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A Stochastic Income Model Using 

Optimal Inventory Rules' 

I. INTRODUCTION 

The optimality of various inventory rules has been intensively investigated from the 
standpoint of the individual firm; however, no comparable analytic study has been devoted 
to the question of what happens when such rules interact in a complex, multi-stage economy. 
This question is considered here in the context of a highly simplified model, but one in 
which aggregation between some of the stages within the economy (e.g. production and 
retailing) is eliminated. Thus, in its objectives, this paper is in the tradition pioneered by 
Lundberg [7] and Metzler [8]. The characteristic procedure of that tradition is to investi- 
gate, in the context of non-stochastic, linear, and highly aggregative models, the implica- 
tions of various patterns of desired inventory investment for the dynamic behaviour of 
income. In method of analysis, however, the present study will be seen to fall more 
naturally into a second tradition: that of Slutzky, [14], Yule [15], Frisch [4], and more 
recently Muth [11], which holds that random shocks may be a principal cause of economic 
fluctuation. 

The linear difference equation approach of the first tradition has undoubtedly yielded 
insight into economic mechanisms, but it has scored no outstanding triumphs in con- 
frontation with data. The lack of success may be due to any of these obvious drawbacks, 
acting singly or in combination: (1) The absence of stochastic shock leaves only two 
explicit explanations of oscillatory behavior, i.e., complex roots (or a dominant negative 
real root) of unit modulus in the characteristic equation of the (second order) model; or 
some type of relaxation mechanism, such as was suggested by Hicks in [5], in 
combination with roots of greater than unit modulus. (2) Linear, delay-free models can- 
not be expected to represent a non-linear, delay-prone " real world ". (3) The inventory 
holding objectives of a retailer are likely to differ from those of a manufacturer: it is im- 
possible to capture in a single inventory-sales relation a representation of both sets of 
motives. 

The present study attempts to answer, at least in part, the first and third of these objec- 
tions. The objective is to investigate the impact of stochastic shocks on output stability 
when the shocks are transmitted through a " multi-echelon" supply system, with inven- 
tories at each echelon controlled by rules that are appropriate for use at the echelon in 
question. 

The " optimality" of (or returns to the individual firm from) the s,S (or two-bin) 
type of inventory control rule has been thoroughly explored ;2 one outcome of this discussion 
has been the realization that policies of this type are useful for requisitioning stock only in 

1 I am indebted to members of the University of Chicago Workshop in Econometrics-particularly 
Zvi Griliches, Merton Miller and Lester Telser-for thorough and incisive criticism of an earlier draft 
of this paper. Remaining errors or imperfections are the fault-or whim-of the author alone. Research 
was initially undertaken under the auspices of the Econometric Research Program, Princeton University: 
this support is gratefully acknowledged. 

2 C.f. [2, 16]. The s,S policy is: identify two inventory levels s and S, s < S. When inventory on 
hand falls below s, order up to S; when inventory on hand is above s, order nothing. The rationale is to 
balance costs of holding inventory (a linear function of the inventory level) against costs of placing an 
order (which are a lump sum, i.e., invariant with the order size). 
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situations where smoothness in the time series of quantities requisitioned is unimportant. 
(For example, a retailer may not be disturbed by the presence of substantial fluctuations 
in his orders for a good he sells; but the manufacturer of that good will take pains to smooth 
out the pattern of ordering into finished goods inventory, since these orders determine the 
level of production and employment in his factory, and hence affect his operating costs. 
To the retailer, the s,S policy may be extremely useful; to the manufacturer, not so.) 

Where smoothing of the requisition load is desirable, other classes of policy can be 
expected to perform satisfactorily; an example is the policy that requisitions an amount 
equal to a demand forecast obtained from an exponentially weighted moving average of 
past demand.' 

In the following, I will deal with a basic model involving a population of consumers, 
who generate a time series of demands (di) which are placed with a set of retailers. These 
retailers requisition goods to fill consumer demands: the requisition series (rt) constitutes 
the demand load on the manufacturer. He, in turn, fills these requisitions out of current 
production (pt) and/or his finished goods inventory. Two variations on this model will 
be treated: the first will assume there is no linkage between production and demand; the 
second will consider a case in which there is a linkage via which output partially determines 
current customer demand (i.e., a sort of consumption function is introduced). I will 
investigate the stability and variability-transmitting properties of such systems. The 
stability criterion applies to the variance of the time path of production (which is equivalent 
to income in our analysis). Let Vp, and Vdt represent the variances of production and 
demand in period t. Then, if there is a finite number z which satisfies the condition 

lim Vpt k < Z 
k=oo 

the system is said to be stable. If 

lim Vpt+k < Vdt 
k=coo 

the system is said to be variance-attenuating; if the last inequality is reversed, it is variance- 
amplifying. 

II. INITIAL ASSUMPTIONS 

The structure of retail operations is initially characterized in these assumptions: 
(1) There are m retailers, who sell one good to customers; this good is purchased from a 
single manufacturer. (2) The retailers are identical in all salient respects; the same pro- 
bability distribution of customer demands Confronts each retailer, and the inventory- 
associated costs are the same for each retailer. The nature of these costs is such that the 
retailers all utilize the familiar economic order quantity (e. o. q.) analysis2 to determine 
how much to order from the manufacturer. Each retailer's e. o. q. is Q units, where Q 
is an integer. (3) When an order is placed by a retailer, the manufacturer fills it in the 

1 This type of policy is investigated in [9]; in [12] the optimality of exponentially weighted forecasts 
is investigated, and other economic problems for which these forecasts have been found useful are listed. 

2 [16], chapter 3. The usual e.o.q. formula is Q = (2RX/H)1/2, where R is a lump-sum cost of ordering, 
H is the cost of holding one unit of stock for one period, and X is the mean demand rate. 
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same period;' consequently, the reorder point2 is zero, and since all retailers are " always " 
able to satisfy customer demands in the period in which they are placed, there is independ- 
ence between the demand distribution of retailer i and the inventory positions of the other 
m-1 retailers. (4) The demand sequence confronting each retailer is generated by a 
Poisson process,3 with parameter X: that is, over a time interval of length h (t, t+h), the 
probability that the firm i receives demands for n units of goods is: 

(1) P(di = n) = e-h(Xh)n/n! (i = 1, . . ., m) 

Difficulties are avoided at a later stage of the analysis if we select a sufficiently small h so 
that the probability that one retailer places more than one order in the interval (t, t+h) 
is effectively zero, i.e., 

oo 

Z e-Xh (Xh)"/n! 0, 
n=Q 

and if we let h be our unit of time measure, i.e., h = 1. The variable rt represents the total 
quantity requisitioned from the manufacturer by all the retailers during time interval t. 
The manufacturer, anxious to smooth fluctuations in his finished goods inventory and 
production sequences, uses the output rule4 

(2) pt+ = pt + (1 - )rt 0 < a < 1 
where pi is the quantity produced during time period t. 

III. THE DISTRIBUTION OF REQUISITIONS ON THE MANUFACTURER 

Because the demands placed upon the individual retailers are mutually independent, 
the distribution of orders upon the producer during a unit time interval would be 

m d 
(3) P(E d1 < d) = Z e-mX (m X)n/n!, 

i=1 n=O 

if the retailers passively relayed demands to the producer as they occurred, rather than 
transferring them only in lots of size Q. The distribution (3) has mean and variance mX. 

When the retailers each order Q units at a time, the total orders placed upon the 
producer in the time interval of unit length can range from 0 to mQ. The probability 
that an individual retailer orders during an arbitrary unit interval (t, t+ 1), denoted k(1), 
is equal to the probability of the compound event (inventory at t = k units). [sales during 
(t, t+1) > k units] where k ranges from 1 to Q. The probability of the first part of this 

1 By the Poisson assumption there is a finite (but small) probability that the retailers place an "infinite" 
number of requisitions on the manufacturer in a single period. If all requisitions are to be filled in the 
same period as they are placed, the Poisson assumption must mean that finished goods inventories at the 
manufacturing level are " infinitely " high. This difficulty is not too hard to live with; selection of an 
appropriately short time period assures that there is always a finite level of manufacturer's inventory which 
will enable him to meet requisitions " immediately " with any probability we care to specify. In terms of 
the influence on the results obtained from this model, an extremely rare stockout is equivalent to no stock- 
outs. 

2 [16], chapter 3. 
3 [3], pp. 400-402. Implicit in this assumption is the condition that customers order only one unit at a 

time. The assumption also requires that the demand process has no memory, i.e., demand in the interval 
(t, t+h) is independent of demand in the interval (0, t). 

4 H. D. Mills shows in [9] that the rule (2) can, by choice of o, yield a minimum value to any weighted 
sum of inventory variance and production variance. Properly speaking, the producer is concerned with 
mean square deviations of inventory and production when he uses the rule (2), not merely with fluctuations 
in these two variables through time. It should be noted that (2) is formally equivalent to the rule 

Pt+i = Pt - (ft - i*) 
where ft is the final finished goods stock level of period t, i* is a constant, and [3 = (1-oc), i.e., the comple- 
ment of the exponential weight in the rule (2). 
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compound event is 1/Q; the inventory distribution at a randomly selected future time t is 
uniform.1 Hence, we have: 

Q co 
(4) (1) =- 1/Q Z Z eX AXn/n! 

k=l n=k 

The part of (4) under the double summation sign can be rewritten 

( Q oo 
e-X E nXn/n! + Z QXn/n! 

n=l n=Q+l 

and if Q is sufficiently large,2 this is equivalent to 
00 00 

e-> I nX/n! - X Y e-XXn-1/(n-l)! = X, 
n=1 n=1 

or 
i(1) = X/Q. 

The probability distribution of orders confronting the manufacturer in a unit interval 
is the binomial expression 

(5) P(Z d' = r - jQ) (7) (X/Q) (1 - X/Q)m-J 
i 

which has mean mX and variance mX (Q- X).3 

In §11, the time unit was stipulated in such a way that X is quite small vis-a-vis Q. 
Thus, it is permissible to approximate (5) by the Poisson expression 

P(r = jQ) = e-'mQ (mX/Q)J/j! 

which has mean mX and variance mXQ. Strictly speaking, if Q - x > 1, there will be 
amplification of variance as the system transforms demands into requisitions upon the 
producer: in the Poisson approximation, Q > 1 is the condition which yields amplifica- 
tion from d to r. 

1 Proof: The Poisson process (reference [3]) is described by P(it = k) = XAt P(it- t = k+ 1) + (1-XAt) 
* P(it- At = k) + o(At) for k = 1, 2, . . ., Q-1; or in more convenient notation Pk(t) = XAt Pk+l (t-At) 
+ (1-xAt) Pk(t-At) + o(At) where the last term on the right side is of an order of magnitude smaller 
than A t. 

Pk(t) - Pk(t-At) = X[Pk+(t-At) - Pk(t-At)] 
o(At) 

A t At 
and as At -> 0, the last term -> 0, and hence the limit of the left side exists. This is equivalent to the 
differential equation 

P(t) = - XPk(t) + XPk+i(t). 

The statement we wish to prove implies that the steady-state distribution of the inventory process is uniform. 
Setting Pj(t) = 0 to investigate the steady-state conditions yields 
(*) XPk + (t) = XPk(t). 
The case for k = Q is equally easy to work out; hence QED by (*). 

2 The requisite " largeness " of Q of course depends upon the size of X. From the Poisson tables 
[10], we see that the cumulative term 

oo 

Z e-X(lX)/n! 

is less than 10-8 for Q = 5 if X = .01, Q = 6 if X = .1, Q = 10 if X = 1, and Q= 30 if X = 10. Notice 
that even in the most demanding of the cases here enumerated, i.e., when X = .01, the condition to be satis- 
fied is Q = (2RX/H)1/2 > 500 X or 2RX > 25H, which is perfectly plausible for X > .01. 

3 If (5) referred to the probability that j units were ordered, the mean would be mX/Q and the variance 
mX(Q-X)/Q2, but since each order is for Q units, the mean and variance are increased by factors of Q and 
Q2, respectively. Note that the mean quantity ordered from the producer during (t, t+ 1) is the same, 
regardless of whether the producers use e. o. q.'s, which we would expect, since the ordering rules do not 
allow for any inventory accumulation or decumulation, and hence average orders must be the same as 
average sales. 
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IV. SYSTEM BEHAVIOUR WITH STATIONARY, RANDOM DEMANDS 

The production scheduling rule (2) is equivalent to 
t-1 

Pt = oct pO + (1 cx) S oc rt-1-; 
j=0 

Thus, for large t (after the system has been in operation for many periods) the first two 
moments of p are 

r[Ep = Er = mX, 
(6) J 

mxQ. VP = (1 - )2 S c 2 Vr= ( + ) X 

The manufacturer can, by manipulation of oc in (2), obtain a production variance that is 
arbitrarily small. Thus, it cannot be argued that the use of economic order quantities by 
firms in the retail echelon necessarily leads to a greater variance of production than would 
result if demands were placed directly on the manufacturer. However, either higher pro- 
duction variance or higher inventory variance can be anticipated with certainty. The 
variance of finished goods period-ending inventory levels implied by use of the rule (2) 
is (again for large t) 

00 

Vf = Z oc2j Vr = mXQ/(l - c2). 
j=0 

To illustrate the impact of the presence of retailers' e. o. q.'s upon the cost position of 
a manufacturer, suppose that demands had been placed directly on the manufacturer, and 
his production response had been governed by the rule (2) with cx = 0, i.e., 

Pt+i = Z d,. 
i 

It follows that 
Vp = Vf V= d = mX. 

Next, suppose that retailers began ordering in batches, as described in § III, but the manu- 
facturer wished to keep his production variance at the level mX. What is the concomitant 
amplification in inventory variance? The desired condition is (from equation (6)) 

/1 cx 

(1 +c mXQ < m, 
or 

; + o" > c 
1 -c 

The smallest oc satisfying this condition is 
- (Q- 1) / (Q + 1) 

which, when substituted into Vf, gives 

Vf = mXQ [I (Q + 1) m(Q + 1)2/4. 

Thus, the variance of inventory is amplified by a factor of (Q + 1)2/4 if the objective of 
maintaining Vp = mX is carried out: this implies an increase in inventory holding cost to 
the manufacturers by a factor of (Q + 1)/2 if these costs are linear and the effective protec- 
tion against stockouts is not to change. 

This type of system will always be stable: for any admissible value of oc, both Vf and 
Vp converge to finite values, regardless of the number of retailers or their order quantity 
sizes. 
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V. A MULTIPLIER MECHANISM: PRODUCTION-TO-CONSUMPTION FEEDBACK 

There are certain interesting questions concerning decision making by the firm that 
are raised by the foregoing analysis. The stationary, independent random demand 
formulation is less unappealing in a microeconomic study than in a macroeconomic model 
like the present one. In particular, the model of §§ III-IV would appear useful for the 
study of the question: What recourses (such as price differentials to retailers who order 
uniform amounts at regular time intervals, or alternative production policies) are available 
to the-manufacturer who would like to reduce the variability of his requisition load. If 
the foregoing model is to be treated as a macroeconomic representation, however, the 
absence of any relation between consumption (demands) and income (production) is a 
serious drawback: despite the fact that we are dealing with short-run responses, a recog- 
nizable sort of consumption function mechanism is necessary. 

Accordingly, the following change is proposed: the quantity demanded by all custo- 
mers is a Poisson-distributed random variable with parameter that is a linear function of the 
present rate of output. The process is constrained to have stable mean behaviour. The 
production control rule (2) is used. Thus, the system is described by the equations 

(2) pt+l = pt + (1- oc) r,t 

(7) 5 d, = Pois (j, (3 + ypt)) 
i 

(8) P(rt = kQ) = e-(13+Pt)/Q( Q t) k/k! 

(9) ( - (1 - y) Ep. 

Evidently, rt is a random variable with value contingent on the random variable pt. Taking 
expectations on (8), we see that 

Ert | pt = f3 + YPt 

and the unconditional expectation is given by' 

Ert - P + yEp = Ep: 

the equality between the second and third terms is assured by the condition (9). 

Similarly, from (8) we see that 

Vrt, | p = Q(B + ypt) 

which has the unconditional value2 

Vrt = QEp + y2Vpt 

Omission of the subscript from the expected value of production in period t is justified on the ground 
that the mean of production is stationary through time: this is assured by the condition (9), as can be seen 
by recursive calculation: 

Ero = 3 + Epo = Epo 

Epi = ocEpo + (1-oa) Ero = Epo = Ep etc. 

2 This unconditional variance is given in a theorem of Raiffa and Schlaifer [13], p.107: 
Vr = EP Vr I p + VPEr I p, where the superscript indicates the variable over which expectations are taken. 
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Since rt and pt are not independent, to trace the behaviour of the variance of production 
through time, we need the covariance of rt and pt, which isl 

Crt, Pt - yVpt 

The variance of p in successive time periods is related by 

(10) CPI+j c2Vpt + (1 -c)2 [y2Vpt + QEp] + 2Xc(1 - c)yVpt 
[X2 + 2oc(1 oc)y + (1 - oc)2y2]Vpt + (1 -)2 QEp 

which is of the form Vpt+1 = A Vpt + B. If A < 1, the system converges to the value 

lim Vpt+k = B/(1 - A); 
k= co 

for y less than 1, the coefficient [oX2 + 20c(1 - oc)y + (1 - X)2 y2] is less than one for all 
admissible values of oc; consequently, for any reasonable marginal and average propensity 
to consume, the system must be stable by the variance criterion. If Ep in (10) is taken as 
an equivalent to m? in the first model, however, it is apparent that the system with feedback, 
though stable, does lead to a substantial amplification of the variance of production. 

VI. THE VARIANCE AS A MEASURE OF SHOCK-INDUCED OSCILLATIONS 

Because the models of this paper are stochastic, the standard stability criteria, involving 
the roots of the characteristic equation, do not adequately characterize the oscillatory 
behaviour that can be expected to obtain. The stability and amplification of variances 
through time has been adopted as an attractive alternative criterion because of the ease 
with which they can be traced, and some readily apparent connections between the vari- 
ances and time paths of important variables. The variance measure may, under a wide 
variety of circumstances, afford a convenient key to the classification and analysis of cycles 
that are caused by the interactions of successive random shocks. The suggestion that 
cycles are indeed produced by such a mechanism was advanced and rationalized in the work 
of Slutzky [14] and Yule [15], and later by Frisch [4]. More recently, Adelman and Adel- 
man [1] have conjectured that random shocks are a necessary ingredient to the production 
of realistic fluctuation in a highly structured macroeconomic model. To date, however, 
little is known about the process by which the economic system transforms the ampli- 
tude (variance) of the shock (or shocks) into the observable oscillations in economic series: 
the results presented in this paper suggest that the mechanism may produce cycles of 
substantial amplitude from small shocks. We expect from [14, 15] that the period of these 
shock induced cycles will be fairly regular. 

1 Let Pt be a random variable with arbitrary distribution function F(pt), and let the joint distribution 
of pt and rt be G(pt rt). 

Cpt, rt = ' , (rt-Ert) (Pt-Ept) dG(pt r,) 

Pt rt 

00 ~~~-(p + ypt)IQ ,p_+yp k' 
- J {k Y (kQ-Ep) (pt-Ep) e I Q )Ik!} d F(Pt) 

Pt 

= E[pt(p+ypt) - Ep(p+ypt)] 
= yVpt. 
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Knowledge of the first two moments of our initial variables is sufficient to characterize 
the time series in which these variables will be observed. Throughout, discussion has been 
confined to systems that produce stable means. Thus, monotonically divergent time 
series will not occur. In neither case is there a possibility of variances which converge 
to zero; consequently, both models produce irregular oscillations around fixed levels. 

Standard non-stochastic dynamic models generate various classes of time series: if 
the roots of a second order system are complex with modulus greater than 1, for example, 
the time path will diverge and oscillate. The variance of the time series composed of regu- 
lar observations on this time path, will increase without bound through time. A logical 
concomitant of this implication is that an unbounded variance (such as would be observed 
with y = 1 in equation (10) ) is a sufficient condition for an explosive oscillatory time path. 
Similarly, a stable variance is sufficient for regular oscillation with constant amplitude 
(the unit modulus time path). There is, however, a much richer array of time path possi- 
bilities in the stochastic models: there is no limitation to cycles with regular period and 
constant (or steadily expanding) amplitude, and no dependence upon fortuitous properties 
of characteristic roots to obtain realistic fluctuations. In a paper which also rejects the 
standard deterministic difference equation approach in favor of a random shock mechanism 
[11], Muth has shown that " cobweb " behaviour can be obtained without the assumption 
of irrational price expectations on the part of farmers, a necessary ingredient in cobwebs 
spun in the absence of random shocks. 

VII CONCLUSIONS 

The principal results of this study are (a) " multiplier-accelerator " mechanisms can be 
modified to accommodate random shocks; the modified mechanism generates series which 
afford a better representation of observable series than do the more familiar non-stochastic 
difference equation models. (b) The rules for inventory investment prescribed for retailers 
in the new normative literature of managerial economics contain characteristics which 
may lead to substantial amplification in the inherent variability of the system; so long as 
the smoothing motive remains attractive to the manufacturer, however, this amplification 
may in part be offset before it is transmitted to the employment and output decision level. 
(c) Under all conditions that can be foreseen in models which relate consumption to 
current income, systems are stable, i.e., the variance of the income variable converges to 
some finite level. 

Chicago. DANIEL ORR. 
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