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mJNDAMNTL9JNNEPTS
IN SOFTWARE ENGINEERING

Structured Programming.
Retrospect and Prospect

Harlan D. Mills, IBM Corp.

Stnuctured program- 2 ' dsger W. Dijkstra's 1969 "Struc- mon wisdom that no sizable program
Ste red .tured Programming" articlel could be error-free. After, many sizable

ming haxs changed ho w precipitated a decade of intense programs have run a year or more with no
programs are written focus on programming techniques that has errors detected.
since its introduction fundamentally altered human expectations

and achievements in software devel- Impact of structured programming.
two decades ago. opment. These expectations and achievements are

However, it still has a Before this decade of intense focus, pro- not universal because of the inertia of
lot of potentialfor gramming was regarded as a private, industrial practices. But they are well-

lot of fo puzzle-solving activity of writing computer enough established to herald fundamental
more change. instructions to work as a program. After change in software development.

this decade, programming could be Even though Dijkstra's original argu-
regarded as a public, mathematics-based ment for structured programming centered
activity of restructuring specifications into on shortening correctness proofs by sim-
programs. plifying control logic, many people still

Before, the challenge was in getting pro- regard program verification as academic
grams to run at all, and then in getting until automatic verification systems can be
them further debugged to do the right made fast and flexible enough for practi-
things. After, programs could be expected cal use.
to both run and do the right things with lit- By contrast, there is empirical evidence2
tle or no debugging. Before, it was com- to support Dijkstra's argument that infor-

Int t fundmenal conps series
A group of leading software engineers met in Colum- idea' monograph series. In each monograph, an idea from two

bia, Maryland, in September 1982 to provide recom- to four years ago, adjudged a 'best idea' by a panel of experts,
mendations for advancing the software engineering would be explored from the standpoint of how it was conceived,

field, The participants were concerned about the rapid changes how it has matured over the years, and how it has been applied.
in the software development environment and about the field's A key objective here is to both stimulate further development
ability to effectively deal with the changes. and application of the idea and encourage creation of new ideas
The result was a report issued six months later and printed in from the divergent views of the subject."

the January 1985 issue of IEEESoftware("Software Engineer- Another way to state the objectives ofthe series is to (1) explain
ing: The Future of a Profession" by John Musa) and in the April the genesis and development of the research idea so it will help
1983 ACM Software Engineering Notes ("Stimulating Software other researchers in the field and (2) transfer the idea to the prac-
Engineering Progress - A Report of the Software Engineering ticing software engineer.
Planning Group"). After the report was published in this magazine, an editorial
The group's members were members of the IEEE Technical board was created to implement the series. John Musa, then

Committee on Software Engineering's executive board, the chairman of the IEEE Technical Committee on Software Engi-
ACMSpecial Interest Group on Software Engineering's execu- neering, and Bill Riddle, then chairman of ACM SIGSE,
tive committee, and the IEEE Technical Committee on VLSI. appointed the following board members:

In the area of software engineering technologY creation, the * Bruce Barnes, of the National Science Foundation,
highest priority recommendation was to "commission a 'best * Meir Lehman, of Imperial College, as adviser,
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KEVIN REAGAN

mal, human verification can be reliable human verification can be used as the basis fallibility in software development have
enough to replace traditional program for software development under statistical been greatly exaggerated. Structured pro-
debugging before system testing. In fact, quality control.3 gramming has reduced much of the
structured programming that includes It seems that the limitations of human unnecessary complexity of programming

* Peter Neumann, of SRI International (and no longer ing the idea of this or any article published. Rather, our purpose
with the board), is to be an agent for the transfer of technology to the software

* Norman Schneidewind, of the Naval Postgraduate engineering community. We believe it is the readers who should
School, as editor-in-chief, and evaluate the significance to software engineering of the ideas we

* Marv Zelkowitz, of the University of Maryland. present.
Rather than produce a monograph series, the board decided The board is very interested in your opinions on this article

that IEEE Software would be a better medium for the series, and on the general concept of the series. Do you think it is a good
since it reaches a large readership. Furthermore, the magazine's idea? Has the article helped you to better understand the origins,
editor-in-chief, Bruce Shriver of IBM, strongly supported the concepts, and application of structured programming? What
series' objectives. topics would you like covered? Please send your thoughts and

I am delighted that Harlan Mills, an IBM fellow, agreed to opinions to Norman Schneidewind, Naval Postgraduate School,
write the first article, "Structured Programming: Retrospect and Dept. AS, Code 54Ss, Monterey, CA 93943.
Prospect," in this series. I am also grateful for Bruce Shriver's
enthusiastic support and for agreeing to publish the series in
IEEE Software. Future articles in this series will appear in this 9 1J 4|
magazine. I also thank the IEEE Software reviewers for the
excellent job they did of refereeing Mills's article. Norman Schneidewind

In presenting this series, the editorial board is not advocat- Series Editor-in-Chief
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and can increase human expectations and Erly industrial about a third were external specification
achievements accordingly. changes, a third were definite errors, and

exper-ence a third interpretable either way.
Early controversies. Dijkstra's article TheNew York Times project. An early The rate of definite errors was only 0.1

proposed restricting program control logic published result in the use of structured per thousand lines of code. The highest
to three forms - sequence, selection, and programming in a sizable project helped quality system of its complexity and size
iteration -which in languages such as calibrate the practicality issue F Terry produced to that time by IBM, the Times
Algol and PL/I left no need for the goto Baker reported on a two-year project car- project had a major effect on IBM soft-
instruction. Until then, the goto statement ned out by IBM for the New York Times, ware development practices.
had seemingly been the foundation of delivered in mid-1971, that used structured
stored-program computing. The ability to programming to build a system of some
branch arbitrarily, based on the state of 85,000 lines of code.6 Structured program- The structure theorem and its top-down
data,- was at the heart of programming ming worked! corollary. Even though structured pro-
ingenuity and creativity. The selection and The project used several new techniques gramming has been shown to be possible
iteration statements had conditional simultaneously: chief-programmer team and practical, there is still a long way to go
branching built in implicitly, but they organization, top-down development by to achieve widespread use and benefits in
seemed a pale imitation of the possibilities stepwise refinement, hierarchical modular- a large organization. In such cases, educa-
inherent in the goto. ity, and functional verification of pro- tion and increased expectations are more
As a result, Dijkstra's proposal to pro- grams. All were enabled by structured effective than exhortations, beginning with

hibit the goto was greeted with controversy: programming the management itself.
"-'You must be kidding!" In response to TheNew York Times system was an on- The results of Boehm and Jacopini were
complex problems, programs were being line storage and retrieval system for news- especially valuable to management when
produced with complex control structures recast into a so-called structure theorem,8
- figurative bowls of spaghetti, in which which established the existence of a struc-
simple sequence, selection, and iteration Unlike a spaghetti tured program for any problem that per-
statements seemed entirely inadequate to prog m a structured mitted a flowchartable solution.
express the required logic. No wonder the As an illustration, hardware engineering
general practitioners were skeptical: "Sim- program defines a natu- management implicitly uses and benefits
ple problems, maybe. Complex problems, ral hierarchy among its from the discipline of Boolean algebra and
not a chance!" instmctions. logic, for example, in the result that any

-In fact; Dijkstra's proposal was far combinational circuit can be designed with
broader than the restriction of control Not, And, and Or building blocks. If an
structures. In "Notes on Structured paper reference material accessed through engineer were to insist that these building
Programming"4 (published in 1972 but more than a hundred terminals - an blocks were not enough, his credibility as
privately circulated in 1970 or before), he advanced project in its day. The Times sys- an engineer would be questioned.
discussed a comprehensive programming tem met impressive performance goals - The structure theorem permits manage-
process that anticipated stepwise refine- in fact, it achieved throughputs expected in ment by exception in program design stan-
ment, top-down development, and pro- an IBM 360/Model 50 using an interim dards. A programmer cannot claim the
gram verification. hardware configuration of a Model 40. The problem is too difficult to be solved with

However, Dijkstra's proposal could, IBM team also achieved an impressive level a structured program. To claim that a
indeed, be shown to be theoretically sound of productivity - a comprehensive inter- structured program would be too ineffi-
by previous results from Corrado Boehm nal study concluded that productivity, cient, a program must be produced as
and Giuseppe Jacopini5 who had showed compared to other projects of similar size proof. Usually, by the time a structured
that the control logic of any flowchartable and complexity, was a factor of five better. program is produced, the problem is
program- any bowl of spaghetti- could In this case, since the New York Times understood much better than before, and
be expressed without gotos, using had little experience in operating and agood solution has been found. In certain
sequence, selection, and iteration maintaining a complex, on-line system, cases, the final solution may not be struc-
statements. IBM agreed to maintain the system for the tured- but it should be well-documented
So the combination of these three basic newspaper over the first year of operation. and verified as an exceptional case.

statements turned out to be more power- As a result, the exact operational experi- The lines of text in a structured program
ful than expected, as powerful as any flow- ence of the system was also known and can be written in any order. The history of
chartable program. That was a big surprise published by Baker.7 which lines were written first and how they
to rank and file programmers. The reliability of the system was also a were assembled into the final structured
Even so, Dijkstra's proposal was still pleasant surprise. In a time when on-line program are immaterial to its execution.

greeted with controversy: "It can't be prac- software systems typically crashed several However, because of human abilities and
tical." How could the complex bowls of times a day, the Times software system fallibilities, the order in which lines of a
spaghetti written at that time otherwise be crashed only once that year. structured program are written can greatly
explained? Formal debates were held at The number of changes required, for affectthecorrectnessandcompleteness of
conferences about practicality, originality, any reason, was 25 during that year, most the program.
creativity, and other emotional issues in of them in a data editing subsystem that For example, lines to open a file should
programming, which produced more heat was conceived and added to the system be written before lines to read and write the
than light, after the start of the project. Of these, file. This lets the condition of the file be
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checked when coding a file read or write program can be checked one by one as they images in many ways. For example, the
statement. are produced, with no need to write later simulation system estimates spacecraft
The key management benefit from top- lines to make them correct. In large behavior from a rocket engine burn called

down programming was described in the designs, the top-down process should look for by an astronaut in training, while the
top-down corollary8 to the structure the- ahead several levels in the hierarchy, but not mission system will observe spacecraft
orem. The lines of a structured program necessarily to the bottom. behavior from a rocket engine burn called
can be written chronologically so that every The New York Times team used both for by an astronaut in flight.
line can be verified by reference only to the structure theorem and its top-down Although less spectacular than Apollo,
lines already written, and not to lines yet corollary. While the proof of the structure the Skylab project of manned space study
to be written. theorem (based on that of Boehm and of near-Earth space was in many ways

Unlike a spaghetti program, a structured Jacopini) seemed more difficult to under- more challenging. The software for the
program defines a natural hierarchy among stand, the team felt the application of the Skylab simulation system was about dou-
its instructions, which are repeatedly top-down corollary was more challenging ble the size of Apollo's, and the complex-
nested into larger and larger parts of the in program design, but correspondingly ity was even greater.
program by sequence, selection, and iter- more rewarding in results. The Skylab software project was
ation structures. Each part defines a sub- For example, with no special effort or initiated shortly after the original
hierarchy executed independently of its prestated objectives, about half of the proposals for structured programming,
surroundings in the hierarchy. Any such Times modules turned out to be correct and a major opportunity for methodology
part can be called a program stub and given after their first clean compile. Other tech- comparison arose. The Skylab mission sys-
a name - but, even more importantly, it niques contributed to this result, including tem was developed by the same successful
can be described in a specification that has chief-programmer team organization, methods used for both subsystems in
no control properties, only the effect of the highly visible program development library Apollo. But the Skylab simulation system
program stub on the program's data. was developed with the then-new method
The concept oftop-down programming, of top-down structured programming

described in 1971,9 uses this hierarchy of a Dijkstra's proposal to under the initiative of Sam E. James.
structured program and uses program prohibit the goto was The Skylab results were decisive. In
stubs and their specifications to decom- proh

ewt Apollo, the productivity of the program-
pose program design into a hierarchy of gree a With mers in both simulation and mission sys-
smaller, independent design problems. controvers: You must tems was very similar, as to be expected.
Niklaus Wirth discussed a similar concept be kidding!" The Skylab mission system was developed
of stepwise refinement at the same time. '0 with about the same productivity and inte-

gration difficulty as experienced on both
Using the top-down corollary. The top- procedures, and intensive program read- Apollo subsystems.

down corollary was counterintuitive in the ing. However, these techniques were per- But the Skylab simulation system, using
early 1970's because programming was mitted to a great extent by top-down top-down structured programming,
widely regarded as a synthesis process of structured programming, particularly in showed a productivity increase by a factor
assembling instructions into a program the ability to defer and delegate design of three and a dramatic reduction in inte-
rather than as an analytic process of res- tasks through specifications of program gration difficulty.
tructuring specifications into a program. stubs. Perhaps most revealing was the use of
Furthermore, the time sequence in which computer time during integration. In most
lines of text were to be written was counter NASA's Skylab project. In 1971-74, a projects of the day, computer time would
to common programming practice. much larger but less publicized project increase significantly during integration to

For example, the corollary required that demonstrated similar benefits of top-down deal with unexpected systems problems. In
the JCL Gob-control language) be written structured programming in software devel- the Skylab simulation system, computer
first, the LEL (linkage-editor language) opment by IBM for the NASA Skylab time stayed level throughout integration.
next, and ordinary programs in program- space laboratory's system. In comparison,
ming languages last. The custom then was the NASA Apollo system (which carried Language problems. By this time (the
to write them in just the reverse order. Fur- men to the Moon several times) had been mid-1970's), there was not much debate
ther, the hard inner loops, usually worked developed in 1968-71, starting before struc- about the practicality of structured pro-
out first, had to be written last under the tured programming was proposed publicly. gramming. Doubtless, some diehards were
top-down corollary. In fact, the top-down While the New York Times project not convinced, but the public arguments
corollary forced the realization that the involved a small team (originally four but disappeared.
linkage editor is better regarded as a lan- enlarged to 11) over two years, Apollo and Even so, only the Algol-related lan-
guage processor than a utility program. Skylab each involved some 400 program- guages permitted direct structured pro-

It is easy to misunderstand the- top-down mers over consecutive three years of devel- gramming with sequence, selection and
corollary. It does not claim that the think- opment. In each system, the software was iteration statements in the languages.
ing should be done top-down. Its benefit divided into two major parts, of similar Assembly languages, Fortran, and Cobol
is in the later phases of program design, complexity: (1) a simulation system for were conspicuous problems for structured
after the bottom-up thinking and perhaps flight controller and astronaut training and programming.
some trial coding has been accomplished. (2) a mission system for spacecraft control One approach with these languages is to
Then, knowing where the top-down devel- during flight, design in structured forms, then hand-
opment is going, the lines of the structured In fact, these subsystems are mirror translate to the source language in a final
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coding step. Another approach is to create permitted programmers to read each gram with few branches may be simpler to
a language preprocessor to permit final other's programs daily, permitted them to prove than a shorter one with many loops
coding in an extended language to be conduct structured walk-throughs and pro- - and it may be less complex, as well. Or,
mechanically translated to the source lan- gram inspections, and permitted managers tricky use of variables and operations may
guage. Both approaches have drawbacks. to understand the progress of software reduce the number of branches but will
The first approach requires more dis- development as a process of stepwise make the proof longer.

cipline and dedication than many pro- refinement that allowed progressively more However, unless programmers under-
gramming groups can muster. It is accurate estimates of project completion. stand what proofs of correctness are, these
tempting to use language features that are When a project was claimed to be insights will not be realized. That was the
counter to structured programming. 90-percent done with solid top-down struc- motivation of the article "How to Write
The second approach imposes a dis- tured programming, it would take only 10 Correct Programs and Know It."9 Then,

cipline, but the programs actually com- percent more effort to complete it (instead whether structured programs are proved
piled in the target language will be the of possibly another 90 percent!). correct or not, this understanding will
result of mechanical translation them- However, Dijkstra's first article on implicitly reduce complexity and permit
selves, with artificial labels and variables structured programming did not mention better documentation.
that make reading difficult. The syntax, typography, readability, stepwise In fact, Dijkstra's argument shows that
preprocessing step can also be cumbersome refinement, or top-down development. the mathematical correctness of programs
and expensive, so the temptation in debug- Instead, his main argument for structured was an independent and prior idea to struc-
ging is to alter the mechanically generated programming was to shorten the mathe- tured programming (even anticipated by
target code directly, much like patching writings ofvon Neumann and Turing). Yet
assembly programs, with subsequent loss it was strange and unknown to most
of intellectual control. The ideas of structured programmers at the time. It is curious,
As a result of these two poor choices of p gmming although the earliest computers were moti-

approach, much programming in assembly , vated and justified by the solution of
languages, Fortran, and Cobol has been tIenateal numerical problems of mathematics (such
slow to benefit from structured pro- corlTectfess, and high- as computing ballistic tables), that the pro-
gramming. level languages are gramming of such computers was not

Paradoxically, assembly language pro- mutually independent. widely viewed as a mathematical activity.
gramming is probably the easiest to adapt Indeed, when it was discovered that
to structured programming through the use computers could be used in business data
of macroassemblers. For example, the matical proofs of correctness of programs! processing, dealing with mostly character
Skylab simulation and mission systems That may seem a strange argument when data and elementary arithmetic, the rela-
were both programmed in assembly lan- almost no one then (and few now) bothered tion between programming and
guage, with the simulation system using to prove their programs correct anyway. mathematics seemed even more tenuous.
structured programming through a macro- But it was an inspired piece of prophecy As the Skylab project showed, struc-
assembler. that is still unfolding. tured programming is also independent of

Both Fortran and Cobol have had their The popularizations of structured pro- high-level languages. As treated syntacti-
language definitions modified to permit gramming have emphasized its syntactic cally and superficially, structured pro-
direct structured programming, but the and superficial aspects because they are gramming may have seemed dependent on
bulk of programming in both languages - easiest to explain. But that is only half the high-level languages. But this is not true.
even today - probably does not benefit story - and less than half the benefit - Of course, high-level languages have
fully from structured programming. because there is a remarkable synergy improved programmer productivity as

between structured programming and the well, but that is a separate matter.

Cuffent theory and mathematical correctness of programs. The ideas of structured programming,Current theory anuAnd there have been many disappoint- mathematical correctness, and high-level
practice ments for people and organizations who languages are mutually independent.

Mathematical correctness of structured have taken the structured-programming-
programs. With the debate over and the made-easy approach without mathemati- Program functions and correctness. A
doubters underground, what was left to cal rigor. terminating program can be regarded as a
learn about structured programming? It Two reasons that Dijkstra's argument rule for a mathematical function that con-
turned out that there was a great deal to about the size of proofs of correctness for verts an initial state of data into a final
learn, much of it anticipated by Dijkstra in structured programs seems to be inspired state, whether the problem being solved is
his first article.' prophecy are considered mathematical or not.
The principal early discussions about * The proof of program's correctness is For example, a payroll program defines

structured programming in industry a singularly appropriate definition for its a mathematical function just as a matrix
focused on the absenCe of gotos, the theo- necessary and sufficient documentation. inversion program does. Even nonter-
retical power of programs with restricted No gratuitous or unnecessary ideas are minating programs, such as operating sys-
control logic, and the syntactic and typo- needed and the proof is sufficient evidence tems and communication systems, can be
graphic aspects of structured programs that the program satisfies its specification. expressed as a single nonterminating loop
(indentation conventions and pretty print- * The size ofacorrectness proofseems that executes terminating subprograms
ing, stepwise refinement a page at a time). at least a partial measure of the complex- endlessly.

These syntactic and typographic aspects ity of a program. For example, a long pro- The function defined by any such ter-
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minating program is simply a set of StartwithaprogramPandthespecifica- Algebra ofpartfunctions. The remark-
ordered pairs: theinitial and final states of tion r. Determine from Pits functionfand able thing about building these functions
data that can arise in its execution. That whether the correctness equation between from the nested parts of a structured pro-
matrix inversion seems more mathemati- fand r holds. gram is that the rules for constructing them
cal than payroll processing is a human cul- In practice, given a spaghetti program, are very simple and regular. They are sim-
tural illusion, an illusion not known to or such a proof may be impractical - even ply described as operations in a certain
shared by computers. impossible - because of the program's algebra of functions.

Since programs define mathematical complexity. But a structured program with The rules for individual instructions
functions, which thereby abstract out all the same functionfwill be simpler to prove depend on the programming language. For
details of execution including even correct because of the discipline on its con- example, the rule for an assignment state-
which language or which computer is used trol structure. In retrospect, the reason lies ment x := y + z is that the final state is
- it is possible to discuss the correctness in an algebra of functions that can be exactly the same as the initial state except
of a program with respect to its specifica- associated with structured programming. that the value attached to identifier x is
tion as a purely mathematical question. It is easy to see in principle why a pro- changed to the value attached to identifier
Such a specification is a relation. If the gram is a rule for a function. For any ini- y plus the value attached to identifier z.
specification admits no ambiguity of the tial state from which the program The rule for sequence is function com-
correct final state for a given initial state, terminates normally (does not abort or position. For example, if statements si, s2
the specification will be a function. loop endlessly), a unique final state is have functionsfl, f2, the function for the

For example, a square root specification determined. But unlike classical mathe- sequence si; s2 will be the composition
that requires an answer correct to eight dec- matical function rules (such as given by f] 0 f2 = { < x,y> }: y = f2(f1(x))}.
imal places (so any more places can be arbi- polynomial expressions, trigonometric It is important to note that the rules at
trary) is a relation. But a sort specification expressions, and the like), the function each level use the functions at the next
permits only one final ordering of any ini- rules determined by programs can be quite lower level, and not the rules at the next
tial set of values, and is thus a function. arbitrary and complex. The final state, even lower level. That is, a specific program part
A program will be correct with respect though unique, may not be easily described determines the rule of a function, but the

to a specification if and only if, for every because of complex dependencies among rule itself is not used at higher levels. This
initial value permissible by the specifica- individual instructions. means that any program part can be safely
tion, the program will produce a final value For a spaghetti program, the only changed at will to another with the same
that corresponds to that initial value in the reasonable way to think of the program as function, even though it represents a differ-
specification. a rule for a function is to imagine it being ent rule.
A little notation will be helpful. Let executed with actual data - by mental For example, the program parts x := y

functionfbe defined by program P, and simulation. For small programs, a limited and If x . y Then x := y define different
relation r be a specification (r is possibly generic simulation may be possible (for rules for the same function and can be
a function). Then program Pis correct with example, "for negative values the program exchanged at will.
respect to relation r if and only if a certain is executed in this section").
correctness equation betweenfand r holds, But for a structured program, there is a Axiomatic andfunctional verification.
as follows: domain(f n r) = domain(r). much more powerful way to think of it: as There is a curious paradox today between

To see this, note thatf f r consists of a function rule that uses simpler functions. university and industry. While program
just those pairs of r correctly computed by For example, any sequence, selection, or correctness proofs are widely taught in
P, so domain(f n r) consists of all initial iteration defines a rule for a function that universities for toy programs, most aca-
values for which P computes correct final uses the functions of its constituent parts. demics not deeply involved in the subject
values. But domain(r) is just the set of ini-
tial values for which r specifies acceptable
final values, so it should equal domain(fn

Such an equation applies equally to a
payroll program or a matrix inversion pro- f fn r
gram. Both can be mathematically correct, pairs sets
regardless of human interpretations of
whether the computation is mathematical
or not.
To picture this correctness equation, we

can diagramfand rin a Venn diagram with
projections of these sets of ordered pairs
into their domain sets (see Figure 1). The D() D(ffr D(r) domain sets
correctness equation requires that the two
domain sets D(,f fl r) and D(r) must
coincide. |A_

Mathematical correctness proofs. In
principle, a direct way to prove the mathe- Figure 1. Correctness equation diagram with projections of the ordered pair sets into
matical correctness of a program is clear, their domain sets.
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regard program correctness as acadcmic. to a more complex function rather than to constructive result. In carrying out proofs
Their motivation is cultural: "You'd never many more variables. of structured programs, the algebraic oper-
want to do this in practice, but it is good for Such a function may be defined in two ations on the functions involved are the
you to know how to do it." lines of mathematical notation or a hun- same at every level, but the functions
On the other hand, the IBM Software dred pages of English. But its mathemati- become more complex in the upper parts

Engineering Institute curriculum is cen- cal form is the same: a set of ordered pairs. of the hierarchy.
tered on the idea of program correctness There are many more opportunities for Two features in the data of the program
exactly because it is not academic. Rather, ambiguity and fallibility in a hundred have a large effect on the size of formal
it provides a practical method of reasoning pages of English, but increased individual proofs: (1) The sheer number of program
about large programs that leads to much fallibility can be countered by checks and variables that define the data and (2)
improved quality and productivity in soft- balances of well-managed teams, rather assignments to arrays.
ware development. than abandoning the methodology. Arrays represent arbitrary access to data

There is also a simple answer to this As a result, the functional verification of just as gotos represent arbitrary access to
paradox. Academics primarily teach a a top-level design of a 100,000 lines has the instructions. The cost of this access shows
form of program correctness, called axio- same form as for a low-level design of 10 up directly in the length and complexity of
matic verification, applied directly to toy lines: There is one function rule to be veri- proofs that involve array assignments. For
programs, while the IBM Software Engi- fied by using a smnall number of functions example, an array assignment, say x[i :=
neering Institute teaches a different form at the next level. The function defines a yU + k] refers to three previous assignments
called functional verification in a way - to i, j, and k. The values of i orj + k may
intended to scale up to large programs. be out of range, and certainly must be

Axiomatic verification proves correct- Eliminate the use of accounted for if in range. Furthermore,
ness by reasoning about the effect of pro- arrayx will be altered at location i, and this
grams on data. This reasoning takes the and use fact must be accounted for the next timex
form of predicates on data at various . is accessed again for the same value of i
places in the program that are invariant instead data (which may be the value of another varia-
during execution. The relations between abstactions without ble m).
these predicates are given by axioms of the arbitrary access. Dijkstra's treatment of arrays"3 is very
programming language (hence the name), illuminating evidence of their complexity.
and the entry/exit predicates together Gries has also given the predicate trans-
define the program function in an alterna- mapping from initial states to final states. formers for array assignments,'4 which are
tive form. Tony Hoare has given a beauti- These states will eventually be represented much more complex than for simple
ful explanation for this reasoning as a form as collections of values of variables, but assignments.
of natural deduction, now called Hoare can be reasoned about as abstract objects Happily, there is a way to address both
logic." directly in high-level design. of these proof expanders in one stroke:

Functional verification is based on func- While most of this reasoning is in the eliminate the use of arrays in structured
tion theory from the outset. For example, natural language of the application, its programs, and use instead data abstrac-
a simple assignment statement x:= y + z rules are defined by the algebra of func- tions without arbitrary access. Three sim-
defines a function that can be denoted by tions, which' is mathematically well- ple such abstractions come to mind
[x := y + z] and then used as a function defined and can be commonly understood immediately: sets, stacks, and queues -
in the algebra of structired-program part among designers and inspectors. There is the latter two data structures with LIFO
functions. In practice, functional verifica- considerable evidence that this informal and FIFO access disciplines. No pointers
tion is harder to teach but easier to scale up kind of reasoning in mathematical forms are required to assign data to or from
to large programs because of the presence can be effective and reliable' in large soft- stacks or queues, so fewer variables are
of algebraic structure in an explicit form. ware systems (exceeding a million lines) involved in such assignments.

The most critical difference in that are designed and'developed top-down Furthermore, the proofs involvingThe most critical difference In practicebetweenaxiomati and funct acie with very little design backtracking. 12 assignments to-sets, stacks, and queues are
between axiomatic and functional verifi-
cation arises in the treatment of loops. In There is yet another way to describe the much shorter than prpofs involving arrays.
axiomatic verification a loop invariant reasoning required to prove the correctness It takes a good deal more thinking to
must be invented for every loop. In func- of structured programs. The predicates in design programs without arrays, just as it
tional verification, during stepwise refine- program variables of axiomatic verifica- takes more thinking to 'do without gotos.
ment, no such loop invariants are required tion admit an algebra of predicates whose But the resulting designs are better thought
because they are already embodied in the operations are called predicate trans- out, easier to prove, and have more func-

8 formers in a classic book by Edsger Dijk- tion per instruction than array programs.loop specification function or relation.
stra, 13 and followed in a beautiful For example, the array-to-array assign-

Axiomatic verification can be explained elaboration by David Gries. 14 ment x[i] := yU + k] is but one of four
directly in terms of program variables and instructions needed to' move an item of
the effects of statements on them, con- datafromytox(assignments required for
cretely in any given programming Ian- Looking to the ftut-ure x, i, , and k).
guage. But when programs get large, the D)ata-structured programming. The On the other hand, a stack to queue
numnber ofprogramvariables get large, too objective of reducing the size of 'formal 'assignment, such as back(x) := top(y)

while the number of functio'ns remains correctness proofs can be reapplied to moves the top of sta.ck y to the back of
just one. The variable-free theory scales up structured programs with a surprising and queue x with no previous assignments. Of
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course it takes more planning to have the opment process for later increments to with less than five errors per thousand lines
right item at the top of stack y when it is achieve prescribed levels of quality. and remove nearly all ofthem in statistical
needed for the back of queue x. At first glance, no unit debugging in system testing.

This discipline for data access, using software development seems strange, Furthermore, the errors found after
stacks and queues instead of arrays, has because unit debugging appears to be such functional verification are qualitatively
been used in developing a complex lan- an easy way to remove most of the defects different than errors left from debugging.
guage processing system of some 35,000 that might be in the software. However, The functional verification errors are due
lines.2 Independent estimates of its size unit debugging is a good way to inadver- to mathematical fallibility and appear as
indicates a factor of up to five more func- tently trade simple blunders for deep sys- simple blunders in code - blunders that
tion per instruction than would be expected tem errors through the tunnel vision of statistical tests can effectively uncover.
with array designs. debugging. And the very prospect of unit
The design was fully verified, going to testing invites a dependence on debugging Limits of human performance. The

system test without the benefit of program that undermines concentration and dis- latent ability of people in new technologies
debugging of any kind. System testing rev- cipline otherwise possible. is a source of continual amazement to
ealed errors of mathematical fallibility in More positively, eliminating unit testing experts. For example, 70 years ago, experts
the program at a rate of 2.5 per thousand and debugging leads to several benefits: could confidently predict that production
instructions, all easily found and fixed. The * more serious attention to design and automobiles would one day go 70 miles an
kernel of the system (some 20,000 instruc- verification as an integrated personal hour. But how many experts would have
tions) has been operating for two years activity by each programmer, predicted that 70-year-old grandmothers
since its system test with no errors detected. would be driving them?!

Thirty years ago, experts were predicting
Functional verification instead of unit The latent ability of that computers would be world chess

debugging. The functional verification of people in new champions, but not predicting much for
structured programs permits the produc- . a s programmers except more trial and error
tion of high-quality software without unit technologies in writing the programs that would make
debugging. Just as gotos and arrays have of contnual amazement chess champions out ofthe computers. As
seemed necessary, so unit debugging has to experts. usual, it was easy to overestimate the future
also seemed necessary. However, practical abilities of machines and underestimate the
experience with functional verification has future abilities of people. Computers are
demonstrated that software can be devel- * more serious attention to design and not chess champions yet, but programmers
oped without debugging by the developers verification inspection by programming are exceeding all expectations in logical
with some very beneficial results. teams, precision.

This latent ability in programmers using * preserving the design hypothesis for From the beginning of computer pro-
functional verification has a surprising statistical testing and control (debugging gramming, it has been axiomatic that
synergy with statistical testing at the system compromises the design), errors are necessary in programs because
level - that is, testing software against * selecting qualified personnel by their people are fallible. That is indisputable, but
user-representative, statistically-generated ability to produce satisfactory programs is not very useful without quantification.
input.3 Statistical testing has not been without unit debugging, and Although it is the fashion to measure errors
used much as a development technique - * high morale of qualified personnel. per thousand lines of code, a better meas-
and indeed for good reason in dealing with On the other hand, user-representative, ure is errors released per person-year of
software that requires considerable defect statistical testing of software never before software development effort.
removal just to make it work at all, let alone debugged provides several benefits: Such a measure compensates for the
work reliably. However, statistical testing * valid scientific estimates of the soft- differences in complexity of programs -
of functionally verified structured pro- ware's reliability and the rate of its growth high complexity programs have more
grams is indeed effective. in reliability when errors are discovered and errors per thousand lines of code but also

fixed during system testing, require more effort per thousand lines of
Cleanroom software development. The * forced recognition by programmers of code. It normalizes out complexity differ-

combined discipline ofno unit debugging the entire specification input space and ences and has the further advantage of
and statistical testing is called cleanroom program design by specification decompo- relating errors to effort rather than prod-
software development. The term "clean- sition (instead of getting a main line run- uct, which is more fundamental.
room" refers to the emphasis on defect ning then adding exception logic later), and For example, the New York Times
prevention instead of defect removal, as * the most effective way to increase the released error rate was about one error per
used in hardware fabrication, but applied reliability of software through testing and person-year of effort. That was considered
now to the design process rather than the fixing. an impossible goal before that time, but it
manufacturing process. The evidence is that industrial program- is consistently bettered by advanced pro-

In fact, cleanroom software develop- ming teams can produce software with gramming teams today.
ment permits the development of software unprecedented quality.- Instead ozf coding An even better result was achieved by
under statistical quality control by iterat- in 50 errors per thousand lines of code and Paul Friday in the 1980 census software sys-
ing incremental development and testing. removing90percentbydebugging to leave tem for the distributed control of the
Early increments can be tested statistically five errors per thousand lines, program- national census data collection and com-
for scientific estimates of their quality and mers using functional verification can pro- mulnications network. The real-time soft-
formanagement feedback into the devel- duce code that has never been executed ware contained some 25,000 lines,
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developed with structured programming data structured programming, functional interactive debugger is an outstanding
and functional verification, and ran verification and cleanroom software devel- example of what is not needed - it
throughout the production of the census opment (and good management), we can encourages trial-and-error hacking rather
(almost a year) with no errors detected. expect another factor of 10 improvement than systematic design, and also hides mar-

Friday was awarded a gold medal, the in this dimension of performance in the ginal people barely qualified for precision
highest award of the Commerce Depart- next decade. programming. A proof organizer and
ment (which manages the Census Bureau), checker is a more promising direction.
for this achievement. Industrial software It is not enough for industrial manage-
experts, looking at the function provided, tructured programming has ment to count lines of code to measure pro-
regard the 25,000 lines as very economical, reduced much of the unnecessary ductivity any more than they count words
indeed. (It seems to be characteristic of U complexity of programming and spoken per day by salesmen. Better man-
high-quality, functionally verified software can increase human expectations and agement understandings are needed for
to have more function per line than is achievements accordingly. Even so, there is evaluating programming performance, as
usual.) much yet to be done. It is not enough to are increased investment in both education
At 2500 lines of code per person-year for teach university students how to verify the and tools for true productivity and quality.

software of moderate complexity, and one correctness of toy programs without teach- But the principal challenge for manage-
error per 10 person-years of effort, the ing ther how to scale up their reasoning to ment is to organize and focus well-
result is one expected error for a 25,000-line large and realistic programs. A new under- educated software engineers in effective
software system. Conversely, a 25,000-line graduate textbook"5 seeks to address this teams. The limitations of human fallibil-
software system should prove to be error- issue. ity, while indisputable, have been greatly
free with appreciable probability. Better software development tools are exaggerated, especially with the checks and
These achievements already exist. With needed to reduce human fallibility. An balances of well-organized teams. E1
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