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Box-structured methods 
for systems development 
with objects 

Box structures provide a rigorous and systematic 
process for performing systems development 
with objects. Box structures represent data 
abstractions as objects in three system views 
and combine the advantages of structured 
development with the advantages of object 
orientation. As data abstractions become more 
complex, the box structure usage hierarchy 
allows stepwise refinement of the system design 
with referential transparency and verification 
at every step. An integrated development 
environment based on box structures supports 
flexible object-based systems development 
patterns. We present a classic example of object­
based systems development using box 
structures. 

System and software development organiza­
tions face difficult decisions when selecting 

development methodologies. Complex develop­
ment projects require formal methods for the in­
tellectual control of the process and the resulting 
system product. After many years of striving to 
achieve the proven benefits of structured analysis 
and design methods (e.g., Structured Analysis 
and Structured Design, 1 Jackson System Devel­
opment, 2 and Information Engineering3

), devel­
opment organizations must now consider the 
important advantages of object-oriented develop­
ment methods. 

We propose that the decision between structured 
development methods and object-oriented meth­
ods is not a choice of one or the other. With the 
right conceptual representations and develop­
ment processes, the advantages of structured de-
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velopment and objects can be integrated into a 
formal development methodology. In this paper, 
we discuss the use of box structures as a bridge to 
support the integration of structured concepts 
and object-oriented concepts. 

Object orientation (i.e., the object-oriented ap­
proach) is receiving a great deal of attention as a 
promising approach for the analysis and design of 
complex information systems. For many system 
applications, it is very natural to view the system 
environment as a collection of identifiable objects 
that collaborate to achieve a desired behavior. 
Recent research and development in object ori­
entation has led to a number of methods and tech­
niques to support object-oriented systems devel­
opment. Three principal areas have been studied: 
object-oriented analysis, object-oriented design, 
and object-oriented programming. 

Object-oriented analysis ( OOA) applies object ori­
entation to the initial stages of the systems de­
velopment process, specifically the analysis of 
desired or existing system behavior. Prominent 
works in this area include Bailin's use of objects 
for requirements specification, 4 Ward's exten­
sion of structured analysis to support objects, 5 

Coad and Yourdon's comprehensive framework 

©Copyright 1993 by International Business Machines Corpo­
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tion is done without alteration and (2) the Journal reference 
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Permission to republish any other portion of this paper must 
be obtained from the Editor. 
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for understanding object-oriented analysis, 6 and 
Shlaer and Mellor's text on data modeling in ob­
jects. 7 

Object-oriented design (OOD) produces a formal 
specification of the desired system behavior in 
terms of objects and their interactions. Various 
graphical and syntactic representations have 
been proposed to support an OOD system speci­
fication. In addition, processes for developing 
and evolving the object-oriented designs have 
been defined. The best known OOD methods in­
clude Booch's design method, 8 Seidewitz and 
Stark's method, 9 Meyer's approach for software 
construction as defined in the Eiffel programming 
system, 10 and Coad and Yourdon's methods. 11 

Object-oriented programming (OOP) languages, 
such as Small talk, Object Pascal, C++, and CLOS 
directly support the implementation of an object­
oriented design. Other languages, such as Ada, 
provide limited support for certain object-ori­
ented features such as inheritance and are collec­
tively named "object-based" languages. 12 

A systematic process for object-oriented devel­
opment should provide a seamless development 
environment that supports the complete systems 
development process. Recent research projects 
have defined object-oriented system develop­
ment life-cycle processes, 13 including the object 
modeling technique from General Electric Co. 14 

and the responsibility driven design from Tek­
tronix, Inc. 15 

In recent years development organizations have 
made large investments in areas such as training 
experience, and computer-aided software engi­
neering (CASE) tools for the support of structured 
development methods. The question arises as to 
whether there is a way to integrate the advantages 
of object orientation in this existing development 
infrastructure. Several proposals have been made 
to use the structured analysis results from data 
flow diagrams as a basis for object-oriented de-
ign (e.g., see Reference 5). A number of prob­

lems exist with these proposals. 

First, there is a serious gap between data flow 
·agrams and object-oriented designs. Block di­

arns coalesce separate uses of system objects 
· -o single nodes and coalesce the separate usage 
:--"lations among the objects into single arcs be­
. ·een nodes. Thus, such diagrams irreversibly 
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summarize separate transactions that need to be 
identified in good object-oriented designs. 16 

Second, there is no systematic means of intellec­
tual control over the hierarchical growth of a com­
plex system. There is little clear discipline or or­
der to the discovery, design, and implementation 
of objects. In particular, the discovery of embed­
ded objects (i.e., objects within objects) and of 
inheritance opportunities is not addressed. 

Third, the approach depends on the heuristic in­
vention of objects from a data flow perspective. 
There is no formal, mathematical basis for eval­
qating the correctness or quality of design deci­
sions. Object-oriented designs are often pre­
sented as faits accomplis from data flow diagrams 
skipping important analytic steps. In small prob­
lems, this may be possible. But in larger ones, it 
becomes difficult to determine if the leap was in­
spired or flawed. As complex as large problems 
are, and as numerous the design alternatives, it is 
risky business to accept the discontinuity be­
tween data flows and object stimuli and responses 
without a lot of engineering analysis. 

Finally, the design and implementation of the 
transformational functions that tie together ob­
jects are left as exercises for the programmer 
once the objects are completed. Programmers 
who are not involved in the design process may 
not understand the intentions of the design and 
may produce an incorrect system implementa­
tion. 

Many of these problems arise because of the 
widely held misconception that top-down func­
tional decomposition found in structured meth­
ods is inappropriate and even contradictory to an 
object-oriented development process. Instead, it 
is our premise that, with the correct representa­
tions and techniques, the advantages of both sys­
tem decomposition and object composition can 
be combined into a rigorous systems develop­
ment with object orientation. 

What is needed is a comprehensive process 
framework and integrated environment to sup­
port systems development with objects from ini­
tial requirements analysis through system imple­
mentation. The objective of this paper is to 
present box structures as integrating components 
for object-based structured systems develop­
ment. Box structures support a rigorous, yet 
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practical, set of methods for the development of 
systems. 16-

18 Box structure methods have been 
used successfully on numerous systems develop­
ment projects both internal and external to IBM. 
(See Reference 19 for examples.) This paper pre­
sents an overview of the box structure theory, 
shows that box structures are, in fact, formal rep­
resentations of objects by demonstrating that box 
structures support essential features of objects, 
and presents an integrated object-based systems 
development environment with box structures. 
Good use of box structure operations provides 
the flexibility to perform needed systems devel­
opment tasks. Finally, these ideas are applied, by 
means of an example, to the development of a 
classic Master File-Transaction File processing 
system. 

Box structure theory 

Box-structured systems development is a step­
wise refinement and verification process that pro­
duces a system design. Such a system design is 
defined by a hierarchy of small design steps that 
permit the immediate verification of their correct­
ness. Three basic principles underlie the box­
structured design process: 16 

1. All data to be defined and stored in the design 
are hidden in data abstractions. 

2. All processing is defined by sequential and con­
current uses of data abstractions. 

3. Each use of a data abstraction in the system 
occupies a distinct place in the usage hierarchy 
of the system. 

Box structure methods define a single data ab­
straction in three forms in order to isolate the 
creative design steps involved in building the ab­
straction. The black box gives an external de­
scription of data abstraction behavior in terms of 
a mathematical function from stimulus histories 
to responses. The black box is the most abstract 
description of system behavior and can be con­
sidered as a requirements statement for the sys­
tem or subsystem. The state box includes a de­
signed state and an internal black box that 
transforms the stimulus and an initial state into 
the response and a new state. The state is de­
signed from an analysis of the required stimulus 
histories and responses for the system. Finally, 
the clear box replaces the internal black box with 
the designed sequential or concurrent usage of 
other black boxes as subsystems. These new 
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black boxes are expanded at the next level of the 
system box structure usage hierarchy into state 
box and clear box forms. 

Box structures have underlying mathematical 
foundations that permit the analysis and design to 
be applied to larger systems of arbitrary size. 
These foundations are based on sets and func­
tions that can be described in mathematical no­
tation for small systems or subsystems or in well­
structured natural language in a given context in 
larger systems. In any case, a black box is defined 
by a mathematical function from histories of stim­
uli to the next response. Let S be the set of pos­
sible stimuli, and R be the set of possible re­
sponses of a system or subsystem. In illustration, 
an airlines reservation system, with many thou­
sands of concurrent users, will accept their stim­
uli sequentially into the system in real time and 
return responses accordingly. The black box 
function, say f, will map historical sequences of 
such stimuli, in this case S*, to responses, R , 
shown in the form 

f: S* ~ R 

The description of function f may be very com­
plex for an airlines reservation system, but it is 
still only a function. This description of the black 
box assumes no data storage between stimuli, 
even though such storage may be known to exist, 
or be planned for development. 

In a simple illustration, consider a stack object of 
integers, defined by a set of commands, say 
RESET, PUSH, POP, EMPTY?, and TOP?, whose 
functions are easily inferred from the names . A 
stimulus is a command plus data, if required. For 
example, a possible sequence of stimuli might be: 

RESET, EMPTY?, PUSH 17, PUSH 31, POP, TOP?, 

PUSH 11, . .. 

The responses for the stimulus histories returning 
data are: 

RESET, EMPTY? ~ yes 

RESET, EMPTY?, PUSH 17, PUSH 31, POP, 

TOP?~ 17 
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Although a data stack can be readily imagined, 
the responses can be determined by examining 
only the stimulus histories, as above. 

The state box of a system or subsystem expands 
the black box by identifying data at this system 
level to be stored between stimuli so that only a 
current stimulus is required, but not previous his­
tory. LetT be a set of possible data states at the 
top level, and lett be the initial state of the system 
or subsystem. As noted above, the state box con­
tains an internal data abstraction that is defined 
by another black box, say g. In this case, the 
internal black box has a compound stimulus con­
sisting of the external stimulus and the internal 
state, and a compound response consisting of the 
external response and the new internal state. That 
is, g has the form 

g: (S X T)* ~ (R X T) 

Then, each pair (t,g) of an initial state and an 
internal black box function will uniquely define 
the behavior of the system. Note that the internal 
data abstraction will be capable of maintaining 
more deeply stored data, with the internal black 
box using its compound stimulus histories. 

To continue the stack illustration, consider the 
state to be a list of integers, with the initial state 
being the empty list. Then the commands RESET, 
PUSH, POP, EMPTY?, and TOP? are functions from 
the stimuli and state resulting in a response and 
new state. For example, the sequence of stimuli 
above will produce states as well as responses as 
follows: 

(RESET, ( )) ~ (null, ( )) 

(EMPTY?, ( ) ) ~(yes, ( )) 

(PUSH 17, ( )) ~(null, (17)) 

(PUSH 31, (17)) ~ (null, (31, 17)) 

POP, (31, 17)) ~(null, (17)) 

TOP?, (17)) ~ (17, (17)) 

PUSH 11, (17)) ~(null, (11, 17)) 

'="urthermore, all intermediate states of this state 
x can be eliminated by mathematical substitu­

·on to derive a black box function, say k, in 
·ch the initial state will serve as a parameter. 

~ us, whenever a specified black box, say f, has 
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been designed into a state box, say (t,g), the cor­
rectness of (t,g) can be verified by comparing its 
behavior, say k, to the intended behavior f. 

Continuing, a state box can be expanded into a 
clear box by replacing the internal data abstrac­
tion with a procedural structure of new data ab­
stractions in either sequential or concurrent logic. 
Sequential structures may involve simple se­
quence, alternation, or iteration whose semantics 
are well known from sequential programming. 
Since sequential programs are rules for mathe­
matical functions, from initial states to final states 
of computation, a clear box in sequential struc­
tures defines the functional behavior in terms of 
the next level black boxes. Concurrent structures 
require more analysis and discipline in use be­
cause of their potential complexities. 

Such a procedural structure of data abstractions 
can also be eliminated to produce the effect of a 
single internal data abstraction and the state, in 
much the same way as the state was eliminated to 
derive a black box. Sequence and alternation 
structures are eliminated by function composition 
and disjoint union directly. Iteration structures 
can be reformulated as noniterative decision 
structures or recursive structures. 20 Again, con­
current structures require more specific treat­
ment. In this way, clear box designs can be ver­
ified against state box specifications, as well. 

Figure 1 shows the relationships among the three 
views of a single data abstraction. The creative 
design steps, along the right side of the figure, are 
called expansions. The design verification steps, 
along the left side of the figure, are called deri­
vations. A given black box can be expanded into 
many correct state box designs. Conversely, a 
state box will define a unique black box by der­
ivation. Also, a given state box can be expanded 
into many correct clear box designs, and con­
versely, a clear box will define a unique state box 
by derivation. 

In order to gain intellectual control over the de­
velopment of a complex system, it is necessary to 
be able to decompose the system into smaller, 
more manageable parts. A box structure usage 
hierarchy represents the use of black box abstrac­
tions in a higher-level clear box abstraction. A 
usage hierarchy of abstractions provides referen­
tial transparency among all black boxes within a 
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Figure 1 Box structure expansion and derivation 
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clear box. 21 Thus, each black box in a clear box 
can be designed independently of the others. 

The effective use of box structures for the devel­
opment of information systems is guided by the 
use of four basic box structure principles: refer­
ential transparency, transaction closure, state mi­
gration, and common services. We briefly define 
each of these principles. 

Referential transparency-Referential transpar­
ency occurs when a black box abstraction is com­
pletely defined within the clear box at the next 
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higher level in the usage hierarchy. The black box 
is then logically independent of the rest of the 
system, and can be designed to satisfy a well­
defined behavior specification. The principle of 
referential transparency provides a crisp disci­
pline for management delegation and assignment 
of responsibility. 

Transaction closure-The principle of transac­
tion closure defines a systematic, iterative spec­
ification process to ensure that a sound and com­
plete set of transactions is identified to achieve 
the required system behavior. The closure pro-
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cess can be performed at each box structure view 
of an object abstraction. At the black box, checks 
are performed to ensure that the system stimuli 
are necessary and sufficient to generate the re­
quired system responses. At the state box, the 
defined transactions must be necessary and suf­
ficient for the acquisition and preservation of all 
state data, and the state data must be necessary 
and sufficient for the completion of all transac­
tions. At the clear box, the procedural design and 
the internal black boxes must include all trans­
actions. 

State migration-State data should be identified 
and stored in the system part (i.e., data abstrac­
tion) at the lowest level in the box structure hi­
erarchy that includes all references to those data. 
At any time in the systems development process, 
state data can be migrated upward or downward 
in the hierarchy in order to achieve some system 
objective, such as minimizing data scope. 22 State 
migration must be performed carefully in order to 
maintain the consistency and mathematical cor­
rectness of data abstractions throughout the hi­
erarchy. 

Common services-A common service is a data 
abstraction that is described in a separate box 
structure hierarchy, and used in other box-struc­
tured systems. System parts with multiple uses 
should be defined as common services for reus­
ability. Also, predefined common services, such 
as database management systems and input/out­
put interfaces, should be used to advantage 
throughout the box-structured system. The ad­
vantages of reusable common services for sys­
tems development are obvious. Box structures 
directly support the identification and reuse of 
common services within and among systems. 

More complete descriptions of box structure the­
ory and principles can be found in References 
16-18. 

Box structures as objects 

Similar to box structures, the object concept can 
be seen as an extension of abstract data types in 
programming languages. 23

•
24 A precise mathemat­

ical definition of an object has not been widely 
accepted or used. An object can be informally 
defined as a unique unit of information and de­
scriptions of its manipulations. More concisely, 
Booch defines an object as having "state, behav-
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ior, and identity." 8 A collection of objects that 
have a common behavior and structure is termed 
an object class . Booch establishes four major and 
three minor elements of any object-oriented mod­
el. 8 The four major (i.e., essential) elements are 
abstraction, encapsulation, modularity, and hier­
archy. The three minor (i.e., useful, but not es­
sential) elements are typing, concurrency, and 
persistence. 

An object-oriented systems development process 
must support all major object elements and 
should support the minor object elements as ap­
propriate for its application environment. In this 
section, we demonstrate that the box structure 
theory incorporates the essential elements of the 
object model. We also discuss the box structure 
approaches for supporting other useful elements 
of the object concept. 

Essential object-oriented elements. We now briefly 
show that box structures provide the concepts of 
abstraction, encapsulation, modularity, and hier­
archy. 

Abstraction. An object is an abstract representa­
tion of an entity in the problem domain. Much 
creative skill and experience are needed to iden­
tify and design a good set of system objects and 
classes. Box structures provide an excellent set of 
abstraction capabilities for system description. 
During analysis, a potential object can be defined 
and studied in any of the three box structure 
views. In particular, the black box view gives the 
external, design-free system behavior that pro­
vides the essence of a system abstraction. 25 The 
state box views the object as a data abstraction 
with the state visible. Within the clear box view 
complex object abstractions can be rigorously de­
composed into simpler objects and simple objects 
can be grouped into larger objects. 

During top-down design, the box structure usage 
hierarchy provides a framework in which to cap­
ture multiple levels of system abstraction in a con­
trolled manner. All system design units, from the 
top-level complete system to the smallest sub­
system components, and even down to simple 
variables, are viewed and described as box struc­
ture objects. Throughout the hierarchy, the abil­
ity to manage abstraction applies to all system 
components; stimulus (i.e., input), responses 
(i.e., outputs), state (i.e., internal data), and pro­
cedures. 
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The ability to handle abstractions is also impor­
tant for the reverse engineering of existing sys­
tems. Bottom-up system analysis abstracts func­
tionality (i.e., black box behavior) from system 
implementation details of procedure and state. 
The application of box structure theory to system 
reverse engineering is presented in Reference 26. 

Encapsulation. Encapsulation, also known as in­
formation hiding, is supported by the state box 
and clear box views of a box structure object. The 
state of an object and the procedural operations 
on that state are hidden within the box structure 
as design constructs. The essential behavioral ab­
straction, or interface, of the object is described 
by the black box view. 

An extension to object encapsulation can be 
found in the box structure principle of state mi­
gration. As box structure objects are decomposed 
and composed in a usage hierarchy, opportunities 
for state migration may exist. Beneficial state mi­
grations provide insights into new class inheri­
tance structures. Upward migration of state can 
identify new superclass structures and downward 
migration of state can identify new subclass struc­
tures. 

Modularity. Modularity in systems development 
involves dividing the complete system into man­
ageable units of analysis, design, and implemen­
tation. Each system module must be internally 
cohesive and loosely connected to the other mod­
ules of the system. 8 

Modularity is one of the major strengths of the 
box structure development process. The princi­
ple of referential transparency throughout the box 
structure usage hierarchy provides module inde­
pendence for all box structures in the system de­
sign. Furthermore, referential transparency ap­
plies to both object decomposition and object 
composition in the systems development process, 
as discussed in the next section on hierarchy. 

Hierarchy. The concept of a system hierarchy is 
an essential component for systems develop­
ment. Box-structured systems development with 
objects utilizes two distinct types of hierarchy: 
usage hierarchies to describe system behavior 
and inheritance hierarchies to describe object be­
havior via inheritance. 

A usage hierarchy of box structures is con­
structed during system design by the application 
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of both system decomposition and object com­
position. Top-down system decomposition en­
ables an essential intellectual control in develop­
ment. The system grows one level at a time. The 
mathematical structuring of systems in usage hi­
erarchies of objects allows formal verification 
methods to be used. Also, the referential trans­
parency of objects in a clear box provides an es­
sential modularity and design independence to 
each object. 

In addition, in this framework of a usage hierar­
chy, the advantages of object composition come 
into play. An object requirement, stated as a 
black box, can be matched with existing object 
classes stored for reuse in a repository. During 
the systems analysis phase the benefits and costs 
of object reuse and modification can be studied. 
Another opportunity for object composition 
arises during the design of the clear box. Knowl­
edge of existing object classes or insight into de­
sired object classes will influence the designer's 
invention of data abstractions as black boxes at 
the next level in the object hierarchy. 

As an object is used in the system usage hierar­
chy, it carries with it a description of its inherent 
behavior as defined in an inheritance hierarchy. 
Inheritance is a fundamental aspect of object ori­
entation. Inheritance is the means by which one 
object class, the subclass, inherits the informa­
tion and operations of another object class, the 
superclass. The subclass can then be modified by 
adding or deleting information or operations of its 
own. 

Inheritance is exhibited in the box structure de­
velopment process by building new classes from 
existing classes during systems development. Af­
ter an object has been instantiated in a system 
design, the designer has the freedom to modify 
the object design by altering the state design of 
the state box (e.g., via state migration) and the 
procedural design of the clear box. If the modified 
object is designated for reuse, then a choice can 
be made as to its representation in the reuse re­
pository. The new object class, from black box to 
clear box, can be stored as a unit or the new sub­
class can be stored as a set of modifications with 
a pointer to the existing superclass. Thus, an in­
heritance hierarchy can be developed of object 
classes. The physical structure of the hierarchy is 
a representation issue based upon an optimization 
of the reuse repository. Thus, an object is defined 
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and stored in the form of a generic common ser­
vice. 27 

Important object-based features. Based upon the 
fact that the box structure theory supports the 
four essential elements of Booch's object model, 
we conclude that box structures support object­
based systems development. In fact, box struc­
tures provide important extensions for systems 
development with objects. These extensions in­
clude the isolation and verifiability of all creative 
design steps in small units and systematic expan­
sion of the design in a top-down hierarchy for 
intellectual design control. Thus, there is no need 
to develop transformational functions to tie ob­
jects together, as is required in some traditional 
object-oriented design methods. 28 

Next we discuss several important features of 
box-structured development methods, to include 
Booch's minor elements of typing, concurrency, 
and persistence, as well as reuse and object rep­
resentations. 

Typing. The typing of an object identifies the ob­
ject as a member of a specific class with all in­
herent states and behaviors. Object typing en­
sures that differently typed objects may interact 
only in very restricted ways. The support in var­
ious OOP languages for typing ranges from weak 
enforcement to strong enforcement. The box 
structure syntax does not specifically enforce 
strong typing in design specifications. 

Concurrency. We believe that the ability to ana­
lyze and design concurrent structures is essential 
for realistic systems development. The clear box 
structure provides the means to model the con­
current behavior of black box objects. We have 
defined analysis and design methods to optimize 
the use of concurrency in system specifications. 29 

However, many difficult questions remain to be 
explored. 

Persistence. Persistence through time and space 
· embedded in the organization-wide common 
services as discussed in the next section on reuse. 
The use or reuse of persistent common services, 
such as object-oriented database management 
systems, allows data and procedures to be shared 
- oss many system boundaries. 30

•
31 

;reuse. Reuse is a fundamental concept in object­
·ented development. 32 The reuse of objects 
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within and among systems has the potential to 
significantly raise the productivity of systems de­
velopment and the certified quality of systems. 
Box structure methods support a high level of 
object reuse. 

In a top-down manner, each object in the system 
hierarchy is stored in its three box structure views 
in a systems development repository. Certain of 
these objects, usually the smaller objects at lower 
levels in the hierarchy, can be selected for future 
reuse. Objects are stored in the form of their in­
heritance hierarchies. Special design require­
ments are imposed on the objects, such as inter­
face standards, documentation standards, and 
certification requirements. These reusable ob­
jects are migrated to large organizational reposi­
tories as object classes for potential reuse across 
all development projects. By including all three 
box views of the object in the reuse repository, a 
verified design trail of the object from require­
ment to detailed design is available for evaluation 
and use during reuse decisions. 

During design, reuse decisions are made for a 
given black box requirement. It may be possible 
to find a reusable object type in the reuse repos­
itory that meets the requirement. (Current re­
search on repository structures and access meth­
ods for reuse is reported in Reference 33.) We 
recognize several forms of object instantiation for 
reuse during a systems development. 

An organization-wide object instantiation would 
encapsulate information and operations used by 
many systems. Such objects would include data­
base and file management systems, common user 
interfaces, and sensors that maintain the state of 
physical properties (e.g., temperature, pressure). 
A system-wide object instantiation would encap­
sulate information (e.g., data types and con­
stants) and operations used in several different 
places in the system usage hierarchy, but not out­
side of the system. Examples would include com­
monly used data structures and their operations 
(e.g., files, stacks, queues) and monitors for crit­
ical sections of the system. A one-time object in­
stantiation would allow reuse of information and 
operations without information sharing. This 
would be beneficial primarily for reusing existing 
program code. The first two forms of object in­
stantiations are examples of box structure com­
mon services. 
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Table 1 The 16 box structure operations 

1. Requirements determination 
2. Black box definition 
3. Black box analysis 
4. Black box requirements review 
5. State box expansion 
6. State box analysis 
7. Black box derivation 
8. Clear box expansion 
9. Clear box analysis 

10. State box derivation 
11. Stepwise system decomposition 
12. System implementation 
13. System operations 
14. System analysis 
15. System box structure description 
16. Stepwise system abstraction 

Object representation languages. The search for 
appropriate languages for object-oriented devel­
opment has led to graphics-based aids such as 
Small talk icons 34 and Booch diagrams, 8 and syn­
tactical forms such as Ada program description 
languages (PDLs). 35 Box structures have both a 
graphic notation and a syntactic notation, that be­
ing the box description language (BDL). 17 While 
graphics may be appropriate for small system de­
signs and high-level presentations, we see no al­
ternative for the use of a syntactically complete 
design language for large-scale object-oriented 
development of systems. The use of the Z nota­
tion has also been used to represent box-struc­
tured designs. 36 

An integrated box-structured environment 
for systems development with objects 

Box structures and the box structure usage hier­
archy provide the common, unifying concepts for 
achieving a truly integrated object-based devel­
opment environment. No artificial bridges and 
transformation procedures are needed to ex­
change information among development activi­
ties. We have defined 16 fundamental box struc­
ture operations (see Table 1) and show these in a 
schematic structure of an integrated development 
environment (see Figure 2). These operations, 
used and reused in various patterns, contain all 
the required processing needed to perform all ac­
tivities in object-based systems development. 
The box structure information is stored in well­
defined box structure formats, box structure 
graphics, and the box description language in sys­
tems development repositories. In this section, 
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we describe the 16 operations and discuss several 
important patterns of object-based development. 

Each of the box structure operations shown in 
Table 1 is atomic, accepting stimuli from and pro­
ducing responses to the system developer and the 
systems development repositories. At any point 
in systems development or systems evolution, an 
operation can be performed as needed as long as 
the stimuli for it are available. It is incumbent 
upon the system developer to put the operations 
to "good use" in the development process. Nat­
ural groupings of the operations are exploited in 
good-use patterns. The box structures that un­
derlie all of the operations provide the essential 
formalism and integration required for rigorous 
systems development. We next briefly describe 
the objectives of each of the operations. 

1. Requirements detennination involves a series 
of investigation activities in which system re­
quirements are specified. The information is gath­
ered via techniques such as user interviews, ques­
tionnaires, documentation review, and analysis 
of existing applications. The gathered require­
ments information is represented in box structure 
formats. 

2. The black box of the system is completely de­
fined (black box definition) based on the require­
ments for the system. The black box is described 
by its stimuli, responses, and the transactions that 
map stimulus histories into responses. 

3. Black box analysis evaluates the quality and 
completeness of the black box specification. For 
example, transaction closure would ensure that 
all stimuli are necessary and sufficient in the sys­
tem. 

4. The defined black box is reviewed (black box 
requirements review) to determine whether it 
truly represents the desired system requirements. 
The review involves the customers, users, and 
managers of the system. 

5. The state of the system is created (state box 
expansion) by encapsulating required stimulus 
history in a state box. Data design methods, such 
as entity-relationship models, are used to create 
a state design. An internal data abstraction is de­
signed to map stimuli and state into responses and 
new state. 
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Figure 2 A schematic structure of an integrated development environment 
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6. State box analysis evaluates the quality and 
completeness of the state box design. The prin­
ciples of transaction closure and state migration 
are applied. Data design metrics, such as level of 
data normalization, are used to evaluate the qual­
ity of the design decisions. 

7. The black box derivation operation discovers 
the black box representation of a given state box. 
A state box can be verified as correct by deriving 
an equivalent black box and comparing it to the 
original black box requirement. 

8. Clear box expansion is a creative step whose 
purpose is to design the procedural structure of 
the system. The uses of black box subsystems at 
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SYSTEM 
OPERATIONS IMPLEMENTATION 

the next level of design are identified. The intel­
lectual control of stepwise system decomposition 
is contained in this operation. 

9. Clear box analysis evaluates the quality and 
completeness of the clear box design. The prin­
ciples of transaction closure, state migration, and 
common services are applied. Design metrics of 
structured programming can be used to study the 
clear box procedural design. 

10. The state box derivation operation discovers 
the state box representation of a given clear box. 
A clear box can be verified as correct by deriving 
an equivalent state box and comparing it to the 
original state box. 
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11. The stepwise system decomposition operation 
continues the system design in a top-down man­
ner by recursively applying the above operations 
to each black box at the next level of the box 
structure usage hierarchy. Common service box 
structures are identified and developed separately 
from the application system usage hierarchy. 

12. System implementation accepts the design 
specification in the form of a box structure usage 
hierarchy and provides the capabilities and re­
sources to implement it. Implementation may be 
an integration of hardware, software, and human 
behavior. Implementation objectives are to build 
and optimize the specified system and to prepare 
users and operators for its operation and mainte­
nance. 

13. Activities during system operations include 
maintenance, performance monitoring, integrity 
control, operations assurance, and system evo­
lution. Box structures provide a rigorous and 
common means of understanding and controlling 
the system during operation. 

14. For an existing system, system analysis is an 
investigation activity to support a better under­
standing of system behavior. Operational system 
metrics, such as performance, reliability, avail­
ability, etc., are computed and used to evaluate 
the quality and completeness of the system. In­
formation is gathered from interviews and docu­
mentation reviews to better understand system 
behavior. This information is stored in a reposi­
tory. 

15. An existing system can be described in box 
structure representations to support further rig­
orous analysis and reverse engineering. Our goal 
is to enhance system understanding by describing 
the system (system box structure description) as 
a usage hierarchy of referentially transparent 
clear boxes. Methods for transforming natural 
procedures into clear box formats are presented 
in Reference 17. 

16. The stepwise system abstraction operation 
builds an increasingly abstract description of an 
existing system in a recursive, bottom-up fashion. 
Detailed clear box descriptions of subsystems are 
derived to state box and black box representa­
tions. These subsystems are then represented as 
black boxes within procedural clear boxes at the 
next higher level of system description. This pro-
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cess continues until the complete system is de­
scribed and understood at the top-level behavior. 
This operation is the basis of the reverse engi­
neering of existing systems as presented in Ref­
erence 26. 

The integrated systems development environ­
ment for box structures would include support for 
the 16 box structure operations and a common 
and controlled repository for storing box struc­
ture information. With the flexibility of being able 
to perform any of these operations at any time 
during systems development, the developer is no 
longer bound by a rigid systems development life­
cycle paradigm. However, a discipline is still 
needed for the good use of the operations toward 
a well-defined systems goal. 

The use of box structures can be adapted to any 
development situation in a flexible way by defin­
ing good-use patterns of operations. These pat­
terns would be placed under strict management 
control and adapted dynamically to changing cir­
cumstances in the on-going systems develop­
ment. Each box structure operation in the pattern 
has well-defined completion criteria, allowing im­
mediate validation of the success or failure of any 
particular step in the development. In addition, 
since the creative invention operations (i.e., state 
box expansion and clear box expansion) are self­
contained, it is easy to track and document the 
critical design decisions in the system. 

To illustrate, consider the following examples of 
good-use patterns of box structure operations. 
For conciseness, we refer to the operations using 
their numbers as defined in Table 1. 

Object description example. The description of an 
object would begin from the discovery of the ob­
ject and a thorough requirements determination 
(operation 1). The object would be designed as 
part of an existing inheritance hierarchy (i.e., 
common service) or would initiate a new inheri­
tance hierarchy. In either case, the design of the 
object would proceed through defining the black 
box, state box, and clear box views (operations 
2-10). Subclasses of the object are defined using 
recursive application of these operations in the 
inheritance hierarchy (operation 11). 

New system development example. The develop­
ment of a system from the beginning would start 
from extensive requirements determination ( op-
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eration 1) and proceed recursively through the 
top-down construction (operations 2-11) of the 
box structure usage hierarchy of the system de­
sign. Finally, the system would be implemented 
(operation 12) and brought into operation (oper­
ation 13). While this pattern of operations is op­
timistically possible, it is rare in practice. New 
system development will require many iterations 
of requirements determination, box structure 
analysis (to include reuse analysis), box structure 
design, and system implementation. The flexibil­
ity to dynamically select and perform the opera­
tion needed next is of great benefit. 

Reverse engineering of systems example. Reverse 
engineering is defined as "the process of analyz­
ing a subject system to identify the system's com­
ponents and interrelationships and to create rep­
resentations of the system in another form or at a 
higher level of abstraction." 37 A pattern of oper­
ations to support reverse engineering would be 
defined by the application of system analysis and 
system box structure description (operations 14 
and 15). Then stepwise system abstraction would 
be performed as a recursive pattern of analyses 
and derivations (analysis operations 3, 6, and 9, 
derivation operations 7 and 10). 

Prototyping example. A prototype is a limited ver­
sion of a system built to provide requirements and 
operations information. Prototypes can range in 
scope from a simple study to see if software pack­
ages can exchange data correctly to a large-scale 
prototype of the complete system. Once the de­
cision is made to prototype a portion of a system, 
the prototype development takes on an indepen­
dent existence of its own. The pattern of box 
structure operations would be similar to the pat­
tern for developing a new system. However, not 
all branches of the box structure usage hierarchy 
would be completed. Only the portions of the sys­
tem to be studied would be designed and imple­
mented. By developing the design with the usage 
hierarchy, referential transparency of all system 
parts in the prototype is maintained. This sup­
ports the ability to make use of these prototype 
subsystems in the design and implementation of 
the desired final system. 

The box-structured systems development 
process 

In this section, we apply the integrated systems 
development environment discussed in the pre-
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vious section to build a good-use pattern of box 
structure operations for the object-based devel­
opment of a system. We propose an object-based 
systems development process that consists of five 
phases. The order of performance of the phases 
during a system development is based on the spi­
ral paradigm in which the next phase of develop­
ment is determined by the results of the previous 
phases. 18 This requires definite result milestones 
and strict management control of the develop­
ment process. The development phases follow. 

Problem definition-A clear problem statement 
must be generated to provide a basis for systems 
development. Extensive domain analysis is es­
sential for complete problem understanding. 

Requirements definition-Requirements are elic­
ited from the system domain experts and system 
users. The requirements are represented in for­
mats that facilitate review and feedback. 

Systems analysis-The system requirements are 
analyzed and information is gathered to support 
subsequent design decisions. The discovery of 
relevant, reusable objects is an important part of 
systems analysis. 

Systems design and verification-Definitive de­
sign decisions are made and the system design is 
grown via top-down functional decomposition in 
a usage hierarchy. Each creative design step is 
verified to be a correct expansion of the existing 
design. 

Systems implementation-The system design is 
transformed into an operational system. The final 
system will be a combination of hardware, soft­
ware, firmware, and human behavior compo­
nents. The boundaries and interfaces among 
these components must be specified in the final 
system design. 

Our emphasis in this section is to detail the pro­
cessing found in the middle three phases and to 
demonstrate the inherent object basis of the box 
structure development process. The phases of re­
quirements definition, systems analysis, and sys­
tems design and verification will be performed as 
a tightly-integrated, iterative process. The ability 
to achieve this tight integration comes about be­
cause of the unifying box structure concepts and 
representations. (We use the term "box struc­
ture" to refer to a component in the system hi-
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erarchy; however, the term "object" could be 
used with equivalent meaning.) 

Requirements definition. The input into the re­
quirements definition phase is a complete prob­
lem statement, typically presented as a structured 
English document. Investigation tasks are per­
formed in order to precisely determine the re­
quirements of a system that solves the presented 
problem. Note that the requirements definition 
phase is performed for each box structure in the 
usage hierarchy. 

Requirements for any level of system object can 
be represented in a box structure format. The ul­
timate goal would be to state all requirements in 
a state-free, procedure-free black box. Defining 
requirements solely as a black box places no con­
straints on the eventual design. The first four box 
structure operations (requirements determina­
tion, black box definition, black box analysis, and 
black box requirements review) are performed it­
eratively during this phase. 

The transactions in a black box are defined as 
mathematical functions for deterministic behav­
ior or mathematical relations for nondeterministic 
behavior. For high-level, complex box structures 
it may be necessary to provide the function or 
relation in the natural language of the problem 
domain, often a mixture of formal and informal 
language. Whatever the notation, the black box 
description is a set of mathematical functions, one 
per transaction. 

Often system requirements do contain design 
constraints on such things as the availability and 
use of data or the need to conform to a defined 
procedure. Such requirements cannot be re­
corded in a black box; thus, a clear statement of 
state box and clear box design constraints must 
be provided. In addition, certain "nonfunctional" 
requirements, such as performance and docu­
mentation standards, can be stated in structured 
English forms. It is important during requirement 
reviews that the system owners understand that 
any requirements beyond a black box are con­
straints upon the design freedom for the system. 
In this process, many nonessential "require­
ments" can be discovered and eliminated. 

The results of the requirements definition phase 
are a precisely defined black box with accompa­
nying state box, clear box, and nonfunctional de-
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sign constraints. This box structure requirement 
is stored in a repository as the initial definition of 
the system object. 

Systems analysis. Analysis tasks are performed to 
support the decisions that must be made during 
systems design. These tasks are performed as 
part of the creative state box expansion and clear 
box expansion structure operations. The box 
structure requirement is analyzed and informa­
tion is gathered to support one or more feasibility, 
reuse, prototpye, or tradeoff types of activities. 

Feasibility studies are performed to determine the 
feasibility and cost versus the benefit of potential 
designs. Reuse opportunities are explored in sev­
eral ways. Repositories of system objects from 
the current project or existing systems will be in­
vestigated for requirements matching. The cost 
and benefit of reusing existing objects, along with 
any required modifications, would be deter­
mined. Prototyping is performed to evaluate de­
sign alternatives. The prototype development 
process will progress independently from other 
design activities with the five development phases 
performed in an iterative manner. Objects devel­
oped in the prototype may be candidates for reuse 
and modification in the final system. Tradeoff 
studies are used to determine the advantages and 
disadvantages of designing and implementing the 
current box structure as hardware, software, 
firmware, human behavior, or some combination 
thereof. Such decisions will impact reuse oppor­
tunities and interface designs. Finally, the reuse 
potential of the current box structure should be 
analyzed. If the decision is made to design the box 
structure as a reusable object, then reuse stan­
dards may dictate certain design decisions (e.g., 
interface standards). 

The above types of analyses are essential to sup­
port high-quality system designs. The informa­
tion, analysis, and conclusions of these studies 
are recorded with the evolving box structure in 
the system repository. Some analysis discoveries 
may cause changes in the system requirements, 
thus, iteration between the phases of require­
ments definition and systems analysis is to be ex­
pected and encouraged. 

Systems design and verification. In this phase the 
box structure requirement and the analysis re­
sults are used to produce a complete design spec­
ification of the box structure. This phase encom-
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passes operations 5 through 11 of the integrated 
box structure environment. 

First the state box is designed from the black box 
requirement specification using the state box ex­
pansion, state box analysis, and black box deri­
vation operations. The completed and verified 
state box is stored in the repository. The clear box 
then can be designed using the clear box expan­
sion, clear box analysis, and state box derivation 
operations. 

The design and verification of the clear box com­
pletes the detailed design of the current box struc­
ture. The complete specification of the box struc­
ture object, from the black box requirement, 
through the intermediate state box, to the final 
clear box design, is stored in the system reposi­
tory. Finally, the stepwise system decomposition 
operation is used to build the complete system in 
a top-down manner. 

The procedural clear box design, developed in the 
clear box expansion operation, ensures that each 
internal black box is referentially transparent 
from all other peer black boxes and common serv­
ices in the clear box. Thus, each black box can be 
designed independently. For each black box re­
quirement the development process of require­
ments definition, systems analysis, and systems 
design and verification begins. Note that much of 
the work performed (and dutifully recorded in the 
repository) for higher-level box structures in the 
hierarchy can be used in the analysis and design 
of lower-level box structures. The desired system 
is complete when no further black box require­
ments exist in the leaves of the box structure us­
age hierarchy. The detailed design of the com­
plete system is then sent to the final phase of 
systems implementation. 

The design of a Master File-Transaction File 
system 

We demonstrate the application of object-based 
development with box structures to a simplified 

ersion of the classic example of a Master File­
Transaction File system. The following problem 

atement is given: 

A supply business maintains a master file of parts 
inventory with attributes of part identification 
PARTID) and quantity on hand (QOH). Each day 

. arts are received and shipped. For each trans-
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action, a record is added to a transaction file with 
attributes of part identification (PARTID), action 
(ACTION) , and quantity (QTY), where ACTION has 
the values of "in" or "out. " The system transfers 
the transactions to the master file at the end of 

A classic example 
illustrates the application 
of object-based systems 

development. 

each day. A management control report is pro­
duced showing the disposition of each transaction 
record and its effect on the master file . 

We develop the top level of this system using a 
box structure box description language notation 
similar to typical program description languages 
(PDL), and it should be self-explanatory. 

Requirements definition. We begin by listing all 
of the stimuli and responses of the desired 
INVENTORY system. They are: 

Stimuli Transaction file and master file 
Responses Updated master file and manage­

ment report 

The discovery of system requirements should 
point out omissions and needed extensions of the 
problem statement. For example, what are the 
correct actions to be taken when unusual or er­
roneous conditions arise? We deal with two such 
conditions in this example. If the transaction file 
is empty, the management report will note this 
and the system finishes. If the PAR TID in the trans­
action file does not match any record in the mas­
ter file, the transaction record will be written with 
an error message. All pertinent conditions and 
contingencies should be studied during the re­
quirements definition phase. 

The black box notation for the INVENTORY sys­
tem requirement is: 
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Black Box Inventory 

stimulus 
Transaction_file : file of records 

record 
PARTID : integer, 
ACTION : type of ('in', 'out'), 
QTY : integer 

endrecord. 
Master_file : file of records 

record 
PARTID : integer, 
QOH : integer 

endrecord. 

response 
Master_file : file of records 

record 
P ARTID : integer, 
QOH : integer 

endrecord . 
Report: 

record 
HEADER : report_header, 
BODY : report_body 

endrecord. 

behavior 

if The transaction file is empty 
then Write the management report 
else 

for Each record in the transaction file 
do 

Match the PARTID value into the 
master file 
if A match exists 
then Modify the QOH value by add­

ing (ACTION = 'in') or sub­
tracting (ACTION = 'out') the 
value of QTY; 
Write the transaction record 
and new master record in the 
management report 

else Write the transaction record 
and an error statement in the 
management report 

if; 
od; 

fi· 
' end Black Box Inventory. 

Note that the transaction statement in the black 
box is a mixture of keywords and structured En-
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glish for exposition purposes. Equivalently, we 
could have presented a mathematical representa­
tion of conditional algebraic assignments for the 
transaction. 

Systems analysis. We concentrate our analysis for 
the example in discovering reuse opportunities. 
We assume that a File_manager object type exists 
as a box structure design in the existing reuse 
library. The object type is designed to encapsu­
late a file of arbitrary design and size. Visible op­
erations on the file would include typical file op­
erations, such as the following: 

OPEN Establishes currency pointer at first 
record of file and checks access rights 

ISEMPTY Checks if file is empty, returns Bool­
ean value 

READ Reads record at currency pointer, 
moves pointer to next record 

ATEOF Checks if currency pointer is at EOF, 

returns Boolean value 
WRITE Overwrites given record at currency 

pointer 
FIND Given a primary identifier value, finds 

the first record with that identifier; if 
no match is found, a STATUS value is 
returned 

ADD Given a record with a valid identifier, 
places the record in the file in correct 
order 

DELETE Given a record identifier, finds record 
and deletes it from file 

CLOSE Establishes file integrity and update 
commitments, releases any file locks 

We assume that two object instantiations of File_ 
manager encapsulate the master file and the 
transaction file. Since these files would also be 
used by other systems in the business, these 
objects would be organization-wide commori 
services. We name the objects Master_file and 
Trans_file . 

Systems design and verification. State box design 
of the INVENTORY system would discover the 
need to store the evolving management report as 
intermediate state. Thus, the state box design is 
given as follows: 
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State Box Inventory 

common services 
Master_file. 
Trans_file . 

stimulus 

response 
Report: 

record 
HEADER : report_ header, 
BODY : report_body 

endrecord. 
state 

Report: 
record 

HEADER : report_ header, 
BODY : report_body 

endrecord. 

behavior 

if The transaction file is empty 
then Write Report 
else 

for Each record in Trans_file 
do 

Match the PARTID value in Master_file 
if A match exists 
then Modify the QOH value in Master_file 

by adding (ACTION = 'in') 
or subtracting (ACTION = 'out') 
the value of QTY from Trans_file; 
Write Trans_file record and new 
Master_file record in Report 

else Write Trans_file record and an 
error statement in Report 

if; 
od; 

fi· 
' 

end State Box Inventory. 

The state box can be verified as a correct design 
of the black box requirement in a straightforward 
manner. Although we do not present all of the 
details here, the critical tasks would be to verify 
the correct uses of Master_file and Trans_file ob­
jects and the Report state in the state box trans­
action. 

During the clear box design, an important design 
decision presents itself. Should Report remain as 
global state in the system or should it be encap-
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sulated into a data abstraction with visible oper­
ations? We choose to develop a system-wide 
common service object called Mgmt_report with 
Report as encapsulated data and four visible op­
erations: 

NEW Initializes Report with defined header 
information, such as date, time, titles, 
and column headings 

ADD Adds correctly processed Trans_file 
record and new Master_file record to 
body of Report 

ERRORl Adds a Trans_file record and error 
statement to body of Report when no 
match is found in Master_file 

PRINT Prints the current state value of theRe­
port 

The Mgmt_report object will be completely de­
veloped and verified, from black box requirement 
to clear box design, and used in the INVENTORY 
system as a common service object. The clear 
box design of INVENTORY could be presented as: 

Clear Box Inventory 

common services 
Master_file. (* organization-wide 

common service *) 
Trans_file. (* organization-wide 

common service *) 
Mgmt_report. (* system-wide 

common service *) 

stimulus 
response 
state 

behavior 
data (* temporary data *) 

TESTl : Boolean, 
proc 

use Mgmt_report(in: NEW); 
use Master_file(in: OPEN); 
use Trans_file(in: OPEN); 
use Trans_file(in: ISEMPTY, out: TESTl); 
if NOT TESTl then use Update_master fi; 
use Mgmt_report(in: PRINT); 
use Master_file(in: CLOSE); 
use Trans_file(in: CLOSE) 

corp 
end Clear Box Inventory. 
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Again, the verification of the clear box can be 
done and will not be presented here. 

The only new object at the second level of the 
system hierarchy is the Update_master black 
box. We would iterate the development process 
for this object, defining the black box, performing 

The design work is complete 
when there are no undefined 
black boxes and the system 

is completely specified. 

systems analysis, and, finally, designing the state 
box and clear box. For purposes of space, we 
show the final clear box design. 

Clear Box Update_master 

common services 
Master_file. (* organization-wide 

common service *) 
Trans_file. (* organization-wide 

common service *) 
Mgmt_report. (* system-wide 

common service *) 

stimulus 
response 
state 

behavior 
data (* temporary data *) 

TEST2 : Boolean, 
T_REC: 

record 
PARTID : integer, 
ACTION : type of ('in', 'out'), 
QTY : integer 

endrecord. 
M_REC: 

record 
PARTID : integer, 
QOH : integer 

endrecord. 
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proc 
use Trans_file(in: ATEOF, out: TEST2); 
while NOT TEST2 
do 

use Trans_file(in: READ, out: T_REC); 
use Master_file(in: FIND, 
T_REC.PARTID out: M_REC, STATUS); 
if STATUS = NOT_FOUND 
then use Mgmt_report(in: 

ERRORl, T_REC) 

else 
if T_REC.ACTION = 'in' 
then M_REC.QOH ~ M_REC.QOH 

+ T_REC.QTY 
else M_REC.QOH ~ M_REC.QOH 

- T_REC.QTY 
fi· 
' use Master_file(in: WRITE, 

M_REC); 

use Mgmt_report(in: ADD, 
M_REC, T_REC) 

fi· 
' use Trans_file(in: ATEOF, out: TEST2); 

od 
corp 

end Clear Box Update_Master. 

Since there are no undefined black boxes in 
Update_master, no further design work is needed 
and the INVENTORY system is completely speci­
fied as a hierarchy of object uses. Figure 3 shows 
the box structure usage hierarchy for this result­
ing system. 

Observations for this example. In the INVENTORY 
system development, we have identified and cre­
ated five objects: Inventory, Update_master, 
Master_file, Trans_file, and Mgmt_report. 

Master_file and Trans_file are instantiations of a 
file management object type to encapsulate the 
master inventory file and the daily transaction 
file, respectively. The objects are organization­
wide common services to all application systems 
that require access to these files. For example, an 
on-line application system will place transaction 
records into Trans_file during the daily inventory 
processing. 

The Mgmt_report object can be an instantiation of 
an object-type that standardizes report formats 
and operations in the organization or it can be 
developed from scratch for this application. If it 
is newly developed, then the object becomes a 
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Figure 3 Inventory system box structure usage hierarchy 

COMMON SERVICES 

APPLICATION SYSTEM 

system-wide object for use throughout the INVEN­
TORY system. If the encapsulated management 
report is to be used further in other system ap­
plications, then the Mgmt_report object can be 
designed to become an organization-wide object. 

Inventory and Update_master are objects unique 
to the INVENTORY application. While the final de­
signs of Inventory and Update_master encapsu­
late no persistent data (all persistent data are in 
the common services), the analysis and design of 
these objects provide the insights and the creative 
opportunities to perform the necessary object de­
composition and composition for this system. 
This example also demonstrates the ability to de­
sign objects within objects since Update_master 
is wholly contained within the Inventory object. 
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Summary 

Our goals in this paper have been to discuss and 
demonstrate the use of box structures in a rigor­
ous and systematic object-based systems devel­
opment process. Box structures provide a bridge 
between structured development methods and 
object-oriented development methods. The fol­
lowing observations support and summarize our 
discussion. 

• Box structures provide for the definition of data 
abstractions and objects in three mathematical 
views. 

• The box structure usage hierarchy allows intel­
lectual control over the development process. 
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Each box structure in the system usage hierar­
chy is an object. 

• All design inventions are separated into clearly 
identified small steps. Design verification is per­
formed after each inventive step of design and 
provides a systematic basis for inspection. 

• An object is stored in the system repository in 
all box structure views, from black box require­
ment to clear box detailed design. The object is 
described in an inheritance hierarchy as a com­
mon service. 

• Box structures support an integrated develop­
ment process, in that there is no need to trans­
form the representation or content of develop­
ment \information from one phase to another. 

• The systems development process is com­
pletely flexible between development phases. 
The next phase to be performed is based upon 
feedback from previous work results. The de­
velopment of a system box structure usage hi­
erarchy provides a discipline of sound and com­
plete design. 

Future research will expand upon the critical is­
sues in this development process. We are cur­
rently performing research in three areas: 

• Requirements definition- The process of elic­
iting requirements and representing system re­
quirements in box structures needs important 
new research. 38 While the goal of requirements 
definition is to place all requirements in abstract 
black boxes, there are often essential require­
ments on data, procedure, and nonfunctional 
requirements, such as system performance. 

• Concurrent and real-time systems- Current 
box structure theory supports the design and 
verification of sequential systems. Our recent 
research has provided extensions of box struc­
tures to the design and verification of concur­
rent systems. 29 Much more research is needed, 
however, to handle all of the complexities of 
real-time systems development. 

• Integrated CASE-An eventual goal of this re­
search is to design and build a comprehensive 
CASE system that provides integrated support of 
object-oriented development from require­
ments definition through system implementa­
tion. Our current research focuses on the rep­
resentations of box structure information in 
common system development repositories. 39 
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