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X1 = 0, R1 = I, P1 = M*, (17a) 

Xk+l = X~ + akPk, Rk+l = Rk -- akMP~, (17b) 
Pk+l = M*Rk+x + bkPk, 

ak = ck/dk, dk = I M * P k l  2 , 
ck = I M R k  12, bk = c,+x/ek. (17c) 

Again if no roundoff errors occur, the algorithm will 
terminate in m steps, where rn is the number of distinct 
principal (singular) values of M. The matrix Xm+l is the 
pseudoinverse M -~ of M. Algorithms (16) and (17) yield 
the same estimates 2"1, ) (2 , . . . ,  Xm+l of M -~. 

Finally algorithm (15) can be extended to obtain the 
following routine for computing M -1. 

)(i = 2x = 0, R1 = /, PI = M*, ax = 1, (lSa) 

Xk+l = Xk q- akPk, Rk+1 = Rk -- akMPk,  (18b) 
Pk+1 -= M*Rk+I -t- bkP~, 

2~+1 = (Xk+l + bk,~k2~)/,~+l, ~+1 = 1 + b~k, (lSc) 

ak = ck/dk, dk = I P~ 12, 
ck = I R~ ]2, bk = Ck+l/Ck. (18d) 

The algorithm will terminate either where R,,+I = 0 or 
where MPm+I = 0. If  R,,+I = 0 then X,,+I = M -~. I f  
MP,,+I  = 0 then 2,,+1 = M -~. Again m is the number of  
distinct principal values of M. 

Algorithms (16), (17), and (18) for computing M -1 
have the advantage in that they are simple to execute. 
Moreover,  good estimates of M -1 are obtained quickly 
if the principal values of M are clustered. As is well 
known, a conjugate gradient algorithm must be pro- 
grammed carefully in order to avoid unnecessary round- 
off errors. It should be noted that there exist computa-  
tional routines for finding M -1 that require fewer multi- 
plications than are required by the algorithms given 
here. For  example, if M is a nonsingular (n )<  n)-dimen- 
sional matrix, the number  of  multiplications in the 
algorithms here given may be of the order of n 4 instead 
of the usual n 3 multiplications required for obtaining the 
inverse of M. 
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Structured programming has proved to be an 
important methodology for systematic program design 
and development. Structured programs are identified 
as compound function expressions in the algebra of 
functions. The algebraic properties of these function 
expressions permit the reformulation (expansion as well 
as reduction) of a nested subexpression independently 
of its environment, thus modeling what is known as 
stepwise program refinement as well as program 
execution. Finally, structured programming is 
characterized in terms of the selection and solution of 
certain elementary equations defined in the algebra of 
functions. These solutions can be given in general 
formulas, each involving a single parameter, which 
display the entire freedom available in creating correct 
structured programs. 
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Computer Programming 

History 
Computer  programming as a practical human ac- 

tivity is some 25 years old, a short time for intellectual 
development. Yet computer  programming has already 
posed the greatest intellectual challenge that mankind 
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has faced in pure logic and complexity. Never before 
has man had the services of such logical servants, so 
remarkable in power, yet so devoid of common sense 
that instructions given to them must be perfect, and 
must cover every contingency, for they are carried out 
faster than the mind can follow. 

The practical electronic computer was the invention 
of some of our best minds in mathematics and engineer- 
ing [7], e.g. von Neumann, Goldstine, Burks, Bigelow, 
Williams, Eckert, Mauchly, Atanasoff, Pomerene. 
Many people from the world's best universities and 
laboratories came into its development early, in both 
hardware design and programming, e.g. Wilkes [17], 
Forrester, Alexander, Forsythe, Rutishauser, Hopper. 
In the beginning, the emphasis was on numerical 
computation, and a new mathematics for numerical 
analysis emerged, spearheaded by the classic studies of 
yon Neumann and Goldstine [16], Householder [10], 
Wilkinson [18], Henrici [8], et al. Later an additional 
emphasis developed in symbolic computation, and 
another new mathematics for symbolic analysis 
emerged, spearheaded by McCarthy [13], Newell and 
Simon [15], Minsky [14], et al. The hallmark of numeri- 
cal computation is iteration and real analysis, and the 
main conceptual problem is the approximation of itera- 
tive algorithms for the reals in floating point numbers. 
The hallmark of symbolic computation is recursion 
and combinatorial analysis, and the main conceptual 
problem is the representation of complex objects in 
flexible recursive data structures. 

The foregoing required computer programming of 
mathematical processes. But it is only recently that a 
new mathematics of computer programming itself has 
begun to emerge, in works of Dijkstra [6], Hoare [9], 
Wirth [19], et al. In this case, the mathematics models 
the mental processes of programming--of  inventing 
algorithms suitable for a given computer to meet pre- 
scribed logical specifications. Bauer [2], Dijkstra [5], 
and Knuth [11] have summarized much of this de- 
velopment and its unique characteristics under the term 
structured programming. 

A Mathematical Perspective 
We discuss structured programming in mathemati- 

cal form to illustrate the relevance and power of classical 
mathematical concepts to simplify and describe pro- 
gramming objects and processes. It is applied mathe- 
matics in the classic tradition, providing greater human 
capability through abstraction, analysis, and interpre- 
tation in application to computer programming. 

Our principal objective is to model the mental proc- 
ess of structured programming with the selection and 
solution of certain function equations which arise as a 
natural abstraction of concrete programming processes. 
Before these function equations can be abstracted, how- 
ever, we need to develop the idea of structured pro- 
gramming, and the corollary that structured programs 
can be viewed as compound function expressions in the 
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algebra of functions. It is the algebraic properties of 
structured programming that provide its practical 
power-- in the natural nesting of algebraic expressions-- 
and the ability to consider a nested expression inde- 
pendently of its environment in a compound expression. 

In illustration, we can all remember from elementary 
mathematics classes that the problem wasn't simply to 
get the right answer, but to find the right process for 
getting the answer. Frequently we got only part credit 
for a correct answer because we didn't show how we got 
it. There was a reason. If we do simple mathematical 
problems by guessing the answers, then when we get to 
the harder problems we won't  be able to guess the an- 
swers. That  is exactly the role of the new math in com- 
puter programming-- to  go from programming as an 
instinctive, intuitive process to a more systematic, con- 
structive process that can be taught and shared by in- 
telligent people in a professional activity. 

Structured Programming 

Flowchart Theorems 
F l o w c h a r t s  are graphical rules for defining complex 

state functions ~ in terms of simpler state functions known 
to a computing device. More precisely, let X be a finite 
set of possible states of a computation;  a flowchart is an 
oriented, directed graph with three kinds of nodes: 

b 

F 
I 

function node  predicate node collecting node 

A function node is labeled with a finite state function, 
s a y f c  X X X. A predicate node is labeled with a finite 
state predicate, say p c X X {T, F / ,  and directs con- 
trol to one of the two out-lines of the node. A collecting 
node is not labeled, and merely passes control from the 
two in-lines to the out-line. 

Different flowcharts may define the same calcula- 
tions and same functions, e.g. 

1 A function is a set of ordered pairs, say f, with all first members 
unique. If (x, y) E f we may write y = f(x) instead, and call x an 
argument, y a value off. The set of all arguments, values is called the 
domain, range off, denoted D(f) ,  r(f) respectively. 

Communications January 1975 
of Volume 18 
the ACM Number 1 



define identical calculations. Different flowcharts may 
define different calculations, but the same function, e.g. 

Thus, several levels of flowchart equivalence can be de- 
fined, which preserve calculations, function, etc. In 
particular, Bohm and Jacopini [3], Cooper  [4], and 
others have studied the expressive power of  various 
classes of flowcharts in defining calculations and func- 
tions. The principal outcome of these studies is that  
relatively small, economical classes of flowcharts can 
define the calculations and functions of the class of all 
flowcharts, possibly at the expense of extra calculations 
outside the original description of the state set. 

The foregoing motivates a more formal  treatment, as 
follows. Define a class of  D-charts (D for Dijkstra [5]) 
over a set of state functions F = {fl ,  • • - , fro} and a set 
of  state predicates P = {p 1, • • • , p,~} as follows: 

l f f  E F, then ' [ " ~  ~ is a D-chart 1. 

lfp ~ P and q ~ ]  ", ~ ]  ' are D-charts, then 2. 

(composition) (alternation) (iteration) 

are D-charts. 

A STRUC'rURE THEOREM. Consider any flowchart 
whose functions form a set F and predicates form a set P. 
Augment sets F and P with functions and predicates which 
set and test variables outside the state set of the given 
flowchart. Then there exists a D-chart in the augmented 
sets which simulates the calculations of the given flow- 
chart. 

In illustration, following Cooper [4], consider any 
given flowchart, and label each of its lines uniquely. Then 
the following flowchart, using a new variable L (for 
label), will simulate the calculations of the original 
flowchart. 

1. go to theL in-line ] ] 
1 

2. perform the node calculation r 3. reset L to proper out-line 

The operation inside the loop can be expanded into 
a loop-free D-chart  of tests on L, leading to the various 
nodes of  the original flowchart, as a set of  nested alter- 

nations. In brief, this flowchart shows that, at the ex- 
pense of setting and testing a single variable L (outside 
the original state set), the calculations of  any flowchart 
whatsoever can be simulated as a subsequence of the 
calculations of  a D-chart  with a single loop. 

Bohm and Jacopini [3], Ashcroft  and Manna [1], 
and Kosara ju  [12] have sharper results, which preserve 
more of the structure of the original flowchart. Bohm 
and Jacopini preserve the loops of the original flowchart, 
with a more efficient simulation of its calculations. 
Kosaraju  has found a hierarchy of expressive capabili- 
ties among several classes of flowcharts. In particular, 
Kosaraju has discovered the precise conditions under 
which a D-chart  can simulate a given flowchart without 
augmenting its functions and predicates. 

THEOREM (KOSARAJU [12]). Consider any flowchart A 
whose functions form set F, and whose predicates form 
set P. Then, there exists a D-chart over F and P which 
preserves the calculations of the given flowchart A i f  and 
only i f  every loop of A has a single exit line. 

Funct ion  Express ions  
The algebra of functions inherits function expressions 
f rom the algebra of sets, e.g. if g,h are functions, then 
so are g fl h (set intersection) and g - h (set difference) ; 
of  course g 13 h may or may not be a function, but will 
be a relation in any case. 

Basic flowchart programs of common use, such as 
defined for D-charts, are conveniently represented as 
additional function expressions. E.g. 

composition 
for write 

where 

(1) g ; h  ={(x,z)  [ (3y)(y ~ g(x) A z C h(y))} 

(note the operator ;reverses the operands of the ordi- 
nary function composit ion operator , ,  e.g. g ; h = h • g). 

alternation 
for write 

' ~  ~ ~ if p then g else h fi l ~ 

where 

(2) if p t h e n  g e l s e h f i  = (x,y) [ (p(x) A y C g(x)) 
v ( - p ( x )  ^ y ~ h(x))l.  

semi-alternation 
for write 

, i fp thengfi  ] 
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where 

(3) i f p t h e n g f i =  {(x,y) I (p(x) A y ~ g(x)) 
v ( -p (x )  ^ y = x )} .  

iteration 

for 

which defines the same calculations as 

write 
'l whilepdogod [ . 

where 

(4) while p do g od = if p then g ; while p do g od ft. 

The iteration expression is defined by recursion in terms 
of semi-alternation and composition. 

As a consequence of these definitions, any D-chart 
can be represented as a compound function expression, 
and the calculations of any flowchart can be simulated 
by such an expression. 

Additional expression types may be useful and effi- 
cient for certain processors, e.g. define 

(5) do g u n t i l p o d  = g ; while - - p d o  god,  

(6) ease k of  gl  ,g~, • " • ,g,~ fo = if k = 1 then gl else 
if k = 2 then g2 else 

i l k  = n then g , ~ f i . . . f i f i .  

We define a structured program to be a compound func- 
tion expression in any prescribed set of expression types. 
The D-charts are structured programs in the set of 
types {composition, alternation, iteration} as defined 
above. 

Stepwise Function Refinement 
The powerful properties of structured programming 

are rooted, finally, in algebraic properties of function ex- 
pressions. E.g. arithmetic expressions, 2 logic expres- 
sions, etc., permit their evaluation, manipulation, etc., a 
step at a time in innermost subexpressions, independently 
of their outer environment. We add 2 + 4 the same way 
whether we later multiply the result by 9 or divide it by 
3, in 9 • (2 + 4) or (2 + 4)/3. Alternately, a number 
such as 6 can be expanded as (2 + 4), if useful, or (2 • 3), 
irrespective of the operations being performed on it. 
Similarly, function expressions can be formulated and 
contemplated independently of their environments in 
more complex compound function expressions• 

As noted by Dijkstra [6], Wirth [19], et al., the crea- 
tive, iterative mental process of structured programming 
is the stepwise refinement of a function into an expres- 
sion in intermediate functions, until functions available 
in the computer at hand are reached. Thus, not only is 
the final expression involved, but also the intermediate 
mental steps for reaching it are recorded. For  example, 
the sequence of flowcharts labeled 1 and 2 below lead 
to the same final (structured) program. But sequence 2 
does not follow stepwise refinement. 

The difference is critical, because sequence 2 contains a 
mental discontinuity (two, in fact), which requires addi- 
tional mental processing outside the sequence. In se- 
quence 1, each of the three members are equivalent 
compound expressions, i.e. 

f =  ( g ; h )  = ( g ; w h i l e p d o k o d )  

But in sequence 2, the first and third members are 
equivalent, as above, but the middle member is different 
from either of the others. Thus, from f in sequence 2, 
by some unrecorded insight, the function called h in se- 
quence 1 is defined as an iteration. This expression 
equals no other object in sequence 2, and requires that 
unrecorded insight for validation. Then, at last, this 
expression is fixed up by putting g in front of it, still 
needing that unrecorded insight to get g right. When 
such functions get complex, and many such unrecorded 
insights need to exist over days, weeks, and months, it is 
no wonder that programming can be complex and frus- 
trating. 

The Correctness of Function Expressions 
The verification of correctness of function expres- 

sions can proceed with stepwise refinement. In fact they 
are better practiced jointly than separately and sequen- 
tially. Each stage in stepwise refinement identifies a com- 
pound expression in intermediate functions, each of 
which may be later expressed in other functions• These 
intermediate functions are critical in validating correct- 
ness. They serve two roles--first, as functions in ex- 
pressions being validated, and second as functions by 
which their replacement expressions are validated. 

Exact, not approximate, arithmetic is meant here. 
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Dur ing  stepwise refinement, a s tandard validation 
procedure  can be defined for each expression type. These 
procedures  state what  is to be p r o v e d - - t h e  function de- 
scription determines how such a p roof  should be carried 
out  in detail. 

THEOREM (CORRECTNESS). 
The Correctness o f  an Alternation Expression. To 

prove f = if p then g else h fi it is necessary and suffi- 
cient to show, for  every (x, y) C f ,  that either p (x )  = T 
a n d y  = g(x)  o r p ( x )  = F a n d y  = h(x). 

The Correctness o f  a Composition Expression. To 
prove f =  g ; h it is necessary andsufficient toshow, for  
every (x,y) C f ,  that y = h(g(x)) .  

The Correctness o f  an Iteration Expression. To 
prove f = while p do g o d  it is necessary and sufficient 
to show, for  every (x ,y)  C f ,  that the iteration terminates 
and that either p (x )  = T and y = f ( g ( x ) )  or p (x )  = F 
and y = x. 

The p roo f  of  this theorem follows directly f rom the 
definitions of  (1), (2), (3), and (4). 

Function Equations and Their Solutions 

The Computation Problem and the Programming Problem 
In stepwise refinement, members  o f  a finite set of  

prescribed function equat ions arise, one for each ex- 
pression type, of  the forms 

(12) f = if p then g else h fi (alternation) 

(13) f = g ; h  (composi t ion)  

(14) f = while p do g o d  (iteration) 
etc. 

When p, g, h are taken as the independent  functions, 
a n d f a s  the dependent  (unknown)  function, these equa- 
tions represent the computation problem; i.e. given a 
c o m p o u n d  function expression, the problem is to evalu- 
ate it by stepwise evaluations of  innermost  expressions. 

However,  the programming problem begins with a 
funct ion to be expressed, w i t h f a s  the independent  func- 
tion, and p, g, and h as the dependent  (unknown)  func- 
tions. This motivates the study of  these prescribed 
function equations,  w i th fg iven ,  to characterize the solu- 
t ions in p, g, h. With a little analysis we can write the 
solutions down directly, and exhibit, thereby, the entire 
f reedom of  a p rogrammer  in a correct  stepwise refine- 
ment.  

a The solution (p, g, h) is minimal, in the sense that, for any 
other solution (p0, go, h0), p C P0, g ~__ go, h C h0. In this case, 
(po, go, ho) must satisfy the additional conditions {x I po(x) l fq 
D(go) = D(g), {x I --p0(x)} O D(ho) = D(h). Nonminimal solu- 
tions exist similarly for the other equations, as well. 

4 A level set D~(f) = {x I (x, y) E .f}, i.e. all arguments with the 
same value in f. More directly u must satisfy the predicate D(u) = 
O(J) h (f(x) ~ f(y) ~ u(x) ~ u(y)). 

5 In general, u -1 will be a relation, not a function, but the compo- 
sition u -1 ;fwill be a function due to the restriction on u. 

8 More directly, the condition on u is 
u c (O(f)--R(f)) 2 A (y=tt(x) ~J(y)=f(x)) h u acyclic. 

The Alternation Equation 
The general minimal solution for the al ternat ion 

equat ion can be given in terms of  a single parameter ,  
any subfunct ion (subset) o f f ,  say u. Then (p,g,h) solves 
the al ternation eq. (12), where 3 

(15)  g = u, 

h = f - - u ,  
p = (D(u) X {T}) U ( D ( f - -  u) X {F}). 

Note  that  {g,h} is a part i t ion o f f  

The Composition Equation 
The general minimal  solution for the composi t ion  

equat ion can be given in terms of  a single parameter,  
any function, say u, with domain  D ( f )  whose level sets 4 
refine the level sets o f  f I.e. every level set of  u is a 
subset of  some level set of  f Then (g,h) solves the com-  
position eq. (13), where 5 

(16) g = u, 
h = u -~ ; f  where ( u - ~ =  {(x,y)  l ( y , x )  ~ ul)  

Thus, whereas the solution set of  the al ternat ion equa- 
tion has precisely the f reedom of  a b inary  part i t ion o f  the 
funct ion f ,  the solution set of  the compos i t ion  equat ion  
has the f reedom of  any system of  parti t ions on the level 
sets o f f ,  a much richer choice. 

The Iteration Equation 
The iteration equat ion is more  complex and interest- 

ing than the al ternation and composi t ion  equations.  
First, whereas any funct ion can be expressed in an alter- 
nat ion or composi t ion,  this is no t  so for an iteration ex- 
pression; it turns out  that  an existence condi t ion is re- 
quired for a solution. Second, whereas all functions p, g, 
h vary over the solution set in the alternation and com-  
position equations,  it turns out  that  only the function g 
varies over the solution set in the iteration equat ion;  
that  is, the predicate p is fixed entirely b y  f alone. In 
other words,  p is a derivative o f f ,  just as the slope of  a 
differentiable function is a derivative of  that  function. 
We call p the iteration derivative o f f  

Consider the iteration equation,  given f,  to find (p,g) 
such that  (eq. (14)) f =  while p do g o d .  For  the mo-  
ment,  suppose g is restricted to functions for which 
D(g) c D( f )  ; we show below that  this involves no loss of  
generality. 

Then we will see tha t  if the existence condi t ion 
(x  ~ D ( f )  N R ( f ) )  ~ f ( x )  = x holds (otherwise there is 
no solution),  the general minimal solution for the itera- 
t ion equation can be given in terms of  a single param- 
eter, a function u which defines any system of  trees on 
the level sets of  f i n  D ( f )  -- R ( f ) ,  i.e., ~ 

u = {(x,y) [ y is the parent of  x}. 

Then (p,g) solves the iteration eq. (14), where 

(17) p -= ( ( O ( f )  -- R ( f ) )  X {T}) U ( R ( f )  X {F}), 
g = u U ( f -  D(u) ;< R ( f ) ) .  

In order  to see the foregoing, it is easiest to get the 
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formula for p first, then the existence condition, and 
then the formula for g. 

First~ for any solution (p,g), p must have value F at 
every point in R( f ) ,  for otherwise the iteration program 
cannot terminate at that value; conversely, p must have 
value T at every point in D( f )  -- R(f ) ,  for otherwise the 
iteration program will not reach a value in R( f ) .  This 
gives the formula above for p in domain D( f )  U R( f ) .  

Next, consider any point in D( f )  71R(f) .  By the 
foregoing, p has value F at such a point, and the itera- 
tion program never invokes g, but simply exits without 
altering the state. This gives the existence condition 
above, i.e. that f must be the identity function on 

D( f )  fq R ( f ) .  
Finally, consider the graph of the state function g in 

D ( f )  f-) R ( f ) .  It is apparent  that  the graph of the subset 
of g in D( f )  -- R ( f )  can have no cycles- -must  be a 
t ree--since otherwise the iteration program would not 
terminate in such a cycle. It  is also apparent  that all 
points of a connected subtree in the graph o f g  must be 
in the same level set off ,  since the iteration program will 
terminate at the same value in R( f ) .  Thus the graph of 
the subset of g contained in D( f )  -- R ( f )  must be a 
system of trees in the level sets o f f .  Now consider the 
arcs of the graph of g which originate in D ( f )  -- R ( f )  
and terminate in R( f ) .  The originating points are roots 
of  the trees in D( f )  -- R ( f ) .  Since p is F in R( f ) ,  the 
iteration program terminates with each such arc. Thus, 
for each such originating point, say x, we must have 
g(x) = f (x) .  This gives the formula for g, above, with 
parameter  u, a function defining a system of trees on the 
level sets of f i n  D( f )  -- R ( f ) .  

Now we remove the restriction that D(g) c D( f )  
as follows. Suppose D(g) ~ D( f )  ; then pick any (x, y) 
such t h a t x  C D(g) -- D( f ) ,  y = g(x). If  for n o z  C D( f )  
and integer k, g~(z) = x, then (x, y) is superfluous for 
g and g -- {(x,y)} is also a solution; otherwise let 
gk(z) -- x, and adjoin (x, f(z))  to f ,  and g remains a 
solution. In either case the number  of  elements in D(g) 

- -  D ( f )  is reduced by one; this can be continued until 
D(g) C D( f ) .  

there are only a finite number of compound function 
equations in a fixed number of functions, these formulas 
permit the explicit formulation of all correct D-chart  
programs of any size. 
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Equations in Compound Function-Expressions 
It  is direct, but possibly tedious, to extend solutions 

to function equations in elementary expressions to 
equations in arbitrary compound expressions of  the 
form f = compound function expression, where no 
function variable occurs more than once. For  each level 
of  nesting an additional parameter  is involved, and is 
effective only within the scope of that  nesting. Thus, 
the parameters  of the solution can be associated with 
the nesting tree of  the compound expression. 

In particular, the solutions above provide existence 
predicates on the parameters  for each type of function 
equation, and the formulas for the stepwise refined 
solutions. These predicates and formulas can be in- 
voked iteratively to describe the set of  all solutions to a 
compound function equation of any complexity. Since 
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