
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

The Harlan D. Mills Collection Science Alliance

11-1990

Engineering Software Under Statistical Quality-Control Engineering Software Under Statistical Quality-Control

R. H. Cobb

Harlan D. Mills

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Cobb, R. H. and Mills, Harlan D., "Engineering Software Under Statistical Quality-Control" (1990). The
Harlan D. Mills Collection.
https://trace.tennessee.edu/utk_harlan/14

This Article is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268734744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

Engineering Software
under Statistical
Quality Control

Richard H. Cobb and Harlan D. Mills, Software Engineering Technology

Thecosbof
continuing to develop
failure-lden 8offws1ye

with its associated
low prductivity are

unaamptable.
C1-r-

englneeri~promises
lower costs and

improved qualit~c

44

ociety has been developing soft-
ware for less than one human gen- S eration. We have accomplished a

great deal in this first generation when
compared to the accomplishments of
other disciplines: During the first genera-
tion of civil engineering, the right triangle
hadn't been invented; accountants did
not discover doubleentry concepts in the
early generations of their field.

Yet despite such significant progress,
softwaredevelopment practices need im-
provement. We must solve such problems
as

execution failures, which exist to the
extent that software failures are accepted
as normal by most people,

projects that are late and/or over bud-
get, and

the labor-intensive nature of software
development - productivity increases
have been modest since the introduction
of Cobol.

And at the same time we are having diffi-

074@7459/90/11oO/O044/$01 .oO 0 1990 IEEE

culty producing reliable software there is
a demand for even more complex, larger
software systems.

These problems are symptoms of a p r e
cess that is not yet under intellectual con-
trol. An activity is under intellectual con-
trol when the people performing it use a
theoretically sound process that gives
each of them a high probability of obtain-
ing a commonlyaccepted correct answer.

When most endeavors begin, they are
out of intellectual control. Intellectual
control is achieved when theories are de-
veloped, implementation practices are re-
fined, and people are taught the process.

A good example is long division. For
many generations, performing division
with Roman numerals was error-prone.
Today, children who learn how to do long
division with Arabic numerals obtain the
correct answer most of the time. The long
division algorithm is:

1. If the division is not complete, invent
(estimate) the next digit.

IEEE Software

2. Verify the invention (estimate) made
in step 1.

3. If the verification is correct and the
division is not complete, repeat step 1 for
the next digit; if the verification is not cor-
rect, repeat step 1 for the same digit by
adjusting the invention.

This is a powerful algorithm for estab
lishing intellectual control. A difficult
problem, which on the surface seems to
require a large invention, has been di-
vided into a series of smaller problems,
each requiring a smaller invention. Most
important, each inventive step is followed
immediately by a verification step to a p
praise the invention’s correctness, so s u b
sequent inventions don’t build on incor-
rect results.

This algorithm also applies to software
design and development. As software
technologists strive to find better ways to
develop software, we believe that they are
hindered by some widely accepted beliefs
about how to develop software. We believe
that if we adopt new perspectives about
these development myths, we will open
the way to development practices that will
permit the construction of software that
contains few, if any, latent failures.

We have used new perspectives to derive
Cleanroom engineering practices. Clean-
room engineering develops software
under statistical quality control by

specifymg statistical usage,
defining an incremental pipeline for

software construction that permits statisti-
cal testing, and

separating development and testing
(only testers compile and execute the soft-
ware being developed).

These practices have been demon-
strated to provide higher quality software
- software with fewer latent execution
failures. These same engineering prac-
tices also have been observed to improve
productivity. Table 1 summarizes some
quality and productivity metrics for proj-

November 1990

ects using some or all of these new soft-
waredevelopmen t practices.

Software myths
Myth: Software failures are unavoidable.
This myth holds that software always

contains latent execution failures that will
be found by users. Therefore, we must
learn to live with and manage around soft-
ware failures.

Fact: Like other engineering activities,
engineering software is a human activity
subject to human fallibilities. Yet other en-
gineering disciplines have learned how to
design large and complex products with a
low probability that the designs contain

Ekperience to date
supports our belief that
as software developers

move from today’s
heuristic proglamming
to rigwous somvare
englneering, quality

will increase and costs
will decrease.

faults that will cause latent execution fail-
ures. When structural engineers design a
bridge there is a high expectation that the
bridge, when built, will not fall down.

In other engineering disciplines, design
failures are neither anticipated nor ac-
cepted as normal. When a failure h a p
pens, major investigations are undertaken
to determine why it occurred. Other engi-
neering professions have minimized
error by developing a sound, theoretical
base on which to build design practices.

But because software developers expect
and accept design failures, software users
cannot have the same high expectations
as users of other products. We believe this

is because software developers rely on an
incomplete theory, so their engineering
practices don’twork.

Software engineers should be required
to use engineering practices that produce
software that does not contain faults that
cause latent execution failures. Users
want the same high assurance that soft-
ware will work according to its specifica-
tion that they have for products designed
by other engineers.

The software profession is young, so we
might want to start with modest goals,
such as: Design and implement a 100,000
line system so, more often than not, no
execution failure will be detected during
the software’s entire field life.

Even this modest goal is beyond our ex-
pectations using the development prac-
tices we now rely on. We believe such a
goal is well within our capabilities ifwe use
the ideas summarized in this article. For
example, the software for the IBM Wheel-
writer typewriter, developed using some
of these ideas, has been in use for more
than six years with millions of users and
no software failure has ever been re-
ported.’

Myth: Qualily costs m m q
Many people believe that software de-

signed to execute with no or few failures
costs more per line of code to produce.

Fact: Failures and cost are positively cor-
related. It is more expensive to remove la-
tent execution failures designed into the
software than to rigorously design the
software to prevent execution failures.
For example, touch-typing is both more
reliable and productive than hunt-and-
peck typing.

We believe - and experience to date
supports our belief- that as software de-
velopers move from today’s heuristic p r e
gramming to rigorous software engineer-
ing, quality will increase and design and
development costs will decrease.

45

Table 1.
Selected sample of Cleanroom projects.

(All other projects known to authors report substantial improvements in quality and productivity.)

Applied
Year technologies Implementation Results

1980

1983

1980s

1987

1988

1989

1990

Stepwise refinement
Functional verification

Functional verification
Inspections

Functional verification
Inspections

Cleanroom engineering

Cleanroom engineering

Partial Cleanroom
engineering

Cleanroom engineering
with reuse and new Ada
design language

Census, 25 KLOC (Pascal)

Wheelwriter, 63 KLOC,
three processors

Space shuttle, 500 KLOC

Flight control, 33 KLOC (Jovial) ,,
three increments

Commercial product, 80 KLOC (PL/I)

Satellite control, 30 KLOC (Fortran)

Research project, 12 KLOC
(Ada and ADL)

No failure ever found
Programmer received gold medal
from Baldridge

Millions of users
No failure ever found

Low defect over entire function
No defect in any flight
Work received NASA’s Quality Award

Completed ahead of schedule
2.5 errors/KLOC before any execution
Error-fix effort reduced by a factor of five

Certification testing failure rate

Deployment failures of O.l/KLOC
Productivity of 740 lines/man-month

Certification testing error rate

50-percent improvement in quality
Productivity of 780 lines/man-month
80-percent improvement in productivity

Certified to 0.9978 with 989 test cases; 36
failures found during certification (20
logic errors, or 1.7 errors/KLOC

of 3.4 failures/KLOC

of 3.3 failures/KLOC

Myth: Unit vmjicatim by debugging works
on system ofany siz.

Unitverification- debugging -is best
done by a single programmer who exer-
cises the program with specially con-
structed test cases. During debugging, the
programmer constructs test cases, devel-
ops programs to run isolated units of the
system, runs the tests, and fixes discrepan-
cies as they are observed. This process
continues until the programmer is satis
tied the program performs its intended
mission.

Fact: Although it is satisfactory when the
software product is small, unit verification
by debugging does not scale up. When the
product is large and unit verification exer-
cises only a small portion of the total sys-
tem, the results are not satisfactory.

Debugging doesn’t scale up because it
often compromises the design’s integrity.
Typically, software units are built accord-
ing to a sound design and fit together ac-
cording to the design when unit debug-
ging begins. But the fixes introduced
during debugging, while they may seem to
make individual modules perform their
intended mission fully, cause design faults
when the fixed modules are combined.

These failures are then either found dur-
ing integration testing or left in the prod-
uct as latent failures. Debugging seems to
produce local correctness and global in-
correctness.

Ed Adams examined every failure re-
port for nine of IBM’s most widely used
software products for several years and
traced each to its origin. He found that in
most cases the cause of the failure was in-
troduced during an attempt to fix another
failure.’

Fact: Unit verification by logical argu-
ment does scale up. This method of unit
verification is based on the time-tested
method of proving the correctness of an
assertion by developing a proof. A p r e
gram specification is a function or rela-
tion; a program of any size or complexity
is a rule for a function. So all you have to
do to show the correctness of a program is
to show that it is a complete rule for a s u b
set of the specification.

Experience indicates that using proof
arguments to show program correctness is
not an academic curiosity that works on
small problems - it is a robust technique
that works well on large, complex systems.

Table 1 summarizes data for a few proj-

ects that used unit verification by logical
argument. All our experience with this
method indicates that the scaleup prob
lem associated with debugging is very tract-
able. Unit verification by logical argument
seems to work because when a defect is
found in a proof argument the focus can’t
shift to local concerns to make something
work - the argument focuses entirely on
global issues.

Fact: Unit verification via logical argu-
ment is more cost-effective than unit veri-
fication via debugging, for four reasons:

Design errors are caught sooner and
as a result are less costly to fix.

It eliminates the expense of finding
the subtle, hard-to-fix failures introduced
by debugging.

It eliminates the expense of building
programs to permit unit testing and pre-
paring unit test cases.

Surprisingly, it takes less time.
Do we really mean that unit tests should

not be conducted? Yes. Unit testing is
done to demonstrate that the unit satisfies
its specification. We believe you can better
demonstrate this with logical arguments.
So ifwe don’t test units, then what do we
test and when? The answer to that ques-

46 IEEE Software

tion involves another myth.

Myth: The only way to p e r f m unit umjica-
tion via logical argument is to use a computer
program.

Researchers have invested significant ef-
fort into building programs that use axi-
omatic arguments to verify programs.
These programs, as of now and for the
foreseeable future, can verlfy only small
programs using a limited number of lan-
guage constructs. Developers have not
been able to scale up axiomatic verifica-
tion programs even with today’s very fast
computers.

Fact: Engineers can verify large pro-
grams made up of many language con-
structs with functional verification. Func-
tional verification, introduced by Richard
Linger, Harlan Mills, and Bernard Witt,3 is
quite different from axiomatic verifica-
tion.

With functional verification, you struc-
ture a proof that a program implements
its specification correctly. Again, if a pro-
gram specification is a function then a
program is a rule for a function. The
proof must show that the rule (the p r e
gram) correctly implements the function
(the specification) for the full range of the
function and no more.

Linger, Mills, and Witt have developed a
correctness theorem that defines what
must be shown for each of the structured
programming language constructs. The
proof strategy is divided into small parts,
which are easily accumulated into a proof
for a large program. Our experience indi-
cates that people can master these ideas
and construct proof arguments for very
large programs.

The first reaction of many people is that
it must be hard to construct a proof that a
program is correct. Our experience indi-
cates that, with a modest amount of train-
ing and the opportunity to use the ideas
on the job, people can learn to develop
proof arguments and talk to other engi-
neers in terms of proofs.

Linger: Mills,’ Richard Selby,’ and oth-
ers have analyzed the performance of soft-
ware engineers using functional verifica-
tion to perform unit verification via
logical argument. Among their observa-
tions:

9 Engineers find logic errors with func-

November 1990

tional verification, leaving only simple er-
rors like syntax oversights to be found dur-
ing execution testing.

Many engineers find the mental chal-
lenge of functionalverification more stim-
ulating and Satisfying than debugging.

9 Many engineers find the team style B
sociated with functional verification more
satisfjmg than the solo style associated
with debugging.

9 Engineers can learn how to perform
unit verification via functional verifica-
tion.

Engineers performing functional veri-
fication leave significantly fewer failures to
be found during later lifecycle phases
than debuggers. Data indicates that func-
tional verification leaves only two to five
futes per thousands lines of code to be
made in later phases: compared to 10 to

Coverage testingis as
likely to find a rare

execution failure as it is
a frequentone. Usage

testingthatmatchesthe
actual usage profile has

abetterchamoffinding
the execution failures
that occur fiequentlF

30 fixes left by unit testing by debugging!
Engineers practicing functional verifi-

cation complete the total development
process with significantly less effort than
those practicing unit verification via de-
bugging. Measurements indicate that the
improvement in productivity may be
three to five times!

Myth: Software is best tested by designing tests
that coverevery path through theprogram.

This testing method, called coverage
testing, requires that the test developer be
completely familiar with the software’s in-
ternal design.

Fact: Statistical usage testing is 20 times
more cost-effective in finding execution
failures than coverage testing (a claim we
will prove later).

In statistical usage testing, the test devel-
oper draws tests at random from the p o p
ulation of all possible uses of the software,

in accordance with the distribution of ex-
pected usage. The test developer must un-
derstand what the software is intended to
do and how it is expected to be used. The
test developer then constructs tests that
are representative of expected usage. No
knowledge of how the software is de-
signed and constructed is required.

Fact: Users observe failures in execu-
tion. While developers talk of finding and
fixing errors or faults, users don’t observe
errors or faults. They observe execution
failures, which occur when the software
doesn’t do something it’s required to do.

When a tester observes an execution
failure, the software is searched for a way
to prevent it. As a result of the search,
changes are made to the code that may or
may not fix the failure and mayor may not
introduce new latent failures. The modifi-
cations are counted to obtain a count of
software errors or faults.

For example, if you change five areas of
the program because they were appar-
ently doing something they shouldn’t be
doing, we say that five errors have been
found and fixed. Software failures are pre-
cise while software errors are imprecise. It
is execution failures that must be found
and eliminated from software.

Some execution failures will occur fre-
quently, others infrequently. Coverage
testing is as likely to find a rare execution
failure as it is afrequent execution failure.
Usage testing that matches the actual
usage profile has a better chance of find-
ing the execution failures that occur fre-
quently.

Therefore, since the goal of a testing
program should be to maximize expected
mean time to failure, a strategy that con-
centrates on the failures that occur fre-
quently is more effective than one that has
an equal probability of finding high- and
low-frequency failures.

Myth: It doesn’t matter how mm or failures
are found, as longas thq mejxed.

Fact: The failure rates of different er-
rors can vary by four orders of magnitude
in complex systems. To measure the in-
creased effectiveness of usage testing over
coverage testing, you need to know the
frequency of rare failures versus frequent
failures in a population of programs
under test. The Adams study contains one

47

Table 2.
Software failures for nine major IBM products, classified from rare to frequent.

Rare . Frequent

Group

M m F (years)

Percent failures
in class for product 1

2

3

4

5

6

7

8

9

Average percentage
failures

Probability of a failure
for this frequency

1

5,000

34.2

34.3

33.7

34.2

34.2

32.0

34.0

31.9

31.2

33.4

0.008

2

1,580

28.8

28.0

28.5

28.5

28.5

28.2

28.5

27.1

27.6

28.2

0.021

3

500

17.8

18.2

18.0

18.7

18.4

20.1

18.5

18.4

20.4

18.7

.044

4

158

10.3

9.7

8.7

11.9

9.4

11.5

9.9

11.1

12.8

10.6

0.079

5

50

5.0

4.5

6.5

4.4

4.4

5.0

4.5

6.5

5.6

5.2

0.123

6

15.8

2.1

3.2

2.8

2.0

2.9

2.1

2.7

2.7

1.9

2.5

0.187

7

5

1.2

1.5

1.4

0.3

1.4

0.8

1.4

1.4

0.5

1 .o

0.237

8

1.58

0.7

0.7

0.4

0.1

0.7

0.3

0.6

1.1

0.0

0.4

0.300

large database we can use to estimate in-
creased effectiveness.

Table 2 summarizes Adams’s data,
which has been classified across columns
by the frequency that a some user found a
failure? Each row represents a major IBM
system like M V S , Cobol, and IMS. The col-
umns represent a subdivision of the fre-
quency in which users observed afailure.

For example, the first column repre-
sents failures observed by users on the av-
erage of once every 5,000 years of usage;
the last column represents failures o b
served by users on the average of once
every 1.58 years of usage. The data in each
cell defines the percentage of all failures
observed for the software system repre-
sented by that row with the expected fre-
quency represented by that column. The
values in each row sum to 100.

The remarkable fact is that, over this
very divergent range of products, the dis
tribution of failures occurring with differ-
ent frequencies is uniform. This letsus use
the data for analysis.

The bottom two rows of Table 2 contain
two numbers for each failure frequency,
the average percent failures for the group
and the probability of a failure of the fre-
quency represented by that group. An ex-
amination of these last two rows provides
some critical insights. Groups 1 and 2,
which represent failures that will be o b
served less than once in 1,580 years of ex-

pected use, account for 61.6 percent of
fixes made but only for 2.9 percent of the
failures that will be observed by typical
users. On the other hand, groups 7 and 8
represent only 1.4 percent of the fixes
made to the software but eliminate 53.7
percent of the failures that would be o b
served by a typical user.

If you use coverage testing, you would
spend 61.6 percent of the testing and cor-
rection budget on finding and futing er-
rors that will eliminate only 2.9 percent of
the failures, and only 1.4 percent on mak-
ing fixes that would eliminate 53.7 per-
cent of failures. Coverage testing doesn’t
appear to very effective at allocating the
testing and correction budget to increase
M m .

On the other hand, a usage testing strat-
egy allocates the budget in accordance
with the probability that afailure is observ-
able by the average user: It allocates 53.7
percent to fixes that will occur 53.7 per-
cent of the time in the experience of an
average user.

Using the data in Table 2, we can show
that usage testing is 21 times more effec-
tive at increasing MTTF than coverage
testing. Let Pbe the increase in MTTF o b
tained by the next fix determined by cov-
erage testing. Then the increase in MTTF
obtained by the next fix determined by
usage testing will be:

((0.008/60) + (0.021/19) + (0.044/6) +
(0.079/1.9) + (0.123/0.6) + (0.187/0.19) t
(0.237/0.06) + (0.30/0.019)) P= 20.98 P

This surprising result suggests the pre-
vailing strategy for testing and correcting
software is very inefficient.

Myth: Software behavior is deterministic.
Therqie, statistics cannot be used to make in-

fmences about sofiare quality.
Fact: Software use is stochastic. A soft-

ware system has many different uses to
perform different missions starting from
different initial conditions and given dif-
ferent input data. Each different use is a
different event. Given a system that con-
tains some latent failures, some usages will
result in a failure; others in a correct exe-
cution. If you sample the entire popula-
tion of all possible usages in accordance
with an expected usage profile and main-
tain a record of failures and success, you
can use statistics to estimate reliability.

Fact: You can estimate the expected
M’ITF for a system from a series of tests
drawn at random in accordance with an
expected usage profile from the popula-
tion of all possible uses. The major a s
sumption you must make to make the sta-
tistical estimation valid is that the
development process is in a state of con-
trol. This is not an unreasonable assump
tion - it is the same one made when sta-
tistical quality-control practices are

48 IEEE Software

applied to a production process.
While our experience in applying statis-

tical quality-control techniques to soft-
ware development is limited, initial expe-
rience indicates that five fixes per
thousand lines of code can be tolerated
without invalidating the application of sta-
tistics to estimate MTTF. This failure rate
is low compared to normal development
practices, where 20 to 60 fixes per thou-
sand lines of code is not atypical.

Fact: Experience indicates that it is pos
sible to design and develop software that
requires less than five fixes per thousand
lines of code from its first compilation
throughout its useful life. The engineer-
ing practices that let such quality be
achieved before any execution testing are
grouped under the heading “Cleanroom
engineering. ”

Myth: The solutim to the development Fob
lem is to create tools that will do forpeople what
thq can’t dofol themselves.

The general idea behind this myth is
that people can’t be trusted to make the
difficult inventions that software develop
ment requires.

Fact: Automation is very effective in
helping us do the things we already know
how to do. We know how to write. Aword
processor helps us write faster, but it
doesn’t help us write better (except that it
gives us more time to think).

A translator - a compiler - can trans
late a high-level language definition into
machinelevel instructions. For example,
compilers translate a Fortran or Cobol
program into machine language. While
this translation algorithm can be per-
formed by people or computers, comput-
ers have an advantage because, once they
have been programmed to do it, they are
fast and reliable and can free people to do
something else.

Fact: Automation is not effective in
helping us do things we don’t know how
to do algorithmically. When we computer-
ize incomplete algorithms, the results are
incomplete and unsatisfactory. When
database management systems were first
introduced, hierarchical and network
databases were common. Database man-
agement programs encountered failures
that were eventually traced to a common
set of problems which E.F. Codd named

data-maintenance abnormalities.
These abnormalities, which cost busi-

ness a great deal in terms of wrong deci-
sions and software fixes, were caused by a
basic failure in the hierarchical and net-
work database models. These models
could not maintain the referential trans-
parency between the actual data and the
state data used to represent it in computa-
tions: In certain situations, the value of the
state data did not accurately represent the
actual data as stored in the database.
Codd’s relational algorithm does main-
tain referential transparency, and if it is
used to maintain keys in a relational
database, it eliminates these failures.

This should have been an important lee
son learned, but apparently the lesson was
lost, because loss of referential transpar-

Tools are only as good as
the ideas that serve as
their found#ion. The
important mor in

selectingdesighand
development tools is to

select the ideas you want
to use to help gUide the

inventive process.

ency is still a common design flaw. The
current generation of computer-aided
software-engineering tools does not help
maintain referential transparency and in
some cases even allows designs that do not
exhibit referential transparency.

For example, some CASE tools help you
invent program structures by converting
dataflow diagrams into program struc-
tures. Due to the one-to-many relation-
ship between a dataflow diagram and a
program-structure chart, it is easy to lose
referential transparency between the his
tory of stimuli to the software and the state
data used to represent the stimuli histo-
ries.

Fact: Ideas must precede tools. Tools are
only as good as the ideas that serve as their
foundation. The important factor in se-
lecting tools to assist in software design

and development is to select the ideas that
youwant to use to help guide the inventive
process. Once that is done then the ideas
can be organized into an engineering
process that helps people exploit the c h e
sen ideas. Then it is possible to select or
build tools that enhance peoples’ produc-
tivity in performing these ideas.

Cleanroom engineering
These ideas are the foundation for the

set of softwareengineering practices we
call Cleanroom engineering?

Cleanroom engineering can help soft-
ware engineers implement reliable soft-
ware - software that won’t fail during
use. Cleanroom engineering

achieves intellectual control by apply-
ing rigorous, mathematics-based engi-
neering practices,

establishes an “errors-are-unaccept-
able” attitude and a team responsibility
for quality,

delegates development and testing re-
sponsibilities to separate teams, and

certifies the software’s MTTF through
the application of statistical quality-con-
trol methods.

Process. Cleanroom engineering in-
volves a specification team, a develop
ment team, and a certification team. The
specification team prepares and main-
tains the specification and specializes it
for each development increment. The de-
velopment team designs and implements
the software. The certification team com-
piles, tests, and certifies the software’s cor-
rectness.

In the Cleanroom engineering, the
team members

complete a rigorous, formal specifica-
tion, even if it is preliminary, before they
begin design and development,

*develop a construction plan by de-
composing the specification into small
(seldom more than 10,ooO lines of third-
generation code) user-executable incre-
ments,

design, implement, and verify each
user-executable increment, and

assess the software’s quality.

Typical project. Figure 1 shows a profile
of a typical Cleanroom engineering proj-
ect, divided into phases.

November 1 990 49

Problem analysis and requirements phases

specification

I

Construction
Planning

Certify
increment 1 1

t t

Design and build
increment 2 1 Test preparation for

increments 1 and 2

Solution
deployment

I I
I
F i r e 1. Profile of a three-increment Cleanroom-engineering project.

S,beciJicution. The first task is to assemble
what is known into a specification docu-
ment, complete the remaining details,
then prepare and publish aformal specifi-
cation. The first version may be prelimi-
nary due to lack of information, but it
should still be formal. The specification
must be as complete as possible and a p
proved before development begins.

The effort required to prepare the spec-
ification depends on how much is known
when the decision to develop the software
is made. It should be in three parts, which
should agree: external specification, in-
ternal specification, and expected-usage
profile.

The external specification is a user’s ref-
erence manual. It defines how the soft-
ware will look and feel from the user’s per-
spective and all the interfaces with the
software. The specification should in-
clude details on

the system environment (hardware,
peripherals, operating system, related
software, and people),

the application environment (data
and use structures),

initialization and shutdown,
system use (commands, menus,

events, and modes), which must define all
stimuli the system can receive from p e e
ple, computers, and other devices and all
responses it will produce,

performance guidelines (timing and
precision), and

responses to undesired events.
The external specification iswritten in a

language understood by users, but it is not
a tutorial. It is not designed to instruct
how to use the software; it is intended to
define precisely how the software will
work. Using only the external specifica-
tion, someone with appropriate applica-
tion expertise should be able to use the
software with no surprises.

The internal specification is more math-
ematical. It completely states the mathe-
matical function or, more generally, math-
ematical relation for which the program
implements a rule. This definition is re-
quired to implement the program and
verlfy its correctness. It must be imple-
mentation-independent so the program
architecture can be designed free of pre-

conceptions.
The internal specification augments in-

formation in the external specification.
For example, while the external specifica-
tion defines the stimuli the software will
act upon and responses it will produce,
the internal specification defines the re-
sponses in terms of stimuli histories. Spec-
ifylng the functional relationship between
responses and stimuli completely in terms
of stimuli histories avoids commitment to
implementation details.

Speclfylng responses this way is usually
hard to learn at first because it is natural to
use invented abstractions - state data -
to represent some portion of the prior
stimuli. But as soon as you use state data to
define software responses, you begin mak-
ing implementation commitments.

At the specification stage, you must de-
fine what is to be done, not how to do it.
Experience indicates that as soon as you
learn to define what is to be done free of
implementation details, you can design
and implement much better software.
(David Parnas recommends traces8) We
find using stimuli histones more conve-

50 IEEE Software

nient and natural and therefore easier to
teach.

The expected usage profile defines the
software’s anticipated use. This document
primarily guides the preparation of usage
tests. To make a valid inference about the
software’s expected M‘ITF, you must de-
velop and run tests with stimuli taken
from the population of all possible stimuli
and in the same proportion as they will be
generated when the system is in use.

Statistical testing is a stochastic process.
The simplest and best understood s t e
chastic process is the Markov process,
which can model the usage of most if not
all software systems. In developing a Mar-
kov model for expected use, you must de-
fine all usage states and estimate the tran-
sition probabilities between usage states.
This sounds harder than it seems to be in
practice. For example, see Jesse Poore’s
work?

There is no magic in preparing the writ-
ten specification. The magic is inventing
what the software should do to accom-
plish its mission - a much deeper and
harder problem than developing the soft-
ware. That is why it is so important to use
good engineering practices in developing
software so the time and attention now
being consumed on the easy part of the
problem can be redirected to the harder
problem of determining what the soft-
ware should be doing.

Construction plan. This phase deter-
mines the development and certification
sequence. To do this, you decompose the
specification into executable increments.
An executable increment can be tested by
invoking user commands or supplying
other external stimuli.

The criteria to determine the construc-
tion sequence include

the availability of reusable software,
how much is known about the reliabil-

ity of the reused software for the expected
usage profile,

increment size (increments should sel-
dom be larger than 10,OOO lines), and

the number of development teams
available, which determines the possibili-
ties for parallel development.

Incremental development is not new.
The important new idea is the require-
ment that each increment in the construc-

tion plan, including the first, be execut-
able by user commands. This means both
that the system must be constructed top-
down and that you need write no special
testing routines.

It also means that incremental integra-
tion testing is done as each new increment
is written. And it lets you use all test runs,
including the tests on the very first incre-
ment, to help estimate the final MTTF.
Figure 2 shows a sample construction
plan.

When you have decomposed the specifi-
cation into increments, design, imple-
mentation, and testing can begin. These

Your specification must
define what is to be done,

not how. Btpedeme
indicates that as soon as
you leam to define what

is to be done free of
implementation details,

you can create much
better software.

two phases can proceed in parallel.

Design and build. The development
team, not an individual engineer, is re-
sponsible for the quality ofthe increments
developed. The team uses technologies to
construct increments, box structures and
stepwise refinement, and functional veri-
fication. Development proceeds in three
steps:

1. Design each increment topdown, to
create a usage hierarchy in three views:
black-box, state-box, and clear-box. Venfy
the correctness of each view.

2. Implement each increment by rigor-
ous stepwise refinement of clear boxes
into executable code.

3. Verify that the code performs ac-
cording to its specification using func-
tional verification arguments.

Box structures. The team uses box struc-
tures to create the software’s internal de-
sign. Box structures view the software
from three perspectives:

The implementation-independent
black-box view defines the responses in

terms of stimuli histories.
The data-driven state-box view begins

to define implementation details by mod-
ifying the black box to represent re-
sponses in terms of the current stimuli
and state data that represents the stimuli
histories.

The processdriven clear-box view
completes the implementation details by
modifylng the state box view to represent
responses in terms of the current stimuli,
state data, and invocations of lower level
black boxes.

Some advocate the dataview, others the
processview for designing software. These
different points of view cannot be re-
solved because, in reality, both views are
required. Box structures let you define
this dualism.

Figure 3 summarizes a design algorithm
defined by Mills that uses box structures.’0
The first black box restates the specifca-
tion that defines all the responses p r e
duced by the increment in terms of stim-
uli histories.

Steps 3 through 5 invent the state data
that represents stimuli histories, to pre-
serve referential transparency. The alge
rithm then determines which of the state
data to maintain at this level of the usage
hierarchy and which to migrate to a lower
level. It is important to migrate state data
to the lowest practical level in the usage
hierarchy to keep the software’s structure
under control.

The state-box description is complete
when functional relationships exist that
define the responses in terms of the cur-
rent stimuli, the state data being main-
tained at this level, and stimuli histories
for the state data being maintained at
lower levels.

Before the team proceeds to define the
clear box, it verifies the state-box descrip
tion by eliminating references to state
data in the state-box functions. The result
is a derived black-box function that
should be the same as the original black-
box function.

If the two functions are the same, the
team defines the clear box that follows the
state box, otherwise it redefines the state-
box function to correct the design errors.
So the design process is suspended as long
as the design contains logic errors. Just as
in long division, it is best to fix any error as

November 1990 51

Increment
development

barn A Increment Increment Increment
1 2 3

Team B

Certify
statistical
usage
testing

Increment
4

Increment Increments Increments Increments I ’ 1 and 2 1,2, and 3 1,2,3, and 4 I I

scenarios

Fire 2. A t y p i c a l Cleanroom project construction plan.

Increment Increments Increments Increments
1 1 and 2 1,2,and3 1,2,3, and 4

I I
Define 1. Define stimuli.
Black Box 2. Define responses in terms of stimuli histories. I
Define
State Box

3. Define state data to represent stimuli histories.
4. Select state data to be maintained at this level.
5. Mod* black box to represent responses in terms of stimuli

and the state data being maintained at this level.
6. Venfy state box.

7. Record type of reference to state data by stimuli.

9. Modify state box to represent responses in terms of stimuli,
this level’s state data, and invocations of lower level black boxes.

Define
Clear Box 8. Define data abstraction for each state data.

10. Verify the clear box.

Figure 3. The box-structures algorithm.

soon as possible. It takes less time in the
long run.

To design the clear box, the team in-
vents (selects) the data abstractions (like
set, stack, and queue) it will use to repre-
sent the state data maintained at this level.
Then it modifies the state-box function to
define responses in terms of current stim-
uli, state data being maintained at this
level, and invocations of lower level black
boxes.

When the clear box description is com-
plete, it is verified by eliminating refer-
ences to lower level black boxes to obtain
a derived state-box function that is com-
pared to the original state-box function.

If the original and the derived functions
are the same, the design process contin-

52

ues. Otherwise, clear-box design contin-
uesuntil the verification indicates no logic
errors.

The design process continues as the
team expands each black box until there
are no more to be expanded. At that point
the design is complete.

Stepwise refinement. Box structures pro-
vide a rigorous stepwise refinement algo-
rithm that guides system design in an
orderly, logical manner, with natural
checkpoints along the way. For example,
after step 6 in Figure 3 it is time to evaluate
which state data you want to be main-
tained at this level. This gives you a chance
to evaluate the trade-offs in maintaining
the state at this level versus migrating it to

a lower level. After step 10 you have a
chance to evaluate which lower level black
boxes to invoke.

The algorithm doesn’t make the inven-
tion in these two crucial areas for the de-
velopment team, but it does ensure that
all the details following these two inven-
tions are performed correctly with the
verification steps. The algorithm also
forces the designers and evaluators to
focus on the critical software inventions
that affect software performance and
quality.

The box-structures algorithm is a pro-
cess that engineers and managers can rely
on to invent a high quality, accurate design.

Functional ueri$cation. Once the design is
complete, the team expands the clear box
at each level into code that fully imple-
ments the defined rule for the black-box
function at that level. Following each ex-
pansion, the team uses functional verifca-
tion to help structure a proof that the ex-
pansion correctly implements the speci-
fication.

The proof must show that the rule (the
program) correctly implements the func-
tion (the specification) for the full range
of the function and no more. The Linger,
Mills, and Witt correctness theorem3 de-
fines what you must show to prove that a
program is equivalent to its specification
for each of the structured-programming-
language constructs.

The proof strategy is divided into small
parts that easily accumulate into a proof
for a large program. Experience indicates

IEEE Software

that people are able to master these ideas
and construct proof arguments for very
large software systems.

The Cleanroom development team
does not test or even compile the code. It
uses a mathematical proof - functional
verification - to demonstrate the correct-
ness of the units. Testing and measuring
failures by program execution is the re-
sponsibility of the certification team.

Certification. In parallel with the devel-
opment team, the certification team uses
the expected-usage profile and the appli-
cable portion of the external specification
to prepare test cases and solutions that ex-
ercise the increment just developed and
the increments developed previously. The
team can perform this step in parallel with
development because it uses the specifica-
tion, not the code, to develop tests.

When the development team completes
an increment, the certification compiles
it, adds it to previous increments, and cer-
tifies the software in three steps:

1. It measures Tk, the MTI'F of the cur-
rent version of the software by executing
random test cases. Tk is a sample of MTTF
for a version of the accumulated incre-
ments and To, ..., Tkl (measured pre-

The team compares each test result to a
standard; either the result is correct or
there was afailure. The cumulative time to
failure is an estimate of the MTTF. The
team may decide to continue testing by
constructing more tests. The new time to
failure is another estimate of the MTI'F. It
uses all estimates of h4TTF to predict the
MTTF of the next version.

The certification team reports failures
to the development team, which makes
the fixes. When the development team re-
turns new modules, the certification team
compiles a new version, and the measur-
ing process is repeated for the new version
of the software.

2. Estimate the reliability for the next
version of the software using a certifica-
tion model and the measured MTI'F for
each version of the software. The team
predicts the MTTF for the next version of
the software using the model

viously).

MTTF, + , =A@' '

Table 3.
Results of MTTF estimation.

Version Observed Predicted Predicted Factor
number MTTF reliability MTTF B

___ ~~

- - 1 .oo
6.00

1 .OO .23 .81

16.00 .77 4.38

560.00 .9957 232.62

- -

-

-

0.59

1.36

3.60

by fitting the data points To, ... , Tk to an
exponential relationship. The reliability
can be calculated from the MlTF. The re-
sults of the MTI'F estimation can be sum-
marized in a table, as in Table 3, which
summarizes data from an actual project.

During certification, the team should
observe the dynamics of change to deter-
mine how many more tests are required to
term the software to the required MTI'F.
B is the factor by which each change in-
creases the MTTF. If B goes below 1, the
new version is worse than the previousver-
sion. It is desirable that the value of B in-
crease monotonically.

The value of Bturns down when failures
are encountered late. Failures found early
are not expensive in terms of eventually
obtaining a high value for MTTF with a
reasonable testing budget, but if B drops
late in the certification process it will take
a large number of tests to achieve the de-
sired MTTF. M'ITF, reliability, and testing
time (number of test cases) are mathe-
matically related to each other. The team
can also calculate confidence bounds on
MTI'F estimates.

3. Once it has estimated the m F for
the next version, the team must decide if it
wants to

correct the observed failures and con-
tinue to certify the software,

stop certification because the software
has reached the desired reliability for this
stage of testing, or

stop certification and redesign the
software because the failure rate is too
high or the failures are too serious.

When all the increments are complete
and tested, you have a reliable estimate of

the software's quality and it can be de-
ployed.

While we don't address the operations
and maintenance phases here, we want to
point out that

operations provide actual testing for
continued estimates of the MTTF to
check against what has been certified dur-
ing development and

the maintenance phase will be much
simpler for Cleanroomdeveloped soft-
ware than for heuristically developed soft-
ware because of higher quality and the ex-
istence of a design and development trail.

Goals. We believe the following are real-
istic goals for Cleanroom engineering.
Our belief comes from observing demon-
strations of component practices, includ-
ing a few demonstrations of the full set of
practices. Table 1 summarizes the results
of some of these projects.

Long-term goals (after a team has
completed three or four increments): two
orders of magnitude (factor of 100) im-
provement in reliability and one order of
magnitude (factor of 10) improvement in
productivity.

Short-term goals (first two or three in-
crements developed by a new Cleanroom
team) : statistical quality control of devel-
opment in a pipeline of user-executable
increments that accumulate into a system;
elimination of debugging by software en-
gineers before independent statistical
testing of usage requirements; certifiica-
tion of reliability at delivery; one order of
magnitude improvement in reliability;
and factor of three improvement in p r e
ductivity.

November 1990 53

~-

esponsible softwaredevelopment organizations should
begin to adopt Cleanroom engineering or some equiva- R lent discipline. An organization always faces riskswhen it

decides to change the way it does business. The best way to man-
age risk is to identify the risk and determine what actions to take
to avoid it or at least minimize its effect.

The potential gains &om Cleanroom engineering are enor-
mous compared to the identifed risks. The largest risk an orga-
nization can take is to decide not to adopt Cleanroom engineer-
ing or an equivalent discipline. At the very least, organizations
should conduct a trial on at least one or two significant projects.

The cost of continuing to develop failure-laden software with
its associated low productivity can at best increase cost and at
worst so affect an organization’s competitive position that is diffi-
cult to remain in business.

Organizations that purchase software should also understand
the ramifications of Cleanroom engineering so they can work
with their vendors and integrators to ensure that they build high-
quality software at an attractive price. Intelligent buyers can have
a significant effect on the speed with which developers adopt
these superior softwaredevelopment practices. .:.

Wgs Your Last
Software Project

Late?
If your last software project was late, you need Costar, a software cost
estimation tool that will help you plan and manage your n a t project.
Costar is based on the COCOMO model described by Bany Bwhm in
Softwarn Engineeting Economics.

COCOMO is used by hundreds of software managen to estimate the cost,
staffing levels, and schedule required to complete a project-it’s reliable.
repeatable. and accurate.
Costar estimates are based on 15 factors that strongly influence the effort
required to complete a project, including:

The Capability and Experience of your Programmers & Analysts
The Complexity of your project
The Required Reliability of your project

Costar is a complete implementation of the COCOMO “detailed“ model,
so it calculates estimates for all phases of your project, from Requirements
through Coding, Integration and Maintenance Costar puts you in control
of the estimation and planning process, and provides full traceability for
each estimate. User definable cost drivers and a wide variety of reports
makes Costar flexible and powerful.

Supports Function Points 8t Ada COCOMO.
Costar miihon the L’AX rml IllM K s Call for f r e e demo disk.
Softstar Svstems
(603) 6f2-0987
28 bnemah Road. SOFTST*R
Amherst, NH 03031

Reader Service Number 8

References
1. H.D. Mills, “Structured Programming: Retrospect and Prospect,”

lEEE%@are, Nov. 1986, pp. 58-66.
2. E.N. Adams, “Optimizing Preventive Service of Software Products,”

IBMJ. Research andDevelopnentJan. 1984.
3. R.C. Linger, H.D. Mills, and B.I. Witt, Structured Programming: Theory

andPractice, Addison-Wesley, Reading, Mass., 1979.
4. R.C. Linger and H.D. Mills, “A Case Study in Cleanroom Software

Engineering: The IBM Cobol Structuring Facility,” Proc. Computer
SofhuareandApplicatim Conj, CS Press, Los Alamitos, Calif., 1988.

5. R.W. Selby, V.R Basili, and F.T. Baker, “Cleanroom Software Devel-
opment: An Empirical Evaluation,” lEEE Tram. %@are Eng., Sept.
1987, pp.1.027-1.037.

6. M. Dyer and A. Jbuchakdjian, “CorrectnessVerification: Alternative
to Structural Software Testing,” Infmatwn and %&are Techrwlogy,
Jan./Feb. 1990, pp. 53-59.

7. H.D. Mills, M. Dyer, and R.C. Linger, “Cleanroom Software Engi-
neering,’’ EEESoJzmre, Nov. 1986, pp. 19-24.

8. D.L. Parnas and Y Wang, ‘The Trace Assertion Method of Module-
Interface Specification,” Tech. &. 89-261, Telecommunications Re-
search Inst. of Ontario, Queens Univ., Kingston, Ontario, Canada,
1989.

9. J.H. Poore et al., “A Case Study Using Cleanroom with Box Struc-
tures ADL,” Tech. Report CDRL 1880, Software Engineering Tech-
nology, Vero Beach, Fla., 1990.

10. H.D. Mills, “Stepwise Refinement andverification in Box-Structured
Systems,” cOmputer,June 1988, pp. 23-36.

Richard H. Cobb is vice president of Software Engineering Tech-
nology. His research interests are software design and development
practices and methodologies for improving software quality and devel-
oper productivity.

Cobb received a BS in industrial engineering from the University of
Cincinnati and an MS in operations research from Rensselaer Poly-
technic Institute.

Harlan D. Mills is president of Software Engineering Technology and a
professor of computer science at Florida Institute of Technology. His
research interests are systems engineering and the mathematical foun-
dations of software engineerring.

Mills received a PhD in mathematics from Iowa State University. He is
the recipient of the DPMA Distinguished Information Science Award
and the Warnier Prize and is an IEEE fellow.

Address questions about this article to Cobb at SET, 1918 Hidden
Point Rd., Annapolis, MD 21401 or Mills at SET, 2770 Indian River
Blvd., Vero Beach, FL 32960 CSnet hmills@cs.fit.edu.

IEEE Software

mailto:hmills@cs.fit.edu

	Engineering Software Under Statistical Quality-Control
	Recommended Citation

	Engineering software under statistical quality control - IEEE Software

