
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

The Harlan D. Mills Collection Science Alliance

1980

Software Engineering-Education Software Engineering-Education

Harlan D. Mills

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Mills, Harlan D., "Software Engineering-Education" (1980). The Harlan D. Mills Collection.
https://trace.tennessee.edu/utk_harlan/22

This Article is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268735183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

1158 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

Software Engineering Education

HARLAN D. MILLS

Abstmct-In a field as rapidly growing as software engineering, the
education problem splits into two mPjor parts-university education
and industrid education. (Some of which is given at university loca-
tions, as short courses, but considered industrial education here.) Both
parts draw on the same underlying disciplines and methoddogies. But
the people involved-both teachers and students-have different objec-
tives and characteristics. At the university level students are young,
inexperienced, and datively homogeneous in background and abilities.
At the industrial level, students are older, more experienced, and vary
considerably in background and abilities.

In this paper, we discuss the underlying commonalities and the
overlaid differences of university and industrial education in soft-
wpre engineering The commonalities in discipline and methodd-
ogies invdve the study and understanding of the Software Process,
as discussed in Section II of this special issue, and of the “Tods”
and “Know How” discussed in Section HI. The differences are due
to the characteristics and objectives of students, and show up on
curricula content and structure and in course definition.

I. SOFTWARE ENGINEERING EDUCATION IN FLUX
A. University Education and Industrial Education

1 N A FIELD as rapidly growing as software engineering, the
education problem splits into two maor parts-university
education and industrial education. (Short courses given at

university locations without degree credits are considered in-
dustrial education here.) Both parts draw on the same under-
lying disciplines and methodologies. But the people involved
-both teachers and students-have different objectives and
characteristics.

University students are young, inexperienced, and relatively
homogeneous in background and abilities. Industrial students
are older, more experienced, and vary considerably in back-
ground and abilities. University teachers are oriented toward a
transient student population (in 2-4 years they are gone) and
to their own publications. Industrial teachers are oriented to
a more stable student population and to improved industrial
performance of students due to their education. In brief, uni-
versity students are “supposed to be learning” while industrial
students are “supposed to be working.”

In a field more stable than software engineering, university
education plays a dominant role in shaping the principles and
values of the field, while industrial education consists of re-
fresher and updating courses in fringe and frontier areas. But
university education in software engineering was not available
to the majority of people who practice and manage it today.
Therefore, the principles and values of software engineering
are being shaped jointly by university and industrial influences.

B. A Serious Problem
The U.S. finds itself far ahead in computer hardware but

also heading for a serious problem in software. In a recent

Manuscript received January 22, 1980;revised May 28, 1980.
The author is with IBM Corporation, 1021 5 Fernwood Road, Bethesda,

MD 20034,

object lesson, our electronics industry was strengthened signif-
icantly by the shortfall of our missile boosters compared to
those of the Soviet Union 20 years ago. As a partial result of
the severe discipline of power, space, and weight limitations in
our boosters, our electronics. was miniaturized and improved
in dramatic ways. And we lead in electronics today because
of this history.

In reverse, we have seen an astonishing growth in computer
power and availability. And our software industry has suffered
from the lack of enforced discipline thereby, even while de-
veloping the largest software systems known today. Simply
put, we are used to squandering computer power. This bad
habit pervades industry, government, and the very sociology
and psychology of the bulk of the computer programming
today. Since information processing has become an essential
part of the way society manages its industries and thereby a
key to industrial power, the inertia of several hundred thou-
sand undisciplined programmers in the U.S. is real reason for
future concern.

We can also be sure that this causality will work in reverse.
The lack of computing scarcity provides temptations every day
in every way to excuse and condone poor performance in the
software sector. Indeed, the software industry has already
bungled its way into a predominate share of the costs of data
processing.

Unless we address this problem with exceptional measures,
we are on the way to a “software gap” much more serious and
persistent than the famous “missile gap” which helped fuel the
very growth of our electronics industry.

C. The Problem Perpetuated
As a result of this history, the educational background and

discipline of the vast majority of computer programmers is
seriously low. But, as a natural human trait, most of these
programmers would rather be comforted than educated.
“After all, if I’m as good as the next person, I’m good enough.”

Fortunately for these programmers, there are any number of
industrial short courses which will comfort, rather than edu-
cate. They are “practical,” “easy to understand,” “the latest
techniques.” On attendance, programmers discover various
new names for common sense, superficial ideas, and thereby
conclude, with much comfort and relief, that they have been
up to date all the time. But unfortunately for the country,
these programmers have not only learned very little, but have
been reinforced in the very attitude that they have little to
learn!

To make matters worse, many of these comfortable and
comforting short courses make liberal use of the term “software
engineering” as a buzz word. Such a typical “education” in
software engineering consists of three days of listening, no
exams, but a considerable feeling of euphoria.

This accident of history poses critical problems for univer-

0018-9219/80/0900-1158$00.75 0 1980 IEEE

MILLS: SOFTWARE ENGINEERING EDUCATION 1159

sities, as well. The great demand for software engineering pro-
vides many temptations for lowered academic standards. The
solid mathematical bases for software analysis and design are
just emerging and are not easy to package for classroom use at
this stage. But since software touches so many broad issues,
there is no problem in filling a semester course, or even a cur-
riculum, with all the latest buzz words and proposals of the
field.

11. WHAT Is SOFTWARE ENGINEERING?

A . Computer Science, Computer Programming, and
Software Engineering

It is fashionable to relabel all computer programming as soft-
ware engineering today, but we will not do that here. Our
definition of software engineering requires both software and
engineering as essential components. By software we mean
not only computer programs, but all other related documenta-
tion including user procedures, requirements, specifications,
and software design. And by engineering, we mean a body of
knowledge and discipline comparable to other engineering cur-
ricula at universities today, for example, electrical engineering
or chemical engineering.

We distinguish software engineering from computer science
by the different goals of engineering and science in any field-
practical construction and discovery. We distinguish software
engineering from computer programming by a presence or not
of engineering-level discipline. Software engineering is based
on computer science and computer programming, but is dif-
ferent from either of them.

The full discipline of software engineering is not econom-
ically viable in every situation. Writing high-level programs in
large well structured application systems is such an example.
Such programming may well benefit from software engineering
principles, but its challenges are more administrative than tech-
nical, more in the subject matter than in the software.

However, when a software package can be written for fifty
thousand dollars, but costs five million to fix a single error be-
cause of a necessary recall of a dangerous consumer product,
the product may well require a serious software engineering
job, rather than a simple programming job of unpredictable
quality.

B. Mathematical Foundations of Software Engineering
It is characteristic of an engineering discipline to have ex-

plicit technical foundations, and software engineering is no
exception. Since the content of software is essentially log-
ical, the foundations of software engineering are primarily
mathematical-not the continuum mathematics underlying
physics or chemistry, of course, but f A t e mathematics more
discrete and algebraic than analytic in character. It has been
remarked’ that “algebra is the natural tool to study things
made by man, and analysis the tool to study things made by
God.” Software is made by man and algebra is indeed the
natural mathematical tool for its study, although algebra
appears in many forms and disguises in computer science
topics. For example, automata theory, theories of syntax and
semantics of formal languages, data structuring and abstrac-
tions, and program correctness are all algebraic in character,

’ By Professor W. Huggins, The Johns Hopkins University.

in spite of widely differing notations due to their historical
origins.
In contrast, electrical engineering combines physical and

logical design, and therefore draws on both continuum and
discrete mathematics. Software engineering uses continuum
mathematics only for convenient approximation, e.g., in prob-
ability or optimization theory. The difference between the
logical design of electrical engineering and the logical design
of software engineering is one of scale. The logical complexity
of a large software system is orders of magnitude above the
logical complexity of a physically realizable processor. In fact,
this ability to realize and implement logical complexity of high
order is the reason for software.

Note that discrete mathematics does not necessarily imply
finite mathematics. The analysis of algorithms, for example,
leads to deep logical questions as to whether a computational
process is finite or not, even though al l operations are discrete.
The theory of Turing machines provides another such example
[81.

C. Structure and Organization in Software Engineering
The primary difficulty in software engineering is logical

complexity [4] . And the primary technique for dealing with
complexity is structure. Because of the sheer volume of work
to be done, software development requires two kinds of struc-
turing, algebraic and organizational. Algebraic structuring,
applied in different ways, allows mental techniques of divide
and conquer, with the same underlying principles, in the
various phases of specification, design, implementation, opera-
tion, and evolution of software. The result of proper struc-
turing is intellectual control, namely the ability to maintain
perspective while dealing with detail, and to zoom in and out
in software analysis and design.

The principal organizational technique is work structuring-
between workers and machines, and further, between workers.
Software tools, in the form of language compilers, operating
systems, data entry and library facilities, etc., represent tech-
niques of structuring work between workers and machines.
One major dimension of work structuring among people is
along the conceptual-clerical axis, which permits effective
isolation and delegation of clerical work. Other dimensions
are based on subject matter in software and applications. A
surgical team represents a good example of work structuring,
with different roles predefined by the profession and previous
education. Surgery, anesthesiology, radiology, nursing, etc.,
are dimensions of work structuring in a surgical team. The
communication between these roles is crisp and clean-with
a low bandwidth at their interface, e.g., at the “sponge and
scalpel” level, not the whole bandwidth of medical knowledge.
A grammar school soccer team represents a poor example of
work structuring-the fnst kid who reaches the ball gets to
kick it. But the first person reaching the patient doesn’t get
to operate, and hospital orderlies do not become surgeons
through on-the-job training.

D. Career Structures in Software Engineering
In addition to degree-level engineering skills in software, we

identify the need for various grades of technician skills, and
for degree-level science and administration skills as well. Within
the engineering skills, we can differentiate by subject matter
and further by skill level through graduate degree levels.

Just as in any other profession such as law, medicine, etc.,
many skill categories and skill levels go into a well-formed soft-

1160 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

ware engineering team. In software development, the sheer
weight of precise logic dominates, and the need for precision
procedures for design and control is critical. For example, in
law, three judges may subdivide an opinion for a joint writing
project and meet the requirements for legal precision with
small variations in their individual vocabularies. But a joint
software development by three programmers will not tolerate
the slightest variation in vocabulary because of the literal treat-
ment of the design text by a computer.

The software engineer is at the center of software develop-
ment and computer operations in which basic algorithms and
data processing may require other advanced skills for their
definition, analysis, and validation. Because of this, graduate
science and administrative skills are frequent partners in soft-
ware development, and the software engineer needs to be at
home with an interdisciplinary approach.

Within software engineering, we can identify several areas of
concentration which have the depth and substance that can
occupy a person through a life-long career. Those areas in-
clude such topics as compilers, operating systems, data-base
systems, real-time control systems, and distributed processing
systems. These specialties in software engineering usually
require graduate-level education for effective team leadership
and advanced technical contributions.

111. SOFTWARE ENGINEERING PRACTICES
A. Elements of Software Engineering

The effective practice of software engineering must be based
on its technical foundations just as any other engineering ac-
tivity, in combining real world needs and technical possibilities
into practical designs and systems. For our purposes it is con-
venient to classify the disciplines and procedures of software
engineering into three categories.

1) Design-(after Plato, Phaedrus). “First, the taking in of
scattered particulars under one Idea, so that everyone under-
stands what is being talked about . . . Second, the separation
of the Idea into parts, by dividing it at the joints, as nature
directs, not breaking any limb in half as a bad carver might.”

2) Development-The organization of design activities into
sustained software development, including the selection and
use of tools and operational procedures for work structuring
among different categories of personnel.

3) Management-Requirements analysis, project definition,
identifying the right personnel, and the estimation, scheduling,
measurement, and control of software design and development.

B. Software Engineering Design
The availability of useful, tested, and well-documented prin-

ciples of software specification and design has exploded in the
past decade, in three distinct areas, namely,

1) sequential process control-characterized by structured
programming and program correctness ideas of Dijkstra
[71, Hoare [141, Linger, Mills, and Witt [171, and Wirth

2) system and data structuring-characterized by modular
decomposition ideas of Dijkstra [91, Dahl [71, Ferren-
tinoandMills[11],[19],andParnas[22]:

3) real-time and multidistributed processing control-charac-
terized by concurrent processing and process synchroni-
zation ideas of Brinch Hansen [51, Dijkstra [101, Hoare
[151, and Wirth 1281.

[%I, (271;

Designers can understand, evaluate, and criticize each other’s
work in a common objective framework. In a phrase of Wein-
be% [251, people can better practice “egoless software design”
by focusing criticisms on the design and not the author. Such
design principles also provide direct criteria for more formal
design inspection procedures so that designers, inspectors, and
management can better prepare for, conduct, and interpret the
results of periodic orderly design inspections.

C. Software Engineering Development

Even though the primary conceptual work of software en-
gineering is embodied in design, the organization and support
of design activities into sustained software development is a
significant activity in itself, as discussed in [3], [20]. The
selection and defiition of design and programming support
languages and tools, the use of library support systems to
maintain the state of a design under development, the test
and integration strategy, all impact the design process in
major ways. So the disciplines, tools, and procedures used
to sustain software development need to be scrutinized,
structured, and chosen as carefully as the design principles
themselves.

The principal need for development discipline is in the
intellectual control and management of design abstractions
and details on a large scale. Brooks [6] states that “concep-
tual integrity is the most important consideration in systems
design.” Design and programming languages are required
which deal with procedure abstractions and data abstractions,
with system structure, and with the harmonious cooperation
of multidistributed processes. Design library support systems
are needed for the convenient creation, storage, retrieval, and
modification of design units, and for the overall assessment of
design status and progress against objectives.

The isolation and delegation of work between conceptual
and clerical activities, and between various subactivities in
both categories is of critical importance to a sustained and
manageable development effort. Chief programmer teams [31
embody such work structuring for small and medium size
projects. In larger projects, an organization of Chief Program-
mer Teams and other functional units is required.

D. Software Engineering Management

The management of software engineering is primarily the
management of a design process, and represents a most difficult
intellectual activity. Even though the process is highly creative,
it must be estimated and scheduled so that various parts of the
design activity can be coordinated and integrated into a har-
monious result, and so that users can plan on results as well.
The intellectual control that comes from well-conceived
design and development disciplines and procedures is invalu-
able in achieving this result. Without that intellectual control,
even the best managers face hopeless odds in trying to see the
work through.

In order to meet cost/schedule committments in the face
of imperfect estimation techniques, a software engineering
manager must practice a manage-and-design-to-costlschedule
process. That process calls for a continuous and relentless
rectification of design objectives with the cost/schedule re-
quired for achieving those objectives. Occasionally, this recti-
fication can be simplified by a brilliant new approach or tech-
nique, which increases productivity and shortens time in the
development process. But usually, just because the best pos-

The value of these design principles is in the increased disci- sible approaches and techniques known are already planned, a
pline and repeatability they provide for the design process. shortfall, or even a windfall in achievable software, requires

MILLS: SOFTWARE ENGINEERING EDUCATION 1161

consultation with the user in order to make the best choices
among function, performance, cost, and schedule. It is espe-
cially important to take advantage of windfalls, to counter
other shortfalls; too often windfalls are unrecognized and
squandered. The intellectual control of good software design
not only allows better choice in a current development, but
also permits subsequent improvements of function and per-
formance in a well-designed baseline system.

In software engineering, there are two parts to an estimate-
making a good estimate and making the estimate good. It is
up to the software engineering manager to see that both parts
are right, along with the right function and performance.

IV. PRINCIPLES OF EDUCATION IN SOFTWARE
ENGINEERING

A . Degrees in Software Engineering

A degree in software engineering should first of all be an en-
gineering degree, dealing with engineering design and construc-
tion. It should not simply be a computer programming degree
or a computer science degree. As already noted, there is much
programming to be done in society, and other curricula in arts
and science or business administration should be called upon
to provide properly focused education for more general pro-
gramming in business and science applications. The UCLA
masters program in Computer Science [161 is a good model of
such other curricula, which has high-technology content, yet
does not pretend to be software engineering.

The usual principles of university education should apply to
a curriculum in software engineering, namely that it be a prep-
aration for a career based on topics of reasonable half life,
while producing entry-level job skills, and the ability to learn
later. These objectives are not incompatible because the very
topics required for dealing with technically challenging soft-
ware problems are generally basic topics of long life, and do
indeed prepare people for more advanced education and con-
tinued learning. It is well known that mathematics and science
are more easily learned when young and so, as a rule, soft
topics should be deferred for postgraduate experience and con-
tinued learning. There is real danger in over using soft topics
and survey courses loaded with buzz words to provide near-
term job entry salability. But without adequate technical
foundations people will become dead ended in mid-career,
just when they are expected to solve harder problems as indi-
viduals, as members or as managers, of teams.

In the three categories of software engineering practices
listed above, studies in design practices are prime candidates
for early university education; development practices should
be phased in later, and management practices deferred for
continued postdegree learning, after considerable experience
in individual and team practice in software engineering.

B. Foundations and Problem Solving

This is a difficult dilemma in university cumcula in balancing
the needs for solid technical foundations and to learn problem
solving. Of course, this dilemma is not unique to software en-
gineering. Limiting topics to techniques allows a more efficient
education process in terms of quantity, volume, and quality of
techniques that are teachable. But it is frequently difficult for
students to apply such techniques in problem-solving contexts.
Problem solving is a great motivator and confidence builder.
But too much emphasis on problem solving cuts into the
amount of technique preparation possible, and produces stu-
dents able to make a good first showing in their career but

who are likely to drop out early because of the lack of deeper
technical abilities.

It is characteristic in software engineering that the problems
to be solved by advanced practitioners require sustained efforts
over months or years from many people, often in the tens or
hundreds. This kind of mass problem-solving effort requires
a radically different kind of precision and scope in techniques
than is required for individual problem solvers. If that pre-
cision and scope is not gained in university education, it is
difficult to acquire it later, no matter how well motivated or
adept a person might be at individual, intuitive approaches to
problem solving.

We all know of experiences in elementary mathematics
courses in getting little or no credit for guessing correct an-
swers without showing the process for finding them. There was
a good reason, because guessing answers to small problems can-
not be scaled up to larger problems, whereas processes need to
solve smaller problems can be scaled up. That scale up prob-
lem is the principal difference between computer programming
and software engineering.

C. Curriculum Topics

ACM Curriculum '78 [2] is a well-accepted prescription for
an undergraduate degree in computer science/programming.
But there are those who believe that Curriculum '78 does not
present enough, and the right kind of mathematics. In any
case, this author believes that degrees in software engineering
should be considerably stronger in discrete mathematics than
suggested by Curriculum '78. In particular, a curriculum in
software engineering should require a good working knowledge
of the first-order predicate calculus, the algebras of sets, func-
tions and relations, and a deep enough understanding of
mathematical reasoning to use it in a flexible way in large and
complex problems. We are beginning to see evidence of the
practical power of mathematical reasoning in mastering soft-
ware complexity, for example in program verification [121,
and in the development of entire software systems, such as the
UCLA Unix Security Kernel [24]. With such a foundation,
the curriculum can provide an understanding of algorithms [1 1,
computer programs [17], [261, [271 data structures [13],
data abstractions [181, and data bases [23] as mathematical
objects.

D. Adult University Education

The rapid growth of software engineering means that there
will be a considerable amount of adult education in university
work (in contrast to short courses which may be given in
universities on a nondegree basis.) Typically these will be ad-
vanced degrees for people with an already good foundation
in mathematics or engineering science. It is to be expected
that adult education will go on in parallel in arts and sciences,
and in business administration schools for much the same
reason because the whole industry is growing rapidly. But as
noted before, we distinguish between programming and soft-
ware engineering and we mean to discuss here adult university
education in software engineering only.

Adult students in university curricula have advantages and
disadvantages over 'younger students coming directly out of
previous education. Their advantages are in their motivation
and in the fact that they have a larger experience base in which
to embed the ideas, techniques, etc., they receive in the educa-
tion process. Their disadvantages are in being rusty in the
learning process and possibly in having their education some-
what outmoded through the passage of time. On balance,

1162

people who are motivated enough to return for adult educa-
tion at the university level, are usually superior students and
get more out of their education than their younger peers, but
they should be expected to live up to the academic standards
of the institution.

E. Laboratory Courses in Software Engineering
We know from other science and engineering disciplines that

laboratory courses are usually more difficult to develop than
lecture courses. In software, simply letting people learn by
themselves in developing programs and systems as projects can
lead to two weeks of experience repeated seven times rather
than a fourteen-week laboratory course of cumulative experi-
ence. The problem with such open-loop student projects is
that much of the time is spent on recovering from unwise de-
cisions or poor executions made earlier, with little real learning
going on.

A degree program in software engineering should contain
a minimum sequence of laboratory courses, which is based
on understanding and modifying existing programs and solv-
ing hardware/software integration problems before proceed-
ing to program design and development and later into system
specification and design. This laboratory sequence should
proceed from 1) a highly structured environment in which
carefully conceived programs (with carefully conceived prob-
lems) are presented to students for testing and modification
to 2) less structured situations where students design and
develop small, then large, software products from well-defined
specifications, finally to 3) even less structured situations
where they deal with informal requirements from which speci-
fications and designs are to be developed. In this sequence
there is an opportunity to identify problems, which all stu-
dents encounter simultaneously, for which instructors can help
develop approaches and solutions. A hardware/software in-
tegration problem early in the laboratory sequence seems es-
pecially important for software engineering students, because
there are usually important interfaces between hardware and
software in the high-performance systems dealt with by soft-
ware engineering.

REFERENCES

[1] A. V. Aho, J . E. Hopcroft, and J . D. Ullman, The Design and
Analysis of Computer Algorithms. Reading, MA: Addison-

[2] R. Austing e t al., E&., “Curriculum 78: Recommendations for
Wesley, 1974.

the undergraduate program in computer science-A report of the
ACM curriculum committee on computer science,” Commun. Ass.
Comput. Mach., vol. 2 2 , no. 3 , Mar. 1979.

PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

I 3 1 F. T. Baker, “Chief programmer team management of production
programming,” IBMSyst. J . , vol. 11, no. 1, 1972.

[4] L. A. Belady and M. M. Lehman, “The evolution dynamics of large
programs,” IBM, Yorktown Heights, NY, RC 5615 (#24294),

[51 P. Brinch Hansen, The Architecture of Concurrent Programs.
Sept., 1975.

[a] F. P. Brooks, The Mythical Man-Month: Essays on Software En-
Englewood Cliffs, NJ: Prentice-Hall, 1977.

[7] 0. J . Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Pro-
gineering. Reading, MA: Addison-Wesley, 1975.

gramming. New York: Academic Press, 1972.
[8] P. Denning and J . Dennis, Machines, Languages, and Computa-

IS] E. W. Dijkstra, “The structure of ‘THE’-multiprogramming sys-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1978.

tern,” Commun. Ass, Comput. Mach., vol. 11, no. 5 , pp. 341-346,
May 1968.

[101 -, “Co-operating sequential processes,” in Programming Lan-

[11 1 A. B. Ferrentino and H. D. Mills, “State machines and their
guages. London, England: Academic Press, 1968, pp. 43-1 12.

semantics in software engineering,” Proc. IEEE Comsac ’77, pp.
242-251, 1977. (IEEE Catalog no. 77Ch1291-4C.)

[121 S. L. Gerhart, “Program verification in the 1980’s: Problems,
perspectives, and opportunities,” IS1 Rep. ISI/RR-78-71, Aug.
1978.

[131 C. C. Gottlieb and L. R. Gotlieb, Data Types and Data Structures.

[1 4) C. A. R. Hoare, “An axiomatic basis for computer programming,”
Englewood Cliffs, NJ: Prentice-Hall, 1978.

1151 -, “Monitors” an operating system structuring concept,”
Commun. Ass. Comput. Mach., vol. 12, pp. 576-583, 1969.

161 W. J. Karplus, “The coming crisis in graduate computer science
Commun. Ass. Comput. Mach.,vol. 18, p. 95, 1975.

education,” UCLA Comput. Sci. Dep. Quarterly, Jan. 1977, pp.
1-5.

171 R. C. Linger, H. D. Mills, and B. I. Witt, Structured Programming:
Theory and Practice. Reading, MA: Addison-Wesley, 1979,

181 B. Liskov and S. Zilles, “An introduction to formal specifications

ology, vol. 1, R. Yeh, Ed. Englewood Cliffs, NJ: Prentice-Hall,
of data abstractions,” in Current Trendr in Programming Method-

1977. DD. 1-32.
H. D.‘ Gills, “On the development of systems of people and ma-
chines,” in Lecture Notes in Computer Science 23. New York:
Springer-Verlag, 1975.

, “Software development,” IEEE Trans. Software Eng., vol.

programs, Ph.D. dissertation, Univ. of Texas, Austin, TX, Nov.
M. Moriconi, A system for incrementally designing and verifying

1977.
D. L. Parnas, “The use of precise specifications in the develop-
ment of software,” in Information Processing, B. Gilchrist, Ed.
Amsterdam, The Netherlands: North Holland, 1977, pp. 861-
867.

Computer Science Press, 1980.
J . Ullman, Principles of Data Base Systems. Washington, DC:

and verification of the UCLA unix security kernel,” Commun.
B. J . Walker, R. A. Kmmerer , and G. J . Popek, “Specification

Ass. Comput. Mach.,vol. 2 3 , no. 2 , pp. 118-131, Feb. 1980.
G. M. Weinberg, The Psychology of Computer Programming.
New York: Van Nostrand Reinhold, 1971.
N. Wirth, Systematic Programming. Engkwood Cliffs, NJ:
Prentice-Hall, 1973.

Cliffs, NJ: Prentice-Hall, 1976.
, Algorithms + Data Structures = Programs. Englewood

A s . Comput. Mach.,vol. 20, pp. 577-583, 1977.
, “Toward a discipline of real-time programming,” Commun.

-
SE-2, pp. 265-273, 1976.

-

-

	Software Engineering-Education
	Recommended Citation

	tmp.1317777076.pdf.hOaJt

