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ABSTRACT 

Objective: To test the hypothesis that fractionated radiation therapy of less 50 Gy is 

associated with a dose-related change in the Tl of normal brain tissue, and that these 

changes are detectable by quantitative MRI. 

Methods: A total of 33 patients, who were being treating for a primary brain tumor, 

received qMRI examinations prior to conformal radiation therapy and at 3 weeks, 5 

weeks, and 3-month intervals following treatment. A Tl map was generated for each 

patient, and radiati9n dose maps were superimposed over the corresponding Tl maps. 

Changes in white matter and gray matter TI were then evaluated longitudinally as a 

function of radiation dose and time since treatment. Patient age, tumor site, and clinical 

variables were also including in the analysis. 

Results: There was a dose-dependent decrease in Tl over time in the white matter that 

received greater than 20 Gy that became significant after 6 months. There was no 

significant change over time in TI of gray matter that received less than 50 Gy. 

However, gray matter close to the tumor was inherently different. 

Conclusion: The results we obtained were the first dose-response data taken from the 

pediatric brain in vivo. Our findings conclude that white matter is far more sensitive to 

radiation than gray matter even at lower doses. White matter is resistant to a radiation 

dose of less than 20 Gy, while gray matter is only resistant at greater than 50 Gy. Also, 

the tumor does seem to have an effect on the tissue that immediate surrounds it, with the 

effect being larger in patients with a infratentorial tumor. In addition, conformal 

radiation may substantially benefit the patients by minimizing the radiation dose and 

ultimately the damage that the brain tissue receives during therapy. 



INTRODUCTION: 

Radiation has been used in the treatment of cancer since the early 1900' s. In 

1895, Wilhelm Roentgen discovered what would later be called x-rays, and as early as 

1902, x-rays were being used to treat cancer, giving birth to the field of radiotherapy. 

Before long, doctors and scientists were using x -rays to treat almost every kind of 

disease. It did not take long, however, for people to realize that harmful side effects can 

be involved with using x-rays to treat disease. In fact, many of the early scientists and 

physicians who worked with x-rays developed fatal conditions brought about by 

extensive exposure to radiation. In the 1930's, there was an increased interest in the 

effects of radiation on all tissues, and out of that interest grew the field of radiobiology, 

(1). Over the next thirty years, the fields of radiotherapy and radiobiology grew together 

as advancements of radiation therapy were coupled with a growing awareness of the 

effects of radiation on tissues. Currently, radiation oncology, which is the field centered 

around the use of ionizing radiation in the treatment of cancer, is one of the fastest 

growing medical fields. In 1996, approximately 60 percent of cancer patients received 

some type of radiation therapy (2). Unfortunately, the growth of radiation oncology has 

been aided by the growth in the incidence of cancer, as well as by advancements in the 

understanding and delivery of ionizing radiation. 

One of the central questions of radiation oncology that has fueled a great deal of 

research is the how well does normal tissue tolerate ionizing radiation. As techniques for 

delivering radiation to the desired target continue to improve, the rate of prolonged 

remission and even achievement of a "cure" continues to increase dramatically; however, 



with an increasingly large group of survivors comes a growing concern for toxicities and 

long-term effects of ionizing radiation. By definition, ionizing radiations are those which 

are capable of interacting with atoms and molecules in the body to produce biological 

effects (3). As the beams of radiation pass into the body, they are absorbed and released 

locally, and thus the energy of the beam when it reaches the target tissue is dependent on 

the depth of the tissue from the skin and the density of tissues the beam penetrates (3). 

Thus, it is apparent that the tissues surrounding the target tissue also receive a 

considerable amount of radiation, and traditionally, the surrounding tissue receives more 

than the target. As a result, it is imperative that the amount of radiation received by this 

tissue is not only monitored, but also kept to a minimum. 

An area where understanding toxicities and long-term effects is particularly 

important is the brain. According to Shrieve et aI., radiation therapy is the single most 

active treatment for glial tumors, which are the most common type of brain tumor, and 

radiation doses up to 60 Gy yield dose-related increases in patient survival (4). Yet, 

DeAngelis et al. have shown that even relatively low doses of radiation to the brain 

causes up to a 3- to 7-fold increase in the incidence of glial tumors (5). Thus, there is a 

dichotomy set up between the benefits and ill-effects of irradiation in the treatment of 

brain tumors. 

The potential for radiation-induced injury to the eNS and, in particular, the brain 

limits the amount of radiation that can be safely delivered in the treatment of a brain 

tumor (6). As a result, new techniques have been developed to limit the amount of 

radiation that the normal tissue surrounding the tumor receives. One such technique is 

three-dimensional (3D) conformal radiation therapy. The basis of conformal radiation 



therapy is to deliver the desired amount of ionizing radiation to the target tissues, so that 

the target receives a unifonn dose and the dose to the surrounding tissue is kept below a 

level that might produce adverse side effects (7). In order to accomplish this feat, the 

ionizing radiation is delivered from multiple angles in three dimensions, as the name 

suggests. Thus, the only tissue that receives the full dosage is the tissue that lies within 

the margin of the target. 

While 3D confonnal radiation therapy does successfully limit the amount of brain 

tissue that is exposed to the full dosage, a larger portion of the brain is exposed to a lower 

dose of radiation. This fact begs the question of what are the effects of low-dose 

radiation on nonnal brain tissue. Several studies have shown that radiation doses of less 

than 50 Gy can cause serious long-tenn effects such as loss of neurocognitive functioning 

or marked behavioral effects (8-17). While these studies suggest that radiation can be 

damaging at relatively low doses, there is a need for an effective means of evaluating 

radiation effects at lower doses. 

Magnetic resonance imaging (MRI) is known to be able to detect white matter 

changes in as many as 50% of patients who have received radiation treatment for a brain 

tumor (18-21). Yet, other studies have shown that white matter changes that are 

detectable by conventional MRI (cMRI) are not well correlated with the severity of 

neurological outcomes (22). Thus, there is a need for a more sensitive and a quantitative 

means of evaluating the effect of radiation on brain tissue. 

Earlier studies in our laboratory suggest that quantitative MRI (qMRI) may be 

more sensitive to changes in brain tissue than cMRI, particularly in those changes that 

follow radiation treatment (23). In a preliminary study, we found that ionizing radiation 



is associated with qMRI abnormalities in white matter but not gray matter. In the white 

matter, we found that there was a significant dose-dependent decrease in the spin-lattice 

relaxation time (Tl) six months following the initiation of radiation therapy, and this 

decrease existed in tissue that received less than 40 Gy. However, in our preliminary 

study, we only evaluated a small sample of patients, which limited our study. Therefore, 

in this study, we expand the sample of patients in order to determine if our preliminary 

assumption that there is dose-dependent response to radiation of less than 40 Gy in the 

white matter of patients who are undergoing radiation therapy is correct. Moreover, we 

wish to investigate a transient decrease in Tl that occurred in the third week of follow-up 

in our preliminary data. Our hope is to find a standard acute response that will allow us 

to assess the progress of patients who are undergoing radiation therapy, and finally, to 

determine if conformal radiation therapy does offer a benefit to patients by lowering the 

amount of healthy brain tissue that receives high amounts of radiation. 

METHODS 

Protocol overview 

In July of 1997, patient enrollment was opened for a new protocol at St. Jude 

Children's Research Hospital entitled "A Phase II study of image-guided radiation 

therapy for pediatric CNS tumors and quantification of radiation-related CNS events". 

The eligibility criteria for the protocol included the following: 

• Patient age at diagnosis: 1.5-21 years 

., Histologically-confirmed primary brain tumor 



• Unifocal tumor (no dissemination of tumor within or beyond the 

central nervous system) 

• Histologic type requiring only focal irradiation 

• No prior radiation therapy 

• No ongoing chemotherapy (excluding corticosteroids) 

• Adequate performance status (EeOG 0-3) 

Following a detailed description of the protocol, the parents or guardians of all the 

children signed an informed consent. Patients then received an MRI exam which 

included both cMRI and qMRI prior to the initiation of the radiation therapy. During the 

qMRI portion of the examination, images were acquired that enabled us to measure white 

matter T 1 and gray matter T 1. The same examination was repeated at weeks 3 and 5 of 

the radiation therapy, and every 3 months after the initiation of the radiation therapy. The 

pre-treatment examination allowed each patient to act as there own control, and thus we 

were able to detect small changes in T 1 that may be attributed to radiation therapy. 

Description of patients 

A total of 33 patients who were enrolled on the above protocol were used in this 

study. All of patients have completed their radiation therapy. Patient age ranged from 

2.3 to 18.7 years with the mean age of 9.1 years. Each of the patients was treated with 

conformal radiation therapy directed at the primary site of disease with a total dose 

prescription of either 54.0 or 59.4 Gy. Most of the patients (n=18) received a minimum 

of 5 qMRI examinations, and additional examinations were obtained at week 39 (n= 15) 

and week 52 (n= 11) for some of the patients. 



Conventional MRI 

All MR imaging was performed on a 1.5 Tesla MR imager (Siemens Medical 

Systems, Iselin, NJ), using a standard Siemens quadrature head coils. Conventional T 1-

weighted gradient echo MR image sets were acquired across the brain in sagittal and 

transverse planes. These images were used to select a slice level for the qMRI 

examinations. In addition, T2- and proton-density weighted turbo spin-echo images were 

acquired to screen patients for progressive disease. In patients with progressive disease, 

we would be unable to determine if any acute changes in T 1 were due to radiation or the 

effect of the tumor, and therefore they were excluded from the study. The total amount 

of time it took to acquire these images was approximately 11 minutes. 

Quantitative MRI 

Quantitative MR imaging of T 1 was done with a precise and accurate inversion

recovery (PAIR) method and its improved version (TurboPAIR). Each method was 

developed, optimized, and validated in the diagnostic imaging lab at St. Jude Children's 

Research Hospital (24-29). The time required for imaging for the TurboPAIR sequence 

is 4 minutes verses the 14 minutes that is required by the PAIR sequence. A single 

transverse slice at the level of the basal ganglia was selected for each of the patients, so 

that the same structures were viewed for all of the patients. 

Measurement ofTl 



After we had acquired the qMRI images, we then transferred the images to a 

Silicon Graphics Indy workstation for further analysis. The pixels that were identified as 

noise were excluded by a statistical criteria that was establish by Gene Reddick (30), and 

the remaining pixels were submitted to a curve-fitting procedure (24,30, 31). The TI 

equation was solved for a. (spin-density factor corrected for T2 losses), k (cosine of the 

effective flip angle of the inversion pulse), and T 1 in each pixel. The T 1 value was used 

to generate a parametric T 1 map of the image, wherein the pixel grayscale value is 

equivalent to the relaxation time in msec. 

Segmentation of qMRI images 

The qMRI images were then analyzed using a fully automated neural network 

algorithm (32, 33), that was adapted to specifically segment the tissues in TurboPAIR 

images (34). This method can segment tissue into 9 separate ranges of TI values, each of 

which correlate directly with a type a category of tissue. These categories are gray matter 

(GM), white matter (WM), cerebrospinal fluid (CSF), partial volume of GM and WM, 

partial volume of GM and CSF, or background. The non-normalized signal intensity 

from each pixel in the 4 TurboPAIR base images was used as input to a 3 x 3 single-layer 

Kohonen self-organizing map (SOM). After image segmentation was completed, each of 

the 9 levels in the segmented image was manually classified as one of the six categories 

above, and a pseudo-color image of the brain was created (33). 

The pseudo-color images were then imported into Adobe Photoshop 4.0.1, and 

extrameningial tissues were erased manually using the standard Photoshop tools. In the 

segmented image, the yellow pixels correspond to GM, and the green pixels correspond 



to WM. All of the other colors, include the lime green pixels, which correspond to partial 

volume of GM and WM, were not analyzed any further. The central GM and WM was 

also erased from the image because we lack adequate control data from which to 

determine expected T 1 values for GM and WM tracts in the central structures of the brain 

(25). In addition, in many of the patients, the dosimetric lines were placed too close to 

each other to accurately assess Tl of the tissue as a function of RT dose. 

Confonnal radiation therapy 

Conformal 3-D treatment plans employing 4-25 beams were developed using the 

"PLan University of North Carolina" treatment planning system. The majority of 

treatments were delivered on MLC-equipped Siemens Primus and Primart linear 

accelerators. Patients were immobilized with a stereotactic head frame, a thermoplastic 

face mask, or a vacuum bag molded to the patient. General anesthesia was used when 

necessary. Treatment-planning guidelines specified a lOmm anatomically defined 

clinical target volume (CTV) for ependymoma, low-grade astrocytoma or low-grade 

neuronal tumors, and craniopharyngioma. Patients with high-grade astrocytoma or high

grade neuronal tumors were treated with a 20mm anatomically defined CTV. The 

geometric margin used to define the planning target volume was fixed at 5mm for all 

patients independent of immobilization. Targeting followed ICRU guidelines (35) and 

tissue outside the target volume is regarded as normal, for the purposes of this analysis. 

Isodose contours were generated for each of the patients in a plane that corresponded to 

the slice level of the qMRI image. The contours included dose levels that ranged from 5 

Gy to 54.9 Gy and were in 5 Gy increments. Due to the fact that not all of the patients 



had tumor in the level of the slice, some of the patients did not have T 1 maps that 

included the highest dose of radiation therapy. 

Analyzing T 1 as a function of radiation 

In order to determine the relationship between T 1 and the radiation dose, the 

isodose contours for each patient were superimposed onto the corresponding segmented 

T1 maps. Tissue T1 was then calculated as a function of radiation dose for both white 

and gray matter, and the T 1 was recorded as a function of time since radiation therapy 

was delivered. This information was then compiled into a data set which included: tissue 

type (GM and WM); radiation dose, classified into one of 8 catagories «5 Gy, 5 to <10 

Gy, 10 to <20 Gy, 20 to <30 Gy, 30 to <40 Gy, 40 to <50 Gy, 50 to <54Gy, and ~ 54 

Gy); and time since the radiation treatment in 3 week, 5 week, and 3 month intervals. 

Statistical tests 

In our study, we wanted to examine the longitudinal trends of T 1 in the WM and 

GM of the patients as a function of the radiation dose. Because each patient received 

multiple qMRI examinations, the tissue T1 times were inter-correlated. As a result, we 

used the mixed linear model (36, 37) to analyze the data, in which T1 is the response 

variable, each patient is treated as a cluster, the day from initiation of radiation therapy is 

the longitudinal variable, and the radiation dose to tissue is the primary covariate 

variable. The age of the patient at the initiation of treatment was also included in the 

model, because age is known to have an effect on Tl (26). Initially, we used a 

longitudinal model, freeing the linear longitudinal trend in T 1 in each brain tissue from 



the influence of radiation dosage. We were able to use this model by assigning radiation 

dose as a categorical variable, rather than as an ordinal variable. This model strongly 

suggested that the estimated intercepts and slopes of the longitudinal trends in Tl 

changed in accordance with the magnitude of radiation dose. Because of this finding, we 
~ 

then fitted our data into a surface model, in which the intercepts and slopes of the 

longitudinal trends in Tl were linearly related to the radiation dosage to the brain tissue. 

The T 1 trends predicted by the surface model matched well to those in the simple 

longitudinal model; however, we believe that the surface model gave a better estimation 

of the Tl trends by eliminating a layer of variability due to error (23). 

In addition, we wanted to determine if T 1 of either WM or GM changed acutely 

during the first 5 weeks of radiation therapy. In order to accomplish this, we generated 

scatterplots of Tl at each radiation dose level over time, with each patient plotted 

separately. Visual inspection of these scatterplots was used to determine if there were 

trends in Tl. We also wanted to determine whether trends in WM Tl were influenced by 

clinical variables such as tumor site (infratentorial vs supratentorial) or the use of 

chemotherapy and steroids (yes vs no). We examined longitudinal trends in Tl as a 

function of the major independent variables (radiation dose, patient age, and time since 

starting treatment). 

RESULTS 

Patient data 



As discussed in the protocol, all of the patients' diagnoses were biopsy-proven 

and included tumors of the following types: ependymoma (13 patients), juvenile pilocytic 

astrocytoma (9 patients), craniopharyngioma (5 patients), low-grade astrocytoma (1 

patient), anaplastic astrocytoma (1 patient), ganglioglioma (1 patient), astroblastoma (1 

patient), pleomorphic xanthoastrocytoma (1 patient), and glioblastoma multiforme (1 

patient). The mean tumor size at the time of treatment was 3.7 cm, with a range of 2.0 

cm to 6.5 cm. 

Conventional MRI examinations 

As discussed, conventional MRI (cMRI) films were used to identify patients with 

progressive disease. Only one patient was censored because disease progression was 

noted about 6 months after the radiation therapy. However, a second patient was 

censored because their last MRI examination was completed nearly 2 months after the 

scheduled time interval, and thus the qMRI data for that patient would be invalid. All of 

the other scheduled examinations were completed at close to the scheduled times (23). 

This allowed us to pool the patient examinations by time since radiation treatment. 

Brain T 1 as a function of radiation dose 

Brain Tl was measured in a total of 1,692 separate regions of interest (ROls) 

among the 159 examinations evaluated (Table 1). A roughly equal number of ROls were 

evaluated in white matter and gray matter, so the sensitivity of the method should be 

comparable for radiation-related changes in both types of tissues. Roughly 70% of the 

data analyzed were acquired within 3 months of initiation of radiation treatment, and only 



8% of the data were acquired after 1 year. Therefore, our analysis will be better suited to 

analyzing T1 changes in the early follow-up intervals, and aid us in evaluating acute 

changes in the tissue. 

White matter T1 at each of the separate dose levels is plotted (Figure 2). This plot 

suggests that white matter exposed to greater than 20 Gy shows a reduction in T 1 by 

week 40 that persisted at week 53. As seen in the figure, there may be a substantial 

increase in T 1 at the highest dose level of radiation at week 12, but this increase was not 

statistically significant and may be due to a breakdown in the blood brain banier. 

Individual dose-response curves for white matter T1 at each time interval are also plotted 

(Figure 3). This plot illustrates a downward trend in the T1 dose-response curves at 

follow-up intervals of 6 months or longer. There is also a suggestion that T1 is elevated 

near the tumor by the end of treatment (week 13), and that white matter T1 immediately 

adjacent to the tumor tends to be high. 

Gray matter T1 at each of the separate dose levels is also plotted (Figure 4). This 

plot suggests that gray matter exposed to greater than 50 Gy has a lower T 1 at all time 

points than gray matter exposed to less than 50 Gy. Individual dose-reponse curves for 

gray matter T1 at each time interval are also plotted (Figure 5). There again appears to be 

a downward trend in the T 1 dose-response curves except for week 26, when T 1 is 

generally elevated except immediately adjacent to the tumor. 

A comparison of observed and expected values of T 1 for white matter and gray 

matter is shown in Table 2. Observed T1 for white matter and gray matter was calculated 

from all patients evaluated pre-treatment and at the 39 week examination, and the 

tabulated values are for brain tissue exposed to less than 5 Gy. Expected values were 



determined by modeling T 1 data from 173 healthy people. Prior to radiation treatment, 

observed white matter T 1 was higher than expected (p < 0.0002), whereas observed gray 

matter T 1 was significantly lower than expected (p < 0.0001). By the end of 39 weeks of 

follow-up, observed white matter Tl became more normal, although it was still 

significantly higher than expected (p < 0.003). Gray matter Tl, however, was still 

significantly and substantially less than expected (p < 0.0001). 

Brain T 1 is known to decrease with age in healthy subjects in both white and gray 

matter (25, 26). The average follow-up period lasted 0.8 years, between the average ages 

of 9.1 to 9.9 years. During this time interval, Tl is expected to change by -0.6% in 

white matter and -0.9% in gray matter, as a function of age alone. The actual change that 

occurred in the study was -2.90/0 in white matter and 1 % in gray matter. These 

changes are roughly 5 times larger than expected for white matter and 2 times larger for 

gray matter, indicating that age is probably not the significant confounder in this dataset. 

Changes in white matter T 1 were also analyzed as a function of radiation dose 

after adjusting for the age of the patients (Table 3). In every case, the slope of the dose

response relationship was negative, suggesting that white matter T 1 declines after 

radiation treatment. However, white matter exposed to less that 20 Gy had no significant 

radiation-related change in T 1, while white matter that was exposed to 20 Gy or greater 

did show a significant decrease in Tl. While the decrease was still relatively low for the 

white matter that received 20 to 30 Gy, our results show that radiation of greater than 20 

Gy does have a significant change in T 1 that is consistent with the trend seen in Figure 2. 

Changes in gray matter Tl were also analyzed as a function of radiation dose after 

adjusting for the age of the patients (Table 4). This analysis revealed no significant 



radiation-related changes in gray matter Tl at any dose level less than 59 Gy. These 

results suggest that gray matter is resistant to radiation of less than 59 Gy. However, we 

noted earlier that in our plot of gray matter Tl over that gray matter Tl was low prior to 

treatment and remained low throughout the duration of the follow-up period. 

Both white matter and gray matter exposed to higher doses of radiation are 

different from white and gray matter exposed to lower doses of radiation (Table 5). In 

white matter, this trend does not become significant until 6 months into the follow-up. 

However, for gray n1atter there is a significant dose-response relationship even at the time 

interval before the radiation treatment began. Since gray matter closest to the tumor 

receives the highest dose of radiation, this finding indicates that the gray matter closest to 

the tumor is inherently different from the gray matter that is distant from the tumor. 

Effect of clinical variables on white matter Tl 

A mixed-model analysis was used to determine whether clinical variables had an 

impact on measured Tl in white and gray matter. In the model, the use of chemotherapy 

and steroids were confounded into one factor, because the use of chemotherapy prior to 

radiation treatment was highly correlated with the use of steroids during treatment 

according to a chi-square test. In our analysis, we found that the effects of chemotherapy 

and steroids were not significant in the longitudinal trend of T 1 in either white or gray 

matter. 

We also investigated the impact of the tumor site on Tl prior to the radiation 

treatment (Table 6). When we divided the patients into those who had infratentorial 

tumors (IT) and those with supratentorial tumors (ST), we found that in gray matter, the 



relationship between T1 and radiation dose at baseline was only significant in patients 

with IT tumors, in spite of the fact that when all of the patients were examined together, 

there was a significant dose-response relationship in gray matter. In white matter, we 

also found a significant relationship between T1 and radiation dose at baseline in those 

patients with IT tumors, even though when the patient were evaluated as a whole, there 

was no such relationship. This finding may suggest that IT tumors differ from ST tumors 

in how they affect distant brain. However, this finding may also be related to patient age, 

as the 13 patients with IT tumors had an average age of 5.5 years, and the 20 patients 

with ST patients had an average age of 11.4 years. Thus, the tumor proximity effect may 

only be attributed to patient age, with the effect being larger in younger patients. 

Interestingly, the tumor type had no significant impact on the decline of T 1 in 

response to radiation. For example, patients with glial tumors were not significantly 

different from patients with nonglial tumors. 

DISCUSSION 

In this study, we sought to obtain radiation dose-response data that would allow 

us to determine if radiation therapy affected brain tissue T 1 in children at dose levels 

lower than what is known to cause damage. In doing so, we collected the first radiation 

dose-response data to be derived from the pediatric brain in vivo. These results showed 

that in white matter, radiation at a dose of greater than 20 Gy was associated with a 

decrease in T 1 over time, a finding that became significant at 6 months. These results 

confirm that our method of T 1 mapping is not only sensitive to radiation related changes 



in the human brain, but also more sensitive to such changes than cMRI, as most cMRI 

studies show little to no evidence of radiation dan1age below 54 to 60 Gy (38). 

While our method proves to be more sensitive, our findings that changes in brain 

tissue may occur at radiation doses less than 54 Gy is not new. Many neurologic, 

neurocognitive, and behavior effects have been observed at radiation doses of less than 

50 Gy, especially in children (8-17). Prior studies with cMRI have suggested that the 

primary effect of radiation therapy on human brain tissue is an increase in the signal 

intensity of white matter, which is consistent with edema (18-21). Edema is expected to 

produce an increase in T1 in white matter since water has a long T1 time (21). However, 

our study showed a decrease in T1 over time in response to radiation therapy. This 

apparent discrepancy may be partially due to the fact that the segmentation process we 

used would have classified edematous white matter as partial volume of gray and white 

matter. Thus, our study analyzed only "pure" white matter, and excluded the edematous 

white matter that may have masked a decrease in T1 of white matter in earlier studies. In 

addition, radiologists did not note any extensive edema in any of our patients while 

reading their films, but since edema visible by cMRI usually occurs at longer time 

intervals and at higher radiation doses, we feel that our results do not contradict earlier 

studies (18-21). 

Our results also suggest that white matter is more vulnerable to low-dose radiation 

than gray matter. This conclusion is consistent with earlier histological studies that 

reported extensive radiation-related damage to white matter but not gray matter (39). 

More recent histological evidence suggests that acute radiation-induced dementia in 

patients is associated with diffuse demyelination, astrocytic gliosis, and necrosis in white 



matter, without any apparent damage to gray matter (10). Numerous other studies have 

demonstrated that white matter is far more sensitive to radiation than gray matter (21, 33, 

40, 41); however, the question of why white matter is more sensitive to radiation-related 

changes in Tl remains unanswered. It has been hypothesized that the primary 

mechanism for damage is vascular endothelial injury (42). If this is true, however, then it 

is difficult to see how white matter is more vulnerable than gray matter to radiation, 

because the regional blood volume of gray matter is approximately twice as high as that 

of white matter (43), and the metabolic rate of gray matter is also substantially higher 

than in white matter (44). Both of these factors would suggest that gray matter instead of 

white matter would be more sensitive to radiation-related damage. 

Perhaps our most important finding is that white matter that has been exposed to 

20 Gy or greater differs significantly from white matter exposed to less than 20 Gy 6 

months into follow-up, suggesting that white matter subjected to relatively low amounts 

of radiation may still be suffering damage. While the radiation-related decrease is only 

marginally significant in the tissue that receive 20 to 30 Gy, the significance becomes 

very obvious in the tissue that receives greater than 30 Gy (Table 5). In spite of the fact 

that we do not yet understand the pathological basis for the change in Tl in white matter, 

and reduction in Tl has not been correlated with adverse cognitive outcomes or risk of 

tumor progression, we can assert that some change is taking place in response to the 

radiation treatment at much lower doses than has been previously reported. 

These findings provide evidence that three-dimensional conformal radiation 

treatment does indeed offer a substantial benefit to patients, as we suspected. Conformal 

radiation therapy aims to deliver a uniform dose to the target site while keeping the 



amount of brain tissue that receives high amount of radiation to a minimum. In doing so, 

this technique substantially reduces the amount of healthy brain tissue that receives a 

level of radiation that may produce harmful side effects, which we have demonstrated to 

be as low as 20 Gy. 

Finally, the finding that the decrease in TI in white matter does not become 

significant until nearly six months also helps to answer our hypothesis that there is a 

transient decrease in TI 3 weeks following the initiation of treatment. Earlier results had 

suggested that there was a decrease, but this discrepancy can be attributed to a small 

sample size. As we enlarge the sample size and increase the data set by over 40%, we 

saw this apparent acute response go away. This discouraged our hopes of finding an 

acute response to radiation that could be used to evaluate and identify patients who were 

responding either positively or negatively to their treatment. Such a response would 

allow physicians to adjust the patients treatment plans according, and thereby prevent any 

excessive damage to the healthy brain tissue. 
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Tl data collected at each time point 

Number of ROls evaluated 

Exam Whi te matter Gray matter 

Pre-RT 174 173 

Week 3 141 140 

Week 5 130 139 

Week 13 147 142 

Week 26 101 114 

Week 40 82 82 

Week 53 62 65 

Total ROls evaluated = 837 855 

Table 1. Summary of the number of regions of interest (ROls) evaluated at each 

examination in both white matter and gray matter. 



Comparison of observed and expected T 1 in gray 
matter and white matter of patients 

Tissue Observed T1 (+SD) Expected T1 (+SD) Two-sided 
t-test 
p= 

At Start of RT 

WM 714 (± 78) 663 C± 24) +7.7 % 0.0002 

n 33 n = 173 

OM 1102 (± 129) 1209 50) - 8.9 % < 0.0001 

n = 31 n 169 

At 39 weeks of 

follow-up 

WM 693 (±. 43) 659 (±.24) +5.2 % 0.003 

n = 15 n = 173 

OM 1079 (±.76) 1198 (± 50) 9.9 % <0.0001 

n = 14 n=169 

Table 2. A comparison of observed and expected mean T1 values for white matter 

(WM) and gray matter (OM) exposed to ~5 Oy. The observed values are the average of 

the 33 patients evaluated during the pre-treatment and week 39 examination. 



White matter T 1 as a function of radiation dose 

Radiation dose Intercept (+SD) Slope (+SD) p-value 

<5Gy 713 ± 9 0.06 (±0.03) NS 

5 to < 10 Gy 707 ±10 - 0.04 (±0.03) NS 

10 to < 20 Gy 704±9 - 0.04 C±0.03) NS 

20 to < 30 Gy 698 ±9 - 0.08 (±0.03) 0.05 

30 to < 40 Gy 703 ± 10 - 0.13 (±0.03) 0.0005 

40 to < 50 Gy 699 ± 12 - 0.14 (±0.03) < 0.0001 

50 to < 54 Gy 705 ± 14 - 0.19 (±0.03) < 0.0001 

54 to 59 Gy 738 ± 25 - 0.17 C±0.03) 0.01 

Table 3. Changes in white matter T 1 as a function of radiation dose according to a 

random coefficient mixed model using all WM T 1 data collected in the study. The p 

value shown tests for the significance of the change of T lover time at each of the 

radiation doses listed. There was no significant change in T 1 in white matter that 

recei ved less than 20 Gy. 



Gray matter Tl as a function of radiation dose 

Radiation dose Intercept (+SD) Slope (+SD) p-value 

<5Gy 1095 ± 17 - 0.09 (± 0.06) NS 

5 to < 10 Gy 1088 ± 16 - 0.10 0.06) NS 

10 to < 20 Gy 1090 ± 16 - 0.10 (± 0.06) NS 

20 to < 30 Gy 1089 ± 18 - 0.05 C± 0.07) NS 

30 to < 40 Gy 1067 ± 23 - 0.03 (± 0.08) NS 

40 to < 50 Gy 1053±21 - 0.01 (± 0.06) NS 

50 to < 54 Gy 1014 ± 24 - 0.00 (± 0.10) NS 

54 to 59 Gy 1008 ± 20 - 0.15 (± 0.06) NS 

Table 4. Change in gray matter T1 as a function of radiation dose according to a random 

coefficient mixed model using all GM T1 data collected in the study. The p value shown 

tests for the significance in the change in T1 over time at each of the radiation doses 

listed. There was no significant change in T lover time in any of the gray matter tissues. 



White matter and gray matter Tl as a function of 

radiation dose category 

Interval <20Gy ~20Gy p-value <50Gy ~50Gy p-value 

Pre-RT 710 705 NS 1093 1059 0.0001 

(±SD) 13) 13) (± 20) (± 21) 

Week 3 701 694 NS 1077 1052 0.008 

(±SD) (± 8) 8) (± 20) (± 21) 

Week 5 713 704 NS 1103 1064 0.0001 

(±SD) (± 9) 9) (± 17) (± 18) 

Week 13 709 705 NS 1067 1028 0.0001 

(±SD) (± 9) (± 9) (± 15) (± 16) 

Week 26 708 689 0.001 1081 1057 0.002 

(±SD) C± 9) (± 8D) 19) (± 19) 

Week 40 694 674 0.0009 1073 1037 0.0002 

(±SD) (± 13) (± 13) (± 17) (± 18) 

Week 53 702 680 0.0007 1043 1020 0.04 

(±SD) C± 13) (± 13) (± 19) (± 21) 

Table 5. Comparison of white matter T1 and gray matter T1 as a function ofRT dose 

category at various times following treatment. P-value indicates where or not there was a 

significant difference between the T1 values in the WM that received less than 20 Gy 

versus the WM that received 20 Gy or greater and in the GM that received less than 50 

Gy versus the GM that received 50 Gy or greater. 



Baseline Tl values in white and gray matter 

according to tumor location 

Patient group Intercept P= Age factor (± P= Slope 

(± SD) SD) (± SD) 

Gray matter 

All patients 1032 C± 33) 0.0001 - 14.1 (± 3.1) 0.0001 - 0.8 (± 0.3) 

IT tumors 1260 (± 36) 0.0001 - 13.5 (± 4.0) 0.002 - 2.2 (± 0.7) 

ST tumors 1210 (± 51) 0.0001 - 13.5 (± 4.0) 0.002 - 0.4 (± 0.4) 

White matter 

All patients 765 (± 22) 0.0001 - 5.9 C± 2.0) 0.008 - 0.2 (± 0.2) 

IT tumors 795 (± 24) 0.0001 - 5.4 (± 2.5) 0.05 - 1.1 (± 0.3) 

ST tumors 739 (± 33) 0.0001 - 5.4 (± 2.5) 0.05 0.1 C± 0.2) 

P= 

0.03 

0.002 

NS 

NS 

0.005 

NS 

Table 6. The relationship between T1 in gray matter and white matter at baseline 

according to where the tumor is located. Since T 1 was measured before radiation was 

given, the T 1 pre-treatment is a function of tissue proximity to the tumor. This 

relationship is described by the equation: T1 = [intercept] + [age factor] * age (in years) + 

[slope] * radiation dose, where the values in brackets are from the table above. 
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