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Engineering Software 
under Statistical 
Quality Control 

Richard H. Cobb and Harlan D. Mills, Software Engineering Technology 

Thecosbof 
continuing to develop 
failure-lden 8offws1ye 

with its associated 
low prductivity are 

unaamptable. 
C1-r- 

englneeri~promises 
lower costs and 

improved qualit~c 
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ociety has been developing soft- 
ware for less than one human gen- S eration. We have accomplished a 

great deal in this first generation when 
compared to the accomplishments of 
other disciplines: During the first genera- 
tion of civil engineering, the right triangle 
hadn't been invented; accountants did 
not discover doubleentry concepts in the 
early generations of their field. 

Yet despite such significant progress, 
softwaredevelopment practices need im- 
provement. We must solve such problems 
as 

execution failures, which exist to the 
extent that software failures are accepted 
as normal by most people, 

projects that are late and/or over bud- 
get, and 

the labor-intensive nature of software 
development - productivity increases 
have been modest since the introduction 
of Cobol. 

And at the same time we are having diffi- 
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culty producing reliable software there is 
a demand for even more complex, larger 
software systems. 

These problems are symptoms of a p r e  
cess that is not yet under intellectual con- 
trol. An activity is under intellectual con- 
trol when the people performing it use a 
theoretically sound process that gives 
each of them a high probability of obtain- 
ing a commonlyaccepted correct answer. 

When most endeavors begin, they are 
out of intellectual control. Intellectual 
control is achieved when theories are de- 
veloped, implementation practices are re- 
fined, and people are taught the process. 

A good example is long division. For 
many generations, performing division 
with Roman numerals was error-prone. 
Today, children who learn how to do long 
division with Arabic numerals obtain the 
correct answer most of the time. The long 
division algorithm is: 

1. If the division is not complete, invent 
(estimate) the next digit. 
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2. Verify the invention (estimate) made 
in step 1. 

3. If the verification is correct and the 
division is not complete, repeat step 1 for 
the next digit; if the verification is not cor- 
rect, repeat step 1 for the same digit by 
adjusting the invention. 

This is a powerful algorithm for estab 
lishing intellectual control. A difficult 
problem, which on the surface seems to 
require a large invention, has been di- 
vided into a series of smaller problems, 
each requiring a smaller invention. Most 
important, each inventive step is followed 
immediately by a verification step to a p  
praise the invention’s correctness, so s u b  
sequent inventions don’t build on incor- 
rect results. 

This algorithm also applies to software 
design and development. As software 
technologists strive to find better ways to 
develop software, we believe that they are 
hindered by some widely accepted beliefs 
about how to develop software. We believe 
that if we adopt new perspectives about 
these development myths, we will open 
the way to development practices that will 
permit the construction of software that 
contains few, if any, latent failures. 

We have used new perspectives to derive 
Cleanroom engineering practices. Clean- 
room engineering develops software 
under statistical quality control by 

specifymg statistical usage, 
defining an incremental pipeline for 

software construction that permits statisti- 
cal testing, and 

separating development and testing 
(only testers compile and execute the soft- 
ware being developed). 

These practices have been demon- 
strated to provide higher quality software 
- software with fewer latent execution 
failures. These same engineering prac- 
tices also have been observed to improve 
productivity. Table 1 summarizes some 
quality and productivity metrics for proj- 
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ects using some or all of these new soft- 
waredevelopmen t practices. 

Software myths 
Myth: Software failures are unavoidable. 
This myth holds that software always 

contains latent execution failures that will 
be found by users. Therefore, we must 
learn to live with and manage around soft- 
ware failures. 

Fact: Like other engineering activities, 
engineering software is a human activity 
subject to human fallibilities. Yet other en- 
gineering disciplines have learned how to 
design large and complex products with a 
low probability that the designs contain 

Ekperience to date 
supports our belief that 
as software developers 

move from today’s 
heuristic proglamming 
to rigwous somvare 
englneering, quality 

will increase and costs 
will decrease. 

faults that will cause latent execution fail- 
ures. When structural engineers design a 
bridge there is a high expectation that the 
bridge, when built, will not fall down. 

In other engineering disciplines, design 
failures are neither anticipated nor ac- 
cepted as normal. When a failure h a p  
pens, major investigations are undertaken 
to determine why it occurred. Other engi- 
neering professions have minimized 
error by developing a sound, theoretical 
base on which to build design practices. 

But because software developers expect 
and accept design failures, software users 
cannot have the same high expectations 
as users of other products. We believe this 

is because software developers rely on an 
incomplete theory, so their engineering 
practices don’twork. 

Software engineers should be required 
to use engineering practices that produce 
software that does not contain faults that 
cause latent execution failures. Users 
want the same high assurance that soft- 
ware will work according to its specifica- 
tion that they have for products designed 
by other engineers. 

The software profession is young, so we 
might want to start with modest goals, 
such as: Design and implement a 100,000 
line system so, more often than not, no 
execution failure will be detected during 
the software’s entire field life. 

Even this modest goal is beyond our ex- 
pectations using the development prac- 
tices we now rely on. We believe such a 
goal is well within our capabilities ifwe use 
the ideas summarized in this article. For 
example, the software for the IBM Wheel- 
writer typewriter, developed using some 
of these ideas, has been in use for more 
than six years with millions of users and 
no software failure has ever been re- 
ported.’ 

Myth: Qualily costs m m q  
Many people believe that software de- 

signed to execute with no or few failures 
costs more per line of code to produce. 

Fact: Failures and cost are positively cor- 
related. It is more expensive to remove la- 
tent execution failures designed into the 
software than to rigorously design the 
software to prevent execution failures. 
For example, touch-typing is both more 
reliable and productive than hunt-and- 
peck typing. 

We believe - and experience to date 
supports our belief- that as software de- 
velopers move from today’s heuristic p r e  
gramming to rigorous software engineer- 
ing, quality will increase and design and 
development costs will decrease. 
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Table 1. 
Selected sample of Cleanroom projects. 

(All other projects known to authors report substantial improvements in quality and productivity.) 

Applied 
Year technologies Implementation Results 

1980 

1983 

1980s 

1987 

1988 

1989 

1990 

Stepwise refinement 
Functional verification 

Functional verification 
Inspections 

Functional verification 
Inspections 

Cleanroom engineering 

Cleanroom engineering 

Partial Cleanroom 
engineering 

Cleanroom engineering 
with reuse and new Ada 
design language 

Census, 25 KLOC (Pascal) 

Wheelwriter, 63 KLOC, 
three processors 

Space shuttle, 500 KLOC 

Flight control, 33 KLOC (Jovial) ,, 
three increments 

Commercial product, 80 KLOC (PL/I) 

Satellite control, 30 KLOC (Fortran) 

Research project, 12 KLOC 
(Ada and ADL) 

No failure ever found 
Programmer received gold medal 
from Baldridge 

Millions of users 
No failure ever found 

Low defect over entire function 
No defect in any flight 
Work received NASA’s Quality Award 

Completed ahead of schedule 
2.5 errors/KLOC before any execution 
Error-fix effort reduced by a factor of five 

Certification testing failure rate 

Deployment failures of O.l/KLOC 
Productivity of 740 lines/man-month 

Certification testing error rate 

50-percent improvement in quality 
Productivity of 780 lines/man-month 
80-percent improvement in productivity 

Certified to 0.9978 with 989 test cases; 36 
failures found during certification (20 
logic errors, or 1.7 errors/KLOC 

of 3.4 failures/KLOC 

of 3.3 failures/KLOC 

Myth: Unit vmjicatim by debugging works 
on system ofany siz. 

Unitverification- debugging -is best 
done by a single programmer who exer- 
cises the program with specially con- 
structed test cases. During debugging, the 
programmer constructs test cases, devel- 
ops programs to run isolated units of the 
system, runs the tests, and fixes discrepan- 
cies as they are observed. This process 
continues until the programmer is satis 
tied the program performs its intended 
mission. 

Fact: Although it is satisfactory when the 
software product is small, unit verification 
by debugging does not scale up. When the 
product is large and unit verification exer- 
cises only a small portion of the total sys- 
tem, the results are not satisfactory. 

Debugging doesn’t scale up because it 
often compromises the design’s integrity. 
Typically, software units are built accord- 
ing to a sound design and fit together ac- 
cording to the design when unit debug- 
ging begins. But the fixes introduced 
during debugging, while they may seem to 
make individual modules perform their 
intended mission fully, cause design faults 
when the fixed modules are combined. 

These failures are then either found dur- 
ing integration testing or left in the prod- 
uct as latent failures. Debugging seems to 
produce local correctness and global in- 
correctness. 

Ed Adams examined every failure re- 
port for nine of IBM’s most widely used 
software products for several years and 
traced each to its origin. He found that in 
most cases the cause of the failure was in- 
troduced during an attempt to fix another 
failure.’ 

Fact: Unit verification by logical argu- 
ment does scale up. This method of unit 
verification is based on the time-tested 
method of proving the correctness of an 
assertion by developing a proof. A p r e  
gram specification is a function or rela- 
tion; a program of any size or complexity 
is a rule for a function. So all you have to 
do to show the correctness of a program is 
to show that it is a complete rule for a s u b  
set of the specification. 

Experience indicates that using proof 
arguments to show program correctness is 
not an academic curiosity that works on 
small problems - it is a robust technique 
that works well on large, complex systems. 

Table 1 summarizes data for a few proj- 

ects that used unit verification by logical 
argument. All our experience with this 
method indicates that the scaleup prob 
lem associated with debugging is very tract- 
able. Unit verification by logical argument 
seems to work because when a defect is 
found in a proof argument the focus can’t 
shift to local concerns to make something 
work - the argument focuses entirely on 
global issues. 

Fact: Unit verification via logical argu- 
ment is more cost-effective than unit veri- 
fication via debugging, for four reasons: 

Design errors are caught sooner and 
as a result are less costly to fix. 

It eliminates the expense of finding 
the subtle, hard-to-fix failures introduced 
by debugging. 

It eliminates the expense of building 
programs to permit unit testing and pre- 
paring unit test cases. 

Surprisingly, it takes less time. 
Do we really mean that unit tests should 

not be conducted? Yes. Unit testing is 
done to demonstrate that the unit satisfies 
its specification. We believe you can better 
demonstrate this with logical arguments. 
So ifwe don’t test units, then what do we 
test and when? The answer to that ques- 
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tion involves another myth. 

Myth: The only way to p e r f m  unit umjica- 
tion via logical argument is to use a computer 
program. 

Researchers have invested significant ef- 
fort into building programs that use axi- 
omatic arguments to verify programs. 
These programs, as of now and for the 
foreseeable future, can verlfy only small 
programs using a limited number of lan- 
guage constructs. Developers have not 
been able to scale up axiomatic verifica- 
tion programs even with today’s very fast 
computers. 

Fact: Engineers can verify large pro- 
grams made up of many language con- 
structs with functional verification. Func- 
tional verification, introduced by Richard 
Linger, Harlan Mills, and Bernard Witt,3 is 
quite different from axiomatic verifica- 
tion. 

With functional verification, you struc- 
ture a proof that a program implements 
its specification correctly. Again, if a pro- 
gram specification is a function then a 
program is a rule for a function. The 
proof must show that the rule (the p r e  
gram) correctly implements the function 
(the specification) for the full range of the 
function and no more. 

Linger, Mills, and Witt have developed a 
correctness theorem that defines what 
must be shown for each of the structured 
programming language constructs. The 
proof strategy is divided into small parts, 
which are easily accumulated into a proof 
for a large program. Our experience indi- 
cates that people can master these ideas 
and construct proof arguments for very 
large programs. 

The first reaction of many people is that 
it must be hard to construct a proof that a 
program is correct. Our experience indi- 
cates that, with a modest amount of train- 
ing and the opportunity to use the ideas 
on the job, people can learn to develop 
proof arguments and talk to other engi- 
neers in terms of proofs. 

Linger: Mills,’ Richard Selby,’ and oth- 
ers have analyzed the performance of soft- 
ware engineers using functional verifica- 
tion to perform unit verification via 
logical argument. Among their observa- 
tions: 

9 Engineers find logic errors with func- 
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tional verification, leaving only simple er- 
rors like syntax oversights to be found dur- 
ing execution testing. 

Many engineers find the mental chal- 
lenge of functionalverification more stim- 
ulating and Satisfying than debugging. 

9 Many engineers find the team style B 
sociated with functional verification more 
satisfjmg than the solo style associated 
with debugging. 

9 Engineers can learn how to perform 
unit verification via functional verifica- 
tion. 

Engineers performing functional veri- 
fication leave significantly fewer failures to 
be found during later lifecycle phases 
than debuggers. Data indicates that func- 
tional verification leaves only two to five 
futes per thousands lines of code to be 
made in later phases: compared to 10 to 

Coverage testingis as 
likely to find a rare 

execution failure as it is 
a frequentone. Usage 

testingthatmatchesthe 
actual usage profile has 

abetterchamoffinding 
the execution failures 
that occur fiequentlF 

30 fixes left by unit testing by debugging! 
Engineers practicing functional verifi- 

cation complete the total development 
process with significantly less effort than 
those practicing unit verification via de- 
bugging. Measurements indicate that the 
improvement in productivity may be 
three to five times! 

Myth: Software is best tested by designing tests 
that coverevery path through theprogram. 

This testing method, called coverage 
testing, requires that the test developer be 
completely familiar with the software’s in- 
ternal design. 

Fact: Statistical usage testing is 20 times 
more cost-effective in finding execution 
failures than coverage testing (a claim we 
will prove later). 

In statistical usage testing, the test devel- 
oper draws tests at random from the p o p  
ulation of all possible uses of the software, 

in accordance with the distribution of ex- 
pected usage. The test developer must un- 
derstand what the software is intended to 
do and how it is expected to be used. The 
test developer then constructs tests that 
are representative of expected usage. No 
knowledge of how the software is de- 
signed and constructed is required. 

Fact: Users observe failures in execu- 
tion. While developers talk of finding and 
fixing errors or faults, users don’t observe 
errors or faults. They observe execution 
failures, which occur when the software 
doesn’t do something it’s required to do. 

When a tester observes an execution 
failure, the software is searched for a way 
to prevent it. As a result of the search, 
changes are made to the code that may or 
may not fix the failure and mayor may not 
introduce new latent failures. The modifi- 
cations are counted to obtain a count of 
software errors or faults. 

For example, if you change five areas of 
the program because they were appar- 
ently doing something they shouldn’t be 
doing, we say that five errors have been 
found and fixed. Software failures are pre- 
cise while software errors are imprecise. It 
is execution failures that must be found 
and eliminated from software. 

Some execution failures will occur fre- 
quently, others infrequently. Coverage 
testing is as likely to find a rare execution 
failure as it is afrequent execution failure. 
Usage testing that matches the actual 
usage profile has a better chance of find- 
ing the execution failures that occur fre- 
quently. 

Therefore, since the goal of a testing 
program should be to maximize expected 
mean time to failure, a strategy that con- 
centrates on the failures that occur fre- 
quently is more effective than one that has 
an equal probability of finding high- and 
low-frequency failures. 

Myth: It doesn’t matter how mm or failures 
are found, as longas thq mejxed. 

Fact: The failure rates of different er- 
rors can vary by four orders of magnitude 
in complex systems. To measure the in- 
creased effectiveness of usage testing over 
coverage testing, you need to know the 
frequency of rare failures versus frequent 
failures in a population of programs 
under test. The Adams study contains one 
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Table 2. 
Software failures for nine major IBM products, classified from rare to frequent. 

Rare . Frequent 

Group 

M m F  (years) 

Percent failures 
in class for product 1 

2 

3 

4 

5 

6 

7 

8 

9 

Average percentage 
failures 

Probability of a failure 
for this frequency 

1 

5,000 

34.2 

34.3 

33.7 

34.2 

34.2 

32.0 

34.0 

31.9 

31.2 

33.4 

0.008 

2 

1,580 

28.8 

28.0 

28.5 

28.5 

28.5 

28.2 

28.5 

27.1 

27.6 

28.2 

0.021 

3 

500 

17.8 

18.2 

18.0 

18.7 

18.4 

20.1 

18.5 

18.4 

20.4 

18.7 

.044 

4 

158 

10.3 

9.7 

8.7 

11.9 

9.4 

11.5 

9.9 

11.1 

12.8 

10.6 

0.079 

5 

50 

5.0 

4.5 

6.5 

4.4 

4.4 

5.0 

4.5 

6.5 

5.6 

5.2 

0.123 

6 

15.8 

2.1 

3.2 

2.8 

2.0 

2.9 

2.1 

2.7 

2.7 

1.9 

2.5 

0.187 

7 

5 

1.2 

1.5 

1.4 

0.3 

1.4 

0.8 

1.4 

1.4 

0.5 

1 .o 

0.237 

8 

1.58 

0.7 

0.7 

0.4 

0.1 

0.7 

0.3 

0.6 

1.1 

0.0 

0.4 

0.300 

large database we can use to estimate in- 
creased effectiveness. 

Table 2 summarizes Adams’s data, 
which has been classified across columns 
by the frequency that a some user found a 
failure? Each row represents a major IBM 
system like M V S ,  Cobol, and IMS. The col- 
umns represent a subdivision of the fre- 
quency in which users observed afailure. 

For example, the first column repre- 
sents failures observed by users on the av- 
erage of once every 5,000 years of usage; 
the last column represents failures o b  
served by users on the average of once 
every 1.58 years of usage. The data in each 
cell defines the percentage of all failures 
observed for the software system repre- 
sented by that row with the expected fre- 
quency represented by that column. The 
values in each row sum to 100. 

The remarkable fact is that, over this 
very divergent range of products, the dis 
tribution of failures occurring with differ- 
ent frequencies is uniform. This letsus use 
the data for analysis. 

The bottom two rows of Table 2 contain 
two numbers for each failure frequency, 
the average percent failures for the group 
and the probability of a failure of the fre- 
quency represented by that group. An ex- 
amination of these last two rows provides 
some critical insights. Groups 1 and 2, 
which represent failures that will be o b  
served less than once in 1,580 years of ex- 

pected use, account for 61.6 percent of 
fixes made but only for 2.9 percent of the 
failures that will be observed by typical 
users. On the other hand, groups 7 and 8 
represent only 1.4 percent of the fixes 
made to the software but eliminate 53.7 
percent of the failures that would be o b  
served by a typical user. 

If you use coverage testing, you would 
spend 61.6 percent of the testing and cor- 
rection budget on finding and futing er- 
rors that will eliminate only 2.9 percent of 
the failures, and only 1.4 percent on mak- 
ing fixes that would eliminate 53.7 per- 
cent of failures. Coverage testing doesn’t 
appear to very effective at allocating the 
testing and correction budget to increase 
M m .  

On the other hand, a usage testing strat- 
egy allocates the budget in accordance 
with the probability that afailure is observ- 
able by the average user: It allocates 53.7 
percent to fixes that will occur 53.7 per- 
cent of the time in the experience of an 
average user. 

Using the data in Table 2, we can show 
that usage testing is 21 times more effec- 
tive at increasing MTTF than coverage 
testing. Let Pbe the increase in MTTF o b  
tained by the next fix determined by cov- 
erage testing. Then the increase in MTTF 
obtained by the next fix determined by 
usage testing will be: 

((0.008/60) + (0.021/19) + (0.044/6) + 
(0.079/1.9) + (0.123/0.6) + (0.187/0.19) t 
(0.237/0.06) + (0.30/0.019)) P= 20.98 P 

This surprising result suggests the pre- 
vailing strategy for testing and correcting 
software is very inefficient. 

Myth: Software behavior is deterministic. 
Therqie, statistics cannot be used to make in- 

fmences about sofiare quality. 
Fact: Software use is stochastic. A soft- 

ware system has many different uses to 
perform different missions starting from 
different initial conditions and given dif- 
ferent input data. Each different use is a 
different event. Given a system that con- 
tains some latent failures, some usages will 
result in a failure; others in a correct exe- 
cution. If you sample the entire popula- 
tion of all possible usages in accordance 
with an expected usage profile and main- 
tain a record of failures and success, you 
can use statistics to estimate reliability. 

Fact: You can estimate the expected 
M’ITF for a system from a series of tests 
drawn at random in accordance with an 
expected usage profile from the popula- 
tion of all possible uses. The major a s  
sumption you must make to make the sta- 
tistical estimation valid is that the 
development process is in a state of con- 
trol. This is not an unreasonable assump 
tion - it is the same one made when sta- 
tistical quality-control practices are 
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applied to a production process. 
While our experience in applying statis- 

tical quality-control techniques to soft- 
ware development is limited, initial expe- 
rience indicates that  five fixes per 
thousand lines of code can be tolerated 
without invalidating the application of sta- 
tistics to estimate MTTF. This failure rate 
is low compared to normal development 
practices, where 20 to 60 fixes per thou- 
sand lines of code is not atypical. 

Fact: Experience indicates that it is pos 
sible to design and develop software that 
requires less than five fixes per thousand 
lines of code from its first compilation 
throughout its useful life. The engineer- 
ing practices that let such quality be 
achieved before any execution testing are 
grouped under the heading “Cleanroom 
engineering. ” 

Myth: The solutim to the development Fob 
lem is to create tools that will do forpeople what 
thq can’t dofol themselves. 

The general idea behind this myth is 
that people can’t be trusted to make the 
difficult inventions that software develop 
ment requires. 

Fact: Automation is very effective in 
helping us do the things we already know 
how to do. We know how to write. Aword 
processor helps us write faster, but it 
doesn’t help us write better (except that it 
gives us more time to think). 

A translator - a compiler - can trans 
late a high-level language definition into 
machinelevel instructions. For example, 
compilers translate a Fortran or Cobol 
program into machine language. While 
this translation algorithm can be per- 
formed by people or computers, comput- 
ers have an advantage because, once they 
have been programmed to do it, they are 
fast and reliable and can free people to do 
something else. 

Fact: Automation is not effective in 
helping us do things we don’t know how 
to do algorithmically. When we computer- 
ize incomplete algorithms, the results are 
incomplete and unsatisfactory. When 
database management systems were first 
introduced, hierarchical and network 
databases were common. Database man- 
agement programs encountered failures 
that were eventually traced to a common 
set of problems which E.F. Codd named 

data-maintenance abnormalities. 
These abnormalities, which cost busi- 

ness a great deal in terms of wrong deci- 
sions and software fixes, were caused by a 
basic failure in the hierarchical and net- 
work database models. These models 
could not maintain the referential trans- 
parency between the actual data and the 
state data used to represent it in computa- 
tions: In certain situations, the value of the 
state data did not accurately represent the 
actual data as stored in the database. 
Codd’s relational algorithm does main- 
tain referential transparency, and if it is 
used to maintain keys in a relational 
database, it eliminates these failures. 

This should have been an important lee 
son learned, but apparently the lesson was 
lost, because loss of referential transpar- 

Tools are only as good as 
the ideas that serve as 
their found#ion. The 
important mor in 

selectingdesighand 
development tools is to 

select the ideas you want 
to use to help gUide the 

inventive process. 

ency is still a common design flaw. The 
current generation of computer-aided 
software-engineering tools does not help 
maintain referential transparency and in 
some cases even allows designs that do not 
exhibit referential transparency. 

For example, some CASE tools help you 
invent program structures by converting 
dataflow diagrams into program struc- 
tures. Due to the one-to-many relation- 
ship between a dataflow diagram and a 
program-structure chart, it is easy to lose 
referential transparency between the his 
tory of stimuli to the software and the state 
data used to represent the stimuli histo- 
ries. 

Fact: Ideas must precede tools. Tools are 
only as good as the ideas that serve as their 
foundation. The important factor in se- 
lecting tools to assist in software design 

and development is to select the ideas that 
youwant to use to help guide the inventive 
process. Once that is done then the ideas 
can be organized into an engineering 
process that helps people exploit the c h e  
sen ideas. Then it is possible to select or 
build tools that enhance peoples’ produc- 
tivity in performing these ideas. 

Cleanroom engineering 
These ideas are the foundation for the 

set of softwareengineering practices we 
call Cleanroom engineering? 

Cleanroom engineering can help soft- 
ware engineers implement reliable soft- 
ware - software that won’t fail during 
use. Cleanroom engineering 

achieves intellectual control by apply- 
ing rigorous, mathematics-based engi- 
neering practices, 

establishes an “errors-are-unaccept- 
able” attitude and a team responsibility 
for quality, 

delegates development and testing re- 
sponsibilities to separate teams, and 

certifies the software’s MTTF through 
the application of statistical quality-con- 
trol methods. 

Process. Cleanroom engineering in- 
volves a specification team, a develop 
ment team, and a certification team. The 
specification team prepares and main- 
tains the specification and specializes it 
for each development increment. The de- 
velopment team designs and implements 
the software. The certification team com- 
piles, tests, and certifies the software’s cor- 
rectness. 

In the Cleanroom engineering, the 
team members 

complete a rigorous, formal specifica- 
tion, even if it is preliminary, before they 
begin design and development, 

*develop a construction plan by de- 
composing the specification into small 
(seldom more than 10,ooO lines of third- 
generation code) user-executable incre- 
ments, 

design, implement, and verify each 
user-executable increment, and 

assess the software’s quality. 

Typical project. Figure 1 shows a profile 
of a typical Cleanroom engineering proj- 
ect, divided into phases. 
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Problem analysis and requirements phases 

specification 

I 

Construction 
Planning 

Certify 
increment 1 1 

t t 

Design and build 
increment 2 1 Test preparation for 

increments 1 and 2 

Solution 
deployment 

I I 
I 
F i r e  1. Profile of a three-increment Cleanroom-engineering project. 

S,beciJicution. The first task is to assemble 
what is known into a specification docu- 
ment, complete the remaining details, 
then prepare and publish aformal specifi- 
cation. The first version may be prelimi- 
nary due to lack of information, but it 
should still be formal. The specification 
must be as complete as possible and a p  
proved before development begins. 

The effort required to prepare the spec- 
ification depends on how much is known 
when the decision to develop the software 
is made. It should be in three parts, which 
should agree: external specification, in- 
ternal specification, and expected-usage 
profile. 

The external specification is a user’s ref- 
erence manual. It defines how the soft- 
ware will look and feel from the user’s per- 
spective and all the interfaces with the 
software. The specification should in- 
clude details on 

the system environment (hardware, 
peripherals, operating system, related 
software, and people), 

the application environment (data 
and use structures), 

initialization and shutdown, 
system use (commands, menus, 

events, and modes), which must define all 
stimuli the system can receive from p e e  
ple, computers, and other devices and all 
responses it will produce, 

performance guidelines (timing and 
precision), and 

responses to undesired events. 
The external specification iswritten in a 

language understood by users, but it is not 
a tutorial. It is not designed to instruct 
how to use the software; it is intended to 
define precisely how the software will 
work. Using only the external specifica- 
tion, someone with appropriate applica- 
tion expertise should be able to use the 
software with no surprises. 

The internal specification is more math- 
ematical. It completely states the mathe- 
matical function or, more generally, math- 
ematical relation for which the program 
implements a rule. This definition is re- 
quired to implement the program and 
verlfy its correctness. It must be imple- 
mentation-independent so the program 
architecture can be designed free of pre- 

conceptions. 
The internal specification augments in- 

formation in the external specification. 
For example, while the external specifica- 
tion defines the stimuli the software will 
act upon and responses it will produce, 
the internal specification defines the re- 
sponses in terms of stimuli histories. Spec- 
ifylng the functional relationship between 
responses and stimuli completely in terms 
of stimuli histories avoids commitment to 
implementation details. 

Speclfylng responses this way is usually 
hard to learn at first because it is natural to 
use invented abstractions - state data - 
to represent some portion of the prior 
stimuli. But as soon as you use state data to 
define software responses, you begin mak- 
ing implementation commitments. 

At the specification stage, you must de- 
fine what is to be done, not how to do it. 
Experience indicates that as soon as you 
learn to define what is to be done free of 
implementation details, you can design 
and implement much better software. 
(David Parnas recommends traces8) We 
find using stimuli histones more conve- 

50 IEEE Software 



nient and natural and therefore easier to 
teach. 

The expected usage profile defines the 
software’s anticipated use. This document 
primarily guides the preparation of usage 
tests. To make a valid inference about the 
software’s expected M‘ITF, you must de- 
velop and run tests with stimuli taken 
from the population of all possible stimuli 
and in the same proportion as they will be 
generated when the system is in use. 

Statistical testing is a stochastic process. 
The simplest and best understood s t e  
chastic process is the Markov process, 
which can model the usage of most if not 
all software systems. In developing a Mar- 
kov model for expected use, you must de- 
fine all usage states and estimate the tran- 
sition probabilities between usage states. 
This sounds harder than it seems to be in 
practice. For example, see Jesse Poore’s 
work? 

There is no magic in preparing the writ- 
ten specification. The magic is inventing 
what the software should do to accom- 
plish its mission - a much deeper and 
harder problem than developing the soft- 
ware. That is why it is so important to use 
good engineering practices in developing 
software so the time and attention now 
being consumed on the easy part of the 
problem can be redirected to the harder 
problem of determining what the soft- 
ware should be doing. 

Construction plan. This phase deter- 
mines the development and certification 
sequence. To do this, you decompose the 
specification into executable increments. 
An executable increment can be tested by 
invoking user commands or supplying 
other external stimuli. 

The criteria to determine the construc- 
tion sequence include 

the availability of reusable software, 
how much is known about the reliabil- 

ity of the reused software for the expected 
usage profile, 

increment size (increments should sel- 
dom be larger than 10,OOO lines), and 

the number of development teams 
available, which determines the possibili- 
ties for parallel development. 

Incremental development is not new. 
The important new idea is the require- 
ment that each increment in the construc- 

tion plan, including the first, be execut- 
able by user commands. This means both 
that the system must be constructed top- 
down and that you need write no special 
testing routines. 

It also means that incremental integra- 
tion testing is done as each new increment 
is written. And it lets you use all test runs, 
including the tests on the very first incre- 
ment, to help estimate the final MTTF. 
Figure 2 shows a sample construction 
plan. 

When you have decomposed the specifi- 
cation into increments, design, imple- 
mentation, and testing can begin. These 

Your specification must 
define what is to be done, 

not how. Btpedeme 
indicates that as soon as 
you leam to define what 

is to be done free of 
implementation details, 

you can create much 
better software. 

two phases can proceed in parallel. 

Design and build. The development 
team, not an individual engineer, is re- 
sponsible for the quality ofthe increments 
developed. The team uses technologies to 
construct increments, box structures and 
stepwise refinement, and functional veri- 
fication. Development proceeds in three 
steps: 

1. Design each increment topdown, to 
create a usage hierarchy in three views: 
black-box, state-box, and clear-box. Venfy 
the correctness of each view. 

2. Implement each increment by rigor- 
ous stepwise refinement of clear boxes 
into executable code. 

3. Verify that the code performs ac- 
cording to its specification using func- 
tional verification arguments. 

Box structures. The team uses box struc- 
tures to create the software’s internal de- 
sign. Box structures view the software 
from three perspectives: 

The implementation-independent 
black-box view defines the responses in 

terms of stimuli histories. 
The data-driven state-box view begins 

to define implementation details by mod- 
ifying the black box to represent re- 
sponses in terms of the current stimuli 
and state data that represents the stimuli 
histories. 

The processdriven clear-box view 
completes the implementation details by 
modifylng the state box view to represent 
responses in terms of the current stimuli, 
state data, and invocations of lower level 
black boxes. 

Some advocate the dataview, others the 
processview for designing software. These 
different points of view cannot be re- 
solved because, in reality, both views are 
required. Box structures let you define 
this dualism. 

Figure 3 summarizes a design algorithm 
defined by Mills that uses box structures.’0 
The first black box restates the specifca- 
tion that defines all the responses p r e  
duced by the increment in terms of stim- 
uli histories. 

Steps 3 through 5 invent the state data 
that represents stimuli histories, to pre- 
serve referential transparency. The alge 
rithm then determines which of the state 
data to maintain at this level of the usage 
hierarchy and which to migrate to a lower 
level. It is important to migrate state data 
to the lowest practical level in the usage 
hierarchy to keep the software’s structure 
under control. 

The state-box description is complete 
when functional relationships exist that 
define the responses in terms of the cur- 
rent stimuli, the state data being main- 
tained at this level, and stimuli histories 
for the state data being maintained at 
lower levels. 

Before the team proceeds to define the 
clear box, it verifies the state-box descrip 
tion by eliminating references to state 
data in the state-box functions. The result 
is a derived black-box function that 
should be the same as the original black- 
box function. 

If the two functions are the same, the 
team defines the clear box that follows the 
state box, otherwise it redefines the state- 
box function to correct the design errors. 
So the design process is suspended as long 
as the design contains logic errors. Just as 
in long division, it is best to fix any error as 
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Increment 
development 

barn A Increment Increment Increment 
1 2 3 

Team B 

Certify 
statistical 
usage 
testing 

Increment 
4 

Increment Increments Increments Increments I ’  1 and 2 1,2, and 3 1,2,3, and 4 I I 

scenarios 

Fire 2. A t y p i c a l  Cleanroom project  construction plan. 

Increment Increments Increments Increments 
1 1 and 2 1,2,and3 1,2,3, and 4 

I I 
Define 1. Define stimuli. 
Black Box 2.  Define responses in terms of stimuli histories. I 
Define 
State Box 

3. Define state data to represent stimuli histories. 
4. Select state data to be maintained at this level. 
5. Mod* black box to represent responses in terms of stimuli 

and the state data being maintained at this level. 
6. Venfy state box. 

7. Record type of reference to state data by stimuli. 

9. Modify state box to represent responses in terms of stimuli, 
this level’s state data, and invocations of lower level black boxes. 

Define 
Clear Box 8. Define data abstraction for each state data. 

10. Verify the clear box. 

Figure 3. The box-structures algorithm. 

soon as possible. It takes less time in the 
long run. 

To design the clear box, the team in- 
vents (selects) the data abstractions (like 
set, stack, and queue) it will use to repre- 
sent the state data maintained at this level. 
Then it modifies the state-box function to 
define responses in terms of current stim- 
uli, state data being maintained at this 
level, and invocations of lower level black 
boxes. 

When the clear box description is com- 
plete, it is verified by eliminating refer- 
ences to lower level black boxes to obtain 
a derived state-box function that is com- 
pared to the original state-box function. 

If the original and the derived functions 
are the same, the design process contin- 

52 

ues. Otherwise, clear-box design contin- 
uesuntil the verification indicates no logic 
errors. 

The design process continues as the 
team expands each black box until there 
are no more to be expanded. At that point 
the design is complete. 

Stepwise refinement. Box structures pro- 
vide a rigorous stepwise refinement algo- 
rithm that guides system design in an 
orderly, logical manner, with natural 
checkpoints along the way. For example, 
after step 6 in Figure 3 it is time to evaluate 
which state data you want to be main- 
tained at this level. This gives you a chance 
to evaluate the trade-offs in maintaining 
the state at this level versus migrating it to 

a lower level. After step 10 you have a 
chance to evaluate which lower level black 
boxes to invoke. 

The algorithm doesn’t make the inven- 
tion in these two crucial areas for the de- 
velopment team, but it does ensure that 
all the details following these two inven- 
tions are performed correctly with the 
verification steps. The algorithm also 
forces the designers and evaluators to 
focus on the critical software inventions 
that affect software performance and 
quality. 

The box-structures algorithm is a pro- 
cess that engineers and managers can rely 
on to invent a high quality, accurate design. 

Functional ueri$cation. Once the design is 
complete, the team expands the clear box 
at each level into code that fully imple- 
ments the defined rule for the black-box 
function at that level. Following each ex- 
pansion, the team uses functional verifca- 
tion to help structure a proof that the ex- 
pansion correctly implements the speci- 
fication. 

The proof must show that the rule (the 
program) correctly implements the func- 
tion (the specification) for the full range 
of the function and no more. The Linger, 
Mills, and Witt correctness theorem3 de- 
fines what you must show to prove that a 
program is equivalent to its specification 
for each of the structured-programming- 
language constructs. 

The proof strategy is divided into small 
parts that easily accumulate into a proof 
for a large program. Experience indicates 
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that people are able to master these ideas 
and construct proof arguments for very 
large software systems. 

The Cleanroom development team 
does not test or even compile the code. It 
uses a mathematical proof - functional 
verification - to demonstrate the correct- 
ness of the units. Testing and measuring 
failures by program execution is the re- 
sponsibility of the certification team. 

Certification. In parallel with the devel- 
opment team, the certification team uses 
the expected-usage profile and the appli- 
cable portion of the external specification 
to prepare test cases and solutions that ex- 
ercise the increment just developed and 
the increments developed previously. The 
team can perform this step in parallel with 
development because it uses the specifica- 
tion, not the code, to develop tests. 

When the development team completes 
an increment, the certification compiles 
it, adds it to previous increments, and cer- 
tifies the software in three steps: 

1. It measures Tk, the MTI'F of the cur- 
rent version of the software by executing 
random test cases. Tk is a sample of MTTF 
for a version of the accumulated incre- 
ments and To, ..., Tkl (measured pre- 

The team compares each test result to a 
standard; either the result is correct or 
there was afailure. The cumulative time to 
failure is an estimate of the MTTF. The 
team may decide to continue testing by 
constructing more tests. The new time to 
failure is another estimate of the MTI'F. It 
uses all estimates of h4TTF to predict the 
MTTF of the next version. 

The certification team reports failures 
to the development team, which makes 
the fixes. When the development team re- 
turns new modules, the certification team 
compiles a new version, and the measur- 
ing process is repeated for the new version 
of the software. 

2. Estimate the reliability for the next 
version of the software using a certifica- 
tion model and the measured MTI'F for 
each version of the software. The team 
predicts the MTTF for the next version of 
the software using the model 

viously). 

MTTF, + , =A@' ' 

Table 3. 
Results of MTTF estimation. 

Version Observed Predicted Predicted Factor 
number MTTF reliability MTTF B 

___ ~~ 

- - 1 .oo 
6.00 

1 .OO .23 .81 

16.00 .77 4.38 

560.00 .9957 232.62 

- - 

- 

- 

0.59 

1.36 

3.60 

by fitting the data points To, ... , Tk to an 
exponential relationship. The reliability 
can be calculated from the MlTF. The re- 
sults of the MTI'F estimation can be sum- 
marized in a table, as in Table 3, which 
summarizes data from an actual project. 

During certification, the team should 
observe the dynamics of change to deter- 
mine how many more tests are required to 
term the software to the required MTI'F. 
B is the factor by which each change in- 
creases the MTTF. If B goes below 1,  the 
new version is worse than the previousver- 
sion. It is desirable that the value of B in- 
crease monotonically. 

The value of Bturns down when failures 
are encountered late. Failures found early 
are not expensive in terms of eventually 
obtaining a high value for MTTF with a 
reasonable testing budget, but if B drops 
late in the certification process it will take 
a large number of tests to achieve the de- 
sired MTTF. M'ITF, reliability, and testing 
time (number of test cases) are mathe- 
matically related to each other. The team 
can also calculate confidence bounds on 
MTI'F estimates. 

3. Once it has estimated the m F  for 
the next version, the team must decide if it 
wants to 

correct the observed failures and con- 
tinue to certify the software, 

stop certification because the software 
has reached the desired reliability for this 
stage of testing, or 

stop certification and redesign the 
software because the failure rate is too 
high or the failures are too serious. 

When all the increments are complete 
and tested, you have a reliable estimate of 

the software's quality and it can be de- 
ployed. 

While we don't address the operations 
and maintenance phases here, we want to 
point out that 

operations provide actual testing for 
continued estimates of the MTTF to 
check against what has been certified dur- 
ing development and 

the maintenance phase will be much 
simpler for Cleanroomdeveloped soft- 
ware than for heuristically developed soft- 
ware because of higher quality and the ex- 
istence of a design and development trail. 

Goals. We believe the following are real- 
istic goals for Cleanroom engineering. 
Our belief comes from observing demon- 
strations of component practices, includ- 
ing a few demonstrations of the full set of 
practices. Table 1 summarizes the results 
of some of these projects. 

Long-term goals (after a team has 
completed three or four increments): two 
orders of magnitude (factor of 100) im- 
provement in reliability and one order of 
magnitude (factor of 10) improvement in 
productivity. 

Short-term goals (first two or three in- 
crements developed by a new Cleanroom 
team) : statistical quality control of devel- 
opment in a pipeline of user-executable 
increments that accumulate into a system; 
elimination of debugging by software en- 
gineers before independent statistical 
testing of usage requirements; certifiica- 
tion of reliability at delivery; one order of 
magnitude improvement in reliability; 
and factor of three improvement in p r e  
ductivity. 
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esponsible softwaredevelopment organizations should 
begin to adopt Cleanroom engineering or some equiva- R lent discipline. An organization always faces riskswhen it 

decides to change the way it does business. The best way to man- 
age risk is to identify the risk and determine what actions to take 
to avoid it or at least minimize its effect. 

The potential gains &om Cleanroom engineering are enor- 
mous compared to the identifed risks. The largest risk an orga- 
nization can take is to decide not to adopt Cleanroom engineer- 
ing or an equivalent discipline. At the very least, organizations 
should conduct a trial on at least one or two significant projects. 

The cost of continuing to develop failure-laden software with 
its associated low productivity can at best increase cost and at 
worst so affect an organization’s competitive position that is diffi- 
cult to remain in business. 

Organizations that purchase software should also understand 
the ramifications of Cleanroom engineering so they can work 
with their vendors and integrators to ensure that they build high- 
quality software at an attractive price. Intelligent buyers can have 
a significant effect on the speed with which developers adopt 
these superior softwaredevelopment practices. .:. 

Wgs Your Last 
Software Project 

Late? 
If your last software project was late, you need Costar, a software cost 
estimation tool that will help you plan and manage your n a t  project. 
Costar is based on the COCOMO model described by Bany Bwhm in 
Softwarn Engineeting Economics. 

COCOMO is used by hundreds of software managen to estimate the cost, 
staffing levels, and schedule required to complete a project-it’s reliable. 
repeatable. and accurate. 
Costar estimates are based on 15 factors that strongly influence the effort 
required to complete a project, including: 

The Capability and Experience of your Programmers & Analysts 
The Complexity of your project 
The Required Reliability of your project 

Costar is a complete implementation of the COCOMO “detailed“ model, 
so it calculates estimates for all phases of your project, from Requirements 
through Coding, Integration and Maintenance Costar puts you in control 
of the estimation and planning process, and provides full traceability for 
each estimate. User definable cost drivers and a wide variety of reports 
makes Costar flexible and powerful. 

Supports Function Points 8t Ada COCOMO. 
Costar miihon the L’AX rml IllM K s  Call for f r e e  demo disk. 
Softstar Svstems 
(603) 6f2-0987 
28 bnemah Road. SOFTST*R 
Amherst, NH 03031 

Reader Service Number 8 
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