
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

About Harlan D. Mills Science Alliance

2005

Foundations of Empirical Software Engineering: The Legacy of Foundations of Empirical Software Engineering: The Legacy of

Victor R. Basili Victor R. Basili

Barry Boehm

Hans Dieter Rombach

Marvin V. Zelkowitz

Follow this and additional works at: https://trace.tennessee.edu/utk_harlanabout

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Boehm, Barry; Rombach, Hans Dieter; and Zelkowitz, Marvin V., "Foundations of Empirical Software
Engineering: The Legacy of Victor R. Basili" (2005). About Harlan D. Mills.
https://trace.tennessee.edu/utk_harlanabout/3

This Book is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in About Harlan D. Mills by an authorized administrator of
TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlanabout
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlanabout?utm_source=trace.tennessee.edu%2Futk_harlanabout%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=trace.tennessee.edu%2Futk_harlanabout%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

University of Tennessee, Knoxville
Trace: Tennessee Research and Creative

Exchange

The Harlan D. Mills Collection Science Alliance

1-1-2005

Foundations of Empirical Software Engineering:
The Legacy of Victor R.Basili
Barry Boehm

Hans Dieter Rombach

Marvin V. Zelkowitz

This Book is brought to you for free and open access by the Science Alliance at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in The Harlan D. Mills Collection by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For
more information, please contact trace@utk.edu.

Recommended Citation
Boehm, Barry; Rombach, Hans Dieter; and Zelkowitz, Marvin V., "Foundations of Empirical Software Engineering: The Legacy of
Victor R.Basili" (2005). The Harlan D. Mills Collection.
http://trace.tennessee.edu/utk_harlan/36

http://trace.tennessee.edu
http://trace.tennessee.edu
http://trace.tennessee.edu/utk_harlan
http://trace.tennessee.edu/utk-scialli
mailto:trace@utk.edu

Foundations of Empirical Software Engineering

Barry Boehm · Hans Dieter Rombach
Marvin V. Zelkowitz (Eds.)

123

Foundations of
Empirical Software
Engineering

With 103 Figures and 21 Tables

The Legacy of Victor R. Basili

Library of Congress Control Number: 2005926640

ACM Computing Classification (1998): D.2.8, D.2.9, D.2.1

ISBN-10 3-540-24547-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-24547-6 Springer Berlin Heidelberg New York

Editors

Barry Boehm
University of Southern California
Center for Software Engineering
941 W 37th Place
CA 90089-0781, Los Angeles, USA
boehm@sunset.usc.edu

Hans Dieter Rombach
Fraunhofer IESE
Sauerwiesen 6
67661 Kaiserslautern, Germany
rombach@iese.fraunhofer.de

Marvin V. Zelkowitz
University of Maryland and Fraunhofer CESE
4321 Hartwick Road, Suite 500
College Park, MD 20742-3290, USA
mvz@cs.umd.edu

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg
Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig
Typesetting: by the Authors
Printed on acid-free paper 45/3142/YL - 5 4 3 2 1 0

Preface

Although software engineering can trace its beginnings to a NATO confer-
ence in 1968, it cannot be said to have become an empirical science until
the 1970s with the advent of the work of Prof. Victor Robert Basili of the
University of Maryland. In addition to the need to engineer software was
the need to understand software. Much like other sciences, such as physics,
chemistry, and biology, software engineering needed a discipline of obser-
vation, theory formation, experimentation, and feedback. By applying the
scientific method to the software engineering domain, Basili developed
concepts like the Goal-Question-Metric method, the Quality-Improvement-
Paradigm, and the Experience Factory to help bring a sense of order to the
ad hoc developments so prevalent in the software engineering field.

On the occasion of Basili’s 65th birthday, we present this book con-
taining reprints of 20 papers that defined much of his work. We divided
the 20 papers into 6 sections, each describing a different facet of his work,
and asked several individuals to write an introduction to each section.

Instead of describing the scope of this book in this preface, we decided
to let one of his papers, the keynote paper he gave at the International Con-
ference on Software Engineering in 1996 in Berlin, Germany to lead off
this book. He, better than we, can best describe his views on what is ex-
perimental software engineering.

This book was developed for a symposium honoring Basili, which was
held during the International Conference on Software Engineering in St.
Louis, MO, USA in May 2005. Whether you attended this symposium or
are reading this later, we are confident that you will find these papers to be
an important compendium of experimental software engineering literature.

Barry Boehm
H. Dieter Rombach
Marvin V. Zelkowitz
January 2005

Table of Contents

1.The Role of Experimentation in Software Engineering: Past, Current,
and Future, Victor R. Basili, 18th International Conference on Software
Engineering, Berlin, Germany, March 1996 © 1996 IEEE*

1

I. Programming Languages and Formal Methods –
M. Zelkowitz

14

2. A Transportable Extendible Compiler, Victor R. Basili and Albert J.

Turner, Software Practice & Experience (5)3 1975 © 1975 Wiley*

16

3. Iterative Enhancement: A Practical Technique for Software
Development, Victor R. Basili and Albert J. Turner, IEEE Transactions
on Software Engineering (1)4 1975 © 1975 IEEE*

28

4. Understanding and Documenting Programs, Victor R. Basili and

Harlan Mills, IEEE Transactions on Software Engineering (8)3 1982
© 1982 IEEE*

40

II. Measurement – D. Weiss 68

5. A Methodology for Collecting Valid Software Engineering Data,
Victor R. Basili and David M. Weiss, IEEE Transactions on Software
Engineering (10)6 1984 © 1984 IEEE*

72

6. The TAME Project: Towards Improvement-Oriented Software
Environments, Victor R. Basili and H. Dieter Rombach, IEEE
Transactions on Software Engineering (14)6 1988 © 1988 IEEE*

94

III. Software Engineering Laboratory – F. McGarry 123

7. Analyzing Medium Scale Software Development, Victor R. Basili and

Marvin Zelkowitz, Proceedings of the 3rd International Conference on
Software Engineering, Atlanta, GA, May 1978 © 1978 IEEE*

127

8. Software Process Evolution at the SEL, Victor R. Basili and Scott

Green, IEEE Software, July 1994 © 1994 IEEE*

142

* Permission to reprint granted by respective copyright holders.

 Table of Contents VIII

9. The Software Engineering Laboratory – An Operational Software
Experience Factory, Victor R. Basili, Gianluigi Caldiera, Frank

McGarry, Rose Pajerski, Gerald Page and Sharon Waligora, 14th
International Conference on Software Engineering, Melbourne, Australia,
May 1992 © 1992 ACM*

155

IV. Learning Organizations and Experience Factory –
H. D. Rombach

176

10. Support for Comprehensive Reuse, Victor R. Basili and H. Dieter

Rombach, Software Engineering Journal (6)5 1991 © 1991 IEEE British
Computer Society*

179

11. Technology Transfer at Motorola, Victor R. Basili, Michael

Daskalantonakis and Robert Yacobellis, IEEE Software Magazine,
March 1994 © 1994 IEEE*

206

12. Improve Software Quality by Reusing Knowledge and Experience,
Victor R. Basili and Gianluigi Caldiera, Sloan Management Review,
MIT Press, Fall 1995 © 1995 Sloan Management Review Association*

220

V. Technical Developments and Empirical Studies –
R. Pajerski

238

13. A controlled Experiment Quantitatively Comparing Software
Development Approaches, Victor R. Basili and Robert Reiter, Jr., IEEE
Transactions on Software Engineering (7)3 1981 © 1981 IEEE* (IEEE
Computer Society Outstanding Paper Award)

241

14. Experimentation in Software Engineering, Victor R. Basili, Richard

Selby and David Hutchens, IEEE Transactions on Software Engineering
(12)7 1986 © 1986 IEEE* (Invited Paper)

278

15. Comparing the Effectiveness of Software Testing Strategies, Victor

R. Basili and Richard Selby, IEEE Transactions on Software Engineer-
ing, (13)12 1987 © 1987 IEEE*

300

16. Cleanroom Software Development: An Empirical Evaluation,
Richard W. Selby, Victor R. Basili and F. Terry Baker, IEEE
Transactions on Software Engineering (13)9 1987 © 1987 IEEE*

339

17. Evolving and Packaging Reading Technologies, Victor R. Basili,

Journal of Systems and Software 38, 1997 © 1997 Elsevier Science Inc*
362

* Permission to reprint granted by respective copyright holders.

 Table of Contents IX

VI. Experience Base – B. Boehm 376

18. Software Engineering Practices in the U.S. and Japan, Marvin

Zelkowitz, Raymond Yeh, Richard Hamlet, John Gannon and Victor R.

Basili, IEEE Computer Magazine, May 1984 © 1984 IEEE Computer
Society*

383

19. An Evaluation of Expert Systems for Software Engineering
Management, Connie Ramsey and Victor R. Basili, IEEE Transactions on
Software Engineering (15)6 1989 © 1989 IEEE*

400

20. Software Defect Reduction Top 10 List, Barry Boehm and Victor R.

Basili, IEEE Software, January, 2001 © 2001 IEEE Computer Society*
426

The Role of Experimentation in Software

Engineering:

Past, Current, and Future

Victor R. Basili

Institute for Advanced Computer Studies and Department of Computer Science,
University of Maryland

Abstract. Software engineering needs to follow the model of other physi-
cal sciences and develop an experimental paradigm for the field. This paper
proposes the approach towards developing an experimental component of
such a paradigm. The approach is based upon a quality improvement para-
digm that addresses the role of experimentation and process improvement in
the context of industrial development. The paper outlines a classification
scheme for characterizing such experiments.

1. Introduction

Progress in any discipline depends on our ability to understand the basic units
necessary to solve a problem. It involves the building of models1 of the application
domain, e.g., domain specific primitives in the form of specifications and applica-
tion domain algorithms, and models of the problem solving processes, e.g., what
techniques are available for using the models to help address the problems. In or-
der to understand the effects of problem solving on the environment, we need to
be able to model various product characteristics, such as reliability, portability, ef-
ficiency, as well as model various project characteristics such as cost and sched-
ule. However, the most important thing to understand is the relationship between
various process characteristics and product characteristics, e.g., what algorithms
produce efficient solutions relevant to certain variables, what development proc-
esses produce what product characteristics and under what conditions.
 Our problem solving ability evolves over time. The evolution is based upon the
encapsulation of experience into models and the validation and verification of
those models based upon experimentation, empirical evidence, and reflection. This

1 We use the term model in a general sense to mean a simplified representation of a system
or phenomenon; it may or may not be mathematical or even formal.

2 Victor R. Basili

encapsulation of knowledge allows us to deal with higher levels of abstraction that
characterize the problem and the solution space. What works and doesn't work
will evolve over time based upon feedback and learning from applying the ideas
and analyzing the results.
 This is the approach that has been used in many fields, e.g., physics, medicine,
manufacturing. Physics aims at understanding the behavior of the physical uni-
verse and divides its researchers into theorists and experimentalists. Physics has
progressed because of the interplay between these two groups.
 Theorists build models to explain the universe - models that predict results of
events that can be measured. These models may be based upon theory or data
from prior experiments. Experimentalists observe and measure. Some experiments
are carried out to test or disprove a theory, some are designed to explore a new
domain. But at whatever point the cycle is entered, there is a modeling, experi-
menting, learning and remodeling pattern.
 Science to the early Greeks was observation followed by logical thought. It
took Galileo, and his dropping of balls off the tower at Pisa, to demonstrate the
value of experimentation. Modern physicists have learned to manipulate the
physical universe, e.g. particle physicists. However, physicists cannot change the
nature of the universe [8].
 Another example is medicine. Here we distinguish between the researcher and
the practitioner. Human intelligence was long thought to be centered in the heart.
The circulation of the blood throughout the body was a relatively recent discovery.
The medical researcher aims at understanding the workings of the human body in
order to predict the effects of various procedures and drugs and provide knowl-
edge about human health and well-being. The medical practitioner aims at apply-
ing that knowledge by manipulating the body for the purpose of curing it. There is
a clear relationship between the two and knowledge is often built by feedback
from the practitioner to the researcher.
 Medicine began as an art form. Practitioners applied various herbs and curing
processes based upon knowledge handed down, often in secret, from generation to
generation. Medicine as a field did not really progress, until various forms of
learning, based upon experimentation and model building, took place. Learning
from the application of medications and procedures formed a base for evolving
our knowledge of the relationship between these solutions and their effects. Ex-
perimentation takes on many forms, from controlled experiments to case studies.
Depending on the area of interest, data may be hard to acquire. However, our
knowledge of the human body has evolved over time. But both grew based upon
our understanding of the relationship between the procedures (processes) and its
effects on the body (product). The medical practitioner can and does manipulate
the body, but the essence of the body, which is physical, does not change. Again,
the understanding was based upon model building, experimentation, and teaming.
 A third and newer example is manufacturing. The goal of manufacturing is to
produce a product that meets a set of specifications. The same product is gener-
ated, over and over, based upon a set of processes. These processes are based upon
models of the problem domain and solution space and the relationship between the
two. Here the relationship between process and product characteristics is generally

 The Role of Experimentation in Software Engineering 3

well understood. But since the product is often a man-made artifact, we can im-
prove on the artifact itself, change its essence. Process improvement is performed
by experimenting with variations in the process, building models of what occurs,
and measuring its effect on the revised product. Models are built with good predic-
tive capabilities based upon a deep understanding of the relationship between
process and product.

2. The nature of the software engineering discipline

Like physics, medicine, manufacturing, and many other disciplines, software en-
gineering requires the same high level approach for evolving the knowledge of the
discipline; the cycle of model building, experimentation and teaming. We cannot
rely solely on observation followed by logical thought. Software engineering is a
laboratory science. It involves an experimental component to test or disprove theo-
ries, to explore new domains. We must experiment with techniques to see how and
when they really work, to understand their limits, and to understand how to im-
prove them. We must learn from application and improve our understanding.
 The researcher's role is to understand the nature of processes and products, and
the relationship between them. The practitioner's role is to build "improved" sys-
tems, using the knowledge available. Even more than in the other disciplines,
these roles are symbiotic. The researcher needs ‘laboratories’; they only exist
where practitioners build software systems. The practitioner needs to understand
how to build better systems; the researcher can provide the models to make this
happen.
 Unlike physics and medicine, but like manufacturing, we can change the es-
sence of the product. Our goal is to build improved products. However, unlike
manufacturing, software is development not production. We do not re-produce the
same object, each product is different from the last. Thus, the mechanisms for
model building are different; we do not have lots of data points to provide us with
reasonably accurate models for statistical quality control.
 Most of the technologies of the discipline are human based. It does not matter
how high we raise the level of discourse or the virtual machine, the development
of solutions is still based upon individual creativity, and so differences in human
ability will always create variations in the studies. This complicates the experi-
mental aspect of the discipline. Unlike physics, the same experiment can provide
different results depending on the people involved. This is a problem found in the
behavioral sciences.
 Besides the human factor, there are a large number of variables that affect the
outcome of an experiment. All software is not the same; process is a variable,
goals are variable, context is variable. That is, one set of processes might be more
effective for achieving certain goals in a particular context than another set of
processes. We have often made the simplifying assumption that all software is the
same, i.e., the same models will work independent of the goals, context size, ap-
plication, etc. But this is no more true than it is for hardware. Building a satellite

4 Victor R. Basili

and a toaster are not the same thing, anymore than developing the micro code for a
toaster and the flight dynamic software for the satellite are the same thing.
 A result of several of the above observations is that there is a lack of useful
models that allow us to reason about the software process, the software product
and the relationship between them. Possibly because we have been unable to build
reliable, mathematically tractable models, like in physics and manufacturing, we
have tended not to build any. And those that we have, are not always sensitive to
context. Like medicine, there are times when we need to use heuristics and models
based upon simple relationships among variables, even if the relationships cannot
be mathematically defined.

3. The available research paradigms

There are various experimental and analytic paradigms used in other disciplines.
The analytic paradigms involve proposing a set of axioms, developing a theory,
deriving results and, if possible, verifying the results with empirical observations.
This is a deductive model which does not require an experimental design in the
statistical sense, but provides an analytic framework for developing models and
understanding their boundaries based upon manipulation of the model itself. For
example the treatment of programs as mathematical objects and the analysis of the
mathematical object or its relationship to the program satisfies the paradigm. An-
other way of verifying the results is by an existence proof, i.e., the building of a
software solution to demonstrate that the theory holds. A software development to
demonstrate a theory is different from building a system ad hoc. The latter might
be an excellent art form but does not follow a research paradigm.
 The experimental paradigms involve an experimental design, observation, data
collection and validation on the process or product being studied. We will discuss
three experimental models; although they are similar, they tend to emphasize dif-
ferent things.
 First we define some terms for discussing experimentation. A hypothesis is a
tentative assumption made in order to draw out and test its logical or empirical
consequence. We define study broadly, as an act or operation for the purpose of
discovering something unknown or of testing a hypothesis. We will include vari-
ous forms of experimental, empirical and qualitative studies under this heading.
We will use the term experiment to mean a study undertaken in which the re-
searcher has control over some of the conditions in which the study takes place
and control over (some aspects of) the independent variables being studied. We
will use the term controlled experiment to mean an experiment in which the sub-
jects are randomly assigned to experimental conditions, the researcher manipulates
an independent variable, and the subjects in different experimental conditions are
treated similarly with regard to all variables except the independent variable.
 The experimental paradigm of physics is epitomized by the scientific method:
observe the world, propose a model or a theory of behavior, measure and analyze,

 The Role of Experimentation in Software Engineering 5

validate hypotheses of the model or theory (or invalidate them), and repeat the
procedure evolving our knowledge base.
 In the area of software engineering this inductive paradigm might best be used
when trying to understand the software process, product, people, or environment.
It attempts to extract from the world some form of model which tries to explain
the underlying phenomena, and evaluate whether the model is truly representative
of the phenomenon being observed. It is an approach to model building. An ex-
ample might be an attempt to understand the way software is being developed by
an organization to see if their process model can be abstracted or a tool can be
built to automate the process. The model or tool is then applied in an experiment
to verify the hypotheses. Two variations of this inductive approach can be used to
emphasize the evolutionary and revolutionary modes of discovery.
 The experimental paradigm in manufacturing is exemplified by an evolutionary
approach: observe existing solutions, propose better solutions, build/develop,
measure and analyze, and repeat the process until no more improvements appear
possible.
This evolutionary improvement oriented view assumes one already has models of
the software process, product, people and environment and modifies the model or
aspects of the model in order to improve the thing being studied. An example
might be the study of improvements to methods being used in the development of
software or the demonstration that some tool performs better than its predecessor
relative to certain characteristics. Note that a crucial part of this method is the
need for careful analysis and measurement.
 It is also possible for experimentation to be revolutionary, rather than evolu-
tionary, in which case we would begin by proposing a new model, developing sta-
tistical/qualitative methods, applying the model to case studies, measuring and
analyzing, validating the model and repeating the procedure.
 This revolutionary improvement oriented view begins by proposing a new
model, not necessarily based upon an existing model, and attempts to study the ef-
fects of the process or product suggested by the new model. The idea for the new
model is often based upon problems observed in the old model or approach. An
example might be the proposal of a new method or tool used to perform software
development in a new way. Again, measurement and analysis are crucial to the
success of this method.
 These approaches serve as a basis for distinguishing research activities from
development activities. If one of these paradigms is not being used in some form,
the study is most likely not a research project For example, building a system or
tool alone is development and not research. Research involves gaining understand-
ing about how and why a certain type of tool might be useful and by validating
that a tool has certain properties or certain effects by carefully designing an ex-
periment to measure the properties or to compare it with alternatives. An experi-
mental method can be used to understand the effects of a particular tool usage in
some environment and to validate hypotheses about how software development
can best be accomplished.

6 Victor R. Basili

4. Software engineering model building

A fair amount of research has been conducted in software engineering model
building, i.e., people are building technologies, methods, tools, life cycle models,
specification languages, etc. Some of the earliest modeling research centered on
the software product, specifically mathematical models of the program function.
There has also been some model building of product characteristics, such as reli-
ability models. There has been modeling in the process domain; a variety of nota-
tions exist for expressing the process at different levels for different purposes.
However, there has not been much experimenting on the part of the model build-
ers: implementation yes, experimentation no. This may in part be because they are
the theorists of the discipline and leave it to the experimenters to test their theo-
ries. It may in part be because they view their "models" as not needing to be tested
- they see them as self-evident.
 For example, in defining a notation for abstracting a program, the theorist may
find it sufficient to capture the abstraction perfectly, and not wonder whether it
can be applied by a practitioner, under what conditions its application is cost ef-
fective, what kind of training is needed for its successful use, etc. Similar things
might be said about the process modeler.
 It may also be that the theorists view their research domain as the whole unit,
rather than one component of the discipline. What is sometimes missing is the big
picture, i.e., what is the collection of components and how do they fit together?
What are the various program abstraction methods and when is each appropriate?
For what applications are they not effective? Under what conditions are they most
effective? What is the relationship between processes and product? What is the ef-
fect of a particular technique on product reliability, given an environment of ex-
pert programmers in a new domain, with tight schedule constraints, etc.
 One definition of science is the classification of components. We have not suf-
ficiently enumerated or emphasized the roles of different component models, e.g.,
processes, products, resources, defects, etc., the logical and physical integration of
these models, the evaluation and analysis of the models via experimentation, the
refinement and tailoring of the models to an application environment, and the ac-
cess and use of these models in an appropriate fashion, on various types of soft-
ware projects from an engineering point of view. The majority of software engi-
neering research has been bottom-up, done in isolation. It is the packaging of
technology rather than the solving of a problem or the understanding of a primi-
tive of the discipline.

5. What will our future look like?

We need research that helps establish a scientific and engineering basis for the
software engineering field. To this end, researchers need to build, analyze and
evaluate models of the software processes and products as well as various aspects
of the environment in which the software is being built, e.g. the people, the or-

 The Role of Experimentation in Software Engineering 7

ganization, etc. It is especially important to study the interactions of these models.
The goal is to develop the conceptual scientific foundations of software engineer-
ing upon which future researchers can build. This is often a process of discovering
and validating small but important concepts that can be applied in many different
ways and that can be used to build more complex and advanced ideas rather than
merely providing a tool or methodology without experimental validation of its un-
derlying assumptions or careful analysis and verification of its properties.
 This research should provide the software engineering practitioner with the
ability to control and manipulate project solutions based upon the environment
and goals set for the project, as well as knowledge based upon empirical and ex-
perimental evidence of what works and does not work and when. The practitioner
can then rely on a mix of scientific and engineering knowledge and human inge-
nuity.
 But where are the laboratories for software engineering? They can and should
be anywhere software is being developed. Software engineering researchers need
industry-based laboratories that allow them to observe, build and analyze models.
On the other hand, practitioners need to build quality systems productively and
profitably, e.g., estimate cost track progress, evaluate quality. The models of proc-
ess and product generated by researchers should be tailored based upon the data
collected within the organization and should be able to continually evolve based
upon the organization's evolving experiences. Thus the research and business per-
spectives of software engineering have a symbiotic relationship. From both per-
spectives we need a top down experimental, evolutionary framework in which re-
search and development can be logically and physically integrated to produce and
take advantage of models of the discipline that have been evaluated and tailored to
the application environment. However, since each such laboratory will only pro-
vide local, rather than global, models, we need many experimental laboratories at
multiple levels. These will help us generate the basic models and metrics of the
business and the science.
 This allows us to view our usable knowledge as growing over time and pro-
vides some insight into the relationship between software development as an art
and as an engineering discipline. As we progress with our deeper understanding of
the models and relationships, we can work on harder and harder problems. At the
top is always the need to create new ideas, to go where models do not exist. But
we can reach these new heights based upon our ability to build on packages of
knowledge, not just packages of technologies.

6. Can this be done?

There have been pockets of experimentation in software engineering but there is
certainly not a sufficient amount of it [5, 9, 11]. One explicit example, with which
the author is intimately familiar, is the work done in the Software Engineering
Laboratory at NASA/GSFC [6]. Here the overriding experimental paradigm has
been the Quality Improvement Paradigm [1, 4], which combines the evolutionary

8 Victor R. Basili

and revolutionary experimental aspects of the scientific method, tailored to the
study of software. The steps of the QIP are:

Characterize the project and environment, i.e., observe and model the existing
environment.
Set goals for successful project performance and improvement and organiza-
tional learning.
Choose the appropriate processes and supporting methods and tools for this
project and for study.
Execute the processes, construct the products, collect and validate the pre-
scribed data based upon the goals, and analyze it to provide real-time feedback
for corrective action.
Analyze the data to evaluate the current practices, determine problems, record
findings, and make recommendations for future project improvements.
Package the experience in the form of updated and refined models and other
forms of structured knowledge gained from this and prior projects and save it
in an experience base for future projects.

To help create the laboratory environment to benefit both the research and the de-
velopment aspects of software engineering, the Experience Factory concept was
created. The Experience Factory represents a form of laboratory environment for
software development where models can be built and provide direct benefit to the
projects under study. It represents an organizational structure that supports the QIP
by providing support for learning through the accumulation of experience, the
building of experience models in an experience base, and the use of this new
knowledge and understanding in the current and future project developments [2].

7. The maturing of the experimental discipline

In order to identify patterns in experimental activities in software engineering
from the past to the present, I relied on my experience, discussions with the Ex-
perimental Software Engineering Group here at the University of Maryland, and
some observations in the literature of experimental papers, i.e., papers that re-
ported on studies that were carried out.
 This identified some elements and characteristics of the experimental work in
software engineering, specifically (1) identification of the components and pur-
poses of the studies, (2) the types and characteristics of the experiments run, and
(3) some ideas on how to judge if the field is maturing. These have been formu-
lated as three questions. First, what are the components and goals of the software
engineering studies? Second, what kinds of experiments have been performed?
Third, how is software engineering experimentation maturing?

 The Role of Experimentation in Software Engineering 9

7.1. What are the components and goals of the software engineering

studies?

Our model for components method is the Goal/Question/Metric (GQM) Goal
Template [4]. The GQM method was defined as a mechanism for defining and in-
terpreting a set of operation goals, using measurement. It represents a systematic
approach for tailoring and integrating goals with models of the software processes,
products and quality perspectives of interest, based upon the specific needs of a
project and organization. However, here, we will only use the parameters of a goal
to characterize the types of studies performed. There are four parameters: the ob-
ject of study, the purpose, the focus, and the point of view. A sample goal might
be: analyze perspective based reading (object of interest), in order to evaluate
(purpose) it with respect to defect detection (focus) from the point of view of
quality assurance (point of view). Studies may have more than one goal but the
goals are usually related, i.e. there are several focuses of the same object being
analyzed or a related set of objects are being studied. In experimental papers, the
point of view is usually the researcher trying to gain some knowledge.

object of study: a process, product, or any form of model
purpose: to characterize (what is it?), evaluate (is it good?), predict (can

I estimate something in the future?), control (can I manipulate events?), improve
(can I improve event?)

focus: the aspect of the object of study that is of interest, e.g., reliability
of the product, defect detection/prevention capability of the process, accuracy of
the cost model

point of view: the person who benefits from the information, e.g., the re-
searcher in understanding something better
 In going through the literature, there appeared to be two patterns of empirical
studies, those I will call human factor studies, and those that appear to be more
broad-based software engineering. The first class includes studies aimed at under-
standing the human cognitive process, e.g., how individual programmers perceive
or solve problems. The second set of studies appear to be aimed more at under-
standing how to aid the practitioner, i.e., building models of the software process,
product, and their relationship. We will call these project-based studies. The rea-
son for making the distinction is that they appear to have different patterns. Many
of the human factor studies were done by or with cognitive psychologists who
were comfortable with the experimental paradigm. The object of study tended to
be small, the purpose was evaluation with respect to some performance measure.
The point of view was mostly the researcher, attempting to understand something
about programming.
 Although the project-based studies are also often from the point of view of the
researcher, it is clear that the perspectives are often practitioner based, i.e. the
point of view represented by the researcher is that of the organization, the man-
ager, the developer, etc. The object of study is often the software process or prod-
uct in some form. If we are looking at breadth, there have been an enormous vari-
ety of objects studied. The object set which once included only small, specific

10 Victor R. Basili

items, like particular programming language features, has evolved to include en-
tire development processes, like Cleanroom development
 Although the vast majority of such studies are also aimed at evaluation, and a
few at prediction; more recently, as the recognition of the complexity of the soft-
ware domain has grown, there are more studies that simply try to characterize and
understand something, like effort distribution, rather than evaluate whether or not
it is good.

7.2. What kinds of experiment have been performed?

There are several attributes of an experiment. Consider the following set:
 (1) Does the study present results which are descriptive, correlational, cause-
effect?

Descriptive: there may be patterns in the data but the relationship among the
variables has not been examined
Correlational: the variation in the dependent variable(s) is related to the
variation of the independent variable(s)
Cause-effect: the treatment variable(s) is the only possible cause of variation
in the dependent variable(s)

Most of the human factor studies were cause-effect. This appears to be a sign of
maturity of the experimentalists in that area as well as the size and nature of the
problem they were attacking. The project-based studies were dominated by corre-
lational studies early on but have evolved to more descriptive (and qualitative)
style studies over time. I believe this reflects early beliefs that the problem was
simpler than it was and some simple combination of metrics could easily explain
cost, quality, etc.
 (2) Is the study performed on novices or experts or both?

novice: students or individuals not experienced in the study domain
experts: practitioners of the task or people with experience in the study do-

main
There seems to be no pattern here, except possibly that there are more studies with
experts in the project based study set. This is especially true with the qualitative
studies of organizations and projects, but also with some of the controlled experi-
ments.
 (3) Is the study performed in vivo or in vitro?

In vivo: in the field under normal conditions
In vitro: in the laboratory under controlled conditions

Again, for project-based studies, there appear to be more studies under normal
conditions (in vivo).
 (4) Is it an experiment or an observational study? Although the term experi-
ment is often used to be synonymous with controlled experiment, as defined ear-
lier, I have taken a broader definition here. In this view, we distinguish between
experiments, where at least one treatment or controlled variable exists, and obser-

vational studies where there are no treatment or controlled variables.

 The Role of Experimentation in Software Engineering 11

 Experiments can be characterized by the number of teams replicating each pro-
ject and the number of different projects analyzed. As such, it consists of four dif-
ferent experimental classes, as shown in Table 1: blocked subject-project, repli-
cated project, multi-project variation, and a single project. Blocked subject-project
and replicated project experiments represent controlled experiments, as defined
earlier. Multi-project variation and single project experiments represent what have
been called quasi-experiments or pre-experimental designs [7].
 In the literature, typically, controlled experiments are in vitro. There is a mix of
both novice and expert treatments, most often the former. Sometimes, the novice
subjects are used to "debug" the experimental design, which is then run with pro-
fessional subjects. Also, controlled experiments can generate stronger statistical
confidence in the conclusions. A common approach in the blocked subject-project
study is the use of fractional factorial designs. Unfortunately, since controlled ex-
periments are expensive and difficult to control if the project is too large, the pro-
jects studied tend to be small.
Quasi-experiments can deal with large projects and be easily done in vivo with
experts. These experiments tend to involve a qualitative analysis component, in-
cluding at least some form of interviewing.

Projects

 One More than one

One Single Project Multi-Project Variation # of Teams

per Project More than one Replicated Project Blocked Subject-Project

Table 1: Experiments

 Observational studies can be characterized by the number of sites included and
whether or not a set of study variables are determined a priori, as shown in Table
2. Whether or not a set of study variables are predetermined by the researcher
separates the pure qualitative study (no a priori variables isolated by the observer),
from the mix of qualitative and quantitative analysis, where the observer has iden-
tified, a priori, a set of variables for observation.
 In purely qualitative analysis, deductions are made using non-mathematical
formal logic, e.g., verbal propositions [10]. I was only able to find one study that
fit in this category and since it involved multiple sites would be classified as a
Field Qualitative Study. On the other hand, there are a large number of case stud-
ies in the literature and some field studies. Almost all are in vivo with experts and
descriptive.

7.3. How is software engineering experimentation maturing?

One sign of maturity in a field is the level of sophistication of the goals of an ex-
periment and its relevance to understanding interesting (e.g., practical) things

12 Victor R. Basili

about the field. For example, a primitive question might be to determine experi-
mentally if various software processes and products could be measured and their
characteristics differentiated on the basis of measurement. This is a primitive
question but needed to be answered as a first step in the evolution of experimenta-
tion. Over time, the questions have become more sophisticated, e.g., Can a change
in an existing process produce a measurable effect on the product or environment?
Can the measurable characteristics of a process be used to predict the measurable
characteristics of the product or environment, within a particular context? Can we
control for product effects, based upon goals, given a particular set of context vari-
ables?
 Another sign of maturity is to see a pattern of knowledge building from a series
of experiments. This reflects the discipline's ability to build on prior work (knowl-
edge, models, experiments). There are various ways of viewing this. We can ask if
the study was an isolated event, if it led to other studies that made use of the in-
formation obtained from this particular study. We can ask if studies have been rep-
licated under similar or differing conditions. We can ask if this building of knowl-
edge exists in one research group or environment, or has spread to others, i.e.,
researchers are building on each other's work.
 In both these cases we have begun to see progress. Researchers appear to be
asking more sophisticated questions, trying to tackle questions about relationships
between processes and product characteristics, using more studies in the field than
in the controlled laboratory, and combining various experimental classes to build
knowledge.
 There are several examples of the evolution of knowledge over time, based
upon experimentation and learning, within a particular organization or research
group. The SEL at NASA/GSFC offers several examples [6]. One particular ex-
ample is the evolution of the SEL knowledge of the effectiveness of reading re-
lated techniques and methods [3]. In fact, inspections, in general, are well studied
experimentally.

 Variable Scope

defined a priori not defined a priori

One Case Study Case Qualitative Study # of Sites

More than one Field Study Field Qualitative Study

Table 2: Observational Studies

There is also growing evidence of the results of one research group being used by
others. At least one group of researchers have organized explicitly for the purpose
of sharing knowledge and experiments. The group is called ISERN, the Interna-
tional Software Engineering Research Network. Its goal is to share experiences on
software engineering experimentation, by experimenting, learning, remodeling
and farther experimenting to build a body of knowledge, based upon empirical
evidence. They have begun replicating experiments, e.g., various forms of replica-
tion of the defect-based reading have been performed, and replications of the per-

 The Role of Experimentation in Software Engineering 13

spective-based reading experiment are being performed. Experiments are being
run to better understanding the parameters of inspection. ISERN has membership
in the U.S., Europe, Asia, and Australia representing both industry and academia.
 Another sign of progress for experimental software engineering is the new
journal by Kluwer, the International Journal of Empirical Software Engineering,
whose aim is to provide a forum for researchers and practitioners involved in the
empirical study of software engineering. It aims at publishing artifacts and labora-
tory manuals that support the replication of experiments. It plans to encourage and
publish replicated studies, successful and unsuccessful, highlighting what can be
learned from them for improving future studies.

Acknowledgements: I would like to thank the members of the Experimental Soft-
ware Engineering Group at the University of Maryland for their contributions to
the ideas in this paper, especially, Filippo Lanubile, Carolyn Seaman, Jyrki Kon-
tio, Walcelio Melo, Yong-Mi Kim, and Giovanni Cantone.

8. References

[1] Victor R. Basili, Quantitative Evaluation of Software Methodology, Keynote Address,
First Pan Pacific Computer Conference, Melbourne, Australia, September 1985.

[2] Victor R. Basili, Software Development: A Paradigm for the Future, COMPSAC '89,
Orlando, Florida, pp. 471-485, September 1989.

[3] Victor R. Basili and Scott Green, Software Process Evolution at the SEL, IEEE Soft-
ware, pp. 58-66, July 1994.

[4] Victor R. Basili and H. Dieter Rombach, The TAME Project: Towards Improvement-
Oriented Software Environments, IEEE Transactions on Software Engineering, vol.
14, no. 6, June 1988.

[5] V. R. Basili, R. W. Selby, D. H. Hutchens, "Experimentation in Software Engineering,"
IEEE Transactions on Software Engineering, vol. SE-12, no. 7, pp. 733-743, July
1986.

[6] Victor Basili, Marvin Zelkowitz, Frank McGarry, Jerry Page, Sharon Waligora, Rose
Pajerski, SEL's Software Development Process Improvement Program, IEEE Software
Magazine, pp. 83-87, November 1995.

[7] Campbell, Donald T. and Julian C. Stanley, Experimental and Quasi-experimental De-
signs for Research, Houghton Mifflin, Boston, MA.

[8] Lederman, Leon, "The God Particle", Houghton Mifflin, Boston, MA, 1993
[9] Norman Fenton, Shari Lawrence Pfleeger, and Robert L. Glass, Science and Substance:

A Challenge to Software Engineers, IEEE Software, pp. 86 – 94, July 1994.
[10] A. S. Lee, "A scientific methodology for MIS Case Studies", MIS Quarterly, pp.33-50

March 1989.

[11] W. L. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz, Experimental
Evaluation in Computer Science: A Quantitative Study, Journal of Systems
and Software, vol. 28, pp. 1

Section1: Programming Languages and Formal

Methods

Marvin V. Zelkowitz

Computer Science Department, University of Maryland and
Fraunhofer Center for Experimental Software Engineering

Professor Victor Basili is best known for his work in the areas of software engi-
neering experimentation and measurement, highlighted by the twenty-five year
history of the NASA Goddard Space Flight Center Software Engineering Labora-
tory (SEL) from 1976 until 2002. However, his early work was along more tradi-
tional programming language issues in the semantics of programming languages
and concepts on the design of compilers. His dissertation research at the Univer-
sity of Texas at Austin, under the direction of Professor Terry Pratt, was on pro-
gramming language semantics using a graphical model called hierarchical graphs
or H-graphs. In this section of the book, we highlight three papers from his work
in this area from the 1970s through the early 1980s.

Soon after Prof. Basili arrived at the University of Maryland in 1970, he be-
came interested in programming language design issues and the problems in de-
signing a simple to use language. At that time, the major educational languages
were still FORTRAN, with its artificial and obtuse syntax, and BASIC, in its
original form too simple for complex program development. About the same time
that Niklaus Wirth was developing Pascal, Basili became interested in a language
design using a simple BNF grammar that would be easy to learn and simple for a
compiler to parse. The result of this was SIMPL-T, the language used for several
years as the programming language for freshman computer science majors at the
University.

The goal for the SIMPL family of languages was to have a series of extendable
compilers using a common base syntax. SIMPL-T was the teaching language,
which limited data types to strings and integers. An extension to SIMPL was
SIMPL-R, which added real arithmetic for more complex programs. An extension
by Dick Hamlet and myself led to SIMPL-XI, a language for systems program-
ming for the PDP-11 minicomputer.

The SIMPL-T compiler was written in SIMPL-T. The first paper in this section,
“A transportable extendable compiler,” describes the structure of these SIMPL
compilers and describes the process of bootstrapping the compiler onto a system
where there is no SIMPL-T compiler initially available upon which to compile the
original source files. Using a SNOBOL4 translator to convert the SIMPL-T com-
piler into FORTRAN and then compiling the FORTRAN, they constructed a first
version of the compiler. Then this compiler, written in SIMPL, could now compile
the original source. By improving on the code generation process in the SIMPL-T

 Section1: Programming Languages and Formal Methods 15

source files, once one had a running compiler, improved code could be generated.
Although the process is well understood today, one must remember that in the
early 1970s, compiler design was only developing into a mature technology. (Re-
call that the major paper by Jay Earley defining a simple parsing method for SLR
and LALR languages first appeared in 1971!)

The second paper, “Iterative enhancement: A practical technique for software
development,” describes an aspect of the SIMPL-T project that has had a larger
impact than the SIMPL family of languages. Data was collected on the develop-
ment of the SIMPL-T compiler, previously mentioned. An iterative process
evolved where design decisions were implemented, and for successive releases of
the compiler if a modification required too much effort, the module was redes-
igned. Rather than simply adding code to add functionality, significant effort was
devoted to redesign and redevelopment in order to keep the structure simple and
understandable.

The importance of this paper was twofold: For one, it was an early example of
the need to collect data during program development. The large store of data was
the background for some of the ideas later developed during the SEL days, de-
scribed later in this book. Secondly, the concept of iterative enhancement was re-
discovered years later with the advent of “agile development.” Agile’s emphasis
on refactoring, redesign, and short development cycle are just a 2001 restatement
of the iterative enhancement principles Basili espoused 26 years earlier.

By the 1980s, Pascal had replaced SIMPL-T as the freshman programming lan-
guage at the University. A project by Basili, Harlan Mills, Dick Hamlet and John
Gannon took Pascal and reduced it to a minimal set of operators, called CF-Pascal
(Character-File Pascal). In essence it made CF-Pascal into a Turing machine using
files as the infinite tape and characters as the only data type. This reduced pro-
gramming to its simplest level with only very few operators and data types to ma-
nipulate. For several years this was the programming course for Freshmen.

The final paper in this section, “Understanding and documenting programs,”
was a description of the programming process used in CF-Pascal to allow for veri-
fication of programs in a mechanical manner – a goal we are still seeking. The ex-
amples in the paper use FORTRAN as the language for wider readership, but the
underlying research was done using Pascal.

Using the concepts of a program as a flowchart, and using the ideas of
the prime program decomposition of these flowcharts, a method is de-
scribed for decomposing programs into its prime components and then
verifying the correctness of each prime subcomponent until the entire pro-
gram is proven correct. Building upon the earlier verification work of
Hoare and Dijkstra, a method is described which is applicable to this re-
stricted form of FORTRAN (and Pascal).

A Transportable Extendable Compiler

Victor R. Basili* and Albert J. Turner

Computer Science Department, University of Maryland,
College Park, Maryland U.S.A.

Abstract. This report describes the development of a transportable extend-
able self-compiler for the language SIMPL-T. SIMPL-T is designed as the
base language for a family of languages. The structure of the SIMPL-T
compiler and its transportable bootstrap are described. In addition, the pro-
cedures for generating a compiler for a new machine and for bootstrapping
the new compiler on to the new machine are demonstrated.

Key Words: Transportable, Extendable, Compiler, Bootstrapping, SIMPL-T,
SIMPL family

Introduction

The differences in computer architecture and in operating systems make the de-
velopment of a transportable compiler for a programming language a formidable
task. This paper describes the development of a reasonably transportable and ex-
tendable compiler for the language SIMPL-T.1
 Most compilers that are designed to be transportable are self-compiling; that is,
they are written in the language that they compile. The NELIAC compilers2 were
among the first self-compiling compilers, and more recent efforts include the
XPL3, 4 and BCPL5 compilers. The effort required to transport these compilers
includes the rewriting of the code generation portion of the compiler to generate
object code for the new machine and the design and programming of run-time
support routines. An existing implementation can then be used for the debugging

* This research was supported in part by the Office of Naval Research under Grant N00014-
67-A-0239-0021 (NR-044-431) to the Computer Science Center of the University of Mary-
land, and in part by the Computer Science Center of the University of Maryland.

Received 16 January 1974

Revised 21 October 1974

A Transportable Extendable Compiler 17

and generation of a compiler for the new machine. As an alternate procedure, the
BCPL design allows the bootstrap process to be performed without using an exist-
ing implementation by writing (and debugging) two code generators, one in BCPL
and another in an existing language already implemented on the target machine.
 The SIMPL-T compiler is also self-compiling and the effort required to trans-
port it to a new machine consists of the design and programming of a new code
generator and a run-time environment for SIMPL-T programs executing on the
new machine.
 This paper discusses three features of the transportable, extendable SIMPL-T
compiler.
 Firstly, there is a transportable bootstrap which permits the SIMPL-T compiler
to be transported to most machines without using an existing implementation of
the language. Moreover, this bootstrap requires no extra effort such as writing a
temporary code generator for the bootstrap that will not be used in the final im-
plementation on the new machine. This transportable bootstrap distinguishes the
SIMPL-T bootstrap procedure from that required for most other self-compiling
compilers.
 Secondly, the highly modular design of the compiler, along with the features of
the SIMPL-T language itself, minimizes the effort required to write and interface the
new code generator and run-time environment. A reasonably competent systems
programmer should be able to bootstrap SIMPL-T to a new machine in one to
three months. The actual time required depends mostly on the quality of the object
code to be produced by the compiler.
 Finally, the compiler has been designed to permit extensions so that other com-
pilers may be built out of it.

The SIMPL-T Language

 SIMPL-T is a member of the SIMPL family of structured programming lan-
guages.6 The SIMPL family is a set of languages each of which contains common
features, such as a common set of data types and control structures. The fundamental
idea behind the family is to start with a base language and a base compiler and then to
build each new language in the family as an extension to the base compiler. Thus,
each new language and its compiler are bootstrapped from some other language and
compiler in the family.
 SIMPL-T was designed to be the transportable extendable, base language for the fam-
ily. The transportable extendable base compiler for SIMPL-T was written in
SIMPL-T to permit the entire family of languages to be implemented on various ma-
chines in a relatively straightforward manner, as suggested by Waite.7 (The extensi-
bility scheme is thus similar to that used for Babel and SOAP.8)
 Other members of the SIMPL family include a typeless compiler-writing lan-
guage, SIMPL-X,9 a standard mathematically-oriented language, SIMPL-JR10, a sys-
tems implementation language for the PDP-11, SIMPL-XI11 and the graph algo-
rithmic language GRAAL.12 The original design and implementation of the SIMPL

18 Victor R. Basili and Albert J. Turner

family of languages and compilers were done at the University of Maryland for the
UNIVAC 1100 series computers.
 SIMPL-T and other members of the SIMPL family have been used in research
projects and in classes at a variety of levels in the Computer Science Department at the
University of Maryland. SIMPL-T is being used as an implementation language by the
Defense Systems Division, Software Engineering Transference Group at Sperry Uni-
vac. SIMPL-R is being used in the development of a transportable system for solv-
ing large spare matrix problems.10

 The salient features of SIMPL-T are:
1. Every program consists of a sequence of procedures that can access a set of global

variables, parameters or local variables.
2. The statements in the language are the assignment, if-then-else, while, case,

call, exit and return statements. There are compound statements in the language,
but there is no block structure.

3. There is easy communication between separately compiled programs by
means of external references and entry points.

4. There is an integer data type and an extensive set of integer operations including
arithmetic, relational, logical, shift, bit and part word operations.

5. There are string and character data types. Strings are of variable length with
a declared maximum. The range of characters is the full set of ASCII charac-
ters. The set of string operators includes concatenation, the substring
operator, an operator to find an occurrence of a substring of a string and the re-
lational operators.

6. Strong typing is imposed and there are intrinsic functions that convert be-
tween data types.

7. There is a one-dimensional array data structure.
8. Procedures and functions may be recursive but may not have local proce-

dures or functions. Only scalars and structures may be passed as parame-
ters. Scalars are passed by value or reference and structures are passed by
reference.

9. There is a facility for interfacing with other languages.
10. There is a simple set of read and write stream I/O commands.
11. The syntax and semantics of the language are relatively simple, consis-

tent and uncluttered.
 It seems prudent to emphasize here that SIMPL-T programs are not necessarily
transportable. The language contains some highly machine-dependent operations,
such as bit manipulation operators. The merits and disadvantages of having such
operations in the language will not be discussed here. However, it is not difficult
to write SIMPL-T programs that are transportable, and this is what was done in
writing the SIMPL-T compiler.
 A simple stack is adequate for the run-time environment in an implementation
of SIMPL-T. This together with the simple I/O facilities in the language and the
lack of reels makes the design and implementation of support routines easier than
for languages such as FORTRAN and ALGOL.
 The availability of external procedures in SIMPL-T means that operating sys-
tems interfaces that may be desired for a compiler can easily be managed by writ-

A Transportable Extendable Compiler 19

ing the interface as an external procedure. Such external interfaces are needed
only for uses involving individual operating system idiosyncrasies, however, as
SIMPL-T is sufficiently powerful to allow the compiler to be written entirely
within itself. (Examples of such uses are the obtaining of date and time, the inter-
changing of files, etc.)

The SIMPL-T Compiler

Although SIMPL-T programs can be compiled in one pass, the compiler was writ-
ten as a three-pass compiler with separate scan, parse and code generation phases.
The separate code generator is needed for the portability scheme, and separate
scan and parse phases promote modularity and provide more flexibility for im-
plementing later extensions.
 The scanner and parser are designed and programmed to be machine inde-
pendent so that the compiler can be transported to a new machine by writing only
the code generation pass for that machine. The parser generates a file containing a
machine-independent intermediate form of a SIMPL-T program that can readily
be converted into machine code for most computers. (This approach is similar
to that used for the BGPL compiler.)
 Extendibility in the scanner and parser is provided by using a modular ap-
proach that avoids the use of obscure programming 'tricks'. In order to enhance the
clarity and ease of extendibility, occasional inefficiency and repetition of code has
been allowed. The parser uses a syntax-directed approach that is based on an opti-
mized SLR(1)13 algorithm and uses an operator precedence14 scheme for parsing
expressions.
 An additional optimization pass is planned that will perform machine-
independent optimization on the intermediate output from the parser. (Such an
optimizer was written for an earlier version of the compiler but has not been updated
for the latest version.) The design of the compiler permits the use of a variety of ma-
chine-independent optimization techniques, such as those suggested by Hecht and
Ullman,15 and Kildall.16 In order to provide more efficient usage of storage on a variety
of machines the scan and parse phases of the compiler are written in macro code. A
macro preprocessor17 is used to generate different versions of these phases for different
word sizes on the target machines. The differences mostly involve the symbol table,
whose entries consist of several 16-bit fields. For machines having a word size of less
than 32 bits, these fields are allocated one per word; for larger words, one field is right-
justified in each half word.
 All implementation-dependent decisions in the compiler are delayed until the code
generation phase. These include the assignment of addresses, decisions on immediate
constants, generation of object output for initialized variables and the handling of en-
try points and external references. These actions could be performed more efficiently
during the scan phase, but delaying them until code generation facilitates a new im-
plementation of the compiler.
 The intermediate form generated by the parser is a quadruple18

20 Victor R. Basili and Albert J. Turner

OP, A, B, R
consisting of an operation field, an A-operand, a B-operand and a result field. The
quads represent high-level operations that make no assumptions about the architec-
ture of the machine for which the compiler is to generate code. Some redundancy
is introduced into the quads so that writing a straightforward code generator is
made easier.
 The quads are generally of two types: operation quads and structure quads. The
operation quads correspond to the primitive operators of the SIMPL-T language,
and the structure quads represent the program structure. As examples, the opera-
tion X + Y would be represented by the quad

+, X, Y, t
where t is an integrator for the result; a statement beginning

IF X > Y THEN
would generate the quads

>, X, Y, t
IF, t, ,

The choice of quads over a polish string representation was made primarily to en-
hance the writing of a machine-independent optimization pass. Quads also allow
more flexibility in the design of a code generator since, for example, no stack is
required. Quads were chosen over two-address codes (triples)18 for the same rea-
sons, although the same arguments apply to a lesser degree. We believed that there
would be less bookkeeping effort required for quads than for triples. Our experi-
ence thus far has shown the choice of quads to be satisfactory in every way.
 The high level of the quads allows a great deal of flexibility as to the efficiency
of the object code generated. For example, the original 1108 code generator, de-
signed and implemented in three weeks, was fairly straightforward and generated
mediocre to poor object code. However, an extensive revision of the code genera-
tor, requiring a six-week effort, yielded a compiler that provides good object code
comparing favorably with the code that is produced by other compilers on the
1108. Thus, the time and effort expended on a new implementation of SIMPL-T
depends a great deal on the quality of the object code to be produced for the new
machine.
 Table I gives a comparison of the core requirements for the ALGOL,
FORTRAN and SIMPL-T compilers on the UNIVAC 1108. The FORTRAN fig-
ures are for the smaller of the two standard FORTRAN compilers supported by
UNIVAC, and the ALGOL compiler used is the NUALGOL compiler from Nor-
wegian University. Both the ALGOL and FORTRAN compilers are coded in as-
sembly language.
 Comprehensive comparisons have not been made between object programs
produced by the different compilers. However, the results of one comparison be-
tween the object programs generated by the FORTRAN and SIMPL-R compilers
is given in Table II. (The SIMPL-R compiler is an extension of the SIMPL-T com-
piler and the two compilers generate identical code for SIMPL-T programs.) For this
comparison, a sparse matrix problem was coded in both FORTRAN and SIMPL-R
and executed on several sets of data.10 Both programs consisted of about 750 source

A Transportable Extendable Compiler 21

cards (360 SIMPL-R statements), and the execution timings are for a typical set of
test data.

Table I. Size comparisons for UNIVAC 1108 compilers. K =1,000 words

Table II. Comparison between a sample program coded in FORTRAN
and SIMPL-R. The timings are CPU times, and the program sizes include
library routines

 The performance figures in Tables I and II illustrate some success in achieving the
SIMPL-T design criterion of generating efficient object code. The favorable com-
parisons are in spite of the fact that the FORTRAN compiler has a good optimizer,
while the SIMPL-T and SIMPL-R compilers have only local optimization.
 The figures also show reasonable results in compile time for the SIMPL compilers
when compared with FORTRAN. This is in spite of the facts that the SIMPL com-
pilers are designed for portability rather than for fast compilation and are coded in a
high-level language rather than in assembly language.

Bootstrapping SIMPL-T

Plans for transporting a compiler from computer M to a new computer N must in-
clude a procedure for bootstrapping on to the target machine N unless the com-
piler is written in a language that already exists on the target machine. Since the
SIMPL-T compiler is written in SIMPL-T, a bootstrap is required in order to
transport the compiler.
 Two procedures for bootstrapping SIMPL-T on to a new machine are illus-
trated in Figures 1 and 2. The notation

22 Victor R. Basili and Albert J. Turner

denotes program P coded in language L and

denotes program P, in language L, executing on machine M (so that L would be
machine language for M). (L, M) denotes a language L compiler for machine M,
and ML(M) denotes machine language for machine M. Thus the objective of a
bootstrap of SIMPL-T to a new machine N is to obtain

Finally, T(L1, L2) denotes a translator from language L1 to language L2, and

indicates that A is input to processor B and the output is C. It is worth noting that
the code generation module of

represents the major effort required to transport the SIMPL-T compiler to a new
machine N.
 One method of bootstrapping that could be used for SIMPL-T is to compile the
new compiler for machine N using the existing SIMPL-T compiler on machine M
and then transport the object code to the new machine. This procedure, illustrated
in Figure 1, has the advantage that no intermediate language is involved, and it is
possibly the best procedure to use if a system that supports an existing SIMPL-T
compiler is conveniently available. As an alternative to using an existing SIMPL-
T compiler for the bootstrap, and as a means of bootstrapping SIMPL-T on to our
1108 initially, it was decided to write a transportable bootstrap compiler. This re-
quired that the bootstrap compiler be written in a transportable language and that
the compiler produce transportable output.

A Transportable Extendable Compiler 23

Figure 1. Bootstrapping a SIMPL compiler on to a machine N using an
existing implementation on machine M

 Of the languages available only FORTRAN and SNOBOL satisfied the main
requirements of portability and availability. SNOBOL was preferred because of its
recursion and string handling facilities, but the lack of compiler versions of
SNOBOL is a disadvantage for several reasons.19 SNOBOL interpreters are usu-
ally large and slow and are not designed for easily debugging large modular pro-
grams.
 On the other hand, FORTRAN provides convenient facilities for working with
separately compiled modules, but it is undesirable for writing portable string ma-
nipulation programs. It was thus desired to find a solution that would provide the
ease of programming a translator in SNOBOL and the ease of working with pro-
grams written in FORTRAN.
 The solution obtained was to write a translator in SNOBOL4 that translates a
SIMPL-T program into ANSI FORTRAN IV. This would yield a bootstrap proce-
dure that would enable SIMPL-T programs to be run on a machine that has no
SIMPL-T compiler, provided the machine has SNOBOL4 and FORTRAN IV
available. The SNOJBOL bootstrap translator would be used to convert a SIMPL-
T program into a FORTRAN program, and the FORTRAN program could then be
compiled and executed. This procedure is illustrated in Figure 2.
 To facilitate the use of the bootstrap, string handling and I/O packages (written
in FORTRAN) are included. Thus the only effort required to transport the boot-
strap (in addition to the effort required for the compiler) is to write a few machine-
dependent subroutines, such as bit manipulation and system interface subroutines.
This practically negligible effort yields the desired bootstrap package for a new
machine.

24 Victor R. Basili and Albert J. Turner

Figure 2. Bootstrapping a SIMPL compiler on to machine N using the
SNOBOL translator. Machines N' and N" would normally (but need
not) be the same as machine N. Note that if N" = N, the last step is still
needed to produce a more efficient compiler. Note also that Steps 1 and
2 would be combined if a SNOBOL interpreter (instead of a compiler)
were used

 It should be noted that the SNOBOL translator produces transportable
FORTRAN code through such devices as allocating strings one character per
word. Essentially all of the features of SIMPL-T are supported by the translator,
including recursion; call by value and reference, and externals.

A Transportable Extendable Compiler 25

 Some variation on the bootstrap procedure using the SNOBOL translator may
be desirable if SNOBOL, FORTRAN or both are not available on the target ma-
chine. Either the translation of a SIMPL-T program into FORTRAN, or the com-
pilation and execution of the resulting FORTRAN program (or both) could be
done on another machine. (This might be the case, for example, in bootstrapping
to a small machine for which SNOBOL is not available.) Thus, the bootstrap
process is rather flexible due to the portability of the SNOBOL translator and of
the FORTRAN programs that it produces.

Results and Comments

The bootstrap procedure described here was used initially to bootstrap the type
less language SIMPL-X on to the UNIVAC 1108 at the University of Maryland
Computer Science Center. This bootstrap was facilitated by the fact that the vari-
ables of SIMPL-X translated directly into FORTRAN integer variables.
 A code generator for the PDP-11 has also been written in order to implement
the systems programming language SIMPL-XI mentioned earlier. This code gen-
erator was interfaced with the existing scanner and parser with no problems.
SIMPL-XI, which also required some extensions to the compiler, is being run as a
cross-compiler on the 1108 for the PDP-11.
 The SIMPL-T compiler was bootstrapped from SIMPL-X and has been ex-
tended to yield a compiler for SIMPL-R, a language that has reels. The SIMPL-R
implementation10 was a six-week effort by a programmer who was not familiar
with either the SIMPL-T compiler or the 1108 computer and operating system.
 Currently, efforts are under way to bootstrap SIMPL-T on to the IBM 360/370
machines. The SNOBOL-FORTRAN bootstrap for SIMPL-T was recently com-
pleted and has been used to run the scan and parse passes of the compiler on a
360.
 While the bootstrap procedure has been successful in general, there have been
some problems. No compiler version of SNOBOL was available for the 1108, and
the available interpreter versions proved to be inadequate and required local modi-
fication. SPITBOL on the 360 has been a vast improvement and would have more
than adequately solved this problem had a working version been available for the
1108.
 The other problems were primarily due to the inadequacies and restrictions of
FORTRAN. Again, if SPITBOL were generally available, most of these problems
could have been eliminated by translating SIMPL-T into SNOBOL (SPITBOL).
This would have made available such features as recursion and string data, thereby
facilitating the translation.
 Although these problems were foreseen, they were underestimated. The large
amount of time and memory required for the SNOBOL programs and the size of
the FORTRAN programs generated (about 90K words for the scanner and parser
on the 1108) made the development of the bootstrap an expensive and time-

26 Victor R. Basili and Albert J. Turner

consuming process. Furthermore, these requirements make the bootstrap proce-
dure impractical (if not impossible) for small machines.
 Yet these were the only languages available for which there was reasonable
expectation of producing portable programs. This is a rather sad commentary on
the availability of reasonable general-purpose languages and compilers, and indi-
cates a need for widespread implementation of languages and compilers such as
SIMPL-T and its compiler.
 On the basis of our experience, we believe that this approach to bootstrapping a
language on to a variety of machines would be quite satisfactory if a suitable lan-
guage were already available on the target machines. Even with the drawbacks
mentioned, we know of no alternative that would provide an easier means of per-
forming a stand-alone bootstrap.

Acknowledgements

The bootstrap for SIMPL-X was written by Mike Kamrad, and the bootstrap for
SIMPL-T was written by Bruce Carmichael. The system routines for the UNIVAC
1108 compilers were written by Hans Breitenlohner. C. Wrandle Barth at Goddard
Space Flight Center and Robert Knight at Princeton University are bootstrapping
SIMPL-T to a 360.

References

[1] V. R. Basili and A. J. Turner, SIMPL-T: A Structured Programming Language, CN-
14, University of Maryland Computer Science Center, 1974.

[2] M. Halstead, Machine-independent Computer Programming, Spartan Books; Rochelle
Park, New Jersey, 1962.

[3] W. M. McKeeman, J. J. Horning and D. B. Wortman, A Compiler Generator,
Prentice-Hall, Englewood Cliffs, New Jersey, 1970.

[4] G. Leach and H. Golde, 'Bootstrapping XPL to an XDS sigma 5 computer', Soft-
ware— Practice and Experience, 3, No. 3, 235-244 (1973).

[5] M. Richards, 'BCPL: a tool for compiler writing and system programming', AFIPS
Proceedings, 34, 557-566 (SJCC 1969).

[6] V. R. Basili, The SIMPL Family of Programming Languages and Compilers, TR-
305, University of Maryland Computer Science Center, 1974.

[7] W. M. Waite, 'Guest editorial', Software— Practice and Experience, 3, No. 3, 195-196
(1973).

[8] R. S. Scowen, 'Babel and SOAP, applications of extensible compilers', Software—
Practice and Experience, 3, No. 1, 15-27 (1973).

[9] V. R. Basili, SIMPLEX, A Language for Writing Structured Programs, TR-223,
University of Maryland Computer Science Center, 1973.

[10] J. McHugh and V. R. Basili, SIMPL-R and Its Application to Large Sparse Matrix
Problems, TR-310, University of Maryland Computer Science Center, 1974.

A Transportable Extendable Compiler 27

[11] R. G. Hamlet and M. V. Zelkowitz, 'SIMPL systems programming on a minicom-
puter', Micros and Minis Applications and Design, Proc. of 9th Annual IEEE
COMPCON, 203-206, 1974.

[12] W. C. Rheinboldt, V. R. Basili and C. K; Mesztenyi, 'On a programming lan-
guage for graph algorithms', BIT, 12, No. 2, 220-241 (1972).

[13] F. L. De Remer, 'Simple LR(k) grammars', Comm. ACM, 14, No, 7, 453-460
(1971).

[14] R. W. Floyd, 'Syntactic analysis and operator precedence', JnlACM, 10, No. 3,
316-333 (1963).

[15] M. S. Hecht and J. D. Ullman, 'Analysis of a simple algorithm for global flow
problems', ACM Symposium on Principles of Programming Languages, 1973

[16] G. A. Kildall, 'A unified approach to global problem optimization', ACM Symposium
on Principles of Programming Languages, 1973.

[17] J. A. Verson and R, E. Noonan, A High-level Macro Processor, TR-297, University
of Maryland Computer Science Center, 1974.

[18] D. Gries, Compiler Construction for Digital Computers, Wiley, New York, 1971.

[19] R. Dunn, 'SNOBOL4 as a language for bootstrapping a compiler', SIGPLAN
Notices, 8, No. 5, 28-32 (1973).

Iterative Enhancement:

A Practical Technique for Software Development

Victor R. Basili and Albert J. Turner

Abstract. This paper recommends the "iterative enhancement" technique
as a practical means of using a top-down, stepwise refinement approach to
software development. This technique begins with a simple initial imple-
mentation of a properly chosen (skeletal) subproject which is followed by
the gradual enhancement of successive implementations in order to build
the full implementation. The development and quantitative analysis of a
production compiler for the language SIMPL-T is used to demonstrate that
the application of iterative enhancement to software development is practi-
cal and efficient, encourages the generation of an easily modifiable product,
and facilitates reliability.

Key Words: Iterative enhancement, SIMPL, software analysis, software devel-
opment, software evaluation measures, top-down design.

1. Introduction

Several techniques have been suggested as aids for producing reliable software
that can be easily updated to meet changing needs [l]-[4]. These include the use of
a top-down modular design, a careful design before coding, modular, well-
structured components, and a minimal number of implementers. Although it is
generally agreed that the basic guideline is the use of a top-down modular ap-
proach using "stepwise refinement" [5], this technique is often not easy to apply in
practice when the project is of reasonable size. Building a system using a well-
modularized, top-down approach requires that the problem and its solution be well
understood. Even if the implementers have previously undertaken a similar pro-
ject, it is still difficult to achieve a good design for a new system on the first try.

Manuscript received August 5, 1975. This work was supported in part by the Office of Na-
val Research under Grant N00014-67-A-0239-0021 (NR-044-431) to the Computer Science
Center of the University of Maryland, and in part by the Computer Science Center of the
University of Maryland.
V. R. Basili is with the Department of Computer Science, University of Maryland, College
Park, Md. 20742.
A. J. Turner is with the Department of Mathematical Sciences, Clemson University, Clem-
son, S. C.

 Iterative Enhancement 29

Furthermore, design flaws often do not show up until the implementation is well
underway so that correcting the problems can require major effort.
 One practical approach to this problem is to start with a simple initial imple-
mentation of a subset of the problem and iteratively enhance existing versions un-
til the full system is implemented. At each step of the process, not only extensions
but also design modifications can be made. In fact, each step can make use of
stepwise refinement in a more effective way as the system becomes better under-
stood through the iterative process. As these iterations converge to the full solu-
tion, fewer and fewer modifications need be made. "Iterative enhancement" repre-
sents a practical means of applying stepwise refinement.
 This paper discusses the heuristic iterative enhancement algorithm and its ap-
plication to the implementation of a fully instrumented production compiler for
the programming language SIMPL-T [6]. The SIMPL-T project represents a suc-
cessful practical experience in using the approach in conjunction with several of
the standard informal techniques to develop a highly reliable and easily modifiable
product in a relatively short amount of time.
 The next section of this paper contains a discussion of the basic iterative en-
hancement method, independent of a specific application. The following section
discusses the application of the method as used in the development of the compiler
for SIMPL-T, and includes some initial results from a quantitative analysis of the
SIMPL-T project.

2. Overview of the method

The first step in the application of the iterative enhancement technique to a soft-
ware development project consists of a simple initial implementation of a skeletal
sub problem of the project. This skeletal implementation acts as an initial guess in
the process of developing a final implementation which meets the complete set of
project specifications. A project control list is created that contains all the tasks
that need to be performed in order to achieve the desired final implementation. At
any given point in the process, the project control list acts as a measure of the "dis-
tance" between the current and final implementations.
 In the remaining steps of the technique the current implementation is iteratively
enhanced until the final implementation is achieved. Each iterative step consists of
selecting and removing the next task from the list, designing the implementation
for the selected task (the design phase), coding and debugging the implementation
of the task (the implementation phase), performing an analysis of the existing par-
tial implementation developed at this step of the iteration (the analysis phase), and
updating the project control list as a result of this analysis. The process is iterated
until the project control list is empty, i.e., until a final implementation is devel-
oped that meets the project specifications.
 Although the details of the algorithm vary with the particular problem class and
implementation environment, a set of guidelines can be given to further specify the
various steps in the process. The development of the first step, the skeletal initial im-

 Victor R. Basili and Albert J. Turner 30

plementation, may be achieved by defining the implementation of a skeletal, subset
of the problem. A skeletal subset is one that contains a good sampling of the key as-
pects of the problem, that is simple enough to understand and implement easily, and
whose implementation would make a usable and useful product available to the user.
This subset should be devoid of special case analysis and should impose whatever
restrictions might be necessary to facilitate its implementation without seriously af-
fecting its usability. The implementation itself should be simple and straightforward in
overall design and straightforward and modular at lower levels of design and coding
so that it can be modified easily in the iterations leading to the final implementation.
 The project control list guides the iterative process by keeping track of all the
work that needs to be done in order to achieve the final implementation. The tasks
on the list include the redesign or receding of components in which flaws have
been discovered, the design and implementation of features and facilities that are
missing from the current implementation, and the solution of unsolved problems.
The sequence of lists corresponding to the sequence of partial implementations is
a valuable component of the historical documentation of the project.
 Each entry in the project control list is a task to be performed in one step of the
iterative process. It is important that each task be conceptually simple enough to
be completely understood in order to minimize the chance of error in the design
and implementation phases of the process.
 A major component of the iterative process is the analysis phase that is per-
formed on each successive implementation. The project control list is constantly
being revised as a result of this analysis. This is how redesign and receding work
their way into the control list. Specific topics for analysis include such items as the
structure, modularity, modifiability, usability, reliability and efficiency of the cur-
rent implementation as well as an assessment of the achievement of the goals of
the project. One approach to a careful analysis is the use of an appropriate set of
guidelines as follows.
1) Any difficulty in design, coding, or debugging a modification should signal the

need for redesign or receding of existing components.
2) Modifications should fit easily into isolated and easy-to-find modules. If not,

then some redesign is needed.
3) Modifications to tables should be especially easy to make. If any table modifi-

cation is not quickly and easily done, then a redesign is indicated.
4) Modifications should become easier to make as the iterations progress. If not,

then there is a basic problem such as a design flow or a proliferation of
"patches."

5) "Patches" should normally be allowed to exist for only one or two iterations.
Patches should be allowed, however, in order to avoid redesigning during an
implementation phase.

6) The existing implementation should be analyzed frequently to determine how
well it measures up to the project goals.

7) Program analysis facilities should be used whenever available to aid in the
analysis of the partial implementations.

8) User reaction should always be solicited and analyzed for indications of defi-
ciencies in the existing implementation.

 Iterative Enhancement 31

 Certain aspects of the iteration process are dependent on the local environment
in which the work is being performed, rather than on the specific project. Al-
though the techniques used in the design and implementation phases of each itera-
tion step should basically be top-down step-wise refinement techniques, the spe-
cifics can vary depending on such factors as installation standards and the number
of people involved. Much has been written elsewhere about such techniques, and
they will not be discussed further here. The procedures used in the analysis phase
for each partial implementation are dependent upon such local factors as the pro-
gram analysis facilities available, the programming languages used, and the avail-
ability of user feedback. Thus, to some extent the efficient use of the iterative en-
hancement technique must be tailored to the implementation environment.
 In summary, iterative enhancement is a heuristic algorithm that begins with the
implementation of a sub-problem and proceeds with the iterative modification of
existing implementations based on a set of informal guidelines in order to achieve
the desired full implementation. Variants of this technique have undoubtedly been
used in many applications. However, iterative enhancement is different from the
iterative techniques often discussed in the literature, in which the entire problem is
initially implemented and the existing implementations are iteratively refined or
reorganized [2] to achieve a good final design and implementation.

3. Application of the method to compiler development

Compiler development falls into a class of problems that can be called input di-

rected. Such problems have well-defined inputs that determine the processing to
be performed. The application of the iterative enhancement method to compiler
development will be discussed in this section. In order to be more specific, it is as-
sumed that the syntax of the language L to be compiled is defined by a context
free grammar G.
Since a compiler is input directed, the skeletal compiler to be initially imple-
mented can be specified by choosing a skeletal language, Lo, for L. The language
Lo may be slightly modified sublanguage of L with a grammar Go that is essen-
tially a sub grammar of G.
 In choosing Lo, a small number of features of L are chosen, as a basis. For ex-
ample, this basis might include one data type, three or four statement types, one
parameter mechanism, a few operators, and other features needed to give Lo the
overall general flavor of L. The language derived from this basis can then be
modified for ease of implementation and improved usability to obtain Lo.
 The remainder of this section describes the use of iterative enhancement in an
actual compiler implementation.

 Victor R. Basili and Albert J. Turner 32

3.1 A Case Study: the SIMPL-T Project

The iterative enhancement method was used at the University of Maryland in the
implementation of a compiler for the procedure-oriented algorithmic language
SIMPL-T [6] on a Univac 1108. The SIMPL-T project is discussed in this sec-
tion, beginning with a brief illustration of the scope of the project.
 Overview: SIMPL-T is designed to be the base language for a family of pro-
gramming languages [7]. Some of its features are as follows.
1) A program consists of a set of separately compiled modules.
2) Each module consists of a set of global variables and a set of procedures

and functions.
3) The statement types are assignment, if-then-else, while, case, call, exit, and

return.
4) The data types are integer, character, and character string.
5) There are extensive sets of operators and intrinsics for data manipulation.
6) There is a one-dimensional array of any data type.
7) Procedures and functions may optionally be recursive.
8) Scalar arguments may be passed by reference or by value; arrays are

passed by reference.
9) Procedures and functions may not have internal procedures or func-

tions; neither procedures nor functions may be passed as parameters.
10) There is no block structure (but there are compound statements).
11) Procedures, functions, and data may be shared by separately compiled mod-

ules.
 Characterizing the overall design of the language, its syntax and semantics are
relatively conservative, consistent and uncluttered. There are a minimal number of
language constructs, and they are all rather basic. A stack is adequate for the run-
time environment. These design features contributed to a reasonably well-defined
language design which permitted the development of a reasonably well-
understood compiler design.
 The following are characteristics and facilities of the SIMPL-T compiler:
1) It is programmed in SIMPL-T and is designed to be transportable by rewrit-

ing the code generation modules [8].
2) It generates very good object code on the 1108. (In the only extensive test

[9], the code produced was better than that generated by the Univac optimiz-
ing Fortran compiler.)

3) Good diagnostics are provided at both compile and runtimes.
4) An attribute and cross-reference listing is available.
5) There are traces available for line numbers, calls and returns, and variable

values.
6) Subscript and case range checking are available.
7) There are facilities for obtaining statistics both at compile time and after a

program execution.
8) Execution timing for procedures, functions, and separately compiled mod-

ules is available.

 Iterative Enhancement 33

 In summary, the compiler is a production compiler that generates efficient ob-
ject code, provides good diagnostics, and has a variety of testing, debugging, and
program analysis facilities. The compiler itself consists of about 6400 SIMPL-T
statements, and the library consists of about 3500 (assembly language) instruc-
tions. (The statement count does not include declarations, comments, or spacing.
The compiler consists of 17 000 lines of code.)
 The Initial Implementation: The skeletal language implemented initially in the
SIMPL-T project was essentially the language SIMPL-X [10]. Some of the restric-
tions (with respect to SIMPL-T) imposed for the initial implementation were:
1) There was only one data type (integer).
2) Only call by value was allowed for scalar parameters.
3) All procedures and functions were recursive.
4) Only the first 12 characters of an identifier name were used.
5) Case numbers were restricted to the range 0-99.
6) Both operands of a logical operator (•AND•,•OR•) were always evaluated.
 Since the compiler was to be self-compiling, some character handling facility
was needed. This was provided by an extension that allowed character data to be
packed in an integer variable just as in Fortran.
 Restrictions were also made on compiler facilities for the initial implementa-
tion. Only a source listing and reasonable diagnostics were provided, leaving the
debugging and analysis facilities for later enhancements.
 The design of the initial skeletal implementation was a rather straightforward
attempt to provide a basis for future enhancements. This allowed the initial im-
plementation to be completed rather quickly so that the enhancement process
could get underway. It is instructive to note that while most of the higher level de-
sign of the compiler proved to be valid throughout the implementation, most of the
lower level design and code was redone during the enhancement process. This il-
lustrates the difficulty in doing a good complete project design initially, especially
in light of the fact that the initial implementation was an honest attempt to achieve
a good basis upon which to build later extensions.
 The importance of using a simple approach in the initial implementation was il-
lustrated by the experience with the initial SIMPL-X code generation module. Al-
though it was not intended to generate really good code, far too much effort was
expended in an attempt to generate moderately good code. As a result, most of the
initial debugging effort was spent on the code generator (which was later almost
completely rewritten anyhow). A simple straightforward approach would have al-
lowed the project to get underway much faster and with much less effort.
 A final comment on the skeletal implementation is that it is clear in retrospect
that had the compiler not been self-compiling it would have been better to use an
even more restricted subset of SIMPL-T. This was not considered at the time be-
cause programming the compiler in the initial subset would have been more diffi-
cult.
 The design and implementation phases of each iteration were performed using
a basic top-down approach. Every attempt was made to ensure a high level of clar-
ity and logical construction.

 Victor R. Basili and Albert J. Turner 34

 It is worth noting that the SIMPL-T language itself was also being iteratively
enhanced in parallel with the compiler development. As experience was gained by
using the language to program the compiler, new features were added and old fea-
tures were modified on the basis of this experience. Thus user experience played a
major role not only in the implementation of the software project (i.e., the com-
piler) but also in the specification of the project (i.e., the language design).
 The Analysis Phase: The analysis performed at the end of each iterative step
was basically centered around the guidelines given above in the overview of the
method. Some of the specific techniques used are briefly discussed below.
 Since the intermediate compilers were mostly self-compiling, a large amount of
user experience was available from the project itself. This user experience together
with the valuable test case provided by the compiler for itself represent two of the
advantages of self-compilers.
 A second source of user experience in the SIMPL-T project was derived from
student use in the classroom. Since classroom projects are not generally ongoing,
there was normally no inconvenience to students in releasing the intermediate ver-
sions of the compiler as they were completed. These two sources of user experi-
ence are examples of how the details of applying iterative enhancement can be tai-
lored to the resources available in the implementation environment.
 Testing the intermediate compilers was done by the usual method of using test
data. Again the self-compiling feature of the compiler was valuable since the
compiler was often its own best test program. The bug farm and bug contest tech-
niques [11] were also used and some of the results are given below.
 Timing analyses of the compiler were first done using the University of Mary-
land Program Instrumentation Package (PIP). PIP provides timing information
based on a partition of core and is thus more suitable for assembly language pro-
grams than for programs written in higher level languages. However the informa-
tion obtained from PIP was of some value in locating bottlenecks, especially in the
library routines.
 When the timing and statistics facilities for object programs were added to the
compiler, new tools for analysis of the compiler itself became available. The tim-
ing facility has been used to improve the execution speed through the elimination
of bottlenecks, and the statistics facilities have been used to obtain information
such as the frequency of hashing collisions. Future plans call for further use of the
timing information to help improve compiler performance. The statistical facilities
were also used to obtain the quantitative analysis discussed at the end of this sec-
tion.
 Project Summary: The SIMPL-T project was completed during a 16 calendar
month period. Since other activities took place in parallel with the implementation
effort, it is difficult to accurately estimate the total effort, but a fairly accurate ef-
fort for the language and compiler design, implementation, and maintenance (ex-
cluding the bootstrap and library implementations) is 10 man-months. Counting
only the code in the final compiler, this time requirement represents an average
output of almost 30 statements (75 lines) of debugged code per man-day. It is felt
that the use of iterative enhancement was a major contributing factor in this
achievement.

 Iterative Enhancement 35

 Experience has thus far indicated that the compiler is reasonably easy to mod-
ify. Two fairly large modifications have been made by people not previously par-
ticipating in the compiler implementation. One of these efforts involved the addi-
tion of a macro facility and in the other, single and double precision reels were
added [9]. Both efforts were accomplished relatively easily even though there was
little documentation other than the compiler source listing.
 Finally, the reliability of the compiler has been quite satisfactory. During the
two and one-half month duration of the bug contest a total of 18 bugs were found,
many of which were quite minor. (All bugs regardless of severity were counted.)
Of course, several additional bugs had been found before the contest and some
have been found since, but overall their number has been small. As could be pre-
dicted, most of the bugs occurred in the least well understood components: error
recovery and code generation.
 Project Analysis: In an attempt to justify that the heuristic iterative enhance-
ment algorithm gives quantitative results, an extensive analysis of four of the in-
termediate compilers plus the final compiler was performed. As of this writing
(June 1975) the analysis is only in the early stages, but some of the preliminary
statistics computed are given in Table I. The interpretation of some of these statis-
tics has not been completed, but they have been included as a matter of interest.
 The compilers referenced in Table I are
1) One of the early SIMPL-X compilers (SIMPL-X 2.0).
2) The SIMPL-X compiler after a major revision to correct some structural de-

fects (SIMPL-X 3.1).
3) The first SIMPL-T compiler, written in SIMPL-X (SIMPL-X 4.0).
4) Compiler (3), rewritten in SIMPL-T (SIMPL-T 1.0).
5) The current SIMPL-T compiler at the time of the analysis (SIMPL-T 1.6).
 The statistics were computed by using the existing statistical facilities of the
SIMPL-T compiler, and by adding some new facilities.
 An explanation of the statistics given is as follows.
1) Statements are counted as defined by the syntax. A compound statement

such as a WHILE statement counts as one statement plus one for each statement
in its statement list.

2) A separately compiled module is a collection of globals, procedures, and
functions that is compiled independently of other separately compiled modules
and combined with the other modules for execution.

3) A token is a syntactic entity such as a keyword, identifier, or operator.
4) Globals were only counted if they were ever modified. That is, named constants

and constant tables were not counted.
5) A data binding occurs when a procedure or function P modifies a global X and

procedure or function Q accesses (uses the value of) X. This causes a binding
(P,X,Q). It is also possible to have the (different) binding (Q,X,P); however
(P,X,P) is not counted. The counting procedure was modified so that if P and
Q execute only in separate passes and the execution of P precedes that of Q, then
(P,X,Q) is counted but (Q,X,P) is not counted.

 Victor R. Basili and Albert J. Turner 36

 The reasons for choosing these statistics were based on intuition and a desire to
investigate quantitatively the data and control structure characteristics of the se-
quence of compilers.
 It is interesting to note that the statistics indicate a trend towards improvement
in the compiler with respect to many generally accepted theories of good pro-
gramming principles, even though the redesign and receding efforts that caused
this trend were done only on the basis of the informal guidelines of the iterative
enhancement algorithm. As the project progressed, the trend was toward more
procedures and functions with fewer statements, more independently compiled
segments, less nesting of statements, and a decrease in the use of global variables.
These improvements occurred even though the changes were being made primar-
ily to correct difficulties that were encountered in incorporating modifications dur-
ing the iterative enhancement process.
 The meaning of many of the trends indicated in Table I is clear. For example,
due to the difficulties encountered in working with larger units of code, the num-
ber of procedures and functions and the number of separately compiled modules
increased much more than did the number of statements. Similarly, the decrease in
nesting level corresponds to the increase in the number of procedures and func-
tions.
 One of the harder to explain sequences of statistics is the average number of
tokens per statement. The probable cause for the large jump between compilers 1)
and 2) is the relaxation of several Fortran-like restrictions imposed for the initial
bootstrap. The more interesting jump between compilers 3), written in SIMPL-X,
and 4), written in SIMPL-T, seems to suggest that writing in a more powerful lan-
guage (SIMPL-T) may also affect the writing style used by a programmer. That is,
with more powerful operators more operators are used per statement.
 The statistics for globals, locals, and parameters indicate a clear trend away
from the use of globals and toward increased usage of locals and parameters. The
large drop in the number of globals accessible to the average procedure or func-
tion between compilers 3) and 4) and compilers 4) and 5) corresponds to the in-
crease in the number of separately compiled modules for 4) and 5). Splitting one
separately compiled module into several modules decreases the number of acces-
sible globals because the globals are also divided among the modules and are usu-
ally not made accessible between modules.
 The notion of data binding is more complex than the notions considered above
and the data binding statistics require more effort to interpret. Note, for example,
that if the number of procedures and functions doubles, then the data binding
count would most likely more than double due to the interactions between the new
and old procedures and functions. Similarly, splitting a separately compiled mod-
ule into several modules would tend to decrease the number of possible bindings
due to the decrease in the number of accessible globals.
 In light of these considerations, the data binding counts in Table I seem reason-
able except for the decrease in actual bindings from compiler 4) to compiler 5). A
more detailed investigation of this decrease revealed that it was primarily due to
the elimination of the improper usage of a set of global variables in the code gen-
eration component of the compiler. The sharing of these variables by two logically

 Iterative Enhancement 37

independent sets of procedure had caused several problems in modifying the code
generator, and the data accessing was restructured in an attempt to eliminate these
problems.
 Finally, the percentage of possible data bindings that actually occurred can be
interpreted as an indication of how much variables that are declared globally are
really used as globals. (If every procedure and function both modified and ac-
cessed all its accessible globals, then the percentage would be 100.) As with the
other measures, ideal values (in an absolute sense) are not clear, but the trend to-
ward higher values that is shown in Table I is the desired result.

4. Conclusion

Two major goals for the development of a software product are that it be reasona-
bly modifiable and reliable.
 This paper recommends the iterative enhancement technique as a methodology
for software development that for many projects facilitates the achievement of
these goals and provides a practical means of using a top-down step-wise refine-
ment approach.
The technique involves the development of a software product through a sequence
of successive design and implementation steps, beginning with an initial "guess"
design and implementation of a skeletal sub problem. Each step of the iterative
process consists of either a simple, well-understood extension, or a design or im-
plementation modification motivated by a better understanding of the problem ob-
tained through the development process.
 It is difficult to make a nonsubjective qualitative judgment about the success of
a software technique. However the preliminary statistics from an analysis of the
SIMPL-T project do indicate some desirable quantitative results. These statistics
suggest that the informal guidelines of the heuristic iterative enhancement algo-
rithm encourage the development of a software product that satisfies a number of
generally accepted evaluation criteria.
 The measure of accomplishment for the SIMPL-T project was based upon rela-
tive improvement with respect to a set of measures. A question remains as to what
are absolute measures that indicate acceptable algorithm termination criteria. More
work on several different projects and studies of the implications of these meas-
ures are needed to help determine some quantitative characteristics of good soft-
ware.
 A need also exists for developing a formal basis for software evaluation meas-
ures. An analytical basis for evaluation would not only increase the understanding
of the meaning of the measures but should also shed some light on appropriate ab-
solute values that indicate the achievement of good characteristics.

 Victor R. Basili and Albert J. Turner 38

 The implementation and analysis of the SIMPL-T system have demonstrated
that not only is the iterative enhancement technique an effective means of apply-
ing a modular, top-down approach to software implementation, but it is also a
practical and efficient approach as witnessed by the time and effort figures for the
project. The development of a final product which is easily modified is a by-
product of the iterative way in which the product is developed. This can be par-
tially substantiated by the ease with which present extensions and modifications
can be made to the system. A reliable product is facilitated since understanding of
the overall system and its components is aided by the iterative process in which
the design and code are examined and reevaluated as enhancements are made.

References

[1] H,D. Mills, “On the development of large, reliable programs," Rec. 1973 IEEE Symp.

Comp. Software Reliability, Apr. 1973, pp. 155-159
[2] ——, "Techniques for the specification and design of complex programs," in Proc. 3rd

Texas Conf. Computing Systems, Univ. Texas, Austin, Nov. 1974, pp. 8.1.1-8.1.4.

 Iterative Enhancement 39

[3] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming. London: Aca-
demic, 1972.

[4] D. L. Parnas, "On the criteria to be used in decomposing systems into modules," Com-

mun. Ass. Comput. Mach., vol. 15, pp. 1053-1062, Dec. 1972.
[5] N. Wirth, "Program development by stepwise refinement, Commun. Ass. Comput.

Mach., vol. 14. pp. 221-227, Apr. 1971.
[6] V. R. Basili and A. J. Turner, "SIMPL-T: a structured programming language," Univ. of

Maryland, Comp. Sci. Ctr., CN-14, Jan. 1974.
[7] V. R. Basili, "The SIMPL family of programming languages and compilers," Univ. of

Maryland, Comp. Sci. Ctr., TR-305, June 1974.
[8] V. R. Basili and A. J. Turner, "A transportable extendable compiler," in Software—

Practice and Experience, vol. 5, 1975, pp. 269-278.
[9] J. McHugh and V. R. Basili, "SIMPL-R and its application to large, sparse matrix prob-

lems," Univ. of Maryland, Comp. Sci. Ctr., TR-310, July 1974.
[10] V. R. Basili, "SIMPL-X, a language for writing structured programs," Univ. Maryland,

Comp. Sci. Ctr., TR-223, Jan. 1973.
[11] M. Rain, "Two unusual methods for debugging system software," in Software—

Practice and Experience, vol. 3, pp. 61-63, 1973.

Understanding and Documenting Programs

Victor R. Basili and Harlan D. Mills

Abstract. This paper reports on an experiment in trying to understand an
unfamiliar program of some complexity and to record the authors' under-
standing of it. The goal was to simulate a practicing programmer in a pro-
gram maintenance environment using the techniques of program design
adapted to program understanding and documentation; that is, given a pro-
gram, a specification and correctness proof were developed for the program.
The approach points out the value of correctness proof ideas in guiding the
discovery process. Toward this end, a variety of techniques were used: di-
rect cognition for smaller parts, discovering and verifying loop invariants
for larger program parts, and functions determined by additional analysis
for larger program parts. An indeterminate bounded variable was introduced
into the program documentation to summarize the effect of several program
variables and simplify the proof of correctness.

Key Words: Program analysis, program correctness, program documentation,
proof techniques, software maintenance.

I. Introduction

Understanding Programs

We report here on an experiment in trying to understand an unfamiliar program of
some complexity and to record our understanding of it. We are as much concerned
with recording our understanding as with understanding. Every day programmers
are figuring out what existing programs do more or less accurately. But most of
this effort is lost, and repeated over and over, because of the difficulty of capturing

Manuscript received June 10, 1980; revised September 3, 1981 and November 6, 1981.
This work was supported in part by the U.S. Air Force Office of Scientific Research under
Grant AFOSR-77-3181B.
V. R. Basili is with the Department of Computer Science, University of Maryland, College
Park, MD 20742.
H. D. Mills is with the Department of Computer Science, University of Maryland, College
Park, MD 20742 and the Federal Systems Division, IBM Corporation, Bethesda, MD
20034.

 Understanding and Documenting Programs 41

this understanding on paper. We want to demonstrate that the very techniques of
good program design can be adapted to problems of recording hard-won under-
standings about existing programs.
 In program design we advocate the joint development of design and correctness
proof, as shown in [2], [4], [6], rather than a posteriori proof development. Never-
theless, we believe that the idea of program correctness provides a comprehensive
a posteriori strategy for developing and recording an understanding of an existing
program. In fact, we advocate another kind of joint development, this time, of
specification and correctness proof. In this way, we have a consistent approach
dealing always with three objects, namely, 1) a specification, 2) a program, and 3)
a correctness proof. In writing a program, we are given 1) and develop 2) and 3)
jointly; in reading a program, we are given 2) and develop 1) and 3) jointly. In ei-
ther case, we end up with the same harmonious arrangement of 1) and 2) con-
nected by 3) which contain our understanding of the program.
 In the experiment at hand, our final understanding exceeded our most optimis-
tic initial expectations, even though we have seen these ideas succeed before. One
new insight from this experiment was how little we really had to know about the
program to develop a complete understanding and proof of what it does (in con-
trast to how it does it). Without the correctness proof ideas to guide us, we simply
would not have discovered how little we had to know. In fact, we know a great
deal more than we have recorded here about how the program works, which we
chalk up to the usual dead ends of a difficult discovery process. But the point is,
without the focus of a correctness proof, we would still be trying to understand
and record a much larger set of logical facts about the program than is necessary
to understand precisely what it does.
 In retrospect, we used a variety of discovery techniques. For simpler parts of
the program, we used direct cognition. In small complex looping parts, we discov-
ered and verified loop invariants. In the large, we organized the effect of major
program parts as functions to be determined by additional analysis. We also dis-
covered a new way to express the effect of a complex program part by introducing
a bounded indeterminate variable which radically simplified the proof of correct-
ness of the program part.

The Program

We were interested in a short but complex program. Our goal was to simulate a
practicing programmer in a program maintenance environment. The program was
chosen by Prof. J. Vandergraft of the University of Maryland as a difficult pro-
gram to understand. It was a Fortran program called ZEROIN which claimed to
find a zero of a function given by a Fortran subroutine. We were given the pro-
gram and told its general function. The problem then was to understand it, verify
its correctness, and possibly modify it, to make it more efficient or extend its ap-
plicability. We were not given any more about the program than the program it-
self. The program given to us is shown in Fig. 1, the original Fortran ZEROIN.

 Victor R. Basili and Harlan D. Mills 42

Fig. 1. Original Fortran ZEROIN.

 Prof. Vandergraft played the role of a user of the program and posed four
questions regarding the program.
1) I have a lot of equations, some of which might be linear. Should I test for

linearity and then solve the equation directly, or just call ZEROIN? That is,
how much work does ZEROIN do to find a root of a linear function?

2) What will happen if I call ZEROIN with F(AX) and F(BX) both positive?
How should the code be changed to test for this condition?

3) It is claimed that the inverse quadratic interpolation saves only 0.5 function
evaluations on the average. To get a shorter program, I would like to remove
the inverse quadratic interpolation part of the code. Can this be done easily?
How?

4) Will ZEROIN find a triple root?

 Understanding and Documenting Programs 43

II. Techniques for Understanding Programs

Flowcharts

Any flow chartable program can be analyzed in a way we describe next for better
understandability and documentation. For a fuller discussion, see [6]. We consider
flowcharts as directed graphs with nodes and lines. The lines denote flow of con-
trol and the nodes denote tests and operations on data. Without loss of generality,
we consider flowcharts with just three types of nodes, namely,

where f is any function mapping the data known to the program to new data, e.g.,
a simple Fortran assignment statement, and p is any predicate on the data known
to the program, e.g., a simple Fortran test. An entry line of a flowchart program is
a line adjacent to only one node, its head; an exit line is adjacent to only one node,
its tail.

Functions and Data Assignments

Any function mapping the data known to a program to new data can be defined in
a convenient way by generalized forms of data assignment statements. For exam-
ple, an assignment, denoted

x :=e (e.g., x := x + y)
where x is a variable known to the program and e is an expression in variables
known to the program, means that the value of e is assigned to x. Such an assign-
ment also means that no variable except x is to be altered. The concurrent assign-
ment, denoted

x1, x2, • • • , xn := e1, e2, • • • , en
means that expressions el, e2, •••, en are evaluated independently, and their values
assigned simultaneously to xl, x2, • • •, xn, respectively. As before, the absence of
a variable on the left side means that it is unchanged by the assignment. The con-
ditional assignment, denoted

(p1 A1|p2 A2| • • • |pn An)

 Victor R. Basili and Harlan D. Mills 44

where p1, p2, • • •, pn are predicates and A1, A2, • • •, An are assignments (sim-
ple, concurrent, or conditional) means that particular assignment Ai associated
with the first pi, if any, which evaluates true; otherwise, if no pi evaluates true,
then the conditional assignment is undefined.
 An expression in an assignment may contain a function value, e.g.,

x := max (x, abs(y))
where max and abs are functions. But the function defined by the assignment
statement is different, of course, from max or abs.
We note that many programming languages permit the possibility of so-called side
effects, which alter data not mentioned in assignment statements or in tests. Side
effects are specifically prohibited in our definition of assignments and tests.

Proper Programs

We define a proper program to be a program whose flowchart has exactly one en-
try line, one exit line, and, further, for every node a path from the entry through
that node to the exit. For example,

are proper programs, but

are not proper programs.

Program Functions

We define a program function of a proper program P, denoted [P], to be the func-
tion computed by all possible executions of P which start at its entry and terminate
at its exit. That is, a program function [P] is a set of ordered pairs, the first mem-
ber being a state of the data on entry to P and the second being the resulting state
on exit. Note that the state of data includes input and output files, which may be
read from or written to intermittently during execution. Also note that if a program
does not terminate by reaching its exit line from some initial data at its entry, say
by looping indefinitely or by aborting, no such pair will be determined and no
mention of this abnormal execution will be found in its program function.

 Understanding and Documenting Programs 45

 Proper programs are convenient units of documentation. Their program func-
tions abstract their entire effect on the data known to the program. Within a pro-
gram, any subprogram that is proper can be also abstracted by its program func-
tion, that is, the effect of the subprogram can be described by a single function
node whose function is the program function of the subprogram.
We say two programs are function equivalent if their program functions are iden-
tical. For example, the programs

have different flowcharts but are function equivalent.

Prime Programs

We define a prime program to be a proper program that contains no subprogram
that is proper, except for itself and function nodes. For example,

are primes, while

are not prime (composite programs), the first (of the composites) having subpro-
grams

Any composite program can be decomposed into a hierarchy of primes, a prime at
one level serving as a function node at the next higher level. For example, the
composite programs above can be decomposed as shown next:

In each case, a prime is identified to serve as a function node in another prime at
the next level. Note also that the first composite can also be decomposed as

 Victor R. Basili and Harlan D. Mills 46

so that the prime decomposition of proper programs is not necessarily unique.

Prime Programs in Text Form

There is a striking resemblance between prime programs and prime numbers, with
function nodes playing the role of unity, and subprograms the role of divisibility.
Just as for numbers, we can enumerate the control graphs of prime programs and
give a text description of small primes in PDL (Process Design Language) [6] as
follows:

 Flowchart PDL

 Larger primes will go unnamed here, although the case statement of Pascal is a
sample of a useful larger prime. All the primes above, except the last (dowhiledo),

 Understanding and Documenting Programs 47

are common to many programming languages. Prime programs in text form can be
displayed with standard indentation to make the subprogram structure and control
logic easily read, which we will illustrate for ZEROIN.

Fig.2. Flowchart of Fortran ZEROIN

III. Understanding ZEROIN

Our overall approach in understanding ZEROIN is carried out in the following
steps.

 Victor R. Basili and Harlan D. Mills 48

Fig. 3. Prime decomposition of Fortran ZEROIN

 Understanding and Documenting Programs 49

1) Perform a prime program decomposition which involves a restructuring of the
program into a set of simple constituents which are represented by the single
predicate prime programs discussed in the last section.

2) Develop a data reference table and analyze the data references from the
point of view of where variables have been set and referenced. This provides
insights into the inputs and outputs of the various prime program segments.

3) Perform a function decomposition of the program associating functions with
each of the prime program segments. In this way, step by step, the whole
program function can be determined by whatever correctness techniques are
available. In what follows, the authors have used axiomatic correctness tech-
niques, creating loop invariants along the way, and functional correctness
techniques.

The Prime Program Decomposition of ZEROIN

Our first step in understanding ZEROIN was to develop a prime program decom-
position of its flowchart. After a little experimentation, the flowchart for ZEROIN
was diagrammed as shown in Fig. 2. The numbers in the nodes of the flowchart
represent contiguous segments of the Fortran program of Fig. 1, so all lowest level
sequence primes are already identified and abstracted.
 The flowchart program of Fig. 2 was then reduced, a step at a time, by identify-
ing primes therein and replacing each such prime by a newly numbered function
node, e.g., R.2.3 names prime 3 in reduction 2 of the process. This prime decom-
position of the Fortran ZEROIN is shown in Fig. 3, leading to a hierarchy of six
levels. Of all primes shown in Fig. 3, we note only two that contain more than one
predicate, namely R.3.1 and R.5.1, and each of these is easily transformed into a
composite made up of primes with no more than one predicate. These transforma-
tions are shown in Fig. 4. We continue the reduction of these new composite pro-
grams to their prime decompositions in Fig. 5. In each of these two cases, a small
segment of programs is duplicated to provide a new composite that clearly exe-
cutes identically to the prime. Such a modification, which permits a decomposi-
tion into one predicate primes, is always possible provided an extra counter is
used. In this case, it was fortunate that no such counter was required. It was also
fortunate that the duplicated segments were small; otherwise, a program call in
two places to the duplicated segment might be a better strategy.

A Structured Design of ZEROIN

Since a prime program decomposition of a program equivalent to ZEROIN has
been found with no primes of more than one predicate, we can reconstruct this
program in text form in the following way. The final reduced program of ZEROIN
is given in Reduction 6 of Fig. 3, namely, that R.6.1 is a sequence, repeated here,

 Victor R. Basili and Harlan D. Mills 50

Fig. 4. Transformation to single predicate primes.

R.6.1 =

Now R.2.1 can be looked up, in turn, as
R.2.1 =

 Understanding and Documenting Programs 51

etc., until all intermediate reductions have been eliminated. Recall that R.5.1 and
R.3.1 was further reduced in Fig. 5. When these intermediate reductions have all
been eliminated, we obtain a structured program [2], [6], in PDL for ZEROIN
shown in Fig. 6. Note there are three columns of statement numberings. The first
column holds the PDL statement number; the second holds the Fortran line num-
bering of Fig. 1; the third holds the Fortran statement numbering of Fig. 1. The
Fortran comments have been kept intact in the newly structured program and ap-
pear within square brackets [,]. From here on, statement numbers refer to the PDL
statements of Fig. 6.

Fig. 5. Prime decomposition of the transformed ZEROIN.

 Victor R. Basili and Harlan D. Mills 52

 The duplication of code introduced in Fig. 4 can be seen in PDL 72, 73, and
PDL 96-99. It should be noted, however, that in PDL 87-91 the second IF
STATEMENT in Fortran 93 can be eliminated by use of the if-then-else. This
permits an execution time improvement to the code. A second improvement can
be seen in PDL 62-66. The use of the absolute value function can be eliminated by
using the else part of an if-then-else to change the sign of a negative p.
 By construction, the PDL program of Fig. 6 is function equivalent to the For-
tran program of Fig. 1. But the structured PDL program will be simpler to study
and understand.

Data References in ZEROIN

Our next step in understanding ZEROIN was to develop a data reference table for
all data identifiers. While straightforward and mechanical, there is still much
learning value in carrying out this step, in becoming familiar with the program in
the new structured form. The results are given in Fig. 7. This familiarization led to
the following observations about the data references in ZEROIN (in no particular
order of significance, but as part of a chronological, intuitive, discovery process).
1) ax, bx, f, ip, tol are never set, as might be expected, since they are all input

parameters (but this check would discover initialized data if they existed, and
the presence of side effects by the program on its parameters if passed by ref-
erence).

2) Zeroin is never used, but is returned as the purported zero found for f (since
Zeroin is set to b just before the return of the program, it appears that b may
be a candidate for this zero during execution).

3) eps is set by the dountil loop 6-11 at the start of program execution, and then
used as a constant at statement 36 from then on.

4) tol 1 is used for two different unrelated purposes, namely, as a temporary in
the dountil loop 6-11 which sets eps, then reset at statement 36 as part of a
convergence consideration in 36-88.

5) Function f is called only three times, at 16, 17 to initailize fa, fb, and at 92 to
reset fb to f(b) (more evidence that b is the candidate zero to be returned).

6) Identifiers a, c are set to and from b, and the triple a, b, c seems to be a candi-
date for bracketing the zero that b (and zeroin) purports to approach.

7) Identifiers fa, fb, fc are evidently stand-ins for f(a), f(b), f(c), and serve to
keep calls on function f to a minimum.

8) Identifiers p, q, r, s are initialized and used only in the section of the program
that the comments indicate is concerned with interpolation.

9) Focusing on b, aside from initialization at statement 15 and as part of a gen-
eral exchange among a, b, c at statement 28-29, b is updated only in the ift-
henelse 83-90, incremented by either d or tol 1.

10) d is set to xm or p/q (as a result of a more complex bisection and interpolation
process); xm is set only at statement 37 to the half interval of (b, c) and ap-
pears to give a bisection value for b.

 Understanding and Documenting Programs 53

 A Function Decomposi-
tion of ZEROIN

The prime program decomposi-
tion and the familiarity devel-
oped by the data reference tabu-
lation and observations suggest
the identification of various in-
termediate prime or composite
programs in playing important
roles in summing up a functional
structure for ZEROIN. Each
such intermediate prime or com-
posite program computes values
of a function. The inputs (func-
tion arguments) of this function
are defined by the initial value of
all identifiers that are inputs
(function arguments) for state-
ments that make up the interme-
diate program. The outputs
(function values) of this function
are defined by the final values of
all identifiers that are outputs
(function values) for statements
that make up the intermediate
program. Of course, further
analysis may disclose that such a
function is independent of some
inputs, if, in fact, such an identi-
fier is always initialized in the
intermediate program before its
use.
 On the basis of this prime de-
composition and data analysis,
we reformulated ZEROIN of
Fig. 6 as zeroin 1, a sequence of
four intermediate programs, as
shown in Fig. 8, with function
statements using the form f. n-m
where n, m are the boundary
statements of the intermediate
programs of ZEROIN from Fig.

Fig. 6. Transformed PDL ZEROIN.

 Victor R. Basili and Harlan D. Mills 54

6. Identifier *outfile in the output lists refers to the fact that data are being trans-
ferred to an outfile by an intermediate program. The phrase (x,z,v) projection of
some function x, y, z, u, v, w: = p,q,r,s,t,u means the new function x,z,v := p,r,t.
 In the following program descriptions, all arithmetic operations are assumed to
represent machine arithmetic. However, we will occasionally apply normal arith-
metic axioms in order to simplify expressions. We next look at the intermediate
programs.

f.5-11: The intermediate program that computes the values of f.5-11 is a sequence,
namely, an initialized dountil, i.e.,

5 eps := 1.0
6 do
7 eps := eps/2.0
8 tol 1 := 1.0 +eps
9 until
10 tol 1 1
11 od

After some thinking, we determine that at PDL 6, an invariant of the form

I6 = (∃ k 0 (eps = 2-k)) 1 + eps > 1
must hold, since entry to PDL 6 must come from PDL 5 or PDL 10 (and in the
latter case tol 1 > 1, having just been set to 1.0 + eps, so 1.0 +eps >1). Further-
more, at PDL 9 the invariant

Fig. 7. Data references of PDL ZEROIN

 Understanding and Documenting Programs 55

Fig. 8. Top level function / data partition of PDL ZEROIN.

I9 = (∃ k 1 (eps = 2-k)) tol 1 = 1 + eps
must hold, by observing the effect of PDL 7, 8 on the invariant I6 at PDL 6.
Therefore, at exit (if ever) from the segment PDL 5-11, we must have the condi-
tion I9 PDL 10, namely,

(∃ k 1 (eps = 2-k)) 1 + 2 eps > 1 tol 1 = 1 + eps 1.
 Thus we have the following.
Lemma 5-11: The program function of f.5-11 is the constant function:

{(Ø, (eps, tol 1)) | (∃ k 1 (eps = 2-k)) 1 + 2 eps > 1 tol 1 = 1 + eps
1}.

 Since tol 1 is reassigned (in PDL 36) before it is used again, f.5-11 can be
thought of as computing only eps.

f.13-22: The intermediate program that computes the value of f.13-22 can be writ-
ten directly as a multiple assignment. It is convenient to retain the single output
statement PDL 13, and write

f.13-22 = f.13-13;f.14-22
yielding the following.
Lemma 13-22: The (a,b,c,d,e,*outfile) projection of f.13-22 is function equivalent
to the sequence

f.13-13;f.14-22
where f.13-13 = if ip=l then write ('THE INTERVALS DETERMINED BY
ZEROIN ARE') and

f.14-22 = a,b,c,d,e,fa,fb,fc
:= ax,bx,ax,bx-ax,bx-ax, f(a),f(b),f(a).

f.23-101: The intermediate program that computes the value of f.23-101 is a bit
more complicated than the previous program segments and will be broken down
into several sub-segments. We begin by noticing that several of the input and out-

 Victor R. Basili and Harlan D. Mills 56

put parameters may be eliminated from the list. Specifically, as noted earlier, p, q,
r, and s are local variables to f.23-101 since they are always recalculated before
they are used in f.23-101 and they are not used outside of f.23-101. The same is
true for xm and tol 1. fa, fb, and fc can be eliminated since they are only used to
hold the values of f(a), f(b) and f(c).
 After considerable analysis and a number of false starts leading into a great
deal of detail, we discovered an amazing simplification, first as a conjecture, then
as a more precise hypothesis, and finally as a verified result. This simplification
concerned the main body of the iteration of zeroin, namely, PDL 41-92, and obvi-
ated the need to know or check what kind of interpolation strategy was used, step
by step. This discovery was that the new estimate of b always lay strictly within
the interval bracketed by the previous b and c. That is, PDL 41-92, among other
effects, has the (b) projection

b:=b + (c-b), for some , 0 < < 1
so that the new b was a fraction of the distance from the previous b to c. With a
little more thought, it became clear that the precise values of d, e could be ignored,
their effects being captured in the proper (but precisely unknown) value of . Fur-
thermore, this new indeterminate (but bounded) variable could be used to sum-
marize the effect of d, e in the larger program part PDL 23-101, because d, e are
never referred to subsequently. Thus, we may rewrite f.23-101 at this level as

a, b, c *outfile := f.23-101 (a, b, c, f, ip)
and we define it as an initialized while loop.

Lemma 23-101: The (a, b, c, *outfile) projection of f.23-101 is function equivalent
to

(ip = 1 write (b, c) | true I); [Lemma 24]
(abs(f(c)) < abs(f(b)) a,b,c := b.c.b | true I); [Lemma 25-34]
while
f(b) 0 (abs(c-b)/2) > 2 eps abs(b) + tol/2
do
a,b, c :=b,b + (c-b),c where 0 < < l; [Lemma 41-92]
(f(b) * f(c) > 0 a, b, c := a, b, a | true I); [Lemma 93-100]
(ip = 1 write (b, c) | true I); [Lemma 24]
(abs(f(c)) < abs(f(b)) a,b,c := b,c,b | true I) [Lemma 25-34]
od
where I is the identity mapping.
 The structure of f.23-101 corresponds directly to the structure of PDL 23-101
except for a duplication of segment PDL 23-34 in order to convert the dowhiledo
into a whiledo. The proof of the correctness of the assignments of f.23-101 is
given in separate lemmas as noted in the comments attached to the functions in
Lemma 23-101. The while test is obtained by direct substitution of values for tol 1
and xm defined in PDL 36-37 into the test in PDL 39 using eps as defined in
Lemma 5-11.

Lemma 24: PDL 24 is equivalent to

 Understanding and Documenting Programs 57

(ip = 1 write (b, c) | true 1).
Proof: By direct inspection.
Lemma 25-34: The (a, b, c) projection of the program function of PDL 25-34 is
function equivalent to

(abs(f(c)) < abs(f(b)) a,b,c := b,c,b | true I).
Proof: By direct inspection of PDL 25-34.
Lemma 41-92: The (a, b, c) projection of the program function of PDL 41-92 is
function equivalent to

a, b, c :=b,b + (c-b), c where 0 < < l.
 The proof will be done by examining the set of relationships that must hold
among the variables in PDL 41-92 and analyzing the values of p and q only. That
is, it is not necessary to have any knowledge of which interpolation was performed
to be able to show that the new b can be defined by

b:=b + (c-b), 0 < < l.
We will ignore the test on PDL 48 since it will be immaterial to the lemma
whether linear or quadratic interpolation is performed. We will examine only the
key tests and assignments and do the proof in two basic cases—interpolation and
bisection— to show that the (d) projection of the program function of PDL 41-78
is

d = (c-b)() where 0 < < l.
Case 1 Interpolation: If interpolation is done, an examination of Fig. 6 shows
that the following set of relations holds at PDL 78:

 Now let us examine the set of cases on p and q.
p > 0 q < 0: We have d = p/q < 0 (by hypotheses), p/q > 3/2xm + tol 1/2 (by I5),
and tol 1>0 (by I1). Since abs(xm) > tol 1 (by I3) and 3/2 xm + tol 1/2 < 0 (since
p/q < 0) we have xm < 0 implying 0 > d > p/q > 3/2 xm > 3/4 (c-b) > (c-b). Thus 0
> d > (c-b) yielding d = (c-b) where 0 < < 1.
 p > 0 q > 0: We have d = p/q > 0 (by hypotheses), p/q < 3/2 xm - tol 1/2 <
3/2 xm = 3/4 (c-b) < (c-b) (by I5, I1, I2) implying 0 < d < (c-b). Thus d = (c-b)
where 0 < < 1.
 P > 0 q = 0; q = 0 implies 0 > 2 * p (by I5) and we know p > 0 (by hypothe-
ses), implying a contradiction.
 p = 0 q= anything: abs(p/q) > tol 1 (by I6, I7) and tol 1 0 (by I1) implies p
cannot be 0.
 p < 0 q = anything: p 0 (by 14) implies a contradiction.

Case 2 Bisection: If bisection is done, an examination of Fig. 6 shows that the
following set of relations holds at PDL 78:

 Victor R. Basili and Harlan D. Mills 58

Here d = xm (by B3) implies = 1/2 (by Bl) and thus d = (c-b)() where 0 < < l.
 PDL 82-91 implies if |d| tol 1 (i.e., if d is too small) then increment b by tol 1
with the sign adjusted appropriately, i.e., set

But tol 1 < abs(xm) (by I3 and B2) = abs((c-b)/2) and the sign (tol 1) is set to the
sign (xm) implying

tol 1= (c-b) where 0 < < l.
Thus, in PDL 82-91 b is incremented by d or tol 1, both of which are of the form
(c- b) where 0 < < 1. Thus we have

b := b + (c-b), 0 < < l
and since in PDL 80-81 we have a, fa := b, fb we get the statement of the lemma.
Once again, the reader is reminded that the proof of Lemma 41-92 was done by
examining cases on p and q only. No knowledge of the actual interpolations was
necessary. Only tests and key assignments were examined. Also, the program
function was abstracted to only the key variables a, b, c and represented the ef-
fect of all other significant variables.

Lemma 93-100: The (a,b,c) projection of PDL 93-100 is function equivalent to
(f(b) * f(c) > 0 a, b, c := a, b, a | true I).

Proof: By direct inspection, PDL 93-100 is an ifthen statement with if test equiva-
lent to the condition shown above and assignments that include the assignments
above.
 The last function in zeroin 1 (from Fig. 8) is the single statement PDL 103,
which can be easily seen as Lemma 103.

Lemma 103: f.103 is function equivalent to zeroin := b.
 Now that each of the pieces of zeroin 1 have been defined, the program func-
tion of ZEROIN will be given. First, let us rewrite zeroin 1, all in one place, using
the appropriate functions (Fig. 9).
 The program ZEROIN has the required effect of finding and returning a root if
there is one between the endpoints provided to it. The conditions under which this
works are when either of the endpoints are roots or there is one root or an odd
number of roots between the two endpoints (i.e., the functional values of the end-
points are of opposite signs). However, if the two endpoints provided to the pro-
gram are identical, their value will be returned as the root. If there are no roots or a
multiple of two roots between the two endpoints, the program will return a value
as a root. This value may be one of the actual roots or it may be some point lying
between the two points which is arrived at by continually halving the interval and

 Understanding and Documenting Programs 59

eventually choosing one of the endpoints of a halved interval when the interval
gets small enough.
 The behavior of the program is more formally defined in the following theo-
rem.

Theorem 1-105:
func zeroin has program function [zeroin] =

(ax = bx root := bx |
f(bx) = 0 root :=bx |
f(ax) = 0 root := ax |
f(ax) * f(bx) < 0 root := approx (f, ax, bx, tol) |
true (V k = 1,2, • • •,f(bk) * f(ck) > 0 root

 := unpredictable |

∃ k > 0(f(bk) * f(ck) 0 V j = l, 2, • • • k - l,
f(bj) * f(cj) > 0) root
:= approx (f, bk, ck, tol)

where approx (f, ax, bx, tol) is some value, x, in the interval (ax, bx) within 4 *
eps * |x| + tol of some zero, x of the function f and the sequence (b1, c1), (b2, c2), •
• • is defined so that each succeeding interval is a subinterval of the preceding in-
terval; (b1, c1,) = (ax, bx), (bk+i, ck+1) defines the half interval of (bk, ck) such that
the endpoint kept is the one that minimizes the absolute value of f.
 Proof: The proof will be carried out in cases, corresponding to the conditions
in the rule given in the theorem. The first three cases follow directly by inspection
of zeroin1, as special cases for input values, which bypass the while loop. That is,
if ax = bx, then the values of a, b, c and root can be traced in zeroin1 as follows:

 a b c root
Zeroin1.8 bx bx bx bx
0.11 bx bx bx bx
[condition 13 fails since c-b = 0]
0.21 bx bx bx bx

Cases 2 and 3 proceed in a similar fashion.
 Case 4, f(ax) * f(bx) <0, will be handled by an analysis of the whiledo loop and
its results will apply to the last sub case of the last case as well. The first sub case
of the last case arises when no zero of f is even bracketed and zeroin1 runs a pre-
dictable course, as will be shown.

Case 4: It will be shown that the entry condition f (ax) * f(bx) < 0 leads to the fol-
lowing condition at the while test of zeroin1:

I = (a = c b V a < b < c V c < b < a)
 f(b) * f(c) 0 abs(f(b) abs(f(c)).

The proof is by induction. First, I holds on entry to the whiledo loop because by
direct calculation

after zeroin1.8 a = c f (b) * f (c) < 0 c b

 Victor R. Basili and Harlan D. Mills 60

after zeroin1.11 a = c f(b) * f(c) < 0 abs(f(b)) abs(f(c)) c b.
Next, suppose the invariant I holds at any iteration of the whiledo at the while test,
and the while test evaluates true, it can be shown that I is preserved by the three-
part sequence of the do part. In fact, the first part, in seeking a better estimate of a
zero of f, may destroy this invariant, and the last two parts restore the invariant. It
will be shown in Lemma 15-18 that

after zeroin1.15 (a < b < c V c < b < a) f(a) * f(c) < 0
after zeroin1.16 (a = c b V a < b < c V c < b < a)

 f(b) * f(c) 0
after zeroin1.18 (a = c b V a < b < c V c < b < a)

 f(b) * f(c) 0 abs(f(b))
 abs(f(c))

which is I. Thus, I is indeed an invariant at the while test.
 Consider the question of termination of the whiledo. In Lemma 15-18T it will
be shown using c0 and b0 as entry values to the do part, that for some , 0 < < l,
after zeroin1.18 abs(c-b) < abs(c0 - b0)max(, 1-). Therefore, the whiledo must
finally terminate because the condition

f(b) 0 abs ((c-b)/2) > 2 * eps * abs(b) + tol/2
must finally fail, because by the finiteness of machine precision abs(c-b) will go to
zero if not terminated sooner.
 When the whiledo terminates, the invariant I must still hold. In particular f (b)
* f(c) 0, which combined with the negation of the while test gives

IT = f(b) * f(c) 0 (f(b)) = 0 V abs((c-b)/2) 2 * eps * abs(b) + tol/2.
IT states that
1) a zero of f is bracketed by the interval (b, c);
2) either the zero is at b or the zero is at most | c-b | from b, i.e., the zero is within
4 * eps * | b | + tol of b.
 This is the definition of approx (f, b, c, tol).
Now, beginning with the interval (ax, bx), every estimate of b created at ze-

roin1.15 remains within the interval (b,c) current at the time.1 Since c and b are
initialized as ax and bx at zeroin1.8, the final estimate of b is given by approx (f,
ax, bx, tol). The assignment zeroin := b at zeroin1.21 provides the value required
by case 4.

Case 5 Part 1: We first show that in this case the condition a = c will hold at
zeroin1.15 if f(b) * f(c) > 0. By the hypothesis of case 5, part 1, f((b+c)/2) is of the
same sign as f(b) and f(c). Therefore, the first case of zeroin1.16 will hold and the
assignment c := a will be executed implying a = c when we arrive at zeroin1.15
from within the loop. Also, if we reach zeroin1.15 from outside the loop (zero-
inl.8-11) we also get a = c.

1 This is because f (b) * f (c) 0 is part of I.

 Understanding and Documenting Programs 61

Fig. 9. Function abstraction of PDL ZEROIN.

 We now apply Lemma 15L, which states that under the above condition the (a,
b, c) projection of zeroin1.15 is

which is a refinement of zeroin1.15.
 Note that zeroin 1.18 may exchange b,c depending on abs(f(b)) and abs(f(c)).
Thus, the (b,c) projection of the function computed by zeroin 1.15-18 in this case
is

 Victor R. Basili and Harlan D. Mills 62

i.e., the new interval (b, c) is the half interval of the initial (b0, c0) which includes
b0 (for increments greater than tol 1), and the new b is chosen to minimize the
value abs(f(b)). The result of iterating this dopart is unpredictable unless more is
known about the values of f. For example, if the values of f in (ax, bx) are of one
sign and monotone increasing or decreasing, then the iteration will go to the end-
point ax or bx for which abs(f) is minimum. In general, the iteration will tend to-
ward a minimum for abs(f), but due to the bisecting behavior, no guarantees are
possible.

Case 5 Part 2: This covers the happy accident of some intermediate pair b,c
bracketing an odd number of zeros of f by happening into values bk, ck, such that
f(bk) * f(ck) 0. The tendency to move towards a minimum for abs(f(b)) may in-
crease the chances for such a happening, but provides no guarantee. Once such a
pair bk, ck is found, case 4 applies and some zero will be approximated.
 This completes the proof of the theorem except for the proofs of the three
lemmas used in the proofs which are given in the Appendix.

IV. Conclusion

Answering the Questions

We can now answer the questions originally posed by Prof. Vandergraft.
 Question 1: If the equation is linear and the size of the interval (a,b) is greater
than or equal to tol 1, and there is no round off problem, the program will do a lin-
ear interpolation and find the root on one pass through the loop. If the size of the
interval (a,b) is smaller than tol 1, the program will perform a bisection (based
upon the test at PDL43). If abs(fa) = abs(fb) at PDL 43, then bisection will also be
performed. However, in this case bisection is an exact solution. The case that the
size of the interval is smaller than tol 1 is unlikely, but possible.
 Question 2: The theorem states that if f(a) and f(b) are both of the same sign,
we will get an answer that is some point between a and b even though there is no
root in the interval (a,b) (case 5a of the Theorem). If there are an even number of
roots in the interval (a, b) then it is possible the program will happen upon one of
the roots and return that root as an answer (case 5b of the Theorem). To check for
this condition, we should put a test right at entry to the program between PDL 3
and PDL 4 of the form

if
f(ax)*f(bx)>0

then
write ('F(AX) and F(BX) ARE BOTH OF THE SAME SIGN,
RETURN BX')
B := BX

else
PDL 4-102

fi

 Understanding and Documenting Programs 63

 Unfortunately, this does not indicate an error to the calling program. One ap-
proach in handling an error indication would be to add an extra parameter to the
parameter list which would be set to indicate an error. Another approach would be
to return a special value for the root, e.g., the largest negative number on the ma-
chine, as an error signal.
 Question 3: It would be easy to remove the inverse quadratic interpolation part
of the code. We can do this simply by removing several PDL statements, i.e., PDL
47-55. However, this would not leave us with the best solution since much of the
code surrounding the inverse quadratic interpolation could be better written. For
example,

1) there would be no need to keep a, b, and c;
2) the test in PDL 70 could be removed if we checked in the loop that f(a) *

f(b) was always greater than zero, since bisection and linear interpolation
would never take us out of the interval.

Cleaning up the algorithm would probably require a substantial transformation.
 Question 4: Zeroin will find a triple root, assuming it is the only root in the in-
terval. It will not inform the user that it is a triple root, but will return it as a root
because once it has a root surrounded by two points such that f(a) and f(b) are of
opposite signs, it will find that root (case 4 of the theorem).
 It is also worth noting that ax and bx do not have to be the left and right end-
points of the interval; they could be interchanged. Also, any value of IP other than
1 will be equivalent to zero.

Program History

Since most programs seen by practicing programmers do not have a history in the
literature, we did not research the history of ZEROIN until we had completed our
experiment. The plexity of the program is partially due to the fact that it was
modified over a period of time by different authors, each modification making it
more efficient, effective or robust. The code is based on the secant method [7].
The idea of combining it with bisection had been suggested by several people. The
first careful analysis seems to have been by Dekker [3]. Brent [1] added to Dek-
ker's algorithm the inverse quadratic interpolation option, and changed some of
the convergence tests. The Brent book contains an Algol 60 program. The Fortran
program of Fig. 1 is found in [5] and is a direct translation of Brent's algorithm,
with the addition of a few lines that compute the machine-rounding error. We un-
derstand that ZEROIN is a significant and actively used program for calculating
the roots of a function in a specific interval to a given tolerance.

Understanding and Documenting

As it turns out, we were able to answer the questions posed and discover the pro-
gram function of ZEROIN. The techniques used included function specification,
the discovery of loop invariants, case analysis, and the use of a bounded indeter-

 Victor R. Basili and Harlan D. Mills 64

minate auxiliary variable. The discovery process used by the authors was not as
direct as it appears in the paper. There were several side trips which included
proving the correctness of the inverse quadratic interpolation (an interesting result
but not relevant to the final abstraction or the questions posed).
 There are some implications that the algorithm of the program was robust in
that it was over designed to be correct and that the tests may be more limiting than
necessary. This made the program easier to prove correct, however.
 In documenting this program, we learned all the details first and, in that sense,
worked bottom up. The method provided a systematic way to accumulate the de-
tailed knowledge and package it in small pieces which consisted of theorems and
lemmas. Learning of the details first was necessary for the higher level under-
standing. This bottom-up process is typical in maintaining programs; the form of
recording that understanding is not.
 Unfortunately, we kept no record of time because the work was done over a
rather long period of time in bits and pieces. The authors would guess that it
would take several weeks for a maintenance programmer versed in these concepts
to develop and document an understanding of this program, as was done here. The
implication is that maintenance without good documentation is a highly expensive
proposition and clearly an extremely creative process. Unfortunately, in many en-
vironments only novice programmers are put on the maintenance task. Probably it
would be better for programmers to work in senior/junior pairs, devoting part-time
to the problem.
 The role of good maintenance should be to keep the requirements, specifica-
tions, design and code documents up to date during development so they will be
available and can be updated during maintenance. This study supplies some evi-
dence that the payoff in not having to recreate the specification and design struc-
ture during maintenance is considerable. Although this approach of formalizing
the understanding and documentation process of maintenance may appear to be
overdone, it is unfortunately a necessity for many environments. To maintain a
program in an embedded system, it is necessary to understand it to modify it. If
there is no documentation on the requirements of the current system (which has
been modified over time), there is no choice but to take the approach that was
taken by the authors. There do exist systems which no one really knows what they
do. The only way to be able to understand them and document them so that they
can be changed or updated is by going through processes similar to processes per-
formed by the authors.
 To reiterate, the process consists of reducing the program to be understood to
small prime programs and then creating in a step-by-step process the functions
produced by those primes, combining them at higher and higher levels until a full
specification is achieved. It is the price we pay for maintenance when only the
code exists as the final documentation of a system.
 We believe this experience shows that the areas of program specification and
program correctness have advanced enough to make them useful in understanding
and documenting existing programs, and extremely important application today.
In our case, we are convinced that without the focus of searching for a correctness
proof relating the specification to the program, we would have learned a great

 Understanding and Documenting Programs 65

deal, but would have been unable to record very much of what we learned for oth-
ers.
 Hamming pointed out that mathematicians and scientists stand on each other's
shoulders but programmers stand on each other's toes. We believe that will con-
tinue to be true until programmers deal with programs as mathematical objects, as
unlikely as they may seem to be in real life, as we have tried to do here.

Acknowledgment

The authors are grateful to D. Dunlop for his insightful review of this report and to
C. Bacigaluppi for patiently typing numerous drafts.

References

[1] R. P. Brent, Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ:
Prentice-Hall, 1973.

[2] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming. New York:
Academic, 1972.

[3] T. J. Dekker, "Finding a zero by means of successive linear interpolation," in Construc-

tive Aspects of the Fundamental Theorem of Algebra, B. Dejou and P. Henrici, Eds. In-
terscience, 1969.

[4] E. W. Dijkstra, A Discipline of Programming. Englewood Cliffs, NJ: Prentice-Hall,
1976.

[5] G. Forsythe, M. Malcolm, and M. Moler, Computer Methods for Mathematical Compu-

tations. Englewood Cliffs, NJ: Prentice-Hall, 1977.
[6] R. C. Linger, H. D. Mills, and B. I. Witt, Structured Programming Theory and Practice.

Reading, MA: Addison-Wesley, 1979.
[7] J. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several

Variables. New York: Academic, 1970.

 Victor R. Basili and Harlan D. Mills 66

 Understanding and Documenting Programs 67

It should be noted that in the above discussion, zeroin1.17 was ignored because its
effect on the calculation of the root and termination of the loop is irrelevant.
We have one last lemma to prove.
 Lemma 15L: Given a = c and f(a) * f(b) > 0 then zeroin1.15 calculates the new
b using the bisection method, i.e.,

 Since by hypothesis a = c, PDL 49 implies inverse quadratic interpolation is
not done and linear interpolation (PDL 56) is attempted. Thus

s = fb/fa and 0 < s < 1 since fb * fa > 0 and abs(fb) < abs(fa)
p = (c-b) * s, using xm + (c- b)/2
q = 1-s, implying q > 0 in PDL 59.

 The proof will be done by cases on the relationship between b and c.
c > b: c > b implies p > 0 in PDL 58. Since p > 0 before PDL 62, PDL 65 sets q to
-q, so q < 0. Then the test at PDL 70 is true since

2 * p=a* s is positive,
3.0 * xm * q = 3/2* (c-b) * q is negative, and
abs(tol 1 * q) is positive

implying PDL 70 evaluates to true and bisection is performed in PDL 72-73.
c < b: c < b implies p < 0 in PDL 58. Since p < 0 before PDL 62, PDL 65 leaves q
alone and PDL 67 sets p > 0 implying p = (b-c) * x. Then the test at PDL 70 is
true since

2 * p = 2 * (b-c) * s is positive,
3.0 * xm * q = 3/2* (c- b) * q is negative, and
abs(tol 1 * q) is positive

implying PDL 70 evaluates to true and bisection is performed in PDL 72-73.

Section 2: Measurement and GQM

David Weiss

Avaya Labs

Thomas Kuhn in his Structure of Scientific Revolutions notes that when a new
field of science or technology arises no one knows what questions to ask or what
experiments to perform. We don't know what to measure or how to measure it.
Eventually, through many trials and perhaps some inspired guesswork, new theo-
ries and a new way of looking at the world emerge, an experimental discipline is
founded, and the field starts to make progress towards explaining previously puz-
zling phenomena. Kuhn labels such an emergence a paradigm shift.

For software engineering to become a discipline we must know what experi-
ments to perform to measure software development, what the critical variables in
software development are, and how to use the results of our measurements to im-
prove our development processes, making them repeatable and predictable. Al-
though we have not yet achieved a paradigm shift, the papers in this section illus-
trate the progress that we have made in figuring out what to measure and how to
measure it.

Early attempts to measure software were complicated by lack of theories about
what was being measured, by the variability in the skills of the software develop-
ers, and by the sensitivity of the data. On one occasion in the mid-1970s I was
visited by some researchers from a large aerospace company who knew I had an
interest in software measurement. They proudly showed me distributions of errors
made during software development, but it was nearly impossible to discern any
pattern in the distributions. When I asked what questions they were trying to an-
swer with the data I was met with blank looks. They had a random set of data
from which one could deduce almost nothing. There were no hypotheses or theo-
ries being tested. The experimenters didn't know what questions to ask. Some
time earlier I had seen a paper on cost estimation from a large software develop-
ment company. The paper described a model that had more than 90 variables!
There was no hope of using such a model in practice and the implication was that
one could never hope to control enough variables to make cost estimation reliable.

At about the same time, Walston and Felix [5] published their classic study of
software development at IBM, giving the reader a taste of some meaningful data
about productivity. Here were data collected over a number of projects that one
might use to form a baseline and that might be the basis for constructing estimates
of time and effort. Unfortunately, this was the last data to come from IBM for
some time, and the rumor in the community was that the authors had been cen-
sured for publishing real data about IBM projects.

 Section 2: Measurement and GQM 69

The preceding are just a few examples of the many different studies and data
sets that appeared throughout the 1970s and into the 1980s. Theories and data
bounded about software development, coming from a variety of quarters, such as
Halstead's Software Science, Barry Boehm's studies of hundreds of aerospace pro-
jects at TRW, John Musa's detailed models of software reliability, Belady and
Lehman's studies of large-scale software releases, Wolverton's work on cost mod-
els, McCabe's theory of complexity, Albrecht's function points model, Putnam's
work relating time, effort, and quality, and others. It was difficult to sort out what
was comparable and what was not, what was repeatable and what was not, and,
when you found something that seemed meaningful and useful, how to apply it to
your environment. Indeed, the state of the field was such that Paul Moranda, one
of the pioneers of the field, in a short letter in Computer, 1978, lamented our in-
ability to measure quality in a meaningful way, expressed regret at having had a
hand in starting the field, and suggested that we give up [4].

To make sense and progress we needed some standard measurement methods, a
tested of publicly available results from real software development projects, and
long-term measurement projects.

In 1976 Vic Basili played a key role in founding NASA's Software Engineering
Laboratory (SEL), which would help make such sense and progress. In conjunc-
tion with Frank McGarry at NASA and Gerry Page at Computer Sciences Corpo-
ration (CSC), and with participation from Marv Zelkowitz at the University of
Maryland, from project managers at Goddard Space Flight Center (GSFC), and
from software developers at CSC and GSFC, as well as a few graduate students (I
among them), he formed the kind of tested we needed to make sense out of soft-
ware measurement and its potential role in creating a discipline of software engi-
neering.

The two papers in this section exemplify some of the significant steps along the
way. "A Methodology for Collecting Valid Software Engineering Data" provided
one of the first descriptions of the GQM measurement approach and also defined a
key ingredient in measurement philosophy: the need to validate the data that one
collected. The paper carefully describes the GQM approach and provides details
on how to collect and validate data, down to describing the forms we used at the
SEL for collecting change data. Also, it contains the results of validating the data
that were collected from several SEL projects. Having started out to be a physicist
I was early indoctrinated in the need for estimating the error in one's measure-
ments. I looked in vain for error estimates in measurement studies.

After validating several thousand change report forms from SEL projects, in-
cluding interviewing many SEL programmers, I convinced myself, Vic, and others
in the SEL that validation was crucial to good measurement. It put us in a position
to say with some confidence how good our measurement was. On several occa-
sions at conference presentations by others working in the measurement field, Vic
would get up and ask the presenter how the data had been validated. If the answer
was that no validation had been done, the rejoinder, in gentle tones, was "In that
case, I find it hard to put trust in your results." This paper also has some senti-
mental value for me: much of it was taken from my PhD thesis.

 David Weiss 70

 Having refined and codified the GQM approach and gained considerable ex-
perience in measuring product and process, Vic and Dieter Rombach, embarked
on an ambitious task: how to make measurement an integral part of process im-
provement. "The TAME Project: Tailoring A Measurement Environment" codifies
their approach. The SEL had shown the value of baseline measurements, espe-
cially in a field where it was very difficult to conduct comparative experiments
that controlled all confounding factors. Using the data from the SEL, one could
look back at the historical data and observe trends, since one understood how to
compare the data.

After about 12 years of progress at the SEL in learning how to decide what data
to collect, how to collect it, and how to analyze it, Vic and Dieter realized that
they had a way of using measurement data to guide and quantify process im-
provement. One had but to establish the goals of the development process, collect
data to measure progress against those goals, uses the data analysis to understand
what had resulted in improvement and what had not, and use that understanding to
guide further improvement attempts. A straightforward plan but not simple to
achieve. Engineers in other fields would recognize this as a kind of statistical
process control. Its success depends on understanding the measurement process,
and on working in an organization that is willing to invest in process improvement
and that is willing to establish a data collection program to support process im-
provement.

One may think of the Hewlett Packard software measurement program as an
early industrial prototype of TAME [1]. The TAME paper explains the objective
of TAME, lists the principles on which a TAME project must be built, including
GQM, references the templates for measurement and data collection developed at
the SEL, defines a process model for software process improvement, and sketches
an architecture for creating an appropriate measurement and process improvement
environment. It is an ambitious program, which, if well-implemented over the in-
dustry, would take us another step towards the paradigm shift that software devel-
opment needs to become an engineering discipline. It could help to answer ques-
tions such as "What's the production capacity of your software development
environment?" whose analogues engineers in other fields can answer routinely.

The papers here represent milestones in creating a software measurement field
by means of the following achievements:

• Introducing goal-directed techniques.

• Establishing the basis for comparative analysis to discriminate among differ-
ent measurement proposals.

• Measuring both process and product, especially measuring changes to soft-
ware over time.

• Creating a systematic methodology for measurement that incorporates data
validation.

• Creating and using baselines to observe trends over time.

• Using measurement to quantify and guide process improvement.
They stand as signposts for those of us who wish to see software development

become software engineering.

 Section 2: Measurement and GQM 71

[1] Grady, R., Caswell, E.; Software metrics: establishing a company-wide program, Upper

Saddle River, Prentice-Hall, 1987
[2] Halstead, M.; Elements of Software Science, New York, Elsevier North-Holland, 1977
[3] Kuhn, T.; The Structure of Scientific Revolutions, University of Chicago Press, 1962
[4] Moranda, P.; Software Quality Technology: (Sad) Status Of: (Unapproached) Limits

To; (Manifold) Alternatives To, Computer, vol. 11 no.11, pp. 72-79, Nov 1978
[5] C.E.Walston, C.P.Felix, "A Method of Programming Measurement and Estimation,"

IBM Systems Journal, 16,1, 1977, pp.54- 73.

A Methodology for Collecting Valid Software

Engineering Data

Victor R. Basili, Member, IEEE, and David M. Weiss

Abstract. An effective data collection method for evaluating software de-
velopment methodologies and for studying the software development proc-
ess is described. The method uses goal-directed data collection to evaluate
methodologies with respect to the claims made for them. Such claims are
used as a basis for defining the goals of the data collection, establishing a
list of questions of interest to be answered by data analysis, defining a set of
data categorization schemes, and designing a data collection form.
 The data to be collected are based on the changes made to the software
during development, and are obtained when the changes are made. To en-
sure accuracy of the data, validation is performed concurrently with soft-
ware development and data collection. Validation is based on interviews
with those people supplying the data. Results from using the methodology
show that data validation is a necessary part of change data collection.
Without it, as much as 50 percent of the data may be erroneous.
 Feasibility of the data collection methodology was demonstrated by ap-
plying it to five different projects in two different environments. The appli-
cation showed that the methodology was both feasible and useful.

Key Words: Data collection, data collection methodology, error analysis, error
classification, software engineering experimentation.

I. Introduction

According to the mythology of computer science, the first computer program ever
written contained an error. Error detection and error correction are now considered
to be the major cost factors in software development [1] - [3]. Much current and
recent research is devoted to finding ways of preventing software errors. This re-
search includes areas such as requirements definition [4], automatic and semiau-
tomatic program generation [5], [6], functional specification [7], abstract speci-

Manuscript received December 13, 1982; revised January 11, 1984. This work was sup-
ported in part by the National Aeronautics and Space Administration under Grant NSF-
5123 to the University of Maryland.
V. R. Basili is with the Department of Computer Science, University of Maryland, College
Park, MD 20742.
D. M. Weiss is with the Naval Research Laboratory, Washington, DC 20375.

 A Methodology for Collecting Valid Software Engineering Data 73

fication [8] -[11], procedural specification [12], code specification [13]-[15], veri-
fication [16]-[18], coding techniques [19]-[24], error detection [25], testing [26],
[27], and language design [16], [28] -[31].
 One result of this research is that techniques claimed to be effective for pre-
venting errors are in abundance. Unfortunately, there have been few attempts at
experimental verification of such claims. The purpose of this paper is to show how
to obtain valid data that may be used both to learn more about the software devel-
opment process and to evaluate software development methodologies in produc-
tion environments. Previous [15], [32] - [34] and companion [35] papers present
data and evaluation results, obtained from two different software development en-
vironments. (Not all of the techniques previously mentioned were included in
these studies.) The methodology described in this paper was developed as part of
studies conducted by the Naval Research Laboratory (NRL) and by NASA´s
Software Engineering Laboratory (SEL) [36]. The remainder of this section dis-
cusses motivation for data collection and the attributes of a useful data collection
effort. Section II is a step-by-step description of the data collection methodology.
Section III describes the application of the methodology to the SEL environment.
Section IV summarizes the lessons learned concerning data collection and its as-
sociated problems, limitations, and applications.

Software Engineering Experimentation

The course of action in most sciences when faced with a question of opinion is to
obtain experimental verification. Software engineering disputes are infrequently
settled that way. Data from experiments exist, but rarely apply to the question to
be settled. There are a number of reasons for this state of affairs. Probably the two
most important are the number of potential confounding factors involved in soft-
ware studies and the expense of attempting to do controlled studies in an industrial
environment involving medium or large scale systems.
 Rather than attempting controlled studies, we have devised a method for con-
ducting accurate causal analyses in production environments. Causal analyses are
efforts to discover the causes of errors and the reasons that changes are made to
software. Such analyses are designed to provide some insight into the software
development and maintenance processes, help confirm or reject claims made for
different methodologies, and lead to better techniques for prevention, detection,
and correction of errors. Relatively few examples of this kind of study exist in the
literature; some examples are [4], [15], [32], [37], [38].

Attributes of Useful Data Collection

To provide useful data, a data collection methodology must display certain attrib-
utes. Since much of the data of interest are collected during the test phase, com-
plete analysis of the data must await project completion. For accuracy reasons, it
is important that data collection and validation proceed concurrently with devel-
opment.

 Victor R. Basili and David M. Weiss 74

 Developers can provide data as they make changes during development. In a
reasonably well-controlled software development environment, documentation
and code are placed under some form of configuration control before being re-
leased to their users. Changes may then be defined as alterations to baselined de-
sign, code, or documentation.
 A key factor in the data gathering process is validation of the data as they be-
come available. Such validity checks result in corrections to the data that cannot
be made at later times owing to the nature of human memory [39]. Timeliness of
both data collection and data validation is quite important to the accuracy of the
analysis.
 Careful validation means that the data to be collected must be carefully speci-
fied, so that those supplying data, those validating data, and those performing the
analyses will have a consistent view of the data collected. This is especially im-
portant for the purposes of repetition of the studies in both the same and different
environments.
 Careful specification of the data requires the data collectors to have a clear idea
of the goals of the study. Specifying goals is itself an important issue, since, with-
out goals, one runs the risk of collecting unrelated, meaningless data.
 To obtain insight into the software development process, the data collectors
need to know the kinds of errors committed and the kinds of changes made. To
identify troublesome issues, the effort needed to make each change is necessary.
For greatest usefulness, one would like to study projects from software production
environments involving teams of programmers.
 We may summarize the preceding as the following six criteria.
1. The data must contain information permitting identification of the types of er-

rors and changes made.
2. The data must include the cost of making changes.
3. Data to be collected must be defined as a result of clear specification of the

goals of the study.
4. Data should include studies of projects from production environments, in-

volving teams of programmers.
5. Data analysis should be historical; data must be collected and validated con-

currently with development.
6. Data classification schemes to be used must be carefully specified for the sake

of repeatability of the study in the same and different environments.

II. Schema for the Investigative Methodology

Our data collection methodology is goal oriented. It starts with a set of goals to be
satisfied, uses these to generate a set of questions to be answered, and then pro-
ceeds step-by-step through the design and implementation of a data collection and
validation mechanism. Analysis of the data yields answers to the questions of in-
terest, and may also yield a new set of questions. The procedure relies heavily on
an interactive data validation process; those supplying the data are interviewed for
validation purposes concurrently with the software development process. The

 A Methodology for Collecting Valid Software Engineering Data 75

methodology has been used in two different environments to study five software
projects developed by groups with different backgrounds, using very different
software development methodologies. In both environments it yielded answers to
most questions of interest and some insight into the development methodologies
used. Table I is a summary of characteristics of completed projects that have been
studied. Definitions of the characteristics are the same as in [40]. All examples
used in this paper are taken from studies of the SEL environment.

Table I Summary of Project Information

 SEL 1 SEL 2 SEL 3 NRL 1

Effort (work-months) 79.0 39.6 98.7 48.0

Number of developers 5 4 7 9

Lines of Code (K) 50.9 75.4 85.4 21.8

Developed lines of code 46.5 31.1 76.6 21.8

Number of components 502 490 639 235

 The projects studied vary widely with respect to factors such as application,
size, development team, methodology, hardware, and support software. Nonethe-
less, the same basic data collection methodology was applicable everywhere. The
schema used has six basic steps, listed in the following, with considerable feed-
back and iteration occurring at several different places.
1. Establish the Goals of the Data Collection: We divide goals into two catego-

ries: those that may be used to evaluate a particular software development
methodology relative to the claims made for it, and those that are common to
all methodologies to be studied.
 As an example, a goal of a particular methodology, such as information
hiding [41], might be to develop software that is easy to change. The corre-
sponding data collection goal is to evaluate the success of the developers in
meeting this goal, i.e., evaluate the ease with which the software can be
changed. Goals in this category may be of more interest to those who are in-
volved in developing or testing a particular methodology, and must be de-
fined cooperatively with them.
 A goal that is of interest regardless of the methodology being used is to
help understand the environment and focus attention on techniques that are
useful there. Another such goal is to characterize changes in ways that permit
comparisons across projects and environments. Such goals may interest
software engineers, programmers, managers, and others more than goals that
are specific to the success or failure of a particular methodology.
Consequences of Omitting Goals: Without goals, one is likely to obtain data
in which either incomplete patterns or no patterns are discernible. As an ex-
ample, one goal of an early study [15] was to characterize errors. During data
analysis, it became desirable to discover the fraction of errors that were the
result of changes made to the software for some reason other than to correct
an error. Unfortunately, none of the goals of the study was related to this
type of change, and there were no such data available.

 Victor R. Basili and David M. Weiss 76

2. Develop a List of Questions of Interest: Once the goals of the study have been
established, they may be used to develop a list of questions to be answered by
the study. Questions of interest define data parameters and categorizations
that permit quantitative analysis of the data. In general, each goal will result
in the generation of several different questions of interest. As an example, if
the goal is to characterize changes, some corresponding questions of interest
are: "What is the distribution of changes according to the reason for the
change?", "What is the distribution of changes across system components?",
"What is the distribution of effort to design changes?"
 As a second example, if the goal is to evaluate the ease with which soft-
ware can be changed, we may identify questions of interest such as: "Is it
clear where a change has to be made in the software?", "Are changes confined
to single modules?", "What was the average effort involved in making a
change?" Questions of interest form a bridge between subjectively determined
goals of the study and the quantitative measures to be used in the study. They
permit the investigators to determine the quantities that need to be measured
and the aspects of the goals that can be measured. As an example, to discover
how a design document is being used, one might collect data that show how
the document was being used when the need for a change to it was discov-
ered. This may be the only aspect of the document's use that is measurable.
 In addition to forcing sharper definition of goals, questions of interest have
the desirable property of forcing the investigators to consider the data analy-
ses to be performed before any data are collected.
 Goals for which questions of interest cannot be formulated and goals that
cannot be satisfied because adequate measures cannot be defined may be dis-
carded. Once formulated, questions can be evaluated to determine if they
completely cover their associated goals and if they define quantitative meas-
ures. Consequences of Omitting Questions of Interest: Without questions of
interest, data distributions that are needed for evaluation purposes, such as the
distribution of effort involved in making changes, may have to be constructed
in an ad hoc way, and be incomplete or inaccurate. As a result, there may be
no quantitative basis for satisfying the goals of the study. In effect, goals are
not well defined if questions of interest are not or cannot be formulated.

3. Establish Data Categories: Once the questions of interest have been estab-

lished, categorization schemes for the changes and errors to be examined may
be constructed. Each question generally induces a categorization scheme. If
one question is, "What was the distribution of changes according to the reason
for the change?", one will want to classify changes according to the reason
they are made. A simple categorization scheme of this sort is error corrections
versus no error corrections (hereafter called modifications).
 Each of these categories may be further subcategorized according to rea-
son. As an example, modifications could be subdivided into modifications re-
sulting from requirements changes, modifications resulting from a change in
the development support environment (e.g., compiler change), planned en-
hancements, optimizations, and others.

 A Methodology for Collecting Valid Software Engineering Data 77

 Such a categorization permits characterization of the changes with respect
to the stability of the development environment, with respect to different
kinds of development activities, etc. When matched with another categoriza-
tion such as the difficulty of making changes, this scheme also reveals which
changes are the most difficult to make.
 Each categorization scheme should be complete and consistent, i.e., every
change should fit exactly one of the subcategories of the scheme. To ensure
completeness, we usually add the category "Other" as a subcategory. Where
some changes are not suited to the scheme, the subcategory "Not Applicable"
may be used. As an example, if the scheme includes subcategories for differ-
ent levels of effort in isolating error causes, then errors for which the cause
need not be isolated (e.g., clerical errors noticed when reading code) belong in
the "Not Applicable" subcategory.
Consequences of Not Defining Data Categories Before Collecting Data:
Omitting the data categorization schemes may result in data that cannot later
be identified as fitting any particular categorization. Each change then defines
its own category, and the result is an overwhelming multiplicity of data cate-
gories, with little data in each category.

4. Design and Test Data Collection Form: To provide a permanent copy of the

data and to reinforce the programmers’ memories, a data collection form is
used. Form design was one of the trickiest parts of the studies conducted,
primarily because forms represent a compromise among conflicting objec-
tives. Typical conflicts are the desire to collect a complete, detailed set of data
that may be used to answer a wide range of questions of interest, and the need
to minimize the time and effort involved in supplying the data. Satisfying the
former leads to large, detailed forms that require much time to fill out. The
latter requires a short, check-off-the-boxes type of form.
 Including the data suppliers in the form design process is quite beneficial.
Complaints by those who must use the form are resolved early (i.e., before
data collection begins), the form may be tailored to the needs of the data sup-
pliers (e.g., for use in configuration management), and the data suppliers feel
they are a useful part of the data collection process.
 The forms must be constructed so that the data they contain can be used to
answer the questions of interest. Several design iterations and test periods are
generally needed before a satisfactory design is found.
Our principal goals in form design were to produce a form that

a) fit on one piece of paper,
b) could be used in several different programming environments, and
c) permitted the programmer some flexibility in describing the charge.

 Fig. 1 shows the last version of the form used for the SEL studies reported
here. (An earlier version of the form was significantly modified as a result of
experience gained in the data collection and analysis processes.) The first sec-
tions of the form request textual descriptions of the change and the reason it
was made. Following sections contain questions and check-off tables that re-
flect various categorization schemes.

 Victor R. Basili and David M. Weiss 78

 As an example, a categorization of time to design changes is requested in
the first question following the description of the change. The completer of
the form is given the choice of four categories (one hour or less, one hour to
one day, one day to three days, and more than three days) that cover all possi-
bilities for design time.
Consequences of Not Using a Data Collection Form: Without a data collec-
tion form, it is necessary to rely on the developer's memories and on perusal
of early versions of design documentation and code to identify and categorize
the changes made. This approach leads to incomplete, inaccurate data.

5. Collect and Validate Data: Data are collected by requiring those people who

are making software changes to complete a change report form for each
change made, as soon as the change is completed. Validation consists of
checking the forms for correctness, consistency, and completeness. As part of
the validation process, in cases where such checks reveal problems, the peo-
ple who filled out the forms are interviewed. Both collection and validation
are concurrent with software development; the shorter the lag between com-
pleting the form and conducting the interview, the more accurate the data.
 Perhaps the most significant problem during data collection and validation
is ensuring that the data are complete, i.e., that every change has been de-
scribed on a form. The better controlled the development process, the easier
this is to do. At each stage of the process where configuration control is im-
posed, change data may be collected. Where projects that we have studied use
formal configuration control, we have integrated the configuration control
procedures and the data collection procedures, using the same forms for both,
and taking advantage of configuration control procedures for validation pur-
poses. Since all changes must be reviewed by a configuration control board in
such cases, we are guaranteed capture of all changes, i.e., that our data are
complete. Furthermore, the data collection overhead is absorbed into the con-
figuration control overhead, and is not visible as a separate source of irritation
to the developers.
Consequences of Omitting Validation: One result of concurrent development,
data collection, and data validation is that the accuracy of the collection proc-
ess may be quantified. Accuracy may be calculated by observing the number
of mistakes made in completing data collection forms. One may then com-
pare, for any data category, revalidation distributions with post validation dis-
tributions. We call such an analysis a validation analysis. The validation
analysis of the SEL data shows that it is possible for inaccuracies on the order
of 50 percent to be introduced by omitting validation. To emphasize the con-
sequences of omitting the validation procedures, we present some of the re-
sults of the validation analysis of the SEL data in Section III.

 A Methodology for Collecting Valid Software Engineering Data 79

Fig. 1. SEL change report form. Front

 Victor R. Basili and David M. Weiss 80

Fig. 1. SEL change report form. Back

6. Analyze Data: Data are analyzed by calculating the parameters and distribu-
tions needed to answer the questions of interest. As an example, to answer the
question "What was the distribution of changes according to the reason for the

 A Methodology for Collecting Valid Software Engineering Data 81

change?", a distribution such as that shown in Fig. 2 might be computed from
the data.

Fig. 2. Sources of modifications.

Application of the Schema

Applying the schema requires iterating among the steps several times. Defining
the goals and establishing the questions of interest are tightly coupled, as are es-
tablishing the questions of interest designing and testing the form(s), and collect-
ing and validating the data. Many of the considerations involved in implementing
and integrating the steps of the schema have been omitted here so that the reader
may have an overview of the process. The complete set of goals, questions of in-
terest, and data categorizations for the SEL projects are shown in [33].

Support Procedures and Facilities

In addition to the activities directly involved in the data collection effort, here are
a number of support activities and facilities required. Included as support activities
are testing the forms, collection and validation procedures, training the program-
mers, selecting a database system to permit easy analysis of the data, encoding and
entering data into the database, and developing analysis programs.

 Victor R. Basili and David M. Weiss 82

III. Details of SEL Data Collection and Validation

In the SEL environment, program libraries were used to support and control soft-
ware development. There was a full-time librarian assigned to support SEL pro-
jects. All project library changes were routed through the librarian. In general, we
define a change to be an alteration to baseline design, code, or documentation. For
SEL purposes, only changes to code, and documentation contained in the code,
were studied. The program libraries provided a convenient mechanism for identi-
fying changes.
 Each time a programmer caused a library change, he was required to complete
a change report form (Fig. 1). The data presented here are drawn from studies of
three different SEL projects, denoted SEL1, SEL2, and SEL3. The processing
procedures were as follows.
1. Programmers were required to complete change report forms for all changes

made to library routines.
2. Programs were kept in the project library during the entire test phase.
3. After a change was made a completed change report form describing the

change was submitted. The form was first informally reviewed by the project
leader. It was then sent to the SEL library staff to be logged and a unique
identifier assigned to it.

4. The change analyst reviewed the form and noted any inconsistencies, omis-
sions, or possible miscategorizations. Any questions the analyst had were re-
solved in an interview with the programmer. (Occasionally the project leader
or system designer was consulted rather than the individual programmer.)

5. The change analyst revised the form as indicated by the results of the pro-
grammer interview, and returned it to the library staff for further processing.
Revisions often involved cases where several changes were reported on one
form. In these cases, the analyst ensured that there was only one change re-
ported per form; this often involved filling out new forms. Forms created in
this way are known as generated forms. (Changes were considered to be dif-
ferent if they were made for different reasons, if they were the result of differ-
ent events, or if they were made at substantially different times, e.g., several
weeks apart. As an example, two different requirements amendments would
result in two different change reports, even if the changes were made at the
same time in the same subroutine.) Occasionally, one change was reported on
several different forms. The forms were then merged into one form, again to
ensure one and only one change per form. Forms created in this way are
known as combined forms.

6. The library staff encoded the form for entry into the (automated) SEL data-
base. A preliminary, automated check of the form was made via a set of da-
tabase support programs. This check, mostly syntactic, ensured that the proper
kinds of values were encoded into the proper fields, e.g, that an alphabetic
character was not entered where an integer was required.

7. The encoded data were entered into the SEL database.

 A Methodology for Collecting Valid Software Engineering Data 83

8. The data were analyzed by a set of programs that computed the necessary dis-
tributions to answer the questions of interest.

 Many of the reported SEL changes were error corrections. We define an error
to be a discrepancy between a specification and its implementation. Although it
was not always possible to identify the exact location of an error, it was always
possible to identify exactly each error correction. As a result, we generally use the
term error to mean error correction.
 For data validation purposes, the most important parts of the data collection
procedure are the review by the change analyst, and the associated programmer in-
terview to resolve uncertainties about the data.
 The SEL validation procedures afforded a good chance to discover whether
valuation was really necessary; it was possible to count the number of miscatego-
rizations of changes and associated misinformation. These counts were obtained
by counting the number of times each question on the form was incorrectly an-
swered.
 An example is misclassifications of errors as clerical errors. (Clerical errors
were defined as errors that occur in the mechanical translation of an item from one
format to another, e.g., from one coding sheet to another, or from one medium to
another, e.g., coding sheets to cards.) For one of the SEL projects, 46 errors origi-
nally classified as clerical were actually errors of other types. (One of these con-
sisted of the programmer forgetting to include several lines of code in a subrou-
tine. Rather than clerical, this was classified as an error in the design or
implementation of a single component of the system.) Initially, this project re-
ported 238 changes, so we may say that about 19 percent of the original reports
were misclassified as clerical errors.
 The SEL validation process was not good for verifying the completeness of the
reported data. We cannot tell from the validation studies how many changes were
never reported. This weakness can be eliminated by integrating the data collection
with stronger configuration control procedures.

Validation Differences Among SEL Projects

As experience was gained in collecting, validating, and analyzing data for the SEL
projects, the quality of the data improved significantly, and the validation proce-
dures changed slightly. For SEL1 and SEL2, completed forms were examined and
programmers interviewed by a change analyst within a few weeks (typically 3-6
weeks) of the time the forms were completed. For project SEL2, the task leader
(lead programmer for the project) examined each form before the change analysts
saw it.
 Project SEL3 was not monitored as closely as SEL1 and SEL2. The task leader,
who was the same as for SEL2, by then understood the data categorization
schemes quite well and again examined the forms before sending them to the SEL.
The forms themselves were redesigned to be simpler but still capture nearly all the
same data. Finally, several of the programmers were the same as on project SEL2
and were experienced in completing the forms.

 Victor R. Basili and David M. Weiss 84

Estimating Inaccuracies in the Data

 Although there is no completely objective way to quantify the inaccuracy in the
validated data, we believe it to be no more than 5 percent for SKL1 and SEL2. By
this we mean that no more than 5 percent of the changes and errors are misclassi-
fied in any of the data collection categories. For the major categories, such as
whether a change is an error or modification, the type of change, and the type of
error, the inaccuracy is probably no more than 3 percent.
 For SEL3, we attempted to quantify the results of the validation procedures
more carefully. After validation, forms were categorized according to our confi-
dence in their accuracy. We used four categories.

1. Those forms for which we had no doubt concerning the accuracy of the data.
Forms in this category were estimated to have no more than a 1 percent
chance of inaccuracy.

2. Those forms for which there was little doubt about the accuracy of the data.
Forms in this category were estimated to have at most a 10 percent chance of
an inaccuracy.

3. Those forms for which there was some uncertainty about the accuracy, with
an estimated inaccuracy rate of more than 30 percent.

4. Those forms for which there was considerable uncertainty about the accuracy,
with an estimated inaccuracy rate of about 50 percent.

Applying the inaccuracy rates to the number of forms in each category gave us an
estimated inaccuracy of at most 3 percent in the validated forms for SEL3.

Prevalent Mistakes in Completing Forms

Clear patterns of mistakes and rnisclassifications in completing forms became evi-
dent during validation. As an example, programmers on projects SELI and SEL2
frequently included more than one change on one form. Often this was a result of
the programmers sending the changes to the library as a group.

Fig. 3. Corrected forms. Fig. 4. Generated forms.

 A Methodology for Collecting Valid Software Engineering Data 85

Comparative Validation Results

Fig. 3 provides an overview of the results of the validation process for the 3 SEL
projects. The percentage of original forms that had to be corrected as a result of
the validation process is shown. As an example, 32 percent of the originally com-
pleted change report forms for SEL3 were corrected as a result of validation. The
percentages are based on the number of original forms reported (since some forms
were generated, and some combined, the number of changes reported after valida-
tion is different than the number reported before validation). Fig. 4 shows the
number of generated forms expressed as a percentage of total validated forms.
 Fig. 3 shows that prevalidation SEL3 forms were significantly more accurate
than the prevalidation SELI or SEL2 forms. Fig. 4 shows that SEL3 also had the
lowest incidence of generated forms. Although not shown in the figures, combined
forms represented a very small fraction of the total validated forms. Based on this
analysis, the prevalidation SEL3 data are considerably better than the prevalida-
tion data for either of the other projects. We believe the reasons for this are the
improved design of the form and the familiarity of the task leader and program-
mers with the data collection process.
 These results show that careful validation, including programmer interviews, is
essential to the accuracy of any study involving change data. Furthermore, it ap-
pears that with well-designed forms and programmer training, there is improve-
ment with time in the accuracy of the data one can obtain. We do not believe that
it will ever be possible to dispense entirely with programmer interviews, however.

Erroneous Classifications

Table II shows misclassifications of errors as modifications and modifications as
errors. As an example, for SEL1, 14 percent of the original forms were classified
as modifications, but were actually errors. Without the validation process, consid-
erable inaccuracy would have been introduced into the initial categorization of
changes as modifications or errors.
 Table III is a sampling of other kinds of classification errors that could contrib-
ute significantly to inaccuracy in the data. All involve classification of an error
into the wrong subcategory. The first row shows errors that were classified by the
programmer as clerical, but were later reclassified as a result of the validation
process into another category. For SEL1, significant inaccuracy (19 percent)
would be introduced by omitting the validation process,
 Table IV is similar to Table III, but shows misclassifications involving modifi-
cations for SEL1 and SEL3 (SEL2 data were not analyzed for this purpose). The
first row shows modifications that were classified by the programmer as require-
ments or specifications changes, but were reclassified as a result of validation.

 Victor R. Basili and David M. Weiss 86

Variation in Misclassification

Data on misclassifications of change and error type subcategories, such as shown
in Table III, tend to vary considerably among both projects and subcategories.
(Misclassification of clerical errors, as shown in Table III, is a good example.)
This is most likely because the misclassifications represent biases in the judg-
ments of the programmers. It became clear during the validation process that cer-
tain programmers tended toward particular misclassifications.

Table II Erroneous Modification an Error Classifications
 (Percent of Original Forms)

 SEL 1 SEL 2 SEL 3

Modifications classified as errors 1% 5% < 1%

Errors classified as modifications 14% 5% 2%

Table III Typical Error Type Misclassifications (Percent of Original Forms)

Original Classification SEL 1 SEL 2 SEL 3

Clerical Error 19% 7% 6%

(Use of) Programming Language 0% 5% 3%

Incorrect or Misinterpreted Require-
ments

Unavailable 0% < 1%

Design Error Unavailable 6% 1%

Table IV Erroneous Modification Classifications (Percent of Original Forms)

 SEL 1 SEL 3

Requirements or specification change 1% < 1%

Design change 8% 1%

Optimization 8% < 1%

Other 3% < 1%

 The consistency between projects SEL2 and SEL3 in Table III probably occurs
because both projects had the same task leader, who screened all forms before
sending them to the SEL for validation.

Conclusions Concerning Validation

The preceding sections have shown that the validation process, particularly the
programmer interviews, are a necessary part of the data collection methodology.
Inaccuracies on the order of 50 percent may be introduced without this form of
validation. Furthermore, it appears that with appropriate form design and pro-
grammer experience in completing forms, the inaccuracy rate may be substantially
reduced, although it is doubtful that it can be reduced to the level where program-
mer interviews may be omitted from the validation procedures.

 A Methodology for Collecting Valid Software Engineering Data 87

 A second significant conclusion is that the analysis performed as part of the
validation process may be used to guide the data collection project; the analysis
results show what data can be reliably and practically collected, and what data
cannot be. Data collection goals, questions of interest, and data collection forms
may have to be revised accordingly.

IV. Recommendations for Data Collectors

We believe we now have sufficient experience with change data collection to be
able to apply it successfully in a wide variety of environments. Although we have
been able to make comparisons between the data collected in the two environ-
ments we have studied, we would like to make comparisons with a wider variety
of environments. Such comparisons will only be possible if more data become
available. To encourage the establishment of more data collection projects, we feel
it is important to describe a successful data collection methodology, as we have
done in the preceding sections, to point out the pitfalls involved, and to suggest
ways of avoiding those pitfalls.

Procedural Lessons Learned

Problems encountered in various procedural aspects of the studies were the most
difficult to overcome. Perhaps the most important are the following.
1. Clearly understanding the working environment and specifying the data col-

lection procedures were a key part of conducting the investigation. Misunder-
standing by the programmer of the circumstances that require him/her to file a
change report form will prejudice the entire effort. Prevention of such misun-
derstandings can in part be accomplished by training procedures and good
forms design, but feedback to the development staff, i.e., those filling out the
data collection forms, must not be omitted.

2. Similarly, misunderstanding by the change analyst of the circumstances that
required a change to be made will result in misclassifications and erroneous
analyses. Our SEL data collection was helped by the use of a change analyst
who had previously worked in the NASA environment and understood the
application and the development procedures used.

3. Timely data validation through interviews with those responsible for reporting
errors and changes was vital, especially during the first few projects to use the
forms. Without such validation procedures, data will be severely biased, and
the developers will not get the feedback to correct the procedures they are us-
ing for reporting data.

4. Minimizing the overhead imposed on the people who were required to com-
plete change reports was an important factor in obtaining complete and accu-
rate data. Increased overhead brought increased reluctance to supply and dis-
cuss data. In projects where data collection has been integrated with

 Victor R. Basili and David M. Weiss 88

configuration control, the visible data collection and validation overhead is
significantly decreased, and is no longer an important factor in obtaining
complete data. Because configuration control procedures for the SEL envi-
ronment were informal, we believe we did not capture all SEL changes.

5. In cases where an automated database is used, data consistency and accuracy
checks at or immediately prior to analysis are vital. Errors in encoding data
for entry into the database will otherwise bias the data.

Nonprocedural Lessons Learned

In addition to the procedural problems involved in designing and implementing a
data collection study, we found several other pitfalls that could have strongly af-
fected our results and their interpretation. They are listed in the following.
1. Perhaps the most significant of these pitfalls was the danger of interpreting

the results without attempting to understand factors in the environment that
might affect the data. As an example, we found a surprisingly small percent-
age of interface errors on all of the SEL projects. This was surprising since in-
terfaces are an often-cited source of errors. There was also other evidence in
the data that the software was quite amenable to change. In trying to under-
stand these results, we discussed them with the principal designer of the SEL
projects (all of which had the same application). It was clear from the discus-
sion that as a result of their experience with the application, the designers had
learned what changes to expect to their systems, organized the design so that
the expected changes would be easy to make, and then reused the design from
one project to the next. Rather than misinterpreting the data to mean that in-
terfaces were not a significant software problem, we were led to a better un-
derstanding of the environment we were studying.

2. A second pitfall was underestimating the resources needed to validate and
analyze the data. Understanding the change reports well enough to conduct
meaningful, efficient programmer interviews for validation purposes initially
consumed considerable amounts of the change analysts' time. Verifying that
the database was internally consistent, complete, and consistent with the pa-
per copies of reports was a continuing source of frustration and a sink for time
and effort.

3. A third potential pitfall in data collection is the sensitivity of the data. Pro-
grammers and designers sometimes need to be convinced that error data will
not be used against them. This did not seem to be a significant problem on the
projects studied for a variety of reasons, including management support,
processing of the error data by people independent of the project, identifying
error reports in the analysis process by number rather than name, informing
newly hired project personnel that completion of error reports was considered
part of their job, and high project morale. Furthermore, project management
did not need error data to evaluate performance.

4. One problem for which there is no simple solution is the Hawthorne (or ob-
server) effect [42]. When project personnel become aware that an aspect of

 A Methodology for Collecting Valid Software Engineering Data 89

their behavior is being monitored, their behavior will change. If error moni-
toring is a continuous, long-term activity that is part of the normal scheme of
software development, not associated with evaluation of programmer per-
formance, this effect may become insignificant. We believe this was the case
with the projects studied.

5. The sensitivity of error data is enhanced in an environment where develop-
ment is done on contract. Contractors may feel that such data are proprietary.
Rules for data collection may have to be contractually specified.

Avoiding Data Collection Pitfalls

In the foregoing sections a number of potential pitfalls in the data collection proc-
ess have been described. The following list includes suggestions that help avoid
some of these pitfalls.
1. Select change analysts who are familiar with the environment, application,

project, and development team.
2. Establish the goals of the data collection methodology and define the ques-

tions of interest before attempting any data collection. Establishing goals and
defining questions should be an iterative process performed in concert with
the developers. The developers' interests are then served as well as the data
collector's.

3. For initial data collection efforts, keep the set of data collection goals small.
Both the volume of data and the time consumed in gathering, validating, and
analyzing it will be unexpectedly large.

4. Design the data collection form so that it may be used for configuration con-
trol, so that it is tailored to the project(s) being studied, so that the data may
be used for comparison purposes, and so that those filling out the forms un-
derstand the terminology used. Conduct training sessions in filling out forms
for newcomers.

5. Integrate data collection and validation procedures into the configuration con-
trol process. Data completeness and accuracy are thereby improved, data col-
lection is unobtrusive, and collection and validation become a part of the
normal development procedures. In cases where configuration control is not
used or is informal, allocate considerable time to programmer interviews, and,
if possible, documentation search and code reading.

6. Automate as much of the data analysis process as possible.

Limitations

It has been previously noted that the main limitation of using a goal-directed data
collection approach in a production software environment is the inability to isolate
the effects of single factors. For a variety of reasons, controlled experiments that
may he used to test hypotheses concerning the effects of single factors do not

 Victor R. Basili and David M. Weiss 90

seem practical. Neither can one expect to use the change data from goal-directed
data collection to test such hypotheses.
 A second major imitation is that lost data cannot be accurately recaptured. The
data collected as a result of these studies represent five years of data collection.
During that time there was considerable and continuing consideration given to the
appropriate goals and questions of interest. Nonetheless, as data were analyzed it
became clear that there was information that was never requested but that would
have been useful. An example is the length of time each error remained in the sys-
tem. Programmers correcting their own errors, which was the usual case, can sup-
ply these data easily at the time they correct the error. Our attempts to discover er-
ror entry and removal times after the end of development were fruitless. (Error
entry times were particularly difficult to discover.) This type of example under-
scores the need for careful planning prior to the start of data collection.

Recommendations that May Be Provided to the Software Developer

The nature of the data collection methodology and its target environments do not
generally permit isolation of the effects of particular factors on the software de-
velopment process. The results cannot be used to prove that a particular factor in
the development process causes particular kinds of errors, but can be used to sug-
gest that certain approaches, when applied in the environment studied, will im-
prove the development process. The software developer may then be provided
with a set of recommended approaches for improving the software development
process in his environment.
 As an example, in the SEL environment neither external problems, such as re-
quirements changes, nor global problems, such as interface design and specifica-
tion, were significant. Furthermore, the development environment was quite sta-
ble. Most problems were associated with the individual programmer. The data
show that in the SEL environment it would clearly pay to impose more control on
the process of composing individual routines.

Conclusions Concerning Data Collection for Methodology Evaluation

Purposes

The data collection schema presented has been applied in two different environ-
ments. We have been able to draw the following conclusions as a result.
1. In all cases, it has been possible to collect data concurrently with the software

development process in a software production environment.
2. Data collection may be used to evaluate the application of a particular soft-

ware development methodology, or simply to learn more about the software
development process. In the former case, the better defined the methodology,
the more precisely the goals of the data collection may be stated.

3. The better controlled the development process, the more accurate and com-
plete the data.

 A Methodology for Collecting Valid Software Engineering Data 91

4. For all projects studied, it has been necessary to validate the data, including
interviews with the project developers.

5. As patterns are discerned in the data collected, new questions of interest
emerge. These questions may not be answerable with the available data, and
may require establishing new goals and questions of interest.

Motivations for Conducting Similar Studies

The difficulties involved in conducting large-scale controlled software engineering
experiments have as yet prevented evaluations of software development method-
ologies in situations where they are often claimed to work best. As a result, soft-
ware engineers must depend on less formal techniques that can be used in real
working environments to establish long-term trends. We view goal-oriented data
collection as one such technique and feel that more techniques, and many more re-
sults obtained by applying such techniques, are needed.

Acknowledgment

The authors thank the many people at NASA/GSFC and Computer Sciences Cor-
poration who filled out forms and submitted to interviews, especially J. Grondal-
ski and Dr. G. Page, and the librarians, especially S. DePriest.
 We thank Dr. J. Gannon, Dr. R. Meltzer, F. McGarry, Dr. G. Page, Dr. D. Par-
nas, Dr. J. Shore, and Dr. M. Zelkowitz for their many helpful suggestions.
 Deserving of special mention is F. McGarry, who had sufficient foresight and
confidence to sponsor much of this work and to offer his projects for study.

References

[1] B. Boehm et al., Information Processing/Data Automation Implications of Air Force

Command and Control Requirements in the 1980's (CCIP-85), Space and Missile Syst.
Org., Los Angeles, CA, Feb. 1972.

[2] B. Boehm, "Software and its impact: A quantitative assessment," Datamation, vol. 19,
pp. 48-59, May 1973.

[3] R. Wolverton, "The cost of developing large scale software," IEEE Trans. Comput., vol.
C-23, no. 6, 1974.

[4] T. Bell, D. Bixler, and M. Dyer, "An extendable approach to computer-aided software
requirements engineering," IEEE Trans. Software Eng., vol. SE-3, pp. 49-60, Jan.
1977.

[5] A. Ambler, D. Good, J. Browne, et al., "GYPSY: A language for specification and im-
plementation of verifiable programs," in Proc. ACM Conf. Language Design for Reli-

able Software, Mar. 1977, pp. 1-10.
[6] Z. Manna and R. Waldinger, "Synthesis: Dreams => programs, IEEE Trans. Software

Eng., vol. SE-5, pp. 294-329, July 1979.

 Victor R. Basili and David M. Weiss 92

[7] K. Heninger, "Specifying requirements for complex systems: New techniques and their
application," IEEE Trans. Software Eng., vol. SE-6, pp. 2-13, Jan. 1980.

[8] D. L. Parnas, "A technique for software module specification with examples," Commun.

Ass. Comput. Mach., vol. 15, pp. 330-336, May 1972.
[9] J. Guttag, "The specification and application to programming of abstract data types,"

Comput. Syst. Res. Group, Dep. Comput. Sci., Univ. Toronto, Ont., Canada, Rep.
CSRG-59, 1975.

[10] —, "Abstract data types and the development of data structures," Commun. Ass. Com-

put. Mach., vol. 20, pp. 396-404, June 1976.
[11] B. Liskov and S. Zilles, "Specification techniques for data abstraction," IEEE Trans.

Software Eng., vol. SE-1, pp. 7-19, Mar.1975.
[12] H. Mills, R. Linger, and B. Witt, Structured Programming Theory and Practice. Read-

ing, MA: Addison-Wesley, 1979.
[13] S. Caine and E. Gordon, "PDL-A tool for software design," in Proc. Nat. Comput.

Conf., 1975, pp. 271-276.
[14] H. Elovitz, "An experiment in software engineering: The architecture research facility

as a case study," in Proc. 4th Int. Conf. Software Eng., 1579, pp. 145-152.
[15] D. Weiss, "Evaluating software development by error analysis: The data from the ar-

chitecture research facility," J. Syst. Software, vol. 1, pp. 57-70,1979.
[16] E. W. Dijkstra, A Discipline of Programming. Englewood Cliffs, NJ: Prentice-Hall,

1976.
[17] R. W. Floyd, "Assigning meanings to programs," in Proc. XIX Symp. Appl. Math.,

Amer. Math. Soc., 1967, pp. 19-32.
[18] C. A. R. Hoare, "An axiomatic basis for computer programming," Commun. Ass.

Comput. Mach., vol. 12, pp. 576-580, Oct. 1969.
[19] F. Baker, "Chief programmer team management of production programming," IBM

Syst. J., vol. 11, no. 1, pp. 56-73,1972.
[20] E. W. Dijkstra, "Notes on structured programming," in Structured Programming. Lon-

don, England: Academic, 1972.
[21] D. E. Knuth, "Structured programming with go to statements," Comput. Surveys, vol.

6, pp. 261-301, Dec. 1974.
[22] H. Mills, "Chief programmer teams: Principles and procedures," IBM Fed. Syst. Div.,

FSC 71-5108,1971.
[23] —, "Mathematical foundations for structured programming," IBM Fed. Syst. Div.,

FSC 72-6012,1972
[24] N. Wirth, "Program development by stepwise refinement," Commun. Ass. Comput.

Mach., vol. 14, pp. 221-227, Apr. 1971.
[25] E. Satterthwaite, "Debugging tools for high-level languages," Software—Practice and

Exp., vol. 2, pp. 197-217, July-Sept.1972.
[26] W. Howden, "Theoretical and empirical studies of program testing," in Proc. 3rd Int.

Conf. Software Eng., May 1978, pp. 305-310.
[27] J. Goodenough and S. Gerhart, "Toward a theory of test data selection," in Proc. Int.

Conf. Reliable Software, 1975, pp. 493-510.
[28] J. Gannon, "Language design to enhance programming reliability," Comput. Syst. Res.

Group, Dep. Comput. Sci., Univ. Toronto, Toronto, Ont., Canada, Rep. CSRG-47,
1975.

[29] J. Gannon and Horning, "Language design for programming reliability," IEEE Trans.

Software Eng., vol. SE-1, June 1975.
[30] C. A. R. Hoare and N. Wirth, "An axiomatic definition of the programming language

Pascal," Acta Inform., vol. 2, pp. 335-355, 1973.

 A Methodology for Collecting Valid Software Engineering Data 93

[31] K. Jensen and N. Wirth, Pascal User Manual and Report, 2nd ed. New York:
Springer-Verlag, 1974.

[32] V. Basili and D. Weiss, "Evaluation of a software requirements document by analysis
of change data," in Proc. 5th Int. Conf. Software Eng., Mar. 1981, pp. 314-323.

[33] D. Weiss, "Evaluating software development by analysis of change data," Comput.
Sci. Cen., Univ. Maryland, College Park, Rep. TR-1120, Nov. 1981.

[34] L. Chmura and E. Weiss, "Evaluation of the A-7E software requirements document by
analysis of changes: Three years of data, presented at NATO AGARD Avionics Symp.,
Sept. 1982.

[35] V. Basili and D. Weiss, "Evaluating software development by analysis of changes:
Some data from the Software Engineering Laboratory," IEEE Trans. Software Eng., to
be published.

[36] V. Basili, M. Zelkowitz, F. McGarry, et al., "The Software Engineering Laboratory,"
Univ. Maryland, College Park, Rep.TR-535, May 1977.

[37] B. Boehm, "An experiment in small-scale application software engineering," TRW,
Rep. TRW-SS-80-01,1980.

[38] A. Endres, "Analysis and causes of errors in systems programs”, in Proc. Int. Conf.

Reliable Software, 1975, pp. 327-336.
[39] G. Miller, 'The magical number seven, plus or minus two: Some limits on our capacity

for processing information," Psychol. Rev., vol. 63, pp. 81-97, Mar. 1956.
[40] J. Bailey and V. Basili, "A meta-model for software development resource expendi-

tures," in Proc. 5th Int. Conf. Software Eng., Mar. 1981, pp. 107-116.
[41] D. L. Parnas, "On the criteria to be used in decomposing systems into modules,"

Commun. Ass. Comput. Mach., vol. 15, pp. 1053-1058, Dec. 1972.
[42] J. Brown, The Social Psychology of Industry. Baltimore, MD: Penguin, 1954.

The TAME Project:

Towards Improvement-Oriented
Software Environments

Victor R. Basili, senior member, IEEE, and H. Dieter Rombach

Abstract Experience from a dozen years of analyzing software engineer-
ing processes and products is summarized as a set of software engineering
and measurement principles that argue for software engineering process
models that integrate sound planning and analysis into the construction
process. In the TAME (Tailoring A Measurement Environment) project at
the University of Maryland we have developed such an improvement-
oriented software engineering process model that uses the
goal/question/metric paradigm to integrate the constructive and analytic
aspects of software development. The model provides a mechanism for
formalizing the characterization and planning tasks, controlling and im-
proving projects based on quantitative analysis, learning in a deeper and
more systematic way about the software process and product, and feeding
the appropriate experience back into the current and future projects. The
TAME system is an instantiation of the TAME software engineering
process model as an ISEE (Integrated Software Engineering Environ-
ment). The first in a series of TAME system prototypes has been developed.
An assessment of experience with this first limited prototype is presented
including a reassessment of its initial architecture. The long-term goal of
this building effort is to develop a better understanding of appropriate
ISEE architectures that optimally support the improvement-oriented
TAME software engineering process model.

Key Words: Characterization, execution, experience, feedback, formalizing,
goal/question/metric paradigm, improvement paradigm, integrated software engineering
environments, integration of construction and analysis, learning, measurement, planning,
quantitative analysis, software engineering process models, tailoring, TAME project,
TAME system.

Manuscript received January 15, 1988. This work was supported in part by NASA under
Grant NSG-5123, the Air Force Office of Scientific Research under Grant F49620-87-0130,
and the Office of Naval Research under Grant N00014-85-K-0633 to the University of
Maryland. Computer time was provided in part through the facilities of the Computer Sci-
ence Center of the University of Maryland.

The authors are with the Department of Computer Science and the Institute for Ad-
vanced Computer Studies, University of Maryland, College Park, MD 20742.

 The TAME Project 95

I. Introduction

EXPERIENCE from a dozen years of analyzing software engineering processes
and products is summarized as a set of ten software engineering and fourteen
measurement principles. These principles imply the need for software engineering
process models that integrate sound planning and analysis into the construction
process.
 Software processes based upon such improvement-oriented software engineer-

ing process models need to be tailorable and tractable. The tailorability of a proc-
ess is the characteristic that allows it to be altered or adapted to suit a set of special
needs or purposes [64]. The software engineering process requires tailorability be-
cause the overall project execution model (life cycle model), methods and tools
need to be altered or adapted for the specific project environment and the overall
organization. The tractability of a process is the characteristic that allows it to be
easily planned, taught, managed, executed, or controlled [64]. Each software engi-
neering process requires tractability because it needs to be planned, the various
planned activities of the process need to be communicated to the entire project
personnel, and the process needs to be managed, executed, and controlled accord-
ing to these plans. Sound tailoring and tracking require top-down measurement
(measurement based upon operationally defined goals). The goal of a software en-

gineering environment (SEE) should be to support such tailorable and tractable
software engineering process models by automating as much of them as possible.
In the TAME (Tailoring a Measurement Environment) project at the University of
Maryland we have developed an improvement-oriented software engineering
process model. The TAME system is an instantiation of this TAME software engi-
neering process model as an ISEE (Integrated SEE).
 It seems appropriate at this point to clarify some of the important terms that
will be used in this paper. The term engineering comprises both development and
maintenance. A software engineering project is embedded in some project envi-

ronment (characterized by personnel, type of application, etc.) and within some
organization (e.g., NASA, IBM). Software engineering within such a project envi-
ronment or organization is conducted according to an overall software engineering
process model (one of which will be introduced in Section II-B-3). Each individ-
ual software project in the context of such a software engineering process model is
executed according to some execution model (e.g., waterfall model [28], [58], it-
erative enhancement model [24], spiral model [30]) supplemented by techniques

(methods, tools). Each specific instance of (a part of) an execution model together
with its supplementing methods and tools is referred to as execution process (in-
cluding the construction as well as the analysis process). In addition, the term
process is frequently used as a generic term for various kinds of activities. We dis-
tinguish between constructive and analytic methods and tools. Whereas construc-
tive methods and tools are concerned with building products, analytic method and
tools are concerned with analyzing the constructive process and the resulting
products. The body of experience accumulated within a project environment or
organization is referred to as experience base. There exist at least three levels of

 Victor R. Basili and H. Dieter Rombach 96

formalism of such experience bases: database (data being individual products or
processes), information base (information being data viewed through some super-
imposed structure), and knowledge base (knowledge implying the ability to derive
new insights via deduction rules). The project personnel are categorized as either
engineers (e.g., designers, coders, testers) or managers.
 This paper is structured into a presentation and discussion of the improvement-
oriented software engineering process model underlying the TAME project (Sec-
tion II), its automated support by the TAME system (Section III), and the first
TAME system prototype (Section IV). In the first part of this paper we list the
empirically derived lessons learned (Section II-A) in the form of software engi-
neering principles (Section II-A-1), measurement principles (Section II-A-2), and
motivate the TAME project by stating several implications derived from those
principles (Section II-A-3). The TAME project (Section II-B) is presented in terms
of the improvement paradigm (Section II-B-1), the goal/question/metric paradigm
as a mechanism for formalizing the improvement paradigm (Section II-B-2), and
the TAME project model as an instantiation of both paradigms (Section II-B-3). In
the second part of this paper we introduce the TAME system as an approach to
automatically supporting the TAME software engineering process model (Section
III). The TAME system is presented in terms of its requirements (Section III-A)
and architecture (Section III-B). In the third part of this paper, we introduce the
first TAME prototype (Section IV) with respect to its functionality and our first
experiences with it.

II. Software Engineering Process

Our experience from measuring and evaluating software engineering processes
and products in a variety of project environments has been summarized in the
form of lessons learned (Section II-A). Based upon this experience the TAME
project has produced an improvement-oriented process model (Section II-B).

A. Lessons Learned from Past Experience

We have formulated our experience as a set of software engineering principles
(Section II-A-1) and measurement principles (Section II-A-2). Based upon these
principles a number of implications for sound software engineering process mod-
els have been derived (Section II-A-3).

1) Software Engineering Principles: The first five software engineering principles
address the need for developing quality a priori by introducing engineering disci-
pline into the field of software engineering:
 (PI) We need to clearly distinguish between the role of constructive and ana-
lytic activities. Only improved construction processes will result in higher quality
software. Quality cannot be tested or inspected into software. Analytic processes

 The TAME Project 97

(e.g., quality assurance) cannot serve as a substitute for constructive processes but
will provide control of the constructive processes [27], [37], [61].
 (P2) We need to formalize the planning of the construction process in order to
develop quality a priori [3], [16], [19], [25]. Without such plans the trial and error
approach can hardly be avoided.
 (P3) We need to formalize the analysis and improvement of construction proc-
esses and products in order to guarantee an organized approach to software engi-
neering [3], [25].
 (P4) Engineering methods require analysis to determine whether they are being
performed appropriately, if at all. This is especially important because most of
these methods are heuristic rather than formal [42], [49], [66].
 (P5) Software engineers and managers need real-time feedback in order to im-
prove the construction processes and products of the ongoing project. The organi-
zation needs post-mortem feedback in order to improve the construction processes
and products for future projects [66]. The remaining five software engineering
principles address the need for tailoring of planning and analysis processes due to
changing needs from project to project and environment to environment:
 (P6) All project environments and products are different in some way [2], [66].
These differences must be made explicit and taken into account in the software
execution processes and in the product quality goals [3], [16], [19], [25].
 (P7) There are many execution models for software engineering. Each execu-
tion model needs to be tailored to the organization and project needs and charac-
teristics [2], [13], [16], [66].
 (P8) We need to formalize the tailoring of processes toward the quality and
productivity goals of the project and the characteristics of the project environment
and the organization [16]. It is not easy to apply abstractly defined methods to
specific environments.
 (P9) This need for tailoring does not mean starting from scratch each time. We
need to reuse experience, but only after tailoring it to the project [1], [2], [6], [7],
[18], [32].
 (P10) Because of the constant need for tailoring, management control is crucial
and must be flexible. Management needs must be supported in this software engi-
neering process.
 A more detailed discussion of these software engineering principles is con-
tained in [17].

2) Software Measurement Principles: The first four measurement principles ad-
dress the purpose of the measurement process, i.e., why should we measure, what
should we measure, for whom should we measure:
 (Ml) Measurement is an ideal mechanism for characterizing, evaluating, pre-
dicting, and providing motivation for the various aspects of software construction
processes and products [3], [4], [9], [16], [21], [25], [48], [56], [57]. It is a com-
mon mechanism for relating these multiple aspects.
 (M2) Measurements must be taken on both the software processes and the
various software products [1], [5], [14], [29], [38], [40], [42]-[44], [47], [54]-[56],

 Victor R. Basili and H. Dieter Rombach 98

[65], [66]. Improving a product requires understanding both the product and its
construction processes.
 (M3) There are a variety of uses for measurement. The purpose of measure-
ment should be clearly stated. We can use measurement to examine cost effective-
ness, reliability, correctness, maintainability, efficiency, user friendliness, etc.
[8]-[10], [13], [14], [16], [20], [23], [25], [41], [53], [57], [61].
 (M4) Measurement needs to be viewed from the appropriate perspective. The
corporation, the manager, the developer, the customer's organization and the
user each view the product and the process from different perspectives. Thus
they may want to know different things about the project and to different levels
of detail [3], [16], [19], [25], [66].
 The remaining ten measurement principles address metrics and the overall
measurement process. The first two principles address characteristics of metrics
(i.e., what kinds of metrics, how many are needed), while the latter eight address
characteristics of the measurement process (i.e., what should the measurement
process look like, how do we support characterization, planning, construction,
and learning and feedback):
 (M5) Subjective as well as objective metrics are required. Many process,
product and environment aspects can be characterized by objective metrics (e.g.,
product complexity, number of defects or effort related to processes). Other as-
pects cannot be characterized objectively yet (e.g., experience of personnel, type
of application, understandability of processes and products); but they can at least
be categorized on a quantitative (nominal) scale to a reasonable degree of ac-
curacy [4], [5], [16], [48], [56].
 (M6) Most aspects of software processes and products are too complicated to
be captured by a single metric. For both definition and interpretation purposes, a
set of metrics (a metric vector) that frame the purpose for measurement needs to
be defined [9].
 (M7) The development and maintenance environments must be prepared for
measurement and analysis. Planning is required and needs to be carefully inte-
grated into the overall software engineering process model. This planning proc-
ess must take into account the experimental design appropriate for the situation
[3], [14], [19], [22], [66].
 (M8) We cannot just use models and metrics from other environments as de-
fined. Because of the differences among execution models (principle P7), the
models and metrics must be tailored for the environment in which they will be ap-
plied and checked for validity in that environment [2], [6]-[8], [12], [23], [31],
[40], [47], [50], [51], [62].
 (M9) The measurement process must be top-down rather than bottom-up
in order to define a set of operational goals, specify the appropriate metrics,
permit valid contextual interpretation and analysis, and provide feedback for tai-
lorability and tractability [3], [16], [19], [25].
 (M10) For each environment there exists a characteristic set of metrics that
provides the needed information for definition and interpretation purposes [21].
 (M1l) Multiple mechanisms are needed for data collection and validation.
The nature of the data to be collected (principle M5) determines the appropriate

 The TAME Project 99

mechanisms [4], [25], [48], e.g., manually via forms or interviews, or auto-
matically via analyzers.
 (Ml2) In order to evaluate and compare projects and to develop models we
need a historical experience base. This experience base should characterize the
local environment [4], [13], [25], [34], [44], [48].
 (Ml3) Metrics must be associated with interpretations, but these interpretations
must be given in context [3], [16], [19], [25], [34], [56].
 (M14) The experience base should evolve from a database into a knowledge
base (supported by an expert system) to formalize the reuse of experience [11],
[14].
 A more detailed discussion of these measurement principles is contained in
[17].

3) Implications: Clearly this set of principles is not complete. However, these
principles provide empirically derived insight into the limitations of traditional
process models. We will give some of the implications of these principles with
respect to the components that need to be included in software process models,
essential characteristics of these components, the interaction of these compo-
nents, and the needed automated support. Although there is a relationship be-
tween almost all principles and the derived implications, we have referenced for
each implication only those principles that are related most directly.
 Based upon our set of principles it is clear that we need to better understand the
software construction process and product (e.g., principles P1, P4, P6, M2, M5,
M6, M8, M9, M10, M12). Such an understanding will allow us to plan what we
need to do and improve over our current practices (e.g., principles P1, P2, P3,
P7, P8, M3, M4, M7, M9, M14). To make those plans operational, we need to
specify how we are going to affect the construction processes and their analysis
(e.g., principles P1, P2, P3, P4, P7, P8, M7, M8, M9, M14). The execution of
these prescribed plans involves the construction of products and the analysis of
the constructive processes and resulting products (e.g., principles P1, P7).
 All these implications need to be integrated in such a way that they allow for
sound learning and feedback so that we can improve the software execution
processes and products (e.g., principles P1, P3, P4, P5, P9, P10, M3, M4, M9,
M12, M13, M14). This interaction requires the integration of the constructive and
analytic aspects of the software engineering process model (e.g., principles P2,
M7, M9).
 The components and their interactions need to be formalized so they can be
supported properly by an ISEE (e.g., principles P2, P3, P8, P9, M9). This for-
malization must include a structuring of the body of experience so that charac-
terization, planning, learning, feedback, and improvement can take place (e.g.,
principles P2, P3, P8, P9, M9). An ideal mechanism for supporting all of these
components and their interactions is quantitative analysis (e.g., principles P3,
P4, Ml, M2, M5, M6, M8, M9, M10, M11, M13).

 Victor R. Basili and H. Dieter Rombach 100

B. A Process Model: The TAME Project

The TAME (Tailoring A Measurement Environment) project at the University of
Maryland has produced a software engineering process model (Section II-B-3)
based upon our empirically derived lessons learned. This software engineering
process model is based upon the improvement (Section II-B-1) and
goal/question/metric paradigms (Section II-B-2).

1) Improvement Paradigm: The improvement paradigm for software engineering
processes reflects the implications stated in Section II-A-3. It consists of six major
steps [3]:
 (I1) Characterize the current project environment.
 (I2) Set up goals and refine them into quantifiable questions and metrics for
successful project performance and improvement over previous project perform-
ances.
 (I3) Choose the appropriate software project execution model for this project
and supporting methods and tools.
 (I4) Execute the chosen processes and construct the products, collect the pre-
scribed data, validate it, and provide feedback in real-time.
 (I5) Analyze the data to evaluate the current practices, determine problems, re-
cord the findings, and make recommendations for improvement.
 (I6) Proceed to Step I1 to start the next project, armed with the experience
gained from this and previous projects.
 This paradigm is aimed at providing a basis for corporate learning and im-
provement. Improvement is only possible if we a) understand what the current
status of our environment is (step I1), b) state precise improvement goals for the
particular project and quantify them for the purpose of control (step I2), c) choose
the appropriate process execution models, methods, and tools in order to achieve
these improvement goals (step I3), execute and monitor the project performance
thoroughly (step I4), and assess it (step I5). Based upon the assessment results we
can provide feedback into the ongoing project or into the planning step of future
projects (steps I5 and I6).

2) Goal/Question/Metric Paradigm: The goal/question/metric (GQM) paradigm is
intended as a mechanism for formalizing the characterization, planning, construc-
tion, analysis, learning and feedback tasks. It represents a systematic approach for
setting project goals (tailored to the specific needs of an organization) and defin-
ing them in an operational and tractable way. Goals are refined into a set of quan-
tifiable questions that specify metrics. This paradigm also supports the analysis
and integration of metrics in the context of the questions and the original goal.
Feedback and learning are then performed in the context of the GQM paradigm.
 The process of setting goals and refining them into quantifiable questions is
complex and requires experience. In order to support this process, a set of tem-

plates for setting goals, and a set of guidelines for deriving questions and metrics
has been developed. These templates and guidelines reflect our experience from
having applied the GQM paradigm in a variety of environments (e.g., NASA [4],

 The TAME Project 101

[17], [48], IBM [60], AT&T, Burroughs [56], and Motorola). We received addi-
tional feedback from Hewlett Packard where the GQM paradigm has been used
without our direct assistance [39]. It needs to be stressed that we do not claim that
these templates and guidelines are complete; they will most likely change over
time as our experience grows. Goals are defined in terms of purpose, perspective
and environment. Different sets of guidelines exist for defining product-related
and process-related questions. Product-related questions are formulated for the
purpose of defining the product (e.g., physical attributes, cost, changes, and de-
fects, context), defining the quality perspective of interest (e.g., reliability, user
friendliness), and providing feedback from the particular quality perspective.
Process-related questions are formulated for the purpose of defining the process
(quality of use, domain of use), defining the quality perspective of interest (e.g.,
reduction of defects, cost effectiveness of use), and providing feedback from the
particular quality perspective.

• Templates/Guidelines for Goal Definition:

 Purpose: To (characterize, evaluate, predict, motivate, etc.) the (process, prod-
uct, model, metric, etc.) in order to (understand, assess, manage, engineer, learn,
improve, etc.) it.
Example: To evaluate the system testing methodology in order to improve it.
 Perspective: Examine the (cost, effectiveness, correctness, defects, changes,
product metrics, reliability, etc.) from the point of view of the (developer, man-
ager, customer, corporate perspective, etc.)
Example: Examine the effectiveness from the developer's point of view.
 Environment: The environment consists of the following: process factors, peo-
ple factors, problem factors, methods, tools, constraints, etc.
Example: The product is an operating system that must fit on a PC, etc.

• Guidelines for Product-Related Questions:

For each product under study there are three major sub goals that need to be ad-
dressed: 1) definition of the product, 2) definition of the quality perspectives of in-
terest, and 3) feedback related to the quality perspectives of interest.
 Definition of the product includes questions related to physical attributes (a
quantitative characterization of the product in terms of physical attributes such as
size, complexity, etc.), cost (a quantitative characterization of the resources ex-
pended related to this product in terms of effort, computer time, etc.), changes and

defects (a quantitative characterization of the errors, faults, failures, adaptations,
and enhancements related to this product), and context (a quantitative characteri-
zation of the customer community using this product and their operational pro-
files).
 Quality perspectives of interest includes, for each quality perspective of interest
(e.g., reliability, user friendliness), questions related to the major model(s) used (a
quantitative specification of the quality perspective of interest), the validity of the

 Victor R. Basili and H. Dieter Rombach 102

model for the particular environment (an analysis of the appropriateness of the
model for the particular project environment), the validity of the data collected (an
analysis of the quality of data), the model effectiveness (a quantitative characteri-
zation of the quality of the results produced according to this model), and a sub-

stantiation of the model (a discussion of whether the results are reasonable from
various perspectives).
 Feedback includes questions related to improving the product relative to the

quality perspective of interest (a quantitative characterization of the product qual-
ity, major problems regarding the quality perspective of interest, and suggestions
for improvement during the ongoing project as well as during future projects).

• Guidelines for Process-Related Questions

For each process under study, there are three major sub goals that need to be ad-
dressed: 1) definition of the process, 2) definition of the quality perspectives of in-
terest, and 3) feedback from using this process relative to the quality perspective
of interest.
 Definition of the process includes questions related to the quality of use (a
quantitative characterization of the process and an assessment of how well it is
performed), and the domain of use (a quantitative characterization of the object to
which the process is applied and an analysis of the process performer's knowledge
concerning this object).
 Quality perspectives of interest follows a pattern similar to the corresponding
product-oriented sub goal including, for each quality perspective of interest (e.g.,
reduction of defects, cost effectiveness), questions related to the major model (s)

used, and validity of the model for the particular environment, the validity of the

data collected, the model effectiveness and the substantiation of the model).
 Feedback follows a pattern similar to the corresponding product-oriented sub
goal.

• Guidelines for Metrics, Data Collection, and Interpretation:

The choice of metrics is determined by the quantifiable questions. The guidelines
for questions acknowledge the need for generally more than one metric (principle
M6), for objective and subjective metrics (principle M5), and for associating in-
terpretations with metrics (principle Ml3). The actual GQM models generated
from these templates and guidelines will differ from project to project and organi-
zation to organization (principle M6). This reflects their being tailored for the dif-
ferent needs in different projects and organizations (principle M4). Depending on
the type of each metric, we choose the appropriate mechanisms for data collection
and validation (principle M11). As goals, questions and metrics provide for tracta-
bility of the (top-down) definitional quantification process, they also provide for
the interpretation context (bottom-up). This integration of definition with interpre-
tation allows for the interpretation process to be tailored to the specific needs of an
environment (principle M8).

 The TAME Project 103

3) Improvement-Oriented Process Model: The TAME software engineering proc-
ess model is an instantiation of the improvement paradigm. The GQM paradigm
provides the necessary integration of the individual components of this model. The
TAME software engineering process model explicitly includes components for
(Cl) the characterization of the current status of a project environment, (C2) the
planning for improvement integrated into the execution of projects, (C3) the exe-
cution of the construction and analysis of projects according to the project plans,
and (C4) the recording of experience into an experience base. The learning and
feedback mechanism (C5) is distributed throughout the model within and across
the components as information flows from one component to another. Each of
these tasks must be dealt with from a constructive and analytic perspective. Fig. 1
contains a graphical representation of the improvement-oriented TAME process
model. The relationships (arcs) among process model components in Fig. 1 repre-
sent information flow.
 (Cl) Characterization of the current environment is required to understand the
various factors that influence the current project environment. This task is impor-
tant in order to define a starting point for improvement. Without knowing where
we are, we will not be able to judge whether we are improving in our present pro-
ject. We distinguish between the constructive and analytic aspects of the charac-
terization task to emphasize that we not only state the environmental factors but
analyze them to the degree possible based upon data and other forms of informa-
tion from prior projects. This characterization task needs to be formalized.
 (C2) Planning is required to understand the project goals, execution needs, and
project focus for learning and feedback. This task is essential for disciplined soft-
ware project execution (i.e., executing projects according to precise specifications
of processes and products). It provides the basis for improvement relative to the
current status determined during characterization. In the planning task, we distin-
guish between the constructive and analytic as well as the "what" and "how" as-
pects of planning. Based upon the GQM paradigm all these aspects are highly in-
terdependent and performed as a single task. The development of quantitatively
analyzable goals is an iterative process. However, we formulate the four planning
aspects as four separate components to emphasize the differences between creat-
ing plans for development and making those plans analyzable, as well as between
stating what it is you want to accomplish and stating how you plan to tailor the
processes and metrics to do it.
 (C2.1) "What" Planning deals with choosing, assigning priorities, and opera-
tionally defining, to the degree possible, the project goals from the constructive
and analytic perspectives. The actual goal setting is an instantiation of the front-
end of the GQM paradigm (the templates/guidelines for goal definition). The con-
structive perspective addresses the definition of project goals such as on-time de-
livery, the appropriate functionality to satisfy the user, and the analysis of the exe-
cution processes we are applying. Some of these goals might be stated as
improvement goals over the current state-of-the-practice as characterized in com-
ponent Cl. These goals should be prioritized and operationally defined to the ex-
tent possible without having chosen the particular construction models, methods
and tools yet. The analytic perspective addresses analysis procedures for monitor-

 Victor R. Basili and H. Dieter Rombach 104

ing and controlling whether the goals are met. This analytic goal perspective
should prescribe the necessary learning and feedback paths. It should be opera-
tionally defined to the extent allowed by the degree of precision of the construc-
tive goal perspective.

Fig. 1. The improvement-oriented TAME software process model.

 (C2.2) "How" Planning is based upon the results from the "what" planning
(providing for the purpose and perspective of a goal definition according to the
GQM paradigm front-end) and the characterization of the environment (providing
for the environment part of a goal definition according to the GQM paradigm
front-end). The "how" planning involves the choice of an appropriately tailored
execution model, methods and tools that permit the building of the system in such
a way that we can analyze whether we are achieving our stated goals. The particu-
lar choice of construction processes, methods and tools (component C2.2.1) goes
hand in hand with fine-tuning the analysis procedures derived during the analytic
perspective of the "what" planning (component C2.2.2).
 (C2.2.1) Planning for construction includes choosing the appropriate execution
model, methods and tools to fulfill the project goals. It should be clear that effec-
tive planning for construction depends on well-defined project goals from both the
constructive and analytic perspective (component C2.1).
 (C2.2.2) Planning for analysis addresses the fine-tuning of the operational defi-
nition of the analytic goal perspective (derived as part of component C2.1) to-
wards the specific choices made during planning for construction (C2.2.1). The
actual planning for analysis is an instantiation of the back-end of the GQM para-
digm; details need to be filled in (e.g., quantifiable questions, metrics) based upon
the specific methods and tools chosen.

 The TAME Project 105

 (C3) Execution must integrate the construction (component C3.1) with the
analysis (component C3.2). Analysis (including measurement) cannot be an add-
on but must be part of the execution process and drive the construction. The exe-
cution plans derived during the planning task are supposed to provide for the re-
quired integration of construction and analysis.
 (C4) The Experience Base includes the entire body of experience that is ac-
tively available to the project. We can characterize this experience according to
the following dimensions: a) the degree of precision/detail, and b) the degree to
which it is tailored to meet the specific needs of the project (context). The preci-
sion/detail dimension involves the level of detail of the experimental design and
the level and quality of data collected. On one end of the spectrum we have de-
tailed objective quantitative data that allows us to build mathematically tractable
models. On the other end of the spectrum we have interviews and qualitative in-
formation that provide guidelines and "lessons learned documents", and permit the
better formulation of goals and questions. The level of precision and detail affects
our level of confidence in the results of the experiment as well as the cost of the
data collection process. Clearly priorities play an important role here. The context
dimension involves whether the focus is to learn about the specific project, pro-
jects within a specific application domain or general truths about the software
process or product (requires the incorporation of formalized experience from prior
projects into the experience base). Movement across the context dimension as-
sumes an ability to generalize experience to a broader context than the one stud-
ied, or to tailor experience to a specific project. The better this experience is pack-
aged, the better our understanding of the environment. Maintaining a body of
experience acquired during a number of projects is one of the prerequisites for
learning and feedback across environments.
 (C5) Learning and Feedback are integrated into the TAME process model in
various ways. They are based upon the experimental model for learning consisting
of a set of steps, starting with focused objectives, which are turned into specific
hypotheses, followed by running experiments to validate the hypotheses in the ap-
propriate environment. The model is iterative; as we learn from experimentation,
we are better able to state our focused objectives and we change and refine our
hypotheses.
 This model of learning is incorporated into the GQM paradigm where the fo-
cused objectives are expressed as goals, the hypotheses are expressed as questions
written to the degree of formalism required, and the experimental environment is
the project, a set of projects in the same domain, or a corporation representing a
general environment. Clearly the GQM paradigm is also iterative.
 The feedback process helps generate the goals to influence one or more of the
components in the process model, e.g., the characterization of the environment, or
the analysis of the construction processes or products. The level of confidence we
have in feeding back the experience to a project or a corporate environment de-
pends upon the precision/detail level of the experience base (component C4) and
the generality of the experimental environment in which it was gathered.
 The learning and feedback process appears in the model as the integration of all
the components and their interactions as they are driven by the improvement and

 Victor R. Basili and H. Dieter Rombach 106

GQM paradigms. The feedback process can be channeled to the various compo-
nents of the current project and to the corporate experience base for use in future
projects.
 Most traditional software engineering process models address only a subset of
the individual components of this model; in many cases they cover just the con-
structive aspects of characterization (component Cl), "how" planning (component
C2.2.1), and execution (component C3.1). More recently developed software en-
gineering process models address the constructive aspect of execution (component
C3.1) in more sophisticated ways (e.g., new process models [24], [30], [49], com-
bine various process dimensions such as technical, managerial, contractual [36], or
provide more flexibility as far as the use of methods and tools is concerned, for
example via the automated generation of tools [45], [63]), or they add methods
and tools for choosing the analytical processes, methods, and tools (component
C3.2.2) as well as actually performing analysis (component C3.2) [52], [59]. How-
ever, all these process models have in common the lack of completely integrating
all their individual components in a systematic way that would permit sound learn-
ing and feedback for the purpose of project control and improvement of corporate
experience.

III. Automated Support through ISEES: the TAME System

The goal of an Integrated Software Engineering Environment (ISEE) is to effec-
tively support the improvement-oriented software engineering process model de-
scribed in Section II-B-3. An ISEE must support all the model components (char-
acterization, planning, execution, and the experience base), all the local
interactions between model components, the integration, and formalization of the
GQM paradigm, and the necessary transitions between the context and preci-
sion/detail dimension boundaries in the experience base. Supporting the transitions
along the experience base dimensions is needed in order to allow for sound learn-
ing and feedback as outlined in Section II-B-3 (component C5).
 The TAME system will automate as many of the components, interactions be-
tween components and supporting mechanisms of the TAME process model as
possible. The TAME system development activities will concentrate on all but the
construction component (component C3.1) with the eventual goal of interfacing
with constructive SEEs. In this section we present the requirements and the initial
architecture for the TAME system.

A. Requirements

The requirements for the TAME system can be derived from Section II-B-3 in a
natural way. These requirements can be divided into external requirements (de-
fined by and of obvious interest to the TAME system user) and internal require-

 The TAME Project 107

ments (defined by the TAME design team and required to support the external re-
quirements properly).
 The first five (external) requirements include support for the characterization
and planning components of the TAME model by automating an instantiation of
the GQM paradigm, for the analysis component by automating data collection,
data validation and analysis, and the learning and feedback component by auto-
mating interpretation and organizational learning. We will list for each external
TAME system requirement the TAME process mode components of Section II-B-
3 from which it has been derived.

External TAME requirements:

 (Rl) A mechanism for defining the constructive and analytic aspects of project
goals in an operational and quantifiable way (derived from components C1, C2.1,
C2.2.2, C3.2).
 We use the GQM paradigm and its templates for defining goals operationally
and refining them into quantifiable questions and metrics. The selection of the ap-
propriate GQM model and its tailoring needs to be supported. The user will either
select an existing model or generate a new one. A new model can be generated
from scratch or by reusing pieces of existing models. The degree to which the se-
lection, generation, and reuse tasks can be supported automatically depends
largely on the degree to which the GQM paradigm and its templates can be for-
malized. The user needs to be supported in defining his/ her specific goals accord-
ing to the goal definition template. Based on each goal definition, the TAME sys-
tem will search for a model in the experience base. If no appropriate model exists,
the user will be guided in developing one. Based on the tractability of goals into
sub goals and questions the TAME system will identify reusable pieces of existing
models and compose as much of an initial model as possible. This initial model
will be completed with user interaction. For example, if a user wants to develop a
model for assessing a system test method used in a particular environment, the
system might compose an initial model by reusing pieces from a model assessing
a different test method in the same environment, and from a model for assessing
the same system test method in a different environment. A complete GQM model
includes rules for interpretation of metrics and guidelines for collecting the pre-
scribed data. The TAME system will automatically generate as much of this in-
formation as possible.
 (R2) The automatic and manual collection of data and the validation of manu-
ally collected data (derived from component C3.2).
 The collection of all product-related data (e.g., lines of code, complexity) and
certain process-related data (e.g., number of compiler runs, number of test runs)
will be completely automated. Automation requires an interface with construction-
oriented SEEs. The collection of many process-related data (e.g., effort, changes)
and subjective data (e.g., experience of personnel, characteristics of methods used)
cannot be automated. The schedule according to which measurement tools are run
needs to be defined as part of the planning activity. It is possible to collect data
whenever they are needed, periodically (e.g., always at a particular time of the
day), or whenever changes of products occur (e.g., whenever a new product ver-

 Victor R. Basili and H. Dieter Rombach 108

sion is entered into the experience base all the related metrics are recomputed). All
manually collected data need to be validated. Validating whether data are within
their defined range, whether all the prescribed data are collected, and whether cer-
tain integrity rules among data are maintained will be automated. Some of the
measurement tools will be developed as part of the TAME system development
project, others will be imported. The need for importing measurement tools will
require an effective interconnection mechanism (probably, an interconnection lan-
guage) for integrating tools developed in different languages.
 (R3) A mechanism for controlling measurement and analysis (derived from
component C3.2).
 A GQM model is used to specify and control the execution of a particular
analysis and feedback session. According to each GQM model, the TAME system
must trigger the execution of measurement tools for data collection, the computa-
tion of all metrics and distributions prescribed, and the application of statistical
procedures. If certain metrics or distributions cannot be computed due to the lack
of data or measurement tools, the TAME system must inform the user.
 (R4) A mechanism for interpreting analysis results in a context and providing
feedback for the improvement of the execution model, methods and tools (derived
from components C3.2, C.5).
 We use a GQM model to define the rules and context for interpretation of data
and for feedback in order to refine and improve execution models, methods and
tools. The degree to which interpretation can be supported depends on our under-
standing of the software process and product, and the degree to which we express
this understanding as formal rules. Today, interpretation rules exist only for some
of the aspects of interest and are only valid within a particular project environment
or organization. However, interpretation guided by GQM models will enable an
evolutionary learning process resulting in better rules for interpretation in the fu-
ture. The interpretation process can be much more effective provided historical
experience is available allowing for the generation of historical baselines. In this
case we can at least identify whether observations made during the current project
deviate from past experience or not.
 (R5) A mechanism for learning in an organization (derived from components
C4, C5).
 The learning process is supported by iterating the sequence of defining focused
goals, refining them into hypotheses, and running experiments. These experiments
can range from completely controlled experiments to regular project executions.
In each case we apply measurement and analysis procedures to project classes of
interest. For each of those classes, a historical experience base needs to be estab-
lished concerning the effectiveness of the candidate execution models, methods
and tools. Feedback from ongoing projects of the same class, the corresponding
execution models, methods and tools can be refined and improved with respect to
context and precision/ detail so that we increase our potential to improve future
projects.
 The remaining seven (internal) requirements deal with user interface manage-
ment, report generation, experience base, security and access control, configura-
tion management control, SEE interface and distribution issues. All these issues

 The TAME Project 109

are important in order to support planning, construction, learning and feedback ef-
fectively.

Internal TAME requirements:

 (R6) A homogeneous user interface.
 We distinguish between the physical and logical user interface. The physical
user interface provides a menu or command driven interface between the user and
the TAME system. Graphics and window mechanisms will be incorporated when-
ever useful and possible. The logical user interface reflects the user's view of
measurement and analysis. Users will not be allowed to directly access data or run
measurement tools. The only way of working with the TAME system is via a
GQM model. TAME will enforce this top-down approach to measurement via its
logical user interface. The acceptance of this kind of user interface will depend on
the effectiveness and ease with which it can be used. Homogeneity is important
for both the physical and logical user interface.
 (R7) An effective mechanism for presenting data, information, and knowledge.
 The presentation of analysis (measurement and interpretation) results via ter-
minal or printer/plotter needs to be supported. Reports need to be generated for
different purposes. Project managers will be interested in periodical reports re-
flecting the current status of their project. High level managers will be interested
in reports indicating quality and productivity trends of the organization. The spe-
cific interest of each person needs to be defined by one or more GQM models
upon which automatic report generation can be based. A laser printer and multi-
color plotter would allow the appropriate documentation of tables, histograms, and
other kinds of textual and graphical representations.
 (R8) The effective storage and retrieval of all relevant data, information, and
knowledge in an experience base.
 All data, information, and knowledge required to support tailorability and trac-
tability need to be stored in an experience base. Such an experience base needs to
store GQM models, engineering products and measurement data. It needs to store
data derived from the current project as well as historical data from prior projects.
The effectiveness of such an experience base will be improved for the purpose of
learning and feedback if, in addition to measurement data, interpretations from
various analysis sessions are stored. In the future, the interpretation rules them-
selves will become integral part of such an experience base. The experience base
should be implemented as an abstract data type, accessible through a set of func-
tions and hiding the actual implementation. This latter requirement is especially
important due to the fact that current database technology is not suited to properly
support software engineering concepts [26]. The implementation of the experience
base as an abstract data type allows us to use currently available database technol-
ogy and substitute more appropriate technology later as it becomes available. The
ideal database would be self-adapting to the changing needs of a project environ-
ment or an organization. This would require a specification language for software
processes and products, and the ability to generate database schemata from speci-
fications written in such a language [46].

 Victor R. Basili and H. Dieter Rombach 110

 (R9) Mechanisms allowing for the implementation of a variety of access con-
trol and security strategies.
 TAME must control the access of users to the TAME system itself, to various
system functions and to the experience base. These are typical functions of a secu-
rity system. The enforced security strategies depend on the project organization. It
is part of planning a project to decide who needs to have access to what functions
and pieces of data, information, and knowledge. In addition to these security func-
tions, more sophisticated data access control functions need to be performed. The
data access system is expected to "recommend" to a user who is developing a
GQM model the kinds of data that might be helpful in answering a particular ques-
tion and support the process of choosing among similar data based on availability
or other criteria.
 (R10) Mechanisms allowing for the implementation of a variety of configura-
tion management and control strategies.
 In the context of the TAME system we need to manage and control three-
dimensional configurations. There is first the traditional product dimension mak-
ing sure that the various product and document versions are consistent. In addi-
tion, each product version needs to be consistent with its related measurement data
and the GQM model that guided those measurements. TAME must ensure that a
user always knows whether data in the experience base is consistent with the cur-
rent product version and was collected and interpreted according to a particular
model. The actual configuration management and control strategies will result
from the project planning activity.
 (R11) An interface to a construction-oriented SEE.
 An interface between the TAME system (which automates all process model
components except for the construction component C3.1 of the TAME process
model) and some external SEE (which automates the construction component) is
necessary for three reasons: a) to enable the TAME system to collect data (e.g.,
the number of activations of a compiler, the number of test runs) directly from the
actual construction process, b) to enable the TAME system to feed analysis results
back into the ongoing construction process, and c) to enable the construction-
oriented SEE to store/retrieve products into/from the experience base of the
TAME system. Models for appropriate interaction between constructive and ana-
lytic processes need to be specified. Interfacing with construction-oriented SEE's
poses the problem of efficiently interconnecting systems implemented in different
languages and running on different machines (probably with different operating
systems).
 (R12) A structure suitable for distribution. TAME will ultimately run on a dis-
tributed system consisting of at least one mainframe computer and a number of
workstations. The mainframes are required to host the experience base which can
be assumed to be very large. The rest of TAME might be replicated on a number
of workstations.

 The TAME Project 111

B. Architecture

Fig. 2 describes our current view of the TAME architecture in terms of individual
architectural components and their control flow interrelationships. The first proto-
type described in Section IV concentrates on the shaded components of Fig. 2.
 We group the TAME components into five logical levels, the physical user in-
terface, logical user interface, analysis and feedback, measurement and support
level. Each of these five levels consists of one or more architectural components:
• The Physical User Interface Level consists of one component:
 (Al) The User Interface Management component implements the physical user
interface requirement R6. It provides a choice of menu or command driven access
and supports a window-oriented screen layout.
• The Logical (GQM-Oriented) User Interface Level consists of two components:
 (A2) The GQM Model Selection component implements the homogeneity re-
quirement of the logical user interface (R6). It guarantees that no access to the
analysis and feedback, measurement, or support level is possible without stating
the purpose for access in terms of a specific GQM model.
 (A3) The GQM Model Generation component implements requirement Rl re-
garding the operational and quantifiable definition of GQM models either from
scratch or by modifying existing models.
• The Analysis and Feedback Level consists of two components:
 (A4.1) This first portion of the Construction Interface component implements
the feedback interface between the TAME system and construction-oriented SEEs
(part b) of requirement R11).
 (A5) The GQM Analysis and Feedback component implements requirement R3
regarding execution and control of an analysis and feedback session, interpretation
of the analysis results, and proper feedback. All these activities are done in the
context of a GQM model created by A3. The GQM Analysis and Feedback com-
ponent needs to have access to the specific authorizations of the user in order to
know which analysis functions this user can perform. The GQM Analysis and
Feedback component also provides analysis functions, for example, telling the
user whether certain metrics can be computed based upon the data currently avail-
able in the experience base. This analysis feature of the subsystem is used for set-
ting and operationally defining goals, questions, and metrics, as well as actually
performing analyses according to those previously established goals, questions,
and metrics.
• The Measurement Level consists of three components:
 (A4.2) This second portion of the Construction Interface component imple-
ments the measurement interface between the TAME system and SEE's (part a) of
requirement R11) and the SEE's access to the experience base of the TAME sys-
tem (part c) of requirement R11).
 (A6) The Measurement Scheduling component implements requirement R2 re-
garding the definition (and execution) of automated data collection strategies.
Such strategies for when to collect data via the measurement tools may range from
collecting data whenever they are needed for an analysis and feedback session

 Victor R. Basili and H. Dieter Rombach 112

(on-line) to collecting them periodically during low-load times and storing them in
the experience base (off-line).

Fig. 2. The architectural design of the TAME system.

 (A7) The Measurement Tools component implements requirement R2 regard-
ing automated data collection. The component needs to be open-ended in order to
allow the inclusion of new and different measurement tools as needed.
• The Support Level consists of three components:
 (A8) The Report Generation component implements requirement R7 regarding
the production of all kinds of reports.
 (A9) The Data Entry and Validation component implements requirement R2
regarding the entering of manually collected data and their validation. Validated
data are stored in the experience base component.
 (A 10) The Experience Base component implements requirement R8 regarding
the effective storage and retrieval of all relevant data, information and knowledge.
This includes all kinds of products, analytical data (e.g., measurement data, inter-
pretations), and analysis plans (GQM models). This component provides the infra-

 The TAME Project 113

structure for the operation of all other components of the TAME process model
and the necessary interactions among them. The experience base will also provide
mechanisms supporting the learning and feedback tasks. These mechanisms in-
clude the proper packaging of experience along the context and precision/detail
dimensions.
In addition, there exist two orthogonal components which for simplicity reasons
are not reflected in Fig. 2:
 (A11) The Data Access Control and Security component(s) implement re-
quirement R9. There may exist a number of subcomponents distributed across the
logical architectural levels. They will validate user access to the TAME system it-
self and to various functions at the user interface level. They will also control ac-
cess to the project experience through both the measurement tools and the experi-
ence base.
 (A 12) The Configuration Management and Control component implements re-
quirement R10. This component can be viewed as part of the interface to the ex-
perience base level. Data can only be entered into or retrieved from the experience
base under configuration management control.

IV. First TAME Prototype

The first in a series of prototypes is currently being developed for supporting
measurement in Ada projects [15]. This first prototype will implement only a sub-
set of the requirements stated in Section III-A because of a) yet unsolved problems
that require research, b) solutions that require more formalization, and c) problems
with integrating the individual architectural components into a consistent whole.
Examples of unsolved problems requiring further research are the appropriate
packaging of the experience along the context and precision/detail dimension and
expert system support for interpretation purposes. Examples of solutions requiring
more formalization are the GQM templates and the designing of a software engi-
neering experience base. Examples of integration problems are the embedding of
feedback loops into the construction process, and the appropriate utilization of
data access control and configuration management control mechanisms. At this
time, the prototype exists in pieces that have not been fully integrated together as
well as partially implemented pieces.
 In this section, we discuss for each of the architectural components of this
TAME prototype as many of the following issues as are applicable: a) the particu-
lar approach chosen for the first prototype, b) experience with this approach, c) the
current and planned status of implementation (automation) of the initial approach
in the first TAME system prototype, and d) experiences with using the compo-
nent:
 (Al) The User Interface Management component is supposed to provide the
physical user interface for accessing all TAME system functions, with the flexibil-
ity of choosing between menu and command driven modes and different window
layouts. These issues are reasonably well understood by the SEE community. The

 Victor R. Basili and H. Dieter Rombach 114

first TAME prototype implementation will be menu-oriented and based upon the
'X' window mechanism. A primitive version is currently running. This component
is currently not very high on our priority list. We expect to import a more sophisti-
cated user interface management component at some later time or leave it com-
pletely to parties interested in productizing our prototype system.
 (A2) The GQM Model Selection component is supposed to force the TAME
user to parameterize each TAME session by first stating the objective of the ses-
sion in the form of an already existing GQM model or requesting the creation of a
new GQM model. The need for this restriction has been derived from the experi-
ence that data is frequently misused if it is accessible without a clear goal. The
first prototype implementation does not enforce this requirement strictly. The cur-
rent character of the first prototype as a research vehicle demands more flexibility.
There is no question that this component needs to be implemented before the pro-
totype leaves the research environment.
 (A3) The GQM Model Generation component is supposed to allow the creation
of specific GQM models either from scratch or by modifying existing ones. We
have provided a set of templates and guidelines (Section II-B-2). We have been
quite successful in the use of the templates and guidelines for defining goals, ques-
tions and metrics. There are a large number of organizations and environments in
which the model has been applied to specify what data must be collected to evalu-
ate various aspects of the process and product, e.g., NASA/GSFC, Burroughs,
AT&T, IBM, Motorola. The application of the GQM paradigm at Hewlett Packard
has shown that the templates can be used successfully without our guidance. Sev-
eral of these experiences have been written up in the literature [4], [16], [17], [39],
[48], [56], [60], [61]. We have been less successful in automating the process so
that it ties into the experience base. As long as we know the goals and questions a

priori, the appropriate data can be isolated and collected based upon the GQM
paradigm. The first TAME prototype implementation is limited to support the
generation of new models and the modification of existing models using an editor
enforcing the templates and guidelines. We need to further formalize the templates
and guidelines and provide traceability between goals and questions. Formaliza-
tion of the templates and providing traceability is our most important research is-
sue. In the long run we might consider using artificial intelligence planning tech-
niques.
 (A4.1 and A4.2) The Construction Interface component is supposed to support
all interactions between a SEE (which supports the construction component of the
TAME process model) and the TAME system. The model in Fig. 1 implies that in-
teractions in both directions are required. We have gained experience in manually
measuring the construction process by monitoring the execution of a variety of
techniques (e.g., code reading [57], testing [20], and CLEANROOM development
[61]) in various environments including the SEL [4], [48]. We have also learned
how analysis results can be fed back into the ongoing construction process as well
as into corporate experience [4], [48], Architectural component A4.1 is not part of
this first TAME prototype. The first prototype implementation of A4.2 is limited
to allowing for the integration of (or access to) external product libraries. This
minimal interface is needed to have access to the objects for measurement. No in-

 The TAME Project 115

terface for the on-line measurement of ongoing construction processes is provided
yet.
 (A5) The GQM Analysis and Feedback component is supposed to perform
analysis according to a specific GQM model. We have gained a lot of experience
in evaluating various kinds of experiments and case studies. We have been suc-
cessful in collecting the appropriate data by tracing GQM models top-down. We
have been less successful in providing formal interpretation rules allowing for the
bottom-up interpretation of the collected data. One automated approach to provid-
ing interpretation and feedback is through expert systems. ARROWSMITH-P
provides interpretations of software project data to managers [44]; it has been
tested in the SEL/NASA environment. The first prototype TAME implementation
triggers the collection of prescribed data (top-down) and presents it to the user for
interpretation. The user-provided interpretations will be recorded (via a knowledge
acquisition system) in order to accumulate the necessary knowledge that might
lead us to identifying interpretation rules in the future.
 (A6) The Measurement Scheduling component is supposed to allow the TAME
user to define a strategy for actually collecting data by running the measurement
tools. Choosing the most appropriate of many possible strategies (requirements
Section III-A) might depend on the response times expected from the TAME sys-
tem or the storage capacity of the experience base. Our experience with this issue
is limited because most of our analyses were human scheduled as needed [4], [48].
This component will not be implemented as part of the first prototype. In this pro-
totype, the TAME user will trigger the execution of measurement activities explic-
itly (which can, of course, be viewed as a minimal implementation supporting a
human scheduling strategy).
 (A7) The Measurement Tools component is supposed to allow the collection of
all kinds of relevant process and product data. We have been successful in gener-
ating tools to gather data automatically and have learned from the application of
these tools in different environments. Within NASA, for example, we have used a
coverage tool to analyze the impact of test plans on the consistency of acceptance
test coverage with operational use coverage [53]. We have used a data binding’s
tool to analyze the structural consistency of implemented systems to their design
[41], and studied the relationship between faults and hierarchical structure as
measured by the data binding’s tool [60]. We have been able to characterize
classes of products based upon their syntactic structure [35]. We have not, how-
ever, had much experience in automatically collecting process data. The first pro-
totype TAME implementation consists of measurement tools based on the above
three. The first tool captures all kinds of basic Ada source code information such
as lines of code and structural complexity metrics [35], the second tool computes
Ada data binding metrics, and the third tools captures dynamic information such
as test coverage metrics [65]. One lesson learned has been that the development of
measurement tools for Ada is very often much more than just a reimplementation
of similar tools for other languages. This is due to the very different Ada language
concepts. Furthermore, we have recognized the importance of having an interme-
diate representation level allowing for a language independent representation of
software product and process aspects. The advantage of such an approach will be

 Victor R. Basili and H. Dieter Rombach 116

that this intermediate representation needs to be generated only once per product
or process. All the measurement tools can run on this intermediate representation.
This will not only make the actual measurement process less time-consuming but
provide a basis for reusing the actual measurement tools to some extent across dif-
ferent language environments. Only the tool generating the intermediate represen-
tation needs to be rebuilt for each new implementation language or TAME host
environment.
 (A8) The Report Generator component is supposed to allow the TAME user to
produce a variety of reports. The statistics and business communities have com-
monly accepted approaches for presenting data and interpretations effectively
(e.g., histograms). The first TAME prototype implementation does not provide a
separate experience base reporting facility. Responsibility for reporting is attached
to each individual prototype component; e.g., the GQM Model Generation com-
ponent provides reports regarding the models, each measurement tool reports on
its own measurement data.
 (A9) The Data Entry and Validation component is supposed to allow the
TAME user to enter all kinds of manually collected data and validate them. Be-
cause of the changing needs for measurement, this component must allow for the
definition of new (or modification of existing) data collection forms as well as re-
lated validation (integrity) rules. If possible, the experience base should be capable
of adapting to new needs based upon new form definitions. We have had lots of
experience in designing forms and validations rules, using them, and learning
about the complicated issues of deriving validation rules [4], [48]. The first proto-
type implementation will allow the TAME user to input off-line collected meas-
urement data and validate them based upon a fixed and predefined set of data col-
lection forms [currently in use in NASA's Software Engineering Laboratory
(SEL)]. This component is designed but not yet completely implemented. The
practical use of the TAME prototype requires that this component provide the
flexibility for defining and accepting new form layouts. One research issue is
identifying the easiest way to define data collection forms in terms of a grammar
that could be used to generate the corresponding screen layout and experience
base structure.
 (A10) The Experience Base component allows for effective storage and re-
trieval of all relevant experience ranging from products and process plans (e.g.,
analysis plans in the form of GQM models) to measurement data and interpreta-
tions. The experience base needs to mirror the project environment. Here we are
relying on the experience of several faculty members of the database group at the
University of Maryland. It has been recognized that current database technology is
not sufficient, for several reasons, to truly mirror the needs of software engineer-
ing projects [26]. The first prototype TAME implementation is built on top of a re-
lational database management system. A first database schema [46] modeling
products as well as measurement data has been implemented. We are currently
adding GQM models to the schema. The experiences with this first prototype
show that the amount of experience stored and its degree of formalism (mostly
data) is not yet sufficient. We need to better package that data in order to create
pieces of information or knowledge. The GQM paradigm provides a specification

 The TAME Project 117

of what data needs to be packaged. However, without more formal interpretation
rules, the details of packaging cannot be formalized. In the long run, we might in-
clude expert system technology. We have also recognized the need for a number
of built-in GQM models that can either be reused without modification or guide
the TAME user during the process of creating new GQM models.
 (A11) The Data Access Control and Security component is supposed to guaran-
tee that only authorized users can access the TAME system and that each user can
only access a predefined window of the experience base. The first prototype im-
plements this component only as far as user access to the entire system is con-
cerned.
 (A12) The Configuration Management and Control component is supposed to
guarantee consistency between the objects of measurement (products and proc-
esses), the plans for measurement (GQM models), the data collected from the ob-
jects according to these plans, and the attached interpretations. This component
will not be implemented in the first prototype.
 The integration of all these architectural components is incomplete. At this
point in time we have integrated the first versions of the experience base, three
measurement tools, a limited version of the GQM analysis and feedback compo-
nent, the GQM generation component, and the user interface management compo-
nent. Many of the UNIX®1 tools (e.g., editors, print facilities) have been integrated
into the first prototype TAME system to compensate for yet missing components.
This subset of the first prototype is running on a network of SUN-3's under UNIX.
It is implemented in Ada and C.
 This first prototype enables the user to generate GQM models using a struc-
tured editor. Existing models can be selected by using a unique model name. Sup-
port for selecting models based on goal definitions or for reusing existing models
for the purpose of generating new models is offered, but the refinement of goals
into questions and metrics relies on human intervention. Analysis and feedback
sessions can be run according to existing GQM models. Only minimal support for
interpretation is provided (e.g., histograms of data). Measurement data are pre-
sented to the user according to the underlying model for his/her interpretation. Re-
sults can be documented on a line printer. The initial set of measurement tools al-
lows only the computation of a limited number of Ada-source-code-oriented static
and dynamic metrics. Similar tools might be used in the case of Fortran source
code [33].

V. Summary and Conclusions

We have presented a set of software engineering and measurement principles
which we have learned during a dozen years of analyzing software engineering
processes and products. These principles have led us to recognize the need for

1

® UNIX is a registered trademark of AT&T Bell Laboratories.

 Victor R. Basili and H. Dieter Rombach 118

software engineering process models that integrate sound planning and analysis
into the construction process.
 In order to achieve this integration the software engineering process needs to
be tailorable and tractable. We need the ability to tailor the execution process,
methods and tools to specific project needs in a way that permits maximum reuse
of prior experience. We need to control the process and product because of the
flexibility required in performing such a focused development. We also need as
much automated support as possible. Thus an integrated software engineering en-
vironment needs to support all of these issues.
 In the TAME project we have developed an improvement-oriented (integrated)
process model. It stresses a) the characterization of the current status of a project
environment, b) the planning for improvement integrated into software projects,
and c) the execution of the project according to the prescribed project plans. Each
of these tasks must be dealt with from a constructive and analytic perspective.
 To integrate the constructive and analytic aspects of software development, we
have used the GQM paradigm. It provides a mechanism for formalizing the char-
acterization and planning tasks, controlling and improving projects based on quan-
titative analysis, learning in a deeper and more systematic way about the software
process and product, and feeding back the appropriate experience to current and
future projects.
 The effectiveness of the TAME process model depends heavily on appropriate
automated support by an ISEE. The TAME system is an instantiation of the
TAME process model into an ISEE; it is aimed at supporting all aspects of charac-
terization, planning, analysis, learning, and feedback according to the TAME
process model. In addition, it formalizes the feedback and learning mechanisms by
supporting the synthesis of project experience, the formalization of its representa-
tion, and its tailoring towards specific project needs. It does this by supporting
goal development into measurement via templates and guidelines, providing
analysis of the development and maintenance processes, and creating and using
experience bases (ranging from databases of historical data to knowledge bases
that incorporate experience from prior projects).
 We discussed a limited prototype of the TAME system, which has been devel-
oped as the first of a series of prototypes that will be built using an iterative en-
hancement model. The limitations of this prototype fall into two categories, limita-
tions of the technology and the need to better formalize the model so that it can be
automated.
 The short range (1-3 years) goal for the TAME system is to build the analysis
environment. The mid-range goal (3-5 years) is to integrate the system into one or
more existing or future development or maintenance environments. The long
range goal (5-8 years) is to tailor those environments for specific organizations
and projects.
 The TAME project is ambitious. It is assumed it will evolve over time and that
we will learn a great deal from formalizing the various aspects of the TAME pro-
ject as well as integrating the various paradigms. Research is needed in many ar-
eas before the idealized TAME system can be built. Major areas of study include
measurement, databases, artificial intelligence, and systems. Specific activities

 The TAME Project 119

needed to support TAME include: more formalization of the GQM paradigm, the
definition of better models for various quality and productivity aspects, mecha-
nisms for better formalizing the reuse and tailoring of project experience, the in-
terpretation of metrics with respect to goals, interconnection languages, language
independent representation of software, access control in general and security in
particular, software engineering database definition, configuration management
and control, and distributed system architecture. We are interested in the role of
further researching the ideas and principles of the TAME project. We will build a
series of revolving prototypes of the system in order to learn and test out ideas.

Acknowledgment

The authors thank all their students for many helpful suggestions. We especially
acknowledge the many contributions to the TAME project and, thereby indirectly
to this paper, by J. Bailey, C. Brophy, M. Daskalantonakis, A. Delis, D. Double-
day, F. Y. Farhat, R. Jeffery, E. E. Katz, A. Kouchakdjian, L. Mark, K. Reed, Y.
Rong, T. Sunazuka, P. D. Stotts, B. Swain, A. J. Turner, B. Ulery, S. Wang, and L.
Wu. We thank the guest editors and external reviewers for their constructive com-
ments.

References

[1] W. Agresti, "SEL Ada experiment: Status and design experience," in Proc. Eleventh

Annu. Software Engineering Workshop, NASA Goddard Space Flight Center,
Greenbelt, MD, Dec. 1986.

[2] J. Bailey and V. R. Basili, "A meta-model for software development resource expendi-
tures," in Proc. Fifth Int. Conf. Software Engineering, San Diego, CA, Mar. 1981,
pp. 107-116.

[3] V. R. Basili, "Quantitative evaluation of software engineering methodology," in Proc.

First Pan Pacific Computer Conf., Melbourne, Australia, Sept. 1985; also available
as Tech. Rep. TR-1519, Dep. Comput. Sci., Univ. Maryland, College Park, July
1985.

[4] V. R. Basili, "Can we measure software technology: Lessons learned from 8 years of
trying," in Proc. Tenth Annu. Software Engineering Workshop, NASA Goddard
Space Flight Center, Greenbelt, MD, Dec. 1985.

[5] ——, "Evaluating software characteristics: Assessment of software measures in the
Software Engineering Laboratory," in Proc. Sixth Annu. Software Engineering

Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, 1981.
[6] V. R. Basili and J. Beane, "Can the Parr curve help with the manpower distribution

and resource estimation problems," J. Syst. Software, vol. 2, no. 1, pp. 59-69,
1981.

[7] V. R. Basili and K. Freburger, "Programming measurement and estimation in the
Software Engineering Laboratory." J. Syst. Software, vol. 2, no. 1, pp. 47-57, 1981.

[8] V. R. Basili and D. H. Hutchens, "An empirical study of a syntactic measure family,"
IEEE Trans. Software Eng., vol. SE-9, no. 11, pp. 664-672, Nov. 1983.

 Victor R. Basili and H. Dieter Rombach 120

[9] V. R. Basili and E. E. Katz, "Measures of interest in an Ada development," in Proc.

IEEE Comput. Soc. Workshop Software Engineering Technology Transfer, Miami.
FL, Apr. 1983, pp. 22-29.

[10] V. R. Basili, E. E. Katz, N..M. Panlilio-Yap, C. Loggia Ramsey, and S. Chang,
"Characterization of an Ada software development," Computer, pp. 53-65, Sept.
1985.

[11] V. R. Basili and C. Loggia Ramsey, "ARROWSMITH-P: A prototype expert: sys-
tem for software engineering management," in Proc. IEEE Symp. Expert Systems in

Government, Oct. 23-25, 1985, pp. 252-264.
[12] V. R. Basili and N. M. Panlilio-Yap, "Finding relationships between effort and other

variables in the SEL," in Proc. IEEE COMPSAC, Oct. 1985.
[13] V. R. Basili and B. Perricone, "Software errrors and complexity: An empirical in-

vestigation," ACM, Commun., vol. 27, no. 1, pp. 45-52, Jan. 1984.
[14] V. R. Basili and R. Reiter, Jr., "A controlled experiment quantitatively comparing

software development approaches," IEEE Trans. Software Eng., vol. SE-7, no. 5,
pp. 299-320, May 1981.

[15] V. R. Basili and H. D. Rombach, "TAME: Tailoring an Ada measurement environ-
ment," in Proc. Joint Ada Conf., Arlington, VA, Mar. 16-19, 1987, pp. 318-325.

[16] ——, "Tailoring the software process to project goals and environments," in Proc.

Ninth Int. Conf. Software Engineering, Monterey, CA, Mar. 30-Apr. 2, 1987, pp.
345-357.

[17] ——, "TAME: Integrating measurement into software environments," Dep.
Comput. Sci., Univ. Maryland, College Park, Tech. Rep. TR-1764 (TAME-TR-1-
1987), June 1987.

[18] ——, "Software reuse: A framework," in Proc. Tenth Minnowbrook Workshop

Software Reuse, Blue Mountain Lake. NY, Aug. 1987.
[19] V. R. Basili and R. W. Selby, Jr., "Data collection and analysis in software research

and management," in Proc. Amer. Statist. Ass. and Biomeasure Soc. Joint Statisti-

cal Meetings, Philadelphia. PA, Aug. 13-16. 1984.
[20] ——, "Comparing the effectiveness of software testing strategies," IEEE Trans. Soft-

ware Eng., vol. SE-13, no. 12, pp. 1278-1296, Dec. 1987.
[21] ——, "Calculation and use of an environment's characteristic software metric set,"

in Proc. Eighth Int. Conf. Software Engineering, London, England, Aug. 1985.
[22] V. R. Basili, R. W. Selby, and D. H. Hutchens, "Experimentation in software

engineering," IEEE Trans. Software Eng., vol. SE-12, no. 7. pp. 733-743, July
1986.

[23] V. R. Basili, R. W. Selby, and T.-Y. Phillips, "Metric analysis and data validation
across Fortran projects," IEEE Trans. Software Eng., vol. SE-9, no. 6, pp. 652-663,
Nov. 1983.

[24] V. R. Basili and A. J. Turner, "Iterative enhancement: A practical technique for
software development." IEEE Trans. Software Eng., vol. SE-1, no. 4, pp. 390-396,
Dec. 1975.

[25] V. R. Basili and D. M. Weiss, "A methodology for collecting valid software engi-
neering data," IEEE Trans. Software Eng., vol. SE-10, no. 3, pp. 728-738, Nov.
1984.

[26] P. A. Bernstein. "Database system support for software engineering." in Proc. Ninth

Int. Conf. Software Engineering. Monterey. CA, Mar. 30-Apr. 2, 1987, pp. 166-178.
[27] D. Bjorner. "On the use of formal methods in software development." in Proc.

Ninth Int. Conf. Software Engineering, Monterey, CA. Mar. 30-Apr. 2, 1987, pp.
17-29.

 The TAME Project 121

[28] B. W. Boehm, "Software engineering," IEEE Trans. Comput., vol. C-25. no. 12,
pp. 1226-1241, Dec. 1976.

[29] ——, Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, 1981.
[30] ——, "A spiral model of software development and enhancement," ACM Software

Eng. Notes, vol. 11, no. 4, pp. 22-42, Aug. 1986.
[31] B. W. Boehm, J. R. Brown, and M. Lipow, "Quantitative evaluation of software

quality." in Proc. Second Int. Conf. Software Engineering. 1976, pp. 592-605.
[32] C. Brophy, W. Agresti, and V. R. Basili. "Lessons learned in use of Ada oriented

design methods." in Proc. Joint Ada Conf.; Arlington, VA, Mar. 16-19, 1987, pp.
231-236.

[33] W. J. Decker and W. A. Taylor. "Fortran static source code analyzer program
(SAP)," NASA Goddard Space Flight Center, Greenbelt, MD. Tech. Rep. SEL-82-
002, Aug. 1982.

[34] C. W. Doerflinger and V. R. Basili, "Monitoring software development through dy-
namic variables," IEEE Trans. Software Eng., vol. SE-11. no. 9. pp. 978-985, Sept.
1985.

[35] D. L. Doubleday, "ASAP: An Ada static source code analyzer program," Dep. Com-
put. Sci., Univ. Maryland, College Park. Tech. Rep. TR-1895, Aug. 1987.

[36] M. Dowson, "ISTAR—An integrated project support environment," in ACM Sigplan

Notices (Proc. Second ACM Software Eng. Svmp. Practical Development Support Environ-

ments), vol. 2, no. 1, Jan 1987.
[37] M. Dyer, "Cleanroom software development method," IBM Federal Systems Divi-

sion, Bethesda. MD, Oct. 14, 1982.
[38] J. Gannon, E. E. Katz. and V. R. Basili, "Measures for Ada packages: An initial

study," Commun. ACM, vol. 29, no. 7, pp 616-623, July 1986.
[39] R. B. Grady, "Measuring and managing software maintenance," IEEE Software,

vol. 4. no. 5, pp. 35-45, Sept. 1987.
[40] M. H. Halstead, Elements of Software Science. New York: Elsevier North-Holland,

1977.
[41] D. H. Hutchens and V. R. Basili, "System structure analysis: Clustering with data

bindings,'' IEEE Trans. Software Eng., vol. SE-11, pp. 749-757, Aug. 1985.
[42] E. E. Katz and V. R. Basili, "Examining the modularity of Ada programs," in Proc.

Joint Ada Conf., Arlington, VA, Mar. 16-19, 1987, pp. 390-396.
[43] E. E. Katz, H. D. Rombach, and V. R. Basili, "Structure and maintainability of Ada

programs: Can we measure the differences?" in Proc. Ninth Minnowbrook Work-

shop Software Performance Evaluation. Blue Mountain Lake, NY, Aug. 5-8, 1986.
[44] C. Loggia Ramsey and V. R. Basili. "An evaluation of expert systems for software

engineering management." Dep. Comput. Sci., Univ. Maryland, College Park,
Tech. Rep. TR-1708, Sept. 1986.

 [45] M. Marcus, K. Sattley, S. C. Schaffner. and E. Albert. "DAPSE: A distributed Ada
programming support environment," in Proc. IEEE Second Int. Conf. Ada Applica-

tions and Environments, 1986, pp. 115-125.
[46] L. Mark and H. D. Rombach. "A meta information base for software engineering,"

Dep. Comput. Sci., Univ. Maryland, College Park, Tech. Rep. TR-1765, July
1987.

[47] T. J. McCabe. "A complexity measure." IEEE Trans. Software Eng., vol. SE-2, no.
4, pp. 308-320, Dec. 1976.

[48] F. E. McGarry, "Recent SEL studies." in Proc. Tenth Annu. Software Engineering

Workshop. NASA Goddard Space Flight Center, Greenbelt, MD, Dec, 1985.
[49] L. Osterweil. "Software processes are software too." in Proc. Ninth Int. Conf. Soft-

ware Engineering. Monterey, CA. Mar. 30-Apr. 2, 1987, pp. 2-13.

 Victor R. Basili and H. Dieter Rombach 122

[50] F. N. Parr. "An alternative to the Rayleigh curve model for software development
effort," IEEE Trans. Software Eng., vol. SE-6. no. 5, pp. 291-296. May 1980.

[51] L. Putnam, "A general empirical solution to the macro software sizing and estimat-
ing problem," IEEE Trans. Software Eng.. vol. SE-4, no. 4, pp. 345-361, Apr.
1978.

[52] C. V. Ramamoorthy, Y. Usuda. W.-T. Tsai, and A. Prakash. "GENESIS: An inte-
grated environment for supporting development and evolution of software," in Proc.

COMPSAC, 1985.
[53] J. Ramsey and V. R. Basili. "Analyzing the test process using structural coverage,"

in Proc. Eighth Int. Conf. Software Engineering. London, England, Aug. 1985, pp.
306-311.

[54] H. D. Rombach, "Software design metrics for maintenance." in Proc. Ninth Annu.

Software Engineering Workshop, NASA Goddard Space Flight Center, Greenbelt,
MD, Nov. 1984.

[55] ——, "A controlled experiment on the impact of software structure on maintain-
ability," IEEE Trans. Software Eng., vol. SE-13. no. 3, pp. 344-354, Mar. 1987.

[56] H. D. Rombach and V. R. Basili. "A quantitative assessment of software mainte-
nance: An industrial case study," in Proc. Conf. Software Maintenance, Austin.

TX. Sept. 1987, pp. 134-144.
[57] H. D. Rombach, V. R. Basili. and R. W. Selby. Jr.. "The role of code reading in

the software life cycle." in Proc. Ninth Minnowbrook Workshop Software Perform-

ance Evaluation. Blue Mountain Lake, NY, August 5-8, 1986.
[58] W. W. Royce, "Managing the development of large software systems: Concepts

and techniques." in Proc. WESCON. Aug. 1970.
[59] R. W. Selby, Jr., "Incorporating metrics into a software environment." in Proc.

Joint Ada Conf., Arlington, VA, Mar. 16-19, 1987, pp. 326-333.
[60] R. W. Selby and V. R. Basili. "Analyzing error-prone system coupling and cohe-

sion," Dep. Comput. Sci., Univ. Maryland, College Park. Tech. Rep., in prepara-
tion.

[61] R. W. Selby. Jr., V. R. Basili. and T. Baker. "CLEANROOM software development:
An empirical evaluation," IEEE Trans. Software Eng., vol. SE-13. no. 9. pp.
1027-1037, Sept. 1987.

[62] C. E. Walston and C. P. Felix. "A method of programming measurement and
estimation." IBM Svst. J.. vol. 16, no. 1, pp. 54-73, 1977.

[63] A. I. Wasserman and P. A. Pircher. "Visible connections." UNIX Rev., Oct.
1986.

[64] Webster's New Collegiate Dictionary. Springfield, MA: Merriam, 1981.
[65] L. Wu, V. R. Basili. and K. Reed, "A structure coverage tool for Ada software

systems," in Proc. Joint Ada Conf., Arlington. VA, Mar. 16-19, 1987, pp. 294-
303.

[66] M. Zelkowitz, R. Yen, R. Hamlet, J. Gannon, and V. R. Basili. "Software
engineering practices in the U.S. and Japan." Computer, pp. 57-66, June
1984.

Section 3: The Software Engineering Laboratory

Frank E. McGarry

Computer Sciences Corporation

Abstract. The Software Engineering Laboratory (SEL)—as both a concept and an opera-
tional research organization—was established in 1976 when the first formal grant was is-
sued by NASA to the University of Maryland. The initial scope of this grant included the
establishment of an operational environment for the purpose of studying production soft-
ware under controlled conditions. The intent was to apply various software techniques to
production projects and to analyze the impact of these techniques on the resultant software
product. Not only was this concept unique, but it also became one of the linchpins of the
empirical studies carried out by the staff at the University of Maryland over the subsequent
25-year period of the SEL operation. As one of the founding directors of this institution,
Vic Basili established the groundwork for the concepts of empirical studies in software en-
gineering and then directed the research arm of the SEL for its 25 year lifetime.
 The SEL operated as a partnership of the three original organizations: the University of
Maryland, NASA, and Computer Sciences Corporation (CSC), for approximately 25 years,
during which time over 200 research papers and reports were produced. Each of those re-
ports represented results from research conducted on NASA software development projects.
Not only were there specific empirical studies reported, but the synthesis of this entire work
has had a profound impact on software engineering in general and empirical studies in
software in particular. As the lead researcher on the SEL activities, Basili was instrumental
in essentially every one of the published results. Additionally, he was the catalyst that
prompted the packaging and infusion of experience back into production use within NASA
and CSC as well as in other software organizations.

Concepts

The SEL was conceived as a cooperative enterprise linking academia (Univer-

sity of Maryland), government (NASA), and industry (Computer Sciences Corpo-
ration). Each member of the SEL was to play a key role in the establishment and
operation of the organization as well as being a significant beneficiary of all of the
work and general concepts generated:

• The University was to provide the concepts, research staff, and analytical skill
to lead the overall research activities.

• NASA was to define the need, allocate resources, and apply research results
to improve software products within the NASA community.

• CSC was to provide the operational staff to develop and maintain software us-
ing techniques and approaches defined by the university as a concept of study.

The vision was that the SEL would apply available software techniques to se-
lected development projects, then observe and measure the impacts on the quality
or cost of the completed software, thereby establishing the framework of software

 Frank E. McGarry 124

engineering empirical studies. To implement this overall vision, Basili proposed
several key concepts:

• Form a partnership of the three organizations to ensure that goals and benefits
of each were addressed

• Develop measures to characterize environment, products, and processes

• Conduct experiments of select processes in the production environment of
NASA mission software

• Continually infuse results of experiments into the process baseline of the or-
ganization

 Environment

The development environment at the time the SEL was established was a soft-

ware production environment. The NASA and CSC organizations were chartered
to produce operational software systems to support Goddard flight missions. The
support software products ranged in size from 5000 line systems to systems of
well over 1 million lines with the typical being in the range of 100,000 lines. At
any one time, there could be from 5 to 15 of these projects in the development
stages and depending on the number of ongoing projects, the total number of de-
velopment staff could range from 100 to over 300 software developers.

Activities and Significant Impacts of the SEL

Between 1976 and 2000, the SEL analyzed information from more than 100

NASA projects and reported on studies of numerous technologies, techniques, and
software processes. Each of these projects is considered an experiment in software
technology, and each paper or report contributed some insight into the impacts of
software methods and techniques. Moreover, developers and managers who par-
ticipated in the studies improved their understanding of approaches to selecting
and applying variations of processes based on the nature of the problem and the
specific environment.

Basili had the vision and the insight to take a more global view of all the SEL
activities and results, rather than merely treating them as a series of individual
studies. He advocated the capture of key principles in the form of models and
theories that would lay a strong foundation for software engineering research as
well as software process improvement in general. The three papers included in
this section reflect some of the major contributions from the SEL.
1. The first paper, “Analyzing Medium-Scale Software Development,” describes

the foundation for software measurement and model building. This paper is
one of the earliest to describe an approach to collecting measurement data in a
production environment to generate models that improve understanding of the
development process. It was published in early 1978 and represented the
analysis of a collection of medium-sized projects at NASA/Goddard.

 Section 3: The Software Engineering Laboratory 125

The paper describes concepts that laid the foundation for the subsequent
25 years of research carried out in the SEL: measurement, empirical studies,
model building, packaging of experiences, and understanding of local envi-
ronments.
 Two of the projects are analyzed in detail to demonstrate the characteris-
tics of effort distribution as compared to standard resource models such as the
Rayleigh curve. The analysis demonstrates the need for software environ-
ments to tailor basic models of development to fit their own environment and
more importantly demonstrates an approach for doing this. The paper de-
scribes the details of data collection forms, processes, and overall measure-
ment analysis and it laid the framework for the SEL approach to measure-
ment, continuous improvement and experimental software engineering.

2. The second paper, “Software Process Evolution at the SEL,” presents an ex-
cellent description of the Quality Improvement Paradigm (QIP) as applied in
a production environment. Three case studies examine variations of the
Cleanroom methodology as applied in several projects within the SEL. Al-
though the specific study results are significant to practitioners considering
the Cleanroom technique, the major value of this set of studies is the demon-
stration of the QIP model. The QIP is a 6 step sequence that establishes a
framework to guide an organization in defining and operating a software
process improvement program. This model represents Basili’s vision of how
a software continuous improvement program should be structured and should
operate. Basili’s vision of the QIP is both described and exemplified in this
paper.
 The series of studies reported demonstrates that specific tailoring of a
software methodology (Cleanroom) can be carried out effectively when ad-
hering to a structured improvement process (QIP). This continuous im-
provement process is used to determine appropriate and effective techniques
in a particular environment. In this case, the paper concludes that Cleanroom
is effective (for this environment) for 1 class of software (under 50,000 lines
of code), but may not be effective for larger projects. Such insight is one
value of QIP.

3. The third paper, “The Software Engineering Laboratory—An Operational
Software Experience Factory,” describes the structure and operation of an ef-
fective process improvement organization, and more importantly an effective
learning organization. This learning organization is termed ‘Experience Fac-
tory’ (EF) by Basili. The concept of EF was ‘..introduced to institutionalize
the collective learning of the organization that is at the root of continual im-
provement…’.
 To complement the model of process improvement (QIP) along with the
foundations of structured measurement captured in the Goal-Question Metric
paradigm (GQM), Basili developed this organizational model of the EF. It is
an operational environment that is both developing software and capitalizing
on past development activities by capturing and synthesizing lessons, insight,
and general experiences. Basili derived this concept directly from the obser-
vations of the production environment operating within the guise of the SEL.

 Frank E. McGarry 126

 This paper describes the major roles and structure of the 2 organizations
within the EF. The project organization is responsible for producing software
and providing experience data to the EF organization. The EF organization is
responsible for the analysis and packaging of project experiences so that it
can be reused in the forms of refined models, lessons, and processes. To ex-
emplify this organizational structure, a series of studies of Ada is described.
 The significance of contributions made by the SEL is monumental, espe-
cially considering the total NASA investment of less than $6M (real-year-
dollars) over 25 years. The successful forging of government, industry, and
academia into an integrated partnership that meets the needs of each partner
may be one of the most remarkable contributions of this endeavor. The SEL
realized and exceeded the specific goals and contributions of its three organ-
izational elements, to the benefit to all. The dedication and capabilities of the
many researchers, staff, developers, and managers are primary reasons for
achieving such a significant return on such a modest investment; however, the
concept could not have had nearly the impact the SEL has had without the vi-
sion and dedication of Vic Basili. He nurtured the concept to maturity and
dedicated time, effort, insight, and vision throughout his professional career to
ensure that the software engineering community received significant value
from this unique endeavor, the SEL.

Analyzing Medium-scale Software Development

Victor R. Basili and Marvin V. Zelkowitz

Department of Computer Science University of Maryland
College Park, Maryland 20742

Abstract. The collection and analysis of data from programming projects is
necessary for the appropriate evaluation of software engineering method-
ologies. Towards this end, the Software Engineering Laboratory was organ-
ized between the University of Maryland and NASA Goddard Space Flight
Center. This paper describes the structure of the Laboratory and provides
some data on project evaluation from some of the early projects that have
been monitored. The analysis relates to resource forecasting using a model
of the project life cycle based upon the Rayleigh equation and to error rates
applying ideas developed by Belady and Lehman.

1. Goals of the Laboratory

A great deal of time and money has been and will continue to be spent in develop-
ing software. Much effort has gone into the generation of various software devel-
opment methodologies that are meant to improve both the process and the product
[Myers, Baker, Wolverton]. Unfortunately, it has not always been clear what the
underlying principles involved in the software development process are and what
effect the methodologies have; it is not always clear what constitutes a better
product. Thus progress in finding techniques that produce better, cheaper software
depends on developing new deeper understandings of good software and the soft-
ware development process. At the same time we must continue to produce soft-
ware.
 In order to investigate these issues, the Software Engineering Laboratory was
established, in August, 1976, at NASA Goddard Space Flight Center in coopera-
tion with the University of Maryland to promote such understandings [Basili &
Zelkowitz]. The goals of the Laboratory are to analyze the software development
process and the software produced in order to understand the development proc-
ess, the software product, the effects of various "improvements" on the process
and to develop quantitative measures that correlate well with intuitive notions of
good software.

This research was sponsored in part by grant NSG-5123 from NASA Goddard Space Flight
Center, Greenbelt, Maryland to the University of Maryland.

 Victor R. Basili and Marvin V. Zelkowitz 128

 The goals of the Laboratory can be broken down into three major tasks:
1. Provide a reporting mechanism for monitoring current project progress. This

goal is to provide management with up-to-date data on current project devel-
opment. Better reporting procedures can pinpoint problems as they develop
and help eliminate their spread and growth.

2. Collect data at as fine a level as possible that can be used to determine how the
software is being developed, extend results that have been reported in the lit-
erature about very large software developments and their characteristics to
medium sized projects (5 to 10 man-years), help discover what parameters can
be validly isolated, expose the parameters that appear to be causing trouble,
and discover appropriate milestones and techniques that show success under
certain conditions.

3. By comparing data collected from several NASA projects, compare the effects
of various technologies and other parameters upon system development and
performance.

2. Laboratory operation

Projects for the Systems Development Section at NASA typically are produced by
an outside contractor under supervision by NASA employees. Most products are
in the 5 to 10 man-year range in size, and are generally large batch programs for
an IBM 360 system. The programs are almost always written in FORTRAN.
 To evaluate programming methodologies, a mechanism was established to col-
lect data on each such project. The initial goal was to collect as much relevant data
as possible with as little impact on the projects and software development prac-
tices as possible. It is believed that although there has been some impact and inter-
ference, it has been minimal. As we gain knowledge as to what data to collect, we
hope to shorten the manual input from the project personnel, and to automate
some of the tasks.
 Similar to other reporting projects of this type, the principal data gathering
mechanism is a set of seven reporting forms that are filled out by project personnel
at various times in the development life cycle of a project [Walston & Felix].
Some of these are filled out only once or twice, while others are filled out regu-
larly. The seven forms that are currently in use include:
1. General Project Summary. This form is filled out or updated at each pro-

ject milestone and defines the scope of the problem, how much has been
completed, estimates for the remainder of the project, and what techniques
are being used. It is a top level structure of the overall organization and is
filled out by the project manager.

2. Component Summary. This form is filled out during the design phase and
describes the structure of each component (e. g. subroutine, COMMON
block, etc.)

3. Programmer Analyst Survey. This form is filled out once by each pro-
grammer in order to provide a general background of project personnel.

 Analyzing Medium-scale Software Development 129

4. Resource Summary. This form is filled out weekly by the project manager
and gives manpower and other resources charged to the project during the
week.

5. Component Status Report. This is the major accounting form that lists, for
each programmer, what activities were performed on each component for the
week. This is the basic form that lists what happened and when.

6. Computer Program Run Analysis. This form contains an entry each time
the computer is used. It briefly describes what the computer is used for (e. g.
compile, test, etc.) and what happened (e. g. error messages).

7. Change Report Form. This form is completed for each change made to the
system. The reason for and a description of the change are given. If the
change is made to correct an error, the method of detection, effects on other
parts of the system, time to correct and type of error are noted on the form.

 The data that is collected is entered into the INGRES PDP 11 data base system
[Held]. This process is somewhat tedious due to the care needed to insure data va-
lidity. Almost all of the errors not detected by hand checking of the coded input
are detected by the input program.
 All projects that are currently being monitored can be broken down into three
broad classifications:
1. The screening experiments are the projects that simply have the require-

ment to submit reporting forms. They provide a base line from which further
comparisons can be made, and upon which the monitoring methodology can
be tested.

2. The semi-controlled experiments are a set of relatively similar large scale
developments. While they are different projects, they are sufficiently similar
in size and scope so that comparisons can be made across these projects. In
this case, specific techniques are sometimes required to be used in order to
measure their effectiveness. These projects are the standard spacecraft soft-
ware developed by the Systems Development Section at NASA.

3. The controlled experiments are a set of projects that are developed, using
different methodologies. These developments are the most closely monitored
and controlled of the three classifications so that the effects of methodology
upon these projects can more easily be measured than in the semi-controlled
experiments.

 For each project, a set of factors that effect software development are extracted
by the forms. Some of the factors that are of interest include:
1. People factors (size and expertise of development team, team organization)
2. Problem factors (type of problem to solve, magnitude of problem, format of

specifications, constraints placed upon solution)
3. Process factors (specification, design and programming languages, tech-

niques such as code reading, walkthroughs, top down design and structured
programming)

4. Product factors (reliability, size of system, efficiency, structure of control)
5. Resource factors (target and development computer system, development

time, budget)
6. Tools (Libraries, compilers, testing tools, maintenance tools)

 Victor R. Basili and Marvin V. Zelkowitz 130

 Some of these factors can be controlled while others are inflexible. Such items
as development computer system, budget, format of input specifications and type
of problem to solve are mostly fixed and change very slowly year by year. On the
other hand, factors like structured programming, design techniques and team or-
ganization are much more under the control of the laboratory and can be varied
across different projects.
 For each semi-controlled or controlled project, a set of these factors is prede-
termined. For example, a project may use a librarian, code reading, walkthroughs,
a PDL and structured programming. The other factors that affect development will
become apparent through the information obtained on the general project sum-
mary. In order to enforce these methodologies on project personnel, a training pe-
riod, consisting from a two hour lecture on filling out forms up to a week's class-
room training, is being utilized. Every effort is being made to use methodologies
that are compatible with a project manager's basic beliefs so that no friction devel-
ops between what the manager wants to do and what he must do.
 Much of the early effort in the Laboratory was expended in the organization of
the operation and generation of data collection and validation procedures and
forms. We have reached a point where sufficient data has been obtained to permit
us to evaluate our operational procedures and to analyze data with respect to goals
one and two in the introduction. In the following two sections, early evaluation of
the collected data is presented. The major emphasis in these first evaluations is on
reporting progress and reliability of the developing system.

3. Progress forecasting

One important aspect of project control is the accurate prediction of future costs
and schedules. A model of project progress has been developed and with it esti-
mates on project costs can be predicted.
 The Rayleigh curve has been found to closely resemble the life cycle costs on
large scale software projects [Norden, Putnam]. At present, we are assuming that
this is true for medium scale projects as well, and are developing reporting proce-
dures based upon this function. As data becomes available, we will be better able
to test the underlying hypothesis and refine it further.
 The Rayleigh curve yielding current resource expenditures (y) at time (t) is
given by the equation:

y=2 K a t exp(-a t²)
where the constant K is the total estimated project cost, and the constant a is equal
to 1/(Td**2) where Td is the time when development expenditures reach a maxi-
mum. In our environment K and a are measures of hours of effort, and t is given in
weeks.

 Analyzing Medium-scale Software Development 131

3.1 Estimates on Initial Data

For each project in the NASA environment, the requirements phase yields esti-
mates of the total resources and development time needed for completion. This
data is obtained by the Laboratory via the General Project Summary form. From
this data, a Rayleigh curve for this project can be computed.
 From the General Project Summary, the following three parameters are rele-
vant to this analysis:
1. Ka, total estimated resources needed to complete the project through accep-

tance testing (in hours).
2. Yd, the maximum resources needed per week to complete the project (in

hours).
3. Ta, the number of weeks until acceptance testing.
 Since the Rayleigh curve has only two parameters (K and a), the above system
is over specified and one of the above variables can be determined from the other
two. Since NASA budgets are generally fixed a year in advance, there is usually
little that can be done with total resources available (K). Also, since the contractor
assigns a fixed number of individuals to work on the project, the maximum re-
sources Yd (at least for several months) is also relatively fixed. Therefore, the
completion date (Ta) will vary depending upon K and Yd.
 As stated above, Ka is the total estimated resources needed to develop and test
the system through the acceptance testing stage. By analyzing previous NASA
projects, this figure Ka is about 88% of total expenditures K. The remaining 12%
goes towards last minute changes. The seemingly low figure of only 12% to cover
everything other than design, coding, and testing can be explained by the follow-
ing two facts local to our NASA environment:
1. the initial requirements and specifications phases are handled by different

groups from the development section, and thus this data does not appear,
and

2. shortly after acceptance testing, a third group undertakes the maintenance
operation, and so the full maintenance costs also are not included in the esti-
mates.

 For this reason it should be clear that we have no actual data to match the
Rayleigh curve in the early stage (requirements) and late stage (maintenance).
However, the major central portion of the curve should be a reliable estimate of
the development costs, and it is here that we hope to prove consistency between
the data collected on these medium scale projects and the large scale projects in
the literature. Besides, on the large scale projects, the Rayleigh curve also acts as
an accurate predictor of the design, coding, and testing stages both combined and
individually [Putnam]. (In the future we expect to obtain some data on the long
term maintenance phase. A Maintenance Reporting Form has been developed, and
the maintenance section has agreed to fill out this form and report back the data.
Due to the lifetimes of these spacecraft related software systems, the data will not
be available for about another year.)
 Thus given the estimate of project costs Ka in hours, the total resources needed
is given by:

 Victor R. Basili and Marvin V. Zelkowitz 132

Ka = .88 K
or
K = Ka/.88

 The raw data for personnel resource estimates are not directly usable in our
analyses since they include individuals of varying functions and salaries and there-
fore varying costs. The following normalization algorithm has been applied to the
resource data in computing Ka: Each programmer hour is given a weight of 1, an
hour of management time costs 1.5 while a support hour (secretary, typing, librar-
ian, etc.) costs .5. This is a reasonable approximation to the true costs at NASA.
 Then given constant a, the date of acceptance testing Ta can be computed as
follows. The integral form of the Rayleigh curve is given by:

E = K (1 – exp(-a t²))
where E is the total expenditures until time t. From the previous discussion, we
know that at acceptance testing, E is .88K. Therefore,

.88K = K (1 – exp(-at²))
Solving for t yields:

t = sqrt(-ln(.12)/a)

Figure 1. Project A – Estimated resource expenditures curves

 Analyzing Medium-scale Software Development 133

 Putnam [Putnam2] states that for development efforts only, acceptance testing
(Ta) is related to the time of peak effort (Tp) by the relation:

Figure 2. Project B – Estimated resource expenditures curves

 From our own smaller projects, we found that this gives answers consistently
higher by about 8 to 10 weeks, therefore we are using our own .88K rule to deter-
mine acceptance testing. Why our projects do not agree with the empirical evi-
dence of large scale projects in this area is now under study.
 Taking the given value of K, two different Rayleigh curve estimates were plot-
ted for each of two different projects (referred to as projects A and B) by adjusting
the constant a. For one estimating curve it was assumed that the estimate for
maximum resources per week Yd was accurate and that the acceptance testing
date Ta could vary, while in the other case the assumed acceptance testing date Ta
was fixed and the constant a could be adjusted to determine maximum weekly ex-
penditures Yd needed to meet the target date. These plots for the two different
projects are shown as figures 1 and 2.

 Victor R. Basili and Marvin V. Zelkowitz 134

 The curve limiting maximum weekly expenditures might be considered the
more valuable of the two since it more closely approximates project development
during the early stages of the project. In both projects A and B, the maximum re-
source estimate Yd was predicted to be insufficient for completing acceptance
testing by the initially estimated completion date Ta. In project A the Rayleigh
curve prediction for acceptance testing was 58 weeks instead of the proposed 46
weeks. The actual date was 62 weeks - yielding only a 7% error (Figure 3). The
prediction for project B showed similar results.

 Project A Project B

Initial Estimate from General Project Summary

 Ka, Resources needed (hours) 14,213 12,997

 Ta, Time to completion (weeks) 46 41

 Yd, Maximum resources/week (hours) 350 320

Completion Estimates using Rayleigh Curve

 K, Resources needed (hours) 16,151 14,770

 Estimated Yd with Ta fixed (hours) 440 456

 Estimated Ta with Yd fixed (hours) 59 58

Actual Project Data

 K, Resourced needed (hours) 17,742 16,543

 Yd, Maximum resources (hours) 371 462

 Ta, Completion time (weeks) 62 54

 Ta, Estimated using actual values

 of K and Yd (weeks) 60 43

Figure 3. Estimating Ta and Td from General Project Summary Data

 As it turned out, both projects used approximately 1600 hours more than ini-
tially estimated (10% for A and 12% for B) , and maximum weekly resources did
not agree exactly with initial estimates. If these corrected figures for Ka and Yd
are used in the analysis, then Ta, the date for acceptance testing, is 60 weeks in-
stead of the actual 62 weeks for project A - an error of only 3% (Figure 3).
 Note however that the corrected figures for project B yield a Ta of 44 weeks
instead of the actual 54. This discrepancy is due in part to the extreme variance in
actual development hours allocated to the project each week, especially towards
the latter period (See figure 2). If an average maximum value of 425 hours per
week is substituted for the absolute maximum, the projected completion date be-
comes 49 weeks, yielding an error of only 5 weeks.
 It is clear from the analysis of this last data, that due to the size of the project
and the effect small perturbations have on the prediction of results, that there is
definitely a difference in the analysis of projects of the size being studied by the
Laboratory and the large scale efforts reported in the literature. To demonstrate

 Analyzing Medium-scale Software Development 135

this point even further, consider the actual data in the curve in Figure 1. The sig-
nificant drop in development activities during the weeks 21, 26 and 34 can be at-
tributed to Thanksgiving, Christmas and Washington's Birthday, all holidays for
the contractor. Thus our data is quite sensitive to holidays, employee illness, and
project personnel changes.

3.2 Predicting Progress

In order to test the predictability of the model, curve fitting techniques to the ac-
tual data were used. The Rayleigh curve can be rewritten as:

Figure 4. Project A – Least squares fit for resource data

 Victor R. Basili and Marvin V. Zelkowitz 136

 This equation can be used to derive the equation y=f(t) for the collected data
(yi/ti, ti) using least squares techniques.
 From this solution, figure 4 was plotted for project A. The * represents a best
fit using all of the collected data points while the curve plotted with + represents a
best fit based upon points up to the original point assumed to be acceptance testing
(46 weeks for project A) to check the model's ability to predict completion.
 Figure 5 summarizes the results. These are not very good, and Figure 6 is a
possible explanation. On projects this small, the resource curve is mostly a step
function. Thus assuming a Rayleigh curve estimate at point x results in an earlier,
sharper decline while an estimate at y results in too little a decline. Starting with
Norden's original assumptions that led to the Rayleigh curve as a predictor for
large scale developments, current research is investigating variations to the basic
curve so that it is "flatter" in its mid-range, and better approximates projects of this
size.

 Project A Project B

Least squares fit through all points

 K, in hours 20,087 17,964

 Ta, in weeks 57 61

Least squares fit using points up to

estimated acceptance testing date

 K, in hours 16,827 25,714

 Ta, in weeks 49 61

Actual project data

 K, in hours 17,742 16,543

 Ta, in weeks 62 54

Figure 5. Estimating K and Ta using least squares fit

Figure 6. Rayleigh curve estimation on medium scale projects

 Analyzing Medium-scale Software Development 137

3.3 Forecasting of Components

As part of the reporting procedure, the Component Status Report gives manpower
data on each component of the system, and the Component Summary gives the
necessary size and time estimates. Therefore equations can be developed for each
component in the system. Thus we are able to estimate whether any piece of the
system is on schedule or has slipped.
 At the present time, summary data can be printed on expenditures for each
component in a project. In figure 7, CM is a subsystem of the project, and the
other listed components are a sample of the components of CM. The above algo-
rithm is now being investigated to see whether all components should be checked
and some indication (such as a * next to the name) made if a component seems to
be slipping from its estimated schedule. In the future, more accurate predictions of
K from Ka will be investigated. How well the basic Rayleigh curve fits this data is
also being studied. In addition, we would like to collect data from the analysis and
maintenance sections at NASA to include the requirements, specifications and
maintenance phases in the lifetime of each project.

Figure 7. Resource data by components (Data collection on this project began af-

ter design phase completed, so little design time shown.)

 Putnam lists only two parameters affecting overall system development: total
manpower needs and maximum manpower. What effects do other programming
techniques have (if any) on the shape of this curve? For example, proponents of
many methodologies, such as structured programming, predict a slower rise in the
curve using the proposed techniques.

4. Other investigations

Besides project forecasting, several other areas are under investigation. Some of
these are briefly described in the following paragraphs.

 Victor R. Basili and Marvin V. Zelkowitz 138

4.1 Overhead

 Overhead is often an elusive item to pin down. In our projects three aspects of
development have been identified: programmer effort, project management, and
support items (typing, librarians, clerical, etc.). In one project programmers ac-
counted for about 80% of total expenditures with the support activities taking
about one third of the remaining resources. In addition, only about 60% of all pro-
grammer time was accountable to explicit components of the system. The remain-
ing time includes activities like meetings, traveling, attending training sessions,
and other activities not directly accountable. As others have shown, this figure
must be included in computing effective workloads in hours per week.

4.2 Error Analysis

 One early investigation using the collected change reports, was to test the hy-
pothesis of Belady and Lehman [1976]. By studying several large systems, they
determined that for each release of a given system, the per cent of modules altered
since the previous release was constant over time ("handling rate"). Since our own
data was mostly data collected during integration testing, the extension of their re-
sults was tested in our own environment. In addition, besides the handling rate, we
also wanted to investigate the report rate, or the rate at which changes were re-
ported over time on the developing system.
 Figure 8(a) shows this early evaluation, which clearly does not represent a con-
stant handling rate. The maximum rate of handling modules occurs in the middle
of the testing period.
 One result which was surprising, however, is the report rate of figure 8(b). This
represents the number of change reports submitted each week. This figure did re-
main constant for almost the entire development time.
 In order to test this second result further, data from a second project was plot-
ted. It too had handling rates and report rates similar to the above project. This
phenomenon will be studied in greater detail in the future.

5. Summary

The major contribution of the Laboratory to the field of software engineering is
the ability to collect the kind of detailed data currently unavailable, and collect it
for a class of projects (medium scale) that has not yet been well analyzed. The
finer level of monitoring and data collection can yield better analysis and under-
standing of the details of the development process and product. The medium scale
size of the projects permit us to study more projects although it is clear that good
data collection techniques are more important here than in larger projects because
mistakes can have a much stronger impact. The large number of projects being
compared also permits various software development parameters and techniques

 Analyzing Medium-scale Software Development 139

to be analyzed and compared with quantitative assessments by correlating data
across several projects.
 The current status of projects in the Laboratory have permitted us to begin re-
porting back to management the status of projects and to begin analyzing individ-
ual aspects of projects, checking their relationships to large scale project results
found in the literature. The model of resource utilization via the Rayleigh curve is
an important idea that is being investigated. Error rates and their causes are also
under study. Since the Laboratory only started to collect data in December of
1976, and since most projects take from 12 to 18 months to complete, the first few
projects are only now being completed; however, within the next 4 to 6 months,
about four more projects will be ready for analysis. This will allow for more care-
ful comparisons with the data already collected.

Figure 8. Handling and report rate of project A

 Victor R. Basili and Marvin V. Zelkowitz 140

6. Acknowledgements

We would like to acknowledge the contributions and cooperation of Mr. Frank
McGarry, head of the Systems Development Section of NASA Goddard Space
Flight Center. He has been instrumental in organizing the Laboratory and in inter-
facing with the contractor in order to see that the data is collected reliably and
timely. We would also like to thank Computer Sciences Corporation for their pa-
tience during form development and their contributions to the organization and
operation of the Laboratory.

Figure 8. Handling and report rate of project A

References

[Baker] Baker F. T., Structured programming in a. production programming environment,
International Conference on Reliable Software, Los Angeles, April, 1975 (SIGPLAN
Notices 10, No. 6, 172-185).

 Analyzing Medium-scale Software Development 141

[Basili & Zelkowitz] Basili V. and M. Zelkowitz, The Software Engineering Laboratory:
Objectives, Proceedings of the Fifteenth Annual ACM Computer Personnel Research
Conference, Washington D. C., August, 1977.

[Belady & Lehman] Belady L. A. and M. M. Lehman, A model of large program devel-
opment, IBM Systems Journal 15, No. 3, 1976, 225-252.

[Held] Held G., M. Stonebraker, E. Wong, INGRES - a relational data base system, Na-
tional Computer Conference, 1975, 409-416.

[Myers] Myers G., Software Reliability through composite design. Mason Charter, New
York, 1975.

[Norden] Norden P., Use tools for project management, Management of Production. M. K.
Starr (ed), Penguin Books, Baltimore, Md., 1970, 71-101.

[Putnam] Putnam L., A macro-estimating methodology for software development, IEEE
Computer Society Compcon, Washington, D. C., September, 1976, 138-143.

[Putnam2] Putnam L., Private communication.
[Walston & Felix] Walston C. E. and C. P. Felix, A method of program measurement and

estimation, IBM Systems Journal 16, No. 1, 1977, 54-73.
[Wolverton] Wolverton R. W., The cost of developing large scale software, IEEE Transac-

tions on Computers 23, No. 6, June, 1974, 615-636.

Software Process Evolution at the SEL

Victor R. Basili and Scott Green

Abstract. The Software Engineering Laboratory has been adapting, ana-
lyzing, and evolving software processes for the last 18 years. Their ap-
proach is based on the Quality Improvement Paradigm, which is used to
evaluate process effects on both product and people. The authors explain
this approach as it was applied to reduce defects in code.

Since 1976, the Software Engineering Laboratory of the National Aeronautics and
Space Administration’s Goddard Space Flight Center has been engaged in a pro-
gram of understanding, assessing, and packaging software experience. Topics of
study include process, products, resource, and, defect models, as well as specific
technologies and tools. The approach of the SEL – a consortium of the Software
Engineering Branch of NASA Goddard’s Flight Dynamics Division, the Computer
Science Department of the University of Maryland, and the Software Engineering
Operation of Computer Sciences Corp. - has been to gain an in-depth understand-
ing of project and environment characteristics using process models and baselines.
A process is evaluated for study, applied experimentally to a project, analyzed
with respect to baselines and process model, and evaluated in terms of the experi-
ment's goals. Then on the basis of the experiment's conclusions, results are pack-
aged and the process is tailored for improvement, applied again, and reevaluated.
 In this article, we describe our improvement approach, the Quality Improve-
ment Paradigm, as the SEL applied it to reduce code defects by emphasizing read-
ing techniques. The box on p.63 describes the Quality Improvement Paradigm in
detail. In examining and adapting reading techniques, we go through a systematic
process of evaluating the candidate and refining its implementation through les-
sons learned from previous experiments and studies.
 As a result of this continuous, evolutionary process, we determined that we
could successfully apply key elements of the Cleanroom development method in
the SEL environment, especially for projects involving fewer than 50,000 lines of
code (all references to lines of code refer to developed, not delivered, lines of
code). We saw indications of lower error rates, higher productivity, a more com-
plete and consistent set of code comments, and a redistribution of developer effort.
Although we have not seen similar reliability and cost gains for larger efforts, we
continue to investigate the Cleanroom method’s effect on them.

 Victor Basili is with the University of Maryland and Scott Green is with NASA Goddard

Space Flight Center.

 Software Process Evolution at the SEL 143

1. Evaluating candidate processes

To enhance the possibility of improvement in a particular environment, the SEL
introduces and evaluates new technology within that environment. This involves
experimentation with the new technology, recording findings in the context of les-
sons learned, and adjusting the associated processes on the basis of this experi-
ence. When the technology is notably risky - substantially different from what is
familiar to the environment – or requires more detailed evaluation than would
normally be expended, the SEL conducts experimentation off-line from the project
environment.

Off-line experiments may take the form of either controlled experiments or case
studies. Controlled experiments are warranted when the SEL needs a detailed
analysis with statistical assurance in the results. One problem with controlled ex-
periments is that the project must be small enough to replicate the experiment sev-
eral times. The SEL then performs a case study to validate the results on a project
of credible size that is representative of the environment. The case study adds va-
lidity and credibility through the use of typical development systems and profes-
sional staff. In analyzing both controlled experiments and case studies, the
Goal/Question/Metric paradigm, described in the box on p. 63, provides an impor-
tant framework for focusing the analysis.

On the basis of experimental results, the SEL, packages a set of lessons learned
and makes them available in an experience base for future analysis and application
of the technology.

Experiment 1; Reading versus testing. Although the SEL had historically been a
test-driven organization, we decided to experiment with introducing reading
techniques. We were particularly interested in how reading would compare with
testing for fault detection. The goals of the first off-line, controlled experiment
were to analyze and compare code reading, functional testing, and structural
testing, and to evaluate them with respect to fault-detection effectiveness, cost,
and classes of faults detected.

We needed to analysis from the viewpoint of quality assurance as well as a
comparison of performance with respect to software type and programmer
experience. Using the GQM paradigm, we generated specific questions on the
basis of these goals.

We had subjects use reading by stepwise abstraction, equivalence-partitioning
boundary-value testing, and statement-coverage structural testing.

 Victor R. Basili and Scott Green 144

We conducted the experiment twice
at the University of Maryland on
graduate students (42 subjects) and
once at NASA Goddard (32 subjects).
The experiment structure was a frac-
tional factorial design, in which every
subject applied each technique on a
different program. The programs in-
cluded a text formatter, a plotter, an
abstract data type, and a database, and
they ranged from 145 to 365 lines of
code. We seeded each program with
faults. The reading performed was at
the level of unit level.

Although the results from both ex-
periments support the emphasis on
reading techniques, we report only the
results of the controlled experiment on
the NASA Goddard subjects because it
involved professional developers in the
target environment.

Figure 1 shows the fault-detection
effectiveness and rate for each ap-
proach for the NASA Goddard ex-
periment. Reading by stepwise ab-
straction proved superior to the testing
techniques in both the effectiveness
and cost of fault detection, while obvi-
ously using fewer computer resources.

 Even more interesting was that the
subjects did a better job of estimating
the code quality using reading than
they did using testing. Readers
thought they had only found about half
the faults (which was nominally cor-
rect), while functional testers felt that
had found essentially all the faults
(which was never correct).

 Furthermore, after completing the
experiment, more than 90 percent of
the participants thought functional test-

ing had been the most effective technique, although the results clearly showed oth-
erwise. This gave us some insight into the psychological effects of reading versus
testing. Perhaps one reason testing appeared more satisfying was that the success-
ful execution of multiple test cases generated a greater comfort level with the
product quality, actually providing the tester with a false sense of confidence.

Figure 1. Results of the reading-

versus-testing controlled experi-

ment, in which reading was com-

pared with functional and struc-

tural testing. (A) Mean number of

faults detected for each technique

and (B) number of faults detected

per hour of use for each technique.

 Software Process Evolution at the SEL 145

Reading was also more effective in uncovering most classes of faults, including
interface faults. This told us that perhaps reading might scale up well on larger
projects.
Experiment 2; Validation with Cleanroom. On the basis of these results, we de-
cided to emphasize reading techniques in the SEL environment. However, we saw
little improvement in overall reliability of development systems. Part of the reason
may have been that SEL project personnel had developed such faith in testing that
the quality of their reading was relaxed, with the assumption that testing would ul-
timately uncover the same faults. We conducted a small off-line experiment at the
University of Maryland to test this hypothesis; the results supported our assump-
tion. (We did this on a small scale just to verify our hypothesis before continuing
with the Cleanroom experiment).

Why the Cleanroom method? The Cleanroom method emphasizes human disci-
pline in the development process, using a mathematically based design approach
and a statistical testing approach based on anticipated operational use. Develop-
ment and testing teams are independent, and all development-team activities are
performed without on-line testing.

Techniques associated with the method are the use of box structures and state
machines, reading by stepwise abstraction, formal correctness demonstrations, and
peer review. System development is performed through pipeline of small incre-
ments to enhance concentration and permit testing and development to occur in
parallel.

Because the Cleanroom method removes developer testing and relies on human
discipline, we felt it would overcome the psychological barrier of reliance on test-
ing.

Applying the QIP. The first step of the Quality Improvement Paradigm is to char-
acterize the project and its environment. The removal of developer unit testing
made the Cleanroom method a high-risk technology. Again, we used off-line ex-
perimentation at the University of Maryland as a mitigating approach. The envi-
ronment was a laboratory course at the university, and the project involved an
electronic message system of about 1,500 LOC. The experiment structure was a
simple replicated design, in which control and experiment teams are defined. We
assigned 10 three-person experiment teams to use the Cleanroom method. We
gave five three-person control teams the same development methodology, but al-
lowed them to test their systems. Each team was allowed five independent test
submissions of their programs. We collected data on programmer background and
attitude, computer-resource activity, and actual testing results.

The second step in the Quality Improvement Paradigm is to set goals. The goal
here was to analyze the effects of the Cleanroom approach and evaluate it with re-
spect to process, product, and participants, as compared with the non-Cleanroom
approach. We generated questions corresponding to this goal, focusing on the
method’s effect on each aspect being studied.

The next step of the Quality Improvement Paradigm involves selecting an ap-
propriate process model. The process model selected for this experiment was the

 Victor R. Basili and Scott Green 146

Cleanroom approach as defined by Harlan Mills at IBM’s Federal Systems Divi-
sion, but modified for our environment. For example, the graduate-student assis-
tant for the course served as each group's independent test team. Also, because we
used a language unfamiliar to the subjects to prevent bias, there was a risk of er-
rors due solely to ignorance about the language. We therefore allowed teams to
cleanly compile their code before submitting it to the tester.

Because of the nature of controlled experimentation, we made few modifica-
tions during the experiment.

Cleanroom's effect on the software development process resulted in the Clean-
room developers more effectively applying the off-line reading techniques, the
non-Cleanroom teams focused their efforts more on functional testing than the
reading. The Cleanroom teams spent less time on-line, and were more successful
in making scheduled deliveries. Further analysis revealed that the Cleanroom
products had less dense complexity, a higher percentage of assignment statements,
more global data, and more code comments. These products also more completely
met the system requirements and had a higher percentage of successful independ-
ent test cases.

The Cleanroom developers indicated that they modified their normal software-
development activities by doing a more effective job of reading, though they
missed the satisfaction of actual program execution. Almost all said they would
be willing to use Cleanroom on another development assignment. Through obser-
vation, it was also clear that the Cleanroom developers did not apply the formal
methods associated with Cleanroom very rigorously. Furthermore, we did not
have enough failure data or experience with Cleanroom testing to apply a reliabil-
ity model. However, general analysis did indicate that the Cleanroom approach
had potential payoff, and that additional investigation was warranted.

You can also view this experiment from the following perspective: We applied
two development approaches. The only real difference between them was that the
control teams had one extra piece of technology (developer testing), yet they did
not perform as well as the experiment teams. One explanation might be that the
control group did not use the available non-testing techniques as effectively be-
cause they knew they could rely on testing to detect faults. This supports our ear-
lier findings associated with the reading-versus-testing experiment.

2. Evolving selected process

The positive results gathered from these two experiments gave us the justification
we needed to explore the Cleanroom method in case studies, using typical devel-
opment systems as data points. We conducted two case studies to examine the
method, again following steps of the Quality Improvement Paradigm. A third case
study was also recently begun.

First Case Study. The project we selected, Project 1, involved two subsequent
systems. The system performs ground processing to determine a spacecraft’s alti-

 Software Process Evolution at the SEL 147

tude, receiving and processing spacecraft telemetry data to meet the requirements
of a particular mission.

The subsystems we chose are an integral part of attitude determination and are
highly algorithmic. Both are interactive programs that together contain approxi-
mately 40,000 LOC, representing about 12 percent of the entire attitude ground-
support system. The rest of the ground-support system was developed using the
standard SEL development methodology.

The project was staffed principally by five people from the Flight Dynamics
Division, which houses the SEL. All five were also working on other projects, so
only part of their time was allocated to the two subsystems. Their other responsi-
bility often took time and attention away from the case study, but this partial allo-
cation represents typical staffing in this environment. All other projects with
which the Project 1 staff were involved were non-Cleanroom efforts, so staff
members would often be required to use multiple development methodologies,
during the same workday.

The primary goal of the first case study was to increase software quality and re-
liability without increasing cost. We also wanted to compare the characteristics of
the Cleanroom method with those typical of the FDD environment. A well-
calibrated baseline was available for comparison that described a variety of proc-
ess characteristics, including effort distribution, change rates, error rates, and pro-
ductivity. The baseline represents the history of many earlier SEL studies. Figure
2 shows sample of the expected variations from the SEL baselines for a set of
process characteristics.

Figure 2. Sample measures, baselines, and expectations for the case studies inves-

tigating the Cleanroom method.

 Victor R. Basili and Scott Green 148

Choosing and tailoring processes. The process models available for examination
were the standard SEL model, which represents a reuse-oriented waterfall life-
cycle model; the IBM/FSD Cleanroom model, which appeared in the literature and
was available through training, and the experimental University of Maryland
Cleanroom model, which was used in the earlier controlled experiment [4].

We examined the lessons learned from applying the IBM and University of
Maryland models. The results from the IBM model were notably positive, show-
ing that the basic process, methods and techniques were effective for that particu-
lar environment. However, the process model had been applied by the actual de-
velopers of the methodology, in the environment for which it was developed. The
University of Maryland model also had specific lessons, including the effects of
not allowing developers to test their code, the effectiveness of the process on a
small project, and the conclusion that formal methods appeared particularly diffi-
cult to apply and required specific skills.

Based upon these lessons and the environment within which the study was to be
conducted, the initial SEL Cleanroom process model included four key elements:

On the basis of these lessons and the characteristics of our environment, we se-
lected a Cleanroom process model with four key elements:
• separation of development and test teams
• reliance on peer review instead of unit-level testing as the primary de-

veloper verification technique
• use of informal state machines and functions to define the system de-

sign, and
• a statistical approach to testing based on operational scenarios.
 We also provided training for the subjects, consistent with a University of
Maryland course on the Cleanroom process model, methods, and techniques with
emphasis on reading through stepwise abstraction. We also stressed code reading
by multiple reviewers because stepwise abstraction was new to many subjects.
Michael Dyer and Terry Baker of IBM/FSD provided additional training and mo-
tivation by describing IBM’s use of Cleanroom.

To mitigate risk and address the developers’ concerns, we examined back out
options for the experiment. For example, because the subsystems were highly
mathematical, we were afraid it would be difficult to find and correct mathemati-
cal errors without any developer testing. Because the project was part of an opera-
tional system with mission deadlines, we discussed options that ranged from al-
lowing developer unit testing to discontinuing Cleanroom altogether. These
discussions helped allay the primary apprehension of NASA Goddard manage-
ment in using the new methodology. When we could not get information about
process application, we followed SEL process-model activities.

We also noted other management and project-team concerns. Requirements
and specifications change frequently during the development cycle in the FDD
environment. This instability was of particular concern because the Cleanroom
method is built on the precept of developing software right the first time. Another
concern was that, given the difficulties encountered in the University of Maryland
experiment about applying formal methods, how successfully could a classical
Cleanroom approach be applied: Finally, there was concern about the psychologi-

 Software Process Evolution at the SEL 149

cal effects of separating development and testing, specifically the inability of the
developers to execute their code. We targeted all these concerns for our post pro-
ject analysis.

Project 1 lasted from January 1988 through September 1990. We separated the
five team members into three-person development team and a two-person test
team. The development team broke the total effort into six incremental builds of
approximately 6,500 LOC each. An experimenter team consisting of NASA God-
dard managers, SEL representatives, a technology advocate familiar with the IBM
model, and the project leader monitored the overall process.

We modified the process in real time, as needed. For example, when we
merged Cleanroom products into the standard FDD formal review and documenta-
tion activities, we had to modify both. We altered the design process to combine
the use of state machines and traditional structured design. We also collected data
for the monitoring team at various points throughout the project, although we tried
to do this with as little disturbance as possible to the project team.

Analyzing and packaging results. The final steps in the QIP involve analyzing
and packaging the process results. We found significant differences in effort dis-
tribution during development between the Cleanroom project and the baseline.
Approximately six percent of the total project effort shifted from coding to design
activities in the Cleanroom effort. Also, the baseline development teams tradi-
tionally spent approximately 85 percent of their coding effort writing code, 15
percent reading it. The Cleanroom team spent about 50 percent in each activity.

The primary goal of the first case study had been to improve reliability without
increasing cost to develop. Analysis showed a reduction in change rate of nearly
50 percent and a reduction in error rate of greater than a third. Although the ex-
pectation was for a productivity equivalent to the baseline, the Cleanroom effort
also improved in that area by approximately 50 percent. We also saw a decrease
in rework effort, as defined by the amount of time spent correcting errors. Addi-
tional analysis of code reading revealed that three fourths of all efforts uncovered
were found by only one reader. This prompted a renewed emphasis on multiple
readers throughout the SEL environment.

We also examined the earlier concerns expressed by the managers and project
team. The results showed increased effort in early requirements analysis and de-
sign activities and a clearer set of in-line comments. This led to a better under-
standing of the whole system and enabled the project team to understand and ac-
commodate changes with greater ease than was typical for the environment.

We reviewed the application of classical Cleanroom and noted successes and
difficulties. The structure of independent teams and emphasis on peer review dur-
ing development was easy to apply. However, the development team did have dif-
ficulty using the associated formal methods. Also, unlike the scheme in the clas-
sical Cleanroom method, the test team followed an approach that combined
statistical testing with traditional functional testing.
 Finally, the psychological effects of independent testing appeared to be negligi-
ble. All team members indicated high job satisfaction as well as a willingness to
apply the method in future projects.

 Victor R. Basili and Scott Green 150

We packaged these early results in various reports and presentations, including
the SEL's 1990 Software Engineering Workshop. As a reference for future SEL
Cleanroom projects, we also began efforts to produce a document describing the
SEL Cleanroom process model, including details on specific activities. [6] (The
completed document is now available to current Cleanroom projects).

Second Case Study. The first case study showed us that we needed better train-
ing in the use of formal methods and more guidance in applying the testing ap-
proach. We also realized that experiences from the initial project team had to be
disseminated and used.

Again, we followed the Quality Improvement Paradigm. We selected two pro-
jects: one similar to the initial Cleanroom project. Project 2A and one more repre-
sentative of the typical FDD contractor-support environment, Project 2B.

Project 2A involved a different subsystem of another attitude ground-support
system. This subsystem focused on the processing of telemetry data, comprising
22,000 LOC. The project was staffed with four developers and two testers. Pro-
ject 2B involved an entire mission attitude ground-support system, consisting of
approximately 160,000 LOC. At its peak, it was staffed with 14 developers and
four testers.

Setting Goals and choosing processes. The second case study had two goals.
One was to verify measure from the first study by applying the Cleanroom method
to Project 2A, a project of similar size and scope. The second was to verify the
applicability of Cleanroom on Project 2B, a substantially larger project but one
more representative of the typical environment. We also wanted to further tailor
the process model to the environment by using results from the first case study and
applying more formal techniques.

Packages from the SEL Experience Factory (described in the box on p. 63)
were available to support project development These included an evolved training
program, a more knowledgeable experimenter team to monitor the projects, and
several in-process interactive sessions with the project teams. Although we had
begun producing a handbook detailing the SEL Cleanroom process model, it was
not ready in time to give to the teams at the start of these projects.

The project leader for the initial Cleanroom project participated as a member of
the experimenter team, served as the process modeler for the handbook and acted
as a consultant to the current projects.

We modified the process according to the experiences of the Cleanroom team
in the first study. Project 1’s team had had difficulty using state machines in sys-
tem design, so we changed the emphasis to Mills’ box-structure algorithm.[7] We
also added a more extensive training program focusing on Cleanroom techniques,
experiences from the initial Cleanroom team, and the relationship between the
Cleanroom studies and the SEL’s general goals. The instruction team included
representatives from the SEL, members of the initial team, and Mills. Mills gave
talks on various aspects of the methodology, as well as motivational remarks on
the potential benefits of the Cleanroom method in the software community.

 Software Process Evolution at the SEL 151

Project 2A ran from March 1990 through January 1992. Project 2B ran from
February 1990 through December 1992. Again, we examined reliability, produc-
tivity, and process characteristics, comparing them to Project 1 results and the
SEL baseline.

Analyzing and packaging results. As Figure 3 shows, there were significant dif-
ferences between the two projects. Error and change rates for Project 2A contin-
ued to be favorable. Productivity rate, however, returned to the SEL baseline
value. Error and change rates for Project 2B increased from Project 1 values, al-
though they remained lower than SEL baseline numbers. Productivity, however,
dropped below the baseline.

When we examined the effort distribution among the baseline and Projects 1,
2A and 2B, we found a continuing upward trend in the percentage of design effort,
and a corresponding decrease in coding effort. Additional analysis indicated that
although the overall error rates were below the baseline, the percentage of system
components found to contain errors during testing was still representative of base-
line projects developed in this environment. This suggests that the breadth of er-
ror distribution did not change with the Cleanroom method.
In addition to evaluating objective data for these two projects, we gathered subjec-
tive input through written and verbal feedback from project participants. In gen-
eral, input from Project 2A team members, the smaller of the two projects, was
very favorable, while Project 2B members, the larger contractor team, had signifi-
cant reservations about the method’s application. Interestingly, though, specific
short-comings were remarkably similar for both teams. Four areas were generally
cited in the comments. Participants were dissatisfied with the use of design ab-
stractions and box structures, did not fully accept the rationale for having no de-
veloper compilation, had problems coordinating information between developers
and testers, and cited the need for a reference to the SEL Cleanroom process
model.
 Again, we packaged these results into various reports and presentations, which
formed the basis for additional process tailoring.

Third Case Study. We have recently begun a third case study to examine diffi-
culties in scaling up the Cleanroom method in the typical contractor-support envi-
ronment and to verify previous trends and analyze additional tailoring of the SEL
process model. We expect the study to complete in September.

In keeping with this goal, we again selected a project representative of the FDD
contractor-support environment, but one that was estimated at 110,000 LOC,
somewhat smaller than Project 2B. The project involves development of another
entire mission attitude ground-support system. Several team members have prior
experience with the Cleanroom method through previous SEL studies.

Experience Factory packages available to this project include training in the
Cleanroom method, an experienced experimenter team, and the SEL Cleanroom
Process Model (the completed handbook). In addition to modifying the process
model according to the results from the first two case studies, we are providing

 Victor R. Basili and Scott Green 152

Figure 3. Measurement comparisons for two case studies investigating Clean-

room. The first case study involved one project, Project 1. The second case study

involved two projects, 2A and 2B. (A) Percentage of total development effort for

various development activities, and (B) productivity in lines of code per day,

change rate in changes per thousands of lines of code, and reliability in errors per

thousand lines of code.

 Software Process Evolution at the SEL 153

regularly scheduled sessions in which the team members and experimenters can
interact. These sessions give team members the opportunity to communicate
problems they are having in applying the method, ask for clarification, and get
feedback on their activities. This activity is aimed at closing a communication gap
that the contractor team felt existed in Project 2B.

The concepts associated with the QIP and its use of measurement has given us
an evolutionary framework for understanding, assessing, and packaging the SEL’s
experiences.

Table 1 shows how the evolution of our Cleanroom study progressed as we

used measurements from each experiment and case study to define the next ex-
periment or study. The SEL Cleanroom process model has evolved on the basis of
results packaged through earlier evaluations. Some aspects of the target method-
ology continue to evolve: Experimentation with formal methods has transitioned
from functional decomposition and state machines to box-structure design and
again to box-structure application as a way to abstract requirements. Testing has
shifted from a combined statistical/functional approach, to a purely statistical ap-
proach based on operational scenarios. Our current case study is examining the
effect of allowing developer compilation.

Along the way, we have eliminated some aspects of the candidate process: we
have not examined reliability models, for example, since the environment does not
currently have sufficient data to seed them. We have also emphasized some as-
pects. For example, we are conducting studies that focus on the effect of peer re-
viewers and independent test teams for non-Cleanroom projects. We are also
studying how to improve reading by developing reading techniques through off-
line experimentation.

The SEL baseline used for comparison is undergoing continual evolution.
Promising techniques are filtered into the development organization as general

 Victor R. Basili and Scott Green 154

process improvements, and corresponding measures of the modified process (ef-
fort distribution, reliability, cost) indicate the effect on the baseline.

The SEL Cleanroom process model has evolved to a point where it appears ap-
plicable to smaller projects (fewer than 50,000 LOC), but additional understanding
and tailoring is still required for larger scale efforts. The model will continue to
evolve as we gain more data from development projects. Measurement will pro-
vide baseline for comparison, identify areas of concern and improvement, and
provide insight into the effects of process modifications. In this way, we can set
quantitative expectations and evaluate the degree to which goals have been
achieved.
 By adhering to the Quality Improvement Paradigm, we can refine the process
model from study-to-study, assessing strengths and weaknesses, experiences, and
goals. However, our investigation into the Cleanroom method illustrates that the
evolutionary infusion of technology is not trivial and that process improvement
depends on a structured approach of understanding, assessment, and packaging.

3. Acknowledgements

This work has been supported by NASA/GSFC contract NSG-5123. We thank all
the members of the SEL team who have been part of the Cleanroom experimenter
teams, the Cleanroom training teams, and the various Cleanroom project teams.
We especially thank Frank McGarry, Rose Pajerski, Sally Godfrey, Ara Kouchad-
jian, Sharon Waligora, Dr. Harlan Mills, Michael Dyer and Terry Baker for their
efforts.

References

[1] Victor R. Basili, R. W. Selby, "Comparing the Effectiveness of Software Testing
Strategies,” IEEE Transactions on Software Engineering, Vol. SE-13, No. 12, De-
cember 1987, pp. 1278-1296.

[2] R. Linger, H. Mills, and B. Witt, Structured Programming: Theory and Practice, Addi-
son Wesley, Reading, Mass., 1979.

[3] H. D. Mills, M. Dyer, and R. C. Linger, "Cleanroom Software Engineering," IEEE
Software, September, 1987, pp. 19-24.

[4] R. W. Selby, Jr., V. R. Basili, and T. Baker, "CLEANROOM Software Develop-
ment: An Empirical Evaluation,” IEEE Transactions on Software Engineering, Vol. 13
no. 9, September, 1987, pp. 1027-1037.

[5] Linda Landis, Sharon Waligora, Frank McGarry, Rose Pajerski, Mike Stark, Kevin
Johnson and Donna Cover, Recommended Approach to Software Development Revi-
sion 3, Software Engineering Laboratory, SEL-81-305, June 1992.

[6] Scott Green, Software Engineering Laboratory (SEL) Cleanroom Process Model, Soft-
ware Engineering Laboratory, SEL-91-004, November 1991.

[7] H. D. Mills, "Stepwise Refinement and Verification in Box-Structured Systems," IEEE
Software, June, 1988, pp. 23-36.

The Software Engineering Laboratory – An
Operational Software Experience Factory

Victor Basili, Gianluigi Caldiera, University of Maryland
Frank McGarry, Rose Pajerski, National Aeronautics and Space

Administration/Goddard Space Flight Center
Gerald Page and Sharon Waligora, Computer Science Corporation

Abstract. For 15 years the Software Engineering Laboratory (SEL) has been carrying out
studies and experiments for the purpose of understanding, assessing, and improving soft-
ware and software processes within a production software development environment at the
National Aeronautics and Space Administration Goddard Space Flight Center
(NASA/GSFC). The SEL comprises three major organizations:

• NASA/GSFC, Flight Dynamics Division

• University of Maryland. Department of Computer Science

• Computer Sciences Corporation Flight Dynamics Technology Group
These organizations have jointly carried out several hundred software studies, producing
hundreds of reports, papers, and documents, all of which describe some aspect of the soft-
ware engineering technology that has been analyzed in the flight dynamics environment at
NASA. The studies range from small, controlled experiments (much as analyzing the effec-
tiveness of code reading versus that of functional testing) to large, multiple-project studies
(such as assessing the impacts of Ada on a production environment) The organization’s
driving goal is to improve the software process continually, so that sustained improvement
may be observed in the resulting products. This paper discusses the SEL as a functioning
example of an operational software experience factory and summarizes the characteristics
of and major lessons learned from 15 years of SEL operations.

I. The Experience Factory Concept

Software engineering has produced a fair amount of research and technology
transfer in the first 24 year of its existence. People have built technologies, meth-
ods, and tools that are used by many organizations in development and mainte-
nance of software systems.

Unlike other disciplines, however, very little research has been done in the de-
velopment of models for the various components of the discipline. Models have
been developed primarily for the software product, providing mathematical mod-
els of its function and structure (e.g., finite state machines in object-oriented de-
sign), or, in some advanced instances, of its observable quality (e.g., reliability
models). However, there has been very little modeling of several other important
components of the software engineering discipline, such am processes, resources,
and defects. Nor has much been done toward understanding the logical and physi-
cal integration of software engineering models, analyzing and evaluating them via
experimentation and simulation, and refining and tailoring them to the characteris-
tics and the needs of a specific application environment.

Currently, research and technology transfer in software engineering are done
mostly bottom up and in isolation. To provide software engineering with a rigor-

 Victor Basili, Gianluigi Caldiera, Frank McGarry et al 156

ous, scientific foundation and a pragmatic framework the following are needed
[1]:

• A top-down, experimental, evolutionary framework in which research can be
focused arid logically integrated to produce models of the discipline, which
can then be evaluated and tailored to the application environment

• An experimental laboratory associated with the software artifact that is being
produced and studied to develop and refine comprehensive models based
upon measurement and evaluation

The three major concepts supporting this vision are

• A concept of evolution: the Quality Improvement Paradigm [2]

• A concept of measurement and control: the Gosh Question/Metric Approach
[3]

• A concept of the organization: the Experience Factory [4]
The Quality Improvement Paradigm is a two-feedback loop process (project

and organization loops) that is a variation of the scientific method It consists of the
following steps:

• Characterization: Understand the environment based upon available models,
data intuition etc, so that similarities to other projects can be recognized.

• Planning: Based on this characterization:
o Set quantifiable goals for successful project and organization per-

formance and improvement.
o Choose the appropriate processes for improvement, and support-

ing methods and tools to achieve the goals in the given environ-
ment.

• Execution: Perform the processes while constructing the products and pro-
vide real-time project feedback based on the goal achievement data.

• Packaging: At the end of each specific project:
o Analyze the data and the information gathered to evaluate the cur-

rent practices, determine problems, record findings, and make
recommendations for future process improvements.

o Package the experience in the form of updated and refined models
and other forms of structured knowledge gained from this and
prior projects.

o Store the packages in an experience base so they are available for
future projects

The Goal/Question/Metric Approach is used to define measurements on the
software project, process, and product in such a way that

• Resulting metrics art tailored to the organization and its goals

• Resulting in measurement data play a constructive and instructive role in the
organization

• Metrics and their interpretation reflect the quality values and the different
viewpoints (developers, users, operators, etc.)
Although originally tried to define and evaluate a particular project in a particu-

lar environment, the Goal/Question/Metric Approach can be used for control and
improvement of a software project in the context of several projects within the

 The Software Engineering Laboratory 157

Goal/Question/Metric Approach defines a measurement model on three levels:

• Conceptual level (goal): A goal is defined for an object, for a variety of rea-
sons with respect to various models of quality, from various points of view
and relative to a particular environment.

• Operational level (question): A set of questions is used to define models of
the object of study and the focuses on that object to characterize the assess-
ment or achievement of a specific goal.

• Quantitative level (metric): A set of metrics based on the models is associated
with every question in order to answer it in a quantitative way.

The concept of the Experience Factory was introduced to institutionalize the col-
lective learning of the organization that is at the root of continual improvement
and competitive advantage.

Figure 1. Project Organization Functions

Reuse of experience and collective learning cannot be left to the imagination of

individual very talented, managers: they become a corporate concern, like the
portfolio of a business or company assets. The experience factory is the organiza-
tion that supports reuse of experience and collective learning by developing, up-
dating, and delivering, upon request to the project organizations, clusters of com-
petencies that the SEL refers to as experience packages. The project organizations
offer to the experience factory their products, the plans used in their development,
and the data gathered during development and operation (Figure 1). The experi-
ence factory transforms these objects into reusable units and supplies them to the
project organizations, together with specific support that includes monitoring and
consulting (Figure 2).

 Victor Basili, Gianluigi Caldiera, Frank McGarry et al 158

Figure 2. Experience Factory Functions

The experience factory can be a logical and/or physical organization, but it is

important that its activities are separated and made independent from those of the
project organization. The packaging of experience is based on tenets and tech-
niques that are different from the problem solving activity used in project devel-
opment [7].

On the one hand, from the perspective of an organization producing software,
the difference is outlined in the following chart:

On the other hand from the perspective of software engineering research, there
are the following goals:

 The Software Engineering Laboratory 159

In a correct implementation of the experience factory paradigm, the projects

and the factory will have different process models. Each project will choose its
process model based on the characteristics of the software product that will be de-
livered whereas the factory will define (and change) its process model based upon
organizational and performance tames The main product of the experience factory
is the experience package There are a variety of software engineering experiences
that can be packaged: resource baselines and models; change and defect baselines
and models; product baselines and models; process definitions and models;
method and technique models and evaluations; products; lessons learned; and
quality models. The content and structure of an experience package vary based on
the kind of experience clustered in the package. There is, generally, a central ele-
ment that determines what the package is: a software life-cycle product or process,
a mathematical relationship, an empirical or theoretical model a data base etc. This
central element can be used to identify the experience package and produce a tax-
onomy of experience packages based on the characteristics of this central element:

• Product packages (programs, architectures, designs)

• Tool packages (constructive and analytic tools)

• Process packages (process models methods)

• Relationship packages (cost and defect models, resource models, etc)

• Management packages (guidelines decision support models)

• Data packages (defined and validated data, standardized data, etc)
 The structure and functions of an efficient implementation of the experience
factory concept are modeled on the characteristics and the goals of the organiza-
tion it supports. Therefore different levels of abstraction best describe the architec-
ture of an experience factory in order to introduce the specificity of each environ-
ment at the tight level without losing the representation of the global picture and
the ability to compare different solutions [8].

 Victor Basili, Gianluigi Caldiera, Frank McGarry et al 160

The levels of abstraction that the SEL proposes to represent the architecture of
an experience factory are as follows:

• Reference level: This first and more abstract level represents the activities
in the experience factory by active objects, called architectural agents.
They are specified by their ability to perform specific tasks and to inter-
act with each other.

• Conceptual level: This level represents the interface of the architectural
agents and the flows of data and control among them. They specify who
communicates with whom, what is done in the experience factory, and
what is done in the project organization. The boundary of the experience
factory, i.e., the line that separates it front the project organization is de-
fined at this level based on the needs and characteristics of an organiza-
tion. It can evolve as these needs and characteristics evolve.

• Implementation level: This level defines the actual technical and organ-
izational implementation of the architectural agents and their connections
at the conceptual level. They are assigned process and product models
synchronization and communication rules, and appropriate performers
(people or computers). Other implementation details such as mapping the
agents over organizational departments are included in the specifications
provided at this level.

The architecture of the experience factory can be regarded as a special instance
of an experience package whose design and evolution are based on the levels of
abstraction just introduced and on the methodological framework of the improve-
ment paradigm applied to the specific architecture.

The Software Engineering Laboratory (SEL) is an operating example of an ex-
perience factory. Figure 3 shows the conceptual level of the SEL experience fac-
tory, identifying the primary architectural agents and the interactions among them.
The remaining sections describe the SEL implementation of the experience factory
concept. They discuss its background, operations, and achievements and assess the
impact it has had on the production environment it supports.

Figure 3. The SEL - Conceptual Level

 The Software Engineering Laboratory 161

2. SEL Background

The SEL was established in 1976 as a cooperative effort among the University of
Maryland, the National Aeronautics and Space Administration Goddard Space
Flight Center (NASA/GSFC), and Computer Sciences Corporation (CSC). Its goal
was to understand and improve the software development process and its products
within GSFC’s Flight Dynamics Division (FDD). At that time although significant
advances were being made in developing new technologies (e.g., structured devel-
opment practices, automated tools, quality assurance approaches, and management
tools), there was very hinted empirical evidence or guidance for applying these
promising, yet immature, techniques. Additionally, it was apparent that there was
very limited evidence available to qualify or to quantify the existing software
process and associated products, let alone understand the impact of specific proc-
ess methods Thus, the SEL staff initiated efforts to develop some means by which
the software process could be understood (through measurement), qualified, and
measurably improved through continually expanding understanding, experimenta-
tion, and process refinement.

Figure 4. SEL Process Improvement Steps

This working relationship has been maintained continually since its inception

with relatively little change to the overall goals of the organization. In general,
these goals have matured rather than changed. They are as follows:
1. Understand: Improve insight into the software process and its products by

characterizing a production environment.
2. Assess: Measure the impact that available technologies have on the software

process. Determine which technologies are beneficial to the environment and,

 Victor Basili, Gianluigi Caldiera, Frank McGarry et al 162

more importantly, how the technologies must be refined to best match the
process with the environment.

3. Package/infuse: After identifying process improvements, package the tech-
nology in a form that allows it to be applied in the production organization.

These goals are addressed sequentially, in an iterative fashion as shown in Fig-
ure 4.

The approach taken to attaining these goals has been to apply potentially bene-
ficial techniques to the development of production software and to measure the
process and product in enough detail to quantifiably assess the applied technology.
Measures of concern, such as cost, reliability, and/or maintainability are defined as
the organization determines the major near- and long-term objectives for its soft-
ware development process improvement program. Once those objectives are
known, the SEL staff designs the experiment; that is, it defines the particular data
to be captured and the question that must be addressed in each experimental pro-
ject.

All of the experiments conducted by the SEL have occurred within the produc-
tion environment of the flight dynamics software development facility at
NASA/GSFC. The SEL production environment consists of projects that are clas-
sified as mid-sized software systems. The average project lasts 2 to 3-1/2 years,
with an average staff size of 15 software developers. The average software size is
175 thousand source lines of code (KSLOC), counting commentary, with about 25
percent reused from previous development effort. Virtually all projects in this en-
vironment are scientific ground based systems, although some embedded systems
have been developed. Most software is developed in FORTRAN, although Ada is
starting to be used more frequently. Other languages, such as Pascal and Assem-
bly, are used occasionally. Since this environment is relatively consistent, it is
conducive to the experimentation process. In the SEL, there exists a homogeneous
class of software, a stable development environment, and a controlled consistent,
management and development process.

3. SEL Operations

The following three major functional groups support the experimentation and
studies within the SEL (Figure 5):
1. Software developers, who are responsible for producing the flight dynamics

application software,
2. Software engineering analysts, who are the researchers responsible for carry-

ing out the experimentation process and producing study results,
3. Data base support staff, who are responsible for collecting, chocking, and ar-

chiving all of the information collected horn the development efforts.
During the past 15 years, the SEL has collected and archived data on over 100
software development projects in the organization. The data are also used to build
typical project profile, against which ongoing projects can be compared and
evaluated. The SEL provides managers in this environment with tools (online and
paper) for monitoring and assessing project status.

 The Software Engineering Laboratory 163

Figure 5. SEL Functional Groups

Typically, there are 6 to 10 projects simultaneously in progress in the flight dy-

namics environment. As was mentioned earlier, they average 175 KSLOC, rang-
ing from small (6-8 KSLOC) to large (300-400 KSLOC), with a few exceeding 1
million-source lines of code (MSLOC). Each project is considered an experiment
within the SEL, and the goal is to extract detailed information to understand the
process better and to provide guidance to future projects.

To support the studies and to support the goal of continually increasing under-
standing of the software development process, the SEL regularly collects detailed
data from its development projects. The types of data collected include cost
(measured in effort), process, and product data. Process data include information
about the project, such as the methodology, tools and techniques used, and infor-
mation about personnel experience and training. Product data include sine (in
SLOC), change and error information, and the results of post development static
analysis of the delivered code.

The data may be somewhat different from one project to another since the goals
for a particular experiment may be different between projects. There is a basic set
of information (such as effort and error data) that is collected for every project.
However, as changes are made to specific processes (e.g., Ada projects), the de-
tailed data collected may be modified. For example, Figure 6 shows the standard
error report form, used on all projects, and the modified Ada version, used for
specific projects where Ada is being studied.

As the information is collected, it is quality assured and placed in a central data

 Victor Basili, Gianluigi Caldiera, Frank McGarry et al 164

base. The analysis then use these data together with other information, such as
subjective lessons learned, to analyze the impart of a specific software process and
to measure and then feed back results to both ongoing projects and follow-on pro-
jects.

The data are used to build predictive models for future projects and to provide a
rationale for refining particular software processes being used. As the data are
analyzed, papers arid reports are generated that reflect results of the numerous
studies. Additionally, the results of the analysis are packaged as standards, poli-
cies, training materials, and management tools.

Figure 6. Error Report Forms

4. SEL Data Analysis

The overall concept of the experience factory has continually matured within the
SEL as understanding of the software process has increased. The experience fac-
tory goal is to demonstrate continual improvement of the software process within
an environ-merit by carrying out analysts, measurement, and feedback to projects
within the environment. The steps, previously described, include understanding as
assessment/refinement, and packaging. The data described in the previous section
are used as one major element that supports these three activities in the SEL. In
this section examples are given to demonstrate the major stages of the experience
factory.

 The Software Engineering Laboratory 165

4.1 Understanding

Understanding what an organization does and how that organization operates is
fundamental to any attempt to plan, manage, or improve the software process.
This is especially true for software development organizations. The following two
examples illustrate how understanding is supported in an operation such as the
SEL.

Figure 7. Effort Distribution

Effort distribution (i.e., which phases of the life cycle consume what portion of

development effort) is one baseline characteristic of the SEL software develop-
ment process. Figure 7 presents the effort distributions for 11 FORTRAN projects,
by life-cycle phase and by activity. The phase data counts hours charged to a pro-
ject during each calendar phase. The activity data count all hours attributed to a
particular activity (as reported by the programmer) regardless of when in the life
cycle the activity occurred. Understanding these distributions is important to as-
sessing the similarities/differences observed on an ongoing project, planning new
efforts, and evaluating new technology.

The error detection rate is another interesting model from the SEL environ-
ment. There are two types of information in this model. The first is the absolute
error rate expected in each phase. By collecting the information on software errors
the SEL has constructed a model of the expected error rate in each phase of the
life cycle. The SEL expects about four errors per 1000 SLOC during implementa-
tion: two during system test, one during acceptance test, and one-half during op-
eration and maintenance. Analysis of more recent projects indicates that these ab-
solute error rates are declining as the software development process and
technology improve.

The trend that can be derived from this model is that the error detection rates
reduce by 50 percent in each subsequent phase (Figure 8). Thu pattern seems to be
independent of the actual values of the error rates- it is still true in the recent pro-
jects where the overall error rates are declining. This model of error rates, as well
as numerous other similar types of models, can be used to better predict, manage,
and assess change on newly developed projects.

 Victor Basili, Gianluigi Caldiera, Frank McGarry et al 166

4.2. Assessing/Refining

In the second major stage of the experience factory, elements of the process (such
as specific software development techniques) are assessed, and the evolving tech-
nologies are tailored to the particular environment. Each project in the SEL is con-
sidered to be an experiment in which some software method is studied in detail.
Generally, the subject of the study is a specific modification to the standard proc-
ess, a process that obviously comprises numerous software methods.

Figure 8. Derived SEL Error Model

One recent study that exemplifies the assessment stage involves the Cleanroom

software methodology [9]. This methodology has been applied on three projects
within the SEL, each providing additional insight into the Cleanroom process and
each adding some element of “refinement” to the methodology for this one envi-
ronment.

The SEL trained teams in the methodology, and then defined a modified set of
Cleanroom specific data to be collected. The projects were studied in an attempt to
assess the impact that Cleanroom had on the process as well as on such measures
as productivity and reliability. Figure 9 depicts the characteristics of the Clean-
room changes, as well as the results of the three experiments.

The Cleanroom experiments included significant changes to the standard SEL
development methodology, thereby requiring extensive training, preparation, and
careful execution of the studies. Detailed experimentation plans were generated
for each of the studies (as they are for all such experiments), and each included a
description of the goals, the questions that had to be addressed, and the metrics
that had to be collected to answer the questions.

Since this methodology consists of multiple specific methods (e.g., box struc-
ture design, statistical testing, rigorous inspections), each particular method had to
be analyzed along with the full, integrated, Cleanroom methodology in general. As
a result of the analysis, Cleanroom has been “assessed” as a beneficial approach
for the SEL (as measured by specific goals of these studies), but specific elements
of the full methodology had to be tailored to better fit the particular SEL environ-

 The Software Engineering Laboratory 167

ment. The tailoring and modifying resulted in a revised Cleanroom process model,
written in the form of a process handbook [10], for future applications to SEL pro-
jects. That step is the “packaging” component of the experience factory process.

Figure 9. Cleanroom Assessment in the SEL

4.3. Packaging

The final stage of a complete experience factory is that of packaging. After bene-
ficial methods and technologies are identified, the organization must provide
feedback to ensuing projects by capturing the process in the form of standards,
tools, and training. The SEL has produced a set of standards for its own use that
reflect the results of the studies it has conducted. It is apparent that such standards

 Victor Basili, Gianluigi Caldiera, Frank McGarry et al 168

must continually evolve to capture modified characteristics of the process (The
SEE typically updates its basic standard every 5 years.) Examples of standards
that have been produced as part of the packaging process include:

• Manager’s Handbook for Software Development [11]

• Recommended Approach to Software Development [121

One additional example of an extensive packaging effort in the SEL is a man-
agement tool called the Software Management Environment (SME). The concepts
of the SME, which is now an operational tool used locally in the SEL, have
evolved over 8 years This tool accesses SEL project data, models, relationships,
lessons teamed, and managers’ rules of thumb to present project characteristics to
the manager of an ongoing project. This allows the manager to gain insight into
the project’s consistency with or deviation from the norm for the environment
(Figure 10).

Figure 10. SME: A Tool for “Packaging”

This example of “packaging” reflects the emphasis that must be placed on mak-

ing results of software projects, in the form of lessons learned, refined models, and
general understanding, easily available to other follow-on development projects in
a particular organization.

The tool searches the collection of 15 years of experience archived in the SEL

 The Software Engineering Laboratory 169

to select appropriate, similar project data so that managers can plan, monitor, pre-
dict, and better understand their own project based on the analyzed history of simi-
lar software efforts.

As an example, all of the error characteristics of the flight dynamics projects
have resulted in the error model depicted in Figure 8, where history has shown
typical software error rates in the different phases of the life cycle As new projects
are developed and error discrepancies arc routinely reported and added to the SEL
data base, the manager can easily compare error rates on his or her project with
typical error rates on completed, similar projects. Obviously, the data axe envi-
ronment dependent, but the concepts of measurement, process improvement, and
packaging axe applicable to all environments.

5. Ada Analysis

A more detailed example of one technology that has been studied in the SEL
within the context of the experience factory is that of Ada. By 1985, the SEL had
achieved a good understanding of how software was developed in the FDD; it had
base lined the development process and had established rules, relationships, and
models that improved the manageability of the process. It had also fine-tuned its
process by adding and refining techniques within its standard methodology Realiz-
ing that Ada and object-oriented techniques offered potential for major improve-
ment in the flight dynamics environment, the SEL decided to pursue experimenta-
tion with Ada.

The first step was to set up expectations and goals against which results
would be measured. The SEL’s well-established baseline and set of meas-
ures provided an excellent basis for comparison. Expectations included a
change in the effort distribution of development activities (e.g., increased
design and decreased testing); no greater cost per new line of code; in-
creased reuse; decreased maintenance costs; and increased reliability (i.e.,
lower error rates, fewer interface errors, and fewer design errors).

The SEL started with a small controlled experiment in which two versions of
the same system were developed in parallel; one was developed in FORTRAN us-
ing the standard SEL structured methodology, and the other was developed in Ada
using an object oriented development (OOD) methodology. Because the Ada sys-
tem would not become operational, analysts had time to investigate new ideas and
learn about the new technology while extracting good calibration information for
comparing FORTRAN and Ada projects, such as size ratios, average component
size, error rates, and productivity. These data provided a reasonable means far
planning the next set of Ada projects that even though they were small would de-
liver mission support software.

Over the past 6 years the SEL has completed 10 Ada/OOD projects, ranging in
size from 38to 185 KSLOC. As projects completed and new ones started the
methodology was continually evaluated and refined. Some characteristics of the

 Victor Basili, Gianluigi Caldiera, Frank McGarry et al 170

Ada environment emerged early and have remained rather constant; others took
time to stabilize. For example, Ada projects have shown no significant change in
effort distribution or in error classification when compared with the SEL
FORTRAN baseline. However, reuse has increased dramatically, as shown in Fig-
ure 11.

Figure 11. Reuse Trends

Over the 6-year period the use of Ada and OOD has matured. Source cods

analysis of the Ada systems, grouped chronologically, revealed a maturing use of
key Ada features such as genetics, strong typing, and packaging, whereas other
features, such as tasking, were deemed inappropriate for the application. Generics
for example, were not only used more often in the recent systems, increasing from
8 to 50 percent of the system, but they were also used in more sophisticated ways,
so that parameterization increased eightfold. Moreover the use of Ada features has
stabilized over the last 3 years, creating a SEL baseline for Ada development.

The cost to develop new Ada code has remained higher than the cost to develop
new FORTRAN code. However, because of the high reuse, the cost to deliver an
Ada system has significantly decreased and is now well below the cost to deliver
an equivalent FORTRAN system (Figure 12).

Reliability of Ada systems has also improved as the environment has matured.
Although the error rates for Ada systems shown in Figure 13 were significantly
lower from the start than those for FORTRAN they have continued to decrease
even further. Again the high level of reuse in the later systems is a major contribu-
tor to this greatly improved reliability.

During this 6-year period, the SEL went through various levels of packaging
the Ada/OOD methodology. On the earliest project in 1985 when OOD was still
very young in the industry the SEL found it necessary to tailor and package their
own General Object-Oriented Development (GOOD) methodology [13] for use in
the flight dynamics environment. This document (produced in 1986) adjusted and
extended the industry standard for use in the local environment. In 1987 the SEL
also developed an Ada Style Guide [14] that provided coding standards for the lo-

 The Software Engineering Laboratory 171

cal environment. Commercial Ada training courses, supplemented with limited
project-specific training constituted the early training in these techniques The SEL
also produced lessons-learned reports on the Ada/OOD experiences, recommend-
ing refinements to the methodology.

Figure 12 - Costs to Develop and Deliver

 Victor Basili, Gianluigi Caldiera, Frank McGarry et al 172

Recently, because of the stabilization and apparent benefit to the organization,
Ada/OOD is being packaged as part of the baseline SEL methodology. The stan-
dard methodology handbooks [11, 12] include Ada and OOD as mainstream
methods. In addition a complete and highly tailored training program is being de-
veloped that teaches Ada and OOD as an integrated part of the flight dynamics
environment.

Although Ada/OOD will continue to be refined within the SEL. it has pro-
gressed through all stages of the experience factory, moving from a candidate trial
methodology to a fully integrated and packaged part of the standard methodology.
The SEL considers it base-lined and ready for further incremental improvement.

Figure 13. Trends in Error Rates

6. Implications for the Development Organization

For 15 years. NASA has been funding the efforts to carry out experiments and
studies within the SEL. There have been significant cost and a certain level of
overhead associated with these efforts; a logical question to ask is “Has there been
significant benefit?” The historical information strongly supports a very positive
answer. Not only has the expenditure of resources been a wise investment for the
NASA flight dynamics environment, but members of the SEL strongly believe
that inch efforts should be commonplace throughout both NASA and the software
community in general. The benefits far outweigh the costs.

Since the SEL’s inception in 1976, NASA has spent approximately $14 million

 The Software Engineering Laboratory 173

dollars (contract support) in the three major support areas required by this type of
study environment: research (defining studies and analyzing results), technology
transfer (producing standards and policies), and data processing (collecting forms
and maintaining data bases). Approximately 50 staff-years of NASA personnel ef-
fort have been expended on the SEL. During this same period, the flight dynamics
area has spent approximately $150 million cm building operational software all of
which has been putt of the study process.

During the past 15 years, the SEL has had a significant impact on the software
being developed in the local environment, and there is strong reason to believe
that many of die SEL studies have bad a favorable impact on a domain broader
than this one environment Examples of the changes that have been observed in-
clude the following:
1. The cost per line of new code has decreased only slightly, about 10 percent,

which at first glance might imply that the SEL has failed at improving pro-
ductivity. Although the SEL finds that the cost to produce a new source
statement is nearly as high as it was 15 years ago, there is appreciable im-
provement in the functionality of the software, as well as a tremendous in-
crease in the complexity of the problems being addressed [15]. Also, there has
been an appreciable increase in the reuse of software (code, design, methods,
test data, etc.), which has driven the overall cost of the equivalent functional-
ity down significantly. When the SEL merely measures the cost to produce
one new source statement, the improvement is small but when it measures
overall cost and productivity, the improvement is significant.

2. Reliability of the software has improved by 35 percent. As measured by the
number of errors per thousand lines of code (E/KSLOC), flight dynamics
software has improved from an average of 8.4 E/KSLOC in the early 1980s to
approximately 5.3 E/KSLOC today. These figures cover the software phases
through acceptance testing and delivery to operations. Although operations
and maintenance data are not nearly as extensive as the development data, the
small amount of data available indicates significant improvement in that area
as well.

3. The “manageability” of software has improved dramatically. In the late 1970s
and early l980s, the environment experienced wide variations in productivity,
reliability, and quality from project to project. Today, however, the SEL has
excellent models of the process; it has well defined methods; and managers
are better able to predict, control, and manage the cost and quality of the
software being produced. This conclusion is substantiated by recent SEL data
that show a continually improving set of models for planning, predicting, and
estimating all development projects in the flight dynamics environment.
There no longer is the extreme uncertainty in estimating such common pa-
rameters as cost, staffing, size, and reliability.

4. Other measures include the effort put forth in rework (e.g., changing and cor-
recting) and in overall software reuse. These measures also indicate a signifi-
cant improvement to the software within this one environment.

In addition to the common measures of software (e.g., cost and reliability),
there are many other major benefits derived from a “measurement” program such

 Victor Basili, Gianluigi Caldiera, Frank McGarry et al 174

as the SEL’s. Not only has the understanding of software significantly improved
within the research community, but this understanding is apparent throughout the
entire development community within this environment. Not only have the re-
searchers benefited, but the developers and managers who have been exposed to
this effort are much better prepared to plan, control, assure, and, in general, de-
velop much higher quality systems. One view of this program is that it is a major
“training” exercise within a large production environment, and the 800 to 1000
developers and managers who have participated in development efforts studied by
the SEL are much better trained and effective software engineers. This is due to
the extensive training and general exposure all developers get from the research
efforts continually in progress.

In conclusion, the SEL functions as an operational example of the experience
factory concept. The conceptual model for the SEL presented to Section 1 maps to
the functional groups discussed under SEL operations in Section 3. The experi-
ence base in Figure 2 is realized by the SEL data base and its archives of man-
agement models and relationships [16]. The analysis function from Figure 2 is
performed by the SEL team of software engineering analysts, who analyze proc-
esses and products to understand the environment, then plan and execute experi-
ments to assess and refine the new technologies under study. Finally, the synthe-
sis function of the experience factory maps to the SEL’s activities in packaging
new processes and technology in a form tailored specifically to the flight dynam-
ics environment. The products of this synthesis, or packaging, are the guidelines,
standards, and tools the SEL produces to infuse its findings back into the project
organization. These products are the experience packages of the experience fac-
tory model.

Current SEL efforts are focused on addressing two major questions. The first is
“How long does it take for a new technology to move through all the stages of the
experience factory?” That is, from understanding and baselining the current envi-
ronment, through assessing the impacts of the technology and refining it, to pack-
aging the process and infusing it into the project organization. Preliminary find-
ings from the SEL’s Ada and Cleanroom experiences indicate a cycle of roughly 6
to 9 years, but further data points are needed. The second question the SEL is pur-
suing is “How large an organization can adopt the experience factory model?” The
SEL is interested in learning what the scaleup issues are when the scope of the ex-
perience factory is extended beyond a single environment. NASA is sponsoring an
effort to explore the infusion of SEL-like implementations of the experience fac-
tory concept across the entire Agency.

Acknowledgement

Material for this paper represents work not only of the authors listed, but of many
other SEL staff members. Special acknowledgement is given to Gerry Heller of
CSC, who played a key role in editing this paper.

 The Software Engineering Laboratory 175

References

Numerous papers, reports, and studies have been generated over the SEL’s 15-
year existence. A complete listing of these can be found in the Annotated Bibliog-

raphy of Software Engineering Laboratory Literature_SEl-82-1006, L. Moru-
siewiczand J. Valett, November 1991. The bibliography may be obtained by con-
tacting: The SEL Library, Code 552, NASA/GSFC, Greenbelt, MD 20771
 A listing of references specific to this paper follows:
[1] V. R. Basili “Towards a Mature Measurement Environment: Creating a Software En-

gineering Research Environment” Proceedings of the Fifteenth Annual Software Engi-
neering Workshop, NASA/GSFC, Greenbelt, MD. SEL-90-006, November 1990.

[2] V. R. Basili, “Quantitative Evaluation of a Software Engineering Methodology,” Pro-
ceedings of the First Pan Pacific Computer Conference, Melbourne Australia, Septem-
ber 1985.

[3] V. R. Basili and D M. Weiss, “A Methodology for Collecting Valid Software Engi-
neering Data,” IEEE Transactions on Software Engineering, November 1984, pp. 728-
738.

[4] V. R. Basili, “Software Development: A Paradigm for the Future (Keynote Address),
Proceedings COMPSAC ‘89. Orlando, Florida, September 1989 pp 471-485.

[5] V. R. Basili and H. D. Rombach, “Tailoring the Software Process to Project Goals and
Environments,” Proceedings of the Ninth International Conference on Software Engi-
neering, Monterey, California, March 30— April 2. 1987, pp 345-357.

[6] V. R. Basili and H. D. Rombach, “The TAME Project; Towards Improvement-
Oriented Software Environment.,” IEEE Transactions on Software Engineering. Vol.
14, No 6. June 1988. pp- 758—773.

[7] V. R. Basili and G. Caldiera, “Methodological and Architectural Issues in the Experi-
ence Factory,” Proceedings of the Sixteenth Annual Software Engineering Workshop.
NASA GSPC, Greenbelt, Maryland. Software Engineering Laboratory Series, Decem-
ber 1991.

[8] V. R. Basili, G. Caldiera, and G. Cantone, “A Reference Architecture for the Compo-
nent Factory,” ACM Transactions on Software Engineering and Methodology, Vol. 1
No I January 1992, pp 53=80.

[9] H. D. Mills, M. Dyer, and R.C. Linger, “Cleanroom Software Engineering,” IEEE
Software November 1990, pp 19-24.

[10] S. Green, Software Engineering Laboratory (SEL) Cleanroom Process Model, SEL-
91-004 November 1991.

[11] L. Landis, F. E. McGarry, S Waligora, et al,, Manager’s Handbook for Software De-

velopment (Revision1), SEL-84-101, November 1990.
[12] F. E. McGarry, G. Page, E. Eslinger, et al, Recommended Approach to Software De-

velopment SEL-81-205, April 1981 Revision 3 in preparation’ scheduled for publica-
tion June 1992.

[13] E. Seidewitz and M Stark, General Object Oriented Software Development, SEL-86-
002, August 1986.

[14] E. Seidewitz et al, Ada® Style Guide (Version 1.1), SEL-87-002, May 1987.
[15] D. Boland et al, A Study on Size and Reuse Trends in Attitude Ground Support Sys-

tems (AGSS) Developed for the Flight Dynamics Division (FDD) (1976-1988),

NASA/GSFC, CSC/ TM-89/6031, February 1989.
[16] W. Decker, R Hendrick, and J. Valett, Software Engineering Laboratory (SEL) Rela-

tionships, Models, and Management Rules SEL-91-001, February 1991.

Section 4: Learning Organization and Experience

Factory

H. Dieter Rombach

Computer Science Department, Technical University of Kaiserslautern and
Fraunhofer Institute for Experimental Software Engineering (IESE)

Sustained improvement of software development organizations requires the cap-
ture of measurement-based models, their proper storage and reuse, and their con-
tinuous improvement across projects. The foundations had been established with
the GQM paradigm for goal-oriented measurement and the QIP for integrating
measurement with real software development processes. The practical feasibility
has been demonstrated within NASA’s SEL. Lessons learned within the SEL sug-
gested that empirically-based models needed to be augmented with context infor-
mation in order to judge their suitability for reuse, and that resources outside de-
velopment organizations were needed in order to create reusable models. It
reflects Prof. Basili’s research approach that he always alternates between doing
and scientific abstraction. In the past his experiences with measurement and the
pitfalls by lack of goal-orientation and integration with real projects led to the sci-
entific GQM and QIP paradigm. This section describes how the application of the
GQM and QIP paradigm in the SEL environment and the lessons learned led to
the creation of a comprehensive reuse model and an the Experience Factory model
providing organizational guidelines for successful QIP-based quality improve-
ment. Once the comprehensive reuse and Experience Factory models existed, they
were applied at Motorola in order to check whether these models would allow a
speedy and sustained creation of a Software Learning Organization.

The first paper, “Support for comprehensive reuse,” introduces a comprehen-
sive framework of models, model-based characterization schemes, and support
mechanisms aimed at better understanding, evaluating, planning, and supporting
all aspects of reuse. The underlying assumptions are that practical reuse typically
includes all types of software artifacts ranging from product to process and other
forms of knowledge, requires modification, requires a-priori analysis of reuse can-
didates in order to determine when and if reuse is appropriate, and must be inte-
grated into the specific development approach. The conclusion is that both reuse
candidates as well as target reuse requirements need to be modeled. The paper
proposes a reuse model, and a model-based characterization scheme. The reuse
model includes the steps “identification of reuse candidates” by means of match-
ing the models of reuse candidates against some reuse requirements model,
“evaluation and selection” of the most suitable reuse candidate, and “modifica-
tion” by adapting the reuse candidate to fit the reuse requirements. The characteri-
zation scheme to support this reuse model includes dimensions to characterize ob-

 Section 4: Learning Organization and Experience Factory 177

ject (e.g., name, function, granularity, representation), interface (e.g., input/output,
other dependencies), and context (e.g., application domain, solution domain, ob-
ject quality). In addition, the reuse process is characterized similarly. Especially
the mechanism for modification (e.g., verbatim, parameterized, template-based)
has a significant impact on cost of correction. In order to illustrate the applicabil-
ity, example characterizations for an Ada package, an inspection process and a
cost model from the SEL environment are provided. These example schemes en-
able sound reasoning about the usefulness, cost and benefits of reuse.

The comprehensive reuse scheme reflects the lessons learned from storing and
reusing measurement-based models within the SEL, captures them systematically
and makes them available to development organizations outside the SEL. This
comprehensive reuse model also provides operational support for GQM and QIP.
The characterization scheme can be used to identify useful context metrics within
the GQM process, and corresponds to the characteristics in step 1 of the QIP
aimed at formulating reuse requirements to identify useful experience models for a
new project. This paper can be considered fundamental in that it provides insights
into what context information is essential for effective reuse. Without such in-
sights continuous improvement across projects would still be an illusion. Today
some of the many practical applications of the comprehensive reuse scheme in-
clude the SEL (although created earlier), the CeBASE repository for software en-
gineering technologies (www.cebase.com), the VSEK repository for best practices
in selected domains (www.software-kompetenz.de).

The second paper, “Technology Transfer at Motorola,” describes the first sys-
tematic application of the GQM paradigm, QIP paradigm, and the comprehensive
reuse approach outside the SEL. At Motorola, these approaches were successfully
applied to introduce a software-review process. Within Motorola’s corporate-wide
Metrics Working Group, the QIP approach was instantiated to identify, tailor and
transfer software-engineering technology into the organization. The concept of a
“process package” is essential. A process package includes documents and train-
ing materials needed to bring the process to life! Examples include an overview
description of the process at hand, how to use it, references to other related pack-
ages, training aids for different user groups, data and lessons learned.

The experiences from introducing a software-review process at Motorola based
on GQM et al was generally positive. Specific lessons regarding the transfer ap-
proach included the importance of champions, the tailoring of data collection and
analysis, and the importance of sufficient training. Other lessons relating to the re-
view process included the importance of optimization of review guidelines based
on measurements, the importance of preparedness of reviewers before entering the
review meeting, the higher effectiveness of formal reviews.

This paper documents the usefulness of Vic Basili’s measurement and im-
provement approach outside the SEL. Subsequently, many technology transfer ap-
proaches of research organizations (e.g., Fraunhofer IESE in Germany, NICTA in
Australia, EASE/SEC in Japan) as well as companies (e.g., Daimler Chrysler,
Robert-Bosch, Siemens, Nokia, Boeing) adopted the approach in different instan-
tiations.

 H. Dieter Rombach 178

The third and final paper, “Improve Software Quality by Reusing Knowledge
and Experience,” defines the logical separation of project specific and organiza-
tional activities in an improvement-oriented software development organization.
The resulting “Experience Factory” concept ha s since become the “architectural
model” for successful software improvement programs. It distinguishes between
the project-specific QIP activities of planning (characterize, set goals and choose
process) and execution on the one hand, and the organizational experience factory
activities of post-mortem analysis and packaging. It is clearly stated that both
types of activities have to be closely intertwined, but both require different human
capabilities and sources of funding. While the human capabilities of project per-
sonnel are oriented towards top-down problem solving, the capabilities of experi-
ence factory personnel are oriented towards bottom-up generalization. The fund-
ing of experience factory activities cannot come from individual project budgets,
but must come from cross-project organizations which have an interest in im-
provement from project to project. Finally, the SEL is presented as a working Ex-
perience Factory. The Experience Factory model captures the essential activities
of a Learning Organization in the software development domain. Today, the Ex-
perience Factory model is used to facilitate learning in many domains. Examples
include many company-specific implementations (e.g. for subcontract manage-
ment in DoD projects – source: Fraunhofer Center Maryland; failure detection at
T-COM – source Fraunhofer IESE, sustained technology transfer – source: Mo-
torola/paper 2).

The comprehensive reuse scheme and the Experience Factory model provide –
together with GQM and QIP .- the integrating building blocks for Learning Or-
ganizations in the software development domain. It is important to recognize, that
these models capture the essentials in a generic and abstract form. They have to be
instantiated differently from environment to environment. With Vic these contri-
butions Vic Basili has enabled the adoption of basic engineering principles such as
continuous improvement via Plan-Do-Check-Act to the software domain.
Thereby, Software Engineering has made significant strides towards becoming a
true engineering discipline.

Support for Comprehensive Reuse

V. R. Basili and H. D. Rombach

Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland

Abstract. Reuse of products, processes and other knowledge will be the key to enable the
software industry to achieve the dramatic improvement in productivity and quality required
to satisfy the anticipated growing demands. Although experience shows that certain kinds
of reuse can be successful, general success has been elusive. A software life-cycle technol-
ogy which allows comprehensive reuse of all kinds of software-related experience could
provide the means to achieving the desired order-of-magnitude improvements. In this pa-
per, we introduce a comprehensive framework of models, model-based characterization
schemes, and support mechanisms for better understanding, evaluating, planning, and sup-
porting all aspects of reuse.

1. Introduction

The existing gap between demand and our ability to produce high quality software
cost-effectively calls for an improved software development technology. A reuse
oriented development technology can significantly contribute to higher quality and
productivity. Quality should improve by reusing all forms of proven experience
including products, processes as well as quality and productivity models. Produc-
tivity should increase by using existing experience rather than creating everything
from scratch.

Reusing existing experience is a key ingredient to progress in any discipline.
Without reuse everything must be re-learned and re-created; progress in an eco-
nomical fashion is unlikely. Reuse is less institutionalized in software engineering
than in any other engineering discipline. Nevertheless, there exist successful cases
of reuse, i.e. product reuse. The potential payoff from reuse can be quite high in
software engineering since it is inexpensive to store and reproduce software engi-
neering experience compared to other disciplines.

The goal of research in the area of reuse is to develop and support systematic
approaches for effectively reusing existing experience to maximize quality and
productivity. A number of different reuse approaches have appeared in the litera-
ture (e.g., [10, 12, 14, 17, 18, 19, 20, 27, 28, 29]).

 V. R. Basili and H. D. Rombach 180

 This paper presents a comprehensive framework for reuse consisting of a reuse
model, characterization schemes based upon this model, the improvement oriented
TAME environment model describing the integration of reuse into the enabling
software development processes, mechanisms needed to support comprehensive
reuse in the context of the TAME environment model, and (partial) prototype im-
plementations of the TAME environment model. From a number of important as-
sumptions regarding the nature of software development and reuse we derive four
essential requirements for any useful reuse model and related characterization
scheme (Section 2). We illustrate that existing models and characterization
schemes only partially satisfy these essential requirements (Section 3). We intro-
duce a new reuse model which is comprehensive in the sense that it satisfies all
four reuse requirements, and use it to derive a reuse characterization scheme (Sec-
tion 4). Finally, we point out the mechanisms needed to support effective reuse
according to this model (Section 5). Throughout the paper we use examples of re-
using generic Ada packages, design inspections, and cost models to illustrate our
approach.

Figure 1. Software development project model

2. Scope of Comprehensive Reuse

The reuse framework presented in this paper is based on a number of assumptions
regarding software development in general and reuse in particular. These assump-
tions are based on more than fifteen years of analyzing software processes and
products [2, 5, 7, 8, 9, 23]. From these assumptions we derive four essential re-
quirements for any useful reuse model and related characterization scheme.

2.1 Software Development Assumptions

According to a common software development project model depicted in Figure 1,
the goal of software development is to produce project deliverables (i.e., project
output) that satisfy project needs (i.e., project input) [30]. This goal is achieved

 Support for Comprehensive Reuse 181

according to some development process model which coordinates the interaction
between available personnel, practices, methods and tools.

With regard to software development we make the following assumptions:

• Software development needs to be viewed as an 'experimental' discipline:
An evolutionary model is needed which enables organizations to learn from
each development and incrementally improve their ability to engineer quality
software products. Such a model requires the ability to define project goals;
select and tailor the appropriate process models, practices, methods and tech-
niques; and capture the experiences gained from each project in reusable
form. Measurement is essential.

• A single software development approach cannot be assumed for all software

development projects: Different project needs and other project characteris-
tics may suggest and justify different approaches. The potential differences
may range from different development process models themselves to different
practices, methods and tools supporting these development process models to
different personnel.

• Existing software development approaches need to be tailorable to project

needs and characteristics: In order to reuse existing development process
models, practices, methods and tools across projects with different needs and
characteristics, they need to be tailorable.

2.2 Software Reuse Assumptions

Reuse oriented software development assumes that, given the project-specific
needs x' for an object x, we consider reusing some already existing object xk in-
stead of creating x from the beginning. Reuse involves identifying a set of reuse
candidates x1, ..., xn from an experience base, evaluating their potential for satisfy-
ing x', Selecting the best-suited candidate xk, and - if required – modifying the se-
lected candidate xk into x. Similar issues have been discussed in [16]. In the case
of reuse oriented development, x’ is not only the specification for the needed ob-
ject x, but also the specification for all the mentioned reuse activities.

 As we learn from each project which kinds of experience are reusable and
why, we can establish better criteria for what should and what shouldn't be made
available in the experience base. The term experience base suggests that anticipate
storage of all kinds of software related experience, not just products. The experi-
ence base can be improved from inside as well as outside. From inside, we can re-
cord experience from ongoing projects, which satisfies current reuse criteria for
future reuse, and we can re-package existing experience through various mecha-
nisms in order to better satisfy our current reuse criteria. From outside, we can in-
fuse experience which exists out-side the organization into the experience base. It
is important to note that the remainder of this paper deals only with the reuse of
experience available in an experience base and the improvement of such an ex-
perience base from inside (shaded portion of Figure 2).

 V. R. Basili and H. D. Rombach 182

Figure 2. Reuse-oriented software development model

With regard to software reuse we make the following assumptions:

• All experience can be reused: Traditionally, the emphasis has been on re-
using concrete objects of type 'source code'. This limitation reflects the tra-
ditional view that software equals code. It ignores the importance of reus-
ing all kinds of software-related experience including products, processes,
and other knowledge. The term 'product' refers to either a concrete docu-
ment or artifact created during a software project, or a product model de-
scribing a class of concrete documents or artifacts with common character-
istics. The term 'process' refers to either to a concrete activity or action -
performed by a human being or a machine - aimed at creating some soft-
ware product, or a process model describing a class of activities or actions
with common characteristics. The phrase 'other knowledge' refers to any-
thing useful for software development, including quality and productivity
models or models of the application being implemented.

The reuse of 'generic Ada packages' represents an example of product reuse.

Generic Ada packages represent templates for instantiating specific package ob-

jects according to a parameter mechanisms. The reuse of 'design inspections'

represents an example of process reuse. Design inspections are off-line fault de-

 Support for Comprehensive Reuse 183

tection and isolation methods applied during the component design phase. They

can be based on different techniques for reading (e.g., ad hoc, sequential, control

flow oriented, stepwise abstraction oriented). The reuse of 'cost models' represents

an example of knowledge reuse. Cost models are used in the estimation, evalua-

tion and control of project cost. They predict cost (e.g., in the form of staff-

months) based on a number of characteristic project parameters (e.g., estimated

product size in KLoC, product complexity, methodology level).

• Reuse typically requires some modification of the object being reused:

Under the assumption that software developments may be different in
some way, modification of experience from previous projects must be an-
ticipated. The degree of modification depends on how many, and to what
degree, existing object characteristics differ from the needed ones. The
time of modification depends on when the reuse needs for a project or class
of projects are known. Modification can take place as part of actual reuse
(i.e., the 'modify' within the reuse process model of Figure 2) and/or prior
to actual reuse (i.e., as part of the re-packaging activity in Figure 2).

To reuse an Ada package ‘list of integers’ in order to organize a ‘list of reals’,

we need to modify it. We can either modify the existing package by hand, or we

can use a generic package 'list' which can be instantiated via a parameter mecha-

nism for any base type.

To reuse a design inspection method across projects characterized by signifi-

cantly different fault profiles, the underlying reading technique may need to be

tailored to the respective fault profiles. If 'interface faults' replace 'control flow

faults' as the most common fault type, we can either select a different reading

techniqueized by different application domains, we may have to change the num-

ber and type of characteristic project parameters used for estimating cost as well

as their impact on cost. If 'commercial software' is developed instead of 'real-time

software', we may have to consider re-defining 'estimated product size' to be

measured in terms of 'function points' instead of 'lines of code' or re-computing

the impact of the existing parameters on cost. Using a cost model effectively im-

plies a constant updating o decision to reuse existing experience as well as how

and when to reuse it needs to be based on an analysis of the payoff. Reuse payoff

is not always easy to evaluate [1]. We need to understand (i) the reuse needs, (ii)

how well the available reuse candidates are qualified to meet these needs, and (iii)

the mechanisms available to perform the necessary modification.

Assume the existence of a set of Ada generics, which represent application-

specific components of a satellite control system. The objective may be to reuse

such components to build a new satellite control system of a similar type, but with

higher precision. Whether the existing generics are suitable depends on a variety

of characteristics: Their correctness and reliability, their performance in prior in-

stances of reuse, their ease of integration into a new system, the potential for

achieving the higher degree of precision through instantiation, the degree of

change needed, and the existence of reuse the answers to these questions, they

may not be reused due to lack of confidence that reuse will payoff.

Assume the existence of a design inspection method based on ad-hoc reading

which has been used successfully on past satellite control software developments

 V. R. Basili and H. D. Rombach 184

within a standard waterfall model. The objective may be to reuse the method in

the context of the Cleanroom development method [22, 26]. In this case, the

method needs to be applied in the context of a different life-cycle model, existing

method can be reused depends on our ability to tailor the reading technique to the

stepwise refinement oriented design technique used in Cleanroom, and the re-

quired intensity of reading due to the omission of developer testing. This results in

the definition of the stepwise abstraction oriented reading technique [11].

Assume the existence of a cost model that has been validated for the develop-

ment of satellite control software based on a waterfall life-cycle model, functional

decomposition-oriented design techniques, and functional and structural testing.

The objective may be to reuse the model in the context of Cleanroom development.

Whether the cost model can be reused at all, how it needs to be calibrated, or

whether a completely different model may be more appropriate depends on

whether the model contains the appropriate variables needed for the prediction of

cost change or whether they simply need to be re-calibrated. This question can

only be answered through thorough analysis of a number of Cleanroom projects.

• Reuse must be integrated into the specific software development: Reuse is
intended to make software development more effective. In order to achieve
this objective, we need to tailor reuse practices, methods, and tools to the
respective development process.

We have to decide when and how to identify, modify and integrate existing Ada

packages. If we assume identification of Ada generics by name, and modification

by the generic parameter mechanism, we require a repository consisting of Ada

generics together with a description of the instantiation parameters. If we assume

identification by specification, and modification of the generics code by hand, we

require a suitable specification of each generic, a definition of semantic close-

ness1 of specifications so we can find suitable reuse candidates, and the appro-

priate source code documentation to allow for ease of modification. In the case of

identification by specification we may consider identifying reuse candidates at

high-level design (i.e., when the component specifications for the new product ex-

ist) or even when defining the requirements.

We have to decide on how often, when and how design inspections should be

integrated into the development process. If we assume a waterfall-based develop-

ment life-cycle, we need to determine how many design inspections need to be per-

formed and when (e.g., once for all modules at the end of module design, once for

all modules of a subsystem, or once for each module). We need to state which

documents are required as input to the design inspection, what results are to be

produced, what actions are to be taken, and when, in case the results are insuffi-

cient; who is supposed to participate.

We have to decide when to initially estimate cost and when to update the initial

estimate. If we assume a waterfall-based development life-cycle, we may estimate

cost initially based on estimated product and process parameters (e.g., estimated

product size). After each milestone, the estimated cost can be compared with the

1 Definitions of semantic closeness can be derived from existing work [24].

 Support for Comprehensive Reuse 185

actual cost. Possible deviations are used to correct the estimate for the remainder

of the project.

2.3 Software Reuse Model Requirements

The above software reuse assumptions suggest that reuse is a complex concept.
We need to build models and characterization schemes that allow us to define and
understand, compare and evaluate, and plan the reuse requirements, the reuse can-
didates, the reuse process itself, and the potential for effective reuse. Based upon
the above assumptions, such models and characterization schemes need to satisfy
the following four requirements:

• Applicable to all types of reuse objects: We want to be able to include
products, processes and all other kinds of knowledge such as quality and
productivity models.

• Capable of modeling reuse candidates and reuse needs: We want to be
able to capture the reuse candidates as well as the reuse needs in the cur-
rent project. This will enable us to judge the suitability of a given reuse
candidate based on the distance between the characteristics of the reuse
needs and the reuse candidate, and establish criteria for useful reuse candi-
dates based on anticipated reuse needs.

• Capable of modeling the reuse process itself: We want to be able to
judge the ease of bridging the gap between different characteristics of re-
use candidates and reuse needs, and derive additional criteria for useful re-
use candidates based on characteristics of the reuse process itself.

• Defined and rationalized so they can be easily tailored to specific pro-

ject needs and characteristics: We want to be able to adjust a given reuse
model and characterization scheme to changing project needs and charac-
teristics in a systematic way. This requires not only the ability to change
the scheme, but also some kind of rationale that ties the given reuse charac-
terization scheme back to its underlying model and assumptions. Such a ra-
tionale enables us to identify the impact of different environments and
modify the scheme in a systematic way.

3. Existing Reuse Models

A number of research groups have developed (implicit) models and characteriza-
tion schemes for reuse (e.g., [12, 14, 17, 27, 28]). The schemes can be distin-
guished as special purpose schemes and meta schemes.

The large majority of published characterization schemes have been developed
for a special purpose. They consist of a fixed number of characterization dimen-
sions. There intention is to characterize software products as they exist. Typical
dimensions for characterizing source code objects in a repository are 'function',
'size', or 'type of problem'. Example schemes include the schemes published in

 V. R. Basili and H. D. Rombach 186

[14, 17], the ACM Computing Reviews Scheme, AFIPS's Taxonomy of Computer
Science and Engineering, schemes for functional collections (e.g., GAMS,
SHARE, SSP, SPSS, IMSL) and schemes for commercial software catalogs (e.g.,
ICP, IDS, IBM Software Catalog, Apple Book). It is obvious that special purpose
schemes are not designed to satisfy the reuse modeling requirements of section
2.3.

A few characterization schemes can be instantiated for different purposes. They
explicitly acknowledge the need for different schemes (or the expansion of exist-
ing ones) due to different or changing needs of an organization. They, therefore,
allow the instantiation of any imaginable scheme. An excellent example is Ruben
Prieto-Diaz's facet-based meta-characterization scheme [18, 21]. Theoretically,
meta schemes are flexible enough to allow the capturing of any reuse aspect.
However, based on known examples of actual uses of meta schemes, such broad-
ness has not been utilized. Instead, most examples focus on product reuse, are lim-
ited to the reuse candidates, lustrate the capabilities of existing schemes, we give

the following instance of an example meta scheme2:

 name: What is the product's name? (e.g., buffer.ada, queue.ada, list.pascal)

 function: What is the functional specification or purpose of the product?
(e.g., integer_queue, <R: What is the product's scope? (e.g., system level,
subsystem level, component level, module - package, procedure, function -
level)

 representation: How is the product represented? (e.g., informal set of
guidelines, schematized templates, languages such as Ada)

 input/output: What are the external input/output dependencies of the
product needed to completely define/extract it as a self-contained entity?
(e.g., global data referenced by a code unit, formal and actual input/output
parameters of a procedure, instantiation parameters of a generic Ada pack-
age)

 application domain: what application classes was the product developed
for? (e.g. ground support software for satellites, business software for
banking, payroll software)

This scheme is applicable to all reuse product candidates. For example, a ge-
neric Ada package 'buffer.ada' may be characterized as having identifier
'buffer.ada', offering the function '<element>_buffer', being usable as a 'product' of
type 'code document' at the 'package module level', and being represented in 'Ada'.
A self contained definition of a package requires knowledge regarding the instan-
tiation parameters, as well as its visibility of externally defined objects (e.g., ex-
plicit access through WITH clauses, implicit access according to nesting struc-
ture). In addition, effective use of the object may require some basic knowledge of
the language Ada and assume thorough documentation of the object itself. It may
have been developed within the application domain 'ground support software', ac-

2 Characterization dimensions are marked with ; example categories for each dimen-

sion are listed in parentheses.

 Support for Comprehensive Reuse 187

cording to a 'waterfall life-cycle' and 'functional decomposition design', and exhib-
iting high quality in terms of 'reliability'. In order to characterize reuse candidates
of type process or knowledge, new categories need to be generated.

Such schemes have typically been used to characterize reuse candidates only.
However, in order to evaluate the reuse potential of a reuse candidate in a given
reuse scenario, one needs to understand the distance between its characteristics
and the stated or anticipated reuse needs. In the case of the Ada package example,
the required function may be different, the quality requirements with respect to re-
liability may be higher, or the design method used in the current project may be
different from the one according to which the package has been created originally.
Without understanding the distance to be bridged between reuse requirements and
reuse candidates it is hard to predict the cost involved in reusing a particular ob-
ject, and establish criteria for populating a reuse repository that supports cost-
effective reuse.

The scheme provides no information for characterizing the reuse process. To
really predict the cost of reuse we do not only have to understand the distance to
be bridged between reuse candidates and reuse needs, but also the intended proc-
ess to bridge it (i.e., the reuse process). For example, it can be expected that it is
easier to bridge the distance with respect to function by using a parameterized in-
stantiation mechanism rather than modifying the existing package by hand.

There is no explicit rationale for the eight dimensions of the example scheme.
That makes it hard to reason about its appropriateness as well as modifies it in any
systematic way. There is no guidance in tailoring the example scheme to new
needs with respect to what is to changed (e.g., only some categories, dimensions,
or the entire implicitly underlying model) or how it is to be changed. For example,
it is not clear what needs to be changed in order to make the scheme applicable to
reuse candidates of type process or knowledge.

In summary, existing schemes - special purpose as well as meta schemes - only
partially satisfy the requirements laid out above. The most crucial shortcoming is
the lack of rationales which makes it hard to tailor such schemes to changing
needs and environment characteristics. This observation suggests the need for
new, broader reuse models and characterization schemes. In the next section, we
suggest a comprehensive reuse model and characterization schemes, which satisfy
all four requirements.

4. A Comprehensive Reuse Model

In this section we define a comprehensive reuse model and characterization
schemes, which satisfy the requirements stated in section 2.3. We start with a very
general reuse model, refine it step by step until it generates reuse characterization
dimensions at the level of detail needed to understand, evaluate, motivate or im-
prove reuse. This modeling approach allows us to deal with the complexity of the
modeling task itself, and document an explicit rationale for the resulting model.

 V. R. Basili and H. D. Rombach 188

Figure 3. Abstract reuse model (refinement level 0)

4.1 Reuse Model

The comprehensive reuse model used in this section is consistent with the view of
reuse represented in section 2.2. Reuse comprises the transformation of existing
reuse candidates into needed objects, which satisfy established reuse needs. The
transformation is referred to as reuse process. Specifications of the needed objects
are an essential part of the reuse needs which guide any reuse process.

The reuse candidates represent experience from the same project, prior projects,
or other sources, that have been evaluated as being of potential reuse value, and
have been made available in some form of experience base. The reuse needs spec-
ify objects needed in the current project. In the case of successful reuse, these
needed objects would be the potentially modified versions of reuse candidates.
Both the reuse candidate and reuse needs may refer to any type of experience ac-
cumulated in the context of software projects ranging from products to processes
to knowledge. The reuse process transforms reuse candidates into objects, which
satisfy given reuse needs.

Figure 4. Reuse model (refinement level 1)

In order to better understand reuse related issues we refine each component of

the reuse model further. The result of this first refinement step is depicted in Fig-
ure 4.

Each reuse candidate is a specific object considered for reuse. The object has
various attributes that describe and bound it. Most objects are physically part of a
system, i.e. they interact with other objects to create some greater object. If we
want to reuse an object we must understand its interaction with other objects in the
system in order to extract it as a unit, i.e. object interface. Objects were created in
some environment, which leaves its characteristics on the object, even though
those characteristics may not be visible. We call this the object context.

 Support for Comprehensive Reuse 189

Given reuse requirements may be satisfied by a set of reuse candidates. There-
fore, we may have to consider different attributes for each required object. The
system in which the transformed object is integrated and the system context in
which the system is developed must also be classified.

The reuse process is aimed at extracting a reuse candidate from a repository
based on the characteristics of the known reuse needs, and making it ready for re-
use in the system and context in which it will be reused. We must describe the
various reuse activities and classify them. The reuse activities need to be inte-
grated into the reuse-enabling software development process. The means of inte-
gration constitute the activity interface. Reuse requires the transfer of experience
across project boundaries. The organizational support provided for this experience
transfer is referred to as activity context.

Based upon the goals for the specific project, as well as the organization, we
must assess the required qualities of the reused object as stated by the reuse needs,
the quality of the reuse process, especially its integration into the enabling soft-
ware evolution process, and the quality of the existing reuse candidates.

4.2 Model-Based Reuse Characterization Scheme

Figure 5a. Reuse model (reuse candidates/refinement level 2)

 V. R. Basili and H. D. Rombach 190

Figure 5b. Reuse model (reuse requirements/refinement level 2)

Figure 5c. Reuse model (reuse process/refinement level 2)

Each component of the First Model Refinement (Figure 4) is further refined as de-
picted in Figures 5(a-c). It needs to be noted that these refinements are based on
our current understanding of reuse and may, therefore, change in the future.

4.2.1 Reuse Candidates: In order to characterize the object itself, we have chosen
to provide the following six dimensions and supplementing categories: the object's
name (e.g., buffer.ada), its function (e.g., integer_buffer), its possible use (e.g.,
product), its type (e.g., requirements document), its granularity (e.g., module), and
its representation (e.g., Ada language). The object interface consists of such things
as what are the explicit inputs/outputs needed to define and extract the object as a
self-contained unit (e.g., instantiation parameters in the case of a generic Ada
package), and what are additionally required assumptions and dependencies (e.g.,
user's knowledge of Ada). Whereas the object and object interface dimensions
provide us with a snapshot of the object at hand, the object context dimension
provides us with historical information such as the application classes the object
was developed for (e.g., ground support software for satellites), the environment
the object was developed in (e.g., waterfall life-cycle model), and its validated or

 Support for Comprehensive Reuse 191

anticipated quality (e.g., reliability). The resulting model refinement is depicted in
Figure 5a.

Each reuse candidate is characterized in terms of

• name: What is the object's name? (e.g., buffer.ada, sel_inspection,
sel_cost_model)

• function: What is the functional specification or purpose of the object? (e.g.,
integer_queue, <element>_buffer, sensor control system, certify appropriate-
ness of design documents, predict project cost)

• use: How can the object be used? (e.g., product, process, knowledge)

• type: What type of object is it? (e.g., requirements document, code document,
inspection method, coding method, specification tool, graphic tool, process
model, cost model)

• granularity: What is the object's scope? (e.g., system level, subsystem level,
component level, module - package, procedure, function - level, entire life cy-
cle, design stage, coding stage)

• representation: How is the object represented? (e.g., data, informal set of
guidelines, schematized templates, formal mathematical model, languages
such as Ada, automated tools)

• input/output: What are the external input/output dependencies of the object
needed to completely define/extract it as a self-contained entity? (e.g., global
data referenced by a code unit, formal and actual input/output parameters of a
procedure, instantiation parameters of a generic Ada package, specification
and design documents needed to perform a design inspection, defect data pro-
duced by a design inspection, variables of a cost model)

• dependencies: What are additional assumptions and dependencies needed to
understand the object? (e.g., assumption on user's qualification such as
knowledge of Ada or qualification to read, specification document to under-
stand a code unit, readability of design document, homogeneity of problem
classes and environments underlying a cost model)

• application domain: What application classes was the object developed for?
(e.g. ground support software for satellites, business software for banking,
payroll software)

• solution domain: What environment classes was the object developed in?
(e.g., waterfall life-cycle model, spiral life-cycle model, iterative enhance-
ment life-cycle model, functional decomposition design method, standard set
of methods)

• object quality: What qualities does the object exhibit? (e.g., level of reliabil-
ity, correctness, user-friendliness, defect detection rate, predictability)

A subset of this scheme has been used in Section 3. In contrast to Section 3, we
now have a rationale for these dimensions (see Figure 5a) and understand that they
cover only part (i.e., the reuse candidate) of the comprehensive reuse model de-
picted in Figure 4.

 V. R. Basili and H. D. Rombach 192

4.2.2 Required Objects: In order to characterize the needed objects (or reuse
needs), we have chosen the same eleven dimensions and supporting categories as
for the reuse candidates. The resulting model refinement is depicted in Figure 5b:

However, an object may change its characteristics during the actual process of
reuse. Therefore, its characterizations before and after reuse can be expected to be
different. For example, a reuse candidate may be a compiler (type) product (use),
and may have been developed according to a waterfall life-cycle approach (solu-
tion domain). The needed object is a compiler (type) process (use) integrated into
a project based on iterative enhancement (solution domain).

This means that despite the similarity between the refined models of reuse can-
didates and needed objects, there exists a significant difference in emphasis: In the
former case the emphasis is on the potentially reusable objects themselves; in the
latter case, the emphasis is on the system in w which these object(s) are (or are
expected to be) reused. This explains the use of different dimension names: 'sys-
tem' and 'system context' instead of 'object interface' and 'object context'.

The distance between the characteristics of a reuse candidate and the needed
object give an indication of the gap to be bridged in the event of reuse.

.
4.2.3 Reuse Process: The reuse process consists of several activities. In the re-
mainder of this paper, we will use a model consisting of four basic activities: iden-
tification, evaluation, modification, and integration. In order to characterize each
reuse activity we may be interested in its name (e.g., modify.p1), its function (e.g.,
modify an identified reuse candidate to entirely satisfy given reuse needs), its type
(e.g., identification, evaluation, modification), and the mechanism used to perform
its function (e.g., modification via parameterization). The interface of each activity
may consist of such things as the explicit input/output interfaces between the ac-
tivity and the enabling software evolution environment (e.g., in the case of modi-
fication: performed during the coding phase, assumes the existence of a specifica-
tion), and other assumptions regarding the evolution environment that need to be
satisfied (e.g., existence of certain configuration control policies). The activity
context may include information about how reuse candidates are transferred to sat-
isfy given reuse needs (experience transfer), and the quality of each reuse activity
(e.g., reliability, productivity). This refinement of the reuse process is depicted in
Figure 5c.

In more detail, the dimensions and example categories for each reuse activity
are:

 name: What is the name of the activity? (e.g., identify. generics, evalu-
ate.generics, modify.generics, integrate.generics)

 function: What is the function performed by the activity? (e.g., select can-
didate objects {xi} which satisfy certain characteristics of the reuse needs
x'; evaluate the potential of the selected candidate objects of satisfying the
given system and system context dimensions of the reuse requirements x'
and pick the most suited candidate xk; modify xk to entirely satisfy x'; inte-
grate object x into the current development project)

 type: What is the type of the activity? (e.g., identification, evaluation,
modification, integration)

 Support for Comprehensive Reuse 193

 mechanism: How is the activity performed? (in the case of identification:
e.g., by name, by function, by type and function; in the case of evaluation:
e.g., by subjective judgment, by evaluation of historical baseline measure-
ment data; in the case of modification: e.g., verbatim, parameterized, tem-
plate-based, unconstrained; in the case of integration: e.g., according to the
system configuration plan, according to the project/process plan)

 input/output: What are explicit input and output interfaces between the
reuse activity and the enabling software evolution environment? (in the
case of identification: e.g., description of reuse needs / set of reuse candi-
dates; in the case of modification: e.g., one selected reuse candidate, speci-
fication for the object to be reused / object to be reused)

 dependencies: What are other implicit assumptions and dependencies on
data and information regarding the software evolution environment? (e.g.,
time at which reuse activity is performed - relative to the enabling devel-
opment process: e.g., during design or coding stages; additional informa-
tion needed to perform the reuse activity effectively: e.g., package specifi-
cation to instantiate a generic package, knowledge of system configuration
plan, configuration management procedures, or project plan)

 experience transfer: What are the support mechanisms for transferring
experience across projects? (e.g., human, experience base, automated)

 reuse quality: What is the quality of each reuse activity? (e.g., high reli-
ability, high predictability of modification cost, correctness, average per-
formance)

4.3 Example Applications of the Comprehensive Reuse Model

We demonstrate the applicability of our model-based reuse scheme by characteriz-
ing the three hypothetical reuse scenarios which have been used informally
throughout this paper: Ada generics, design inspections, and cost models. The re-
sulting characterizations are summarized in tables 1-3.

5. Support Mechanisms for Comprehensive Reuse

According to the reuse oriented software development model depicted in Figure 2,
effective reuse needs to take place in an environment that supports continuous im-
provement, i.e., recording of experience across all projects, appropriate packaging
and storing of recorded experience, and reusing existing experience whenever fea-
sible. In the TAME project at the University of Maryland, such an environment
model has been proposed and (partial) prototype environments are currently being
built according to this model. In the remainder of this section, we introduce the re-
use oriented TAME environment model, discuss a number of mechanisms for ef-
fective reuse, and introduce several prototype environments being built according
to the TAME model.

 V. R. Basili and H. D. Rombach 194

5.1 The Reuse Oriented TAME Environment Model

The important components of the reuse oriented TAME environment model are
depicted in Figure 6: the project organization which performs individual develop-
ment projects, the experience base which stores and actively modifies develop-
ment experience from all projects, and the mechanisms for learning and reuse. The
shaded areas in Figure 6 indicate how the reuse model of Figure 3 intersects with
the TAME environment model.

Figure 6. Reuse-oriented software environment model

Within the project organization each development project is performed accord-
ing to the quality improvement paradigm [3, 9]. The quality improvement para-
digm consists of the following steps:

• Plan: Characterize the current project environment so that the appropriate
past experience can be made available to the current project. Set up the goals
for the project and refine them into quantifiable questions and metrics for
successful project performance and improvement over previous project per-
formances (e.g., based upon the goal/question/metric paradigm [9, 13]).
Choose the appropriate software development process model for this project
with the supporting methods and tools - for both construction and analysis.

• Execute: Construct the products according to the chosen development proc-
ess model, methods and tools. Collect the prescribed data, validate and ana-

 Support for Comprehensive Reuse 195

lyze it to provide feedback in real-time for corrective action on the current
project.

• Package: Analyze the data in a post-mortem fashion to evaluate the current
practices, determine problems, record findings and make recommendations
for improvement for future projects. Package the experiences in the form of
updated and refined models and other forms of structured knowledge gained
from this and previous projects, and save it in an experience base so it can be
available to future projects.

The experience base contains reuse candidates of different types, granularity
and representation. Example entries in the case of the examples described in sec-
tion 4.3 include objects of type 'code document', granularity 'package' and repre-
sentation 'Ada'; objects of type 'inspection method', granularity 'design stage' and
representation 'schematized template'; and objects of type 'cost model', granularity
'entire life cycle' and representation 'formal mathematical model'.

During each step of a development project performed according to the quality
improvement paradigm reuse needs are identified and matches made against reuse
candidates available in the experience base. During the characterization step, char-
acteristics of the current project environment can be used to identify appropriate
past experience in the experience base, e.g. based on project characteristics the
appropriate instantiation of a cost model can be generated. During the planning
step, project goals can be used to identify existing similar goal/question/metric
models or process/product/quality models in the experience base, e.g., based on
project goals a goal/question/metric model can be chosen for evaluating a design
inspection method. During the execution step, product specifications can be used
to identify existing components from prior projects, such as Ada generics. During
the feedback step, the analysis goals generated during planning are used as the ba-
sis of analysis by fitting baselines to compare against the current data. As part of
the feedback step a decision is made as to which experiences are worth recording.
The degree of guidance that can be provided for entering reuse candidates into the
experience base depends upon the accumulated knowledge of expected reuse re-
quests for future projects.

The experience base is part of an active organizational entity, referred to a the
Experience Factory [4], that supports project developments by analyzing and syn-
thesizing all kinds of experience, acting as a repository for such experience, and
supplying that experience to various projects on demand. In the context of the re-
use oriented software environment model, the Experience Factory not only stores
experience in a variety of repositories, but performs the constant modification of
experience to increase its reuse potential. Example modifications address the for-
malization of experience (e.g., building a cost model empirically based upon the
data available), tailoring of experience to fit the needs of a specific project (e.g.,
instantiating an Ada package from a generic package), and the generalizing of ex-
perience to be applicable across project classes (e.g., developing a generic package
from a specific package). It plays the role of an organizational 'server' aimed at
satisfying project specific reuse requests effectively [4]. The constant collection of
measurement data regarding reuse needs and the reuse processes themselves en-
ables the judgments needed to populate the experience base effectively and select

 V. R. Basili and H. D. Rombach 196

the best suited reuse candidates. The use of the quality improvement paradigm
within the project organization enables the integration of measurement-based
analysis and construction.

5.2 Mechanisms to Support Effective Reuse in the TAME

Environment Model

Improvement in the reuse oriented TAME environment model of Figure 6 is based
on the feedback of experience captured from prior projects into ongoing and future
software developments. The mechanisms needed to support effective feedback are
listed in Figure 7.

Figure 7. Mechanisms required to support effective feedback of experience

Feedback requires learning and reuse. Although learning and reuse are possible

in any environment, we are interested in addressing and supporting them explicitly
and systematically. Systematic learning requires support for the recording of ex-
perience in some experience base and its packaging in order to increase its reuse
potential for anticipated reuse needs in future developments. Systematic reuse re-
quires support for the identification of candidate experience, its evaluation, and
modification.

Reuse and learning are possible in any environment. However, we want learn-
ing and reuse to be explicitly planned, not implicit or coincidental. In the reuse
oriented software development environment, learning and reuse are explicitly
modeled and become desired characteristics of software development. They are
specific processes performed in conjunction with the Experience Factory.

5.3.1 Recording of Experience: The objective of recording experience is to create
a repository of well-specified and organized experience. This requires a precise
characterization of the reuse candidates to be recorded, the design and implemen-
tation of a comprehensive experience base, and effective mechanisms for collect-
ing, qualifying, storing and retrieving experience. The characterization of reuse
candidates is derived from characterizations of known reuse needs and reuse proc-
esses. The characterization of reuse candidates describes what information needs
to be stored in addition to the objects themselves in order to make them reusable,
and how it should be packaged. The experience base replaces the project database

 Support for Comprehensive Reuse 197

of traditional environment models by the more comprehensive concept of an ex-
perience base which is intended to capture the entire body of experience recorded
during the planning and execution steps of all software projects within an organi-
zation.

Examples of recording experience include the storing of Ada generics, design

inspection methods, and cost models. Based on our reuse model, Table 1 describes
the information needed in conjunction with each of these object types in order to
make them likely reuse candidates to satisfy the hypothetical reuse needs using the
hypothetical reuse processes described in Tables 2 and 3, respectively. For exam-
ple, in the case of Ada generics, we may require each object to be augmented with
information on the number of instantiation parameters, the application and solu-
tion domain, and the expected or demonstrated reliability. If we can quantify such
information (e.g., Ada generics developed within ground support software pro-
jects, Ada generics with less than 5 instantiation parameters are acceptable), we
can use it to exclude inappropriate objects from being recorded in the first place.

 V. R. Basili and H. D. Rombach 198

5.2.2 Packaging of Experience: The objective of packaging experience is to in-
crease its reuse potential. This requires a precise characterization of the new reuse
needs or processes, and effective mechanisms for generalizing, generalizing and
formalizing experience. Packaging may take place at the time of first recording
experience into the experience base or at any later time when new reuse needs re-
use needs become known or our understanding of the interrelationship between
reuse candidates, reuse needs and reuse processes changes.

The objective of generalizing existing experience prior to its reuse is to make a
candidate reuse object useful in a larger set of potential target applications. The
objective of tailoring existing experience prior to its potential reuse is to fine-tune
a candidate reuse object to fit a specific task or exhibit special attributes, such as
size or performance. The objective of formalizing existing experience prior to its
actual reuse is to increase the reuse potential of reuse candidates by encoding them
in more precise, better understood ways. These activities require a well-
documented cataloged and categorized set of reuse candidates, mechanisms that
support the modification process, and an understanding of the potential reuse
needs. Generalization and tailoring are specifically concerned with changing the
application and solution domain characteristics of reuse candidates: from project
specific to domain specific to project specific and vice versa. Objectives and char-
acteristics are different from project to project, and even more so from environ-
ment to environment. We cannot reuse past experience without modifying it to the
needs of the current project. The stability of the environment in which reuse takes
place, as well as the origination of the experience, determine the amount of tailor-
ing required. Formalization activities are concerned with movement across the
boundaries of the representation dimension within the experience base: from in-
formal to schematized and then to formal.

 Support for Comprehensive Reuse 199

Examples of tailoring experience include the instantiation of a set of specific

Ada packages from a generic package available in an object oriented experience
base, the fine-tuning of a cost model to the specific characteristics of a class of
projects, and the adjustment of a design inspection method to focus on the class of
defects common to the application. Examples of generalizing experience include
the creation of a generic Ada package from a set of specific Ada packages, the
creation of a general cost model from a set of domain specific cost models, and the
definition of an application and solution domain specific design inspection method
based on the experience with design inspections in a number of specific projects.
Examples of formalization include the writing of functional specifications for ge-
neric Ada packages, providing automated support for checking adherence to entry
and exit criteria of a design inspection method, and building a cost model empiri-
cally based upon the data available in an experience base.

A misunderstanding of the importance of tailoring exists in many organizations.
These organizations have specific development guidebooks which are of limited
value because they 'are written for some ideal project' which 'has nothing in com-
mon with the current project and, therefore, do not apply'. All guidebooks (includ-
ing standards such as DOD-STD-2167) are general and need to be tailored to each
project in order to be effective.

5.2.3 Identification of Candidate Experience: The objective of identifying candi-
date experience is to find a set of candidates with the potential to satisfy project
specific reuse needs. This requires a precise characterization of the reuse needs,
some organizational scheme for the reuse candidates available in the experience
base, and an effective mechanism for matching characteristics of the project spe-
cific reuse needs against the experience base.

Let's assume, for example, that we need an Ada package which implements a
'string_buffer' with high 'reliability and performance' characteristics. This need
may have been established during the project planning phase based on domain
analysis, or during the design or coding stages. We identify candidate objects

 V. R. Basili and H. D. Rombach 200

based on some subset of the object related characteristics stated in Table 2:
string_buffer.ada, string_buffer, product, code document, package, Ada [25]. The
more characteristics we use for identification, the smaller the resulting set of can-
didate objects will be. For example, if we include the name itself, we will either
find exactly one object or none. Identification may take place during any project
stage. We will assume that the set of successfully identified reuse candidates con-
tains 'buffer.ada', the object characterized in Table 1.

5.2.4 Evaluation of Experience: The objective of evaluating experience is to char-
acterize the degree of discrepancies between a given set of reuse needs (see Table
2) and some identified reuse candidate (Table 1), and (ii) predict the cost of bridg-
ing the gap between reuse candidates and reuse needs. The first type of evaluation
goal can be achieved by capturing detailed information about reuse candidates and
reuse needs according to the dimensions of the presented characterization scheme.
The second goal requires the inclusion of data characterizing the reuse process it-
self and past experience about similar reuse activities. Effective evaluation re-
quires precise characterization of reuse needs, reuse processes and reuse candi-
dates; knowledge about their relationships, and effective mechanisms for
measurement.

The knowledge regarding the interrelationship between reuse needs, processes
and candidates is the result of the proposed evolutionary learning, which takes
place within the reuse oriented TAME environment model. The mechanisms used
for effective measurement are based on the goal/question/metric paradigm
[9,11,13]. It provides templates for guiding the selection of appropriate metrics
based on a precise definition of the evaluation goal. Guidance exists at the level of
identifying certain types of metrics (e.g., to quantify the object of interest, to quan-
tify the perspective of interest, to quantify the quality aspect of interest). Using the
goal/question/metric paradigm in conjunction with reuse characterizations like the
ones depicted in Tables 1-3, provides very detailed guidance as to what exact met-
rics need to be used. For example, evaluation of the Ada generic example suggests
metrics to characterize discrepancies between the reuse needs and all available re-
use candidates in terms of function, use, type, granularity, and representation on a
nominal scale defined by the respective categories, input/output interface on an
ordinal scale 'number of instantiation params', application and solution domains on
nominal scales, and qualities such as performance based on benchmark tests.

For example, we want to evaluate the reuse potential of the object 'buffer.ada'
identified in the previous subsection. We need to evaluate whether and to what
degree 'buffer.ada' (as well as any other identified candidate) needs to be modified
and estimate the cost of such modification compared to the cost required for creat-
ing the desired object 'string_buffer' from scratch. Three characteristics of the cho-
sen reuse candidate deviate from the expected ones: it is more general than needed
(see function dimension), it has been developed according to a different design
approach (see solution domain dimension), and it does not contain any informa-
tion about its performance behavior (see object quality dimension). The functional
discrepancy requires instantiating object 'buffer.ada' for data type 'string'. The cost
of this modification is extremely low due to the fact that the generic instantiation

 Support for Comprehensive Reuse 201

mechanism in Ada can be used for modification (see Table 3). The remaining two
discrepancies cannot be evaluated based on the information available through the
characterizations in section 4.3. On the one hand, ignoring the solution domain
discrepancy may result in problems during the integration phase. On the other
hand, it may be hard to predict the cost of transforming 'buffer.ada' to adhere to
object oriented principles. Without additional information about either the integra-
tion of non-object oriented packages or the cost of modification, we only have the
choice between two risks. Predicting the cost of changes necessary to satisfy the
stated object performance requirements is impossible because we have no infor-
mation about the candidate's performance behavior. It is noteworthy that very of-
ten practical reuse seems to fail because of lack of appropriate information to
evaluate the reuse implications a-priori, rather than because of technical infeasibil-
ity [15].

The characterization of both reuse candidates and needs and the reuse process
allow us to understand some of the implications and risks associated with discrep-
ancies between identified reuse candidates and target reuse needs. Problems arise
when we have either insufficient information about the existence of a discrepancy
(e.g., object performance quality in our example), or no understanding of the im-
plications of an identified discrepancy (e.g., solution domain in our example). In
order to avoid the first type of problem, one may either constrain the identification
process further by including characteristics other than just the object related ones,
or not have any objects without 'performance' data in the reuse repository. If we
had included 'desired solution domain' and 'object performance' as additional crite-
ria in our identification process, we may not have selected object 'buffer.ada' at all.
If every object in our repository would have performance data attached to it, we at
least would be able to establish the fact that there exists a discrepancy. In order to
avoid the second type of problem, we need have some (semi-) automated modifi-
cation mechanism, or at least historical data about the cost involved in similar past
situations. It is clear that in our example any functional discrepancy within the
scope of the instantiation parameters is easy to bridge due to the availability of a
completely automated modification mechanism (i.e., generic instantiation in Ada).
Any functional discrepancy that cannot be bridged through this mechanisms poses
a larger and possibly unpredictable risk. Whether it is more costly to re-design
'buffer.ada' in order to adhere to object oriented design principles or to re-develop
it from scratch is not obvious without past experience. A mechanism for modeling
all kinds of experience is given in [6].

5.2.5 Modification of Experience: The objective of modifying experience is to
bridge the gap between selected reuse candidates and given reuse needs. This re-
quires a precise characterization of the reuse needs, and effective mechanisms for
modification. Technically, modification mechanisms are very similar to the tailor-
ing (and generalization) mechanism introduced for packaging experience. Tailor-
ing here is different in that during modification the target is described by concrete,
project specific reuse needs, whereas during packaging the target is typically im-
precise in that it reflects anticipated reuse needs in a class of future projects. We
refer to tailoring (and generalizing) as 'off-line' (during packaging) or 'on-line'

 V. R. Basili and H. D. Rombach 202

(during modification) depending on whether it takes place before or as part of a
concrete instance of reuse.

Examples of modifying experience - similar to the examples given earlier for
tailoring – include the instantiation of a set of specific Ada packages from a ge-
neric package available in an object oriented experience base, the fine-tuning of a
cost model to the specific characteristics of a class of projects, and the adjustment
of a design inspection method to focus on the class of defects common to the ap-
plication.

5.3 TAME Environment Prototypes

In the TAME (Tailoring A Measurement Environment) project, we investigate
fundamental issues related to the reuse- (or improvement-) oriented software envi-
ronment model of Figure 6 and build a series of (partial) research prototype ver-
sions [8, 9, 15].

Current research topics include the formalization of the goal/question/metric
paradigm for effective software measurement and evaluation; the development of
formalisms for representing software engineering experience such as quality mod-
els, lessons learned, process models, product models; the development of models
for packaging experience in the experience base; and the development of effective
mechanisms to support learning and reuse within the experience factory (e.g.,
qualification, formalization, tailoring, generalization, synthesis). In addition, vari-
ous slices of an evolving TAME environment are being prototyped in order to
study the definition and integration of different concepts.

Aspects of the TAME research prototypes, currently being developed at the
University of Maryland, can be classified best by the different classes of experi-
ence they attempt to generate, maintain and reuse:

 Support for identifying objects by browsing through projects, goals and
processes based on a facet-based characterization mechanism.

 Support for the generalization, tailoring, and integration of a variety ex-
perience types based on an object oriented experience base model.

 Support for the definition of environment specific cost and resource alloca-
tion models and their tailoring, generalization and formalization based on
project experience.

 Support for the definition of test techniques in terms of entry and exit crite-
ria that provides a method for selecting the appropriate technique for each
project phase based on environment characteristics, data models, and pro-
ject goals.

 Support for the definition of process models and their formalization, gen-
eralization and tailoring based on project experience.

 Support for an experience factory architecture that supports the evolution
of the organization.

 Support for Comprehensive Reuse 203

6. Conclusions

We have introduced a comprehensive reuse framework consisting of reuse mod-
els, model-based characterization schemes, the TAME environment model sup-
porting the integration of reuse into software development, and ongoing research
and development efforts toward a TAME environment prototype.

The presented reuse model and related model-based characterization schemes
have advantages over existing models and schemes in that they

• allow us to capture the reuse of any type of experience.

• address reuse candidates and reuse needs as well as the reuse process itself.

• provide a rationale for the chosen characterizing dimensions.
We have demonstrated the advantages of such a comprehensive reuse model

and related schemes by applying them to the characterization of example reuse
scenarios. Especially their usefulness for defining and motivating the support
mechanisms for comprehensive reuse and learning were stressed.

Finally, we introduced the TAME environment model which supports the inte-
gration of reuse into software developments. Several partial instantiations of the
TAME environment model, currently being developed at the University of Mary-
land, have been mentioned. In order to make reuse a reality, more research is re-
quired towards understanding and conceptualizing activities and aspects related to
reuse, learning and experience factory technology.

7. Acknowledgements

We thank all our colleagues and graduate students who contributed to this paper,
especially all members of the TAME, CARE and LASER projects. We also thank
the Guest Editors, Nazim H. Madhavji and Wilhelm Schaefer, and the anonymous
referees for their excellent suggestions for improving this paper.

8. References

[1] B. H. Barnes and T. B. Bollinger, "Making Reuse Cost-Effective", IEEE Software

Magazine, January 1991, pp. 13-24.

[2] V. R. Basili, "Can We Measure Software Technology: Lessons Learned from Eight

Years of Trying", in Proc. Tenth Annual Software Engineering Workshop, NASA God-

dard Space Flight Center, Greenbelt, MD, December 1985.

[3] V. R. Basili, "Quantitative Evaluation of Software Methodology", Dept. of Computer

Science, University of Maryland, College Park, TR-1519, July 1985 [also in Proc. of

the First Pan Pacific Computer Conference, Australia, September 1986].

[4] V. R. Basili, "Software Development: A Paradigm for the Future", Proc. 13th Annual

International Computer Software & Applications Conference, Orlando, FL, September

20-22, 1989.

 V. R. Basili and H. D. Rombach 204

[5] V. R. Basili, "Viewing Maintenance as Reuse Oriented Software Development", IEEE

Software Magazine, January 1990, pp. 19-25.

[6] V. R. Basili, G. Caldiera, and G. Cantone, "A Reference Architecture for the Compo-

nent Factory", Technical Report TR-3333, Dept. of Computer Science, University of

Maryland, College Park, MD 20742, March 1991.

[7] V. R. Basili and H. D. Rombach, "Tailoring the Software Process to Project Goals and

Environments", Proc. Of the Ninth International Conference on Software Engineer-

ing, Monterey, CA, March 30 - April 2, 1987, pp. 345-357.

[8] V. R. Basili and H. D. Rombach, "TAME: Integrating Measurement into Software En-

vironments", Technical Report TR-1764 (or TAME-TR-1-1987), Dept. of Computer

Science, University of Maryland, College Park, MD 20742, June 1987.

[9] V. R. Basili and H. D. Rombach "The TAME Project: Towards Improvement Oriented

Software Environments", IEEE Transactions on Software Engineering, vol. SE-14, no.

6, June 1988, pp. 758-773.

[10] V. R. Basili and H. D. Rombach, "Towards a Comprehensive Framework for Reuse: A

Reuse-Enabling Software Evolution Environment (part I)/Model-Based Reuse Charac-

terization Schemes (part II)", Technical Reports, Dept. of Computer Science (CS-TR-

2158/CS-TR-2446) and UMIACS (UMIACS-TR-88-92/UMIACS-TR-90-47), Univer-

sity of Maryland, College Park, MD 20742, December 1988/April 1990.

[11] V. R. Basili and R. W. Selby, "Comparing the Effectiveness of Software Testing

Strategies", IEEE Transactions on Software Engineering, vol. SE-13, no.12, December

1987, pp.1278-1296.

[12] V. R. Basili and M. Shaw, "Scope of Software Reuse", White paper, working group on

‘Scope of Software Reuse', Tenth Minnowbrook Workshop on Software Reuse, Blue

Mountain Lake, New York, July 1987 (in preparation).

[13] V. R. Basili and D. M. Weiss, "A Methodology for Collecting Valid Software Engi-

neering Data", IEEE Transactions on Software Engineering, vol.SE-10, no.3, Novem-

ber 1984, pp.728-738.

[14] Ted Biggerstaff, "Reusability Framework, Assessment, and Directions", IEEE Soft-

ware Magazine, March 1987, pp.41-49.

[15] G. Caldiera and V. R. Basili, "Reengineering Existing Software for Reusability",

Technical Report (UMIACS-TR-90-30, CS-TR-2419), Dept. of Computer Science,

University of Maryland, College Park, MD 20742, February 1990.

[16] S. Cardenas and M. V. Zelkowitz, "Evaluation Criteria for Functional Specifications",

Proc. of the 12th IEEE International Conference on Software Engineering, Nice,

France, March 26-30, 1990, pp. 26-33.

[17] P. Freeman, "Reusable Software Engineering: Concepts and Research Directions",

Proc. of the Workshop on Reusability, September 1983, pp. 63-76.

[18] R. Prieto-Diaz and P. Freeman, "Classifying Software for Reusability", IEEE Soft-

ware, vol.4, no.1, January 1987, pp. 6-16.

[19] IEEE Software, special issue on 'Reusing Software', vol.4, no.1, January 1987.

[2-] IEEE Software, special issue on 'Tools: Making Reuse a Reality', vol.4, no.7, July

1987.

[21] G. A. Jones and R. Prieto-Diaz, "Building and Managing Software Libraries", Proc.

Compsac'88, Chicago, October 5-7, 1988, pp. 228-236.

 Support for Comprehensive Reuse 205

[22] A. Kouchakdjian, V. R. Basili, and S. Green, "The Evolution of the Cleanroom Proc-

ess in the Software Engineering Laboratory", IEEE Software Magazine (to appear

1990).

[23] F. E. McGarry, "Recent SEL Studies", in Proc. Tenth Annual Software Engineering

Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, Dec. 1985.

[24] A. Mili, W. Xiao-Yang, and Y. Qing, "Specification Methodology: An Integrated Re-

lational Approach", Software - Practice and Experience, vol. 16, no. 11, November

1986, pp. 1003-1030.

[25] E. Ostertag, J. Hendler, R. Prieto-Diaz, and C. Braun, "Computing Similarity for Soft-

ware Reuse: An AI-Based Approach", Technical Report CS-TR-3335, Dept. of Com-

puter Science, University of Maryland, College Park, MD 20742, March 1991.

[26] R. W. Selby, Jr., V. R. Basili, and T. Baker, "CLEANROOM Software Development:

An Empirical Evaluation", IEEE Transactions on Software Engineering, vol. SE-13, no.

9, September 1987, pp.1027-1037.

[27] Mary Shaw, "Purposes and Varieties of Software Reuse", Proceedings of the Tenth

Minnowbrook Workshop on Software Reuse, Blue Mountain Lake, New York, July,

1987.

[28] T. A. Standish, "An Essay on Software Reuse", IEEE Transactions on Software Engi-

neering, vol. SE-10, no. 5, September 1984, pp.494-497.

[29] W. Tracz, "Tutorial on 'Software Reuse: Emerging Technology'", IEEE Catalog Num-

ber EHO278-2, 1988.

[30] M. V. Zelkowitz (ed.), "Proceedings of the University of Maryland Workshop on 'Re-

quirements for a Software Engineering Environment', Greenbelt, MD, May 1986",

Technical Report TR-1733, Dept. of Computer Science, University of Maryland,

College Park, MD 20742, December 1986 [also published by, Ablex Publ., 1988].

The paper was first received on 29th May 1990 and in revised form on 6th February 1991.

Technology Transfer at Motorola

Victor Basili, Michael Daskalantonakis and Robert Yacobellis

While developing a formal software-review process, a working group at
Motorola devised a technology-transfer model that is built on process pack-
ages, each one targeted to a different user group. Their model allows for tai-
loring, makes training and consulting widely available, and relies on cham-
pions.

Although new processes, methods, and tools are introduced in the literature every
year, few are actually adopted. Development managers in industry complain that
these new ideas are either not applicable to real-world projects or that their proc-
ess is not mature enough to incorporate them.

Consider a project manager who buys a tool to improve change control. The
tool is virtually worthless without a well-defined, documented, and reasonable
change-control process, and even if there is such a process the development team

Victor R. Basili is with the University of Maryland. Michael K. Daskalantonakis and
Robert H. Yacobellis are with Motorola.

 Technology Transfer at Motorola 207

is likely to need training in both the process and the tool before they can be used
on a real project. But too often the manager fails to allocate sufficient training
time and doesn't anticipate the initial drop in productivity. This situation occurs
time and time again.
 We believe part of the problem is that the industry lacks a focused, needs-based
approach to tailoring and transferring software-engineering technology. At Mo-
torola, we have developed an approach that helps development organizations fo-
cus on the technology they really need, devise solutions, and transfer those solu-
tions to development teams. In this article, we report our experience using this
approach in the last five years and the lessons we learned.

Targeted Process Packages

Through 15 years of study at the US National Aeronautics and Space Administra-
tion's Software Engineering Laboratory and elsewhere, a set of software-
engineering technology principles has evolved1 that recommend organizations

• Develop quality-focused software-engineering technology within a business
unit.

• Formalize plans to tailor, transfer, and deploy software-engineering technol-
ogy.

• Evaluate software-engineering technology to improve it on the basis of feed-
back obtained from goal-oriented measurement.

• Experience in applying these principles, in turn, has produced recommenda-
tions for measuring software processes and products in the context of soft-
ware-engineering technology:

• Conduct goal-oriented, top-down measurement of processes and prod-
ucts.

• View the measurements and their interpretation from an appropriate per-
spective.

• Account for differences in project environments, processes, products, and
available technology.

 These principles and recommendations are embodied in two paradigms: the
Quality Improvement Paradigm, a three-part process-improvement approach, and
the Goal-Question-Metric paradigm,2 a mechanism that the Quality Improvement
Paradigm incorporates for establishing project and corporate goals and measuring
against those goals.
 Motorola's corporate-wide Metrics Working Group adopted the Quality Im-
provement Paradigm and instantiated it with a set of organizational procedures to
identify, tailor, and transfer software-engineering technology. The Motorola ver-
sion is called the Software Engineering Improvement Paradigm. It is designed to
help managers focus on software-engineering technology as it applies to specific
development activities, such as testing, product reviews, and management. It also
provides a justification for selecting and tailoring software-engineering technology

 Victor Basili, Michael Daskalantonakis and Robert Yacobellis 208

to individual projects and a mechanism for evaluating technology against a busi-
ness unit's goals.
 Fundamental to our approach is the process package, a set of documents and
training material that communicates everything about the technology you are try-
ing to transfer. A process package includes an overview of what to expect, how to
use the information, references to other corporate efforts and process packages,
guidelines for using the process, training aids targeted to different user groups, a
set of slides for conducting training workshops, and data and lessons learned.
 As Figure 1 shows, a process package evolves over time as experience is
gained and feedback is incorporated. Our approach builds on the Quality Im-
provement Paradigm's three phases: planning, execution, and analysis and packag-
ing. Within these three phases, we defined seven steps:
1. Characterize and evaluate the organization's current environment and tech-

nology.
2. Set organizational goals and refine them into quantifiable questions and met-

rics. Choose the processes that have the best chance of paying off if technol-
ogy improvements are made.

3. Create documents, targeted to different audiences, that define new technology
or improvements to existing technology in those high-payoff areas.

4. Pilot the technology in sample projects, analyze the data, refine the technol-
ogy, and create a lessons-learned document.

5. Enhance the process package by targeting the training materials and consult-
ing support to a particular audience.

6. Deploy the technology within a business unit, monitor its use carefully, and
learn from the organization's progress.

7. Analyze data from using the process package, evaluate the practices, and im-
prove the process package. Proceed to step 1 and, armed with the recorded,
structured experience gained from this and previous cycles, start the cycle
again. Package this experience to make it accessible to others involved in cre-
ating process packages.

Motorola´s Three-Stage Formal Software-Review Process

Many software projects in industry use reviews to detect problems early. How-
ever, the degree to which they are an integral part of the development process and
their effectiveness varies widely. At Motorola, we felt there was a need to formal-
ize the review process and its measurement to maximize its effectiveness and effi-
ciency.

 Technology Transfer at Motorola 209

Figure 1. Evolution of a process package. We built on the Quality Improvement
Paradigm's planning, execution, and analysis and packaging phases, then defined
seven steps to transferring technology via process packages.

Three Stages

The review process package defines a three-stage formal process:
1. Reviewer preparation. Participants agree that the material is ready, select a

leader and a review team, schedule a meeting, prepare material, have an op-

 Victor Basili, Michael Daskalantonakis and Robert Yacobellis 210

tional orientation meeting, study the material and inform the review leader
of faults found, and decide if they should hold a meeting or if additional
preparation is needed.

2. Review meeting. The review leader introduces the reviewers and their roles
and outlines the purpose of the review. Then the presenter starts and review-
ers ask questions to expose problems, the author of the reviewed material
answers with clarifications only, the recorder takes notes, and the presenter
starts again in a loop until the review disposition is determined. The recorder
completes a report documenting the review disposition and faults found.

3. Follow-ups. The review meeting report is published, the developers fix er-
rors and defects, the recorder fills out a software process-assurance form that
summarizes metrics data so that it can be used to improve the process, and
the review leader ensures follow-up and schedules any additional reviews.

 We based this process description on existing practices within several groups in
Motorola and published work. However, we tailored our process to address some
major issues we identified, such as reviewer preparation.
The package also contains a set of guidelines aimed at enhancing the effectiveness
and efficiency of reviews. We developed and continuously improved them by ana-
lyzing the data collected for the review metrics defined.

Review Goals

An integral part of the review process is the collection and analysis of metrics data
for improving not only the review process, but also the development process and
the product being reviewed.
 We used the Goal-Question-Metric approach to establish quantitative goals for
the review process, define the measurements that must be taken to evaluate its ef-
fectiveness, discover problems, and improve it. Although this use of GQM was
tailored to our priorities, our experience is applicable to projects with different
priorities.
 Our primary measurement goal was

• Analyze the review process to improve its effectiveness in removing faults,
from the corporation’s point of view.

 Our secondary goals, which used the same data, were

• Analyze the constructive and analytic process of the previous development
phases to improve their ability to generate a fault-free product, from the cor-
poration’s point of view.

• Analyze the construction process of the current development phase to im-
prove its ability to generate a fault-free product, from the corporation’s point
of view.

• Analyze the product before and after the review to evaluate its correctness,
from the project manager’s point of view.

 GQM requires that you characterize the environment of the specific project to
provide a framework for comparison and to expose other factors that may influ-
ence behavior. Sample factors include the number of software engineers on the

 Technology Transfer at Motorola 211

project; their average expertise and familiarity with the application domain and its
difficulty; development techniques, tools, and hardware; estimated project size;
and target machine.

Table A:
Analyzing metrics to determine project quality at end of phase

Conditions Facts

RPC RPD ET DT Score Product-

in

Product-

out

Process-

previous

Process-

current

C S LS LS 5 good good effective effective

C S H LS 4 good fixed-up effective not-
effective

C S LS H 2 Poor fixed-up not-
effective

effective

C S H H 1 Poor fixed-up not-
effective

not-
effective

N x x x 0 ? ? ? ?

x U x x 0 ? ? ? ?
x = don´t care value
? = no value due to insufficient information

product-in = product received after review and changes in previous phase
product-out = product generated by current phase after review and changes
process-previous = construction and review process used in previous phase
process-current = construction process used in the current phase

Review Metrics

Using GQM to define metrics involves mapping the measurement goals to sets of
questions, which in turn generates supporting questions and defines the metrics
that should be collected during a review.
 Some of the metrics we defined to evaluate the review process are

• Review Process Compliance. A subjective determination of how well the con-
structive process and subsequent review has complied with the review proc-
ess. This subjective determination is done by the person having the SQA per-
spective. An RPC value is either C (compliant) or N (noncompliant).

• Review Process Domain. A subjective determination of how well the review-
ers understood the document (based on their level of experience and the per-
spective they represent). This subjective determination is done by the person
having the SQA perspective. An RPD value is either S (satisfactory) or U
(unsatisfactory).
We defined several metrics for evaluating faults in a product as well as the ef-
fectiveness of the fault-removal activities (an error is a fault found during a
formal review of a deliverable, a defect is a fault found after the formal re-
view of a deliverable).

 Victor Basili, Michael Daskalantonakis and Robert Yacobellis 212

• Phase-Containment Effectiveness is an objective determination of the reviews
of the deliverables produced during a specific project phase. It is defined as
the ratio of errors found in reviews to the sum of errors found in reviews and
defects that escaped such reviews. The value of PCE is expressed as a per-
centage, where 100 percent is the best.

• Error Trend is an indicator of how the normalized number of errors found in
a review compares with the corresponding number for past similar projects
(those with similar environmental characteristics). The value of ET is either H
(higher) or LS (lower, about the same).

• Defect Trend is an indicator of how the normalized number of defects found
during a review in deliverables from previous phases compares with the cor-
responding number for past similar projects. The value of DT is either H
(higher) or LS (lower, about the same).

Table B:

Number of defects introduced in constructive phases

Phase Number of errors Number of defects

Requirements specification 5 0

Requirements model 12 1

Architectural model 11 4

Pseudo code 39 33

Code 10 10

Analyzing Metrics

The review process package includes interpretation tables, defined in the context
of the GQM, to help reviewers analyze these metrics. Table A shows how the
RPC, RPD, ET, and DT metrics are used in measuring against the review process-
measurement goals identified to determine a project´s quality. For example, in row
1 the project score is 5, indicating a high-quality project. This score holds because
we have done a good review and found few old or new problems. In row 4, the
project score is 1, which indicates low quality. This score holds because we have
done a good review and found more than the average number of new and old
problems. In row 5 and 6, a score of 0 indicates that we cannot make any conclu-
sions because we have not done a good review.
 These metrics provide managers with real-time feedback about a current pro-
ject, without the need to wait for additional defect data to be collected. All the data
necessary to evaluate the quality of a phase is a available at the end of that phase.

Sample Use of PCE

Phase-containment effectiveness is a key metric to quantify and track the im-
provement goal. You want to reach a value of 100 percent – the review is totally

 Technology Transfer at Motorola 213

effective in finding all existing problems, assuming that some problems exist in
the deliverable reviewed.
 In this example, the data comes from reviews done according to the review
process package, augmented with testing and preliminary operation data.
 We conducted reviews at the end of requirements specification, requirements
modeling, architectural modeling, pseudo coding, and coding. As Table B shows,
we found some errors during the review and they were fixed. Reviews of subse-
quent deliverables and testing, however, uncovered 48 defects that had escaped
detection during review, listed in Table B in the constructive phase they were
traced back to.
 Using this data, you can derive phase-containment effectiveness for reviews
done during each phase:

• Requirements specification review = 5/(5+0) = 100.00%

• Requirements model review = 12/(12+1) = 92.31%

• Architectural model review = 11/(11+4) = 73.33%

• Pseudo code review = 39/(39+33) = 54.17%

• Code review = 10/(10+10) = 50%
 These metrics indicate that pseudo code and code reviews had relatively low
containment values. Perhaps the reviewers need more training or the checklists
need updating. In addition, the project participants should analyze the specific er-
rors and defects using Pareto charts to determine their process-related causes and
ensure that the process gets changed.3 This should help avoid the introduction of
such faults in the future.

References

[1] D. P. Freeman and G. M. Weinberg, Walkthroughs, Inspections and Technical Re-

views, Little Brown, New York, 1982.
[2] D. L. Parnas and D. M. Weiss, “Active Design Reviews: Principles and Practices”,

Proc. 8th Int´l Conf. Software Eng., IEEE CS Press, Los Alamitos, Calif., 1985, pp.
215-222.

Motorola´s Experience

In 1988, Motorola's Metrics Working Group3 was formed to develop and deploy,
among other items, a process package for formal software reviews. The members
of the Metrics Working Group were selected to represent Motorola business units
whose goal is to champion measurement-based process improvement. It was to be
part of a broader Software Engineering Technology Steering Committee and
funded by Corporate Software Research and Development
 The Metrics Working Group is similar to a Software Engineering Process
Group, as later defined by the Software Engineering Institute. It is a volunteer
group whose focus is process engineering and measurement, as opposed to an or-

 Victor Basili, Michael Daskalantonakis and Robert Yacobellis 214

ganization with a budget and head count. Individual Motorola business units have
their own process and metrics working groups; if an organization does not have
one, it is encouraged to create one.

Selecting a Process

By applying the first two steps of the Software Engineering Improvement Para-
digm, the group identified a set of improvement goals, one of which was to im-
prove the software-review process. For several reasons, the group chose this proc-
ess as the one with the highest potential payoff:

• It is an effective marriage of process and measurement.

• It covers the entire life cycle, so it provides feedback to all processes and
methods and introduces the approach to every part of the organization.

• It is the most critical aspect of product evaluation, yet it was not being used
widely in 1988.

• It helps find problems early.

• It provides critical defect baselines.

• It is a good first step for integrating other process packages. A review pack-
age can be instantiated for each review along the development path: require-
ments, design, code, and test script.

 The formal software-review process, described in the box on pp. 72-73, was the
first area in which we implemented the concepts embodied in the Software Engi-
neering Improvement Paradigm and the process package.

Creating Documents

After applying step 3, the Metrics Working Group drafted seven documents that
became part of the review package, each targeted to a specific audience.

• Overview targets everyone. It lists the process-package documents and their
corresponding audiences.

• QIP explains the Quality Improvement Paradigm to corporate-level managers.

• Managers tells software managers what to expect when they use the review
package.

• SQA describes to software quality-assurance personnel how to use the review
package.

• GQM explains to software managers and SQA personnel how to apply GQM
to the review process and defines review metrics and how to use them.

• Definition describes in detail to software managers, SQA personnel, and de-
velopers how to implement a formal, technical review. It includes four forms
designed to document the outcome of a specific formal software review.

• Experience gives corporate-level managers, software managers, and SQA
personnel sample results and lessons learned in using the review package on
pilot projects.

 Technology Transfer at Motorola 215

Selecting Pilot Projects

Once the initial versions of these documents had been created, the group selected a
small set of pilot projects within one business unit (step 4). They chose mostly
small enhancement projects of (relatively) short duration so that results would be
available as soon as possible. The engineers and managers tailored the reviews
over time and adapted the process to their needs. Their input, in turn, was used to
enhance and evolve the initial review package. Acceptance of the review package
was good, so it was generalized to apply to more projects.
 The business unit's representative to the Metrics Working Group carefully
monitored the use of the review package in the pilot projects. The group docu-
mented these lessons in the Experience document, and the package evolved over
time to address the lessons learned on the pilots.

Training and Consulting

As the review package was being implemented on pilot projects, the Metrics
Working Group developed a one-day workshop that explained how to implement
and measure software reviews (step 5). The first workshop was developed and
taught by the authors of the review package to cover the mechanics of conducting
reviews, in the context of the review package. The course covered technical and
interpersonal communication issues.
 Once the technical content stabilized, the course was transferred to Motorola`s
training organization, Motorola University, where it is now available to all Mo-
torola engineers. It is not required for a group project that conducts software re-
views. However, several training road maps include it as a recommended course.
 In the last five years, we've offered this workshop to all development groups
that want to use the review package to conduct formal reviews. If the project man-
ager so requests, this training is followed by expert consulting, to ensure effective
implementation of the ideas presented in the workshop.

Deploying a Package

Over the next three years, the review package was deployed in several business
units (step 6). This took about one person-year of tailoring and deployment work,
primarily by the Metrics Working Group.
 Package use was concentrated in smaller projects in business units where man-
agers and developers had been trained and received follow-up consulting. Also,
having an active champion to consult on how to use the package promoted wider
use.

 Victor Basili, Michael Daskalantonakis and Robert Yacobellis 216

Evaluating a Package

After the package had been in use about three years the group conducted a survey
of about 100 engineers and managers across the company to determine how often
the review package was being used, how it had been tailored, and what improve-
ments were necessary (step 7).
 The survey indicated that the review package was successful: 90 percent of
projects within the business units affected conducted formal software reviews, and
67 percent of respondents said they used the review package.
 However, 74 percent of respondents said they had had to tailor the process
package. The items they changed most were the forms provided to document the
review process. We did (and still do) encourage such tailoring, but wanted to iden-
tify what changes were done by what types of projects, so we could provide crite-
ria for tailoring.
 The items that did seem to work well were data-collection and error-tracking
forms, reviewer sign-off, and the guidelines for whether or not to hold a review
meeting.
 The items that did not seem to work well are the assignment of roles to review-
ers, the metrics charts used for data analysis and feedback, and the guidelines for
implementing the roles assigned to reviewers. We are addressing these shortcom-
ings through additional training and by creating local procedures.
 The survey revealed that the primary inhibitors to use are the lack of appropri-
ate resources, the lack of guidelines for how to apply the package to very small
projects, and the need to streamline processes.

TABLE 1
PERCENTAGE OF FAULTS IN FORMAL REVIEW

 Release

Deliverable 1 2 3 4

System functional specification 85 80 72 80

Software functional specification 78 67 80 70

Detailed design 49 78 64 81

Code 32 25 37 44+*

*= Release 4 is not yet complete

Lessons Learned

The lessons we learned hint at what we can expect as we deploy other process
packages and what we must do to ensure that the tailoring and transferring of
software-engineering technology is done effectively. However, some of the details
are specific to reviews (such as the need to evaluate the reviewers' preparedness
before a review meeting).

• Don't underestimate the importance of champions. Involving business units
that will use the process package as you develop it not only ensures its accep-

 Technology Transfer at Motorola 217

tance, but facilitates the transfer process. The Metrics Working Group partici-
pants who helped tailor the review package became its champions within their
business units. Business units that did not have representatives in the working
group did not reap the benefits of this technology as readily.

• Don't skimp on training. We quickly realized that the one hour of training we
initially offered to pilot projects was insufficient As a result, we developed a
one-day workshop and made it the first step in deploying the review package.
We also conducted train-the-trainer sessions, to speed deployment in parts of
Motorola that received many requests for training. We also found it was criti-
cal to follow up with expert consulting, which we discovered helped smooth
the initiation of the formal review process.

• Be prepared to be specific. Once the developers understood the review proc-
ess, they asked for more concrete guidelines. They wanted to know what role
(leader, recorder, presenter, designer, and so on) each review participant
should take, specific criteria for determining when they should not proceed to
conduct a review meeting (due to lack of preparation, for example), and what
to do with the results. To develop these role guidelines, we referred to the ob-
jective of each review type. For example, reading the requirements document
from a tester's perspective assumes the reader is trying to understand if there
is sufficient information to develop tests for each requirement. To develop
other quantitative decision guidelines and criteria, we relied on data collected
from reviews.

• Preparation is key. We found that the most important factor in predicting a
review's effectiveness is how prepared the reviewers are when a review meet-
ing starts. Review leaders asked for indicators to determine reviewer readi-
ness, so we incorporated a form that asked reviewers to indicate the time they
spent preparing for a review, and we tracked the number of errors found be-
fore and during a review meeting. We also found that review leaders were ini-
tially hesitant to issue a no-go decision to hold a meeting, even if the review-
ers were ill-prepared or many errors were found. The consultants helped
mitigate this tendency.

• Data collection and analysis must be tailored. The reviewers requested classi-
fication schemes to help them record defects and analyze the data for use in
process improvement. We did develop classification schemes but found that
they must evolve over time and are highly dependent on the type of project
and product. The classification schemes provided valuable feedback to help
us standardize and improve metrics collection, analysis, and reporting.

• Formal reviews do improve quality. When the review package was deployed,
some small projects were not conducting any reviews at all, relying on testing
to find faults. Formal reviews helped find and fix faults early, as the data from
four successive enhancements of an internal project indicates. The data in Ta-
ble 1 shows the percentage of faults found in each phase, in the early stages of
deploying the review package. Note that unit and integration test found most
of the faults escaping from these reviews. Reviews during the detailed design
and code review phases show the biggest improvement.

 Victor Basili, Michael Daskalantonakis and Robert Yacobellis 218

 Motorola's culture is such that business unit managers decide what process and
technology will be used within their unit. Although senior management sets the
quality-improvement goal, and the Metrics Working Group recommends formal
reviews, the use of the process package is not mandatory. Data like that in Table 1
is far more effective than any mandate.
 It is not easy to tailor and transfer software-engineering technology. To change
the culture of the business unit so that it will accept new technology, you must
employ champions and package information appropriately.
 Using the Software Engineering Improvement Paradigm will help identify the
process packages that should be developed first. Then, when you enjoy success on
some pilot projects and publicize that success, new projects will sign up.
 Many projects and locations across the company now use versions of the re-
view package, and we have since created a testing package.
 We believe our evolutionary, feedback approach has three main strengths:

• It provides quantitative guidelines that encourage the achievement of quality
and productivity goals.

• It supports the development of a corporate memory because it integrates
quantitative measurement.

• It provides a way to improve and tailor technology and process through data
analysis.

 The work done on the reviews and testing packages has evolved into an initial
Best Practices and Technology Transfer Program within Motorola, which uses in-
ternal and external benchmarks and metrics to identify and promote effective,
high-payoff practices to produce quality software. Motorola has also used bench-
marking to establish aggressive improvement goals and metrics in software proc-
ess, quality, cycle time, development technology, and customer satisfaction.
 Building on the work done on the review package, Motorola business units
have started to adopt, tailor, and evolve Michael Pagan's inspections-based im-
provement process,4 resulting in further improvements in software quality and
productivity. Motorola has begun to use education and skills training for senior
and middle management as a way to enlist improvement champions across the en-
tire corporation.
 These mechanisms, coupled with the vision provided by a senior executive
program, whose mission is to accelerate the pace of software improvement, are
leveraging our technology-transfer initiative to bring about change much more
rapidly.

Acknowledgements

We thank the many Motorola employees who participated in the Metrics Working
Group over time, especially Mike Burke, Ann Miller, Ken Biss, and David Yen.
Their work was a significant factor in ensuring the successful tailoring and de-
ployment of the review package.

 Technology Transfer at Motorola 219

References

[1] V.R. Basili, "Software Development: A Paradigm for the Future," Proc. Compsac,,

IEEE CS Press, Los Alamitos, Calif, 1989, pp. 471-485.
[2] V.R. Basili and D.H. Rombach, "The TAME Project: Towards Improvement-Oriented

Software Environments," IEEE Trans. Software Eng., Nov. 1984, pp. 728-738.
[3] M.K. Daskalantonakis, "A Practical View of Software Measurement and Implementation

Experiences within Motorola," IEEE Trans. Software Eng., Nov. 1992, pp. 998-1010.
[4] M.E. Fagan, "Design and Code Inspections to Reduce Errors in Program Development,"

IBM Systems J., No. 3,1976, pp. 182-211.

Address questions about this article to Basili at Computer Science Dept, University of
Maryland, College Park, Md. 20742; basili@cs.umd.edu or to Daskalantonakis at Motorola,
1501W Shure Dr., IL27/Rm 1315, Arlington Heights, IL 60004; dask@cig.mot.com.

Improve Software Quality by Reusing Knowledge

and Experience

Victor R. Basili and Gianluigi Caldiera

THE APPROACHES FOR IMPROVING QUALITY IN
MANUFACTURING PROCESSES DON'T WORK ESPECIALLY WELL
FOR SOFTWARE DEVELOPMENT. The authors provide a quality im-
provement paradigm for the software industry that builds on manufacturing
models but focuses on reused learning and experience by establishing "ex-
perience factories." Their iterative process enables an organization to ac-
quire core competencies to support its strategic capabilities.

The quality movement that has had such a dramatic impact on all industrial sectors
has finally reached the systems and software industry. Although some of the con-
cepts of quality management originally developed for other products can be ap-
plied to software, as a product that is developed and not produced, it requires a
special approach. In this paper, we introduce a quality paradigm specifically tai-
lored to the systems and software industry. We discuss the reuse of knowledge,
products, and experience as a feasible solution to the problem of developing
higher-quality systems at a lower cost. In other words, how can an organization
build models or package them so that it can reuse them in other projects?
 Companies often achieve quality improvement by defining and developing an
appropriate set of strategic capabilities and supporting core competencies. We
propose a quality improvement paradigm (QIP) for developing core competencies.
This process must be supported by a goal-oriented approach to measurement and
control, and an organizational infrastructure that we call an experience factory. In
this paper, we introduce the major concepts of our proposed approach, discuss
their relationship with other approaches in the industry, and present an example of
an organization that successfully applied those concepts.

Why Is Software Development Different?

Software is present in almost every activity and institution of our society. Our de-
pendence on software becomes evident when software problems — system shut-
downs, new product delays, and assorted glitches — become newspaper headlines.

Victor R Basili is a professor and Gianluigi Caldiera is a research associate at the Institute
for Advanced Computer Studies, Department of Computer Science, University of Mary-
land.

 Improve Software Quality by Reusing Knowledge and Experience 221

The business community
is aware of these prob-
lems but does not truly
understand their causes.
Such misunderstanding
extends to the software
business community it-
self, especially when it
deals with the philoso-

phies of quality improvement.
 Problems often arise when companies try to transfer the quality lessons learned
in the manufacturing process to the software development process. Quite often,
manufacturers develop quality models by collecting great amounts of data from
work locations where the same function is repeated over and over. In such a con-
text, statistical quality control can be accomplished based on numerous repetitions
of the manufacturing process. Because software is developed once, this type of
control is impossible. Software development models, therefore, cannot be built the
same way as manufacturing models, with their dependence on lessons learned
from massive repetitions of the same process. Software models provide something
less definitive — the ability to learn from other software development projects. To
accomplish this learning, we have to distinguish what is different about these pro-
jects.
 A company can manage the quality of a software system in two ways. First, it
can improve the effectiveness of the software development process by reducing
the amount of rework and by reusing software artifacts across segments of a pro-
ject or different projects. Second, it can develop and implement plans for con-
trolled, sustained, and continuous improvement based on facts and data.
 A major problem with software engineering is that data regarding a system's
quality can be observed and measured only when the system is implemented. Un-
fortunately, at that stage, correcting a design defect requires the expensive redes-
ign of sometimes large, complex components. To prevent expensive defects from
occurring in the final product, quality management must focus on the early stages
of the engineering process. At those early stages, however, the process is less de-
fined and controllable with quantitative data. Therefore, software engineering pro-
jects do not regularly collect data and build models based on them.
 There are many successful software projects from a quality point of view.
Quality management's goal is to repeat this success in other projects by transfer-
ring the knowledge and experience at the roots of that success to the rest of the or-
ganization. A software organization that manages quality should have a corporate
infrastructure that links together and transcends the single projects by capitalizing
on successes and learning from failures.
 Organizations need to have a strategic approach to software quality manage-
ment as a part of a corporate strategy for software, aimed at pursuing and improv-
ing quality on an organizational level. There is no solution that can be mechani-

 Victor R. Basili and Gianluigi Caldiera 222

cally transferred and applied to every organization (the famous "silver bullet").
Every organization can use our proposed approach, however, after appropriate
customization, to improve software quality in a controllable way.

The Problem of Software Quality

How does a company improve quality in a development environment instead of a
production environment? The key is to build or package models so that they are
reusable by other projects in the organization — that is, to reuse knowledge and
experience.
 In many disciplines, quality issues are well understood. Because of the relative
newness of the software business, definitions or trade-offs aren't clear. Software
users often can't articulate what qualities they really want. Do they care about reli-
ability, user-friendliness, or ease of modification? Software doesn't really break in
the normal sense, but it has to evolve. Today's system won't satisfy the user three
years from now because there are constantly changing expectations.
 Because software is a new field, and good, sound models are hard to build,
companies have not built models to reason about what things are, how they work,
and what they should look like. Quality isn't defined so that both the developer
and the user can understand it and communicate it.
 Of the approaches to software quality available, there are various paradigms,
mostly from manufacturing. Some organizations apply an improvement process to
their software processes based on the Shewart-Deming cycle1. This four-stage ap-
proach provides a way to manage change throughout the production process by
analyzing the change's impact on the data derived from the process:
1. Plan — define quality improvement goals and targets and determine methods

for reaching those goals; prepare an implementation plan.
2. Do — execute the implementation plan and collect data.
3. Check — verify the improved performance using the data collected from the

process and take corrective actions when needed.
4. Act — standardize the improvements and install them into the process.
 Some organizations use the total quality management (TQM) approach, which
is derived from the Shewart-Deming method and applied to all the company's
business processes². Another approach is benchmarking, in which organizations
model their improvement on an external scale that represents the best practices in
quality. The goals of the improvement program are, in this case, not internally
generated but suggested by the best practices.
 The software industry has used these approaches — and variations on them —
with mixed outcome. The major problem is that these approaches do not deal spe-
cifically with the nature of a software product. Or if they do, they assume a consis-
tent picture of a good software product or process. This is not adequate because, to
be really effective, a software quality program should deal with the nature of the
software business itself. There is no such thing as an explicit, consistent picture of
a good software product.

 Improve Software Quality by Reusing Knowledge and Experience 223

Our approach reflects an attempt to learn from the successes of the different para-
digms and to avoid problems when they are applied to software environments.
 We rely on the lean enterprise concept by concentrating production and re-
sources on value-added activities that represent an organization's critical business
processes³.

Toward a Mature Software Organization

Successful management strategies of the past ten years all call for long-term in-
vestments and top management sponsorship4. They advocate establishing a per-
manent structure to develop and support the reuse of strategic capabilities. This
strategy is new for the software industry, which is predominantly driven by its
business units and therefore has little ability to capitalize on experiences and ca-
pabilities.
 Companies that develop software have sought to apply recent management
strategies in the following ways:
1. The company must understand the software process and product.
2. The company must define its business needs and its concept of process and

product quality.
3. The company must evaluate every aspect of the business process, including

previous successes and failures.
4. The company must collect and use information for project control.
5. Each project should provide information that allows the company to have a

formal quality improvement program in place, i.e., it should be able to con-
trol its processes, tailor them to individual project needs, and learn from its
own experiences.

6. Competencies must be built in critical areas of the business by packaging
and reusing clusters of experience relevant to the company's business.

 Software companies need to expand their focus on a new set of problems and
the techniques for solving them. Unfortunately, a software project is traditionally

 Victor R. Basili and Gianluigi Caldiera 224

based on a case-by-case, problem-solving approach; the development of strategic
capabilities is based instead on experience reuse and organizational sharing. (Ta-
ble 1 outlines the traditional focus of software development and problem solving,
along with the expanded focus.)

A Strategy for Improvement

At the center of an improvement strategy is the need for reusable experience. Next
we present the framework of our strategy through a process we call the quality
improvement paradigm. We discuss an approach to quality improvement based on
the development of strategic capabilities, on a control tool (the goal-oriented ap-
proach to measurement that addresses the support of the improvement process
with quantitative information), and on an organizational tool (an infrastructure
aimed at capitalization and reuse of software experience and products).5
 Are there any practical models a company can use to develop a strategy with
the new focus? Later we illustrate with an example of a practical model, which we
chose because it is a unique blend of an organizational strategy aimed at continu-
ous improvement, a data-based approach to decision making, and an experimental
paradigm, along with many years of continuous operation and data collection.

The Quality Improvement Paradigm

A common problem of software development companies is that they don't think
software is their business. They think they are building "telephone systems" or
"switching systems" when they are really building telephony software and switch-
ing software. They have little understanding of strategic capabilities and core
competencies.
 In the software business, companies determine strategic capabilities by know-
ing whether they can reuse architectures and designs, what functionality their
product has, and how to estimate the cost of adding new features or changing ex-
isting ones. Strategic capabilities are always supported by core competencies —
technologies tailored to the specific needs of the organization in performing busi-
ness processes.
 The goal of the process we present here is the acquisition of core competencies
that support strategic capabilities. The organization must own, control, and prop-
erly maintain competencies as state of the art and know how to tailor them to the
characteristics of specific projects and business units.
 The quality improvement process occurs in six steps (see Figure 1). By charac-

terizing, a company builds models of the current environment. Next it sets goals
for what it wants to achieve for the next product and learn about the business. To
satisfy the goals relative to the current environment, it chooses processes, meth-

ods, techniques, and tools, tailors them to fit the problem, and executes them. Dur-

 Improve Software Quality by Reusing Knowledge and Experience 225

ing execution, it analyzes the intermediate results and asks if it is satisfying the
goals and using appropriate processes. This feedback loop is project learning. Fi-
nally, the company analyzes what happened and learns from it. Then it stores and
propagates the knowledge, i.e., packaging.

Figure 1. The Quality Improvement Paradigm

Each cycle results in better models in terms of characterization of the software
business, a better articulation of goals, and a better understanding of the relation-
ship between processes and their effects. Each time through the loop is a corporate
learning event.
 The quality improvement paradigm implements two major cycles:

• The control cycle is the feedback to the project during the execution phase. It
provides analytic information about project performance at intermediate
stages of development by comparing project data with the nominal range for
similar projects. This information is used to prevent and solve problems,
monitor and support the project, and realign the process with the goals.

• The capitalization cycle is the feedback to the organization. Its purpose is to
understand what happened, by capturing experience and devising ways to
transfer that experience across application domains and to accumulate reus-

 Victor R. Basili and Gianluigi Caldiera 226

able experience in the form of software artifacts that are applicable to other
projects and are improved based on the analysis.

 An organizations use of the quality improvement paradigm is an iterative proc-
ess that repeatedly characterizes the environment, sets appropriate goals, and
chooses the process for achieving those goals. It then proceeds with the execution
and analytical phases. At each iteration, it redefines and improves characteristics
and goals (see Figure 2).

Goal-Oriented Measurement

Figure 2. The Quality Improvement Paradigm as an Iterative Process

 The goal/question/metric (GQM) approach provides a method to identify and
control key business processes in a measurable way.6 A company can use it to de-
fine metrics during the software project, process, and product so the resulting met-
rics are tailored to the organization and its goals and reflect the quality values of
different viewpoints (developers, users, operators, and so on).
 A GQM model is a hierarchy starting with a goal (specifying purpose of meas-
urement, object to measure, issue to measure, and viewpoint from which to take
the measurement). Suppose a company wants to improve the timeliness of change-
request processing during the maintenance phase of a system’s life cycle. The re-
sulting goal will specify a purpose (improve), a process (change-request process-
ing), a viewpoint (project manager), and a quality issue (timeliness). It then refines

 Improve Software Quality by Reusing Knowledge and Experience 227

the goal into several questions that usually break the issue down into its major
components. In the example we discuss later, the goal of the Software Engineering
Laboratory can be refined to a series of questions about, for instance, turnaround
time and resources used. It then refines each question into metrics. The questions
in the example can be answered by metrics comparing specific turnaround times
with an average. (The goal/question/metric model for our example is shown in
Table 2.)

Table 2. Goal/Question/Metric Model

 A company can also use the GQM approach for long-range corporate goal set-
ting and evaluation. It can enhance the evaluation of a project by analyzing it in
the context of several other projects. It can expand the level of feedback and un-
derstanding by defining the appropriate synthesis procedure for transforming spe-
cific, valuable information into more general packages of experience. In imple-
menting the quality improvement paradigm, the company can formally learn more
about the definition and application of the GQM approach, just as it would about
any other experiences.

The Experience Factory: A Capability-Based Organization

In a capability-based organization, reuse of experience and collective learning be-
come a corporate concern like the business portfolio or company assets. The ex-
perience factory is the organization that supports reuse of experience and collec-
tive learning by developing, updating, and providing, on request, dusters of

 Victor R. Basili and Gianluigi Caldiera 228

competencies to be used by the project organizations.7 We call these clusters of
competencies "experience packages." The project organizations supply the experi-
ence factory with the products, plans, processes, and models used in their devel-
opment and the data gathered during development and operation; the experience
factory transforms them into reusable units and supplies them to the project or-
ganizations, together with specific monitoring and consulting support.

Figure 3. Synergies between Project Organization and Experience Factory

 The experience factory's activities must be clearly identified and independent
from those of the project organization. At the same time, the synergy and interac-
tion between the experience factory and project organizations must be constant
and effective. The project organization's goal is to produce and maintain software.
The experience factory provides direct feedback to each project, together with
goals and models tailored from similar projects. (Figure 3 shows the experience
factory organization and highlights activities and information flows among the
component sub organizations.)
 The project organization provides the experience factory with project and envi-
ronment characteristics, development data, resource usage information, quality re-
cords, and process information. This provides feedback on the actual performance
of the models that the experience factory processes and the project utilizes. The
experience factory produces and provides baselines, tools, lessons learned, and
data, parameterized in some form to adapt to a project's specific characteristics.
Support personnel sustain and facilitate the interaction between developers and

 Improve Software Quality by Reusing Knowledge and Experience 229

analysts by saving and maintaining the information, making it efficiently retriev-
able, and controlling and monitoring its access.
 The main products of the experience factory are core competencies packaged
as aggregates of technologies. (For some examples of core competencies and the
corresponding aggregation of technologies, see Table 3.) A company can imple-
ment core competencies in various formats or experience packages. Their content
and structure vary based on the kind of experience clustered within. There is gen-
erally a central element that determines what the package is, such as a software
life-cycle product or process, an empirical or theoretical model, a database, and so
on.

Table 3. Core Competencies and Corresponding Technologies

 The synergy of the project organization and the experience factory is based on
the quality improvement paradigm we introduced previously. Each component
performs activities in all six steps, but, for each step, one component has a leader-
ship role. (Figure 4 shows an outline of the whole organization and its mapping on
the QIP.)
 In the first three phases (characterize, set goals, and choose process), the opera-
tion focuses on planning. The project organization has a leading role and is sup-
ported by the experience factory analysts. The outcome of these three phases is, on
the project organization side, a project plan associated with a management control
framework, and on the experience factory side, a support plan also associated with
a management control framework. The project plan describes the projects goals,
phases, and activities, with their products, mutual dependencies, milestones, and
resources. For the experience factory side, the plan describes the support that it
will provide for each phase and activity and expected improvements.
 In the fourth phase (execute), the operation focuses on delivering the product or
service assigned to the project organization. The project organization again has a
leading role, supported by the experience factory. The outcome of this phase is the

 Victor R. Basili and Gianluigi Caldiera 230

product or service, which is associated with a set of potentially reusable products,
processes, and experiences.

Figure 4. A Map of the Quality Improvement Paradigm for the Whole

Organization

 In the fifth and the sixth phases (analyze and package), the operation concen-
trates on capturing project experience and making it available to future similar
projects. The experience factory has a leading role and is supported by the project
organization that is the source of that experience. The outcomes of these phases
are lessons learned with recommendations for future improvements, and new or
updated experience packages incorporating the experience gained during the pro-
ject execution.
 Structuring a software development organization as an experience factory of-
fers the ability to learn from every project, constantly increase the organization's
maturity, and incorporate new technologies into the life cycle. In the long term, it
supports the overall evolution of the organization from project-based, where all
activities are aimed at the successful execution of current project tasks, to capabil-
ity-based, which capitalizes on task execution.
 An organization benefits from its structure as an experience factory by:

• Establishing a software improvement process substantiated and controlled by
quantitative data.

• Producing a repository of software data and models that are empirically
based on everyday practice.

• Developing an internal support organization that limits overhead and pro-
vides substantial cost and quality performance benefits.

• Providing a mechanism for identifying, assessing, and incorporating into the
process new technologies that have proven valuable in similar contexts.

• Incorporating and supporting reuse in the software development process.

 Improve Software Quality by Reusing Knowledge and Experience 231

Table 4. Focus of the Software Engineering Lab´s Three Components

Improvement in Practice: A NASA Engineering Laboratory

Next we offer a practical example of an experience factory organization — the
Software Engineering Laboratory (SEL) at NASA Goddard Space Flight Center
— and show how its operation uses the quality improvement paradigm.8
 The SEL was established in 1976 as a cooperative effort among the Depart-
ment of Computer Science of the University of Maryland, the National Aeronautic
and Space Administration Goddard Space Flight Center (NASA/GSFC), and
Computer Sciences Corporation (CSC). The lab's goal was to understand and im-
prove key software development processes and products in a specific organization,
the Flight Dynamics Division.
 The goals, structure, and operation of the SEL have evolved from an initial
stage — a laboratory dedicated to experimentation and measurement—to a full-
scale organization aimed at reusing experience and developing strategic capabili-
ties. The SEL`s structure is based on three components:

• Developers, who provide products, plans used in development, and data
gathered during development and operation (the project organization).

• Analysts, who transform the objects that the developers provide into reusable
units and supply them to the developers; they support the projects on use of
the analyzed, synthesized information, tailoring it for a current software ef-
fort (the experience factory proper).

• Support infrastructure, which provides services to the developers by support-
ing data collection and retrieval, and to the analysts by managing the library
of stored information and its catalogs (the experience base support).

(For an outline of the differences in focus among the three sub organizations, see
Table 4.)
 In the late 1980s, the software engineering community was considering the use
of the Ada programming language environment and technology, which the U.S.
Department of Defense had developed.9 NASA thought of using Ada technology
for some major projects such as the space station. Its application was also being

 Victor R. Basili and Gianluigi Caldiera 232

considered in areas outside the Department of Defense. If more and more systems
used Ada as a development environment, more organizations would be involved
with it, and Ada would have to be transformed from simple technology to core
competence for the software development organizations within NASA.
 Associated with Ada was the issue of object-oriented technologies. Some basic
characteristic elements of the object-oriented approach are:

• A system is seen as a set of objects with a defined behavior and characteris-
tics.

• Objects interact with each other by exchanging messages.

• Objects are organized into classes based on common characteristics and be-
haviors.

• All information about the state or the implementation of an object is held in
the object itself and cannot be deliberately or accidentally used by other ob-
jects.

 From the beginning, the SEL thought that the two technologies (Ada and object
technology) should be packaged together into a core competence supporting the
strategic capability of delivering systems with better quality and lower delivery
cost. After it recognized that this capability had a strategic value for the organiza-
tion, the SEL selected Ada and the object-oriented design technology for support-
ing it, measured its benefits, and provided data in support of its decision to use the
technology.
 The SEL followed these steps, according to the QIP:
1. Characterize. In 1985, the SEL developed a baseline of how the Flight Dy-

namics Division developed software. It defined the development processes
and built models to improve the process's manageability. It integrated the
standard development methodology, based on the traditional design-and-
build approach, with concepts aimed at continuously evolving systems by
successive enhancements.

2. Set goals. Realizing that object-oriented techniques implemented in the de-
sign and programming environments offered potential for major improve-
ments in productivity, quality, and reusability of software products and proc-
esses, the SEL decided to develop a core competence around object-oriented
design and Ada. First, it set up expectations and goals against which it meas-
ured results. The SEL’s well-established baseline and measures provided an
excellent basis for comparison. Its expectations included —

• An increase in effort on early phases of development activities (design)
and a decrease on late phases (testing).

• Increased reuse of software modules.

• Decreased maintenance costs due to the better quality, reusable compo-
nents.

• Increased reliability as a result of lower global error rates, fewer high-
impact interface errors, and fewer design errors.

 Improve Software Quality by Reusing Knowledge and Experience 233

Figure 5. Trends of Significant Indicators

3. Choose process. The SEL decided to approach the development of the de-
sired core competence by experimenting with Ada and object-oriented design
in a "real" project. It developed two versions of the same system. System A
used FORTRAN and followed the standard methodology based on functional
decomposition. System B used Ada and followed an object-oriented method-
ology called HOOD. The SEL compared the data derived from the develop-
ment of system B with those from system A. It devoted particular attention to
quality and productivity data.

4. Execute. The SEL implemented systems A and B and collected the desired
metrics.

 Victor R. Basili and Gianluigi Caldiera 234

5. Analyze. The data showed an increase in the cost to develop due to the or-
ganization's inexperience with the new technology and to the technology's in-
trinsic characteristics. The data also showed an increase in cost to deliver due
to the same causes. The overall quality of system B showed an improvement
over system A in terms of a substantially lower error density.

6. Package. The laboratory tailored and packaged an internal version of the
methodology that adjusted and extended HOOD for use in a specific envi-
ronment and on a specific application domain. Commercial training courses,
supplemented with limited project-specific training, constituted the early
training in the techniques. The laboratory also produced experience reports
on the lessons learned using the new technology and recommendations for
refinements to the methodology and standards.

Results of the Process. The data collected from the first execution of the process
were encouraging, especially on the quality issue, but inconclusive. The SEL de-
cided on new executions to be continued in the future. Along with the develop-
ment methodology, it developed a programming language style guide that pro-
vided coding standards for the local Ada environment.
 The SEL has completed at least ten projects using an object-oriented technol-
ogy derived from the one used for system B but constantly modified and im-
proved. The size of single projects, measured in thousands of lines of source code,
ranges from small to large. Some characteristics of an object-oriented develop-
ment, using Ada, emerged early and have remained rather constant. No significant
change has been observed, for instance, in the effort distribution or in the error
classification. Other characteristics emerged later and took time to stabilize. Reuse
has increased dramatically after the first projects, going from a traditionally con-
stant figure of 30 percent reuse across different projects, to a current 96 percent
(89 percent reuse). (See Figure 5.)
 Over the years, use of the object-oriented approach and expertise with Ada
have matured. Source code analysis of the systems developed with the new tech-
nology has revealed a maturing use of Ada's key features that has no equivalent in
the programming environments NASA traditionally uses. The SEL used such fea-
tures not only more often in more recent systems, but also in more sophisticated
ways, as revealed by specific metrics for this purpose. Moreover, the use of ob-
ject-oriented design and Ada features has stabilized during the past three years,
creating an SEL baseline for object-oriented developments.
 The cost to develop code in the new environment has remained higher than the
cost to develop code in the old one. However, because of the high reuse rates ob-
tained through the object-oriented paradigm, the cost to deliver a system in the
new environment has significantly decreased and is now well below the old cost.
 The reliability of the systems developed in the new environment has improved
during the maturing of the technology. The error rates were significantly lower
than the traditional ones and have continued to decrease. Again, the high level of
reuse in the later systems is a major contributor to this greatly improved reliability.
Because of the technology's stabilization and apparent benefit, the object-oriented
development methodology has been packaged and incorporated into the current
technology baseline and is a core competence of the organization. Although the

 Improve Software Quality by Reusing Knowledge and Experience 235

SEL will continue to refine the technology of object-oriented design, HOOD has
now progressed through all stages, moving from a trial methodology to a fully in-
tegrated, packaged part of the standard methodology, ready for further incremental
improvement.
 The SEL example also illustrates the relationship between a competence (ob-
ject-oriented technology) and a target capability (deliver high quality at low cost)
and shows how innovative technologies can systematically enter the production
cycle of mature organizations. Although the topic of technology transfer is not
specifically within our scope here, it is clear that the model we derive from the
SEL example outlines a solution to some major technology-transfer issues. The
purpose of an experience factory organization, however, goes beyond technology
transfer to encompass capability transfer and reuse.

Figure 6. Relationships between Strategic Capabilities and Core Competencies

Conclusion

For software, the remainder of the 1990s will be the era of quality and cycle time.
There is a growing need to develop or adapt quality improvement approaches to
the software business. Our approach to software quality improvement is based on
the exploitation and reuse of an organization’s critical capabilities across different
projects based on business needs.
 The relationship between core competencies and strategic capabilities is estab-
lished by the kind of products and services the organization wants to deliver and is
specified by the strategic planning process. (Figure 6 gives a possible map for an
organization whose main business is systems and software development for user

 Victor R. Basili and Gianluigi Caldiera 236

applications.) The SEL example shows that these ideas are feasible and have been
successfully applied in a production environment to create a continuously improv-
ing organization. Such an organization can manipulate its processes to achieve
various product characteristics. It needs to have a process and organizational struc-
ture to:

• Understand its processes and products.

• Measure and model its business processes.

• Define process and product quality explicitly and tailor the definitions to the
environment.

• Understand the relationship between process and product quality.

• Control project performance with respect to quality.

• Evaluate project success and failure with respect to quality.

• Learn from experience by repeating successes and avoiding failures.
 By using the quality improvement paradigm/experience factory approach, an
organization has a good chance to achieve all these capabilities and improve qual-
ity faster because it focuses on its strategic capabilities and value-added activities.
The experience factory organization is the lean enterprise model for the system
and software business.

References

We acknowledge the contributions of all those who participated in the experiences

and discussions that originated the concepts presented here. Particular acknowl-

edgment goes to the personnel of the Software Engineering Laboratory at NASA

Goddard Space Flight Center and Frank McGarry, Jerry Page (CSC), Tony Jor-

dano (SAIC), Bob Yacobellis (Motorola), Paolo Sigillo (Italsiel), and Mike

Deutsch (Hughes Information Technology Corporation).

[1] W. Edwards Deming, Out of the Crisis (Cambridge, Massachusetts: MIT Press, Center

for Advanced Engineering Study, 1986).
[2] A.V. Feigenbaum, Total Quality Control (New York: McGraw Hill, 1991).
[3] J.P. Womack, D.T. Jones, and D. Roos, The Machine That Changed the World (New

York: Rawson Associates, 1989).
[4] G. Stalk, P. Evans, and L.E. Shulman, "Competing on Capabilities: The New Rules of

Corporate Strategy," Harvard Business Review, March-April 1992, pp. 57-69.
[5] V.R. Basili, "Quantitative Evaluation of a Software Engineering Methodology" (Mel-

bourne, Australia: Proceedings of the First Pan-Pacific Computer Conference, Sep-
tember 1985); and
V.R. Basili, "Software Development: A Paradigm for the Future" (Orlando, Florida:
Proceedings of COMPSAC '89, September 1989), pp. 471-485.

[6] V.R. Basili and D.M. Weiss, "A Methodology for Collecting Valid Software Engineer-
ing Data," IEEE Transactions on Software Engineering, November 1984, pp. 728-738;
and

 Improve Software Quality by Reusing Knowledge and Experience 237

V.R. Basili and H.D. Rombach, "The TAME Project: Towards Improvement-Oriented
Software Environments," IEEE Transactions on Software Engineering, June 1988, pp.
758-773.

[7] Basili (1989).
[8] V.R. Basili, G. Caldiera, F. McGarry, R. Pajerski, J. Page, and S. Waligora, "The

Software Engineering Laboratory — An Operational Software Experience Factory"
(Melbourne, Australia: Proceedings of the Fourteenth International Conference on
Software Engineering, May 1992).

[9] ANSI/MIL-STD-1815A 1983: Reference Manual for the Ada Programming Lan-

guage.
[10] Sommerville, Software Engineering (Wokingham, England: Addison-Wesley, 1992).

Section 5: Empirical Studies and Technical

Development

Rose Pajerski

Fraunhofer Center for Experimental Software Engineering

This section contains 5 journal articles over a 16 year period, which showcases
the maturation of development methods and processes as well as the evolution of
the underlying science of empirical studies and software engineering experimenta-
tion. This section can only provide a few examples since Vic’s contribution to this
body of knowledge is immense. His work covers diverse experiments on tech-
niques and approaches over the entire lifecycle from development through sustain-
ing engineering. The articles in this section focus on the collection and analysis of
data and experience that can be used to characterize relationships between process
and product measures. They highlight the lessons learned using experimental
methods and are valuable to both researchers and practitioners.

 As a researcher, Vic’s objective has always been to build models and increase
understanding of the relationship between the process under study and the resul-
tant product. To do this, he has carried out over 100 experiments in the classroom
and industrial settings in different contexts and application areas. This represents a
huge amount of raw data to evaluate; however, Vic’s analyses always consider the
human factors as well as the statistical results to provide valuable qualitative and
quantitative feedback to the practitioner community.

 The articles describe individual experiments and aggregated groups of ex-
periments, providing a historical perspective on the evolution of empirical studies
driven by Vic’s work. As the software engineering discipline has matured, so has
the level of sophistication of empirical research. The articles included here show a
body of knowledge built carefully over time - from single experiments and from
combining and replicating experiments under similar and differing conditions.
While the scope of the studies varies from complete methodologies to specific
techniques, the study methodology evinces many common characteristics: goal-
based objectives considering both process and product elements; quantitative and
subjective data collection; and, perhaps most importantly, careful conclusions that
do not extend beyond the data and scope of study.

 In the first article selected, from 1981, then-current development methods
were compared in a controlled experiment report by Basili and Reiter entitled “A
Controlled Experiment Quantitatively Comparing Software Development Ap-
proaches.” The study evaluated the effectiveness of using structured programming
practices in small teams against more ad hoc, less disciplined approaches. Evalua-
tion criteria included both process (e.g., effort, number of computer runs, changes
made) and product measures (e.g., lines of code, statement types) that were col-

 Section 5: Empirical Studies and Technical Development 239

lected automatically and used to confirm/disprove the 7 initial hypotheses. The
rigor of this controlled experiment, coupled with the extent of the data collected,
provided a valuable template for other studies to follow and garnered the IEEE
Computer Society Outstanding Paper Award in 1981.

 From 1986, the second selection “Experimentation in Software Engineering”
surveys the early years of software engineering studies. In this article, Basili,
Selby and Hutchens integrate previous experimental design studies and lessons-
learned from a number of researchers to present a comprehensive framework for
carrying out and evaluating future experimental studies. This broad ranging em-
pirical survey summarizes the key work, issues, challenges and conclusions that
can be drawn from the previous 10 years of empirical studies. Its bibliography
alone provides a valuable “Who’s who” of researchers and their work for others to
reference.

 Testing methods are the focus of the third selection. In 1987, Basili and Selby
published a study of several testing methods employed at the University of Mary-
land and in the NASA Software Engineering Laboratory (SEL) to determine their
strengths and weaknesses. “Comparing the Effectiveness of Software Testing
Strategies” analyzes the effectiveness of these testing methods from several per-
spectives/objectives and provides a template for future “series of experiments”
studies. This ambitious research project spanned several years and was conducted
in both university and industrial settings. The three phases incorporated different
testing techniques along with different levels of developer expertise, different
types of applications, and fault types (e.g., interface versus control, real versus
seeded). This study emphasized the value of code reading as an effective testing
technique and formed the basis for Vic’s continuing experimentation with and
evolution of reading techniques.

 The fourth selection, “Cleanroom Software Development: An Empirical
Evaluation”, from 1987 by Selby, Basili, and Baker, provides an analysis of the
IBM-developed Cleanroom methodology based on classroom experiments at the
University of Maryland (UMD). Over 2 semesters, the Cleanroom method was
used by 10 programmer teams and compared with a control group of 5 teams to
develop a small system. Individual elements of the methodology were evaluated
with respect to their impact on product quality and process effectiveness, incorpo-
rating extensive feedback from the teams. The results validated experiences by
IBM and highlighted the importance of using developer feedback in implementing
process changes.

 The final selection, Basili’s “Evolving and Packaging Reading Technologies,
published in 1997, describes the maturation of reading techniques over a 10 year
period as practiced in the SEL and at the UMD. This report describes a number of
experiments in testing techniques and perspective-based reading approaches. Vic
provides a unifying context for these studies in terms of the Quality Improvement
Paradigm (QIP). During successive QIP cycles, the results from previous experi-
ments are used to refine the goals of the next series of experiments, resulting in a
set of tailored reading techniques that can be applied to many types of documents
such as requirements specifications and design diagrams.

 Rose Pajerski 240

 In this section, we see that Vic is a true experimentalist as, in his own words,
“Experimentalists observe and measure, i.e., carry out studies to test or disprove a
theory or to explore a new domain. But at whatever point the cycle is entered there

is a pattern of modeling, experimenting, learning and remodeling.1” We also see
ample proof that the experimental cycle continues as we enjoy the journey along
with Vic.

1 V. R. Basili, Editorial in Empirical Software Engineering (1)2, 1996 Kluwer

A Controlled Experiment Quantitatively

Comparing Software Development Approaches

Victor R. Basili and Robert W. Reiter, Jr., Member, IEEE

Abstract. A software engineering research study has been undertaken to
empirically analyze and compare various software development approaches;
its fundamental features and initial findings are presented in this paper. An
experiment was designed and conducted to confirm certain suppositions
concerning the beneficial effects of a particular disciplined methodology for
software development. The disciplined methodology consisted of program-
ming teams employing certain techniques and organizations commonly de-
fined under the umbrella term structured programming. Other programming
teams and individual programmers both served as control groups for comparison.
The experimentally tested hypotheses involved a number of quantitative,
objective, unobtrusive, and automatable measures of programming aspects deal-
ing with the software development process and the developed software
product. The experiment's results revealed several programming aspects for
which statistically significant differences existed between the disciplined
methodology and the control groups. The results were interpreted as con-
firmation of the original suppositions and evidence in favor of the disci-
plined methodology. This paper describes the specific features of the ex-
periment; outlines the investigative approach used to plan, execute, and
analyze it; reports its immediate results; and interprets them according to in-
tuitions regarding the disciplined methodology.

Key Words: Controlled experimentation, empirical study, programming measurement, pro-
gramming methodology, programming teams, software development, software metrics,
structured programming practices.

Manuscript received June 30, 1979; revised January 15, 1980. This work was supported in
part by the Air Force Office of Scientific Research under Grant AFSOR-77-3181A to the
University of Maryland. Computer time was supported in part through the facilities of the
Computer Science Center of the University of Maryland. At the time this work was done,
both authors were with the University of Maryland.
V. R. Basili is with the Department of Computer Science, University of Maryland, College
Park, MD 20742.
R. W. Reiter, Jr. was with the Department of Computer Science, University of Maryland, College
Park, MD 20742. He is now with the Software Engineering and Technology Department, IBM
Federal Systems Division, Bethesda, MD 20034.

 Victor R. Basili and Robert W. Reiter, Jr. 242

I. Introduction

Much has been written about methodologies for developing computer software
(e.g., [9], [11], [15], [17], [20], [28]). Most of these methodologies are founded on
sound logical principles. Case studies have occasionally been conducted to dem-
onstrate their effectiveness (e.g., [1], [6]). Their adoption within production ("real-
world") environments has generally been successful. Having practiced adaptations
of these methodologies, software designers and programmers have often asserted
qualitatively that they got the job done faster, made fewer errors, or produced a
better product (e.g., [12]). Unfortunately, solid empirical evidence that compara-
tively and quantitatively assesses any particular methodology is scarce (e.g., [18],
[21], [23], [24]). This is due partially to the cost and impracticality of a valid ex-
perimental setup within a production environment.
 Thus the question remains, are measurable benefits derived from programming
methodologies, with respect to either the software development process or the de-
veloped software product? Even if the perceived benefits are real, it is not clear
that they can be quantified or monitored, in order to confirm the effectiveness of
the methodologies. Software development is still too artistic, in the aesthetic or
spontaneous sense. In order to understand it more fully, manage it more cost-
effectively, and adapt it more readily to challenging applications or situations,
software development must become more scientific, in the engineered and delib-
erate sense. More empirical study, data collection, and experimental analysis are
required to achieve this goal.
 The purpose of the research reported in this paper is 1) to quantitatively inves-
tigate the effect of methodologies and programming environments on software de-
velopment and 2) to develop an investigative methodology based on scientific ex-
perimentation and tailored to this particular application. It involves the
measurement and analysis of both the software process and the software product
in a manner which is minimally obtrusive (to those developing the software), ob-
jective, and automatable. The goal of the research was to verify the effectiveness
of a particular programming methodology and to identify various quantifiable as-
pects that could demonstrate such effectiveness.
 To this end, a controlled experiment was conducted involving several replica-
tions of a specific software development task under varying programming envi-
ronments. The experiment compared three distinct groupings of software develop-
ers: individual programmers, three-person programming teams, and three-person
programming teams using a disciplined methodology. The disciplined methodol-
ogy consisted of an integrated set of software development techniques and team
organizations, including top-down design, process design language, structured
programming, code reading, and chief programmer teams.
 The study examines differences in the expectancy of software development be-
havior under the programming environments represented by these groups. The ba-
sic premise is that distinctions among the groups exist both in the process and in
the product. With respect to the software development process, a disciplined team
should have advantages over both an individual and an ordinary team, displaying

 A Controlled Experiment Quantitatively Comparing Software 243

superior performance on cost factors such as computer usage and number of errors
made. This is because of the discipline itself and because of the ability to use team
members as resources for validation. With respect to the developed software prod-
uct, it is believed that a disciplined team should approximate an individual with
regard to design and source code characteristics (such as decision structure and
global data accessibility) and at the very least lie somewhere between an individ-
ual and an ordinary team. This is because the disciplined methodology should en-
able the team to act as a mentally cohesive unit during the design, coding, and
testing phases.
 The study's findings reveal several programming characteristics for which sta-
tistically significant differences do exist among the groups and tend to support
these basic premises.
 The investigation has been conducted in a laboratory or proving-ground fash-
ion, in order to achieve some statistical significance and scientific respectability
without sacrificing production realism and professional applicability. By scaling
down a typical production environment while retaining its important characteris-
tics, the laboratory setting provides for a reasonable compromise between the ex-
tremes of
1) "toy" experiments, which can afford elaborate experimental designs and large

sample sizes but often suffer from a basic task that is rather unrelated to pro-
duction situations or involve a context from which it is difficult to extrapolate
or scale up (e.g., introductory computer course students taking multiple-
choice quizzes based on 30-line programs), and

2) "production" experiments, which offer a high degree of realism by definition
but incur prohibitively high costs even for the simplest and weakest experi-
mental designs (i.e., replication of a nontrivial programming project is clearly
expensive).

 The experiment in this study was conducted within an academic environment
where it was possible to achieve an adequate experimental design and still simu-
late key elements of a production environment.
 An initial phase of investigative effort has been completed and its prominent
features are presented in the remainder of this paper. Section II gives details per-
taining to the experiment itself. Section III describes the investigative methodol-
ogy used to plan, execute, and analyze the experiment. Sections IV and V present
the experiment's findings, segregated into empirical results (resulting from statisti-
cal analysis of the measurements) and intuitive judgments (resulting from interpre-
tation of the empirical results), respectively. (Different statistical analyses and ad-
ditional interpretations of the same experimental data have appeared in [5], [22] as
explained below.) Section VI makes some concluding remarks and mentions fur-
ther work planned for the study. Appendices I and II explain concisely what pro-
gramming aspects were measured and contain the observed raw data scores.
 It should be noted that the terms "methodology" and "methodological" (in ref-
erence to software development) are used herein to connote a comprehensive inte-
grated set of development techniques as well as team organizations, rather than a
particular technique or organization in isolation.

 Victor R. Basili and Robert W. Reiter, Jr. 244

II. Specifics

Experimental Design

The basic task involved in the experiment was the completion of a specific soft-
ware development project. There were 19 replications of the basic task, each per-
formed concurrently and independently by a separate software development
"team." There were two experimental treatment factors (independent variables):
size of the development "team" and degree of methodological discipline. For each
factor, there were two experimental treatment factor levels: for the size factor, a
single individual and a three-person team; for the degree-of-discipline factor, an
ad hoc approach and a disciplined methodology.
 The experiment was embedded within two academic courses, and every student
enrolled in those courses participated in the experiment. Development "teams"
were formed among the subjects: in one course, the .students were allowed to
choose between segregating themselves as individual programmers or combining
with two other classmates as three-person programming teams; in the other course,
the students were assigned (by the researchers) into three-person teams. The ex-
periment was designed in this manner because the two academic courses them-
selves provided the two levels of the second experimental treatment factor. This
scheme yielded three groups of 6, 6, and 7 "teams," designated AI, AT, and DT,
respectively. Each group was exposed to a particular combined factor-level treat-
ment according to the following partial factorial arrangement:

(AI) single individuals using an ad hoc approach,
(AT) three-person teams using an ad hoc approach, and
(DT) three-person teams using a particular disciplined methodology.

 A set of experimental observations (dependent variables), composed of 35 pro-
gramming aspects related to the development process and the software product,
had been identified prior to conducting the experiment. The performance of each
development "team" was quantified according to each programming aspect. The
overall experiment thus technically consisted of a series of simultaneous univari-
ate experiments, one for each observed programming aspect, all sharing a com-
mon experimental design and a common raw data sample.
 Although this experimental design basically followed the reductionist para-
digm, in which most variables are controlled so that the relationships among the
remaining few can be isolated, the ideal was only approximated. Specifically,
there were two variables which the design did not explicitly control: the personal
ability/experience of the participants and the amount of actual time/effort they de-
voted to the project. These variables could only be allowed to vary among the
groups in what was assumed to be a random manner. However, information from
a pretest questionnaire was used to balance the personal ability/experience of the
group DT participants (only) across those seven teams. As a reasonable measure
of individual programmer skill levels, the participants' grades from a pertinent pre-

 A Controlled Experiment Quantitatively Comparing Software 245

requisite course provided a post-experimental confirmation that programming
ability was fairly evenly distributed among the groups.

Software Development Methodologies

The disciplined methodology imposed on teams in group DT consisted of an inte-
grated set of state-of-the-art techniques, including top-down design, process de-
sign language (PDL), functional expansion, design and code reading, walk-
throughs, and chief programmer team organization. These were taught as an
integral part of the course that the subjects were taking, and the course material
was organized around [2], [9], [17] as textbooks. Since the subjects were novices
in the methodology, they executed the techniques and organizations to varying de-
grees of thoroughness and were not always as successful as seasoned users of the
methodology would be.
 Specifically, the disciplined methodology prescribed the use of a PDL for ex-
pressing the design of the problem solution. The design was expressed in a top-
down manner, each level representing a solution to the problem at a particular
level of abstraction and specifying the functions to be expanded at the next level.
The PDL consisted of a specific set of structured control and data structures, plus
an open-ended designer-defined set of operators and operands corresponding to
the level of the solution and the particular application. Design and code reading
involved the critical review of each team member's PDL or code by at least one
other member of the team. Walk-throughs represented a more formalized presen-
tation of an individual's work to the other team members in which the PDL or
code was explained step by step. Under the chief programmer team organization,
one team member was responsible for designing and refining the top-level solu-
tion to the problem in PDL, identifying system components to be implemented,
defining their interfaces, and implementing the key code; the other team members
were each responsible for designing or coding various system components, as as-
signed by the chief programmer. Responsibility for librarian activities (entering or
revising code stored on-line, making test runs, etc.) was allocated among the three
team members in the manner most comfortable for them.
 Each individual or team in groups AI and AT was allowed to develop the soft-
ware in a manner entirely of their own choosing, which is herein referred to as an
ad hoc approach. No methodology was taught in the course these subjects were
taking. Informal observation by the researchers confirmed that approaches used by
the individuals and ad hoc teams were indeed lacking in discipline and did not
utilize the key elements of the disciplined methodology (e.g., an individual work-
ing alone cannot practice code reading, and it was evident that the ad hoc teams
did not use a PDL or formally do a top-down design).

 Victor R. Basili and Robert W. Reiter, Jr. 246

Programming Environment

Several particulars of the experimental programming environment contribute sig-
nificantly to the context in which the experiment's results must be appraised.
These include the setting in which the experiment was conducted, the software
development project that served as the experimental task, the people who partici-
pated as subjects, the computer system access mode they used, and the computer
programming language in which the software was written.
 The experiment was conducted during the Spring 1976 semester, January
through May, within regular academic courses given by the Department of Com-
puter Science on the College Park campus of the University of Maryland. Two
comparable advanced elective courses were utilized, each with the same academic
prerequisites. The experimental task and treatments were built into the course ma-
terial and assignments. Everyone in the two classes participated in the experiment;
they were aware of being monitored, but had no knowledge of what was being ob-
served or why.
 The programming application was a compiler for a small high-level language
and a simple stack machine; it involved string processing and language translation
(via scanning, parsing, code generation, and symbol table management). The total
task was to design, implement, test, and debug the complete computer software
system from given specifications. The scope of the project excluded both exten-
sive error handling and user documentation. The project was of modest but non-
negligible difficulty, requiring roughly a two man-month effort and resulting in
systems that averaged over 1200 lines of high-level-language source code. All
facets of the project itself were fixed and uniform across all development "teams."
Each "team" worked independently to build its own system, using the same speci-
fications, computer resource allocation, calendar time allotment, implementation
language, debugging tools, etc. The delivered systems each passed an independent
acceptance test.
 The participants were advanced undergraduate and graduate students in the
Department of Computer Science, a few with as much as three years' professional
programming experience. Generally speaking, they were all familiar with both the
implementation language and the host computer system, but inexperienced in team
programming and the disciplined methodology. A reasonable degree of homoge-
neity seemed to exist among the participants with respect to personal factors such
as ability/experience, motivation, time/effort devoted to the project, etc. If any-
thing, based on the researchers' subjective judgment, the participants in groups AI
and AT seemed to have a slight edge over those in group DT with respect to native
programming ability and formal training in the application area.
 The host computer system used by all "teams" was a Univac 1100 machine
with the usual Exec operating system, supporting both batch and interactive ac-
cess. It was observed that almost all "teams" consistently preferred the interactive
access mode; only one of AI "teams" used the batch access mode extensively.
 The implementation language was the high-level, structured-programming lan-
guage SIMPL-T [7], taught and used extensively in regular course work at the
University. SIMPL-T contains the following control constructs: sequence, ifthen,

 A Controlled Experiment Quantitatively Comparing Software 247

ifthenelse, whiledo, case, exit from loop, and return from routine (but no go to).
SIMPL-T allows basically two levels of data declaration scope, local to an indi-
vidual routine or global across several routines, but routines may not be nested.
The language adheres to a philosophy of "strong data typing" and supports integer,
character, and string data types and single dimension array data structures. It pro-
vides the programmer with both recursion and string-processing capabilities simi-
lar to PL/I.

Data Collection and Reduction

During the course of the experiment, while the software projects were being de-
veloped, the computer activities of each "team" were automatically and unobtru-
sively monitored. Special module compilation and program execution processors
(invoked by very slight changes to the regular command language) created an his-
torical database, consisting of all source code and test data accumulated through-
out the project development period, for each development "team." The raw infor-
mation in this database was subsequently reduced to obtain the experimental
observations. The final products were isolated from the database and measured for
various syntactic and organizational aspects of the finished product source code.
Effort and cost measurements were also extracted from the database. The inputs to
the analysis, in the form of scores for the various programming aspects, reflect the
quantitatively measured character of the product and effort of the process. (These
raw data scores are presented in Appendix II.) Much of this data reduction was
done automatically within a specially instrumented compiler. The same collection
and reduction mechanism was uniformly applied to all development teams, ensur-
ing the objectivity of the observations and measurements.

Programming Aspects and Metrics

The dependent variables studied in this experiment are called programming as-
pects. They represent specific isolatable and observable features of programming
phenomena. Furthermore, they are measured in a manner that may be character-
ized as quantitative (on at least an interval scale [10, pp. 65-67], objective (without
inaccuracy due to human subjectivity), unobtrusive (to those developing the soft-
ware), and automatable (not depending on human agency).
 The variables fall into two categories: process aspects and product aspects.
Process aspects represent characteristics of the development process itself, in par-
ticular, the cost and required effort as reflected in the number of computer job
steps (or runs) and the amount of textual revision of source code during develop-
ment. Product aspects represent characteristics of the final product that was devel-
oped, in particular, the syntactic content and organization of the symbolic source
code itself. Examples of product aspects are number of lines, frequency of particu-
lar statement types, average size of data variables' scope, etc. For each program-

 Victor R. Basili and Robert W. Reiter, Jr. 248

ming aspect there exists an associated metric, a specific algorithm which ulti-
mately defines that aspect and by which it is measured.
 Table I lists the particular programming aspects examined in this investigation.
They appear grouped by category, with indented qualifying phrases to specify par-
ticular variants of certain general aspects. When referring to an individual aspect,
a concatenation of the heading line with the qualifying phrases (separated by \
symbols) is used; for example, COMPUTER JOB STEPS\MODULE
COMPILATION\UNIQUE denotes the number of COMPUTER JOB STEPS that
were MODULE COMPILATIONS in which the source code was UNIQUE from
all other compiled versions. Explanatory notes (keyed to the list in Table I) about
the programming aspects are given in Appendix I, with definitions for the nontriv-
ial or unfamiliar metrics. Technical meanings for various system- or language-
dependent terms (e.g., module, segment) also appear there. Since computer pro-
gramming terminology is not particularly standardized, the reader is cautioned
against drawing inferences not based on this paper's definitions.
 The programming aspects had been consciously planned in advance of collect-
ing and extracting data because intuition suggested that they would serve well as
quantitative indicators of important qualitative characteristics of software devel-
opment phenomena. It was predicted a priori that these so-called "confirmatory"
aspects would verify the study's basic premises regarding the programming meth-
odologies being investigated.
 The overall study also examined many so-called "exploratory" programming
aspects: measurements which could be collected and extracted cheaply (even as a
natural by-product sometimes) along with the "confirmatory" aspects, but for
which there was little serious expectation that they would be useful indicators of
differences among the groups. They were included in the overall study with the in-
tent of observing as many aspects as possible on the off chance of discovering any
unexpected tendency or difference, thus combining elements of both confirmatory
and exploratory data analysis within one common experimental setting [27]. For
these "exploratory" programming aspects and their results, interested readers are
referred to [5], [22].

III. Approach

The investigative methodology can be characterized as an empirical study based
on the "construction" paradigm in which multiple subjects are closely monitored
during actual "production" experiences, each subject performing the same task,
with controlled variation in specific variables. It uses scientific experimentation
and statistical analysis based on a "differentiation among groups by aspects" para-
digm in which possible differences among the groups, as indicated by differences
in certain quantitatively measured aspects of the observed phenomena, are the tar-
get of the analysis. This use of "difference discrimination" as the analytical tech-
nique dictates a model of homogeneity hypothesis testing that influences nearly
every element (or step) of the methodology.

 A Controlled Experiment Quantitatively Comparing Software 249

 Fig. 1, the approach schematic, charts some of the relationships among the
various steps of the investigative methodology. The remainder of this section out-
lines the approach by briefly defining each step and discussing how it was applied
in the research effort at hand.
 Step 1-Questions of Interest: Several questions of interest were initiated and re-
fined so that answers could be given in the form of statistical conclusions and re-
search interpretations. The final questions of interest culminated in the form "dur-
ing software development, what comparisons between the effects of the three
factor-level combinations a) single individuals, b) ad hoc teams, and c) disciplined
teams appear as differences in the various quantitatively measurable aspects of the
software development process and product? Furthermore, what kind of differences
are exhibited and what is the direction of these differences?"
 Step 2-Research Hypotheses: Based upon the questions of interest, precise re-
search hypotheses were formulated as disjoint pairs designated null and alterna-
tive, to be supported or refuted by the evidence.
 A precise meaning was given to the notion "what kind of difference." In order
to address the expectancy of behavior under the experimental treatments, the in-
vestigation focused on differences in central tendency or average value of the
quantifiable programming aspects. These "location" comparisons and their results
are the topic of this paper. The overall study also addressed the predictability of

 Victor R. Basili and Robert W. Reiter, Jr. 250

behavior under the experimental treatments by considering differences in variabil-
ity around the central tendency of observed values of the programming aspects.
For these "dispersion" comparisons and their results, interested readers are re-
ferred to [5], [22].
 The schema for the research hypotheses may be stated as follows. "In the con-
text of a one-person do-able software development project, there < is not | is > a
difference in the location of the measurements on programming aspect <X> be-
tween individuals (AI), ad hoc teams (AT), and disciplined teams (DT)." For each
programming aspect "X" in the set under consideration, this schema generates a
pair of nondirectional research hypotheses, depending upon the selection of "is
not" or "is" corresponding to the null and alternative hypothesis.
 Step 3-Statistical Model: The choice of a statistical model makes explicit vari-
ous assumptions regarding the experimental design, the dependent variables, the
underlying population distributions, etc. Because the study involves a homogene-
ity-of-populations problem with shift alternative, the multisample model used here
requires the following criteria: independent populations, independent and random
sampling within each population, continuous underlying distributions for each
population, homoscedasticity (equal variances) of underlying distributions, and in-
terval scale of measurement [10, pp. 65-67] for each programming aspect. Al-
though random sampling was not explicitly achieved in this study by rigorous
sampling procedures, it was nonetheless assumed on the basis of the apparent rep-
resentativeness of the subject pool and the lack of obvious reasons to doubt other-
wise. Due to the small sample sizes and the unknown shape of the underlying dis-
tributions, a nonparametric statistical model was used.
 Whenever statistics is employed to "prove" that some systematic effect — in
this case, a difference among the groups — exists, it is important to measure the
risk of error. This is usually done by reporting a significance level [10, p. 79],
which represents the probability of deciding that a systematic effect exists when in
fact it does not. In the model, the hypothesis testing for each programming aspect
was regarded as a separate independent experiment. Consequently, the signifi-
cance level is controlled and reported experiment wise (i.e., per aspect). While the
assumption of independence between such experiments is not entirely supportable,
this procedure is valid as long as statistical inferences that couple two or more of
the programming aspects are avoided or properly qualified.
 Step 4-Statistical Hypotheses: The research hypotheses must be translated into
statistically tractable form, called statistical hypotheses. In this study, the research
hypotheses are concerned with directional differences among three programming
environments. Since the corresponding mathematical statements are not directly
tractable, they were broken down into the set of four statistical hypotheses pairs
shown below. The hypotheses pair

null: AI = AT = DT alternative: ~(AI = AT = DT)
addresses the existence of an overall difference among the groups. The hypotheses
pairs

null: AI =AT alternative: AI AT or
 AI < AT or AT < AI

 A Controlled Experiment Quantitatively Comparing Software 251

null: AT = DT alternative: AT DT or
AT < DT or DT < AT

null: AI =DT alternative: AI DT or
 AI < DT or DT < AI

address the existence and direction of pair wise differences between groups. The
results of these pair wise comparisons were used to explicate the overall compari-
son.
 Thus, for any particular programming aspect, the research hypotheses pair cor-
responds to four different pairs (null and alternative) of scientific hypotheses. The
results of testing each set of four hypotheses must be abstracted and organized into
one statistical conclusion using the first research framework discussed in the next
step.
 Step 5-Research Frameworks: The research frameworks provide the necessary
organizational basis for abstracting and conceptualizing the volume of statistical
hypotheses (and statistical results that follow) into a smaller and more intellectu-
ally manageable set of conclusions. Two separate research frameworks have been
chosen: 1) the framework of possible overall comparison outcomes for a given
programming aspect and 2) the framework of general beliefs regarding expected
effects of the experimental treatments on the comparison outcomes for the entire
set of programming aspects. The first framework is employed in the statistical
conclusions step because it can be applied in a statistically tractable manner, while
the second framework is reserved for the research interpretations step since it is
not statistically tractable and involves subjective judgment.
 Since a finite set of three different programming environments (the AI, AT,
and DT groups) are being compared, there exists a finite set of nineteen possible
overall comparison outcomes for each aspect considered, as displayed in the fol-
lowing chart:
 The level number associated (in the chart) with each outcome "equation" is ex-
actly the number of statistically significant (pair wise) differences implied by or
stated in that equation.
 The level-0 equation indicates no distinction among the three groups. The
level-1 equations indicate a difference between the two extreme groups, with the
third group (designated in lowercase letters within parentheses) lying in between.
The level-2 equations indicate that one group is different from each of the other
two, while the level-3 equations indicate that all three groups are differentiated
from one another. The equations appearing in boxes provide a direction-free
"summary" of the corresponding set of equations. These 19 possible overall com-
parison outcomes comprise the first research framework and may be viewed as
providing a complete "answer space" for the questions of interest. This framework
is the basis for organizing and condensing the four statistical results into one sta-
tistical conclusion for each programming aspect considered.
 The design of the experiments, the choice of treatment factors, etc., were par-
tially motivated by certain general beliefs regarding software development, such
as "disciplined methodology reduces software development costs." The implica-
tions, relative to these beliefs, of the possible outcomes of each aspect's experi-

 Victor R. Basili and Robert W. Reiter, Jr. 252

ment provide a second research framework. This framework is the basis for inter-
preting the study's findings in terms of evidence in favor of the general beliefs; de-
tails are given in Section V, Interpretation.
 The overall study also employed a third research framework, based on abstract-
ing what the study's findings indicate about certain higher level programming is-
sues (such as data variable organization or intersegment communication). For this
third framework and the corresponding interpretation, interested readers are re-
ferred to [5], [22].

 Step 6-Experimental Design: The experimental design is the plan or setup ac-
cording to which the experiment is actually conducted or executed. It is based
upon the statistical model, and deals with practical issues such as experimental
units, treatment factors and levels, experimental local control, etc. The experimen-
tal design employed for this study has been discussed in Section II, Specifics.
 Step 7-Collected Data: The pertinent data to carry out the experimental design
are collected and processed to yield the information to which the statistical test
procedures were applied. Some details of this execution phase have been given in
Section II, Specifics. The data themselves are listed in Appendix II.
 Step 8-Statistical Test Procedures: As dictated by the statistical model, the sta-
tistical tests used in the study were nonparametric tests of homogeneity of popula-
tions against shift alternatives for small samples. In particular, the standard

 A Controlled Experiment Quantitatively Comparing Software 253

Kruskal-Wallis H-test [25, pp. 184-193] and Mann-Whitney U-test [25, pp. 116-
127] were employed in the statistical results step. Ryan's method of adjusted sig-
nificance levels [16, pp. 97, 495-497], a standard procedure for controlling the ex-
periment wise significance level when several tests are performed on the same
scores as one experiment, was also employed in the statistical conclusions step. As
part of Ryan's method, the rank means within the groups were used a posteriori to
determine the direction of significant differences.
 The critical level [10, p. 81] is defined as the minimum significance level at
which the statistical test procedure would allow the null hypothesis to be rejected
(in favor of the alternative) for the given sample data. It is a concise standardized
way to state the full result of any statistical test procedure. A decision to reject the
null hypothesis and accept the alternative is mandated if the critical level is low
enough to be tolerated; otherwise a decision to retain the null hypothesis is made.
 A different statistical analysis has been performed [5], [22], which postulated
directional alternative hypotheses (and used one-tailed tests). Taking a slightly
more conservative tack, this present paper makes no a priori assumptions regard-
ing direction of observed differences (and uses two-tailed tests). It should be noted
that, since the study's a priori general beliefs (see Section V, Interpretation) did
involve differences in particular directions, some justification exists for using one-
tailed tests in the statistical analysis. This would roughly halve the critical levels
shown throughout this paper. However, results based on two-tailed tests are pre-
sented herein in order to avoid any objections concerning statistical technique.
 Step 9—Statistical Results: For each pair of statistical hypotheses, there is one
statistical result consisting of four components: 1) the null hypothesis itself; 2) the
alternative hypothesis itself; 3) the critical level, stated as a probability value be-
tween 0 and 1; and 4) a decision either to retain the null hypothesis or to reject it
in favor of (i.e., accept) the alternative hypothesis.
 By convention, the null hypothesis purports that no systematic difference ap-
pears to exist, and the alternative hypothesis purports that some systematic differ-
ence seems to exist. The critical level is associated with erroneously accepting the
alternative hypothesis (i.e., claiming a systematic difference when none in fact ex-
ists). The decision to retain or reject is reached on the basis of some tolerable level
of significance, with which the critical level is compared to see if it is low enough.
In cases where a null hypothesis is rejected, the appropriate directional alternative
hypothesis (if any) is given to indicate the direction of the systematic difference.
 Conventional practice is to fix an arbitrary significance level (e.g., 0.05 or
0.01) in advance, to be used as the tolerable level; critical levels then serve only as
stepping-stones toward reaching decisions and are not reported. For this study, it
was deemed more appropriate to fix a tolerable level only for the purpose of a
screening decision (simply to purge those results with intolerably high critical lev-
els) and to explicitly retain a surviving critical level with each statistical result.
The tolerable level of significance used throughout this study to screen critical
levels was fixed at under 0.20. A critical level of 0.20 means that the odds of ob-
taining test scores exhibiting the same degree of difference, due to random chance
fluctuations alone, are one in five.

 Victor R. Basili and Robert W. Reiter, Jr. 254

 As an example, the four statistical results for the programming aspect
STATEMENT TYPE COUNTS\IF are shown below.

Null hypothesis alternative hy-

pothesis

Critical level (screening) deci-

sion

AI=AT=DT ~(AI=AT=DT) 0.063 reject

AI=AT AI<AT 0.139 reject

AI=AT AI DT >0.999 retain

AT=DT DT<AT 0.066 reject

 Observe that the stated decisions reflect the application of the 0.20 tolerable
level to the stated critical levels. Results under more stringent levels of signifi-
cance can easily be determined by simply applying a lower tolerable level to form
the decisions, e.g., at the 0.10 significance level, only the AI = AT = DT and AT =
DT null hypothesis would be rejected.
 Step 10-Statistical Conclusions: The volume of statistical results are organized
and condensed into statistical conclusions according to the prearranged research
framework(s). Specifically, the first research framework mentioned above was
employed to reduce the four statistical results (with four individual critical levels)
for each programming aspect to a single conclusion (with one overall critical
level) for that aspect. The statement portion of a statistical conclusion is simply
one of the nineteen possible overall comparison outcomes. Each overall compari-
son outcome is associated with a particular set of statistical results whose out-
comes support the overall comparison outcome in a natural way. For example, the
DT = AI<AT conclusion is associated with the following results:

reject AI = AT = DT in favor of ~ (AI = AT = DT),
reject AI = AT in favor of AI< AT,
retain AI =DT, and
reject AT = DT in favor of DT < AT.

 Continuing the example started in Step 9, the statistical results shown there for
the STATEMENT TYPE COUNTS\IF aspect are reduced to the statistical conclu-
sion DT = AI < AT with 0.139 critical level overall. The four results match those
associated above with the DT = AI < AT outcome. Following Ryan's procedure,
the corresponding critical levels for those four results are adjusted to compute the
overall critical level associated with this conclusion.
 Thus, the statistical conclusions are in one-to-one correspondence with the re-
search hypotheses and provide concise answers on a "per aspect" basis to the ques-
tions of interest. Further details and complete listing of the statistical conclusions
for this study are presented in Section IV, Results.
 Step 11-Research Interpretations: The final step in the approach is to interpret
the statistical conclusions in view of any remaining research framework(s). These
research interpretations provide the opportunity to augment the objective findings
of the study with the researcher's own subjective judgments and interpretations.
The second research framework mentioned above, namely, the general beliefs

 A Controlled Experiment Quantitatively Comparing Software 255

governing the expected outcomes for the entire set of programming aspects, was
considered important. However, this particular research framework can only be
utilized for research interpretations, since it is not amenable to rigorous manipula-
tion. Nonetheless, within this framework which is based upon intuitive under-
standing about the software development environments under consideration, the
study bears its most interesting results and implications. Further details and dis-
cussion of the research interpretations of this study appear in Section V, Interpre-
tation.

IV. Results

The immediate results of the study are the statistical conclusions inferred from the
experiment for each programming aspect considered. They state any observed dif-
ferences, and the directions thereof, among the programming environments repre-
sented by the three groups examined in the study: ad hoc individuals (AI), ad hoc
teams (AT), and disciplined teams (DT). Each statistical conclusion is expressed
in the concise form of a three-way comparison outcome "equation." The equality
AI = AT = DT expresses the null conclusion that there is no systematic difference
among the groups. An inequality, e.g., AT < (ai) < DT, AI < AT = DT, or DT < AI
< AT, expresses a no null (or alternative) conclusion that there are certain system-
atic difference(s) among the groups in stated direction(s). A critical level (or risk)
value is also associated with each no null (or alternative) conclusion, indicating its
individual reliability. This value is the probability of having erroneously rejected
the null conclusion in favor of the alternative; it also provides a relative index of
how pronounced the differences were in the sample data.
 Table I gives the complete set of statistical conclusions, arranged by program-
ming aspect. Instances of no null (or alternative) conclusions, indicating some dis-
tinction among the groups on the basis of a particular programming aspect, are
itemized in English prose form at the end of this section.
 Examination of the table immediately indicates that roughly half of the pro-
gramming aspects (particularly product aspects), which were all expected a priori
to show some distinction among the groups, failed in actuality to do so. However,
several of the null conclusions may indicate characteristics inherent to the applica-
tion itself. As one example, the basic symbol-table/scanner/parser/code-generator
nature of a compiler strongly influences the way the system is modularized and
thus practically determines the number of modules in the final product (give or
take some occasional slight variation due to other design decisions).

Impact Evaluation

These statistical conclusions have a certain objective character since they are
statistically inferred from empirical data — and their collective inpact may be ob-
jectively evaluated according to the following statistical principle [27, p. 84-85].

 Victor R. Basili and Robert W. Reiter, Jr. 256

Whenever a series of statistical tests (or experiments) are made, all at a fixed level
of significance (for example, 0.10), a corresponding percentage (in the example,
10 percent) of the tests are expected a priori to reject the null hypothesis in the
complete absence of any true effect (i.e., due to chance alone). This expected re-
jection percentage provides a comparative index of the true impact of the test re-
sults as a whole (in the example, a 25 percent actual rejection percentage would
indicate that a truly significant effect, other than chance alone, was operative).
 The details of this impact evaluation for the study's objective results, broken
down into appropriate categories, are presented in the following table. The evalua-
tion was performed at the = 0.20 significance level used for screening purposes,
hence the expected rejection percentage for any category was 20 percent. For each
category of aspects, the table gives the number of programming aspects, the ex-
pected (rounded to whole numbers) and actual numbers of rejections (of the null
conclusion in favor of a directional alternative), and the expected and actual rejec-
tion percentages. Strong statistical impact is demonstrated by an actual rejection
percentage well above the expected rejection percentage.

Category num-
ber of

aspects

expected
number of
rejections

actual
number of
rejections

expected
rejection

percentage

actual re-
jection per-

centage

“confirmatory”
aspects

35 7 19 20.0 54.3

process as-
pects only

6 1 6 20.0 100.0

product as-
pects only

29 6 13 20.0 44.8

 The table shows that the results do have strong statistical impact. On the whole,
process aspects have more impact than product aspects, but all of the observed
quantitative distinctions among the three groups bear statistical impact. They are
better explained as consequences of some true effect related to the experimental
treatments, rather than as random phenomena.

Individual Highlights

The purpose of this subsection is simply to highlight the individual differences ob-
served in the study, by itemizing the no null conclusions in English.
1. According to the DT < AI = AT outcome on the computer job steps aspect,

the disciplined teams used very noticeably fewer computer job steps (i.e.,
module compilations, program executions, and miscellaneous job steps) than
both the ad hoc individuals and the ad hoc teams. As metrics, this aspect and
its sub classifications directly represent machine costs, in units of basic com-
puter system operations, and indirectly reflect human costs, since each opera-
tion necessitates a certain expenditure of programmer time/effort.

2. This same difference was apparent in the total number of module compila-
tions, the number of unique (i.e., not an identical recompilation of a previ-

 A Controlled Experiment Quantitatively Comparing Software 257

ously compiled module) module compilations, the number of program execu-
tions, and the number of essential job steps (i.e., unique module compilations
plus program executions), according to the DT < AT = AI outcomes on the
COMPUTER JOB STEPS\MODULE COMPILATION, COMPUTER JOB
STEPS\MODULE COMPILATION\UNIQUE, COMPUTER JOB
STEPS\PROGRAM EXECUTION, and COMPUTER JOB
STEPS/ESSENTIAL/ aspects, respectively.

3. According to the DT < AI = AT outcome on the PROGRAM CHANGES as-
pect [13] the disciplined teams required very noticeably fewer textural revi-
sions to build and debug the software than the ad hoc individuals and the ad
hoc teams. As a metric, this aspect has been shown to correlate well with total
number of error occurrences determined via human inspection.

4. There was a definite trend for the ad hoc individuals and disciplined teams to
have produced fewer total symbolic lines (including comments, compiler di-
rectives, statements, declarations, etc.) than the ad hoc teams, according to the
DT = AI < AT outcome on the LINES aspect. There is evidence, as indicated
by the lower critical level, of a stronger pair wise difference between ad hoc
individuals and ad hoc teams than between disciplined teams and ad hoc
teams. This aspect measures the size of the software product.

5. According to the AI < AT = DT outcome on the segments aspect, the ad hoc
individuals organized their software into noticeably fewer routines (i.e., func-
tions or procedures) than either the ad hoc teams or the disciplined teams. In
addition to measuring the size of the software product, this aspect reflects its
modularity.

6. The ad hoc individuals displayed a trend toward having a greater number of
executable statements per routine than did the ad hoc teams, according to the
AT < (dt) < AI outcome on the AVERAGE STATEMENTS PER SEGMENT
aspect. As a metric, this aspect represents the length of a typical routine in the
delivered source code.

7. According to the DT = AI < AT outcomes on the STATEMENT TYPE
COUNTS\IF and STATEMENT TYPE PERCENTAGE\IF aspects, both the
ad hoc individuals and the disciplined teams coded noticeably fewer IF state-
ments than the ad hoc teams, in terms of both total number and percentage of
total statements. In both cases, it should be noted that the more significant
pair wise difference lies between disciplined teams and ad hoc teams. These
aspects are two of the earliest proposed and more commonly accepted meas-
ures of program complexity.

8. According to the DT < (ai) < AT outcome on the decisions aspect, the disci-
plined teams tended to code fewer decisions (i.e., IF, WHILE, or CASE
statements) than the ad hoc teams. As a metric, this aspect represents control
flow complexity; it is closely associated with a recently proposed graph theo-
retic complexity measure [19].

9. The disciplined teams and the ad hoc individuals both coded fewer return
statements than the ad hoc teams, according to the DT = AI < AT outcome on
the STATEMENT TYPE COUNTS\RETURN aspect, with the stronger pair

 Victor R. Basili and Robert W. Reiter, Jr. 258

wise difference separating disciplined teams and ad hoc teams. This aspect re-
flects a degree of deviation from rigorously structured code.

10. The disciplined teams coded a higher percentage of case statements than the
ad hoc teams, according to the AT < (ai) < DT outcome on the STATEMENT
TYPE PERCENTAGES\CASE aspect. This aspect reflects the organization
of low-level tests into a more concise control structure.

11. The ad hoc individuals tended to use fewer global variables than the ad hoc
teams, according to the AI < (dt) < AT outcome on the DATA VARIABLE
SCOPE COUNTS\GLOBAL aspect. As metrics, this aspect and the others
dealing with scope reflect the organization and accessibility of data within a
program.

12. The ad hoc individuals also tended to use fewer parameter variables than the
ad hoc teams, in terms of both total number and percentage of declared data
variables, according to the AI (dt) < AT outcomes on the DATA VARIABLE
SCOPE COUNTS\PARAMETER and DATA VARIABLE SCOPE
PERCENTAGES\PARAMETER aspects.

13. According to the AT = DT < AI outcome on the DATA VARIABLE SCOPE
PERCENTAGES\LOCAL aspect, the ad hoc individuals had a larger percent-
age of local variables compared to the total number of declared data variables
than either the ad hoc teams or the disciplined teams. The stronger pair wise
differentiation lies between disciplined teams and ad hoc individuals.

14. There was a slight trend for the ad hoc individuals to have fewer potential
data bindings [26] (i.e., occurrences of the situation where a global variable
could be modified by one segment and accessed by another due to the soft-
ware's modularization) than the ad hoc teams, according to the AI < (dt) < AT
outcome on the (SEG, GLOBAL, SEG) DATA BINDINGS\POSSIBLE as-
pect. As a metric, this aspect represents the potential number of unique com-
munication paths via globals between pairs of segments.

V. Interpretation

The study's derived results, called research interpretations, consist of an evaluation
of the statistical conclusions presented in Section IV, based upon a set of general
beliefs regarding software development. These beliefs were formulated by the re-
searchers prior to conducting the experiment. Pertaining to both the process and
product of software development, the beliefs are
(Bl) that methodological discipline is a key influence on the general efficiency of
the software process;
(B2) that the disciplined methodology reduces the cost and complication of the
process;
(B3) that the preferred direction of differences on process aspects is clear and un-
debatable, due to the tangibleness of the process aspects themselves and the direct
applicability of expected values in terms of average cost estimates;

 A Controlled Experiment Quantitatively Comparing Software 259

(B4) that "mental cohesiveness" (or conceptual integrity [9, pp. 41-50]) is a key
influence on the general quality of the software product;

 Victor R. Basili and Robert W. Reiter, Jr. 260

 A Controlled Experiment Quantitatively Comparing Software 261

(B5) that a programming team is naturally burdened (relative to an individual pro-
grammer) by the organizational overhead and risk of error-prone misunderstand-
ing inherent in coordinating and interfacing the thoughts and efforts of those on
the team;
(B6) that the disciplined methodology induces an effective mental cohesiveness,
enabling a programming team to behave more like an individual programmer with
respect to conceptual control over the program, its design, its structure, etc., be-
cause of the discipline's antiregressive, complexity-controlling effects that com-
pensate for the inherent organization overhead of a team; and
(B7) that the preferred direction of differences on product aspects is not always
clear (occasionally even subject to diverging viewpoints), due to the intangible-
ness of many of the product aspects.
 In relation to these general beliefs, each possible comparison outcome acquires
additional meaning, either substantiating or contravening some subset of the be-
liefs. For process aspects and beliefs (B1)-(B3)
a) the level-2 outcome DT < AI = AT is directly supportive of these beliefs;
b) the level-3 outcomes DT < AI < AT and DT < AT < AI and the level-1 out-

comes DT < (ai) < AT and DT < (at) < AI are indirectly supportive of these
beliefs;

c) the level-0 outcome AI = AT = DT may discredit these beliefs, or it may be
considered neutral for anyone of several possible reasons [1) the critical level
for a no null outcome is just not low enough, so the aspect defaults to the null
outcome; 2) the aspect simply reflects something characteristic of the appli-
cation itself (or another factor common to all the groups in the experiment);
or 3) the aspect actually measures something fundamental to software devel-
opment phenomena in general and would always result in the null outcome];
and

d) all other outcomes discredit these beliefs.
 For product aspects and beliefs (B4)-(B7)
a) the level-2 outcome AT DT = AI, which is equivalent to AT < DT = AI or

DT = AI < AT, is directly supportive of these beliefs;
bl) the level-3 outcomes AI < DT < AT and AT < DT < AI may be considered

as approximations to the "preferred" level-2 outcome in a) above [DT is dis-
tinct from AT but falls short of AI, due to lack of experience or maturity in
the disciplined methodology.];

b2) the level-1 outcomes AT DT and AI AT may also be considered as ap-
proximations to the "preferred" level-2 outcome in a) above [AI AT, which
is equivalent to AI < (dt) < AT or AT < (dt) < AI, supports the beliefs (B4),
(B5) that mental cohesiveness influences the quality of a product and that an
ad hoc team is burdened by its organizational overhead. DT AT, which is
equivalent to DT < (ai) < AT or AT < (ai) < DT, supports the belief (B6) that
the disciplined methodology affects the behavior of a team.];

c) the level-0 outcome AI = AT = DT may discredit these beliefs, or it may be
considered neutral for anyone of several possible reasons [as given in c)
above]; and

d) all other outcomes discredit one or more of these beliefs.

 Victor R. Basili and Robert W. Reiter, Jr. 262

 The study's interpretation therefore consists of a general assessment of how
well the research conclusions have borne out the general beliefs. On the whole, the
study's findings do support the general beliefs presented above, although a few
conclusions exist which are inconsistent with them.
 Overwhelming support comes in the category of comparisons on process as-
pects, in which the research conclusions are distinguished by their low critical lev-
els and by their unanimous DT < AI = AT outcome. Fairly strong support also
comes in the category of comparisons on product aspects, for which the only nega-
tive evidence (besides the neutral AI = AT DT outcomes) appeared in the form
of two AI AT = DT outcomes. These indicate some areas in which the disci-
plined methodology was apparently ineffective in modifying a team's behavior
toward that of an individual, possibly due to a lack of fully developed train-
ing/experience with the methodology.
 Thus, according to this interpretation, the study's findings strongly substantiate
the claims
(Cl) that methodological discipline is a key influence on the general efficiency of
the software development process, and
(C2) that the disciplined methodology significantly reduces the material costs of
software development.
 The claims
(C3) that mental cohesiveness is a key influence on the general quality of the
software development product,
(C4) that, relative to an individual programmer, an ad hoc programming team is
mentally burdened by its organizational overhead, and
(C5) that the disciplined methodology offsets the mental burden of organizational
overhead and enables a disciplined programming team to behave more like an in-
dividual programmer relative to the developed software product are moderately
substantiated by the study's findings.
 It should be noted that there is a simpler (albeit weaker) interpretive model that
covers all of the experimental results. With the beliefs that a disciplined method-
ology provides for the minimum process cost and results in a product which in
some aspects approximates the product of an individual and at worst approximates
the product developed by an ad hoc team, the suppositions are DT < AI and DT <
AT with respect to process and AI DT AT or AT DT AI with respect to
product. The study's statistical conclusions fit this model without exception.
 The interpretations presented here are neither exhaustive nor unique. They ex-
press the researchers' own estimation of the study's implications and general im-
port, according to their professional intuitions about programming and software. It
is anticipated that the reader and other researchers might formulate additional or
alternative interpretations of the study's empirical results, using their own intuitive
judgments. Other interpretations may be found in [5], [22].

 A Controlled Experiment Quantitatively Comparing Software 263

VI. Conclusion

A practical methodology was designed and developed for experimentally and
quantitatively investigating software development phenomena. It was employed to
compare three particular software development environments and to evaluate the
relative impact of a particular disciplined methodology (made up of so-called
structured programming practices). The experiments were successful in measuring
differences among programming environments and the results support the claim
that disciplined methodology effectively improves both the process and product of
software development. It must be remembered, however, that the results and inter-
pretation of this study are derived from a limited subject population and a set of
measures assumed to be associated with software cost and quality. Further studies
replicating these experiments in other environments should be performed.
 One way to substantiate the claim for improved process is to measure the effec-
tiveness of the particular programming methodology via the number of bugs ini-
tially in the system (i.e., in the initial source code) and the amount of effort re-
quired to remove them. These measures are assumed to be associated with process
aspects considered in the study, namely, PROGRAM CHANGES and
COMPUTER JOB STEPS/ESSENTIAL, respectively. The statistical conclusions
for both these aspects affirmed DT < AI = AT outcomes at very low (<0.01) sig-
nificance levels, indicating that on the average the disciplined programming teams
"scored" lower than either the ad hoc individual programmers or the ad hoc pro-
gramming teams, which both "scored" about the same. Thus, the evidence col-
lected in this study confirms the effectiveness of the disciplined methodology in
building reliable software efficiently.
 The second claim, that the product of a disciplined team should closely resem-
ble that of a single individual since the disciplined methodology assures a sem-
blance of conceptual integrity within a programming team, was partially substan-
tiated. In many of this study's product aspects, the products developed using the
disciplined methodology were either similar to or tended toward the products de-
veloped by the individuals. In no case did any of the measures show the disci-
plined teams' products to be worse than those developed by the ad hoc teams. The
superficiality of many of the product measures, together with the small sample
sizes, may be largely responsible for the lack of stronger support for this second
claim. The need for product measures with increased sensitivity to critical charac-
teristics of software is very evident.
 It is important that quantitative evidence be gathered to evaluate software
methods and tools. The results of these experiments are being used to guide fur-
ther experiments and will act as a basis for analysis of software development
products and processes in the Software Engineering Laboratory at NASA/GSFC
[8]. This type of research is being pursued [3], [4], extending the study to include
more sophisticated and promising aspects, such as Halstead's software science
quantities [14] and other software complexity metrics [19].

 Victor R. Basili and Robert W. Reiter, Jr. 264

Appendix I

Explanatory notes for the programming aspects

The following numbered paragraphs, keyed to the list of aspects in Table I and in
Appendix II, describe each of the programming aspects considered in the study.
Various system-or language-dependent terms (e.g., module, segment) are also de-
fined here.
1. A computer job step is a single indivisible activity performed on a computer at

the operating system command level which is nonincidental to the develop-
ment effort and involves a nontrivial expenditure of computer or human re-
sources. Only module compilations and program executions are counted as
COMPUTER JOB STEPS.

2. A module compilation is an invocation of the implementation language proces-
sor on the source code of an individual module. Only compilations of modules
comprising the final software product (or logical predecessors thereof) are
counted as COMPUTER JOB STEPS\MODULE COMPILATION.

3. A unique module compilation is one in which the source code compiled is tex-
tually distinct from that of any previous compilation.

4. A program execution is an invocation of a complete programmer-developed
program (after the necessary compilation(s) and collection or link-editing)
upon some test data.

5. An essential job step is a computer job step that involves the final software
product (or logical predecessors thereof) and could not have been avoided (by
off-line computation or by on-line storage of previous compilations or results).

6. The program changes metric [13] is defined in terms of textual revisions made
to the source code of a module during the development period, from the time
that module is first presented to the computer system, to the completion of the
project. The rules for counting program changes are such that one program
change should represent approximately one conceptual change to the program.

7. A module is a separately compiled portion of the complete software system. In
the implementation language SIMPL-T, a typical module is a collection of the
declarations of several global variables and the definitions of several segments.

8. A segment is a collection of source code statements, together with declarations
for the formal parameters and local variables manipulated by those statements,
that may be invoked as an operational unit. In the implementation language
SIMPL-T, a segment is either a value-returning/function (invoked via refer-
ence in an expression) or else a non-value-returning procedure (invoked via
the call statement); recursive segments are allowed and fully supported. The
segment, function, and procedure of SIMPL-T correspond to the (sub)program,
function, and subroutine of Fortran, respectively.

9. The LINES aspect counts every textual line in the source code of the complete
program, including comments, compiler directives, variable declarations, ex-
ecutable statements, etc.

 A Controlled Experiment Quantitatively Comparing Software 265

10. The STATEMENTS aspect counts only the executable constructs in the source
code of the complete program. These are high-level, structured-programming
statements, including simple statements such as assignment and procedure
call-as well as compound statements — such as ifthenelse and whiledo—
which have other statements nested within them. The implementation language
SIMPL-T allows exactly seven different statement types (referred to by their
distinguishing keyword or symbol) covering assignment (:=), alternation-
selection (IF, CASE), iteration (WHILE, EXIT), and procedure invocation
(CALL, RETURN). Input-output operations are accomplished via calls to cer-
tain intrinsic procedures.

11. The group of aspects named STATEMENT TYPE COUNTS, etc., gives the
absolute number of executable statements of certain types. The group of as-
pects named STATEMENT TYPE PERCENTAGES, etc., gives the relative
percentage of certain types of statements, compared with the total number of
executable statements.

12. Both ifthen and ifthenelse constructs are counted as IF statements.
13. The CASE statement provides for selection from several alternatives, depend-

ing upon the value of an expression. A case construct with n alternatives is
logically and semantically equivalent to a certain pattern of n nested ifthenelse
constructs.

14. The WHILE statement is the only iteration or looping construct provided by
the implementation language SIMPL-T.

15. The EXIT statement allows the abnormal termination of iteration loops by un-
conditional transfer of control to the statement immediately following the
WHILE statement. Thus it is a very restricted form of got.

16. The RETURN statement allows the abnormal termination of the current seg-
ment by unconditional resumption of the previously executing segment. Thus,
it is another very restricted form of go to.

17. The AVERAGE STATEMENTS PER SEGMENT aspect provides a way of
normalizing the number of statements relative to their natural enclosure in a
program, the segment.

18. In the implementation language SIMPL-T, both simple (e.g., assignment) and
compound (e.g., ifthenelse) statements may be nested inside other compound
statements. A particular nesting level is associated with each statement, starting
at 1 for a statement at the outermost level of each segment and increasing by 1
for successively nested statements.

19. The DECISIONS aspect simply counts the total number of IF, CASE, and
WHILE statements within the complete source code.

20. Tokens are the basic syntactic entities—such as keywords, operators, parenthe-
ses, identifiers, etc. that occur in a program statement.

21. A data variable is an individually named scalar or array of scalars. In the im-
plementation language SIMPL-T, there are three data types for scalars: integer,
character, and (varying length) string; there is one kind of data structure (be-
sides scalar): single dimensional array, with zero-origin subscript range; and
there are several levels of scope for data variables (as explained in note (22)
below). In addition, all data variables in a SIMPL-T program must be explic-

 Victor R. Basili and Robert W. Reiter, Jr. 266

itly declared, with attributes fully specified. The total number of data variables
includes each data variable declared in the complete program once, regardless
of its type, structure, or scope. Note that each array is counted as a single data
variable.

 The group of aspects named DATA VARIABLE SCOPE COUNTS, etc., gives
the absolute number of declared data variables according to each level of
scope. The group of aspects named DATA VARIABLE SCOPE
PERCENTAGES, etc., gives the relative percentage of variables at each scope
level, compared with the total number of declared variables.

22. In the implementation language SIMPL-T, data variables can have any one of
three levels of scope global, parameter, and local depending on where
and how they are declared in the program. Note that the notion of scope deals
only with static accessibility by name; the effective accessibility of any vari-
able can always be extended by passing it as a parameter between segments.
Global variables are accessible by name to each of the segments in the mod-
ule(s) in which they are declared, and their values are usually manipulated by
several segments. Formal parameters are accessible by name only within the
enclosing (called) segment, but their values are not completely unrelated to the
calling segment (since parameters are passed either by value or by reference).
Locals are accessible by name only within the enclosing segment, and their
values are completely isolated from any other segment.

23. A segment-global usage pair (p, r) is an instance of a global variable r being
used by a segment p (i.e., the global is either modified (set) or accessed
(fetched) at least once within the statements of the segment). Each usage pair
represents a unique "use connection" between a global and a segment.

 The actual usage pair count is the absolute number of true usage pairs (p, r):
the global variable r is actually used by segment p. The possible usage pair
count is the absolute number of potential usage pairs (p, r), given the program's
global variables and their declared scope: if the scope of global variable r con-
tains segment p, then p could potentially modify or access r. The count of pos-
sible usage pairs is computed as the sum of the number of segments in each
global variable's scope. The (SEG, GLOBAL) USAGE RELATIVE
PERCENTAGE count is a way of normalizing the number of usage pairs since
it is simply the ratio (expressed as a percentage) of actual usage pairs to possi-
ble usage pairs.

24. A segment-global-segment data binding (p,r,q) [26] is an occurrence of the fol-
lowing arrangement in a program: a segment p modifies (sets) a global variable
r which is also accessed (fetched) by a segment q, with segment p different
from segment q. The binding (p, r, p) is different from the binding (q, r, p)
which may also exist; occurrences such as (p, r, q) are not counted as data
bindings.

25. In this study, segment-global-segment data bindings were counted in three dif-
ferent ways. First, the ACTUAL count is the absolute number of true data
bindings (p, r, q): the global variable r is actually modified by segment p and
actually accessed by segment q. Second, the POSSIBLE count is the absolute
number of potential data bindings (p, r, q), given the program's global variables

 A Controlled Experiment Quantitatively Comparing Software 267

and their declared scope: the scope of global variable r simply contains both
segment p and segment q, so that segment p could potentially modify r and
segment q could potentially access r. This count of POSSIBLE data bindings is
computed as the sum of terms s*(s - 1) for each global, where s is the number
of segments in that global's scope; thus, it is fairly sensitive (numerically
speaking) to the total number of SEGMENTS in a program. Third, the
RELATIVE PERCENTAGE is a way of normalizing the number of data bind-
ings since it is simply the quotient (expressed as a percentage) of the actual
data bindings divided by the possible data bindings.

Appendix II

Raw data for the programming aspects

For each measured programming aspect considered in the study and reported in
this paper, the observed raw data scores are listed below in ascending order and
identified both as to the type of programming environment ad hoc individuals
(AI), ad hoc teams (AT), or disciplined teams (DT) and as to the particular
numbered subject (an individual or a team) within that environment. For example,
"AT(4)" identifies the fourth ad hoc team participating in the experiment.

N.B.: The parenthesized numbers to the right of the programming aspect labels re-
fer to the explanatory notes in Appendix I.

 Victor R. Basili and Robert W. Reiter, Jr. 268

COMPUTER JOB STEPS \
ESSENTIAL (1),(5)
DT(2) = 37
DT(3) = 46
DT(6) = 55
DT(1) = 60
DT(4) = 65
DT(5) = 72
AI (6) = 83
AT(6) = 102
DT(7) = 112
AI (4) = 123
AI (3) = 128
AT(5) = 140
AI(1) = 155
AT(4) = 158
AI(5) = 163
AT(1) = 182
AT(3) = 230
AI (2) = 292
AT(2) = 332

MODULES (7)
AT(1) = 1
AT(2) = 1
AI(1) = 2
AI (5) = 2
AI (6) = 2
AT(4) = 2
DT(1) = 2
AI (2) = 3
DT(2) = 3
DT(5) = 3
DT(7) = 3
AI (4) = 4
AT(3) = 4
DT(6) = 5
DT(4) = 6
DT(3) = 8
AT(5) = 9
AI (3) = 10
AT(6) = 15

COMPUTER JOB STEPS \
PROGRAM EXECUTION (1), (4)
DT(2) = 12
DT(3) = 16
DT(6) = 20
DT(4) = 23
AT(6) = 29
DT(1) = 33
DT(5) = 39
AT(5) = 42
AI (3) = 49
AI(6) = 52
AI(4) = 53
DT(7) = 53
AI(5) = 63
AT(1) = 64
AI(1) = 76
AT(3) = 90
AT(4) = 96
AI(2) = 163
AT(2) = 173

PROGRAM CHANGES (6)
DT(4) = 111
DT(7) = 114
DT(2) = 120
DT(3) = 136
DT(6) = 159
AI(6) = 187
DT(1) = 223
DT(5) = 251
AI(3) = 270
AI(2) = 281
AT(6) = 287
AT(1) = 301
AI(4) = 316
AT(4) = 394
AT(5) = 493
AI(5) = 525
AI(1) = 539
AT(3) = 554
AT(2) = 1107

 A Controlled Experiment Quantitatively Comparing Software 269

SEGMENTS (8)
AI(2) = 21
AI(1) = 24
AI (6) = 25
AI (5) = 33
DT(2) = 33
DT(6) = 33
AI (3) = 34
AT(2) = 38
DT(3) = 38
AT(3) = 39
AT(6) = 42
DT(4) = 42
DT(7) = 42
AT(1) = 45
AI (4) = 47
AT(4) = 48
DT(1) = 52
DT(5) = 52
AT(5) = 74

LINES (9)
AI (6) = 579
AI(1) = 836
DT(2) = 894
AI(2) = 944
DT(3) = 1083
AI(5) = 1087
AT(1) = 1138
AI(4) = 1155
DT(7) = 1235
DT(4) = 1267
DT(5) = 1269
AT(3) = 1394
AI(3) = 1559
DT(1) = 1579
AT(2) = 1588
DT(6) = 1600
AT(6) = 1675
AT(5) = 2078
AT(4) = 2186

STATEMENT TYPE COUNTS\
IF (11), (12)
AI (6) = 27
DT(7) = 38
AI(2) = 43
DT(3) = 44
AI (1) = 49
DT(2) = 62
DT(4) = 63
AT(4) = 78
AI (4) = 80
DT(1) = 83
AT(1) = 88
DT(5) = 89
DT(6) = 90
AT(3) = 97
AI(5) = 100
AI(3) = 110
AT(5) = 114
AT(2) = 116
AT(6) = 124

STATEMENT TYPE COUNTS \
WHILE (11), (14)
DT(4) = 17
AI(6) = 18
AI(l) = 19
AI(5) = 21
AT(4) = 21
DT(6) = 21
DT(3) = 22
DT(5) = 22
AT(2) = 24
AT(6) = 24
DT(2) = 24
DT(7) = 25
AT(5) = 28
AI(2) = 29
AI (4) = 30
AT(1) = 31
AI (3) = 34
DT(1) = 34
AT(3) = 35

 Victor R. Basili and Robert W. Reiter, Jr. 270

STATEMENTS (10)
AI(6) = 378
AI(1) = 432
DT(3) = 456
DT(7) = 499
DT(2) = 502
AI(2) = 556
AT(4) = 590
DT(4) = 617
AI(5) = 629
AT(1) = 631
DT(5) = 640
DT(6) = 643
AI(4) = 647
AT(2) = 654
AT(6) = 681
AT(3) = 691
AI(3) = 738
AT(5) = 798
DT(1) = 800

STATEMENT TYPE COUNTS \
CASE (11), (13)
AI(5) = 1
AT(l) = 1
AT(2) = 4
AT(6) = 4
DT(2) = 4
DT(3) = 4
DT(7) = 4
AI (3) = 6
AI(6) = 6
AT(4) = 6
AT(5) = 6
AI(1) = 7
DT(4) = 7
DT(6) = 7
AT(3) = 10
AI(2) = 11
AI(4) = 11
DT(5) = 12
DT(1) = 14

STATEMENT TYPE COUNTS\
EXIT (11),(15)
AI (6) = 0
AT(1) = 0
AT(2) = 0
AT(3) = 0
AT(4) = 0
DT(1) = 0
DT(2) = 0
DT(3) = 0
DT(4) = 0
DT(5) = 0
AI(1) = 1
AI (2) = 1
DT(7) = 2
AI (4) = 3
DT(6) = 3
AT(6) = 6
AI(5) = 8
AT(5) = 13
AI (3) = 15

STATEMENT TYPE COUNTS \
RETURN (11), (16)
AI(6) = 36
AI (2) = 47
AI (3) = 47
DT(2) = 47
DT(3) = 47
DT(4) = 48
DT(6) = 48
AT(4) = 50
DT(7) = 50
AI(1) = 53
AT(2) = 53
DT(1) = 54
AI (5) = 59
AI (4) = 60
AT(3) = 64
DT(5) = 65
AT(1) = 99
AT(6) = 109
AT(5) = 118

 A Controlled Experiment Quantitatively Comparing Software 271

STATEMENT TYPE PERCENTAGES
\ CASE (11),(13)
AI(5) = 0.2
AT(1) = 0.2
AT(2) = 0.6
AT(6) = 0.6
AI (3) = 0.8
AT(5) = 0.8
DT(2) = 0.8
DT(7) = 0.8
DT(3) = 0.9
AT(4) = 1.0
DT(4) = 1.1
DT(6) = 1.1
AT(3) = 1.4
AI(1) = 1.6
AI(6) = 1.6
AI(4) = 1.7
DT(1) = 1.8
DT(5) = 1.9
AI (2) = 2.0

STATEMENT TYPE PERCENTAGES
\ EXIT (11), (15)
AI (6) = 0.0
AT(1) = 0.0
AT(2) = 0.0
AT(3) = 0.0
AT(4) = 0.0
DT(1) = 0.0
DT(2) = 0.0
DT(3) = 0.0
DT(4) = 0.0
DT(5) = 0.0
AI(1) = 0.2
AI (2) = 0.2
DT(7) = 0.4
AI(4) = 0.5
DT(6) = 0.5
AT(6) = 0.9
AI(5) = 1.3
AT(5) = 1.6
AI (3) = 2.0

STATEMENT TYPE PERCENTAGES
\ IF (11), (12)
AI(6) = 7.1
DT(7) = 7.6
AI (2) = 7.7
DT(3) = 9.6
DT(4) = 10.2
DT(1) = 10.4
AI(1) = 11.3
AI(4) = 12.4
DT(2) = 12.4
AT(4) = 13.2
AT(1) = 13.9
DT(5) = 13.9
AT(3) = 14.0
DT(6) = 14.0
AT(5) = 14.3
AI (3) = 14.9
AI(5) = 15.9
AT(2) = 17.7
AT(6) = 18.2

STATEMENT TYPE PERCENTAGES
\ WHILE (11), (14)
DT(4) = 2.8
AI(5) = 3.3
DT(6) = 3.3
DT(5) = 3.4
AT(5) = 3.5
AT(6) = 3.5
AT(4) = 3.6
AT(2) = 3.7
DT(1) = 4.3
AI(1) = 4.4
AI (3) = 4.6
Al(4) = 4.6
AI (6) = 4.8
DT(2) = 4.8
DT(3) = 4.8
AT(1) = 4.9
DT(7) = 5.0
AT(3) = 5.1
AT(2) = 5.2

 Victor R. Basili and Robert W. Reiter, Jr. 272

STATEMENT TYPE PERCENTAGES
\ RETURN (11), (16)
AI(3) = 6.4
DT(1) = 6.8
DT(6) = 7.5
DT(4) = 7.8
AT(2) = 8.1
AI(2) = 8.5
AT(4) = 8.5
AI (4) = 9.3
AT(3) = 9.3
AI(5) = 9.4
DT(2) = 9.4
AI (6) = 9.5
DT(7) = 10.0
DT(5) = 10.2
DT(3) = 10.3
AI(1) = 12.3
AT(5) = 14.8
AT(1) = 15.7
AT(6) = 16.0

AVERAGE STATEMENTS PER
SEGMENT (17)
AT(5) = 10.8
DT(7) = 11.9
DT(3) = 12.6
AT(4) = 12.3
DT(5) = 12.3
AI(4) = 13.8
AT(1) = 14.0
DT(4) = 14.7
AI(6) = 15.1
DT(2) = 15.2
DT(1) = 15.4
AT(6) = 16.2
AT(2) = 17.2
AT(3) = 17.7
AI(1) = 18.0
AI(5) = 19.1
DT(6) = 19.5
AI(3) = 21.7
AI (2) = 26.5

DECISIONS (19)
AI(6) = 51
DT(7) = 67
DT(3) = 70
AI(1) = 75
AI (2) = 83
DT(4) = 87
DT(2) = 90
AT(4) = 105
DT(6) = 118
AT(1) = 120
AI(4) = 121
AI(5) = 122
DT(5) = 123
DT(1) = 131
AT(3) = 142
AT(2) = 144
AT(5) = 148
AI(3) = 150
AT(6) = 152

AVERAGE TOKENS PER
STATEMENT (20)
DT(7) = 4.2
DT(2) = 4.7
AI (6) = 5.0
AT(4) = 5.0
DT(3) = 5.0
AI(5) = 5.2
AT(6) = 5.2
AI (3) = 5.3
AT(5) = 5.3
AI(1) = 5.4
AT(2) = 5.6
DT(1) = 5.6
AT(1) = 5.7
AI (2) = 5.9
AI(4) = 5.9
DT(5) = 5.9
DT(6) = 5.9
AT(3) = 6.2
DT(4) = 6.5

 A Controlled Experiment Quantitatively Comparing Software 273

AVERAGE STATEMENT NESTING
LEVEL (18)
AT(1) = 1.9
AT(5) = 1.9
AT(4) = 2.0
DT(2) = 2.0
DT(3) = 2.0
DT(7) = 2.0
AI(6) = 2.1
DT(4) = 2.1
AI (4) = 2.2
DT(5) = 2.2
AI(5) = 2.3
AT(2) = 2.3
AT(3) = 2.3
DT(1) = 2.3
AL(1) = 2.4
AI (2) = 2.4
DT(6) = 2.4
AI(3) = 2.6
AT(6) = 2.7

TOKENS (20)
AI(6) = 1878
DT(7) = 2113
DT(3) = 2268
AI(1) = 2313
DT(2) = 2348
AT(4) = 2976
AI(5) = 3270
AI(2) = 3277
AT(6) = 3508
AT(1) = 3622
AT(2) = 3669
DT(5) = 3777
AI (4) = 3792
DT(6) = 3792
AI(3) = 3907
DT(4) = 4016
AT(5) = 4198
AT(3) = 4269
DT(1) = 4471

DATA VARIABLE SCOPE COUNTS
\ GLOBAL (21), (22)
AI(6) = 15
DT(3) = 21
AI (2) = 23
AI (5) = 23
AT(2) = 24
DT(5) = 24
DT(1) = 26
AI(1) = 28
AI (3) = 29
AI(4) = 30
AT(4) = 32
DT(7) = 33
AT(6) = 35
AT(5) = 37
AT(3) = 38
DT(6) = 38
AT(1) = 46
DT(4) = 86
DT(2) = 91

DATA VARIABLE SCOPE COUNTS
\ PARAMETER (21), (22)
AI (5) = 4
AI (6) = 4
DT(2) = 6
DT(7) = 8
AI(1) =- 10
AI (2) = 11
AT(6) = 13
AI(3) = 15
AT(2) = 20
DT(6) = 24
DT(3) = 26
AT(1) = 31
AT(4) = 33
AI(4) = 34
AT(3) = 38
AT(5) = 41
DT(5) = 51
DT(1) = 54
DT(4) = 54

 Victor R. Basili and Robert W. Reiter, Jr. 274

DATA VARIABLE SCOPE
PERCENTAGES \ GLOBAL (21), (22)
DT(1) = 19.5
DT(5) = 24.0
AI(4) = 26.5
AT(2) = 27.9
DT(3) = 29.2
AT(5) = 30.1
AI (2) = 30.3
AT(4) = 31.7
AT(3) = 35.8
AT(1) = 36.2
AI(3) = 37.2
DT(6) = 38.4
AI (6) = 39.5
AT(6) = 44.3
AI(1) = 45.9
DT(7) = 47.8
DT(4) = 49.4
AI(5) = 53.5
DT(2) = 75.8

DATA VARIABLE SCOPE
PERCENTAGES \ LOCAL (21), (22)
DT(2) = 19.2
DT(4) = 19.5
DT(5) = 25.0
AT(3) = 28.3
DT(3) = 34.7
AT(4) = 35.6
AT(5) = 36.6
AI(5) = 37.2
DT(6) = 37.4
AI(1) = 37.7
AT(6) = 39.2
AT(1) = 39.4
DT(1) = 39.8
DT(7) = 40.6
AI(4) = 43.4
AI(3) = 43.6
AT(2) = 48.8
AI(6) = 50.0
Al(2) = 55.3

DATA VARIABLE SCOPE COUNTS
\ LOCAL (21), (22)
AI(5) = 16
AI(6) = 19
AI(1) = 23
DT(2) = 23
DT(3) = 25
DT(5) = 25
DT(7) = 28
AT(3) = 30
AT(6) = 31
AI(3) = 34
DT(4) = 34
AT(4) = 36
DT(6) = 37
AI (2) = 42
AT(2) = 42
AT(5) = 45
AI(4) = 49
AT(1) = 50
DT(1) = 53

DATA VARIABLE SCOPE
PERCENTAGES \ PARAMETER
(21), (22)
DT(2) = 5.0
AI(5) = 9.3
AI (6) = 10.5
DT(7) = 11.6
AI(2) = 14.5
AI(1) = 16.4
AT(6) = 16.5
AI(3) = 19.2
AT(2) = 23.3
DT(6) = 24.2
AT(1) = 24.4
AI(4) = 30.1
DT(4) = 31.0
AT(4) = 32.7
AT(5) = 33.3
AT(3) = 35.8
DT(3) = 36.1
DT(1) = 40.6
DT(5) = 51.0

 A Controlled Experiment Quantitatively Comparing Software 275

(SEGMENT, GLOBAL) USAGE
PAIR RELATIVE PERCENTAGE
(23)
AT(1) = 7.8
AT(5) = 9.6
AT(4) = 11.4
DT(7) = 13.0
AT(2) = 14.7
DT(1) = 15.6
AI(1) = 15.7
DT(2) = 17.6
DT(4) = 18.3
AI(4) = 21.4
DT(5) = 25.0
AI (5) = 25.8
AI (6) = 26.8
AT(3) = 27.2
DT(6) = 27.6
AT(6) = 30.1
AI(3) = 31.5
AI(2) = 37.1
DT(3) = 43.2

(SEGMENT, GLOBAL, SEGMENT)
DATA BINDINGS \ ACTUAL (24),
(25)
DT(3) = 121
DT(2) = 154
DT(4) = 164
AT(3) = 184
DT(7) = 210
AI (6) = 214
AT(2) = 221
AI(1) = 244
DT(6) = 260
AI (3) = 280
AI (2) = 302
AT(6) = 310
AT(5) = 360
AT(4) = 398
AI (4) = 438
AI (5) = 590
AT(1) = 1087
DT(1) = 1104
DT(5) = 1337

(SEGMENT, GLOBAL, SEGMENT)
DATA BINDINGS \ RELATIVE
PERCENTAGE (24), (25)
AT(5) = 0.3
AT(2) = 0.7
DT(7) = 0.7
AT(4) = 0.8
AI(4) = 2.1
DT(2) = 2.1
DT(4) = 2.2
DT(6) = 2.4
AI(1) = 2.5
AT(1) = 2.6
AI(3) = 3.1
AI (6) = 3.2
AT(6) = 3.5
AT(3) = 3.6
AI (5) = 3.7
DT(3) = 4.3
DT(5) = 7.9
AI (2) = 8.4
DT(1) = 15.4

(SEGMENT, GLOBAL, SEGMENT)
DATA BINDINGS \ POSSIBLE (24),
(25)
DT(3) = 2812
AI (2) = 3588
AT(3) = 5164
AI(6) = 6612
DT(1) = 7166
DT(2) = 7434
DT(4) = 7500
AI (3) = 8922
AT(6) = 8974
AI (1) = 9798
DT(6) = 10834
AI (5) = 15852
DT(5) = 17008
AI(4) = 21309
DT(7) = 31704
AT(2) = 33744
AT(1) = 41500
AT(4) = 49782
AT(5) = 115182

 Victor R. Basili and Robert W. Reiter, Jr. 276

Acknowledgement

It is a pleasure to acknowledge colleagues Dr. J. D. Gannon (University of Mary-
land) and Dr. H. E. Dunsmore (Purdue University) for the constructive criticism
and insightful discussion they provided throughout this study. The authors are in-
debted to Mr. W. D. Brooks (IBM Federal Systems Division) for his technical as-
sistance regarding the statistical data analysis. The authors also thank the referees
for their helpful suggestions on improving the presentation of this paper.

References

[1] F. T. Baker, "Structured programming to a production programming environment,"
IEEE Trans. Software Eng., vol. SE-1, pp. 241-252, June 1975.

[2] V. R. Basili and F. T. Baker, Tutorial of Structured Programming, Tutorial from the llth
IEEE Comput. Soc. Conf. (COMPCON 75 Fall), IEEE Cat. 75CH1049-6, revised
1977.

 [3] V. R. Basili and D. H. Hutchens, "A study of a family of structural complexity met-
rics," in Proc. 19th Annu. ACM/NBS Tech. Symp., Pathways to System Integrity.
Washington, DC, June 1980, pp. 13-15.

[4] V. R. Basili and R. W. Reiter, Jr., "Evaluating automatable measures of software devel-
opment," in Proc. IEEE/Poly Workshop on Quantitative Software Models for Reliabil-

ity, Complexity, and Cost, Kiameshia Lake, NY, Oct. 1979, IEEE Cat. TH0067-9, pp.
107-116.

[5] —, "An investigation of human factors in software development," Computer, vol. 12,
pp. 21-38, Dec. 1979.

[6] V. R. Basili and A. J. Turner, "Iterative enhancement: A practical technique for soft-
ware development," IEEE Trans. Software Eng., vol. SE-1, pp. 390-396, Dec. 1975.

[7] V. R. Basili and A. J. Turner, SIMPL-T, A Structured Programming Language. Geneva,
IL: Paladin House, 1976.

[8] V. R. Basili and M. V. Zelkowitz, "Analyzing medium-scale software development," in
Proc. 3rd Int. Conf. Software Eng., Atlanta, GA, May 1978, IEEE Cat. 78CH1317-7C,
pp. 116-123.

[9] F. P. Brooks, Jr., The Mythical Man-Month. Reading, MA: Addison-Wesley, 1975.
[10] W. J. Conover, Practical Nonparametric Statistics. New York: Wiley, 1971.
[11] O.-J. Dahl, E. W. Dijkstra, and C.A.R. Hoare, Structured Programming. New York:

Academic, 1972.
[12] E. B. Daley, "Management of software development," IEEE Trans. Software Eng., vol.

SE-3, pp. 229-242, May 1977.
[13] H. E. Dunsmore and J. D. Gannon, "Experimental investigation of programming com-

plexity," in Proc. 16th Annu. ACM/NBS Tech. Symp., Systems and Software, Washing-
ton, DC, June 1977, pp. 117-125.

[14] M. Halstead, Elements of Software Science. New York: Elsevier, 1977.
[15] M. A. Jackson, Principles of Program Design. New York: Academic, 1975.
[16] R. E. Kirk, Experimental Design: Procedures for the Behavioral Sciences. Belmont,

CA: Wadsworth, 1968.
[17] R. C. Linger, H. D. Mills, and B. I. Witt, Structured Programming: Theory and Prac-

tice. Reading, MA: Addison-Wesley, 1979.

 A Controlled Experiment Quantitatively Comparing Software 277

[18] H. C. Lucas and R. B. Kaplan, "A structured programming experiment," Comput. J.,
vol. 19, pp. 136-138, May 1976.

[19] T. J. McCabe, "A complexity measure," IEEE Trans. Software Eng., vol. SE-2, pp.
308-320, Dec. 1976.

[20] G. J. Myers, Reliable Software through Composite Design. New York: Petro-
celli/Charter, 1975.

[21] G. J. Myers, "A controlled experiment in program testing and code walk-
throughs/inspections," Commun. Ass. Comput. Mach., vol. 21, pp. 760-768, Sept.
1978.

[22] R. W. Reiter, Jr., "An experimental investigation of computer program development
approaches and computer programming metrics," Ph.D. dissertation (308), Dep. Com-
put. Sci., Univ. Maryland, Dec. 1979 (forthcoming as Tech. Rep. TR-853).

[23] S. B. Sheppard, B. Curtis, P. Milliman, and T. Love, "Modern coding practices and
programmer performance," Computer, vol. 12, pp. 41-49, Dec. 1979.

[24] B. Shneiderman, R. Mayer, D. McKay, and P. Heller, "Experimental investigations of
the utility of detailed flowcharts in programming," Commun. Ass. Comput. Mach., vol.
20, pp. 373-381, June 1977.

[25] S. Siegel, Nonparametric Statistics: For the Behavioral Sciences. New York:
McGraw-Hill, 1956.

[26] W. P. Stevens, G. J. Myers, and L. L. Constantine, "Structured design," IBM Syst. J.,
vol. 13, no. 2, pp. 115-139,1974.

[27] J. W. Tukey, "Analyzing data: Sanctification or detective work?," Amer. Psychol, vol.
24, pp. 83-91, Feb. 1969.

[28] N. Wirth, "Program development by stepwise refinement," Commun. Ass. Comput.

Mach., vol. 14, pp. 221-227, Apr. 1971.

Experimentation in Software Engineering

Victor R. Basili, Richard W. Selby, Member, and David H. Hutchins

Abstract. Experimentation in software engineering supports the advance-
ment of the field through an iterative learning process. In this paper we pre-
sent a framework for analyzing most of the experimental work performed in
software engineering over the past several years. We describe a variety of ex-
periments in the framework and discuss their contribution to the software en-
gineering discipline. Some useful recommendations for the application of the
experimental process in software engineering are included.

Key Words: Controlled experiment, data collection and analysis, empirical study,
experimental design, software metrics, software technology measurement and
evaluation.

I. Introduction

As any area matures, there is the need to understand its components and their rela-
tionships. An experimental process provides a basis for the needed advancement
in knowledge and understanding. Since software engineering is in its adolescence,
it is certainly a candidate for the experimental method of analysis. Experimenta-
tion is performed in order to help us better evaluate, predict, understand, control,
and improve the software development process and product.

Experimentation in software engineering, as with any other experimental pro-
cedure, involves an iteration of a hypothesize and test process. Models of the
software process or product are built, hypotheses about these models are tested,
and the information learned is used to refine the old hypotheses or develop new
ones. In an area like software engineering, this approach takes on special im-

Manuscript received July 15. 1985; revised January 15, 1986. This work was supported in
part by the Air Force Office of Scientific Research under Contract AFOSR-F49620-80-C-
001 and by the National Aeronautics and Space Administration under Grant NSG-5123 to
the University of Maryland. Computer support was provided in part by the Computer Sci-
ence Center at the University of Maryland.
V. R. Basili, Senior Member, IEEE, is with the Department of Computer Science, Univer-
sity of Maryland, College Park, MD 20742.
R. W. Selby, Member, IEEE, was with the Department of Computer Science, University of
Maryland, College Park, MD 20742. He is now with the Department of Information and
Computer Science, University of California, Irvine, CA 92717.
D. H. Hutchens, Member, IEEE, is with the Department of Computer Science, Clemson
University, Clemson, SC 29634.

 Experimentation in Software Engineering 279

importance because we greatly need to improve our knowledge of how software is
developed, the effect of various technologies, and what areas most need improve-
ment. There is a great deal to be learned and intuition is not always the best
teacher.
 In this paper we lay out a framework for analyzing most of the experimental
work that has been performed in software engineering over the past several years.
We then discuss a variety of these experiments, their results, and the impact they
have had on our knowledge of the software engineering discipline.

II. Objectives

There are three overall goals for this work. The first objective is to describe a
framework for experimentation in software engineering. The framework for ex-
perimentation is intended to help structure the experimental process and to pro-
vide a classification scheme for understanding and evaluating experimental stud-
ies. The second objective is to classify and discuss a variety of experiments from
the literature according to the framework. The description of several software en-
gineering studies is intended to provide an overview of the knowledge resulting
from experimental work, a summary of current research directions, and a basis for
learning from past experience with experimentation. The third objective is to iden-
tify problem areas and lessons learned in experimentation in software engineering.
The presentation of problem areas and lessons learned is intended to focus atten-
tion on general trends in the field and to provide the experimenter with useful
recommendations for performing future studies. The following three sections ad-
dress these goals.

III. Experimentation Framework

The framework of experimentation, summarized in Fig. 1, consists of four catego-
ries corresponding to phases of the experimentation process: 1) definition, 2) plan-
ning, 3) operation, and 4) interpretation. The following sections discuss each of
these four phases.

A. Experiment Definition

The first phase of the experimental process is the study definition phase. The
study definition phase contains six parts: 1) motivation, 2) object, 3) purpose,
4) perspective, 5) domain, and 6) scope. Most study definitions contain each of
the six parts; an example definition appears in Fig. 2.

 Victor R. Basili, Richard W. Selby, and David H. Hutchins 280

Fig. 1. Summary of the framework of experimentation

 There can be several motivations, objects, purposes, or perspectives in an ex-
perimental study. For example, the motivation of a study may be to understand,
assess, or improve the effect of a certain technology. The "object of study" is
the primary entity examined in a study. A study may examine the final software
product, a development process (e.g., inspection process, change process), a
model (e.g., software reliability model), etc. The purpose of a study may he to
characterize the change in a system over time, to evaluate the effectiveness of testing
processes, to predict system development cost by using a cost model, to motivate1

the validity of a theory by analyzing empirical evidence, etc. In experimental stud-
ies that examine "software quality," the interpretation usually includes correctness
if it is from the perspective of a developer or reliability if it is from the perspective
of a customer. Studies that examine metrics for a given project type from the per-
spective of the project manager may interest certain project managers, while corpo-

1 For clarification, the usage of the word "motivate" as a study purpose is distinct from the

study "motivation."

 Experimentation in Software Engineering 281

rate managers may only be interested if the metrics apply across several project
types.

Fig. 2. Study definition example

Fig. 3. Experimental scopes.

 Two important domains that are considered in experimental studies of software
are 1) the individual programmers or programming teams (the "teams") and 2) the
programs or projects (the "projects"). "Teams" are (possibly single-person) groups
that work separately, and "projects" are separate programs or problems on which
teams work. Teams may be characterized by experience, size, organization, etc.,
and projects may be characterized by size, complexity, application, etc. A general
classification of the scopes of experimental studies can be obtained by examining
the sizes of these two domains considered (see Fig. 3). Blocked subject-project
studies examine one or more objects across a set of teams and a set of projects.
Replicated project studies examine object(s) across a set of teams and a single pro-
ject, while multiproject variation studies examine object(s) across a single team
and a set of projects. Single project studies examine object(s) on a single team and

 Victor R. Basili, Richard W. Selby, and David H. Hutchins 282

a single project. As the representativeness of the samples examined and the scope
of examination increase, the wider-reaching a study's conclusions become.

B. Experiment Planning

The second phase of the experimental process is the study planning phase. The
following sections discuss aspects of the experiment planning phase: 1) design, 2)
criteria, and 3) measurement.
 The design of an experiment couples the study scope with analytical methods
and indicates the domain samples to be examined. Fractional factorial or random-
ized block designs usually apply in blocked subject-project studies, while com-
pletely randomized or incomplete block designs usually apply in multiproject and
replicated project studies [33], [41]. Multivariate analysis methods, including cor-
relation, factor analysis, and regression [75], [80], [89], generally may be used
across all experimental scopes. Statistical models may be formulated and custom-
ized as appropriate [89]. Nonparametric methods should be planned when only
limited data may be available or distributional assumptions may not be met [100].
Sampling techniques [40] may be used to select representative programmers and
programs/projects to examine.
 Different motivations, objects, purposes, perspectives, domains, and scopes re-
quire the examination of different criteria. Criteria that tend to be direct reflections
of cost/ quality include cost [114], [108], [86], [5], [28], errors/changes [49], [24],
[112], [2], [81], [13], reliability [42], [64], [56], [69], [70], [76], [77], [95], and
correctness [51], [61], [68]. Criteria that tend to be indirect reflections of
cost/quality include data coupling [62], [48], [104], [78], information visibility
[85], [83], [55], programmer understanding [99], [103], [109], [113], execution
coverage [105], [15], [18], and size/complexity [11], [59], [71].
 The concrete manifestations of the cost/quality aspects examined in the ex-
periment are captured through measurement. Paradigms assist in the metric defini-
tion process: the goal-question-metric paradigm [17], [25[], [19], [93] and the fac-
tor-criteria-metric paradigm [39], [72]. Once appropriate metrics have been
defined, they may be validated to show that they capture what is intended [7],
[21], [45], [50], [108], [116]. The data collection process includes developing
automated collection schemes [16] and designing and testing data collection forms
[25], [27]. The required data may include both objective and subjective data and
different levels of measurement: nominal (or classificatory), ordinal (or ranking),
interval, or ratio [100].

C. Experiment Operation

The third phase of the experimental process is the study operation phase. The op-
eration of the experiment consists of 1) preparation, 2) execution, and 3) analysis.
Before conducting the actual experiment, preparation may include a pilot study
to confirm the experimental scenario, help organize experimental factors (e.g.,

 Experimentation in Software Engineering 283

subject expertise), or inoculate the subjects [45], [44], [63], [18], [113], [73].
Experimenters collect and validate the defined data during the execution of the
study [21], [112]. The analysis of the data may include a combination of quanti-
tative and qualitative methods [30]. The preliminary screening of the data,
probably using plots and histograms, usually precedes the formal data analysis.
The process of analyzing the data requires the investigation of any underlying
assumptions (e.g., distributional) before the application of the statistical models
and tests.

D. Experiment Interpretation

The fourth phase of the experimental process is the study interpretation phase. The
interpretation of the experiment consists of 1) interpretation context, 2) extrapola-
tion, and 3) impact. The results of the data analysis from a study are interpreted in
a broadening series of contexts. These contexts of interpretation are the statistical
framework in which the result is derived, the purpose of the particular study, and
the knowledge in the field of research [16]. The representativeness of the sampling
analyzed in a study qualifies the extrapolation of the results to other environments
[17]. Several follow-up activities contribute to the impact of a study: present-
ing/publishing the results for feedback, replicating the experiment [33], [41], and
actually applying the results by modifying methods for software development,
maintenance, management, and research.

IV. Classification of Analyses

Several investigators have published studies in the four general scopes of exami-
nation: blocked subject-project, replicated project, multiproject variation, or single
project. The following sections cite studies from each of these categories. Note
that surveys on experimentation methodology in empirical studies include [35],
[96], [74], [98]. Each of the sections first discusses one experiment in moderate
depth, using italicized keywords from the framework for experimentation, and
then chronologically presents an overview of several others in the category. In any
survey of this type it is almost certain that some deserving work has been acciden-
tally omitted. For this, we apologize in advance.

A. Blocked Subject-Project Studies

With a motivation to improve and better understand unit testing, Basili and Selby
[18] conducted a study whose purpose was to characterize and evaluate the proc-
esses (i.e., objects) of code reading, functional testing, and structural testing from
the perspective of the developer. The testing processes were examined in a
blocked subject-project scope, where 74 student through professional program-

 Victor R. Basili, Richard W. Selby, and David H. Hutchins 284

mers (from the programmer domain) tested four unit-size programs (from the pro-
gram domain) in a replicated fractional factorial design. Objective measurement of
the testing processes was in several criteria areas: fault detection effectiveness,
fault detection cost, and classes of faults detected. Experiment preparation in-
cluded a pilot study [63], execution incorporated both manual and automated
monitoring of testing activity, and analysis used analysis of variance methods
[33], [90]. The major results (in the interpretation context of the study purpose)
included: 1) with the professionals, code reading detected more software faults
and had a higher fault detection rate than did the other methods; 2) with the pro-
fessionals, functional testing detected more faults than did structural testing, but
they were not different in fault detection rate; 3) with the students, the three tech-
niques were not different in performance, except that structural testing detected
fewer faults than did the others in one study phase; and 4) overall, code reading
detected more interface faults and functional testing detected more control faults
than did the other methods. A major result (in the interpretation context of the
field of research) was that the study suggested that nonexecution based fault detec-
tion, as in code reading, is at least as effective as on-line methods. The particular
programmers and programs sampled qualify the extrapolation of the results. The
impact of the study was an advancement in the understanding of effective software
testing methods.
 In order to understand program debugging, Gould and Drongowski [58] evalu-
ated several related factors, including effect of debugging aids, effect of fault type,
and effect of particular program debugged from the perspective of the developer
and maintainer. Thirty experienced programmers independently debugged one of
four one-page programs that contained a single fault from one of three classes.
The major results of these studies were: 1) debugging is much faster if the pro-
grammer has had previous experience with the program, 2) assignment bugs were
harder to find than other kinds, and 3) debugging aids did not seem to help pro-
grammers debug faster. Consistent results were obtained when the study was con-
ducted on ten additional experienced programmers [57]. These results and the
identification of possible "principles" of debugging contributed to the understand-
ing of debugging methodology.
 In order to improve experimentation methodology and its application, Weiss-
man [113] evaluated programmers' ability to understand and modify a program
from the perspective of the developer and modifier. Various measures of pro-
grammer understanding were calculated, in a series of factorial design experi-
ments, on groups of 16-48 university students performing tasks on two small pro-
grams. The study emphasized the need for well-structured and well-documented
programs and provided valuable testimony on and worked toward a suitable ex-
perimentation methodology.
 In order to assess the impact of language features on the programming process,
Gannon and Horning [54] characterized the relationship of language features to
software reliability from the perspective of the developer. Based on an analysis of
the deficiencies in a programming language, nine different features were modified
to produce a new version. Fifty-one advanced students were divided into two
groups and asked to complete implementations of two small but sophisticated pro-

 Experimentation in Software Engineering 285

grams (75-200 line) in the original language and its modified version. The redes-
igned features in the two languages were contrasted in program fault frequency,
type, and persistence. The experiment identified several language-design decisions
that significantly affected reliability, which contributed to the understanding of
language design for reliable software.
 In order to understand the unit testing process better, Hetzel [60] evaluated a
reading technique and functional and "selective" testing (a composite approach)
from the perspective of the developer. Thirty-nine university students applied the
techniques to three unit-size programs in a Latin square design. Functional and
"selective" testing were equally effective and both superior to the reading tech-
nique, which contributed to our understanding of testing methodology.
 In order to improve and better understand the maintenance process, Curtis et al.
[44] conducted two experiments to evaluate factors that influence two aspects of
software maintenance, program understanding, and modification, from the per-
spective of the developer and maintainer. Thirty-six junior through advanced pro-
fessional programmers in each experiment examined three classes of small (36-57
source line) programs in a factorial design. The factors examined include control
flow complexity, variable name mnemonicity, type of modification, degree of
commenting, and the relationship of programmer performance to various com-
plexity metrics. In [45] they continued the investigation of how software charac-
teristics relate to psychological complexity and presented a third experiment to
evaluate the ability of 54 professional programmers to detect program bugs in
three programs in a factorial design. The series of experiments suggested that
software science [59] and cyclomatic complexity [71] measures were related to
the difficulty experienced by programmers in locating errors in code.
 In order to improve and better understand program debugging, Weiser [110]
evaluated the theory that "programmers use 'sliding' (stripping away a program's
statements that do not influence a given variable at a given statement) when de-
bugging" from the perspective of the developer, maintainer, and researcher.
Twenty-one university graduate students and programming staff debugged a fault
in three unit-size (75-150 source line) programs in a nonparametric design. The
study results supported the slicing theory, that is, programmers during debugging
routinely partitioned programs into a coherent, discontiguous piece (or slice). The
results advanced the understanding of software debugging methodology.
 In order to improve design techniques, Ramsey, Atwood, and Van Doren [87]
evaluated flowcharts and program design languages (PDL) from the perspective of
the developer. Twenty-two graduate students designed two small (approximately
1000 source line) projects, one using flowcharts and the other using PDL. Overall,
the results suggested that design performance and designer-programmer commu-
nication were better for projects using PDL.
 In order to validate a theory of programming knowledge, Soloway and Ehrlich
[102] conducted two studies, using 139 novices and 41 professional programmers,
to evaluate programmer behavior from the perspective of the researcher. The the-
ory was that programming knowledge contained programming plans (generic pro-
gram fragments representing common sequences of actions) and rules of pro-
gramming discourse (conventions used in composing plans into programs). The

 Victor R. Basili, Richard W. Selby, and David H. Hutchins 286

results supported the existence and use of such plans and rules by both novice and
advanced programmers.
 Other blocked subject-project studies include [82], [115], and [111].

B. Replicated Project Studies

With a motivation to assess and better understand team software development
methodologies, Basili and Reiter [16] conducted a study whose purpose was to
characterize and evaluate the development processes (i.e., objects) of a 1) disci-
plined-methodology team approach, 2) ad hoc team approach, and 3) ad hoc indi-
vidual approach from the perspective of the developer and project manager. The
development processes were examined in a replicated project scope, in which ad-
vanced university students comprising seven three-person teams, six three-person
teams, and six individuals (from the programmer domain) used the approaches, re-
spectively. They separately developed a small (600-2200 line) compiler (from the
program domain) in a nonparametric design. Objective measurement of the devel-
opment approaches was in several criteria areas: number of changes, number of
program runs, program data usage, program data coupling/binding, static program
size/complexity metrics, language usage, and modularity. Experiment preparation
included presentation of relevant material [68], [8], [34], execution included
automated monitoring of on-line development activity and analysis used non-
parametric comparison methods. The major results (in the interpretation context
of the study purpose) included: 1) the methodological discipline was a key influ-
ence on the general efficiency of the software development process; 2) the disci-
plined team methodology significantly reduced the costs of software development
as reflected in program runs and changes; and 3) the examination of the effect of
the development approaches was accomplished by the use of quantitative, objec-
tive, unobtrusive, and automatable process and product metrics. A major result (in
the interpretation context of the field of research) was that the study supported the
belief that incorporating discipline in software development reflects positively on
both the development process and final product. The particular programmers and
program sampled qualify the extrapolation of the results. The impact of the study
was an advancement in the understanding of software development methodologies
and their evaluation.
 In order to improve the design and implementation processes, Parnas [84]
evaluated system modularity from the perspective of the developer. Twenty uni-
versity undergraduates each developed one of four different types of implementa-
tions for one of five different small modules. Then each of the modules were
combined with others to form several versions of the whole system. The results
were that minor effort was required in assembling the systems and that major sys-
tem changes were confined to small, well-defined subsystems. The results sup-
ported the ideas on formal specifications and modularity discussed in [83] and
[85], and advanced the understanding of design methodology.
 In order to assess the impact of static typing of programming languages in the
development process, Gannon [53] evaluated the use of a statically typed language

 Experimentation in Software Engineering 287

(having integers and strings) and a "typeless" language (e.g., arbitrary subscripting
of memory) from the perspective of the developer. Thirty-eight students pro-
grammed a small (48-297 source line) problem in both languages, with half doing
it in each order. The two languages were compared in the resulting program faults,
the number of runs containing faults, and the relation of subject experience to fault
proneness. The major result was that the use of a statically typed language can in-
crease programming reliability, which improved our understanding of the design
and use of programming languages.
 In order to improve program composition, comprehension, debugging, and
modification, Shneiderman [99] evaluated the use of detailed flowcharts in these
tasks from the perspective of the developer, maintainer, modifier, and researcher.
Groups of 53-70 novice through intermediate subjects, in a series of five experi-
ments, performed various tasks using small programs. No significant differences
were found between groups that used and those that did not use flowcharts, ques-
tioning the merit of using detailed flowcharts.
 In order to improve and better understand the unit testing process, Myers [79]
evaluated the techniques of three-person walk-throughs, functional testing, and a
control group from the perspective of the developer. Fifty-nine junior through ad-
vanced professional programmers applied the techniques to test a small (100
source line) but nontrivial program. The techniques were not different in the num-
ber of faults they detected, all pairings of techniques were superior to single tech-
niques, and code reviews were less cost-effective than the others. These results
improved our understanding of the selection of appropriate software testing tech-
niques.
 In order to validate a particular metric family, Basili and Hutchens [11] evalu-
ated the ability of a proposed metric family to explain differences in system de-
velopment methodologies and system changes from the perspective of the devel-
oper, project manager, and researcher. The metrics were applied to 19 versions of
a small (600-2200) compiler, which were developed by teams of advanced univer-
sity students using three different development approaches (see the first study [16]
described in this section). The major results included: 1) the metrics were able to
differentiate among projects developed with different development methodolo-
gies; and 2) the differences among individuals had a large effect on the relation-
ships between the metrics and aspects of system development. These results pro-
vided insights into the formulation and appropriate use of software metrics.
 In order to improve the understanding of why software errors occur, Soloway
et al. [65], [101] characterized programmer misconceptions, cognitive strategies,
and their manifestations as bugs in programs from the perspective of the developer
and researcher. Two hundred and four novice programmers separately attempted
implementations of an elementary program. The results supported the program-
mers' intended use of "programming plans" [103] and revealed that most people
preferred a read-process strategy over a process-read strategy. The results ad-
vanced the understanding of how individuals write programs, why they sometimes
make errors, and what programming language constructs should be available.
 In order to understand the effect of coding conventions on program compre-
hensibility, Miara et al. [73] conducted a study to evaluate the relationship be-

 Victor R. Basili, Richard W. Selby, and David H. Hutchins 288

tween indentation levels and program comprehension from the perspective of the
developer. Eighty-six novice through professional subjects answered questions
about one of seven program variations with different level and type of indentation.
The major result was that an indentation level of two or four spaces was preferred
over zero or six spaces.
 In order to improve software development approaches, Boehm, Gray, and See-
waldt [29] characterized and evaluated the prototyping and specifying develop-
ment approaches from the perspective of the developer, project manager, and user.
Seven two- and three-person teams, consisting of university graduate students, de-
veloped versions of the same application software system (2000-4000 line); four
teams used a requirement/design specifying approach and three teams used a pro-
totyping approach. The systems developed by prototyping were smaller, required
less development effort, and were easier to use. The systems developed by speci-
fying had more coherent designs, more complete functionality, and software that
was easier to integrate. These results contributed to the understanding of the mer-
its and appropriateness of software development approaches.
 In order to validate the theoretical model for N-version programming [3], [66],
Knight and Leveson [67] conducted a study to evaluate the effectiveness of N-
version programming for reliability from the perspective of the customer and user.
N-version programming uses a high-level driver to connect several separately de-
signed versions of the same system, the systems "vote" on the correct solution,
and the solution provided by the majority of the systems is output. Twenty-seven
graduate students were asked to independently design an 800 source line system.
The factors examined included individual system reliability, total N-version sys-
tem reliability, and classes of faults that occurred in systems simultaneously. The
major result was that the assumption of independence of the faults in the programs
was not justified, and therefore, the reliability of the combined "voting" system
was not as high as given by the model.
 In order to improve and better understand software development approaches,
Selby, Basili, and Baker [94] characterized and evaluated the Cleanroom devel-
opment approach [46], [47], in which software is developed without execution
(i.e., completely off-line), from the perspective of the developer, project manager,
and customer. Fifteen three-person teams of advanced university students sepa-
rately developed a small system (800-2300 source line); ten teams used Clean-
room and five teams used a traditional development approach in a nonparametric
design. The major results included: 1) most developers using the Cleanroom ap-
proach were able to build systems without program execution; and 2) the Clean-
room teams' products met system requirements more completely and succeeded on
more operational test cases than did those developed with a traditional approach.
The results suggested the feasibility of complete off-line development, as in
Cleanroom, and advanced the understanding of software development methodol-
ogy.
 Other replicated project studies include [37], [4], and [63].

 Experimentation in Software Engineering 289

C. Multiproject Variation Studies

With a motivation to improve the understanding of resource usage during software
development, Bailey and Basili [5] conducted a study whose purpose was to pre-
dict development cost by using a particular model (i.e., object) and to evaluate it
from the perspective of the project manager, corporate manager, and researcher.
The particular model generation method was examined in a multi-project scope,
with baseline data from 18 large (2500-100 000 source line) software projects in
the NASA S.E.L. [27], [26], [38], [91] production environment (from the program
domain), in which teams contained from two to ten programmers (from the pro-
grammer domain). The study design incorporated multivariate methods to param-
eterize the model. Objective and subjective measurement of the projects was based
on 21 criteria2 in three areas: methodology, complexity, and personnel experience.
Study preparation included preliminary work [52], execution included an estab-
lished set of data collection forms [27], and analysis used forward multivariate re-
gression methods. The major results (in the interpretation context of the study
purpose) included 1) the estimation of software development resource usage im-
proved by considering a set of both baseline and customization factors; 2) the ap-
plication in the NASA environment of the proposed model generation method,
which considers both types of factors, produced a resource usage estimate for a fu-
ture project within one standard deviation of the actual; and 3) the confirmation of
the NASA S.E.L. formula that the cost per line of reusing code is 20 percent of
that of developing new code. A major result (in the interpretation context of the
field of research) was that the study highlighted the difference of each software
development environment, which improved the selection and use of resource es-
timation models. The particular programming environment and projects sampled
qualify the extrapolation of the results. The impact of the study was an advance-
ment in the understanding of estimating software development resource expendi-
ture.
 In order to assess, manage, and improve multiproject environments, several re-
searchers [28], [20], [108], [10], [36], [21], [62], [112], [97], [107] have character-
ized, evaluated, and/or predicted the effect of several factors from the perspective
of the developer, modifier, project manager, and corporate manager. All the stud-
ies examined moderate to large projects from production environments. The rela-
tionships investigated were among various factors, including structured program-
ming, personnel background, development process and product constraints,
project complexity, human and computer resource consumption, error-prone soft-
ware identification, error/change distributions, data coupling/binding, project du-
ration, staff size, degree of management control, and productivity. These studies
have provided increased project visibility, greater understanding of classes of fac-
tors sensitive to project performance, awareness of the need for project measure-

2 Twenty-one factors were selected after examining a total of 82 factors that possibly contrib-
uted to project resource expenditure, including 36 from [108] and 16 from [28].

 Victor R. Basili, Richard W. Selby, and David H. Hutchins 290

ment, and efforts for standardization of definitions. Analysis has begun on incor-
porating project variation information into a management tool [9], [14].
 In order to improve and better understand the software maintenance process,
Vessey and Weber [106] conducted an experiment to evaluate the relationship be-
tween the rate of maintenance repair and various product and process metrics from
the perspective of the developer, user, and the project manager. A total of 447
small (up to 600 statements) commercial and clerical Cobol programs from one
Australian organization and two U.S. organizations were analyzed. The product
and process metrics included program complexity, programming style, program-
mer quality, and number of system releases. The major results were: 1) in the Aus-
tralian organization, program complexity and programming style significantly af-
fected the maintenance repair rate; and 2) in the U.S. organizations, the number of
times a system was released significantly affected the maintenance repair rate.
 In order to improve the software maintenance process, Adams [1] evaluated
operational faults from the perspective of the user, customer, project manager, and
corporate manager. The fault history for nine large production products (e.g., op-
erating system releases or their major components) were empirically modeled. He
developed an approach for estimating whether and under what circumstances pre-
ventively fixing faults in operational software in the field was appropriate. Preven-
tively fixing faults consisted of installing fixes to faults that had yet to be discov-
ered by particular users, but had been discovered by the vendor or other users. The
major result was that for the typical user, corrective service was a reasonable way
of dealing with most faults after the code had been in use for a fairly long period
of time, while preventively fixing high-rate faults was advantageous during the
time immediately following initial release.
 In order to assess the effectiveness of the testing process, Bowen [31] evaluated
estimations of the number of residual faults in a system from the perspective of the
customer, developer, and project manager. The study was based on fault data col-
lected from three large (2000-6000 module) systems developed in the Hughes-
Fullerton environment. The study partitioned the faults based on severity and ana-
lyzed the differences in estimates of remaining faults according to stage of testing.
Insights were gained into relationships between fault detection rates and residual
faults.

D. Single Project Studies

With a motivation to improve software development methodology, Basili and
Turner [22] conducted a study whose purpose was to characterize the process (i.e.,
object) of iterative enhancement in conjunction with a top-down, stepwise refine-
ment development approach from the perspective of the developer. The develop-
ment process was examined in a single project scope, where the authors, two ex-
perienced individuals (from the programmer domain), built a 17 000 line compiler
(from the program domain). The study design incorporated descriptive methods to
capture system evolution. Objective measurement of the system was in several cri-

teria areas: size, modularity, local/global data usage, and data binding/coupling

 Experimentation in Software Engineering 291

[62], [104]. Study preparation included language design [23], execution incorpo-
rated static analysis of system snapshots, and analysis used descriptive statistics.
The results (in the interpretation context of the statistical framework) included: 1)
the percentage of global variables decreased over time while the percentage of ac-
tual versus possible data couplings across modules increased, suggesting the usage
of global data became more appropriate over time; and 2) the number of proce-
dures and functions rose over time while the number of statements per procedure
or function decreased, suggesting increased modularity. The major result of the
study (in the interpretation context of the study purpose) was that the iterative en-
hancement technique encouraged the development of a software product that had
several generally desirable aspects of system structure. A major result (in the in-

terpretation context of the field of research) was that the study demonstrated the
feasibility of iterative enhancement. The particular programming team and project
examined qualify the extrapolation of the results. The impact of the study was an
advancement in the understanding of software development approaches.
 In order to improve, better understand, and manage the software development
process, Baker [6] evaluated the effect of applying chief programming teams and
structured programming in system development from the perspective of the user,
developer, project manager, and corporate manager. The large (83 000 line) sys-
tem, known as "The New York Times Project," was developed by a team of pro-
fessionals organized as a chief programmer team, using structured code, top-down
design, walk-throughs, and program libraries. Several benefits were identified, in-
cluding reduced development time and cost, reduced time in system integration,
and reduced fault detection in acceptance testing and field use. The results of the
study demonstrated the feasibility of the chief programmer team concept and the
accompanying methodologies in a production environment.
 In order to improve their development environments, several researchers [49],
[24], [2], [81], [13] have each conducted single project studies to characterize the
errors and changes made during a development project. They examined the devel-
opment of a moderate to large software project, done by a multiperson team, in a
production environment. They analyzed the frequency and distribution of errors
during development and their relationship with several factors, including module
size, software complexity, developer experience, method of detection and isola-
tion, effort for isolation and correction, phase of entrance into the system and ob-
servance, reuse of existing design and code, and role of the requirements docu-
ment. Such analyses have produced fault categorization schemes and have been
useful in understanding and improving a development environment.
 In order to better understand and improve the use of the Ada®3 language, Basili
et al. [55], [12] examined a ground-support system written in Ada to characterize
the use of Ada packages from the perspective of the developer. Four professional
programmers developed a project of 10 000 source lines of code. Factors such as
how package use affected the ease of system modification and how to measure

3 Ada is a registered trademark of the U.S. Department of Defense (Ada Joint Program Of-

fice).

 Victor R. Basili, Richard W. Selby, and David H. Hutchins 292

module change resistance were identified, as well as how these observations re-
lated to aspects of development and training. The major results were 1) several
measures of Ada programs were developed, and 2) there was an indication that a
lot of training will be necessary if we are to expect the facilities of Ada to be
properly used.
 In order to assess and improve software testing methodology, Basili and Ram-
sey [15], [88] characterized and evaluated the relationship between system accep-
tance tests and operational usage from the perspective of the developer, project
manager, customer, and researcher. The execution coverage of functionally gener-
ated acceptance test cases and a sample of operational usage cases was monitored
for a medium-size (10 000 line) software system developed in a production envi-
ronment. The results calculated that 64 percent of the program statements were
executed during system operation and that the acceptance test cases corresponded
reasonably well to the operational usage. The results gave insights into the rela-
tionships among structural coverage, fault detection, system testing, and system
usage.

V. Problem Areas in Experimentation

The following sections identify several problem areas of experimentation in soft-
ware engineering. These areas may serve as guidelines in the performance of fu-
ture studies. After mentioning some overall observations, considerations in each
of the areas of experiment definition, planning, operation, and interpretation are
discussed.

A. Experimentation Overall

There appears to be no "universal model" or "silver bullet" in software engineer-
ing. There are an enormous number of factors that differ across environments, in
terms of desired cost/quality goals, methodology, experience, problem domain,
constraints, etc. [108], [20], [5], [10], [28], This results in every software devel-
opment/maintenance environment being different. Another area of wide variation
is the many-to-one (e.g., 10:1) differential in human performance [11], [43], [18].
The particular individuals examined in an empirical study can make an enormous
difference. Among other considerations, these variations suggest that metrics need
to be validated for a particular environment and a particular person to show that
they capture what is intended [11], [21]. Thus, experimental studies should con-
sider the potentially vast differences among environments and among people.

 Experimentation in Software Engineering 293

B. Experiment Definition

In the definition of the purpose for the experiment, the formulation of in-
tuitive problems into precisely stated goals is a nontrivial task [17], [25].
Defining the purpose of a study often requires the articulation of what is
meant by "software quality." The many interpretations and perceptions of
quality [32], [39], [72] highlight the need for considering whose perspec-
tive of quality is being examined. Thus, a precise specification of the prob-
lem to be investigated is a major step toward its solution.

C. Experiment Planning

Experimental planning should have a horizon beyond a first experiment. Con-
trolled studies may be used to focus on the effect of certain factors, while their re-
sults may be confirmed in replications [92], [99], [102], [113], [58], [57], [45],
[44], [18] and/or larger case studies [5], [16]. When designing studies, consider
that a combination of factors may be effective as a "critical mass," even though
the particular factors may be ineffective when treated in isolation [16], [107].
Note that formal designs and the resulting statistical robustness are desirable, but
we should not be driven exclusively by the achievement of statistical significance.
Common sense must be maintained, which allows us, for example, to experiment
just to help develop and refine hypotheses [13], [112]. Thus, the experimental
planning process should include a series of experiments for exploration, verifi-
cation, and application.

D. Experiment Operation

The collection of the required data constitutes the primary result of the study op-
eration phase. The data must be carefully defined, validated, and communicated
to ensure their consistent interpretation by all persons associated with the experi-
ment: subjects under observation, experimenters, and literature audience [21].
There have been papers in the literature that do not define their data well enough
to enable a comparison of results across many projects and environments. We
have often contacted experimenters and discovered that different entities were be-
ing measured in different studies. Thus, the experimenter should be cautious about
the definition, validation, and communication of data, since they play a fundamen-
tal role in the experimental process.

E. Experiment Interpretation

The appropriate presentation of results from experiments contributes to their cor-
rect interpretation. Experimental results need to be qualified by the particular

 Victor R. Basili, Richard W. Selby, and David H. Hutchins 294

samples (e.g., programmers, programs) analyzed [17]. The extrapolation of results
from a particular sample must consider the representativeness of the sample to
other environments [40], [114], [108], [86], [5], [28]. The visibility of the experi-
mental results in professional forums and the open literature provides valuable
feedback and constructive criticism. Thus, the presentation of experimental results
should include appropriate qualification and adequate exposure to support their
proper interpretation.

VI. Conclusion

Experimentation in software engineering supports the advancement of the field
through an iterative learning process. The experimental process has begun to be
applied in a multiplicity of environments to study a variety of software technology
areas. From the studies presented, it is clear that experimentation has proven effec-
tive in providing insights and furthering our domain of knowledge about the soft-
ware process and product. In fact, there is a learning process in the experimenta-
tion approach itself, as has been shown in this paper.
 We have described a framework for experimentation to provide a structure for
presenting previous studies. We also recommend the framework as a mechanism
to facilitate the definition, planning, operation, and interpretation of past and fu-
ture studies. The problem areas discussed are meant to provide some useful rec-
ommendations for the application of the experimental process in software engi-
neering. The experimental framework cannot be used in a vacuum; the framework
and the lessons learned complement one another and should be used in a synergis-
tic fashion.

References

[1] E. N. Adams, "Optimizing preventive service of software products," 1BMJ. Res. De-

velop., vol. 28, no. 1, pp. 2-14, Jan. 1984.
[2] J.-L. Albin and R. Ferreol, "Collecte et analyse de mesures de logiciel (Collection and

analysis of software data)," Technique et Science Informatiques, vol. 1, no. 4, pp. 297-
313, 1982 (Rairo ISSN 0752-4072).

 [3] A. Avizienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J. Traverse, K. S. Tso, and
U. Voges, "The UCLA Dedix system: A distributed testbed for multiple-version soft-
ware," in Dig. 15th Int. Symp. Fault-Tolerant Comput., Ann Arbor, MI, June 19-21,
1985.

[4] J. W. Bailey, "Teaching Ada: A comparison of two approaches," in Proc. Washington

Ada Symp., Washington, DC, 1984.
[5] J. W. Bailey and V. R. Basili, "A meta-model for software development resource ex-

penditures," in Proc. 5th Int. Conf. Software Eng., San Diego, CA, 1981, pp. 107-
116.

[6] F. T. Baker, "System quality through structured programming," in AflPS Proc. 1972 Fall

Joint Comput. Conf., vol. 41, 1972, pp. 339-343.

 Experimentation in Software Engineering 295

[7] V. R. Basili, Tutorial on Models and Metrics for Software Management and Engineering.

New York: IEEE Computer Society, 1980.
[8] V. R. Basili and F. T. Baker, "Tutorial of structured programming," in Proc. 11th

IEEE COMPCON, IEEE Cat. No. 75CH1049-6, 1975.
[9] V. R. Basili and C. Doerflinger, "Monitoring software development through dynamic vari-

ables," in Proc. COMPSAC, Chicago, IL, 1983.
[10] V. R. Basili and K. Freburger, "Programming measurement and estimation in the soft-

ware engineering laboratory," J. Syst. Software, vol. 2, pp. 47-57, 1981.
[11] V. R. Basili and D. H. Hutchens, "An empirical study of a syntactic metric family," IEEE

Trans. Software Eng., vol. SE-9, pp. 664-672, Nov. 1983.
[12] V. R. Basili, E. E. Katz, N. M. Panilio-Yap, C. L. Ramsey, and S. Chang, "A quanti-

tative characterization and evaluation of a software development in Ada," Computer,

Sept. 1985.
[13] V. R. Basili and B. T. Perricone, "Software errors and complexity: An empirical inves-

tigation," Commun. ACM, vol. 27, no. 1, pp. 42-52,Jan. 1984.
[14] V. R. Basili and C. L. Ramsey, "Arrowsmith-P—A prototype expert system for soft-

ware engineering management," in Proc. Symp. Expert Systems in Government, Mclean,
VA, Oct. 1985.

[15] V. R. Basili and J. R. Ramsey, "Analyzing the test process using structural coverage," in
Proc. 8th Int. Conf. Software Eng., London, Aug. 28-30, 1985, pp. 306-312.

[16] V. R. Basili and R. W. Reiter, "A controlled experiment quantitatively comparing soft-
ware development approaches," IEEE Trans. Software Eng., vol. SE-7, May 1981.

[17] V. R. Basili and R. W. Selby, "Data collection and analysis in software research and
management," Proc. Amer. Statistical Association and Biometric Society Joint Statistical

Meetings, Philadelphia, PA, August 13-16, 1984.
[18] ——,"Comparing the effectiveness of software testing strategies," Dep. Comput. Sci.

Univ. Maryland, College Park/Tech. Rep. TR-1501, May 1985.
[19] ——,"Four applications of a software data collection and analysis methodology," in

Proc. NATO Advanced Study Institute: The Challenge of Advanced Computing Technol-

ogy to System Design Methods, Durham, U.K., July 29-Aug. 10, 1985.
[20] ——,"Calculation and use of an environment's characteristic software metric set," in

Proc. 8th Int. Conf. Software Eng., London, Aug. 28-30, 1985, pp. 386-393.
[21] V. R. Basili, R. W. Selby, and T. Y. Phillips, "Metric analysis and data validation across

FORTRAN projects," IEEE Trans. Software Eng., vol. SE-9, pp. 652-663, Nov. 1983.
[22] V. R. Basili and A. J. Turner, "Iterative enhancement: A practical technique for software

development," IEEE Trans. Software Eng., vol. SE-1, Dec. 1975.
[23] ——,SIMPL-T: A Structured Programming Language. Geneva, IL: Paladin House, 1976.
[24] V. R. Basili and D. M. Weiss, "Evaluation of a software requirements document by

analysis of change data," in Proc. 5th lnt. Conf. Software Eng., San Diego, CA, Mar. 9-
12, 1981, pp. 314-323.

[25] ——,"A methodology for collecting valid software engineering data*," IEEE Trans.

Software Eng., vol. SE-10, pp. 728-738, Nov.1984.(
[26] V. R. Basili and M. V. Zelkowitz, "Analyzing medium-scale software developments,"

in Proc. 3rd Int. Conf. Software Eng., Atlanta, GA, May 1078, pp. 116-123.
[27] V. R. Basili, M. y. Zelkowitz, F. E. McGarry, R. W. Reiter, Jr., W. F. Truszkowski,

and D. L. Weiss,."The software engineering laboratory," Software Eng. Lab.,
NASA/Goddard Space Flight Center, Greenbelt, MD, Rep. SEL-77-001, May 1977.

[28] B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall, 1981.

[29] B. W. Boehm, T. E. Gray, and T. Seewaldt, "Prototyping versus specifying: A multipro-
ject experiment," IEEE Trans. Software Eng., vol. SE-10, pp. 290-303, May 1984.

 Victor R. Basili, Richard W. Selby, and David H. Hutchins 296

[30] R. C. Bogdan and S. K. Biklen, Qualitative Research for Education: An Introduction to

Theory and Methods. Boston, MA: Allyn and Bacon, 1982.
[31] J. Bowen, "Estimation of residual faults and testing effectiveness," in Proc. 7th Min-

nowbrook Workshop Software Performance Evaluation, Blue Mountain Lake, NY, July
24-27, 1984.

[32] T. P. Bowen, G. B. Wigle, and J. T. Tsai, "Specification of software quality attributes,"
Rome Air Development Center, Griffiss Air Force Base, NY, Tech. Rep. RADC-TR-
85-37 (3 vols.), Feb. 1985.

[33] G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters. New York:
Wiley, 1978.

[34] F. P. Brooks, Jr., The Mythical Man-Month. Reading, MA: Addison-Wesley, 1975.
[35] R. E. Brooks, "Studying programmer behavior: The problem of proper methodology,

Common. ACM, vol. 23, no. 4, pp. 207-213, 1980.
[36] W. D. Brooks, "Software technology payoff: Some statistical evidence," J. Syst. Soft-

ware, vol. 2, pp. 3-9, 1981.
[37] F. O. Buck, "Indicators of quality inspections," IBM Systems Products Division,

Kingston, NY, Tech. Rep. 21.802, Sept. 1981.
[38] D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili, "The software engi-

neering laboratory," Software Eng. Lab., NASA/Goddard Space Flight Center, Green-
belt, MD, Rep. SEL-81-104, Feb. 1982.

[39] J. P. Cavano and J. A. McCall, "A Framework for the measurement of software quality,"
in Proc. Software Quality and Assurance Workshop, San Diego, CA, Nov. 1978, pp.
133-139.

[40] W. G. Cochran, Sampling Techniques. New York: Wiley, 1953.
[41] W. G. Cochran and G. M. Cox, Experimental Designs. New York: Wiley, 1950.
[42] P. A. Currit, M. Dyer, and H. D. Mills, "Certifying the reliability of software," IEEE

Trans. Software Eng., vol. SE-12, pp. 3-11, Jan. 1986.
[43] B. Curtis, "Cognitive science of programming," 6th Minnowbrook Workshop Software

Performance Evaluation, Blue Mountain Lake, NY, July 19-22, 1983.
[44] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love, "Measuring the psy-

chological complexity of software maintenance tasks with the Halstead and McCabe
metrics," IEEE Trans. Software Eng., pp. 96-104, Mar. 1979.

[45] B. Curtis, S. B. Sheppard, and P. M. Milliman, "Third time charm: Stronger replication of
the ability of software complexity metrics to predict programmer performance," in Proc.

4th Int. Conf. Software Eng., Sept. 1979, pp. 356-360.
[46] M. Dyer, "Cleanroom software development method," IBM Federal Systems Division,

Bethesda, MD, Oct. 14, 1982.
[47] M. Dyer and H. D. Mills, "Developing electronic systems with certifiable reliability," in

Proc. NATO Conf., Summer 1982.
[48] T. Emerson, "A discriminant metric for module cohesion," in Proc. 7th Int. Conf. Soft-

ware Eng., Orlando, FL, 1984, pp. 294-303.
[49] A. Endres, "An analysis of errors and their causes in systems programs," IEEE Trans.

Software Eng., pp. 140-149, vol. SE-1, June 1975.
[50] A. R. Feuer and E. B. Fowlkes, "Some results from an empirical study of computer

software," in Proc. 4th Int. Conf. Software Eng., 1979, pp. 351-355.
[51] R. W. Floyd, "Assigning meaning to programs," Amer. Math. Soc., vol. 19, J. T.

Schwartz, Ed., Providence, Rl, 1967.
[52] K. Freburger and V. R. Basili, "The software engineering laboratory: Relationship

equations," Dep. Comput. Sci., Univ. Maryland, College Park, Tech. Rep. TR-764,
May 1979.

 Experimentation in Software Engineering 297

[53] J. D. Gannon, "An experimental evaluation of data type conventions," Commun. ACM,

vol. 20, no. 8, pp. 584-595, 1977.
[54] J. D. Gannon and J. J. Homing, "The impact of language design on the production of

reliable software," IEEE Trans. Software Eng., vol. SE-1, pp. 179-191, 1975.
[55] J. D. Gannon, E. E. Katz, and V. R. Basili, "Characterizing Ada programs: Packages," in

The Measurement of Computer Software Performance, Los Alamos Nat. Lab., Aug.
1983.

[56] A. L. Goel, "Software reliability and estimation techniques," Rome Air Development
Center, Griffiss Air Force Base, NY, Rep. RADC-TR-82-263, Oct. 1982.

[57] J. D. Gould, "Some psychological evidence on how people debug computer programs,"
Int. J. Man-Machine Studies, vol. 7, pp. 151-182, 1975.

[58] J. D. Gould and P. Drongowski, "An exploratory study of computer program debugging,"
Human Factors, vol. 16, no. 3, pp. 258-277, 1974.

[59] M. H. Halstead, Elements of Software Science. New York: North-Holland, 1977.
[60] W. C. Hetzel, "An experimental analysis of program verification methods," Ph.D. disser-

tation, Univ. North Carolina, Chapel Hill, 1976.
[61] C. A. R. Hoare, "An axiomatic basis for computer programming," Commun. ACM, vol.

12, no. 10, pp. 576-583, Oct. 1969.
[62] D. H. Hutchens and V. R. Basili, "System structure analysis: Clustering with data bind-

ings," IEEE Trans. Software Eng., vol. SE-11, Aug. 1985.
[63] S.-S. V. Hwang, "An empirical study in functional testing, structural testing, and code

reading/inspection*," Dep. Comput. Sci., Univ. Maryland, College Park, Scholarly Pa-
per 362, Dec. 1981.

[64] Z. Jelinski and P. B. Moranda, "Applications of a probability-based model to a code read-
ing experiment," in Proc. IEEE Symp. Comput. Software Rel., New York, 1973, pp.
78-81.

[65] W. L. Johnson, S. Draper, and E. Soloway, "An effective bug classification scheme must
take the programmer into account," in Proc. Workshop High-level Debugging, Palo Alto,
CA, 1983.

[66] J. P. J. Kelly, "Specification of fault-tolerant multi-version software: Experimental
studies of a design diversity approach," Ph.D. dissertation, Univ. California, Los Ange-
les, 1982.

[67] J. C. Knight and N. G. Leveson, "An experimental evaluation of the assumption of in-
dependence in multiversion programming," IEEE Trans. Software Eng., vol. SE-12,
pp. 96-109, Jan. 1986.

[68] R. C. Linger, H. D. Mills, and B. I. Witt, Structured Programming: Theory and Practice.

Reading, MA: Addison-Wesley, 1979.
[69] B. Littlewood, "Stochastic reliability growth: A model for fault renovation computer pro-

grams and hardware designs," IEEE Trans. Rel., vol. R-30, Oct. 1981.
[70] B. Littlewood and J. L. Verrall, "A Bayesian reliability growth model for computer

software," Appl. Statist., vol. 22, no. 3, 1973.
[71] T. J. McCabe, "A complexity measure," IEEE Trans. Software Eng., vol. SE-2, pp.

308-320, Dec. 1976.
[72] J. A. McCall, P. Richards, and G. Walters, "Factors in software quality," Rome Air De-

velopment Center, Griffiss Air Force Base, NY, Tech. Rep. RADC-TR-77-369, Nov.
1977.

[73] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneiderman, "Program indentation
and comprehensibility," Commun. ACM, vol. 26, no. 11, pp. 861-867, Nov. 1983.

[74] T. Moher and G. M. Schneider, "Methodology and experimental research in software
engineering," Int. J. Man-Machine Studies, vol. 16, no. 1, pp. 65-87, 1982.

[75] S. A. Mulaik, The Foundations of Factor Analysis. New York: McGraw-Hill, 1972.

 Victor R. Basili, Richard W. Selby, and David H. Hutchins 298

[76] J. D. Musa, "A theory of software reliability and its application," IEEE Trans. Software

Eng., vol. SE-1, pp. 312-327, 1975.
[77] ——, "Software reliability measurement," J. Syst. Software, vol. l. no. 3, pp. 223-

241, 1980.
[78] G. L. Myers, Composite/Structured Design. New York: Van Nostrand Reinhold, 1978.
[79] ——, "A controlled experiment in program testing and code walkthroughs/inspections,"

Commun. ACM, pp. 760-768, Sept. 1978.
[80] J. Neter and W. Wasserman, Applied Linear Statistical Models. Homewood, IL: Richard

D. Irwin, 1974.
[81] T. J. Ostrand and E. J. Weyuker, "Collecting and categorizing software error data in an

industrial environment*," J. Syst. Software, vol. 4, pp. 289-300, 1983.
[82] D. J. Panzl, "Experience with automatic program testing," in Proc. NBS Trends and Ap-

plications, Nat. Bureau Standards, Gaithersburg, MD, May 28, 1981, pp. 25-28.
[83] D. L. Pamas, "On the criteria to be used in decomposing systems into modules,"

Commun. ACM, vol. 15, no. 12, pp. 1053-1058, 1972.
[84] ——,"Some conclusions from an experiment in software engineering techniques," in

AFIPS Proc. 1972 Fall Joint Comput. Conf., vol. 41, 1972, pp. 325-329.
[85] ——,"A technique for module specification with examples," Commun. ACM, vol. 15,

May 1972.
[86] L. Putnam, "A general empirical solution to the macro software sizing and estimating

problem," IEEE Trans. Software Eng., vol. SE-4, July 1978.
[87] H. R. Ramsey, M. E. Atwood, and J. R. Van Doren, "Flowcharts versus program design

languages: An experimental comparison," Commun. ACM, vol. 26, no.6, pp. 445-449,
June 1983.

[88] J. Ramsey, "Structural coverage of functional testing," in Proc. 7th Minnowbrook Work-

shop Software Perform. Eval., Blue Mountain Lake, NY, July 24-27, 1984.
[89] Statistical Analysis System (SAS) User's Guide, SAS Inst. Inc., Box 8000, Gary, NC

27511, 1982.
[90] H. Scheffe, The Analysis of Variance. New York: Wiley, 1959.
[91] "Annotated bibliography of software engineering laboratory (SEL) literature," Software

Eng. Lab., NASA/Goddard Space Flight Center, Greenbelt, MD, Rep. SEL-82-006,
Nov. 1982.

[92] R. W. Selby, "An empirical study comparing software testing techniques," in Proc. 6th

Minnowbrook Workshop Software Perform. Eval., Blue Mountain Lake, NY, July 19-
22, 1983.

[93] ——,"Evaluations of software technologies: Testing, CLEANROOM, and metrics,"
Ph.D. dissertation, Dep. Comput. Sci., Univ. Maryland, College Park, Tech. Rep. TR-
1500, 1985.

[94] R. W. Selby, V. R. Basili, and F. T. Baker, "CLEANROOM software development: An
empirical evaluation," Dep. Comput. Sci., Univ. Maryland, College Park, Tech. Rep.
TR-1415, Feb. 1985.

[95] J. G. Shanthikumar, "A statisical time dependent error occurrence rate software reliabil-
ity model with imperfect debugging," in Proc. 1981 Nat. Comput. Conf., June 1981.

[96] B. A. Sheil, "The psychological study of programming," Comput. Surveys, vol. 13, pp.
101-120, Mar. 1981.

[97] V. Y. Shen, T. J. Yu, S. M. Thebaut, and L. R. Paulsen, "Identifying error-prone soft-
ware—An empirical study," IEEE Trans. Software Eng., vol. SE-11, pp. 317-324, Apr.
1985.

[98] B. Shneiderman, Software Psychology: Human Factors in Computer and Information Sys-

tems. Winthrop, 1980.

 Experimentation in Software Engineering 299

[99] B. Shneiderman, R. E. Mayer, D. McKay, and P. Heller, "Experimental investigations
of the utility of detailed flowcharts in programming," Commun. ACM, vol. 20, no. 6,
pp. 373-381, 1977.

[100] S. Siegel, Nonparametric Statistics for the Behavioral Sciences. New York:
McGraw-Hill, 1955.

[101] E. Soloway, J. Bonar, and K. Ehrlich, "Cognitive strategies and looping constructs: An
empirical study," Commun. ACM, vol. 26, no.11, pp. 853-860, Nov. 1983.

[102] E. Soloway and K. Ehrlich, "Empirical studies of programming knowledge," IEEE

Trans. Software Eng., vol. SE-10, pp. 595-609, Sept. 1984.
[103] E. Soloway, K. Ehrlich, J. Bonar, and J. Greenspan, "What do novices know about

programming?" in Directions in Human-Computer Interactions, A. Badre and B. Shnei-
derman, Eds. Norwood, NJ: Ablex, 1982.

[104] W. P. Stevens, G. L. Myers, and L. L. Constantine, "Structural design, " IBM Syst.

J., vol. 13, no. 2, pp. 115-139. 1974.
[105] L. G. Stucki, "New directions in automated tools for improving software quality," in

Current Trends in Programming Methodology, R. T. Yeh, Ed. Englewood Cliffs, NJ:
Prentice-Hall, 1977.

[106] I. Vessey and R. Weber, "Some factors affecting program repair maintenance: An em-
pirical study," Commun. ACM, vol. 26, no. 2, pp. 128-134, Feb. 1983.

[107] J. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H. Malec, S. Hoben, and Y. Liu,
"Productivity factors and programming environments," in Proc. 7th Int. Conf. Software

Eng., Orlando, FL, 1984, pp. 143-152.
[108] C. E. Walston and C. P. Felix, "A method of programming measurement and estima-

tion," IBM Syst. J., vol. 16, no. 1, pp. 54-73, 1977.
[109] G. Weinberg, The Psychology of Computer Programming. New York: Van Nostrand

Rheinhold, 1971.
[110] M. Weiser, "Programmers use slices when debugging," Commun. ACM, vol. 25, pp.

446-452, July 1982.
[I l l] M. Weiser and J. Shertz, "Programming problem representation in novice and expert pro-

grammers," Int. J. Man-Machine Studies, vol. 19. pp. 391-398, 1983.
[112] D. M. Weiss and V. R. Basili, "Evaluating software development by analysis of

changes: Some data from the software engineering laboratory," IEEE Trans. Software

Eng., vol. SE-11, pp. 157-168, Feb. 1985.
[113] L. Weissman, "Psychological complexity of computer programs: An experimental

methodology," SIGPLAN Notices, vol. 9, no. 6, pp. 25-36, June 1974.
[114] R. Wolverton. "The cost of developing large scale software," IEEE Trans. Comput.,

vol. C-23, June 1974.
[115] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, "The effect of modularization and

comments on program comprehension," Dep. Comput. Sci., Arizona State Univ., Tempe,
AZ, Working Paper, 1981.

[116] J. C. Zolnowski and D. B. Simmons, "Taking the measure of program complexity,"
in Proc. Nat. Comput. Conf., 1981, pp. 329-336.

Comparing the Effectiveness of Software Testing

Strategies

Victor R. Basil and Richard W. Selby

Abstract. This study applies an experimentation methodology to compare
three state-of-the-practice software testing techniques: a) code reading by
stepwise abstraction, b) functional testing using equivalence partitioning
and boundary value analysis, and c) structural testing using 100 percent
statement coverage criteria. The study compares the strategies in three as-
pects of software testing: fault detection effectiveness, fault detection cost,
and classes of faults detected. Thirty-two professional programmers and 42
advanced students applied the three techniques to four unit-sized programs
in a fractional factorial experimental design. The major results of this study
are the following. 1) With the professional programmers, code reading de-
tected more software faults and had a higher fault detection rate than did
functional or structural testing, while functional testing detected more faults
than did structural testing, but functional and structural testing were not dif-
ferent in fault detection rate. 2) In one advanced student subject group, code
reading and functional testing were not different in faults found, but were
both superior to structural testing, while in the other advanced student sub-
ject group there was no difference among the techniques. 3) With the ad-
vanced student subjects, the three techniques were not different in fault de-
tection rate. 4) Number of faults observed, fault detection rate, and total
effort in detection depended on the type of software tested. 5) Code reading
detected more interface faults than did the other methods. 6) Functional
testing detected more control faults than did the other methods. 7) When
asked to estimate the percentage of faults detected, code readers gave the
most accurate estimates while functional testers gave the least accurate es-
timates.

Key Words: Code reading, empirical study, functional testing, methodology
evaluation, off-line software review, software measurement, software testing,
structural testing.

Manuscript received May 31, 1985; revised June 30, 1986. This work was supported in part
by the Air Force Office of Scientific Research under Contract AFOSR-F49620-80-C-001,
the National Aeronautics and Space Administration under Grant NSG-5123, and the Uni-
versity of California Faculty Research Fellowship Program. Computer support was pro-
vided in part by the NASA/Goddard Space Flight Center, the Computer Science Center at
the University of Maryland, and the University of California.
V. R. Basili, senior member, IEEE, is with the Department of Computer Science, Univer-
sity of Maryland, College Park, MD 20742.
R. W. Selby, member, IEEE, is with the Department of Information and Computer Science,
University of California, Irvine, CA 92717.

 Comparing the Effectiveness of Software Testing Strategies 301

I. Introduction

The processes of software testing and fault detection continue to challenge the
software community. Even though the software testing and fault detection activi-
ties are inexact and inadequately understood, they are crucial to the success of a
software project. This paper presents a controlled study where an experimentation
methodology was applied to address the uncertainty of how to test software effec-
tively. In this investigation, common testing techniques were applied to different
types of software by subjects that had a wide range of professional experiments.
This controlled study is intended to evaluate different testing methods that are ac-
tually used by software developers, "state-of-the-practice" methods, as opposed to
state-of-the-art techniques.
 This work is intended to characterize how testing effectiveness relates to sev-
eral factors: testing technique, software type, fault type, tester experience, and any
interactions among these factors. The study presented extends previous work by
incorporating different testing techniques and a greater number of persons and
programs, while broadening the scope of issues examined and adding statistical
significance to the conclusions.
 There are multiple perspectives from which to view empirical studies of soft-
ware development techniques, including the study presented in this paper.
 Experimenter—An experimenter may view the study as a demonstration of
how a software development technique (or methodology, tool, etc.) can be empiri-
cally evaluated. Experimenters may examine the work as an example application
of a particular experimentation methodology that may be reused in future studies.
 Researcher—A researcher may view the study as an empirical basis to refine
theories of software testing. Researchers formulate software testing theories that
have a horizon across multiple studies. As a consequence, they examine data from
a variety of sources and focus on data that either support or refute proposed theo-
ries.
 Practitioner—A practitioner may view the study as a source of information
about which approaches to testing should be applied in practice. Practitioners may
focus on the particular quantifications and comparisons provided by the results.
They then consider the relationship of the programs and programmers examined to
the particular environment or projects in which the results might be applied.
 The following sections describe the testing techniques examined, the investiga-
tion goals, the experimental design, operation, analysis, and conclusions.

II. Testing Techniques

To demonstrate that a particular program actually meets its specifications, profes-
sional software developers currently utilize many different testing methods. The
controlled study presented analyzes three common software testing techniques,
which will be referred to as functional testing, structural testing, and code reading.
Before presenting the goals for the empirical study comparing the techniques, a

 Victor R. Basil and Richard W. Selby 302

description will be given of the testing strategies and their different capabilities
(see Fig. 1.). In functional testing, which is a "black box" approach, a programmer
constructs test data from the program's specification through methods such as
equivalence partitioning and boundary value analysis [42]. The programmer then
executes the program and contrasts its actual behavior with that indicated in the
specification. In structural testing, which is a "white box" approach [25], [29], a
programmer inspects the source code and then devises and executes test cases
based on the percentage of the program's statements or expressions executed (the
"test set coverage") [52]. The structural coverage criteria used was 100 percent
statement coverage. In code reading by step-wise abstraction, a person identifies
prime subprograms in the software, determines their functions, and composes
these functions to determine a function for the entire program [35], [39]. The code
reader then compares this derived function and the specifications (the intended
function).

 code reading functional testing structural testing
view program specification X X X
view source code X X
execute program X X

Fig. 1. Capabilities of the testing method

The controlled study presented analyzes, therefore, 1) the functional testing tech-
nique of using equivalence class partitioning and boundary value analysis, 2) the
structural testing technique of using 100 percent statement coverage criteria, and
3) the code reading technique of reading by stepwise abstraction. Certainly more
advanced methods of testing software have been proposed (for example, see [10]).
The intention of the controlled study, however, is to apply an experimentation
methodology to analyze testing methods that are actually being used by develop-
ers to test software [56]. Note that alternate forms exist for each of the three meth-
ods described, for example, functional testing that takes into consideration the
program design [27], structural testing that uses branch or data flow criteria [16],
and code reading in multiperson inspections [14]. With the above descriptions in
mind, we will refer to the three testing methods as functional testing, structural
testing, and code reading.

A. Investigation Coals

The goals of this study comprise three different aspects of software testing: fault
detection effectiveness, fault detection cost, and classes of faults detected. An ap-
plication of the goal/question/metric paradigm [2], [6] leads to the framework of
goals and questions for this study appearing in Fig. 2.
 The first goal area is performance oriented and includes a natural first question
(I-A): which of the techniques detects the most faults in the programs? The com-
parison between the techniques is being made across programs, each with a differ-
ent number of faults. An alternate interpretation would then be to compare the
percentage of faults found in the programs (question I-A-1). The number of faults
that a technique exposes should also be compared; that is, faults that are made ob-

 Comparing the Effectiveness of Software Testing Strategies 303

servable but not necessarily observed and reported by a tester (I-A-2). Because of
the differences in types of software and in testers' abilities, it is relevant to deter-
mine whether the number of the faults detected is either program or programmer
dependent (I-B, I-C). Since one technique may find a few more faults than an-
other, it becomes useful to know how much effort that technique requires (II-A).
Awareness of what types of software require more effort to test (II-B) and what
types of programmer backgrounds require less effort in fault uncovering (II-C) is
also quite useful. If one is interested in detecting certain classes of faults, such as
in error-based testing [15], [53] it is appropriate to apply a technique sensitive to
that particular type (III-A). Classifying the types of faults that are observable yet
go unreported could help focus and increase testing effectiveness (III-B).

Fig. 2. Outline of goals / subgoals /questions for testing experiment.

 Victor R. Basil and Richard W. Selby 304

III. Empirical Study

Admittedly, the goals stated here are quite ambitious. In no way is it implied that
this study can definitively answer all of these questions for all environments. It is
intended, however, that the statistically significant analysis presented lends in-
sights into their answers and into the merit and appropriateness of each of the
techniques. Note that this study compares the individual application of the three
testing techniques in order to identify their distinct advantages and disadvantages.
This approach is a first step toward proposing a composite testing strategy, which
possibly incorporates several testing methods. The following sections describe the
empirical study undertaken to pursue these goals and questions, including the se-
lection of subjects, programs, and experimental design, and the overall operation
of the study. For an overview of the experimentation methodology applied in this
study, as well as a discussion of numerous software engineering experiments, see
[4].

A. Iterative Experimentation

The empirical study consisted of three phases. The first and second phases of the
study took place at the University of Maryland in the Fall of 1982 and 1983, re-
spectively. The third phase took place at Computer Sciences Corporation (Silver
Spring, MD) and NASA Goddard Space Flight Center (Greenbelt, MD) in the Fall
of 1984. The sequential experimentation supported the iterative nature of the
learning process, and enabled the initial set of goals and questions to be expanded
and resolved by further analysis. The goals were further refined by discussions of
the preliminary results [47], [51]. These three phases enabled the pursuit pf result
reproducibility across environments having subjects with a wide range of experi-
ence.

B. Subject and Program/Fault Selection

A primary consideration in this study was to use a realistic testing environment to
assess the effectiveness of these different testing strategies, as opposed to creating
a best possible testing situation [23]. Thus, 1) the subjects for the study were cho-
sen to be representative of different levels of expertise, 2) the programs tested cor-
respond to different types of software and reflect common programming style, and
3) the faults in the programs were representative of those frequently occurring in
software. Sampling the subjects, programs, and faults in this manner is intended to
evaluate the testing methods reasonably, and to facilitate the generalization of the
results to other environments.
 1) Subjects: The three phases of the study incorporated a total of 74 subjects;
the individual phases had 29, 13, and 32 subjects, respectively. The subjects were
selected, based on several criteria, to be representative of three different levels of

 Comparing the Effectiveness of Software Testing Strategies 305

computer science expertise: advanced, intermediate, and junior. The number of
subjects in each level of expertise for the different phases appears in Fig. 3.
 The 42 subjects in the first two phases of the study were the members of the
upper level "Software Design and Development" course at the University of Mary-
land in the falls of 1982 and 1983. The individuals were either upper-level com-
puter science majors or graduate students; some were working part-time and all
were in good academic standing. The topics of the course included structured pro-
gramming practices, functional correctness, top-down design, modular specifica-
tion and design, step-wise refinement, and PDL, in addition to the presentation of
the techniques of code reading, functional testing, and structural testing. The ref-
erences for the testing methods were [40], [14], [42], [27], and the lectures were
presented by V. R. Basili and F. T. Baker. The subjects from the University of
Maryland spanned the intermediate and junior levels of computer science exper-
tise. The assignment of individuals to levels of expertise was based on profes-
sional experience and prior academic performance in relevant computer science
courses. The individuals in the first and second phases had overall averages of 1.7
(SD = 1.7) and 1.5 (SD = 1.5) years of professional experience. The nine interme-
diate subjects in the first phase had from 2.8 to 7 years of professional experience
(average of 3.9 years, SD = 1.3), and the four in the second phase had from 2.3 to
5.5 years of professional experience (average of 3.2, SD = 1.5). The 20 junior sub-
jects in the first phases and the nine in the second phase both had from 0 to 2 years
professional experience (averages of 0.7, SD = 0.6, and 0.8, SD = 0.8, respec-
tively).

 Phase

Level of Exper-

tise

1

(Univ. MD)

2

(Univ. MD)

3

(NASA/CSC)

total

Advanced 0 0 8 8

Intermediate 9 4 11 24

Junior 20 9 13 42

Total 29 13 32 74

Fig. 3. Expertise levels of subjects.

 The 32 subjects in the third phase of the study were programming profession-
als from NASA and Computer Sciences Corporation. These individuals were
mathematicians, physicists, and engineers that develop ground support software
for satellites. They were familiar with all three testing techniques, but had used
functional testing primarily. A four hour tutorial on the testing techniques was
conducted for the subjects by R. W. Selby. This group of subjects, examined in the
third phase of the experiment, spanned all three expertise levels and had an overall
average of 10.0 (SD = 5.7) years professional experience. Several criteria were
considered in the assignment of subjects to expertise levels, including years of
professional experience, degree background, and their manager's suggested as-
signment. The eight advanced subjects ranged from 9.5 to 20.5 years professional
experience (average of 15.0, SD = 4.1). The eleven intermediate subjects ranged

 Victor R. Basil and Richard W. Selby 306

from 3.5 to 17.5 years experience (average of 10.9, SD = 4.9). The 13 junior sub-
jects ranged from 1.5 to 13.5 years experience (average of 6.1, SD = 4.4).
 2) Programs: The experimental design enables the distinction of the testing
techniques while allowing for the effects of the different programs being tested.
The four programs used in the investigation were chosen to be representative of
several different types of software. The programs were selected specially for the
study and were provided to the subjects for testing; the subjects did not test pro-
grams that they had written. All programs were written in a high-level language
with which the subjects were familiar. The three programs tested in the
CSC/NASA phase were written in Fortran, and the programs tested in the Univer-
sity of Maryland phase were written in the Simpl-T structured programming lan-

guage [5]1. The four programs tested were P1) a text processor, P2) a mathematical
plotting routine, P3) a numeric abstract data type, and P4) a database maintainer.
The programs are summarized in Fig. 4. There exists some differentiation in size,
and the programs are a realistic size for unit testing. Each of the subjects tested
three programs, but a total of four programs was used across the three phases of
the study. The programs tested in each of the three phases of the study appear in
Fig. 5. The specifications for the programs appear in the Appendix, and their
source code appears in [3], [48].

program source
lines

executable
statements

cyclomatic
complexity

rou-
tines

faults

P1=text formatter 169 33 18 3 9

P2=mathematical
plotting

145 93 32 9 5

P3=numeric data
abstraction

147 48 13 9 7

P4=database
maintainer

293 144 37 7 12

Fig. 4. The programs tested.

Program Phase

1 (Univ. MD) 2 (Univ. MD) 3 (NASA/CSC)

P1=text formatter X X X
P2=mathematical
plotting

X X

P3=numeric data
abstraction

X X

P4=database main-
tainer

 X X

Fig. 5. Programs tested in each phase of the analysis.

 The first program is a text formatting program, which also appeared in [41]. A
version of this program, originally written by [43] using techniques of program
correctness proofs, was analyzed in [19]. The second program is a mathematical
plotting routine. This program was written by R. W. Selby. based roughly on a

1 Simpl-T is a structured language that supports several string and tile handling primi-
tives, in addition to the usual control flow constructs available, for example, in Pascal.

 Comparing the Effectiveness of Software Testing Strategies 307

sample program in [33]. The third program is a numeric data abstraction consist-
ing of a set of list processing utilities. This program was submitted for a class pro-
ject by a member of an intermediate level programming course at the University
of Maryland [36]. The fourth program is a maintainer for a database of biblio-
graphic references. This program was analyzed in [23], and was written by a sys-
tems programmer at the University of North Carolina computation center.
 Note that the source code for the programs contains no comments. This creates
a worst-case situation for the code readers. In an environment where code con-
tained helpful comments, performance of code readers would likely improve, es-
pecially if the source code contained as comments the intermediate functions of
the program segments. In an environment where the comments were at all suspect,
they could then be ignored.
 3) Faults: The faults contained in the programs tested represent a reasonable
distribution of faults that commonly occur in software [1], [54]. All the faults in
the database maintainer and the numeric abstract data type were made during the
actual development of the programs. The other two programs contain a mix of
faults made by the original programmer and faults seeded in the code. The pro-
grams contained a total of 34 faults: the text formatter had nine, the plotting rou-
tine had six, the abstract data type had seven, and the database maintainer had
twelve.
a) Fault Origin: The faults in the text formatter were preserved from the article

in which it appeared [41], except for some of the more controversial ones [9].
In the mathematical plotter, faults made during program translation were sup-
plemented by additional representative faults. The faults in the abstract data
type were the original ones made by the program's author during the devel-
opment of the program. The faults in the database maintainer were recorded
during the development of the program, and then reinserted into the program.
The next section describes a classification of the different types of faults in
the programs. Note that this investigation of the fault detecting ability of these
techniques involves only those types occurring in the source code, not other
types such as those in the requirements or the specifications.

b) Fault Classification: The faults in the programs are classified according to
two different abstract classification schemes [1]. One fault categorization
method separates faults of omission from faults of commission. Faults of
commission are those faults present as a result of an incorrect segment of ex-
isting code. For example, the wrong arithmetic operator is used for a compu-
tation in the right-hand-side of an assignment statement. Faults of omission
are those faults present as a result of a programmer's forgetting to include
some entity in a module. For example, a statement is missing from the code
that would assign the proper value to a variable.
 A second fault categorization scheme partitions software faults into the six
classes of 1) initialization, 2) computation, 3) control, 4) interface, 5) data,
and 6) cosmetic. Improperly initializing a data structure constitutes an initiali-
zation fault. For example, assigning a variable the wrong value on entry to a
module. Computation faults are those that cause a calculation to evaluate the
value for a variable incorrectly. The above example of a wrong arithmetic op-

 Victor R. Basil and Richard W. Selby 308

erator in the right-hand-side of an assignment statement would be a computa-
tion fault. A control fault causes the wrong control flow path in a program to
be taken for some input. An incorrect predicate in an IF-THEN-ELSE state-
ment would be a control fault. Interface faults result when a module uses and
makes assumptions about entities outside the module's local environment. In-
terface faults would be, for example, passing an incorrect argument to a pro-
cedure, or assuming in a module that an array passed as an argument was
filled with blanks by the passing routine. A data fault are those that result
from the incorrect use of a data structure. For example, incorrectly determin-
ing the index for the last element in an array. Finally, cosmetic faults are
clerical mistakes when entering the program. A spelling mistake in an error
message would be a cosmetic fault.
 Interpreting and classifying faults in software is a difficult and inexact
task. The categorization process often requires trying to recreate the original
programmer's misunderstanding of the problem [34]. The above two fault
classification schemes attempt to distinguish among different reasons that
programmers make faults in software development. They were applied to the
faults in the programs in a consistent interpretation; it is certainly possible
that another analyst could have interpreted them differently. The separate ap-
plication of each of the two classification schemes to the faults categorized
them in a mutually exclusive and exhaustive manner. Fig. 6 displays the dis-
tribution of faults in the programs according to these schemes.

 Omission Commission Total
Initialization 0 2 2
Computation 4 4 8
Control 2 5 7
Interface 2 11 13
Data 2 1 3
Cosmetic 0 1 1
Total 10 24 34

Fig. 6. Distribution of faults in the programs.

c) Fault Description: The faults in the programs are described in Fig. 7. There
have been various efforts to determine a precise counting scheme for "de-
fects" in software [18], [31], [13]. According to the IEEE explanations given,
a software "fault" is a specific manifestation in the source code of a pro-
grammer "error." For example, due to a misconception or document discrep-
ancy, a programmer makes an "error" (in his/her head) that may result in more
than one "fault" in a program. Using this interpretation, software "faults" re-
flect the correctness, or lack thereof, of a program. A program input may re-
veal a software "fault" by causing a software "failure." A software "failure" is
therefore a manifestation of a software "fault." The entities examined in this
analysis are software faults.

 Comparing the Effectiveness of Software Testing Strategies 309

 Victor R. Basil and Richard W. Selby 310

Fig. 7. Fault classification and description.

 Comparing the Effectiveness of Software Testing Strategies 311

C. Experimental Design

The experimental design applied for each of the three phases of the study was a
fractional factorial design [7], [12]. This experimental design distinguishes among
the testing techniques, while allowing for variation in the ability of the particular
individual testing or in the program being tested. Fig. 8 displays the fractional fac-
torial design appropriate for the third phase of the study. Subject S1, is in the ad-
vanced expertise level, and he structurally tested program P1, functionally tested
program P3, and code read program P4. Notice that all of the subjects tested each
of the three programs and used each of the three techniques. Of course, no one
tests a given program more than once. The design appropriate for the third phase
is discussed in the following paragraphs, with the minor differences between this
design and the ones applied in the first two phases being discussed at the end of
the section.
1) Independent and Dependent Variables: The experimental design has the three

independent variables of testing technique, software type, and level of exper-
tise. For the design appearing in Fig. 8, appropriate for the third phase of the
study, the three main effects have the following levels:
1) testing technique: code reading, functional testing, and structural testing.
2) software types: (P1) text processing, (P3) numeric abstract data type, and

(P4) database maintainer.
3) level of expertise: advanced, intermediate, and junior.
Every combination of these levels occurs in the design. That is, programmers
in all three levels of expertise applied all three testing techniques on all pro-
grams. In addition to these three main effects, a factorial analysis of variance
(ANOVA) model supports the analysis of interactions among each of these
main effects. Thus, the interaction effects of testing technique * software
type, testing technique* expertise level, software type * expertise level, and
the three-way interaction of testing technique * software type * expertise level
are included in the model. There are several dependent variables examined in
the study, including number of faults detected, percentage of faults detected,
total fault detection time, and fault detection rate. Observations from the on-
line methods of functional and structural testing also had as dependent vari-
ables number of computer runs, amount of cpu-time consumed, maximum
statement coverage achieved, connect time used, number of faults that were
observable from the test data, percentage of faults that were observable from
the test data, and percentage of faults observable from the test data, and per-
centage of faults observable from the test data that were actually observed by
the tester.

2) Analysis of Variance Model: The three main effects and all the two-way and
three-way interactions effects are called fixed effects in this factorial analysis
of variance model. The levels of these effects given above represent all levels
of interest in the investigation. For example, the effect of testing technique
has as particular levels code reading, functional testing, and structural testing;
these particular testing techniques are the only ones under comparison in this
study. The effect of the particular subjects that participated in this study re-

 Victor R. Basil and Richard W. Selby 312

quires a little different interpretation. The subjects examined in the study were
random samples of programmers from the large population of programmers at
each of the levels of expertise. Thus, the effect of the subjects on the various
dependent variables is a random variable, and this effect therefore is called a
random effect. If the samples examined are truly representative of the popula-
tion of subjects at each expertise level, the inferences from the analysis can
then be generalized across the whole population of subjects at each expertise
level, not just across the particular subjects in the sample chosen. Since this
analysis of variance model contains both fixed and random effects, it is called
a mixed model. The additive ANOVA model for the design appearing in Fig.
8 is given below [7], [12].

Fig. 8. Fractional factorial design.

ijk = µ + i + j + k + kl + ij

+ ik + jk + ijk + ijkl

where

ijk is the observed response from subject l of expertise level k using tech-
nique i on program j.

µ is the overall mean response.

i is the main effect of testing technique i (i = 1, 2, 3)

j is the main effect of program j (j = 1, 3, 4).

k is the main effect of expertise level k (k= 1, 2, 3).

kl is the random effect of subject l within expertise level k, a random vari-
able
(l = 1, 2, · · ·, 32: k = 1, 2, 3).

 Comparing the Effectiveness of Software Testing Strategies 313

 is the interaction effect of testing technique i with program j (i = 1, 2,
3;
j = 1, 3, 4).

ik is the interaction effect of testing technique i with expertise level k (i =
1, 2, 3; k = 1,2, 3).

jk is the interaction effect of program j with expertise level k (j = 1, 3, 4; k
= 1, 2, 3).

ijk is the interaction effect of testing technique i program j with expertise
level k (i = 1, 2, 3; j = 1, 3, 4; k = 1, 2, 3).

ijkl is the experimental error for each observation, a random variable.
 The tests of hypotheses on all the fixed effects mentioned above are referred to
as F-tests [46]. The F-tests use the error (residual) mean square in the denomina-
tor, except for the test of the expertise level effect. The expected mean square for
the expertise level effect contains a component for the actual variance of subjects
within expertise level. In order to select the appropriate term for the denominator
of the expertise level F-test, the mean square for the effect of subjects nested
within expertise level is chosen. The parameters for the random effect of subjects
within expertise level are assumed to be drawn from a normally distributed ran-
dom process with mean zero and common variance. The experimental error terms
are assumed to have mean zero and common variance.
 The fractional factorial design applied in the first two phases of the analysis

differed slightly from the one presented above for the third phase2. In the third
phase of the study, programs P1, P3, and P4 were tested by subjects in three levels
of expertise. In both phases one and two, there were only subjects from the levels
of intermediate and junior expertise. In phase one, programs P1, P3, and P2 were
tested. In phase two, the programs tested were P1, P2, and P4. The only modifica-
tions necessary to the above explanation for phases one and two are 1) eliminating
the advanced expertise level, 2) changing the program P subscripts appropriately,
and 3) leaving out the three way interaction term in phase two, because of the re-
duced number of subjects. In all three of the phases, all subjects used each of the
three techniques and tested each of the three programs for that phase. Also, within
all three phrases, all possible combinations of expertise level, testing techniques,
and programs occurred.
 The order of presentation of the testing techniques was randomized among the
subjects in each level of expertise in each phase of the study. However, the integ-
rity of the results would have suffered if each of the programs in a given phase
was tested at different times by different subjects. Note that each of the testing
sessions took place on a different day because of the amount of effort required. If
different programs would have been tested on different days, any discussion about
the programs among subjects between testing sessions would have affected the fu-

2 Although the data from all the phases can be analyzed together, the number of empty cells
resulting from not having all three experience levels and all four programs in all phases lim-
its the number of parameters that can be estimated and causes nonunique Type IV partial
sums of squares.

 Victor R. Basil and Richard W. Selby 314

ture performance of others. Therefore, all subjects in a phase tested the same pro-
gram on the same day. The actual order of program presentation was the order in
which the programs are listed in the previous paragraph.

D. Experimental Operation

Each of the three phases were broken into five distinct pieces: training, three test-
ing sessions, and a follow-up session. All groups of subjects were exposed to a
similar amount of training on the testing techniques before the study began. As
mentioned earlier, the University of Maryland subjects were enrolled in the
"Software Design and Development" course, and the NASA/CSC subjects were
given a four-hour tutorial. Background information on the subjects was captured
through a questionnaire. Elementary exercises followed by a pretest covering all
techniques were administered to all subjects after the training and before the test-
ing sessions. Reasonable effort on the part of the University of Maryland subjects
was enforced by their being graded on the work and by their needing to use the
techniques in a major class project. Reasonable effort on the part of the
NASA/CSC subjects was certain because of their desire for the study's outcome to
improve their software testing environment. All subjects' groups were judged
highly motivated during the study. The subjects were all familiar with the editors,
terminals, machines, and the programs' implementation language.
 The individuals were requested to use the three testing techniques to the best of
their ability. Every subject participated in all three testing sessions of his/her
phase, using all techniques but each on a separate program. The individuals using
code reading were each given the specification for the program and its source
code. They were then asked to apply the methods of code reading by step-wise ab-
straction to detect discrepancies between the program's abstracted function and the
specification. The functional testers were each given a specification and the ability
to execute the program. They were asked to perform equivalence partitioning and
boundary value analysis to select a set of test data for the program. Then they exe-
cuted the program on this collection of test data, and inconsistencies between what
the program actually performed and what they thought the specification said it
should perform were noted. The structural testers were given the source code for
the program, the ability to execute it, and a description of the input format for the
program. The structural testers were asked to examine the source and generate a
set of test cases that cumulatively execute 100 percent of the program's statements.
When the subjects were applying an on-line technique, they generated and exe-
cuted their own test data; no test data sets were provided. The programs were in-
voked through a test driver that supported the use of the multiple input data sets.
This test driver, unbeknown to the subjects, drained off the input cases submitted
to the program for the experimenter's later analysis; the programs could only be
accessed through a test driver.

 Comparing the Effectiveness of Software Testing Strategies 315

 A structural coverage tool calculated the actual statement coverage of the test

set and which statements were left unexecuted for the structural testers3. After the
structural testers generated a collection of test data that met (or almost met) the
100 percent coverage criteria, no further execution of the program or reference to
the source code was allowed.
 They retained the program's output from the test cases they had generated.
These testers were then provided with the program's specification. Now that they
knew what the program was intended to do, they were asked to contrast the pro-
gram's specification with the behavior of the program on the test data they derived.
This scenario for the structural testers was necessary so that "observed" faults
could be compared.
 At the end of each of the testing sessions, the subjects were asked to give a rea-
sonable estimate of the amount of time spent detecting faults with a given testing
technique. The University of Maryland subjects were assured that this had nothing
to with the grading of the work. There seemed to be little incentive for the subjects
in any of the groups not to be truthful. At the completion of each testing session,
the NASA/CSC subjects were also asked what percentage of the faults in the pro-
gram that they thought were uncovered. After all three testing sessions in a given
phase were completed, the subjects were requested to critique and evaluate the
three testing techniques regarding their understandability, naturalness, and effec-
tiveness. The University of Maryland subjects submitted a written critique, while a
two hour debriefing forum was conducted for the NASA/CSC individuals. In addi-
tion to obtaining the impressions of the individuals, these follow-up procedures
gave an understanding of how well the subjects were comprehending and applying
the methods. These final sessions also afforded the participants an opportunity to
comment on any particular problems they had with the techniques or in applying
them to the given programs.

IV. Data Analysis

The analysis of the data collected from the various phases of the experiment is
presented according to the goal and question framework discussed earlier.

A. Fault Detection Effectiveness

The first goal area addresses the fault detection effectiveness of each of the tech-
niques. Fig. 9 presents a summary of the measures that were examined to pursue

3 Program statements within the body of a WHILE statement were considered unexecuted
if the Boolean condition of the WHILE statement was false. Having the Boolean condition
of the WHILE statement become true at some point was a prerequisite for executing the
statements with the body of the WHILE.

 Victor R. Basil and Richard W. Selby 316

this goal area. A brief description of each measure is as follows; an asterisk (*)
means only relevant for on-line testing.
a) Number of faults detected = the number of faults detected by a subject apply-

ing a given testing technique on a given program.
b) Percentage of faults detected = the percentage of a program's faults that a sub-

ject detected by applying a testing technique to the program.
c) Number of faults observable (*) = the number of faults that were observable

from the program's behavior given the input data submitted.
d) Percentage of faults observable (*) = the percentage of a program's faults that

were observable from the program's behavior given the input data submitted.
e) Percentage detected/observable (*) = the percentage of faults observable from

the program's behavior on the given input set that were actually observed by a
subject.

f) Percentage faults felt found = a subject's estimate of the percentage of a pro-
gram's faults that he/she thought were detected by his/her testing.

g) Maximum statement coverage (*) = the maximum percentage of a program's
statements that were executed in a set of test cases.

1) Data Distributions: The actual distribution of the number of faults observed
by the subjects appears in Fig. 10, broken down by phase. From Figs. 9 and
10, the large variation in performance among the subjects is clearly seen. The

Fig. 9. Overall summary of detection effectiveness data. Note: some data pertain
only to on-line techniques (*), and some data were collected only in certain phases.

 Comparing the Effectiveness of Software Testing Strategies 317

mean number of faults detected by the subjects is displayed in Fig. 11, broken
down by technique, program, expertise level, and phase.

2) Number of Faults Detected: The first question under this goal area asks which
of the testing techniques detected the most faults in the programs. The overall
F-test of the techniques detecting an equal number of faults in the programs is
rejected in the first and third phases of the study (< 0.024 and < 0.0001,
respectively; not rejected in phase two, > 0.05). Recall that the phase three
data was collected from 32 NASA/CSC subjects, and the phase one data was
from 29 University of Maryland subjects. With the phase three data, the con-
trast of "reading - 0.5 * (functional + structural)" estimates that the technique
of code reading by stepwise abstraction detected 1.24 more faults per program

than did either of the other techniques (< 0.0001, c.i. 0.73-1.75)4.

Fig. 10. Distribution of the number of faults detected broken down by
phase. Key: code readers (C), functional testers (F), and structural testers (S).

4 The probability of Type 1 error is reported, the probability of erroneously rejecting the

null hypothesis. The abbreviation "c.i." stands for 95 percent confidence interval.

 Victor R. Basil and Richard W. Selby 318

 Note that code reading performed well even though the professional sub-
jects' primary experience was with functional testing. Also with the phase
three data, the contrast of "functional — structural" estimates that the tech-
nique of functional testing detected 1.11 more faults per program than did
structural testing (< 0.0007, c.i. 0.52-1.70).
 In the phase one data, the contrast of "0.5 * (reading + functional) —
structural^' estimates that the technique of structural testing detected 1.00
fault less per program than did either reading or functional testing (a <
0.0065, c.i. 0.31-1.69). In the phase one data, the contrast of "reading — func-
tional" was not statistically different from zero (> 0.05). The poor perform-
ance of structural testing across the phases suggests the inadequacy of using
statement coverage criteria. The above pairs of contrasts were chosen because
they are linearly independent.

Fig. 11. Overall summary for number of faults detected (SD = std. dev.).

3) Percentage of Faults Detected: Since the programs tested each had a different
number of faults, a question in the earlier goal/question framework asks
which technique detected the greatest percentage of faults in the programs.
The order of performance of the techniques is the same as above when the
percentage of the program's faults detected are compared. The overall F-tests
for phases one and three were rejected as before (< 0.037 and < 0.0001.
respectively; not rejected in phase two, > 0.05). Applying the same con-
trasts as above: a) in phase three, reading detected 16.0 percent more faults
per program than did the other techniques (< 0.0001, c.i. 9.9-22.1), and
functional detected 11.2 percent more faults than did structural (< 0.003, c.i.
4.1-18.3); b) in phase one, structural detected 13.2 percent fewer of a pro-
gram's faults than did the other methods (< 0.011, c.i. 3.5-22.9), and reading
and functional were not statistically different as before.

 Comparing the Effectiveness of Software Testing Strategies 319

4) Dependence on Software Type: Another question in this goal area queries
whether the number or percentage of faults detected depends on the program
being tested. The overall F-test that the number of faults detected is not pro-
gram dependent is rejected only in the phase three data (< 0.0001). Apply-
ing Tukey's multiple comparison on the phase three data reveals that the most
faults were detected in the abstract data type, the second most in the text for-
matter, and the least number of faults were found in the database maintainer
(simultaneous < 0.05). When the percentage of faults found in a program is
considered, however, the overall F-tests for the three phases are all rejected (
< 0.027, < 0.01, and < 0.0001 in respective order). Tukey's multiple com-
parison yields the following orderings on the programs (all simultaneous <
0.05). In the phase one data, the ordering was (data type = plotter) > text for-
matter; that is, a higher percentage of faults were detected in either the ab-
stract data type or the plotter than were found in the text formatter; there was
no difference between the abstract data type and the plotter in the percentage
found. In the phase two data, the ordering of percentage of faults detected was
plotter > (text formatter = database maintainer). In the phase three data, the
ordering of percentage of faults found in the programs was the same as the
number of faults found, abstract data type > text formatter > database main-
tainer. Summarizing the effect of the type of software on the percentage of
faults observed: 1) the programs with the highest percentage of their faults de-
tected were the abstract data type and the mathematical plotter, the percentage
detected between these two was not statistically different; 2) the programs
with the lowest percentage of their faults detected were the text formatter and
the database maintainer; the percentage detected between these two was not
statistically different in the phase two data, but a higher percentage of faults
in the text formatter was detected in the phase three data.

5) Observable Versus Observed Faults: One evaluation criteria of the success of
a software testing session is the number of faults detected. An evaluation cri-
teria of the particular test data generated, however, is the ability of the test
data to reveal faults in the program. A test data set's ability to reveal faults in
a program can be measured by the number or percentage of a program's faults

that are made observable from execution on that input5. Distinguishing the
faults observable in a program from the faults actually observed by a tester
highlights the differences in the activities of test data generation and program
behavior examination. As shown in Fig. 8, the average number of the pro-
grams' faults observable was 68.0 percent when individuals were either func-
tional testing or structural testing. Of course, with a nonexecution-based tech-
nique such as code reading, 100 percent of the faults are observable. Test data
generated by subjects using the technique of functional listing resulted in 1.4

5 Test data "reveal a fault" or "make a fault observable" by making a fault be manifested as
a program failure (see the explanation in the earlier section entitled Fault Description).
Since the analysis is focusing on the number of distinct software faults revealed—and for
purposes of readability—this paragraph uses the single word "fault."

 Victor R. Basil and Richard W. Selby 320

more observable faults (< 0.0002, c.i. 0.79-2.01) than did the use of struc-
tural testing in phase one of the study; the percentage difference of functional
over structural was estimated at 20.0 percent (< 0.,0002, c.i. 11.2-28.8). The
techniques did not differ in these two measures in the third phase of the study.
However, just considering the faults that were observable from the submitted
test data, functional testers detected 18.5 percent more of these observable
faults than did structural testers in the phase three data (< 0.0016, cj.i. 8.9-
28.1); they did not differ in the phase one data.
 Note that all faults in the programs could be observed in the programs'
output given the proper input data. When using the on-line techniques of
functional and structural testing, subjects detected 70.3 percent of the faults
observable in the program's output. In order to conduct a successful testing
session, faults in a program must be both revealed and subsequently observed.

6) Dependence on Program Coverage: Another measure of the ability of a test
set to reveal a program's faults is the percentage of a program's statements
that are executed by the test set. The average maximum statement coverage
achieved by the functional and structural testers was 97.0 percent. The maxi-
mum statement coverage from the submitted test data was not statistically dif-
ferent between the functional and structural testers (> 0.05). Also, there was
no correlation between maximum statement coverage achieved and either
number or percentage of faults found (> 0.05).

7) Dependence on Programmer Expertise: A final question in this goal area
concerns the contribution of programmer expertise to fault detection effec-
tiveness. In the phase three data from the NASA/CSC professional environ-
ment, subjects of advanced expertise detected more faults than did either the
subjects of intermediate or junior expertise (< 0.05). When the percentage
faults detected is compared, however, the advanced subjects performed better
than the junior subjects (< 0.05), but were not statistically different from the
intermediate subjects (> 0.05). The intermediate and junior subjects were
not statistically different in any of the three phases of the study in terms of
number or percentage faults observed. When several subject background at-
tributes were correlated with the number of faults found, total years of profes-
sional experience had a minor relationship (Pearson R - 0.22, < 0.05). Cor-
respondence of performance with background aspects was examined across
all observations, and within each of the phases, including previous academic
performance for the University of Maryland subjects. Other than the above,
no relationships were found.

8) Accuracy of Self-Estimates: Recall that the NASA/CSC subjects in the phase
three data estimated, at the completion of a testing session, the percentage of a
program's faults they thought they had uncovered. This estimation of the
number of faults uncovered correlated reasonably well with the actual per-
centage of faults detected (R = 0.57, < 0.0001). Investigating further, indi-
viduals using the different techniques were able to give better estimates: code
readers gave the best estimates (R = 0.79, < 0.0001), structural testers gave
the second best estimates (R = 0.57, < 0.0007), and functional testers gave
the worst estimates (no correlation, > 0.05). This last observation suggests

 Comparing the Effectiveness of Software Testing Strategies 321

that the code readers were more certain of the effectiveness they had in re-
vealing faults in the programs.

9) Dependence on Interactions: There were few significant interactions between
the main effects of testing technique, program, and expertise level. In the
phase two data, there was an interaction between testing technique and pro-
gram in both the number and percentage of faults found (< 0.0013, <
0.0014, respectively). The effectiveness of code reading increased on the text
formatter. In the phase three data, there was a slight three-way interaction be-
tween testing technique, program, and expertise level for both the number and
percentage of faults found (< 0.05, < 0.04 respectively).

10) Summary of Fault Detection Effectiveness: Summarizing the major results of
the comparison of fault detection effectiveness: 1) in the phase three data,
code reading detected a greater number and percentage of faults than the other
methods, with functional detecting more than structural; 2) in the phase one
data, code reading and functional were equally effective, while structural was
inferior to both—there were no differences among the three techniques in
phase two: 3) the number of faults observed depends on the type of software;
the most faults were detected in the abstract data type and the mathematical
plotter, the second most in the text formatter, and (in the case of the phase
three data) the least were found in the database maintainer; 4) functionally
generated test data revealed more observable faults than did structurally gen-
erated test data in phase one, but not in phase three; 5) subjects of intermedi-
ate and junior expertise were equally effective in detecting faults, while ad-
vanced subjects found a greater number of faults than did either group; 6)
self-estimates of faults detected were most accurate from subjects applying
code reading, followed by those doing structural testing, with estimates from
persons functionally testing having no relationship.

B. Fault Detection Cost

The second goal area examines the fault detection cost of each of the techniques.
Fig. 12 presents a summary of the measures that were examined to investigate this
goal area. A brief description of each measure is as follows; an asterisk (*) means
only relevant for on-line testing. All of the on-line statistics were monitored by the
operating systems of the machines.
a) Number of faults/hour = the number of faults detected by a subject applying a

given technique normalized by the effort in hours required, called the fault de-
tection rate.

b) Detection time = the total number of hours that a subject spent in testing a
program using a technique.

c) Cpu-time (*) = the cpu-time in seconds used during the testing session.

 Victor R. Basil and Richard W. Selby 322

Fig. 12. Overall summary of fault detection cost data. Note: some data pertain
only to on-line techniques (*), and some data were collected only in certain
phases.

d) Normalized cpu-time (*) = the cpu-time in seconds used during the testing

session, normalized by a factor for machine speed6.
e) Connect time (*) = the number of minutes that a individual spent on-line

while testing a program.
f) Number of program runs (*) = the number of executions of the program test

driver; note that the driver supported multiple sets of input data.
1) Data Distributions: The actual distribution of the fault detection rates for the

subjects appears in Fig. 13, broken down by phase. Once again, note the
many-to-one differential in subject performance. Fig. 14 displays the mean
fault detection fate for the subjects, broken down by technique, program. ex-
pertise level, and phase.

2) Fault Detection Rate and Total Time: The first question in this goal area asks
which testing technique had the highest fault detection rate. The overall F-test
of the techniques having the same detection rate was rejected in the phase
three data (< 0.0014). but not in the other two phases (> 0.05). As before,
the two contrasts of "reading - 0.5 * (functional + structural)" and "functional
- structural" were examined to detect differences among the techniques. The
technique of code reading was estimated at detecting 1.49 more faults per
hour than did the other techniques in the phase three data (< 0.0003, c.i.
0.75-2.23). The techniques of functional and structural testing were not statis-
tically different (> 0.05). Comparing the total time spent in fault detection,
the techniques were not statistically different in the phase two and three data;

6 In the phase three data, testing was done on both a VAX 11/780 and an IBM 4341. As
suggested by benchmark comparisons [11], the VAX cpu-times were divided by 1.6 and the
IBM cpu-times were divided by 0.9.

 Comparing the Effectiveness of Software Testing Strategies 323

the overall F-test for the phase one data was rejected (< 0.013). In the phase
one data, structural testers spent an estimated 1.08 hours less testing than did
the other techniques (< 0.004, c.i. 0.39-1.78), while code readers were not
statistically different from functional testers. Recall that in phase one, the
structural testers observed both a lower number and percentage of the pro-
grams' faults than did the other techniques.

3) Dependence on Software Type: Another question in this area focuses on how
fault detection rate depends on software type. The overall F-test that the de-
tection rate is the same for the programs is rejected in the phase one and phase
three data (< 0.01 and < 0.0001, respectively); the detection rate among
the programs was not statistically different in phase two (> 0.05). Applying
Tukey's multiple comparison on the phase one data finds that the fault detec-
tion rate was greater on the abstract data type than on the plotter, while there
was no difference either between the abstract data type and the text formatter
or between the text formatter and the plotter (simultaneous < 0.05). In the
phase three data, the fault detection rate was higher in the abstract data type

Fig. 13. Distribution of the fault detection rate (number of faults detected per
hour) broken down by phase. Key: code readers (C), functional testers (F), and
structural testers (S).

 Victor R. Basil and Richard W. Selby 324

than it was for the text formatter and the database maintainer, with the text
formatter and the database maintainer not being statistically different (simul-
taneous < 0.05). The overall effort spent in fault detection was different
among the programs in phases one and three (< 0.012 and < 0.0001, re-
spectively), while there was no difference in phase two. In phase one, more
effort was spent testing the plotter than the abstract data type, while there was
no statistical difference either between the plotter and the text formatter or be-
tween the text formatter and the abstract data type (simultaneous < 0.05). In
phase three, more time was spent testing the database maintainer than was
spent on either the text formatter or on the abstract data type, with the text
formatter not differing from the abstract data type (simultaneous < 0.05).
Summarizing the dependence of fault detection cost on software type, 1) the
abstract data type had a higher detection rate and less total detection effort
than did either the plotter or the database maintainer, the latter two were not
different in either detection rate or total detection time; 2) the text formatter
and the plotter did not differ in fault detection rate or total detection effort; 3)
the text formatter and the database maintainer did not differ in fault detection
rate overall and did not differ in total detection effort in phase two, but the da-
tabase maintainer had a higher total detection effort in phase three; 4) the text
formatter and the abstract data type did not differ in total detection effort
overall and did not differ in fault detection rate in phase one, but the abstract
data type had a higher detection rate in phase three.

Fig. 14. Overall summary for fault detection rate (number of faults detected per
hour) (SD = std. dev).

 Comparing the Effectiveness of Software Testing Strategies 325

3) Computer Costs: In addition to the effort spent by individuals in software
testing, online methods incur machine costs. The machine cost measures of
cpu-time, connect time, and the number of runs were compared across the on-
line techniques of functional and structural testing in phase three of the study.
A nonexecution-based technique such as code reading, of course, incurs no
machine time costs. When the machine speeds are normalized (see measure
definitions above), the technique of functional testing used 26.0 more seconds
of cpu-time than did the technique of structural testing (< 0.016, c.i. 7.0-
45.0). The estimate of the difference is 29.6 seconds when the cpu-times are
not normalized (< 0.012, c.i. 9.0-50.2). Individuals using functional testing
used 28.4 more minutes of connect time than did those using structural testing
(< 0.004, c.i. 11.7-45.1). The number of computer runs of a program's test
driver was not different between the two techniques (> 0.05). These results
suggest that individuals using functional testing spent more time on-line and
used more cpu-time per computer run than did those structurally testing.

4) Dependence on Programmer Expertise: The relation of programmer expertise
to cost of fault detection is another question in this goal section. The expertise
level of the subjects had no relation to the fault detection rate in phases two
and three (> 0.05 for both F-tests). Recall that phase three of the study used
32 professional subjects with all three levels of computer science expertise. In
phase one, however, the intermediate subjects detected faults at a faster rate
than did the junior subjects (<0.005). The total effort spent in fault detection
was not different among the expertise levels in any of the phases (> 0.05 for
all three F-tests). When all 74 subjects are considered, years of professional
experience correlates positively with fault detection rate (R = 0.41, <0.0002)
and correlates negatively with total detection time (R = -0.25, < 0.03).
These last two observations suggest that persons with more years of profes-
sional experience detected the faults faster and spent less total time doing so.
Several other subject background measures showed no relationship with fault
detection rate or total detection time (> 0.05). Background measures were
examined across all subjects and within the groups of NASA/CSC subjects
and University of Maryland subjects.

5) Dependence on Interactions: There were few significant interactions between
the main effects of testing technique, program, and expertise level. There was
an interaction between testing technique and software type in terms of fault
detection rate and total detection cost for the phase three data (< 0.003 and

 < 0.007, respectively). Subjects using code reading on the abstract data type
had an increased fault detection rate and a decreased total detection time.

6) Relationships between Fault Detection Effectiveness and Cost: There were
several correlations between fault detection cost measures and performance
measures. Fault detection rate correlated overall with number of faults de-
tected (R = 0.48, < 0,0001), percentage of faults detected (R = 0.48, <
0.0001), and total detection time (R = -0.53, < 0.0001), but not with normal-
ized cpu-time, raw cpu-time, connect time, or number of computer runs (>
0.05). Total detection time correlated with normalized cpu-time (R = 0.36, <
0.04) and raw cpu-time (R = 0.37, < 0.04), but not with connect time, num-

 Victor R. Basil and Richard W. Selby 326

ber of runs, number of faults detected, or percentage of faults detected (>
0.05). The number of faults detected in the programs correlated with the
amount of machine resources used: normalized cpu-time (R = 0.47, <
0.007), raw cpu-time (R = 0.52, < 0.002), and connect time (R = 0.49, <
0.003), but not with the number of computer runs (> 0.05). The correlations
for percentage of faults detected with machine resources used were similar.
Although most of these correlations are weak, they suggest that 1) the higher
the fault detection rate, the more faults found and the less time spent in fault
detection; 2) fault detection rate had no relationship with use of machine re-
sources; 3) spending more time in detecting faults had no relationship with
the amount of faults detected; and 4) the more cpu-time and connect time
used, the more faults found.

7) Summary of Fault Detection Cost: Summarizing the major results of the com-
parison of fault detection cost: 1) in the phase three data, code reading had a
higher fault detection rate than the other methods, with no difference between
functional testing and structural testing; 2) in the phase one and two data, the
three techniques were not different in fault detection rate; 3) in the phase two
and three data, total detection effort was not different among the techniques,
but in phase one less effort was spent for structural testing than for the other
techniques, while reading and functional were not different; 4) fault detection
rate and total effort in detection depended on the type of software: the abstract
data type had the highest detection rate and lowest total detection effort, the
plotter and the database maintainer had the lowest detection rate and the high-
est total detection effort, and the text formatter was somewhere in between
depending on the phase; 5) in phase three, functional testing used more cpu-
time and connect time than did structural testing, but they were not different
in the number of runs; 6) in phases two and three, subjects across expertise
levels were not different in fault detection rate or total detection time, in
phase one intermediate subjects had a higher detection rate; and 7) there was a
moderate correlation between fault detection rate and years of professional
experience across all subjects.

C. Characterization of Faults Detected

The third goal area focuses on determining what classes of faults are detected by
the different techniques. In the earlier section on the faults in the software, the
faults were characterized by two different classification schemes: omission or
commission; and initialization, control, data, computation, interface, or cosmetic.
The faults detected across all three study phases are broken down by the two fault
classification schemes in Fig. 15. The entries in the figure are the average percent-
age (with standard deviation) of faults in a given class observed when a particular
technique was being used. Note that when a subject tested a program that had no
faults in a given class, he/she was excluded from the calculation of this average.
1) Omission Versus Commission Classification: When the faults are partitioned

according to the omission/commission scheme, there is a distinction among

 Comparing the Effectiveness of Software Testing Strategies 327

the techniques. Both code readers and functional testers observed more omis-
sion faults than did structural testers (< 0.001). with code readers and func-
tional testers not being different (> 0.05). Since a fault of omission occurs
as a result of some segment of code being left out, you would not expect
structurally generated test data to find such faults. In fact, 44 percent of the
subjects applying structural testing found zero faults of omission when testing
a program. A distribution of the faults observed according to this classifica-
tion scheme appears in Fig. 16.

2) Six-Part Fault Classification: When the faults are divided according to the
second fault classification scheme, several differences are apparent. Both
code reading and functional testing found more initialization faults than did
structural testing (< 0.05), with code reading and functional testing not be-
ing different (> 0.05). Code reading detected more interface faults than did
either of the other methods (< 0.01), with no difference between functional
and structural testing (> 0.05). This suggests that the code reading process
of abstracting and composing program functions across modules must be an
effective technique for finding interface faults. Functional testing detected
more control faults than did either of the other methods (< 0.01), with code
reading and structural testing not being different (> 0.05). Recall that the
structural test data generation criteria examined is based on determining the
execution paths in a program and deriving test data that execute 100 percent
of the program's statements. One would expect that more control path faults
would be found by such a technique. However, structural testing did not do as
well as functional testing in this fault class. The technique of code reading
found more computation faults than did structural testing (< 0.05), with
functional testing not being different from either of the other two methods (
> 0.05). The three techniques were not statistically different in the percentage
of faults they detected in either the data or cosmetic fault classes (> 0.05 for
both). A distribution of the faults observed according to this classification
scheme appears in Fig. 17.

3) Observable Fault Classification: Fig. 18 displays the average percentage
(with standard deviation) of faults from each class that were observable from

the test data submitted, yet were not reported by the tester7. The two on-line
techniques of functional and structural testing were not different in any of the
faults classes (> 0.05). Note that there was only one fault in the cosmetic
class.

4) Summary of Characterization of Faults Detected: Summarizing the major re-
sults of the comparison of classes of faults detected: 1) code reading and func-
tional testing both detected more omission faults and initialization faults than
did structural testing; 2) code reading detected more interface faults than did
the other methods; 3) functional testing detected more control faults than did
the other methods; 4) code reading detected more computation faults than did

7 The standard deviations presented in the figure are high because of the several instances
in which all observable faults were reported.

 Victor R. Basil and Richard W. Selby 328

structural testing; and 5) the on-line techniques of functional and structural
testing were not different in any classes of faults observable but not reported.

Fig. 15. Characterization of the faults detected. Mean (and std. dev.) of the per-
centage of faults in each class that were detected.

Fig. 16. Characterization of faults detected by the three techniques: 10 omissions
(0) versus 24 commission (x). The vertical axis is the percentage of persons using
the particular technique that detected the fault.

 Comparing the Effectiveness of Software Testing Strategies 329

Fig. 17. Characterization of faults detected by the three techniques. Initialization
(2-A). computation (8-P), control (7-C), data (3-D), interface (13-I). and cosmetic
(1-S). The vertical axis is the percentage of the persons using the particular tech-
nique that detected the fault.

Fig. 18. Characterization of the faults observable but not reported. The mean (and
std. dev.) of the percentage of such faults in each class are given. (With the appro-
priate inputs, all faults could be made observable in the program output. The faults
included here are those that were observable given the program inputs selected by
the testers yet were unreported.)

 Victor R. Basil and Richard W. Selby 330

V. Conclusions

This study compares the strategies of code reading by stepwise abstraction, func-
tional testing using equivalence class partitioning and boundary value analysis,
and structural testing using 100 percent statement coverage. The study evaluates
the techniques across three data sets in three different aspects of software testing:
fault detection effectiveness, fault detection cost, and classes of faults detected.
The three data sets involved a total of 74 programmers applying each of the three
testing techniques on unit-sized software; therefore, the analysis and results pre-
sented were based on observations from a total of 222 testing sessions. The inves-
tigation is intended to compare the different testing strategies in representative
testing situations, using programmers with a wide range of experience, different
software types, and common software faults.
 In this controlled study, an experimentation methodology was applied to com-
pare the effectiveness of three testing techniques; for an overview of the experi-
mentation methodology, see [4]. Based on our experience and observation [56],
the three testing techniques represent the high end of the range of testing methods
that are actually being used by developers to test software. The techniques exam-
ined correspond, therefore, to the state-of-the-practice of software testing rather
than the state-of-the-art. As mentioned earlier, there exist alternate forms for each
of the three testing methods.
 There are several perspectives from which to view empirical studies of soft-
ware development techniques. Three example perspectives given were that of the
experimenter, researcher, and practitioner. One key aspect of the study presented,
especially from an experimenter's perspective, was the use of an experimentation
methodology and a formal statistical design. The actual empirical results from the
study, which are summarized below, may be used to refine a researcher's theories
about software testing or to guide a practitioner's application of the techniques.
 Each of the three testing techniques showed some merit in this evaluation. The
major empirical results of this study are the following. 1) With the professional
programmers, code reading detected more software faults and had a higher fault
detection rate than did functional or structural testing, while functional testing de-
tected more faults than did structural testing, but functional and structural testing
were not different in fault detection rate. 2) In one University of Maryland (UoM)
subject group, code reading and functional testing were not different in faults
found, but were both superior to structural testing, while in the other UoM subject
group there was no difference among the techniques. 3) With the UoM subjects,
the three techniques were not different in fault detection rate. 4) Number of faults
observed, fault detection rate, and total effort in detection depended on the type of
software tested. 5) Code reading detected more interface faults than did the other
methods. 6) Functional testing detected more control faults than did the other
methods. 7) When asked to estimate the percentage of faults detected, code read-
ers gave the most accurate estimates while functional testers gave the least accu-
rate estimates.

 Comparing the Effectiveness of Software Testing Strategies 331

 The results suggest that code reading by stepwise abstraction (a nonexecution-
based method) is at least as effective as on-line functional and structural testing in
terms of number and cost of faults observed. They also suggest the inadequacy of
using 100 percent statement coverage criteria for structural testing. Note that the
professional programmers examined preferred the use of functional testing be-
cause they felt is was the most effective technique; their intuition, however, turned
out to be incorrect. Recall that the code reading was performed on uncommented
programs, which could be considered a worst-case scenario for code reading.
 In comparing the results to related studies, there are mixed conclusions. A pro-
totype analysis done at the University of Maryland in the Fall of 1981 [30] sup-
ported the belief that code reading by stepwise abstraction does as well as the
computer-based methods, with each strategy having its own advantages. In the
Myers experiment [41], the three techniques compared (functional testing, 3-
person code reviews, control group) were equally effective. He also calculated that
code reviews were less cost effective than the computer-based testing approaches.
The first observation is supported in one study phase here, but the other observa-
tion is not. A study conducted by Hetzel [23] compared functional testing, code
reading, and "selective" testing (a composite of functional, structural, and reading
techniques). He observed that functional and "selective" testing were equally ef-
fective, with code reading being inferior. As noted earlier, this is not supported by
this analysis. The study described in this analysis examined the technique of code
reading by stepwise abstraction, while both the Myers and Hetzel studies exam-
ined alternate approaches to off-line (nonexecution-based) review/reading. Other
studies that have compared the effectiveness of software testing strategies include
[22], [32], [21], [20], [24], [8], [26], [28], [55], [38], [45], [17].
 A few remarks are appropriate about the comparison of the cost-effectiveness
and phase-availability of these testing techniques. When examining the effort as-
sociated with a technique, both fault detection and fault isolation costs should be
compared. The code readers have both detected and isolated a fault; they located it
in the source code. Thus, the reading process condenses fault detection and isola-
tion into one activity. Functional and structural testers have only detected a fault;
they need to delve into the source code and expend additional effort in order to
isolate the fault. Moreover, the code reading process corresponds more closely to
the activity of program proving than do the other methods. Also, a non execution-
based reading process can be applied to any document produced during the devel-
opment process (e.g., high-level design document, low-level design document,
source code document). While functional and structural execution-based tech-
niques may only be applied to documents that are executable (e.g., source code),
which are usually available later in the development process.
 Investigations related to this work include studies of fault classification [54],
[34], [44], [1] and Cleanroom software development [50]. In the Cleanroom soft-
ware development approach, techniques such as code reading are used in the de-
velopment of software completely offline (i.e., without program execution). In
[50], systems developed using Cleanroom met system requirements more com-
pletely and had a higher percentage of successful operational test cases than did
systems developed with a more traditional approach.

 Victor R. Basil and Richard W. Selby 332

 The work presented in this paper differs from previous studies in several ways.
1) The non execution-based software review technique used was code reading by
stepwise abstraction. 2) The study was based on programmers including pro-
fessionals — having varying expertise, different software types, and programs
having a representative profile of common software faults. 3) A very sensitive sta-
tistical design was employed to account for differences in individual performance
and interactions among testing technique, software type, and subject expertise
level. 4) The study was conducted in multiple phases in order to refine experimen-
tation methods. 5) The scope of issues examined was broadened (e.g., observed
versus observable faults, structural coverage of functional testing, multiple fault
classification schemes).
 The empirical study presented is intended to advance the understanding of how
various software testing strategies contribute to the software development process
and to one another. The results given were calculated from a set of individuals ap-
plying the three techniques to unit-sized programs—the direct extrapolation of the
findings to other testing environments is not implied. Further work applying these
and other results to devise effective testing environments is underway [49].

Appendix

The Specifications for the Programs

Program 18

Given an input text of up to 80 characters consisting of words separated by blanks
or new-line characters, the program formats it into a line-by-line form such that 1)
each output line has a maximum of 30 characters, 2) a word in the input text is
placed on a single output line, and 3) each output line is filled with as many words
as possible.
 The input text is a stream of characters, where the characters are categorized as
either break or nonbreak characters. A break character is a blank, a new-line char-
acter (&), or an end-of-text character (/). New-line characters have no special sig-
nificance; they are treated as blanks by the program. The characters & and /
should not appear in the output.
 A word is defined is a nonempty sequence of nonbreak characters. A break is a
sequence of one or more break characters and is reduced to a single blank charac-
ter or start of a new line in the output.
 When the program is invoked, the user types the input line, followed by a /
(end-of-text) and a carriage return. The program then echoes the text input and
formats it on the terminal.

8 Note that this specification was rewritten in [37].

 Comparing the Effectiveness of Software Testing Strategies 333

 If the input text contains a word that is too long to fit on a single output line, an
error message is typed and the program terminates. If the end-of-text character is
missing, an error message is issued and the program awaits the input of properly
terminated line of text.

Program 2

Given ordered pairs (x, y) of either positive or negative integers as input, the pro-
gram plots them on a grid with a horizontal x-axis and a vertical y-axis which are
appropriately labeled. A plotted point on the grid should appear as an asterisk (*).
 The vertical and horizontal scaling is handled as follows. If the maximum abso-
lute value of any y-value is less than or equal to 20, the scale for vertical spacing
will be one line per integral unit [e.g., the point (3, 6) should be plotted on the
sixth line, two lines above the point (3, 4)]. Note that the origin [point (0, 0)]
would correspond to an asterisk at the intersection of the axes (the x-axis is re-
ferred to as the 0th line). If the maximum absolute value of any x-value is less than
or equal to 30, the scale for horizontal spacing will be one space per integral unit
[e.g., the point (4, 5) should be plotted four spaces to the right of the y-axis, two
spaces to the right of (2, 5)]. However, if the maximum absolute value of any y-
value is greater than 20, the scale for vertical spacing will be one line per every
(max absolute value of y-values)/20 rounded-up. [e.g., If the maximum absolute
value of any y-value to be plotted is 66, the vertical line spacing will be a line for
every 4 integral units. In such a data set, points with y-values greater than or equal
to eight and less than twelve will show up as asterisks in the second line, points
with y-values greater than or equal to twelve and less than sixteen will show up as
asterisks in the third line, etc. Continuing the example, the point (3, 15) should be
plotted on the third line, two lines above the point (3, 5).] Horizontal scaling is
handled analogously.
 If two or more of the points to be plotted would show up as the same asterisk in
the grid (like the points (9, 13) and (9, 15) in the above example), a number "2"
(or whatever number is appropriate) should be printed instead of the asterisk.
Points whose asterisks will lie on an axis or grid marker should show up in place
of the marker.

Program 3

A list is defined to be an ordered collection of integer elements which may have
elements annexed and deleted at either end, but not in the middle. The operations
that need to be available are ADDFIRST, ADDLAST, DELETEFIRST,
DELETELAST, FIRST, ISEMPTY, LISTLENGTH, REVERSE, and NEWLIST.
Each operation is described in detail below. The lists are to contain up to a maxi-
mum of 5 elements. If an element is added to the front of a "full" list (one contain-
ing five elements already), the element at the back of the list is to be discarded.
Elements to be added to the back of a full list are discarded. Requests to delete

 Victor R. Basil and Richard W. Selby 334

elements from empty lists result in an empty list, and requests for the first element
of an empty list results in the integer 0 being returned. The detailed operation de-
scriptions are as below:
ADDFIRST(LIST L, INTEGER I)

Returns the list L with I as its first element followed by all the
elements of L. If L is "full" to begin with, L's last element is lost.

ADDLAST(LIST L, INTEGER I)
Returns the list with all of the elements of L followed by I. If L
is full to begin with, L is returned (i.e., I is ignored).

DELETEFIRST(LIST L)
Returns the list containing all but the first element of L.
If L is empty, then an empty list is returned.

DELETELAST(LIST L)
Returns the list containing all but the last element of L.
If L is empty, then an empty list is returned.

FIRST(LIST L)
Returns the first element in L. If L is empty, then it
returns zero.

ISEMPTY(LIST L)
Returns one if L is empty, zero otherwise.

LISTLENGTH(LIST L)
Returns the number of elements in L. An empty list has zero elements.

NEWLIST(LIST L)
Returns an empty list.

REVERSE(LIST L)
Returns a list containing the elements of L in reverse order.

Program 4

(Note that a "file” is the same thing as an IBM "dataset.")
 The program maintains a database of bibliographic references. It first reads a
master file of current references, then reads a file of reference updates, merges the
two, and produces an updated master file and a cross reference table of keywords.
The first input file, the master, contains records of 74 characters with the follow-
ing format:

Column comment

1-3 Each reference has a unique reference key
4-14 Author of publication
15-72 Title of publication
73-74 Year issued

 The key should be a three character unique identifier consisting of letters be-
tween A-Z. The next input file, the update file, contains records of 75 characters in
length. The only difference from a master file record is that an update record has
either an "A" (capital A meaning add) or an "R" (capital R meaning replace) in

 Comparing the Effectiveness of Software Testing Strategies 335

column 75. Both the master and update files are expected to be already sorted al-
phabetically by reference key when read into the program. Update records with
action replace are substituted for the matching key record in the master file. Re-
cords with action add are added to the master file at the appropriate location so
that the file remains sorted on the key field. For example, a valid update record to
be read would be

BITbaker an introduction to program testing 83A
 The program should produce two pieces of output. It should first print the
sorted list of records in the updated master file in the same format as the original
master file. It should then print a keyword cross reference list. All words greater
than three characters in a publication's title are keywords. These keywords are
listed alphabetically followed by the key fields from the applicable updated master
file entries. For example, if the updated master file contained two records,

ABCkermit introduction to software testing 82
DDXjones the realities of software management 81

then the keywords are introduction, testing, realities, software, and management.
The cross reference list should look like

introduction
ABC

management
DDX

realities
DDX

software
ABC
DDX

testing
ABC

 Some possible error conditions that could arise and the subsequent actions in-
clude the following. The master and update files should be checked for sequence,
and if a record out of sequence is found, a message similar to "key ABC out of se-
quence" should appear and the record should be discarded. If an update record in-
dicates replace and the matching key can not be found, a message similar to "up-
date key ABC not found" should appear and the update record should be ignored.
If an update record indicates add and a matching key is found, something like "key
ABC already in file" should appear and the record should be ignored. (End of
specification.)

Acknowledgment

The authors are grateful to F. T. Baker, F. E. McGarry, and G. Page for their assis-
tance in the organization of the study. The authors appreciate the comments from
J. D. Gannon, H. D. Mills, and R. N. Taylor on an earlier version of this paper.
The authors are grateful to the subjects from Computer Sciences Corporation,

 Victor R. Basil and Richard W. Selby 336

NASA Goddard, and the University of Maryland for their enthusiastic participa-
tion in the study.

References

[1] V. R. Basili and B. T. Perricone, "Software errors and complexity: An empirical inves-
tigation," Commun. ACM, vol. 27, no. 1, pp. 42-52, Jan. 1984.

[2] V. R. Basili and R. W. Selby, "Data collection and analysis in software research and
management," in Proc. Amer. Statist. Ass. and Biometric Soc. Joint Statistical Meet-

ings, Philadelphia, PA, Aug. 13-16, 1984.
[3] "Comparing the effectiveness of software testing strategies," Dep. Comput. Sci.,

Univ. Maryland, College Park, Tech. Rep. TR-1501, May 1985.
[4] V. R. Basili, R. W. Selby, and D. H. Hutchens, "Experimentation in software en-

gineering," IEEE Trans. Software Eng., vol. SE-12, no. 7, pp. 733-743, July 1986.
[5] V. R. Basili and A. J. Turner, SIMPL-T: A Structured Programming Language. Pala-

din House, 1976.
[6] V. R. Basili and D. M. Weiss, "A methodology for collecting valid software engi-

neering data," IEEE Trans. Software Eng., vol. SE-10, no. 6, pp. 728-738, Nov.
1984.

[7] G. E. P. Box. W. G. Hunter, and J. S. Hunter, Statistics for Experimenters. New
York: Wiley, 1978.

[8] T. A. Budd, R. J. Lipton, F. G. Sayward, and R. DeMillo, "The design of a proto-
type mutation system for program testing," Proc. AFIPS Conf., vol. 47, pp. 623-
627, 1978.

[9] R. Cailliau and F. Rubin, "ACM forum: On a controlled experiment in program
testing," Commun. ACM, vol. 22, pp. 687-688, Dec. 1979.

[10] L. A. Clarke, Program Chair, Proc. Workshop Software Testing, Banff, Alta.,
Canada, July 15-17, 1986.

[1 1] V. Church, "Benchmark statistics for the VAX 11/780 and the IBM 4341," Com-
puter Sciences Corporation, Silver Spring, MD, Internal Memo, 1984.

[12] W. G. Cochran and G. M. Cox. Experimental Designs. New York: Wiley, 1950.
[13] J. C. Deprie, "Report from the IFIP Working Group on Terminology," in Proc. 15th

Annu. Int. Symp. Fault Tolerant Computing, University of Michigan, Ann Ar-
bor, MI, June 19-21, 1985.

[14] M. E. Fagan, "Design and code inspections to reduce errors in program develop-
ment," IBM Sys. J., vol. 15, no. 3, pp. 182-211, 1976.

[15] K. A. Foster, "Error sensitive test cases," IEEE Trans. Software Eng., vol. SE-
6, no. 3, pp. 258-264, 1980.

[16] P. G. Frankl and E. J. Weyuker, "Data flow testing in the presence of unexecutable
paths," in Proc. Workshop Software Testing, Banff, Alta., Canada, July 15-17,
1986, pp. 4-13.

[17] M. R. Girgis and M. R. Woodward. "An experimental comparison of the error expos-
ing ability of program testing criteria," in Proc. Workshop Software Testing, Banff,
Alta., Canada, July 15-17, 1986, pp. 64-73.

[18] S. A. Gloss-Soler, 'The DACS glossary: A bibliography of software engineering
terms. Data & Analysis Center for Software," Griffiss Air Force Base. NY, Rep.
GLOS-1, Oct. 1979.

[19] J. B. Goodenough and S. L. Gerhart, "Toward a theory of test data selection," IEEE

Trans. Software Eng., vol. SE-1, pp. 156-173, June 1975.

 Comparing the Effectiveness of Software Testing Strategies 337

{20] J. D. Gould, "Some psychological evidence on how people debug computer pro-
grams," Int. J. Man-Machine Studies, vol. 7, pp. 151-182, 1975.

[21] J. D. Gould and P. Drongowski, "An exploratory study of computer program debug-
ging," Human Factors, vol. 16, no. 3, pp. 258-277, 1974.

[23] W. C. Hetzel, "An experimental analysis of program verification problem solving
capabilities as they relate to programmer efficiency," Comput. Personnel, vol. 3, no.
3, pp. 10-15. 1972.

[23] W. C. Hetzel, "An experimental analysis of program verification methods," Ph.D.
dissertation, Univ. North Carolina, Chapel Hill, 1976.

[24] W. E. Howden, "Symbolic testing and the DISSECT symbolic evaluation system,"
IEEE Trans. Software Eng., vol. SE-3, no. 4, pp. 266-278,1977.

[25] "Algebraic program testing," Acta Inform., vol. 10, 1978.
[26] "An evaluation of the effectiveness of symbolic testing," Software—Practice and

Experience, vol. 8, pp. 381-397, 1978.
[27] "Functional program testing," IEEE Trans. Software Eng., vol. SE-6, pp. 162-

169, Mar. 1980.
[28] "Applicability of software validation techniques to scientific programs," ACM

Trans. Program. Lang. Syst., vol. 2, no. 3, pp. 307-320, July 1980
[29] "A survey of dynamic analysis methods," in Tutorial: Software Testing & Valida-

tion Techniques, 2nd ed., E. Miller and W. E. Howden, Eds. Washington. DC:
IEEE Computer Society Press, 1981, pp. 209-231.

[30] S-S. V. Hwang, "An empirical study in functional testing, structural testing, and
code reading inspection*," Dep. Comput. Sci., Univ. Maryland, College Park.
Scholarly Paper 362, Dec. 1981.

[31] IEEE Standard Glossary of Software Engineering Terminology, IEEE, New York,
Rep. IEEE-STD-729-l983, 1983.

[32] Z. Jelinski and P. B. Moranda, "Applications of a probability-based model to a
code reading experiment," in Proc. IEEE Symp. Computer Software Reliability,

New York, 1973, pp. 78-81.
[33] K. Jensen and N. Wirth. Pascal User Manual and Report, 2nd ed. New York: Springer

Verlag. 1974.
[34] W. L. Johnson. S. Draper, and E. Soloway, "An effective bug classification

scheme must take the programmer into account," in Proc. Workshop High-Level

Debugging, Palo Alto, CA, 1983.
[35] R. C. Linger, H. D. Mills, and B. I. Witt, Structured Programming: Theory and

Practice. Reading, MA: Addison-Wesley, 1979.
[36] P. R. McMullin and J. D. Gannon, "Evaluating a data abstraction testing system

based on formal specifications," Dep. Comput. Sci., Univ. Maryland, College Park,
Tech. Rep. TR-993, Dec. 1980.

[37] B. Meyer, "On formalism in specifications," IEEE Software, vol. 2, pp. 6-26, Jan.
1985.

[38] E. Miller and W. E. Howden, Tutorial: Software Testing & Validation Techniques,

2nd ed., IEEE Catalog No. EHO 180-0. Washington. D.C: IEEE Computer Society
Press, 1981.

[39] H. D. Mills. "Mathematical foundations for structural programming." IBM Rep. FSL
72-6021, 1972.

[40] "How to write correct programs and know it," in Proc. Int. Conf. Reliable Software,
Los Angeles, CA, 1975, pp. 363-370.

|41] G. J. Myers, "A controlled experiment in program testing and code walkthroughs in-
spections," Commun. ACM, pp. 760-768, Sept. 1978.

[42] , The Art of Software Testing, New York: Wiley, 1979.

 Victor R. Basil and Richard W. Selby 338

[43] P. Naur, "Programming by action clusters," BIT, vol. 9, no. 3, pp. 250-258, 1969.
[44] T. J. Ostrand and E. J. Weyuker, "Collecting and categorizing software error data in an

industrial environment*," J. Syst. Software, vol. 4, pp. 289-300, 1984.
[45] D. J. Panzl, "Experience with automatic program testing," in Proc. NBS Trends and

Applications, Nat. Bureau Standards, Gaithersburg, MD, May 28, 1981, pp. 25-28.
[46] H. Scheffe, The Analysis of Variance. New York: Wiley, 1959.
[47] R. W. Selby, "An empirical study comparing software testing techniques," in Proc.

Sixth Minnowbrook Workshop Software Performance Evaluation, Blue Mountain
Lake, NY, July 19-22, 1983.

[48] "Evaluations of software technologies: Testing, CLEANROOM, and metrics,"
Ph.D. dissertation, Dep. Comput. Sci. Univ. Maryland, College Park, Tech. Rep. TR-
1500, 1985.

[49] "Combining software testing strategies: An empirical evaluation," in Proc. Work-

shop Software Testing, Banff, Alba., Canada, July 15-17, 1986, pp. 82-91.
[50] R. W. Selby, V. R. Basili, and F. T. Baker, "Cleanroom software development: An

empirical evaluation," IEEE Trans. Software Eng., vol. SE-13, pp. 1027-1037, Sept.
1987.

[51] R. W. Selby, V. R. Basili, J. Page, and F. E. Mc Garry, "Evaluating software testing
strategies," in Proc. Ninth Annu. Software Eng. Workshop, NASA/GSFC, Greenbelt,
MD, Nov. 1984.

[52] L. G. Stucki, "New directions in automated tools for improving software quality," in
Current Trends in Programming Methodology, R. T. Yeh, Ed. Englewood Cliffs, NJ:
Prentice Hall, 1977.

[53] P. M. Valdes and A. L. Goel, "An error-specific approach to testing," in Proc. 8th

Annu. Software Eng. Workshop, NASA/GSFC, Greenbelt, MD, Nov. 1983.
[54] D. M. Weiss and V. R. Basili, "Evaluating software development by analysis of

changes: Some data from the software engineering laboratory," IEEE Trans. Software

Eng., vol. SE-11, no. 2, pp. 157-168, Feb. 1985.
[55] M. R. Woodward, D. Hedley, and M. A. Henncll. "Experience with path analysis and

testing of programs," IEEE Trans. Software Eng., vol. SE-6, no. 3, pp. 278-286, May
1980.

[56] M. V. Zelkowitz, R. T. Yeh, R. G. Hamlet, J. D. Gannon, and V. R. Basili, "Software
engineering practices in the US and Japan," Computer, vol. 17, no. 6, pp. 57-66, June
1984.

Cleanroom Software Development: An Empirical

Evaluation

Richard W. Selby, Victor R. Basili and F. Terry Baker

Abstract. The Cleanroom software development approach is intended to
produce highly reliable software by integrating formal methods for specifi-
cation and design, nonexecution-based program development, and statisti-
cally based independent testing. In an empirical study, 15 three-person
teams developed versions of the same software system (800-2300 source
lines); ten teams applied Cleanroom, while five applied a more traditional
approach. This analysis characterizes the effect of Cleanroom on the deliv-
ered product, the software development process, and the developers.
 The major results of this study are the following. 1) Most of the devel-
opers were able to apply the techniques of Cleanroom effectively (six of the
ten Cleanroom teams delivered at least 91 percent of the required system
functions). 2) The Cleanroom teams' products met system requirements
more completely and had a higher percentage of successful operationally
generated test cases. 3) The source code developed using Cleanroom had
more comments and less dense control-flow complexity. 4) The more suc-
cessful Cleanroom developers modified their use of the implementation
language; they used more procedure calls and IF statements, used fewer
CASE and WHILE statements, and had a lower frequency of variable reuse
(average number of occurrences per variable). 5) All ten Cleanroom teams
made all of their scheduled intermediate product deliveries, while only two
of the five non-Cleanroom teams did. 6) Although 86 percent of the Clean-
room developers indicated that they missed the satisfaction of program exe-
cution to some extent, this had no relation to the product quality measures
of implementation completeness and successful operational tests. 7) Eighty-
one percent of the Cleanroom developers said that they would use the ap-
proach again.

Key Words: Empirical study, methodology evaluation, off-line software review,
software development methodology, software management, software measure-
ment, software testing.

Manuscript received February 28, 1985; revised May 30, 1986. This work was supported in
part by the Air Force Office of Scientific Research under Contract AFOSR-F49620-80-C-
001 to the University of Maryland and the University of California Faculty Research Fel-
lowship Program. Computer support was provided in part by the Computer Science Center
at the University of Maryland.
R. W. Selby, Member, IEEE, is with the Department of Information and Computer Science.
University of California, Irvine, CA 92717.
V. R. Basili, Senior Member, IEEE, and F. T. Baker are with the Department of Computer
Science, University of Maryland, College Park, MD 20742.

 Richard W. Selby, Victor R. Basili and F. Terry Baker 340

I. Introduction

The need for discipline in the software development process and for high quality
software motivates the Cleanroom software development approach. In addition to
improving the control during development, this approach is intended to deliver a
product that meets several quality aspects: a system that conforms with the re-
quirements, a system with high operational reliability, and source code that is eas-
ily readable.
 Section II describes the Cleanroom approach and Section III presents a frame-
work of goals for characterizing its effect. Section IV describes an empirical study
using the approach. Section V gives the results of the analysis comparing projects
developed using Cleanroom with those of a control group. The overall conclusions
appear in Section VI.

II. Cleanroom Development

The following sections describe the Cleanroom software development approach,
discuss its introduction to an environment, describe the relationship of Cleanroom
to software prototyping, and explain the role of software tools in Cleanroom de-
velopment.

A. Cleanroom Software Development

The IBM Federal Systems Division (FSD) [23], [19], [24], [21], [16] presents the
Cleanroom software development method as a technical and organizational ap-
proach to developing software with certifiable reliability. The idea is to deny the
entry of defects during the development of software, hence the term "Cleanroom."
The focus of the method, which is an extension of the FSD software engineering
program [22], is imposing discipline on the development process by integrating
formal methods for specification and design, nonexecution-based program devel-
opment, and statistically based independent testing. These components are in-
tended to contribute to a software product that has a high probability of zero de-
fects and consequently a high measure of operational reliability.
1. Software Life Cycle of Executable Increments: In the Cleanroom approach,

software development is organized around the incremental development of
the software product [16]. Instead of considering software design, implemen-
tation, and testing as sequential stages in a software life cycle, software de-
velopment is considered as a sequence of executable product increments. The
increments accumulate over the development life cycle and result in a final
product with full functionality.

2. Formal Methods for Specification and Design: In order to support the life cy-
cle of executable increments, Cleanroom developers utilize "structured speci-
fications" to divide the product functionality into deeply nested subsets that

 Cleanroom Software Development: An Empirical Evaluation 341

can be developed incrementally. The mathematically based design methodol-
ogy in Cleanroom [22] incorporates the use of both structured specifications
and state machine models [26]. A systems engineer introduces the structured
specifications to restate the system requirements precisely and organize the
complex problems into manageable parts [41]. The specifications determine
the "system architecture" of the interconnections and groupings of capabilities
to which state machine design practices can be applied. System implementa-
tion and test data formulation can then proceed from the structured specifica-
tions independently.

3. Development without Program Execution: The right-the-first-time program-
ming methods used in Cleanroom are the ideas of functionally based pro-
gramming in [38], [32]. The testing process is completely separated from the
development process by not allowing the developers to test and debug their
programs. The developers focus on the techniques of code reading by step-
wise abstraction [32], code inspections [25], group walkthroughs [40], and
formal verification [29], [32], [44], [20] to assert the correctness of their im-
plementation. These non-execution-based methods are referred to as "off-line
software review techniques" in this paper. These constructive techniques ap-
ply throughout all phases of development, and condense the activities of de-
fect detection and isolation into one operation. Empirical evaluations have
suggested that the software review method of code reading by stepwise ab-
straction is at least as effective in detecting faults as execution-based methods
[7], [43]. The intention in Cleanroom is to impose discipline on software de-
velopment so that system correctness results from a coherent, readable design
rather than from a reliance on execution-based testing. The notion that "Well,
the software should always be tested to find the faults" is eliminated.

4. Statistically Based, Independent Testing: In the statistically based testing
strategy of Cleanroom, independent testers simulate the operational environ-
ment of the system with random testing. This testing process includes defin-
ing the frequency distribution of inputs to the system, the frequency distribu-
tion of different system states, and the expanding range of developed system
capabilities. Test cases then are chosen randomly and presented to the series
of product increments, while concentrating on functions most recently deliv-
ered and maintaining the overall composite distribution of inputs. The inde-
pendent testers then record observed failures and determine an objective
measure of product reliability. Since software errors tend to vary widely in
how frequently they are manifested as failures [1], operational testing is espe-
cially useful to assess the impact of software errors on product reliability. In
addition to the statistical testing approach, the independent testers submit a
limited number of test cases to ensure correct system operation for situations
in which a software failure would be catastrophic. It is believed that the prior
knowledge that a system will be evaluated by random testing will affect sys-
tem reliability by enforcing a new discipline into the system developers.

 The independent testing group operationally tests the software product incre-
ments from a perspective of reliability assessment, rather than a perspective of er-
ror detection. The responsibility of the test group is, therefore, to certify the reli-

 Richard W. Selby, Victor R. Basili and F. Terry Baker 342

ability of the increments and final product rather than assist the development
group in getting the product to an acceptable level of quality. One approach for
measuring the reliability of the increments is through the use of a projected mean-
time-between-failure (MTBF). MTBF estimations, based on user representative
testing, provide both development managers and users with a useful, readily inter-
pretable product reliability measure. Statistical models for calculating MTBF's
projections include [34], [39], [33], [45], [15], [27], [16].

B. Introducing Cleanroom into a Development Environment

Before introducing the Cleanroom methodology into a software production envi-
ronment, the developers need to be educated in the supporting technology areas.
The technology areas consist of the development techniques and methods outlined
in the above sections describing the components of Cleanroom. Potential Clean-
room users should also understand the goals of the development approach and be
motivated to deliver high quality software products. One fundamental aspect of
motivating the developers is to convince them that they can incorporate error pre-
vention into the software process and actually produce error-free software. This
"error-free perspective" is a departure from a current view that software errors are
always present and error detection is the critical consideration.

C. Cleanroom versus Prototyping

The Cleanroom methodology and software prototyping are not mutually exclusive
methods for developing software—the two approaches may be used together. The
starting point for Cleanroom development is a document that states the user re-
quirements. The production of that requirement document is an important portion
of the software development process. Software prototyping is one approach that
may be used to determine or refine the user requirements, and hence, produce the
system requirements document [31], [47]. After the production of the require-
ments document, the prototype would be discarded and the Cleanroom methodol-
ogy could be applied.

D. Tool Use in Cleanroom

Since Cleanroom developers do not execute their source code, does that mean that
Cleanroom prohibits the use of tools during development? No—software tools can
play an important role in the Cleanroom development approach. Various software
tools can be used to help construct and manipulate the system design and source
code. These tools can also be used to detect several types of errors that commonly
occur in the system design and source code. The use of such tools facilitates the
process of reviewing the system design and source code prior to submission for
testing by the independent group. Some of the tools that may assist Cleanroom de-
velopers include various static analyzers, data flow analyzers, syntax checkers,
type checkers, formal verification checkers, concurrency analyzers, and modeling
tools.

 Cleanroom Software Development: An Empirical Evaluation 343

III. Investigation Goals

Some intriguing aspects of the Cleanroom approach include 1) development with-
out testing and debugging of programs, 2) independent program testing for quality
assurance (rather than to find faults or to prove "correctness" [30]), and 3) certifi-
cation of system reliability before product delivery. In order to understand the ef-
fects of using Cleanroom, we proposed the following three goals: 1) characterize
the effect of Cleanroom on the delivered product, 2) characterize the effect of
Cleanroom on the software development process, and 3) characterize the effect of
Cleanroom on the developers. An application of the goal/question/metric para-
digm [6], [10] lead to the framework of goals and questions for this study which
appears in Fig. 1. The empirical study executed to pursue these goals is described
in the following section.

IV. Empirical Study Using Cleanroom

This section describes an empirical study comparing team projects developed us-
ing Cleanroom with those using a more conventional approach.

A. Subjects

Subjects for the empirical study came from the "Software Design and Develop-
ment" course taught by F. T. Baker and V. R. Basili at the University of Maryland
in the Falls of 1982 and 1983. The initial segment of the course was devoted to the
presentation of several software development methodologies, including top-down
design, modular specification and design, PDL, chief programmer teams, program
correctness, code reading, walkthroughs, and functional and structural testing
strategies. For the latter part of the course, the individuals were divided into three-
person chief programmer teams for a group project [2], [37], [3]. We attempted to
divide the teams equally according to professional experience, academic perform-
ance, and implementation language experience. The subjects had an average of 1.6
years professional experience and were university computer science students with
graduate, senior, or junior standing. The subjects' professional experience pre-
dominantly came from government organizations and private software contractors
in the Washington, DC area. Fig. 2 displays the distribution of the subjects' pro-
fessional experience.

B. Project Developed

A requirements document for an electronic message system (read, send, mailing
lists, authorized capabilities, etc.) was distributed to each of the teams. The project
was to be completed in six weeks and was expected to be about 1500 lines of

 Richard W. Selby, Victor R. Basili and F. Terry Baker 344

Simpl-T1 source code [9]. The development machine was a Univac 1100/82 run-
ning EXEC VIII, with 1200 baud interactive and remote access available.

C. Cleanroom Development Approach versus Traditional Approach

The ten teams in the Fall 1982 course applied the Cleanroom software develop-
ment approach, while the five teams in the Fall 1983 course served as a control
group (non-Cleanroom). All other aspects of the developments were the same. The

1Simpl-T is a structured language that supports several string and file handling primitives,
in addition to the usual control flow constructs available, for example, in Pascal. If Pascal
or Fortran had been chosen, it would have been very likely that some individuals would
have had extensive experience with the language, and this would have biased the compari-
son. Also, restricting access to a compiler that produced executable code would have been
very difficult.

 Cleanroom Software Development: An Empirical Evaluation 345

two groups of teams were not statistically different in terms of professional ex-
perience, academic performance, or implementation language experience. If there
were any bias between the two times the course was taught, it would be in favor of
the 1983 (non-Cleanroom) group because the modular design portion of the course
was presented earlier. It was also the second time F. T. Baker had taught the
course.
 The Cleanroom teams entered their source code on-line, used a syntax-checker
(but did not do automated type checking across modules), and were not able to
execute their programs. The Cleanroom teams relied on the techniques of code
reading, structured walkthroughs, and inspections to prepare their evolving sys-
tems before submission for independent testing. The non-Cleanroom teams were
able to execute and debug their programs and applied several modern program-
ming practices: modular design, top-down development, data abstraction, PDL,
functional testing, design reviews, etc. The non-Cleanroom method was intended
to reflect a software development approach that is currently in use in several soft-
ware development organizations. Note that the non-Cleanroom method was
roughly similar to the “disciplined team” development methodology examined in
an earlier study [5].
 One issue to consider when comparing a "newer" approach with an existing
one is whether one group will try harder just because they are using the newer ap-
proach. This effect is referred to as the Hawthorne effect. In order to combat this
potential effect, we decided to have all the members of one course apply the same

development approach2.
 In order to diffuse any of the Cleanroom developers from

thinking that they were being compared relative to a previously applied approach,
we decided that Cleanroom would be used in the earlier (1982) course. Therefore,
there was no obvious competing arrangement in terms of approaches that were
newer versus controlled.

D. Project Milestones

The objective for all teams from both groups was to develop the full system de-
scribed in the requirements document. The first document every team in either
group turned in contained a system specification, composite design diagram, and

2 This decision also happened to result in the two groups not being as close in terms of size as they

could have been.

 Richard W. Selby, Victor R. Basili and F. Terry Baker 346

implementation plan. The implementation plan was a series of milestones chosen
by the individual teams which described when the various functions within the
system would be available. At these various dates—minimum one week apart,
maximum two—teams from the groups would then submit their systems for inde-
pendent testing. Note that both the Cleanroom and non-Cleanroom teams had the
benefit of the independent testing throughout development. An independent party
would apply statistically based testing to each of the deliveries and report to the
team members both the successful and unsuccessful test cases. The unsuccessful
test cases would be included in a team's next test session for verification. The fol-
lowing section briefly describes the operationally based testing process applied to
all projects by the independent tester.

E. Operational Testing of Projects

The testing approach used in Cleanroom is to simulate the developing system's
environment by randomly selecting test data from an "operational profile", a fre-
quency distribution of inputs to the system [46], [18]. The projects from both
groups were tested interactively by an independent party (i.e., R. W. Selby) at the
milestones chosen by each team. A distribution of inputs to the system was ob-
tained by identifying the logical functions in the system and assigning each a fre-
quency. This frequency assignment was accomplished by polling eleven well-
seasoned users of a University of Maryland Vax 11 /780 mailing system. Then test
data were generated randomly from this profile and presented to the system. Re-
cording of failure severity and times between failure took place during the testing
process. The operational statistics referred to later were calculated from 50 user-
session test cases run on the final system release of each team. For a complete ex-
planation of the operationally based testing process applied to the projects, includ-
ing test data selection, testing procedure, and failure observation, see [42].

F. Project Evaluation

All team projects were evaluated on their use of the particular software develop-
ment techniques, the independent testing results, and a final oral interview. Both
groups of subjects were judged to be highly motivated during the development of
their systems. One reason for their motivation was their being graded based on the
evaluation of their team projects. Information on the team projects was also col-
lected from a background questionnaire, a post-development attitude survey, static
source code analysis, and operating system statistics.

V. Data Analysis and Interpretation

The analysis and interpretation of the data collected from the study appear in the
following sections, organized by the goal areas outlined earlier. In order to address
the various questions posed under each of the goals, some raw data usually will be
presented and then interpreted. Fig. 3 presents the number of source lines, execu-

 Cleanroom Software Development: An Empirical Evaluation 347

table statements, and procedures and functions to give a rough view of the systems
developed.

A. Characterization of the Effect on the Product Developed

This section characterizes the differences between the products delivered by the
two development groups. Researchers have delineated numerous perspectives of
software product quality [36], [14], [13], and the following sections examine as-
pects of several of these perspectives. Initially we examine some operational prop-
erties of the products, followed by a comparison of some of their static properties.
1) Operational System Properties: In order to contrast the operational properties

of the systems delivered by the two groups, both completeness of implemen-
tation and operational testing results were examined. A measure of implemen-
tation completeness was calculated by partitioning the required system into 16
logical functions (e.g., send mail to an individual, read a piece of mail, re-
spond, add yourself to a mailing list, . . .). Each function in an implementation
was then assigned a value of two if it completely met its requirements, a value
of one if it partially met them, or zero if it was inoperable. The total for each
system was calculated; a maximum score of 32 was possible. Fig. 4 displays
this subjective measure of requirement conformance for the systems. Note
that in all figures presented, the ten teams using Cleanroom are in upper case
and the five teams using a more conventional approach are in lower case. A
first observation is that six of the ten Cleanroom teams built very close to the
entire system. While not all of the Cleanroom teams performed equally well,
a majority of them applied the approach effectively enough to develop nearly
the whole product. More importantly, the Cleanroom teams met the require-
ments of the system more completely than did the non-Cleanroom teams.

To compare testing results among the systems developed in the two
groups, 50 random user-session test cases were executed on the final release
of each system to simulate its operational environment. If the final release of
a system performed to expectations on a test case, the outcome was called a
"success;" if not, the outcome was a "failure." If the outcome was a "failure"
but the same failure was observed on an earlier test case run on the final re-
lease, the outcome was termed a "duplicate failure." Fig. 5 shows the percent-
age of successful test cases when duplicate failures are not included. The fig-
ure displays that Cleanroom projects had a higher percentage of successful

test cases at system delivery3. When duplicate failures are included, however,
the better performance of the Cleanroom systems is not nearly as significant

(MW = 0.134).4 This is caused by the Cleanroom projects having a

3Although not considered here, various software reliability models have been proposed to
forecast system reliability based on failure data (see Section JI-A-4)
4 To be more succinct, MW will sometimes be used to abbreviate the significance level of
the Mann-Whitney statistic. The significance levels for the Mann-Whitney statistics re-
ported are the probability of Type 1 error in a one-tailed test.

 Richard W. Selby, Victor R. Basili and F. Terry Baker 348

Fig. 3. System statistics

relatively higher proportion of duplicate failures, even though they did better
overall. This demonstrates that while reviewing the code, the Cleanroom develop-
ers focused less than the other group on certain parts of the system. The more uni-
form review of the whole system makes the performance of the system less sensi-
tive to its operational profile. Note that operational environments of systems are
usually difficult to define a priori and are subject to change.
 In both of the product quality measures of implementation completeness and

operational testing results, there was quite a variation in performance.5 A wide
variation may have been expected with an unfamiliar development technique, but
the developers using a more traditional approach had a wider range of perform-
ance than did those using Cleanroom in both of the measures even with there be-
ing twice as many Cleanroom teams. All of the above differences are magnified
by recalling that the non-Cleanroom teams did not develop their systems in one
monolithic step, they (also) had the benefit of periodic operational testing by inde-
pendent testers. Since both groups of teams had independent testing of all their de-
liveries, the early testing of deliveries must have revealed most faults overlooked
by the Cleanroom developers.

5 An alternate perspective includes only the more successful projects from each group in
the comparison of operational product quality. When the best 60 percent from each ap-
proach are examined (i.e., removing teams "d," "e," "A," "E," "F," and "1"), the Mann-
Whitney significance level for comparing implementation completeness becomes 0.045 and
the significance level for comparing successful test cases (without duplicate failures) be-
comes 0.034. Thus, comparing the best teams from each approach increases the evidence in
favor of Cleanroom in both of these product quality measures.

 Cleanroom Software Development: An Empirical Evaluation 349

 These comparisons suggest that the non-Cleanroom developers focused on a
"perspective of the tester," sometimes leaving out classes of functions and causing
a less completely implemented product and more (especially unique) failures. Off-
line software review techniques, however, are more general and their use contrib-
uted to more complete requirement conformance and fewer failures in the Clean-
room products. In addition to examining the operational properties of the product,
various static properties were compared.

2) Static System Properties: The first question in this goal area concerns the size

of the final systems. Fig. 3 showed the number of source lines, executable
statements, and procedures and functions for the various systems. The pro-
jects from the two groups were not statistically different (MW > 0.10) in any
of these three size attributes. Another question in this goal area concerns the
readability of the delivered source code. Although readability is not equiva-
lent to maintainability, modifiability, or reusability, it is a central component
of each of these software quality aspects. Two aspects of reading and altering
source code are the number of comments present and the density of the "com-
plexity." In an attempt to capture the complexity density, syntactic complexity
[4] was calculated and normalized by the number of executable statements. In
addition to control-flow complexity, the syntactic complexity metric consid-
ers nesting depth and prime program decomposition [32]. The developers us-
ing Cleanroom wrote code that was more highly commented (MW = 0.089)
and had a lower complexity density (MW = 0.079) than did those using the
traditional approach. A calculation of either software science effort [28], cyc-

 Richard W. Selby, Victor R. Basili and F. Terry Baker 350

lomatic complexity [35], or syntactic complexity without any size normaliza-
tion, however, produced no significant differences (MW > 0.10). This seems
as expected because all the systems were built to meet the same requirements.
Comparing the data usage in the systems, Cleanroom developers used a
greater number of nonlocal data items (MW = 0.071). Also, Cleanroom pro-
jects possessed a higher percentage of assignment statements (MW = 0.056).
These last two observations could be a manifestation of teaching the Clean-
room subjects modular design later in the course (see Section IV-C), or possi-
bly an indication of using the approach. One interpretation of the Cleanroom
developers' use of more nonlocal data could be that the resulting software
would be less reusable and less portable. In fact, however, the increased use
of nonlocal data by some Cleanroom developers was because of their use of
data abstraction. In order to incorporate data abstraction into a system imple-
mented in the Simpl-T programming language, developers may create inde-
pendently compilable program units that have retained nonlocal data and as-
sociated accessing routines.
 Some interesting observations surface when the operational quality meas-
ures of just the Cleanroom products are correlated with the usage of the im-
plementation language. Both percentage of successful test cases (without du-
plicate failures) and implementation completeness correlated with percentage
of procedure calls (Spearman R = 0.65, signif. = 0.044. and R = 0.57, signif. =
0.08, respectively) and with percentage of IF statements (R = 0.62, signif. =
0.058, and R = 0.55, signif. = 0.10, respectively). However, both of these two
product quality measures correlated negatively with percentage of CASE
statements (R = -0.86, signif. = 0.001, and R = -0.69, signif. = 0.027, respec-
tively) and with percentage of WHILE statements (R = -0.65, signif. = 0.044.
and R = -0.49, signif. = 0.15, respectively). There were also some negative
correlations between the product quality measures and the average software
science effort per subroutine (R = -0.52, signif. = 0.12, and R = -0.74. signif.
= 0.013, respectively) and the average number of occurrences of a variable (R
= -0.54, signif. = 0.11, and R = -0.56, signif. = 0.09, respectively). Consider-
ing the products from all teams, both percentage of successful test cases
(without duplicate failures) and implementation completeness had some cor-
relation with percentage of IF statements (R = 0.48, signif. = 0.07, and R =
0.45, signif. = 0.09, respectively) and some negative correlation with percent-
age of CASE statements (R = -0.48, signif. = 0.07, and R = -0.42, signif. =
0.12, respectively). Neither of the operational product quality measures corre-
lated with percentage of assignment statements when either all products or
just Cleanroom products were considered. These observations suggest that the
more successful Cleanroom developers simplified their use of the implemen-
tation language; i.e., they used more procedure calls and IF statements, used
fewer CASE and WHILE statements, had a lower frequency of variable reuse,
and wrote subroutines requiring less software science effort to comprehend.

3) Contribution of Programmer Background: When examining the contribution
of the Cleanroom programmers background to the quality of their final prod-
ucts, general programming language experience correlated with percentage of

 Cleanroom Software Development: An Empirical Evaluation 351

successful operational tests (without duplicate failures: Spearman R = 0.66,
signif. = 0.04; with duplicates: R = 0.70, signif. = 0.03) and with implementa-
tion completeness (R = 0.55; signif. = 0.10). No relationship appears between
either operational testing results or implementation completeness and either
professional7 or testing experience. These background/quality relations seem
consistent with other studies [17].

4) Summary of the Effect on the Product Developed: In summary, Cleanroom
developers delivered a product that 1) met system requirements more com-
pletely, 2) had a higher percentage of successful test cases, 3) had more com-
ments and less dense control-flow complexity, and 4) used more nonlocal
data items and a higher percentage of assignment statements. The more suc-
cessful Cleanroom developers 1) used more procedure calls and IF state-
ments, 2) used fewer CASE and WHILE statements, 3) reused variables less
frequently, 4) developed subroutines requiring less software science effort to
comprehend, and 5) had more general programming language experience.

B. Characterization of the Effect on the Development Process

In a post development attitude survey, the developers were asked how effectively
they felt they applied off-line software review techniques in testing their projects
(see Fig. 6). This was an attempt to capture some of the information necessary to
answer the first question under this goal (question II-A). In order to make com-
parisons at the team level, the responses from the members of a team are com-
posed into an average for the team. The responses to the question appear on a team
basis in a histogram in the second part of the figure. Of the Cleanroom developers,
teams "A," "D," "E," "F," and "I" were the least confident in their use of the off-

 Richard W. Selby, Victor R. Basili and F. Terry Baker 352

line review techniques and these teams also performed the worst in terms of op-
erational testing results; four of these five teams performed the worst in terms of
implementation completeness. Offline review effectiveness correlated with per-
centage of successful operational tests (without duplicate failures) for the Clean-
room teams (Spearman R = 0.74; signif. = 0.014) and for all the teams (R = 0.76;
signif. = 0.001); it correlated with implementation completeness for all the teams
(R = 0.58; signif. = 0.023). Neither professional nor testing experience correlated
with off-line review effectiveness when either all teams or just Cleanroom teams
were considered.
 The histogram in Fig. 6 shows that the Cleanroom developers felt they applied
the off-line review techniques more effectively than did the non-Cleanroom teams.
The non-Cleanroom developers were asked to give a relative breakdown of the
amount of time spent applying testing and off-line review techniques. Their ag-
gregate response was 39 percent off-line review, 52 percent functional testing, and
9 percent structural testing. From this breakdown, we observe that the non-
Cleanroom teams primarily relied on functional testing to prepare their systems
for independent testing. Since the Cleanroom teams were unable to rely on testing
methods, they may have (felt they had) applied the off-line review techniques
more effectively.
 Since the role of the computer is more controlled when using Cleanroom, one
would expect a difference in online activity between the two groups. Fig. 7 dis-
plays the amount of connect time that each of the teams cumulatively used. A
comparison of the cpu-time used by the teams was less statistically significant
(MW = 0.110). Neither of these measures of on-line activity related to how effec-
tively a team felt they had used the off-line review techniques when either all
teams or just Cleanroom teams were considered. Although non-Cleanroom team
"d" did a lot of on-line testing and non-Cleanroom team "e" did little, both teams
performed poorly in the measures of operational product quality discussed earlier.
The operating system of the development machine captured these system usage

statistics. Note that the time the independent party spent testing is included.6

These observations exhibit that Cleanroom developers spent less time on-line and
used fewer computer resources. These results empirically support the reduced role
of the computer in Cleanroom development.
 Schedule slippage continues to be a problem in software development. It
would be interesting to see whether the Cleanroom teams demonstrated any more
discipline by maintaining their original schedules. All of the teams from both
groups planned four releases of their evolving system, except for team "G" which
planned five. Recall that at each delivery an independent party would operation-
ally test the functions currently available in the system, according to the team's
implementation plan. In Fig. 8, we observe that all the teams using Cleanroom
kept to their original schedules by making all planned deliveries; only two non-
Cleanroom teams made all their scheduled deliveries.

6 When the time the independent tester spent is not included, the significance levels for the
nonparametric statistics do not change.

 Cleanroom Software Development: An Empirical Evaluation 353

Fig. 7. Connect time in hours during project development.7

1) Summary of the Effect on the Development Process: Summarizing the effect on
the development process, Cleanroom developers 1) felt they applied off-line re-
view techniques more effectively, while non-Cleanroom teams focused on func-
tional testing; 2) spent less time online and used fewer computer resources; and 3)
made all their scheduled deliveries.

C. Characterization of the Effect on the Developers

The first question posed in this goal area is whether the individuals using Clean-
room missed the satisfaction of executing their own programs. Fig. 9 presents the
responses to a question included in the post development attitude survey on this
issue. As might be expected, almost all the individuals missed some aspect of pro-
gram execution. As might not be expected, however, this missing of program exe-

24 Non-Cleanroom team "e" entered a substantial portion of its system on a remote
machine, only using the Univac computer mainly for compilation and execution. Team
"e" was the only team that used any machine other than the Univac. (See Section V-D.)

 Richard W. Selby, Victor R. Basili and F. Terry Baker 354

cution had no relation to either the product quality measures mentioned earlier or
the teams' professional or testing experience. Also, missing program execution did
not increase with respect to program size (see Fig. 10).

 Fig. 11 displays the replies of the developers when they were asked how their
design and coding style was affected by not being able to test and debug. At first it
would seem surprising that more people did not modify their development style
when applying the techniques of Cleanroom. Several persons mentioned, however,
that they already utilized some of the ideas in Cleanroom. Keeping a simple de-
sign supports readability of the product and facilitates the processes of modifica-
tion and verification. Although some of the objective product measures presented
earlier showed differences in development style, these subjective ones are interest-
ing and lend insight into actual programmer behavior.
 One indicator of the impression that something new leaves on people is
whether they would do it again. Fig. 12 presents the responses of the individuals

 Cleanroom Software Development: An Empirical Evaluation 355

when they were asked whether they would choose to use Cleanroom again as ei-
ther a software development manager or as a programmer. Even though these re-
sponses were gathered (immediately) after course completion, subjects desiring to
"please the instructor" may have responded favorably to this type of question re-
gardless of their true feelings. Practically everyone indicated a willingness to ap-
ply the approach again. It is interesting to note that a greater number of persons in
a managerial role would choose to always use it. Of the persons that ranked the
reuse of Cleanroom fairly low in each category, four of the five were the same
people. Of the six people that ranked reuse low, four were from less successful
projects (one from team "A," one from team "E" and two from team ''I"), but the
other two came from reasonably successful developments (one from team "C" and
one from team "J"). The particular individuals on teams "E," "I," and "J" were the
four that rated reuse fairly low in both categories.
 1) Summary of the Effect on the Developers: In summary of the effect on the
developers, most Cleanroom developers 1) partially modified their development
style, 2) missed program execution, and 3) indicated that they would use the ap-
proach again.

Fig. 12. Breakdown of responses to the attitude survey question. "Would you use
Cleanroom again?" (One person did not respond to this question.)

D. Distinction Among Teams

In spite of efforts to balance the teams according to various factors (see Section
IV-A), a few differences among the teams were apparent. Two separate Clean-
room teams, "H" and "I," each lost a member late in the project. Thus at project

 Richard W. Selby, Victor R. Basili and F. Terry Baker 356

completion, there were eight three-person and two two-person Cleanroom teams.
Recall that team "H" performed quite well according to requirement conformance
and testing results, while team "I" did poorly. Also, the second group of subjects
did not divide evenly into three-person teams. Since one of those individuals had
extensive professional experience, non-Cleanroom team "e" consisted of that one
highly experienced person. Thus at project completion, there were four three-
person and one one-person non-Cleanroom teams. Although team "e" wrote over
1300 source lines, this highly experienced person did not do as well as the other
teams in some respects. This is consistent with another study in which teams ap-
plying a "disciplined methodology" in development outperformed individuals [5].
Appendix A contains the significance levels for the results of the analysis pre-
sented when team "e", when teams "H" and "I", and when teams "e", "H," and "I"
are removed from the analysis. Removing teams "H" and "I" has little effect on the
significance levels, while the removal of team "e" causes a decrease in all of the
significance levels except for executable statements, software science effort, cyc-
lomatic complexity, syntactic complexity, connect-time, and cpu-time.

VI. Conclusions

This paper describes "Cleanroom" software development—an approach intended
to produce highly reliable software by integrating formal methods for specification
and design, nonexecution-based program development, and statistically based in-
dependent testing. The goal structure, experimental approach, data analysis, and
conclusions are presented for a replicated-project study examining the Cleanroom
approach. This is the first investigation known to the authors that applied Clean-
room and characterized its effect relative to a more traditional development ap-
proach.
 The data analysis presented and the testimony provided by the developers sug-
gest that the major results of this study are the following. 1) Most of the develop-
ers were able to apply the techniques of Cleanroom effectively (six of the ten
Cleanroom teams delivered at least 91 percent of the required system functions).
2) The Cleanroom teams' products met system requirements more completely and
had a higher percentage of successful operationally generated test cases. 3) The
source code developed using Cleanroom had more comments and less dense con-
trol-flow complexity. 4) The more successful Cleanroom developers modified
their use of the implementation language; they used more procedure calls and IF
statements, used fewer CASE and WHILE statements, and had a lower frequency
of variable reuse (average number of occurrences per variable). 5) All ten Clean-
room teams made all of their scheduled intermediate product deliveries, while
only two of the five non-Cleanroom teams did. 6) Although 86 percent of the
Cleanroom developers indicated that they missed the satisfaction of program exe-
cution to some extent, this had no relation to the product quality measures of im-
plementation completeness and successful operational tests. 7) Eighty-one percent
of the Cleanroom developers said that they would use the approach again.

 Cleanroom Software Development: An Empirical Evaluation 357

 Based on the experience of applying Cleanroom in this study, some potential
areas for improving the methodology are as follows. 1) As mentioned above, sev-
eral Cleanroom developers tended to miss the satisfaction of program execution.
In order to circumvent a potential long-term psychological effect, a method for
providing such satisfaction to the developers would be useful. One suggestion
would be for developers to witness, but not influence, program execution by the
independent testers. 2) Several of the persons applying the Cleanroom approach
mentioned that they had some difficulty visualizing the user interface, and hence,
felt that the systems suffered in terms of "user-friendliness." One suggestion
would be to prototype the user interfaces as part of the requirement determination
phase, and then describe the interfaces in the requirements document, possibly us-
ing an interactive display specification language [11]. 3) A few of the Cleanroom
developers said that they did not feel subjected to a "full test." Recall that the reli-
ability certification component of the Cleanroom approach stands on the premise
that operationally-based testing is sufficient to assess system reliability. One sug-
gestion may be to augment the testing process with methods that enforce increased
coverage of the system requirements, design, and implementation and/or methods
that utilize frequent error profiles.
 Overall, it seems that the ideas in Cleanroom help attain the goals of producing
high quality software and increasing the discipline in the software development
process. The complete separation of development from testing appears to cause a
modification in the developers' behavior, resulting in increased process control
and in more effective use of methods for software specification, design, off-line
review, and verification. It seems that system modification and maintenance
would be more easily done on a product developed in the Cleanroom method, be-
cause of the product's thoroughly conceived design and higher readability. Facili-
tating the software modification and maintenance tasks results in a corresponding
reduction in associated costs to users. The amount of development effort required
by the Cleanroom approach was not gathered in this study because its purpose was
to examine the feasibility of Cleanroom and to characterize its effect. However,
even if using Cleanroom required additional development effort, it seems that the
potential reduction in maintenance and enhancement costs may result in an overall
decrease in software life cycle cost. Thus, achieving high requirement confor-
mance and high operational reliability coupled with low maintenance costs would
help reduce overall costs, satisfy the user community, and support a long product
lifetime.
 Other studies which have compared software development methodologies in-

clude [5] and [12].8 In [5] three software development approaches were compared:
a disciplined-methodology team approach, an ad hoc team approach, and an ad
hoc individual approach.
 The development approaches were applied by advanced university students
comprising seven three-person teams, six three-person teams, and six individuals,

8 For a survey of controlled, empirical studies that have been conducted in software engi-
neering, see [8].

 Richard W. Selby, Victor R. Basili and F. Terry Baker 358

respectively. They separately built a small (600-2200 line) compiler. The disci-
plined-methodology team approach significantly reduced the development costs as
reflected in program changes and runs. The resulting designs from the disciplined-
methodology teams and the ad hoc individuals were more coherent than the dis-
jointed designs developed by the ad hoc teams. In [12] two software development
approaches were compared: prototyping and specifying. Seven two- and three-
person teams, consisting of university graduate students, developed separate ver-
sions of the same (2000-4000 line) application program. The systems developed
by prototyping were smaller, required less development effort, and were easier to
use. The systems developed by specifying had more coherent designs, more com-
plete functionality, and software that was easier to integrate.

 Future possible research directions include 1) assessment of the applicability of
Cleanroom to larger software developments (note that aspects of the Cleanroom
approach are being used in a 30 000 source line project [21], [16]); 2) empirical
evaluation of the effect of Cleanroom from additional software quality perspec-
tives, including reusability and modifiability; and 3) further characterization of the
number and types of errors that occur when Cleanroom is or is not used.
 This empirical study is intended to advance the understanding of the relation-
ship between introducing discipline into the development process, as in Clean-
room, and several aspects of product quality: conformance with requirements,
high operational reliability, and easily readable source code. The results given

 Cleanroom Software Development: An Empirical Evaluation 359

were calculated from a set of teams applying Cleanroom development on a rela-
tively small project—the direct extrapolation of the findings to other projects and
development environments is not implied.

Appendix A

Fig. 13 presents the measure averages and the significance levels for the above
comparisons when team "e," when teams "H" and "I," and when teams "e," "H,"
and "I" are removed. The significance levels for the Mann-Whitney statistics re-
ported are the probability of Type I error in a one-tailed test.

Acknowledgment

The authors are grateful to D. H. Hutchens and R. W. Reiter for the use of their
static analysis program in this study.

References

[1] E. N. Adams. “Optimizing preventive service of software products,” IBM J. Res. De-

velop., vol. 28, no. 1, pp. 2-14, Jan. 1984.
[2] F. T. Baker. ''Chief programmer team management of production programming," IBM

Syst. J., vol. 11, no. 1, pp. 131-149, 1972.
[3] ——, "Chief programmer teams," in Tutorial on Structured Programming: Integrated

Practices. V. R. Basili and F. T. Baker, Eds. New York: IEEE, 1981.
[4] V. R. Basili and D. H. Hutchens. "An empirical study of a syntactic metric family,"

IEEE Trans. Software Eng., vol. SE-9, pp. 664-672, Nov. 1983.
[5] V. R. Basili and R. W. Reiter. "A controlled experiment quantitatively comparing soft-

ware development approaches," IEEE Trans. Software Eng., vol. SE-7, May 1981.
[6] V. R. Basili and R. W. Selby. "Data collection and analysis in software research and

management." in Proc. Amer. Statist. Ass. and Biometric Sov. Joint Statist. Meetings,
Philadelphia, PA, August 13-16, 1984.

[7] ——, "Comparing the effectiveness of software testing strategies, "Dep. Comput. Sci..
Univ. Maryland, College Park, Tech. Rep. TR-1501, May 1985; to appear in IEEE

Trans. Software Eng.

[8] V. R. Basili, R. W. Selby, and D. H. Hutchens, "Experimentation in software engineer-
ing," IEEE Trans. Software Eng., vol. SE-I2, pp. 733-743, July 1986.

[9] V. R. Basili and A. J. Turner. SIMPL-T: A Structured Programming Language. Geneva,
IL: Paladin House. 1976.

[10] V. R. Basili and D. M. Weiss, "A methodology for collecting valid software engineer-
ing data, "IEEE Trans. Software-Eng., vol. SE-10, pp. 728-738, Nov. 1984.

[11] L. J. Bass, "An approach to user specification of interactive display interfaces," IEEE

Trans. Software Eng., vol. SE-11, pp. 686-698, Aug. 1985,
[12] B. .W, Boehm, T. E. Gray, and T. Seewaldt, "Prototyping versus specifying: A multi-

project experiment," IEEE Trans. Software Eng., vol. SE-10, pp. 290-303, May 1984.

 Richard W. Selby, Victor R. Basili and F. Terry Baker 360

[13] T. P. Bowen, G. B. Wigle, and J. T. Tsai, "Specification of software quality attributes,"
Rome Air Development Center, Griffiss Air Force Base, NY, Tech. Rep. RADC-TR-
85-37 (3 volumes), Feb. 1985.

[14] J. P. Cavano and J. A. McCall. "A framework for the measurement of software qual-
ity," in Proc. Software Quality and Assurance Workshop, San Diego, CA, Nov. 1978,
pp. 133-139.

[15] P. A. Currit, "Cleanroom certification model." in Proc. 8th Annu. Software Eng. Work-

shop, NASA/GSFC, Greenbelt, MD, Nov. 1983.
[16] P. A. Currit, M. Dyer, and H. D. Mills, "Certifying the reliability of software," IEEE

Trans. Software Eng., vol. SE-12, pp. 3-11, Jan. 1986.
[17] B. Curtis, "Cognitive science of programming," in Sixth Minnowbrook Workshop

Software Performance Evaluation, Blue Mountain Lake, NY, July 19-22, 1983.
[18] J. W. Duran and S. Ntafos. "A report on random testing*," in Proc. Fifth Int. Conf.

Software Eng., San Diego, CA, Mar. 9-12, 1981, pp. 179-183.
[19] M. Dyer, "Cleanroom software development method,” IBM Federal Systems Division,

Bethesda. MD, Oct. 14, 1982.
[20] ——, "Software validation in the Cleanroom development method," IBM-FSD Tech.

Rep. 86.0003, Aug. 19, 1983.
[21] ——, "Software development under statistical quality control," In Proc. NATO Ad-

vanced Study Institute: The Challenge of Advanced Computing Technology to System

Design Methods. Durham, UK, July 29-Aug. 10, 1985.
[22] M. Dyer, R. C. Linger, H. D. Mills. D. O'Neill, and R. E. Quinnan. "The management

of software engineering," IBM Syst. J., vol. 19, no. 4, 1980.
[23] M. Dyer and H. D. Mills. "The Cleanroom approach to reliable software develop-

ment,'' in Proc. Validation Methods Research for Fault-Tolerant Avionics and Control

Systems Sub-Working-Group Meeting: Production of Reliable Flight-Crucial Soft-

ware, Research Triangle Institute, NC, Nov. 2-4, 1981.
[24] ——, "Developing electronic systems with certifiable reliability," in Proc. NATO

Conf., Summer 1982.
[25] M. E. Pagan, "Design and code inspections to reduce errors in program development,"

IBM Syst. J., vol. 15, no. 3, pp. 182-211, 1976.
[26] A. B. Ferrentino and H. D. Mills, "State machines and their semantics in software en-

gineering," in Proc. IEEE COMPSAC, 1977.
[27] A. L. Goel. "A guidebook for software reliability assessment," Dep. Industrial Eng.

and Oper. Res., Syracuse Univ., New York, Tech. Rep. 83-11, Apr. 1983.
[28] M. H. Halstead. Elements of Software Science. New York: North-Holland, 1977.
[29] C. A. R. Hoare. "An axiomatic basis for computer programming," Commun. ACM, vol.

12, no. 10. pp. 576-583, Oct. 1969.
[30] W. E. Howden, "Reliability of the path analysis testing strategy," IEEE Trans. Soft-

ware Eng., vol. SE-2. no. 3, Sept. 1976.
[31] P. Kerola and P. Freeman. "A comparison of lifecycle models," in Proc. 5th Int. Conf.

Software Eng., Mar. 1981, pp. 90-99.
[32] R. C. Linger, H. D. Mills, and B. I. Witt, Structured Programming: Theory and Prac-

tice. Reading, MA: Addison-Wesley, 1979.
[33] B. Littlewood, "Stochastic reliability growth: A model for fault renovation computer

programs and hardware designs.'' IEEE Trans. Rel., vol. R-30, Oct. 1981.
[34] B. Littlewood and J. L. Verrall. "A Bayesian reliability growth model for computer

software." Appl. Statist., vol. 22, no. 3, 1973.
[35] T. J. McCabe, "A complexity measure." IEEE Trans. Software Eng., vol. SE-2, pp.

308-320, Dec. 1976.

 Cleanroom Software Development: An Empirical Evaluation 361

[36] J. A. McCall. P. Richards, and G. Walters. "Factors in software quality," Rome Air
Development Center, Griffiss Air Force Base, NY, Tech. Rep. RADC-TR-77-369,
Nov. 1977.

[37] H. D. Mills, "Chief programmer teams: Principles and procedures." IBM Corp.,
Gaithersburg, MD, Rep. FSC 71-6012, 1972.

[38] ——. "Mathematical foundations for structural programming," IBM Rep. FSL 72-
6021, 1972.

[39] J. D. Musa. "A theory of software reliability and its application." IEEE Trans. Soft-

ware Eng., vol. SE-1, no. 3, pp. 312-327, 1975.
[40] G. J. Myers, Software Reliability: Principles & Practices. New York: Wiley, 1976.
[41] D. L. Parnas. "On the criteria to be used in decomposing systems into modules,"

Commun. ACM, vol. 15, no. 12, pp. 1053-1058, 1972.
[42] R. W. Selby, "Evaluations of software technologies: Testing, CLEANROOM, and

metrics," Ph.D. dissertation, Dep. Comput. Sci., Univ. Maryland, College Park, Tech.
Rep. TR-1500, 1985.

[43] —— "Combining software testing strategies: An empirical evaluation," in Proc.

Workshop Software Testing, Banff, Alta., Canada, July 15-17, 1986, pp. 82-91.
[44] K. S. Shankar, "A functional approach to module verification," IEEE Trans. Software

Eng., vol. SE-8, Mar. 1982.
[45] J. G. Shanthikumar, "A statistical time dependent error occurrence rate software reli-

ability model with imperfect debugging," in Proc. 1981 Nat. Comput. Conf., June
1981.

[46] R. A. Thayer, M. Lipow, and E. C. Nelson, Software Reliability. Amsterdam, The
Netherlands: North-Holland, 1978.

[47] M. V. Zelkowitz and M. Branstad, in Proc. ACM SIGSOFT Rapid Prototyping Symp.,
Apr. 1982.

Evolving and Packaging Reading Technologies

Victor R. Basili

Department of Computer Science and Institute for Advanced Computer Studies
University of Maryland, College Park, MD

Abstract Reading is a fundamental technology for achieving quality soft-
ware. This paper provides a motivation for reading as a quality improve-
ment technology, based upon experiences in the Software Engineering
Laboratory at NASA Goddard Space Flight Center, and shows the evolu-
tion of our study of reading via a series of experiments. The experiments
range from early reading vs. testing experiments to various Cleanroom ex-
periments that employed reading to the development of new reading
technologies currently under study.

1. Introduction

Reading is a fundamental technology for achieving quality software. It is the only
analysis technology we can use throughout the entire life cycle of the software de-
velopment and maintenance processes. And yet, very little attention has been paid
to the technologies that underlie the reading of software documents. For example,
where is software reading taught? What technologies have been developed for
software reading? In fact, what is software reading?
 During most of our lives, we learned to read before we learned to write. Read-
ing formed a model for writing. This was true from our first learning of a language
(reading precedes writing and provides simple models for writing) to our study of
the great literature (reading provides us with models of how to write well). Yet, in
the software domain, we never learned to read, e.g., we learn to write programs in
a programming language, but never how to read them.
 We have not developed reading-based models for writing. For example, we are
not conscious of our audience when we write a requirements document. How will
they read it? What is the difference between reading a requirements document and
reading a code document? We all know that one reads a novel differently than one
reads a text book. We know that we review a technical paper differently than we
review a newspaper article. But how do we read a requirements document, a code
document, or a test plan? There are many factors that affect the way we read.

Address correspondence to Victor R. Basili, Department of Computer Science / Institute
for Advanced Computer Studies, University of Maryland, AV Williams Building 115,
College Park, MD 20742

 Evolving and Packaging Reading Technologies 363

 Let us define some terms so that we understand what we mean by reading. We
differentiate a technique from a method, from a life cycle model. A technique is
the most primitive. It is an algorithm, a series of steps producing the desired ef-
fect, and requires skill. A method is a management procedure for applying tech-
niques, organized by a set of rules stating how and when to apply and when to
stop applying the technique (entry and exit criteria), when the technique is appro-
priate, and how to evaluate it. We will define a technology as a collection of tech-
niques and methods. A life cycle model is a set of methods that covers the entire
life cycle of a software product.
 For example, reading by step-wise abstraction (Linger, et al. 1979) is a tech-
nique for assessing code. Reading by step-wise abstraction requires the develop-
ment of personal skills; one gets better with practice. A code inspection is a
method that is defined around a reading technique, which has a well defined set of
entry and exit criteria and a set of management supports specifying how and when
to use the technique. Reading by stepwise abstraction and code inspections to-
gether form a technology. Inspections are embedded in a life cycle model, such as
the Cleanroom development approach, which is highly dependent on reading
techniques and methods. That is, reading technology is fundamental to Cleanroom
development.
 In what follows, we will discuss the evolution and packaging of reading as a
technology in the Software Engineering Laboratory (SEL) (Basili, et al. 1992;
Basili, et al. 1994) via a series of experiments from some early reading vs. testing
technique experiments, to various Cleanroom experiments, to the development of
new reading techniques currently under study.
 In the SEL, we have been working with a set of experimental learning ap-
proaches: the Quality Improvement Paradigm, the Goal Question Metric Para-
digm, the Experience Factory Organization, and various experimental frameworks
to evolve our knowledge and the effectiveness of various life cycle models, meth-
ods, techniques, and tools (Basili, 1985; Basili and Weiss 1984; Basili and Rom-
bach 1988; Basili 1989). All of these approaches have been applied to the series of
experiments we've conducted at the University of Maryland and at NASA to learn
about, evaluate, and evolve reading as a technology.

2. Reading Studies

Figure 1 provides a characterization of various types of experiments we have run
in the SEL. They define different scopes of evaluation representing different levels
of confidence in the results. They are characterized by the number of teams repli-
cating each project and the number of different projects analyzed yielding four dif-
ferent experimental treatments: blocked subject-project, replicated project, multi-
project variation, and single project case study. The approaches vary in cost, level
of confidence in the results, insights gained, and the balance between quantitative
and qualitative research methods. Clearly, an analysis of several replicated pro-
jects costs more money but provides a better basis for quantitative analysis and

 Victor R. Basili 364

can generate stronger statistical confidence in the conclusions. Unfortunately,
since a blocked subject-project experiment is so expensive, the projects studied
tend to be small. To increase the size of the projects, keep the costs reasonable,
and allow us to better simulate the effects of the treatment variables in a realistic
environment, we can study very large single project case studies and even multi-
project studies if the right environment can be found. These larger projects tend to
involve more qualitative analysis along with some more primitive quantitative
analysis.
 Because of the desire for statistical confidence in the results, the problems with
scale up, and the need to test in a realistic environment, one approach to experi-
mentation is to choose one of the multiple team treatments (a controlled experi-
ment) to demonstrate feasibility (statistical significance) in the small project, and
then to try a case study or multi-project variation to analyze whether the results
scale up in a realistic environment—a major problem in studying the effects of
techniques, methods and life cycle models.

Figure 1. Classes of studies.

2.1 Reading by Step-wise Abstraction

In order to improve the quality of our software products at NASA, we have stud-
ied various approaches. One area of interest was to understand the relationship be-
tween reading and testing in our environment. Early experiments showed very lit-
tle difference between reading and testing (Hetzel 1972; Myers 1978). But reading
in these studies was simply reading, without a technological base. Thus we at-
tempted to study the differences between various specific technology based ap-
proaches. Our goal was to analyze code reading, functional testing and structural
testing to evaluate and compare them with respect to their effect on fault detection
effectiveness, fault detection cost and classes of faults detected from the viewpoint
of the researchers (Basili and Selby 1987). The study was conducted in the SEL,
using three different programs: a text formatter, a plotter, and a small database.

 Evolving and Packaging Reading Technologies 365

The programs were seeded with software faults, (9, 6, and 12 faults respectively),
and ranged in size from 145 to 365 LOG. The experimental design was a blocked
subject-project, using a fractional factorial design. There were 32 subjects.
 Specific techniques were used for each of the three approaches studied. Code
reading was done by step-wise abstraction, i.e., reading a sequence of statements
and abstracting the function they compute and repeating the process until the func-
tion of the entire program has been abstracted and can be compared with the speci-
fication. Functional testing was performed using boundary value, equivalence par-
tition testing, i.e., dividing the requirements into valid and invalid equivalence
classes and making up tests that check the boundaries of the classes. Structural
testing was performed to achieve 100% statement coverage, i.e., making up a set
of tests to guarantee that 100% of the statements in the program have been exe-
cuted.
 As a blocked subject-project study, each subject used each technique and tested
each program. The results were that code reading found more faults than func-
tional testing, and functional testing found more faults than structural testing.
Also, code reading found more faults per unit of time spent than either of the other
two techniques. Different techniques seemed to be more effective for different
classes of faults. For example, code reading was more effective for interface faults
and functional testing more effective for control flow faults.
 A second set of conclusions, based upon the perception of the readers and test-
ers, was that code readers were better able to assess the actual quality of the code
that they analyzed than the testers. And in fact, the structural testers were better
able to assess the actual quality of the code they analyzed than the functional test-
ers. That is, the code readers felt they only found about half the faults (and they
were right), where the functional testers felt that had found about all the faults
(and they were wrong). Also, after the completion of the study, over 90% of the
participants thought functional testing worked best. This was a case where percep-
tion or intuition was clearly wrong.
 Based upon this study, reading was implemented as part of the SEL develop-
ment process. However, much to our surprise, reading appeared to have very little
effect on reducing defects. It should be noted that the SEL keeps baselines of de-
fect rates for project sets. This leads us to two possible hypotheses:

Hypothesis 1: People did not read as well as they should have because
they believed that testing would make up for their mistakes.

 To test this first hypothesis, we ran an experiment that showed that if a devel-
oper reads and cannot test they do a more effective job of reading than if they read
and know they can test later. This supported hypothesis 1.

Hypothesis 2: There is a confusion between reading as a technique and
the method in which it is embedded, e.g., inspections.

 This addresses the concern that we often use a reading method (e.g., inspec-
tions or walk-through) but do not often have a reading technique (e.g., reading by
step-wise abstraction) sufficiently defined within the method. To some extent, this
might explain the success of reading in this experiment (Basili and Selby 1987)
over the studies by Hetzel (Hetzel 1972) and Myers (Myers 1978).

 Victor R. Basili 366

 Thus we derived the following conclusions from the studies described thus far:

• Reading using a particular technique is more effective and more cost effective
than specific testing techniques, i.e., the reading technique is important. How-
ever, different approaches may be effective for different types of defects.

• Readers need to be motivated to read better, i.e., the ability to read a docu-
ment effectively seems to be related to the readers' belief that their reading of
the document is important.

• We may need to better support the reading process, i.e., the reading technique
may be different from the reading method.

2.2 The Cleanroom Approach

The Cleanroom approach, as proposed by Harlan Mills (Currit, et al., 1986) ad-
dressed the above issues by providing a particular reading technique (step-wise
abstraction) and a motivation for reading (the developer cannot test). To study the
effects of the approach and reduce the risk of applying it in the SEL, we ran a con-
trolled experiment at the University of Maryland.
 The goal of this study was to analyze the Cleanroom process in order to evalu-
ate and compare it to a non-Cleanroom process with respect to the effects on the
process, product and developers from the point of view of the researchers (Selby,
et al., 1987). This study was conducted using upper division and graduate students
at the University of Maryland. The problem studied was an electronic message
system of about 1500 LOC. The experimental design was a replicated project us-
ing 15 three-person teams (10 used Cleanroom). They were allowed 3 to 5 test
submissions to an independent tester. We collected data on the participants' back-
ground, attitudes, online activities, and testing results.
 The major results were:

• With regard to process, the Cleanroom developers (1) felt they more effec-
tively applied off-line review techniques, while others focused on functional
testing, (2) spent less time on-line and used fewer computer resources, and (3)
tended to make all their scheduled deliveries.

• With regard to the delivered product, the Cleanroom products tended to have
the following static properties: less dense complexity, higher percentage of
assignment statements, more global data, more comments; and the following
operational properties: the products more completely met the requirements
and a higher percentage of test cases succeeded.

• With regard to the effect on the developers, most Cleanroom developers
missed program execution, modified their development style, but said they
would use the Cleanroom approach again.

2.3 Cleanroom in the SEL

Based upon this success, we decided to try the Cleanroom approach in the SEL
(Basili and Green, 1994). The study goal was to analyze the Cleanroom process in

 Evolving and Packaging Reading Technologies 367

order to evaluate and compare it to the standard SEL development process with
respect to the effects on the effort distribution, cost, and reliability from the point
of view of the SEL organization. This was the basis for a single-project case study
in which Cleanroom was applied to a 40 KLOC ground support system. To evalu-
ate and integrate Cleanroom into the SEL we used the Quality Improvement Para-
digm to set up our learning process. We define the six steps of the QIP as they ap-
ply to the introduction of Cleanroom into the SEL:
 Characterize: Describe the product and its environment. For example, what are
the relevant models, baselines and measures, what are the existing processes, what
is the standard cost, relative effort for activities, reliability, what are the high risk
areas? (See the sample measures and baselines in Figure 2).
 Set goals: Define the goals to be achieved. For example, what are the expecta-
tions, relative to the baselines, what do we hope to learn or gain, how will Clean-
room perform with respect to changing requirements? (See the sample expecta-
tions in Figure 2).
 Choose process: Select the best mix of methods and techniques to achieve the
goals relative to the environment. That is, how should the Cleanroom process be
modified and tailored relative to the environment? For example, formal methods
are hard to apply and require skill; we may have insufficient data to measure reli-
ability; therefore, we might allow back-out options for unit testing certain mod-
ules.
 Execute: Collect and analyze data based upon the goals, making changes to the
process in real time.
 Analyze: Try to characterize and understand what happened relative to the
goals; write lessons learned.
 Package: Modify the process for future use.

Figure 2. Sample measures, baselines, and expectations.

 There were many lessons learned during this first application of the Cleanroom
approach in the SEL. However, the most relevant to reading were that the failure

 Victor R. Basili 368

rate during test was reduced by 25% and productivity increased by about 30%,
mostly due to fact that there was a reduction in the rework effort, i.e., 95% as op-
posed to 58% of the faults took less than 1 hour to fix. About 50% of code time
was spent reading, as opposed to the normal 10%. All code was read by 2 devel-
opers. However, even though the developers were taught reading by step-wise ab-
straction for coding reading, only 26% of the faults were found by both readers.
This implied to us that the reading technique was not applied as effectively as it
should have been, as we expected a more consistent reading result.
 During this case study, problems, as specified by the users, were recorded and
the process was modified in real time. As well, notes were made as to how to im-
prove the process for its next application. For example, better training and skill
development was needed for the methods and techniques, better mechanisms were
needed to upload the code to the testers and testers needed to be able to add re-
quirements to help them analyze output.
 Based upon the success of the first Cleanroom case study, we began to define
new studies with the goal of applying the reading technique more effectively. A
second and third Cleanroom project were initiated. Changes to the process in-
volved better training, a solution to the uploading problem, and allowing testers to
add requirements. The project leaders for the first project became process model-
ers for the next two and we began to generate the evolved version of the SEL
Cleanroom Process Model. Thus, experimentally, we moved from a case study to
a multi-project analysis study.
 Figure 3 gives an overview of the projects studied to date. Figure 4 gives the
effects of Cleanroom on error rate and productivity. Like the first Cleanroom pro-
ject, the second was done in-house at NASA, and was successful with regard to
reducing error rate but was not as productive as the first. The third project was
done totally by the contractor. It appeared to be less successful on both counts,
partly because it was our first experience with a project of that size (160 KLOC)
and partly because it was done off site with less access to support. Based upon
these projects, other modifications were made to the method, e.g., allowing a clean
compile before reading.
 A fourth Cleanroom project was recently completed. Again, like the third, it
was large and totally developed by the contractor. As can be seen in Figure 4, the
results here were very positive.
 Cleanroom has been successful in the SEL. Although there is still room for im-
provement in reading and abstracting code formally, a more major concern is the
lack of techniques for reading documents other than code, e.g., requirements, de-
sign, test plans.
 This has generated a motivation for the continual evolution of reading tech-
niques in the SEL, both inside and outside the Cleanroom life cycle model. Spe-
cific emphasis is on improving reading technology for requirements and design
documents.

 Evolving and Packaging Reading Technologies 369

2.4 Scenario-Based Reading

The experiments described above convinced us that reading is a key, if not the key
technical activity for verifying and validating software work products. However,
there has been little research focus on the development of reading techniques, with
the possible exception of reading by step-wise abstraction, as developed by Harlan
Mills.

Figure 3. Multi-project analysis study of cleanroom in the SEL.

Figure 4. Effects of Cleanroom on error rate and productivity.

 The ultimate goal here is to understand the best way to read for a particular set
of conditions. That is, we are not only interested in how to develop techniques for
reading such documents as requirements documents, but under what conditions
are each of the techniques most effective and how might they be combined in a
method, such as inspections, to provide a more effective reading technology for
the particular problem and environment.
 The idea is to provide a flexible framework for defining the reading technology
so that the definer of the technology for a particular project has the appropriate in-
formation for selecting the right techniques and method characteristics. Thus, the

 Victor R. Basili 370

process definition may change depending on the project characteristics. For exam-
ple, if a higher number of omission faults are expected, we might emphasize a
traceability reading approach embedded in design inspections; when embedding
traceability reading in design inspections, we might make sure a traceability ma-
trix exists.
 As stated in the introduction, we believe there are many factors that affect the
way a person reads, e.g., the reviewer's role, the reading goals, the work product.
Based upon these studies, we also believe that techniques can be developed that
will allow us to better define how we should read, and that using these techniques,
effectively embedded in the appropriate methods, can improve the effects of read-
ing. For example, reading techniques for end-users reading a software require-
ments document should be different than the reading techniques for software test-
ers reading a requirements document; reading techniques for developers reading
for interface faults should be different than reading techniques for developers
reading for missing initialization. Also, if we know that reading by step-wise re-
finement is more effective for interface faults, and, based upon past history, we
anticipate a large number of interface faults for a particular project, then we can
assign more than one reader to use step-wise abstraction reading in our inspection
team.
 Thus we need to improve the reading of all kinds of documents from various
points of view. To do this, we need to more deeply understand the relationship be-
tween techniques and methods and the dimensions of both. That is, what are the
things we can vary when dealing with a technique? For example, consider the fol-
lowing dimensions of a reading technique:

Input object: any document, e.g., requirements, design, code, test plan, etc.
Output object: a set of defects or anomalies
Technique: some specific procedure, e.g., sequential reading, path analysis,
step-wise abstraction, etc.
Formality: the degree of rigor, e.g., proof, correctness demonstration, etc.
Goals: the purpose for reading, e.g., fault detection, traceability, performance,
understanding reuse, etc.
Method: the method the technique is embedded in, e.g., walk-through, inspec-
tions, reviews, etc.
Perspective: the role of the reader, e.g., user, designer, tester, maintainer, etc.
Context: anticipated problems, application domain, organization, etc.
Product qualities: correctness, reliability, efficiency, portability, etc.
Process qualities: process conformance, integration with other processes, etc.

 When defining a technique, what are the values of the various dimensions? We
have been developing and studying reading techniques that take into account the
various dimensions, as well as the historical data of the environment where the
technique will be applied. The goal is to define a set of reading techniques that can
be tailored to the document being read and the goals of the organization for that
document, and that are usable in existing methods, such as inspections or reviews.
 To this end, we have been working on an approach to generating families of
reading techniques, based upon the values of different dimensional attributes. At
the top level, each family of techniques is based upon combining two primary di-

 Evolving and Packaging Reading Technologies 371

mensions, e.g., the goal and the perspective, to generate a procedure, or opera-
tional scenario (Figure 5). The operational scenario requires the reader to (1) cre-
ate an abstraction (based on a model building or abstraction dimension) of the
product, and (2) answer questions (based on an analysis dimension) while building
that abstraction. Each reading technique in the family can be based upon a differ-
ent abstraction and question set.
 Each family (and thus each technique) is tailored based upon other dimensions
as well, e.g., the input dimension, the context dimension. So, based upon the input
dimension, a family of techniques can be instantiated for a particular document
(e.g., requirements, design) and notation (e.g., English text, a formal notation) in
which the document is written. Based upon the context dimension, a family of
techniques can be tailored to react appropriately to the project and environment
characteristics. The choice of primary, and secondary dimensions, as well as ab-
stractions and the types of questions asked depend on the organization's needs and
concerns.
 Thus each technique within the family is (1) tailorable, based upon the values
of various dimensions, (2) detailed, in that it provides the reader a well-defined set
of steps to follow, (3) specific, in that the reader has a particular purpose or goal
for reading the document and the procedures support that goal, (4) focused, in that
it provides a particular coverage of the document, and a combination of techniques
in the family provides coverage of the entire document, (5) studied empirically to
determine if and when it is most effective.
 So far, two different families of reading techniques have been defined for re-
quirements documents: defect-based reading and perspective-based reading.
 Perspective-based reading focuses on different product customer perspectives,
e.g., reading from the perspective of the software designer, the tester, the end-user,
the maintainer, the hardware engineer, representing the perspective dimension.
The analysis questions were generated by focusing predominantly on various re-
quirements type errors, e.g., incorrect fact, omission, ambiguity, and inconsistency
(Basili and Weiss 1981), representing the goal dimension.
 Defect-based reading focuses on a model of the data and functions of the re-
quirements in a form of state machine notation. The different model views were
based upon focusing on a variation of the defect classes given above: data type in-
consistency, incorrect functions, an ambiguity or missing information, represent-
ing the goal dimension. The analysis questions were generated by combin-
ing/abstracting a set of questions that were used in checklists for evaluating the
correctness and reliability of requirements documents, representing an existing
technique dimension.
 To provide a little more detail into the approach for generating reading tech-
niques, consider the following example of the generation of test-based reading,
one member of the family of perspective-based reading. The object is the require-
ments document, the model-base is a testing technique, (e.g., equivalence parti-
tioning, boundary-value testing), and the analysis dimensions are the correctness,
completeness, consistency, and unambiguity of the requirements.

 Victor R. Basili 372

Figure 5. Building focused tailored reading techniques.

 The operational scenario of reading procedure is defined as follows: for each
requirement, make up a test or set of tests that will allow you to ensure that the
implementation satisfies the requirement. Use equivalence partitioning, boundary-
value testing criteria to make up the test suite.
 The second dimension is based upon defect classes, specifically incorrect fact,
omission, ambiguity, and inconsistency. These generated the following questions,
which the reader should ask while building the test plan model:
a) Do I have all the information necessary to divide the requirement into a valid

equivalence class and invalid equivalence classes? Can I make up reasonable
test cases for each based upon the criteria?

b) Can I be sure that the test I generated will yield the correct value in the cor-
rect units?

c) Does the requirement make sense from what I know about the application and
from what is specified in the overview?

d) Are there other interpretations of this requirement that the implementor might
make based upon the way the requirement is defined?

e) Is there another requirement for which the equivalence class is defined differ-
ently, i.e., in which the test case you generate should give a contradictory re-
sponse for the other equivalence class?

 The model for developer-based reading might be to perform a high level design
using structured analysis or object oriented design. The model for the use-based
reading might be to develop a user's manual. Although in each case the questions
are derived from trying to identify omission, incorrect facts, etc., the opportunities
for such discoveries, and thus the questions, will vary, depending on the model
used.
 Specific members of each of the families have been studied experimentally. In
the defect-based reading study, the goal was to analyze defect-based reading, ad

hoc reading and checklist-based reading in order to evaluate and compare them
with respect to their effect on fault detection effectiveness in the context of an in-

spection team from the viewpoint of the researcher. The three defect-based read-
ing techniques stated above were applied. The study was applied using graduate

 Evolving and Packaging Reading Technologies 373

students at the University of Maryland. The requirements documents were written
in the SCR notation (Henninger 1980). They were a Water Level Monitoring Sys-
tem and a Cruise Control System. The experimental design is a blocked subject-
project: Partial factorial design, replicated twice with a total of 48 subjects (Porter,
et al., 1995).
 Major results were that (1) the defect-based readers performed better than ad
hoc and checklist readers with an improvement in defect detection rate of about
35%, (2) the defect-based reading procedures helped reviewers focus on specific
fault classes but were no less effective at detecting other faults, and (3) checklist
reading was no more effective than ad hoc reading.
 In the perspective-based reading study, the goal was to analyze perspective-

based reading and NASA's current reading technique in order to evaluate and

compare them with respect to their effect on fault detection effectiveness in the

context of an inspection team from the viewpoint of the researcher and the SEL.
Three perspective-based reading techniques (test-based, developer-based, and use-
based reading) were defined and studied. Studies have been performed in the SEL
environment using generic requirements documents written in English (ATM ma-
chine, Parking Garage) and NASA type functional specifications (two ground
support AGSS sub-systems). The experimental design is again a blocked subject-
project using a partial factorial design. It has been applied twice, with a total of 25
subjects (Basili, et al., 1996).
 Major results are that perspective-based reading (1) is effective for generic
documents both at the individual and team level, i.e., taking each technique in the
family individually as compared with the standard approach, and combining the
three perspectives for full coverage against a team of standard readers, (2) catches
different types of defects depending on the perspective, (3) is effective for the
NASA documents at the team level. It was felt that the techniques could be better
tailored for the NASA style document to improve individual scores.
 We will continue to evolve and study various families and various techniques
within the families. The first series of experiments described above is aimed at
discovering if scenario-based reading is more effective than current practices.
Early results are promising. A second series will be used to discover under which
circumstances each of the various scenario-based reading techniques, or families
of techniques, is most effective.
 We hope to replicate these experiments in different environments, replacing the
NASA documents with documents from other organizations. We also hope to run
a case study at NASA to better understand how to tailor the techniques to the
documents.
 We will continue to develop operational scenarios for other document types,
e.g., design document, and test their effectiveness in experiments. We will eventu-
ally consider tool support for the techniques developed.

 Victor R. Basili 374

Figure 6. Series of studies.

3. Conclusion

In our attempt to better understand the effects of software reading techniques, we
have run the experimental gamut from blocked subject-project experiments (read-
ing vs. testing) to replicated projects (University of Maryland Cleanroom study) to
a case study (the first SEL Cleanroom study) to multi-project variation (the set of
SEL Cleanroom projects) and now back to blocked subject-project experiments
(for scenario-based reading). (See Figure 6).
 As we learn, as we move through each cycle of the Quality Improvement Para-
digm, the level of sophistication of our reading goals is maturing. Our ability to
understand things about reading is evolving. A pattern of knowledge is being built
from a series of experiments.
 Various groups at different sites are already replicating some of the experi-
ments. Most of these are members of ISERN, the International Software Engineer-
ing Research Network, whose goal is specifically to perform and share the results
of empirical studies.

Acknowledgements

I would like to thank Forrest Shull and Carolyn Seaman for reviewing the drafts of
this paper. This work was supported in part by NASA grant NSG-5123, UMIACS,
NSF grant 01-5-24845.

 Evolving and Packaging Reading Technologies 375

References

Basili, V. R., Green, S., Laitenberger, O. U., Lanubile, F., Shull, F. Sorumgaard, S. and
Zelkowitz, The Empirical Investigation of Perspective-Based Reading. Journal of Em-

pirical Software Engineering, Volume 1, Issue 2 (1996).
Basili, V. R. and Green, S., Software Process Evolution at the SEL. IEEE Software, pp. 58-

66 (1994).
Basili, V. R., Zelkowitz, M. V., McGarry, F., Pajerski, R., Page, J., Waligora, S., SEL'S

Software Process-Improvement Program. IEEE Software, pp. 83-87 (1994).
Basili, V. R., Caldiera, G., McGarry, F., Pajerski, R., Page, G., Waligora, S., The Software

Engineering Laboratory —An Operational Software Experience Factory, 14th Interna-
tional Conference on Software Engineering (1992).

Basili, V. R., Software Development: A Paradigm for the Future, COMPSAC '89, Orlando,
Florida, pp. 471-485 (1989).

Basili, V. R., and Rombach, H. D., The TAME Project: Towards Improvement-Oriented
Software Environment. IEEE Transactions on Software Engineering, vol. 14, no. 6
(1988).

Basili, V. R., and Selby, R., Comparing the Effectiveness of Software Testing Strategies.
IEEE Transactions on Software Engineering, pp. 1278-1296 (1987).

Basili, V. R., Quantitative Evaluation of Software Methodology, Keynote Address, First
Pan Pacific Computer Conference, Melbourne, Australia (1985).

Basili, V. R. and Weiss, D. M., A Methodology for Collecting Valid Software Engineering
Data. IEEE Transactions on Software Engineering, pp. 728-738 (1984).

Basili, V. R., Weiss, D. M., Evaluation of a Software Requirements Document by Analysis
of Change Data, Proceedings of the Fifth International Conference on Software Engi-
neering, pp. 314-323 (1981).

Currit, P. A., Dyer, M. and Mills, H. D., Certifying the Reliability of Software. IEEE

Transactions on Software Engineering, vol. SE-12, pp. 3-11 (1986).
Henninger, K. L., Specifying Software Requirements for Complex Systems: New Tech-

niques and Their Application. IEEE TSE, vol. SE-6, no. 1, pp. 2-13 (1980).
Linger, R. C., Mills, H. D. and Witt, B. I., Structured Programming: Theory and Practice.

IEEE TSE, Reading, MA: Addison-Wesley (1979).
Myers, G. J., A Controlled Experiment in Program Testing and Code Walkthrough Inspec-

tions. Communications ACM, pp. 760-768 (1978).
Hetzel, W. C., An Experimental Analysis of Program Verification Problem Solving Capa-

bilities as They Relate to Programmer Efficiency. Computer Personnel, vol. 3, pp. 10-
15 (1972).

Porter, A. A., Votta, L. G. and Basili, V. R., Comparing Detection Methods for Software
Requirements Inspections: A Replicated Experiment. IEEE Transactions on Software

Engineering, vol. 21, no. 6, pp. 563-575 (1995).
Selby, R., Basili, V. R. and Baker, T., Cleanroom Software Development: An Empirical

Evaluation. IEEE Transactions on Software Engineering, pp. 1027-1037 (1987).

Section 6. Experience Base

Barry Boehm

University of Southern California

The Experience Base in Context

It’s impossible to discuss a piece of Vic’s work without relating it to the other

pieces. Everything fits together within an overall strategy of applying the empiri-
cal scientific method to the challenge of continuously improving an organization’s
software processes and products.

 The Goal-Question-Metric approach recognizes that “improvement” re-
quires metrics, but that every organization has its own set of goals and environ-
mental influences. This means that “improvement” metrics may be anything from
meaningless to dysfunctional if they aren’t related to the organization’s goals and
to questions about the organization’s current state and evolving environment. The
Quality Improvement Paradigm recognizes that continuous process and product
improvement needs to fit within a framework involving the scientific method of
hypothesis formulation, test, and closed-loop feedback control. The Experience
Factory recognizes that continuous improvement, as with any other investment to
achieve results, should have a business plan, management commitment to the plan,
and an infrastructure of policies, processes, procedures, facilities, tools, manage-
ment information systems, staffing, training, and incentives to get best results. The
Software Engineering Laboratory (SEL) has been a marvelous example of suc-
cessfully applying, evaluating, learning about, and evolving all of these concepts
and capabilities in the area of software development and evolution. It justly de-
served being the first recipient of the IEEE Software Process Achievement Award.

 In this context, a narrow definition of an Experience Base is that it serves as
the management information system for the continuous process and product im-
provement enterprise. This includes the data definitions, data base organization
and content, database management capabilities, and analysis tools for formulating,
testing, and evolving hypotheses about improving the organization’s processes and
products. But I think a broader definition is more appropriate; the entire infrastruc-
ture of product, process, data, and personnel assets that evolve to enable the or-
ganization to most rapidly and cost-effectively improve its capabilities to adapt to
its changing goals and environment.

Paper 1: Software Engineering Practices in the U.S. and Japan

The first paper in this chapter, “Software Engineering practices in the U.S. and
Japan,” reflects this holistic view of an organization’s experience base. The pa-

 Section 6. Experience Base 377

per’s author list (Zelkowitz, Yeh, Hamlet, Gannon, and Basili) also reflects Vic’s
gracious pro-active efforts to avoid alphabetical bias in team-authored papers.

 The paper is based on a University of Maryland study sponsored by IBM of
software practices across 25 organizations in the U.S. and Japan. It was performed
in the somewhat heady days of the “Software Factory” concept as the silver bullet
for solving the software engineering problem. It was also a time of some concern
that the Japanese investments in Fifth Generation Computing Technology and
Japanese Software Factories would cause U.S. leadership in computers and soft-
ware to go the way of its leadership in automobile and consumer electronics pro-
duction [Feigenbaum-McCorduck, 1983; Cusumano, 1991]. IBM was making sig-
nificant investments in software processes and support environments at the time,
along with other leading software producers such as Hughes, System Develop-
ment Corporation, and TRW, and was interested in an external perspective on
which practices were most widely used and most effective.

 Under Vic’s and Frank McGarry’s leadership, the NASA/University of
Maryland/Computer Sciences Corporation Software Engineering Lab was already
producing measured results on such issues as the relative effectiveness of peer re-
views and testing for identifying defects. It came as an eye-opener to Vic and the
Maryland study group not only that such data were relatively scarce among even
the more advanced software organizations that participated in the study, but also
that many well-known practices were not much used. The organizations had high
usage rates for high-level languages, on-line development, and some kind of re-
views, but only 45% of the organizations had formally-defined software methods,
only 27% used test tools, and only 18% used automated code auditors to check for
standards compliance. It is not clear that the situation has become markedly better
since 1988.

 In discussing these results with Vic, we concluded that a 2005 industry sur-
vey probably would not yield much higher adoption percentages. However, we be-
lieve that it would be valuable to have such a comparison study performed and ex-
tended to newer techniques such as requirements management tools, architecture
definition languages, configuration management, lightweight formal methods, and
agile methods.

 With respect to comparisons between the U.S. and Japan, the study con-
cluded that Japanese organizations were doing more investments in tools and met-
rics. Since then, though, the rapid pace of information technology change has
made it more difficult to succeed with a factory-type approach to software produc-
tion, and Japanese as well as U.S. organizations are exploring how to best inte-
grate more agile practices into their software portfolios.

 In terms of the effect of the study on my work, it was particularly significant
since I was one of the TRW contributors to the study. It was very helpful in
benchmarking TRW’s practices with those of other organizations, and in provid-
ing insights for prioritizing investments in our TRW Software Productivity System
(SPS) corporate software support environment [Boehm et al., 1984]. It also helped
greatly in explaining our SPS project to TRW management, and in guiding our
collaborative explorations of the Computer Aided Software Environment (CASE)
and workstation marketplace as part of our TRW-Fujitsu Corp. venture with Fu-

 Barry Boehm 378

jitsu (which ended up not going forward as a product venture for several good rea-
sons). The study was similarly valuable to the U.S. Department of Defense in pro-
viding insights and rationale for its mid-1980’s Software Technology for Adapt-
able, Reliable Systems (STARS) initiative [Druffel et al, 1983].

 In terms of the effect of the study on Vic’s future work, one can see that it
provided a rare perspective and database of software experience across a wide va-
riety of organizations. This led to Vic’s conclusion that one-size-fits-all metrics
were unworkable, and that each organization needed to examine its own goals and
formulate its own improvement questions before adopting improvement metrics. It
also gave him the breadth of analyzed experience to be an effective consultant to
organizations seeking to measure and improve their processes, further adding to
his experience base.

Paper 2: An Evaluation of Expert Systems for Software Engineering Man-

agement

Paper 2 builds on some earlier SEL work reported in the 1985 paper, “Monitor-
ing Software Development Through Dynamic Variables” [Doerflinger-Basili,
1985]. The 1985 paper shows the value of having an experience base that includes
not only data but also evolving hypotheses about what the data means and what to
do about it. By the early 1980’s, the SEL was collecting consistent data across a
project’s development cycle, such as the number of source instructions developed
and changed, number of computer runs, number of programmer hours, number of
software changes, and amount of computer time expended. This enabled managers
of new SEL projects to determine whether their combinations of these variables at
a given time (lines of code per software change, programmer hours per line of
code, computer runs per software change) were considerably higher or lower than
the baseline set of projects. Knowing these facts, they then wanted some interpre-
tation of the likely root causes and likely appropriate corrective actions, if neces-
sary.

 The SEL researchers formulated such hypotheses for nine of these combina-
tions. For example, having a relatively large number of lines of code per change
might imply one or more of such root causes as having good code, easily devel-
oped code, or a poor testing approach. Having a relatively large number of com-
puter runs per software change might imply one or more of such root causes as
having good code, lots of testing, or a poor testing approach.

 Having a project that exhibited both of these characteristics would then in-
volve taking the intersection of their root causes as potential explanations of the
results. In this case, it might imply having good code, a poor testing approach, or
both.

 When all nine combinations were analyzed for all nine of the projects with
comparable data during the code and test phases, the results were not uniform but
exhibited fairly consistent data patterns. When the root cause rules were applied at
several stages of a tenth project, the results were reasonably consistent with ob-
served project behavior. Thus, the rules appeared to provide good early working
indicators about potential problem projects. This led to more extensive effort to

 Section 6. Experience Base 379

develop and evaluate a knowledge base, and an expert system for diagnosing
software development project problems, as discussed in Paper 2.

 Paper 2 shows all of the hallmarks of a Basili empirical study: explicit hy-
pothesis formulation, comparative technology evaluation, hypothesis-driven data
collection and analysis, objective outcome evaluation, and constructive but con-
servative conclusions. Such studies were relatively rare in the enthusiastic early
days of expert systems (with some exceptions such as medical diagnosis).

 In this case, two expert-system rule base development approaches were
used. One was an extension of the bottom-up symptom-to-root-cause rules in the
previous Doerflinger-Basili paper. The other was a separate top-down root-cause-
to-symptom rule generation and merger involving two domain experts. The result-
ing rules were tailored for comparative use in two types of inference mecha-
nisms—rule-based deduction and frame-based abduction—and the comparative
results of all four combinations of rule bases and inference mechanisms analyzed.

 The results indicated that rule-based deduction performed somewhat better
than frame-based abduction, and that the bottom-up rules yielded somewhat better
results than the top-down rules. Unfortunately, though, the study also found that
none of the combinations did much better at problem identification than did ran-
dom choice. There are good discussions of why this turned out to be the case.
Fundamentally, the deductions can be only as good as the rules. And even within a
set of projects as uniform as those in the SEL, the variability across such software
projects is considerably higher than the variability within domains where expert
systems have performed much better, such as computing platform configuration or
medical diagnosis.

 The limitations of these software engineering expert systems are nicely
summarized on papers 754-755: (1) so much of the knowledge and relationships
are unclear in this field, (2) the experts themselves do not agree on much of the
knowledge, (3) the expert systems used were only a small number of variables and
metrics, (4) the metrics used are not ideal, (5) many of the interpretations in the
database are subjective and may not always be correct, and (6) there may be dis-
crepancies in the interpretations at different points in the project.

 These results were quite helpful in realigning expectations and identifying
pitfalls to avoid in applying expert systems technology to software engineering
problems. I found them very useful in running a project course on Knowledge
Based Software Engineering in 1993.

Paper 3: Software Defect Reduction Top-10 List

In 2000, Vic and I were awarded an NSF grant to create and operate a Center
for Empirically-Based Software Engineering (CeBASE). Its objectives were to
develop empirically-based practices for software development, to establish an ex-
perience base (eBase) of empirical data on the relative effectiveness of the prac-
tices in various domains, and to conduct empirical studies to fill key gaps in the
practices and eBase. To avoid getting spread too thin, we initially focused on two
high-concern areas: software defect reduction and commercial-off-the-shelf
(COTS)-based system development.

 Barry Boehm 380

 Some of our initial steps were to identify key issues in defect reduction and
COTS-based development; to integrate our existing experience bases, and to inte-
grate our existing empirical software development guidelines. To summarize and
stimulate extensions of our integrated defect reduction and COTS experience
bases, we published top-10 lists of the most useful empirical data we could find in
each area. Paper 3 covers the defect reduction area; the COTS area is covered in
[Basili-Boehm, 2001]. We then followed these up with further studies and elec-
tronic workshops (a Basili-team innovation) to extend the experience bases. Ex-
amples of the results for defect reduction are in [Shull et al., 2002]; the current
eBase content is at http://www.cebase.org.

 Item one in Paper 3, “Finding and fixing a software problem after delivery is
often more than 100 times more expensive than finding and fixing it during the re-
quirements and design phase,” became part of a productive discussion with the ag-
ile methods community. In Extreme Programming Explained [Beck, 1999], Kent
Beck presented “the technical premise of XP” on page 23: a graph indicating that
practicing XP could completely flatten the slope of cost-to-fix-vs.-time curve.
Since empirical data to substantiate this graph was lacking, this stimulated some
further electronic workshops to capture empirical data on agile methods. This led
to some fruitful collaborative work with Laurie Williams, the leading empirical re-
searcher in the agile methods area, and some summaries of empirical findings in
agile methods in [Lindvall et. al., 2002] and Appendix E of [Boehm-Turner,
2004].
 In terms of the slope of the cost-to-fix-vs.-time curve, we found that the 100:1
slope still held for most large projects, but that the slope could be reduced signifi-
cantly by early and thorough architecting and risk reduction. For small and agile
projects, we found no data confirming a 1:1 slope, but some projects with around a
5:1 slope.

 Our efforts to integrate Maryland’s and USC’s empirical software engineer-
ing processes led to a synthesis of Maryland’s organization-level Experience Fac-
tory/GQM/QIP guidelines with USC’s project-level MBASE guidelines into an
approach called the CeBASE Method [Boehm et. al., 2002]. This has been applied
to several projects as a result of the U.S. Department of Defense’s selecting Ce-
BASE to support the efforts of its Software Intensive Systems Office to improve
DoD’s software engineering practices, especially for projects representing future
trends in DoD software intensive systems.

 Parts of this effort have involved elaborating our integrated CeBASE
Method and mapping it onto the Integrated Capability Maturity model (CMMI)
[Ahern et al., 2001; Chrissis et al., 2003], which DoD has been using to stimulate
its suppliers’ software and system engineering process maturity. Other parts have
involved applying and evolving the method on major futures-representative DoD
projects, particularly on the U.S. Army/DARPA Future Combat Systems program,
a huge, transformational, network-centric system of systems. A summary of this
work is [Boehm et al., 2004] (CrossTalk articles are available at
www.stsc.hill.af.mil/crosstalk).

 We were able to integrate the Maryland and USC models rapidly because
we had already been applying Experience Factory techniques to our annual series

 Section 6. Experience Base 381

of real-client USC campus electronic services projects (I have been a big fan of
Vic and the SEL group’s methods, and had begun applying Experience Factory
techniques at TRW in the late 1970’s). The annual feedback on these projects en-
abled us to improve our MBASE Guidelines and improve project performance
both at early milestones and in terms of end-product client satisfaction, as shown
in Table 2 of [Boehm et. al., 2002].

 Unfortunately, NSF support of CeBASE lasted only 2 years, but by then
CeBASE was relatively self-sufficient with support from both DoD and the NASA
High Dependability Computing Program. CeBASE results have helped Future
Combat Systems identify critical risks and avoid significant overruns. They have
also provided NASA with useful models of dependability [Basili et al., 2004;
Boehm et al., 2004].

 Being able to collaborate with Vic has been a highlight of my career. It is
rare to find someone with such strong technical capabilities, empathy for people,
creativity in finding constructive solutions to complex problems, high standards,
joy of living, and ease of collaboration.

 Bravissimo, Vic! May you continue to make great contributions and enjoy
the best.

References

[1] [Ahern et al., 2001]. D. Ahern, A. Clouse, and R. Turner, CMMI Distilled, Addison
Wesley, 2001 (2nd ed., 2004).

[2] [Basili-Boehm, 2001]. V. Basili and B. Boehm, “COTS-Based Systems Top 10 List,”
Computer, May 2001, pp. 91-93.

[3] [Basili et al., 2004]. V. Basili, P. Donzelli, and S. Asgari, “A Unified Model of De-
pendability; Capturing Dependability in Context,” Software, November/December
2004, pp. 19-25.

[4] [Beck, 1999]. K. Beck, Extreme Programming Explained (1st ed.), Addison-Wesley,
1999.

[5] [Boehm et al, 1984]. B. Boehm, M. Penedo, E.D. Stuckle, R. Williams, and A. Pyster,
“A Software Development Environment for Improving Productivity,” Computer, June
1984, pp. 30-44.

[6] [Boehm et. al., 2002]. B. Boehm, V. Basili, D. Port, and A. Jain, “Achieving CMMI
Level 5 Improvements with MBASE and the CeBASE Method,” CrossTalk, May
2002, pp. 9-16.

[7] [Boehm et al., 2004]. B. Boehm, A. W. Brown, V. Basili, and R. Turner, “Spiral Ac-
quisition of Software-Intensive Systems of Systems,” CrossTalk, May 2004, pp. 4-9.

[8] [Boehm et al., 2004] B. Boehm, L. Huang, A. Jain, and R. Madachy, “The ROI of
Software Dependability: The iDAVE Model,” Software, May/June 2004, pp. 54-61.

[9] [Boehm-Turner, 2004]. B. Boehm and R. Turner, Balancing Agility and Discipline,
Addison-Wesley, 2004.

[10] [Chrissis et al., 2003]. M. Chrissis, M. Konrad, and S. Shrum, CMMI, Addison
Wesley, 2003.

[11] [Cusumano, 1991]. M. Cusumano, Japan’s Software Factories, Oxford University
Press, 1991.

[12] [Doerflinger-Basili, 1985]. C. Doerflinger and V. Basili, “Monitoring Software Devel-
opment Through Dynamic Variables,” IEEE Transactions on Software Engineering,
September 1985, pp. 978-985.

 Barry Boehm 382

[13] [Druffel et al., 1983]. L. Druffel, S. Redwine, and W. Riddle (eds.), “The DoD-
STARS Program,” Special Issue, Computer, November 1983.

[14] [Feigenbaum-McCorduck, 1983]. E. Feigenbaum and P. McCorduck, The Fifth Gen-
eration, Addison Wesley, 1983.

[15] [Lindvall et. al., 2002]. M. Lindvall, V. Basili, B. Boehm, P. Costa, K. Dangle, F.
Shull, R. Tesoriero, L. Williams, and M. Zelkowitz, “Empirical Findings in Agile
Methods,” in D. Wells and L. Williams (eds.), Extreme Programming and Agile
Methods – XP/Agile Universe 2002, Springer Verlag, 2002, pp. 197-207.

[16] [Shull et al, 2002]. F. Shull, V. Basili, M. Zelkowitz, B. Boehm, A. W. Brown, P.
Costa, M. Lindvall, D. Port, I. Rus, and R. Tesoreiro, “What We Have Learned About
Fighting Defects,” Proceedings of International Conference on Software Metrics, June
2002.

The Software Industry: A State of the Art Survey

Marvin V. Zelkowitz, Raymond Yeh, Richard G. Hamlet,
John D. Gannon, Victor R. Basili

Department of Computer Science,
University of Maryland, College Park, MD 20742

1. Introduction

1.1. Goals

The term "software engineering" first appeared in the late 1960s [Naur and Ran-
dell 69], [Buxton and Randell 70] to describe ways to develop, manage and main-
tain software so that the resulting products are reliable, correct, efficient, and
flexible. After 15 years of study by the computer science community, it is impor-
tant to assess the impact that numerous software engineering advances have had
on actual software production. The IBM Corporation asked the University of
Maryland to conduct a survey of different program development environments in
industry in order to determine the state of the art in software development and to
ascertain which software engineering techniques are most effective in the non-
academic sector. This report contains the results of that survey.

1.2. The Survey Process

This project began during the spring of 1981. The goal was to sample 19 to 20 or-
ganizations, including the primary sponsor of this project - IBM, and study their
development practices. This was accomplished via a two-step process. A detailed
survey form was sent to each of the participating companies. In response to the re-
turn of this form, a follow-up visit was made. This visit clarified the answers given
on the form. We believe that this process, although limiting the number of places
surveyed, resulted in more accurate information being presented than if we had
just relied on forms.
 Each survey form contains two parts. Section one asks for general comments
concerning software development for the organization as a whole. The informa-
tion described by this part typically represents the "standards and practices"
document for the organization. In addition, we also studied several recently com-
pleted projects within each company. Each such project completed the second sec-
tion of the survey form, which described the tools and techniques that were used
on that particular project.

 Marvin V. Zelkowitz, Raymond Yeh, Richard G. Hamlet, et al 384

 A variety of organizations in both the United States and Japan participated in
the study. The acknowledgement at the end of this report lists some of the partici-
pants. Due to the proprietary nature of part of the information we obtained, some
of the participants wish to remain anonymous. Over the life of this project, we
surveyed 25 different organizations. Thirteen of them are U.S. companies and 12
were from Japan. Due to the cost and time restrictions, about half of the Japanese
companies were not interviewed, and the other half were interviewed in varying
degrees of detail.
 In addition to our survey form, interviews were held with several company of-
ficials, and some published references were used for additional data. Figure 1 lists
the basic data processed. In order to characterize the projects we studied, projects
and teams are somewhat arbitrarily classified into four groups according to sizes:
Small, Medium, Large, and Very Large. Projects are classified according to the
number of staff months needed to complete them, and teams according to the
numbers of members. This division leads to a breakdown in which there is only
one case of a team that is larger than a project (Company U).
 After reviewing the basic data, we recognized three different software devel-
opment environments:
 (1) Contract software – Typically Department of Defense and NASA aerospace
systems
 (2) Data processing applications - Typically software produced by an organiza-
tion for its own internal business use

 (3) Systems software - Typically operating system support software
produced by a hardware vendor as part of a total hardware-software pack-
age of products for a given operating system.
 A single company might be represented in more than one of the above catego-
ries. For example, we looked at several Defense-related projects and one internal
data processing application at an aerospace company.
 This survey is not meant to be all-encompassing; however, we believe that we
have surveyed a large enough number of locations to understand software devel-
opment in industry today. Several companies were concerned about which pro-
jects we should study — we left that decision up to them. There was concern that
the projects we were looking at were "not typical" of the company. (Interestingly,
very few companies claimed to be doing "typical" software. We felt that we were
getting to see the "better" developed projects. In general, every company had ei-
ther a written guideline or unwritten folklore as to how software was developed.
Deviations from this policy were rare.

2. General Observations

The literature contains many references to software engineering methodology; in-
cluding tools support throughout the lifecycle language support in other than
source code, testing support, measurement and management practices, and other
techniques that will be mentioned throughout this report. But in our survey, we
found surprisingly little use of software engineering practices across all compa-

 The Software Industry: A State of the Art Survey 385

nies. No organization fully tries to use the available technology. While some com-
panies had stronger management practices than others, none used tools to support
these practices in any significant way.

Project Size (staff months) Team Size (staff)

S<10 S<10
M 10-100 M 10-25
L 100-1000 L 25-50
VL>1000 VL>50

Figure 1. Legend

 Marvin V. Zelkowitz, Raymond Yeh, Richard G. Hamlet, et al 386

2.1. Organizational Structure

Most companies that we surveyed had an organizational structure similar to the
one in Figure 2.

Figure 2. Typical Organization Structure

 The software technology group typically has one to five individuals collecting
data, modeling resource usage, and generating standards and practices documents.
However, this group has no direct authority to enforce adherence to software en-
gineering practices even within a single division. As a result, standards often vary
within a single organization.
 This structure also explains a current anomaly in the use of software engineer-
ing techniques. Although they are frequently mentioned in the literature and at
conferences, software engineering techniques are rarely used correctly by the in-
dustry at large. Developers of real products often think that the software technol-
ogy (research) group of Figure 2 (who are the conference attendees and write most
of the research papers) is too optimistic about the effects of these techniques and
are unrealistic since they have not applied them to real life situations. Managers
know their personnel often lack the education and experience needed for success-
ful applications of these techniques. Even the techniques that have been adopted
are frequently misused. For example, although many companies used the term
"chief programmer" to describe their programming team organization, most bore
little resemblance to the technique described in the literature. Generally each pro-
ject had two to three levels of management who handled staff and resource acqui-
sition, but who did not actively participate in system design.
 A further problem in many organizations is that there is generally no one per-
son at the head of the chart of Figure 2 who makes software decisions. Such a per-
son often exists in hardware organizations. For this reason, software standards are
generally low and vary across the company.

2.2. Tool Use

Tool use is relatively low across the industry. Not too surprisingly, the use of tools
varies inversely from their "distance" from the code and unit test phase of devel-
opment. That is, tools are most frequently used during the code and unit test phase
of software development (e.g., compilers. code auditors, test coverage monitors,
etc.). Adjacent phases of the software lifecyle, design and integration, usually

 The Software Industry: A State of the Art Survey 387

have less tool support (e.g., PDL processors and source code control systems).
Few requirements or maintenance tools are used. In looking at tool use, Figure 3
gives some indication of which techniques and tools are used:

Figure 3. Industrial Method or Tool Use

 Time sharing computer systems and compiler writing became practical in the
late 1960s and early 1970s; thus online access and high level languages can
probably be labeled the successes of the 1960s. Similarly, the widespread use of
reviews and pseudo code or program design language (PDL) permits us to call
them the successes of the 1970s. It is disappointing that few other tools have been
adopted by industry. Testing tools are used by only 27% of the companies, and
most of these are simply test data generators. Only one company (in Japan) indi-
cated that it used any form of unit test tool to measure test case coverage. Al-
though many companies claim to use chief programmer teams, few actually do.
 While PDLs are heavily used, it is disappointing that the process is not auto-
mated. Some PDL processors are simply manual formatters, while some do "pretty
print" and indent the code. Often the PDL is only a "coding standard" and not en-
forced by any tool. Only one location had a PDL processor that checked interfaces
and variable use/define patterns.
 Tool use generally has the flavor of vintage 1970 time sharing. Jobs have a
"batch flavor" in that runs are assembled and then compiled. There is little interac-
tive computing. There is minimal tool support - mostly compilers and simple edi-
tors.
 The problems in using tools can be attributed to several factors. Corporate
management has little (if any) software background and is not sympathetic with
the need for tools. No separate corporate entity exists whose charter includes tools
so there is no focal point for tool selection, deployment and evaluation, Tools
must be paid out of project funds, so there is a fair amount of risk and expenditure
for a project manager to adopt a new tool and train his people to use it. Since pro-
ject management is evaluated on meeting current costs and schedules, and tool use
must be amortized across several projects to be effective, a single project manager
will almost always stand out as "unproductive. " Companies often work on differ-
ent hardware, so tools are not transportable, limiting their scope and their per-

 Marvin V. Zelkowitz, Raymond Yeh, Richard G. Hamlet, et al 388

ceived advantage. The most striking example of this, was one system where $1M
was spent building a data base, yet there was no thought of ever using that data
base on another system. The need to maintain large existing source code libraries
(generally in assembly code) makes it hard to introduce a new tool that processes a
new higher level language. Finally, many of the tools are incomplete and poorly
documented. Because such tools fail to live up to promises, project managers are
justifiably reluctant to adopt them or consider subsequently developed tools.

2.3. Japan – U.S. Comparisons

There is currently much interest in comparing U. S. and Japanese technology. In
general, development practices are similar. Programmers in both countries com-
plain about the amount of money going towards hardware development and the
lack of resources for software. However, in comparing U.S. and Japanese software
development, we found that Japanese companies typically optimize development
across the company rather than within a single project. One effect of this is that
tools become a capitalized investment paid far or developed out of company over-
head rather than project funds. The cost of using tools is spread among more pro-
jects, knowledge about tools is known to more in the company, and project man-
agement is more willing to use tools since the risk is lower. Thus, tool
development and use is more widespread in Japan.

2.4. Review

At the end of each phase (and sometimes within a phase) the evolving software
product (i.e., requirements, design, code, test cases, see for example [Belady and
Lehman 76]) is subjected to a review process, trying to uncover problems as soon
as possible. ("Inspection" and "walkthrough" [Fagan 76] are other terms used for
reviews without regard to the distinctions made in the software-engineering litera-
ture.) Nearly everyone agrees that reviews work, and nearly everyone uses them,
but there is a wide variety in the ways that reviews are conducted. There seems to
be an agreement that they allow the routine completion of software projects within
time and budget constraints that only a few years ago could be managed only by
luck and sweat. Reviews were first instituted for code, then extended to design.
Extensions to requirements and test-case design are not universal, and some feel
that the technique may have been pushed beyond its usefulness. Managers would
like to extend the review process, while the technical people are more inclined to
limit it to the best-understood phases of development.
 Two aspects of reviews must be separated: one is management control and the
other is technical utility. Managers must be concerned with both aspects, but tech-
nical success cannot be assured by insisting that certain forms be completed. If the
tasks assigned to the reviewers are ill-defined, or the form of the product reviewed
inappropriate, the review will waste valuable people's time. Lower-level managers

 The Software Industry: A State of the Art Survey 389

prefer to use reviews where they think reviews are appropriate, and avoid them in
other situations.
 The technical success of the review process rests squarely on the expertise and
interest of the people conducting the review, not on the mechanism itself. The re-
view process is refined by continually changing it to reflect past successes and
failures, and much of this information is subjective, implicitly known to experi-
enced participants. Some historical information is encoded in review checklists,
which newcomers can be trained to use. However, subjective items like the "com-
pleteness" of requirements are of little help to a novice.

2.5. Data Collection

Every company collects some data, but little data becomes part of the corporate
memory to be used beyond the project on which it was collected. Data generally
belongs to individual managers, and it is their option as to what to do with it. Data
is rarely evaluated and used in a postmortem analysis of a project. After a project
is completed, it is rarely subjected to an analysis to see if the process could have
been improved. This is not the case in Japanese companies, in which postmortem
analysis was more frequently performed.
 Several companies are experimenting with various resource models (e.g.,
SLIM [Putnam 79], PRICE S [Freiman and Park 79], etc.). No company seems to
trust any model enough to use it on a full proposal; instead the models are used to
check manual estimates. Figure 4 shows that little data is being collected across all
companies.

Figure 4. Data Collection Across Life Cycle

 In general, we found it extremely difficult to acquire data. First of all, quantita-
tive data is quite rare within most companies. In addition each company has dif-
ferent definitions for most of the measured quantities, such as:

 Marvin V. Zelkowitz, Raymond Yeh, Richard G. Hamlet, et al 390

 (1) Lines of code is defined as source lines, comment lines with or without
data declarations, executable lines or generated lines.
 (2) Milestone dates depend on the local software life cycle used by the com-
pany. Whether requirements, specification, or maintenance data is included will
have a significant effect upon the results.
 (3) Personnel might include programmers, analysts, typists, librarians, manag-
ers, etc.
 Much of this data is proprietary. The differing definitions of quantities for
which data was collected prevent any meaningful comparison. It is quite evident
that the computer industry needs more work on the standardization of terms in or-
der to be able to address these quantitative issues in the future.

3. Software Development Environments

In the following section general characteristics about most software environments
are described. The last sections outline particular characteristics of the three
classes of environments that we studied in detail.

3.1. General Life Cycle

3.1.1. Requirements and Specification

In all places we contacted, requirements were in natural language text (English in
the US and Kanji in Japan). Some projects had machine-processable requirements,
documents, but tool support was limited to interactive text editors. No analysis
tools (e.g., SREM [Alford 77], PSL/PSA [Teichroew and Hersey 77]) were used
except on "toy" projects. Projects were either too small to make the use of such a
processor valuable, or else too large to make use of the processor economical.
 Reviews determine if the system architecture is complete, if the specifications
are "complete", the internal and external interfaces are defined, and the system can
be implemented. These reviews are the most difficult to perform and their results
are highly dependent on the quality of people doing the review because the speci-
fications are not formal. There is little traceability between specifications and de-
signs.

3.1.2. Design Phase

Most designs were expressed in some form of Program Design Language (PDL)
or pseudo code, which made design reviews effective. Tools that manipulated
PDL varied from editors to simple text formatters. Only one company extended its
PDL processor to analyze interfaces and the dataflow in the resulting design.
 While using PDL seems to be accepted practice, its effective use is not a fore-
gone conclusion. For example, we consider the expansion of PDL to code a rea-

 The Software Industry: A State of the Art Survey 391

sonable measure of the level of a design. A 1:1 PDL to source code expansion ra-
tio indicates that the design was essentially code instead of design. Figure 5 indi-
cates the ranges of expansions of PDL to code found at several locations that pro-
vided such data.

Location PDL to Code Ratio
 1 to 5-10
 2 to 3-10
 3 to 1.5(!!)-3
 Figure 5. Expansion of PDL to Code

 Customer involvement with design varied greatly even within installations.
Producing lots of detailed PDL is much the same as producing lots of detailed
flowcharts. (Nobody cares, but it's in the contract.)

3.1.3. Code and Unit Test

Most code that we saw was in higher level languages - Fortran for scientific appli-
cations or some local variation of PL/I for systems work.
 In the aerospace industry FORTRAN was the predominant language. People
who normally worked in assembly language thought that FORTRAN and PL/I
significantly enhanced their productivity. Historical studies have shown that pro-
grammers produce an average of one line of debugged source code per hour re-
gardless of the language. ([Brooks 75] contains a concise review of this work.)
 Despite claims that they used, chief programmer teams in development, very
few first or second-line managers ever wrote any PDL or code themselves. We
heard complaints that chief programmer teams worked well only with small
groups of 6-9 people, and on projects in which a person's responsibility was not
divided between different groups.
 Much of the code and unit test phase lacks proper machine support. Code audi-
tors could greatly enhance the code review process. We studied one code review
form and found that 13 of 32 checks could be automated. Manual checks are cur-
rently performed for proper indentation of the source code, initialization of vari-
ables, interface consistency between the calling and called modules, etc.
 Most unit testing could be called adversary testing. The programmer claims to
have tested a module and the manager either believes the programmer or not. No
unit test tools are used to measure how effectively the tests devised by a pro-
grammer exercise his source code. While a test coverage measure like statement
or branch coverage is nominally required during the review of unit test, mecha-
nisms are rarely available to assure that such criteria have been met.

3.1.4. Integration Test

Integration testing is mostly stress testing — running the product on as much real
or simulated data as is possible. The data processing environment had the highest

 Marvin V. Zelkowitz, Raymond Yeh, Richard G. Hamlet, et al 392

level of stress testing during integration tasting. Systems software projects were
relatively slack in integration testing compared to the banking industry.

3.2. Resources

Office space for programmers varied from 1 to 2 programmers sharing a "Santa-
Teresa" style office [McCue 1978] with a terminal to large bullpens divided by
low, moveable partitions. Terminals were the dominant mode for computer access.
Some sites had terminals in offices, while others had large terminal rooms. The
current average seems to be about two to seven programmers per terminal. Within
the last two years most companies have realized the cost-effectiveness of giving
programmers adequate computer access via terminals, but have still not provided
adequate response time. Ten to twenty second response time was considered
"good" at some places, where sub-second response could be used [Thadani 82].
 It seems worth noting that most companies were willing to invest in hardware
(e. g, » terminals) to assist their programmers, but were reluctant to invest in soft-
ware that might be as beneficial.

3.3. Education

Most companies had agreements with a local university to send employees for ad-
vanced training (e.g., MS degrees). Most brought in special speakers. However,
there was little training for project management. Only one company had a fairly
extensive training policy for all software personnel.
 Many companies had the following problems with their educational program:
 (1) Programmers were sent to courses with little or no follow-up experience.
Thus what they learned was rarely put into practice, and was often forgotten.
 (2) Some locations complained about their distance from any quality univer-
sity, and the difficulties that such isolation brought.

3.4. Data Collection Efforts

The data typically collected on projects includes the number of lines of PDL for
each level of design, the number of lines of source code produced per staff-month,
the number and kinds of errors found in reviews, and a variety of measures on
program trouble reports. The deficiency of lines of code as a measure can be indi-
cated by the range in values of "good" developments, as given by Figure 6:

Figure 6. Source Code per Staff-Month

 The Software Industry: A State of the Art Survey 393

 Due to the differing application areas, it is not really possible to compare these
numbers. However, it does seem obvious that the difficulty of the application area
(e.g., operating systems and other real-time programs being the most difficult) has
more impact on productivity than does the implementation language used.
 One location reports the following figures for errors found during reviews.

Phase Defects/1000 Lines
Design 2 major, 5 minor
Code 5 major, 8 minor

 Figure .7 Defects Discovered During Reviews

 The classification of errors into categories like "major" and "minor" is actuar-
ial. While the classification is useful for putting priorities on changes, it sheds lit-
tle light onto the causes and possible treatments of these errors.

4. Three Development Environments

4.1. Applications Software

We studied 13 projects in 4 companies that produce applications software. In this
area, software is contracted from the organization by a Federal agency, typically
the Department of Defense or NASA. Software is developed and "thrown over the
wall" to the agency for operation and maintenance. Typically, none of the organi-
zations we surveyed were interested in maintenance activities. All believed that
the payoff in maintenance was too low, and smaller software houses could fill that
void.
 Since contracts are awarded after a competitive bidding cycle (after a Request
For Proposal) and requirements analysis is typically charged against company
overhead, analysis was kept to a minimum before the contract was awarded. In
addition, since the goal was to win a contract, there was a clear distinction be-
tween cost and price. Cost was the amount needed to build a product - a technical
process at which most companies believed they were reasonably proficient. On the
other hand, price was a marketing strategy needed to win a bid. The price had to
be low enough to win, but not too low to either lose money on the project or else
be deemed "not responsive" to the requirements of the RFP. Thus many of the
ideas of software engineering developed during the 1970s on resource estimation
and workload characterization are not meaningful in this environment due to the
competitive process of winning bids.
 In addition, two distinct types of companies emerged within this group - sys-

tem developers and software developers. The system developers would package
both hardware and software for a government agency, e.g., a communications
network. In this case, most of the costs were for hardware with software not con-
sidered significant. On the other hand, the software developers simply built sys-

 Marvin V. Zelkowitz, Raymond Yeh, Richard G. Hamlet, et al 394

tems on existing hardware systems; DEC's PDP/11 series seemed to be the most
popular with system builders that were not hardware vendors.
 All of the companies surveyed had a methodology manual, however, they were
either out of date, were just in the process of being updated. In this environment,
Department of Defense MIL specifications were a dominant driving force and
most standards were oriented around government policies. The methodology
manuals were often policy documents outlining the type of information to be pro-
duced by a project, but not how to obtain that information.
 As stated previously, most organizations bid on RFPs from government agen-
cies. Because of that, requirement analysis is kept to a minimum. Requirements
are written in English and no formal tool is used to process the requirements.
 Except for one company, FORTRAN seemed to be the dominant programming
language. Two tools did seem to be used. Due to DoD specifications, most had
some sort of management reporting forms on resource utilization. However, these
generally did not report on programmer activities. PDL was the one tool many
companies did depend on - probably because the cost was low.
 Staff turnover was uniformly low - generally 5% to 10% a year. Space for pro-
grammers seemed adequate, with 1 to 2 per office being typical. All locations, ex-
cept one, used terminals for all computer access, and that one site had a pilot pro-
ject to build "Santa Teresa"-style offices connected to a local minicomputer.

4.2. Systems Software

We studied eight projects produced by three vendors. All of the projects were for
large machines, and operating systems for those machines were the most impor-
tant projects studied. The other projects, mostly compilers and utilities, did not
follow the same development rules as did operating systems projects, because they
were considered to be small and their designs well-understood.
 The software is generally written on hardware similar to the target machine.
Terminals are universally used and the ratio of programmers to terminals varies
from almost 1:1 to 3:1. Getting a terminal is frequently less of a problem than get-
ting CPU cycles to do development.
 Software support is generally limited to line-oriented text editors and interac-
tive compilers. High-level development languages exist, and in most cases there is
a policy that they be used; however, a substantial portion of operating systems re-
mains in assembler language (20% to 90% depending upon company). The rea-
sons are partly good ones (such as the prior existence of assembler code) and
partly the usual one: alternatives have never been considered at the technical level.
Text formatting programs are in wide use, but analysis of machine-readable text
other than source code is virtually nonexistent.
 Most testing is considered part of the development effort. There may be a sepa-
rate test group, but it reports to the development managers. Only a final "field" test
may be under the control of an independent quality-control group.
 Maintenance is usually handled by the development staff. A field support
group obtains trouble reports from the field, and then forwards them on to the de-

 The Software Industry: A State of the Art Survey 395

velopment organization for correction. In many cases, the developers, even if
working on a new project, handle errors.
 Programmers are usually organized into (usually) small teams by project, and
usually stick with a project until it is completed. The term "chief programmer
team" is used incorrectly to describe conventional organizations: a chain of man-
agers (the number depends on project size) who do not program, and small groups
of programmers with little responsibility for organization.
 Staff turnover is relatively high (up to 20% per year) compared to the applica-
tions software area. Most programmers typically have private cubicles paralleled
out of large open areas. The lack of privacy is often stated as a negative factor.
 Software engineering practices vary widely among the projects we investi-
gated. There was a strong negative correlation between the age of the system and
the amount of software engineering used.

4.3. Data Processing

We studied 6 data processing projects at 4 locations, although every location had
some data processing activities for its own internal use. Most data processing
software that we studied was developed in COBOL, although some systems are
written in FORTRAN, and used to provide internal data processing services for
the company. These systems did not produce revenue for the company, and were
all "company overhead." There was a need to maintain the code throughout the
life cycle.
 Requirements were mostly in English and unstructured, although one financial
company structured specifications by user function. Designs, especially for termi-
nal-oriented products, were relatively similar - a set of simulated screen displays
and menus to which the user could respond. The most striking difference in the
data processing environment was the heavy involvement of users in the two de-
velopment steps. The success of the project depended upon the degree of user in-
volvement before integration testing. One site clearly had a "success" and a "fail-
ure" on two different projects that used the same methodology. The company
directly attributed the success and failure to the interest (or lack of interest, respec-
tively) to the user assigned to the development team during development.
 All usage that we observed was via terminals. Office space was more varied
than in the other two environments we observed. Some places used one and two-
person offices, while others partitioned large open areas into cubicles. "Stress"
was often high in that overtime was more common, and turnover was the highest
in this environment - often up to 30% per year, although one location had a low
turnover rate which they attributed to relatively higher salaries than comparable
companies.
 Data processing environments often used a phased approach to development,
and quality control was especially important. One location, which had numerous
failures in the past, attributed their recent successes to never attempting any de-
velopment that would require more than 18 months. Since these systems often
managed the company's finances, the need for reliability was most critical and
stress testing was higher than in other areas.

 Marvin V. Zelkowitz, Raymond Yeh, Richard G. Hamlet, et al 396

5. Conclusions

We feel there are both short and long-term remedies to raise the level of method-
ology and tool use throughout industry. The short-term suggestions are relatively
conservative; however, we feel they can improve productivity. While we can point
to no empirical evidence that will permit us to forecast gains, there is a general
consensus in the software community (like that for the use of high level lan-
guages) to support these ideas. Our long-term suggestions could form the basis for
a research effort.

5.1. Short Term

 (1) More and better computer resources should be made available for de-

velopment. The computer systems being used for development are comparable
with the best of those available in the late 1960's or early 1970's timesharing on
large machines. The use of screen editors at some locations has been a major im-
provement, but other tools seem limited to batch compilers and primitive debug-
ging systems. Response time seems to be a major complaint at many development
installations.
 (2) Methods and tools should be evaluated. A separate organization with this
charter should be established. As of now, it does not appear that any one group in
most companies has the responsibility to study the research literature and try
promising techniques. Since the most successful tools have been high level lan-
guage compilers, the first tools to be developed should be integrated into compil-
ers. Thus these tools should concentrate on the design and unit test phases of de-
velopment during which formal languages exist and compiler extensions are
relatively straightforward. This organization could both acquire and evaluate the
tools via case studies and/or experiments.
 (3) Tool support should be built for a common high level language. The
tools we would pick first include a PDL processor, a code auditor, and a unit test
coverage monitor. The PDL processor should at least check interfaces. Unfortu-
nately, commercially available processors do little more than format a listing;
however, interface checking is nothing more than 20-year-old compiler technol-
ogy. The processor should also construct graphs of the flow of data through the
design and extract PDL from source code so that while both are maintained to-
gether they can be viewed separately. Code auditors can be used to check that
source code meets accepted standards and practices. Many of these checks are
boring to perform manually (e.g., checking whether BEGIN-END blocks are
aligned) and thus become error prone. Unit testing tools can evaluate how thor-
oughly a program has been exercised. These tools are easy to build and should
meet with quick acceptance since many managers require statement or branch
coverage during unit test.
 PDL processors should support an automated set of metrics that cover the de-
sign and coding process. The metrics in turn can monitor progress, characterize
the intermediate products (e.g., the design, source code, etc.), and attempt to pre-

 The Software Industry: A State of the Art Survey 397

dict the characteristics of the next phase of development. Possible metrics include
design change counts, control and data complexity metrics for source code, struc-
tural coverage metrics for test data, etc. [Basili 80].
 (4) Improve the review process. Reviews or inspections are a strong part of
current methodology. The review process can be strengthened by the use of the
tools mentioned above. This would permit reviewers to spend more time on the
major purpose of the review — the detection of logical errors, and avoid the dis-
tractions of formatting or syntactic anomalies.
 (5) Use incremental development (e.g., iterative enhancement [Basili and
Turner 75]). One data processing location, after repeatedly failing to deliver soft-
ware, made a decision never to build anything that had a chunk larger than those
requiring 18 staff months. Since then they have been successful.
 (6) Collect and analyze data. Most of the data being collected now is used
primarily to schedule work assignments. Measurement data can be used to classify
projects, evaluate methods and tools, and provide feedback to project managers.
Data should be collected across projects to evaluate and help predict the produc-
tivity and quality of software. The kind of data collected and analysis performed
should be driven by a set of questions that need answers rather than what is con-
venient to collect and analyze. For example, classifying errors into "major” and
"minor" categories does not answer any useful questions. A more detailed exami-
nation of error data can determine the causes of common errors, many of which
may have remedies. Project post mortems should be conducted.

5.2. Long Term

 (1) Compiler technology should be maintained. Many companies seem to
"contract" out compiler development to smaller software houses due to "pedes-
trian" nature of building most compilers. While compiler technology is relatively
straightforward and perhaps cheaper to contract to a software house, the implica-
tions are far reaching. Software research is heading towards an integrated envi-
ronment covering the entire life cycle of software development. Research papers
are now being written about requirements and specification languages, design lan-
guages, program complexity measurement, knowledge based Japanese "fifth gen-
eration" [Karatsu 82] languages, etc. All of these depend upon mundane compiler
technology as their base.
 (2) Prototyping should by tried. It was never mentioned during our visits.
 (3) Develop a test and evaluation methodology. Test data has to be designed
and evaluated. While the current software development process provides for the
design of test data in conjunction with the design of the software, there is little tool
support for this effort. As a result, almost every project builds its own test data
generator and a few even build test evaluators. Concepts like attribute grammars
may provide the basis for a tool to support test data generation.
 (4) Examine the maintenance process. The maintenance process should be
formalized as part of the continuing development process. Maintenance was rarely
mentioned in our interview process, although there is a project in Japan to build

 Marvin V. Zelkowitz, Raymond Yeh, Richard G. Hamlet, et al 398

maintenance workstations. Their view is that development is a subset of mainte-
nance. This implies that the successful methods and tools used in development
should be adapted for use in this stage of the process.
 (5) Encourage innovation. Experimental software development facilities are
needed. Management should be encouraged to use new techniques on small
funded-risk projects.

6. Acknowledgements

This project was sponsored by a contract from the IBM Corporation to the Univer-
sity of Maryland. We also wish to acknowledge the cooperation of the following
organizations in addition to IBM for allowing us to survey their development ac-
tivities: Bankers Trust Company, Honeywell Large Information Systems Division,
Kozo Keikaku Kenkyujo, Japan Information Processing Service, Nomura Com-
puter Systems Ltd., Software Research Associates (Japan), Sperry Univac, System
Development Corporation, Tokyo Electric Power Company, Toshiba Corporation,
TRW, Xerox, and several other organizations who wish to remain anonymous.
This project would not have been possible without their help.

7. References

[Alford 77] M. W. Alford. A Requirements Engineering Methodology for Real-time Proc-
essing Requirements. IEEE Transactions on Software Engineering SE-3, (January,
1977), 60-69.

[Basili 80] V. R, Basili. Models and Metrics for Software Management and Engineering.
IEEE Computer Society Press, 1980.

[Basili and Turner 75] V. R. Basili and A. J. Turner. Iterative Enhancement: A Practical
Technique for Software Development. IEEE Transactions on Software Engineering
SE-1, 4, (December l975), 390-396.

[Belady and Lehman 76] L. A. Belady and M. M. Lehman. A model of Large Program De-
velopment. IBM Systems Journal 15, 3, (September, 1976), 225-252.

[Boehm 81] B. W. Boehm. Software Engineering Economics. Prentice-Hall, Inc., Engle-
wood Cliffs, N. J., (1981).

[Brooks 75] F.P. Brooks, Jr. The Mythical Man-Month. Addison-Wesley Publishing Com-
pany, Reading, MA, (1975).

[Buxton and Randell 70] J. N. Buxton and B. Randell (ed.). Software Engineering Tech-
niques. NATO Scientific Affairs Division, Brussels, (1970).

[Fagan 76] M. E. Fagan. Design and Code Inspections to Reduce Errors in Program Devel-
opment. IBM Systems Journal 15, 3, (1976), 182-211.

[Freiman and Park 79] F. Freiman and Park. PRICE Software Model Overview. RCA,
(February 1979).

[Halstead 77] M. H. Halstead. Elements of Software Science. Elsevier, New York, (1977).
[Karatsu 82] H. Karatsu, What is required of the 5th generation computer - social needs and

its impact, Fifth Generation Computer Systems, North Holland, 1982.

 The Software Industry: A State of the Art Survey 399

[McCue 1978] G. M. McCue, IBM's Santa Teresa Laboratory -Architectural design for
program development, IBM systems Journal 17, 1 (1978) 4-25.

[Naur and Randell 69] P. Naur and B. Randell (ed.). Software Engineering. NATO Scien-
tific Affairs Division, Brussels, (1969).

[Putnam 79] L. Putnam. SLIM Software Life Cycle Management Estimating Model: User's
Guide. Quantitative Software Management, (July 1979).

[Teichroew and Hersey 77] D. Teichroew and E. A. Hersey III. PSL/PSA: A Computer-
Aided Technique for Structured Documentation and Analysis of Information Process-
ing Systems. IEEE Transactions on Software Engineering, SE-3, 1, (January 1977),
41-48.

[Thadani 81] A. J. Thadani. Interactive User Productivity. IBM Systems Journal, 20, 4,
(1981), 407-423.

An Evaluation of Expert Systems for Software

Engineering Management

Connie Loggia Ramsey and Victor R. Basili

Abstract. Although the field of software engineering is relatively new, it
can benefit from the use of expert systems because of the ability to learn
from them. We believe that a major limitation to building expert systems
for software engineering is the fact that much of the knowledge in this field
is not well understood yet. Therefore, the development of expert systems in
this field must be considered exploratory. This project focused on the de-
velopment of four separate, prototype expert systems to aid in software
engineering management. Given the values for certain metrics, these sys-
tems provide interpretations which explain any abnormal patterns of these
values during the development of a software project. The four expert sys-
tems, which solve the same problem, were built using two different ap-
proaches to knowledge acquisition, a bottom-up approach and a top-down
approach, and two different expert system methods, rule-based deduction
and frame-based abduction. In a comparison to see which methods might
better suit the needs of this field, it was found that the bottom-up approach
led to better results than did the top-down approach, and the rule-based
deduction systems using simple rules provided more complete and cor-
rect solutions than did the frame-based abduction systems.

Key Words: Expert systems, software development, software engineering man-
agement.

I. Introduction

The importance of expert systems is growing in industrial, medical, scientific,
and other fields. Several major reasons for this are: 1) the necessity of handling an
overwhelming amount of knowledge in these areas, 2) the potential of expert sys-
tems to train new experts, 3) the potential to learn more about a field while orga-
nizing knowledge for the development of expert systems, 4) cost reductions

Manuscript received November 10, 1986; revised January 31, 1989. This work was sup-
ported in part by the National Aeronautics and Space Administration under Grant NSG-
5123 to the University of Maryland. Computer support was provided in part by the Com-
puter Science Center of the University of Maryland.
C. L. Ramsey, Member, IEEE, is with the Navy Center for Applied Research in Artificial
Intelligence, Naval Research Laboratory, Washington, DC 20375.
V. R. Basili, Senior Member, IEEE, is with the Institute for Advanced Computer Studies
and the Department of Computer Science, University of Maryland, College Park, MD
20742.

 An Evaluation of Expert Systems for Software Engineering Management 401

sometimes provided by expert systems, and 5) the desire to capture corporate
knowledge so it is not lost as personnel changes.
 Although the field of software engineering is still relatively new, it can cer-
tainly benefit from the use of expert systems because of the ability to learn from
them. The development of any expert system requires organized knowledge;
therefore, the knowledge engineer can learn more about the field of software
engineering as he is forced to develop, understand, and organize relationships
between various pieces of knowledge.
 On another leve1, the expert systems in this field can be used to train and help
people, including software managers. They can contain general software engi-
neering principles as well, as a history of information from a particular software
development environment which can be particularly helpful to inexperienced
managers and developers.
 Since software engineering is still such a new field with much of its knowledge
unclear, expert systems developed in this field must be considered exploratory
prototypes. This project focused on software engineering management. A first at-
tempt was made at creating and systematically analyzing and comparing expert
systems which intelligently relate software engineering project measurements and
explanations of project behavior. This was an exploratory learning experience
which has provided an initial baseline for future work [4], [29].
 The high level goal of this project was to examine different approaches to ex-
pert system development for software engineering management and determine
strengths and limits of the various approaches as they relate to the field. Some of
the questions this study tried to answer were: 1) Are expert systems for software
engineering management feasible at this time? 2) What methodology should be
used for knowledge acquisition? 3) What type of expert system methodology
best suits software engineering management? 4) Do the experts themselves agree
on the information to be used? 5) Are certain software environments more suited
for expert systems than others? 6) Are we ready to develop systems with envi-
ronment-independent, general truths? 7) What information should be included in
the system?
 This paper will discuss the comparison of several prototype expert systems,

collectively named ARROW-SMITH-P.1 Earlier versions of these expert systems
are described in [3]. ARROWSMITH-P is intended to aid the manager of a soft-
ware development project in an automated manner. The goal of these systems is to
help detect and assess the problems which might occur during the coding and test-
ing of a project as early as possible. The systems work as follows. First, it is de-
termined whether or not a software project is following normal development pat-
terns by comparing measures such as programmer hours per line of source code
against historical, environment-specific baselines of such measures. Then, the
"manifestations" detected by this comparison, such as an abnormally high rate of

1 Martin Arrowsmith, created by Sinclair Lewis in the novel Arrowsmith, was in con-
stant search of truth in scientific fields. The “P” stands for Prototype.

 Connie Loggia Ramsey and Victor R. Basili 402

programmer hours per line of source code, serve as input to each expert sys-
tem, and each system attempts to determine the reasons, such as high complexity

or low productivity, for any abnormal software development patterns. Early de-
tection of potential problems can provide invaluable assistance to the manager of
a software development project. These expert systems should be updated as the
environment changes and as more is learned in the field of software engineering.
 The rest of this paper is organized as follows. Section II provides a brief over-
view of the underlying methodologies used to build the expert systems discussed
in this paper. The knowledge representation and inference techniques of the
methodologies are presented here. Section III describes aspects of the software
engineering development environment used for this study. Section IV details the
implementations of ARROWSMITH-P, i.e., how the different approaches were
utilized to build the expert systems. In Section V, some of the technical issues and
problems associated with this process are discussed. Section VI furnishes the de-
tails for the evaluation of the expert systems. Section VII then discusses results
and conclusions from the development and testing of the expert systems. Finally,
Section VIII discusses current and future research needs.

II. Background on Expert Systems

In general, an expert system consists of two basic components, a domain-specific
knowledge base and a domain-independent inference mechanism. The knowledge
base consists of data structures which represent general problem-solving informa-
tion for some application area. The inference mechanism uses the information in
the knowledge base along with problem-specific input data to generate useful in-
formation about a specific case.
 The set of expert systems in ARROWSMITH-P was constructed using KMS
[25], an experimental domain-independent expert system generator which can be
used to build rule-based, frame-based and Bayesian systems. The
ARROWSMITH-P systems were built using two different methods: rule-based
deduction and frame-based abduction. These two methods are briefly described
below.

A. Rule-Based Deduction

A common method for expert systems is rule-based deduction. In this approach,
domain-specific problem-solving knowledge is represented in rules which are ba-
sically of the form:

"IF <antecedents> THEN <Consequents>",
although the exact syntax used may be quite different (e.g., PROLOG). If the an-
tecedents of such a rule are determined to be true, then it logically follows that the
consequents are also true. Note that these rules are not branching points in a pro-
gram, but are nonprocedural statements of fact.
 The inference mechanism consists of a rule interpreter which, when given a
specific set of problem features, determines applicable rules and applies them in

 An Evaluation of Expert Systems for Software Engineering Management 403

some specified order to reach conclusions about the case at hand. Rule-based de-
duction can be performed in a variety of ways, and rules can be chained together
to make multiple-step deductions. (For a fuller description, see [13].) In addition,
in many systems one can attach "certainty factors" to rules to capture probabilistic
information, and a variety of mechanisms can be used to propagate certainty
measures during problem solving. MYCIN [26] and PROSPECTOR [8] are two
well-known examples of expert systems which incorporate rule-based deduction.

B. Frame-Based Abduction

Another important method for implementing expert systems is frame-based ab-
duction. Here, the domain-specific problem-solving knowledge is represented in
descriptive "frames" of information [15], and inference is typically based on
hypothesize-and-test cycles which model human reasoning as follows. Given
one or more initial problem features, the expert system generates a set of poten-
tial hypotheses or "causes" which can explain the problem features. These hy-
potheses are then tested by 1) the use of various procedures which measure their
ability to account for the known features, and 2) the generation of new questions
which will help to discriminate among the most likely hypotheses. This cycle is
then repeated with the additional information acquired. This type of reasoning is
used in diagnostic problem solving (see [22] for a review). INTERNIST [14],
KMS.HT [25], [23], PIP [17], and IDT [27] are typical systems using frame-
based abduction.
 In order to simulate hypothesize-and-test reasoning, KMS employs a general-
ized set covering model in which there is a universe of all possible manifesta-
tions (symptoms) and a universe which contains all possible causes (disorders).
For each possible cause, there is a set of manifestations which that cause can ex-
plain. Likewise, for each possible manifestation, there is a set of causes which
could explain the manifestation. Given a diagnostic problem with a specific set of
manifestations which are present, the inference mechanism finds all sets of causes

with minimum cardinality2 which could explain (cover) all of the manifestations.
For a more detailed explanation of the theory underlying this approach and the
problem-solving algorithms, see [23], [24], [16], and [18].

III. Background on Software Environment

The software which provided the data for this study was developed at the NASA
Goddard Space Flight Center. This software development environment is homo-
geneous, i.e., many similar projects are developed for the same application area.

2 Ockham´s razor, which states that the simplest explanation is usually the correct one,
together with the assumption of independence among causes motivate the requirement
of minimum cardinality.

 Connie Loggia Ramsey and Victor R. Basili 404

 There has been a standard process model developed over the years; the meth-
odology for development is similar across projects, and there is a great deal of re-
use of code from prior projects. The NASA Software Engineering Laboratory has
been collecting reliable software project data such as programmer hours and lines
of code for approximately fifteen years. The data used for the knowledge bases of
the expert systems was chosen from this database of information because it was
standard data for the environment and covered a great deal of the software life cy-
cle phases being studied.
 The experts who aided in knowledge acquisition were two managers who had
successfully supervised software development in this environment for many years.
They were also involved in the collection and analysis of data for prior projects
and therefore understood the implications of the information in the database.

IV. Implementations

In this section, we will first present the methodology developed for building ex-
pert systems for software engineering management. Then we will discuss the ac-
tual implementations of ARROWSMITH-P.

A. Methodology

The following two methodologies of knowledge acquisition for constructing ex-
pert systems for software engineering management were developed. They can best
be described as a bottom-up methodology and a top-down methodology. (An ear-
lier version of the bottom-up reasoning was developed by Doerflinger and Basili
[12].)
 1) Bottom-Up Methodology: Given a homogeneous environment, it is possible
to produce historical, environment-specific baselines of normalized metrics from
the data of past software projects. Normalized metrics are derived by comparing
variables such as programmer hours and lines of code against each other. This is
done so influences such as the size of the individual project are factored out. The
baseline for each metric is defined as the average value of that metric for the past
projects at various discrete time intervals (such as early coding or acceptance test-
ing). Only those metrics which exhibit baselines with reasonable standard devia-
tions should be used; too little variety in the values of the measures proves unin-
teresting, while too much variety is not very meaningful. In addition, one ideally
wants a relatively small number of meaningful metrics whose values are easily
obtainable.
 Next, experts can determine interpretations, such as unstable specifications or
good testing, which would explain any significant deviation (more than one stan-
dard deviation less than or greater than the average) of a particular metric from
the historical baseline. The deviation of some metric can be thought of as a mani-
festation or symptom which can be "diagnosed" as certain interpretations or
causes. Furthermore, these relationships between interpretations and manifesta-

 An Evaluation of Expert Systems for Software Engineering Management 405

tions should be made time-line specific because, for example, an interpretation
during early coding might not be valid during acceptance testing. In addition,
measures to indicate how certain one is that the deviation of a particular metric
has resulted from a particular interpretation can be included.
 The approach, described above, can be classified as a bottom-up approach be-
cause it seems to go in the opposite direction of cause-and-effect. First the symp-
toms (deviant metric values) that something is abnormal are explored, and then the
underlying interpretations or diagnoses of the abnormalities are developed. This
approach to knowledge acquisition is reasonable in a homogeneous environment
because the metrics are homogeneous, and deviations are indicative that some-
thing is wrong. However, this approach contrasts with the development of expert
systems in other fields, such as medicine, which typically use a top-down ap-
proach.
 2) Top-Down Methodology: A top-down approach to knowledge acquisition
can be similar to the bottom-up approach in that the same manifestations and
causes can be used. However, it would first define the various interpretations or
diagnoses and then indicate the metrics which would be likely to have abnor-
mal values for each interpretation.
 Using the top-down approach, the experts view the knowledge from a different
perspective when defining the relationships that exist between the interpretations
and manifestations. This approach can be seen as a more general approach than the
bottom-up approach is to knowledge acquisition in the field of software engineer-
ing management. In the bottom-up methodology, the metrics are analyzed first and
these are, by their nature, environment-specific. The focus is automatically limited
to the specific environment. Conversely, in the top-down methodology, the ex-
perts think first of the causes or interpretations and then indicate the effects or
likely metrics which would show deviant values if a certain interpretation ex-
isted. This generalizes the problem across environments somewhat because the
emphasis seems to be switched to the interpretations which can be universal.
 3) Using the Expert Systems: Once the expert systems have been developed,
the input to each expert system would then consist of those metrics from a cur-
rent project which deviate from a historical baseline of the same metrics at the
same time of development for similar projects. The knowledge bases consist of in-
formation about various potential causes; such as poor testing or unstable, speci-

fications, for any abnormally high or low measures, and the expert system pro-
vides explanations for any abnormal software development patterns.

B. Actual Implementations

ARROWSMlTH-P consists of four independent expert systems, one using a bot-
tom-up approach to knowledge acquisition and rule-based deduction, a second
using the bottom-up approach and frame-based abduction, a third using a top-
down approach to knowledge acquisition and rule-based deduction, and a fourth
using the top-down approach and frame-based abduction.

 Connie Loggia Ramsey and Victor R. Basili 406

 The bottom-up methodology described above was based on previous research
conducted on the NASA Goddard Space Flight Center Software Engineering
Laboratory (SEL) environment [12]. Since the SEL environment is homogene-
ous, it was possible to produce historical, environment-specific baselines of nor-
malized metrics from the highly reliable data of nine software projects. (See
[7], [5], [6], [9], and [1] for fuller descriptions of the SEL environment.)
 The bottom-up development was performed first, and nine metrics, derived
from five variables, were chosen because they were standard data measurements
for the environment and covered a great deal of the software life cycle phases be-
ing studied. They also proved satisfactory because they exhibited baselines with
reasonable standard deviations. The metrics are displayed in Table I. These same
metrics were later used during the top-down development to ensure consistency
and to allow a comparative study to be performed. The time-line for the baselines
was divided (after a slight modification) into the following five discrete intervals:
early code, middle code, late code, systems test, and acceptance test.
 The initial sets of interpretations and the relationships between the interpreta-
tions and the abnormal values of metrics were mainly derived from two experts
who have had a great deal of experience in this field and particularly in the SEL
environment. The experts were asked what they thought high and low values of
metrics might mean, and the interpretations they suggested were used in the ex-
periment [12]. During the bottom-up development of ARROWSMITH-P, mainly
one of these experts modified the existing sets and made them time-line specific.
In addition, measures to indicate how certain one is that the interpretation and
the abnormal metric value are connected were included. During the top-down
development, the same two experts were again asked to provide the relationships
for all five time phases, and the intersection of their responses was used for the
expert systems. Some of their other indicated relationships were used as well; when
the experts did not agree on a relationship, we discussed the situation to under-
stand the reasoning behind the relationship and to see how certain an expert felt
about the relationship. The list of interpretations used and tested in the bottom-up
and top-down expert systems is displayed in Table II. (Other interpretations were
used as well, but these could not be tested. See [3] for the complete list.)
 As stated previously, two different expert system methods were used to build
the expert systems for this application in order to determine which method better
suits the needs of this field. The two methods used were rule-based deduction and
frame-based abduction which were described in Section II. In the rule-based sys-
tems, the rules are of the form "IF manifestations THEN interpretations,"
while in the frame-based systems, there is one frame (containing a list of
manifestations) for each interpretation. Please note that these formats are inde-
pendent of whether the relationships between manifestations and interpretations
were defined using a bottom-up or a top-down approach to knowledge acquisition.
The rule-based and frame-based systems which used the bottom-up approach were
intentionally built to be as consistent with one another as possible. The causes and
manifestations used were identical in both cases, as were the relationships between
them. The same was true for the two expert systems which employed the top-
down approach. However, the certainty factors attached to the rules and the meas-

 An Evaluation of Expert Systems for Software Engineering Management 407

ures of likelihood in the frames could not be directly translated to each other so
some of these measures were omitted. For example, within the bottom-up ap-
proach we were relatively certain that an abnormally high value of computer time
per software change is caused by good, reliable code so this was given a certainty
factor of 0.75. However, if that particular metric appears abnormally high very in-
frequently and that particular interpretation is common, then we would not be able
to state that good, reliable code generally results in an abnormally high value of
computer time per software change. (For a discussion of similar problems see
[21].) Fig. 1 shows a sample section of a rule-based and a frame-based knowledge
base. Example sessions with the expert systems are provided in the Appendix.

TABLE I. Metrics used in expert system

TABLE II. Interpretations used in expert system

 Connie Loggia Ramsey and Victor R. Basili 408

V. Research Issues and Problems

The field of expert systems is relatively new, and therefore, the development proc-
ess of expert systems still faces many problems. The selection of which method to
use for building them is not generally clear, although an attempt has been made
to provide guidelines for the selection of an appropriate method in [21]. Fur-
thermore, most expert systems are shallow in nature and cannot handle temporal
or spatial information well.
 In addition to general problems, negative effects are compounded when the
knowledge to be included in such systems is incomplete. The science of software
engineering is not well-defined yet, and therefore many details about the rela-
tionships between various components are often unclear. The experts themselves
may not even agree on the information used in the expert systems. As a result, the
knowledge base of any expert system developed in this field is particularly ex-
ploratory and prototypical in nature. This is in contrast to expert systems devel-
oped in established fields such as medicine where the information contained in
the knowledge base is based on many years of experience.
 Due to the uncertainty of the data in the knowledge base for a field such as
software engineering, one must deal with the issues of completeness versus cor-
rectness and completeness versus minimality. When dealing with a diagnostic
problem, the more certain one is of relationships between causes and manifesta-
tions, the more exact the answer can be, ultimately leading to the one correct an-
swer. However, when dealing with very uncertain relationships, it is preferable to
list many outcomes so as to avoid missing the correct explanation, and to let the
experienced person using the expert system decide what the correct explanation
really is. Therefore, rules with simple antecedents were used in the rule-based
deduction systems [see Fig. I (a)] because the more involved patterns needed for
complex antecedents are not yet known. If one tried to "guess" what these pat-
terns are without actually being certain, this would lead to incomplete solutions
which miss some of the correct interpretations. For example, a high value for
computer runs per line of code, a high value for computer time per line of code,
and a high value for programmer hours per line of code are all indications of low

productivity. So, we might construct the following rule for this pattern:
IF computer runs per line of code is above normal,

 and computer time per line of code is above normal,
 and programmer hours per line of code is above normal,

THEN the interpretation is Low Productivity.

 However, what if it turns out that computer time per line of code is almost
never above normal? Then this rule will almost never succeed, and we will miss
the interpretation of low productivity even if it happens to be true.
 This issue also leads to concern in the frame-based abduction systems which
provide all answers of minimum cardinality. This inference mechanism works
well for most diagnostic problem solving, but one must be cautiously aware of
the fact that not all possible explanations are provided by this expert system. For
example, if an abnormally high value of computer runs per line of code and an

 An Evaluation of Expert Systems for Software Engineering Management 409

Fig. 1. (a) Small section of (a) rule-based deduction expert system, (b) frame-
based abduction expert system.

abnormally low value of programmer hours per software change can be ex-
plained by the combination of two interpretations, low productivity, and good

testing, and also by a single interpretation, error prone code alone, then only the
single interpretation will be provided by this system. This is because the single

 Connie Loggia Ramsey and Victor R. Basili 410

interpretation has a lower cardinality than the two interpretations together. As
was the case in this study, some researchers now feel that the idea of providing
only answers of minimum cardinality (minimal set covers) is inadequate some-
times. Research is currently being performed on a newer and better method called
irredundant covers which provides all irredundant sets of causes which cover all
of the manifestations [19], [11]. (A set of interpretations which covers all of the
manifestations is irredundant if none of its proper subsets also cover all of the
manifestations.)
 One final, but very important, fact should be noted here. ARROWSMITH-P
was built using the data from one particular homogeneous environment. There-
fore, the information in the knowledge base reflects this one environment and
would not be transportable to other environments. However, the ideas and
methods used to build ARROWSMITH-P are transportable, and that is what is
important.

VI. Evaluation of Expert Systems

A. Methods of Evaluation

ARROWSMITH-P has been evaluated in several ways. The correctness of each
system was measured by comparing the interpretations provided by the expert
system against what actually happened during the development of the projects,
thereby obtaining a measure of agreement. This analysis was performed for ten
projects (the original nine plus a newer project which was completed after the
development of the expert systems) in all five time phases for each of the four
expert systems. Each of the original nine projects was compared against historical
baselines of the remaining eight projects to determine abnormal metric values,
and the tenth project, which was tested later, was compared against the original
nine. A total set of 50 cases was tested on each of the four expert systems.
 The actual results of what took place during development were gathered from
information in another section of the database, mostly from subjective evaluation
forms and project statistics forms. The subjective evaluation form contains
mostly subjective information (such as a rating of the programming team's per-
formance) and some objective numbers (such as total number of errors) con-
cerning the project's overall development. Since the vast majority of the ratings
in the subjective evaluation form is not divided by phase of the project, there
probably exist some discrepancies between the results indicated in the forms and
the actual interpretations for a particular phase. However, these are the closest
data that are available, so we must assume that most of the interpretations for
each phase are similar to the interpretations for the entire project.
 The results from the expert systems were also analyzed statistically by using a
Kappa statistic test [28], [10] on each interpretation. The Kappa statistic de-
termines whether the results are better or worse than chance agreement. It takes

 An Evaluation of Expert Systems for Software Engineering Management 411

into account the number of correct answers and the number of incorrect answers
with respect to each interpretation, and it determines the amount of agreement
which can be attributable to chance alone. The formula for the Kappa statistic
is:

where P0 is the observed proportion of agreement, and Pc is the proportion (of
agreement expected by chance.

 A value of 1 for K indicates perfect agreement, a value of 0 indicates that the
results can be due to chance alone, and a value less than 0 indicates worse than
chance agreement. The Kappa statistic was used for each interpretation in each of
the four expert systems. This was done to determine whether certain interpreta-
tions are better understood than others.
 In addition to testing the performance of the expert systems, an analysis was
performed to compare the information provided by the two experts for the sys-
tems. This was performed by comparing the relationships indicated by each of the
experts against each other and also by comparing the relationships indicated in the
bottom-up systems against those indicated using the top-down approach.

B. Results

The first results we would like to discuss are those comparing information pro-
vided by the experts. This is essential because the expert systems can only per-
form as well as the knowledge contained in the systems permits. The experts
were asked to fill in grids (one for each time phase for the bottom-up approach
and one for each time phase for the top-down approach) indicating the relation-

 K=
 P0-Pc

1-Pc

 Connie Loggia Ramsey and Victor R. Basili 412

ships between the interpretations and the manifestations as described in Section
IV. The comparison between the sets of grids for the top-down approach is pro-
vided in Table III(a). (The data for one of the experts using the bottom-up ap-
proach is incomplete, so a comparison between the two experts was not made
there.) The experts only agreed in about 1/3-1/2 of their indicated relationships.
Furthermore, the final set of relationships for the top-down approach is very dif-
ferent from the final set for the bottom-up approach. [See Table III(b).] When
deciding on the relationships during the top-down development, the experts even
decided to combine some of the interpretations used in the bottom-up approach,
feeling there was too little difference in meaning between them to be significant,
and they also dismissed several interpretations during certain time phases (and
tight management during all time phases) because they felt that the meaning of
those interpretations could not be captured by the available metrics in those par-
ticular time periods. We believe that the differences between the two approaches
are mainly due to two facts: 1) the experts were seeing the data from a very differ-
ent point of view, and 2) the metrics are not ideal in that some of the interpreta-
tions could not be adequately described in terms of the available metrics, so the
experts were not completely certain of all of the relationships that they stated and
they changed their opinions over time.

 An Evaluation of Expert Systems for Software Engineering Management 413

 However, there were certain relationships which proved more consistent than
others. For example, the two experts had strong agreement over the relationships
involving programmer hours per line of code, software changes per line of code,
and computer time per computer run. These metrics seem to be better understood
than the others probably because they are often used for evaluation and compari-
sons in this field. They also had fairly good agreement with the interpretations of
error prone code, lots of reused code, and loose management. The top-down and
bottom-up expert systems had good agreement over programmer hours per line of
code and software changes per line of code and over the interpretations of error

prone code and good solid code.

 The results of evaluating the four expert systems are displayed in Tables IV
and V. (An expanded version of this data is presented in the technical report ver-
sion of this paper [20].) The entries in the agreement column are the number of in-
terpretations which were indicated by both the expert system and the information
in the database.
 The entries in the disagreement column are those interpretations indicated by
the database, but not listed by the expert system. Finally, the column labeled "Ex-

 Connie Loggia Ramsey and Victor R. Basili 414

tra" specifies the number of extra interpretations listed by the expert system. This
number is not that meaningful in determining the performance of the rule-based
systems at this time because, as discussed previously, the rule-based systems were
built to provide as complete a list of interpretations as possible. The manager
would then have to decide which interpretations are meaningful and disregard the
others. However, in general, it is better to have as few extra interpretations as pos-
sible. It should be noted that the total number of interpretations varies from table
to table. This is because certain metrics were not available for some projects in
some of the time phases. It would be unfair to say the expert systems did not de-
tect certain interpretations if they were not given the manifestations necessary to
do so, so these interpretations were not included in the results of the evaluation for
those particular cases.
 The expert systems performed moderately well given the following limitations:
1) so much of the knowledge and relationships are unclear in this field, 2) the ex-
perts themselves do not agree on much of the knowledge, 3) the expert systems
used only five variables and only nine metrics derived from these variables to
achieve the list of interpretations, 4) the metrics used are not ideal, 5) many of the
interpretations in the database are subjective in nature and therefore may not al-
ways be correct, and 6) there may be discrepancies between the interpretations of
the particular time phase and the overall interpretations for the project.
 The systems which were developed with the bottom-up approach performed
better than those developed with the top-down approach, and the rule-based de-
duction systems performed better than the frame-based abduction systems. Both
the bottom-up and top-down rule-based systems performed better than either of the
frame-based systems. The bottom-up rule-based system performed best, agree-
ing with an average of 36 percent (ranging from 29 to 44 percent depending on
time phase) of the actual interpretations indicated in the subjective evaluation
forms and project statistics forms in the database, and the top-down rule-based
system agreed with an average of 27 percent (ranging from 20 to 33 percent) of
the database conclusions. The bottom-up frame-based system agreed with an aver-
age of 16 percent (ranging from 11 to 20 percent) of the database interpretations,
and the top-down frame-based system agreed with an average of 13 percent
(ranging from 6 to 16 percent) of the database conclusions. It should be pointed
out that each expert system produced relatively consistent results throughout its
five time phases.
 The bottom-up systems contained more relationships between manifestations
and interpretations than did the top-down systems. One might assume that the only
reason the bottom-up systems agreed with a higher percentage of the database
conclusions was that the bottom-up systems would list more interpretations for the
same input manifestations (test case). If it listed more interpretations, it would get
more right by chance. However, there was not that big a difference between the
number of manifestations per interpretation for the bottom-up systems which was
3.16 and the number for the top-down systems which was 2.77. As mentioned be-
fore, during the top-down development, the experts combined certain interpreta-
tions and dismissed others altogether during certain time phases so there were
fewer interpretations for each phase. Although the intent was to throw out inap-

 An Evaluation of Expert Systems for Software Engineering Management 415

propriate interpretations and make the top-down systems that much better, the bot-
tom-up systems still captured a higher percentage of correct relationships than
did the top-down systems. The total number of interpretations listed by the bot-
tom-up rule-based system was 276 in the 50 test cases. Of these, 95 were in
agreement with the database conclusions. The total number of interpretations
listed by the top-down rule-based system was 216, and of these, 59 agreed with
the database conclusions. Therefore, the bottom-up rule-based system had an av-
erage of 34 percent (95/276) correct interpretations out of all those listed, while
the top-down rule-based system averaged only 27 percent (59/216) correct inter-
pretations.
 It is interesting to observe that within both the bottom-up and top-down sets of
systems the frame-based system always provided a subset of the interpretations
listed by the rule-based system (although in 48 percent of the combined bottom-up

Note - K > 0 indicates better than chance agreement: K = 0 indicates chance agreement;
K < 0 indicates worse than chance agreement.
RBD - Rule-Based Deduction; FBA - Frame-Based Abduction
*** - these interpretations were not used in the top-down systems

and top-down cases, the rule-based and frame-based systems listed the exact same
interpretations). As stated previously, the relationships between the manifestations
and interpretations were identical in the frame-based and rule-based systems
within each knowledge acquisition approach used. Then, by the nature of the ex-
pert system methodologies, the rule-based system always listed every interpreta-

 Connie Loggia Ramsey and Victor R. Basili 416

tion associated with every input manifestation, while the frame-based system only
provided answers of minimum cardinality which explained all of the manifesta-
tions. Since the relationships in the two systems were identical, the frame-based
systems could only list the exact same interpretations or a proper subset of those
listed by the rule-based systems. As a result, the frame-based systems could not
perform better than the rule-based systems with respect to agreement with the da-
tabase conclusions. The frame-based systems listed an average of 50 percent fewer
extra interpretations (ranging from 29 percent to 72 percent depending on time
phase) for the bottom-up approach and an average of 48 percent fewer extra inter-
pretations (ranging from 42 to 53 percent) for the top-down approach. However, it
is better to have extra interpretations than to miss correct interpretations.
 The results of using the Kappa statistic to evaluate the expert systems is shown
in Table VI. According to these results, the bottom-up rule-based system per-
formed best again, indicating better than chance agreement for more of the inter-
pretations than the other systems did. A few of the interpretations performed rela-
tively well in all or most of the expert systems. These were low productivity, loose

management, error prone code, and computer problems. The experts had fairly
good agreement with each other and also over time (between the bottom-up and
the top-down approaches) on the manifestations for loose management and error

prone code. They agreed less on low productivity and mostly disagreed on com-

puter problems. The interpretations of low complexity, simple system, and changes

hard to make also did a little better than chance agreement. The experts had fair
agreement with each other and over time concerning changes hard to make, but
mostly disagreed over low complexity and simple system. It is interesting to note
that the interpretations involving testing performed better in both bottom-up sys-
tems than in the top-down systems in general. Perhaps testing is better understood
using a very environment-specific approach. Several of the interpretations did not
perform well in any of the expert systems, doing worse than chance agreement in
all or most cases. These were high complexity (tough problem), compute bound

algorithm, good solid code, lots of reused code, lots of testing, little testing, lack of

thorough testing, and tight management.

VII. Discussion

The goal of this study was to determine whether it is possible to build useful ex-
pert systems for software engineering management. Some of the questions which
we tried to resolve involved determining how to do the knowledge acquisition
and what type of expert system methodology might be best suited for this field.
We used two approaches to knowledge acquisition and two expert system meth-
odologies. The reader should be careful in drawing too strong a set of conclusions,
however, because this was an exploratory experiment using a limited number of
techniques for expert systems. It is very possible that other representations of the
knowledge using the same or other inference mechanisms would lead to different
results. Additionally, it is clear that a better and more extensive set of metrics

 An Evaluation of Expert Systems for Software Engineering Management 417

would provide a more successful management system. This work is being contin-
ued on the TAME project [4] where various methods for structuring knowledge
are being analyzed. Based upon this study, good results have also been obtained
at NASA using a similar system [29].
 We believe that a major limitation to developing expert systems for software
engineering in general is the fact that much of the knowledge in this field is not
well understood yet. Knowledge was gathered from two experts who have had a
great deal of experience in this field, and it was found that they did not agree
with each other about many of the relationships we were trying to determine. Fur-
thermore, they did not always agree with themselves when looking at the data
from a different point of view at a later date.
 The expert systems performed moderately well, especially when one considers
that many of the relationships between the metrics and the interpretations are un-
clear. The experts did not agree on many of the relationships, and the expert sys-
tems cannot perform better than the information included in them. Indeed, the bot-
tom-up rule-based system performed about as well as the experts agreed with
each other. In addition, a relatively small number of metrics were used to suggest
many interpretations, and the metrics used were not ideal. The experts felt that
some of the interpretations could not be adequately described in terms of the
available metrics. For example, it was felt that the complexity interpretations
could not be adequately captured without error metric data. The experts even
threw out one of the interpretations altogether when they were determining rela-
tionships using the top-down approach. However, the five variables used in the
metrics were easily obtainable, and this is an important consideration when cre-
ating expert systems.
 Another fact we would like to stress is that the expert systems for the earlier
time phases also performed well. This is especially important because a manager
should learn of potential problems as early in the development process as possi-
ble. Expert systems can be very helpful because they may detect problems which
a manager may not recognize early on.
 Two approaches to knowledge acquisition were used and compared. The bot-
tom-up approach produced better results than did the top-down approach. This
may well be because the bottom-up approach is more environment-specific.
Since the field of software engineering is still new, it is probably better to de-
velop expert systems for one homogeneous environment rather than trying to de-
termine general truths across different environments. In general, it may be advan-
tageous to work with small domains when building expert systems for fields with
uncertain knowledge.
 The two expert system methodologies, rule-based deduction and frame-based
abduction, were also compared with respect to ease of implementation and accu-
racy of results. The initial knowledge was derived from empirical software engi-
neering research and organized in a table format, so the very first sets of simple
rules and frames which were not time-line specific were straightforward to de-
velop. The situation became more complex when the interpretations were made
time-line specific. A time phase was added to the antecedent of each rule, so
there were five times as many rules as before, specializing for each of the five

 Connie Loggia Ramsey and Victor R. Basili 418

time phases. Each frame-based system was divided into five systems based on
time period because the second dimension of time could not be incorporated into
the frames in a reasonable manner. Furthermore, an attempt was made to re-
write the rules to contain more meaningful and complex relationships among the
manifestation in the antecedents. However, it was decided to retain the format of
simple rules in order to be as complete as possible. It should be noted that for this
type of diagnostic problem in a well-defined domain, it is generally much easier
and more natural to write frames than to encode the same information in com-
plex rules [21].
 In 48 percent of the cases, the rule-based and frame-based systems provided
the same interpretations. However, when analyzing the results from all projects,
the rule-based systems provided more interpretations and exhibited a higher rate
of agreement with the database than did the frame-based systems. This is directly
attributable to the fact that simple rules containing one manifestation in the ante-
cedents were used in the rule-based systems, leading to solutions which contained
the complete list of all possible interpretations associated with the manifestations,
while the frame-based systems provided only those explanations of minimum
cardinality and often missed correct interpretations because the relationships be-
tween interpretations and manifestations were not always correct. It is better to
have extra interpretations than to miss correct interpretations, so we conclude that a
rule-based system with simple rules is probably more applicable to newer fields
with unclear knowledge, such as software engineering. However, as a field be-
comes more established, a frame-based system may provide better solutions.
Also, newer methods of implementing frame-based abduction with irredundant
covers should provide better results than those currently provided by frame-based
abduction using minimal set covers.
 This study has provided many additional new insights into the development of
expert systems for software engineering management. It is feasible to develop pro-
totype expert systems at this point in time, but one must realize that in any new
field with uncertain knowledge, the expert systems cannot perform better than the
state of knowledge in the field permits. One of the best reasons to develop these
systems may be to learn from their development. The knowledge engineer can
learn a great deal about a field as he organizes the information. Then, analyzing
the performance of the working systems can give further insight about what is
and what is not understood. In order to develop better expert systems for soft-
ware engineering management, one needs to define fully the relationships that ex-
ist between the components. In particular one must define what development char-
acteristics would result in what types of abnormal measures, how this changes
through various project development phases, and how certain one is that an ab-
normal measure results from a certain characteristic. As more is learned about
software engineering management, more can be incorporated into useful expert
systems.

 An Evaluation of Expert Systems for Software Engineering Management 419

VIII. Future Research Directions

The development of ARROWSMITH-P was a preliminary attempt at constructing
expert systems for software engineering management. Replications of this experi-
ment using varying approaches to building the expert systems will lead to stronger
confidence in the results and a better understanding of the effects.
 There is certainly a need for further research in the field of software engineer-
ing. As more is learned, the information contained in the knowledge bases can be
refined, and new knowledge, such as information about error metrics [30], [2] or
information about other phases of development such as requirements or design,
can be incorporated into the expert systems to make them stronger. As incorrect
relationships are brought to the surface, the systems can be changed to incorporate
the knowledge gained from testing. Eventually, the rules should become more
complex as relationships between manifestations and causes become better
defined. In addition, the testing of current, ongoing projects can be performed on
the expert systems. The data from the new projects can then be incorporated into
the environment-specific baselines of metrics so the systems continue to be updated
as the environment changes.
 In a more general sense, a theoretical framework for developing export systems
for software engineering is needed. For example, a categorization scheme, which
would address such issues as when a top-down system is better than a bottom-up
system and vice versa, should be built. Also, perhaps a new and different type of
inference mechanism or method for building expert systems would better suit the
needs of some aspects in this field. All of these issues require a great deal of fur-
ther research and analysis.

Appendix A

A sample interactive session with the rule-based deduction expert system

THIS EXPERT SYSTEM WILL HELP A MANAGER OF A SOFTWARE

PROJECT DETERMINE IF THE PROJECT IS ON SCHEDULE OR IN TROUBLE.

PLEASE ANSWER THE FOLLOWING QUESTIONS.
COMPUTER RUNS PER LJNE OF SOURCE CODE:
(1) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

2.
COMPUTER TIME PER LINE OF SOURCE CODE:
(1) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

2.

 Connie Loggia Ramsey and Victor R. Basili 420

SOFTWARE CHANGES PER LINE OF SOURCE CODE:
(l) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

2.

PROGRAMMER HOURS PER LINE OF SOURCE CODE:
(l) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

2.

COMPUTER TIME PER COMPUTER RUN:
(l) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

2.

SOFTWARE CHANGES PER COMPUTER RUN:
(l) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

2.

PROGRAMMER HOURS PER COMPUTER RUN:
(l) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

3.

PROJECT TIMEPHASE:
(1) EARLY CODE PHASE
(2) MIDDLE CODE PHASE
(3) LATE CODE PHASE
(4) SYSTEMS TEST PHASE
(5) ACCEPTANCE TEST PHASE
= ?

2.

COMPUTER TIME PER SOFTWARE CHANGE:
(l) ABOVE NORMAL

(2) NORMAL
(3) BELOW NORMAL
= ?

2.

 An Evaluation of Expert Systems for Software Engineering Management 421

PROGRAMMER HOURS PER SOFTWARE CHANGE:
(l) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

3.

POSSIBLE INTERPRETATIONS ARE:
ERROR PRONE CODE <0.94>
EASY ERRORS OR CHANGES BEING FOUND OR FIXED <0.81>
LOTS OF TESTING <0.75>
LOTS OF TERMINAL JOCKEYS <0.75>
UNSTABLE SPECIFICATIONS <0.50>
NEAR BUILD OR MILESTONE DATA <0.50>
GOOD TESTING OR GOOD TEST PLAN <0.25>

MODIFICATIONS BEING MADE TO RECENTLY TRANSPORTED CODE
<0.25>

Note – User answers are in boldface.

Appendix B

A sample interactive session with the frame-based abduction expert system

THIS EXPERT SYSTEM WILL HELP A MANAGER OF A SOFTWARE
PROJECT DETERMINE IF THE PROJECT IS ON SCHEDULE OR IN TROUBLE.

THIS PARTICULAR SYSTEM SHOULD BE USED FOR THE MIDDLE CODING
PHASE.

PLEASE ANSWER THE FOLLOWING QUESTIONS.
FOCUS OF SUBPROBLEM:
THIS SUBPROBLEM IS CURRENTLY ACTIVE
GENERATOR:

COMPETING POSSIBILITIES:
UNSTABLE SPECIFICATIONS
LATE DESIGN
NEW OR LATE DEVELOPMENT
LOW PRODUCTIVITY
HIGH PRODUCTIVITY
HIGH COMPLEXITY OR TOUGH PROBLEM
HIGH COMP OR COMPUTE BOUND ALGORITHMS RUN OR TESTED
LOW COMPLEXITY
SIMPLE SYSTEM
REMOVAL OF CODE BY TESTING OR TRANSPORTING
INFLUX OF TRANSPORTED CODE
LITTLE EXECUTABLE CODE BEING DEVELOPED
ERROR PRONE CODE
GOOD SOLID AND RELIABLE CODE
NEAR BUILD OR MILESTONE DATE
LARGE PORTION OF REUSED CODE OR EARLY AND LARGER TESTS

 Connie Loggia Ramsey and Victor R. Basili 422

LOTS OF TESTING
LITTLE OR NOT ENOUGH ONLINE TESTING BEING DONE
GOOD TESTING OR GOOD TEST PLAN
UNIT TESTING BEING DONE
LACK OF THOROUGH TESTING
POOR TESTING PROGRAM
SYSTEM AND INTEGRATION TESTING STARTED EARLY
CHANGE BACKLOG OR HOLDING CHANGES
CHANGE BACKLOG OR HOLDING CODE
CHANGES HARD TO ISOLATE
CHANGES HARD TO MAKE
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
MODIFICATIONS BEING MADE TO RECENTLY TRANSPORTED CODE
LOOSE CONFIGURATION MANAGEMENT OR UNSTRUCTURED DEV
TIGHT MANAGEMENT PLAN OR GOOD CONFIGURATION CONTROL
COMPUTER PROBLEMS OR INACCESSIBILITY OR ENV CONSTRAINTS
LOTS OF TERMINAL JOCKEYS

COMPUTER RUNS PER LINE OF SOURCE
CODE:
(0)ABOVE NORMAL
(1)NORMAL
(2)BELOW NORMAL
= ?

2.

COMPUTER TIME PER LINE OF SOURCE
CODE:
(0)ABOVE NORMAL
(1)NORMAL
(2)BELOW NORMAL
= ?
2.

SOFTWARE CHANGES PER LINE OF
SOURCE CODE:
(0)ABOVE NORMAL
(1)NORMAL
(2)BELOW NORMAL
= ?

2.

PROGRAMMER HOURS PER LINE OF
SOURCE CODE:
(l) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

2.

SOFTWARE CHANGES PER COMPUTER
RUN:
(l) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

 An Evaluation of Expert Systems for Software Engineering Management 423

2.

COMPUTER TIME PER COMPUTER RUN:
(l) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

2.

PROGRAMMER HOURS PER COMPUTER
RUN:
(l) ABOVE NORMAL
(2) NORMAL
(3) BELOW NORMAL
= ?

3.
FOCUS OF SUBPROBLEM:

GENERATOR:
COMPETING POSSIBILITIES:

LOTS OF TERMINAL JOCKEYS
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
LOTS OF TESTING
ERROR PRONE CODE
UNSTABLE SPECIFICATIONS

PROGRAMMER HOURS PER SOFTWARE
CHANGE:
(0)ABOVE NORMAL
(1)NORMAL
(2)BELOW NORMAL
= ?

3.

FOCUS OF SUBPROBLEM:
GENERATOR:

COMPETING POSSIBILITIES:
EASY ERRORS OR CHANGES BEING FOUND OR FIXED
ERROR PRONE CODE

COMPUTER TIME PER SOFTWARE
CHANGE:
(0)ABOVE NORMAL
(1)NORMAL
(2)BELOW NORMAL
= ?
2.

POSSIBLE INTERPRETATIONS ARE:
EASY ERRORS OR CHANGES BEING FOUND OR

FIXED <H>
ERROR PRONE CODE. <L>

Note – User answers are in boldface.

- Both interpretations listed as solutions can explain all of the manifesta-
tions, but the first is given a high measure of likelihood (shown by the

H) of being correct, while Error Prone Code is rated low.

 Connie Loggia Ramsey and Victor R. Basili 424

Acknowledgment

The authors are grateful to F. McGarry, Dr. J. Page, Dr. J. Reggia, J. Ramsey, B.
Decker, and D. Card for their invaluable assistance in this project. The authors
would also like to thank the members of their research group for enlightening
comments and ideas.

References

[1] "Annotated bibliography of Software Engineering Laboratory (SEL) literature, SEL-82-
006," Software Eng. Lab.. NASA Goddard Space Flight Center, Greenbelt, MD, Nov.
1982.

[2] V. R. Basili and B. T. Perricone, "Software errors and complexity: An empirical in-
vestigation," Commun. ACM., vol. 27, no. 1, pp. 42-52, Jan. 1984.

[3] V. R. Basili and C. L. Ramsey, "ARROWSMITH-P-A prototype expert system for
software engineering management," in Proc. Expert Systems in Government Sympo-

sium, IEEE, McLean, VA, Oct. 1985, pp. 252-264.
[4] V. R. Basili and H. D. Rombach, "The TAME project: Towards
improvement-oriented software environments," IEEE Trans. Software Eng.. vol. SE-

14. no. 6, pp. 758-773, June 1988.
[5] V. R. Basili and D. M. Weiss, "A methodology for collecting valid software engineering

data," IEEE Trans. Software Eng., vol. SE-10, no. 6, pp. 728-738, Nov. 1984.
[6] V. R. Basili and M. V. Zelkowitz, "Analyzing medium scale software develop-

ments," in Proc. Third Int. Conf. Software Engineering, Atlanta. GA, May 1978, pp.
116-123.

[7] V. R. Basili. M. V. Zelkowitz, F. E. McGarry, R. W, Reiter, Jr., W. F. Trusz-
kowksi, and D. M. Weiss, "The Software Engineering Laboratory, SEL-77-001,"
Software Eng. Lab., NASA Goddard Space Flight Center, Greenbelt, MD, May
1977.

[8] A. N. Campbell. V. F. Hollister, R. O. Duda, and P. E. Hart, "Recognition of a hidden
mineral deposit by an artificial program," Science, vol. 217, pp. 927-928, Sept.
1982.

[9] D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili, "The Software Engi-
neering Laboratory, SEL-81-104," Software Eng. Lab., NASA Goddard Space Flight
Center, Greenbelt, MD, Feb. 1982.

[10] J. Cohen, "Weighted Kappa: Nominal scale agreement with provision for scaled dis-
agreement or partial credit," Psychol. Bull., vol. 70, pp. 213-220, 1968.

[11] J. deKleer and B. Williams, "Reasoning about multiple faults," in Proc. Fifth Nat.

Conf. Artificial Intelligence, Philadelphia, PA, Aug. 11-15, 1986, pp. 132-139.
[12] C. Doerflinger and V. R. Basili, "Monitoring software development through dynamic

variables," IEEE Trans. Software Eng., vol. 11, no. 9, pp. 978-985, Sept. 1985.
[13] F. Hayes-Roth, D. Waterman, and D. Lenat, "Principles of Pattern-directed inference

systems," in Pattern-Directed Inference Systems, Waterman and Hayes-Roth, Eds.
New York: Academic, 1978, pp. 577-601.

[14] R. Miller, H. Pople, and J. Myers, "Internist-1: An experimental computer-based di-
agnostic consultant for general internal medicine," New England J. Med., vol. 307,
pp. 468-476, 1982.

 An Evaluation of Expert Systems for Software Engineering Management 425

[15] M. Minsky, "A framework for representing knowledge," in The Psychology of Com-

puter Vision, P. Winston, Ed. New York: McGraw-Hill, 1975. pp. 211-277.
[16] D. S. Nau and J. A. Reggia, "Relationships between deductive and abductive infer-

ence in knowledge-based diagnostic expert systems," in Proc. First Int. Workshop

Expert Database Systems, 1984, pp. 500-509.
[17] S. G. Pauker, G. A. Gorry, J. P. Kassirer, and W. B. Schwartz, "Towards the simula-

tion of clinical cognition," Amer. J. Med., vol. 60, no. 7, pp. 981-996, June 1976.
[18] Y. Peng and J. A. Reggia, "A probabilistic causal model for diagnostic problem-

solving," IEEE Trans. Syst., Man, Cybern., vol. 17, pp. 146-162, 395-406. 1987.
[19] Y. Peng and J. A. Reggia, "Plausibility of diagnostic hypotheses: The nature of

simplicity," in Proc. Fifth Nat. Conf. Artificial Intelligence, Philadelphia. PA. Aug.
11-15, 1986. pp. 140-145.

[20] C. L. Ramsey and V. R. Basili. "An evaluation of expert systems for software engi-
neering management," Dep. Comput. Sci., Univ. Maryland, College Park, Tech.
Rep. TR-1708, Sept. 1986.

[21] C. L. Ramsey, J. A. Reggia, D. S. Nau, and A. Ferrentino, "A comparative analysis of
methods for expert systems," Int. J. Man-Machine Studies, vol. 24, no. 5, pp. 475-
499, May 1986.

[22] J. Reggia, "Computer-assisted medical decision making," in Application of Com-

puters in Medicine, M. Schwartz, Ed. New York: IEEE Press, 1982, pp. 198-213.
[23] J. A. Reggia, D. S. Nau, and P. Wang, "Diagnostic expert systems based on a set cov-

ering model," Int. J. Man-Machine Studies, vol. 19, no. 5, pp. 437-460, Nov.
1983.

[24] J. A. Reggia, D; S. Nau, P. Wang, and Y. Peng, "A formal model of diagnostic in-
ference," Inform. Sci., vol. 37, pp. 227-285, 1985.

[25] J. A. Reggia and B. Perricone, "KMS reference manual," Dep. Comput. Sci., Univ.
Maryland, College Park, Tech. Rep. TR-1136, 1982.

[26] E. Shortliffe, Computer-Based Medical Consultations; MYCIN. New York: Elsevier,
1976.

[27] H. Shubin and J. Ulrich, "IDT: An intelligent diagnostic tool," in Proc. Nat. Conf.

Artificial Intelligence, AAAI, 1982, pp. 290-295.
[28] R. Spitzer, J. Cohen, J. Fleiss, and J. Endicott. "Quantification of agreement in psy-

chiatric diagnosis." Archives General Psychiatry, vol. 17, pp. 83-87, 1967.
[29] J. D. Valett, W. Decker, and J. Buell, "Software management environment," in Proc.

SEL Workshop 1988, NASA Goddard Space Flight Center, Greenbelt, MD, Dec.
1988.

[30] D. M. Weiss and V. R. Basili, "Evaluating software development by analysis of

changes: Some data from the software engineering laboratory," IEEE Trans. Soft-

ware Eng., vol. SE-11, no. 2, pp. 157-168, Feb. 1985.

Software Defect Reduction Top-10 List

Barry Boehm and Victor Basili

Recently a grant from NSF enabled us to establish a national center for Empiri-
cally-Based Software Engineering (CeBASE). The CeBASE objective is to trans-
form software engineering as much as possible from a fad-based practice to an en-
gineering-based practice through derivation, organization, and dissemination of
empirical data on software development and evolution phenomenology.
 "As much as possible" reflects the fact that software development will always
remain a people-intensive and continuously changing field. However, we have
found that people in the field have been able to establish objective and quantitative
data, relationships, and predictive models which have helped many software de-
velopers to avoid predictable pitfalls and improve their ability to predict and con-
trol efficient software projects.
 As a way of illustrating this, we are devoting this column to an update of one of
our previous columns ("Industrial Metrics Top-10 List," by Barry Boehm, IEEE
Software, September 1987, pp. 84-85) which provided a concise selection of em-
pirical data which many software practitioners found very helpful. As a major
CeBASE focus is on software defect reduction, here is a software defect reduction
top 10-list, in rough priority order. More details and references can be found in an
expanded Web version of this column, at
http://www.cebase.org/defectreduction/top10.

1. Finding and fixing a software problem after delivery is often 100 times

more expensive than finding and fixing it during the requirements and design

phase.

This was also the top-priority item in the 1987 list. As in 1987, "This insight has
been a major driver in focusing industrial software practice on thorough require-
ments analysis and design, on early verification and validation, and on up-front
prototyping and simulation to avoid costly downstream fixes."
 The only thing we have changed since 1987 is to add the word "often," to re-
flect additional insights on the relationship. For one, the cost-escalation factor for
small, noncritical software systems is more like 5:1 than 100:1, enabling such sys-
tems to be developed most efficiently in a less formal, "continuous prototype"
mode -- but still with emphasis on getting things right early rather than late. An-
other is that the cost-escalation factor can be reduced significantly even for large
critical systems via good architectural practices. These reduce the cost of most
fixes by confining them to small, well-encapsulated modules. An excellent exam-
ple was the million-line TRW CCPDS-R project described in Appendix D of

 Dr. Boehm is with the University of Southern California and Dr. Basili is with the Univer-

sity of Maryland.

 Software Defect Reduction Top-10 List 427

Walker Royce's Software Project Management: A Unified Approach, Addison-
Wesley, 1988, where the cost-escalation factor was only about 2:1.

2. About 40-50% of the effort on current software projects is spent on avoid-

able rework.

"Avoidable rework" is effort spent fixing difficulties with the software that could
have been avoided or discovered earlier and less expensively. This implies that
there is such a thing as "unavoidable rework." This fact has been increasingly ap-
preciated with the growing realization that better user-interactive systems result
from "emergent" processes (where the requirements emerge from prototyping and
other multi-stakeholder shared learning activities) than from "reductionist" proc-
esses (where the requirements are stipulated in advance and then reduced to prac-
tice via design and coding). We believe that this distinction is essential to a mod-
ern theory and practice of software defect reduction. Changes to the definition of
a system that make it more cost-effective should not be discouraged by classifying
them as defects to be avoided.

Reducing avoidable rework is thus a major source of software productivity im-
provement. In our behavioral analysis of the effects of software cost drivers on ef-
fort for the COCOMO II model (B. Boehm et al., Software Cost Estimation with

COCOMO II, Prentice Hall, 2000) most of the effort savings from improving
software process maturity, software architectures, and software risk management
came from reductions in avoidable rework.

3. About 80% of the avoidable rework comes from 20% of the defects.

For smaller systems, the 80% number may be lower; for very large systems, it
may be higher. Two major sources of avoidable rework are hastily-specified re-
quirements and nominal-case design and development (where late accommodation
of off-nominal requirements causes major architecture, design, and code break-
age). If you have a software problem report tracking system which records the ef-
fort to fix each defect, it is fairly easy for you to analyze the data to determine and
address additional major sources of rework in your organization.

4. About 80% of the defects come from 20% of the modules and about half

the modules are defect free.

Studies from different environments over many years have been amazingly consis-
tent, with figures between 60% and 90% of the defects coming from 20% of the
modules, and a median of about 80%. What also appears to be consistent is that
all of the defects are contained in about half of the modules. This data is represen-
tative of each of the studies cited in the web version of this paper.

Thus, it is worth the effort to identify the characteristics of error prone modules
in a particular environment. There are a variety of factors that contribute to error-
proneness that appear to be context dependent. However, some factors that usually

 Barry Boehm and Victor Basili 428

contribute to error-proneness are the level of data coupling and cohesion, size,
complexity, and amount of change to reused code.

5. About 90% of the downtime comes from at most 10% of the defects.

It is obvious that all faults are not equal in terms of their rate of occurrence. That
is, some defects have a disproportionate effect on downtime and reliability of a
system than others. An analysis of the software failure history of nine large IBM
software products, found that about .3% of the defects accounted for about 90% of
the downtime. Thus risk-based testing, including understanding the operational
profiles of a system and emphasizing testing of high-risk scenarios, is clearly cost
effective.

6. Peer reviews catch 60% of the defects.

Given that the cost of finding and fixing most defects rises the later we find them
in the lifecycle, we are interested in techniques that find defects earlier in the life-
cycle. Numerous studies have confirmed that peer reviews are very effective in
this regard. The data range from catching 31% to 93% of the defects, with a me-
dian of around 60%. Thus the 60% number, which comes from the 1987 column,
is still a reasonable estimate.

Factors effecting the percentage of defects caught include the number and type
of peer reviews performed, the size and complexity of the system, and the fre-
quency of defects better caught by execution (e.g., concurrency and algorithm de-
fects). Our studies have provided evidence that peer reviews, analysis tools, and
testing catch different classes of defects at different points in the development cy-
cle. Further empirical research is needed to help choose the best mixed strategy for
defect reduction investments.

7. Perspective-based reviews catch 35% more defects than non-directed re-

views.

A scenario based reading technique (Basili, V. R., Evolving and Packaging Read-
ing Technologies, Journal of Systems and Software, vol. 38, no. 1, pp. 3-12, July
1997) offers a reviewer a set of formal procedures for defect detection based upon
varying perspectives. The union of several perspectives into a single inspection of-
fers broad, yet focused coverage of the document being reviewed. The goal is to
generate focused techniques aimed at specific defect detection goals, taking ad-
vantage of the existing defect history in an organization.

Scenario-based reading techniques have been applied in requirements and ob-
ject oriented design inspections, as well as user interface inspections. Improve-
ment results vary from 15% to 50% in fault detection rate. Further benefits of fo-
cused reading techniques are that they facilitate training of inexperienced
personnel, better communication about the process, and continual improvement
over time.

 Software Defect Reduction Top-10 List 429

8. Practice Disciplined personas can reduce defect introduction rates by up

to 75%.

Several disciplined personal processes have been introduced into practice. These
include Harlan Mills’ Cleanroom software development process and Watts Hum-
phrey’s Personal Software Process (PSP). Data from both of them support the
concept that personal discipline can greatly reduce the introduction of defects into
software products. Data from the use of Cleanroom at NASA have shown failure
rates during test reduced by 25% to 75%. Use of Cleanroom also showed a reduc-
tion in rework effort, i.e., only 5% of the fixes took more than an hour to fix as
opposed to the standard of over 60% of the fixes taking over an hour to fix.
 PSP's strong focus on root-cause analysis of an individual's software defects
and overruns, and on developing personal checklists and practices to avoid future
reoccurrence, has a significant effect on personal defect rates. Reductions of 10:1
are common between exercises 1 and 10 of the PSP training course.
 Effects at the project level are more scattered. They depend on such factors as
the organizations' existing software maturity level and the people's and organiza-
tions' willingness to operate within a highly structured software culture. When
PSP is coupled with the strongly compatible Team Software Process (TSP), defect
reduction rates can be factors of 10 or higher for organizations operating at modest
maturity levels, but less if organizations already have highly mature processes.
The June 2000 special issue of CrossTalk, "Keeping Time with PSP and TSP," has
a good set of relevant discussions, including experience showing that adding PSP
and TSP to a CMM Level 5 organization reduced acceptance test defects by about
50% overall, and about 75% for high-priority defects.

9. All other things being equal, it costs 50% more per source instruction to

develop high-dependability software products than to develop low-

dependability software products. However, the investment is more than

worth it if significant operations and maintenance costs are involved.

The analysis of 161 project data points for the COCOMO II model referenced
above resulted in an added cost of 53% for its "Required Reliability" factor, while
normalizing for the effects of 22 other factors. Does this mean that Philip
Crosby's landmark book, Quality Is Free (Mentor, 1980), had it all wrong? Maybe
for some low-criticality, short-lifetime software, but not for the most important
cases.
 First, in the COCOMO II maintenance model, low-dependability software is
about 50% per instruction more expensive to maintain than to develop, while
high-dependability software is about 15% less expensive to maintain than to de-
velop. For a typical life cycle cost distribution of 30% development and 70%
maintenance, low-dependability software becomes about the same in cost per in-
struction as high-dependability software (again, assuming all other factors are
equal).
 Second, in the COCOMO II-related quality model, high-dependability software
removes about 4 times as many defects as average-dependability software, which

 Barry Boehm and Victor Basili 430

in turn removes about 4 times as many defects as low-dependability software.
Thus, if the operational cost of software defects (due to lost worker time, lost
sales, recalls, added customer service costs, litigation costs, loss of repeat busi-
ness, etc.) is roughly equal to life-cycle software development and maintenance
costs for average-dependability software, the increased defect rate of low-
dependability software will make its ownership costs roughly three times higher
than the ownership costs of high-dependability software.

10. About 40-50% of user programs have nontrivial defects.

A landmark 1987 study in this area found that 44% of 27 spreadsheet programs
produced by experienced spreadsheet developers had nontrivial defects: mostly er-
rors in spreadsheet formulas. The developers were quite confident that their
spreadsheets were accurate. Subsequent laboratory experiments have reported de-
fective spreadsheet rates between 35% and 90%. Analysis of operational spread-
sheets have reported defectiveness rates between 21% and 26%; the lower rates
are probably due to corrections already made during operation.
 Nowadays and increasingly in the future, user programs will escalate from
spreadsheets to Web/Internet scripting languages capable of sending agents into
cyberspace to make deals for you. And there will be many more "sorcerer's ap-
prentice" user-programmers with tremendous power to create high-risk defects
and little training or expertise in how to avoid or detect them. One of our studies
for the COCOMO II book (page 6) estimated that there would be 55 million user-
programmers in the U.S. by the year 2005. Including active Web-page developers
as user-programmers, this prediction is basically on-track.
 Thus, another challenge for the creators of web-programming facilities is to
provide them with the equivalent of seat belts and air bags, plus safe-driving aids
and rules of the road. This is one of several software engineering research chal-
lenges identified by a National Science Foundation study, "Gaining Intellectual
Control of Software Development," which we recently summarized in Computer
(May 2000, pp. 27-33).
 There is a great need to refine and expand this top-10 list and related empirical
research on defect reduction.
 Clearly, much of the data reported above does not take into account the interac-
tion of many of the variables. Some further things you would like to know, for
example, are, “If I invest in peer reviewing, Cleanroom, and PSP, am I paying for
the same defects to be removed three times? Will this enable me to avoid doing
(some) testing?” Further empirical research in defect reduction is needed to be
able to answer questions like these.
 We hope to involve the software community in a process of expanding the top-
10 defect reduction list and other currently-available data into a continually evolv-
ing, open-source, Web-accessible handbook of empirical results on software de-
fect reduction strategies. We also plan to initiate counterpart handbooks for
COTS-based systems and other future software areas. We would welcome your
participation in this effort; please see the CeBASE web site
(http://www.cebase.org) for further information and ways of participating.

 Software Defect Reduction Top-10 List 431

Summary: Software Defect Reduction Top-10 List

1. Finding and fixing a software problem after delivery is often 100 times more

expensive than finding and fixing it during the requirements and design
phase.

2. About 40-50% of the effort on current software projects is spent on avoid-

able rework.

3. About 80% of the avoidable rework comes from 20% of the defects.

4. About 80% of the defects come from 20% of the modules and about half the
modules are defect free.

5. About 90% of the downtime comes from at most 10% of the defects.

6. Peer reviews catch 60% of the defects.

7. Perspective-based reviews catch 35% more defects than non-directed re-

views.

8. Disciplined personal practices can reduce defect introduction rates by up to
75%.

9. All other things being equal, it costs 50% more per source instruction to de-

velop high-dependability software products than to develop low-
dependability software products. However, the investment is more than
worth it if significant operations and maintenance costs are involved.

10. About 40-50% of user programs have nontrivial defects.

	Foundations of Empirical Software Engineering: The Legacy of Victor R. Basili
	Recommended Citation

	Recommended Citation
	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	1-1-2005

	Foundations of Empirical Software Engineering: The Legacy of Victor R.Basili
	Barry Boehm
	Hans Dieter Rombach
	Marvin V. Zelkowitz

	Preliminaries
	Preface
	Table of Contents
	I. Programming Languages and Formal Methods
	II. Measurement
	III. Software Engineering Laboratory
	IV. Learning Organizations and Experience Factory
	V. Technical Developments and Empirical Studies
	VI. Experience Base

