" [Firing Thrusters]

// IN MG HR ASN TGud

[No Connection]

(.495)
(.495)

“IN” [AGGG]

// The GCS can cancel the transmission at any time.
“TCT [AGGG]

// If the connection experiences a time-out, both sites fail.
“OTE” [GBB]

// Either site can connect now.
“uG” [UL Connsascted]
“DG” [DL Connected]

// Either site can fail.
“UB” [GBG]
“DB” [GGB]

// The following commands from the GCS generate protocol errors.
“HR" [No Connection, BGG]

“MG"” [No Connection, BGG]
“BR” [No Connection, BGG]
“FR" [No Connection, BGG]
“TG” [No Connection, BGG]
“TGu” [No Connection, BGG]
“7Gd” [No Connection,BGG]
“TGud” [No Connection, BGG]

// The following signals are ignored.
“FSR” [No Connection]
“FFR" [No Connection]

// The following commands generate an error if not fully conne
“DI” [No Connection,GBG]

“TE” [GBG]

“PB” [No Connection, GGB]

“DTE” [GGB]

16.3 Step 2: Build Model Structure 359

// IN MG HR ASN TGud UG
[UL Connected]
“IN” [AGGG]

// The GCS can cancel the transmission at any time.
“TC” [AGGG]

// If the connection experiences a time-out now, DL fails.
“OTE” [GGBI]

// Either site can connect now.
“uG” [UL Connected]
(.99} “DG” [Connected]

// EBEither site can fail.
“UB" [GBG]

“DB" [GGB]

// The following commands from the GCS generate protocol errors.

“HR" [UL Connected, BGG]
“MG” [UL Connected,BGG]
“BR” [UL Connected, BGG]
“FR" [UL Connected, BGG]
“TG" [UL Connected, BGG]
#TGu” [UL Connected, BGG]
“TGa” [UL Connected, BGG]

»TGud” [UL Connected,BGG]
// The following signals are ignored.
“TSR” [UL Connected]

“FFR” [{UL Connected]

// The following commands generate an error if not fully connected.

"DI* [UL Connected, GBG]
“TE” [{GBG]
“PB" [UL Connected, GGB]
“DTE” [GGB]

// IN MG HR ASN TGud DG
[DL Connected]
7 IN” [AGGG]

// The GCS can cancel the transmission at any time.
“TCcr [AGGG]

360

// IN MG HR ASN TGud UG DG
[Connected]

Satellite Control System Testing and Certification

// If the connection experiences a time-out now, UL fails.
”OTEV" [GBG]

// Either site can connect now.
“uG” [Connected]
“DG” [DL Connected]

// Either site can fail.
“UB” [GBG]
“DB” [GGB]

// The following commands from the GCS generate protocol errors.
“HR*” [DL Connected, BGG]

“MG” [DL Connected, BGG]
“BR" [DL Connected, BGG]
“FR" [DL Connected, BGG]
“TG" [DL: Connected, BGG]
"TGu” [DL Connected, BGG]
TTGA” [DL Connected, BGG]

]

“TGud” [DL Connected, BGG

// The following signals are ignored.
"FSR” [DL Connected]
"FFR” [DL Connected]

// The following commands generate an error if not fully connect
“DI” [DL Connected, GBG]

“TE” [GBG]
“PB” [DL Connected, GGB]
“DTE” [GGB]

“IN” [AGGG]

// The GCS can cancel the transmission at any time.
“TC” [AGGG]

// Either site can send good status.
“UG" [Connected]
“DG" [Connected]

// Either gsite can fail.
“UB” [GBG]
“DB” [GGB]

16.3 Step 2: Build Model Structure 361

// Data can be transferred now.

apT "
upRY

{Connected]

[Connected]

// The UL can signal end of data.

aEEn

// The
“YR”
MG
“BR"
4FR”
apgr
“TGu”
“TGA"
“TGud”

// The
“FSR”
“FFR"
“OTE”

// The
A DTR”

[Half-Closed]

following commands from the GCS generate protocol errors.
[Connected, BGG]
Connected, BGG]
Connected, BGG]
Connected, BGG]
Connected, BGG]
Connected, BGG]
Connected, BGG]
[Connected, BGG]

[
[
l
[
[
{

following signals are ignored.
[Connected]
[Connected]
[Connected]

following commands generate an error if not fully connected.
[GGB]

// IN MG HR ASN TGud UG DG TE
[Half-Closed]

(.245)
(.245)

“ TN

// The
apcn

[AGGG]

GCS can cancel the transmission at any time.
[AGGG]

// Either gite can send good status.

“yGH
O eld

[Half-Closed]
[Half-Closed]

// Either site can fail.

uyR”
“DRY

[GBG]
[GGB]

// Data can be transferred now.

upT
upp”

[Half-Closed]
fHalf-Closed]

362

Satellite Control System Testing and Certification

// The UL can signal end of data.
“TE” [Half-Closed]

// The DL can signal end of data.
“DTE” [GGG]

// The following commands from the GCS generate protocol errors.
“HR” [Half-Closed, BGG]

“MG” [Half-Closed, BGG]
“BR” {Half-Closed, BGG)
“FR" [Half-Closed, BGG]
“TG” Half-Closed, BGG]

[
“TGu” [Half~Closed, BGG]
“TGA” [Half-Closed, BGG]
“TGud” [Half-Closed, BGG]

// The following signals are ignored.
“FSR” [Half-Closed]
“FFR" [Half-Closed]
“OTE” [Half-Closed]

// IN MG HR ASN TGud (with UL error)
[No Connection, GBG]

(.495)
(.495)

“IN” [AGBG]

// The GCS can cancel the transmission at any time.
“TC [AGBG]

// If the connection experiences a time-out, both sites fail.
“OTE” [GBB]

// Either site can connect now.
“UG" [UL Connected, GBG]
“DG" [DL Connected, GBG]

// Either site can fail.
“uB” [GBG]
“DB" [GBB]

// The following commands from the GCS generate protocol errors.
“HR" [No Connection, BBG]

“MG” [No Connection, BBG]
“BR” [{No Connection, BBG]
“FR" [No Connection, BBG]
“TG" [No Connection, BBG]

“TGu” [No Connection, BBG]

16.3 Step 2: Build Model Structure 363

“7Ga” [No Connection,BBG]
“TGud” [No Connection,BBG]

// The following signals are ignored.
“ESR” [No Connection,GBG]

“FFR” [No Connection, GBG]

// The following commands generate an error if not fully connected.

“DI” [No Connection, GBG]
“TE” [GBG]
“PB” [No Connection, GBB]
“DTE" [{GBB]

// IN MG HR ASN TGud UG (with UL error)
[UL Connected, GBG]
“IN" [AGBG]

// The GCS can cancel the transmission at any time.
“TC” [AGBG]

// If the connection experiences a time-out now, DL fails.
"OTE" [GBB]

// Either site can connect now.
“UG" [UL Connected, GBG]
(.99) “DG” [Connected, GBG]

// Either site can fail.
“UB” [GBG]

“DB” [GBB]

// The following commands from the GCS generate protocol errors.

“HR" [UL Connected, BBG]
MG [UL Connected, BRG]
“BR” UL Connected, BBG]
“FR" UL Connected, BBG]
TG UL Connected, BBG]

[
{
[
“TGu” [UL Connected, BBG] ~
“TGA” [UL Connected, BBG]

“TGud” [UL Connected, BBG]

// The following signals are ignored.

“FSR” [UL Connected, GBG]

“FFR" [UL Connected, GBRG]

364

Satellite Control System Testing and Certification

// The following commands generate an error if not fully connect=d
“DI” [UL Connected, GBG]

“TE” [GBG]
“pPB” [UL Connected, GBB]
“DTE” [GBB]

// IN MG HR ASN TGud DG (with UL error)
[DL Connected, GRG]

“IN” [AGBG]

//- The GCS can cancel the transmission at any time.
“er [AGBG]

// If the connection experiences a time-out now, UL fails.
“QTE” [GBG]

// Either site can connect now.
“uG” [Connected, GBG]
“DG” [DL Connected, GBG]

// Either site can fail.
“UB” [GBG]
“DR" [GBB]

// The following commands from the GCS generate protocol errors.
“HR" [DL: Connected, BBG]

MG [DL Connected, BRG]
“BR” [DL Connected, BBG]
“FR" [DL Connected, BBG]
“TG” [DL Connected, BRG]
“TGu” [DL Connected, BBG]
Y TGA” [DL: Connected, BBG]

]

“TGud” [DL Connected, BBG
// The following signals are ignored.
“FSR" [DL Connected, BBG]

“FFR” [DL Connected, BBG]

// The following commands generate an error if not fully connectecé.

“DI” [DL Connected, GBG]
“TE” GBG]

[
“PB” [DL: Connected, GBB]
“DTE” [GBB]

16.3 Step 2: Build Model Structure 365

// IN MG HR ASN TGud UG DG (with UL error)
[Connected, GBG)
“#IN" [AGBG]

// The GCS can cancel the transmission at any time.
(.09) “TC [AGBG]

// Either site can send good status.
“UG” [Connected, GBG]
“DG” [Connected, GBG]

// Either site can fail.
“UB” [GBG]
“DB" [GBB]

// Data can be transferred now.
(.5) “DI” [Connected, GBG]

(.2) “pPB” [Connected, GBG]

// The UL can signal end of data.
(.2) “TE" [Half-Closed, GBG]

// The following commands from the GCS generate protocol errors.

“HR” [Connected, BBG)
“MG” [Connected, BBG]
“BR” [Connected, BBG]
“FR" [Connected, BBG]
“TG" [Connected, BBG]
“TGu” [Connected, BBG]
“TGA” [Connected, BBG]

“TGud” [Connected, BBG]

// The following signals are ignored.

“FSR” [Connected, GBG]
“FER” [Connected, GBG]
“OTE” [Connected, GBG]

// The following commands generate an error if not fully connected.
“DTE” [GBB]

// IN MG HR ASN TGud UG DG TE (with UL error)
{Half-Closed, GBG]
“IN" [AGBG]

366

(.245)
(.245)

Satellite Control System Testing and Certification

// The GCS can cancel the transmission at any time.
“TCc” [AGBG]

' // Either site can send good status.
e [Half-Closed, GBG]
“DG" [Half~Closed, GBG]

// Either site can fail.
“UB” [GBG]
“DB* [GBB]

// Data can be transferred now.
“DI” [Half-Closed, GBG]
“PB” [Half-Closed, GBG]

// The UL can signal end of data.
“TE” [Half-Closed, GBG]

// The DL can signal end of data.
“DTE” [GBG]

// The following commands from the GCS generate protocol errors.
“HR" [Half-Closed, BBG]

MG Half-Closed, BBG]
“BR” Half-Closed, BBG]
“FR” Half-Closed, BBG]

[
[
L
“TG" [Half-Closed, BBG]
[
[
[

“TGu” Half-Closed, BBG]
“TGAar Half-Closed, BBG]
“TGud” Half-Closed, BBG]

// The following signals are ignored.

“FSR” [Half-Closed, GBG]
“FFR” [Half-Closed, GBG]
“OTE” [Half-Closed, GBG]

// IN MG HR ASN TGud (with DI, error)
[No Connection, GGB]

“IN” [AGGB]

// The GCS can cancel the transmission at any time.
“TC" [AGGB]

// If the connection experiences a time-out, both sites fail.
“QTE” [GBB]

16.3 Step 2: Build Model Structure 367

// Either site can connect now.
(.495) “UG”" [UL Connected, GGB]
(.495) *“DG” [DL Connected, GGB]

// Either site can fail.
“UB” [GBB]

“DB” [GGB]

// The following commands from the GCS generate protocol errors.

“HR” [No Connection, BGB]
MG [No Connection, BGB]
“BR” [No Connection, BGB]
“FR” [No Connection, BGB]
“TG” [No Connection, BGB]
“TGu” [No Connection, BGB]
“TGa” [No Connection, BGB]
“TGud” [No Connection, BGB]

// The following signals are ignored.
“FSR” [No Connection,GGB]
“FFR” [No Connection, GGB]

// The following commands generate an error if not fully connected.

“DI” [No Connection, GBB]
“TE” [GBB]
“PB” [No Connection, GGB]
“DTE" [GGB]

// IN MG HR ASN TGud UG (with DL error)
[UL Connected, GGB]
“IN” [AGGR]

// The GCS can cancel the transmisgsion at any time.
2TCcr [AGGB]

// I1If the connection experiences a time-out now, DL fails.
“OTE” [GGB]

// Either site can connect now.
“uG” [UL Connected, GGB]
(.99) "DG" [Connected, GGB]

// Either site can fail.
“uB” [GBB]
“DB* [GGB]

368 Satellite Control System Testing and Certification

// The following commands from the GCS generate protocol errors.
“HR” [UL Connected, BGB]

“MG” [UL Connected, BGB]
“BR" [UL Connected, BGB]
“FR” [UL Connected, BGB]
TG [UL Connected, BGB]
“TGu” [UL Connected, BGB]
“TGA” [UL Connected, BGB]
“TGud” [UL Connected, BGB]

// The following signals are ignored.
“F3R” [UL Connected, GGB]
“FFR” [UL Connected, GGB]

// The following commands generate an error if not fully conm

“DIL” [UL Connected, GRB]
“TE” [GBB]
“PB” [UL Connected, GGB]
“DTE” [GGB]

// IN MG HR ASN TGud DG (with DL error)
[DL Connected, GGB]
“IN" [AGGB]

// The GCS can cancel the transmission at any time.
“TeT [AGGB]

// If the connection experiences a time-out now, UL fails.
7OTE” [GBB]

// Either site can connect now.
“UG* [Connected, GGRB]
(.99) “DG" [DL Connected, GGB]

// Bither site can fail.
“UB* [GBB]

“DB” [GGB]

// The following commands from the GCS generate protocol errors.

“HR" [DL Connected, BGB]
TMGH [DL Connected, BGB]
"BR" [DL Connected, BGB]
“TR” [DL Connected, BGB]

“TG” [DL Connected, BGB]

G
aTGA"
“TGud”

// The
“pSR”
“pERY

// The
upTY
wpg s
«pR”
“DTE”

16.3 Step 2: Build Model Structure 369

[DL Connected, BGB]
[DL Connected, BGB]
[DL Connected, BGB]

following signals are ignored.
[DL Connected, GGB]
[DL Connected, GGB]

following commands generate an error if not fully connected.
[DL Connected, GBB]

[GBB]

[DL Connected, GGB]

[GGB]

// IN MG HR ASN TGud UG DG (with DL error)

[Connected, GGB]

(.09)

uTN"

[AGGB]

// The GCS can cancel the transmission at any time.

Ve ld

[AGGB]

// Either site can send good status.

veld
avesd

[Connected, GGB]
[Connected, GGB]

// Either site can fail.

nyR”
upR

[GBB]
[GGB]

// Data can be transferred now.

apT
upRY

[Connected, GGB]
[Connected, GGB]

// The UL can signal end of data.

o

[Half-Closed, GGB]

// The following commands from the GCS generate protocol errors.

YHR”
G
“BRY
VR
.
“TGu”

[Connected, BGB]
[Connected, BGB]
[Connected, BGB]
[Connected, BGB]
[Connected, BGB]
[Connected, BGB]

370 Satellite Control System Testing and Certification

“TGa” [Connected, BGB]
“TGud” [Connected, BGB]

// The following signals are ignored.
“FSR" [Connected, GGB]
“FFR” {Connected, GGB]
“OTE" [Connected, GGB]

// The following commands generate an error if not fully connect
“DTE” [GGB]

// IN MG HR ASN TGud UG DG TE (with DL error)
[Half-Closed, GGB]
“IN" [AGGB]

// The GCS can cancel the transmission at any time.
“TCr [AGGB]

// Either site can send good status.
»uG” [Half-Closed, GGB]
“DG” [Half-Closed, GGB]

// Either site can fail.
“uB” [GBB])
“DB" [GGB]

// Data can be transferred now.
(.245) #DI~ [Half-Closed, GGB]

(.245) ~“pB~ [Half-Closed, GGB]

// The UL can signal end of data.
“TE” [Half-Closed, GGB]

. // The DL can signal end of data.
(.5) “DTE” [GGB]

// The following commands from the GCS generate protocol errors.

“HR" [Half-Closed, BGB]
“MG” [Half-Closed, BGB]
“BR” [Half-Closed, BGB]
“FR" [Half-Closed, BGB]
“TG" [Half-Closed, BGB]

“TGu” [Half-Closed, BGB]

16.3 Step 2: Build Model Structure 371

“TGA” [Half-Closed, BGB]
“TGud” [Half-Closed, BGB]

// The following signals are ignored.

“FSR” [Half-Closed, GGB]
“FFR” [Half-Closed, GGB]
“QOTE" [Half-Closed, GGB]

// IN MG HR ASN TGud (with UL and DL error)
[No Connection, GBB]

(.495)
(.495)

v IN” [AGBB]

// The GCS can cancel the transmission at any time.
“TCr [AGBB]

// If the connection experiences a time-out, both sites fail.
“OTE” [GBB]

// Either site can connect now.
“uG” [UL Connected, GBB]
“DG*" [DL Connected, GBB]

// Either site can fail.
uB” [GBB]
“DB" [GBB]

// The following commands from the GCS generate protocol errors.
“HR" [No Connection, BBB

]
MG [No Connection, BBB]
“BR" [No Connection, BBB]
“FR” [No Connection, BBR]
ive [No Connection, BBB]
“TGu” [No Connection, BBB]
“TGA" [No Connection, BBB]

“TGud” [No Connection, BBB]

// The following signals are ignored.
“FSR” [No Connection,GBB]
“FFR” [No Connection,GBB]

// The following commands generate an error if not fully connected.
“DI” [No Connection, GBB]
“TE” [GBB]

372 Satellite Control System Testing and Certification

“PB” [No Connection,GBBR]
“DTE” [GBB]

// IN MG HR ASN TGud UG (with UL and DL error)
[UL Connected, GBB]
“TN" [AGBRB]

// The GCS can cancel the transmission at any time.
“TC” [AGBB]

// 1f the connection experiences a time-out now, DL fails.
YOTE" {GBB]

// Either site can connect now.
“uG” [UL Connected, GBB]
(.99) “DG” [Connected, GBB]

// Either site can fail.
“UB” [GBB]
“DB*" [GBB]

// The following commands from the GCS generate protocol errors.
“HR” (UL Connected, BBB]

“MG” [UL Connected, BBB]
“BR” [UL Connected, BBB]
“FR” [UL Connected, BBB]
TG [UL Connected, BBB]
“TGu” [UL Connected, BBB]
“TG3” [UL Connected, BBB]
“TGud” [UL Connected, BBB]

// The following signals are ignored.
“FSR” {UL Connected, GBBI
“FFR” [UL Connected, GBB]

// The following commands generate an error if not fully connecz

“DI” [UL Connected, GBB]
“TE*" [GBB]
“PB” [UL Connected, GBB]
“DTE” [{GBB]

// IN MG HR ASN TGud DG (with UL and DL error)
[DL Connected, GBB]
PIN” [AGBB]

16.3 Step 2: Build Model Structure 373

// The GCS can cancel the transmission at any time.
Lol [AGBB]

// If the connection experiences a time-out now, UL fails.
“OTE” [GBB]

// Bither site can connect now.
(.99) “uG” [Connected, GBB]
“DG" [DL Connected, GBB]

// Either site can fail.
“UB” [{GBB]

“DB” [GBB]

// The following commands from the GCS generate protocol errors.

“HR"” [DI. Connected, BBB]
“MG” [DL Connected, BBB]
“BR” [DL Connected, BBB]
“FR” [DL Connected, BBB]
“TG" [DL. Connected, BBB]
“TGEu” [DL. Connected, BBB]
eleld [DL Connected, BBB]

“TGud” [DL Connected,BBB]
// The following signals are ignored.
“FSR” [DL Connected, BBB]

“FFR” [DL Connected, BBB]

// The following commands generate an error if not fully connected.

“DI” [DL Connected, GBB]
TE” [GBB]
“pB” [DL Connected, GBB]
“DTE"” [GBB]

// IN MG HR ASN TGud UG DG (with UL and DL error)
[Connected, GBB]
“IN*" [AGEB]

// The GCS can cancel the transmission at any time.
(.09) “pC [AGBB]

// Either site can send good status.
“uG” [Connected, GBB]
“DG” [Connected, GBB]

374 Satellite Control System Testing and Certification

// Either site can fail.

“yB”
“DRY

[GBB]
[GBB]

// Data can be transferred now.

(.5) “DI”
(.2) “pR¥

[Connected, GBB]
[Connected, GBB]

// The UL can signal end of data.

(.2) Ehuoks

// The
uyR "
MG
“BR”
SFR”
arpgn

" TGu "

" TGd "
“TGud”

// The
“FSR”
“FFR"
“OTE"

// The
upTE "

[Half~Closed, GBB]

following commands from the GCS generate protocol errors.
[{Connected, BBB}

[{Connected, BBB]

[Connected, BBB]

[Connected, BBB]

[Connected, BBB]
[Connected, BBRB]
[Connected, BBB]
[Connected, BBB]

following signals are ignored.
[Connected, GBB]
[Connected, GBB]
[Connected, GBB]

following commands generate an error if not fully connected.
{GBB]

// IN MG HR ASN TGud UG DG TE (with UL and DL error)
[Half-Closed, GBB]

“ TN

// The
R

[AGBB]

GCS can cancel the transmission at any time.
[AGRR]

// Either site can send good status.

ield
upG

[Half-Closed, GBB]
[Half-Closed, GBB]

// Either site can fail.

"B
«DR”

[GBB]
[GBB]

//

16.3 Step 2: Build Model Structure 375

// Data can be transferred now.

.245) #DI” [Half-Closed, GBB]
.245) “pPB” [Half-Closed, GBB]

// The UL can signal end of data.
" TE"” [Half-Closed, GBB]

// The DL can signal end of data.

.5) “DTE” [GBB]

// The following commands from the GCS generate protocol errors.
“HR" [Half-Closed, BBB]

“MG" Half-Closed, BBB]
“BR” Half-Closed, BBB]
fER” Half-Closed, BBB]

]

[
t
i
TG [Half-Closed, BBB
[
[
l

“TGu” Half-Closed, BBB]
#TGA” Half-Closed, BBB]
“TGud” Half~Closed, BBB]

// The following signals are ignored.
“FSR” [Half-Closed, GBB]
“FFR" [Half-Closed, GBB]

. “OTE” [Half-Closed, GBB]

SECOND HALF OF MODEL GOES HERE

// Structure of second half is identical to that of first half, and
consists of the following states:
// [Mode:None,BGG], {[Health Check Pending,BGG], [Checking Health,BGG],
// [Health Check Complete,BGG], [Firing Thrusters,BGG],
// [No Connection,BGG), {UL Connected,BGG], [DL Connected,BGG],
// [Connected,BGG], [Half-Closed,BGG],
// [No Connection,BBG], [UL Connected,BBG], [DL Connected,BBG],
// [Connected,BBG], [Half-Closed,BBG],
// [No Connection,BGB], [UL Connected,BGB], [DL Connected,BGB],
// [Connected,BGB], [Half-Closed,BGB],
// [No Connection,BBB], [UL Connected,BBB], [DL Connected, BBB],
// [Connected,BBB], [Half-Closed, BBB],
// Bookkeeping states.
[GGG]
“End of Use” [Software Terminated]
[GBG]

“End of Use” [Software Terminated]

376

[GGB]

{GBB]

[BGG]

[BBG]

[BGB]

[BBB]

[AGGG]

{AGBG]

[AGGB]

[AGBB]

[ABGG]

[ABBG]

[ABGB]

[ABBB]

Satellite Control System Testing and Certification

“End

“End

“End

“End

“End

“End

“End

“End

“End

“End

“End

“End

“End

“End

ot

of

of

of

of

of

of

of

of

of

of

of

of

of

Use”

Use”

Use”

Use”

Use”

Use”

Use”

Use”

Use”

Use”

Use”

Use”

Use”

Use”

[Software

[Software

[Software

[Software

[Software

[Software

[Software

[Software

[Software

[Software

[Software

[Software

[Software

[Software

Terminated]

Terminated]

Terminated]

Terminated]

Terminated]

Terminated]

Terminated]

Terminated]

Terminated]

Terminated]

Terminated]

Terminated]

Terminated]

Terminated]

16.4 Step 3: Determine State Transition Probabilities 377

16.4 Step 3: Determine State Transition
Probabilities

Transition probabilities must be assigned to every arc in the usage model. The
model structure can be used with different sets of transition probabilities to
make different models. Multiple models will be needed to plan and to conduct
testing according to the certification criteria.

The usage model notation shows assigned probabilities in parentheses. The
arcs with no probabilities shown have been defaulted to 0.0005. In other words,
the model explicitly accounts for 99% of the probability mass of the exit arcs
for each state. The controlling probabilities use the following pattern:

[No Connection]
(0.495) “uG”

(0.495) "DG”

[UL Connected]
(0.990) “DGE”

[DL Connected]

(0.990) “UG”
[Connected]

(0.010) “arcr
(0.900) “DL”
(0.070) “PB”
(0.010) "TE"

[Half-Closed]

(0.245) “DI”
(0.245) “pPB”
(0.500) “DTE”

The probability values shown in the usage model represent the expected use of
the system in general field operations. These values were determined by instru-
mentation of a similar predecessor system.

Different usage models can be generated with this same structure but with
different probability values. The directed graph would remain the same but the
stochastic matrix would be different. A usage model can also be represented as
a system of equations (constraints). A solution to the system of constraints
yields the stochastic matrix of the Markov chain.

	Cleanroom Software Engineering: Technology and Process
	Recommended Citation

	tmp.1325705552.pdf.u2DwN

