
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative

Exchange

The Harlan D. Mills Collection Science Alliance

10-5-1988

A Case Study in Cleanroom Software Engineering:
The IBM Cobol Structuring Facility
Richard C. Linger

Harlan D. Mills

Follow this and additional works at: http://trace.tennessee.edu/utk_harlan

Part of the Software Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Science Alliance at Trace: Tennessee Research and Creative Exchange. It
has been accepted for inclusion in The Harlan D. Mills Collection by an authorized administrator of Trace: Tennessee Research and Creative Exchange.
For more information, please contact trace@utk.edu.

Recommended Citation
Linger, Richard C. and Mills, Harlan D., "A Case Study in Cleanroom Software Engineering: The IBM Cobol Structuring Facility"
(1988). The Harlan D. Mills Collection.
http://trace.tennessee.edu/utk_harlan/34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268735137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_harlan%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_harlan%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk-scialli?utm_source=trace.tennessee.edu%2Futk_harlan%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


after the Norman conquest was recorded in 
Roman numerals, but never added up in 
spite of the obvious interest in such a result. 
Now the experts in arithmetic of the day 
would never have believed that with place 
notation and long division. school children 
of later centuries would be capable of 
arithmetic performance these experts 
deemed impossible. And so it will be that 
may current experts in heuristic. intuitive 
methods of software development will find 
the use of mathematical verification in 
place of trial and error unit debugging 
impossible to consider as a rational 
methodology. 

The COBOL Structuring Facility 

The COBOL Structuring Facility (COBOL/SF 
l988a. l988b) is comparable in function 
and complexity to a modem high-level 
language compiler. It embodies proprietary 
graph- and function-theoretic technology 
to automatically transform unstructured 
COBOL programs into hierarchies of 
structured procedures. COBOL/SF helps 
solve difficult software maintenance 
problems by reducing complexity and 
increasing understandability of program 
logic. 

Table l summarizes the development 
history of COBOL/SF. This paper reports on 
development of Version 2; results for other 
versions. also developed with Cleanroom 
Software Engineering, were similar. 

Prototype 
Version l 
Version lA 
Version 2 

Lines of Code (KLOC) 
Reused Changed New 

0 0 20 
18 2 15 
30 5 11 
28 18 34 

Table 1. 

Total 
20 
35 
46 
80 

COBOL/SF Development Summary 

The COBOL/SF prototype and versions l 
and lA provided structuring capability for 
VS COBOL II programs into VS COBOL II 
only. Version 2 incorporated the following 
major additional functions: structuring of 
OS/VS COBOL programs into either OS/VS 
COBOL or VS COBOL II, automation of 
optional manual steps to enhance the 
structuring process. complexity metrics 
analysis, program modularization 

2 

analysis. and structure chart generation for 
the output program procedure hierarchy. 
Some 52,000 lines of PL/I source code. new 
and changed, were written to produce 
Version 2. with 28,000 lines reused from 
Version l. 

Version 2 was developed by a Cleanroom 
software team composed of a technical 
engineering manager. six software 
engineers. and a certification engineer.l 
Three summer supplemental college 
students also participated. Team members 
held BS or MS degrees in computer science 
or mathematics and had recently joined 
IBM. With the exception of the team 
manager and certification engineer, 
COBOL/SF was their first software 
development project. 

The Version 2 development proceeded 
through formal specification, design. 
functional verification, implementation, 
and Cleanroom testing in five increments, 
beginning on April 15 and completing 
December 15. 1987. Seventy person-months 
(eight full-time people for eight months. 
plus three supplementals for two months 
each) of effort were expended during this 
development period, for an overall 
productivity of 740 lines of code per 
person/month, including all specification, 
design. implementation, testing, and 
management activities. The system entered 
field test at customer sites on January 6, 
1988. 

Version 2 development was a real-world 
project in every respect, with shifting 
requirements and an extremely short 
development schedule. All schedules and 
budgets were met. and all committed 
functions were delivered. 

All versions of COBOL/SF consist of four 
major components as show in Figure 1. The 
System Control Program manages system 
software and user interfaces, and certain 
common services. The Source Language 
Parsing Subsystem parses the input 
program and creates a knowledge base of 
program structure. The input program is 
prepared for structuring by the Control 
Flow Analysis Subsystem, which deals 

ITeam members: K. Cannaday, M. Deck, P. 
Hausler. R Linger, C. Loving, L. Pedowitz, S. 
Rosen. A Spangler 



A Case Study in Cleanroom Software Engineering: 
The IBM COBOL Structuring Facility 

Richard C. Linger 
IBM Corporation 

Bethesda, Maryland 

Abstract 

The IBM COBOL Structuring Facility 
Program Product was developed by a small 
programming team using Cleanroon 
Software Engineering technology in a 
pipeline of increments with very high 
quality and productivity. In the Cleanroom 
approach, programs are developed under 
statistical quality control. and 
mathematical verification is used in place 
of unit debugging. The formal methods of 
specification, design, functional 
verification, and testing are d,escribed, 
together with development and 
management practices required for 
maintaining intellectual control over the 
process. 

A Cleanroom Software Case Study 

The IBM COBOL Structuring Facility 
(COBOL/SF) Version 2 Program Product 
automatically transforms unstructured 
COBOL programs into structured form. It 
was developed by a small programming 
team using Cleanroom Software 
Engineering technology [Mills 1987) . 
COBOL/SF Version 2 consists of 80,000 
lines (52,000 new and changed over Version 
1) of high function source code that was 
developed under statistical quality control, 
being specified, then designed, 
mathematically verified, and coded with no 
unit debugging in a pipeline of increments 
at very high productivity. Each increment 
was placed under engineering change 
control before any execution and subjected 
to system test under a sound statistical 
design. 

As a result, COBOL/SF passed its field test 
of structuring a half-million .. lines of 
COBOL code in over 300 application 

1 

Harlan D. Mills 
University of Florida 
Gainesville, Florida 

and 
Software Engineering Technology, Inc. 

Vero Beach, Florida 

programs with only 10 errors detected. All 
errors were trivial, none requiring more 
than a few hours to find and fix, and most 
just a few minutes. In all testing, only one 
error resulted in a COBOL program failing 
to execute functionally equivalent before 
and after structuring. As confidence in 
quality grew, field test participants engaged 
in wholesale structuring of entire systems 
of COBOL programs, in effect. treating the 
field test version of COBOL/SF as a final 
product. 

Since the common wisdom in software 
engineering is that mathematical 
verification of sizable software products is 
impractical and that unit debugging by 
programmers is necessary, these results 
may appear incredible. As far as we know, 
the axiomatic verification (Hoare 1969. 
Gries 1981) of software as widely taught in 
university computer science courses today 
is indeed impractical for products of this 
size . However, functional verification 
(Linger 1979) was used for COBOL/SF. And 
even functional verification for products of 
this size is impractical. except for teams 
whose members are well educated in formal 
methods of specification, design and 
functional verification. Team members 
must be provided further intemships in 
team operations, for scaling up such formal 
methods into work products and processes 
that permit day-to-day work to accumulate 
into mathematical verifications of 
software products of any size. 

It is understandable that the common 
wisdom of such a new subject as software 
engineering can underestimate the 
potentials of human achievement in 
various ways. Centuries ago, the common 
wisdom in arithmetic with Roman 
numerals was that large scale arithmetic 
was impractical, so that the great inventory 



with structural problems caused by 
complex perlormed procedure logic, ALTER 
statements. etc. The Structured Program 
Generation Subsystem transforms the 
input program into structured form and 
generates code. Finally. an off-line Parser 
Generator compiles COBOL grammars into 
parse tables for use by the system. 

COBOL/SF Version 2 was developed top 
down in five increments as depicted in 
Table 2. With no unit debugging permitted, 
the error rates shown are measured from 
first execution through the completion of 
Cleanroom testing. They range from 1.4 to 
5. 7 errors I KLOC of source code, with an 
average of 3.4 errors I KLOC. Table 2 
suggests a possible correlation between 
increment size and error rate, however. no 
such relation appeared in the earlier 
versions, whose larger increments often 
exhibited the lowest error rates. 

Published reports on software productivity 
and quality are highly variable, however, 
averages of 150 WC I person-month and 70 
errors I KWC (including unit debugging) are 
representative of industrial experience for 
complex products [Boehm 1981, Jones 
1986]. Table 2 shows anticipated errors for 
each increment at a rate of 70 errors I 
KLOC. Using the Cleanroom approach, a 
small team of software engineers produced 
code of compiler complexity at a rate of 3.4 
errors I KLOC. roughly one-twentieth the 
industry average, and a productivity rate of 
740 lines I person-month. roughly five 
times the industry average, all within 
schedule and budget. 

Parser System 
Generator Control 
Program Program 

I 

I 
I 
I I I 
Source Control Structured 

Language Flow Program 
Parsing Analysis Generation 

Subsystem Subsystem Subsystem 

Figure 1 
COBOL Structuring Facility Components 

3 

Cleanroom Software Engineering 

Traditional software development proceeds 
through steps of specification. design. and 
code, then unit, component, and system 
testing. Selective tests are invented with 
knowledge of programmed intemals. often 
by the developers themselves, typically to 
exercise primary functions. then secondary 
functions, error cases. etc. On completion 
of testing, the software is known to work as 
tested. but can still fail in circumstances 
not tested. As a result, the reliability 
evidence of selective testing is entirely 
anecdotal; it is known only that the 
software passed certain tests. with no 
inference possible of future failure rates. 
Worse. selective testing provides no 
rational basis for managing development. 
If few errors are found, is the code of high 
quality or is the test process faulty? If 
many errors are found, has the quality of 
the code been sufficiently improved or are 
there many more errors left to be found? 

The objective of Cleanroom Software 
Engineering is to provide scientific 
evidence of reliability by embedding the 
entire development process in a statistical 
design [Mills 1987]. In the Cleanroom 
approach, a statistical property of software 
under test, namely successive times 
between execution failures. is used to 
estimate reliability directly using a new 
certification model [Curritt 1984). In the 
statistical design. all testing is randomized 
over projected user input distributions, to 
rehearse eventual use of the software in 
arriving at reliability estimates. To keep 
the estimates valid, programs are placed 
under engineering change control from 
first execution on, with no unit debugging 
or developer testing permitted. 

Cleanroom Software Engineering requires 
the best possible mathematics-based 
development methodologies. The objective 
is to develop such high quality software 
with no unit debugging that statistical 
testing will reveal a reliability growth, as 
lower and lower frequency errors are found 
and fixed. and not simply thrash from one 
high-frequency error to the next with no 
reliability growth possible, in effect 
debugging and not certifYing the code. 

Successful Cleanroom software 
development depends critically on the 



ability of team members to apply formal 
methods of software engineering in the 

Increment Lines of Anticipated 
Code Errors at 

70/ KLOC 

1 4150 291 

following areas. 

Errors Errors I Errors 
Found in KLOC Found in 

Cleanroom Field 
Testing Testin):!; 

6 1.4 l 
2 11125 779 24 2.2 2 
3 10080 706 23 2.3 2 
4 19543 1368 Ill 5.7 4 
5 7117 498 15 2.1 l 
Totals 52015 3642 179 lO 

179 errors I 52.015 KLOC = 3.4 errors/KLOC 

Table 2. 
Error Rates in Cleanroom Testing Measured From First 

Execution for COBOL/SF Version 2 Development 

Formal Specification 

A cleanroom software specification defines 
required function and performance, the 
statistical distribution of user input, and 
the content of successive development 
increments. 

A fundamental principle of Cleanroom 
Software Engineering is to identify formal 
mathematical structures for specifying the 
problem at hand, whether it be an entire 
system, a subsystem, or a component. 
Formal structures include the box 
structures of data abstraction-:; (Mills 1988), 
formal grammars, regular expressions. 
propositional logic, predicate calculus, etc., 
in short, any appropriate mathematical 
structures at all. 

Different parts of a system typically 
require different specification techniques. 
Box structures are a natural means to 
specify behavior of a system and its 
subsystems. Within box structure 
specifications, formal grammars and then 
semantics in conditional rules can provide 
the level of precision required. Much of 
COBOL/SF was specified with extensive 
formal grammars, which are closely 
related to the problem domain. Grammars 
were Written both for the COBOL languages 
processed, and for internal string 
substitution operations in terms of 
recognition and transformation 
grammars. 

4 

A crucial mathematical property required 
of the formal structures is referential 
transparency in hierarchies (Mills 1988). 
that is, fully specified behavioral 
equivalence across levels of decomposition. 
This requirement precludes popularized 
specification techniques which lack 
referential transparency, such as structure 
charts and data flow hierarchies. 

Natural language is used not to carry the 
burden of specification, for which it is not 
well suited, but rather to explain the formal 
specification structures. Where ambiguities 
arise, it is the formal structures that must 
be correct, no matter what the natural 
language says. 

Specification structures are developed 
incrementally, with formal team review for 
correctness and simplicity at each step, and 
often undergo substantial revision to 
correct errors or take advantage of better 
ideas. No design work on an increment is 
undertaken until its specification is agreed 
by all team members to . be correct. This 
level of formality is well suited to dealing 
with inevitable changes in requirements. 
The intellectual control provided by formal 
structures permits the precise impact of 
changes to be quickly assessed and 
accommodated. 

No unnecessary work for the sake of 
formality was undertaken in specifying 
COBOL/SF; the specifications were written 
to a level of formality sufficient to 



guarantee completeness and correctness in 
team reviews. 

Cleanroom testing of COBOL/SF required 
specifying a statistical user input 
distribution of COBOL programs with 
realistic statement frequencies and coding 
pattems, in order to generate test cases 
randomized against the distribution. 
Published papers analyzing COBOL 
program inventories provided statement 
frequencies, which were used by a PC-based 
test case generator to produce non­
executable, random COBOL programs for 
testing. 

Formal Design 

The design of COBOL/SF was carried out 
using function-theoretic methodology 
(Linger 1979]. In the function-theoretic 
approach, program designs are regarded as 
mathematical objects, namely, rules for 
functions, and designs are treated as 
expressions in an algebra of functions. with 
keywords if, while, etc., as function 
operators. 

The syntactic forms required for function­
theoretic design are embodied in a Process 
Design Language (Linger 1979] whose 
principal components are function 
(subspecification) definitions, delimited by 
square brackets, and their decompositions 
into control structures, containing new 
function definitions, as illustrated in 
Figure 2. Great effort is expended in 
developing concise and correct 
intermediate function definitions, since 
these serve as specifications in the 
functional verification. Well over half the 
COBOL/SF design text is devoted to function 
definitions. 

Sequence: 

dolO 
lg) 
(h) 

od 

Ifthenelse: 

111 
if 

p 
then 

lg) 
else 

(h) 
fi 

,·,. 

Figure 2. 

While do: 

111 
while 

p 
do 

(g) 
od 

Syntactic Forms for Function-Theoretic 
Design 

5 

Designs are constructed by repeatedly 
decomposing specified functions into 
control structures and subspecifications, as 
illustrated in Figure 3 for a miniature 
design fragment, and not by assembling 
control structures into designs through acts 
of heuristic invention. The difference is 
crucial, even though both processes end up 
with a structured program, because only the 
former ·provides the referential 
transparency at each decomposition step 
required for correctness verification. 

[for queue q and stack s, append to q all 
members of s (if any) in order followed by 
eoq, sets to emptyl 

expands to: 

do [for queue q and stack s. append to q all 
members of s (if any} in order followed 
by eoq, set s to empty) 

od 

(for queue q and stack s, append to q all 
members of s (if any) in order, set s to 
empty] -
back (q] := eoq 

expands to: 

do [for queue q and stack s. append to q all 
members of s (if any) in order followed 
by an eoq, set to empty] 

od 

(for queue q and stack s, append to q all 
members of s. (if any) in order, set s to 
empty] 
while 

not empty (s) 
do (move next member of stack s to 

queue q] 
x :=top (s) 
back (q) := x 

od 
back (q) := eoq 

Figure 3. 
Stepwise Decomposition of a Miniature 

Design Fragment 

The entire design, not just its most 
interesting parts, is embodied with full 
precision in each decomposition step at 
increasing levels of detail. Because 
statistically generated tests can exercise 



exceptional cases as well as mainline 
processing. each increment must address 
the entire user input distribution, not just 
its principal components. In Cleanroom 
there is no protected testing of mainline 
functions. 

The objective of formal correctness 
verification in team reviews requires 
designs that are as small and simple as 
possible. to help promote effective 
reasoning by team members. 

Properly educated and motivated humans 
have substantial latent capability for 
logical precision in correctness 
verification. but only if program 
complexity can be held below a critical 
threshold. Dijkstra's original motivation 
for structured programming was to reduce 
the size of correctness proofs. but two 
additional factors contribute to complexity 
as well. namely. proliferation of state space 
data objects. forced by insufficient 
abstraction in the design. and sheer growth 
in design size. likewise forced· by 
insufficient abstraction of case analyses 
into more general forms with simpler 
designs (the first idea is rarely the best 
idea!). 

Data structured programming [Mills 1986a) 
was used to reduce the number of state space 
objects and simplify correctness 
verification. In this approach. data objects 
with disciplined access to data, such as 
stacks and queues. are employed, rather 
than objects with random access to data. 
such as arrays and pointers. The result is a 
sharp reduction in the number of objects 
and their references. Disciplined data 
access designs are more difficult to invent, 
but easier to verify, with less state 
information required in the mind at each 
verification step. 

To help reduce the size of designs and the 
quantity of logical material to be verified, 
simpler design approaches were actively 
sought in review, and redesigning for 
simplicity was made an explicit objective. 
This activity produced astonishing results, 
with factors of up to five in size reductions 
achieved. For example, the prototype of 
COBOL/SF, estimated at 100 KLOC of PL/I 
by an independent IBM group, required just 
20 KLOC as a result of data structured 
programming and design simplification. 

6 

Formal Verification 

Formal verification begins with 
specifications. which are checked line-by­
line in team reviews for correctness against 
requirements. For example. formal 
grammars for OS/VS COBOL and VS COBOL 
II. comprised of some 1500 productions 
each, were verified for correctness in 
intensive team reviews. As a result. no 
grammar errors whatsoever were 
encountered in field testing. 

At the design level. traditional inspection 
methodology is aimed at finding errors 
through mental execution of program paths 
in group reviews. Such a process places 
demands on long term memory, to recall 
path histories and branches. and non-local 
reasoning, to integrate the effects of 
operations encountered. Worse. it is a non­
finite activity, since programs of any size 
contain a virtually infinite number of 
possible paths. 

In contrast. function-theoretic design 
verification is aimed at verifying the 
correctness of successive function 
decompositions [Mills 1986b). This process 
is a reduction to practice of the Correctness 
Theorem [Linger 1979), which defines the 
correctness conditions that must hold for 
every control structure, as illustrated in 
Figure 4 in terms of correctness questions 
t? ~pply in team reviews. Every design is a 
fm1te structure of function decompositions, 
and hence is verified in a finite. and large, 
number of mental function comparisons 
based on the correctness questions. Most of 
the function comparisons are made in 
seconds in team reviews through highly 
structured group dynamics, with more time 
taken if an error is suspected. Literally 
hundreds of such verifications can be made 
in a day's work, with astonishing savings 
possible in testing later on. In illustration, 
the 3300-line COBOL/SF Parser Generator 
program contained some 700 control 
structures. representing around 1200 
correctness questions to be asked and 
answered in team review, easily 
accomplished in a few days work. 

It is common wisdom today that all 
software errors are the result of inevitable 
human fallibility: however, function 
theoretic design and verification processes 



prove otherwise. It turns out that nearly all 
software errors result from heuristic 
development processes, and not from 
human fallibility itself. Heuristic 
development processes lack crucial 
mathematical properties such as 
referential transparency for decomposition 
and verification. and so embody errors of 
process that cannot be distinguished from 
human errors. Rigorous processes such as 
the function theoretic approach provide 
full referential transparency, and do not 
carry errors of process · in their application. 
Like doing long division. one may make 
errors in computation. but they are readily 
identified through verification as errors of . 
human fallibility in following a rigorous 
process. 

The COBOL/SF experience demonstrates an 
upper bound on human fallibility on the 
order of three to four errors I KLOC 
remaining after a rigorous development 
and verification process and before first 
execution. Cleanroom testing then finds 
and fixes these errors to arrive at a near 
zero defect product. We believe that well 
over 9()0AJ of the 70 errors I KLOC in current 
industrial experience are in fact due to the 
processes in use and not the people. 

Sequence: 
For all inputs, 

does (g) followed by [h) do (fl? 

Ifthenels.e: 
For all inputs, 

whenever p is true, does [g) do [f) 
and 

whenever p is false, does [h) do [f)? 

Whiledo: 
For all inputs, 

does the whiledo terminate 
and 

whenever p is true. does [g) followed by 
[f) do [f) 

and 
whenever pis false. does doing nothing 
do[f]? 

Figure 4. 
Correctness Questions for the Control 

Sttuc~sof~e2 

7 

Cleanroom Implementation 

Once correctness verification is complete 
for each increment. the designs are 
translated into the target language. in this 
case. PL/I. No acts of invention are 
permitted in the translation: hard-won 
design correctness must be maintained 
across the language representations. PDL 
designs are carried to a level of detail 
sufficient to ensure statement-to-statement 
mappings into PL/I. In addition, a PC-based 
translator was written to automate the 
implementation process. 

It is worth noting that all development 
work, from specification through design 
and verification was carried out on 
Personal Computers. with a simple text 
editor as the only development tool. That 
is, the specifications and designs were 
treated strictly as accumulating logical 
objects in text form, in a development 
process aimed at ensuring their 
completeness and correctness at each step. 
Once translation to PL/I was completed. the 
programs were shipped to a mainframe to 
begin compilation and testing under full 
engineering change control. In the 
Cleanroorn approach. only the certification 
engineers who execute the Cleanroom tests 
have access to the compilers. With no unit 
debugging. compilation during 
development is simply unnecessary. As a 
result. PC-based development with no 
compilation or execution capability is 
practical, and economical as well. 

Formal tools to support mathematical 
specification, design. and verification will 
be welcome when they become available, 
but we believe that tools for heuristic 
specification, design, and trial and error 
coding, testing, and debugging are counter 
productive. 

Cleanroom Testing 

Cleanroom testing proceeds for successive 
cod~ increments by executing test cases 
randomized against projected user input 
distributions and recording the resulting 
inter-fail time intervals. The accumulating 
time intervals are used by a PC-based 
certification model to compute current 
mean time to failure (MTTF) [Curritt 1986). 
Failures are reported by certification 
engineers back to the software engineers. 



Errors are fixed as they are found. and the 
code retumed to testing. For high quality 
code. error frequency drops quickly in the 
testing and inter-fail times increase 
dramatically. In these cases. the certified 
MTTF rapidly exceeds total test time. 

The MTTF values for early increments 
provide a scientific basis for managing 
development of later increments. say by 
allocating more effort to verification if 
MTTF values are too low. or even 
compressing schedules if the values are 
higher than required. 

The types of errors present in Cleanroom 
code are very different from current 
industrial experience. The errors left 
behind after formal correctness 
verification are invariably "simple 
blunders." requiring little effort to find and 
fix. For example. an incorrect conjunction 
(say. an "and" where an "or" was intended). 
or a missing parameter on a call statement 
are typical errors. 

The errors tend to show up quickly· in the 
early testing; it is often the case that all the 
errors that will ever be found occur in the 
first few test cases. For example, the 
COBOL/SF Parser Generator was brought up 
in four increments subjected to 120 
statistically generated test cases. Twelve 
minor errors were found. all in the first five 
cases. with error-free execution from then 
on. now passing three year's use. 

A Cleanroom project is scheduled on the 
basis of code increments running defect free 
within a day or two of first execution. 
Under ten percent of project time is devoted 
to implementation and testing. 

This experience is in sharp contrast to the 
deeper structural and interface errors 
commonly encountered with heuristic 
development processes. This difference 
reflects a synergism between mathematical 
verification and statistical testing. The 
former leaves behind simple errors that are 
easily found by test cases that cover the 
entire input distribution. Of course it is 
impossible to give a foolproof proof that a 
program is zero-defect. but that conclusion 
is increasingly justified as error-free 
executions accumulate over months and 
years of use. 

8 

Cleanroom Management 

Cleanroom team management is technical 
engineering management. not 
administrative management. A team 
manager must ensure proper engineering 
methodologies in team operation. and must 
be an active participant in high level 
specification and design. Team 
management requires a deep understanding 
of formal methods. but also a deep 
conviction in their effectiveness. Without 
courage of convictions. it is easy to cut 
comers when the going gets rough. just 
when the best methods are needed most. 

In illustration. our Cleanroom team 
understands that any code that exhibits 
high error rates (say 7 or 8 errors 1 KLOC) in 
early Cleanrootn testing will come off the 
machine and back into design and review. 
Such action is rarely required. but occurs 
typically at a time of stress. say from a tight 
schedule which itself contributed to the 
high error rates. To an observer accustomed 
to heuristic methods. taking code off the 
machine may seem foolhardy. but time 
spent in rethinking the formal structures 
will save far more time in testing later on. 
In Cleanroom. the primary function of 
testing is to certifY code. not debug it. 

Cleanroom team management is carried 
out primarily through education in 
software engineering methodology. day-by­
day. in group and individual interaction. 
Every design decision. every review. every 
execution failure is an opportunity to 
discuss. evaluate. arid improve the use of 
formal methods. 

Evolution of Cleanroom work products 
through iterations of design and review is 
an egoless process. All errors are team 
errors. the result of human fallibility in 
formal verification. Any error that 
survives review was missed by every team 
member. However. Cleanroom team 
success is a source of pride and 
accomplishment that is difficult to 
understand without firsthand experience. 
When a code increment runs right the first 
time on a machine and every time 
thereafter (as has occurred many times in 
developing COBOL/SF). the team 
satisfaction and motivation is remarkable 
indeed. Such performances become the 
"personal best" of the team. and anything 



less only strengthens the resolve to 
improve. 

Cleanroom team performance requires 
both depth of knowledge in formal methods 
and the convictions to apply them. The 
formal methods are based on the flexibility 
and precision of mathematics. not on the 
latest buzz words of the moment. For 
example, the buzz word view of structured 
programming is syntactic and superficial, 
namely, programming with no gatos. but 
the mathematical view is semantic and 
powerful. namely, programming in an 
algebra of functions with verification at 
each decomposition step. In fact. this 
mathematical view defines the only known 
process that produces programs that are 
correct by construction. 

One way to begin Cleanroom operations is 
to first form a single team whose members 
have been introduced to the formal 
methods, and can educate and reinforce 
each other in pilot projects to develop the 
required depth of understanding and 
convictions. 

The firsthand experience of team 
membership is a critical step in developing 
future team leaders. in creating a whole new 
set of expectations and performance 
capabilities in software development. Once 
a team has demonstrated Cleanroom 
Software Engineering capability, new 
teams can be formed by cloning, as team 
members become leaders of new teams to 
continue the education process. 

Cleanroom performance is demanding. but 
exhilarating too. in extending the human 
frontier in computing to new levels of 
excellence. 

Acknowledgments 

It is a pleasure to acknowledge the excellent 
comments of Kathy Cannaday and the 
referees in the preparation of this paper. 

9 

References 

[Boehm 1981) Boehm, B. W. Software 
Engineering Economics. Englewood Cliffs. 
N.J.: Prentice-Hall. 1981. 

[COBOL/SF 1988a) COBOL Structuring 
Facility Re-Engineering Concepts. IBM 
Publication SC34-4079. 1988. 

[COBOL/SF 1988b) COBOL Structuring 
Facility Users Guide and Reference. IBM 
Publication SC34-4080. 1988. 

[Curritt 1986) Curritt, P. A.; Dyer, M.; & 
Mills. H. D. "Certifying the Reliability of 
Software." IEEE Transactions on Software 
Engineering. Vol. SE-12, No. 1. (Jan. 1986). 

[Gries 1981) Gries. D. The Science of 
Programming. Springer Verlag. 1981. 

[Hoare 1969) Hoare. C. A R "An Axiomatic 
Basis for Computer Programming." 
Communications of the ACM. Vol 12. 
(October 1969): pp. 576-83. 

[Jones 1986) Jones. C. Programming 
Productivity. New York. N. Y.: McGraw­
Hill. 1986. 

[Linger 1979) Linger. R C.: Mills, H. D.; & 
Witt, B. I. Structured Programming: Theory 
and Practice. Reading, Mass.: Addison­
Wesley. 1979. 

[Mills 1986a) Mills, H. D.; & Linger. R C. 
"Program Design Without Arrays and 
Pointers." IEEE Transactions on Software 
Engineering. Vol. SE-12. No.2 (Feb. 1986). 

[Mills, 1986b) Mills, H. D. "Structured 
Programming: Retrospect and Prospect." 
IEEE Software. (Nov. 1986). 

(Mills 1987) Mills. H. D.: Dyer. M.: & Linger. 
R. C .. "Cleanroom Software Engineering." 
IEEE Software. (Sept. 1987) 

[Mills 1988) Mills. H.D.; Linger, R. C.: & 
Hevner, A R. "Box Structured Information 
Systems." IBM Systems JournaL Vol. 26, 
No.4 (1987) pp. 395-413 .. 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	10-5-1988

	A Case Study in Cleanroom Software Engineering: The IBM Cobol Structuring Facility
	Richard C. Linger
	Harlan D. Mills
	Recommended Citation


	tmp.1319742833.pdf.ejR0v

