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A RANDOM WALK PRODUCTION-INVENTORY POLICY: 
RATIONALE AND IMPLEMENTATION* 

DANIEL ORR 

University of Chicago, Chicago, Illinois 

The smoothing of fluctuations in production and inventory has been handled 
successfully as a problem in servomechanisms: an optimal linear filter (produc- 
tion scheduling policy) balances costs of inventory fluctuation and costs of 
production fluctuation. This approach requires the system to respond (by 
making production rate changes) either continuously or at regular intervals: 
the usual assumption is that the cost of responding is proportional to the size 
of the response. This paper explores some reasons why the frequency of pro- 
duction changes may have to be controlled, and offers a new class of policies, 
called random walk policies, to accomplish this. One of these, the (a, b, c) 
policy, is investigated for stationary operating characteristics, and a specific 
example is provided to illustrate the technique of finding optimal values 
for policy parameters. Some of the characteristics of systems in which random 
walk inventory policies may be useful are discussed; and more general tech- 
niques for identifying the form of the optimal control policy are mentioned. 

1. Introduction 

In this paper we deal with the production smoothing problem. Our model 
specifies these conditions: (a) one homogeneous product is manufactured; (b) 
time enters the model as a continuous parameter (but we will use the "discrete 
equal intervals" formulation where appropriate for discussing other analyses of 
the smoothing problem); (c) the rate of production is the only decision variable; 
(d) the objective is minimization of total cost associated with inventory and 
production. In symbolic form, letting pt, X and It represent the dated rates of 
production and demand, and the "on hand" level of inventory, letting z represent 
the number of production rate changes in a time interval (t, t + A t) and 
distinguishing all random variables by underbars, the problem is to minimize 
the total stationary expected cost at some future time t: 

(1) E[L(t)] = E[X1 (I t I It > 0) + X2(It I It <0) + X3(Pt) + X4(9)] 

subject to the inventory balance identity 

(2) it+At = It + At(pt -St) 

(where At is a very short interval) and the demand probability rule 

(3) Prob (gt < s) = (D(s). 

The cost components of (1) are respectively the inventory holding cost, the 
inventory shortage cost, the production cost, and the production change cost. 

For convenience we assume that the demand distribution is stationary, time- 

* Received December 1961. 
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independent and random, i.e., demands during (t, t + A t) depend only upon the 
length of the interval, and not upon its beginning point in time. 

In the following, we contend that properties of production associated costs, 
which may be sufficiently important to warrant the modification of production 
policies, have heretofore been ignored or glossed over. Our view of the 
cost encountered in changing production rates is compared to the production- 
associated costs found in the existing inventory-production literature. 

2. Descriptions of Production-Associated Costs 

There seems to be no consensus regarding a "best" representation of pro- 
duction-associated costs. This is particularly true of the fourth term of (1) -the 
cost of changing the rate of production. The divergence of opinion on this point 
emerges clearly from two analyses which attempt to incorporate these costs 
explicitly into their respective loss functions. Under "total cost of manufacture," 
Simon [13] includes an element he calls ". . . sticky costs, proportional to the 
rate of manufacture when that is constant, but not capable of being reduced 
immediately when that declines." (p. 265) On the other hand, Hoffman and 
Jacobs [7] see production change costs as dependent upon the magnitude of 
increase in production: reductions in output are costless. 

Arrow, Karlin and Scarf ([2], Chapter 2) present a static model similar to 
(1-3). However, they do not develop explicit forms for the costs in this model: 
most of their analytic work is with dynamic models' which take. costs of pro- 
duction change to be zero. In describing production change costs, they state 
that 

... an increase in production may require a rapid increase in some variable factors for a 
period in which other factors, such as equipment, cannot be increased, and therefore a 
temporary increase in total costs will occur which will be reduced as relatively immobile 
factors become adapted to the new production level. There are other elements in the cost 
of changing the rate of production; the hiring of inexperienced personnel, the need for 
learning new organizational methods appropriate to a higher production rate, the breaking- 
in of new equipment. There may even be costs to reducing the rate of production, such as 
those involved in separation of personnel (intensified by guaranteed wage plans) or in 
making special provisions for the care of inactive equipment.2 

A group at the Carnegie Institute of Technology has developed an extensive 
literature on production and inventory control, as reported in a recent volume 
[8]. Their work is largely based upon a result presented in [12]: if all cost com- 
ponents of a loss function are quadratic, chance variables (e.g., demands) may 
be represented by single-valued unbiased estimates, instead of by probability 
distributions. Accordingly, in an effort to capitalize on this "certainty equiva- 
lence" property, the group has, in its applied work, used quadratic functions to 
approximate a wide variety of cost components. For example, in a study of the 

1 We use a one-period representation, in lieu of the more usual recursive functional 
equation, in anticipation of determining the stationary operating characteristics of the 
particular scheduling policy we are investigating. 

2 [2], p. 22. 
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operations of a paint factory,3 they used the followinig to represent the cost of 
changing the rate of production: 

k(wt-wt- - k2)2 + k3(pt - CWt)2 + k4pt - k6wt + k6ptWt 

where w is the size of the work force, measured in the number of man-periods 
(e.g., man weeks), p is the production rate, and c and the k's are constants. For 
simplicity, these costs could be approximated by the term 

(4) k(pt _ pt-_) 2, 

i.e., the cost of production adjustment is a smooth function of the size of the 
adjustment. 

An interesting variation on this smoothing analysis is offered by Mills [11]. He 
shows that a servo policy of the form 

(5) pt = apt-, + (1 - a) etl 

is optimal, provided all pertinent costs are functions of the first two moments of 
the series {I} and { p}, and provided identical probability distributions generate 
demands independently in each discrete time period.4 By increasing a, var(p) is 
reduced and var(I) is increased. This result is weakened by the necessity to 
relate production change costs to the variance of the series {p}; in most systems, 
costs of production change are more aptly represented by successive differences, 
i.e., (4). But the policy (5) assures that the first autocovariance term 
E(pt - pt)2 will fluctuate with the variance; as a approaches 0, both var(p) 
and E(pt - Pt-i) approach their maximum values, respectively var(?) and 
E(t- St_-)2; and as a approaches 1, both var(p) and E(pt - pt-_)2 approach 0. 

Perhaps the most serious drawback of the "servo" approach suggested in the 
above work is that it is incapable of accommodating "lump sum" costs, which 
are associated with an action per se, rather than with any dimension of the 
action. Even in the absence of "lump-sum" costs of this type, however, it is not 
always safe to use quadratic approximations. As Beckmann [4] has shown, a 
piecewise linear production change cost function such as 

Ci(Pt+ - Pt) Pt+l > Pt 

(6) X4(Pt+l - Pt) = C2(pt - pt+l) Pt+l < Pt 

pt+l = Ps 

implies a far different form for the optimal policy than does a quadratic approxi- 
mation thereto, the alternative suggested in [8], Ch. 2. Beckmann shows that 
because of the vanishing first derivative at the zero value of the argument of 
(6), the optimal policy specifies boundaries a(lt) and b(tl ) such that if 

a(It) ? pt ? b(It) 

3 [8], Ch. 2. 
4 John F. Muth has indicated that this can be inferred from Simon's result [121; if we 

take a loss function of the form L = I(pt -p*)2 + X2(I+tl - I*)2, and set p* = E(s) = ;&, 
i.e., set "target" production equal to mean demands, then the policy (5) follows from 
differentiating the loss function with respect to pi . 
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pt?+ is optimally set equal to pt, while if one of the inequalities is violated, the 
smallest change is made which suffices to make the inequalities hold when pt+1 is 
substituted for pt . 

In the next section, the costs incurred by altering production rates too fre- 
quently are discussed. 

3. Short-Run Production Change Costs 

The distinction drawn between the long run and the short run in the theory of 
the firm is based upon the premise that capital investment once made, is not 
profitably varied in response to temporary changes in critical variables such as 
the demand function confronting the firm; changes in these variables must give 
reasonable promise of permanence before alteration of capital can be considered. 
All productive inputs other than capital are classed as variable, though they 
may not be available in the desired quality and amount as soon as a short-run 
output decision has been made. In the traditional comparative statics the time 
between successive short-run equilibria is negligible, since the equilibrium posi- 
tions and not the process of transition are of interest. 

Inventory and production scheduling, however, cannot ignore differences in 
the ease with which "variable" inputs can be altered. With some inputs (electric 
power), a variation in the rate of use may be effected instantly, and no cost is 
attached to changing the rate: if anything, increased consumption is economical. 
Other inputs (some raw materials) can be varied at no out-of-pocket cost, but 
with a time lag; the attention Holt, Modigliani, Muth and Simon [8] devote 
to scheduling the work force is evidence of the difficulty of varying this input. 

It would seem that trouble caused by differing degrees of stickiness in the 
"variable" inputs may be overcome by lengthening the scheduling interval. 
For example, if the size of the labor force is the input most difficult to vary in 
the short run (which seems likely), and ten days are required to adjust it to any 
but very small output changes, then we cannot schedule major production 
changes requiring labor force changes every week. In practice, large output 
changes would be permitted monthly, or perhaps quarterly,5 with smaller adjust- 
ments, such as can be effected with no change in the labor force, called for weekly 
or even daily.6 

I Clearly, arbitrarily to select a month or a quarter as the scheduling interval may be 
unwise: some costs (e.g., those of hiring and firing) vary inversely with the length of the 
scheduling interval, while others (e.g., inventory-associated costs) will vary directly: 
hence there will be at least one interval of optimal length, which should be identifiable by 
ordinary analytic means. We will refer to this as the optimal short-run rescheduling interval, 
implying that all inputs usually regarded as variable in the short run may be varied eco- 
nomically at intervals of this length. 

6 A standard postulate is: efficient operation over a wide range of outputs in the short 
run, obtained by use of flexible capital equipment, can be traded for extremely low unit 
cost of operation, which is obtained by use of highly specialized capital equipment. (This 
idea, which is evidently of long standing, is spelled out in [31, Appendix to Chapter 5.) 
It would seem that the same point holds more strongly when the labor force, as well as the 
capital structure, is not variable: a substantial degree of output flexibility in the shorter 
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Since the size of the labor force cannot be varied freely, we will regard employ- 
ment scheduling as a short-run analog to the long-run problem of capital plan- 
ning. Following this analogy, we define a "shorter run" and contrast it with the 
short run: in the shorter run both the firm's capital and the size of its labor force 
are fixed, while in the short run the former remains fixed while the latter is 
variable. To increase output in the shorter run, one or more of the following 
alternatives may be available: overtime operation; temporary reduction of 
maintenance, cleanup, or other parts of the normal operating routine; or in- 
creased operating rates with no change in the direct labor hour input. (See foot- 
note 6 concerning this last possibility.) Shorter-run reductions in output lead 
to costs of undertime, the temporary diversion of labor into activities other than 
production. 

The size of the work force is viewed as inflexible because of costs of hiring 
(paperwork and costs of interviewing), costs of training (time spent by experi- 
enced personnel in instruction, and wages of the new workers during the non- 
productive initial period); or in the case of output decreases, costs of firing 
(terminal pay, reassignment of the remaining workers, further paperwork, and 
possible ill will of the labor force).' These costs may be largely independent of 
the size of the desired change in the labor force: they will depend upon the avail- 
able labor pool, the skill of available workers compared to the requirements of 
new jobs, and the acumen of placement officers. 

Another input usually assumed perfectly flexible in making production rate 
changes in managerial skill. If an extra shift or stage of the production process 
is added, a new foreman may be necessary, but except in such cases, expendi- 
tures on management overhead are not usually regarded as variable when 
planning changes in the rate of production. If the line manager's function is 
trouble-shooting, then production rate changes add to his difficulties, but no 
charge need be made for the time he spends coping with them. The increased 
routinization of operation, which attends stable production rates, may enable 
an increase in the span of managerial control. The firm then must choose between 
increased participation by line management in cost reduction activity, or de- 
creased management overhead; in either case, the firm stands to gain. 

4. A Random Walk Policy 
It is seen in [8] that servo policies can be adapted for making production 

adjustments which involve labor force changes. However, it is necessary to 
make sure the time interval between reschedulings is of sufficient length. In 
effect, the length of the time period index t enters the model as another param- 
eter for which an optimal value must be selected. If this course is adopted, and 
the optimal value of t (the optimal rescheduling interval) is long, difficulty may 
be encountered in establishing a criterion of adequate control against stockouts. 

run (i.e., a wide range of output rates for which the unit cost is near the minimum level 
attainable with the given capital and labor force) is obtained at the expense of a higher 
minimum unit cost of output. 

7 These costs are discussed at greater length in [8]. 
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Periodic control is best analyzed in a discrete-time model, and such models 
usually offer period-ending inventory as a measure of performance against 
stockouts; this may be satisfactory for lot-size ordering control, but in a produc- 
tion-inventory complex, there is a possibility of long stockouts during an interval, 
which go undetected because cumulative production overtakes cumulative 
demand before the period is over.8 

It is possible that shorter-run output changes can take care of intra-period 
demand variations and reduce the danger of intra-period stockouts, which are 
undetected (in the model). Such a pattern of major schedule changes at long 
intervals and more frequent minor adjustments at shorter intervals is believed 
to be widely followed by manufacturers.9 However, the goal is not to make 
major schedule changes at regular intervals; rather it is to avoid rescheduling 
too frequently. A class of policies affords this objective by letting inventory 
absorb all fluctuations in demand until it becomes too high (too low) and then 
adjusting production rates downward (upward) until inventory moves back 
within the desired range. For example, the following rules (which specify a 
continuous review of stock levels) embody this idea: identify three inventory 
levels, a > c > b, and three production rates h > n > 1,10 with the operating 
instructions: 

h if It passes b from above 

n if It passes c 

1 if It passes a from below 

pt-T(r -> 0) if none of these passages occur during (t - -r, t). 

This policy, which we call the (a, b, c) policy, applies the same rationale to 
production problems as underlies the s,S [1] or two-bin [15] policies for dealing 
with ordering problems. These earlier policies allow for fixed costs to a retailer 
each time an order is placed; these costs of ordering are controlled by regulation 
of the frequency of ordering; at the same time, both policies specify that orders 
must be placed when inventory passes a certain critically low level. Our con- 
teintion is that costs of changing production rates in the short run require the 
frequency of these changes to be controlled; uncorrected inventory variation in 
the range (a, b) provides the desired respite from major production rate changes. 
While inventory remains within this range, production is held constant at some 
efficient rate. 

8By taking account of the danger of intra-period stockouts, the analytic routine for 
optimizing the value of t can be forced to produce a scheduling interval which does not 
lead to disproportionately high costs in this area. However, this could lead to substantially 
higher overall cost, incurred just for the sake of using a special kind of scheduling policy, 
i.e., a servo policy. 

9 The writer recently spent two years at the Procter and Gamble Company, working on 
production and inventory scheduling. Such a system of short and shorter run adjustments 
was used by Procter and Gamble until a random walk scheduling policy was installed. 

10 Mnemonically, a, b, c = above, below, center; 1, n, h = low, normal, high. 
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Another feature of the policy (7) is that it calls for only three short-run pro- 
duction rates: limitation to very few output rates may result in more rapid and 
efficient transitions from one rate to another, and thus in lower total cost through 
time. After a transition from, e.g., n to h has been made several times, the cost 
of management control may be reduced; repetition may lead to discovery of 
improved methods and routines, and to lower costs of change. Similarly, with 
few allowable rates, the permanent members of the labor force may become 
versed in the process of transition, mastering efficient patterns of adjustment, 
and reducing the disruption during the change. We provide no quantitative 
analysis of the virtues or flaws of few rates in the following; however this feature 
may be significant in certain specific situations. 

The policy (7) is one of a class which we will call "random walk" policies. 
The rule that bounded inventory fluctuations be permitted without signalling a 
production change causes inventory to perform the generalized one dimensional 
random walk, which has been analyzed by Wald and others. 

Further simplifying assumptions enable us to treat the inventory random 
walk generated by the (a, b, c) policy as a diffusion process; these assumptions 
do not seem overly restrictive. This greatly simplifies the problem of finding the 
stationary inventory distribution which is addressed next. In the following 
analysis, we assume no shorter-run production changes are made. 

5. The Steady-State Inventory Distribution 
The diffusion process provides an extremely simple and tractable model of 

inventory behavior; these attributes stem from the fact that it is a limiting case 
of the simplest random walk. This process, called the gambler's ruin, has draw- 
backs as a representation of inventory behavior; however, by passing to limits 
in a manner we will describe, objections can be successfully overcome. Since a 
lucid elementary exposition of the gambler's ruin and diffusion random walks is 
provided by Feller ([6], ch. XIV), we will not deal with them descriptively. 
Rather, we will summarize the results on diffusion processes which will be found 
useful, and the assumptions which must necessarily be satisfied by the inventory 
process if the diffusion representation is to be admissible. 

1. If the inventory level is zero at time zero, and if demand in a time period 
of length t is a normally distributed random variable with mean ,t and variance 
t, and if total production is kt during (0, t), then inventory on hand at time t 
will be a normally distributed random variable, with mean (k - ,)t = yt and 
variance t. 

2. If the stochastic inventory process is homogeneous in time, i.e., in successive 
short intervals At, the probability of selling a small amount AI out of inventory 
is (1 - y) /2 = q while the probability of no sale is (1 + -y) /2 = p; then during 
these intervals At, the behavior of inventory is governed by a binomial distri- 
bution." 

11 Feller shows that Al and At must be allowed to pass to zero in such a way that (AI)2/At 
approaches a finite limit: this limit (the diffusion coefficient) we use to define the unit of 
our I-axis. 
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Given these two properties, that demands are Gaussian, and sufficiently 
regular in time to permit the inventory process to be treated as binomial in very 
these intervals At, Feller shows that the differential equation 

(8) af(I, t)/lt = -2yaf(I, t)/lI + a2f(I, t)/0I2 
describes the behavior of inventory through time. The stationarity condition 
is af/lt = 0; hence, (8) becomes 

(9) f"(I) - 2yf'(I) = 0 

a second order differential equation. 
This equation has the parameter y, which is the drift of the diffusion process; 

,y = k - ,. The three values assigned to k in the (a, b, c) policy, n, h, and 1 
will each lead to a different y, and hence the stationary inventory distribution is 
described by three equations of the form (9). 

In Section 7 we will justify a simplifying assumption that is useful now: two 
of our decision parameters, n and c, take the values n = , and c = (a + b) /2 
= b + r = a - r. The first of these conditions implies that (9) becomesf"(I) = 0 
for pt = n, since then y = 0. This equation has solutions of the form 

(10) fn(I) = a, + a6I; 

the other two solutions are of the form 

(11) fh(I) = ab + a2eY(lC 

where y' = h - , and 

(12) fi(I) = a4 + a3e 

where -y" = I- ,; a, - a6 are six arbitrary constants in (10-12). 
The three solutions fn(I), fh(I) and fKI) are the three steady-state inventory 

densities which correspond to the three production states n, 1 and h. 
To obtain values for the six a constants we use the following boundary con- 

ditions. First, our assumptions n = , and c = (a + b) /2 imply that passage to 
a is as likely as passage to b when production is in the n-state. This implies 
fn (a) = fn (b); hence a6 = 0. 

Second, the integral of either tail of f(I) must be finite, hence a4 and af = 0. 
This leaves us with the arbitrary constants a,, a2 and a3 to be evaluated. To 
obtain these values, we use the conditions that f(I) is continuous at a and b; 
and the density condition, 

L0f(I) dI = 1. 
The necessity for the continuity conditions is best visualized by means of an 

alternative mechanism for obtaining the stationary distribution F(I): this is 
to take the limiting value of equation (8) as t grows large without bound. If the 
time-independent distribution thus obtained is to be stationary, it is necessary 
that for all states I, the probability of moving to some adjacent higher state 
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I + \I from I be equal to the probability of returning from I + Al to I, and 
similar conditions must obtain regarding movement between I and the adjacent 
lower state I - Al. Otherwise I is a transient state, and its stationary probability 
of occupancy is 0. In particular, for the boundary state a we obtain the two 
equations 

(13-1) p"fz(a) = q"fz(a + Al) 
(13-2) q"fl(a) = p"fl(a - Al) + 2f.(a - Al) 
where p" and q" are respectively I + 'y"'I and 2 - T'AI. A similar pair of 
equations can be obtained at the barrier b. 

Because of the continuity of the physical inventory process at a and b, which 
permits passage between adjacent states only, we have from the equations (13) 
the relation 

f(a) = fi(a) + f.(a) 
as Al approaches 0. Thus, the stationary occupancy probability for the boundary 
states a and b is obtained as an unweighted sum of the occupancy probabilities 
associated with the two possible production states. These continuity conditions 
on f(I) at a and b thus govern the relative sizes of a, , a2 and a3 their absolute 
sizes are governed by the condition that f(I) is a density. 

We have 
c-r c 

1 = Of 2 e' dl + [: ( a2 ee (Ic) + al) d] 

( 14 ) ~~~~c+r 
+ [f+ (a3 ez (hC) + a,) di] + a3 eY (hC) dI 

with the conditions (from equation (13-2) and the analogous equation for b): 
(15) a, = -27y a3ez r, al = 2 y a2ez (r) 

where r takes the sign of the direction of deviations from c. From these conditions 
we see that 

(16) a2 = - (7ll/7t)Q eV'+Y) 

Substituting (15) and (16) into (14) and solving, we obtain 

a3 = (,yz/y') e('Y I+ ez'(I-C) dl 

(17) 00 a - 
(17) + Ie8~('c) dl- 2 e2y dl] 

or 

a3 { -[,,,/(,Y,)2]e(ty+y) 4 - y" re - 

Thus, the stationary inventory distribution is 

(18) (7/e 
+ dl - c e7(Lc) dl + 2y"e,Yfr f dl 

F(I ) = S + w 
+/(,/42]p(8SJrz ) 1 /7"I 
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In (18) our original policy parameters have been modified as follows: 

h = + y' 

n= I+ 

a c + r 

b = c - r. 

6. An Example 

We turn to the problem of optimizing the six decision parameters of the 
(a, b, c) policy. The loss function with which we will deal has the following 
form: 

X1 : The inventory holding cost function is given by 

(19) E[Xi(It I it > 0)] = 7 j If (I) dl 

where f(7) is the steady-state inventory density, and q is a constant. 
X2: The runout cost is given by 

(20) E[X2(It I It < 0)] = p Lf(l) dl 

where p is a constant. 
X3: The production cost is given by 

E[X3(pt)] = 0[(k - p*)2 Prob (pj = k), k = h, n, 1] 

where p* is the minimum cost production rate, and q is a constant. 
4: The production change cost is given by 

E['X4(9) = Kz 

where K is a constant, and z is the frequency of production rate changes. 
The objective is to minimize expected cost at some future time t, where t is 

sufficiently far in the future to assure that all transient effects (effects of present 
inventory levels and production rates upon future cost) shall have died out. In 
accord with this objective, the inventory-associated costs are adequately speci- 
fied, but it will be necessary to reformulate X3 and X4. Two properties of the 
inventory random walks are useful for this purpose. 

The passage times of the inventory random walks, denoted 0(i), are random 
variables representing the times required for inventory to move from its origin 
to the barrier (or one of the barriers) when production is in state i. For example, 
0(h) is the time required for inventory to move from b to c, given that the 
production rate is h, 0(n) is the time required by inventory to move from c to 
a or b, given production is n, etc. The passage probability of the inventory random 
walk, denoted 4In(x, y) is the probability that inventory reaches x before it 
reaches y, given that the production rate is n. Of particular interest is the passage 



118 DANIEL ORR 

probability 41,,(a, b); this gives the probability that the production state n will 
be followed by the production state 1. From a lemnma of Wald [14], we know that 
if the variance of the demand distribution = 0, 41'(a, b) + 4"'(b, a) = 1, and 
E[O(n)] is finite. 

Wald has provided analytic representations of these passage times and passage 
probabilities for the case where time is a discrete parameter. Subsequent research 
has shown that the several significant passage times and passage probabilities of 
the (a, b, c) policy random walks take the following values, under the assumption 
that the inventory process is a diffusion process, c (a + b) /2, and 
r = (a -b)/2 

(21) E[O(h)] = r/(h - 

(22) E[0(l)] = r/(l - 1) 
* and assuming n = =p 

(23) E[O(n)] = r2/2 

where ,. and 1 are respectively the rates at which the mean and variance of 
demands increases as the time interval ilnereases; also 

(24) VI, (a, b) = (a- c)/(a- b) =2 

The four properties given in (21-24) are useful in explicitly relating production 
associated costs to the decision parameters of the (a, b, c) policy. Production 
cost is given by 

(25) E[(pt)] -(h - p*)2',n(b, a)E[O(h)] + k(p* - 1)2I'n(a, b)E[0(1)] 
E[O(n)] + 4n(b2 a)E[O(h)] + /n(a, b)E[0(1)] 

This is a function of the form 

0(h - p*)2 Prob (pt = h) + qk(p* _ 1)2 Prob (pt = 1). 

The denominator of the expression (25) we call the mean renewal time of the 
(a, b, c) process; this is the expected time required to pass from c to a (with 
probability Vfn(a, b)) or to b (with probability 4/n(b, a)) plus the expected time 
required to return from a or b to c. An assumption which we continue to use, 
and justify in Section 7, is that n = p = * 

Production change cost is reformulated 

E4 9]= 
2K 

E[O(n)] + VAn a)E[O(h)] + 4n'(a, b)E[0(1)] 
The cost K is incurred upon making a production rate change; two changes are 
made during each renewal cycle. Hence, total production-associated costs may 
be written 

(26) E[X3(Pt) + X4(9)] 

= {2K + O(h - p*)2'4,(b a)E[O(h)] + k(p* - 1)2'I,(a, b)E[0()]j}/E(R) 

where E(R) is the mean renewal time from (25). 



A RANDOM WALK PRODUCTION-INVENTORY POLICY 119 

The loss function composed of (19-20), (26) is expressed completely in terms 
of three properties of the (a, b, c) inventory process: the expected passage times, 
the passage probabilities, and the stationary distribution of occupancy proba- 
bilities for the various inventory levels. In the next section, we explore the 
conditions under which the useful simplifications c = (a + b) /2 and n = = p* 
can be employed. 

7. Optimal Values for Policy Parameters 

The arguments which establish the values c = (a + b) /2 and n = p 
are presented in this section. First, p* = Mt is an assumption; one which is sus- 
ceptible to rationalization, however. It is equivalent to the assumptions we 
originally made, that demands are stationary and random, and that the ob- 
jective is to minimize total production- and inventory-associated costs. A firm 
confronted by a stationary demand series will find it possible to adjust its capital 
structure in the long run, to bring costs of production into line with the scale of 
demands. Alternatively, by suitable pricing policy, a market can be found in 
the short run such that the quantity sold can be efficiently produced with present 
capital. Thus, either the production cost schedule or the demand schedule can 
be adjusted so that p* = 1,; our contention is that it will be profitable to make 
such an adjustment."2 

Next, we establish the conditions necessary to the proposition: for given a, b, 
1 and h, the values of c and n which maximize E(R) are respectively (a + b) /2 
and ,u. 

In the diffusion model, we assume the inventory variate takes steps of AI at 
intervals of At: let the probability of a step in the positive direction be P, and 
in the negative direction Q. AI and At are permitted to pass to zero in such 
a way that (AI)2/At is always bounded. (cf. Feller [6], pp. 324-5). We define 
(P - Q) = y, the drift of the process. If the production rate n imposes the drift 
'y, the rate of change of the expected value of inventory is yAI/At while pt = n. 
Suppose y is positive: then the maximal expected renewal time is obtained by 
setting c as close to b as possible; the expected renewal time then is 

(27) 2r + 2r 

where e* is the negative drift imposed when inventory passes the barrier a. (A 
similar result is obtained for y < 0 by setting c as close to a as possible.) In 

12 This construction seemingly directly contradicts the equilibrium result for non- 
perfectly competitive firms in microeconomic theory: there it is seen that the optimal 
output rate will be to the left of the average cost function's minimum point. This contra- 
diction is only apparent: our function X2(pt - p*)2 is a total variable cost function, which 
takes into account production costs only. If this function is increasing less than linearly 
immediately to the right of its minimum point p*, it will, other costs not considered, be 
necessary that the minimum of the ATC curve lie to the right of the minimum of the X2 
function. 
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order for the requisite boundedness of (AI) 2/At to obtain, it is necessary that 'y 
and e* be of the order of AI. 

Our proposition asserts that the expression (27) is always less than 

r2 1r 1r (28) r + P/ + 2 

(AI)2/At 'YAl/At 'Y*AI/At' 
the expected renewal time of the (a, b, c) policy when c = (a + b) /2, n = 

h -, + y and 1 = Au-*. 
Now, (27) and (28) can by our proposition be rewritten 

r2/( AI)2> 3r/(AI)2 

which must always hold for r >> 3, even allowing for the approximation 
- 7* AI. 
In order to completely establish the optimality of these values for n and c, we 

must be assured that their effects upon inventory cost are either positive or 
neutral. It is true that if all other decision parameters are fixed, the value of 
4'n(a, b) can be increased by setting c > (a + b) /2 or n > ti; and thus holding 
cost can be increased and runout cost decreased. But notice that if h, 1, n, and r 
are held fixed, the same effect can be achieved by increasing the value of b (and 
thus c and a). 

The marginal cost of this latter alternative is the increase in holding cost n0; 
it has no effect upon production-associated costs. If runout costs are reduced by 
manipulation of n and/or c, to establish a comparison it is necessary to choose a 
value of n and c such that 

n (b, a)0(n) = Ph(b, C + A)VA (b + A, a + A)O(j) 
where the right side represents the frequency of reaching the level b after the 
entire inventory range (a, b) has been moved A units farther from zero. Now, if 
we choose an n > ,u or c > b + r, the effect upon the stationary inventory 
distribution is to skew it toward a; a term e ("-1) (where y"' is the drift coefficient 
introduced into the n- state) will appear in f(I) if n # ; or the constant a6 i? 0 

in equation (10) if n = ,u but c > b + r. Thus it is entirely possible that holding 
cost will be increased more than they would by the straightforward increase of b, 
leaving c = b + r and a = b + 2r. We assume production-associated costs are 
sufficient to offset the holding cost advantage accruing from manipulation of c 
and n rather than b, if any; similarly, we assume it is more economical to reduce 
b and a if holding costs are excessive vis-a-vis runout costs. 

With these two policy parameters thus established, our loss function (19-20), 
(26) becomes 

E[L(t)] = [(,y"1/-y)e'Yf+Y f Iez'(") dl - f IeY(I-c) dI 

c+r %0 

(29) + 2wy"ey r f dI + p(,y"/ y')e(8#+e') Leat(I-c) dl] 

+ { [y"/('y')2]e("'+7') + 47"re7"T + l/,y" } 
+ (2k - 4rT"/2 + 4r1y'/2)/(r2 - r/2-y" + r/21y'). 
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Probably the simplest way to obtain minimizing values of Py", Py', r and c for 
a given set of costs n, p, K, 4, is by a gradient routine on a high-speed computer. 
However, for the sake of a numerical illustration, the following specific numerical 
values were used, and (29) was solved on a desk caclulator by successive approxi- 
mations: X = .1, qS = 1, K = 10, p = 100. The solution routine considered only 
multiples of 4 as values for y' and y", and multiples of 2 as values for c and r. 
The resulting solution was: ' = 2, ,y' = - c, C = 16, r = 14. The loss function 
was found to be quite flat in this neighborhood. 

8. Alternative Solution Procedures 

At least two computationally feasible computation routines have been de- 
veloped during the past five years, which would enable direct minimization of 
the loss function (1); the specification that an (a, b, c) policy be used is unneces- 
sary. One of these approaches is the discrete dynamic programming technique 
exposited by Howard [9], the other is the method of sequential stochastic linear 
programming, due to Manne [101 and d'Epenoux [5]. The computational feasi- 
bility of both routines depends upon the stationarity, randomness and inde- 
pendence of demands. These discrete-argument algorithms may lead to a policy'3 
which yields a lower value of the loss function than is obtainable from the 
(a, b, c) policy. However, unless the computational routine is constrained (e.g., 
by adding a term to the loss function which has cost proportional to the number 
of production rates used), the benefits of a limited number of production rates 
will not be realized. 

9. Summary 

Random walk inventory policies, characterized by uncorrected inventory 
fluctuation between prespecified barriers, arise naturally out of a variety of 
cost characteristics and computational methods. If costs of output variation 
are significant, several alternatives are open to the firm: the rescheduling interval 
can be lengthened (which may be difficult because of increased probability of 
intra-period stockout); one of the recently developed discrete dynamic pro- 
gramming algorithms may be employed (a particularly useful approach when 
the loss function does not contain too many special terms); or a particular 
policy of simple form, e.g., the (a, b, c) policy analyzed in this paper, may be 
used; optimal policy parameters can then be located in any of a number of 
standard ways. 

A "lump sum" cost of production rate changes is not a necessary condition 
on the desirability of random walk policies, as is seen in Beckmann's analysis 
of a case in which the production-associated cost function is continuous [4]. He 
shows that a discontinuity in the first derivative of this function suffices as an 
indicator of random walk policies. 

13 A policy is any rule which maps the current production rate and inventory level into 
the new production rate; it need not be of simple form, like (5) or (7). 
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