
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative

Exchange

The Harlan D. Mills Collection Science Alliance

1975

New Math of Computer Programming
Harlan D. Mills

Follow this and additional works at: http://trace.tennessee.edu/utk_harlan

Part of the Software Engineering Commons

This Article is brought to you for free and open access by the Science Alliance at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in The Harlan D. Mills Collection by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Mills, Harlan D., "New Math of Computer Programming" (1975). The Harlan D. Mills Collection.
http://trace.tennessee.edu/utk_harlan/24

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268734756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_harlan%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_harlan%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk-scialli?utm_source=trace.tennessee.edu%2Futk_harlan%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

X1 = 0, R1 = I, P1 = M*, (17a)

Xk+l = X~ + akPk, Rk+l = Rk -- akMP~, (17b)
Pk+l = M*Rk+x + bkPk,

ak = ck/dk, dk = I M * P k l 2 ,
ck = I M R k 12, bk = c,+x/ek. (17c)

Again if no roundoff errors occur, the algorithm will
terminate in m steps, where rn is the number of distinct
principal (singular) values of M. The matrix Xm+l is the
pseudoinverse M -~ of M. Algorithms (16) and (17) yield
the same estimates 2"1,) (2 , . . . , Xm+l of M -~.

Finally algorithm (15) can be extended to obtain the
following routine for computing M -1.

)(i = 2x = 0, R1 = /, PI = M*, ax = 1, (lSa)

Xk+l = Xk q- akPk, Rk+1 = Rk -- akMPk, (18b)
Pk+1 -= M*Rk+I -t- bkP~,

2~+1 = (Xk+l + bk,~k2~)/,~+l, ~+1 = 1 + b~k, (lSc)

ak = ck/dk, dk = I P~ 12,
ck = I R~]2, bk = Ck+l/Ck. (18d)

The algorithm will terminate either where R,,+I = 0 or
where MPm+I = 0. If R,,+I = 0 then X,,+I = M -~. I f
MP,,+I = 0 then 2,,+1 = M -~. Again m is the number of
distinct principal values of M.

Algorithms (16), (17), and (18) for computing M -1
have the advantage in that they are simple to execute.
Moreover, good estimates of M -1 are obtained quickly
if the principal values of M are clustered. As is well
known, a conjugate gradient algorithm must be pro-
grammed carefully in order to avoid unnecessary round-
off errors. It should be noted that there exist computa-
tional routines for finding M -1 that require fewer multi-
plications than are required by the algorithms given
here. For example, if M is a nonsingular (n)< n)-dimen-
sional matrix, the number of multiplications in the
algorithms here given may be of the order of n 4 instead
of the usual n 3 multiplications required for obtaining the
inverse of M.

Received August 1974

The New Math of
Computer Programming
H a r l a n D . M i l l s
I B M F e d e r a l S y s t e m s D i v i s i o n

Structured programming has proved to be an
important methodology for systematic program design
and development. Structured programs are identified
as compound function expressions in the algebra of
functions. The algebraic properties of these function
expressions permit the reformulation (expansion as well
as reduction) of a nested subexpression independently
of its environment, thus modeling what is known as
stepwise program refinement as well as program
execution. Finally, structured programming is
characterized in terms of the selection and solution of
certain elementary equations defined in the algebra of
functions. These solutions can be given in general
formulas, each involving a single parameter, which
display the entire freedom available in creating correct
structured programs.

Key Words and Phrases: structured programming,
algebra of functions, stepwise refinement, program
correctness

CR Categories: 4.6, 5.21, 5.24

In honor o f Als ton S . Householder

43

Computer Programming

History
Computer programming as a practical human ac-

tivity is some 25 years old, a short time for intellectual
development. Yet computer programming has already
posed the greatest intellectual challenge that mankind

Copyright @ 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Invited Address, ACM-Southeast Region Conference, Nash-
ville, Tennessee, April 19, 1974. Author's address: IBM Federal
Systems Division, 18100 Frederick Pike, Gaithersburg, MD 20760.

Communications January 1975
of Volume 18
the ACM Number 1

has faced in pure logic and complexity. Never before
has man had the services of such logical servants, so
remarkable in power, yet so devoid of common sense
that instructions given to them must be perfect, and
must cover every contingency, for they are carried out
faster than the mind can follow.

The practical electronic computer was the invention
of some of our best minds in mathematics and engineer-
ing [7], e.g. von Neumann, Goldstine, Burks, Bigelow,
Williams, Eckert, Mauchly, Atanasoff, Pomerene.
Many people from the world's best universities and
laboratories came into its development early, in both
hardware design and programming, e.g. Wilkes [17],
Forrester, Alexander, Forsythe, Rutishauser, Hopper.
In the beginning, the emphasis was on numerical
computation, and a new mathematics for numerical
analysis emerged, spearheaded by the classic studies of
yon Neumann and Goldstine [16], Householder [10],
Wilkinson [18], Henrici [8], et al. Later an additional
emphasis developed in symbolic computation, and
another new mathematics for symbolic analysis
emerged, spearheaded by McCarthy [13], Newell and
Simon [15], Minsky [14], et al. The hallmark of numeri-
cal computation is iteration and real analysis, and the
main conceptual problem is the approximation of itera-
tive algorithms for the reals in floating point numbers.
The hallmark of symbolic computation is recursion
and combinatorial analysis, and the main conceptual
problem is the representation of complex objects in
flexible recursive data structures.

The foregoing required computer programming of
mathematical processes. But it is only recently that a
new mathematics of computer programming itself has
begun to emerge, in works of Dijkstra [6], Hoare [9],
Wirth [19], et al. In this case, the mathematics models
the mental processes of programming--of inventing
algorithms suitable for a given computer to meet pre-
scribed logical specifications. Bauer [2], Dijkstra [5],
and Knuth [11] have summarized much of this de-
velopment and its unique characteristics under the term
structured programming.

A Mathematical Perspective
We discuss structured programming in mathemati-

cal form to illustrate the relevance and power of classical
mathematical concepts to simplify and describe pro-
gramming objects and processes. It is applied mathe-
matics in the classic tradition, providing greater human
capability through abstraction, analysis, and interpre-
tation in application to computer programming.

Our principal objective is to model the mental proc-
ess of structured programming with the selection and
solution of certain function equations which arise as a
natural abstraction of concrete programming processes.
Before these function equations can be abstracted, how-
ever, we need to develop the idea of structured pro-
gramming, and the corollary that structured programs
can be viewed as compound function expressions in the

44

algebra of functions. It is the algebraic properties of
structured programming that provide its practical
power-- in the natural nesting of algebraic expressions--
and the ability to consider a nested expression inde-
pendently of its environment in a compound expression.

In illustration, we can all remember from elementary
mathematics classes that the problem wasn't simply to
get the right answer, but to find the right process for
getting the answer. Frequently we got only part credit
for a correct answer because we didn't show how we got
it. There was a reason. If we do simple mathematical
problems by guessing the answers, then when we get to
the harder problems we won't be able to guess the an-
swers. That is exactly the role of the new math in com-
puter programming-- to go from programming as an
instinctive, intuitive process to a more systematic, con-
structive process that can be taught and shared by in-
telligent people in a professional activity.

Structured Programming

Flowchart Theorems
F l o w c h a r t s are graphical rules for defining complex

state functions ~ in terms of simpler state functions known
to a computing device. More precisely, let X be a finite
set of possible states of a computation; a flowchart is an
oriented, directed graph with three kinds of nodes:

b

F
I

function node predicate node collecting node

A function node is labeled with a finite state function,
s a y f c X X X. A predicate node is labeled with a finite
state predicate, say p c X X {T, F / , and directs con-
trol to one of the two out-lines of the node. A collecting
node is not labeled, and merely passes control from the
two in-lines to the out-line.

Different flowcharts may define the same calcula-
tions and same functions, e.g.

1 A function is a set of ordered pairs, say f, with all first members
unique. If (x, y) E f we may write y = f(x) instead, and call x an
argument, y a value off. The set of all arguments, values is called the
domain, range off, denoted D(f) , r(f) respectively.

Communications January 1975
of Volume 18
the ACM Number 1

define identical calculations. Different flowcharts may
define different calculations, but the same function, e.g.

Thus, several levels of flowchart equivalence can be de-
fined, which preserve calculations, function, etc. In
particular, Bohm and Jacopini [3], Cooper [4], and
others have studied the expressive power of various
classes of flowcharts in defining calculations and func-
tions. The principal outcome of these studies is that
relatively small, economical classes of flowcharts can
define the calculations and functions of the class of all
flowcharts, possibly at the expense of extra calculations
outside the original description of the state set.

The foregoing motivates a more formal treatment, as
follows. Define a class of D-charts (D for Dijkstra [5])
over a set of state functions F = {fl , • • - , fro} and a set
of state predicates P = {p 1, • • • , p,~} as follows:

l f f E F, then ' [" ~ ~ is a D-chart 1.

lfp ~ P and q ~] ", ~] ' are D-charts, then 2.

(composition) (alternation) (iteration)

are D-charts.

A STRUC'rURE THEOREM. Consider any flowchart
whose functions form a set F and predicates form a set P.
Augment sets F and P with functions and predicates which
set and test variables outside the state set of the given
flowchart. Then there exists a D-chart in the augmented
sets which simulates the calculations of the given flow-
chart.

In illustration, following Cooper [4], consider any
given flowchart, and label each of its lines uniquely. Then
the following flowchart, using a new variable L (for
label), will simulate the calculations of the original
flowchart.

1. go to theL in-line]]
1

2. perform the node calculation r 3. reset L to proper out-line

The operation inside the loop can be expanded into
a loop-free D-chart of tests on L, leading to the various
nodes of the original flowchart, as a set of nested alter-

nations. In brief, this flowchart shows that, at the ex-
pense of setting and testing a single variable L (outside
the original state set), the calculations of any flowchart
whatsoever can be simulated as a subsequence of the
calculations of a D-chart with a single loop.

Bohm and Jacopini [3], Ashcroft and Manna [1],
and Kosara ju [12] have sharper results, which preserve
more of the structure of the original flowchart. Bohm
and Jacopini preserve the loops of the original flowchart,
with a more efficient simulation of its calculations.
Kosaraju has found a hierarchy of expressive capabili-
ties among several classes of flowcharts. In particular,
Kosaraju has discovered the precise conditions under
which a D-chart can simulate a given flowchart without
augmenting its functions and predicates.

THEOREM (KOSARAJU [12]). Consider any flowchart A
whose functions form set F, and whose predicates form
set P. Then, there exists a D-chart over F and P which
preserves the calculations of the given flowchart A i f and
only i f every loop of A has a single exit line.

Funct ion Express ions
The algebra of functions inherits function expressions
f rom the algebra of sets, e.g. if g,h are functions, then
so are g fl h (set intersection) and g - h (set difference) ;
of course g 13 h may or may not be a function, but will
be a relation in any case.

Basic flowchart programs of common use, such as
defined for D-charts, are conveniently represented as
additional function expressions. E.g.

composition
for write

where

(1) g ; h ={(x,z) [(3y)(y ~ g(x) A z C h(y))}

(note the operator ;reverses the operands of the ordi-
nary function composit ion operator , , e.g. g ; h = h • g).

alternation
for write

' ~ ~ ~ if p then g else h fi l ~

where

(2) if p t h e n g e l s e h f i = (x,y) [(p(x) A y C g(x))
v (- p (x) ^ y ~ h(x))l.

semi-alternation
for write

, i fp thengfi]

45 Communications
of
the ACM

January 1975
Volume 18
Number 1

where

(3) i f p t h e n g f i = {(x,y) I (p(x) A y ~ g(x))
v (-p (x) ^ y = x)} .

iteration

for

which defines the same calculations as

write
'l whilepdogod [.

where

(4) while p do g od = if p then g ; while p do g od ft.

The iteration expression is defined by recursion in terms
of semi-alternation and composition.

As a consequence of these definitions, any D-chart
can be represented as a compound function expression,
and the calculations of any flowchart can be simulated
by such an expression.

Additional expression types may be useful and effi-
cient for certain processors, e.g. define

(5) do g u n t i l p o d = g ; while - - p d o god,

(6) ease k of gl ,g~, • " • ,g,~ fo = if k = 1 then gl else
if k = 2 then g2 else

i l k = n then g , ~ f i . . . f i f i .

We define a structured program to be a compound func-
tion expression in any prescribed set of expression types.
The D-charts are structured programs in the set of
types {composition, alternation, iteration} as defined
above.

Stepwise Function Refinement
The powerful properties of structured programming

are rooted, finally, in algebraic properties of function ex-
pressions. E.g. arithmetic expressions, 2 logic expres-
sions, etc., permit their evaluation, manipulation, etc., a
step at a time in innermost subexpressions, independently
of their outer environment. We add 2 + 4 the same way
whether we later multiply the result by 9 or divide it by
3, in 9 • (2 + 4) or (2 + 4)/3. Alternately, a number
such as 6 can be expanded as (2 + 4), if useful, or (2 • 3),
irrespective of the operations being performed on it.
Similarly, function expressions can be formulated and
contemplated independently of their environments in
more complex compound function expressions•

As noted by Dijkstra [6], Wirth [19], et al., the crea-
tive, iterative mental process of structured programming
is the stepwise refinement of a function into an expres-
sion in intermediate functions, until functions available
in the computer at hand are reached. Thus, not only is
the final expression involved, but also the intermediate
mental steps for reaching it are recorded. For example,
the sequence of flowcharts labeled 1 and 2 below lead
to the same final (structured) program. But sequence 2
does not follow stepwise refinement.

The difference is critical, because sequence 2 contains a
mental discontinuity (two, in fact), which requires addi-
tional mental processing outside the sequence. In se-
quence 1, each of the three members are equivalent
compound expressions, i.e.

f = (g ; h) = (g ; w h i l e p d o k o d)

But in sequence 2, the first and third members are
equivalent, as above, but the middle member is different
from either of the others. Thus, from f in sequence 2,
by some unrecorded insight, the function called h in se-
quence 1 is defined as an iteration. This expression
equals no other object in sequence 2, and requires that
unrecorded insight for validation. Then, at last, this
expression is fixed up by putting g in front of it, still
needing that unrecorded insight to get g right. When
such functions get complex, and many such unrecorded
insights need to exist over days, weeks, and months, it is
no wonder that programming can be complex and frus-
trating.

The Correctness of Function Expressions
The verification of correctness of function expres-

sions can proceed with stepwise refinement. In fact they
are better practiced jointly than separately and sequen-
tially. Each stage in stepwise refinement identifies a com-
pound expression in intermediate functions, each of
which may be later expressed in other functions• These
intermediate functions are critical in validating correct-
ness. They serve two roles--first, as functions in ex-
pressions being validated, and second as functions by
which their replacement expressions are validated.

Exact, not approximate, arithmetic is meant here.

46 Communications January 1975
of Volume 18
the ACM Number 1

Dur ing stepwise refinement, a s tandard validation
procedure can be defined for each expression type. These
procedures state what is to be p r o v e d - - t h e function de-
scription determines how such a p roof should be carried
out in detail.

THEOREM (CORRECTNESS).
The Correctness o f an Alternation Expression. To

prove f = if p then g else h fi it is necessary and suffi-
cient to show, for every (x, y) C f , that either p (x) = T
a n d y = g(x) o r p (x) = F a n d y = h(x).

The Correctness o f a Composition Expression. To
prove f = g ; h it is necessary andsufficient toshow, for
every (x,y) C f , that y = h(g(x)) .

The Correctness o f an Iteration Expression. To
prove f = while p do g o d it is necessary and sufficient
to show, for every (x ,y) C f , that the iteration terminates
and that either p (x) = T and y = f (g (x)) or p (x) = F
and y = x.

The p roo f of this theorem follows directly f rom the
definitions of (1), (2), (3), and (4).

Function Equations and Their Solutions

The Computation Problem and the Programming Problem
In stepwise refinement, members o f a finite set of

prescribed function equat ions arise, one for each ex-
pression type, of the forms

(12) f = if p then g else h fi (alternation)

(13) f = g ; h (composi t ion)

(14) f = while p do g o d (iteration)
etc.

When p, g, h are taken as the independent functions,
a n d f a s the dependent (unknown) function, these equa-
tions represent the computation problem; i.e. given a
c o m p o u n d function expression, the problem is to evalu-
ate it by stepwise evaluations of innermost expressions.

However, the programming problem begins with a
funct ion to be expressed, w i t h f a s the independent func-
tion, and p, g, and h as the dependent (unknown) func-
tions. This motivates the study of these prescribed
function equations, w i th fg iven , to characterize the solu-
t ions in p, g, h. With a little analysis we can write the
solutions down directly, and exhibit, thereby, the entire
f reedom of a p rogrammer in a correct stepwise refine-
ment.

a The solution (p, g, h) is minimal, in the sense that, for any
other solution (p0, go, h0), p C P0, g ~__ go, h C h0. In this case,
(po, go, ho) must satisfy the additional conditions {x I po(x) l fq
D(go) = D(g), {x I --p0(x)} O D(ho) = D(h). Nonminimal solu-
tions exist similarly for the other equations, as well.

4 A level set D~(f) = {x I (x, y) E .f}, i.e. all arguments with the
same value in f. More directly u must satisfy the predicate D(u) =
O(J) h (f(x) ~ f(y) ~ u(x) ~ u(y)).

5 In general, u -1 will be a relation, not a function, but the compo-
sition u -1 ;fwill be a function due to the restriction on u.

8 More directly, the condition on u is
u c (O(f)--R(f)) 2 A (y=tt(x) ~J(y)=f(x)) h u acyclic.

The Alternation Equation
The general minimal solution for the al ternat ion

equat ion can be given in terms of a single parameter ,
any subfunct ion (subset) o f f , say u. Then (p,g,h) solves
the al ternation eq. (12), where 3

(15) g = u,

h = f - - u ,
p = (D(u) X {T}) U (D (f - - u) X {F}).

Note that {g,h} is a part i t ion o f f

The Composition Equation
The general minimal solution for the composi t ion

equat ion can be given in terms of a single parameter,
any function, say u, with domain D (f) whose level sets 4
refine the level sets o f f I.e. every level set of u is a
subset of some level set of f Then (g,h) solves the com-
position eq. (13), where 5

(16) g = u,
h = u -~ ; f where (u - ~ = {(x,y) l (y , x) ~ ul)

Thus, whereas the solution set of the al ternat ion equa-
tion has precisely the f reedom of a b inary part i t ion o f the
funct ion f , the solution set of the compos i t ion equat ion
has the f reedom of any system of parti t ions on the level
sets o f f , a much richer choice.

The Iteration Equation
The iteration equat ion is more complex and interest-

ing than the al ternation and composi t ion equations.
First, whereas any funct ion can be expressed in an alter-
nat ion or composi t ion, this is no t so for an iteration ex-
pression; it turns out that an existence condi t ion is re-
quired for a solution. Second, whereas all functions p, g,
h vary over the solution set in the alternation and com-
position equations, it turns out that only the function g
varies over the solution set in the iteration equat ion;
that is, the predicate p is fixed entirely b y f alone. In
other words, p is a derivative o f f , just as the slope of a
differentiable function is a derivative of that function.
We call p the iteration derivative o f f

Consider the iteration equation, given f, to find (p,g)
such that (eq. (14)) f = while p do g o d . For the mo-
ment, suppose g is restricted to functions for which
D(g) c D(f) ; we show below that this involves no loss of
generality.

Then we will see tha t if the existence condi t ion
(x ~ D (f) N R (f)) ~ f (x) = x holds (otherwise there is
no solution), the general minimal solution for the itera-
t ion equation can be given in terms of a single param-
eter, a function u which defines any system of trees on
the level sets of f i n D (f) -- R (f) , i.e., ~

u = {(x,y) [y is the parent of x}.

Then (p,g) solves the iteration eq. (14), where

(17) p -= ((O (f) -- R (f)) X {T}) U (R (f) X {F}),
g = u U (f - D(u) ;< R (f)) .

In order to see the foregoing, it is easiest to get the

47 Communications January 1975
of Volume 18
the ACM Number 1

formula for p first, then the existence condition, and
then the formula for g.

First~ for any solution (p,g), p must have value F at
every point in R(f) , for otherwise the iteration program
cannot terminate at that value; conversely, p must have
value T at every point in D(f) -- R(f) , for otherwise the
iteration program will not reach a value in R(f) . This
gives the formula above for p in domain D(f) U R(f) .

Next, consider any point in D(f) 71R(f) . By the
foregoing, p has value F at such a point, and the itera-
tion program never invokes g, but simply exits without
altering the state. This gives the existence condition
above, i.e. that f must be the identity function on

D(f) fq R (f) .
Finally, consider the graph of the state function g in

D (f) f-) R (f) . It is apparent that the graph of the subset
of g in D(f) -- R (f) can have no cycles- -must be a
t ree--since otherwise the iteration program would not
terminate in such a cycle. It is also apparent that all
points of a connected subtree in the graph o f g must be
in the same level set off , since the iteration program will
terminate at the same value in R(f) . Thus the graph of
the subset of g contained in D(f) -- R (f) must be a
system of trees in the level sets o f f . Now consider the
arcs of the graph of g which originate in D (f) -- R (f)
and terminate in R(f) . The originating points are roots
of the trees in D(f) -- R (f) . Since p is F in R(f) , the
iteration program terminates with each such arc. Thus,
for each such originating point, say x, we must have
g(x) = f (x) . This gives the formula for g, above, with
parameter u, a function defining a system of trees on the
level sets of f i n D(f) -- R (f) .

Now we remove the restriction that D(g) c D(f)
as follows. Suppose D(g) ~ D(f) ; then pick any (x, y)
such t h a t x C D(g) -- D(f) , y = g(x). If for n o z C D(f)
and integer k, g~(z) = x, then (x, y) is superfluous for
g and g -- {(x,y)} is also a solution; otherwise let
gk(z) -- x, and adjoin (x, f(z)) to f , and g remains a
solution. In either case the number of elements in D(g)

- - D (f) is reduced by one; this can be continued until
D(g) C D(f) .

there are only a finite number of compound function
equations in a fixed number of functions, these formulas
permit the explicit formulation of all correct D-chart
programs of any size.

References
1. Ashcroft, E., and Manna, Z. The translation of 'go to' pro-
grams to 'while' programs, b~/brmatio, Processing 71, North-
Holland, Amsterdam, 1972, pp. 250-255.
2. Bauer, F.L. "A Philosophy of Programming", U. of London
Special Lectures in Computer Science, Oct. 1973: lecture notes
published by Math. Inst., Tech. U. Munchen.
3. Bohm, C., and Jacopini, G. Flow diagrams, Turing machines
and languages with only two formation rules. Comm. A C M 9, 5
(May 1966), 366-371.
4. Cooper, D.C. Bohm and Jacopini's reduction of flow charts.
Comm. A C M 10, 8 (Aug. 1967), 463.
5. Dahl, O . 4 , Dijkstra, E.W., and Hoare, C.A.R. Stractured Pro-
grammhlg. Academic Press, London, 1972.
6. Dijkstra, E.W. A constructive approach to the problem of pro-
gram correctness. BIT 8 (1968), 174-186.
7. Goldstine, H.H. The Computer.[rom Pascal to yon Neumauu.
Princeton U. Press, 1972.
8. Henrici, P. Discrete Variable Methods i , Ordi,arv Differential
Equations. Wiley, New York, 1962.
9. Hoare, C.A.R. An axiomatic basis for computer programming.
Comm. A C M 12, 10 (Oct. 1969), 576-580, 583.
10. Householder, A.S. The Theory o f Matrices in Numerical
Analysis. Blaisdell, New York, 1964.
11. Knuth, D.E. A review of "structured programming." Stanford
Comput. Sci. Dept. Rep. Stan-CS-371, June 1973, 22 pp.
12. Kosaraju, S.R. Analysis of structured programs. J. Comput.
Syst. Sci. (Dec. 1974) to appear.
13. McCarthy, J. A Basis for a Mathematical Theory of Computa-
tion. In Computer Programming and Formal Systems, P. Braffort
and D. Hirschberg (Eds.), North-Holland, Amsterdam, 1963, pp.
33-70.
14. Minsky, Marvin. Computation: Finite and Infinite Machines.
Prentice-Hall, Englewood Cliffs, N.J., 1971.
15. Newell, Allen, and Simon, Herbert. Human Problem Solving.
Prentice-Hall, Englewood Cliffs, N.J., 1971.
16. yon Neumann, J., and Goldstine, H.H. Numerical inverting of
matrices of high order. Bull. Amer. Math. Soc. 53 (1947), 1021-
1099.
17. Wilkes, M.V. Automatic Digital Computers. London, 1956.
18. Wilkinson, J.H. The Algebraic Eigenvalue Problem. Clarendon
Press, Oxford, 1965.
19. Wirth, N. Systematic Programming: An Introduction. Prentice-
Hall, Englewood Cliffs, N.J., 1973.

Equations in Compound Function-Expressions
It is direct, but possibly tedious, to extend solutions

to function equations in elementary expressions to
equations in arbitrary compound expressions of the
form f = compound function expression, where no
function variable occurs more than once. For each level
of nesting an additional parameter is involved, and is
effective only within the scope of that nesting. Thus,
the parameters of the solution can be associated with
the nesting tree of the compound expression.

In particular, the solutions above provide existence
predicates on the parameters for each type of function
equation, and the formulas for the stepwise refined
solutions. These predicates and formulas can be in-
voked iteratively to describe the set of all solutions to a
compound function equation of any complexity. Since

48 Communications January 1975
of Volume 18
the ACM Number 1

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	1975

	New Math of Computer Programming
	Harlan D. Mills
	Recommended Citation

	The new math of computer programming

