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Theory of Modules

JOHN D. GANNON, RICHARD G. HAMLET, MEMBER, IEEE,
AND HARLAN D. MILLS, SENIOR MEMBER, IEEE

Abstract—Because large-scale software development is a struggle
against internal program complexity, the modules into which pro-
grams are divided play a central role in software engineering. A mod-
ule encapsulating a data type allows the programmer to ignore both
the details of its operations, and of its value representations. It is a
primary strength of program proving that as modules divide a pro-
gram, making it easier to understand, so do they divide its proof. Each
module can be verified in isolation, then its internal details ignored in
a proof of its use. This paper describes proofs of module abstractions
based on functional semantics, and contrasts this with the Alphard for-
malism based on Hoare logic.

Index Terms—Abstract data types, functional semantics, modules,
programming methodology, program specifications, program verifi-
cation.

I. INTRODUCTION

ODULES that encapsulate complex data types are
perhaps the most important sequential program-
ming-language idea to emerge since the design of AL-
GOL 60. Such a module serves two purposes. First, in its
abstraction role, it allows the programmer to ignore the
details of operations (procedural abstraction) and value
representations (data abstraction) in favor of a concise de-
scription of their meaning. Second, encapsulation is a
protection mechanism isolating changes in one module
from the rest of a program. The first role helps people to
think about what they are doing; the second allows pro-
gram changes to be reliably made with limited effort.
Modules have their source in practical programming
languages beginning with SIMULA [1], and their theory
has developed in two directions, based on program prov-
ing by Hoare [2], Wulf, London, Shaw [3], and others;
and on many-sorted algebras by Guttag [4], Goguen,
Thatcher, Wagner, Wright [5], and others. This paper re-
ports on a new proving theory using functional semantics
[6].
The essence of data-abstraction is captured by a dia-
gram showing the relationship between a concrete world,
the objects manipulated directly by a conventional pro-
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gramming language, and an abstract world, objects that
the programmer chooses to think about instead of the more
detailed program objects. Within each world, the items of
interest are mappings among the objects. The two worlds
are connected by a representation function that maps from
concrete to abstract.

{abstract objects} map {abstract objects}
representation representation
{concrete objects} map {concrete objects}

A data-abstraction theory must define correctness, intui-
tively the property that the programmed concrete maps do
properly mirror the abstract maps in our minds. A theory
following Hoare’s example also defines a proof method,
a means of establishing the correctness of any particular
module.

The abstract world may also be viewed as specifying
what the program in the concrete world must do. Program
specifications are not always functional, however. Some-
times the program behavior should be constrained but not
uniquely determined, as when a result should come from
a stored set of values, but any of the values is acceptable.
The theory presented here is essentially unchanged for
specification relations that are not necessarily functions,
but it will be presented for simplicity in the functional
case.

Section II outlines the formal semantics of modules (and
the Appendix gives an example of calculating a program
function). Section III presents the module proof theory,
with an example in Section IV. In Section V the theory is
compared to its primary competitor.

II. FUNCTIONAL SEMANTICS OF MODULES

A denotational or functional semantics associates a
meaning with certain fragments of a program. Denota-
tional definitions are mathematically precise, but do not
always obviously capture the intuitive meaning of pro-
grams. In this paper we do not demonstrate that our de-
notational definitions agree with operational intuition, al-
though that argument can be given [7]. We treat only a
subset of Pascal needed for the example of Section IV.

0098-5589/87/0700-0820$01.00 © 1987 IEEE
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The most fundamental meaning is the state, which as-
sociates program identifiers with values. Except for the
interval between declaration and assignment of the first
value, a state is a function mapping variable names to their
current values. There is no clear choice for how to handle
‘‘uninitialized variables’’ (in [6] the state is taken to be
an all-inclusive relation), and since this point is far from
central to module theory, we will treat states as mappings.

Expressions have as meaning mappings from states to
values. The meaning of an integer constant in state S is
the (mathematical) integer whose representation in base
10 the constant is (as a string). The meaning of an iden-
tifier V in state § is the value that S assigns to V, that is,
S(V). On this base of constants and variables the mean-
ing of integer expressions can be defined inductively. If
the expression is X + Y, then in state S its value is the
value of X in state S plus (integer addition) the value of ¥
in state S. It is convenient to have a notation for meaning
functions, and we adopt a convention similar to one used
by Kleene: the meaning function corresponding to a pro-
gramming object is denoted by a box around that object.
Using this notation, we have the definitions:

[c] for integer constant c is the constant function for
which ¢ represents the base-10 value.
.(S) = §(V) for identifier V and state S.
X +7(S) = [XI(S) + [X](S) for expressions X, ¥
and state S.

(and similarly for subtraction, multiplication, etc.).

For Boolean expressions it is almost the same. For ex-
ample,

X ==YI(S) is true if [XI(S) =
false if [X](S) < [X](S),

for expressions X, Y, and state S. The other Boolean op-
erations are treated in the same way.

This inductive definition hides the parsing that must ac-
tually be done to assign a meaning function to an expres-
sion. In an expression with more than one operation, the
operator precedence must be followed in applying the def-
inition. The use of the mathematical operations in these
definitions ignores the possibility of overflow. A precise
definition ‘could be given for any particular Pascal imple-
mentation, but it would complicate our proofs.

Program statements are given meanings of state-to-state
mappings. The meaning of assxgnment V= E where V
is a variable and E an expression, is:

= {(S, T): T = S except that [V}(T) =
(S)}-

That is, the input state to the assignment statement and its
output state are the same except that the expression value
has been attached to the variable.

The meanings of other program constructions are in-
ductively defined; for example

[BEGIN 4; BEND] = [ © [B].

for statements A and B, where © is functional composi-

¥ls),
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tion, written in the order the functions are applied. (Again,
the parsing necessary to isolate the compound statement
and its parts is ignored.)

A more complex definition is

[IF B THEN S] = {(u, [SJw)): [Blw)} U
{@, u): ~ [Blw)}

for the conditional statement with Boolean expression B
and nested statement S. The two sets cover the cases in
which the condition is frue in the input state (and the
statement acts like S), and where it is false so the state-
ment means an identity mapping.

Iteration has a less obvious definition:

[WHILEBDO D |= .
{(T,U): 3k = 0,suchthat v 0 < i < k ([B([D]'(T))

A =~ [BI(DI4T) A DI%T) = U)}.

In words, the loop function is undefined for state 7 unless
there is a natural number k (the number of times the loop
body is executed) for which the test first fails following k
iterations. Then T is transformed to the k-fold composi-
tion of D on T. This definition is not constructive, so a
characterizing theorem is needed for practical proofs to
be carried out. It is:

Theorem (WHILE statement verification): Let W be the
program fragment

WHILE B DO D.
Then f = [#] if and only if:

D dorhain( f) = domain( [#] ),
2) f(T)= T whenever - |B|(T)

3) f=[FBTHEN D] °f.

(The proof is given in [6, Chapter 8].)

This theorem implies a proof method for loop W as fol-
lows: First, guess or work out a trial function f, say by
reading program documentation, or by examining repre-
sentative symbolic executions of W. ( f would be given if
W is the code that implements a stepwise refinement of a
design.) Then use the three conditions of the if-part of the
theorem to check that the trial function is correct. (The
Appendix includes an example of using the theorem.)

A comparison between this method and that of Floyd/
Hoare is revealing. The function f corresponds to the
Floyd/Hoare loop assertion, but unlike an assertion, it
must be exact, not merely strong enough to capture nec-
essary properties of the loop. This is both the strength and
weakness of the functional method, because exact func-
tions are often easier to find and state accurately than are
assertions, yet sometimes the exact function is harder to
work with than the weak assertions that suffice when the
loop initialization provides a strong precondition.

The definition of statement meaning culminates with the
procedure-call statement: the meaning function of a call
is the function for the declared body, after textual substi-
tutions (based on the ALGOL 60 copy rule) have been
made to accommodate parameters. When there is one
VAR parameter X in the declaration of procedure P,
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whose declared body is 7, the meaning of a call on P
passing parameter A is:

[PA)] = [T < A\X]

where T < A\ X means T with each occurrence of X re-
placed by A. Students of ALGOL 60 will recognize the
semantics of call-by-name; in the absence of arrays this
is the same as Pascal’s strict call-by-reference. A similar
copy-rule substitution can be used to define the meaning
of call-by-value parameters. This definition hides a great
deal of parsing: to find the meaning of P(A) actually re-
quires locating the definition

PROCEDURE P(VAR X: .. .)

and extracting the declared body.

In practice it is convenient to calculate the meaning of
a procedure in terms of its formal parameter, and for each
call later substitute the actual parameter identifier. That
is, to calculate [P(A4)| = [T < A\X]|, instead calculate
[T] < A\X.
~ The definition assumes there are no conflicts between
local and global identifiers; its generalization to multiple
parameters is straightforward if there is no aliasing. Each
restriction here imposed for simplicity can be lifted in this
theory, in contrast to the Floyd/Hoare theory. When there
is recursion, the definition leads to a fixed-point equation
whose least solution is the defined meaning, and a theo-
rem similar to the WHILE verification theorem is needed
for practical proofs. (For details, see [6, Chapters 9, 11].)

The meaning function for a procedure call gives precise
form to the concrete portion of the diagram for a data ab-
straction. The concrete objects are states, and the con-

crete mapping is the meaning function for a procedure .

call. The abstract level is more difficult to capture. Its
objects and transformations are mental constructions,
things a programmer finds convenient to think about. A
mathematical theory is seldom available to describe them.
There are, however, well defined identifiers and states in
the abstract world, formed using aggregate identifiers in
place of their component identifiers. The final element in
the picture is the correspondence between a typical con-
crete object and its abstract counterpart, the representa-
tion function. This mapping is often many-to-one, be-
cause the concrete realization is not unique.
In the data-abstraction diagram:

{abstract states} m

{abstract states}

{concrete states} {concrete states}

]

the abstract mapping is m, the representation mapping is
A, and the concrete mapping is the meaning of some pro-
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cedure P. We say that the diagram commutes if and only
if beginning in the lower left corner and passing in both
possible directions gives the same result whenever the ab-
stract is defined; that is, 4 © m S [P] © A. In the view
that the abstract function is a specification, a commuting
diagram corresponds to a correct implementation with
‘“don’t care’’ cases: when the abstract function m is un-
defined, the program function may take any value.

III. PROOF METHOD

When using a module, a programmer begins with ob-
jects that are not of the module’s type. These may come
from the external world, or may be created internally.
They cannot be of the module’s type because details of
the representation are the module’s secret. What the pro-
grammer possesses is raw information necessary to con-
struct a value of the module type, and the first call on a
module is therefore a conversion call: the calling program
passes the component information, and within the module
it is placed in the secret internal form. Succeeding invo-
cations of the module make use of the value thus stored,
transforming it according to the operations defined within
the module. Finally, the transformed value must again be
communicated to the world outside the module, converted
back to externally usable form. The process is a familiar
one: from the very beginning programming languages
have had secret representations for integers, reals, char-
acters, etc., and compilers have performed conversions
from external to internal forms and back.

For example, in a module implementing complex num-
bers, the raw data might take the form of two REAL val-
ues, one for magnitude and the other for angle. The
COMPLEX module’s input conversion routine would
have a declaration like

PROCEDURE InComplex{Mag, Ang: REAL;
VAR Val: COMPLEX)

and a programmer might begin by reading in the pair of
REAL values, or by creating them (e.g., for the constant
i with: '

InComplex(1.0, pi/2, Eye)

to place the result in the variable Eye of TYPE COM-
PLEX). Similarly, a routine declared '

PROCEDURE OutComplex(VAR Mag, Ang: REAL;
Val: COMPLEX)

would be called to obtain answers, while ones like

PROCEDURE AddComplex(A, B: COMPLEX;
VAR Result: COMPLEX)

would implement operations of the type. Of course, if the
implementor chose the radix form for complex numbers
internally, the code for InComplex and OutComplex
would be trivial; however, if there is a great deal of ad-
dition and not much conversion, an implementation using
real and imaginary parts would be better, and in that case
these routines make actual conversions. If aggregate types
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were first-class objects in Pascal, these procedures could
be written as functions to better correspond to the dia-
grams.

In any application of a module, its users will reason
about its actions ‘‘in the abstract.”” That is, théy will
imagine it performing a mapping involving objects that
do not really exist in the computer, those of the intuitive
type it implements. For example in COMPLEX, they will
think of AddComplex as performing the mathematical
operation of complex addition; etc. Here the input- and
output-conversion operations have a special role: they are
thought of as maps between the built-in language values
and the intuitive values of the type being defined. Thus

InComplex(1.0, pi/2, Eye)

intuitively gives Eye the value 1.0 X ™/ = i. The rea-

soning represented by this equality is an example of “‘in
the abstract:”’ it in no way depends on the implementation
of the module, only on mathematical properties of com-
plex numbers. If the abstract function mapping a pair of
REAL values to COMPLEX is C, the diagram for input
conversion is:

{abstract states} c {abstract states}

3

{concrete states}

————— |InComplex| ———= {concrete states}

The raw-data values from which abstract values are con-
structed all lie in the concrete state, and these values must
be preserved by the representation mapping. Thus at the

left of the input-conversion diagram the mappings C and
take input values only from the concrete
state. The diagram might therefore be collapsed to a tri-
angular one using this common domain, for example:

{abstract states}
C

{concrete states} A

InComplex

\

{concrete states}

The programmer has in mind abstract functions for each
operation within a module. In reasoning about the pro-
gram using a module, the programmer will employ these
abstract functions. Intuitively, the module implementa-
tion is correct if an only if such reasoning is safe. In terms
of the operation diagrams, a sequence of operations is
thought of on the top: beginning with a triangular diagram
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whose left side does not involve objects of the module’s
type T, an object of type T is created by the abstract op-
eration InT, then used by abstract operations m; T, m, T,
-+ + and finally converted back to known values (another
triagular diagram) by OutT. The abstract view of this se-
quence of diagrams is that values from outsidé the module
are transformed by the function

- o OutT

with the intermediate values being the abstract ones of the
module’s type.

Of course, the actual calculation proceeds across the
bottom of the diagrams. The implementation begins with
values and successively transforms them, at no time leav-
ing the built-in types of the language. If the procedures
for the example functions above are PInT, Pm1, Pm2,
..., POutT, the actual function computed in the se-
quence is

[PInT] o [Pm1] o [Pm2] o ...

InTomTom,To - -

o [POutT].

We call such a composite an extended diagram, here:

{abstract states} — mT —» {abstract states}
/ \
InT OutT
/ \
{concrete states} {concrete states}
N\ -/
|

{concrete states} — — {concrete states}
Correctness then means that any extended diagram com-
mutes. That is, in the general example above, the imple-
mentation is correct if and only if

InTomTomyTo -0 0uT <
[PInT] o [Pm1] o [Pm2] o - - -

° [POutT]

for any sequence of operations. The virtue of this defini-
tion is that the representation function does not appear!

To be useful in software development, however, proofs
must apply to operations in isolation, not to sequences of
operations. The following theorem allows such proofs to
be given.

Theorem: A module’s implementation is correct if there
is a representation function A such that each operation’s
diagram commutes using A, and A is identity on built-in
types.

Proof: We establish a stronger result than the theo-
rem, namely that every extended diagram commutes, and
that the diagram formed by stripping the final output con-
version and connecting the newly exposed states with the
representation function 4 also commutes. Proceed by in-
duction on the number of operations between the input-
and output-conversion operations.

" Base Case: If there are no internal operations, the
extended diagram consists of the input-conversion func-
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tion immediately followed by the output-conversion func-
tion:

{abstract states}

SN

InT OutT

{concrete states} A {concrete states}

/

{concrete states}

We must show that this diagram commutes:

InT o OwT < [PInT] o [POutT].

Suppose it were not so, for the concrete point x (for which
the abstract maps are defined), i.e.,

OutT(InT(x)) # [POutT]([PInT] (x)).

The diagram for the input-conversion function commutes,
and a special case is

InT(x) = A( (x)),

which substituted on the left side above gives:

OutT(A([PInT] (x))) # [POutT]( PInT (x)).
That is, there exists a (concrete) y = (%) such that

OutT(A(y)) # [POutT](y).

But this violates the assumption that the diagram for the
output-conversion function commutes. Hence the \two
diagrams commuting imply that the extended diagram
commutes. The additional requirement that the diagram
stripped of the output conversion commute, is trivial in
this case, since that reduces it to the commuting input
diagram.

Induction Step: Suppose then that for all extended
diagrams with n = 0 operations between input and output
conversions, the component diagrams commuting implies
that the extended diagram commutes, and that the dia-
gram stripped of its output conversion also commutes.
Consider a diagram with n + 1 operations between con-
versions, and let the last abstract operation by mT imple-
mented by procedure PmT. Consider only the right end
of the extended diagram with the representation mapping
inserted:

x € {abstract states} mT —— {abstract states}

OutT

{concrete states}

y € {concrete states}— - {concrete states}

Let x be any abstract value that enters this fragment from
the omitted part of the diagram, that is, beginning with a

~ concrete value and mapping by InT followed by the omit-

ted abstract operations. Similarly let y be the correspond-
ing concrete value that results from followed by
the omitted concrete operations. Then since the omitted
part of the diagram commutes by the inductive hypothesis

. (it is of size n), x = A(y). Because the component dia-

gram for mT commutes, we have

mT(A(y)) = A([PmT](y)).
Substituting x = A(y),

mT(x) = A( (>

which is the statement that the original diagram commutes
with its output operation removed. Similarly, that the out-
put operation itself has a commuting diagram gives

OutT(A([PmT]( y)) = [POutT]|([PmT](y)),

and substituting m7T(x) from above gives

OutT(mT(x)) = [POutT]([PmT](y)),

which is the statement that the original extended diagram
commutes. ' Q.E.D.

The verification of a module may therefore be accom-
plished in isolation by selecting a proper representation
function, calculating the meaning of each procedure, and
then showing that each operation’s diagram commutes for
the intended abstract function, calculated meaning, and
chosen representation function.

IV. AN ExXAMPLE: RATIONAL NUMBERS

A Pascal TYPE declaration is an implicit form of the
representation mapping. For example,

TYPE Rational =
RECORD Num, Den: INTEGER
END

suggests the abstract world of rational numbers, where
concrete states contain pairs of integer values (N, D), and
the corresponding rational value is the fraction with nu-
merator N and denominator D, defined only if N and D #
0 are defined. The representation mapping 4,,, from con-
crete state S to abstract state 7T is thus

A, = {(S, T): T = S except that all identifiers of the
form x.Num and x.Den are replaced by x, with
value [x](T) = [x.Num](S)x.Den|(S) if
x.Den|(S) # 0}.

This notation is cumbersome, and can be replaced by a
conditional assignment [6, Chapter 7] in which the state
mapping is given by a guarded assignment statement. If
the only variable in the abstract state is R:

A, = (R.Den < > 0 —» R := R.Num/R.Den).

The procedure ExpRat given below is intended to raise

_ a rational number R to the power N. The comment de-
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scribes this intention in the abstract (‘‘abs’’) and concrete
(“‘con’’) worlds. The comments are written as conditional
assignments (the notation uses program operations, so it
can be made part of program listings). The vertical bar
gives guarded alternatives. For example, the ‘‘abs’’ com-
ment describes the function that would be conventionally
expressed as
ExpRat,,, =

{(S, TE (S) = 1 A T = S except that [R|(T) =

RI®TD} U {65, $): W S) < 1}
(An empty assignment is written for the identity func-
tion.) Similarly, the ‘‘con’” comment describes [ExpRat].

PROCEDURE ExpRat(VAR R: Rational;
N: INTEGER);
{abs: (N>=1 = R:= R**N) | (N<1 —)
con: (N>=1 — R.Num,R.Den := R.Num**N,
R.Den* *N)
| IN<1 =)}
VAR
T: Rational;
I: INTEGER,;
BEGIN {ExpRat}
T.Num := R.Num; T.Den := R.Den;
l:=1;
WHILE I < N
DO
BEGIN
l:=1+1;
T.Num := T.Num * R.Num;
T. Den := T.Den * R.Den
END;
R.Num := T.Num; R.Den := T.Den
END {ExpRat}

To demonstrate the correctness of this procedure, we

must calculate (see Appendix), and prove that
the following diagram commutes:

{abstract states} ExpRat,, ———> {abstract states}

! T

A A

rat rat

{concrete states}

——————— {concrete states}

That is

Ava © ExpRat,, € © A
The composition of A4,,, with ExpRat,, is:

{R.Den < > 0 = R := R.Num/R.Den) ©
(IN>=1->R:=R**N)|(IN< 1))

The trace table [6, Chapter 6, 7] is a device for orga-
nizing the calculation of program meanings, particularly
useful when there are many cases introduced by condi-
tional statements. It is essentially a symbolic execution of
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the program. Two trace tables, corresponding to the two
cases of ExpRat,,,, are used to compute the composition:

part condition R I R.Num I R.Den
Ara R.Den< >0 R.Num/R.Den

ExpRat N>=1 {R.Num/R.Den)* *N
part condition R I R.Num I R.Den
Ao R.Den< >0 R.Num/R.Den

ExpRat,, N<1

The resulting function is:

(R.Den< >0 ANDN>=1 —

R := (R.Num/R.Den)**N) |
(R.Den< >0 ANDN<1 —
R:= R.Num/R.Den).

The composition of |ExpRat| with 4, is:

((N>=1 - R.Num,R.Den := R.Num**N,R.Den* *N} |
(N<1 —))o(R.Den < > 0 — R:= R.Num/R.Den).

Two trace tables are also used to compute this composi-
tion. First:

part | condition | R | R.Num | R.Den

N>=1
R.Den**N< >0

ExpRat R.Num**N|R.Den**N

A R.Num**N/R.Den**N

Since R.Den* *N < >0 implies R.Den < > O, this part
of the composition can be rewritten as:

N<=1 AND R.Den< >0 —
R := R.Num**N/R.Den* *N.

Turning to the second case, we have the following table:

part condition | R I R.Num [R.Den
ExpRat N<1
Ara: R.Den< >0 |R.Num/R.Den

Thus the result of the second function composition is:

(N>=1 AND R.Den< >0 —
R := R.Num**N/R.Den* *N) |
(N<1 AND R.Den< >0 —
R := R.Num/R.Den)

which is identical to the first composition. Hence the dia-
gram commutes, and ExpRat is correct.

V. COMPARISON TO RELATED WORK

Just as the functional method of program proof is close
in spirit to the Floyd/Hoare method, so the treatment of
modules given here is little more than the application of
denotational-semantic definitions to Hoare’s initial for-
malization of SIMULA classes. However, we believe that
the choice of the concrete and abstract domains as sets of
states containing variables connected by the representa-
tion mapping is an improvement over the Alphard meth-
odology that is also based on Hoare’s work. The states
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allow the representation to include not only the value cor-
respondence, but an identifier correspondence as well.
When a data abstraction is used, the calls on its operations
occur in states that include the abstract variables, and our
proof method allows the abstract function whose correct-
ness has been established by the proof of a module to be
used directly in such a state.

In the Alphard methodology [3], the commuting dia-
gram is not the central idea. Instead, Hoare-style proofs
and invariants are used to factor the correctness problem.
The two worlds contain only values, not states that in-
clude variable names. There is a program in each world,
which manipulates these values. The diagram looks
something like:

{abstract values} Q {abstract values}
A A
{concrete values} P {concrete values}

where A is the representation mapping, Q is a program
manipulating abstract values, and P operates on concrete
values. These two programs must be proved with respect
to input-output assertions in the appropriate world, two
Hoare proofs:

Bpw { Q } Bpost’
Bin { P} Bout-

Given these proofs, the diagram is forced to commute
using a concrete invariant I.(x), factored from the con-
crete input and output assertions for procedures (3;, and
Bouws and an abstract invariant, I,(A4(x)), from the ab-
stract input and output assertions By, and .. Sufficient
conditions for a commuting diagram are that if the ab-
stract input assertion holds on mapped concrete values,
then the concrete input assertion holds on those concrete
values:

1. (%) A Bpre (A(X)) D Bin(x);

and, the result of the concrete operation guarantees the
result of the abstract operation:

1o (X) A Bore (A(X")) A Bout (%) D Bpost (A(x)).

Establishing the first condition can present problems since
premises about abstract objects are used to establish facts
about concrete objects, and the many-to-one nature of
representation functions may prevent these demonstra-
tions.
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For example, consider the procedure ExpRat proved in
Section IV. In Alphard terms, its abstract pre- and
postconditions would be

Bpre =R =R’ and 6p05t =R = R'N,

where the ghost variable R’ has been introduced to rep-
resent the initial value of the parameter. The concrete in-
put and output assertions are similarly:

Bin = R.Num = R.Num’ A R.Den = R.Den’
Bow = R.Num = R.Num’N A R.Den = R.Den’"

with ghost variables R.Num’ and R.Den’. To show
L. (%) A Bpre (A(X)) D Bin (x),
that is,

I.x)AR=R" D
R.Num = R.Num’ A R.Den = R.Den’,

we need to pick a stronger concrete invariant than R.Den
* 0.

R.Den # OAR =R’ D
R.Num = R.Num’ A R.Den = R.Den’

cannot be proved since the correspondence between ab-
stract and concrete states is not precise enough to pull
implications about the latter from facts about the former.
We need to add clauses to the concrete invariant that as-
sure that the numerator and denominator do not contain a
common factor greater than one and that both positive and
negative rationals are both uniquely represented. Thus we
might pick

R.Den > 0 A gcd(R.Num, R.Den) =1
as the concrete invariant so that
R.Den > 0 A gcd(R.Num, R.Den) =1 A

R.Den’ > 0 A gcd(R.Num’, R.Den’) =1 AR =R’
O R.Num = R.Num’ A R.Den = R.Den’.

Much of the difficulty in these proofs comes from in-
cluding ghost variables in concrete input assertions of op-
erations. We could adopt a proof technique (like that for
procedures in Euclid [8]) where such assertions are added
to input assertions in the proof rule rather than being part
of the input assertions themselves. If this were the case in
the example above, the abstract and concrete input asser-
tions could be written as

Bore = true, B3, = true,

and the verification
R.Den # 0 A true D true
could be carried out with a relatively weak concrete in-

variant. While this approach solves many problems, it
may still be necessary to assert that objects have certain
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values before an operation is invoked. For example an
absolute value operation for rational numbers might be
written as follows:

R.Num <0 {R.Num := —R.Num}
R.Num = |R.Num’|
WHILEI < N

DO { I<N = I,T.Num,T.Den :=
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since when the value of N is 1, R.Num and R.Num* *N
have the same value.

The functions for the sequences of assignment state-
ments were obviously chosen correctly. However, we still
must establish the correctness of the function chosen for
the WHILE statement:

N, T.Num*R.Num**(N—1),T.Den*R.Den* *(N —1)) |

(I>=N-)}

BEGIN
l:=1+1;
T.Num := T.Num * R.Num;
T.Den := T.Den * R.Den
END;

After applying the assignment axiom, we could verify

R.Num=R.Num’ A R.Num<0 D
—R.Num = |R.Num’|

However, given the abstract pre- and postconditions
Bpre = R<0 and B, = R = |R’|
we cannot verify

I.(R.Num, R.Den) AR<0O D R.Num<O

without a strong concrete invariant assuring us that the
denominator is represented by a positive integer.

In expression-based (functional) programming lan-
guages, values do not necessarily require names. But as-
signment-based (procedural) languages manipulate dis-
tinct named values, and their abstract data types require
these names.

APPENDIX
To calculate ExpRat for the procedure of Section IV,
we compose the functions computed by the three initial
assignment statements, the WHILE statement, and the two
final assignment statements:

{I, T.Num,T.Den := 1,R.Num,R.Den) o

Let the body of the loop be S. Using the WHILE state-
ment verification theorem of Section II, the intended func-
tion F, which appears as a comment on the WHILE state-
ment, and (WHILE | < N DO S}, are identical if:

1) domain(F) = domain([WHILET < N DO J)),

2) F(T) = T whenever = [I < N|(T),

3) F= [IFI < NTHEN S] o F.
The domain of F is:

I<NORI>=N = true

If 1> =N, the WHILE statement is skipped so termina-
tion is assured. If | <N, the WHILE statement is exe-
cuted, | is incremented, and the eventual termination of
the statement is assured because the value of | approaches
that of N. Thus the first condition is satisfied.

The second condition requires F to be the identity if the
WHILE condition does not hold. This is exactly the final
case in the definition of F.

Finally, we can work out the right side of the third con-
dition. The function of the IF statement

IFI<NDOS

((I<N = I,T.Num,T.Den := N,T.Num*R.Num**(N—I),T.Den*R.Den* *(N—1)) |

(I>=N—))o
(R.Num,R.Den := T.Num,T.Den).

The result is:

(1<N — |, T.Num,T.Den,R.Num,R.Déen :=
N,R.Num*R.Num**(N—-1),R.Den*R.Den**(N—1),
R.Num*R.Num**(N—1),R.Den*R.Den**(N—1)) |

{1>=N—|,T.Num,T.Den := 1,R.Num,R.Den)

Simplifying and ignoring the effects on local variables
yields the function:

(1 <N — R.Num,R.Den := R.Num**N,R.Num**N) | (1> =N —)

This is identical to the function given in the ‘‘con:’’ com-
ment of ExpRat:

(N>=1 - R.Num,R.Den := R.Num**N,R.Den**N) | (N<1 —)
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is
(I<N - I,T.Num,T.Den := I+1,T.Num*R.Num,T.Den*R.Den) | (I>=N — ).

The composition [IF | < N THEN S| o Fis:

(I<N = |,T.Num,T.Den := 1+ 1,T.Num*R.Num,T.Den*R.Den) |

(1I>=N—-))o
((I<N = |,T.Num,T.Den := N,T.Num*R.Num**(N—1),T.Den*R.Den* *(N—1) ) |
(I>=N—)).

There are four cases to consider.
Trace Table 1:

Part | Condition | 1 | T.Num T.Den
IF I<N 1+1 T.Num*R.Num T.Den*R.Den
F I+1<N N T.Num*R.Num*R.Num | T.Den*R.Den*R.Den
**¥(IN=(1+1)) **¥(IN—-1+1))
Simplifying yields:

I<NANDI+1<N =1+1<N
T.Num*R.Num*R.Num** (N— (I+ 1)) = T.Num**R.Num (N —1)
T.Den*R.Den*R.Den** (N— (I+1)) = T.Den**R.Den(N—1)

Thus this part of the composition is:
I+1<N - |,T.Num,T.Den := N, T.Num*R.Num** (N—1),T.Den*R.Den* * (N—1).
Trace Table 2:

Partl Condition I | l T.Num ' T.Den
IF I<N I+1|T.Num*R.Num [T.Den*R.Den
F |[I+1>=N

The condition is:
I<NANDI+1> =N=1+1 = N.

When the value of 1+ 1 is the same as the value of N, we observe:

T.Num*R.Num** (N—1) = T.Num*R.Num,
T.Den*R.Den** (N—1) = T.Den*R.Den.

Thus this part of the function is:
I+1=N — I, T.Num,T.Den := N,T.Num*R.Num** (N—1),T.Den*R.Den* * (N—1).

Trace Table 3:

Part| Condition ‘ [ | T.Num | T.Den
IF I>=N
F I<N N | T.Num*R.Num**(N—1I) | T.Den*R.Den** (N—1)

The condition I > =N AND I <N cannot be satisfied, so this part contributes nothing to the composition.
Trace Table 4:
Part l Condition: l I l T.Num J T.Den

IF I>=N
F I>=N



GANNON et al.: THEORY OF MODULES

Thus this part of the function is:
(1I>=N—).
Putting the four part functions together:
(I+1<=N — I, T.Num,T.Den :=
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focused on the design of less error-prone programming languages. His in-
terests in program proving and testing have lead him to investigate formal
specifications, test oracles, and test coverage metrics. He has also studied
atomic remote procedure call as a primitive for distributed and fault-tol-
erant computing.

N,T.Num*R.Num** (N—1),T.Den*R.Den** (N—1)) |

(I>=N —).

Because the conditions |+1< =N and |<N have the
same value, the composition of the four part functions is
identical to F, establishing the third condition of the ver-
ification theorem.
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