
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative

Exchange

The Harlan D. Mills Collection Science Alliance

9-21-1992

Introduction to Software Engineering, An
Harlan D. Mills

J. R. Newman

Charles B. Engle, Jr.

Luwana Clever

Follow this and additional works at: http://trace.tennessee.edu/utk_harlan

Part of the Computer Sciences Commons

This Book is brought to you for free and open access by the Science Alliance at Trace: Tennessee Research and Creative Exchange. It has been accepted
for inclusion in The Harlan D. Mills Collection by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Mills, Harlan D.; Newman, J. R.; Engle, Jr., Charles B.; and Clever, Luwana, "Introduction to Software Engineering, An" (1992). The
Harlan D. Mills Collection.
http://trace.tennessee.edu/utk_harlan/4

http://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_harlan%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_harlan%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk-scialli?utm_source=trace.tennessee.edu%2Futk_harlan%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=trace.tennessee.edu%2Futk_harlan%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

A~ ~~~lr©©J(UJ©~~©~
~©

S)©~~w~ur~ fE~@ij~~~rrij~@

Revised: September 21, 1992

By Harlan D. Mills, J. R. Newman,
Charles B.- Engle, Jr., & Luwana Clever

Florida Institute of Technology,© 1991, 1992

Florida
Tech

Table of Contents

Chapter 1 • Mathematical Foundations

1.1 What is Software Engineering ? .. 1-3
1.1.1 Engineering Correct Software ... 1-3
1.1.2 Dealing with Large Complex Software Solutions .. 1-5
1.1.3 Scope and Status of Software Engineering .. 1-6
1.1.4 Exercises .. 1-7

1.2 Developing Correct Software ... 1-8
1.2.1 Starting with the Correct Fundamentals .. 1-8
1.2.2 Principles for Developing Software Systems .. 1-9
1.2.3 Mathematics as the Basis for Program Behavior .. 1-10
1.2.4 Exercises .. 1-10

1.3 Mathematical Notations and the Concepts of Strings .. 1-11
1.3.1 Strings and their Components ... 1-11
1.3.2 String Rules .. 1-13
1.3.3 Substrings and the Empty String .. 1-14
1.3.4 String Operation of Catenate .. : 1-15
1.3.5 String Operations of Decomposition and Composition .. 1-15
1.3.6 Exercises .. 1-16

1.4 Mathematical Concepts of Sets .. 1-17
1.4.1 Sets and their Members .. 1-17
1.4.2 Set Rules ~ ... 1-17
1.4.3 Subsets and the Empty Set ... 1-18
1.4.4 Set Operations .. 1-18
1.4.5 Exercises .. 1-20

15 Additional Mathematical Concepts ... ~ .. 1-21
15.1 Mathematical Relations .. 1-21
1.5.2 Mathematical Functions ... 1-23
1.5.3 Predicates .. 1-26
1.5.4 Exercises .. 1-27

1.6 State Machines and Formal Grammars .. 1-28
1.6.1 State Machines ... 1-28
1.6.2 Formal Grammars ... 1-31

1.6.2.1 Context-Free Grammars ... 1-31
1.6.2.2 Formal Grammars of Binary Numbers .. 1-32
1.6.2.3 Formal Grammars of Roman Numerals .. 1-33

1.6.3 Exercises .. 1-33

Chapter 2 • Sequential Ada I

2.1 Introduction to Computers .. 2-2
2.1.1 What is a Computer? .. 2-2
2.1.2 What is an Algorithm? ... ~ 2-3
2.1.3 What is a Program? ... 2-4
2.1.4 What is an Editor, a Compiler, and a Linker? ... 2-4
2.1.5 Exercises .. 2-6

2.2 Introduction to Sequential Ada ... 2-8
2.2.1 Print_Message_1 ; .. 2-9
2.2.2 Print_Message_2 .. 2-10
2.2.3 Print_Message_3 .. 2-13
2.2.4 Exercises .. 2-15

2.3 The Formal Grammar of Ada ... 2-17
2.3.1 Lexical Units ; 2-1
2.3.2 Identifiers .. 2-1
2.3.3 Numeric Uterals ... 2-2
2.3.4 Character Uterals .. 2-23
2.3.5 String Uterals .. _ 2-24
2.3.6 Delimiters .. 2-26
2.3.7 Comments ; ... 2-26
2.3.8 Syntax for Ada Lexical Units ... 2-27
2.3.9 Exercises ... 2-28

2.4 Data Types and ()bjects 2-29
2.4.1 Data Types .. 2-30
2.4.2 Character Types and Subtypes .. 2-33
2.4.3 Boolean Types and Subtypes ... 2-35
2.4.4 Integer Types and Subtypes ... 2-36
2.4.5 Data Objects ... 2-38
2.4.6 Character Type Objects ... 2-40
2.4.7 Boolean Type ()bjects .. 2-41
2.4.8 Integer Type Objects .. 2-42
2.4.9 Exercises ... 2-43

2.5 Ada Names and Expressions .. 2-43
2.5.1 Ada Names .. 2-43
2.5.2 Ada Expressions .. 2-45
2.5.3 Character Expressions , ... 2-45
2.5.4 Boolean Expressions : .. 2-45
2.5.5 Integer Expressions ... 2-46
2.5.6 Precedence for Operations ... 2-47
2.5.7 Syntax for Ada Expressions ... 2-49
2.5.8 Example Syntax Derivation of an Expression ... 2-55
2.5.9 Exercises ... 2-59

2.6 Simple Ada Statements ... 2-60
2.6.1 An Overview of Statements ... 2-60
2.6.2 Assignment Statements .. 2-60
2.6.3 Null Statement ... 2-61
2.6.4 Input/Output Statements .. 2-62

2.6.4.1 Integer Input/Output ... 2-62
2.6.4.2 Width Parameter for Integer Input/Output ... 2-64
2.6.4.3 Predefined Input/Output Procedures .. 2-66

2.7 Compound Statements ... 2-67
2.7.1 Sequences of Statements ... 2-67
2.7.2 If Then Else Statements ... 2-68
2.7.3 While Loop Statements .. 2-69
2.7.4 For Loop Statements .. 2-70
2.7.5 Choosing the Appropriate Loop ... 2-72

2.8 Syntax for Ada Statements ... 2-73
2.9 Example Derivation of a Statement ... 2-77
2.10 Exceptions ... 2-78
2.11 Exercises ... 2-79

ii

Chapter 3 • Program Behavior

3.1 Understanding Ada Programs ... 3-1
3.1.1 Understanding Ada Programs from Author Documentation 3-2
3.1.2 A Program for Recognizing Roman Digits .. 3-3
3.1.3 Understanding Ada Programs from their Text Structures .. 3-6
3.1.4 Exercises .. 3-9

3.2 Understanding Program Behavior .. 3-12
3.2.1 Program Behavior .. 3-12
3.2.2 Programs as Rules for Behavior .. 3-13
3.2.3 Behaviors of Programs that Fail .. 3-15
3.2.4 Program Behavior Based on Program Parts Behavior .. 3-16
3.2.5 Exercises .. 3-19

3.3 Program Parts as Rules for Behavior .. 3-20
3.3.1 Declaration Behavior ... 3-20
3.3.2 Simple Statement Behavior .. 3-21
3.3.3 Sequence Statement Behavior .. 3-22
3.3.4 If Statement Behavior .. 3-25
3.3.5 Combination of Sequence and If Statement Behaviors .. 3-26
3.3.6 Exercises .. 3-28

3.4 For Loop Statement Behavior ... 3-30
3.4.1 Properties of For Loop Statements .. 3-33
3.4.2 Exercises ... 3-34

3.5 While Loop Statement Behavior .. 3-35
3.5.1 Properties of While Loop Statements ... 3-38
3.5.2 Exercises .. 3-40

Chapter 4 • Software Analysis

4.1 Reading Programs for their Behaviors ... 4-1
4.1.1 Hierarchical Structures of Ada Programs .. 4-1
4.1.2 Bottom Up Analysis to Determine a Program Behavior 4-4
4.1.3 Program Behaviors that Include Exception Handling ... 4-7
4.1.4 Assignment Behaviors .. 4-9
4.1.5 Exercises .. 4-9

4.2 Determining Sequence Statement Behaviors ... 4-11
4.2.1 Trace Tables .. 4-11
4.2.2 Trace Tables with Concurrent Assignments ... 4-13
4.2.3 Trace Tables with TEXT _10 Procedure Calls4-13
4.2.4 Trace Tables with Integer Arithmetic ... 4-15
4.2.5 Exercises .. 4-16

4.3 Determining If Statement Behaviors ... 4-17
4.3.1 Conditional Trace Tables .. 4-17
4.3.2 Conditional Trace Tables with Sequences ... 4-18
4.3.3 Conditional Assignments for Procedure Calls .. 4-20
4.3.4 Exercises .. 4-24

4.4 Determining For Statement Behaviors .. 4-25
4.4.1 Trace Tables with For Loops .. 4-25
4.4.2 Trace Tables for Large For Loops .. 4-27
4.4.3 Exercises .. 4-36

4.5 Determining Loop Stateinent Behaviors .. 4-38
4.5.1 While Loop Analysis with Conditional Trace Tables .. 4-38
4.5.2 While Loop Analysis Ensuring Termination .. :4-40
4.5.3 While Loop Analysis with Loop Behaviors ... 4-43
4.5.4 While Loop Analysis with Integer Data4-44
4.5.5 Exercises .. 4-45

iii

Chapter 5 • Sequential Ada II

5.1 Ada Types and Objects .. 1
5.1.1 Enunteration Types and Objects ... !
5.1.2 Enumeration Input/Output ... 6
5.13 Real Types .. 7

5.13.1 Floating Point Types and Subtypes .. 8
5.1.3.2 Fixed Point Types and Subtypes ... 12

5.1.4 Exercises .. 15
5.2 Introduction to One Dimensional Arrays .. 16

5.2.1 Arrays with Only One Dimension ... l7
5.2.2 Array Operations21
5.2.3 Array Attributes23
5.2.4 Array Input and Output23
5.2.5 STRING Types and Objects .. .25
5.2.6 Exercises27

5.3 Multi-Dimensional Arrays .. .28
5.3.1 Arrays with More than One Dimension .. .28
5.3.2 Array Operations and Attributes30
5.3.3 Multi-Dimensional Array Input and Output ... 31
5.3.4 Exercises ... 32

5.4 Introduction to Records .. 34
5.4.1 Records ... 34
5.4.2 Record Operations .. 37
5.4.3 Default Initial Values .. 38
5.4.4 Record Input and Output .. 38
5.4.5 Exercises ... 39

5.5 Ada Statements .. . 40
5.5.1 If Statements ... 40
5.5.2 Case Statements .. 44
5.53 For Loop Statements Revisited ... 47
5.5.4 Exercises .. 48

5.6 Block Statements And Exceptions .. 48
5.6.1 Scope and Visibility .. 49
5.6.2 Introduction to Block Statements .. 49
5.6.3 Introduction to Exceptions .. .54

5.6.3.1 The Use of Exceptions54
5.63.2 Predefined Input/Output Exceptions55

5.6.4 Exercises57

Chapter 6 • Program Verification

6.1 New Ada Rules for Behavior ; ... 6-2
6.1.1 Ada Rules for Declarations 6-2

6.1.1.1 Enumeration Types and ()bjects ... 6-2
6.1.1.2 Array Types and Objects ... 6-3
6.1.1.3 STRIN'G Types and ()bjects ... 6-3

6.1.2 Rules for Ada Statements .. 6-4
6.1.2.1 If Statements ... 6-4
6.1.2.2 Case Statements .. 6-6
6.1.2.3 Block Statements 6-7
6.1.2.4 For Statements ... 6-8

6.1.3 Ada Exceptions ... 6-8
6.1.4 Exercises ... 6-11

6.2 Program Specifications .. 6-11
6.2.1 Program Specifications as Mathematical Relations 6-11
6.2.2 A Specification for Program_1 ... 6-13
6.2.3 A Specification in Roman Numeral Arithmetic 6-15

6.2.3.1 Roman Numeral Syntax and Semantics 6-15
6.2.3.2 Roman Numeral Arithmetic Commands and Responses 6-16
6.2.3.3 Roman Numeral Arithmetic Specification 6-17

6.2.4 Exercises ... 6-18

6.3 Program Verification .. · ... 6-19
6.3.1 Program Correctness .. 6-19
6.3.2 Program Correctness Example .. 6-21
6.3.3 A Simpler Program .. 6-22
6.3.4 A Top Level Program for Roman Numeral Arithmetic 6-24
6.3.5 Exercises ... 6-26

6.4 Program Part Verification .. 6-26
6.4.1 P~:ogram Verification in Hierarchical Structures 6-26
6.4.2 Hierarchical Structure of Search_Program 6-27

6.4.2.1 Low Level U Statement 6-27
6.4.2.2 Next Level If Statement ... 6-28
6.4.2.3 Initialized While Loop Statement 6-29
6.4.2.4 Entire Executable Part .. 6-30
6.4.2.5 Entire Program ... 6-31
6.4.2.6 Summary of Search_Program ... 6-32

6.4.3 Exercises ... 6-33

6.5 Program Part Verification with Behavior Tables 6-34
6.5.1 Verifying Opening Sequence Parts .. 6-34
6.5.2 Verifying General Sequence Parts .. 6-38
6.5.3 Verifying If Statements ... 6-41
6.5.4 Verifying While Loops ... 6-43
6.5.5 Exercises ... 6-45

Table of Contents

Chapter 7 • Software Design and Certification

7.1 Designing Software to Meet Specifications .. 7 -1
7.1.1 Good Use of Specification Principles ... 7-2
7.1.2 Good UseofTraceTables .. 7-3
7.1.3 Finding Good Algorithms for Software .. 7-5
7 .1.4 Organizing Software Designs into Manageable Parts 7 -6
7 .1.5 Exercises .. 7-8

7.2 Designing Data Types, Subtypes and Objects .. 7-8
7.2.1 Designing Scalar Data Types, Subtypes and Objects 7-11
7 .2.2 Designing One Dimensional

Array Data Types, Subtypes and Objects ... 7-13
7 .2.3 Designing Multidimensional

Array Data Types, Subtypes and Objects ... 7-15
7.2.4 Exercises .. 7-16

7.3 Hierarchical Design with Subprograms ... 7-17
7.3.1 Sequence statement ~ign ... 7-18
7.3.2 Branching Statement Design ... 7-19
7.3.3 Looping Statement Design .. 7-20
7.3.4 Exercises .. 7-21

7.4 Program Usage Specifications ... 7-23
7.4.1 Program Usage ... 7-23
7.4.2 Probability Distributions ... 7-24

7.4.2.1 Uniform Probability Distributions ... 7-24
7.4.2.2 Nonuniform Probability Distributions 7-26

7.4.3 Statistical Program Usage .. 7-28
7.4.4 Markov Models in Usage Distributions .. 7-30
7.4.5 Exercises .. 7-31

7.5 Software Certification .. 7-32
7.5.1 Correct Software .. 7-33
7.5.2 Correctness Evidence .. 7-34
7.5.3 Certifying The Correctness of Software ... 7-35
7.5.4 Statistical Test Generation .. : 7-36
7.5.5 Measuring Testing Results ... 7-38
7.5.6 Certification Tasks .. 7-39
7.5.7 Testing Procedures and Functions ... 7-39
7.5.8 Exercises .. 7-40

Chapter 8 • Sequential Ada Ill

8.1 Ada Packages .. .8-1
8.1.1 Introduction to Packages ... 8-1
8.1.2 Package Specification and Bodies ... 8-3
8.1.3 Initialization of Packages .. 8-7
8.1.4 State Variables in Packages ... 8-9
8.1.5 Exercises .. 8-11

8.2 Ada Procedures ... 8-11
8.2.1 Procedure Specifications and Bodies ... 8-11

8.2.1.1 Procedure Specifications .. .B-11
8.2.1.2 Procedure Bodies .. .B-13

8.2.2 Procedure Calls .. 8-17
8.2.3 Exercises .. 8-18

8.3 Ada Functions ... 8-18
8.3.1 Function Specifications ... 8-19
8.3.2 Function Bodies .. 8-21
8.3.3 Function CallsB-22
8.3.4 Return Statements .. 8-25
8.3.5 ExercisesB-28

8.4 Parameters of Ada SubprogramsB-30
8.4.1 Parameter Modes in Ada Procedures .. 8-32
8.4.2 Parameters of Ada Functions .. .B-34
8.4.3 Exercises .. 8-35

8.5 Ada Program Execution Structure ... 8-36
8.5.1 Scope and Visibility .. 8-36
8.5.2 Scope of Parameters ... 8-37
8.5.3 Ada Libraries .. 8-40
8.5.4 Exercises .. 8-40

Table of Contents

Chapter 9 • Linked Lists

9.1 Introduction to Records .. 9-1
9.1.1 Records .. 9-1
9.1.2 Record Operations ... 9-3
9.1.3 Default Initial Values ... 9-5
9.1.4 Record Input and Output ... 9-5
9 .1.5 Exercises .. 9-6

9.2 Introduction to Access Types ... 9-6
9.2.1 Access Types .. 9-7
9.2.2 Dynamic Allocation ... 9-8
9.2.3 Access Type Operations .. 9-9
9.2.4 Designated Types .. 9-10
9.2.5 Exercises .. 9-12

9.3 Introduction to Linked Usts ... 9-13
9.3.1 UstProcessing ... 9-13
9.3.2 List Processing using Static Structures ... 9-14
9.3.3 Dynamic Structures .. 9-17
9.3.4 Advantages and Disadvantages of Unked Usts 9-19
9.3.5 Exercises .. 9-20

9.4 Linked List Implementation .. 9-20
9.4.1 Incomplete Types : ... 9-20
9.4.2 Singly Linked Lists .. 9-21
9.4.3 Circularly.Unked Lists .. 9-24
9.4.4 I>oubly Linked Usts ... 9-25
9.4.5 Exercises .. 9-27

9.5 Operations on Linked Lists .. 9-28
9.5.1 Operations on a Singly Linked List ... 9-28
9.5.2 Operations of a Circular Linked List ... 9-37
9.5.3 Operations on I>oubly Unked Lists ... 9-41
9.5.4 Exercises .. 9-44

Chapter 10 • Ada Package Design with Box Structures

10.1 Package Uses in Program Design .. 1 0-2
10.1.1 Booch Package Categories .. 10-4
10.1.2 Using Declaration Group Packages ... 10-5
10.1.3 Using Subprogram Group Packages .. 10~7
10.1.4 Using Abstract Data Type Packages ... 10-9
10.1.5 Using Abstract State Machine Packages ... 10-12
10.1.6 Exercises .. 10-13

10.2 Package Behavior Specifications .. 10-14
10.2.1 The Basis for Behavioral Specification of Packages 10-14
10.2.2 Behavioral Specification of Package Parts 10-15
10.2.3 Declaration Group Package Behavior Specifications 10-17
10.2.4 Subprogram Group Package Behavior Specifications 10-18
10.2.5 Abstract Data Type Package Behavior Specifications 10-19
10.2.6 Abstract State Machine Package Behavior Specifications 10-21
10.2.7 Exercises .. 10-21

10.3 Box Structured Design with Packages ... 10-22
10.3.1 Background in Oeanroom Software Engineering 10-22
10.3.2 Oeanroom Engineering Activities .. 10-23

10.3.2.1 Dealing with Human Fallibility 10-23
10.3.2.2 Software Development Without Testing 10-24

10.3.3 Cleanroom Experiences ... 10-24
10.3.4 Software Specification by Increments ... 10-25

10.3.4.1 Software Usage as a Markov Process 10-26
10.3.5 Box Structures .. 10-27

10.3.5.1 Black Box Behavior Specifications 10-28
10.3.5.2 State Box Design ... 10-29
10.3.5.3' Oear Box Design .. 10-30

10.3.6 Box Structure Examples ..•... 10-31
10.3.6.1 Minimum and Maximum Analysis 10-31
10.3.6.2 Historic Change in Inventory Policy 10-35

10.3.7 Exercises .. 10-38

10.4 Verification and Certification of Packages .. 10-39
10.4.1 Background in Statistical Quality Control .. 10-39

10.4.1.1 Statistical Quality Control in Manufacturing 10-39
10.4.1.2 Statistical Quality Control in Software 10-40

10.4.2 Verification of Packages .. 10-41
10.4.2.1 Behavioral Verification of Packages 10-41
10.4.2.2 State Box to Black Box Verification 10-42
10.4.2.3 Clear Box to State Box Verification 10-42

10.4.3 Certification of Packages ... 10-42
10.4.3.1 Software Certification with Failure Free Testing 10-42
10.4.3.2 Certification Process ... 10-43
10.4.3.3 Certification Experience ... 10-43
10.4.3.4 Difference Between Correctness and Reliability 10-44

10.4.4 Statistical Usage of Packages .. 10-44
10.4;4.1 Statistical Testing of Packages .. 10-45

10.4.5 Exercises .. 10-45

10.5 Behaviors of Linked Lists .. 10-46
10.5.1 Specifying a Package for List Processing ... 10-46
10.5.2 Designing the Package List_Processing ... 10-48
10.5.3 Verifying the Package List_Processing ... 10-51
10.5.4 Exercises .. 10-58

ii

Syntax Definitions

9.1 Record Data Type 9-1
9.2 Access Type 9-7

Syntax Charts

9.1 Record Data Type .. 9-2
9.2 Access Type ... 9-7

Figures

9.1 A_Student Object ... 9-3
9.2 Initializing Id_Number 9-3
9.3 Initialized A_Student Object ... 9-3
9.4 Int and Char Initial Values .. 9-7
9.5 Creating INTEGER and CHARACTER Objects 9-8
9.6 Assigning Dynamic Variables .. 9-8
9.7 Changing the Value of a Dynamic Variable 9-9
9.8 Creating a New Object ... 9-9
9.9 Assigning Values to String Objects .. 9-11
9.10 Storing Elements in a Static Array .. 9-14
9.11 Road Rally Route .. 9-18
9.12 Node Element in a Unked List .. 9-18
9.13 Linked List .. 9-18
9.14 Node ~on ... 9-19
9.15 Node I>eletion ... 9-19
9.16 A Two Node Linked List ... 9-22
9.17 A Three Node Linked List .. 9-22
9.18 A Four Node Linked List 9-23
9.19 Initializing the Fourth Node ... 9-23
9.20 Circular Linked List ... 9-24
9.21 Doubly Linked List .. 9-25
9.22 Circular Doubly Linked List ... 9-27
9.23 Inserting into an Empty List. ... 9-31
9.24 Inserting at the Beginning of List : .. 9-31
9.25 Inserting in the Middle of List 9-32
9.26 Inserting at the End of Ust ... 9-32
9.27 Deleting from the Beginning of List .. 9-33
9.28 Deleting from the Middle of Ust .. 9-33

Tables

10.1 Values of Q(m) forK= 12 ... 10-37
10.2 Distribution of Q(m) forK= 12 10-37
10.3 Values ofQ(m) forK= 18 ... 10-37
10.4 Distribution of Q(m) forK= 18 ... 10-37
10.5 Values of Q(m) forK= 12 ... 10-37
10.6 Distribution of Q(m) forK= 12 ... 10-38

. iii

Table of Contents

Chapter 11 - Sequential Ada IV

11.1 Real Types .. 11 - 1
11.1.1 Floating Point Types and Subtypes ... 11 - 2
11.1.2 Fixed Point Types and Subtypes .. 11 - 6
11.1.3 Exercises .. 11- 9

11.2 Composite Types Revisited ... 11 - 9
11.2.1 Records with Discriminants ... 11-1G
11.2.2 Arrays of Records ... 11-15
11.2.3 Records with Arrays .. 11 -17
11.2.4 Exercises .. 11- 18

11.3 Private Types ... 11 -18
11.3.1 Introduction to Private Types ... 11-19
11.3.2 Introduction to Urnited Private Types .. 11 - 24
11.3.3 Exercises .. 11-26

11.4 Text File Input and Output. .. 11- 26
11.4.1 Creating and Using Text Files in Ada .. ll- 27

11.4.1.1 Creating a Text File .. 11- 27
11.4.1.2 Opening a Text File ... 11-28

11.4.2 Input and Output Example .. 11-29
11.4.3 Input/Output of Real Values (Fixed and Float) ll- 31
11.4.4 Exercises .. 11- 33

11.5 Operations on Text Files .. 11- 33
11.5.1 Reading Strings (Get versus Get_Une) .. ll- 34
11.5.2 Dynamic File Interrogation .. 11-37
11.5.3 Exceptions in Text Files .. 11- 38
11.5.4 Exercises .. 11-40

Chapter 12 - Software Design for Interactive Use

12.1 Ada Capabilities from Chapter 11 .. 12 -1
12.1.1 REAL NumberTypes .. 12- 2

12.1.1.1 Floating Point Behavior ... 12- 2
12.1.1.2 Fixed Point Behavior .. 12- 3

12.1.2 Composite Types of Advanced Designs .. 12-4
12.1.2.1 Records with Discriminant .. 12-4
12.1.2.2 Arrays of Records .. 12- 4
12.1.2.3 Records with Arrays ... 12- 5

12.1.3 Private Types .. 12- 6
12.1.3.1 Limited Private Types12- 6

12.1.4 Text Files in Ada .. .12- 6
12.1.5 Binary Files in Ada ... 12 -7
12.1.6 Exercises12- 8

12.2 Interactive Software Segments .. 12- 8
12.2.1 Interactive Software is Real Time .. 12- 8
12.2.2 Interactive Software Segments Revisited ... 12- 9
12.2.3 Performance Requirements for Interactive Software 12- 11
12.2.4 Correctness Requirements for Interactive Software 12 -12
12.2.5 Exercises .. 12 -12

Singly Linked Lists Again ··:· 12- 12
12.3.1 Black Box Specification of Singly Linked Llst 12 -13
12.3.2 State Box Design and Verification of Singly Linked List 12 -13
12.3.3 Clear Box Design and Verification of Singly Linked List12 -16
12.3.4 Ada Design and Verification of Singly Linked List12- 20
12.3.5 Certifying Singly _Linked_List12- 24
12.3.6 Exercises .. 12- 26

12.4 System Level Software Development ... 12- 26
12.4.1 The Problem: Develop and Certify a Correct System12- 27
12.4.2 Using Cleanroom in System Level Development12- 31

12.4.2.1 Oeanroom Software Development Life Cycle 12- 33
12.4.2.2 Formal Methods in Cleanroom ... 12- 34
12.4.2.3 Oeanroom Experience ... 12- 36

12.4.3 What Does It Mean To Say Software Is Correct? 12- 37
12.4.3.1 Verification of Software ... 12- 38
12.4.3.2 Testing Software ... 12- 38
12.4.3.3 Statistical Testing, Without A Model 12- 39
12.4.3.4 Statistical Testing with Models 12- 40

12.4.4 Principles of Statistical Testing ... 12- 41
12.4.4.1 The Basics of the Certification Model.. 12- 43
12.4.4.2 The Reliability Allocation Model. 12- 44
12.4.4.3 Judging Whether It Is Safe To Reuse Software 12- 46
12.4.4.4 Judging When to Accept an Increment 12- 47

12.4.5 Construction Plan ... 12- 48
12.4.5.1 Certification Management .. 12- 49
12.4.5.2 Manageinent Observations .. 12- 51

12.4.6 Exercises .. 12- 51
12.5 Cleanroom Engineering in Retrospect .. 12- 52

12.5.1 Reviewing Oeanroom Engineering .. 12- 52
12.5.1.1 Oeanroom Engineering Processes 12- 53

12.5.2 Specifications and Construction Planning .. 12- 54
12.5.2.1 Construction and Certification ... 12- 55
12.5.2.2 The Basis for Box Structured Design12- 55
12.5.2.3 Functional Verification of Software12- 57

12.5.3 Statistical Certification .. 12- 57
12.5.4 History of Oeanroom Engineering .. 12- 59

12.5.4.1 Two Sacred Cows of the
First Human Generation in Software 12- 60

12.5.4.2 The Power of Usage Testing over Coverage Testing 12- 61
12.5.5 Summary ... 12- 63
12.5.6 Exercises .. 12- 64

ii

Syntax Definitions

11.1 Floating Point Type and Subtype Declaration 11- 2
11.2 Fixed Point Type and Subtype Declaration 11- 6
11.3 Record Type Declaration .. 11 -11
11.4 Private Type Declaration .. 11-19

Syntax Charts

11.1 Floating Point Type and Subtype Declaration 11- 3
11.2 Fixed Point Type and Subtype Declaration 11 - 7
11.3 Record Type Declaration .. 11 - 13
11.4 Private Type Declaration .. 11- 21

Figures

11.1 Relative Precision ... 11- 5
11.2 Absolute Error .. 11-9
11.3 Date Picture .. 11-16

12.1 Schematic of an Example System .. 12- 27
12.2 Example System .. 12- 28
12.3 Cleanroom Software Development Life Cyde 12- 33

Tables

11.1 Comparison of Capabilities ... 11 - 26
11.2 Real Number Output .. 11- 33

12.1 System Transfer Probabilities #1 .. 12- 28
12.2 Summary of Repository Information ... 12 - 29
12.3 Module Sensitivities .. 12- 29
12.4 Test Failures in Cleanroom Project .. 12- 36
12.5 System Component Reliabilities .. 12- 44
12.6 System Transfer Probabilities #2 .. 12- 45
12.7 System Transfer Probabilities #3 .. 12- 46
12.8 System Transfer Probabilities #4 .. 12- 47
12.10 Distributions Of Errors (In%)

Among Mean Time To Failure (MTTF) Classes 12- 61
12.11 Error Densities And Failure Densities

In The MTTF Classes Of Table 12.10 .. 12- 62

iii

Chapter 1

Mathematical Foundations

Computing and computer applications have become an integral part of modem society. The
impact of computing is so widespread that it is taken for granted or even overlooked as both a
positive and negative influence on everyday life. Although it is easy to see the impact on our
lives, it is much more difficult to understand how this technology can be controlled and
productively used. Even the simple application of writing a letter using a word processor can
become a real challenge when the concept is expanded to include the production of a daily
newspaper or a monthly magazine. To use a computer to balance a checkbook is relatively
simple but when compared to balancing the profit and loss statement of a international
corporation the computational complexity is significantly increased. Each problem that a
computer is used to solve is made up of a complex set of smaller problems, some of which by
themselves may be relatively straight forward. One of the major challenges in the world of
computing is to recognize how the large problem can be broken down into the right set of small
problems. Then no sooner is the correct set of components fit together to make a correct solution,
than the person using the system inevitably uncovers many new useful functions that they want
to be added to the system. Thus for every new computer application that becomes operational,
many modifications or even totally new systems are proposed. As our society grows in
understanding this technology, the demand continues to escalate for larger, more complex
systems to enhance all aspects of our lives. The potential demand for computing appears
limitless and every day our lives seem to become more tied to this technological marvel.

It is easy to see the impact computing has on our lives, but what is it that makes these
sophisticated devices function? How can one computer perform so many useful, yet different
actions? What knowledge is necessary to be able to control the actions of computers? For some
situations it can be as easy as providing the computer with a list of names and a few simple
instructions on what to do with them. On the other hand, to develop and correctly implement a
large aggregation of the finandal data that a large organization requires to function every day
could require a team of several people working for many months. What happens when one of
those involved in creating the computer solution makes a mistake? How will that error affect
the entire system? What does it mean to have a computer failure? It is easy to point out a wide
range of problems for which computers have been blamed. Is it the computer that malfunctions
or the person that prescribed the actions the computer is to perform? Although at first it may
appear to be fun to make the computer perform so many complex operations in such a short
period of time, the potential exists for great harm and costly problems if the correct solution is
not specified, designed, and implemented.

Those people who choose to make a profession in developing correct computer-based solutions
will require an in-depth study of many aspects of computing. The foundations will come from
applied mathematics, engineering, and the sciences. Understanding how computers work will
require an understanding of the basic components of their operation in both an abstract and
practical way. This chapter begins with some practical introduction to the way computers are
used and the effort it requires to make them perform the desired actions in an exact and correct
manner . Then the formal foundations of computing are introduced in an abstract representation
of the actions that are to be performed. The process of understanding the logical actions
computers perform begins with some basic but non-traditional mathematics. Not the usual
algebra or geometry, but the mathematics of logic, relationships, number systems, and
spedfying operations. It is this discrete mathematics of computing elements that is needed to
describe and predicate the behavior of each computer action.

Chapter One- Mathematical Foundations 1 - 1

The introduction to this form of mathematics covers topics that have an intuitive
representation. For example, the words used to write this text, were all constructed on a
computer using a word processor. To the computer, each character, including the blank space, is
just a part of a formal string that has both specific physical and mathematical properties.
These strings have been treated mathematically only recently, with the advent of computers.
There are several classes of sqings that are very common and very important, but the one that
is of most interest in computing is character strings, in which the components are characters.
Ordinary text, such as this very sentence, is a character string. Natural numbers given in place
notation are character strings with only digits as components. Roman numerals are character
strings with strong restrictions on the order of the roman numeral components in a string. But of
special interest are the instructions of what actions a computer is to perform, which are often
called a program, as they are represented by a character string.

Many character strings have a higher level structure of strings, as well. Ordinary text in a
given language will also be a string of words, numbers, space, and punctuation cl1aracters which
form a proper language string. Such a string will be a string of strings, such as words made up of
several letters, numbers made up of several digits, space and punctuation characters that are
regarded as strings of a single character. At higher levels, proper language text can be
organized into lines, lines into pages, pages into books, and books into libraries.

Another part of the computing formalism is a grouping of items into sets • Sets as formal objects
of mathematical study are also a recent development, beginning before computers, but still less
than a hundred years old. Sets represent an abstraction of strings, listing their objects, but
ignoring the order and duplication of such objects. While computer programs are character
strings, the values that are provided as inputs are sets of character strings, each of which
constitutes a single input unit. The outputs in response to each input make up another set of
character strings. Such sets of input, output pairs that describe all possible program behavior
are called mathematical functions. Each program has a program function that describes its
behavior over all possible inputs. By generating this function as a mathematical object, where
the behavior is a listing of the set of input, output pairs , it is possible to examine every action
the program will perform. Program functions need not be numerical, but may describe any
possible behavior, dealing with word processing or any other behavior that has been
programmed. Although functions have been studied mathematically before the use of sets,
their study has become more rigorous, yet simplified, with sets as their foundations. And these
new foundations are especially relevant for computer programs.

Although the basic process of making the computer perform the right functions is
straightforward, it quickly becomes complicated and requires a great deal of knowledge, skill,
and discipline. The mastery of the process of developing full scale computer applications will
require a different set of knowledge plus patience, diligence and hard work. As with other
fields that result in the construction of useful devices, the term engineering can be applied to
developing computer solutions to real world problems. The term Computer Engineer has
developed a more specialized meaning as a field directly related to Electrical Engineering. The
general term of Software Engineer is evolving as a description for those professionals that
develop computer-based systems for a wide variety of applications.

1 -2 Chapter One - Mathematical Foundations

1.1 What Is Software Engineering?

1.1.1 Engineering Correct Software

The impact of the era of computing has reached almost every facet of our society. Some useful
insight and a historical perspective can be gained through a quick look back into the
development of the computing that is now taken for granted. The sheer speed of the numerical
processing capability was enough to make the first primitive digital electronic computers very
valuable. During the 1950's, one of the early designers of these basic computers was reported t9
have said that the commercial needs could be satisfied by building less than 10 operational
computers. During the early years of computing, most applications were numeric and the
developments were driven by the new electronic technologies. Improvements were realized by
increasing the reliability, reducing the physical size, increasing the speed, and expanding the
capacity, while lowering the cost per computation unit. These initial improvements focused
primarily on the electromechanical components, where the financial investment was
considered highest. The initial cost reduction based on improvement in these technologies
established a trend where the price per computational unit dropped by half about every two
years.

Hardware is the general term that describes the combination of the electrical and mechanical
portion of a computer. If a particular computer is made up of only hardware, it is restricted to
perform only the functions that are included in the physical logic and it will perform them in
fixed sequence. The real flexibility of computers comes when the hardware is designed to
determine which instructions and what sequences are to be performed, based on values that are
found in specific storage locations, appropriately called memory. Thus, in most modern
computers the basic functions (i.e., addition, subtraction, and comparison) are built into
hardware logic. The sequence of which action is to be executed next and the spedfic values to be
used in each action (i.e., the numbers to be added together) is determined by placing the
appropriate values in the correct sequence in the form of instructions that are stored in the
proper memory locations. The set of basic hardware functions that a specific computer can
recognize and execute is called the hardware instruction set. These instructions can be grouped
together to perform logical actions such as combining repetitive additions to make
multiplication or repetitive subtraction to result in division. The ultimate results that the
computer produces are thus determined by having the hardware execute a specific sequence of
logical instructions that have been placed into specific memory locations. Software is the
general term used to describe a specific set or sequence of logical instructions that can be placed
in memory to control the hardware execution and thus the results the computer produces.

Software was initially developed to provide easier access to the hardware and more
flexibility in the way it could be used. In addition to the early numerical problem solving,
software was developed for common problems in data comparisons or manipulation, as well as
combinations of sorting and searching. Software was also produced that could aid in developing
other software. Another key factor in the development of modern software was the concept of
storing the instructions used to control the computer in the same area that the data, that would
be used in the computational or manipulation process, was stored. In this form the hardware
does not distinguish between instruction or data, it only executes the next piece of data, as an
instruction, in the sequential order in which they are stored. It is the responsibility of the
software developer to insure that the proper instruction and the correct data is placed where it
should be. This concept is known as the stored program concept and is credited to the computer
pioneer John Von Neumann. By storing data and instructions together in logical groups called
programs, a single computer could be made to perform many different tasks in almost any order.

1.1 - What is Software Engineering? 1-3

Such programs could be created separately, then read into the computer's memory to be
performed one after another.

The search for easy ways to specify what software instructions were to be combined to make
specific programs lead to the use of software translators. These translators were just programs
that were able to convert instructions given in a restricted form that was easy for humans to
understand, into the correct instruction codes that the hardware could perform or execute. The
term programmer has come to be used for those who specify programs using some form of a
software translator or programming language interpreter. A programming language is a
restricted set of rules for specifying the logical actions the computer will perform. The specific
programming language syntax can provide the initial mechanism to check the correctness of
instructions to be executed. The history of programming language translators represents a broad
and diverse segment of the development of computers. Many languages have been developed for
specialized, as well as generalized, use. The concept of a high order programming language
(HOL) is to restrict the instruction specification by the programmer to an easy to use, useful, but
less ambiguous, and more formal, format. Except for the inherent ambiguity, perhaps the
easiest HOL to use would be a natural language such as English, but this is not practical for
technical reasons. The restricted format of the common HOL's does provide some discipline to
the way problems can be specified for translation into hardware instructions, but each has its
own unique inherent problems.

Evolving much as a craft, or art, the skill of programming was applied to scientific,
commercial, and governmental problems of all magnitudes. As programming languages and
techniques developed, the complexity and size of individual programs grew astronomically.
The range of potential problems for computer solutions expanded faster than our ability to
generate correct solutions. The demand for skilled programmers was so high, and the breadth of
applications so wide, that often unlimited experimentation was allowed in spite of
catastrophic failures. As the percentage of time and cost associated with developing software
became Jarger than the investment in hardware, the concern grew for control over the software
development process. The role of a system analyst evolved to provide assistance in the initial
stages of programming. Interfacing with the eventual user of a computer system, the analyst
was involved in determining what the problem really consisted of and the feasibility of a
computer solution. If it was determined that the problem could and should be solved using a
computer, a blueprint or design was created. This design was to guide the programmer in
developing each program unit. Again without much formal training the art of system analysis
evoLved from the good and bad experiences of those involved.

During this period of rapid development of computing technology, our society began to adopt a
complete dependence on computing. Whereas a manual accounting system was expected to take
weeks to determine the end-of-month balance, a computerized accounting system was expected
to provide instantaneous results. There was total dependency on the availability of the
computing system. Complicated computer-based medical equipment was expected to perform
without flaw at all times in all conditions. The sheer size of the data that was expected to be
processed eliminated any other solution. In spite of new and more sophisticated design and
implementation techniques, software continued to contain a significant number of errors. At fll'st
the blame for these errors was placed on the computer itself, but no one ever took these excuses
seriously, as it was always the human that created the flaw in the software. An additional
and very alarming issue is the estimation of the number of software errors that still exist in
many large scale operational software systems, but have yet to be uncovered.

The advent of the inexpensive personal computers and the associated easy-to-use software has
opened the door to an even broader range of applications. Many who use these systems are not
trained in the basic skills of logic and programming. It is true that for many simple
applications, the available software tools are generally reliable and therefore many

1-4 Chapter One - Mathematical Foundations

straightforward problems can be easily solved. It is precisely because these tools are so easy to
use that the owners fall into the complexity trap. Here the ability of the untrained developers
is quickly exceeded as they try to manage the problem complexity while learning the necessary
programming skills for what initially seemed an easy problem.

The collective problems that have been summarized here constitute a crisis for those involved
in the profession of software development as well as society in general. As the scope and
complexity of development projects expand, and the ability of those involved fails to keep pace
with the problems that are created, the significance of the software crisis continues to grow.

1.1.2 Dealing with Large Complex Software Solutions

To be aware of a crisis is not a sufficient condition for the solution. The awareness of this crisis
is, however, an initial condition that can lead to identifying the causes and providing a
beginning for developing potential solutions. The first cause to be examined is the size and
complexity issue. If all the problems that were to be solved could be limited in scope and effort
to the effort one individual could produce in a short period of time, say a few months, and
assuming that the single individual understood or could master all the associated nuances of
the problems involved, then a set of basic design skills and programming techniques could be
provided to train programmers in solving these problems. This is in fact the way much of formal
Computer Science education has taken place. The basic skills in problem solving, programming,
and application techniques form the foundation for what is called programming-in-the-small.
Such an education could include studying specific topics such as: programming languages,
compiler construction, algorithm analysis, and data structures. This knowledge is combined
with applications in Computer Graphics, Robotics, Data Base Systems, and Operating Systems
to provide a basis for developing real world applications. This incremental approach provides
a reasonable foundation depending on the quality of the instruction and the depth of knowledge
that is obtained.

The major weakness of this approach is that it fails to recognize the problems that are
introduced when the size and complexity are so large that it will require a team of experts
working over an extended period of time to complete the full development. This team will
spend months determining the scope and feasibility of a potential computer-based solution. If
the problem is sufficiently ill defined, prototypes or simplified sample solutions will be
developed just to be sure that the ultimate solution will fill the need of those who will use the
system. After this, a major specification, design and implementation effort will be required.
The development of systems of this magnitude require special management skills and a process
that controls each phase or cycle. The evolution of a discipline for managing this complexity
has led to the use of the term programming-in-the-large. In this environment the total lifecycle
of a software system is managed and controlled based on specific systems development
techniques.

The second cause for the software crisis is represented by the difficult task of maintaining
existing software systems. As a software system is developed, conscious decisions are being
made as to what should be included in the ultimate solution. For various reasons, certain
functions may not be included in the initial development. As the system is finalized, external
conditions may change, new requirements may be uncovered, and improvements may be
recommended. Once the system becomes operational, a new phase of development begins that is
traditionally called maintenance. This involves expanding and refining the software system
utilizing many of the same techniques required for the initial development. This refinement
process leads to the concept of developing software for reuse as part of other systems. Until the
techniques that have been developed for maintenance and reuse are integrated into all aspects
of software development, the software crisis will continue to grow.

1.1 - What is Software Engineering? 1-5

The recognition of the need to manage the fulllifecycle of a large-scale software development
effort has led to an expanded study of each component of the life cycle. Although there are
many models for the life cycle of software development, they all share the same goal of
decomposing the process into understandable and manageable stages. The initial stage is the
problem definition and gathering of the requirement for a solution. As easy as it may sound, the
problems of determining exactly what the problem is and what it will take to solve it can
consume a major portion of the full development effort. This is particularly true if the desired
solution involves many units within an organization and many people with differing view
points. As the problem is better understood, the user requirement can be converted into
specifications that a software designer specialist can use to begin to develop a computerized
solution.

Computer solutions to these large, complex, ill defined problems go through many iterations of
refinement. One way to examine the initial approximations to a solution is to build a prototype
that represents the general functions without requiring the full development of all components.
After the prototype is evaluated by the user and developer, a second and then third version can
be developed with more functionality and more completed components. As each of these
components are systematically developed and tested they become part of the complete
operational system. The skill and knowledge required to manage this full development process
represents a significant challenge to the software development professionals.

Each organization has specific operational procedures that need to be considered in their
software development process. There are many ways in which the development team can
function to accomplish the same objectives. All large-scale software development efforts do not
have the same characteristics, nor require the same management effort. Each organization must
manage and mature their own style of software development. Only as the aggregate maturity of
all organizations are substantially improved will we see the demise of the software crisis.

Perhaps the most fundamental and serious cause of the software crisis is the inability of all the
individuals involved to develop each component of the software system error-free. It is widely
recognized that errors can be introduced into all phases of the software development process.
Incorrect understanding of the problem leads to erroneous specifications. Faulty specifications
lead to inaccurate and inappropriate designs. Without correct designs, the resulting programs
can not implement the correct solution. Beyond this proliferating sequence of errors, the
potential for traditional problems of improper use of programming constructs, language syntax,
and <lata structures is ever present. Recognizing that all aspects of software development are
inexorably tied to human frailty, it is essential that a systematic and sound method be
developed to test each component at each step in the development process.

1.1.3 Scope and Status of Software Engineering

The challenge presented by the current state of the art of developing correct software solutions
is to discover simple yet powerful principles that can be applied in a disciplined and consistent
manner throughout the entire process. The general term software engineering can be applied to
this challenge. The definition includes a strong foundation in the formal methods for
developing small error free programs and the associated testing techniques that are required to
insure correctness. Software engineering involves the full life cycle of large scale systems
development as well as the process that a team or organization utilizes. The software
engineering concept embodies the maintenance of systems and reuse of components. A key
component of this or any field of engineering is the recognition of the need for a controlling
discipline. Such a discipline moves from a set of skills for a craft, to the formal foundation of a
science and evolves into applied engineering principles.

\·~ ~~a~~~ t)~~ • ~a~~mo.\\ca\ ~~~~~a\~~os.

Software engineering in the form described here is a new and evolving field. Many academic
and professional disciplines have significantly influenced the current status of this field of
engineering. Mathematics forms the foundation and provides many areas for application. More
than just a formal way to think about computing concepts, mathematics provides the essential
tools to decompose, analyze and improve key operational aspects of a computer's hardware and
software. Depending on the specific academic definition and vantage point, Computer Science
and Computer Engineering are integral parts of Software Engineering. From the basic electronic
components to the basic software instructions, to the most complex algorithms and applications,
these fields share many of the same concepts. The field of Information Systems shares the
concern for organizational issues and the way they impact software development. The
interrelationship of these three and Software Engineering will likely continue, with each
emphasizing their own strength.

As the field of software engineering continues to develop an identity, it will be strongly
influenced by current and future events. As organizations mature with respect to software
engineering, the feedback will refine current techniques. As the academic world refines the
formal education process, broad acceptance and certification will take place. Given the current
bases and challenges, the outlook is both optimistic and exciting.

1 .. 1.4 Exercises

1. What are some of the key dependendes our society has developed for computers?

2. What are some of the basic applications for personal computers? How are they different or
similar to the basic applications of large scale computing systems?

3. Describe a critical application of computers you have encountered where a software error
would cause catastrophic problems. Describe another application where minor errors could
be tolerated.

4. Describe some of the ways that large complex software systems are different from small
scale computer:-based solutions?

5. What particular challenge in current software development do you find most interesting?
Can you suggest some potential solutions?

6. Banks are clearly major users of computers. Which has been most affected, bank customers or
bank workers or both? illustrate your conclusions with examples.

7. Hotel chains are clearly major users of computers. Which has been most effected, hotel
customers or hotel workers, or both? Illustrate your conclusions with examples.

.1 - What is Software Engineering? 1-7

1.2 Developing Correct Software

1.2.1 Starting with the Correct Fundamentals

As with any field of knowledge, the fundamental principles of software development must first
be understood and mastered. Computer software is a new form of applied mathematics, just as
place notation and long division was a new kind of mathematics in the western world a
thousand years ago. Computers follow their software exactly, whether the software is right or
wrong. They behave with mathematical precision, but with no common sense. It is up to the
people who create or modify the software to get it right. So the new form of mathematics in
computer operations is in the software. It is logical, but not necessarily numerical mathematics.
Tracking a satellite needs numbers, but also a good deal of logic in what to do with the numbers.
Maintaining bank accounts needs numbers, but even more logic in keeping track of the customers
and banking conditions. Dealing with a telephone switching station needs more logic than
numbers. Tracking court cases, both civil and criminal, needs mostly logic in legal procedures
and word processing rather than numbers.

Software engineering is needed to deal with the complex problems of developing correct
computer software for important applications. Engineering discipline helps address the issue of
getting millions of instructions right for a given problem. This engineering discipline is based on
mathematics, namely the mathematics of computers with discrete memory and operations that
are directed by billions of instructions every day. It is the discrete mathematics of strings and
sets that is needed, that lead to mathematical relations, functions, and predicates in describing
software and computer behavior. The precise mathematical description of the logical action
the computer is to perform provides the foundation for specifying correct software solutions.

If a correct software solution is decomposed, several components can be identified. The first
component is the logic that controls sequential flow of instructions. This can be abstractly
described as an algorithm. Algorithms have the properties of precise sequential steps, that
have a beginning, an ending and are successful in accomplishing the desired results. Algorithms
can be studied for complexity, power as well as completeness and correctness. It is useful to
understand many basic algorithms such as sorting and searching, as they will appear often in
many software applications.

A second component of software is the internal representation of the data to be used. This data
can be arranged in useful structures such as arrays, lists and strings. Using basic predefined
operations on these data structures, such as insert, compare and delete, can provide powerful
tools for solving complex problems in software development. Care must be exercised in choosing
the correct data structure and each operation must be fully understood before it can be correctly
used.

Other common components of software systems are predefined functions such as input, output and
transfer of control. Although these functions could be defined and controlled by each
programmer, they are so common as to warrant a uniform solution that is provided by the
computer manufacturer or software vendor. For example, using a keyboard as input, a READ
statement in one programming language performs much the same basic operation as in any other
language. A write to an external disk storage unit, however, will require a more complete
description of where and how to store the data. Again ·a full understanding of the specific
implementation details is required if errors in usage are to be avoided.

1-8 Chapter One - Mathematical Foundations

A final component is the specification of the operational behavior of the software. When the
algorithms, data structures and system functions are combined into an operational program,
specific results will be generated. These actual results must be compared to the expected results
to determine their correctness. If the initial specifications were defined properly and the
software contains no errors, then the results match the specifications.

The complete mastery of many details is required to develop significant software systems. It is
not enough to be approximately correct. It is not enough to be correct most of the time. It is
totally inappropriate to learn the basic syntax of a simple programming language and through
trial and error piece together an approximate solution. A comparison could be made with
someone studying to be a mechanical engineer. They would not be given the pieces to an
automobile on the first day of the first class and be asked to begin building a better car through
trial and error. Nor would a medical student be asked to begin experimenting on patients by
diagnosing minor illness in their first class. A significant level of knowledge is required in any
field before major problems can be addressed.

1.2.2 Principles for Developing Software Systems

Although many very similar large and small problems have been solved with software many
times, each new solution may have just enough of a variation to make it better or more useful.
Even though on the surface a problem may appear to be similar to an earlier solution, it may
harbor significant difference to require a totally different approach. Knowledge of a variety of
previous solutions may not be useful when solving a totally new problem. All of these factors
lead to the conclusion that computer-based problem solving is not a simple application of
standard techniques. Yet the software engineer must be trained to approach each problem in a
systematic way and use all the fundamental principles that apply.

In the past, many attempts to define a basic set of software development principles has often
led to obvious buzz words that apply to common sense. By the same token there is no excuse for
ignoring the obvious or not using everyday common sense approaches. Human problem solving is
a divide and conquer process. There is also a natural tendency to work with the known and well
understood problems first and postpone solving the ill-defined problems until later. A good plan
is easier to change than a partially constructed building. Beyond these truisms there are some
basic approaches that experience has shown to be successful in developing software systems.

A generally accepted approach to developing software systems is to first analyze the problem
to determine if a computer solution is appropriate. Then a set of specifications can be created to
describe the results that are to be produced. Given a correct set of specifications an abstract or
concrete design can be created as a blue print for eventual implementation. The design can be
converted into specific program units and tested both separately and as a combined system. The
process of validation can be used to insure that the results match the initial specification. This
development cycle can be used in the development of both large and small systems, but the
approach will need to be modified based on numerous external factors and constraints.

The value of any overall approach is only as good as the correctness of each step used. Correct
specifications require both the designer and user to understand what the final system is
expected to produce. In turn each program unit must produce exactly the expected results every
time. Thus each component of the development. process must be shown to produce the exact
expected results. It is important to have a mechanism for describing the behavior of each
component of the system in a way that can be easily understood, yet include sufficient formality
to be convinced of the correctness. It is this approach to the exact specification of the behavior
of each component produced in the development process that makes it possible to ensure
correctness.

1 .2 - Developing Correct Software 1-9

1.2.3 Mathematics as the Basis for Program Behavior

In searching for a mechanism to describe the behavior of each component of a software system it
is important to consider both the representation and communication aspects. Natural languages,
such as English, are rich for communication, but very imprecise as a representational format and
therefore difficult to use to precisely describe the complete behavior of a specific item.
Mathematics provides a concise representation and in a restricted sense a powerful
communication tool, provided the notation is completely understood. The manipulation and
logical consistencies of a mathematical representation provide a powerful way to describe
complete behavior. In an abstract specification, a precise representational form is not as
important as the communication between the users and the engineers. In this situation English·
or a pseudo-English is a valuable tool. The weakness of this form is the inability to
demonstrate the completeness or correctness. For representing and communicating about program
components, mathematics provides a simple but powerful way to describe all the actions of any
given unit.

To adequately describe the behavior of programs, the sequence of instructions that make up
that program can be grouped into logical units. The resulting action that each of the logical
units of software are to perform can be described as the set of outputs resulting from a set of
specific stimuli. In this way each input into a unit of software code will produce a specific
output. The rules for describing the complete behavior of each logical unit can be found in the
fundamental mathematics of functions and relations. Thus it will be important to understand
the basic mathematical concepts of functions and relations.

By building on this rigorous mathematical foundation the complete behavior of any software
component can be completely determined. If only correct software components are combined into
program units and the behavior of each program is verified, then correct systems will be
constructed. If the specifications have been reviewed with the same rigor and precision, then
the results can be compared and validated. If the correct results meet the specified needs then
the goal of software engineering has been accomplished. To build the basis for accomplishing
this goal a considerable effort will be required and involve several courses. To begin with, some
fundamental mathematics will be covered as a foundation for the rest of the course.

1.2.4 Exercises

1. What additional general problem solving skills have you learned? Do any o(them apply
specifically to the logical approach computer require?

2. A useful experiment in decomposing a problem is to examine an everyday activity and
describe it as a sequence of basic steps. For example, if you have a checking account at a
bank, you must reconcile the balance at the end of the month. In this process you make sure
which of your checks have been cleared by the bank and which are still outstanding.
Describe this process in as a sequence of single steps or actions to perform.

3. In balancing a check book and reconciling it at the end of the month, specific inputs are
required and outputs or results are generated. Review the process you described in Exercise 2
and indicate what input is needed at each step and what out puts are possible for all
conditions.

1 -10 Chapter One - Mathematical Foundations

4. Our lives are filled with routine but complex processes that we take for granted each day.
The route you take to work or to school each day may be simple to you, but if you consider
every possible turn on every possible street it quickly becomes unmanageable. If you were to
map each route you would find that many routs cross back over themselves. Try to write a
set of input and output conditions that would guarantee you would only traverse each street
once to find you way to work or school.

5. The choice of words to represent a logical sequence of actions is important if the instructions
are to be followed correctly. Try to write using precise wording the instructions you would
give to someone you were trying to teach to play the game of checker or tick-tac-toe.

1.3 Mathematical Notations and the Concepts of Strings

1.3.1 Strings and their Components

One of the main purposes of mathematics is to provide a clear and consistent notation to
represent ideas. In its simplest form the concept of adding one plus one to get the result of two,
can be represented as 1 + 1=2. Mathematics is much more than just a shorthand for natural
languages, in that it provides a precise representation of rules and operations that lead to
powerful conclusions. The notation that is used, however, must be thoroughly understood and
internalized before the mathematical power becomes a useful tool. Thus the first topic to be
discussed in this computer or discrete mathematics is the notation and basic operations using
that notation. Once familiar with the basic notation and operations, the concepts can be pieced
together to make a complete system for describing the fundamental principles that are
necessary to prove the correctness of software.

One of the basic and perhaps most intuitive components of discrete math is that of a string.
Strings are sequences of objects in which order and duplication are maintained. The objects in a
string are called its components. The components of a string may be listed in order between angle
brackets (...), separated by blanks or commas. A character string can be listed directly as text
without any separation marks. Angle brackets, i.e., (and), may be used either as metasymbols1
surrounding strings or as symbols within strings, depending on their context.

For example,

s = (3, 7, 2, 2)

is a string of numbers called S, say the number of days it snowed each week in a given winter
month. But this equation is itself a character string, called c say,

c = (s = (3 1 7 1 2 1 2))

in which the inner angle brackets are symbols, and the outer angle brackets are metasymbols in
this context. This new equation is also a character string, of course, and so on. Please pay careful
attention to the term used for c. It is specifically referred to as a character string as opposed to
a string. Remember that a character string can be listed directly as text without any separation
marks. This is the form used for the string c. An alternative listing of this same string would
have shown the s, blank,=, blank, etc. as separate components of the string c, each separated

1 A metasymbol is a special symbol that is used to show structure in a definition of another
symbol.

1.2 • Developing Correct Software 1 • 11

..--

by commas. However, since c has been represented as a character string the previous form was
used rather than the latter. See Figure 1.1 for a representation of the meaning of these terms.

1 2 3 4

S=l31712121
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

c=lsl 1=1 1<131.1 17!.1 121.1 l2l>l

String Component Representation
Figure 1.1

The relation between an component and a string is denoted by the symbol e meaning "is an
component of', for example

7 E S.

The number of components in a string is called its length. This is represented by vertical bars
surrounding the string name, as I s I . For example, the string s above has length 4, namely 3, 7, 2,

_aruL2._Al£Q .. Lei = _l6_iruiicatesJbatJhe.leQ,IttMCC.is.t6 .. NmeJbiltJhe.m.~~!\ <'.srui,).itP
not count as components of s. These symbols are used merely to denote the beginning and end of
the string components and thus are not components themselves. Similarly, character string c is
of length 16 which is just the number of components in c. Don't forget that in this string there
are five blank characters that are components of c and thus are counted in the total number of
components. In the string c, the symbols (and) are used both as rnetasymbols, the outer most
pair, and as string components, the internal pair. Thus, the inner pair are counted as components
and contribute to the value of length, whereas the outer most pair are recognized as
metasymbols and do not count as part of the string length.

Each component in a string has a numbered place in the string. For example, the place of 7 in s is
2, and places 3 and 4 both have 2 as their components. String components are denoted by the
string name and parenthesized component place number. For example,

S(2) = 7, S(3) = 2
and in character string c,

C (4) = blank, C (5) = ()

writing out and italicizing blank as a convention.

A string with 2 components is called a 2-string or an ordered pair. A string with any integer
number n components is called an n-string. The string s is a 4-string, character string c is a
16-string.

Components can be strings themselves. For example, the string

T = ((1,3), (2,7), (3,2), (4,2))

1 -12 Chapter One - Mathematical Foundations

of 2-strings makes the connection between the weeks of the month and number of days of snow in
them explicit. Components in a string are not necessarily the same kind of objects. For example,
the string

u = (3, (1, 3), (3, 2))

contains the number 3 and the components of s and T, where s is a string with components of 1
and 3 and Tis a string with components 3 and 2. U(1) is not a string, but U(2) and U(3) are strings.

1.3.2 String Rules

Strings may be described by explicit listings as shown above. Strings may also be described by
implicit rules. For example, let string P be the increasing prime numbers less than 20, described
by the rule

P = (nl n increasing, n is a prime number, and n < 20)

using a dummy variable nand the symbol I meaning such that. This can also be expressed as
follows

P is the string of values n that are increasing, are prime numbers, and are less than 20.

This same string could also have been listed explicitly as

p = (2, 3, 5, 7, 11, 13, 17, 19).

There are many strings of prime numbers less than 20, but P is the only such string of increasing
primes. For example, string Q, described as

Q = (nl n decreasing, n is a prime number, and n < 20)

is the string

Q = (19 1 17 I 131 11, 71 51 31 2) o

The ·dummy variable used in describing Q is completely independent of the dummy variable
used in describing P.lt has no meaning outside either description. Any other dummy variable
will do as well. For example, string Q can be described as

Q = (xl x decreasing, x is a prime number, and x < 20)

using dummy variable x instead of n. It is the same Q defined with a different dummy variable.

Although the dummy variables n and x above are single characters, it may not be necessary or
even desirable in many cases. It may be useful to give the dummy variable a name for better
understanding of a situation. For example, the string P can be described more explicitly as

1.3 - Mathematical Notations and the Concepts of Strings 1 -13

P = (number I number increasing, number is a prime,
and number < 20)

using number as the dummy variable. In the same way, string names may be more descriptive
when it is useful or to improve understanding of the meaning. For example, other names for P
might be

Primes, Primes_Up_To_20, Ascending_Primes_Up_To_20

each of which is more descriptive. It is typically convenient to make names connected words,
rather than phrases. This allows the names to be used in a different context. For example, they
might be used in programs. In this case, underlines can be used to connect ordinary words into
names.

1.3.3 Substrings and the Empty String

Strings have substrings, which are contiguous subsequences of components. For example,

(3), (7), (2), (3, 7), (7, 2), (2, 2), (3, 7, 2), (7, 2, 2)

are all substrings of s. But

3, 7, 2, (3, 2), (7, 3)

are not substrings of s. In this case, 3, 7, 2 are components of s but not strings, and while (3, 2)
and (7, 3) are strings with components of s, the components are not in contiguous order as found
in s. The symbol for substring is ~, meaning "is a substring of', for example

(3,7) ~ s.

A string with no components is called the empty string and denoted (). At first glance,
something with no components may not seem to deserve being called a string. With the number
zero (which doesn't exist in roman numerals, for example), it will be useful to have the concept
of an empty string. The empty string is a substring of every string, even the empty string, itself.
In p~rticular, () is a substring of strings, that is

() ~ s.

Note that () is not a component of s. But () can be a component of a string if it is explicitly
included as a component. In this case, it is a component as well as a substring. Thus,

M = (4, 7, (2, 8), (), (6, 7))

is a string with five components, namely 4, 7, the string (2, 8), the empty string (), and the
string (6, 7). In this case the empty string is a component of Mas well as a substring of M.

At first it may seem strange, but any string is a substring of itself. Its components in total make
up a contiguous subsequence of its components. For example, s, or (3, 7, 2, 2) explicitly, is a
substring of s.

1 -14 Chapter One - Mathematical Foundations

1.3.4 String Operation of Catenate

One of the basic operations that can be performed on strings is catenation, also sometimes called
concatenation. In this operation, two strings are combined together to form a new string. For
example, given strings s1 = (3, 7), S2 = (2, 2), and the concatenation operator,&, then

S1 & S2 = (3, 7) & (2, 2)
= (3, 7, 2, 2)
= S3

Note that the catenation of

(3, 7) and (2, 2)

removes the interior string symbols to yield

(3, 7, 2, 2).

Catenation can be shown directly on the interior strings with the catenation operator &, for
example

(3, 7) & (2, 2) = (3, 7, 2, 2),
(3) & (7) & (2) & (2) = (3, 7, 2, 2).

Catenation can be applied to any string of strings to create a new string. For example

(3) & (3, 7) & (3, 7, 2) = (3, 3, 7, 3, 7, 2).

1.3.5 String Operations of Decomposition and Composition

A non-empty string can be decomposed into its first component, called the head of the string,
and the remainder of the string, called the tail.

For example, s = (3, 7, 2, 2) can be decomposed into its head and tail as follows, where li.
represents the head and t represents the tail,

and

li.(S) = li.((3, 7, 2, 2))
= 3

t(S) = t((3, 7, 2, 2))
= (7, 2, 2).

LetT= ((1, 3), (2, 7), (3, 2), (4, 2)). Since a component of a string may be another string, the
head may be a string. For example

li.(T) = (1, 3)
t(T) = ((2, 7), (3, 2), (4, 2)).

In this case, since li. (T) is a string, it has a head and tail, as well, namely

li.(li.(T)) = 1
t(Ji(T)) = (3).

1.3 - Mathematical Notations and the Concepts of Strings 1 -15

/

Since li (li (T)) is 1, and not a string, it has no head, more succinctly

li (li (li (T))) is undefined.

The tail of a non-empty string will always be a string, but may be the empty string. At that
point the possibility for further decomposition stops. For example, every component of scan be
separated out in a sequence of decompositions, as follows

/i(S) = 3
/i(t(S)) :7

li(t(t(S))) = 2

li(t(t(t(S)))) = 2

and at this final point

t(t(t(t(S)))) = ().

In the reverse direction, an object and string can be composed by adjoining the object to the front
of the string, as the new head of the resulting string in an operation called e. In composition,
the string may be empty. For example, li (S) and t (S) composed back with the composition
operator e "becomes first component of", which yields the original strings.

3 e (7 1 21 2) : (3 I 7 I 2 I 2) : s •

That is, for any non-empty string, in this cases,

/i(S) E9 t(S) = S.

Note that li (S) also has the name S(l), namely the head of any string is its first component, if
any.

s can be composed out of its components, as shown in the last line of the sequence

s : (3 1 7 1 2 1 2)
: 3 e (7 I 21 2)
= 3 e < 7 e (2 I 2) l
= 3 e <7 e <2 e (2)))
= 3 e <7 e <2 e <2 e <)ll).

1.3.6 Exercises

1. Let Fx be the increasing string of prime factors of a natural number x, for example
F15 = (3, 5). Determine the strings and lengths for F7, F12, F19, F32.

2. Describe an implicit rule for the decreasing string of perfect squares less than 50. Give the
string explicitly as well.

3. Determine all substrings of the string (1, 2, (1, 2)).

4. Give a formula for the last component of a string, says, and for the next to last component.
Are there conditions required for the existence of such components?

5. For ann-string, say K, provide a formula for component i of reverse(K), where 1 <= i <= n.

1 -16 Chapter One - Mathematical Foundations

1.4 Mathematical Concepts of Sets

1.4.1 Sets and their Members

Sets are collections of objects in which order and duplication play no role. Objects in a set are
called its members. Sets are abstractions of strings, treating their components as collections of
members in the sets.

Members of a set may be listed in any order between braces (also known as curly braces or curly.
brackets),{."}, separated by blanks or commas. For example, the collection of components of
string s (described in Section 1.3) make up a set, say X where

X= {3, 7, 2}

in which the repeated component 2 in s appears only once in x. The members of set x may also be
listed in any order. In particular, the members may be listed in ascending order, for example

X = {2, 3, 7}

but that is not required.

The relation between a member and a set is denoted by the membership symbol e meaning
"is a member of", for example

7 e x.

The number of members in a set is called its cardinality. For example, the set X above has
cardinality 3. While a string has a length, with a component at each place up to its length, the
members of a set may be in any order and the collection has a cardinality.

Members of sets can be sets themselves. For example, the set

Y = (X, {3, 7}, {7, 2}, {2, 3}}

consists of X and some other sets made up of its members. Members in a set are not necessarily the
same kind of objects. For example, the set

Z = {X, S} = { {3, 7, 2}, <3, 7, 2, 2>}

contains both the set X and the string s as members. In turn, strings can have sets as components.

1.4.2 Set Rules

Sets may be described by explicit listings as shown above. Sets may also be described by
implicit ntles. For example, let set R be the prime numbers less than 20, described as

R = {nl n is a prime number, and n < 20}

using a dummy variable n.

1.4- Mathematical Concepts of Sets 1 -17

This set may also be listed explicitly as ·

R = {2, 3, 5, 7, 11, 13, 17, 19} .

The same set R may be listed as

R = {11, 13, 17, 19, 2, 3, 5, 7}

or with its members in any other order. R is of cardinality 8. As noted in the previous section,
there are many strings of prime numbers less than 20, but R is the only such set of primes.

1.4.3 Subsets and the Empty Set

Sets have subsets, which are subcollections of members. For example,

{3}, {7}, {2}, {3, 7}, {7, 2), {2, 3)

are all subsets of X. But

3, 7, 2, <3, 7>

are not subsets of X. In this case, 3, 7, 2 are members of X but not sets, and <3, 7> is a string, not a
set, with members of x.

The empty set is a set with no members, denoted {}.The empty set {}is distinct from the empty
string<>. The empty set is a subset of every set, even itself. In particular, { } is a subset of set X.
Note that {}is not a member of X because it is not explicitly listed as a member. But {}can be a
member of a set as well as a subset For example, the set B

B = {2, 3, {), {2, 3)}

contains as one of its members the empty set. Thus, the empty set is a member of B as well as a
subset of B.

An~ set is a subset of itself. For example, X, or {3, 7, 2} explicitly, is a subset of x.

1.4.4 Set Operations

There are several operations on sets. Three binary set operations are especially useful, namely
union, intersection, and difference. The union of two sets, with operator denoted v , is the set of
members in either or both of the sets, namely, for any sets A and B,

A v B = { z I z e A and/ or z e B) •

For example, recall that X had been previously defined to be X = {3, 7, 2} and z was defined to be
z = {X, s}, where X is the set X and s is the string defined in Section 1.3 to be s = (3, 7, 2, 2). Then

X v Z = (3, 7, 2, X, S)

since the members 3, 7, and 2 are members of X and the set X and the string s are members of z.

1 -18 Chapter One - Mathematical Foundations

The intersection of two sets, with operator denoted f""' , is the set of members that are in both
sets, namely for any two sets A and B,

A f""' B = { z I z e A and z e B}

For example, the set Y was previously defined to beY= {X, {3, 7}, {7, 2}, {2, 3}}, and z was
defined as z ={X, s}, so ·

Y f""' Z = {X}

since the set X is the only member that is common to both Y and z.

The difference of two sets, with operator denoted -, is the set of members of the first set that are
not members of the second set, namely for any two sets A and B

A - B = { z I z e A and z E B} . 2,

For example

Z - Y = {S}

These set operations are easily visualized in Venn diagrams, as shown next.

AuB

A

A f""'B

Venn Diagrams
Figure 1.2

B

A-B

2The symbol E means "not an element of." Note that in general the slash'/' over, or before, a
symbol means not.

1.4 - Mathematical Concepts of Sets 1 - 19

There are several set identities with these operations. For example, for any sets, A, B, c

A u A = A
A u (} = A
A u B = B u A

A (') A = A
A (') (} = (}
A (') B = B (') A

A - A = (}
A - (} = A
{} - A = {}

A u (B u C) = (Au B) u c
A (') (B (') C) = (A (') B) (') c

A u (B (') C) = (A u B) (') (A u C)
A (') (B u C) = (A (') B) u (A (') C)

A u (B - C) = (Au B) - (A u C)
A (') (B - C) = (A (') B) - (A (') C)

1.4.5 Exercises

1. Are the sets below different or the same? Why or why not?

a. s = (2, 5, 8} andT = (5, 2, 8}
b. Q = (2, 4, 7} andR = (2, 4, 8}
c. c = (} andD = (nl n > 0 and n = 0}
d. L = (zl z < 10 and z > 0} andM = (xl x is non-negative}

2. Given the sets below, perform the following set operations:

c = (1, 2, 5, 8} D = (2, 4, 6, 8}
E = (XI X < 0} F = {zl z > 0}
G = (y I y > 0 and y < 10} H = (al a < 0 and a > 10}

a. CUD f . CuE
b. G-H g. C(')E
c. E(')F h. H-F
d. EuF i. C(')G
e. E-F j. 0(')F

3. Enumerate the components of the set Q where

Q = (x I x is one of the first five letters of the lower case
alphabet}

4. Write a set specification that describes the character set from which you name is a member
This includes both upper and lower case characters.

5. Write a set specification for the set operation of the union of set A and set Bin Au B.

1-20 Chapter One - Mathematical Foundatio:

1.5 Additional Mathematical Concepts

1.5.1 Mathematical Relations

A set of ordered pairs is called a mathematical relation, or more simply a relation. For
example, consider the set r of ordered pairs (x, y) such that

r = { (x, y) I x > 0 , y < 5 , x < y } .

For example

(2, 4), (1, 2)

are members of r since these pairs represent values of x > o andy< 5 where x < y, while

(4, 2), (4, 5)

are not members of r. In the first case x = 4 is not less than y = 2, and in the second case, y is not
less than 5.

The set of all first members of a relation is called its domain. For example, the possible values
for x in rare

domain (r) = {1, 2, 3}

because the first member of r must be greater than zero and less than y which, in tum, must be
less than 5. In order to be less than 5, y can be no larger than 4. Thus, values of x must be greater
than zero and less than 4, leaving only the possible values given above as the domain of r.

The set of all second members of a relation is called its range. The possible values for y in r are

range (r) = {2, 3, 4}

because y must be greater than x, which we have previously determined can be no less than one.
Soy. must be no less than 2 and, as determined above, must be no greater than 4, leaving only the
values given above as possible values of y.

A member of the domain of a relation is called an argument of the relation. A member of the
range of a relation is called a value of the relation. For example, 2 and 3 are both arguments and
values of relation r, while 1 is strictly an argument of rand 4 is strictly a value of r.

The empty set is also the empty relation. For example, if r is generalized to a relation
depending on parameters p and q written as

r (p, q) = {(x, y)l x > p, y < q, x < y}

then the relation may be empty for some values of p and q. For example, if p = q, then r (p, q)

will be the empty set.

Relations are easily visualized as shown next. First, a relation, say rn, is a set of ordered pairs
as shown in Figure 1.3.

1.5 - Additional Mathematical Concepts 1 -21

relation m

Relation Set
Figure 1.3

Sometimes it is useful to separate the components of these pairs and show them connected
arrows, as in Figure 1.4, the first components making up the domain of the relation m, the
components making up the range.

domain(m) range(m)

A Relation Mapping
Figure 1.4

In general, there are four distinct cases where these components might lie in respect to the
domain and range, shown in Figure 15, namely where

x E domain (m) - range (m)
or

X E domain (m) (') range (m)

and where

y E range (m) - domain (m)
or

y E range (m) (') domain (m) .

1-22

------=---~- -=---=-=- -·= ·-==-·· =· ·- -~===-----:::=-~-~-~-~~==-------~

domain(m) range (m)

Mappings of Additional Relations
Figure 1.5

Any one of these cases may be empty in a specific relation. For example, the relation defined by
the simple inequality x < y for x, y integers between 0 and 100, with domain (rn) 0 to 99 and
range (m) 1 to 100 has examples of all four cases. But the same simple inequality x < y for
domain (m) 0 to 10 and range (m) 90 to 100 is empty in the case domain (m) f"'l range (m) .

The domain or range of a relation may be a product set. For example

s = {((x, y), (u, v))l x + y < u - v)

is a relation where the strings (x, y) and (u, v) are 2-string components of the product set of two
sets.

As sets, relations inherit all set properties and operations. In particular, relations are closed3
under the three binary set operations of union, intersection, difference.

1.5.2 Mathematical Functions

A relation in which each argument has a unique value is called a mathematical function, or
more simply, a function. Neither r nor s above are functions because arguments 1 and 2 both
have multiple values. For example,

(1, 2), (1, 3), (1, 4)

are all members of relation r. A simple subset of r, namely

f = {(X, y)l X > 0, y < 5, X = y - 1}

is a function. In function f, x < y, but for each argument x only one value y will exist.

As for relations, the empty set is also the emphj function and the domain or range of a function
may be a product set. Functions inherit all set and relation properties and operations.

Functions are closed under the two binary set operations of intersection and difference, but not
under union. However, functions with disjoint domains, i.e., domains that have no values in

3 A relation is said to be closed under a particular operation if the given operation, acting on
elements of the set, always produces another element of the set.

1.5 - Additional Mathematical Concepts 1 -23

common, are closed under union. In this case disjoint domains ensure that every argument has a
unique value in the function.

A function in which each ordered pair member contains identical objects is called an identity
function. For example,

i = { (x, y) I x = y}

is an identity function because the two values x and y must always be the same.

A function whose range has cardinality 1 is called a constant function. Every argument in the
domain has the same constant value. Thus,

j = { (x, y} I y = 2}

is a constant function because no matter what value is chosen from the domain of x, the value of
y is always 2.

Functions are easily visualized as shown next. First, as a relation, a function, say g, is a set of
ordered pairs, but with a unique second component for each first component as shown in Figure
1.6.

functiong

Function Set
Figure 1.6

Again, it is useful to separate the components of these pairs and show them connected by
arrows, as in Figure 1.7, the first components making up the domain of the function g, the second
components making up the range.

1-24

domain (g) range (g)

A Function Mapping
Figure 1.7

Chapter One - Mathematical Foundations

There are four distinct cases in which tlu~se components might lie in respect to the domain and
range, shown in Figure 1.8, namely where

X E domain (g)
or

X E domain (g)

and where

y E range (g)
or

y E range (g)

- range (g)

11 range (g)

- domain (g)

11 domain (g).

domain (g) range (g)

Mappings of Additional Functions
Figure 1.8

Any one of these cases may be empty in a specific fu.nction. For example, the function defined by
the simple equation x + 1 for x, y integers, with domain (g) 0 to 99 and range (g) 1 to 100 has
examples of only three cases, there being no case where xis in domain (g)- range (g) andy is in
range (g) -domain (g).

A member ordered pair (x, y) of a function f may be given in value notation, y = f (x J •

A function whose domain and/or range are product sets with members

(xl, x2 , xm), (yl, y2, ... , yn)

has value notation

(yl, y2, ... , yn) = f((xl, x2, ... , xm)J

where the string (xl, x2, ... , xm) is the argument to the function f yielding the value string
(yl, y2, ... , yn).

As with sets, functions may be defined by explicit enumeration or by implicit rules.

The successive application of the values of one function f as arguments of another function g
defines another function, called the composition off and g, namely if

y = f(x), z = g(y)

then

Z = g (f (X)) •

1.5 - Additional Mathematical Concepts 1-25

... -

The Composition of functions f and g must follow what iS possible, from an initial argument X to
a value y of f which is used as an argument of g to reach a value z. In particular, the value y in
range (f) must be a member of domain (g) to carry out the composition. It is possible for the
composition off or g to be an empty function, even though neither for g are themselves empty.
A simple example is when f is a numerical function, say y is the square of x, and g is a letter
function, say an uppercase letter is converted to its lowercase letter and vice versa. The
composition will be empty. Simpler restrictions of composition may simply reduce the domain
of f to a smaller domain for the composition. For example, f may have a range of integers
positive, zero or negative, but g only a domain of positive integers. The composition of f and g
will be restricted to just what g can handle.

1.5.3 Predicates

A function whose range is a subset of the set {F, T} is called a predicate. The domain of a
predicate may be a product set. Predicates inherit all set, relation, and function properties and
operations. Predicates are closed under the two binary set operations of intersection, difference.
As with all other functions, predicates with disjoint domains are closed under the binary set
operation of union.

One unary and three binary operations among predicates are especially useful. The unary
operation is not, the binary operations are and, or, and xor. Refer to Table 1.1 for the meaning of
these operations as applied to predicates. From this table, sometimes called a truth table, it is
easy to see that if p(x) = T and p(y) = F, then p(x) and p(y) = F, but p(x) or p(y) = T.

p(x) p(y) not p (x) p(x)
F F T
F T T
T F F
T T F

and p(y) p(x)
F
F
F
T

Truth Table
Table 1.1

or p(y)
F
T
T
T

P(X) xor p(y)
F
T
T
F

If multiple predicates are used with different logical operators, then there is an order which
must be followed in evaluating the expression. All not operations are performed first, followed
by the and operations, then last the or and xor operators are applied in a left to right order.
Thus, if p(z) = F, and using p(x) = T, p(y) = F from above then

d = p(X) and p(y) and p(z)

= F and p(z)

= F
e = p(x) or p(y) and p(z)

= p(x) or F
= T

f = p(x) or not p(y) and p(z)
= p(X) or T and p(z)

= p(x) or F
= T

1-26 Chapter One - Mathematical Foundations

-

Two quantifications of predicates define useful new predicates, namely there exists, denoted 3,
and for all, denoted 'V. The former is known as existential quantification and states a fact,
namely that there exists an argument for which the predicate is true. The latter is known as
universal quantification and states the fact that for every possible argument the predicate is
true.

A member ordered pair (x, y) of a predicate p may be given in value notation y = p(x). A
predicate whose domain is a product set with members

(x11 x2 I ••• 1 xrn)

has value notation

y = p((x11 x2, ... , xrn)).

As sets, predicates may be defined by explicit enumeration or by implicit rules.

The successive application of the values of a function f as arguments of a predicate p defines
another predicate, called the composition off and p, namely if

y = f(x), z = p(y)

then

Z = p (f (X)) •

1.5.4 Exercises

1. Consider m = {(q, r) I q < 5, r > 10}. Ism a relation? Is it a function? Explain your answer.

2. Write a function which maps all positive integers to their negative values, e.g., given 5,
the function returns -5.

3. Given the predicates p(x) = T, p(y) = F, and p(z) = T, what is the value of the following:

a. p(x) and p(y) and p(z)
b. not p(x) xor p(y)
c. p(y) or p(z) and p(x)
d. p(y) and p(z) or p(x)

4. Determine the composition of functions f and g where

5. Let

f = ((x, y)
g ::: {(y, z)

x >= 0 and y = x - 1000}
y >= 0 and z = y - 100}

<y1,y2> = f(<x1,x2,x3>)
= <xl + x2, x2 - x3 I xl > 0, x2 = 0, x3 <0>

Determine explicitly the domain and range of f.

1.5 - Additional Mathematical Concepts 1-27

.
' . .

1.6 State Machines and Formal Grammars

1.6.1 State Machines

Sometimes in computing it is easier to describe how something is computed than to define it in
any other way. A simple, universally understood means of doing so is via the use of a common
notation that can be very powerful. This concept is known as a state machine.

A state machine is defined by an initial state uO and a transition function f whose domain is~
set of ordered pairs

domain (f) = {<s, u> I <S, u> non terminal}

and whose range is another set of ordered pairs

range (f) = {<r, v> I <r, V> reachable}.

The arguments of a state machine. transition function <s, u> consist of a stimulus s and a state u.
The values of a state machine transition function <r, v> consist of a response r and new state v.
For a state machine with transition function f, an initial state uO, and a sequence of stimuli

sl, s2, s3, ...

defines a sequence of transitions to states

ul, u2, u3,

and responses

rl, r2, r3,

such that

<rl, ul> = f(<sl, uO>),
<r2, u2> = f(<s2, ul>),
<r3, u3> = f(<s3, u2>),

This simply means that if the state machine is started in state uO and receives stimulus sl,
then the state machine will respond by providing response rl and moving to state ul. From
state ul, with stimulus s2, the state machine responds by providing response r2 and moving to
state u2, etc.

A transition function f can be represented by a pair of functions <g, h>, a response function g and
a state transition function h such that if

<r, V> = f(<S, U>),

then

r = g(<S, U>), V = h(<S, U>).

1 - 28 Chapter One - Mathematical Foundations

...,____ .

An initial state uo and sequence of stimuli

s1, ... sn

defines response rn without explicit calculation of intermediate states, in a derived function k
of the form

rn = k(uO, s1, ... , sn).

In particular,

k(uO, s1, ... , sn) = g(sn, h(sn-1, h(...))).

which simply says that if the state transition function is applied to each of the prior states up
to staten -1, then the response function can be applied to stimulus sn and the result of all of the
state transition function calls to provide the response for stimulus sn.

Figure 1.9 shows the transitions in a diagram with mappings from the sets of stimuli and states
to responses and new states.

stimuli

states

State Machine Diagram
Figure 1.9

responses

State machines are useful in program design. For example, consider a character-by-character
examination of a string for the purpose of removing excess blanks, so that on response all blank
substrings have been reduced to a single member.

1.6 - State Machines and Formal Grammars 1-29

For example, Figure 1.10a shows a string with embedded excess blanks. Figure 1.10b shows the
same message with the excess blanks removed.

a

\T\H\r\s\ \r\s\ \A\ \s\T\R\t\N\G\
b

'Excess 'B\an'Ks Removal
Figure 1.10

A state machine for such a purpose can be enumerated in the following table with entries
denoting (newstate, response).

Stimulus
State Blank Nonblank
excess excess, null nonexcess, stimulus
nonexcess excess, stimulus nonexcess, stimulus

Table 1.2
Transition Function for Excess Blanks Removal

Note that "null" means the empty response here. This state machine, initialized to state
"nonexcess," will remove all excess initial and interior blanks by passing the first of each
substring of blanks found, then ignoring the rest. This state machine can also be diagrammed as
shown in Figure 1.10, in which circles denote states, called excess and nonexcess, and a directed
line is labeled in the form stimulus/response, the line itself showing the state transformation.

blank/null nonblank/ stimulus

nonblank/ stimulus

nonexcess

blank/ stimulus

State Machine for Excess Blanks Removal
Figure 1.11

In illustration, apply Figure 1.11 to the example of Figure 1.10a to generate Figure 1.10b.

1 -30 Chapter One - Mathematical Foundations

1.6.2 Formal Grammars

Just as state machines provide a formal definition for specific operations that a computer can
perform, there are other ways of describing th~ rules for correct logical operations. One such
mechanism is the use of fonnal grammars. Formal grammars are sets of explicit rules for
describing sets of character strings called formal languages. Grammar rules describe how
grammar objects can be made up from other grammar objects and I or literal characters.
Formal grammars are very useful in describing computer programs; particularly with high
order languages where possible ambiguities exist.

1.6.2.1 Context-Free Grammars

Context-free grammars have rules that are independent of context, also called syntax rules.
Such rules describe how syntactic categories are defined in terms of intermediate objects, also
called non-terminals, and final literals, also called terminals, connected by metasymbols. Final
literals are defined by character strings in a separate terminal font or given as terminal objects
with separate definitions. Syntactic categories are described in our metalanguage as strings
called syntax words consisting of one or more lower case letters, possibly with single underlines
'-' between letters. For example,

x, word, one_two, alpha_beta, alpha_beta_gamma

are syntax words, but

xl, lx, one __ two, _word, Word

are not syntax words. In the example, xl is not a syntax word because it contains a non-letter
character, and similarly for lx. There are two underlines between one __ two and underlines are
only allowed between letters, which is why this example is not a syntax word. Similarly,
_word is not a syntax word because underlines are only allowed between letter and thus can
never begin or end a syntax word. Finally, Word is not a syntax word because it is not made up
exclusively from lower case letters.

Metasymbols are used to form syntactic assignments and expressions, and include

: : =, I ' (, } , [,]

used for following purposes:

intermediate_object ::= expression_in_objects

means the intermediate_object can be any possible value of the
expression_in_objects (read ::=as "is defined as")

expressionl I expression2

means either expressionl or expression2

(expression }

1.6 - State Machines and Formal Grammars 1 -31

means zero or more copies of expression

[expression]

means zero or one copy of expression.

1.6.2.2 Formal Grammars of Binary Numbers

In order to illustrate the foregoing concepts, consider a binary number grammar. For example,

binary_digit ::= 0 I 1

binary_number ::= binary_digit {binary_digit}

is a grammar of two syntax productions that defines all possible binary numbers. That is, the
intermediate object binary _number is a string of one or more copies of binary _digit, whi
is a single binary _digit, followed by zero or more copies of binary _digit defined by
{binary _digits}. This grammar for binary numbers is not unique. For example,

binary_digit ::= 0 I 1

binary_number ::= {binary_digit) binary_digit

also defines all possible binary numbers. Another example is

binary_digit ::= 0 I 1

binary_number ::= {binary_digit) binary_digit {binary_digit)

This example may not be so useful because {binary _digit} is used twice when it is only need=!:
once, but it illustrates that any number of copies of {binary_digit} can be added without
changing the definition of {binary _number}, namely one or more copies of {binary _dig i t l.

The grammars above allow leading zeros in any number. A different grammar can outlaw
leading zeros for non-zero binary numbers. However, the zero binary number must start (and
with a leading zero. Such clean binary numbers can be defined in a syntax such as follows

binary_digit ::= 0 I 1

clean_binary_number ::= 0 I 1 {binary_digit}

which states that a c lean_binary _number is either a zero or a one followed by zero or more
copies of {binary _digit}.

1 -32 Chapter One - Mathematical Found ·

1.6.2.3 Formal Grammars of Roman Numerals

Roman numerals can be defined in context-free syntax. Roman numerals are defined as strings of
letters with rules about their possible order and values. The letters are I (1), V (5), X (10),
D (50), C (100), L (500), and M (1000). In the simplest form of roman numerals, the letters must
appear in order from largest value to smallest. There is no limit on the number of M's in a roman
numeral, but there are limits for all other letters, namely at most one L, D, and V, and at most
four C's, X's, and l's. In order to deal with a finite limit, such as four, we can extend the notation
of {C}, which means a string of zero or more C's, to the notation of {c: 4} to mean a string of zero
to four C's. Then, roman numerals in the simplest form can be given in a single syntax production
as

rornan_numeral ::= {M}[L](C:4}[D](X:4}[V]{I:4}

Later forms of roman numerals permit the representation of Iill by IV, VIlli by IX, XXXX by XD,
DXXXX by XC, CCCC by CL, LCCCC by CM. In this case, the syntax is better defined in a set of
syntax productions such as

later_rornan_numeral
c_alts
x_alts
i_alts

(M} c_alts x_alts i_alts
{C:4} I L (C:4} I C L I C M
{X:4} I D (X:4} I X D I X C
{I:4} I V (I:4} I IV I I X

From this grammar it is possible to generate a correct roman numeral to represent any of the
Arabic numbers we are familiar with. In the same fashion, the production rules of a specific
formal grammar can be used to determine if a given string is a corrects string of that grammar. In
Chapter 2, the grammar for the Ada programming language will be examined to recognize
correct instructions for the computer to execute.

1.6.3 Exercises

1. Generalize the state machine for excess blanks removal in Figure 1.10 to handle cases where
excess blanks may occur before or after the text as well as being embedded.

2. Describe a traffic control signal as a finite state machine with the colors red, yellow, and
green controlling the action of wait, prepare to stop, and go.

3. Show the transition function for the traffic control signal of ExerCise 2.

4. Describe in English what the syntax production c_alts in letter_rornan_nurneral
means.

5. Are the following legal strings in the later_rornan_numeral grammar? Show their
Arabic equivalent and explain your answers.

a. MMMCDIT
b. MXCVIII
c. MLCCCDXXXXVIII

1.6 - State Machines and Formal Grammars 1-33

Chapter 2

Sequential Ada I

Now that you have seen the mathematical foundations that underlie the discipline of
computing, you are ready to explore how these foundations can be used to instruct computers to
perform the functions that users want them to do. In order to make the computer perform the
operations that are needed in the sequence in which they must be performed to satisfy user
needs, there must be a means to communicate with the computer. Communication requires that
both sides of the communication understand what is meant by the other side. The mechanism hy
which humans communicate with the inanimate computer is via a computer language. In this
course the language that will be used is Ada.

It is interesting to note that in the first fifty years of computers, the methods of describing
programs, i.e., the languages, have evolved in dramatic ways. In the first decade, there were
no ways except to identify the operations wanted, then describe how to make these operations
happen directly in the bare computer memory that would hold the program and its data. The
next step was to invent symbolic names for the parts of words in the memory and operations, and
to create a new kind of computer program that would translate a program written in the
symbolic names into the bare computer memory. Since the first computers were designed to solve
numerical problems in science and engineering, these very translations were new kinds of
applications in non-numerical problems. These kinds of programs are called assembly programs,
and are still used when high efficiency is required, or in special computers with no other
program translators. The translator is called an assembler and the language in which the
symbolic symbols are written is called an assembly language.

After a decade, another step was taken to create higher level programming languages, such as
FORTRAN and COBOL, in which programs are stated in higher level operations which are
then translated into bare computer operations and memory by program compilers.1 After
another decade, new programming languages appeared that supported structured programming,
such as ALGOL 60 and Pascal. In the past decade, the Ada programming language has been
developed for widespread use in industrial, engineering, and military applications.

The Ada programming language is large and certain aspects of it may seem complex, but it
represents the best in the support of software engineering for the future. Its effective use will be
studied in steps, in order to develop good understanding and engineering control over the
programming process in Ada. In this text, sequential Ada will be introduced, by which we mean
that part of the Ada programming language that can be used to control the sequential execution
of a single computer. Ada also provides the capability for describing the concurrent execution of
tasks in one or more computers simultaneously. This aspect of Ada will be treated later in
Volume II.

1Compilation is the name given to the translation process mentioned earlier for high level
languages. When the programming language is translated into a form that the machine can
understand and execute, the high level language program is said to be compiled, and thus the
process is called compilation.

Chapter 2 - Sequential Ada I 2-1

2.1 Introduction to Computers

Computers are wonderful inventions that have enormous power. Unlocking that power and
controlling it are the very fundamentals of computer science and software engineering. We must
understand what a computer is, at least from a rudimentary level, before we can begin to
understand how to control and manage these devices. This section is designed to provide you
with an brief introduction to the components of a computer and the process involved in making it
do what you want it to do; It is not an in-depth treatment of this subject and many of the details
will be deferred until later courses.

2.1.1 What Is a Computer?

Before we can begin to explore the world of Ada, we must first understand some fundamental
concepts for interacting with a computer. Computers come in many different sizes and have
many different purposes. Some are general-purpose computers that can be programmed to do
almost anything. Other computers are special-purpose computers that are specifically
designed for a single purpose. In any case, a computer is an electronic device that interprets
predefined instructions to accomplish a task. Note that the computer cannot "think" because it
can only execute predefined instructions. In other words, a computer can do what you tell it to
do, and it can do it very fast. However, remember that a computer can ONLY do what you tell it
to do; it cannot do what you mean for it to do, unless you specifically tell it what to do and how
to do it. If you want to learn more about the inner workings and hidden mechanisms of a
computer you must wait until later in your course of study when you will be told about the
details of how the hardware does what it does. This will include discussions of such computer
components as registers, memory, busses, CPU, ALU, etc. For now, we need only to recognize that
a computer is a device that we can instruct to do things for us.

The computers that we will be using consist of some basic parts that you should recognize since
we will be mentioning them in our later discussions (See Figure 2.1). The first is the "box" that
contains the CPU, the memory, and many other peripheral components of the computer. For our
purposes we will refer to this "box" as the computer.

2-2

~ '
;;;;!.; .. !:-•• -. ••:~~

···~··~~~ . _.,._..._--.-- .. ---- - -

Mouse

Socon~ry
memory

Printer

Components of a Computer
Figure 2.1

Chapter 2 - Sequential Ada I

Next, you will see a television-like screen that is used for the computer to communicate with
you and to echo back to you your commands to the computer. This device is called a monitor or a
CRT (cathode ray tube). It is also sometimes referred to as the screen.

Finally, you should see two methods for you to provide commands to the computer. One is a
keyboard which is very similar to the keyboards that typewriters have, but which contains
some very special keys. The second device you should see is a mouse, which is the hand
manipulated device attached to the computer with buttons on it. Its purpose is to move a
pointing indicator around the screen so that you can point to things that are displayed on the
screen. When you are pointing to something that you want the computer to understand, you can
depress the button or buttons on the mouse to let the computer know that you want to select the
item that the indicator on the screen is pointing to.

These are the essential elements of the computer system that we shall refer to in this textbook.
If you are not familiar with any of these items be sure to tell the lab instructor so that he or she
can describe the item to you in more detail and answer your questions.

2.1.2 What Is an Algorithm?

Computers seem to be very intelligent because they can compute very complex arithmetic
expressions quickly, or look up some data from a table with blinding speed. In reality,
computers are neither intelligent or dumb; they are, after all, only silicon (beach sand) and
electronics and do not possess the attribute of intelligence. How, then, are they able to appear
to be so smart? The answer is that they follow a sequence of explicit instructions that someone
that is intelligent provides. The explicit instructions make up a solution to a problem that we
want the computer to repeatedly solve for us. This solution to a known problem is called an
algorithm.

Algorithms are not new to you, even if you have never heard this term before. When you
prepare something in the kitchen and you follow a recipe, you are following an algorithm. An
algorithm is nothing more than a step-by-step sequence of instructions that tell what to do in
what order. The assembly instructions for a model airplane represent an algorithm, as does the
registration instructions for a university or college. Any step-by-step set of instructions can be
considered an algorithm.

In working with computers we get very familiar with algorithms because we must provide
these step-by-step instructions to the computer in order for it to do anything. The computer
cannot do anything by itself, so we must provide it with explicit, detailed instructions about
what to do and when to do it. This sounds like it should not be too hard, but, surprisingly, it can
be.

Consider an algorithm for adding two numbers together. The algorithm might be described as
follows:

1. Align the rightmost digits of the numbers to be added.
2. Add leading zeros as necessary to make both numbers the same length.
3. Sum the digits in the rightmost column.
4. Record the rightmost digit of this sum.
5. If this sum is greater than 10, record the digit in the next to rightmost column of this

sum as the carry.
6. Sum the digits in the next to rightmost column and add the carry if there is one.
7. Repeat steps 3 through 5 until there are no columns remaining to be summed.

2.1 - Introduction to Computers 2-3

This may seem very complex given the simplidty of the task, namely adding two numbers
together. However, if you think about it, it is precisely what you do when you add two numbers
together. Now, as complex as this may seem, it is still not detailed enough to be able to make
the computer carry out these instructions. For example, what does it mean to "align the
rightmost digits?" Further, what is a column?

It can be seen from this simple example that algorithms that do anything complex or
interesting are themselves very complex and detailed. It is our job to reduce this complexity and
make our algorithms as simple as possible.

2.1.3 What Is a Program?

In the previous section, we discussed the concept of an algorithm as a step-by-step sequence of
instructions to solve a given problem. This sequence of instructions must be presented to the
computer in a form that it can understand. The form of communication that we have with
computers is a program. A program is a sequence of instructions presented in a specialized
language, called a programming language. We use this language to explain to the computer how
we want our algorithm executed.

Programs can be written in many languages if your computer can understand them. Languages
exist in great diversity, and even within the same language there are often several dialects. A
program is written in a language that your computer can understand. In this course we will be
studying the Ada programming language. You will write programs that implement your
algorithms that are, in turn, designed to solve your problem. In this manner you will solve your
problems on the computer.

Programs are written in very special languages. Usually natural languages such as English, or
Spanish, cannot be used to communicate with your computer, so a more structured, less free
format language must be used. Very shortly we will see some Ada programs and the meaning of
these ideas will become more dear.

2.1.4 What Is an Editor, a Complier, and a Linker?

In the previous section, we learned that our algorithms are communicated to the computer by
using a special language to write a program that the computer can understand. Unfortunately,
while this is true, it is only part of the story. How do we get the program in a form that the
computer can "read?" The answer is that we must first enter the program into the computer. We
enter a program by creating a file, or sequence of characters stored in a form tl1at the computer
can understand. The file is created by a special program that you will have access to called an
editor. The editor is a program that accepts your typed input, allowing you to make corrections
as necessary, and creates a file that is able to be read by the computer. The details of how an
editor is able to do this, indeed, even the details of what specific commands you use in the
editor, are not important here. We want you to understand the concept of the editor. Specific
instruction in the particular editor that you will use, how to invoke it, what its commands are,
etc. will be explained to you in a laboratory.

Once you have entered the program into the computer using the editor, it still is usually in a
form that is too high level to be understood by the computer. The reason for this is that the
computer can only understand simple sequences of ones and zeros. While it is possible to program
directly in tl1e language of the computer, it is tedious and error prone. To reduce the chance for
error, it is better to have the ability to express your program in a form that is closer to a natural
language such as English. By using a restricted and structured set of English words, we can write

2-4 Chapter 2 - Sequential Ada I

a program and enter it into the computer. This is much less tedious and error prone than entering
long sequences of ones and zeros, the computer "native tongue." Unfortunately, our program
cannot be understood by the computer in this high level form. Therefore, we use another
program, provided with your computer, to translate the high-level program that you wrote in
the structured English-like form, into the sequence on ones and zeros that the computer can
understand. The program that does this translation has a special name. It is called a compiler.
Compilers are nothing more than translators, translating from the programming language in
which you wrote the program into the language that the computer can understand and operate
with. We say that the compiler compiles our program, by which we mean that it translates it
into machine code. The name used for the program in its programming language form is source
code; the name of the program after translation into machine code is object code.

Compilers are very useful to us in making our efforts more productive and more reliable. Their
effect can be seen by comparing them to things that we can more easily understand. For example,
suppose that you can only speak English. Suppose that you see someone that you desire to
communicate with, but you find that this person only speaks Swahili. You cannot effectively
communicate. Now imagine that you have a friend that reads English and writes Swahili. You
could write a statement to your friend in English and your friend could restate your words in
Swahili. You now have an effective one way communication. Now imagine that your computer
speaks a special language called binary. You speak a language called Ada. You have a friend,
the compiler, that can read your Ada and translate it into binary for the computer. This is
precisely what occurs when we program in Ada using an Ada compiler.

Note that if we had a Pascal compiler, we could write our programs in Pascal and the compiler
would translate it into the same binary language that the computer can understand. If we had a
FORTRAN compiler, it could translate programs written in FORTRAN to binary. However, the
Pascal compiler cannot translate a FORTRAN program and vice versa, since it does not "speak"
that language.

Now that we have entered our program with an editor and have compiled it with a compiler,
we still cannot just walk away. Instead, we must first link our program. When the compiler does
the translation, it is convenient to take some routines that are used often, such as input/ output
statements, and not translate them completely. Instead, a reference is made to a library unit for
this procedure; its like putting a bookmark in the code and saying I know what goes here and I
will fill it in later. This speeds up the compilation time. However, when we have translated
our :;ource code to object code we still cannot execute it since we may have several of these
reference marks throughout. Thus, we must perform another step called linking. This is the
process whereby our object code is linked to library routines that the vendor supplies in object
code format. In effect, the "bookmarks" are detected and the appropriate code from the library
is substituted in its place. The result of linking is an executable program that we can directly run
on our computer.

We must now test our executable program to ensure that it does what we want. One way to test
the program is to supply it with some inputs for which we have already determined the
appropriate outputs. We then verify that we get the appropriate, and presumably correct,
outputs. Unfortunately, this is not always the case when we initially test our programs.
Sometimes, there are errors in our algorithms or in our implementations of our algorithms.

2.1 - Introduction to Computers 2-5

These errors, for historical reasons, are known as bugs2• We would like to have a tool that
would allow us to execute our program with certain controls so that we can see what it does and
when it does it. Such a tool is just another program known as a debugger.3 Debugging is a
technique that allows us to uncover and eliminate defects in our software. The intent of our
approach to software development is to create zero-defect software that is bug-free when it is
developed. Practical applications of the cleanroom software engineering method have
demonstrated that it is possible to create zero-defect software, and it is this method that we
will be studying.

The complete cycle for the development of software can be shown graphically as in Figure 2.2.
Note that the first step is understanding and defining the problem to be solved. This is a
critical step and one that many students skip or place little importance upon, because it is not
"fun." However, it is vital since all other steps in the cycle depend upon getting the problem
definition correct. Next, we must design the algorithm to be used to solve the problem. In this
step we cannot assume anything. We check that the algorithm is correct by desk checking it,
which simply means applying the algorithm by hand to sample input data and watching the
transformations on the data until the output is produced. If the output is correct for all of the
sample data, then we may proceed to the next step which is program design. This step is where
we determine how to implement the algorithm in a programming language. Now we enter the
editor and type in our program. After saving this program as a file, we submit it to the
compiler. If errors are found, then we reenter tl1e editor and correct them. If no errors are found,
we must then link the object code from our program to the vendor supplied library routines. If we
discover errors in linking we must either reenter the editor and correct them, or resubmit it to
the compiler, depending upon the error. If we are successful in linking we will have an
executable program. This executable program can then be tested with test data to ensure that it
produces correct results. If so, then we can hand in our program. If not, then we must reenter the
development cycle at the appropriate point, usually at the editor step. In general, all programs
are developed in this manner.

2.1.5 Exercises

1. What application of computers do you find most unique? Why?

2. Describe in your own words the difference between an algorithm and a program.

3. Write tlte complete algorithm, as detailed as you can, for opening a three number
combination lock.

4. What is the purpose of a compiler?

5. Can an Ada compiler be used to compile a FOR1RAN program? Why or why not?

2Rear Admiral Grace Murray Hopper was one of the original programmers on a large vacuum
tube computer during World Warn. One day the machine did not function properly and she
tracked it down to a moth that had shorted out one of the vacuum tubes. She replaced the tube
and taped the moth to the logbook, noting that it was a "bug" in the computer. To this day,
when the computer is not acting properly we say that the computer, or more properly, our
program, has bugs in it.

3 A debugger is a vendor's program that allows us to single step through each line of our program
to trace its actions. In this manner, we can often discover the source of defects, or bugs, and thus
eliminate them. In the laboratory you will learn some special debugging techniques and be
introduced more formally to the debugger.

2-6 Chapter 2 - Sequential Ada I

Problem
Definition

Algorithm
Design

Desktop
Analysis

Program
Design

Saved
Program

Compiled
Program

Executable
Program

errors

errors

Program Generation Flowchart
Figure 2.2

2.1 - Introduction to Computers 2-7

2.2 Introduction to Sequential Ada

In the early 1970's the US Government, particularly the Department of Defense (DoD), noted a
disturbing trend. The increasing demand for computers was accelerating at a dizzying pace.
Users wanted more computers and they wanted the computers to do more things. This
combination served to increase the cost of computers, notably computer software, until a crisis
point had been reached. The DoD selected a panel of experts to study this issue and recommend
some solutions.

The preliminary study produced by the panel said that there were several things wrong with.
the way computers were designed, built, and used in the government, but that the most critical
element was the software that controlled these computers. One of the causes of this crisis was
that there was a proliferation of languages used throughout the DoD. This made it difficult to
train people and even more difficult to get someone other than the original author to maintain
or enhance software. The combination was driving the cost of computer system acquisition
steadily higher at a non-linear pace.

The solution that was recommended by the panel of experts involved a three pronged approach.
First, there needed to be a recognized discipline in the development of software throughout its
life cycle. This was termed software engineering. Second, there needed to be a common
environment in which to create software, consisting of at least an editor, a compiler, a debugger,
and such other tools as are usually found at commercial software development sites. Lastly,
there needed to be a single, common high order language throughout the DoD and preferably
throughout the US Government.

The last item led to the engineering of a new language. It is interesting to note that Ada was the
first, and only, language to be engineered, in the sense that the creation of the language
followed the traditional engineering method. Thus, first the requirements for the language
were generated. These were gathered over a one year period and consolidated into a
requirements document, called the Strawman document. This document was refined in a series of
increasingly more complete revisions into a Woodenman, Tinman, Ironman, and Steelman
document. This final document, Steelman, served as the final requirements document for Ada
and was more properly a specification for the proposed new language.

The DoD then asked for designs of a language that satisfied the Steelman requirements. Over
80 design teams submitted initial proposals. Four of them were selected to produce preliminary
designs. In order to preserve the anonymity of the designers, the teams were given color codes,
Red (lntermetrics), Blue (Sofrech), Yellow (SRI), and Green (CII/Honeywell Bull). The
preliminary designs were reviewed and two teams, Red and Green, were selected to prepare
detailed designs. Finally, in 1979, the Green language design was selected to be the new DoD
language. It was named Ada after Augusta Ada Lovelace, the daughter of the poet Lord Byron.
She was, arguably, the world's first programmer.

The result of this engineering effort is a language suitable for a variety of applications. Ada
has many advanced features that directly support the concepts of software engineering. In the
remainder of this chapter, you will see how Ada can be used to solve simple problems on a
computer.

In order for a computer to communicate its results to the external environment (usually the
human user), and for the human user to get data into the computer, there needs to be a
mechanism for communication. In most programming languages there are built-in commands for

2-8 Chapter 2 - Sequential Ada I

such communication with names such as PRINT, WRITE, or PUT4 for output, i.e., communication
from the computer to the user, and READ or GET for input, i.e., for communication from the user
to the computer. These commands are collectively known as input-output, or IIO, statements.
Ada is somewhat unique in that there are no built-in IIO statements in the language. Instead,
the designers of Ada chose to provide the 1/0 capability by extending the language in the
natural way for Ada, namely through the use of a package. Later, you will learn how to use a
package to extend the language to perform other such specialized tasks to solve your problems.
For now, however, suffice it to say that a package is merely a programming unit in Ada.
Therefore, II 0 in Ada is accomplished by the use of a predefined, standard set of II 0 packages
that are not part of the language, but are required to be supplied with every compiler.

The three well structured elementary Ada programs discussed next use character data to Put
messages, possibly in response to input data.

2.2.1 Prlnt_Message_1

The first of these programs, with its main procedure named Print_Message_l, only puts out a
simple message "Welcome Aboard", as follows.

with TEXT_IO;
procedure Print_Message_l is
begin

TEXT_IO.Put (Item=> •welcome Aboard•);
end Print_Message_l;

The first line begins with a with clause that makes a previously created, predefined Ada
package called TEXT_IO available for use in the program. Package TEXT_IO is a predefined
package that contains procedures that deal with the Standard Input and Output Files in the
Ada environment. Usually these are the keyboard for Standard Input and the CRT, or terminal
screen, for the Standard Output. Do not concern yourself with these any further at this point,
but we will return to them later to discuss them in more detail. This with clause is

with TEXT_IO;

and includes the semicolon(;). The program continues on the next line as

procedure Print_Message_l is

starting with the reserved word procedure then followed by the procedure name
Print_Message_l, an identifier which is given in letters and digits, broken into words by the
underlines.

The reserved word is, on the same line, connects the procedure name with the rest of the
program.

The executable part of the program is found between the reserved words begin and end.

The next statement is a procedure call to TEXT_IO. Put, a predefined procedure in the package
TEXT_IO, with the character string "Welcome Aboard" as its argument or parameter, i.e., the
string between the parentheses. The phrase "Item =>"identifies the argument following it.

4Put is the term Ada uses for output to a file or to the screen. In other high level languages, this
may be called Write or Print.

2.2 - Introduction to Sequential Ada 2-9

-·

You will note that the procedure name Put is attached to its parent package name TEXT_IO by
a period in the full name TEXT_IO. Put. The semicolon(;) ends the statement.

TEXT_IO.Put (Item=> "Welcome Aboard");

This statement will put the message

Welcome Aboard

to the Standard Output. Note that the double quotes in the TEXT_IO. Put statement are not
part of the output messageS, but only contain between them the text to be written out. Thus, in ·
this example the double quotes used in the TEXT_Io. Put statement define the limits of the
output message. The semicolon (;)ends the statement again.

The procedure name Print_Message_l and semicolon(;) follow the end reserved word to
complete the program. The semicolon is necessary to close the beg in ... end part and the
procedure name Print_Message_l is optional between end and semicolon. While the
procedure name is optional in Ada, in this text it will always be used. This is another instance
of a good programming practice, where something is not required, but is desirable. Good
programming practices may take a few minutes longer to write, but save hours in maintenance.
Remember, you only write the code once, but you read it many times.

2.2.2 Prlnt_Message_2

The second program, with main procedure named Print_Message_2, deals with both
Standard Input and a Standard Output.

with TEXT_IO;
procedure Print_Message_2 is

Choice : CHARACTER;
begin

TEXT_IO.Put (Item=> "Enter a capital letter=>");
TEXT_IO.Get (Item=> Choice);
if Choice >= 'A' and Choice <= 'Z' then

TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);
else

TEXT_IO.Put (Item=> "Not a capital letter!");
end if;
TEXT_IO.New_Line;

end Print_Message_2;

Program Pr in t_Mes sage_2 expands on Pr int_Message_l by checking the state of Input and
possibly putting one of two different messages. It begins with the with clause

with TEXT_IO;

as did Print_Message_l, but following reserved word is, the variable named Choice is
defined to be of type CHARACfER in a declaration

5Double quotes can be output, but only by putting consecutive double quotes ("") within messages.

2-10 Chapter 2 - Sequential Ada I

Choice : CHARACTER;

ahead of the executable part between begin and end. For now do not concern yourself with what
this means beyond the following explanation. The identifier Choice names a storage location
in memory that is limited, or constrained, to hold only values that are single characters. Later
we will expand this definition, but for now this will suffice.

The executable part then begins with the TEXT_IO. Put procedure call, as did
Pr int_Message_l. However, in this example there is a need for both input and output. Since
the program will be requiring input from the user, it is customary and prudent to first write out a
message, called a prompt, to let the user know that the program is awaiting input, and, more ·
importantly, what kind of input is needed. Accordingly, the argument to TEXT_Io. Put is a
message to the user asking for a capital letter. Thus,

TEXT_IO.Put (Item => •Enter a capital letter=> •);

specifies that the prompt to be written to the Standard Output is the message

Enter a capital letter =>

where the output appears without the enclosing quote marks, as in the previous example.

Next, the program waits for the user to enter a single character. This is caused by the use of the
statement

TEXT_IO.Get (Item=> Choice);

that "gets" or reads a character from the Standard Input. The user notifies the computer that
he/she has entered the character requested by first typing the character to be entered and then
pressing the return key. The return key is also called the enter key on some keyboards. The
value that is obtained is placed in the variable Choice. Thus, after this statement, the
character that the user entered in the Standard Input will be stored internally in the variable
Choice.

Next is an if statement,

if Choice >= 'A' and Choice <= 'Z' then
TEXT_IO.Put (Item=> •welcome Aboard, • & Choice);

else
TEXT_IO.Put (Item=> •Not a capital letter!•);

end if;

with three parts, the if condition part, the then part, and the else part. The if condition is

if Choice >= 'A' and Choice <= 'Z'

which checks to see if the value stored in the variable Choice is greater than or equal to a
capital letter 'A' and less than or equal to a capital letter 'Z'. If these two conditions are both
true, then the value in Choice is guaranteed to be a capital letter. This is true because in the
character set used in Ada, all of the capital letters are contiguous, or in sequence.

An alternative way to write this condition is

if Choice in 'A' .. 'Z'

2.2 - Introduction to Sequential Ada 2 ·11

which makes use of range checking mechanism in Ada. The condition is examined to see if the
value in Choice is an upper case letter. In Ada this can also be accomplished by checking to see
if the value in the variable Choice is in the range 'A' to 'Z' inclusive, meaning all of the
letters 'A', 'B', 'C' ... 'X', 'Y', and 'Z'. To avoid having to explicitly type in all of these letters
Ada has a range notation symbolized by the' .. ' symbol. Note that this is two dots, not three
like you might find in say an English paper. Thus, 'A' .. 'Z' can be used as a shorthand for the
capital letters from 'A' to 'Z' inclusive. In later portions of this textbook this range notation
feature of Ada will be used in other contexts, so it is important that you understand the concept
now.

The then part is executed if the if condition is TRUE. If the user entered the letter 'A' (without
the quotes) at the Get statement, then the simple statement

TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);

will put out a message of two parts in a single line

Welcome Aboard, A

Note that the first message part ends with a space. This will cause a space to be put in the
output file and prevent the two message parts from running together. For example, if the
statement had been written as

TEXT_IO.Put (Item=> "Welcome Aboard," & Choice);
i

space missing

then the output written to the Standard Output with the same input character used in the
previous explanation would be

Welcome Aboard,A

without a space between the comma and the letter A. Note that in Ada an ampersand(&) is
used to catenate a string (''Welcome Aboard, ")and a character (A, in our example). Refer to
section 1.3.4 of Chapter 1 for a description of the catenation operation.

Notice that this program causes this to occur by catenating the character in Choice to the
constant string ''Welcome Aboard, "and then putting out the entire newly formed string. An
alternative way of achieving this same effect would have been the following,

TEXT_IO.Put (Item=> •welcome Aboard, ");
TEXT_IO.Put (Item=> Choice);

In this case, the string ''Welcome Aboard, "would first be written to the Standard Output,
followed immediately by putting the character in Choice. The effect on the output would be
indistinguishable. Notice also that even though two calls have been made to the Put procedure,
the output is still on the same line. Suppose you had wanted the string ''Welcome Aboard, "
to be on one line and the character in Choice to be written on the next line. One way to do this
in Ada is the following,

TEXT_IO.Put (Item=> "Welcome Aboard, ");
TEXT_IO.New_Line;
TEXT_IO.Put (Item=> Choice);

2 - 12 Chapter 2 - Sequential Ada I

where a call has been made to another procedure found in TEXT_IO, namely, New _Line that
has been described earlier. This procedure causes the next Put statement to write its argument at
the beginning of the next line. In the program segment above, the first Put statement will cause
the string argument "Welcome Aboard, "to be written to the Output file. The call to
New _Line will force the next Put statement to write its argument, namely the character in
Choice, at the beginning of the next line, so the output in the Standard Output will be,
assuming the 'X' is the character in Choice,

Welcome Aboard,
X

Thus, TEXT_IO has some line formatting control capabilities.

Back to our example, the else part is executed if the if condition is FALSE, being the simple
statement,

TEXT_IO.Put (Item=> "Not a capital letter!");

which produces the string

Not a capital letter!

in the Standard Output.

The if statement provides the programmer with the means to alter the normal sequential flow
of control based upon the value of some condition. This is a very powerful tool in a programmer's
toolkit.

Finally, the last procedure call

TEXT_IO.New_Line;

causes the program to reposition the cursor to the beginning of the next line. More properly, it
causes a New _Line character to be placed in the Standard Output, but the effect is as
previously described.

2.2.3 Prlnt_Message_3

The next program, with main procedure named Print_Message_3, can look at additional
characters from the Standard Input in a loop. It will continue to look at characters until a
capital letter is found. This program is as follows:

with TEXT_IO;
procedure Print_Message_3 is

Choice : CHARACTER;

begin
Choice := 1 1

;

while Choice not in 1 A 1
• •

1 Z 1• loop
-- Better Look at Next CHARACTER
TEXT_IO.Get (Item=> Choice);

end loop;

2.2 - Introduction to Sequential Ada 2-13

if Choice in 'A' .. 'Z' then
TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);

else
TEXT_IO.Put (Item=> "Try Again•);

end if;
end Print_Message_3;

Program Print_Message_3 extends the process one more step, by using a while loop statement
to ask for more characters if no upper case letter is found so far. The variable Choice is given a
value by assignment before the while loop. It also introduces a way to add comments for readers
of the program. Comments have no effect on execution, but can make the program more
understandable. Such comments begin with double hyphens,--, and continue only to the end of
the line they begin on. Comment definers can also create empty lines for better readability as
well.

Print_Message_3 adds the assignment statement

Choice := ' ';

which explicitly assigns the value of the space character, ' ',to the variable Choice. The
double character symbol : = designates that the value of the expression on the right side is to be
assigned to the variable on the left side. This symbol may be read as "Choice is assigned (or
gets) the value space"; alternatively, it may be read as "Choice becomes space." However, you
should not read it as "Choice equals space.'' The reason for this will be made explicit later
when we see Ada's relational operators.

Next, the while loop statement

while Choice not in 'A' .. 'Z' loop
-- Better Look at Next CHARACTER
TEXT_IO.Get (Item=> Choice);

end loop;

specifies to keep looking for an upper case letter in the Standard Input until one is found, if
available. The while condition

~hoice not in 'A' .. 'Z'

will be TRUE only if the clause is true, i.e., Choice has no upper case letter value. That is, as
long as no upper case letter has been found, the while condition specifies to continue looking in
the while loop. Ultimately, if Choice has an upper case letter value, the while loop
statement terminates and execution goes to the following if statement. Conversely, if Standard
Input has no upper case value, the program terminates at the end of data as an exception, which
will be explained later.

In summary, if the loop ... end loop is entered, when execution reaches end loop, control
returns to the while part to check the new value in Choice. The loop ... end loop part will be
executed zero or more times until Choice has an upper case letter value or it exhausts the data.
lt is dear that thete \s no W'a."'j \o de\etmine in \he geneta\ case how many times a wh\\e \oop
will execute. For this reason it is referred to as indefinite iteration. The condition in a while
loop must be TRUE for the loop to be entered, and must remain TRUE each time the loop is
entered. Thus, a while loop is exited normally only when the condition specified is determined
to be FALSE.

2-14 Chapter 2 - Sequential Ada I

Two comments are embedded in the program. First, an empty comment

is used to separate the declarations and the executable part of the program. Second, a comment
is added to the line after the loop statement as

while Choice not in 'A' .. 'Z' loop
-- Better Look at Next CHARACTER

to explain what follows in the program at that point.

These three examples of Ada programs show the main possibilities of Ada. An Ada program is
always defined by a top level Ada procedure, such as Print_Message_l, possibly referring
first to one or more Ada packages, such as TEXT_IO, by means of a with preface. TEXT_IO
contains procedures Put and Get with full names TEXT_Io. Put and TEXT_Io. Get for putting
data out and bringing data in from the Standard Output and the Standard Input. Variables to
be used must be declared. The main body of a procedure will contain its declarations followed by
a begin ... end part within which its executable statements are found. Statements are
executed in the sequence they appear unless they are part of an if-statement or a
loop_statement which define alternation or iteration during execution respectively.

2.2.4 Exercises

1. Consider the program with main procedure Print_Message_l in which the Put statement

TEXT_IO.Put (Item=> •welcome Aboard");

has been replaced with two Put statements

TEXT_IO.Put (Item=> •welcome");
TEXT_IO.Put (Item=> "Aboard");

to produce a new program with main procedure Print_Message_la

with TEXT_IO;
procedure Print_Message_la is
begin

TEXT_IO.Put (Item=> "Welcome•);
TEXT_IO.Put (Item=> "Aboard");

end Print_Message_la;

Determine the effect of Print_Message_la and compare it with that of
Print_Message_l.

2. Consider the program with main procedure Print_Message_l in which the Put statement

TEXT_IO.Put (Item=> •welcome Aboard");

has been replaced with two Put statements

TEXT_IO.Put (Item=> "Wel");
TEXT_IO.Put (Item=> •come Aboard");

2.2 - Introduction to Sequential Ada 2-15

to produce a new program with main procedure Print_Message_lb

with TEXT_IO;
procedure Print_Message_lb is
begin

TEXT_IO.Put (Item=> "Wel ");
TEXT_IO.Put (Item=> •come Aboard");

end Print_Message_lb;

Determine the effect of Print_Message_lb and compare it with that of
Print_Message_l.

3. Compare the following program with the program in section 2.2.2 with main procedure
Print_Message_2. Is the output from each program the same or different? Explain.

with TEXT_IO;
procedure Print_Message_2 is

Next_Item : CHARACTER;
begin

TEXT_IO.Put (Item=> "Enter a capital letter=>");
TEXT_IO.Get (Item=> Next_Item);
if Next_Item not in 'A' .. 'Z' then

TEXT_IO.Put (Item=> "Not a capital letter!");
else

TEXT_IO.Put (Item=> "Welcome Aboard, ");
TEXT_IO.Put (Item=> Next_Item);

end if;
TEXT_IO.New_Line;

end Print_Message_2;

4. Compare the following program with the one in section 2.2.3 with main procedure
Print_Message_3. Is the output from each program the same or different? Explain.

with TEXT_IO;
procedure Print_Message_3a is

Next_Item : CHARACTER;

begin
Next_Item := ' ';
while Next_Item not in 'A' .. 'Z' loop

-- Better Look at Next CHARACTER
TEXT_IO.Get (Item=> Next_Item);

end loop;
if Next_Item not in 'A' .. 'Z' then

TEXT_IO.Put (Item=> "Try Again");
else

TEXT_IO.Put (Item=> "Welcome Aboard, ");
TEXT_IO.Put (Item=> Next_Item);

end if;
end Print_Message_3a;

2 - 16 Chapter 2 - Sequential Ada I

5. Compare the following program to the one given in section 2.2.3 with main procedure
Print_Message_3. Is the output of each of these programs the same? Explain.

with TEXT_IO;
procedure Print_Message_3b is

Choice : CHARACTER;

begin
while Choice not in 'A' .. 'Z' loop

-- Better Look at Next CHARACTER
TEXT_IO.Get (Item=> Choice);

end loop;
if Choice in 'A' .. 'Z' then

TEXT_IO.Put (Item => "Welcome Aboard, • & Choice);
else

TEXT_IO.Put (Item=> "Try Again");
end if;

end Print_Message_3b;

6. Compare the following program to the one given in section 2.2.3 with main procedure
Print_Message_3. Is the output of each of these programs the same? Explain.

with TEXT_IO;
procedure Print_Message_3c is

Choice : CHARACTER;

begin
Choice : = 'a' ;
while Choice not in 'a' .. 'z' loop

-- Better Look at Next CHARACTER
TEXT_IO.Get (Item=> Choice);

end loop;
if Choice in 'a' .. 'z' then

TEXT_IO.Put (Item => "Welcome Aboard, • & Choice);
else

TEXT_IO.Put (Item=> "Try Again");
end if;

end Print_Message_3c;

2.3 The Formal Grammar of Ada

In Chapter 1, we introduced the concept of formal grammars to represent languages. Formal
grammars can be used to uniquely and concisely define legal strings in any given language. Ada
is just a programming language for which a grammar has been specified. In this section we will
examine the Ada grammar to see how programs may be constructed.

A computer program in the programming language Ada is a string of lines. Each line is a
character string that can be divided into space characters, identifiers, reserved words, literals,
and delimiters. Identifiers are names that start with letters followed by zero or more
additional letters and/or digits, possibly divided into subnames by underlines,'-' . Reserved
words are 63 identifiers used exclusively for standard purposes. There are three kinds of
literals, namely, numeric literals, character literals, and string literals. Delimiters are either
one or two spedal characters. There are sixteen one character delimiters and ten two character
delimiters. The delimiters and their names are listed in Table 2.2 and Table 2.3.

2.2 - Introduction to Sequential Ada 2-17

At higher levels are program parts called declarations and statements,. which in turn will be
strings of lines made up of the space characters, identifiers, reserved words, literals, and
delimiters. Declarations define passive properties such as types of data to be used in the
program, while statements define active program behavior that creates and alters data. At
even higher levels, procedures, functions, and packages will contain strings of declarations and
statements.

More specifically, in this text

a) Words of lower case letters, some containing embedded underlines, are used to denote
syntactic categories, for example:

statement
simple_statement
compound_staternent

b) Boldface words are used to denote reserved words, for example:

procedure
with

c) Square brackets enclose optional items. For example, an if_statement may or may not
contain an else_part:

if_statement if condition then
sequence_of_statements

[else
sequence_of_statements]

end if;

d) Braces enclose a repeated item. The item may appear zero or more times; the
repetitions occur from left to right, for example:

sequence_of_statements
identifier_list

statement {statement}
identifier {, identifier}

In this case a sequence_of_statements must contain one or more statements. An
identifier_list contains one or more identifiers separated by commas.

e) A vertical bar separates alternative terms unless it occurs immediately after an opening
brace, in which case it stands for itself, for example:

letter_or_digit ::=letter I digit
component_association ::= [choice {I choice}=>] expression

The I in the syntax production for let ter_or_digi t is a metasymbol meaning or, but
the I in the production for component_association is a literal Ada symbol that
would appear in an Ada program.

f) If the name of any syntactic category starts with an italicized part, it is equivalent to
the category name without the italicized part'. The italicized part is intended to
convey some semantic information. For example type_name and task_name are both
equivalent to name alone, but convey some additional semantic information about what
kind of name is needed.

2-18 Chapter 2 - Sequential Ada I

~

g) The syntax rules describing structured constructs are presented in a form that corresponds
to the recommended line structure and paragraphing. For example, a loop_staternent
with a while condition is defined as

loop_s taternent ::=while condition loop
sequence_of_staternents

end loop;

Preferred places for other line breaks are after semicolons. More specific information
regarding line structure and paragraphing (style) will be provided in the Ada
Programming Style Guide that will be distributed in the laboratory.

2.3.1 Lexical Units

As illustrated above, Ada programs can be thought of as lines of character strings, including
space characters used to separate basic substrings within the lines. Such basic substrings are
called lexical units, and are made up of six basic types, namely

• identifiers
• numeric literals
• character literals
• string literals
• delimiters
• comments

Strings in the first five types can contain no unmeaningful space characters, but the comments
type may contain space characters anywhere. Any lexical unit may be of any length that will
fit on a single line.

2.3.2 Identifiers

As already seen above, identifiers start with a letter which may be followed by any number of
letters or digits, possibly separated by underlines. For example,

Print_Message_2,
TEXT_IO,
Choice,
procedure,
begin,
New_Line,
with

are all identifiers.

The formal syntax for an identifier in Ada is given in the three syntax productions shown next
with four terminal words, namely underline, upper_case_letter, lower_case_letter,
and digit.

2.3 -The Formal Grammar of Ada 2-19

identifier ::=letter {[underline] letter_or_digit}

letter ::= upper_case_letter I lower_case_letter

letter_or_digit ::=letter I digit

Identifier
Syntax Definition 2.1

This syntax can also be shown in graphic form as follows.

identifier ::=

letter_or_digit

letter

• >I lower_case_letterl •)loor

upper_case_letter

letter_or_digit

Identifier
Syntax Chart 2.1

The fonts and upper or lower case of the letters in identifiers are ignored in Ada, but the
underlines are not ignored. For example,

Print_Message_2, PRINT_MESSAGE_2, print_message_2,

are all the same identifier in Ada, but

PrintMessage2, PrintMessage_2, Print_Message_2

are different and distinct identifiers. As noted above, identifiers must fit on a single line, but no
other limitation is imposed on their length.

2-20 Chapter 2 - Sequential Ada I

As discussed in the last section, some of these identifiers are reserved words. For example,
procedure, begin, and with are reserved words that are used in the programs above. Ada has 63
such reserved words, shown in Table 2.1.

abort declare generic of select
abs delay go to or separate
accept delta others subtype
access digits i f out
all do in task
and is package terminate
array pragma then
at else private type

elsif limited procedure
end loop
entry raise use

begin exception range
body exit trod record when

rem while
new renames with

case for not return
constant function null reverse xor

Table 2.1
Ada Reserved Words

2.3.3 Numeric Literals

Numeric literals can be integer literals and real literals. Real literals contain a decimal point
while integers do not. We will not discuss real literals until later so that we can concentrate on
integers. As in the case of identifiers, underlines may be used for readability, but unlike the
case of identifiers, underlines do not change numeric values. For example,

1_234_5 67, 1_23_45_67, 1234567

are integers that all have the same value. As with identifiers, numeric literals must be
contained in a single line.

The syntax for integer literals in Ada includes numbers, possibly expressed in exponents. In the
four syntax productions shown next rules for integers and real numbers are expressed with two
terminal words, namely underline, and digit.

nurneric_literal decirnal_li teral

decirnal_literal integer [exponent]

integer ::=digit { [underline] digit}

exponent ::= E [+] integer I e [+] integer

2.3 - The Formal Granmar of Ada

Numeric Literal
Syntax Definition 2.2

2-21

This syntax can also be shown in graphic form as follows.

numeric_literal

decimal_literal

decimal_literal

--1 integer I y ~ "'
exponent

integer : :=

exponent : : =

Some examples follow.

Numeric Literal
Syntax Chart 2.2

Integer literals: 12, 0, 2E3 (which is 2 x 10
3= 2000), 1_234_567

Leading zeros are allowed. No space is allowed in a numeric literal, not even in exponents.
Exponents in integer literals must be zero or positive integers.

2-22 Chapter 2 - Sequential Ada I

2.3.4 Character Literals

Character literals are the 95 ASCII characters enclosed between single quotes. These ASCII
characters include the 26 upper and 26 lower case letters, the 10 digits, the space character, a
set called "special characters"

"#I ()*+,-./:;<=>_1&

and a set called "other special characters"

!$?@(\]' {}-"%

For example,

'A•, I I

are characters A, space, and single quote, respectively.

The syntax for character literals in Ada is shown next in three syntax productions with six
terminal words, namely upper_case_let ter, lower_case_letter, digit,
other_special_character,special_character,andspace_character.

character_literal 'graphic_character'

graphic_character ::= basic_graphic_character
I lower_case_letter I other_special_character

basic_graphic_character ••
upper_case_letter I digit
I special_character I space_character

Character Literal
Syntax Definition 2.3

This syntax can also be shown in graphic form as follows.

character_literal ::=

graphic_character

graphic_character

basic_graphic_character

lower_case_letter

other_special_character

2.3 - The Fonnal GraiTVTI8r of Ada 2-23

2.3.5 String Literals

basic_graphic_character ::=

upper_case_letter

digit

special_character

space_ character

Character Literal
Syntax Chart 2.3

String literals are lists of zero or more characters enclosed within double quotes. For example,

• •, "Welcome Aboard", • • •welcome Aboard" • •

are strings, the first being a null (empty) string, the second containing the words Welcome
Aboard, the third being the quoted words •welcome Aboard •. Note the difference between
the single quote as a character literal • and the double quote as a string literal of length 1 but
written as two double quotes • •. Character literals are always single characters between single
quotes, so a single quote is just one of the possible characters. For example the double quote is
another possible character literal, written as I "

1
, using only one character. But string literals

contain zero or more characters and a double quote in a string will end the string unless it is
followed directly by another double quote.

The syntax for string literals in Ada is shown next in three syntax productions with six terminal
words, namely upper_case_letter, lower_case_letter, digit,
other_special_character,special_character,andspace_character(thesame
terminal words as in the productions for character literals).

string_literal ::= "{graphic_character)•

graphic_character ::= basic_graphic_character
I lower_case_letter I other_special_character

basic_graphic_character ••
upper_case_letter I digit

2-24

I special_character I space_character

String Literal
Syntax Definition 2.4

Chapter 2 - Sequential Ada \

This syntax can also be shown in graphic form as follows.

string_literal ::=

graphic_character

graphic_character

basic_graphic_character

lower_case_letter

other_special_character

basic_graphic_character

upper_case_letter

2.3 - The Fonnal Granvnar of Ada

digit

special_character

space_character

String Literal
Syntax Chart 2.4

2-25

2.3.6 Delimiters

Delimiters are composed of one or two special characters. They are used to convey special
meanings for the program. They include the one character delimiters listed in Table 2.2 and the
two character delimiters listed in Table 2.3.

Symbol Name
I apostrophe
(left parenthesis
) right parenthesis .. star, multiply
+ plus

' comma
- hyphen, minus

dot, period, point
I slash, divide
: colon
; semicolon
< less than
= equal
> greater than
I vertical bar

&: ampersand

Table 2.2
One Character Delimiters

Symbol Name
=> arrow
.. double dot double star, exponentiate
.- assignment (pronounced: "becomes")
I= inequality (pronounced: "not equal")
>= greater than or equal
<= less than or equal
<< left label bracket
>> right label bracket
<> box

Table 2.3
Two Character Delimiters

The meanings of these delimiters depend on their context. Delimiters appear in many syntax
productions, but are all terminal words, so no productions are shown for them.

2.3.7 Comments

Comments, as seen in programs in the last section, begin with double hyphens,-, and continue to
the end of the line. An entire line can be devoted to a comment, which can be just an empty line
to separate parts of a program, or a comment may be used to follow program text on the same
line. If multi-line commentary is required, each line must begin with the double hyphens.

2-26 Chapter 2 - Sequential Ada I

Comments should be liberally used in programs to convey information to the reader of the
program. It is sometimes quite difficult to examine a complex section of code and determine why
any particular statement is present. Comments can help to explain the reasons for certain design
decisions or implementation decisions and thus, make the job of the reader significantly easier.

In this text, there are numerous examples of programs or program fragments which do not follow
this guideline. Comments are sparse or non-existent. This is done deliberately because it is
important for you to Jearn to read and understand programs without documentation. If the
comments are present, then reading the program will be all that much easier. If the comments
are not present, you will have learned to read and understand programs so as to fill in the
comments. One of the goals of this text is to force you to do the analysis for each program, so to·
achieve that goal comments have been deliberately removed from some of the program
examples.

2.3.8 Syntax for Ada Lexical Units

In summary, the syntax for identifiers, numerical literals, character literals, and string literals
can be assembled into a single set of eleven syntax productions, eliminating the duplicated
productions of the lexical units listed separately. This syntax is given in Table 2.4, Syntax for
Ada Lexical Units.

identifier ::=letter {[underline] letter_or_digit)

letter ::= upper_case_letter I lower_case_letter

letter_or_digit letter I digit

numeric_literal decirnal_literal

decirnal_literal integer [exponent]

integer ::=digit {[underline] digit)

exponent ::= E [+] integer 1 e [+] integer

character_literal 'graphic_character'

graphic_character .. - basic_graphic_character
lower_case_letter I other_special_character

basic_graphic_character ::=
upper_case_letter I digit
special_character I space_character

string_literal ::= "{graphic_character)•

Table 2.4
Syntax for Ada Lexical Units

2.3 - The Formal Granvnar of Ada 2-27

2.3.9 Exercises

1. a . Is the I in the following string in the grammar for the Ada programming language being
used a metasymbol or a literal? Explain your answer.

exception_handler ::=when exception_choice
{I exception_choice} =>
sequence_of_staternents

b. What is the purpose of the italicized part of the following syntax statement?

exception_choice ::= exception_narne I others

2. Create a grammar that shows the relationship between the program parts procedures,
functions, and packages, and declarations and statements, and space characters, identifiers,
reserved words, literals and delimiters, as defined in this section.

3. a. Which of the following are identifiers?

TEXT_IO, TEXT_IO.Open_Files, Open_Files, A1, 1A

b. Which of the following are numeric literals?

3.14159_26, 5e2, 5 e2, Se~2, SEO

c. Which of the following are valid character literals?

I. I I It I •a I I '='I '4 I

d. Which of the following are valid string literals?

"abc•, ••, ••••, •a•, "1234", ••a••

e. Which of the following are valid comments in Ada?

i. (* This is a comment *)

ii. (Here is another comment
iii. -- This is a comment also
iv. x := y + z; -- This is an intermediate calculation
v. A := B -- An integer -- + c -- Another integer -- ;

4. Which of the following are valid Ada reserved words?

begin, with, TEXT_IO, put, end, if

5. Use the syntax charts in Table 2.4 to determine if the following are valid lexical elements:

-312 . 34e+12, a_b_c, reserved_word_, .345, 2_54, 3,200.10

2-28 Chapter 2 - Sequential Ada l

6. Decompose the following program into all of its lexical elements. List the lexical element
and its name, i.e., numeric literal, identifier, delimiter, etc.

with TEXT_IO;
procedure Decompose_! is
begin

TEXT_IO.Put (Item=> "Welcome Aboard");
end Decompose_!;

7. Decompose the following program into all of its lexical elements. List the lexical element
and its name, i.e., numeric literal, identifier, delimiter, etc.

with TEXT_IO;
procedure Decompose_2 is

Choice : CHARACTER;
begin

TEXT_IO.Get (Item=> Choice);
if Choice in 'A' .. 'Z' then

TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);
else

TEXT_IO.Put (Item=> "Try Again");
end if;

end Decompose;

2.4 Data Types and Objects

Data is stored and represented inside of the computer in different ways. The conceptual storage
of data is described by a data type. An object of any given type represents an instance of the
data type, and its storage will be handled as described by the type. The data to be stored may
even be conceptualized further as an abstraction of some storage capability. In this case, it is
called a data structure. For now, we will concentrate on data types and the objects declared from
the data types. It is important to remember that although we will discuss data types in an
abstract sense, they ultimately are nothing more than binary representations in memory. Your
program and your data both are represented in the same manner, it is only the interpretation of
the binary data that is unique. See Figure 2.3 for a graphic representation of memory and data
and program storage.

Your data

2.3 - The Formal Grammar of Ada

Memory
Figure 2.3

..--Your program

2-29

---- ·-----------------~~-~-~---------~-

2.4.1 Data Types

Data types identify several classes of data objects in Ada programs. Each data type defines a
set of possible values for the type and the operations that can be applied to those values. Data
types have attributes that describe properties of their values. For each data type defined,
subtypes can also be defined as subsets of values with the same operations and attributes. At
this time three kinds of data types and subtypes are introduced, namely

• Character Types and Subtypes
• Boolean Types and Subtypes
• Integer Types and Subtypes

The formal syntax for type declarations in Ada is given in the three syntax productions, shown
next with three intermediate words carried no further here, namely identifier,
enumeration_type_definition,andinteger_type_definition.

type_declaration ::= full_type_declaration

full_type_declaration ::=type identifier is type_definition;

type_definition ::= enumeration_type_definition
integer_type_definition

Type Declaration
Syntax Definition 2.5

Identifier has been defined previously; enurneration_type_definition and
integer_type_definition will be defined below.

This syntax can also be shown. in graphic form as follows:

type_declaration ::=

full_type_declaration

full_type_declaration

identifier

type_definition

type_definition ::=

enurneration_type_definition

integer_type_definition

2-30 Chapter 2 - Sequential Ada I

enumeration_type_definition

enumeration_literal_specification

enumeration_literal_specification

enumeration_literal

enumeration_literal

identifier

character_literal

integer_type_definition

range_constraint

range_constraint

range . . -

simple_expression simple_expression

2.4 - Data Types and Objeds 2-31

simple_expression

unary_adding_operator

binary_adding_operator

Type Declaration
Syntax Cnart 2.5

The formal syntax for a subtype_declaration is given next.

subtype_declaration ::=subtype identifier is
subtype_indication

subtype_indication ::= type_mark [constraint]

type_mark ::= type_name I subtype_name

constraint ::= range_constraint

Subtype Declaration
Syntax Definition 2.6

This syntax can also be shown in graphic form as follows.

subtype_declaration ::=

aubtype identifier

subtype_indication

subtype_indication

4 type_mark I y . ~)o

constra~nt

2-32 Chapter 2 - Sequential Ada I

Character types of character literals can be defined in separate declarations using different
character orderings. Character types are just forms of enumeration types, so the formal syntax
for enurnerat ion_type_defini tion is given next in three syntax productions with the
terminal word character_literal.

enurneration_type_definition .. -
(enurneration_literal_specification

{, enurneration_literal_specification})

enurneration_literal_specification ::= enurneration_literal

enurneration_literal ::= character_literal I identifier

Enumeration Type
Syntax Definition 2.7

While this grammar states that an enumeration literal may be an identifier, in this section the
discussion will be limited to the character_literal choice. Later the use of an identifier as
a choice for enurnerat ion_li teral will be introduced and explained.

This syntax can also be shown in graphic form as follows.

enurneration_type_definition ::=

enurneration_literal_specification

2-34

enurneration_literal_specification

enurneration_literal

enurneration_literal . ·-

identifier

character_literal

Enumeration Type
Syntax Chart 2.7

Chapter 2 - Sequential Ada I

Sample character type declarations follow. Note that semicolon(;) is part of the type
declaration from the syntax above repeated here.

full_type_declaration ::=type identifier is type_definition;

type Decimal_Digit is ('0', '1', '2 •, '3 •, • 4 •, • 5 •, '6 •, '7 •, • 8 •, • 9 •);

type Vowel is ('A,, , E,, , I,, , o', 'U,, 'Y,);

Next, sample subtype declarations follow based ultimately on type CHARACTER, with syntax
repeated here.

subtype_declaration ::=subtype identifier is subtype_indication

subtype Upper_Case_Letter is CHARACTER range 'A' 'Z';

subtype Lower_Case_Letter is CHARACTER range 'a' 'z';

subtype Decimal_Digit is CHARACTER range '0' '9';

subtype Binary_Digit is Decimal_Digit range '0' .. '1';

subtype Octal_Digit is Decimal_Digit range '0' .. '7';

2.4.3 Boolean Types and Subtypes

BOOLEAN is a predefined Ada data type with values that are the two identifiers FALSE and
TRUE, which are ordered in the relation FALSE < TRUE. A boolean subtype may be defined
from the predefined type BOOLEAN. Boolean types are enumeration types, so the formal
syntax for enumeration_type_definition as given in section 2.4.2 applies, where the
choice for enumeration literal is chosen to be identifier, and the identifier is limited to
the values FALSE and TRUE.

Sample BOOLEAN type declarations follow. Note that semicolon(;) is part of the type
declaration from the syntax above repeated here.

full_type_declaration ::=type identifier is type_definition;

type Always_True is (TRUE);

type My_Boolean is (FALSE, TRUE);

Next, sample subtype declarations follow based ultimately on type BOOLEAN, with syntax
repeated here.

subtype_declaration .. -subtype identifier is
subtype_indication;

subtype_indication ::= type_mark [constraint]

type_mark ::= type_name I subtype_name

constraint ::= range_constraint

range_constraint ::=range range

2.4 - Data Types and Objects 2-35

range ::= simple_expression .. simple_expression

simple_expression ::=
[unary_adding_operator) term {binary_adding_operator term}

Thus, a subtype of the predefined type BOOLEAN might be:

subtype Never_True is BOOLEAN range FALSE .. FALSE;

2.4.4 Integer Types and Subtypes

Ada views the integers as an unbounded, infinitely long set of the whole numbers, being infinite
and unbounded in both the positive and negative directions on a number line. This data type is
called universal integer. Oearly, this range of numbers is too large to be represented on any
existing machine. Therefore, Ada allows a subset of this universal integer concept to be used on
a specific machine. This subset is called the type INTEGER.

INTEGER is a predefined Ada data type with values from a range that is machine dependent,
but which consists of consecutive integers, positive, zero, and negative. The number of positive
integers will always be the same as the number of negative integers in the range, except that it
is permissible to have an "extra" negative number. The user can declare a new integer type as a
subtype of the predefined type INTEGER, defined by using the range reserved word. The formal
syntax for an integer type definition is given next.

integer_type_definition :: = range_constraint

Integer Type Definition
Syntax Definition 2.8

The syntax is also shown in graphic form as follows.

integer_type_definition ::=

range_constraint

Integer Type Definition
Syntax Chart 2.8

The formal syntax for an integer subtype declaration is given next.

subtype_declaration ::=subtype identifier is
subtype_indication;

subtype_indication type_mark [constraint]

type_mark ::= type_name I subtype_name

constraint ::= range_constraint

2-36

Subtype Declaration
Syntax Definition 2.9

Chapter 2 - Sequential Ada I

This syntax can also be shown in graphic form as follows.

subtype_declaration : :=

subtype identifier

subtype_indication

subtype_indication

~ type_mark ~1 -,----------------r-~~~ Y constraint~
type_mark : : =

type_name

subtype_name

constraint

range_constraint

Subtype Declaration
Syntax Chart 2.9

Sample integer subtype declarations are

subtype Day_Of_Month is INTEGER range 1 .. 31;

subtype INTEGER_6 is INTEGER range -1e6 .. 1e6;

subtype Natural_6 is INTEGER range 0 .. 999_999;

subtype Positive_3 is Natural_6 range 1 .. 999;

Note again that the semicolon(;) is part of the declaration. In each case, the set of integers
declared are all those between and including the two integer values following range, the
smaller endpoint being listed first. Ada provides two predefined subtypes of the predefined
type INTEGER, namely NATURAL and POSITIVE. All Ada implementations have these two
subtypes defined in package Standard. Their definitions are provided below, but may also be
found in Appendix F of the Language Reference Manual. Note that INTEGER' LAST merely
means the largest representable value in the type INTEGER.

2.4- Data Types and Objects 2-37

subtype NATURAL is INTEGER range 0 INTEGER'LAST;

subtype POSITIVE is INTEGER range 1 INTEGER'LAST;

2.4.5 Data Objects

Data objects are declared as identifiers that belong to given data types, either as variables or
constants.

The formal syntax for an object in Ada is given in the two syntax productions shown next with
two intermediate words subtype_indication, and identifier that were discussed above.

object_declaration ::= identifier_list : [constant]
subtype_indication [:=expression];

identifier_list ::= identifier{, identifier}

expression::= relation {and relation}
,. relation (or relael.on.J 1' relation (xor reiationf

relation ::=
simple_expression [relational_operator sirnple_expression]
I sirnple_expression [not] in range
I sirnple_expression [not] in type_rnark

relational_operator ::= = I /= I < I <= I > I >=

Object Declaration
Syntax Definition 2.10

This syntax can also be shown in graphic form as follows.

object_declaration ::=

identifier_list

constant

subtype_indication I 1 a ltal

expression

2-38
Chapter 2 • Sequential Ada I

identifier_list

expression

relation ~-T------------------------------------~--~

relation

simple_expression

relational_operator simple_expression

type_mark

2.4 - Data Types and Objects 2-39

relational_operator • •-

O~}ect o~c\ara\\on
Syntax Chart 2.10

The objects are variables unless the optional term constant appears. As variables, the value
stored in the location named by the identifier can be changed during the execution of the
program. If the object is declared to be a constant, then its value may never change throughout
the life of the program.

The operations possible among such declared identifiers depend on the types.

2.4.6 Character Type Objects

CHARACTER type objects must be declared before their references in the executable parts of
programs. For example, in the program above with main procedure named Print_Message_2,
character valued variable Choice was declared between the is and begin reserved words as

Choice : CHARACTER;

which declares Choice to be an object that can hold CHARACI'ER values.

With character data types given above, other declarations possible include

Digit : Decimal_Digit;

Letter : Vowel;

which declare an object named Digit that can hold values of the type Decimal_Digit, and
an object named Letter that can assume values of the type Vowe 1.

2-40 Chapter 2 - Sequential Ada I

Operations

Operations for character types include the following.

Assignment .-
Membership in not in

Relational = I= < <= > >=

If any initial value is not included in the character type or a result is not proper, a
CONSTRAINT_ERROR exception will be raised in execution. This means that an attempt was
made to assign a value to an object that it was not declared to be able to take on. For example,
trying to assign the character 'Z' to an object that was declared to be of type Vowe 1 would raise
CONSTRAINT_ERROR because 'Z' is not a permissible value of the type Vowel.

Attributes

For any CHARACTER type, say c, attributes are automatically defined. They include the
following:

FIRST
LAST
PRED

succ

POS
VAL

the first value of type c, denoted c • FIRST
the last value of type c, denoted c • LAST
if value X is not c • FIRST then c • PRED(X) precedes X
else CONSTRAINT_ERROR raised
if value X is not c • LAST then c · succ(x) succeeds X
else CONSTRAINT_ERROR raised
the position of the character in the enumeration
the value of the enumeration at the given position

For example, using the type Vowel defined above, the following equalities are true:

Vowel'FIRST = 'A'
Vowel'LAST = 'Y'
Vowel'PRED('I'} = 'E'
Vowel'SUCC('I'} = '0'
Vowel'VAL(3} = '0' --remember that the first literal is always zero
Vowel'POS('U'} = 4

2.4.7 Boolean Type Objects

Boolean type objects must be declared before their references in the executable parts of
programs. With boolean data types given above, other declarations possible include

I_Win : Always_True;
You_Win : Never_True;
Rain_Today : My_Boolean := FALSE;

which declares an object named I_Win that can assume the value in Always_ True, namely
TRUE, and an object You_Win that has the value of the type Never_ True, namely FALSE.
Also, an object named Rain_ Today has been declared which can assume values from the type
My _Boolean, namely TRUE or FALSE. In this case, the object Rain_ Today is provided with an
initial value of FALSE.

2.4 - Data Types and Objects 2-41

Operations

Operations for boolean types include the following.

Assignment .-
Membership in not in I

I

I
Relational = I= < <= > >=I

If any initial value is not included in the boolean type or a result is not proper a
CONSTRAINT_ERROR exception will be raised in execution.

Attributes

A BOOLEAN type, say B, has attributes that include the following:

FIRST
LAST
PRED

succ

the first value of type B, denoted B I FIRST
the last value of type B, denoted B I LAST
if value x is not B I FIRST then B I PRED(X) precedes x
else CONSTRAINT _ERROR raised
if value xis not B I LAST then B • succ(X) succeeds x
else CONSTRAINT_ERROR raised

POS
VAL

the position of the literal in the enumeration with the first one as zero
the value of the enumeration at the given position

2.4.8 Integer Type Objects

INTEGER type objects must be declared before their references in the executable parts of
programs. For example,

Date: Day_Of_Month := 1;

Population: Natural_6;

declare Date and Population as integers in different ranges. In this case, Date is initialized
to 1 in the declaration.

Operations

Operations for integer types include the following.

Adding + -
Assignment .-
Exponentiating
Membership in not in

Multiplying .. I rem

Relational = I= < <= > >=

Unary + - abs

2-42 Chapter 2 - Sequential Ada I

If any initial value is not included in the integer type or a result is not proper a
CONSTRAINT_ERROR exception will be raised in execution.

Attributes

For any INTEGER type, say I, attributes available to the user include the following:

FIRST
LAST
PRED

succ

the first value of type I, denoted I I FIRST
the last value of type I, denoted I 1 LAST
if value X not I 1 FIRST then I I PRED(X) precedes X
else CONSTRAINT_ERROR raised
if value X not I I LAST then I 1 SUCC(X) succeeds X
else CONSTRAINT_ERROR raised

2.4.9 Exercises

1. Declare a CHARACTER type called Pass ible_Grades that represents all of the capital
letters from 'A' to 'F'.

2. Declare an INTEGER subtype called Weeks_In_Year with an appropriate range.

3. Declare a BOOLEAN subtype called Pass_Or_Fail with appropriate values.

4. Declare an object First_Week that can take on values of the type defined in Exercise 2
above.

5. Declare an object called My _Grade of the type defined in Exercise 3 and give it an initial
value indicating that you passed.

6. Declare an object called Let ter_Grade of the type defined in Exercise 1 and give it an
initial value of E. Will this initialization be valid? Why or why not?

2.5 Ada Names and Expressions

2.5.1 Ada Names

Ada names denote declared entities such as variables and constants. Names are either
identifiers or literals, as given next in five syntax productions with identifier,
graphic_character, and expression as terminal words since these have been previously
provided.

name ::= sirnple_name I character_literal I indexed_cornponent

sirnple_narne ::=identifier

character_literal 1 graphic_character'

2.4- Data Types and Objects 2-43

indexed_ component prefix (expression {, expression})

prefix :: = name

Name
Syntax Definition 2.11

This syntax can also be shown in graphic form as follows.

name : :=

simple_name

character_literal

indexed_ component

simple_name

identifier

character_literal

graphic_character

indexed_ component

prefix :: =

~
Name

Syntax Chart 2.11

For example, the following are all Ada names•

Heads_I_Win
'A'
'c'

2-44 Chapter 2 - Sequential Ada I

These examples illustrate the use of an identifier and graphic characters as names. An example
of an indexed component name will be provided later.

2.5.2 Ada Expressions

Given variables and constants, it is now possible to form expressions in building Ada programs.
With one exception, expressions and their values must be formed within given types or closely
related types, i.e., if one variable is an INTEGER, then all of the other variables and constants
must be INTEGER or subtypes of INTEGER. Further, operations must preserve the type such
that if two INTEGER values are added, then the sum must be an INTEGER, and similarly for
all other types. The one exception is that the relational operations in any type have boolean
results.

2.5.3 Character Expressions

Aside from assignment statements and the previously mentioned attributes, the operations on
character types are

Membership in not in

Relational = I= < <= > >=

Membership and relational operations have boolean results, i.e., the result of applying any of
these operations to two or more CHARACTER values is either FALSE or TRUE.

Thus, the following CHARACTER expressions are valid and yield the results indicated,

A'
Z'
e'
X'
A'
A'

2.5.4

in Vowel TRUE
in Decimal_Digit FALSE
not in Vowel TRUE
< 'Z' TRUE
> 'S' FALSE
I= 'a' TRUE

Boolean Expressions

see section 2.4 . 2 for Vowel
see same section
'E' is, but 'e' isn't
since 'Z' comes after 'X'
since 'S' comes after 'A'

Aside from assignment statements and attributes, the operations on boolean types are

Membership in not in

Relational = I= < <= > >=

Logical and or xor

Membership, relational, and logical operations have boolean results as discussed in Section
2.4.3.

The membership and relational operations have already been discussed for other types. The
logical operators can only be applied to boolean expressions. These operators allow the
programmer to connect boolean expressions to form more complex expressions. The meaning of the
logical operators is given in Table 2.6, where A and B represent boolean expressions. In Chapter

2.5 - Ada Names and Expressions 2-45

-
--~-- -~---

1 you were already exposed to these concepts and the use of a truth table for predicates. This
discussion is specific to Ada, but follows easily from the original generic discussion. The
operators and and or have meanings that are probably intuitive from their English language
equivalents. The meaning of xor, however, is likely to be new to you. For the logical expression
containing xor to be TRUE, one or the other of the expressions on either side of the xor operator
must be TRUE, but not both.

Another operation on BOOLEAN expressions is not. This operator inverts the logic of the
expression to which it is applied, e.g., if the argument to not is TRUE, then the result is FALSE.

A B AandB A orB AxorB
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE

--

Table 2.6
Meaning of the Logical Operators

For example, the following are all valid boolean expressions with the results indicated:

TRUE in Never_True
FALSE not in Always_True
FALSE < TRUE
TRUE /= TRUE
TRUE or FALSE
FALSE xor TRUE
FALSE and FALSE
not TRUE

2.5.5 Integer Expressions

FALSE
TRUE
TRUE
FALSE
TRUE
TRUE
FALSE
FALSE

see section 2.4.3
see same section
always!

see Table 2.6

Aside from assignment statements and attributes, the operations on integer types listed in the
inverse order of their precedence (lowest to highest precedence) are:

Adding + -
Exponentiating ••

Membership in not in
I Multiplying • I rem trod I

Relational I=
I

= < <= > >= I

Unary + - abs

Membership and relational operations have boolean results, while the remainder of adding,
exponentiating, multiplying, and unary operations have integer results. The adding and
multiplying operators are the same as what is normal for integers. The multiplying operator I
gives a result truncated toward zero. The operators rem and mod are probably new to you. The
rem operator is used to obtain the remainder after division. For example, if we have the
expression 5 rem 3, we observe that 5/3 is 1 with a remainder of 2. Thus, 5 rem 3 is 2. The mod
operator works exactly like the rem operator when the operands are both positive, but produces
different results when one or both of the operands is negative. For our l>urposes, we wi\\ always

2-46 Chapter 2 - Sequential Ada I

use the rem operator. The abs operator is also probably unfamiliar to you. It return the absolute
value of its operand. Thus, abs -5 is 5, since the absolute value of the quantity -5 is five. Note
that in Ada, abs is an operator and not a function call. Thus, it has an operand associated with
it, not an argument or parameter. The meaning of this note will become more clear later in this
course. These operations can be used and combined in more complex integer expressions.

For example, the following INTEGER expressions are all valid and yield the result indicated:

2 + 3
5 in INTEGER
33 not in Oay_Of_Month
2 3
7 I 2
4 1r 5
abs -14
-6
3 < 10
-4 > -2
abs -4 > abs -2
7 rem 21

5
TRUE
TRUE
8
3
20
14
-6
TRUE
FALSE
TRUE

see section 2.4.4
23 = 8
INTEGER has no fractional part

absolute value
unary minus

0 -- the remainder after division

2.5.6 Precedence for Operations

Up until this point all of the expressions that have been illustrated contained only one
operation (except for some abs expressions). This is the simple case. However, in many programs
the operators are strung together to form more complex operations. When this happens, the
order in which the operations are performed can affect the result obtained. For example, if
variable Al contains the value 3, B2 contains the value 4, and C3 contains the
value 5, then

04 := Al + B2 + C3;

trivially assigns 1_2 to 04 since it makes no difference how the operands are grouped, that is,

04 := Al + (B2 + C3) <==> 04 := (Al + B2) + C3

But consider the following expression,

04 := Al * B2 + C3

This expression can assign to 04 the resultant value 17 (performing the multiplication first) or
27 (performing the addition first). That is,

04 := (Al "' B2) + C3 1t 04 := Al * (B2 + C3)

This situation is ambiguous and so rules must be provided that tell the user the order in which
operations will be applied within expressions. This order is known as precedence. Table 2.7
shows the order in which operations are applied if operators of different precedence levels are
mixed in an expression. Operators of the same precedence are always applied in a left to right
order. Note that parentheses can override the highest precedence. This allows the programmer
to force the expression to be evaluated in any order desired, overriding normal precedence rules.
For example, in the expression

ES := Al * B2 + C3;

2.5 - Ada Names and Expressions 2-47

with the same values for A1, B2, and C3 as before, Table 2.7 shows that-the multiplication
operator will be applied to Al and B2, then the addition operator will be applied to that
product and C3. If the programmer wanted to force the expression to perform the addition first,
this could be done as follows,

E5 := Al * (B2 + C3);

where the subexpression inside of the parentheses is computed first, namely the addition of B2
and C3, then this sum is used to multiply Al.

Highest Precedence abs not

Multiplying .. I rem

Unary + -
Binary + - &

Relational = I= < <= > >=

Logical and or xor

Table 2.7
Precedence of Selected Operators

Two operators may never appear together so that the following expressions must be written as
indicated,

4 + (-3)
5 - (-2)

Consider the following expression,

4 ** (13 - 2 * 5) < 100 and -5 > abs(7/2)

Examination of this complicated expression shows that there are two subexpressions inside of
parentheses. These subexpressions are evaluated in a left to right order, so the leftmost
subexpression is evaluated first. This expression consists of binary minus and multiplication
operators. Table 2.7 ranks the multiplication operation higher than binary minus so that
operation is performed first, using the operands 2 and 5, resulting in a value of 10. Next the
binary minus is performed where the operands are this product and 13. The subtraction yields
the result 3. Having determined the first subexpression's value, the second subexpression is
evaluated. Here there is only a single operator so it is applied to the operands 7 and 2 to yield
the result 3 (remember that these are integer values, so the result must be integer). The
expression is now scanned to determine which operation to perform next. The highest
precedence operator remaining is exponentiation (....) and abs. Since these are also at the same
precedence level, they are performed in a left to right order. Thus, the exponentiation is
performed on its operands, namely 4 and the result of the subexpression or 3. This operation
yields the result 64. Next, the abs operation is performed on its operand (it only requires a
single operand) yielding the result 3. At this point, the expression has been simplified to an
equivalent one, namely

64 < 100 and -5 > 3

2-48 Chapter 2 - Sequential Ada I

The next operation to be performed is the unary minus which takes a single operand, 5 in this
case, and yields the value negative 5, or -5. The next precedence level is the two relational
operators < and >. These are at the same precedence level so they are also performed in a left
to right order, so that 64 < 100 is evaluated to TRUE and then -5 > 3 is evaluated and yields the
result FALSE. Finally, there is only a single operator remaining since the expression has been
evaluated down to the following,

TRUE and FALSE

The logical operator and is then applied and yields the final value of the whole expression,
namely FALSE.

This is the manner in which you should evaluate complicated expressions. Follow the steps
used in the evaluation of this expression which are:

1. Evaluate any parenthesized subexpressions first.
2. Perform the highest remaining operation next, doing so in a left to right order if there

are operators of the same precedence level in the expression

2.5. 7 Syntax for Ada Expressions

The syntax for Ada expressions is given next in terms of terminal words.

expression ::= relation {and relation)
I relation {or relation) I relation {xor relation)

relation ::=
sirople_expression [relational_operator simple_expression]
I simple_expression [not) in range
I simple_expression [not] in type_mark

sirople_expression ::=
(unary_adding_operator) term (binary_adding_operator term)

relational_operator = I I = i < I <= I > I >=

range : := simple_expression .. sirople_expression

type_roark : := type_naroe I subtype_naroe

unary_adding_operator + I -

term ::=factor {roultiplying_operator factor)

binary_adding_operator + I - I &

name ::= simple_naroe character_literal

factor ::=primary I abs primary not primary

multiplying_operator * I I rood I rem

simple_naroe ::=identifier

character_literal ::= 'graphic_character'

2.5 - Ada Names and Expressions 2-49

~

primary null I string_literal I name ·1 nurneric_literal
(expression)

nurneric_literal decirnal_literal

decirnal_literal integer (exponent]

exponent ::= E [+] integer I e [+] integer

identifier ::= letter {[underline] letter_or_digit}

graphic_character ::= basic_graphic_character
I lower_case_letter I other_special_character

string_literal ::= "{graphic_character}"

letter_or_digit ::=letter I digit

basic_graphic_character ::=
upper_case_letter I digit
I special_character I space_character

actual_pararneter_part .. -
(pararneter_association {, pararneter_association})

pararneter_association ::=
[forrnal_pararneter =>] actual_pararneter

forrnal_pararneter pararneter_simple_narne

actual_pararneter •·-
expression I variable_narne I type_mark (variable_narne)

Ada Expressions
Syntax Definition 2.12

This syntax can also be shown in graphic form as follows.

expression :: =

relation

relation I 1 • 1

relation I 1 • 1

relation ~-r----~

2-50 Chapter 2 - Sequential Ada I

relation

simple_expression

relational_operator simple_expression

type_mark

simple_expression

unary_adding_operator

binary_adding_operator

relational_operator

2.5 - Ada Names and Expressions 2-51

range • •-

simple_expression simple_expression

type_mark

type_name

subtype_name

unary_adding_operator

term

factor

multiplying_operator

binary_adding_operator

name

simple_name

character_literal

indexed_ component

2-52 Chapter 2 - Sequential Ada I

factor

primary

multiplying_operator

simple_narne

identifier

character_literal

graphic_ character

primary

name

expression

2.5 - Ada Names and Expressions 2-53

identifier

letter_or_digit

graphic_character ::=

basic_graphic_character

lower_case_letter

other_special_character

string_literal

graphic_character

letter_or_digit

basic_graphic_character ::=

upper_case_letter

digit

special_ character

space_character

2-54 Chapter 2 - Sequential Ada I

actual_parameter_part

parameter_association

parameter_association

forrnal_parameter

forrnal_parameter

actual_parameter

type_rnark

parameter_sirnple_name

expression

variable_name

variable_name

Ada Expressions
Syntax Chart 2.12

2.5.8 Example Syntax Derivation of an Expression

In illustration of what we have been discussing, let's examine a top-down derivation of an
expression to show how you might use the grammar of an Ada expression to determine if an
expression is legal or not. Consider the following simple expression:

X + 3 > 10 and Y < 4

We can determine if this is a legal expression by first examining what an expression must be
composed of as given by the grammar. We see that an expression is defined to be the
following:

expression .. - relation {and relation}
1 relation {or relation} I relation {xor relation}

2.5 - Ada Names and Expressions 2-55

.','e can choose the first production which says that an expression is a relation, followed by the
:reserved word and, followed by another relation. 5o our candidate expression matches this
pattern if we let X+ 3 > 10 be one relation and Y < 4 be another relation. Thus, we can conclude
that this is a legal expression if we can show that these two parts are in fact relations.

A relation is defined to be as follows:

relation::=
simple_expression [relational_operator simple_expression)
I simple_expression [not) in range
I simple_expression [not) in type_mark

Now for X + 3 > 10, we determine the first production again matches our candidate expression if
X+ 3 is as imple_expression, and 10 is also a simple_expression, and further, that> is a
relational operator. First we will establish that the relational operators are defined as:

relational_operator = I I= I < I <= I > I >=

and we have confirmed that > is a legal relational operator. Next we examine the productions
for a simple_expression given below:

simple_expression ::=
[unary_adding_operator] term {binary_adding_operator term}

and we find that X + 3 will fit this pattern if X is a term, 3 is a term, and + is a
binary_adding_operator. Examining the binary_adding_operator syntax, we see the
following production rule:

binary_adding_operator + I - I &

and can confirm that+ is a legal value for a binary_adding_operator. Now if we can show
that X and 3 are both terms, then we will have confirmed that this portion of our original
expression is well-formed and legal. Examining the syntax for a term we see:

term::= factor (multiplying_operator factor}

and.we can only confirm it by examining the syntax for a factor which follows:

factor ::=primary I abs primary I not primary

and this leads us to examine the syntax for a primary, given below:

primary ::=null I string_literal I name I nurneric_literal
I (expression)

Now we can establish that X is a term if we can show that it is a name and we can show that 3
is a term if we can show that it is a nurner ic_l i teral. The syntax for a nurner ic_l i teral
follows:

nurneric_literal .. - decirnal_literal

2-56 Chapter 2 - Sequential Ada I

and we know that we must show that 3 is a dec imal_li teral. This syntax rule is given next:

decimal_literal ::=integer [exponent]

and we now must show that 3 is an integer. This production is given below:

integer ::=digit { [underline] digit}

and finally, the following production for a digit:

digit ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

allows us to confirm that indeed, 3 is a digit, implying that it is a derivable from the non
terminal term.

For X, we must show that it is also a term which we can do if we can show that it is a name.
The syntax for a name is given below:

name : : = simp1e_name I character_literal

and we can see that we now must show that X can be a simple_name. This production is given
by the following:

simple_name ::=identifier

and now we must show that X is an identifier. This production rule is:

identifier ::= letter {[underline] letter_or_digit}

The syntax for a letter is: ·

letter ::= lower_case_letter I upper_case_letter

and an upper_case_letter is:

upper_case_letter ::=A B
M N
y z

c
0

D
p

E
Q

F
R

G

s
H
T

I
u

J
v

K
w

L
X

and from this we can determine that indeed, X is an upper_case_letter and thus derivable
from the non-terminal term. We have now shown that we can derive X+ 3 as a
simple_expression and a similar analysis will confirm that we can also derive 10 as a
simple_expression. We can then conclude that X+ 3 > 10 is derivable from the production
rules as a relation. A similar analysis of Y < 4 will show that it also a relation and thus the
expression

X + 3 > 10 and Y < 4

is indeed a valid expression in Ada. A pictorial representation of the complete derivation of
the expression is shown in Figure 2.4.

2.5 - Ada Names and Expressions 2-57

ex
pr

es
si

on

re
la

tio
n

a
n

d

re
la

tio
n

N

n
-
z

I
if

~
0

I
8:

~
-
t
t

I
I

Il
l

Il
l

..
.

.....
 ::

r::
r

si
m

pl
e_

re

la
tio

na
l_

si

m
pl

e
_

si
m

pl
e_

re

la
tio

na
l_

si

m
pl

e_

0
...

.
J»

'1

::t

..

.
e

xp
re

ss
io

n

o
p

e
ra

to
r

ex
pr

es
si

on

ex
pr

es
si

on

o
p

e
ra

to
r

e
xp

re
ss

io
n

s::

oa
e.

Il
l

..
..

;
.

I
I

I
I

I
I»

::t

0

I
I

s::
So

 s
::

a-
11

)~

>

<

~D
is

-
te

rm

b
in

a
ry

_

te
rm

te

rm

te
rm

te

rm

=:
 :

:t
...

.

I
a

d
d

in
g_

·
-
~
I
l
l

@
1»

"1
:::

'
o

p
e

ra
to

r
=

Q
q

a

~
1
1
>
n

fa
ct

or

I
fa

ct
or

fa

ct
or

fa

ct
or

fa

ct
or

I»

m

::t

Il

l
0

.
...

.
I

+

~

Il
l

g
'[

pr

im
ar

y
pr

im
ar

y
pr

im
ar

y
pr

im
ar

y
pr

im
ar

y
.....

..
I»

0

'1

s::
11

>!
!'

::t

-·

0
...

.
....

-·
•

Il
l

.
nu

m
er

ic
 _

lit
er

al

nu
m

er
ic

_
lit

er
al

nu

m
er

ic
_

lit
er

al

a
':

:t

na
m

e
na

m
e

a~

~
~.

[-
<

si

m
pl

e_
na

m
e

de
ci

m
al

_l
ite

ra
l

de
ci

m
al

_l
ite

ra
l

si
m

pl
e_

na
m

e
de

ci
m

al
_l

ite
ra

l
'<

...

.
.....

.
::::

~
0

0
'1

'1

s::

0
.

!!
'
~

id
e

n
tif

ie
r

in
te

g
e

r
in

te
g

e
r

id
e

n
tif

ie
r

in
te

g
e

r
;.

a

0
~

~
I

I
I

::
r ~

o
n

I

I
9

0.

CD

"'
:'

::t

le
tt

e
r

di
gi

t
d

ig
it

d
ig

it
le

tt
e

r
d

ig
it

....
...

.
n

-
e
.

N

~
'
<

I

I
I

I
I

(J
)

0
.0

.
CD

0

11
)

.g

t
'
t
)
~

3
1

0
4

Il
l

::t

up
pe

rc
as

e_
le

tt
e

r
..

..

11
)

u
p

p
e

rc
a

se
_

le
tt

e
r

CD

if
~

::J
 - iir

Xl
g'

~

....
D

er
iv

at
io

n
of

an

E

xp
re

ss
io

n
I»

X

y

Q
)

~

Fi
gu

re

2.
4

2.5.9 Exercises

1. Determine if the following are valid CHARACTER expressions. If so, then give the result;
if not, explain why not.

a. 'c' in CHARACTER
b. •A• in CHARACTER
c. 'a' < 'A'
d. 'X' >= 'Y'

2. Determine if the following are valid BOOLEAN expressions. If so, then give the result; if
not, explain why not.

a. TRUE xor FALSE
b. FALSE > TRUE
c. TRUE in FALSE
d. TRUE and FALSE or TRUE

3. Determine if the following are valid INTEGER expressions. If so, then give the result; if
not, explain why not.

a. 3 + 2 and 7
b. 3 ** -2
c. 4 * (-914)
d. 7 * 3 I 10 + 2

4. Compute the value of the following expressions.

a. TRUE and not FALSE
b. not TRUE or not FALSE
c. TRUE and FALSE or not FALSE and TRUE
d. TRUE < FALSE and not FALSE > TRUE

5. Compute the value of the following expressions.

a. 'A' <= 'Z' and 'b' < 'v'
b. 'X' < 'Z' or 'Y' >= 'X' and FALSE
c. 'S' <= 'S' and 'S' > 'S'
d. 'H' < 'h' or 'h' < 'H'

6. Compute the value of the following expressions.

a. 2 < 10 * (-1) and 6 >= 2 * 3
b. abs (-7) - 5 * 7 * * 2 I 3
c. 9 rem 4 * 3 I 7 + 4 ** 7 1 3
d. 12 rem 3 - (6 + 7 - (2 * 3 + (4 I 3)))

7. Determine the value of the following expression showing the order in which each operator
is applied. Include each new version of the simplified expression in your answer, i.e., after
each operator is applied, rewrite the expression substituting the result for the
subexpression just computed. Show the result of each operation.

32 rem 3- (22 + 7- (19 I 3) * (7 ** abs(-4 * 2)))

2.5 - Ada Names and Expressions 2-59

2.6 Simple Ada Statements

2.6.1 An Overview of Statements

The declarations and statements that a programmer puts in a subprogram jointly determine its
elaboration of declarations and execution of statements. The elaboration of declarations is that
process by which each declaration achieves its desired effect. As shown above, variables can be
initialized with values on declaration. The sequence_of_statements in the begin ... end
block of the body will be executed in sequence. Statements within the sequence may define
branching or looping execution of other statements in their domain before returning to the main
sequence, which continues until the final statement completes execution. For purposes of
analysis, the entire sequence of statements finally executed needs to be understood, and their
cumulative effects on the data of the program identified.

Ada statements of two types will be introduced, namely

• simple statements
• ao;;.sigronen\
• null
• input/ output

which will be described in this section, and

• compound statements
• sequence of statements
• if statements
• if then else
• loop statements
• while loop
• for loop

which will be described in the next section.

2.6.2 Assignment Statements

Assignment statements assign values to variables, in the form

variable := expression; -- variable may be any object

The value of the expression on the right hand side of the assignment operator (:=)is
determined and this value is then placed into the memory location whose name is given by
variable on the left hand side of the assignment operator, provided that the types of the
expression result and the variable are the same. (See Figure 2.5 for a graphical depiction of
this process.)

2-60 Chapter 2 - Sequential Acta I

Nl := N2;

Before: Nl N2 After: Nl N2

•• ••
Nl .- Nl + 2;

Before: Nl After: Nl

• •
The Assignment Operator

Figure 2.5

Thus, given the following assignment,

My_Grade := 'A';

the object My _Grade will contain the value 'A' after the execution of this statement, as long as
My _Grade has been previously declared to be of type CHARACI'ER. Similarly, the following
assignment statement,

Total_Value := 3 * 2 + 7;

will compute the value of the expression, namely 13, and then assign this value to
Total_ Value provided that Total_ Value has been previously declared to be of type
INTEGER.

Note that the assignment statement is not an equality test like X = 3, but is instead an
assignment. In ordinary mathematics, a statement such as X = X + 1 would be nonsense since a
quantity can never be equal to itself plus one. In a programming language such as Ada, the
statement X := X + 1; is quite different. This means take the value currently stored in the
location whose name is X, add one to it, and store this new result back in the same storage
location, namely the one whose name is X. There is no confusion in this statement and it is
perfectly legitimate to write such a statement.

2.6.3 Null Statement

A null statement consists of the reserved word null followed by a semicolon (;). This statement
may seem a bit strange at first, because it causes the computer to do nothing! Why would a
programmer want to tell the computer to explicitly do nothing? The answer is that there are
several places in the Ada syntax where a statement is required, but where the programmer may
not want anything to be done. In order to tell the computer that no operation is needed, a special
statement is required, namely the null statement. An analogy is the page in a book which is
labeled "This page intentionally left blank." What is the purpose of such a page? Simply to
tell the reader of the book that even though there is no writing on this page, it was not a
production error or a printing error. The author {or publisher) actually wanted this page to

2.6 - Simple Ada Statements 2-61

contain no text. For a similar reason, Ada provides the null statement. The null statement is
written as follows,

null;

and is not very interesting out of context. Remembering the syntax of an if statement from
earlier,

if Xl < Y2 then
null;

else
03 := Xl + 2;

end if;

the use of a null statement can be illustrated. In this case, if Xl < Y2, then the programmer does
not want anything to be done, otherwise the assignment is made to 03. This example is not very
useful because the if statement could be rewritten as follows,

if not (Xl < Y2) then
03 := Xl + 2;

end if;

avoiding the use of the null statement However, the example does show a use for the null
statement and others will be illustrated later in the text.

2.6.4 Input/Output Statements

Input and Output statements are as varied as the data that we wish to input or output. For that
reason, Ada treats each data type somewhat differently when it comes to input and output. We
have already seen how some of the input/ output statements work, such as for characters and
strings. We will examine some of the different input/output statements in this section.

2.6.4.1 Integer Input/Output

Pre,.;ously we had introduced the topic of integer numeric values. An integer is a whole counting
number that ranges from negative infinity to positive infinity. Unfortunately, a machine cannot
be made to represent this range of values. Thus, we have for each system a predefined
INTEGER data type that represents the range of values permissible (representable) for the
machine in use. We also discussed subranges of the predefined numeric type INTEGER such as
POSITIVE (range 1 •• INTEGER' LAST) and NATURAL (range 0 •• INTEGER' LAST). In
addition, we mentioned that the user is free to define new integer types and subtypes to best fit
the application.

What has been missing until this point is the ability to use these types for input or output.
CHARACTERS and STRINGS can be read from the keyboard and written to the screen without
any necessary action from the software engineer other than to use the Put and Get procedures
available in TEXT_IO. Unfortunately, this will not work for numeric values. The reasons for
this have to do with the wide range of possible values, given the user-defined types that Ada
allows. Accordingly, it was deemed prudent to limit the input/output operations to those
specifically tailored for the data type that we desire to get or put.

2 a 62 Chapter 2 - Sequential Ada I

Ada provides a very elegant capability for input/output of integer types. This allows a user to
read or write integer types directly. However, for reasons that will be apparent later, this
capability will not be fully discussed at this time. In future chapters, the capability to
input/output integer types will be fully explained. However, for now a template will be
provided to allow you to GET and PUT integer values for the integer types that you declare.

In the package TEXT_IO that has already been partially described for you, there is a nested
package called INTEGER.JO. This package is actually not a "real" package at all. Instead, it
is a template for creating specific instances of packages that will have the ability to read and
write the enumerated literals that you declare. The details of how this is accomplished by the
compiler are beyond the scope of our discussions here, other than to say that the process is not ·
too terribly complex and will be explained to you in detail later in this course. For now, we are
only concemed that you understand the global concepts of what is happening when an instance
of this template is created and that you know how to create an instance for your use.

The global concept is that this INTEGER_IO package is a template for other packages much as
your driver's license started out as a template. When you went to the Department of Motor
Vehicles the driver's 'license form was blank and not useful. If you tried to drive using it and
was stopped you would surely be told that this was an invalid license. What gave your license
its value was when that template had the details filled in to describe you and to denote that it
was now valid for use as a license. In the same manner, when INTEGER_IO is in TEXT_IO it is
like a blank license form, without any value of its own. However, when we "fill it in" we
produce a useful package that we can use for our purposes, namely, input and output of integer
literals.

How do we "fill in" the template? The answer is that we must only supply it the name of the
integer type that we desire to have available for input/ output operations. For the integer type
Day _of_Month defined earlier, this is accomplished in the following manner,

package Day_Of_Month_IO is new TEXT_IO.INTEGER_IO (Day_Of_Month);

This provides us with a new package, called Day _of_Month_IO, that we can use like any
other "normal" package, but this package's purpose is to provide us with the ability to perform
input/ output operations on the type Day _Of_Mon th. Again, for our purposes now, it is not
imperative that you fully understand all of the hidden details of what is occurring here, only
that you understand how to use this feature for your own Input/Output operations of your own
integer types.

As another example, to be able to read and write the literals for the type Natural we would
first need to have a line in our program such as,

package Natural_IO is new TEXT_IO.INTEGER_IO (Natural);

which provides us a new package called Natural_Io that will give us the capability of
reading and writing Natural literals directly.

Finally, i(we had a data type such as,

type Speed is range 0 .. 125;

then we could make put and get operations available for objects of this type by use of the
following generic instantiation,

package Speed_IO is new TEXT_IO.INTEGER_IO (Speed);

2.6 - Simple Ada Statements 2-63

--

In this example, the name Speed_Io is any identifier that you choose. The rest of the
statement is exactly as you will always declare it, except for the fact that you will substitute
the name of the type that you want to get and put in the parenthesis where Speed appears in
our example.

These new packages are used like any other package. It is impossible to detect that these
packages, created by this mechanism, are any different than any other package that we might
create by simply writing out the specification and body ourselves. This mechanism does have a
name. We call it a generic instantiation because the package template, in our example
INTEGER_Io, is called a getzeric package in Ada, and the process of creating an instance of the
template is called instantiation. Thus, Natural_IO is a generic instantiation of the generic
package TEXT_IO. INTEGER_IO.

How do we use a generic instantiation? In the same manner as any other package. Thus, to read
an integer literal of the type Day_of_Month, given the generic instantiation
Day _Of_Month_IO, we would use

Day_Of_Month_IO.Get (Item=> My_Day);
-- assuming that we had previously
-- declared My_Day : Day_Of_Month;

and similarly, we could write this literal as follows,

Day_Of_Month_IO.Put (Item=> My_Day);

It should be pointed out that whereas we have chosen to use what we consider meaningful
names to describe our input/ output packages, there is no requirement to do so. Thus, to have a
generic instantiation of INTEGER_Io for the type Day _of_Mon th we could have written,

package Go_Ada is new TEXT_IO.INTEGER_IO (Day_Of_Month);

which would have produced the same generic instantiation, but with the name Go_Ada instead
of Day _of_Month_Io. This is one more example of a situation where you should pause to
consider carefully the identifier name that you give to items that you create. It is very useful
for maintaining your software to have descriptive, meaningful names.

2.6.4.2 Width Parameter for Integer Input/Output

There are a few differences, however, between the procedure Put defined for CHARACTERs
and STRINGs, and the procedure Put defined for integer types. A Put procedure for integer types
has two additional parameters, namely WIDTH and BASE. Normally, you do not need to
concern yourself with them, because they have defaults that will serve your purposes in most
cases. However, occasionally it is desirable to have more control over the format of your output.
In this case, the WIDTH parameter is very useful. We will discuss it in this section. The BASE
parameter is not as useful normally and we will defer a discussion of its purpose until later.

The WIDTH parameter allows the user to define the number of columns that will be used to
display the number. For example, if we Put the integer 6 in a field width of 8 printing positions,
we will see seven spaces and then the number 6. If we were to Put the value 128 in the same field
width, we would see 5 spaces and then the number. Note that the number if always right
justified, i.e., always placed on the rightmost part of the field width specified.

2-64 Chapter 2 - Sequential Ada I

Suppose that we were to specify a field width of 4 and then Put the value 128? We would have
a single space before the number was printed. How do we tell the system that we want to
change the value of the field width from the default that is used when we do not specify a
field width? We just include the parameter WIDTH as one of the parameters to the Put
statement. Thus, we would use the following statement to Put the value 128 in a field width
of5,

Int_IO.Put (Item=> 128, Width=> 5);

Similarly, we would use the following Put statement to print the value 2,745 in a field width of
12,

Int_IO.Put (Item=> 2_745, Width=> 12);

and we would see 8 leading spaces, followed by the digits 2, 7, 4 and 5. The underline in this
number, 2_745, is allowed in numeric values in Ada for readability, as discussed in previously.
It does not get stored internally and it is not part of the output. It does make the program more
readable and assist in maintenance activities and so should be used in your programs.

We have used named notation for our parameters to introduce them to you. This is not actually
necessary. We could have written each of the previous statements, respectively, as,

Int IO.Put (Item=> 128,5);
Int_IO.Put (Item=> 2_745,12);

where the first parameter will be the value of the item to be printed and the second will
always be the field width.

One additional wrinkle must be explained about this new capability. What happens if we
want to output the value 27 _381 but we specify a field width of 3? There are a number of
possibilities. What would you think is the most reasonable? Output only the first 3 digits? The
last three? Something else? The answer is that we will always get the value output that we
desire to print, even if that means overriding, or ignoring, the field width specified in the Put
statement. For example, given the following Put statement,

Int_IO.Put (Item=> 27_192, Width=> 2);

the output would be 27 _192, even though the field width is specified to be only two places. We
say that the output field width is expanded to be exactly what is required (no extra spaces)
when the field width specified is less than that needed to out put the value, otherwise,
leading spaces are used to pad the field width and provide the value in the rightmost portion
of the field specified.

In the case of a negative number, the minus sign(-) is treated as a printing position of the
number just the same as the digits that make up the number. Thus, a Put statement of the form,

Int_IO.Put (Item=> -27_193, 7);

would cause the output to have a single leading space followed by the 6 printing positions that
make up the number, i.e.,·, 2, 7, 1, 9, and 3. As before, the underline will not be part of the
output.

2.6 - Simple Ada Statements 2-65

-

One final item to note is that a field width that is specified to be zero will provide the output
in exactly the number of spaces that are needed to write out the value, with the field width
being expanded as described above. This is a very useful property that you should keep in your
mental toolkit of little tricks of the trade. It makes it easy to have output of the form provided
in the following statements,

TEXT_IO.Put (Item=> •There are u);
Int_IO.Put (Item=> Nurnber_of_Items, Width=> 0);
TEXT_IO.Put (Item=> • items in the toolkit.•);

Here we can assume that there is some integer value in the object Nurnber_of_Items, say 10.
Then the output will look like,

There are 10 items in the toolkit.

where the spacing around the number 10 is achieved by leaving a space after the word are in
the first Put statement and before the word items in the third Put statement. The field width of
zero causes the exact number of spaces needed to write the 10 to be used without any leading
spaces. Without this little trick, the code segment would be as follows,

TEXT_IO.Put (Item=> •There are u);
Int_IO.Put (Item=> Nurnber_of_Items);
TEXT_IO.Put (Item=> • items in the toolkit.•);

and the output would be as follows, assuming that the default field width is eight,

There are 10 items in the toolkit.

where the gap between the word are and the value 10 is caused by the leading spaces in the
default field width. This illustrates the usefulness of having this feature in your repertoire.

By default, the system will normally use a field width of 8. You should check for yourself what
size field width is used in your system.

From now on, it should be easy for you to define input/output operations on all of your integer
numeric types.

2.6.4.3 Predefined Input/Output Procedures

The operations defined in the input/ output packages that we have been using are generally
procedures. A procedure is a unit of code statements that we use repeatedly. When we want to
make use of a procedure, such as Put, we must invoke it, or call it. This causes the actions
defined in the procedure to be performed. A procedure call statement consists of a procedure
name, possibly with parameters, followed by a semicolon(;).

Several examples have already been seen of procedure call statements, such as

TEXT_IO.New_Line;

which is a call to the procedure New_Line in the package TEXT_IO. This is an example of a
call without any parameters. It causes the output device to reposition itself to the next line so
that any subsequent output will appear on a new line.

2-66 Chapter 2 - Sequential Ada 1

A procedure call with parameters consists of the procedure name followed by the parameters
enclosed in parentheses, where each parameter is separated by commas. For example,

TEXT_IO.Put (Item=> "Welcome Aboard");

is a procedure call to the procedure Put in package TEXT_IO. It contains a single parameter
whose formal name is Item and whose actual value is "Welcome Aboard". The action taken is
to cause the string given as the parameter to be written to the output.

Another handy procedure to use is the procedure Put_Line, also found in the package
TEXT_IO. This procedure causes the string provided as a parameter to be written to the output
and then causes the output device to reposition itself to the next line. In effect, this single
procedure is identical to calling the Put procedure and then immediately calling the New_Line
procedure. For example, the procedure call

TEXT_IO.Put_Line (Item=> "Ada is fun.");

will produce the same result as the following sequence of statements:

TEXT_IO.Put (Item=> •Ada is fun.") ;
TEXT_IO.New_Line;

From now on it will be useful to remember the Put_Line procedure and use it when it is
appropriate.

2. 7 Compound Statements

Compound statements are statements composed of potentially several other statements. They
may have simple statements or other compound statements nested within them. This section
will examine some of the compound statements that you are likely to see in Ada.

2.7.1 Sequences of Statements

Sequences of statements are executed in order. They consist of groups of other statements that
are executed sequentially. For example,

D4 := C3 + ES;
F6 := 5 - D4;
Draw_Rectangle (Side_l => D4, Side_2 => F6);

is a sequence of simple statements that is executed in order from top to bottom. This is necessary
since the value of D4 must be computed in the first statement before it can be used in the second
statement. Most computers work by executing all statements sequentially unless the flow of
control is altered explicitly by the programmer. Some of the other statements discussed later in
this section will illustrate a non-sequential execution of program statements. Note that
although this example of a sequence of statements used only simple statements, any type of
statement mix is permissible. Thus, a mixture of simple and compound statements, or even all
compound statements, listed sequentially are still considered sequences of statements. See
Figure 2.6 for a pictorial representation of this concept.

2.6 - Simple Ada Statements 2-67

Sequence of Statements Flowchart
Figure 2.6

2. 7.2 If Then Else Statements

The if statement selects up to one of at most two possible statements for execution. As has been
explained previously, the if statement provides the programmer with the capability of
altering the normal sequential flow of control based upon the value of some condition. For
example, in the if statement

if Xl /= Y2 then
Xl := Y2;

else
Xl := Xl - Y2;

end if;

the condition Xl /= Y2 is evaluated to determine if it is TRUE or FALSE. If the condition is
TRUE, then the sequence of statements after the then and before the else is executed, in this
case only the assignment Xl := Y2. Control then passes to the statement after the end if. If the
condition is FALSE, then the flow of control passes to the sequence of statements after the else
and before the end if, skipping over the statements between the then and the else. In this case,
the statement Xl := Xl - Y2 would be executed. The flow of control then continues with the
statement after the end if. See Figure 2.7 for a graphical depiction of this flow of control.

2-68

(then)

If Statement Flowchart
Figure 2.7

Chapter 2 - Sequential Ada I

2.7.3 While Loop Statements

The while loop statement repeats a statement an indefinite, or variable, number of times. This
may be zero or more times. The while loop is one form of iteration statement allowed in Ada. It
is another statement that allows the programmer to alter the normally sequential flow of
control. Given the while loop statement

while Next < 5 loop
Next :=Next + 1;

end loop;

the condition after the while is evaluated. If it is FALSE, then the entire while loop statement
is skipped and the flow of control passes to the statement after the end loop. If the condition is
TRUE, then the sequence of statements between the loop and end loop is executed. After
completion of this execution, control does NOT pass to the statement after the end loop. Instead,
the condition is re-evaluated and the flow of control continues as described above. In this case,
if the value of Next is initially less than 5, then this loop will execute and the value of Next
will be increased by one. Eventually, after some number of iterations depending on the initial
value of Next, Next will be no longer less than 5 and the loop will terminate. See Figure 2.8 for
a graphical depiction of this flow of control.

While Loop Flowchart
Figure 2.8

Any kind of loop statement in Ada can be given a name. This is accomplished merely by placing
the name desired for the loop, which can be any legal identifier, before the loop, with a colon
after the name. This same identifier must then be repeated after the reserved words end loop,
just before the terminating semicolon. Thus, in the following example:

Checking_Valid_Number:
while Next < 5 loop

Next := Next + 1;
end loop Checking_Valid_Number;

the loop is named Checking_Valid_Number. While Ada does not require that all loops be
named, it is a good engineering practice because it can.assist the maintenance engineer later in
determining the purpose of the loop, assuming that a well chosen, meaningful identifier is used
to name the loop.

2. 7 - Compound Statements 2-69

-

The while loop is a very powerful statement for the programmer. However, like any other
capability it can be misused and it may cause some difficulties. Consider what may happen
with the following while loop

Checking_Now:
while Next < 5 loop

Now : = 1;
end loop Checking_Now;

Besides the fact that the body of the loop does not do much useful work, note that the value of
Next is not changed within the loop. Thus, if the value of Next prior to this statement is, say.3,
then the loop will be entered. After completion of the first iteration through the loop, the
condition will be r~valuated. Since the value in Next did not change, then Next must still be
3 and so the loop is r~ntered. There is no way for the program to ever exit from this loop! This
is an example of a common programming error and it even has a name; it is an infinite loop. An
infinite loop can be avoided if the programmer writes all loops with this possibility in mind
and therefore insures that all loops will eventually terminate.

2.7.4 For Loop Statements

In all of the previous examples, whenever a looping structure was required an indefinite
iteration mechanism, the while loop, was used. Recall that a while loop is a form of iteration
that is used when the number of iterations is unknown. Rather, the iterations are continued
until some condition is no longer true. In many circumstances that form of iteration is still the
most appropriate. However, there are times when the number of iterations is known in advance
or when the software engineer desires that a particular loop be executed precisely a known
number of times. In such cases, a different form of iteration is used, namely definite iteration. In
Ada, definite iteration is performed with a for loop statement.

A for loop is used when the number of iterations is determinable. This does not mean that the
number of iterations must always be known in advance. For example, a simple for loop, when it
is known that exactly ten iterations of the loop is desired, would be written as,

Put_One_To_Ten:
for Loop_Counter in 1 .. 10 loop

INT_IO.Put (Item=> Loop_Counter) ;
-- assumes proper integer I/O instantiation called INT_IO
-- is visible

end loop Put_One_To_Ten;

This for loop would set the value of Loop_ Counter to 1 (the lower bound specified) and do one
iteration. Upon completion of that iteration, the value of Loop_Counter would be incremented
by one (actually the successor to the first value would be selected) to the next value (2 in this
case) and another iteration would be completed since the new value is not greater than the
upper bound (10 in this example). Similarly, each time the end of the loop is reached,
Loop_Counter would be incremented and compared to the upper bound to see if its value was
greater. If not, then one more iteration of the loop would take place. If Loop_Counter is
greater than the upper bound, then the loop would terminate and the flow of control would pass
to the statement following the for loop statement. See Figure 2.9 for a pictorial representation
of this concept. ·

2-70 Chapter 2 - Sequential Ada I

Legend:
C • Counter Variable
LAST. Terminal Variable
FIRST -Initial Value
SUCC • Successor Value

For Loop Flowchart
Figure 2.9

Note that the range must be determinable, not necessarily known in advance. For example,
consider the following for loop, where the upper bound is obtained from a call to INT_IO. Get,

INT_IO.Get (Item=> Upper_Bound);
-- Upper_Bound is INTEGER

Weekend_Hooray:
for Counter in 1 Upper_Bound loop

TEXT_IO.Put (Item=> "Hooray for weekends!");
end loop Weekend_Hooray;

It is easy to see that while it is not known at the time that the program is written how many
iterations will be made, it is completely determinable at the point that the for loop statement
is encountered.

The range specified may be any discrete range of any discrete type. For example, consider the
for loop below,

subtype Letters is CHARACTER range 'A' .. 'Z';

Loop_By_Letters:
for This_Letter in Letters loop

TEXT_IO.Put_Line (Item=> "Another neat letter=> • & This_Letter);
end loop Loop_By_Letters;

In this example, the identifier This_Letter is initially given the value 'A', the first value in
the subtype Letters. After one iteration of the loop, the successor to 'A' is assigned to
This_Letter, which in this example is 'B'. Since this is not the last value in the subtype
another iteration of the loop is executed. Now This_Letter is given the value of the successor
to 'B', namely 'C' and another iteration of the loop is executed. Finally, when there is no
successor to the value 'Z' in the subtype Letters, the-loop is terminated normally. Thus, the
loop identifier does not need to be an integer, but any discrete type is allowed.

2. 7 - Compound Statements 2-71

Consider the loop identifier that appears after the reserved word for. This identifier is
implicitly declared at the point that it appears. It does not need to be declared in the
declarative section of the subprogram; in fact, it cannot be declared explicitly anywhere. It
takes its type from the type of the discrete_range that must be provided. The scope of the
identifier is solely within the loop. This means that after the loop has terminated, the
identifier no longer exists and may not be referenced. Further, inside of the for loop, the value of
this identifier may be read, but may not be updated, i.e., the identifier may not be assigned a
new value. Finally, it is not possible to iterate by more than the successor to the previous value.
This means that it is not possible to iterate from 1 .. 10 by two's.

Sometimes it is desirable to iterate backwards, i.e., from the upper bound down to the lower
bound. This is accomplished in Ada by merely placing the reserved word reverse between the
reserved word in and the discrete range. Thus, to count backwards from 50 to 25, a for loop
statement would contain,

Backward_Exarnple:
for My_Number in reverse 25 .. 50 loop

TEXT_IO.Put ("Wow-- backwards!");
end loop Backward_Exarnple;

This for loop would initialize My _Number to 50 and complete one iteration. It would then take
the predecessor value, namely 49, and assign this to My _Value and complete another iteration.
This would continue until My_ Value was assigned the value 25. Then the loop would make one
more iteration and terminate normally, since My_ Value would be assigned the predecessor to 25
and that value is outside of the stated range. Note that the range is still written in the normal
manner with the smaller value first and the larger value last. If the software engineer places
these values in the other order, such as

for My_Number in reverse 50 .. 25 loop

it is not an error; it is a null range, i.e., a range with no possible values. Thus, if the software
engineer were to make the mistake of reversing the range bounds, the compiler would not detect
an error, but no iterations would be executed.

In summary, a for loop allows the software engineer to provide definite iteration control to
loops. The loop identifier is implicitly declared and must take on discrete values. The for loop
can run backwards with the addition of the reserved word reverse.

2.7 .5 Choosing the Appropriate Loop

A while loop is used when the number of iterations is indeterminable. It continues to execute as
long as some specified condition is true. A for loop is used when the number of iterations is
known or determinable. Thus, a while loop represents indefinite iteration, and a for loop
represents definite iteration.

What does this mean? Consider the situation where the software engineer needs to write out
the numbers 1 to 10 as headings for a table. Since the number of iterations (10) is known in
advance, the appropriate looping mechanism for this situation is a for loop. Now suppose that
the software engineer needs to read all of the numbers on one line of the input file. Since it is not
known in advance how many numbers may be on any given line, a while loop is used, with the
terminating condition being the detection of the end of the line (how this is done will be
explained later).

2-72 Chapter 2 - Sequential Ada I

In general, a for loop is safer than a while loop because a for loop will always execute for a
specified number of iterations and then terminate. A while loop, on the other hand, is not
guaranteed to terminate because it will continue to iterate until the condition in the loop
becomes false. If the condition is never false, the while loop will never terminate. Sometimes
this can be desirable; many real-time systems used in space exploration or radar tracking
programs are designed precisely this way! Unfortunately, for our purposes this is almost
always an error and will cause you to have infinite loops in your programs, thus preventing your
programs from ever terminating.

When you decide which type of looping construct to use, first ask yourself if this loop will
execute a specific number of times that can be determined at runtime when the loop is first
entered. If so, then the for loop is what you want to use. If not, then you must ask yourself if the
loop is dependent on a specific condition, that when the condition is not longer true, the loop
may terminate. If so, then you want to use a while loop. Remember that you must consider the
tradeoff that the loop indeterminacy has given you; it has made the possibility of an infinite
loop a reality for you. You must be very careful to ensure that the loop condition will eventually
become false to prevent the occurrence of an infinite loop.

2.8 Syntax for Ada Statements

The syntax for Ada statements follows next.

sequence_of_statements ::=statement {statement}

statement : : = simple_statement I compound_statement

simple_statement ::= null_statement
I assignment_statement I procedure_call_statement

compound_statement : := if_statement I loop_statement

null_statement ::=null;

assignment_statement ::= variable_name .-expression;

procedure_call_statement .. -
procedure_name [actual_parameter_part];

if_statement ::=if condition

condition

then
sequence_of_statements

[else
sequence_of_statements)

end if;

boolean_expression

loop_statement ::= [loop_simple_name :]
[iteration_scheme] loop

sequence_of_statements
end loop;

2. 7 - Compound Statements 2-73

iteration_scheme ::=while condition I
for loop_parameter_specification

loop_parameter_specification .. -
identifier in [reverse] discrete_range

Sequence of Statements
Syntax Definition 2.14

This syntax can also be shown in graphic form as follows.

sequence_of_statements

•

statement

simple_statement

compound_statement

simple_statement

null_statement

assignment_statement

procedure_call_statement

compound_statement ::=

if_statement

loop_statement

null_statement

2-74 Chapter 2 - Sequential Ada I

assignment_statement

variable_name expression

procedure_call_statement

actual_parameter_part

if_statement

condition

sequence_of_statements

sequence_of_statements

condition

boolean_expression

2.8 - Syntax for Ada Statements 2-75

2-76

loop_statement ••-

loop_simple_narne

iteration_scheme

sequence_of_statements

loop_simple_name

iteration_scheme

condition

loop_paramter_specification

loop_parameter_specification

identifier

discrete_range

Sequence of Statements
Syntax Chart 2.14

Chapter 2 - Sequential Ada I

2.9 Example Derivation of a Statement

To illustrate the use of this grammar, we will derive a statement from the top-down. Consider
the statement:

Value := X + 3 > 10 andY < 4;

where value is of type BOOLEAN. We would like to see if this statement is derivable from
the grammar just given. We first examine the syntax for a statement and we see that a
statement is:

statement : := simple_statement I compound_statement

We next look at the production rule for a simple_statement and we see that it is given by the
following rule:

simple_statement ::= null_statement
I assignrnent_statement I procedure_call_statement

We next examine the syntax for an assignment_statement and we see that it is defined to
be:

assignrnent_statement ::=name :=expression;

Now if we can show that Value is a name we can conclude that this is a statement, since the
:=and the; match and we have already determined that X+ 3 > 10 andY< 4 is an expression
(See Section 2.5.8 for the derivation of this expression.)

Now the derivation for name .is given by the following series of syntax rules:

name : := simple_name

simple_name ::=identifier

identifier ::=letter ([underline) letter_or_digit}

where the complete derivation rules are shown in section 2.5.8. Since we find that Value is a
name, the := and ; terminals are located in the proper position, and X + 3 > 10 and Y < 4 is an
express ion, we can conclude that this is a syntactically legal statement:Figure 2.10 shows a
graphical depiction of this derivation.

2.9 - Example Derivation of a Statement 2-n

statement

simple_statement

assignment_statement

name :: expression

sirnple_name (same as Figure 2.4)

letter letter

v A

identifier

letter

L

letter letter

u E

Derivation of a Statement
Figure 2.10

As mentioned previously, we do not need to go through this tedium every time we write
programs. The compiler will check the syntax to verify that we have not violated any rules, as
part of its translation process. The key point here is that you should be able to manually trace
through a derivation to determine if a statement is syntactically correct.

2.10 Exceptions

It would be an ideal world if you could anticipate all of the uses that would be made of your
program. Similarly, it would be nice if you could anticipate all of the possible input that your
program might have to accept. Unfortunately, this is rarely the case. Consequently, your
program may fail for a variety of reasons, not all of which can be anticipated by you. In many
languages, such a situation causes the computer to "crash". This is a term used by computer
professionals to indicate that the program was terminated abnormally. Usually the operating
system can be counted upon to trap these errors and simply stop executing your program,
indicating the error if it can. Other times, your entire system may "lock up" and need to be
manually reset. Until now, this was just an accepted part of programming.

However, in Ada we have a built-in mechanism to detect and potentially correct errors while
the program is still executing. Depending on what the software engineer wants to do, it is
possible that such faults as would normally cause the program to "crash" can be detected,
handled, and the program can continue in any manner that is desired. This facility in Ada is
called an exception handler and the exceptional situation that caused a fault is called an
exception.

2-78 Chapter 2 • Sequential Ada I

Exceptions are both predefined and user-defined. Early in this text we will use the predefined
exceptions as a convenience. Later, we will use both the predefined exceptions and the user
defined exceptions that we will define that are unique and specific to our problem domain.

A complete definition and explanation of exceptions will be deferred until later. For now, we
will introduce a simple example of an exception handler. This mechanism should be a part of
all of your programs from this point forward. Later we will see how to tailor this generalized
exception handler to fit the specific problem that we are solving with our programming system.

with TEXT_IO;
procedure Demonstrate_Exception is

Value : CHARACTER;
begin

TEXT_IO.Put (Item=> "Enter a value=>");
TEXT_IO.Get (Item=> Value);

exception
when others=> TEXT_IO.Put ("Oops- an error!");

end Demonstrate_Exception;

In this example, the part between the reserved words begin and exception are the normal
programs executions statements that we have seen before. The part between the reserved words
exception and end is called the exception handler. In this example, there is a single exception
handler, designated by the when others. When others is a short cut means for saying that all
exceptions are to be handled by this handler. When something goes wrong and an exception
occurs, we say that it has been raised. Execution of the normal sequence of statements ceases and
control passes to the exception handler, if there is one. If the proper exception is handled in
that exception handler, or if there is a when others, the exception is lowered and the
statements following the arrow(=>) are executed. When these statements have been executed,
control returns to the calling procedure (if there is one) normally, i.e., as if there had been no
exception. The calling subprogram is not able to determine that an exception has ever been
raised.

More on exceptions will be presented later. For now, use the mechanism shown in the
demonstration program to embed an exception handler in all programs that you write.

2.11 Exercises

1. In what way are the following statements different,

Next = Last + 10
Next .- Last + 10

2. Given the following sequence of statements, what will be the outputs when Able and Baker
have the values stated?

INT_IO.Put (Item=> "Check on • & Able);
INT_IO.Get (Item=> Baker);
Able := Able + Baker;
INT_IO.Put (Item=> "New answer is" & Able);

2.1 0 - Exceptions 2-79

a. Able = 10, Baker = 15
b. Able = -10, Baker = 15
c. Able = 10, Baker = -15
d. Able = -10, Baker = -15

3. Given the following if statement, what will be output when Now and Then have the values
stated?

a.
b.
c.
d.

if Now > Then * 2 then
INT_IO.Put (Item=> Now);

else
TEXT_IO.Put (Item=> •Now <=Then* 2•);

end if;

Now = 6, Then = 2
Now = 2, Then = 1
Now = 10, Then = 6
Now = 15, Then = 0

4. How many iterations of the following while loop will be executed when Now has the given
values?

Iterating:
while Now < 10 loop

Now := Now - 2;
end loop Iterating;

a. Now = 5
b. Now = 15
c. Now = 10
d. Now = 25

5. What is potentially wrong with the following while loop?

Checking:
while Now > Then loop

Then := Then + 2;
Now : = Now + 2 ;

end loop Checking;

6. Write a while loop statement, controlled by the condition of Area being more than Side
squared, whose body explicitly does nothing.

7. What will the following for loop do with the data given?

Trial_and_Error:
for Loop_Counter in 1 .. 5 loop

if Loop_Counter = 1 or Loop_Counter = 10 then
INT_IO.Put (Item=> Loop_Counter);

else
INT_IO.Put (Item=> Loop_Counter +Able);

end loop Trial_and_Error;

a. Let Able be 7.
b. Let Able be -7.

2-80 Chapter 2 - Sequential Ada I

Chapter 3

Program Behavior

With a significant subset of the programming language Ada at our disposat we are now
interested in how programs and program parts can be constructed, analyzed, verified and tested.
Any sequence of character strings may be regarded as an Ada program or program part, but it
must pass syntax rules and semantic rules to be a legal such Ada program or part. Even then it
may or may not exhibit the intended behavior when executed. For that reason, we introduce a
formal definition for the meaning of any program or program part in terms of its behavior r

namely the net effect of its execution on data.

In this Chapter 3, we first study Ada programs or program parts for their understanding in a
general way. Next we give a formal definition for program behavior. Then we see the effects of
specific program parts in behavior, including declarations as well as statements. Statements of
interest here are simple statements, namely procedure calls, assignments, and null, and complex
statements, namely sequence, if statements, and loop statements, both while loop and for loop.
Complex statements may have simple statements or other smaller complex statements as
components.

One special undeclared data is the Standard Input and Standard Output treated by the
TEXT_IO package. The procedures and functions of TEXT_IO illustrate a collective behavior
for a package used to simplify program design dealing with input and output.

A program can be defined in terms of mathematical objects with geometric forms that describe
all possible behaviors. For example, sequence, if, and for statements can be used to describe all
possible behaviors. But while statements, which are very powerful, can only describe a subset
of all possible behaviors. For some data, a while statement will not loop at all, behaving like
a null statement. For some data, a while statement may never terminate. But for some intended
behavior, no while statement can be designed. That will be apparent with some mathematical
treatment.

3.1 Understanding Ada Programs

The purpose of creating a program is to have the computer perform some specific function that
solves a particular problem. If the solution is to be correct, then one must fully understand what
the problem is and what the program does. Several ways could be invented to determine what a
given program will do. One way would be to exhaustively try all possible inputs. This would
include every character and number in every possible combination.

For programs that deal with small numbers of possibilities, this may be the right treatment.
But most programs will have more possibilities than can be completely tested. For these
programs, a systematic but incomplete process is needed to check their correctness. This process
can include studying program behavior by means of

• analyzing input/output pairs that can occur,
• reading the code for what it does,
• reading the documentation and comparing with the code, and
• considering the program structure for the effect on behavior.

Chapter 3 - Program Behavior 3-1

An obvious improvement to understanding what is transpiring within a program during
execution is to read the program code itself. As straightforward as this seems it may not be easy
if the software engineer did not create the code with this in mind. Reading program code is
fundamental to understanding how programs work, yet making them readable requires skill and
training. One way to make them readable is to physically structure them in a form that is easy
to visualize. Another way for the author to transmit the rationale behind the program is to
insert documentation specifically for that purpose.

3.1.1 Understanding Ada Programs from Author Documentation

To assist in understanding what the author intended the program to do, comments should be
liberally embedded in each program. As described in Chapter 2, Ada provides a flexible
mechanism to insert comments throughout any program. When learning a new programming
language, comments can be used to describe in verbose terms the actions each statement causes. In
Print_Message_l beginning Chapter 2, namely

with TEXT_IO;
procedure Print_Message_l is
begin

TEXT_IO.Put (Item=> "Welcome Aboard");
end Print_Message_l;

each statement could be described in more detail with comments as

with TEXT_IO;
-- specifies input/output library package to be used
Procedure Print_Message_l is
-- gives the procedure the name 'Print_Message_l'
-- connects 'Print_Mes~age_l' with logic of procedure
begin
- - start of logical block of code

TEXT_IO . Put (Item=> "Welcome Aboard");
-- creates a specific output

end Print_Message_l;
-- ends block associated with begin of Print_Message_l

Additional comments could be inserted if further explanation was desired. For example, the
first with clause could be augmented as

with TEXT_IO;
specifies input/output library package to be used

-- uses Standard Input and Standard Output

At this level of specificity, the programs will become very long and cumbersome. Once the
fundamental operations of each statement are understood many such comments will become
superfluous. More useful comments can be inserted by the author to provide significant insight
into the logic and rationale involved in creating the program. For example, the difference
between procedure Print_Message_2 and Print_Message_l could be indicated as

with TEXT_IO;
procedure Print_Message_2 is
-- expansion on Print_Message_l to ask for capital letter and
-- return response depending on the user input

Choice : CHARACTER; -- to hold capital letter if given

3-2 Chapter 3 - Program Behavior

•

begin
TEXT_IO.Put (Item=> "Enter a capital letter=> ");
-- get character response
TEXT_IO.Get (Item=> Choice);
-- check response
if Choice >= 'A' and Choice <= 'Z' then

-- have received capital letter as requested
TEXT_IO.Put (Item => "Welcome Aboard, • & Choice);

else -- did not receive capital letter as requested
TEXT_IO.Put (Item=> "Not a capital letter!");

end if;
TEXT_IO.New_Line;

end Print_Message_2;

The ability to create the appropriate level of comments is a skill that must be developed with
practice and experience. A general rule of thumb is 'better too many than too few.' The author of
a program must remember that the comments are inserted to help the author and others
understand what should be going on. The following example shows how programs can be created
with the appropriate level of comments.

3.1.2 A Program for Recognizing Roman Digits

Roman numerals are still used in numbering book chapters, as yearly dates on building fronts,
and in other ways in artistic or historic objects. It is worth remembering that a thousand years
ago roman numerals were used in business, engineering, and science for recording and arithmetic
in Europe. While the place notation of the abacus was known and used in the Far East, it wasn't
known in Europe. Arithmetic in roman numerals is possible, but much more difficult than
arithmetic in place notation. Roman numerals do not permit negative numbers, nor even zero, as
a valid number. The place ideas such as long division or step-by-step multiplication are not at
all easy to discover in roman numerals, and little is recorded in arithmetic theory in roman
numerals. With place notation and long division, grade school children today can solve
problems in arithmetic that were beyond the practical capabilities of Euclid or Aristotle.

The following Ada program, named Proper_Roman_Digit, puts a message to the screen in
response to a character found in the input as to whether that character is a proper roman digit
for use in roman numerals or not.

with TEXT_IO; -- using Standard Input and Standard Output files
procedure Proper_Roman_Digit is
-- purpose is to determine if input character is a Roman digit

-- first describe the data
Digit : CHARACTER;

begin -- next describe sequential process on data
TEXT_IO . Put (Item=> "Enter Roman digit=>");
TEXT_IO.Get (Item=> Digit);
TEXT_IO.Put (Item=> "Character" & Digit);

test to see if Roman digit was input
if Digit = 'M' or Digit = 'L' or Digit = 'C' or Digit = 'D'

or Digit = 'X' or Digit= 'V' or Digit = 'I' then
-- Digit is a Roman digit
TEXT_IO.Put (Item=>" is");

else -- Digit is not a Roman digit
TEXT_IO.Put (Item=>" is not");

end if;

3.1 -Understanding Ada Programs 3-3

-- complete the output
TEXT_IO.Put (Item=> "a Roman digit.");

end Proper_Roman_Digit;

As discussed before, the program begins with a with clause that makes the predefined package
TEXT_IO of Standard Input and Standard Output available for use in the program.

The with clause precedes the start of the actual program which begins on the next line as

procedure Proper_Roman_Digit is
-- purpose is to determine if input character is a Roman digit

The comment is provided to clarify the purpose of the procedure, namely to determine if the
character input is one of the possible Roman digits.

In the next line an object named Digit is declared to be an object of type CHARACTER, and the
object declaration is concluded with a semicolon (;).

The executable part of the program is found between the two separated reserved words begin
and end. The begin line contains a comment to point out that a sequential process will follow.
The end line provides the name of the program again. The begin is not followed by a semicolon,
but the end is followed by a semicolon. In this case, it is the begin ... end pair that is followed
by a semicolon. That is, in the end line, the semicolon follows end, and the name of the program
is optionally inserted between end and its semicolon.

In this executable part of the program, the first statement to Output

TEXT_IO.Put (Item=> "Enter Roman digit=>");

asks for a candidate Roman numeral. Next a value for Digit is obtained by the TEXT_IO .Get
statement

TEXT_IO.Get (Item=> Digit);

which makes use of the TEXT_IO facilities provided by the opening with clause. The Get
procedure of TEXT_IO will get a character and give that value to the CHARACTER object
named Digit and add it to the input file. In Input, this character will become part of a
character string. If Input is empty before (which it is in this case), it becomes a one character
string, not a CHARACTER.

In this case, just after obtaining the value of Digit in

TEXT_IO.Get (Item=> Digit);

the next part of the message to output is formed in the statement

TEXT_IO.Put (Item=> "Character • & Digit);

which writes the string "Character " catenated with the value in the object Digit to the
output file.

3-4 Chapter 3 - Program Behavior

Next, the seven line if statement preceded by its comment

first test to see if a proper digit was input
if Digit = 'M' or Digit = 'L' or Digit = 'C' or Digit = 'D'

or Digit = 'X' or Digit = 'V' or Digit = 'I' then
-- Digit is a Roman digit
TEXT_IO.Put (Item => . is");

else -- Digit is not a Roman digit
TEXT_ IO.Put · (Item => . is not •) ;

end if;

adds either " is" or" is not" to the message (note that either addition begins with a space to
separate it from the value of Digit in the previous part of the message).

In more detail, the first two lines of the if statement

if Digit = 'M' or Digit = 'L' or Digit = 'C' or Digit = 'D'
or Digit = 'X' or Digit = 'V' or Digit = 'I' then

ask the question "is the current value of the object Digit a roman digit?" If it is, say the roman
digit 'C' to be specific, the then part of the if statement will be executed, namely

TEXT_IO.Put (Item=>" is");

The comment after then states that if the then is reached, then the current value of Digit is
indeed a valid roman digit.

On the other hand, if the current value of Digit is not a valid roman digit, say the value 'A' to
be specific, the else part of the if statement will be executed, namely

else -- Digit is not a Roman digit
TEXT_IO.Put (Item=> • is not");

Finally, the if statement is completed by the line

end if;

which also ends with a semicolon. Then the statement

TEXT_IO.Put (Item=> "a Roman digit.");

completes the message.

Note that the double quotes in the TEXT_IO. Put statements are not part of the output, only the
text between them. Double quotes can be output as has been pointed out earlier, namely by
putting consecutive double quotes (" ") within messages, but these double quotes in this
TEXT_IO. Put statement define the limits of this message and are not meant to be written to
the output file. Recall also that, in Ada, single characters, such as 'C' or 'A' are framed by
single quotation marks, while character strings of any length are framed by double quotation
marks. Since a single character is also a character string of length 1, there may be an option of
which to use in operations where both are legal. TEXT_IO. Put statements will put both
characters and character strings, but other operations may recognize only one or the other, as
will be seen later.

3.1 - Understanding Ada Programs 3-5

These TEXT_IO. Put statements are satisfactory in the creation of an output message.
Typically, there are many alternative programs to meet an objective. There will, indeed, be
better ones among them, in execution time, space required, understandability, and so on. For
example, it is perfectly legal in Ada to use an TEXT_IO. Put statement to put out each
individual character in the message. That as, in place of the statement above in
Proper_Roman_Digit

TEXT_IO.Put (Item=> "Character" & Digit);

the following sequence of eleven statements would be equivalent

TEXT_IO.Put (Item=> •c•);
TEXT_IO.Put (Item => • h •) ;
TEXT_IO.Put (Item => • a •) ;
TEXT_IO.Put (Item=> •r•);
TEXT_IO.Put (Item => • a •) ;
TEXT_IO.Put (Item => •c•);
TEXT_IO.Put (Item=> •t•);
TEXT_IO.Put (Item => •e•);
TEXT_IO.Put (Item => •r•);
TEXT_IO.Put (Item => • .) ;
TEXT_IO.Put (Item=> Digit);

In this case "Character • is output as a sequence of ten character strings each of length 1. As
already noted, single characters are also defined between single quotation marks, so another
sequence of eleven statements will also be equivalent

TEXT_IO.Put (Item => ~c I>;
TEXT_IO.Put (Item => I hI);
TEXT_IO.Put (Item => I a I) ;
TEXT_IO.Put (Item => I r I) ;
TEXT_IO.Put (Item => I a I);
TEXT_IO. Put (Item => I c I) ;
TEXT_IO.Put (Item => It I);
TEXT_IO.Put (Item => I e I) ;
TEXT_IO.Put (Item => I r I);
TEXT_IO.Put (Item => I I) ;
TEX.T_IO.Put (Item=> Digit);

In either case, though proper and legal, the single TEXT_Io. Put statement is easier to
understand and takes less space in the program than either of these alternative sequences.
There will be occasions when such character by character output may be useful, but not here.

This example is designed to provide insight into understanding a program by both reading the
Ada statements and the comments. An author must carefully choose the appropriate comments
to convey the intended purpose of specific statements as well as the overall actions of the
various program units. The level of specificity, the frequency of comments, and the complexity
of the code all affect the quality of the documentation. Experimentation and experience will be
the best tutor for good documentation.

3.1.3 Understanding Ada Programs from their Text Structures

The program examples shown thus far are set off in indented lines for easier reading. Such text
structure is not necessary for machine execution. For example, program Print_Message_2,
which appeared as

3-6 Chapter 3 - Program Behavior

with TEXT_IO;
procedure Print_Message_2 is
-- expansion on Print_Message_l to ask for capital letter and
-- return response depending on the user input

Choice: CHARACTER; -- to hold capital letter if given
begin

TEXT_IO . Put (Item=> "Enter a capital letter=> ");
TEXT_IO.Get (Item=> Choice);
if Choice >= 'A' and Choice <= 'Z' then

-- have received capital letter as requested
TEXT_IO.Put (Item => "Welcome Aboard, • & Choice);

else -- did not receive capital letter as requested
TEXT_IO.Put (Item=> "Not a capital letter!");

end if;
TEXT_IO.New_Line;

end Print_Message_2;

can also appear as an unstructured string of program text as follows (note all identifiers,
comments, CQld other text objects must be on single lines)

with TEXT_IO;procedure Print_Message_2 is
-- expansion on Print_Message_l to ask for capital letter and
-- return response depending on the user input
Choice:CHARACTER; -- to hold capital letter if given
begin TEXT_IO.Put(Item=>"Enter a capital letter => ") ;TEXT_IO.Get
(Item=>Choice);if Choice>= 'A' and Choice<= ' Z' then
-- have received capital letter as requested
TEXT_IO.Put(Item=>"Welcome Aboard, • & Choice);else
-- did not receive capital letter as requested
TEXT_IO.Put(Item=>"Not a capital letter!");end if;
TEXT_IO.New_Line;end Print_Message_2;

With its comments removed, it comes down even further in size as

with TEXT_IO;procedure Print_Message_2 is Choice:CHARACTER;begin
TEXT_IO.Put(Item=>"Enter a capital letter=> ");TEXT_IO.Get
(Item=>Choice);if Choice>= 'A' and Choice<= 'Z' then
TEXT_IO.Put(Item=>"Welcome Aboard, • & Choice);else
TEXT_IO . Put(Item=>"Not a capital letter!");end if;
TEXT_IO.New_Line;end Print_Message_2;

The second program would be executed identically as the first, since the indented text structure
is not used in execution. However, it is much more difficult for people to read and understand.
Conversely, if such programs are encountered, they can be restructured into a standard form. The
reserved words provide the key to such standards. For example, the reserved words with,
procedure, begin, end, if, else, and while should all start lines, as well as certain sequences of
reserved words such as end if and end loop. Text between is and begin, between then, else, and
end if, and between loop and end loop should be indented. Declarations and procedure call
statements should be started on new lines.

In illustration, consider a new Ada program as an unstructured string of program text such as

with TEXT_IO;procedure Mystery_Procedure is Chop:CHARACTER;begin
TEXT_IO.Put(Item=>"First Character is ");TEXT_IO.Get(Item=>Chop);
if Chop<'A' or Chop>'Z ' then TEXT_IO.Put(Item=>"illegal") ;else
TEXT_IO.Put(Item=>"legal name "&Chop);end if;end Mystery_Procedure;

3.1 - Understanding Ada Programs 3-7

To begin, let every reserved word or reserved word sequence begin a new line as follows

with TEXT_IO;
procedure Mystery_Procedure is
Chop:CHARACTER;
begin TEXT_IO.Put(Itern=>"First Character is ");TEXT_IO.Get(Itern
=>Chop);
if Chop<'A' or Chop>'Z' then
TEXT_IO.Put(Itern=>"illegal");
else TEXT_IO.Put(Itern=>"legal name "&Chop);
end if;
end Mystery_Procedure;

Next, let declarations and statements also begin new lines as follows

with TEXT_IO;
procedure Mystery_Procedure is
Chop:CHARACTER;
begin
TEXT_IO.Put(Itern=>"First Character is ");
TEXT_IO.Get(Itern =>Chop};
if Chop<'A' or Chop>'Z' then
TEXT_IO.Put(Itern=>"illegal");
else
TEXT_IO.Put(Itern=>"legal name "&Chop);
end if;
end Mystery_Procedure;

Next, indent lines between reserved words as described above to obtain what follows

with TEXT_IO;
procedure Mystery_Procedure is

Chop:CHARACTER;
begin

TEXT_IO.Put(Itern=>"First Character is •).
~EXT_IO.Get(Itern =>Chop); '
\. t <:."'-<::>).::><.' 1-.' <::>"t t.'t-.~::>'?> "l..' t.nen

. TEXT_IO. Put (Item=>" illegal");
else
'I:~ r:.Q,_ 12J....t.t_c~t...~""'--"' «-~-- ,__- --

TEXT_ro. Put (rtern=>"Tegar name ·&ctiopf;

end if;
end Mystery_Procedure;

Finally, spaces around embedded delimiters are inserted to arrive at the final version which is

in standard form

3-8
Chapter 3 - Program Behavior

with TEXT_IO;
procedure Mystery_Procedure is

Chop : CHARACTER;
begin

TEXT_IO.Put (Item=> "First Character is ");
TEXT_IO.Get (Item => Chop);
if Chop < 'A' or Chop > 'Z' then

TEXT_IO.Put (Item=> "illegal");
else

TEXT_IO.Put (Item=> "legal name• & Chop);
end if;

end Mystery_Procedure;

In this standard form it is much easier to see what Mystery _Procedure does. First, it declares
a CHARACTER type variable Chop. Next it puts a message

First Character is

with a blank character at the end to the output file. Then it asks for a character for variable
Chop. Next it checks the if condition

Chop < ' A' or Chop > 'Z'

to see if the value provided Chop is a capital letter or not. If the value is not a capital letter it
completes the message as

First Character is illegal

while if value is a capital letter, say 'c', it completes the message as

First Character is legal name C

This analysis could be done directly on the unstructured program because it is small, but larger
programs can't be treated so easily.

The creation of good programs is more than just providing the correct code. The software
engineer must also provide a way to understand what actions were intended and why specific
approaches were taken to solving the given problem. This requires skill in structuring and
documenting the code. A specific discipline in the form of a standardized style guide, such as
has been used in this text, can provide valuable insight into understanding programs.

3.1.4 Exercises

1. What would be an appropriate comment to describe the difference between the procedures
Print_Message_l and Print_Message_3 of Chapter 2?

2. What would be an appropriate comment to describe the difference between the procedures
Print_Message_2 and Print_Message_3 of Chapter 2?

3. Provide the appropriate comments for Mystery _Procedure at those points in the program
that will aid in understanding the way the program functions.

3.1 - Understanding Ada Programs 3-9

4. An alternative way to implement Proper_Roman_Digit is as follows.

with TEXT_IO; -- using named Input and Output Files
procedure Proper_Roman_Digit_2 is
-- Another way to determine if an input digit is a proper
-- Roman digit

-- describe data first
Digit : CHARACTER;
Valid_Digit : BOOLEAN := FALSE;

begin -- describe sequential process on data second
TEXT_IO.Put (Item=> •Give input digit •);
TEXT_IO.Get (Item=> Digit);
if Digit = 'I' then

Valid_Digit := TRUE;
end if;
if Digit = •v• then

Valid_Digit := TRUE;
end if;
if Digit = 'X' then

Valid_Digit := TRUE;
end if;
if Digit = 'L' then

Valid_Digit := TRUE;
end if;
if Digit = •c• then

Valid_Digit := TRUE;
end if;
if Digit = 'D' then

Valid_Digit := TRUE;
end if;
if Digit = 'M' then

Valid_Digit := TRUE;
end if;
if Valid_Digit then

-- Digit is a roman digit
TEXT_IO.Put (Item => •character • & Digit &

• is a roman digit.•);
else -- Digit is not a roman digit

TEXT_IO.Put (Item => •character • & Digit &
• is not a roman digit.•);

end if;
end Proper_Roman_Digit_2;

Does Proper_Roman_Digit_2 indeed behave externally in every respect as
Proper _Roman_D i g it? Which of the two programs is easier to understand?

3-10 Chapter 3 • Program Behavior

5. Another alternative way to implement Proper_Roman_Dig it is as follows.

with TEXT_IO; -- using named Input and Output Files
procedure Proper_Roman_Digit_3 is
-- Still another way to determine if an input digit is a
-- proper Roman digit

-- describe data first
Digit : CHARACTER;
Valid_Digit : BOOLEAN := FALSE;

begin -- describe sequential process on data second
TEXT_IO.Put (Item=> "Give input digit"};
TEXT_IO.Get (Item=> Digit};
if Digit = 'I' then

Valid_Digit := TRUE;
else

if Digit = 'V' then
Valid_Digit := TRUE;

else
if Digit = 'X' then
Valid_Digit := TRUE;

else
if Digit = 'L' then

Valid_Digit := TRUE;
else

if Digit = 'C' then
Valid_Digit := TRUE;

else
if Digit = 'D' then

Valid_Digit := TRUE;
else

if Digit = 'M' then
Valid_Digit := TRUE;

end if;
end if;

end if;
end if;

end if;
end if;

end if;
if Valid_Digit then

-- Digit is a roman digit
TEXT_IO.Put (Item => "Character • & Digit &

" is a roman digit."};
else -- Digit is not a roman digit

TEXT_IO.Put (Item => "Character • & Digit &
• is not a roman digit."};

end if;
end Proper_Roman_Digit_3;

Does Proper_Roman_Digit_3 indeed behave externally in every respect as
Proper_Roman_Digit? Which of the three programs is easier to understand?
Which is the fastest in execution?

3.1 - Understanding Ada Programs 3-11

6. Consider the program given next in an unstructured form of program text. Work out the
standard text structure and determine what it does.

with TEXT_IO;procedure Mystery_Program_2 is begin TEXT_IO.Put
(Item=>"This");TEXT_IO.Put(Item=>" is a ");TEXT_IO.Put
(Item=>"Test");end Mystery_Program_2;

7. Consider the program given next in an unstructured form of program text. Work out the
standard text structure and determine what it does. Also provide the appropriate comments
to explain the program actions.

with TEXT_IO;procedure Mystery_Program_3 is Chop:CHARACTER;
begin TEXT_IO.Put(Item=>"Return number");TEXT_IO.Get(Item=>Chop);
if '0'<=Chop and Chop<='9' then TEXT_IO.Put(Item=>
("First character is number "&Chop);else TEXT_IO.Get(Item=>Chop);
end if;if '0'<=Chop and Chop<='9' then TEXT_IO.Put(Item=>
"First or second character is number "&Chop);
else TEXT_IO.Put(Item=>"No number found, but "&Chop);
end if;end Mystery_Program_3;

8. Consider the program given next in an unstructured form of program text. Work out the
standard text structure and determine what it does. Also provide the appropriate comments
to explain the program actions.

with TEXT_IO;procedure Mystery_Program_4 is Foo,Bar:CHARACTER
:=' ';begin TEXT_IO.Put(Item=>"Return capital letters");
TEXT_IO.Get(Item=>Foo);while Foo<'A' or 'Z'<Foo loop
TEXT_IO.Put(Item=>"This character is "&Foo);TEXT_IO.New_Line;
TEXT_IO.Get(Item=>Bar);if Foo=Bar then null;else Foo:=Bar;
end if;end loop;end Mystery_Program_4;

3.2 Understanding Program Behavior

Improving the textual structure and inserting appropriate comments will provide insight into
what the author of a program intended the program to do. Human fallibility and carelessness
will, however, introduce unknown errors into even simple programs. With large and complex
programs this error rate can become astounding. To counter this tendency, techniques have been
developed that provide formal methods for understanding what a program will do. These
methods are founded in formal mathematics so they can be scaled up as the programs become
large and complex. They provide an understanding of what any given program will actually do,
by analyzing the individual components of the program as mathematical entities. In so doing,
all of the knowledge, formalism, and power of our understanding of mathematics can be brought
to bear.

3.2.1 Program Behavior

The set of input, output pairs from all possible executions of an Ada program is called its
program behavior which will be a function or a relation. This is so since they provide a
mapping of all possible inputs into associated outputs. Ada programs with unique behavior in
every possible execution are rules for functions. Ada programs with possible non-unique

3-12 Chapter 3 - Program Behavior

behavior in execution are rules for relations. For example, a program which makes use of
declared data before it is assigned a value will exhibit non-unique behavior. Such a program is
most likely a mistake, but it will be a legal program which behaves differently on separate
executions. In illustration, the program with main procedure Print_Message_2 is shown
altered by removing the

TEXT_IO.Get(Item =>Choice);

statement, converting it into a comment for ease of analysis, and calling its main procedure
Print_Message_At_Random.

with TEXT_IO;
procedure Print_Message_At_Random is
-- expansion on Print_Message_l to ask for capital letter and
-- return response depending on the user input

Choice : CHARACTER; -- to hold capital letter if given
begin

TEXT_IO.Put (Item=> •Enter a capital letter=> •;
-- TEXT_IO.Get (Item=> Choice);
if Choice >= 'A' and Choice <= 'Z' then

-- have received capital letter as requested
TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);

else -- did not receive capital letter as requested
TEXT_IO.Put (Item=> "Not a capital letter!•);

end if;
TEXT_IO.New_Line;

end Print_Message_At_Random;

Since Choice is not assigned a value (because of the commented TEXT_Io. Get), the program
will print whatever random character is found in Choice. This random value will be left
behind from previous computer operations. Therefore, by mistake this program has a program
relation, not a program function. For the remainder of this text, it will be assumed, unless
explicitly stated otherwise, that programs under study will have program functions. For
example, if c~oice is initialized at declaration, such as

Choice :CHARACTER:= '*';

which initializes Choice to one of the legal characters, namely the character '*', then

TEXT_IO.Put (Item=> •Not a capital letter!•);

will output

Not a capital letter!

3.2.2 Programs as Rules for Behavior

It is important to distinguish the program behavior from any of its member input, output pairs.
Just as a mathematical function, say f, maps elements of the domain (f) to elements of the range
(f), the program behavior maps any input to some output. For any particular input, a specific
Ada program will deliver a particular output, and this input, output pair will be a member of
its behavior.

3.2 - Understanding Program Behavior 3-13

The behavior of a program will be denoted by bracketing the program or its name with square
brackets[,]. The program is a string of character strings of proper Ada. Thus a program
behavior is a set of ordered pairs, each ordered pair being an input file, output file, themselves
each a string (pages) of strings (lines) of character strings (characters).

For example, the program itself with main procedure named Print_Message_2 could be
named Print_Message_2, or some other name such as Program_l, say the latter. Then
Program_l has program behavior denoted as

[Program_l]

= [with TEXT_IO;
procedure Print_Message_2 is
-- expansion on Print_Message_l to ask for capital letter and
-- return response depending on the user input

Choice : CHARACTER; -- to hold capital letter if given
begin

TEXT_IO.Put (Item=> "Enter a capital letter => ");
TEXT_IO.Get (Item=> Choice);
if Choice >= 'A' and Choice <= 'Z' then

-- have received capital letter as requested
TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);

else -- did not receive capital letter as requested
TEXT_IO.Put (Item=> "Not a capital letter!");

end if;
TEXT_IO.New_Line;

end Print_Message_2;]

The program behavior of Program_l is defined by the behavior [Program_l] from inputs to
outputs, in this case from all possible input files to output files. As discussed less formally in
the last chapter, this program behavior can be defined as follows,

[Program_l] = A u B

where A = {((Input, Output), (Inputl, Outputl)) I
n(Inputl) >= 'A' and n(Inputl) <= 'Z'
and Outputl = "Enter a capital letter => • &
MWelcome Aboard • & n(Inputl)}

and B = {((Input, Output), (Inputl, Outputl))
n(Inputl) < 'A' or n(Inputl) > 'Z'
and Outputl = "Enter a capital letter => • &
"Not a capital letter!")

which is the union of two simpler behaviors that are both functions. The domain and range are
(Input, Output) pairs in which both Input, Output are originally empty strings. The results
(Inputl, Outputl) depend on the input data provided by the user. Input I will simply be cr
single character received by the TEXT_IO. Get statement. Outputl wil1 depend on what the
Inputl data is, whether a capital letter-case A-or not a capital letter-case B.

Notice that Inputl is a single character, since the. TEXT_IO .Get statement reads and stores a
single character. If the user enters more than one character, the first character is read while
the remaining characters are stored in the input buffer in the order given. These remaining
characters are then available for later Get statements.

3-14 Chapter 3 - Program Behavior

In your mathematics classes, you use a notation f(x) = y to show that function f maps x toy.
Similarly, to show that [Program_l] maps Input to Output, we write

(Program_l] (Input) = Output

or for a particular input such as '1'

(Program_l] ('1') ="Enter a capital letter/Not a capital letter!"

where"/" separates successive messages created by the program.

3.2.3 Behaviors of Programs that Fall

Although program behavior is predictable, it may not be what was intended. That is to say, a
legal Ada program may execute correctly and produce output, however that output may not be
what was expected. Another way to put this is that a program will do what it is told to do,
which may not be what was intended. The program behavior will only indicate the program
action for the program text that was specified.

As noted above, the procedure Print_Message_At_Random that makes line 9 a comment,
remains a legal Ada program, as shown in Program_3 next. In this case

(Program_3]

= [with TEXT_IO;
procedure Print_Message_At_Random is
-- expansion on Print_Message_l to ask for capital letter and
-- return response depending on the user input

Choice : CHARACTER; -- to hold capital letter if given
begin

TEXT_IO.Put (Item=> "Enter a capital letter => ");
-- TEXT_IO.Get (Item=> Choice);
if Choice >= 'A' and Choice <= 'Z' then

-- have received capital letter as requested
TEXT_IO.Put (Item => "Welcome Aboard, • & Choice);

else -- did not receive capital letter as requested
TEXT_IO.Put (Item=> "Not a capital letter!");

end if;
TEXT_IO.New_Line;

end Print_Message_At_Random;)

The program behaves as a relation depending on what data was left behind in the memory area
used for Choice. In this case

(Program_3] = A u B

where A = {((Input, Output), (Input, Outputl)) I
Outputl = "Enter a capital letter => • &
"Welcome Aboard " & Some_Capital_Letter}

and B = (((Input, OUtput), (Input, outputl)) I
Outputl = "Enter a capital letter => • &
"Not a capital letter!"}

3.2 - Understanding Program Behavior

Note that Input is not used or altered by this program since no Get statements appear in it.
Also notice that no reference is made to Choice since this is an internal variable. That is, it
exists only during the execution of the program. Since we have no way of knowing the value of
Choice, we can not predict which of the two behaviors, A orB, will be observed.

If the declaration for Choice included an initial value, such as

Choice :CHARACTER:= ' '; --to hold capital letter if given

the program would be a function. But of course it would not be the function intended.

Thus, the program may be proper, but not account for all possible cases. Such action is often
called an error or a failure, when it may only be an oversight. In the Ada programming
language, such an error or a failure is called an exception and will be handled either explicitly
by the program or implicitly by the computing system. Whether error or oversight it can lead to
serious consequences.

3.2.4 Program Behavior Based on Program Parts Behavior

Program behavior is determined by how the declarations and statements are carried out. For
example the program Proper _Roman_Dig it seen earlier this Chapter 2 has a program
behavior defined as

[Proper_Roman_Digit]

= [with TEXT_IO; -- using Standard Input and Standard Output files
procedure Proper_Roman_Digit is
-- purpose is to determine if input character is a Roman digit

-- first describe the data
Digit : CHARACTER;

begin -- next describe sequential process on data
TEXT_IO.Put {Item=> "Enter Roman digit=>");
TEXT_IO.Get {Item=> Digit);
TEXT_IO.Put {Item=> "Character" & Digit);

test to see if Roman digit was input
if Digit = 'M' or Digit = 'L' or Digit = 'C' or Digit = 'D'

or Digit= 'X' or Digit= •v• or Digit= 'I' then
-- Digit is a Roman digit
TEXT_IO.Put {Item=> • is");

else -- Digit is not a Roman digit
TEXT_IO.Put (Item=> • is not");

end if;
-- complete the output
TEXT_IO.Put (Item=> • a Roman digit.");

end Proper_Roman_Digit;]

which can be broken into steps for analysis. First, with TEXT_IO, Standard Input and Standard
Output files are defined for use. Data for Standard Input will be provided by a user during
execution and Standard Output starts as an empty file which will accept data as provided by
TEXT_IO statements. Thus, after the initial with. TEXT_IO; statement, the data available to
the procedure goes from nothing to empty files Input, output, in the behavior

[with TEXT_IO; -- using Standard Input and Standard Output files)

= { ((), (Input, Output)) I Input = Output = () }

3-16 Chapter 3 - Program Behavior

Next, the declaration adds the variable Digit with CHARACfER values to the data, so it
becomes

[Digit : CHARACTER;]

= {((Input, Output), (Input, Output, Digit)) I
Digit any CHARACTER value}

With the declarations completed, execution of the procedure begin block starts. There are five
statements to be executed in sequence, namely

TEXT_IO.Put (Item=> "Enter Roman digit=>");

which sends the message "Enter Roman digit => "to the user.

TEXT_IO.Get (Item=> Digit);

which accepts a user input, altering both Input and Digit.

TEXT_IO.Put (Item=> "Character" & Digit);

which returns the message "Character " & Digit back to the user that includes the input
just received from the user.

test to see if Roman digit was input
if Digit = 'M' or Digit = 'L' or Digit = 'C' or Digit = 'D'

or Digit = 'X' or Digit = 'V' or Digit = 'I' then
-- Digit is a Roman digit
TEXT_IO.Put (Item => • is") ;

else -- Digit is not a Roman digit
TEXT_IO.Put (Item => . is not •);

end if;

which returns either" is" or" is not" to the user based on the value provided Digit by the
user.

complete the output
TEXT_IO.Put (Item=> • a Roman digit.");

which finally completes a sentence about the value of Digit.

Breaking these statements down into their behaviors, first

[TEXT_IO.Put (Item=> "Enter Roman digit=>");]

= {((Input, Output, Digit), (Input, Output!, Digit))
Outputl =Output & "Enter Roman digit => "}

in which only the value of output is effected. Then

[TEXT_IO.Get (Item=> Digit);]

= {((Input, Output, Digit), (Inputl, Output, Digitl)) I
Inputl = Input & Char and
Digitl = Char}

3.2 - Understanding Program Behavior 3-17

which accepts a user input, where Digit 1 is a character value provided by the user recorded
also in Input. Then

[TEXT_IO.Put (Item=> "Character" & Digit);]

= (((Input, Output, Digit), (Input, Outputl, Digit))
Outputl = Output & "Character " & Digit}

so that "Character " & Digit have been added to "Enter Roman digit => "and the
initial contents of Output which in this case was empty, since there were no previous output
statements. Note also that the value of Digit is Digit 1 because of the previous statement, but
again this depends on the sequence of these statements, not because of the statements
themselves. Next, the if statement must be analyzed in two steps to get to the simple
statements, as

[-- test to see if Roman digit was input
if Digit = 'M' or Digit = 'L' or Digit = 'C' or Digit = 'D'

or Digit = 'X' or Digit = 'V' or Digit = 'I' then
-- Digit is a Roman digit
TEXT_IO.Put (Item=> • is");

else -- Digit is not a Roman digit
TEXT_IO.Put (Item=>" is not");

end if;]

= (((Input, Output, Digit), (Input, Outputl, Digit)) I
Digit = 'M' or Digit = 'L' or Digit = 'C' or Digit = 'D'

or Digit = 'X' or Digit = 'V' or Digit = 'I'
and Outputl =Output & • is"}

u (((Input, Output, Digit), (Input, Outputl, Digit)) I
not(Digit = 'M' or Digit = 'L' or Digit= 'C' or Digit = 'D'

or Digit= 'X' or Digit= 'V' or Digit= 'I')
and Outputl = Output & • is not"}

which ensures that either" is" or" is not" is added to Output as appropriate. Finally,

[-- complete the output
TEXT_IO.Put (Item=>" a Roman digit.");]

= (((Input, Output, Digit), (Input, Outputl, Digit)) I
Outputl =Output & • a Roman digit."}

which completes a message in Output. Thus, for example, if 'C' was entered, Output_l would
be

"Enter Roman digit =>Character C is a Roman digit.•

If 'A' was entered, Output_l would be

"Enter Roman digit=> Character A is not a Roman digit.•

3- 18 Chapter 3 - Program Behavior

3.2.5 Exercises

1. Examine the main procedure Print_Message_l from Chapter 2 and write the program
behavior that describes this procedure.

2. What would be the expected behavior of the main procedure Print_Hessage_2 if the
statement

TEXT_IO.Put (Item=> "Enter a capital letter=> ");

was made into a comment?

3. Examine the main procedure Print_Message_3 from Chapter 2 and write the program
behavior that describes this procedure.

4. The program behavior of Program_l was written as

[Program_l] = A u B

Another less fonnal form of [Program_l] would be

[Program_l] = {((Input, Output), (Inputl, Outputl)) I
Inputl is a sequence of single characters provided by user,
Outputl begins with "Enter a capital letter => II then if n(Inputl)
is a capital letter then Outputl is completed by "Welcome Aboard •
& Inputl else Outputl is completed by
"Not a capital letter!"}

While less formal, all the information is there. Even less formal might be

[Program_l] = {((Input, Output), (Inputl, Outputl)) I
Inputl holds a single character, Outputl begins with
"Enter a capital letter => " and if Inputl holds a capital
letter then is completed by •welcome Aboard • & Inputl
else completed by "Not a capital letter! " }

Verify that this is also a correct behavior for Program_l.

5. If the main procedure Print_Message_2 of Chapter 2 was made into Program_5 and
modified to replace the conditional statement

if Choice >= 'A' and Choice<= 'Z'

by substituting

if Choice >= '0' and Choice <= '9'

how would this affect the program behavior?

6. How could Program_5, as described above, be modified to check for a blank (or space) in
the first position of input? How would this affect the program behavior?

3.2 - Understanding Program Behavior 3-19

·-
7. Progr am_l checks if the first character is in the subset of characters ranging from 'A' to

'Z.' Examine Program_6 to determine how the logic has changed and what the output will
be.

[Program_6] =
[with TEXT_IO;
procedure Print_Message_2d is
-- expansion on Print_Message_l to ask for digit and
-- return response depending on the user input

Choice : CHARACTER; -- to hold digit if given
begin

TEXT_IO.Put (Item=> "Enter a digit=>"};
TEXT_IO.Get (Item=> Choice);
if Choice in '0' .. '9' then

-- have received digit as requested
TEXT_IO.Put (Item => "Welcome Aboard, • & Choice);

else -- did not receive digit as requested
TEXT_IO.Put (Item=> "Not a digit!"};

end if;
TEXT_IO.New_Line;

end Print_Message_2d;]

8. Write the program behavior that describes Program_ G.

3.3 Program Parts as Rules for Behavior

3.3.1 Declaration Behavior

Simple intuitive forms of data such as characters or integers are easy to deal with in normal
conversation. In communicating the desired operations to a computer program, the specific data
types must first be declared. Once a data type is declared, then intuitive and explicit
operations can be performed. Thus, data declarations define the data available. For example,
the declaration in Program_l

Cho·ice : CHARACTER;

defines the type of data that may be stored in Choice. Its declaration behavior is a relation,
namely

(Choice : CHARACTER;] = ({(Input, Output),
(Input, Output, Choice» I Choice is an ASCII character}

that is, none of Input or output is changed, but a new variable named Choice has been
defined, whose value is restricted to be any one of the legal ASCll characters. Again in this
case it is a relation, not a function, because there is not a unique mapping from the domain
((Input, Output)) to the range ((Input, Output, Choice)).

There is another form of declaration that includes an initialization, such as

Choice :CHARACTER:= 'a';

which in fact creates a declaration behavior which is a function

3-20 Chapter 3 - Program Behavior

[Choice: CHARACTER:= 'a';] ={((Input, Output),
(Input, Output, Choice)) I Choice= 'a'}

In this case, it is a function because the value of the new data (Input, output, Choice)
(which is now a single value in the range) is uniquely determined by the previous data (Input,
Output) (as defined in the domain) and the assignment operator :=·Note that Choice = 'a'
is part of the behavior definition, not part of the argument of the behavior.

Consider the following declarations.

type My_Integer is range -99 .. 99;
First, Second : My_Integer := 0;

Here, two INTEGER variables First and Second are declared with range between -99 and 99,
and initialized to 0. Any attempt to overflow those bounds will stop the execution. For
example, if First= 75, second= -50, the assignment

First := First - Second;

will overflow First and not be executed.

Another example of type BOOLEAN is

Equal : BOOLEAN := TRUE;

In this case, Equal is declared as BOOLEAN with initial value TRUE. For example

Equal := (First = Second)

will assign FALSE to Equal with the values for First, Second above.

3.3.2 Simple Statement Behavior

Simple statements include procedure call statements, assignment statements, and the null
statement. For example, the simple procedure call statement

TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);

in Program_l will define a statement behavior denoted

[TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);)

with value

{((Input, Output, Choice), (Input, Outputl, Choice})
Outputl = Output & "Welcome Aboard, • & Choice}

that is, a behavior that maps the initial state of all data, shown here as Input, output and
Choice, to a final state with a new value .for Output and the same values for all other data.
Note that the message put out is added to whatever is already inoutput. In this program, the
initial TEXT_IO. Put statement provides the first data to output, but that fact is not
contained in the TEXT_IO. Put statement itself. That is, this program part behavior describes
its effect wherever it might appear in a program.

3.3 - Program Parts as Rules for Behavior 3-21

For example, given INTEGER variable First, as declared above with range -99 .. 99, the Get
statement

Int_IO.Get (Item=> First);

will execute properly only if an INTEGER value in the range is returned. For example, if
INTEGER 75 is returned, the result is

{((Input, Output, First), (Inputl, Output, Firstl)) I
Inputl = Input & 75 and Firstl = 75}

Again, the value entered is given to First and added to the string Input.

As another example, if INTEGER 150 is returned, the execution will be terminated because the
value is not legal for the variable First. In still another case, if a non-INTEGER is returned,
say Roman numeral XII, the execution will also be terminated.

The assignment statement

Choice : = 1 1
;

puts the value of the space character into Choice, with statement behavior

[Choice : = 1 1
;]

= {((Input, Output, Choice), (Input, Output, Choicel)) I
Choice!= 1 1

}

As might be expected, the null statement has no effect on data, with identity statement
behavior

[null; J

= {((Input, Output, Choice), (Input, Output, Choice))}

3.3.3 Sequence Statement Behavior

As programs are analyzed, logical groupings of statements can be identified by language
dependent constructs. The two basic constructs of sequential and conditional execution are
represented in most languages. In Ada, the simplest way of representing normal sequential
execution is through a series of consecutive statements. A sequence of two program parts has a
program behavior which is the composition of the part behaviors. For example, the program
part

with TEXT_IO;
procedure Print_Message_8 is
begin

TEXT_IO.Put ("This is the first part; ");
TEXT_IO.Put ("this is the second part; ");
TEXT_IO.Put ("this is the last part.");

end Print_Message_8;

3-22 Chapter 3 - Program Behavior

is the simple composition of each of the individual statements. The part behavior for the
sequence of TEXT_IO. Put statements is

[TEXT_IO.Put ("This is the first part; ");
TEXT_IO.Put ("this is the second part; ");
TEXT_IO.Put ("this is the last part.");]

= {((Input, Output), (Input, Outputl)) I
Outputl = Output & "This is the first part; this is the
second part; this is the last part.•)

As a second example, consider a sequence dealing with integer variables First, Second,
Third, and Fourth declared as

type My_Integer is range -99 .. 99;
First, Second, Third, Fourth : My_Integer .- 0;

and found in a sequence

First := Third + Fourth;
Second := Third - Fourth;

In this case, the values of both expressions Third + Fourth and Third - Fourth must lie in
the interval -99 .. 99 for the assignments to be valid. The part function for the sequence is

[First .- Third + Fourth;
Second .-Third- Fourth;]

= {((Input, Output, First, Second, Third, Fourth, ...)~
(Input, Output, Firstl, Secondl, Third, Fourth, ...))
Firstl = Third + Fourth and Secondl = Third - Fourth and
Firstl in -99 .. 99 and Secondl in -99 .. 99)

u {((Input , Output, First, Second, Third, Fourth, ...),
(Input, Output)) I Third+ Fourth not in -99 .. 99 or
Third- Fourth not in -99 .. 99}

The behavior of sequences of statements can be described as the mathematical composition of
the individual behaviors into the total behavior of the sequence. The underlying mathematics
is very simple and straightforward, and can be visualized geometrically as shown next.

A composition of two behaviors into a third behavior can be pictured as in Figure 3.1 in terms of
the mappings among their domains and ranges. For the composition of behaviors g and h into f,
let g and h be behaviors such that the following relationships hold

domain(f) = domain(g)
range(f) = range(h)
range(g) = domain(h)

3.3 - Program Parts as Rules for Behavior 3-23

domain(£) = domain (g) range(£) = range (h)

Then, for points x, y, z,

range (g) = domain (h)

Behavior Composition Mapping
Figure 3.1

z = f(x) = h(y) = h(g(x))

Furthermore, if xl and x2 map to separate values zl and z2 under f, then xl and x2 must map
to separate values yl and y2 under gas shown in Figure 3.2. Otherwise the behavior h could not
map a single valuey into separate values zl and z2.

domain(£) = domain (g) range(£) = range (h)

range (g) = domain (h)

Distinct Composition Mappings
Figure 3.2

Note that the behaviors are defined so that the domains and ranges exactly fit. In particular,
domain {g) =domain (f), is not a superset

In illustration, let domain (f) be nonnegative integers and some behavior e be considered for the
first composition behavior except it has domain of all integers. In this case the subset of e
whose behavior domain is the nonnegative integers can be considered instead, calling this
subset g. In general, any behavior has subsets which can exactly fit a domain condition.

3-24 Chapter 3 - Program Behavior

[-- - - -- .

3.3.4 If Statement Behavior

An if statement behaves as the disjoint union of the then part (if the condition is TRUE) and the
else part (if the condition is FALSE). These are shown as the behavior given on the right with
domain restricted by the condition on the left. The domain limiter (->)is a metasymbol used to
show domain restriction, and is not an Ada delimiter.

For example, the part behavior of the if statement

if Choice in 'A' .. 'Z' then
TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);

else
TEXT_IO.Put (Item=> "Try Again");

end if;

is the union of the two disjoint behaviors, each shown with a domain limiter - >

and

Choice in 'A' .. 'Z' ->
[TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);)

Choice not in 'A' .. 'Z' ->
[TEXT_IO.Put (Item=> "Try Again");)

These two disjoint behaviors combine into the single behavior

[if Choice in 'A' .. 'Z' then
TEXT_IO.Put (Item=> "Wel come Aboard, • & Choice);

else
TEXT_IO.Put (Item=> "Try Again");

end if;]

= {((Input, Output , Choice)
(Input, Outputl, Choice))
Choice in 'A' .. 'Z' and Outputl =Output &
"Welcome Aboard, • & Choice}

u {((Input, Output, Choice),
(Input, Outputl , Choice))
Choice not in 'A' .. 'Z' and Outputl =Output & "Try Again"}

The union of two disjoint behaviors, say g and h, into f, can be pictured as a simple partition of
the union. For example, let

f = g u h when g r"\ h = { }

Then behaviors g and h are partitions of behavior f as pictured in Figure 3.3.

3.3 - Program Parts as Rules for Behavior 3-25

behavior f

Disjoint Behavior Union
Figure 3.3

Note as before that any domain of a behavior can be restricted to a limited domain of a subset
behavior. In particular, an if statement will define two specific behaviors, one for the then
part, one for the else part, with domains limited to the cases if condition TRUE and if condition
FALSE. The behavior of the statements within the then part and else part may be much more
complicated than shown above. For example, the if statement

if First < Second then
First := First + Second;

else
Second := Second - First;

end if;

contains two assignment statements not restricted by the relationship between First and
Second. However, in the then part of this if statement, it will always hold that First<
Second, so only the restricted assignment statement

First < Second -> First := First + Second;

needs be considered, whose behavior is a limited subset of the simple assignment statement
itself. Correspondingly, the else part defines a restricted assignment

First >= Second -> Second := Second - First;

In this spirit, the Disjoint Behavior Union of Figure 3.3 illustrates the use of behaviors with
exactly the right domains.

3.3.5 Combination of Sequence and If Statement Behaviors

More complex program behaviors can be decomposed into the behaviors of the individual parts.
For example, the program part

TEXT_IO.Get (Item=> Choice);
if Choice in 'A' .. 'Z' then

TEXT_IO.Put (Item=> •welcome Aboard, • & Choice);
else

TEXT_IO.Put (Item=> "Try Again");
end if;

3 ·26 Chapter 3 - Program Behavior

is a sequence of the two smaller program parts already studied. Following the TEXT_IO .Get
statement, the execution continues, with the if statement

if Choice in 'A' .. 'Z' then
TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);

else
TEXT_IO.Put (Item=> "Try Again");

end if;

as already discussed. In this case, the first statement as worked out previously has the part
behavior

[TEXT_IO.Get (Item=> Choice);)

= {((Input, Output, Choice), (Inputl, Output, Choicel)) I
Inputl = Input & Char and
Choicel = Char}

where Char was provided in Input by the user.

The second statement has part behavior given above, that is, output is augmented with either
the string "Welcome Aboard, • & Choice or "Try Again" depending on the value of
Choice.

The composition of these two part behaviors will provide the result of their sequential
execution, namely

[TEXT_IO.Get (Item=> Choice);
if Choice in 'A' .. 'Z' then

TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);
else

TEXT_IO.Put (Item=> "Try Again");
end if; l

= {((Input, Output, Choice),
(Inputl, Outputl, Choicel))
Char in 'A' .. 'Z', and
Inputl = Input & Char, and
Choicel = Char, and
Outputl = Output & •welcome Aboard, • & Choicel}

u {((Input, Output, Choice),
(Inputl, Outputl, Choicel)) I
Char not in 'A' .. 'Z', and
Inputl = Input & Char, and
Choicel = Char, and
Outputl =Output & "Try Again"}

This composition behavior is equivalent to that found before by direct examination. Although
this behavioral decomposition requires some analysis and effort, it provides a mechanism by
which programs can be understood using the rigor of mathematics. As programs grow, each
program part can be analyzed using the same technique and the results combined into
subprograms and the subprograms into programs. The level of effort required is dependent on the
complexity of the problem, the experience of the author, or reader and the language used. The
key point here is to continue this terminal process until the program actions are completely
understood.

3.3 - Program Parts as Rules for Behavior 3-27

3.3.6 Exercises

1. Determine the part behavior for the sequence statement

TEXT_IO.Put (Item=> "Welcome Aboard, • & Choice);
TEXT_IO.Put (Item=> "Try Again");

2. Determine the part behavior for the sequence statement with 11\T'fEGER objects declared as

type My_Integer is range -99 .. 99;
First, Second, Third, Fourth : My_Integer := 0;

and found in a sequence

First := First + Third + Fourth;
Second := Second - Third - Fourth;

3. Determine the part behavior for the if statement with CHARACTER object declared as

Choice : CHARACTER .~ I I o
I

and found in if statement

if Choice in 'A' .. 'Z' then
Choice := 'A';

else
TEXT_IO.Put (Item=> "Try Again") ;

end if;

4. Determine the part behavior for the if statement with CHARACTER object declared as

Digit : CHARACTER:= 'M';

and found in

3-28

if Digit = 'M' or Digit = 'L' or Digit = 'C' or Digit = ' D' then
TEXT_IO.Put (Item=> Digit & " is a large roman digit");

else
if Digit = 'X' or Digit = 'V' or Digit = 'I' then

TEXT_IO.Put (Item=> Digit & • is a small roman digit");
else

TEXT_IO.Put (Item=> Digit & • is not a roman digit");
end if;

end if;

Chapter 3 - Program Behavior

5. Determine the part behavior for the if statement with INTEGER objects declared as

type My_Integer is range -99 .. 99;
First, Second, Third, Fourth : My_Integer .- 0;

and found in

if First < Second then
Third := Fourth;

else
if Third < Fourth then

First .- Second;
else

Third .- First;
Fourth := Second;

end if;
end if;

6. Determine the part behavior for the sequence statement with INTEGER objects declared as

type My_Integer is range -99 .. 99;
First, Second, Third, Fourth : My_Integer .- 0;

and found in

Third := First;
Fourth := Second;
if First < Second then

Third := Fourth;
Fourth := First;

else
First := Fourth;
Second := Third;

end if;

7. Determine the part behavior for the sequence statement with CHARACTER objects
declared as

Digit, Big_Digit, Small_Digit

and found in

Big_Digit := 'M';
Small_Digit := 'I';
if Digit = Big_Digit then

Digit := Small_Digit;
Small_Digit := 'V';

else
if Digit = Small_Digit then

Digit := Big_Digit;
Big_Digit .- 'L';

else
Big_Digit .- Digit;
Small_Digit := Digit;

end if;
end if;

CHARACTER.- 'M';

3.3 - Program Parts as Rules for Behavior 3 - 29

8. Determine the part behavior for the sequence statement with INTEGER objects declared as

type My_Integer is range -99 .. 99;
First, Second, Third, Fourth, Fifth, Sixth

and found in

Third := First;
Fourth := Second;
if Fifth < Sixth then

Third := Sixth;
Fourth := Fifth;
if First < Second then

Fifth := Fourth;
Sixth := First;

else
Sixth := Fourth;
Fifth := Third;

end if;
else

First := Fourth;
Second := Third;

end if;

3.4 For Loop Statement Behavior

My_Integer := 0;

Loop statements can be defined as either for loops or while loops. For loops define an exact
number of iterations to be carried out, using a loop identifier which is defined only inside the
loop. As noted in Chapter 2, this exact number of iterations can alter from use to use of the for
loop, but is fixed and determined within each use. While loops define a variable number of
iterations based on the data used. While loops can define an endless number of iterations.
Although usually a mistake, there are programs that are intended to never terminate, like
programs that control a telephone system.

For loops and while loops have different levels of theoretical difficulties. Since for loops
define a11 exact number of iterations to be carried out, they define sequences of fixed length in a
special form. There is no question of termination with for loops, even though the iterations may
be complex to work out and analyze. On the other hand, while loops define sequences of
variable length that are defined by the while condition. In summary, for loops always
terminate as given explidtly in the for statement header, but while loops may or may not
terminate.

In each case, we deal with how statement behavior is defined, then discuss properties of these
respective loops. It will be noted that for loops are special forms for sequence statements, and
while loops are more general. As a consequence, the behavior of for loops can be described in
terms of the behavior of sequence statements. But the behavior of while loops are more general.
The behavior of for loops can also be described in terms of the behavior of initialized while
loops.

3-30 Chapter 3 - Program Behavior

A for loop statement has program behavior closely related to a sequence of statements. This
sequence of statements has two parts, first the sequence of statements that comprise the body of
the loop and second the sequence representing the number of times the body of the loop is
repeated. In this case the statements in the first sequence are all identical except for the value
of the for loop identifier, which is incremented (positively or negatively) with each iteration.

For example, consider the following for loop.

Get_And_Put_Digits:
for Loop_Counter in 1 .. 10 loop

TEXT_IO.Get (Item=> Next_Character);
TEXT_IO.Put (Item=> Next_Character);
if Next_Character >= '0' and Next_Character <= '9 ' then

TEXT_IO.Put (Item=> is a digit");
else

TEXT_IO.Put (Item=>" is not a digit ");
end if;
TEXT_IO.New_Line;

end loop Get_And_Put_Digits;

In this example, the first sequence has four statements, of which the third is an if statement.
The second sequence has ten copies, one for each time through the loop. So the execution of
Get_And_Put_Digi ts will execute forty first level statements. The for loop behavior is given
by these forty first level statements executed in proper sequence. As a result, the behavior of

[Get_And_Put_Digits:
for Loop_Counter in 1 .. 10 loop

TEXT_IO.Get (Item=> Next_Character);
TEXT_IO.Put (Item=> Next_Character);
if Next_Character >= '0' and Next_Character <= '9' then

TEXT_IO.Put {Item=> is a digit");
else

TEXT_IO.Put (Item=>" is not a digit");
end if;
TEXT_IO.New_Line;

end loop Get_And_Put_Digits;] =

[TEXT_IO .Get (Item=> Next_Character);
TEXT_IO.Put (Item=> Next_Character);
if Next_Character >= '0' and Next_Character <= '9' then

TEXT_IO.Put (Item=>" is a digit");
else

TEXT_IO.Put (Item =>
end if;
TEXT_IO.New_Line;

is not a digit ");

-- eight more identical copies plus final copy below

TEXT_IO.Get (Item=> Next_Character);
TEXT_IO . Put (Item=> Next_Character);
if Next_Character >= '0' and Next_Character <= '9' then

TEXT_IO.Put (Item=>" is a digit");
else

TEXT_IO.Put (Item=>" is not a digit");
end if;
TEXT_IO.New_Line;]

3.4 - For Loop Statement Behavior 3-31

This sequence logic has no for loop notation in it but will define the identical sequence of forty
statements in execution. Each if statement identifies separately whether Next_Character is
a digit or not and puts out an appropriate message. Of course it is longer, so the for loop pays off
in that respect for reading and program storage.

In order to carry this out fully, we expand the forty statements directly. Each time through the
for loop can be expressed in a single line of logic in an expression as follows. The 10 parts added
to Input and Output are denoted 11, 12, ... , 110 and 01, 02, ... 010.

[Get_And_Put_Digits :
for Loop_Counter in 1 .. 10 loop

TEXT_IO.Get (Item=> Next_Character);
TEXT_IO.Put (Item=> Next_Character);
if Next_Character >= '0' and Next_Character <= '9' then

TEXT_IO.Put (Item=>" is a digit");
else

TEXT_IO.Put (Item=>" is not a digit");
end if;
TEXT_IO.New_Line;

end loop Get_And_Put_Digits;]

= {((Input, Output, Next_Character),
(Input1, Outputl, Next_Characterl))
Inputl = Input & Il & I2 & I3 & I4 & IS & I6 & I7 & I8 & I9 & I10
and Il, I2, I3, I4, IS, I6, I7, I8, I9, IlO are CHARACTERs
and Next_Characterl = IlO
and Outputl = Output & 01 & 02 & 03 & 04 & OS & 06 & 07 & 08 & 09
& 010
where
01 = I1 & • is • & (<), •not ") & •a digit• & New_Line
02 = I2 & • is • & . ((), •not ") & •a digit• & New_Line
03 = I3 & • is • & (<), •not ") & •a digit• & New_Line
04 = I4 & • is • & ((), •not ") & •a digit• & New_Line
OS = IS & • is • & ((), •not ") & •a digit" & New_Line
06 = I6 & • is • & ((), •not ") & •a digit• & New_Line
07 = I7 & • is • & ((), "not ") & •a digit• & New_Line
08 = I8 & • is • & (<), "not ") & •a digit" & New_Line
09 = I9 & • is • & ((), •not ") & •a digit• & New_Line
010 = I10 & • is • & ((), "not ") & •a digit• & New_Line
and in each line defining 01, .. 010, () or •not • is chosen on
whether the CHARACTER in I1, I2, I3,
is a digit or not}

I4, IS, I6, I7, IB, I9, IlO

Note that Loop_Counter does not appear in this final result, being an internal counter in the
for loop. This expression is quite general for a for loop behavior. The for loop may be much
longer, say a hundred or a thousand steps. But the result will be of the same structure. The body
of the for loop may be much larger, say a hundred or a thousand simpler statements with many
internal variables. So its analysis may take more time and effort. But some one must know what
those internals are. So just as sequences and if statements define a standard means of analysis, so
does the for loop.

3-32 Chapter 3 - Program Behavior

3.4.1 Properties of For Loop Statements

As noted, for loop statements have properties that come exactly from the sequences of
statements they define. In the example above, the internal counter Loop_Counter was used
only to count progress through the iterations. But an internal counter can be sampled and used in
each iteration, when useful. For example, consider a for loop that follows, whose objective is to
find digits in Input and to ignore non digits.

Find_Digit_Locations:
for Loop_Counter in 1 .. 10 loop

TEXT_IO.Get (Item=> Next_Character);
if Next_Character >= '0' and Next_Character <= '9' then

TEXT_IO.Put (Item=> Next_Character);
TEXT_IO.Put (Item=> • is a digit in position ");
INT_IO.Put (Item=> Loop_Counter);
TEXT_IO.New_Line;

end if;
end loop Find_Digit_Locations;

In this case, a new line is produced if and only if Next_Character is a digit, which may
happen any where between zero and ten times. Having stated that, is that really the case?
First, note that only

TEXT_IO.Get (Item=> Next_Character);

is outside the if statement, and will be exercised every time through the for loop. The three Put
and New_Line statements are inside the if statement and are exercised only if
Next_Character is a digit. Thus a digit value in Next_Character will create a new line.

As shown above, the effect of this for loop can be restated as a sequence. In this case counter
Loop_ counter is reintroduced as an ordinary variable Loop_Counter_l rather than the for
loop counter because its value will be used in creating each line. (Recall that Loop_Counter
cannot exist except in the for loop.)

[Find_Digit_Locations:
for Loop_Counter in 1 .. 10 loop

TEXT_IO.Get (Item=> Next_Character);
if Next_Character >= '0' and Next_Character <= '9' then

TEXT_IO.Put (Item=> Next_Character);
TEXT_IO.Put (Item=> " is a digit in position ");
INT_IO.Put (Item=> Loop_Counter);
TEXT_IO.New_Line;

end if;
end loop Find_Digit_Locations;) =

(Loop_Counter_1 := 1;
TEXT_IO.Get (Item=> Next_Character);
if Next_Character >= '0' and Next_Character <= '9' then

TEXT_IO.Put (Item=> Next_Character);
TEXT_IO.Put (Item=> • is a digit in position");
INT_IO.Put (Item=> Loop_Counter_1);
TEXT_IO.New_Line;

end if;

-- eight more copies incrementing Loop_Counter_1 and final copy

3.4 - For Loop Statement Behavior 3-33

Loop_Counter_l := 10;
TEXT_IO.Get (Item=> Next_Character);
if Next_Character >= •o• and Next_Character <= '9' then

TEXT_IO.Put (Item=> Next_CharacterJ;
TEXT_IO.Put (Item=> • is a digit in position");
INT_IO.Put (Item=> Loop_Counter_l);
TEXT_IO.New_Line;

end if;]

= {((Input, Output, Next_Character),
(Inputl, Outputl, Next_Characterl))l
Inputl = Input & Il & I2 & I3 & I4 & IS & I6 & I7 & IS & I9 & IlO
and Il, I2, I3, I4, IS, I6, I7, IS, I9, I10 are CHARACTERs
and Next_Character1 = I10
and Output1 = Output & 01 & 02 & 03 & 04 & OS & 06 & 07 & 08 & 09
& 010
where
01 = (Il & • is a digit in position 1" & New_Line, ())
02 = (I2 & • is a digit in position 2" & New_Line, ())
03 = (I3 & • is a digit in position 3 • & New_Line, ())
04 = (I4 & • is a digit in position 4" & New_Line, ()l
OS = (IS & • is a digit in position S• & New_Line, ())
06 = (I6 & • is a digit in position 6" & New_Line, ())
07 = (I7 & • is a digit in position 7• & New_Line, ())
08 = (I8 & • is a digit in position 8" & New_Line, ())
09 = (I9 & • is a digit in position 9" & New_Line, ()l
010 = (IlO & • is a digit in position 10" & New_Line, ())
and in each line the message or () is chosen on whether the
CHARACTER in Il, I2, I3, !4, IS, I6, I7, I8, I9, no is a digit
or not}

This example is completely general as far as the for loop counter is concerned. As already noted
in Chapter 2, the number of items processed is fixed in each execution of the for loop, but can be
varied from use to use of the for loop. So any question about the counter can be resolved by
mapping it as an ordinary variable into a sequence as shown above.

3.4.2 Exercises

1. Determine what the following variation of Get_And_Put_Digi ts does.

3-34

Get_And_Put_Digits_1:
for Loop_Counter in reverse 1 . . 10 loop

TEXT_IO.Get (Item=> Next_Digit);
TEXT_IO.Put (Item=> Next_Digit);
if Next_Digit in •o• •• '9' then

TEXT_IO.Put (Item=> • is a digit");
else

TEXT_IO.Put (Item=> • is not a digit");
end if;
TEXT_IO.New_Line;

end loop Get_And_Put_Digits_1;

Chapter 3 - Program Behavior

2. Determine what the following variation of Get_And_Put_Digits does.

Get_And_Put_Digits_2:
for Loop_Counter in 1 .. 10 loop

TEXT_IO.Get (Item => Next_Character);
TEXT_IO.Put (Item=> Next_Character);
if Next_Character < '0' or Next_Character > '9' then

TEXT_IO.Put (Item=> is not a digit");
else

TEXT_IO.Put (Item=>" is a digit•);
end if;
TEXT_IO.New_Line;

end loop Get_And_Put_Digits_2;

3. Work out the behavior of Get_And_Put_Digits_l.

4. Work out the behavior of Get_And_Put_Digits_2.

5. Define Find_Digi t_Locat ion_1 in which only one trial is made in the for loop, so the
for line reads as

for Loop_Counter in 1 .. 1 loop

and determine its behavior.

6. Define Find_Digit_Location_2 in which only one successful trial is made in the for
loop, so the for line reads as

for Loop_Counter in 1 .. 10 loop

but an additional BOOLEAN variable called Done is used, initialized FALSE before the
for loop, set TRUE if a digit is found, and printed only the first time a digit is found, if ever.
Determine its behavior.

3.5 While Loop Statement Behavior

A while loop statement has a program behavior that is more complex than sequence, if, or for
statements. The loop part may be executed zero or more times, depending on the data and the
while condition. In some cases it may be readily seen just how many iterations will take place
based on the data. If the while condition is FALSE for the data, the loop part will not be
executed and the while loop statement will behave like a null statement. If the while
condition is TRUE for all possible data, the while loop statement will never terminate and the
statement behavior will be the empty set. If the while condition remains TRUE for all
iterations from certain initial data, the while loop statement behavior will not be defined for
that initial data. That is, the domain of a while loop statement function is the set of initial
data states for which the loop terminates. For example, as already noted in Chapter 2, a while
loop statement such as

Durnb_Loop:
while Value < 5 loop

Result .- 1;
end loop Durnb_Loop;

3.4 - For Loop Statement Behavior 3-35

will never terminate if Value < 5 is true initially. Usually, such a while loop statement is a
mistake, but in more complex forms this error may not be so easy to discover.

For example, consider the following while loop statement

Character_Search:
while Choice not in 'A' .. 'Z' loop

-- Better Look at Next Character
TEXT_IO.Get (Item=> Choice);

end loop Character_Search;

The while loop statement is looking for an upper case letter. But if Choice is an upper case
letter to begin with the loop is never entered and the statement will terminate immediately.
As a result the program part behavior becomes

[Character_Search:
while Choice not in 'A' .. 'Z' loop

-- Better Look at Next Character
TEXT_IO.Get (Item=> Choice);

end loop Character_Search;]

= {((Input, Output, Choice), (Input, Output, Choice)) I
Choice>= 'A' and Choice<= 'Z'}

u {((Input, Output, Choice}, (Inputl, Output, Choicel))
Choice < 'A' or Choice > 'Z' and Inputl = Input & String and
Choicel = n(reverse(String)) and Choicel >= 'A' and
Choicel <= 'Z' and Choicel is first value to lie between
'A' and 'Z' in String}

If no uppercase letter ever appears from the user, Character_Search never terminates. In this
case, some natural language is used to describe the behavior. As behaviors become more
complex, natural language is needed, but the underlying ideas of behaviors are still valid. Note
that various options are available in representing data and conditions. For example, in
Character_Search, the condition

Choice not in 'A' .. 'Z'

is also shown as

Choice < 'A' or Choice > 'Z'

in its behavior. This may or may not be a good idea depending on the purpose of the writing and
the capabilities of the readers.

As another example, consider the for loop Find_Digit_Locations above repeated here.

Find_Digit_Locations:
for Loop_Counter in 1 .. 10 loop

TEXT_IO.Get (Item=> Next_Character);
if Next_Character >= '0' and Next_Character <= '9' then

TEXT_IO.Put (Item=> Next_Character);
TEXT_IO.Put (Item=> • is a digit in position •);
INT_IO.Put (Item=> Loop_Counter);
TEXT_IO.New_Line;

end if;
end loop Find_Digit_Locations;

3-36 Chapter 3 - Program Behavior

Counter Loop_ Counter must be redefined as an ordinary variable, say as Loop_Counter_1,
and initialized to start with, then incremented each time through the while loop. We also
alter the loop name to Find_Digit_Locations_l. The initialized while loop form follows.

Loop_Counter_1 := 1;
Find_Digit_Locations_1:
while Loop_Counter_1 in 1 .. 10 loop

TEXT_IO.Get (Item=> Next_Character);
if Next_Character >= '0' and Next_Character <= '9' then

TEXT_IO.Put (Item=> Next_Character);
TEXT_IO.Put (Item=> • is a digit in position");
INT_IO.Put (Item=> Loop_Counter_1);
TEXT_IO.New_Line;

end if;
Loop_Counter_1 := Loop_Counter_1 + 1;

end loop Find_Digit_Locations_1;

Note that the while loop condition is very different from the for loop counter, but very similar
in form. The only difference between these two lines is for is replaced by while. The behavior of
the initialized while loop is as follows.

[Loop_Counter := 1;
Find_Digit_Locations_1:
while Loop_Counter in 1 .. 10 loop

TEXT_IO.Get (Item=> Next_Character);
if Next_Character >= '0' and Next_Character <= '9' then

TEXT_IO.Put (Item=> Next_Character);
TEXT_IO.Put (Item=> " is a digit in position ");
INT_IO.Put (Item=> Loop_Counter);
TEXT_IO.New_Line;

end if;
Loop_Counter := Loop_Counter + 1;

end loop Find_Digit_Locations_1;]

= {((Input, Output, Next_Character, Loop_Counter),
(Input1, Output1, Next_Character1, Loop_Counter1))1
Input1 = Input & I1 & I2 & I3 & I4 & IS & I6 & I7 & I8 & I9 & I10
and I1, I2, I3, I4, IS, I6, I7, I8, I9, I10 are CHARACTERs
and Next_Character1 = I10 and Loop_Counter1 = 11
and Outputl = Output & 01 & 02 & 03 & 04 & OS & 06 & 07 & 08 & 09
& 010
where
01 = (Il & . is a digit in position 1" & New_Line, ())
02 = (I2 & • is a digit in position 2" & New_Line, ()l
03 = (13 & • is a digit in position 3" & New_Line, ())
04 = (I4 & • is a digit in position 4" & New_Line, ())
OS = (IS & • is a digit in position s· & New_Line, ())
06 = (I6 & • is a digit in position 6" & New_Line, ())
07 = (!7 & • is a digit in position 7" & New_Line, ())
08 = (I8 & . is a digit in position 8" & New_Line, ())
09 = (I9 & • is a digit in position 9" & New_Line, ())
010 = (!10 & . is a digit in position 10" & New_Line, ()>
and in each line the message OI: () is chosen on whether the
CHARACTER in Il, I2, 13, I4, IS, I6, I7, I8, I9, !10 is a digit
or not}

3.5 - While Loop Statement Behavior 3-37

"--=

For this simple problem, we have seen three possible solutions: a sequence, a for loop, and a
while loop. Which is best? In this case, the for loop is most likely best, but in other cases any of
the three may be preferred.

3.5.1 Properties of While Loop Statements

While loop statements and their statement behaviors have certain mathematical properties
that are easy to see. The first property of the behavior is that the range of any while loop
statement behavior is a subset of its domain. Such a relation is not generally true in behaviors,
but is true in any while loop statement behavior. The reasoning behind this statement is easy
and direct. Consider any state of data for which the while condition is FALSE. This state is in
the range of the behavior because the statement will terminate from that state. This state is
also in the domain of the behavior from that state as initial data because if execution starts in
this state the statement will terminate immediately. In the other direction, any point in the
range must have the while condition FALSE, because otherwise the while loop could not
terminate with that data. This subset relation between the range and domain is shown next in
Figure 3.4 with an initial state x in the domain and a final state yin the range.

domain

range

While Loop Behavior Domain and Range
Figure 3.4

This property that the range is a subset of the domain of any while loop statement behavior
helps define what behaviors are possible for while loop statements. In particular, if the range
is not a subset of the domain of a behavior, then no while loop statement is possible for that
behavior. For example, consider the behavior of incrementing an integer variable by one, say

Sum := Sum + 1;

where Sum has been declared

Sum : INTEGER range 0 .. 100 := 0;

This behavior [sum : = Sum + 1;] has domain 0 .. 99 and range 1 .. 100, so the range is not a
subset of the domain. This means that no while loop statement exists that can achieve this
behavior. This is a simple example and a while loop statement is not really needed. But it
illustrates a logical requirement on any behavior for a while loop statement to exist to achieve
it.

A second property of a while loop statement is that no data in the domain of its behavior can be
reached again in subsequent iterations. If such a state were reached more than once, the
execution will never terminate, repeating its path through that state over and over. Stated

3-38 Chapter 3 - Program Behavior

positively, the loop part must make progress on each application to the final state in the range
of the behavior, and never cycle to a previous state. This means that starting at any state of
data in the domain of the while loop statement behavior, there is a unique, finite path to the
range of the behavior. Every point on this path is also a possible initial state, including the
final point in the range. And only the final point of the path is in the range, because the while
condition becomes FALSE immediately on entering the range. As already noted, one possible
path is of zero length, which starts in the range and remains there because the while condition
is FALSE and the loop part is never entered. A general path from initial state x to final state y
is shown next in Figure 3.5.

domain

range

While Loop Behavior Path
Figure 3.5

Now, as noted, every point on the path from x toy is another potential initial state of data
which the while loop statement will take to the same final state y. But there may be other
paths that join this path at these points as well, making up a computing tree with its root at y
in the range and with branches and leaves in the domain, as shown in Figure 3.6. Note,
however, that while different paths may reach final state y, no branches in these paths can
exist in the range. Each final step toy must be made from a point outside the range to a point
inside the range.

domain

range

While Loop Behavior Tree Branch
Figure 3.6

A third property of a while loop statement is that the behavior is always the union of two
simpler behaviors, first, an identity behavior as noted above where the while condition is
FALSE, and a second behavior with no identity parts from the set difference of domain- range
to the range, whose values are computed by the while statement by going down the tree
branches as noted above. The while loop behavior has no iteration, of course. The iteration of
the while loop is simply part of one rule that describes the while loop behavior.

3.5 - While Loop Statement Behavior 3-39

3.5.2 Exercises

1. Consider the while loop statement above with the not condition on the loop condition
missing

Character_Search_l:
while Choice in 'A' .. 'Z' loop

-- Better Look at Next Character
TEXT_IO.Get (Item=> Choice);

end loop Character_Search_l;

What is its statement behavior?

2. Consider the while loop statement above with Choice initialized

Choice := ' ';
Character_Search:
while
loop -- Better Look at Next Character

TEXT_IO.Get (Item=> Choice);
end loop Character_Search_2;

What is its statement behavior?

3. Determine the while loop statement behavior with INTEGER objects declared as

type My_Integer is range -99 . . 99;
First, Second : My_Integer := 0;

and found in a while loop statement

Adding:
while First < Second loop

First := First + 1;
end loop Adding;

4. Determine the while loop statement behavior with INTEGER objects declared as

type My_Integer is range -99 .. 99;
First, Second : My_Integer := 0;

and found in a while loop statement

3-40

Adding_And_Subtracting:
while First < Second
loop

First := First + 1;
Second := Second - 1;

end loop Adding_And_Subtracting;

Chapter 3 - Program Behavior

5. Which of the following behaviors can be realized by while loop statements?

a. Finding two consecutive uppercase letters in Input.
b. Exchanging values of INTEGER object First and Second.
c. Adding the value of INTEGER object First to INTEGER object Second only if First is

positive.
d. Incrementing an object in a cycle, so the maximum value is transformed to the minimum

value.

6. What are the domains and ranges for the part behaviors of Exercises 4 and 5 above? Are the
ranges subsets of the domains?

3.5- While Loop Statement Behavior 3-41

Chapter 4

Software Analysis

As already noted, any Ada program is a rule for behavior as a function or relation. If the
program determines a unique output for every input, it is a rule for a function. If the program
does not determine a unique output for every input, say because an object is not initialized before
using it, the program is a rule for a relation. For the moment, we will concentrate on programs
that determine functions, and consider non-unique behavior as an exceptional case that
probably needs fixing.

For small and simple programs, the rule for the behavior will be relatively easy to identify,
and the behavior itself relatively easy to describe. But for large and complex programs, it will
be more difficult to discover their behaviors. Of course any program itself defines its behavior,
but it will usually be of interest to find another description of the behavior in order to
understand independently what the program does.

In this chapter, we introduce techniques of recording and analysis for determining program
behavior and program part behavior. For each kind of executing program part, simple
assignments, procedure calls, sequences, if statements, for and while loops, we introduce specific
methods of recording their sub-parts and determining their behavior. We introduce graphic and
tabular forms to identify and carry out analyses that determine part behavior. We also
introduce ways to combine the behaviors of various parts into the behaviors of complete
programs.

4.1 Reading Programs for their Behaviors

No matter how large or complex a program may be, it can be read in small steps by determining
lower level part functions and incorporating the results into the next level until the entire
program is understood. However, for intellectual control a top down plan and recording is
critical.

4.1 .. 1 Hierarchical Structures of Ada Programs

Ada programs are made up of various parts, declarations and statements, the latter either
simple or compound. Compound statements, in turn, are made from expressions and other
statements, each either simple or compound. Each such part has a part behavior. The analysis
of an entire program provides its program behavior.

In illustration, consider the following, perfectly legal Ada program, and the explicit discovery
of its hierarchical structure.

with TEXT_IO;procedure Mystery_Program_5 is Choice:CHARACTER := ' ';
Tries:INTEGER := O;begin Search_For_Upper_Case_Letter:while not
('A' <=Choice and Choice<= 'Z') and Tries<= 10 loop TEXT_IO.Get
(Item=> Choice);Tries :=Tries+ l;end loop
Search_For_Upper_Case_Letter;if 'A' <= . Choice and Choice<= 'Z' then
TEXT_IO.Put (Item => "Welcome Aboard • & Choice);
else if 'a' <=Choice and Choice<= 'z' then TEXT_IO.Put
(Item=> "Lower Case Data Input" & Choice);else TEXT_IO.Put
(Item=> "Try Again") ;end if;end if;end Mystery_Program_5;

4.1 - Reading Programs tor their Behaviors 4-1

Now, declarations are completed and no pointers remain there. In the executable part, two
statements in sequence are given, one for a while loop statement, the other for an if statement.
Next, adding the third level

with TEXT_IO;
procedure Mystery_Program_S is

Choice: CHARACTER .- ' ';
Tries: INTEGER : = 0;

begin
Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10 loop
TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;
if 'A' <= Choice and Choice <= 'Z ' then

TEXT_IO.Put (Item=> "Welcome Aboard • & Choice);
else

if 'a' <=Choice and Choice<= 'z' then

else

end if;
end if;

end Mystery_Program_S;

At this level, the while loop statement is completed, the then part of the if statement is
completed, but the else part has another if statement framework with both then part and else
part yet to be completed. Finally, the fourth level completes the hierarchy and recovers the
original program.

with TEXT_IO;
procedure Mystery_Program_S is

Choice: CHARACTER.- ' ';
Tries: ~NTEGER := 0;

begin
Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10 loop
TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;
if 'A' <= Choice and Choice <= 'Z' then

TEXT_IO.Put (Item=> "Welcome Aboard • & Choice) ;
else

if 'a' <=Choice and Choice<= 'z' then
TEXT_IO . Put (Item => "Lower Case Data Input • & Choice);

else
TEXT_IO.Put (Item=> "Try Again");

end if;
end if;

end Mystery_Program_S;

4.1 - Reading Programs for their Behaviors 4-3

4.1.2 Bottom Up Analysis to Determine a Program Behavior

A hierarchical structure for an Ada program can be analyzed and low level part behaviors
discovered and combined into larger part behaviors from the bottom up until the program
behavior is discovered. For example, Mystery _Program_S has a low level if statement

ifl = if 'a' <=Choice and Choice<= 'z ' then
TEXT_IO.Put (Item=> "Lower Case Data Input • & Choice);

else
TEXT_IO.Put (Item=> "Try Again");

end if;

whose part behavior can be identified as

[ifl]

= {((Input, Output, Choice, Tries, -),
(Input, OUtput & "Lower Case Data Input • & Choice,
Choice, Tries -» I
'a' <=Choice and Choice<= 'Z')

u {((Input, Output, Choice, Tries, -),
(Input, Output & "Try Again", Choice, Tries, _)) I
not ('a' <=Choice and Choice<= 'z')}

or more simply,

[ifl]

= {((Input, Output, Choice, Tries, _),
(Input, Outputl, Choice, Tries, _)))

where

if 'a' <=Choice and Choice<= 'z',
Outputl = Output & "Lower Case Data Input • & Choice,

if not ('a' <=Choice and Choice<= 'z'),
Outputl = Output & "Try Again"

Next, this if statement ifl is part of a larger if statement if2, where

if2 = if 'A' <= Choice and Choice <= 'Z' then
TEXT_IO . Put (Item=> "Welcome Aboard • & Choice);

else
ifl

end if;

whose part behavior can be identified as

[if2)

= {((Input, Output, Choice, Tries, -)
(Input, Output2, Choice, Tries, ._)))

where

4-4 Chapter 4 - Program Analysis

if 'A' <=Choice and Choice<= 'Z',
Output2 = Output & "Welcome Aboard • & Choice

if not ('A' <=Choice and Choice<= 'Z') and
'a' <=Choice and Choice<= 'z',

Output2 = Output & "Lower Case Data Input • & Choice,

if not ('A' <=Choice and Choice<= 'Z') and
not ('a' <=Choice and Choice<= 'z'),

Output2 = Output & "Try Again"

The while loop statement just before the outer if statement if 2 can be analyzed next, namely

whl = Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10 loop
TEXT_IO.Get (Item => Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;

With some analysis, it is clear what this initialized loop will do. It will get characters while
necessary up to ten tries for Input and Choice, looking for an upper case letter.lf it finds a
Choice such that ('A' <= Choice and Choice <= 'z '),it will terminate. U it finds no
such value in ten tries, it will terminate. The initialization of Choice at declaration as ' '
means the loop will seek an upper case letter. As a result, the part behavior for whl can be
worked out as follows

[whl)

= (((Input, Output, _, Choice, Tries, -),
(Input1, Output, _, Choice1, Tries1, __))}

where

if n(reverse Input1)) =Char in 'A' .. 'Z',
no preceding member of Input1 in 'A' . . 'Z',

Choicel = Char, 1 <= Tries1 <= 10

if n(reverse Input1)) =Char in 'a' .. 'z' and Tries1 = 10,
no preceding member of Input1 in 'A' .. 'Z',

Choice1 = Char,

if n(reverse Inputl)) =Char not in 'a ' .. ' z' and Tries1 = 10,
no preceding member of Input1 in 'A' .. 'Z',

Choicel = Char,

Finally, the entire executable part of the program is the sequence

and

seq = begin
whl
if2

end Mystery_Prograrn_S;

4.1 • Reading Programs for their Behaviors 4-5

[seq]

= {((Input, Output, _, Choice, Tries ...),
(Inputl, Output2, ... , Choicel, Triesl, ...))}

which will be worked out next.

First, whl, as noted above, will define an intermediate state of data for Input, Choice, and
Tries with the values repeated from above as

[whl]

= {((Input, Output, _, Choice, Tries, -),
(Input1, Output, _, Choicel, Tries1, _))}

where

if n(reverse Input1)) =Char in 'A' .. 'Z',
no preceding member of Input1 in 'A' .. 'Z',

Choice1 = Char, 1 <= Triesl <= 10

if n(reverse Input1)) =Char in 'a' .. 'z' and Tries1 = 10,
no preceding member of Input1 in 'A' .. 'Z',

Choice1 = Char,

if n(reverse Input1)) =Char not in 'a' .. 'z' and Triesl = 10,
no preceding member of Inputl in 'A' .. 'Z',

Choice1 = Char,

Next, this data is treated by if2. Note in working out this next step on the effect of i f2 on the
current data.

[if2)

= {((Input, Output, Choicel, Tries1 _)
(Input, Output2, Choicel, Triesl _)))

where

if 'A' <= Choice1 and Choicel <= 'Z',
Output2 = Output & "Welcome Aboard • & Choicel

if not ('A ' <= Choice1 and Choicel <= 'Z') and
'a' <= Choice1 and Choicel <= 'z',

Output2 = Output & "Lower Case Data Input• & Choicel,

if not {'A' <= Choice1 and Choicel <= 'Z') and
not {'a' <= Choice1 and Choicel <= 'Z'),

Output2 = Output & "Try Again"

In summary, the program behavior of the entire program, including the with clause and
declaration, both used implicitly in the derivation of the sequence part behavior, is

[Mystery_Program_S]

= {((Input, Output), (Inputl, Output2)))

4e6 Chapter 4 - Program Analysis

where

if n(reverse (Inputl)) in 'A' . . 'Z')
length (Inputl) <= 10,
no preceding member of Input in 'A' .. 'Z'

Output2 =Output & "Welcome Aboard • & n(reverse (Inputl))

if n(reverse (Inputl)) in 'a' 'Z'
length (Inputl) = 10
no preceding member of Inputl in 'A' .. 'Z',

Output2 =Output & "Lower Case Data Input• & n(reverse (Inputl))

if n(reverse (Inputl)) not in 'a' 'z'
length (Input) = 10
no preceding member of Inputl in 'A' 'Z',

Output2 = Output & "Try Again"

In this case, there is no reference to Choice or Tries.

4.1.3 Program Behaviors that Include Exception Handling

When program execution encounters exceptions, for example in Get operations or in arithmetic
overflow, the program may terminate, but still has a program behavior. For example,
Mystery _Prograrn_S can be altered to limit the possible size of Tries to at most 5, calling the
modified program Mystery_Prograrn_Sa. It will have a different program behavior as
worked out next.

with TEXT_IO;
procedure Mystery_Prograrn_Sa is

Choice: CHARACTER:= ' ';
type My_Integer is range 0 .. 5;
Tries: My_Integer := 0;

begin
Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10 loop
TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;
if 'A' <= Choice and Choice <= 'Z' then

TEXT_IO.Put (Item=> "Welcome Aboard • & Choice);
else

if 'a' <=Choice and Choice <= 'z' then
TEXT_IO.Put (Item => "Lower Case Data Input • & Choice);

else
TEXT_IO.Put (Item=> "Try Again");

end if;
end if;

end Mystery_Prograrn_Sa;

In this case, the only difference in this new program from the old one is in the while loop, say
whla

4.1 - Reading Programs for their Behaviors 4-7

Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10 loop
TEXT_IO.Get (Item => Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;

Although the while text is identical as before, so Tries can seem to go up to the value 10 in the
while loop, the program will fail if an attempt to increase it past 5 because of the changed
declaration. As it is written, the program behavior is quite different than for
Mystery_Program_S. In particular, only one of the three possible outputs is possible, namely
the first in finding a capital letter, but in five tries instead of ten. If the while loop attempts to
go past 5 for Tries, the program terminates right there and does not finish, for example does
not enter the if part. The program does terminate, just does not complete the normal execution in
this case. As a result, the program behavior is as follows.

[Mystery_Prograrn_Sa]

= {((Input, Output}, (Inputl, Output2}}}

where

if li(reverse (Inputl)) in • A • • • • z')
length (Inputl) <= 5,
no preceding member of Inputl in 'A' .. 'Z'

Output2 =Output & •welcome Aboard • & li(reverse (Input))

In all other cases there will be no output, nor even finishing the normal execution of the
program.

As introduced in Chapter 2, exceptions can be introduced in the program, in this case as follows
in Mystery _Program_Sb.

4-8

with TEXT_IO;
procedure Mystery_Prograrn_Sb is

Choice: CHARACTER:= • ';
type My_Integer is range 0 .. 5;
Tries: My_Integer := 0;

begin
Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10 loop
TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;
if 'A' <= Choice and Choice <= 'Z' then

TEXT_IO.Put (Item=> •welcome Aboard • & Choice);
else

if 'a' <=Choice and Choice<= 'z' then
TEXT_IO.Put (Item=> "Lower Case Data Input • & Choice):

else
TEXT_IO.Put (Item=> "Try Again•);

end if;
end if;

Chapter 4 - Program Analysis

exception
when others => TEXT_IO.Put (Item =>

"Execution Halted, too many Tries.•) :
end Mystery_Prograrn_Sb;

Now, if more than 5 Tries are attempted, a message is returned before terminating the
program normally.

4.1.4 Assignment Behaviors

Assignment statements have part behaviors that effect the objects on the left side only. But the
expressions on the right side can be of any level of complexity. Expressions in INTEGER types
may also overflow and lead to NUMERIC_ERROR or CONSTRAINT_ERROR exceptions and
termination of execution. For example, let objects X, Y, Z be declared as INTEGERS as follows.

type My_Integer is INTEGER range 0 .. 999;
X, Y, Z: My_Integer;

with a sequence of assignments

X
y

.... _. z
·-
:=

·-

500;
300;
X + 2 "' Y;

which, of course, leads to an overflow and NUMERIC_ERROR or CONSTRAINT_ERROR
exception and possibly termination of execution (if no exception handler exists). As a result, the
assignment statements in INTEGER types will lead to behaviors dealing with both normal
assignments and NUMERIC_ERROR or CONSTRAINT_ERROR exceptions. For example, if no
such exception handler exists,

[Z :=X+ 2 * Y;]

= {((Input,Output, -• X, Y, Z), (Input, Output, _, X, Y, Zl)) I
Zl = X + 2 * Y and 0 <= X + 2 * Y <= 999}

u {((Input,Output, _, X, Y, Z), (Input, Output)) I
not (0 <=X+ 2 * Y <= 999)}

4.1.5 Exercises

1. In Mystery _Program_S, the while condition is changed to remove the first not in

while not {'A' <=Choice and Choice<= 'Z') and
Tries <= 10

more specifically to

while ('A' <=Choice and Choice<= 'Z') and
Tries <= 10

Determine program behavior [Mystery_Program_Sc].

4.1 - Reading Programs for their Behaviors 4-9

Z'

2. In Mystery_Program_S, Choice is initialized in its declaration, so the assignment

Choice : = 1 1
;

is not necessary. But if a reader does not notice this in looking at the while loop whl, what
might the writer have done to help?

3. Given the following program in compact form, reformat into proper lines and indentation,
then provide comments in the procedure to describe its behavior.

with TEXT_IO; procedure Triangles is type My_Integer is range
0 .. 1_000; Side_l, Side_2, Side_3, Temp: My_Integer; package Int_IO
is new TEXT_IO.INTEGER_IO (My_Integer); begin Temp := 5;
Search_Input_For_Triangles: while Temp > 0 loop Int_IO.Get
(Item=> Side_1); Int_IO.Get (Item=> Side_2); Int_IO.Get
(Item=> Side_3); TEXT_IO.New_Line; TEXT_IO.Put (Item=>
KSides:"); Int_IO.Put (Item=> Side_1); Int_IO.Put (Item=>
Side_2); Int_IO.Put (Item=> Side_3); if Side_2 >= Side_l and
Side_2 >= Side_3 then Temp := Side_2; Side_2 := Side_1;
Side_1 := Temp; else if Side_3 >= Side_1 and Side_3 >= Side_2
then Temp := Side_3; Side_3 := Side_1; Side_1 := Temp; end if;
end if; if Side_1 > Side_2 + Side_3 then TEXT_IO.Put (Item =>
• do not make up a triangle."); else if Side_1**2 = Side_2**2 +
Side_3**2 then TEXT_IO.Put (Item=> • make up a right triangle.•);
else if Side_1**2 < Side_2**2 + Side_3**2 then TEXT_IO.Put
(Item=> • make up an acute triangle."); else TEXT_IO.Put (Item=>
• make up an obtuse triangle."); end if; end if; end if;
TEXT_IO.Get (Item=> Temp); end loop Search_Input_For_Triangles;
end Triangles;

4. Determine the program behavior [Triangles] under the condition that Input contains

3 4 5
2
9 10 11
0

5. Determine the program behavior [Triangles] under the condition that Input contains

3 4 5
2 9 10

6. Given the following program in compact form, reformat into proper lines and indentation.

4-10

with TEXT_IO; procedure XYZ is X, Y, Z, T : CHARACTER; begin
TEXT_IO.Get (Item=> X); TEXT_IO.Get (Item=> Y); TEXT_IO.Get
(Item=> Z); if Y >=X andY>= Z then T := Y; Y :=X; X:= T;
else if Z >=X and Z >= Y then T := Z; Z :=X; X := T; end if;
end if; if Z > Y then T := Y; Y := Z; Z := T; end if; Wonder_What:
while T > 0 loop TEXT_IO.Get (Item=> T); if T >X then Z := Y;
Y := X; X := T; else if T > Y then z := Y; Y:= T; else if T > Z
then Z := T; end if; end if; TEXT_IO.Get (Item=> T); end if;
end loop Wonder_What; TEXT_IO.Put (Item=> X); TEXT_IO.Put
(Item=> Y); TEXT_IO.Put (Item=> Z); end XYZ;

Chapter 4 - Program Analysis

7. Determine the program behavior [XYZ] in problem 6.

8. Revise program XYZ with more descriptive identifiers and comments that describe the
program behavior.

4.2 Determining Sequence Statement Behaviors

4.2.1 Trace Tables

Sequence statement behaviors, as discussed in the previous chapter, can be discovered directly.
But as sequence statements become more complex, their behaviors cannot be discovered so easily
or accurately. For that reason, a new method of step by step discovery and recording is given
next, in the form of a trace table. A trace table defines a column for each object that can be
declared or altered in the sequence, and a row for each declaration or statement in the sequence.
For example, consider the sequence of statements below, as part of a program:

X ·- Y;
y ·- Z;
z ·- X;

The trace table will have a column for each of the objects X, Y, z being altered, and a row for
each of the statements of the sequence above. At the heads of the columns will be identifiers for
the objects. The first row within the table will contain the initial values of the objects. Then, in
each place within the remaining rows, a new value will appear for the object of that column
following the execution of the statement of that row. These values will be of the form of the
subscripted identifiers given in equations with values from the previous row. In this case the
trace table will be as follows.

Trace Table 4.1

That is, each value of each object is given, step by step, in terms of values in the row above. In
each row, only one object is assigned a new value, so the other two objects are unchanged. Now
the equations in the table defining new values in terms of preceding values can be solved
directly to find the final values in terms of the initial values. For example

X3 = x2 = x1 = Yo
y3 = y2 = z1 = Zo
Z3 = x2 = xl = Yo

That is, this part behavior is

[X := Y; Y := Z; Z .- X;]

= {((."I X I y I z , ->I <-, y I z I y I ...)) } I

4.1 - Reading Programs for their Behaviors 4- 11

or more simply, X, z are assigned the initial value of Y, andY is assigned the initial value of z.

This final result can be described in the concurrent assignment already defined, which is not a
legal Ada statement, but describes simultaneous changes to several objects. In this case, the
concurrent assignment

X, Y, Z <- Y, Z, Y;

assigns the initial values of Y, z, Y as final values for X, Y, z.

Such trace tables can be abbreviated in two ways. First, records of values of objects unchanged in
a statement can be left blank. The trace table above then becomes

Trace Table 4.2

In this case, the missing equations must be supplied in working out the results. For example, z is
not found in the abbreviated table, but can be calculated as follows

z = x2
= xl
= Yo

(X unchanged in step 3)
(X unchanged in step 2)
(X changed in the table)

Second, the left side of each equation in the trace table can be determined from the row and
column in which it appears, so only the right side is strictly necessary. The initial values are
also unnecessary. The trace table in minimum form then becomes

Statements I X I Y I Z
X : = Y; Yo

~ Iwh¥ ~t •·••• ·····. j Zfp£1-
Z := X; x2

Trace Table 4.3

In this case, more information must be supplied in the minimum table, for example for Y 3 as
follows

y3 = y2

= zl
= Zo

(Y unchanged in step 3)
(Y changed in the table)
(Z unchanged in step 1)

Notice here that in the final calculation dealing with step 1, z is the object of interest because Y
was set to the value of z in step 2.

4- 12 Chapter 4 - Program Analysis

4.2.2 Trace Tables with Concurrent Assignments

A sequence of concurrent statements, while not legal Ada, can describe a design later converted
into Ada in a powerful way. For example, consider a sequence of concurrent statements

X, Y, z <- Y, z, W;
Y, Z, w <- z, w, X;
z, w, X <- w, X, Y;
w, X, y <- x, Y, Z;

each of which can be expanded into legal Ada. In this case the trace table in minimum form is

Trace Table 4.4

The determinations of values from this table are

x4 = y3 = y2 = zl = Wo
y4 = z3 = w2 = x1 = Yo
z4 = Z3 = w2 = xl = Yo
w4 = X3 = y2 = zl = Wo

That is

[X, Y, z <- Y, z, w·;
Y, z, w <- Z, w, X;
z, w, X <- w, X, Y;
W, X, y <- X, Y, z; l

= {((X, Y, Z, w), (W, Y, Y, W))},
= (X, Y, z, w <- w, Y, Y, W)

using the concurrent assignment.

4.2.3 Trace Tables with TEXT_IO Procedure Calls

As another example, consider the program part

TEXT_IO.Get (Item=> Letter);
Term := Letter;
TEXT_IO.Put (Item=> Term);

4.2 - Determining Sequence Statement Behaviors 4- 13

which has a trace table in a condensed form, abbreviating TEXT_IO as T

Statements Input I Output I Letter
T.Get {Item=> Letter); Input 1 I I Letteq
Tern\ t= tiett:el':'t-/ > ..•

T.Put {Item=> Term); Output3

Trace Table 4.5

where user input is called Inchar

Input 1 = Inputo & Incharo
Letter1 = Incharo
Term2 = Letter1
Output3 = Output2 & Terrn2

In this case, the final values for all objects become

Input3 = Input2
= Input1
= Inputo & Incharo

Output3 = Output2 & Term2
= Output1 & Letter1
= Outputo & Incharo

Letter3 = Letter2

Term3

= Letter1
= Incharo

= Term2
= Letter1
= Incharo

so that the part behavior is

tTEXT_IO .Get {Item=> Letter); Term:= Letter;
TEXT_IO.Put {Item=> Term);]

= {((Input, Output, Letter, Term),
(Input & Inchar, Output & Inchar,
Inchar, Inchar))}

= Input, Output, Letter, Term <-

Input & Inchar, Output & Inchar, Inchar, Inchar

using the concurrent assignment.

Term

Terrn2

4-14 Chapter 4 - Program Analysis

--- -

4.2.4 Trace Tables with Integer Arithmetic

With sequences involving integer arithmetic, overflow must be considered, for example, in the
sequence

X ·- y + Z;
y ·- z - W;
z ·- w + X;
w . - X - Y;

the trace table in condensed form will be

Trace Table 4.6

with values as follows.

x4 = X3 = x2 = xl = Yo + Zo
y4 = y3 = y2 = Zt - wl = Zo - Wo
z4 = Z3 = w2 + x2 = wl + Xt = Wo + Yo + Zo
w4 = X3 - y3 = x2 - y2 = Xt - zl + wl = Yo + Zo - Zo + Wo

where z 0 cancels out in the final value for w4 • The resulting part behavior is

[X := Y + Z; Y := Z - W; Z := W +X; W :=X- Y;)

= {((Input, Output, -• X, Y, Z, W),
(Input, Output, _, Y + Z, Z - W, Y + Z + w, Y + W))
no overflow has occurred}

v {((Input, Output, -· X, Y, Z, W), (Input, Output)) 1
overflow has occurred and execution terminated}

when the overflow condition is explicitly

0 <= y + z <= 999,
0 <= z - w <= 999,
0 <= y + z + w <= 999,
0 <= y + w <= 999

The part behavior is also given in the concurrent assignment

X, Y, Z, W <- Y + Z, Z - W, Y + Z + W, Y + W

when no overflow has occurred and termination to (Input, Output) otherwise.

4.2 - Determining Sequence Statement Behaviors 4-15

4.2.5 Exercises

1. Create a trace table and find the part behavior for the sequence below with

X, Y, Z: CHARACTER;

y := Z;
z := X;
X := Y;

2. Create a trace table and find the part behavior for the sequence below with

X, Y, Z: CHARACTER;

X := Y;
y := Z;
Z := X;
K := Y;

3. Create a trace table and find the part behavior for the sequence with

type My_Integer is INTEGER range 0 .. 999;
X, Y, Z, W: My_Integer;

y := z - X;
z := y + W;
w := X - Y;

4. Create a trace table and find the part behavior for the sequence with objects declared in
Exercise 3

X . - y + Z;
y . - z - X;
z . - y + W;
w . - X - Y;
y . - z + W;

5. Create a trace table and find the part behavior for the sequence with

X, Y, z, W: BOOLEAN;

X := Y; y := Z;
z := W; z := Y;
y := Z; w := X;
w := X; y := Z;
X := Y; z := W;

6. Create a trace table and find the part behavior for the sequence with objects declared in
Exercise 3

X := y + Z; z := y + W;
y ·- Z + W; w := X - Z;
y := y - W; X := y + Z;
z . - z - X; w := X - Y;

4-16 Chapter 4 - Program Analysis

7. Create a trace table and find the part behavior for the sequence in which Term and Letter
are declared CHARACTER

Term := Letter;
TEXT_IO.Put (Item=> Term);
TEXT_IO.Get (Item => Letter);
Term := Letter;·
TEXT_IO.Put (Item=> Term);

4.3 Determining If Statement Behaviors

4.3.1 Conditional Trace Tables

Trace tables can be expanded to deal with if statements by adding a single new kind of column
called a condition column to create a conditional trace table.

Consider the if statement

if X < Y then
y := Z;
Z := X;

else
X .- Z;
y ·- X;

end if;

A conditional trace table will exist for each possible value of the if condition X< Y, which will
contain the then part or the else part as appropriate. In this case, the first conditional trace
table in abbreviated form is

Statements Condition Y Z
X < Y Xo < Yo

Z : = X; Z2 = X1

Trace Table 4. 7

and the second conditional trace table is

Statements Condition X Y
X >= Y Xo >= Yo
x ~, :;, Zi .}) I.· •. X1 '· ·=: ZnLI.<<· . >>
Y := X; Y2 = X1

Trace Table 4.8

In the first conditional trace table, the condition is already stated in initial values, while the
final values of the objects need working out, as in ordinary trace tables as follows

Xo < Yo

and the second conditional trace table works out as follows

4.2 - Determining Sequence Statement Behaviors 4- 17

~

Xo >= Yo x2 = x1 = Zo Y2 = X1 = Zo

In this case, the if statement behavior is

[if X < Y then Y := Z; Z := X;
else X := Z; Y :=X; end if;)

= {((... X, Y, Z, ...), (-.X, Z, X, ...)) I X < Y}
{((... X, Y, Z, ...), (... z, Z, Z, _.)) I X >= Y}

This program part can also be described in a conditional assignment, which is not a legal Ada
statement, but describes conditional and simultaneous changes to several objects. A conditional
assignment is defined by a sequence of conditions, each followed by a simple, concurrent, or
another conditional assignment. In this case, the conditional assignment is

(X < Y -> Y, Z <- Z, X;
X>= Y ->X, Y <- Z, Z;)

which is described with two conditions and a concurrent assignment for each condition.

The effect of a conditional assignment is defined by examining the conditions in the sequence in
which they appear. If a condition is TRUE, the following concurrent or conditional assignment
is used and the remainder of the conditions and assignments are ignored. If the condition is
FALSE, the next condition, if any, is examined.

4.3.2 Conditional Trace Tables with Sequences

In dealing with more general circumstances of conditional program behavior, consider the
sequence including an if stat~ment, such as below, as part of a program:

X := U;
y := V;
if X < Y then

X := Y;
y . - Z;
z := X;

else
y := Z;
z := X;
X := Y;

end if;

This sequence with an if statement will define two conditional trace tables, depending on the
value of the condition in the if statement, namely

Trace Table 4.9

4-18 Chapter 4 - Program Analysis

and

Statements Condition X y z

Trace Table 4.10

Now in both conditional trace tables, the conditions must be worked back to initial values as
must be the final values. For the first conditional trace table, the derivations are

X2 < Y2 or X! < v or u < v
xs = X4 = X3 = Y2 = v
Ys = Y4 = Z3 = Z2 = Zl = zo
zs = X4 = X3 = Y2 = v

with the conditional assignment

(U < v -> X, Y, z <- v, z, V)

and

X2 >= Y2 or X! >= v or u >= v
xs = Y4 = Y3 = Z2 = Zl = zo
Ys = Y4 = Y3 = Z2 =.Zl = zo
zs = Z4 = X3 = X2 = X! = u

with the conditional assignment

(U >= V -> X, Y, Z <- Z, Z, U)

which combine into the entire conditional assignment

(U < V -> X, Y, Z <- V, Z, V;
U >= V -> X, Y, Z <- Z, Z, U)

Note that although objects X and Y appear in the if condition, it is the initial values of u and v
that define the conditions in the conditional assignment here.

Note also that the conditional assignment above has identical behavior as the conditional
assignment

(U < V -> X, Y, Z <- V, Z, V;
TRUE -> X, Y, Z <- Z, Z, U)

because whenever the first condition u < v fails, both second conditions, u >= v and TRUE
evaluate TRUE and the component concurrent assignments are identical.

4.3 - Determining If Statement Behaviors 4-19

4.3.3 Conditional Assignments for Procedure Calls

Consider the if statement

if Next in 'A' .. 'Z' then
TEXT_IO .Put (Item=> "The next item is • & Next);

else
TEXT_IO.Get (Item=> Next);
if Next in 'A' .. 'Z' then

TEXT_IO.Put (Item => "Next item in Input is • & Next);
else

TEXT_IO.Put (Item=> "Next item in Input is improper");
end if;

end if;

There will be three possible outcomes, namely 1) Next holds an upper case letter, 2) next
character from user is an upper case letter, and 3) next character from user is not an upper case
letter. There will be three corresponding conditional trace tables, as shown below, with the
following abbreviations.

FALSE
TRUE
Input
Output
Next in 'A' .. 'Z'
TEXT_IO.Get (Item=> Next);
TEXT_IO.Put (Item =>

"The next item is • & Next) ;
TEXT_IO.Put (Item =>

"Next item in Input is • & Next);
TEXT_IO.Put (Item =>

"Next item in Input is improper");

F
T
In
Ou
Next in 'A' ..
'I'Get(Next);

TPut ("The_• l;

TPut ("Next ... • & Next) ;

TPut ("Next ... improper •) ;

We also use the name Char for the next character returned by the user, if called for.

The first conditional trace table is given next.

Statements Condition Output
Next in 'A' . . Nexto in 'A' •.
TPut ("The_•); Ouo&"The ... •

Trace Table 4.11

In this case, the condition (abbreviated in the table) is

Nexto in 'A' .. 'Z' is TRUE

and the next statement (abbreviated in the table) is

TEXT_IO.Put (Item => "The next item is • & Next);

in which the only object affected is Output, which becOmes

Output = Outputo & "The next item is • & Next

4-20 Chapter 4 - Program Analysis

r a-

These combine into the conditional assignment

(Next in 'A' .. 'Z' is TRUE->
Output<- Output 0 & "The next item is " & Next ;)

The second table is as follows.

Trace Table 4.12

The first condition is

Nexto in 'A' .. 'Z' is FALSE

and the next statement is

TEXT_IO.Get (Item=> Next);

which effects two objects, namely Input and Next as follows

Input1
Next1

= Inputo & Char
= Char

then the next condition is

Next1 in 'A' .. 'Z' is TRUE

and .the last statement effects only the object Output as

Output2 = Outputo & "Next item in Input is • & Next2

First, the two conditions can be reduced to initial values as follows

Nexto in 'A' 'Z' is FALSE (already in initial values)

Next 1 in 'A' 'Z' is TRUE
= n(Inputl) in 'A' .. 'Z' is TRUE

and can be combined into the initial condition as

Next in 'A'
Char in 'A'

'Z' is FALSE and
'Z' is TRUE

The objects can also be reduced to initial values as follows

4.3 - Determining If Statement Behaviors 4-21

Input2 = Input1 = Inputo & Char
Output2 = Outputo & "Next item in Input is • & Next 2

= outputo & "Next item in Input is • & Char
Next2 = Next1 = Char

These conditions and object values combine into the conditional assignment

(Next in 'A' .. 'Z' is FALSE and
Char in 'A' .. 'Z' is TRUE->

Input, Output. Next <- Input & Char,
Output & •Next item in Input is • & Char, Char)

The third table is next.

Trace Table 4.13

The first condition is

Nexto in 'A' .. 'Z' is FALSE

and the next statement is

TEXT_IO.Get (Item=> Next);

which effects two··objects, namely Input and Next as in the second case and repeated here

Input1
Next1

= Inputo & Char
= Char

then the next condition is

Next1 in 'A' .. 'Z' is FALSE

and the last statement effects only the object output as

Output2 = Output1 & •Next item in Input is improper•

First, the two conditions can be reduced to initial values as follows

Nexto in 'A' 'Z' is FALSE (already in initial values)

Next1 in 'A' .. 'Z' is FALSE
=Char in 'A' .. 'Z' is FALSE

4 - 22 Chapter 4 - Program Analysis

and can be combined into the initial condition as

Nexto in 'A' .. 'Z' is FALSE and
Char in 'A' .. 'Z' is FALSE

The objects can also be reduced to initial values as follows

Input2 = Input 1 = Inputo & Char
Output2 = Output1 & "Next item in Input is

= outputo & "Next item in Input is
Next2 = Next 1 = Char

improper•
improper"

These conditions and object values combine into the conditional assignment

(Next in 'A' .. 'Z' is FALSE and
Char in 'A' .. 'Z' is FALSE->

Input, Output, Next <- Input & Char,
Output & "Next item in Input is improper•, Char)

The conditional assignment for the entire if statement can now be assembled from the three
cases handled above as

[if Next in 'A' .. 'Z' then
TEXT_IO.Put (Item=> "The next item is • & Next);

else
TEXT_IO.Get (Item=> Next);
if Next in 'A' .. 'Z' then

TEXT_IO.Put (Item => "Next item in Input is • & Next);
else

TEXT_IO.Put (Item=> "Next item in Input is improper");
end if;

end if;] =

(Next in 'A' .. 'Z' is TRUE->
Output <-·output & "The next item is • & Next)

(Next in 'A' .. ·z· is FALSE and
. Char in 'A' .. ·z· is TRUE ->

Input, Output, Next <- Input & Char,
Output & "Next item in Input is . & Char, Char)

(Next in 'A' .. ·z· is FALSE and
Char in 'A' .. ·z· is FALSE ->

Input, Output, Next <- Input & Char,
Output & "Next item in Input is improper•, Char)

4.3 - Determining If Statement Behaviors 4-23

4.3.4 Exercises

1. Create the conditional trace tables and part behavior for the if statement with

X, Y, Z: CHARACTER;

if Z < Y then
X := Y;
z := X;

else
X := Z;
y := X;

end if;

2. Create the conditional trace tables and part behavior for the if statement with objects
declared as in Exercise 1

if X < Y then
TEXT_IO.Get (Item => Z);
TEXT_IO.Put (Item => X);

else
TEXT_IO.Put (Item => Y);
TEXT_IO.Get (Item => X);

end if;

3. Create the conditional trace tables and part behavior for the if statement with objects
declared as in Exercise 1

if z < X and Z < Y then
X := Z;
Z : = Y;
y := X;

else
y : = Z;
Z := X;
X := Y;

end if;

4. Create the conditional trace tables and part behavior for the if statement with objects
declared as in Exercise 1

4-24

if X < Z then
X := Y;
y := Z;
Z := X;

else
TEXT_IO.Get
y := X;
Z := Y;

end if;

(Item => X);

Chapter 4 • Program Analysis

5. Create the conditional trace tables and part behavior for the if statement with objects
declared as in Exercise 1

if z < X and z < y then
X ·- Z;
y . - X;
z := Y;
X . - Z;
y . - X;
z . - Y;

else
y . - Z;
z ·- X;
X . - Y;
y . - Z;

end if;

6. Create the conditional trace tables and part behavior for the sequence statement with

type My_Integer is range 0 .. 999;
X, Y, Z, U, V: My_Integer;

X . - u - V;
y . - v + U;
if X < y then

X ·- y - Z;
y ·- z + X;
z ·- X - Y;

else
y . - z + X;
z ·- X - Y;
X . - y + Z;

end if;

4.4 Determining For Statement Behaviors

4.4.1 Trace Tables with For Loops

For loops, define sequences with a special variable that is automatically incremented each
time through the for loop. For example, the for loop

type My_Integer is INTEGER range 0 .. 999;
X, Y: My_Integer;

Keeping_Track:
for Inc in 1 .. 3 loop

X := X + Inc;
y := y + X;

end loop Keeping_Track;

means the sequence

4.3 - Determining If Statement Behaviors 4-25

Inc .- 1;
X := X + Inc;
y := y + X;
Inc := 2;
X := X + Inc;
y := y + X;
Inc := 3;
X := X + Inc;
y := y + X;

In this case, the trace table in condensed form will be

Trace Table 4.14

with values as follows

Xg = X7 + 3 = X4 + s = x 1 + 6 = x0 + 6

Yg = Ys + Xs
= Y7 + X? + 3
= Ys + Xs + Xs + 3 = Y5 + 2 * x5 + 3
= y4 + 2 * (X4 + 2) + 3 = y4 + 2 * x4 + 7
= y2 + x 2 + 2 * x 2 + 7 = y2 + 3 * x2 + 7
= yl + 3 * (Xl + 1) + 7 = yl + 3 * xl + 10
= Yo + 3 * Xo + 10

Of course, the variable Inc has no value at the conclusion of the for loop, and is shown in the
trace table during the execution of the for loop to help determine its behavior. Again, there are
overflow conditions with each calculation of X andY. If X andY are declared as above in the
range 0 .. 999, the overflow conditions are explicitly

0 <= X + 1 <= X + 3 <= X + 6 <= 999
0 <= y + X + 1 <= 999
0 <= y + 2 * X + 3 <= 999
0 <= y + 3 * X + 10 <= 999

I

Note that while the calculations for X, Y are computed backwards from X9, Y 9 back down to Xo,
Y 0, the overflow must be determined forwards because that is the sequence in which the values
are determined.

With for loops that increment through many more values, the trace tables will be longer and

require more analysis to d~t~rmi\\~ \h~ b~hav\or oi fM \oops. ~u\ if \he behav\or cannot be
analyzed completely to determine the outcome, the for Joop should be redesigned so that it can.

4. 26
Chapter 4 - Program Analysis

4.4.2 Trace Tables for Large For Loops

Consider a for loop with more iterations. For example, the for loop called Large_Loop

type My_Integer is range -1_000_000 .. 1_000_000;
X, Y, Z : My_Integer;

Large_Loop:
for Inc in 1 .. 1_000 loop

INT_IO.Put (Item=> Inc);
TEXT_IO.New_Line;
if X > Y then

Z .- X - Y + Inc;
Y := Z - X + Inc;
X := Y - Z + Inc;

else
z ·- y - X - Inc;
X ·- z - y - Inc;
y . - X - z - Inc;

end if;
INT_IO.Put (Item=> X);
INT_IO.Put (Item=> Y);
INT_IO.Put (Item=> Z);
TEXT_IO.New_Line;
if Y > Z then

X .- Y - Z + Inc;
Z := X - Y + Inc;
Y := Z - X + Inc;

else
X . - z - y - Inc;
y . - X - z - Inc;
z . - y - X - Inc;

end if;
INT_ IO.Put (Item =>
INT_IO.Put (Item =>
INT_IO.Put (Item =>
TEXT_IO.New_Line;
if z > X then

y . - z - X + Inc;
X . - y - z + Inc;
z . - X - y + Inc;

else
y . - X - z - Inc;
z . - y - X - Inc;
X . - z - y - Inc;

end if;

X);
Y);
Z);

INT_IO.Put (Item=> X);
INT_IO.Put (Item => Y);
INT_IO.Put (Item=> Z);
TEXT_IO.New_Line;

end loop Large_Loop;

means one of eight sequences on each iteration. or one of eight to the power of a thousand
sequences altogether. So writing all the possibilities down will not be practical. Instead, we
need to understand a single iteration in a more powerful form in order to put them together.

To begin with, consider a graph for the point X = 4, Y = 3, z = 6 in the three dimensional graph as
follows.

4.4 - Determining For Statement Behaviors 4-27

~ ~
,:;

1 I •I I j I I I I I • X I

I y I
~%ccc~ecca=a=a=~=QaQ~Gc;acacaacccca~a:c"maaaaacae::;:~·.:««-."*-:·:.:.:.:.:-).:.>:-:·:-:-.-««·~~~ ;~~= :~:~a: aa o;oa~:c ;c c a~..oocvm:·:·:·:·:·:·:·:·:·:·:·:·:·N

Initial Input
Figure 4.1

Note in this case that the then part of the first if statement would apply, namely where x > Y.

To begin with, consider the low level triples of three assignments, such as the then part of the
first if statement in the for loop body

z
y

X

·- X - y +
:= Z - X +
:= y - z +

Inc;
Inc;
Inc;

In the three dimensional space of X, Y, z, a single point is being moved to a new point. Then a
trace table for these three assignments is

Trace Table 4.15

For example, continue the case where

X = 4, Y = 3, Z = 6, Inc = 6.

4-28 Chapter 4 - Program Analysis

Then, the values in the trace table become

Statements

Z .- X - Y + Inc·

X .- Y - Z + Inc·

Inc X
6 4

8

Trace Table 4.16

y
3

z
6
7

which can be pictured as in Figure 4.2. In such pictures, remember the if conditions, in this case
that X> Y to begin with. Therefore, only half of the three dimensional space is available.

First Step
Figure 4.2

, ,

,
, ,

, , , ,

In the following if statement the condition is Y > z, which in this case is also TRUE so the then
part will be used again. In this case, the assignments following the then applies

X .- Y - Z + Inc;
Z .- X - Y + Inc;
Y .- Z - X + Inc;

4.4 - Determining For Statement Behaviors 4-29

--

This condition will define the following trace table

Statements I Inc X y z
X := Y - Z + Inc; Yo-Zo+Inco
z := .:lf .4 t ¥ ±#r¥i EC}

.. I.
· ••·:..:. ··::• · • .:. ·• • ., ... :::.:]\Xl-Yl + Inc1

Y := Z - X + Inc; Z2-X2+Inc2

Trace Table 4.17

If we use our results from before, we have

Statements Inc I X
6 8

X : = Y - Z + Inc; I I 8

y

9
z
7

z ~FXGWJi:F~-rrrc;.j ~?Dp · l.TIIIWJ%§2
Y := Z - X + Inc; 3
f:inaat:•·:'Jariies. '1 ' ~ ::r: .s i i5'U

Trace Table 4.18

which can be pictured as in Figure 4.3. In such pictures, remember the if conditions, in this case
that Y > z to begin with. Again, only half of the three dimensional space is available.

4-30

~-~~~~ ~ •••~·~·-•-m ~·•·c:x~~=<=:·==~:=:•>':':•:•:•:•:•:•:<=:~-.- •r•roo~~'l::=:o•:•:•:•:•>=•:•:•:•:•:•:•:•>=•l~

ill • =~~

I
I

<8,9,7>

'

<8,3,5>

•

"-7 I I I I I I ' I A I)0 X
I /

~~~; 
:::. 

I~~ \ I I : ,,,/ !l 

I i ____ / I 
;:: L, ;:: 

l,,'<~wrno."<OOOOOOOIOIOO '.OCCOOOCOOOOOCCCOOO:·>:·:«·:·:·:·:·:•:•:<·:·:·:·:<·:·:·:·:·:·:·:·:·:·:<v:<·:·:·:·:·:<«''"':v>:·:<·:·:·:<·>:<·:·:<·:-«««v»>:·:-:·:<v:·:·:<·:·:·:·:·:·:·:·:·:·.~' 
Second Step 

Figure 4.3 

Chapter 4 - Program Analysis 



Finally, the third if statement has condition z >X, so the else part will be used. 

y . - X - z - Inc; 
z ·- y - X - Inc; 
X . - z - y - Inc; 

This section will define the following trace table 

Statements Inc X y 

Y .- X - Z - Inc; Xo-Zo-Inco 

X .- z - Y - Inc; 

Trace Table 4.19 

In this example, the specific values apply. 

Statements 

Y .-X - Z - Inc· 

X .- Z - Y - Inc· 

Inc X 
6 8 

-20 

Trace Table 4.20 

y 

3 
-3 

z 
5 

z 

which can be pictured as in Figure 4.4. In such pictures, remember the if conditions that hold, in 
this case that z <=X to begin with. Again, only half of the three dimensional space is 
available. 

4.4 - Determining For Statement Behaviors 4-31 



I 

----

Z>X 

<8,3,5> , 

Z<=X 

/~ I I I 11' I I I I I I I l I • X , , I I I I I I I I I ~ I' I I I I I I I 

I / 

v 

y 

/ 
/ 

/ 
/ 

i;~ 

Ill 

I 
~~ 

i 
<· 

I 
:j: 

! : T I 
? •<-20,-3,-17> ;~; 

\iL============================::============::================:::=================================::~%**===::..-====~>=============&"%:::::==--«~=::=>»"§.~:::..~:::x:============================ ==========================================::=:::=:=::=========~========:::::::====:.-::o:==================================::============== =·==== =·=·===· ======== =·=·=·=·=· =======·= · ====== ==·=·=·=·=·=·=·=·===================·=·===·===========::=:I 

Third Step 
Figure 4.4 

Finally, the for loop increment of Inc will take place to complete this loop increment as follows. 

I ~~~t::e~~~ + 1; I I~c I X I Y I Z I 
Trace Table 4.21 

Note this assignment to Inc is implied by the for loop, not explidtly defined. But it is handy to 
use the common notation for Inc as with other explicit assignments. 

In this case four trace tables, namely 4.15, 4.17, 4.19, 4.21 have made up one increment. Starting 
with the values 

X = 4, Y = 3, Z = 6, Inc = 6, 

a single increment ended up with the values 

X= -20, Y = -3, Z = -17, Inc= 7. 

4-32 Chapter 4 - Program Analysis 



These relatively small integers are a happy accident for drawing graphs. But with Inc taking 
on larger and larger values, X, Y, z will also take on larger positive or negative values. In fact, 
X, Y, z can start with large positive or negative values as well. 

The effect of the one increment, combining the three if statements, can be given as follows. 

Z<=X :,: 

y 

Final Step 
Figure 4.5 

<4,3,6> 
• 
I 

I , ,, 
, , , 

Now that a single increment of the for loop is better understood, we observe that the entire for 
loop execution can be pictured in this X, Y, z space as a thousand steps. The value of Inc will 
increase in each step from 1 to 1_000, and may be added or subtracted, depending on which half 
of the space the point X, Y, z is in. But aside from the iteration, no new ideas are involved in the 
calculation. 

As noted at the outset, there are exactly eight of the three then/else sequences possible, of 
which one was shown above. The if conditions for each of the eight sequences can be worked out 
in terms of data at the start of the sequence. The first if condition is the original data. But the 
second and third if conditions result from assignments made in the first and second then or else 
statements. In illustration on the sequence analyzed above, the following hypothesis that two 
then conditions and one else condition was required. 

4.4 ·Determining For Statement Behaviors 4-33 

I 
X i~i 

~-= 

m 
j~~ 

~~ 
~:~ 

~j 
!j 
~~~ 

:=:

.. :

if X > Y then
z := X - y + Inc;
y := Z - X + Inc;
X := y - z + Inc;

else

end if;
if Y > Z then

X := y - z + Inc;
z := X - y + Inc;
y := Z - X + Inc;

else

end if;
if Z > X then
"'
else

y := X - Z - Inc;
z := y - X - Inc;
X := z - y - Inc;

end if;

Now, the second if statement is applied to the results of the first if statement. For example the
second if condition Y > z is applied to the Y and z resulting from the first if statement. In trace
tables above, each triple of assignments was analyzed. Now we want to analyze the entire set
of conditions and assignments for a single increment through the for loop. The trace table for
this full increment, except for the 10, follows.

Trace Table 4.22

4 ·34 Chapter 4 - Program Analysis

Now, we need to convert these relations and equations to data at the beginning of the table,
namely to xo, Yo, Zo, Inco. This means making the calculations in the table, as follows.

X: =Z- Y +Inc; .

Trace Table 4.23

4.4 - Determining For Statement Behaviors 4-35

With one more step we show only the results, not their derivations as follows.

Trace Table 4.24

Carrying this trace table out on the example used above, we find.

Statements I Condition I Inc
6

Trace Table 4.25

z
6

The other seven cases will go just as this example. All eight cases are handled in the same way
as shown in this example.

4.4.3 Exercises

1. Create a trace table and find the part behavior with variables X, Y declared as INTEGERS
in the range 0 .. 99 for the for loop

4-36

Update:
for Term in 1 .. 4 loop

X := X + Term;
Y := Y - Term;

end loop Update;

Chapter 4 - Program Analysis

2. Express the for loop of Exercise 1 as a direct sequence with no for logic.

3. Express the for loop of Exercise 1 as a direct sequence with only two assignments.

4. Create an alternative for loop to that of Exercise 1 with as few iterations as possible.

5. Repeating its fonn, Large_Loop is as follows.

TYPE My_Integer is INTEGER range -1_000_000, 1_000_000;
X, Y, Z : My_Integer;

Large_Loop:
for Inc in 1 .. 1_000 loop

INT_IO.Put (Item=> Inc);
TEXT_IO.New_Line;
if X > Y then

Z .- X - Y + Inc;
Y := Z - X + Inc;
X := Y - Z + Inc;

else
z ·-
X ·-
y ·-

end if;

Y - X - Inc;
Z - Y - Inc;
X - Z - Inc;

INT_IO.Put (Item => X, Y, Z);
TEXT_IO.New_Line;
if Y > Z then

X .- Y - Z + Inc;
Z := X - Y + Inc;
Y := Z - X + Inc;

else
X := Z - Y - Inc;

Y := X - % - fnc,
Z := Y - X - Inc;

end if;
INT_IO.Put (Item => X, Y, Z);
TEXT_IO.New_Line;
if Z > X then

Y .- z - X + Inc;
X := Y - Z + Inc;
z := X - Y + Inc;

else
Y .- X - Z - Inc;
Z .- Y - X - Inc;
X .- Z - Y - Inc;

end if;
INT_IO.Put (Item =>X, Y, Z);
TEXT_IO.New_Line;

end loop Large_Loop;

Identify the eight possible sequences on each loop and the four Put messages.

6. Find the initial conditions required on X, Y, Z in each of the eight possible sequences of
Exercise 5. Note that each if statement divides each space so far identified into two more
parts.

4.4 - Determining For Statement Behaviors 4-37

----- --- -- -

4.5 Determining Loop Statement Behaviors

Sequence, for, and if statement behaviors can be discovered directly, but while loop statement
behaviors require more analysis. It may be possible to detennine the number of iterations that
will occur directly from the initial data, and therefore describe the statement behavior
directly. The number of iterations will be an object that depends on the initial data. A while
loop statement will have a conditional trace table that describes continued looping. The
conditional trace table will go on indefinitely, but the while condition may lead to necessary
termination or the looping may become periodic after a certain point so that termination wil1
not be possible. In either case, the conditional trace table can provide the while loop statement
behavior as a conditional assignment statement.

4.5.1 While Loop Analysis with Conditional Trace Tables

For example, consider the while loop statement

Mystery_Loop:
while X < Y loop

X := U;
y := Z;
Z := X;
X := V;

end loop Mystery_Loop;

The conditional trace table for this loop statement starts out as follows.

Statements X y z
X < y

Trace Table 4.26

When the number of statements executed is finite and known, the method of backward analysis
used above is very straightforward. But in some cases, the number of statements to be executed
will be data dependent. Therefore a forward analysis can show when loops are to be
terminated. That is, statement by statement, the values can be determined entirely in terms of
the initial values. When these values are determined in a forward way, the conditional trace
table becomes as follows.

4-38 Chapter 4 - Program Analysis

Statements Condition X y z
X < Y Xo < Yo

X := U; x5 = u

Z : = X; Z7 = U

• ~· h==·•·•·v..: i> ··· ·· · · ·· ·· ~ ·· · · ··· ·····> •)•·.
X < Y V < U

Y := Z; Y10 = U

··········•• ? '=U Z:ti· = u
X := V; X12 = V

Trace Table 4.27

At this point, it can be seen that the last five lines of the conditional trace table will be
repeated over and over, with no further change in the values of the objects. Thus the while loop
statement part behavior can be deduced directly from this conditional trace table. In order for
the while loop statement to terminate, one of the conditions in the conditional trace table must
be false. The while loop statement will terminate when the first such condition is false.
Therefore, the conditions of the conditional trace table can be analyzed for termination and the
values of the objects determined at those points. In this case, the conditions of the conditional
trace table are

Xo < Yo
v < z0
v < u

so the conditions for termination will be their negations, namely

Xo
v
v

>=
>=
>=

Yo
Zo
u

The termination condition Xo >= Yo is derived from the condition in line 1 of the conditional
trace table in the condition column and none of the objects X, Y, or z has been altered, so this
corresponds to a conditional assignment

(X >= Y -> null)

The termination condition v >= Zo is derived from line 6 and the values of X4, Y 4, z 4 valid in
line 6 can be determined in terms of initial values diredly as

X4 = V
Y4 = Y3 = Y2 = Zo
Z.J = Z3 = U

4.5 - Determining Loop Statement Behaviors 4-39

which corresponds to a conditional assignment

(V >= Z -> X, Y, Z <- V, Z, U)

The termination condition V >= u is derived from line 11 and the values of x3, Y 8, z8 valid in
line 11 can be determined in terms of initial values directly as

X a = v
Ys = Y, = y6 = u
Zs = Z7 = u

which corresponds to a conditional assignment

(V >= U -> X, Y, Z <- V, U, U)

These three conditional assignments make up the entire conditional assignment for the
Mystery_Loop, as shown next

[Mystery_Loop:
while X < Y loop

X := U;
y := Z;
Z := X;
X := V;

end loop MYstery_Loop;]

= (X >= Y -> null;
V >= Z -> X, Y, Z <- V, Z, U;
V >= U -> X, Y, Z <- V, U, U)

In this case, the while loop statement terminates in exactly the three cases

X >= Y, V >= Z, V >= U,

and no more, and the loop behavior is defined only in the domain given by these three
conditions. In particular, the while loop statement will not terminate when

X < Y and V < Z and V < U

4.5.2 While Loop Analysis Ensuring Termination

This failure in termination may have been unintentional, but can be determined by analysis
rather than a disaster from a hung program during execution. For example, augmenting
Mystery_Loop with an iteration counter, initialized before entering, incremented each loop,
and tested at each entry to the loop, will ensure termination, and looks as follows.

4-40 Chapter 4 - Program Analysis

Iteration_Counter := 0;
Terrninating_Mystery_Loop :
while X < Y and

Iteration_Counter < 3 loop
X .- U;
y ·- Z;
Z .- X;
X .- V;
Iteration_Counter := Iteration_Counter + 1;

end loop Terminating_Mystery_Loop;

This program may or may not do what is desired, but it will terminate with no more than 3
iterations. Abbreviating Iteration_Counter to I_C, and including the initialization, the
conditional trace table becomes as follows.

Trace Table 4.28

The termination condition x0 >= Yo is derived from the condition in line 2 of the conditional
trace table in the condition column and none of the objects X, Y, or z has been altered, but r_c has
been assigned 0, so this corresponds to a conditional assignment

(X >= Y -> r_c <- O)

The termination condition v >= Zo is derived from line 9 and the values of r_c6, X6, Y 6, Z5
valid in line 9 can be determined in terms of initial values directly as

4.5 - Determining Loop Statement Behaviors 4-41

I_C6 = 1
X6 = Xs = V
Y6 = Ys = Y4 = Y3 = Zo
Z6 = Zs = z4 = U

which corresponds to a conditional assignment

(V >= Z -> I_C, X, Y, Z <- 1, V, Z, U)

The termination condition v >= u is derived from line 16 and the values of r_c 1 ;:, X 12 , Y 12• Z : 2

valid in line 16 can be determined in terms of initial values directly as

I_Cl2 = 2
xl2 = x 11 = v
yl2 = Yn = Y10 = Yg = U
zl2 = zll = Zlo = u

which corresponds to a conditional assignment

(V >= U -> I_C, X, Y, Z <- 2, V, U, U)

The termination condition r_c19 >= 3 is derived from line 24 and the values of r_c 18 , x18,

Y 18, z 18 valid in line 24 can be determined in terms of initial values directly as

I_Cls = 3
X1s = xl7 = v
Y1s = yl7 = Y16 = Y1s = u
Z1s = Zl7 = zl6 = u

which corresponds to a conditional assignment

(I_C >= 3 -> I_C, X, Y, ,z <- 3, V, U, U)

These four conditional assignments make up the entire conditional as~\~m~n\ \m 'tne
initialized Terminating_Mystel:y _Loo'i?, as s\1own next.

[Iteration_Counter := 0;
Terminating_Mystery_Loop:
while X < Y and

Iteration_Counter < 3 loop
X := U;
y := Z;
Z := X;
X := V;
Iteration_Counter := Iteration_Counter + 1;

end loop Terminating_Mystery_Loop;J

= (X >= Y -> I_C <- 0;
V >= Z -> I_C, X, Y, Z <- 1, V, Z, U;
V >= U -> I_C, X, Y, Z <- 2, V, U, U;
I_C >= 3 -> I_C, X, Y, Z <- 3; V, U, U)

As already noted, it can be shown that this conditional assignment will be defined for all
initial values of I_c, X, Y, z. The proof is based on the value of r_c exceeding 2 in a finite
number of loop iterations, being initialized at o, and incremented by 1 each iteration.

4. 42
Chapter 4 - Program Analysis

4.5.3 While Loop Analysis with Loop Behaviors

The foregoing analysis of Mystery _Loop can be done in two steps for better efficiency, by first
analyzing the sequence of four statements that make up the loop body as a concurrent
assignment, then using this concurrent assignment in the while loop statement conditional trace
table. First, the trace table for the loop body using a forward analysis is

Statements X y

X := U; Xl = u
Yz ---zo

Z := X;
= v k i .

Trace Table 4.29

with

X4 = V
Y4 = Y3 = Y2 = ZQ
Z4 = Z3 = U

and the concurrent assignment is

X, Y, Z <- V, Z, U;

z

::' J :-:·-·
-:;c ~-- · -·

Z3 = u
[.- :, ,:':::..,:,,,,_:·

~g..,.,. .--Afrk ~..r.&?~..r.Z7&?/..,;:;;?A?kA:?F.d?.dV'.-d? g.&"' h?~h?~.:iY .Ad4- ..b..vl' ...W~J..e.r f£>Jm wjJ:h a

concurrent assignment, as

Mystery_Loop_2:
while X < Y loop

X, Y, Z <- V, Z, U;
end loop Mystery_Loop_2;

Now, the conditional trace table for this while loop statement in minimal form becomes

Statements Condition X y z
X < y xo < Yo

X < y v < zo
. ' ... ::_

X < y v < u

Trace Table 4.30

and the last two lines are repeated and will continue to be repeated indefinitely. As before, the
conditional assignment statement can be derived directly from this condensed conditional trace
table as follows:

(X >= Y -> null;
V >= Z -> X, Y, Z <- V, Z, U;
V >= U ->X, Y, Z <- V, U, U;)

4.5 - Determining Loop Statement Behaviors 4-43

4.5.4 While Loop Analysis with Integer Data

The previous examples have been based on simple assignments between variables within the
loops. When integer data is subject to arithmetic operations within loops, the operations must
be checked for satisfactory results in each step of every loop. For example, consider integer data
declared as

type Small_Integer is range -999 .. 999;
X, Y, Z: Small Integer := 0;

in the while loop statement

Additive_Loop:
while X < Y loop

X := X + Z;
y := y - Z;

end loop Additive_Loop;

and analyze whether underflow or overflow is possible in its execution. In general, x is
increased by value z and Y decreased by the same amount until X becomes larger than Y. But is
that always the case? For the case

X = 5, Y = 10, Z = 2,

X becomes 7, Y becomes 8, then X becomes 9, Y becomes 6, so the loop is terminated because X > Y.
But for the case

X = 900, Y = 950, Z = 100,

X goes out of its bound to 1000, so the program is terminated. As another case

X = 5, Y = 10, Z = -2

X heads for -999, Y exceeds 999 even faster, so the program is terminated again. Thus, it is
apparent that the while loop Additive_Loop does not always terminate successfully. That
may still be satisfactory if the while loop is used only if it terminates correctly, not for all
possible data. Some analysis can determine the conditions necessary on X, Y, z > o for correct
termination. They are that for minimum integer n > o and for X< Y

999 >= X+ Z * n >= Y - Z * ~ >= -999.

The inner inequality can be reformulated as

0 < Y - X <= 2 * Z * n,

and the value of n becomes

min n >= (Y - X) I (2 * Z)
or

n = min ((Y - X) I (2 * Z))

4-44 Chapter 4 - Program Analysis

Now, this value for n can be substituted in the original string of inequalities, dividing out z in
the fraction to obtain

999 >=X+ min (Y - X)/2 >= Y -min (Y- X)/2 >= -999.

Thus,ifY-Xiseven, min (Y- X)/2 = Y/ 2 - X/2,and

Xfinal = X + Y/2 - X/2 = X/2 + Y/ 2
Yfinal = Y - Y - Y/2 + X/2 = X/2 + Y/2

andifY-Xisodd, min (Y - X)/2 = Y/2 - X/2 + 1/2,and

Xfinal = X + Y/2 - X/2 + 1/2 = X/2 + Y/2 + 1/2
Yfinal = Y - Y/2 + X/2 - 1/2 + Y/2 - 1/2

assuming, of course, that the intermediate and final calculations for X andY are all contained in
the declared range -999 .. 999. In this case, X + z I X + 2 * z I - must all be <= 999 and Y -
z I Y - 2 * z I - must all be<= 999. To fail, for some n1

X + (n-1) * Z < Y - (n-1) * Z
X+ n * Z > 999 or Y - n * Z < -999.

In the second example above, X = 900 I Y = 950 I z = 100 I n = 11 where the first
condition holds, namely

X + 0 * Z < Y - 0 * Z,

but the first part of the second condition fails, namely

X + 1 * Z > 999.

4.5.5 Exercises

1. Consider Mystery_Loop_3

Mystery_Loop_3:
while X < Y loop

X .- U;
y := Z;
Z := V;

end loop Mystery_Loop_3;

and determine its conditional trace table and part behavior.

4.5 - Determining Loop Statement Behaviors 4. 45

2. Add iteration counter I_c to ensure termination of Mystery _Loop_3 as

I_C := 0;
Terrninating_Mystery_Loop_3:
while X < Y and I_C < 4 loop

X := U;
y : = Z;
Z := V;
I_C := I_C + 1;

end loop Terrninating_Mystery_Loop __ 3;

and determine its conditional trace table and part behavior.

3. Consider Mystery _Loop_4 with INTEGER objects declared as

type My_Integer is range 0 .. 4;
First, Second : My_Integer;

Mystery_Loop_4:
while First < Second loop

First := First + 1;
Second := Second - 1;

end loop Mystery_Loop_4;

and determine its conditional trace table and part behavior. Check termination for all
possible values of First, Second in order to determine how long the conditional trace
table must be.

4. Consider Mystery_Loop_S with INTEGER objects declared as

type My_Integer is range 0 . . 1_000;
First, Second : My_Integer;

Mystery_Loop_S:
while First < Second loop

First := First + 1;
Second := Second - 1;

end loop Mystery_Loop_S;

and determine its conditional trace table and part behavior. The conditional trace table of
Mystery _Loop_S will be quite long, but will be very regular, so identify its regularity and
define its elements symbolically in terms of initial values of First, Second.

4-46 Chapter 4 - Program Analysis

5. Consider Mystery _Loop_6 with INTEGER objects declared as

type My_Integer is range 0 . . 1_000;
First, Second, Third : My_Integer;

Mystery_Loop_6:
while (First + Second) < Third loop

First := First + Second;
end loop Mystery_Loop_6;

and determine its conditional trace table and part behavior. The conditional trace table of
Mystery _Loop_6 will be quite long, but will be very regular, so identify its regularity and
define its elements symbolically in terms of initial values of First, Second, Third. Will
this loop statement terminate for all initial values? Can this loop statement terminate
program execution for any initial values?

6. Consider Mystery _Loop_7 with INTEGER objects declared as

type My_Integer is range 0 .. 1_000;
First, Second, Third : My_Integer;

Mystery_Loop_7:
while (First + Second) < Third loop

Second := First * Second;
end loop Mystery_Loop_7;

and determine its conditional trace table and part behavior. The conditional trace table of
Mystery _Loop_7 will be quite long, but will be very regular, so identify its regularity and
define its elements symbolically in terms of initial values of First, Second, Third. Will
this loop statement terminate for all initial values? Can this loop statement terminate
program execution for any initial values?

7. Consider the Small_Integer data X, Y, z and the while statement Add it i ve_Loop
above and determine the range of data X, Y, z, X < for which the while statement fails to
terminate correctly.

4.5 - Determining Loop Statement Behaviors 4-47

Chapter 5

Sequential Ada II

Now that you have had the appropriate background, it is time to explore further the
programming language Ada. In this chapter, more complex combinations of data types will be
examined and some new data types will be introduced. Next, more Ada statements will be
introduced to give you more flexibility and to allow you to express your algorithms in a more
natural way. A statement is an action to be performed by the program. It can be a simple
statement or it may be arbitrarily complex. Statements can be combined into sequences of
statements to perform useful actions.

5.1 Ada Types and Objects

5.1.1 Enumeration Types and Objects

In Chapter 2, the notion of a data type was introduced. Remember that a data type consists of a
set of values and a set of operations upon those values. Some of the data types that you have
already seen include INTEGER, CHARACTER, and BOOLEAN. There are many more data
types; in fact, Ada has provisions for you to create your own data types, yielding an infinite
possibility for data types. One of the most useful data types is an enumeration data type.

Recall that the CHARACTER data type was described in Chapter 2 as a form of an
enumeration type. The full definition of an enumeration type was deferred until other concepts
had been discussed. Let us now return to that discussion and see how an enumeration type is
defined and how the type CHARACTER is really a specific example of an enumeration type.

Enumeration data types allow what the name implies; namely, declaring an identifier to be
the name of a list of other, literally enumerated, identifiers that serve as values. "Literally
enumerated" means that each possible value for objects of the type is specified literally in a
list. For example, the enumerated type declaration

type Color is (RED, ORANGE, BLUE, YELLOW, GREEN, PURPLE);

declares the identifier Color as a data type with 6 values. RED is the first value, ORANGE
follows, then BLUE, and so on. The semicolon (:) is part of the declaration. Note that these
values are indeed identifiers as defined in Chapter 2. They must start with a letter and be
followed by letters, digits, or underlines. Further, underlines can only be used singly to separate
letters or digits, and may not start or end an identifier. Note also that the enumeration
identifiers are listed in all uppercase letters because that is the style that is being used; Ada
views these simply as identifiers and does not distinguish the difference between uppercase
and lowercase letters.

Remember that a type consists of set of values, which in this case are explicitly enumerated in
the type definition, and a set of operations on those values. Where are operations on this type
declared and what are they? The answer is that .the operations are implicitly declared when
you list the set of possible values and the operations themselves are the same for all
enumerated types. They consist of such operations as I succ and I PRED. More information on
the operations common to all enumerated types, and implicitly declared when the possible
values are enumerated (listed), will be provided later in this chapter.

Chapter 5 - Sequential Ada II 5-1

r

The formal syntax for an enumeration data type in Ada is given in the three syntax productions
in Syntax Definition 5.1 With two intermediate words, namely identifier and
character_literal, both defined previously in Section 2.3.2. In Olapter 2, we limited our
syntax to that necessary to define the CHARACTER data type. Now we will demonstrate how
simple it is to expand this definition to allow other enumeration types besides CHARACTER.
Note that in the following Syntax Definition we have added another possibility for an
enumeration_literal, namely identifier. We will now show how this adds flexibility
for the user to define new enumerated data types.

enumeration_type_definition ::=
(enumeration_literal_specification
{, enumeration_literal_specification}

enumeration_literal_specification ::= enumeration_literal

enumeration_literal identifier I character_literal

Enumeration Data Type
Syntax Definition 5.1

This syntax can also be expressed in graphic form as indicated in Syntax Chart 5.1.

5-2

enumeration_type_definition ::=

enumeration_literal_specification I ~

enumeration_literal_specification

enumeration_literal

enumeration_literal

identifier

character_literal

Enumeration Data Type
Syntax Chart 5.1

Chapter 5 - Sequential Ada II

For example:

type Important_Dates is (JANUARY_l, APRIL_lS, AUGUST_2,
DECEMBER_2 5) ;

is an enumeration type. Note that it is perfectly acceptable to continue the list of possible
values for the enumeration type onto the next line, as long as each new line starts with a new
identifier, i.e., you may not split an identifier across two lines.

Another example is:

type Week is (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY) ;

For this last case, the ideas of Olapter 2 can be applied as follows to identify two subtypes of
the enumerated type Week. These are:

subtype Work_Week is Week range MONDAY .. FRIDAY;

subtype Week_End is Week range SATURDAY .. SUNDAY;

These two subtype declarations use the reserved word range to define a contiguous sublist of
the values of the type Week, which is denoted by the first and last values of the sublist
separated by a double period (..). Note that the values in the subtype must all be contained in
the parent type and that they constitute a contiguous sublist, i.e., all the values are next to
each other, without gaps, in the list. In this case, the declarations shown have created two
subtypes that have different names and different possible values. However, both subtypes are
compatible with the parent type Week.

When a subtype is said to be compatible with another type or subtype, this means that the
operations defined for one apply to the other. Also the types may be freely mixed in
expressions, etc., except for possible range constraints. For example, given the object
declarations,

Pay_Day : Work_Week;
Today : Week;

which are objects declared to have different names for their (sub)types, Ada's strong type
checking rules would seem to prohibit mixing these types. However, the following sequence of
statements is valid in Ada,

Pay_Day := FRIDAY; a valid value for Work_Week
Today := THURSDAY; a valid value for Week
if Today = Pay_Day then

TEXT_IO.Put("Today is Payday!");
end if;

The comparison operation"=" requires that both types be the same type or compatible types.
Thus, since Pay _Day is an object of type Work_Week and since the type Work_Week is a
subtype of type Week, Pay _Day is compatible with the object Today which is of type Week.
Thus, the comparison operation is valid and will not cause an exception to be raised.

5.1 - Ada Types and Objects 5-3

Operations

The operations available for all enumerated types include assignment, relational and
membership tests, and the attributes given in the next paragraph.

Assignmet\t .-
Relational = I= < <= > >=

Membership in not in ' - _j
The assignment operation consists of the ability to assign enumeration literals to objects
declared to be of the same enumeration type, as well as the ability to assign an object of an
enumerated type to another object of the same enumerated type. If an attempt is made to assign
a value to an enumeration object that is not one of the permissible values enumerated in the type
definition, then the exception CONSTRAINT_ERROR will be raised. The relational operation
consists of the ability to determine whether two objects or literals of the same enumeration type
are equal(=) or to determine their relationship to one other according to the order in which
they are listed in the type definition. For example, in the type Week discussed earlier, MONDAY
< THURSDAY because MONDAY appears earlier in the listing of values in the type definition.
Similarly, FRIDAY > TUESDAY because FRIDAY appears after TUESDAY in the type definition.
Finally, the membership operation provides the ability to determine whether or not an
enumeration literal or an object is contained in an enumeration type's set of possible values. For
example, given the type Work_Week as defined above, the membership operator "in" may be
used as follows:

if TUESDAY in Work_Week then
TEXT_IO.Put (Item=> •This is a valid literal.•);

end if;

and the complementary operator "not in" may be used as follows:

if SATURDAY not in Work_Week then
TEXT_IO.Put (Item=> •Hooray for weekends!•);

end if;

Attrlbo.~tes

As mentioned previously, an enumerated type also has certain attributes that are implicitly
defined and declared when the enumeration type is declared. For example, the enumerated
type T has attributes that include the following:

FIRST the first value of type T, denoted T I FIRST
LAST the last value of type T, denoted T 1 LAST
PRED if the value of X is not T I FIRST

then T I PRED (X) is the literal that precedes x
else CONSTRAINT_ERROR is raised

succ if the value of X is not T I LAST
then T I succ (X) is the literal that succeeds X
else CONSTRAINT_ERROR is raised

POS the position of the literal or identifier within
the enumeration, starting from zero

VAL the value of the enumeration at the given position

5 - 4 Chapter 5 • Sequential Ada II

For the examples above,

Color'FIRST = RED

Important_Dates'LAST = DECEMBER_25

Week'PRED(SUNDAY) = SATURDAY

Week'SUCC(SUNDAY) will raise CONSTRAINT_ERROR.

Week'POS(TUESDAY) = 1 -- MONDAY is at position zero

Important_Dates'VAL(2) = AUGUST_2

Week'VAL(Week'POS(SUNDAY)) =SUNDAY inverse operations

Although this discussion has been about enumerated types that can be declared by you, there
are certain types that are predefined as enumeration types. The type BOOLEAN and the type
CHARACTER are nothing more than predefined enumeration types and have no special
properties. That is, all of the points just made about enumeration types apply equally to the
types BOOLEAN and CHARACTER and all of the points made in our earlier discussion of the
types BOOLEAN and CHARACTER apply equally to all other enumeration types.

Enumeration Objects

Enumeration data objects must be declared before their references in the executable parts of
programs. For example, the following declarations,

Day
Dress

Week;
Color := RED;

declare Day as an object of type Week, and Dress as an object of type Color with an initial
value of RED. The declaration of objects that hold enumeration values is no different than the
declaration of objects that hold characters as described in Chapter 2.

Enumeration Expressions

Expressions involving enumeration values adhere to the same type checking rules as discussed
previously for CHARACTER values. All of the operations must take values or objects of the
same enumerated type. For the relational and membership operations, in every case the results
of such operations are boolean values FALSE or 1RUE. These operations can be used in more
complex boolean expressions.

For example, some enumeration expressions based on the types discussed in this section might
be:

RED < BLUE
SATURDAY in Work_Week
APRIL_lS >= DECEMBER_25
MONDAY < BLUE

5.1 - Ada Types and Objects

type Color, result is TRUE
FALSE
FALSE
Error - not of the same type

5-5

5.1.2 Enumeration Input/Output

Ada provides a very elegant capability for direct input/output of enumeration types. This
allows a user to read or write enumerated types directly. The manner in which Ada provides
this capability for enumeration types is exactly analogous to that which we saw in Chapter 2
for integer types. In future chapters, the complete capability to input/output enumerated types
will be fully explained. However, for now a template will be provided to allow you to Get and
Put enumeration values for the enumeration types that you declare.

In the package TEXT_IO that has already been partially described for you, there is, in
addition to the nested package called INTEGER_IO that we saw earlier, another nested
package called ENUMERATION_IO. This package is also not actually a "real" package at
all. Instead, it is a template for creating specific instances of packages that will have the
ability to read and write the enumerated literals that you declare. Once again, the details of
how this is accomplished by the compiler are beyond the scope of our discussions here. For now,
we are only concerned that you understand the global concepts of what is happening when an
instance ~f this template is created and that you know how to create an instance for your use.

How do we "fill in" the template called ENUMERATION_IO? The answer is that we must
only supply it the name of the enumeration type that we desire to have available for
input/output operations, again, just exactly as we did earlier for integer types. For the
enumeration type Color defined earlier in this section, this is accomplished in the following
manner,

package Color_IO is new TEXT_IO.ENUMERATION_IO (Color);

This provides us with a new package, called Color_IO, that we can use like any other
"normal" package, but this package's purpose is to provide us with the ability to perform
input/output operations on the type Color. Again, for our purposes now, it is not imperative
that you fully understand all of the hidden details of what is occurring here, only that you
understand how to use this feature for your own Input/Output operations of your own
enumeration types.

As another example, to be able to read and write the literals for the type BOOLEAN we would
first need to have a line in our program such as,

package Boolean_IO is new TEXT_IO.ENUMERATION_IO (BOOLEAN);

which provides us a new package called Boolean_IO that will give us the capability of
reading and writing BOOLEAN literals directly.

These new packages are used like any other package. It is impossible to detect that these
packages, created by this mechanism, are any different than any other package that we might
create by simply writing out the specification and body ourselves. This mechanism does have a
name. We call it a generic instantiation because the package template, in our example
ENUMERA TION_IO, is called a generic package in Ada, and the process of creating an
instance of the template is called instantiation. Thus, Boolean_Io is a generic instantiation of
the generic package TEXT_IO. ENUMERATION_IO.

We use a generic instantiation in the same manner as any other package. Thus, to read an
enumeration literal of the type Color, given the generic instantiation Color_IO, we would use

5·6 Chapter 5 - Sequential Ada II

Color_IO.Get (Item=> My_Color);

and similarly, we could write this literal as follows,

Color_IO.Put (Item=> My_Color);

assuming that we had previously
declared My_Color : Color;

It is perhaps instructive to note, however, that enumeration 1/0 for Ada restricts the output of
enumerated types to be either all uppercase letters or all lowercase letters. There is no
provision for normal capitalization, i.e., the first letter only is capitalized. Accordingly, and
since the default of these two options is uppercase, the style used in this textbook is to always
write enumeration literals in all uppercase letters. Thus, on output, the enumeration literals
will appear as they are in the programs that produce them.

Recall how the Width parameter can be used in an integer Put statement to specify the width
of the field in which the number is written. We should naturally wonder if this feature is
available for other types, specifically for enumeration types. The answer is yes! The Width
parameter to an enumeration type Put statement works in the exact same manner as for integer
types with one noticeable exception. The values in an enumeration type are output left justified
in their field, i.e., the spaces that will be written if the length of the enumeration value to be
written out is less than the field width are added at the end of the enumeration value, not
placed at the beginning as in the case of integer values. Thus, the following statement,

Color_IO.Put (Item=> RED, Width=> 6);

will cause the output printed to be R, E, D, with three spaces following. The total field width is
still six spaces, but the values are in the leftmost portion, not the rightmost as they are in
integer types.

Normally, you do not need to provide a field width when you output enumeration values.
However, if you need to format your output in some special way it is important to know what
operations are available to you.

5.1.3 Real Types

Real values conceptually consist of an unbounded, infinitely long set of numeric values with
unbounded and infinite precision. In other words, these values consist of all possible values of
numeric quantities extending from negative infinity to positive infinity on the number line,
with an infinite level of precision. This data type is called the universal_real. Unfortunately,
there are no machines that can represent an infinite range of values nor can they represent even
a portion of these values with anything approaching infinite precision. Therefore, we are
forced by hardware constraints to limit universal_real to a subset of these values that are
representable on any given machine. In consequence, each implementation of Ada will provide a
machine dependent type called FLOAT that will consist of the representable values of floating
point numbers with some machine limited precision. The details of how these values are stored
are not important for our purposes, but suffice it to say that these floating point numbers are
represented internally differently than the integer values that we have already discussed.

In addition, Ada provides us with the conceptual ability to specify either a relative bound on
the error of the actual value and its internal representation, or an absolute bound on this error.
What this means and why it is important will be explained in this section.

5.1 - Ada Types and Objects 5 - 7

5.1.3.1 Floating Point Types and Subtypes

As was previously mentioned, the floating point values in any given implementation of Ada
represent the precision and range limitations of the underlying computer. As in the integer
types that we have already seen, there is a predefined type called FLOAT that is provided for
every Ada implementation. In addition, the user is free to define other floating point types,
specifying the relative precision, and optionally the range, to be used. The formal syntax for a
floating point type and subtype is given next

full_type_declaration ::=type identifier ia type_definition1
type_definition ::= real_type_definition
real_type_definition ::= floating_point_constraint
floating_point_constraint ::= floating_accuracy_definition

[range_constraint]
floating_accuracy_definition ::= digit• static_simple_expression
subtype_declaration ::= aubtype identifier ia subtype_indication,
subtype_indication ::= type_mark [constraint]
type_mark : : = type_name I subtype_name
constraint ::= floating_point_constraint

Floating Point Type and Subtype Declaration
Syntax Definition 5.2

lhis syntax can also be shown in graphic form as follows.

full_type_declaration ::=

identifier

type_definition

type_definition ::=

real_type_definition

real_type_definition ::=

---1 floating_point_constraint ~

5-8 Chapter 5 - Sequential Ada II

floating_point_constraint

floating_accuracy_definition

range_constraint

floating_accuracy_definition ::=

static_simple_expression

subtype_declaration ::=

•ubtype identifier

subtype_indication

subtype_indication

~ type_markl ~ ~r----------------r~~~
Lj constraint~

type_mark

type_name

subtype_name

constraint

floating_point_constraint

Floating Point Type and Subtype Declaration
Syntax Chart 5.2

5.1- Ada Types and Objects 5-9

Sample floating point type and subtype declarations are

type Ratio is digits 3 range 2.0 .. 5.3;
type Hand is digits 5;
type Length_Measures is digits 6 range -100.0
subtype Smal1_Hand is Hand digits 3 range 0.0
subtype New_Ratio is Ratio;
subtype My_Length_Measures is Length_Measures

100.0;
1.2;

range -10.0 .. 10.0;

In these examples, the type Ratio is defined as a floating point type where objects of this type
are represented internally with three digits of precision throughout the range from 2.0 to 5.3.
The type Hand is represented with five digits of precision, and takes the default range of
values for floating point numbers as provided by the implementor of the Ada compiler. The
type Length_Measures defines a floating point type with six digits of precision throughout
the range -100.0 to 100.0. Note that a given Ada implementation is allowed to limit the number
of digits of precision that it supports, according to the underlying hardware. Thus, on one
machine it may be the case that six digits of precision is the maximum that will be allowed,
whereas on another machine you might be able to have up to nine digits of precision. The
compiler will tell you at compile time if it is unable to support the requested level of precision.

The subtype Small_Hand represents a restricted subset of the values in the type Hand, reducing
the required precision to only three digits and introducing a range constraint not present in the
type Hand. Note that the precision specified in a subtype declaration must be no greater than
the precision required in the type. Thus, you can lower the required precision, but you cannot
increase it. The subtype New_Ratio does not restrict the type Ratio in any way, either in
range or in precision. In effect, this is simply an alias for the type Ratio and achieves the same
effect as a renaming of this type. The subtype My _Length_Measures represents a reduction in
the possible range of values from the type Length_Measures without reducing the required
precision.

In addition to user defined types, which are based on an analysis of the requirements of the
problem to be solved, each implementation of Ada provides a predefined type named FLOAT.
This type is used in the same manner as the predefined type INTEGER. The predefined type
FLOAT has a degree of precision that is implementor defined and a range that is also
implementor defined. The values of these limits can be found in the required Appendix F to the
Reference Manual for the Ada Programming Language (LRM) that the vendor must supply with
the compiler.

We could declare objects using these types in the same manner as we have seen previously, such
as

My_Hand : Hand;
The_Distance : My_Length_Measures := 1.7;
Pi : FLOAT := 3.14159;

It might be useful to examine what is meant by the term digits of precision. What does it mean
to specify that there will be five digits of precision? This term is used to refer to the number of
significant digits that an object will require. If we have five significant digits, then the
leftmost five digits in a canonical representation of the number are the only digits that will be
meaningful. This is perhaps easier to see in the illustration given in Figure 5.1.

5-10 Chapter 5 - Sequential Ada II

type NUMBERS is digits 3 range 0.0 .. 20_000.0;

0 . .Q.ll, 0 . .Q.Q.l, 0 . .Q.!U, ... ia....J. , ia...J.,m. 0 , ill- 0 , ~- 0 ,
.l.QQ.O. O,l.Q.l.O. O,l.QQ.OO. O, .l.Q.l.OO. O

Relative Precision
Figure 5.1

Figure 5.1 also shows what is meant by the term relative precision. Note that numbers closer to
zero give greater significance to the number of significant digits. Thus, near zero in this
example, three digits of precision means that the difference between any two values in this
type is only 0.001 or one one-thousandth. As we move further from zero, even with the same
number of digits of precision, the significance of those digits lessens. Thus, when we approach
100, we see that with three significant digits we have 98.1, 98.2, etc., where the distance
between two successive values in the type is now every tenth instead of every one thousandth.
As we pass 100 and approach 1000, we see that 997.0, 998.0, etc. are separated by 1.0 which is
three orders of magnitude less significant than when we were close to zero and the distance
between two successive values was one thousandth! Thus, we say this is relative precision
because the number of significant digits does not change, but the meaningfulness of those digits
increases as we approach zero and decreases as we get further away from zero. Similarly, the
number of significant digits is merely the number of digits that have meaning in a number. Thus,
the number 10_000_000.0 represented by a type that was declared to be digits 3 would mean
that only the leftmost three digits U!lQOOOOO.O) would have meaning. Adding one to this
number would not change it because we would lose the significance of the one, i.e., .l.QOOOOOO.O +
1.0 = lQQOOOOO.O because .lllQOOOOl.O is not representable due to the limitation of only three
significant digits.

This phenomena can be a very large problem and may materially affect the results obtained in
somewhat innocent looking computations. Thus, you must always be vigilant not to allow this
type of a problem to creep into your algorithms. There is a whole field of study called
numerical analysis which concentrates on solutions to problems of this nature. If you are
interested in learning more about roundoff error, relative precision problems, truncation, and
internal representation of numeric values you should consider taking a course in numerical
analysis.

Attributes

For any given floating point type, say F, the attributes available to the user include the
following

FIRST Yields the first value of type F, denoted F I FIRST
LAST Yields the last value of type F, denoted F I LAST
DIGITS Yields the number of decimal digits in the decimal mantissa of the model

numbers for this subtype, denoted F I DIGITS
MANTISSA Yields the number of binary digits in the binary mantissa of the model

numbers of this subtype, denoted F I MANTISSA
EPSILON Yields the absolute value of the difference between the model number 1.0

and the next model number above for this subtype, denoted F 1 EPSILON

Attributes can be used to query the system at runtime to determine values that may influence
the executing algorithm. They are very useful for achieving portability.

5.1 • Ada Types and Objects 5. 11

As you can see, there is a whole new world of numeric values possible when we include the
floating point types. Many computations that would not be possible with only the whole
numbers are now available for our use. But there is another kind of real number that we still
need to discuss, the fixed point number.

5.1.3.2 Fixed Point Types and Subtypes

Fixed point types are somewhat unique in programming languages. H you have ever used
another programming language, then more than likely the real numbers that you have used
were floating point numbers. In Ada, we have the choice between the floating point numbers as
previously described, and fixed point numbers. You will recall that floating point numbers
represented a relative bound on the error of a number's representation. Fixed point numbers, in
contrast, represent an absolute bound on this error.

The formal syntax of a fixed point number is given next.

full_type_declaration ::=type identifier 1• type_definition;
type_definition ::= real_type_definition
real_type_definition ::= fixed_point_constraint
fixed_point_constraint ::= fixed_accuracy_definition

[range_constraint]
fixed_accuracy_definition ::= 4elta static_simple_expression
subtype_declaration ::= aubtype identifier 1• subtype_indication;
subtype_indication ::= type_mark [constraint]
type_mark ::= type_name I subtype_name
constraint ::= fixed_point_constraint

Fixed Point Type and Subtype Declaration
Syntax Definition 5.3

This syntax can also be shown in graphic form as follows.

full_type_declaration ::=

identifier

type_definition

type_definition ::=

real_type_definition

real_type_definition

fixed_point_constraint

5-12 Chapter 5 - Sequential Ada II

fixed_point_constraint

fixed_accuracy_definition

range_constraint

fixed_accuracy_definition ::=

static_simple_expression

subtype_declaration ::=

aubtype identifier

subtype_indication

subtype_indication

~ type_mark 1~~----------------r-~~--Lj constraint~
type_rnark

type_name

subtype_name

constraint

fixed_point_constraint

Fixed Point Type and Subtype Declaration
Syntax Chart 5.3

5.1 - Ada Types and Objects 5-13

Note that the range constraint is shown as optional. However, when you are declaring a new
fixed point type the range constraint is required. On the other hand, when you declare a fixed
point subtype the range is optional. Therefore, in the Syntax Definition and Syntax Chart the
range must be shown as optional, even though we now know that for a type declaration it is
required.

Sample fixed point type declarations are

type Dollar_Value is delta 0.01 range 0.0 .. 1.0;
type Very_Precise is delta 0.0006 range -10.185 .. 17.893;
subtype Not_So_Precise is Very_Precise delta 0.001;
subtype Even_Less_Precise is Very_Precise delta 0.01 range -1.0
.. 1. 0;
subtype My_Dol1ar is Dollar_Value;

In these examples, the type Dollar_ Value is defined as a fixed point type (note the use of the
reserved word delta to mean fixed point types, while the reserved word digits is used for
floating point types) where successive values of objects of this type are 0.01 apart throughout
the entire range of 0.0 to 1.0. Remember that in floating point types, with relative precision,
the closer we were to zero the more precise was our represented value. In this fixed point type,
throughout the entire range of values, all values will be 0.01 apart1. This is termed an absolute
bound on the error, contrasted with the relative bound provided by floating point types.

For the type Very_Precise, we see that objects of this type will be represented by values
sepatat:ed by O.Q006 ttuoughout the range -10.185 to 17.893. Recall that for fixed point type
definitions, the range must be provided. The subtype Not_so_Precise represents a restriction
on the type Very_Precise where the delta or difference between successive values has been
reduced to 0.001 from 0.0006. As in floating point types, we can reduce the required precision, but
we may not increase it. Also, this subtype does not have, nor does it require, a range constraint
Since one is not provided, it will have the same range constraint as the type Very _Precise.
The subtype Even_Less_Precise is also a restriction on the type Very _Precise, but in this
case we have not only reduced the required precision (delta), we have also reduced the
applicable range.

Finally, for the subtype My_Dollar, we have merely provided an alias or renaming of the type
Dollar_ Value without restricting either the accuracy requirements or the range. Thus, objects
of this type will be identical to those of Dollar_Value.

All fixed point types in Ada must be declared by the user. In fact, there is only one predefined
fixed point type, Duration, which is used to represent time intervals. In particular, there is no
predefined type FIXED that can be equated to the predefined type FLOAT.

We could declare objects using these types in the same manner as we have seen previously, such
as

The_Do1lar : Do1lar_Value;
The_Value : Very_Precise := -9.285;

1This is not quite true. We have actually specified the largest power of two not greater than
the delta value. However, this is not a course in numerical analysis, so for our purposes we will
infer that the delta represents the actual bound on the error.

5-14 Chapter 5 - Sequential Ada II

In the last section, we explained what we meant by the term relative precision by showing a
figure that illustrated our points. In this section we will do the same to illustrate the concept of
absolute accuracy. Refer to Figure 5.2.

type TENTHS_OF_INCH is delta 0.1 range 0.0 .• 1.0;

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TENTHS_OF_INCH

Absolute Error
Figura 5.2

In this figure we illustrate that throughout the entire range of permissible values for this type,
the distance between any two representable values is always the same, 0.1. It does not matter
whether we are close to zero or far away, the distance between any two values will always be
the same. This is what is meant by an absolute bound on the error. Of course, in real life, we
must deal with machines that use binary to represent these values. Therefore, the actual
values will not be exactly as illustrated here. However, for our purposes, this explanation will
suffice.

Attributes

For any given fixed point type, say F, the attributes available to the user include the following

FIRST Yields the first value of type F, denoted F 1 FIRST
LAST Yields the last value of type F, denoted F I LAST
DELTA Yields the value of the delta specified in the fixed accuracy definition for

this subtype, denoted F 1 DELTA
MANTISSA Yields the number of binary digits in the binary mantissa of the model

numbers of this subtype, denoted F 1 MANTISSA
SMALL Yields the smallest positive (non-zero) model number for this subtype,

denoted F I SMALL
LARGE Yields the largest positive (non-zero) model number for this subtype,

denoted F I LARGE

Thus, we see that fixed point numbers are conceptually very intriguing, but due to limitations in
their implementations, they are not as useful as we might hope. For this reason, we will deal
with floating point values for most of the rest of this course.

5.1.4 Exercises

1. Define an enumeration type named CARS that contains the values for any four of your
favorite automobiles. What operations are available for your type?

2. Why might you want to have a subtype such as Work_Week of a type such as Week?

5.1 -Ada Types and Objects 5- 15

3. Given the type definitions in this section, what will be written to the· screen after the
execution of the following code segment?

if SATURDAY in Week_End then
TEXT_IO.Put {Item=> "Hooray- a day off!");

else
TEXT_IO.Put {Item=> "Too bad you have to work!");

end if;

4. Using the type declarations in this section, what would be the result of the following
assignment statement? Explain your answer.

Dress := Color'VAL {Color'POS{ GREEN));

5. Write the necessary statement to instantiate an input/output package for the type CARS
that you defined in Exercise 1. Will the enumeration values be written in uppercase or
lowercase letters?

6. Show what would be output (including all spaces, if any) for each of the following Put
statements. Assume the package Color_IO has already been properly instantiated for the
type Color.

a) Color_IO.Put{Item =>RED, Width=> 4);
b) Color_IO.Put(Item =>GREEN, Width=> 4);
c) Color_IO.Put(Item =>ORANGE, Width=> 2);
d) Color_IO.Put{Item =>PURPLE, Width=> 6);

7. Is the following user-defined type declaration permissible in Ada? Explain your answer!

type Boolean is (TRUE, FALSE);

8. What do you think happens if you try to take the predecessor of the first value in an
enumeration type? What about the successor to the last value in the type?

9. What is the difference between a floating point number and a fixed point number?

10. Declare a real number with a relative precision of 5 digits over the range 1.7 to 11.3, giving
it the name Conversion_ Type.

11. Declare a number with an absolute error of one ten-thousandth over a range of 2.2 to 5.7
callingitCalibration_Type.

5.2 Introduction to One Dimensional Arrays

An array is an object that may contain multiple values simultaneously. It is an object declared
from a composite type. We will find that arrays can be quite useful to software engineers to
represent objects that exist in the real world such as a deck of cards or a list of grades for any
given examination for a class of students. These ideas represent a linear list of component values
that are all of the same type. We will then extend these ideas to show how arrays may be
constructed to have multiple dimensions.

5-16 Chapter 5 - Sequential Ada II

5.2.1 Arrays with Only One Dimension

So far in this textbook, we have used data that contained a single value. Such data are called
scalar values and thus the types are referred to as scalar data types. Examples include
INTEGER, CHARACTER, and BOOLEAN, as well as any enumeration type that you might
define. Each object of this type may contain at most a single value of the type at any given time.
Thus, given the following declaration,

My_Count : INTEGER;

the object My _count may contain the value 10, or -24, or 0, but not all of them at the same time.
Only a single integer value may ever be contained in the object My _count at any time during
the execution of the program.

There are times, however, when it is convenient to speak about values collectively. Data types
that can hold multiple values simultaneously are called composite types in Ada. For example,
suppose that we had to maintain the grades for an entire class of students. Further supPQse that
this class had 100 members. One way we could accomplish our task would be to declare 100
objects, each of which would then hold a single student's grade. Of course, it would be awkward
to access these values because we would need identifiers for these objects such as Gradel,
Grade2, Grade3, ... , Grade99, and GradelOO. Needless to say, this would be quite cumbersome
and tedious. What we need is a mechanism whereby we could use a single identifier to refer to
the grade and a subscript to refer to the student whose grade is sought This is exactly the way
a situation such as this is handled in mathematics. There we would use a subscript like
Gradel, Grade2, etc. to refer to each individual grade. Note that in mathematics we have
used a single identifier; the subscripts then refer to which of several possible values for this
identifier we mean. Note that if we were to refer to just Grade we would be speaking about all
100 of the grades. This example can be visualized in the following illustration:

Gt8de1

A

Grade Subscripts
Figure 5.3

Similarly, in Ada we can use an array to represent our values, with a single identifier denoting
the array and a subscript denoting any particular value in the array . The idea is the same as in
mathematics; a collection of values of the same type is represented by a single identifier with
subscripts This composite of information is then easier for us to deal with and is more natural
to discuss. It also eliminates the requirement for creating large numbers of identifiers to
represent related objects. One limitation of this representation scheme is that all of the values
must be of the same type. Thus, we can have an array of INTEGERs and an array of
CHARACTERs, but we cannot have an array of some CHARACTERs and some INTEGERs.

The formal syntax for an array data type in Ada is given by the following syntax productions .

array_type_definition ::= constrained_array_definition I
unconstrained_array_definition

constrained_array_definition ::=
array index_constraint of component_subtype_indication

5.2 • Introduction to One Dimensional Arrays 5-17

index_constraint ::= (discrete_range)

discrete_range ::= discrete_subtype_indication I range

subtype_indication ::= type_mark [constraint]

constraint ::= range~constraint

range_constraint ::=range range

range ::= simple_expression •• simple_expression I range_attribute

attribute ::=prefix' attribute_designator

prefix :: = name

attribute_designator ::= simple_name [(static_expression)]

component_subtype_indication ::= subtype_indication

unconstrained_array_definition ::=
array (index_subtype_definition
of component_subtype_indication

index_subtype_definition ::= type_mark range <>

type_mark : : = type_name I subtype_name

Array Data Type
Syntax Definition 5.4

nus syntax can also be expressed in graphic form as indicated in Syntax 0\art 5.4

array_type_definition ::=

constrained_array_definition

unconstrained_array_definition

constrained_array_definition

index_constraint

component_subtype_indication

5-18 Chapter 5 - Sequential Ada II

index_constraint ::=

discrete_range

discrete_range ::=

---r~~i discrete_subtype_indication lr-.,.-~~

~--------~'i range lr---------~

subtype_indication

~ type_mark ~-.-----------------r~~_. Y constraint~
constraint

range_constraint

range_constraint

range .. -

attribute

attribute_designator

prefix :.:=

5.2 ·Introduction to One Dimensional Arrays 5-19

5-20

attribute_designator

simple_name .

static_expression

component_subtype_indication

subtype_indication

unconstrained_array_definition

index_subtype_definition

component_subtype_indication

index_subtype_definition

type_mark

type_mark

type_name

subtype_name

Array Data Type
Syntax Chart 5.4

Chapter 5 - Sequential Ada II

For example, in Ada we can define a constrained one dimensional array (later we will discuss a
generalization of these concepts to more than one dimension) as a collection of values of the
same type represented by a single name2 using the following declaration,

type Grade_Vector is array (1 .. 100) of INTEGER;

This declares a new type, an array with the name Grade_ Vector, to be a contiguous collection
of 100 INTEGERs. Then the object declaration,

Grade : Grade_Vector;

declares an object capable of holding 100 INTEGERs. In order to select any single value in this
array we merely subscript the identifier as we would in mathematical notation. Thus,

Grade(25) := 88;

assigns the value 88 to the 25th position in the collection of INTEGER values called Grade.

In all of our previous examples, we have shown the lower bound of the array to be one. This is
not a requirement in Ada. The indices used in the array definition can be any discrete value.
This means that not only can we have negative indices in the array, we do not even need to
have numeric values! Consider the following examples,

type Sine_Curve is array (-1 .. 1)of INTEGER;
type Number_Line is array (-100 .. 275) of POSITIVE;
type Work_Hours is array (MONDAY .. SUNDAY) of POSITIVE;

all of which define types that are perfectly acceptable in Ada.

5.2.2 Array Operations

The operations available for an array include assignment, indexing, membership, logical,
relational, and explicit conversion, as well as the attributes described in the next section.

Aggregate Assignment .-
Catenation (One-dimensional only) &

Logical (Boolean components only) and or xor not

Membership in not in

Relational = I=
Relational (Discrete components only) < <= > >=

Aggregate assignment is the ability to assign all of the values to an array simultaneously. For
example, given the following declarations,

type Grades is (A, B, C, D, F);
type Class_List is array (1 ·• . 5) of Grades;
Class_Grades : Class_List;

2 A one dimensional array in Ada is similar to a vector in mathematics.

5.2 - Introduction to One Dimensional Arrays

-- -~---=- = -~- ----- .

5-21

we could assign the grades to this Class_List by the following single aggregate assignment
statement,

Class_Grades := (A, C, D, A, B);

In this example, the first storage position in the array Class_Grades would get the value A,
the second would get the value c, etc. Note that we must have exactly the same number of
grades as we have storage positions in the array. Also note that the entire set of values to be
assigned is enclosed in parenthesis and each individual value is separated by a comma.

Sometimes it may be inconvenient to list a value for every storage location in the array,
especially if the array is large. Also, it often happens that we want to assign the same value to
all of he positions in an array, say to initialize the values. Therefore, there is a mechanism to
allow us to do this. We merely use the reserved word others followed by an arrow (• >),
followed by the value we want for all of the storage positions. For example, suppose that we
had the following array declarations,

type Books is array (1 .. 100) of NATURAL;
-- a count of the number of each kind of book

My_Books : Book;

then we can set the initial value of this object My _Books to be all zeros by the single assignment
statement,

My_Books := (others=> 0);

This is a convenient notation when the array is large and is a handy shortcut for you to
remember.

The Catenation operation is applicable to all one dimensional arrays (the only kind that you
have seen so far), but are used primarily for STRINGs. We will discuss more about this
operation in the following section.

The Logical operations on one dimensional arrays that have boolean components are exactly
the same as on objects that have a single value. These operations allow an entire array to be
used in logical tests where conditional expressions are used.

The Membership operation allows us to test an array to determine if a particular value exists as
one of the components of the array.

The Relational operations allow two arrays to be compared. For the relational operators '='
and'/=', the components of the array may be of any type. For comparisons using the operators
'<', '<=','>',or'>=', the type of the components of the array must be boolean. Except for this
one restriction, the use of the relational operators for arrays is the same as their use for any
scalar type.

5 ·22 Chapter 5 • Sequential Ada II

5.2.3 Array Attributes

Arrays also have attributes that are implicitly declared when the array is declared.
Attributes available to all arrays are:

FIRST the first index position
LAST the last index position
LENGTH the total number of indices
RANGE a shorthand for the range T I FIRST . . T I LAST where T is any array

For example, given the array declaration and object declaration,

type Card_Deck is array (1 .. 52) of Card;
-- assume that Card is defined for the suits and
-- ranks of a deck of cards

Cards : Card_Deck;

then the following are true,

Cards 1 FIRST = 1
Cards 1 LAST = 52
Cards 1 LENGTH = 52
Cards 1 RANGE is 1 .. 52

There are more attributes defined for certain types of arrays and we will examine them when
we discuss multi-dimensional arrays in Section 5.3. For now, these are sufficient to make good
use of arrays.

5.2.4 Array Input and Output

Since an array is a collection of many values of the same type represented by a single name, it is
usually not possible to put or get an entire array of values in the same manner that a single
value is read or written into an object. With the exception of a very special predefined array
type that we will study in the next subsection, STRINGs, a different approach is used to
perform input and output operations on arrays.

Essentially the approach that we use to get and put values in an array is to examine each
separate location in the array using the subscripting operation mentioned above. When we do
this, that storage location, even though it is part of an array, is by itself just a single value of
the array. If this single value happens to be a scalar object3, then we can use the normal Put and
Get operations defined for that object's type as we have been doing. For example, in the object
Grade defined above, the array position Grade (2 5) represents a single value in the array
Grade. In this case, it represents the 25th storage location out of the 100 storage locations
defined to be part of the object Grade. However, that particular location is just a single location
where an object of type INI'EGER is stored, since Grade_ Vector is a contiguous collection of 100

3 Recall that a scalar object is one that contains a single value, as opposed to a composite object,
like the array, that contains potentially multiple values.

5.2 • Introduction to One Dimensional Arrays 5-23

INTEGERs, and Grade is an object of that type, and we have subscripted Grade to isolate a
single position within it. Thus, Grade (2 5), or any other subscripted position within Grade,
represents an object of type INTEGER no different than any other INTEGER object that we have
already studied. Consequently, all of the operations that we were able to perform on these
objects we can also perform on a subscripted position of Grade. In particular, we can call Get and
Put from the instantiated integer input/output package to perform these operations. This, then,
is how we can perform input/output operations on an array. We merely subscript each possible
value within the array to isolate a single object of a scalar type, then perform the operation on
that single value.

The next question that arises is how to we subscript every location in the array? The answer is
that we merely use a looping mechanism. Since we know in advance what the bounds of the
array happen to be, we can use a form of deterministic looping, or definite iteration. Such a
mechanism is the for loop. Thus, to write out the value in the array Grade defined above,
assuming that it had already been provided with a complete set of values, we could use the
following code segment,

Array_Output_Loop:
for I in 1 .. 100 loop-- the known bounds of the loop

Int_IO.Put(Grade(!));
end loop Array_Output_Loop;

Here we loop through the array indexing each storage location individually, one at a time,
from lowest to highest, writing out the value stored there. It should be obvious how to use this
mechanism to Get values into the array and so an example of that process will not be given.

From a software engineering perspective, there is a better way to write the last example.
Recall that since we knew that there were 100 components in this array, we wrote the loop to
iterate from 1 to 100. Suppose that we repeated this several places in our program. Now further
suppose that we decided to modify the type so that the range of the array went from 1 .. 200
instead of 1 .. 100. We would now have to go through our entire program and check each loop to
make sure that the loop iteration was correct. This is an error-probe operation. A better solution
is to use the attribu~ of the array to dynamically adjust this for us. Consider the following
example,

New_Array_Output_Loop:
for I in Grade'RANGE loop

-- using the attributes of the array to set the bounds of the loop
Int_IO.Put(Grade(!));

end loop New_Array_Output_Loop;

We see in this example that if we change the definition of the array type, i.e., we change the
range of the index, this dynamic mechanism will automatically change everywhere it is used.
This saves us an enormous amount of work and serves to make our programs more amenable to
change. This enhances the maintenance process.

We will see more about the use of arrays later in this course. In fact, we will compare and
contrast the two different kinds of arrays, constrained arrays, whose indices are known at
compile time (static), and unconstrained arrays, whose indices are dynamic. We have already
seen an example of a constrained array so we will now tum our attention to a predefined array
that happens to be unconstrained, namely STRING. Later we will return to this topic for a more
thorough discussion of these types.

5-24 Chapter 5 - Sequential Ada II

5.2.5 STRING Types and Objects

STRING is a predefined Ada type that is represented as a contiguous collection of characters. In
Ada terms, the type STRING consists of a one dimensional unconstrained array of
CHARACTERs that are indexed by POSITIVE INTEGERs. Having given you the technical
jargon, we will now explain the type STRING in more common terms, then return to the Ada
definition.

As previously stated, arrays will be defined more generally in Section 5.3. For now we will
examine the type STRING as it is declared in Ada, then consider what each portion of the
declaration means. Note that although the type STRING is a predefined Ada type, it could
have easily been declared by you. The type STRING is an unconstrained array given in two
declarations:

subtype POSITIVE is INTEGER range 1 .. INTEGER'LAST;

type STRING is array {POSITIVE range <>) of CHARACTER;

As defined, an array is a list of identical data objects that can be treated as a single composite
object. Thus, the definition of STRING given above states that a STRING is a list of
CHARACfERs that can be considered as a single object. The index used to access any given
CHARACI'ER in the STRING must be a POSITIVE number within some unspecified range.
When you declare the array object you must provide the actual indices to be used.

Imagine a consecutive list of characters in a row. Collectively, they make up a STRING.
However, it is still possible to access individual CHARACTERs that make up the STRING.
This is accomplished by naming the STRING and specifying in parenthesis which particular
component of the string that you desire to access. This implies that the components of the string
must have some positional value so that they can be accessed. This is precisely what is given by
the type POSITIVE in the type definition for STRING. For example, some STRING objects are

Question constant STRING := •How Many Characters?•;
Name constant STRING := •sherry•;
Course· STRING {1 .. 6);
Address STRING {5 .. 27);

In the first example, the object Question is a STRING with a length of 20 (count the characters
and spaces) and an initial (and constant) value of •How Many Characters?•. The length is
implicitly supplied by the length of the actual string used to provide the initial value. In the
second example, the length of Name is implicitly determined in a similar manner from the
length of the initial value, namely • Sherry, • so that the number of characters allowed in
this string (its length) is 6. In the next example, the object Course is declared to be a string that
contains 6 characters with positions denoted 1 .. 6. Finally, in the last example, the object
Address is a string capable of containing 23 characters with the positions of each character
numbered in order from 5 to 27. Note that in every case we had to provide POSITIVE numbers to
use as the indices, either explicitly as in the last two examples, or implicitly, as in the first
two examples.

As was mentioned previously, it is desirable to access individual characters of the STRING on
an as needed basis. The mechanism to accomplish this task is to name the string, then provide
in parenthesis the positional number of the particular character that is desired from the string.
Thus, using the objects declared above,

5.2 -Introduction to One Dimensional Anays 5-25

--------- - -

Question{3) = 1W'
Question(20) = 1?'
Name(3) = 1e 1

third letter in "How Many Characters?"

third letter in "Sherry•

and given the following valid assignments to the objects declared above,

Course := "CS1 001";
Address := "150 W. University Blvd.";

the following are valid accesses to individual characters,

Course(2) = ~s·

Course(6) = 11'
Address(5) =
Address (10) =

11'
I • .

the first position was declared to be 5
the sixth character is at position 10

Operations

The operations on STRINGS are no different than those on other one dimensional arrays. This is
logical since STRINGS are, after all, nothing more than one dimensional arrays of
CHARACTERs. There are, however, some special operations available only for objects of type
STRING, including one operation that has already been discussed. Recall that the &c operator
is used for catenation. This operator can be used to join two STRINGs or to join a CHARACI'ER to
the beginning of a STRING, or to join a CHARACTER to the end of a STRING. Thus, the
following declarations:

Ful1_Na.me : STRING (1 . . 10);
First_Name :STRING (1 .. 5) := "Mike ";
Last_Name : STRING (1 .. 5) := •smith";
A_Letter : CHARACTER : = I A';

allow the following operations to be performed:

Full_Name := First_Name & Last_Name;
TEXT_IO.Put (Item=> A_Letter & First_Name);
TEXT_IO.Put (Item=> Last_Name & A_Letter);

-- puts "AMike"
-- puts "SmithA"

Note that in the first case, the length of the STRING First_Name is 5 characters and the
length of the second STRING Las t_Name is 5 characters, so the STRING object to which the
catenation of these two STRINGs is assigned, namely Full_Name, must be declared to be 10
characters long in order to contain the catenation of the two STRINGs. If the STRING to which
the catenated objects are to be assigned is not long enough to contain all of the characters from
both objects, then an error results and the exception CONSTRAINT_ERROR is raised.
Similarly, if the STRING to which the catenated objects are to be assigned is bigger than then
both objects combined, then CONSTRAINT _ERROR will also be raised. In short, the target
STRING (the one on the left of the assignment operator) must be exactly the same length as the
sum of the lengths of the two objects on the right hand side of the assignment operator.

Input and Output for STRINGs

TEXT_IO. Get and TEXT_Io. Put procedures will.get and put components of STRINGs as
sequences of characters. A call on Get will attempt to read as many characters as declared for
the STRING.

5-26 Chapter 5 - Sequential Ada II

Consider the following program

with TEXT_IO;
procedure String_Program is

Name :STRING (1 .. 9);
begin

TEXT_IO.Get (Item=> Name);
if Name(l) < Name(2) then

TEXT_IO.Put (Item=> "Name starts upward");
else

TEXT_IO.Put (Item=> "Name starts downward");
end if;
TEXT_IO.Put (Item=> • with full name • & Name);

exception
when others =>

TEXT_IO.Put (Item=> "An error occurred in this program.");
end String_Program;

If a value of Name is not found, this program will terminate after the exception handler writes
out its message. The value for Name, if one exists, must be exactly nine characters long because
the object Name is specified to be nine characters long. Any longer and only the first nine
characters will be read; any shorter and the terminal will seem to hang while the program
waits for the rest of the input characters.

Note also that the program compares the first two CHARACTERs of the STRING Name by
using the notation Name (1) to mean the first CHARACTER in the STRING Name and Name (2)
to mean the second CHARACTER in the STRING. The rest of the program is a simple
explanation to the user based upon the relationships between these first two characters.

5.2.6 Exercises

1. Declare an array type called Work_Hours that is indexed by the enumeration values
representing the days of the week having components that represent the number of hours
worked by an individual during the week. Ensure that you properly define appropriate
types to use in your array type declaration.

2. Suppose that you had an array object named Time_Card of type Work_Hours (see Exercise
1). What are two different ways to initialize all components of this array to the value
zero?

3. Write a segment of Ada code to output all of the values in the array object in Exercise 2.
What would you have to assume had been done before you could Put these values, besides
providing values to the array components?

4. Write a segment of Ada code to output all of the values in the array object in Exercise 2. For
this exercise, you must use the most appropriate attribute.

5. Declare an array type called Deck_Of_Cards that consists of 52 storage locations for
objects of type card. Use the appropnate type to represent the type Card. (Hint: remember
that a card consists of a value and a suit.) ·.

5.2 - Introduction to One Dimensional Arrays 5-27

~-

6. Declare an array called Regional_Burger_sales. This array will be used to store
information about the number of hamburgers consumed daily at each location within the
region. There are 27 locations within the region, and the record sales for any given day is
25,000 hamburgers.

5.3 Multi-Dimensional Arrays

In the previous section we discussed a means by which we could represent multiple values in a
single identifier, namely an array. This concept is fine as far as it goes, but it can easily be
generalized into a more useful form. In this section we will study multi-dimensioned arrays to
see how the concepts inherent in these data structures allow us to map real-world problems into
internal abstractions that can be used in the solution of these problems.

5.3.1 Arrays with More than One Dimension

One dimensional arrays are quite useful and allow us to create abstractions that model real
world entities. This, in tum, allows us to solve many problems in a more straightforward way,
which allows us to maintain these software systems in a less cumbersome manner. However, the
abstraction does breakdown when we desire to represent entities that are not vectors, but are
matrices. One simple solution to this problem is to have an array that has elements that are
also arrays. For example, to represent a chessboard we might have:

type Chess_Piece is (PAWN, ROOK, KNIGHT, BISHOP, QUEEN, KING, EMPTY);
subtype Chess_Board_Size is POSITIVE range 1 .. 8;
type Chess_Board_Row is array (Chess_Board_Size) of Chess_Piece;
type Chess_Boards is array (Chess_Board_Size) of Chess_Board_Row;
Chess_Board : Chess_Boards;

This simple example represents the possible chess pieces as an enumerated type. The value
EMPTY is included so as to allow for a given square to not have any chess pieces upon it. The
subtype is created to limit the number of the rows and columns to that which make up the
chessboard. Then each possible row is represented as an array that consists of eight storage
locations, each of which can hold a value of type Chess_Piece. Finally, the chessboard type
is represented as an array of eight of the chess board rows.

A5 you can see, while it possible to represent the chessboard in this manner it is confusing and
unnatural. Further, references to any given board location are syntactically strange. For
example, to indicate that we want to place a KNIGHT on row three, column five of the
chessboard we would need to write

Chess_Board(3) (5) :=KNIGHT;

which looks very ugly. To see that this is syntactically correct, we see that the identifier
Chess_Board represents an array that we index with the value three. This gives us the third
component of the array Chess_Board which we know is itself an array. Thus, we have to
further index into this component array at the fifth position to obtain the component located
there which we know to be a storage location capable of holding an object of type
Chess_Piece. Therefore, we see that this syntax is indeed correct, even though it is not
intuitive or "pretty."

5-28 Chapter 5 - Sequential Ada II

To solve this problem we extend the notion of an array to more than one dimension. The syntax
for this extension is shown next in Syntax Definition 5.5 which is formed by simply extending
the syntax definition given previously as Syntax Definition 5.4.

index_constraint ::= (discrete_range {, discrete_range}

unconstrained_array_definition ::=
array (index_subtype_definition {, index_subtype_definition}
of component_subtype_indication

Multi-Dimensional Array Data Type
Syntax Definition 5.5

This can also be shown graphically as Syntax Olart 5.5 as follows:

index_constraint

unconstrained_array_definition

index_subtype_definition

component_subtype_indication

Multi-Dimensional Array Data Type
Syntax Chart 5.5

In order to show you how this simple extension extends our power of representation, consider the
same chessboard definition but with the use of a multi-dimensioned array. We will use the first
dimension to represent each row of the chessboard and the second dimension to represent each
column. Thus, we obtain the following type definitions:

type Chess_Piece is {PAWN, ROOK, KNIGHT, BISHOP, QUEEN, KING, EMPTY);
subtype Chess_Board_Size is POSITIVE range 1 .. 8;
type Chess_Boards is array {Chess_Board_Size, Chess_Board_Size)

of Chess_Piece;
Chess_Board : Chess_Boards;

5.3 • Multi-Dimensional Arrays 5-29

This allows us to make the same assignment as before in the following manner:

Chess_Board (3,5) :=KNIGHT;

which looks somewhat less ugly than the last version. This syntax is more intuitive because it
suggests that we are indexing into the array at row three, column five, to obtain the component
that is located there. This is a storage location for an object of type Chess_Piece as before, but
the notion of how to access this object is "cleaner'' and more intuitive, i.e., it involves the
selection of a row and a column.

As you study the syntax definition you will note that there is no limit placed by the language
on the number of dimensions that an array may contain. Thus, you may place a dimension for
each portion of the problem that you logically want to model. Thus, to represent a Rubik's Cube
as shown in Figure 5.4, you might have the following declarations:

subtype Rows is POSITIVE range 1 .. 3;
subtype Columns is POSITIVE range 1 .. 3;
type Faces is (FACE_l, FACE_2, FACE_3, FACE_4, FACE_S, FACE_6);
type Face_Colors is (RED, YELLOW, BLACK, ORANGE, BLUE, GREEN);
type Rubik_Cubes is array (Faces, Rows, Columns) of Face_Colors;
Rubik_Cube : Rubik_Cubes;

Rows

Colurms

Rublk Cube
Figure 5.4

In this series of declarations, there are three dimensions, represented by the three ranges inside
of the parentheses in the type declaration. The first dimension is the face of the cube that we
are currently interested in, the next is the row on that face and the last is the column in the row
on that face. If you think about it (and it may not hurt to pull out your old Rubik's cube to verify
this), each of the colored squares that make up the Rubik's cube is completely and uniquely
defined by specifying which face, row, and column you desire to talk about In this manner,
colors may be assigned to these locations and the cube may be completely described.

5.3.2 Array Operations and Attributes

The operations on a multi-dimensioned array are the same as those available for a single
dimension array as described in Section 5.2.2, except where it was specifically noted that the
operation applied to one-dimensional arrays only. There are some accommodations that must be
made for the additional dimensions. For example, aggregate assignment in multi-dimensioned
arrays is more difficult because we must specify each of the dimensions separately. Thus, to
initialize the Chess_Board declared above to be all EMPTY, we must use the following
notation:

Chess_Board := (others=> (others=> EMPTY));

5 • 30 Chapter 5 • Sequential Ada II

which states that for all indices in the first dimension (Rows) and for all indices in the second
dimension (Columns) the value to be assigned is EMPTY. Alternatively, we could have stated:

Chess_Board := (1 .. 8 => (1 .. 8 =>EMPTY));

which would do the exact same thing. Thus, when we deal with multi-dimensioned arrays we
must remember to consider and name all of the dimensions when we do an aggregate assignment.
As a final example, the Rubik's cube could be initialized to all RED with the following
aggregate assignment:

Rubik_Cube := (FACE_1 .. FACE_8 => (1 .. 3 => (1 .. 3 =>RED)));

which says that for each of the six faces, for each row (all three of them) and for each column
(again all three of them) assign the value RED to that location. This has the effect of
initializing the cube to all locations being RED. Alternatively, we could have used:

Rubik_Cube := (others=> (others=> (others=> RED)));

which would have accomplished the same thing.

The attributes are also the same as those described in section 5.2.3 with the addition of some
specifically useful for multi-dimensioned arrays. These include

FIRST(N)
LAST(N)
LENGTH(N)
RANGE(N)

the first index position in the Nth dimension
the last index position in the Nth dimension
the total number of indices in dimension N
same as before but for dimension N

Thus, we can see again that the extension of the array concept to multiple dimensions is very
straightforward and logical and introduces no new concepts.

5.3.3 Multi-Dimensional Array Input and Output

There is one item with regard to multi-dimensioned arrays that makes their use more difficult
than one-dimensioned arrays and that is input and output operations. Since we have to consider
multiple dimensions it is not as easy to get or put values with arrays that contain more than one
dimension. Therefore, we need a mechanism to allow us to examine each element in each
dimension. In short, we will need a loop, one for each dimension.

For example, to get a value for the Chess_Board declared above we would need a code segment
that looks like the following:

Get_The_Row:
for This_Row in Chess_Board_Size loop

Get_The_Colwnn:
for This_Colwnn in Chess_Board_Size loop
Chess_IO.Get(Chess_Board(This_Row, This_Column));
-- Assume Chess_IO is an instantiation to allow
-- Chess_Piece IO
end loop Get_The_Colwnn;

end loop Get_The_Row;

5.3 - Multi-Dimensional Arrays 5-31

~

This code segment iterates over each row and again over each column within each row to get a
value for the chess piece that corresponds to that location. Note the use of two loops because we
have a two dimensional array.

To further illustrate this point, consider reading values into the Rubik's cube. We would need
three loops because we have three dimensions. Thus, we would have a code segment such as:

Get_The_Face:
for This_Face in Faces loop

Get_The_Row:
for This_Row in Rows loop

Get_The_Column:
for This_Column in Columns loop

Face_Color_IO.Get(
Rubik_Cube(This_Face, This_Row, This_Column));

-- Assume Face_Color_IO is an instantiation to allow
-- IO for Face_Colors as defined above
end loop Get_The_Column;

end loop Get_The_Row;
end loop Get_The_Face;

Thus, we see that except for some special considerations necessitated by the additional
dimensions, the concept of a multi-dimensioned array is very similar to the concept of array
with a single dimension.

5.3.4 Exercises

1. Given the following object declaration

Name :STRING (6 .. 15) := •clark Kent•;

what is the value of each of the following:

a. Name (8)

b. Name (3)

c . . Name (15)
d. Narne(10)

2. What are the bounds (upper and lower limits) of the following object?

Notice : constant STRING := •You like Software Engineering!•;

3. What is wrong with the following code segment and how could it be fixed?

5-32

Month
Day
Year
Date

STRING (1
STRING (1
STRING (1
STRING (1

8) : = •December•;
3) :: • 221. i
4) := •1991-;
10) := Month & Day & Year;

Chapter 5 - Sequential Ada II

4. Determine the behavior of the following program including the possibility of termination
from lack of input data.

with TEXT_IO;
procedure Week_End_Program is

Day : STRING (1 . . 3) : = "FRP ;
begin

TEXT_IO.Get (Item=> Day);
if Day = "SUN" then

TEXT_IO.Get (Item=> Day);
else

TEXT_IO.Put (Item=> "Day is" & Day);
end if;

exception
when others=> TEXT_IO.Put (Item=> "An error has occurred.");

end Week_End_Program;

5. Determine the behavior of the following program including the possibility of abnormal
termination from lack of data.

with TEXT_IO;
procedure Trend_Program is

Trend: STRING (1 .. 9);
begin

TEXT_IO.Get (Item=> Trend);
if Trend(l) < Trend(9) then

TEXT_IO.Put (Item=> "Trend is upward");
else

TEXT_IO.Put (Item=> "Trend is downward");
end if;
TEXT_IO.Put (Item=> • with full history • & Trend);

exception
when others=> TEXT_IO.Put (Item=> "An error has occurred.");

end Trend_Program;

4. Write the appropriate statements to declare a checker board to be used in a game of
checkers. Use a two-dimensional representation of the game board and an enumerated type
to represent the checkers.

5. Is it possible to have an array with 100 dimensions? Justify your answer.

6. Show the code segment that would be used to read in values of the initial positions of the
checkers in the checkerboard from Exercise 4.

7. Show how to initialize the checkerboard from Exercise 4 using an aggregate assignment.
Will you need to extend your declarations from Exercise 4?

8. Suppose that we have a class with 25 students each with a unique student number in the
range 0 .. 1_000. Each student has three test scores in the range 0 .. 100. Define an array to
hold these students names and scores.

9. Suppose that we have five different classes eXactly like the one described in Exercise 8
(except with different student names!). How could you extend the definition of your array
to handle all of these classes?

5.3 - Multi-Dimensional Arrays 5-33

10. Show the code segments that you would use to get values for the array declared in Exercise
8. Be sure to include prompts so that the user knows what data to enter at each Get
statement.

11. Show the code segments that you would use to get values for the array declared in Exercise
9. Be sure to include prompts so that the user knows what data to enter at each Get
statement.

5.4 Introduction to Records

In the previous section we introduced a composite data type called an array. Array objects are
used to store lists of component values that are all of the same type. For example, a list of quiz
grades for 100 students could easily be handled by an array object. However, arrays are not
appropriate in cases where the data components to be stored are of different types. To handle
these cases, we now introduce the concept of a record.

5.4.1 Records

A record is a list of component values that may be of different types. Records are used to store
different, but related values as a single unit. For example, a student record might consist of an id
number, a major code, and a year level. As another example, consider the date today. This
composite value usually consists of a month name, a day number, and a year number. Thus it
seems natural to define a single object, say Date, with three related components for the month,
day, and year.

The formal syntax for a record data type in Ada is given by the following syntax productions.

record_type_definition
record

cornponent_list
end record

cornponent_list ::= cornponent_declaration {cornponent_declaration}

cornponent_declaration ::=
identifier_list 1 cornponent_subtype_indication [z• expression];

Record Data Type
Syntax Definition 5.6

The syntax can also be expr~sed in graphic form as indicated in Syntax Chart 5.6

record_type_definition ::=

cornponent_list

5-34 Chapter 5 - Sequential Ada II

component_list ::=

t ~ component_declorotion I

component_declaration

identifier_list

component_subtype_definition

expression

Record Data Type
Syntax Chart 5.6

Suppose we wish to define a record type with a suitable structure for the student record
mentioned earlier. We will begin by analyzing the component values. For the student id number
we will use values between 0 and 9 9 9 9. For the major code we will use values of cs, CP, EE, or
MA. Finally, for year level we will use values of 1, 2, 3, or 4. Thus the full record type definition
looks like the following:

type Student_Id_Number is range 0 .. 9999;
type Major_Code is (CS, CP, EE, MA);
type Year_Level is range 1 .. 4;
type Student_Record is
record

Id_Number : Student_Id_Number;
Major : Major_Code;
Year : Year_Level;

end record;

Note that Student_Record now describes a type with three components, Id_Number,Major,
and Year of differing types. Note also that the type of each component must be indicated. Any
data type may be used as the component of a record.

Now that we have described the type Student_Record, we are free to create objects of that
type. For example,

A Student : Student_Record:

declares an object named A_Student with enough contiguous storage for the three component
values desired. Pictorially we have the following object:

5.4 • Introduction to Records 5 ·35

A_Student

Id_Number §
Major

Year

A_Student Object
Figure 5.5

Each component location within the record structure is called a field. We may access the
various fields of a record directly through the use of a "dot notation". For example,

A_Student.Id_Number := 1234;

places the value 1234 into the Id_Number field of the record A_Student. That is, our picture
now looks like this:

Id_Number

Major

Year

A_Student

B
Initializing ld_Number

Figure 5.6

To continue with our initialization suppose we perform the following assignments:

A_Student.Major := CS;
A_Student.Year := 1;

Now our picture is:

A_Student

Id_Number ffi234
Major cs

Year 1

Initialized A_Student Object
Figure 5.7

5-36 Chapter 5 - Sequential Ada II

5.4.2 Record Operations

The operations available for records include assignment, membership, component indication,
relational, and explicit conversion.

Aggregate Assignment .-
Membership in not in

Relational = I=

Aggregate assignment for records is similar to aggregate assignment for arrays. It provides the
ability to assign values to all fields of a record at the same time. For example, if we define a
record structure and create objects suitable for various dates:

type Month_Name is (JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC);

type Day_Number is range 1 .. 31;
type Year_Nurnber is range 1900 .• 2100;
type Date_Record is
record

Month : Month_Name;
Day : Day_Number;
Year : Year_Number;

end record;

Today : Date_Record;
Birthday, Holiday : Date_Record;

we could assign values to the objects by the following aggregate assignment statements.

Today := (MAR, 30, 1992);
Birthday := (Month=> MAY, Day=> 15, Year=> 1900);
Holiday := (DEC, 25, 1992);

The statement

Today := (MAR, 30, 1992);

is equivalent to the three statements:

Today .Month : = MAR;
Today . Day : = 3 0 ;
Today.Year := 1992;

The statement

Birthday:= (Month=> MAY, Day=> 15, Year=> 1990);

uses named association of field and value. That is, Month => MAY means for the Month field
use (or assign) the value MAY. Named associationpermits field values to be given in orders that
may differ from the order specified in the type definition. Thus an equivalent assignment is:

Birthday := (Day=> 15, Year=> 1990, Month=> MAY);

5.4 - Introduction to Records 5-37

Aggregate assignment may also be used to initialize a record object as it is created. For example,

Today : Date_Record := (MAR, 30, 1992};

creates the object Today and initializes the three fields with the values indicated.

The membership operation allows us to test a record to determine if a particular value exists as
one of the components of the record.

The relational operations of "=" and "1 =" allow two record objects to be compared. For example,

if Today = Birthday then
TEXT_IO.Put (Item=> •Happy Birthday!•);

else
TEXT_IO.Put (Item=> •Just another day.•);

end if;

will compare the corresponding fields of the two record objects Today and Birthday. If the
corresponding fields contain identical values, then the message "Happy Birthday!" will be
printed. Otherwise the message "Just another day." will appear.

5.4.3 Default Initial Values

In addition to aggregate assignment and single component assignment, record objects may be
initialized through the use of default initial values given in the declaration of the record type.
These values are specified using the":=" operator in the type definition. Some or all of the
components in a record may be given a default value. For example,

type Gender is (M, F);
type Age_Range is range 0 .. 150;
type Person is
record

Name : STRING (1 .. 5};
Sex : Gender := M;
Age : Age_Range := 20;

end record;

First_Person : Person;
Second_Person : Person := (•Linda•, F, 30);

the record type Person specifies default initial values of M and 2 0 for the fields Sex and Age
respectively. The declaration of First_Person makes use of these default values while
leaving the Name field uninitialized. On the other hand, the declaration of Second_Person
overrides the default values by placing the string "Linda" in the Name field, Fin the Sex
field, and 3 0 in the Age field.

5.4.4 Record Input and Output

Since a record is a collection of values of differing types, it is not possible to put or get an entire
record in the same manner that a single value is read or written into an object. Instead each
component must be treated as an object of a particular type and the corresponding methods of
input and output employed. See the following example.

5-38 Chapter 5 - Sequential Ada II

with TEXT_IO;
procedure Test_Days is

type Month_Name is (JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC);

type Day_Number is range 1 .. 31;
type Year_Number is range 1900 .. 2100;
type Date_Record is
record

Month : Month_Narne := JAN;
Day : Day_Number := 1;
Year : Year_Number := 1993;

end record;

package Month_IO is new TEXT_IO.ENUMERATION_IO (Month_Narne);
package Day_IO is new TEXT_IO.INTEGER_IO (Day_Number);
package Year_IO is new TEXT_IO.INTEGER_IO (Year_Number);

Today : Date_Record := {MAR, 30, 1992);
Birthday, Holiday : Date_Record;

begin
TEXT_IO.Put (Item=> "In what month were you born?");
Month_IO.Get {Item=> Birthday.Month);
TEXT_IO.New_Line;
TEXT_IO.Put {Item=> •on what day?");
Day_IO.Get {Item=> Birthday.Day);
TEXT_IO.New_Line;
TEXT_IO.Put (Item=> "In what year?");
Year_IO.Get {Item=> Birthday~Year);
TEXT_IO.New_Line;
Holiday:= {JUL, 4, 1992);
if Today = Birthday then

TEXT_IO.Put {Item=> "Happy Birthday!");
elsif Today = Holiday then

TEXT_IO.Put {Item=> "Hurray- a holiday!");
else

TEXT_IO.Put {Item=> "It's just");
Month_IO.Put {Item => Today.Month);
Day_IO.Put {Item=> Today.Day);
Year_IO.Put {Item=> Today.Year);

end if;
TEXT_IO.New_Line;

end Test_Days;

5.4.5 Exercises

1. Describe the difference between a record and an array.

2. Define a record type named Person_Record with fields for a person's name, age, height,
and weight.

3. Suppose you had a record object named A_Person of type Person_Record (see Exercise 2).
How can you initialize this object?

4. Write a segment of Ada code to output the values in the object A_Person (see Exercise 3).

5.4 - Introduction to Records 5-39

~

5. Consider the record objects Today, Birthday, and Holiday. Describe how the same
information could be stored using parallel arrays.

5.5 Ada Statements

In Chapter 2 many of the statements of Ada were introduced. In this section, extensions to those
statements will be described. In addition, new statements will be introduced.

5.5.1 If Statements

Recall that in Chapter 2 a statement was introduced to allow the software engineer to choose
different possible action based upon the value of some conditional expression. Such a statement
provided alternation control and was called an if statement. In the form that was introduced at
that time, an if statement looked like this:

if This_Number > Last_Number then
This_Number := This_Number + 1;

else
This_Number := Last_Number;

end if;

and was interpreted to mean that if This_Number was greater than Last_Number then
This_Number was to be incremented by one. Otherwise, This_Number was set to the value of
Last_Number.

When the choices that are to be made are binary, i.e., when two mutually exclusive options are
possible based upon the evaluation of the conditional expression, then this form of if statement
is perfectly adequate. Unfortunately, not all choices that must be made in a program are binary.
Consider a problem where it is desired to make a count of all of the characters in a file that are
in the range 'A' .. 'L', as well as those that are in the ranges 'M' .• 'S' and 'T' .. 'Z'. Since there are
three possibilities an if statement of the form studied so far is not useful to solve this problem.
Of course, it is possible to nest the if statements so that one solution using only what has been
presented so far might be:

if Letter in 'A' .. 'L' then
First_Range := First_Range + 1;

else
if Letter in 'M' .. 'S' then

Second_Range := Second_Range + 1;
else

--the only possibility left is the range 'T' .. 'Z'
-- assuming that Letter contains an uppercase letter
Third_Range := Third_Range + 1;

end if;
end if;

5-40 Chapter 5 • Sequential Ada II

In this solution, the value of Letter is checked to determine if it is in the range 'A' .. 'L' and if
it is then the First_Range counter is incremented by one. If the first condition is FAlSE
however, then the else part of the outermost if statement is executed. But in this case, the
statement in the else part of the outer if statement is another if statement This inner if
statement is said to be nested within the outermost if statement. The action of this inner if
statement is to check to see if the value of Letter is in the range 'M' .. 'S', given that we
already know that it cannot be in the range 'A' .. 'L' (otherwise the then part of the outer if
statement would have been executed). If the value is within the range 'M' .• 's', then the then
part of the inner if statement is taken and the value of the counter Second_Range is
incremented by one. Finally, if the value of Letter is not in the range 'M' .. 's', then it must be
in the range 'T' .. 'Z' (since all of the other possibilities for the value of Letter have been
eliminated, assuming that we know that the value in Letter is an uppercase letter) so the else
part of the inner if statement is taken and the value of the counter Third_Range is incremented
by one.

As the analysis of the action of this nested if statement shows, it is possible to solve a problem
with an arbitrary number of possibilities by merely nesting the if statements and checking
different conditions until one of the conditions is true. Unfortunately, this nesting leads to
unnecessarily complex code segments that are hard to understand and even harder to maintain
as the size of the code gets large and the number of conditions gets large. Therefore, Ada allows
a generalized form of the if statement.

The syntax of an if statement that has been shown so far only allowed binary choices to be made
in conditional statements. The full syntax definition of an if statement is shown next in Syntax
Definition 5.7.

if_staternent ::=if condition then
sequence_of_staternents

{elaif condition then
sequence_of_staternents}

[elae
sequence_of_staternents)

end if1

condition boolean_expression

If Statement
Syntax Definition 5.7

The syntax for a complete if statement may also be shown graphically as illustrated in Syntax
Chart 5.7 below.

5.5- Ada Statements 5-41

if_statement .. -

condition

sequence_of_statements

condition

sequence_of_statements

sequence_of_statements

condition

boolean_expression

If Statement
Syntax Chart 5.7

Analysis of the syntax definition notes that there may be as many elsif parts of the if
statement as desired, but only a single else part. If an else part is used, it must be last, after any
elsif parts that are used.

Consider the rewritten if statement from above,

if Letter in 'A' .. 'L' then
First_Range := First_Range + 1;

elsif Letter in 'M' .. •s• then
Second_Range := Second_Range + 1;

else
--the only possibility left is the range 'T' .. 'Z'
-- assuming that Letter contains an uppercase letter
Third_Range := Third_Range + 1;

end if;

5-42 Chapter 5 - Sequential Ada II

Note that it has been rewritten as a single if statement instead of the nested if statements that
were previously required. The logic is still the same in that the first action is to compare
Letter to the first range 'A' .. 'L', and if it is in that range then First_Range is incremented.
If not, the elsif part is checked to determine if Letter is in the range 'M' .. 's'. If so, then
Second_Range is incremented. If not, then the else part is executed and Third_Range is
incremented. Note that since there is only one if statement, there is only one end if. Note also
that the indentation is such that all of the elsif parts and the else part, if any, are aligned
under the reserved word if. This keeps the statement on the page when multiple conditions are
required to be checked; without this, each condition would be a nested if statement and the
indentation could eventually move the statement off the page to the right!

Consider another example of this extended form of the if statement given below,

if Curnulative_Average >= 90 then
Grade : = 1 A 1

;

elsif Curnulative_Average >= 80 then
Grade := 1 B1

;

elsif Curnulative_Average >= 70 then
Grade : = 1 C 1

;

elsif Curnulative_Average >= 60 then
Grade . - 1 D 1

;

else
Grade .- 1 F 1

;

end if;

This statement determines grades for some fictional course. Note that several elsif parts are
used, each checking for a different condition. The conditions are evaluated in order from top to
bottom until one is found to be true. The first condition that evaluates to TRUE is the part whose
sequence of statements get executed. Flow of control then passes to the statement after the if
statement, i.e., the evaluation of additional conditions or the execution of additional
statements in this if statement is not possible. It is also important to note that the conditions
that are evaluated do not need to be mutually exclusive. They may overlap in any manner, but
the first one evaluated to TRUE will prevent any other condition from being checked.

The importance of the last point is obvious when the if statement above is rewritten with the
conditions checked in the reverse order. Does this change the logic of the statement?

if Curnulative_Average >= 60 then
Grade : = 1 D 1

;

elsif Curnulative_Average >= 70 then
Grade := 1 C1

;

elsif Curnulative_Average >= 80 then
Grade := 1 B 1

;

elsif Curnulative_Average >= 90 then
Grade . - 1 A 1

;

else
Grade . - • F • ;

end if;

5.5 -Ada Statements 5-43

Yes, it does! Consider that if a student has a Cumulati ve_Average of 92, then in the first
version of the if statement the first condition checked would be true and the student would
receive the Grade of 'A'. In this new version of the if statement, the first condition is also
TRl.i'E, but the student receives a grade of 'D'! This is caused by the fact that a
cumulati ve_Average of 92 is not only greater than 90, it is also greater than 60. In other
words, the conditions are not mutually exclusive, so the order in which they are evaluated is
very important. A software engineer should keep this in mind when writing programs.

5.5.2 Case Statements

Now that we understand about one kind of statement that allows the software engineer to
choose different possible actions based upon the value of some conditional expression, lets
examine another possibility. We will look at another statement that provides alternation
control, like an if statement, but in an even more general form. This statement is called a case
statement.

The case statement is another statement that can be used by a software engineer when choosing
between several possible values. The case selector expression is evaluated and exactly one of
several possible sequences of statements is selected for execution based upon the value of the
selector expression, a more general term for an expression that serves the same purpose as the
conditional expression did for the if statement. The syntax for the case statement is given in
Syntax Definition 5.8 below.

case_statement ::= caae expression ia
case_statement_alternative
{case_statement_alternative}

end caae1

case_statement_alternative ::=
when choice {I choice} •> sequence_of_statements

choice ::= simple_expression I discrete_range I other•
component_simple_name

Case Statement
Syntax Definition 5.8

In a graphic form this syntax can be expressed as in Syntax Chart 5.8 below,

case_statement ::=

expression

case_statement_alternative

5-44 Chapter 5 - Sequential Ada II

-------- --------- --------

case_statement_alternative

choice

sequence_of_statements

component_simple_name

Case Statement
Syntax Chart 5.8

The case statement is useful when there are several possible actions to be taken depending upon
the value of a selector expression. For example, consider the following case statement,

case Cumulative_Average is
when 90 100 => Grade
when 80 89 => Grade
when 70 .. 79 =>Grade
when 60 .. 69 =>Grade
when others

end case;
=> Grade

·- 'A' i

·- 'B' i
·- 'C' i

·- 'D' i

·- 'F' i

that provides the same function as the nested if statement discussed in the previous subsection.
The action that occurs when this statement is reached is the evaluation of the expression after
the reserved word case. In the example, this is simply the value currently contained in the
object Cumulati ve_Average. The flow of control then passes to exactly one of the when parts,
depending upon the value of Cumulati ve_Average. If it is in the range 90 .. 100, inclusive,
then the statement after the arrow (• >) is executed and flow of control then continues with the
statement following the case statement, skipping all of the other statements in this case
statement. Similarly, the evaluation of Cumulati ve_Average causes the flow of control to
branch to the sequence of statements following the arrow in whichever when part is selected. If
the evaluation of the expression yields a value not specifically mentioned, say 55 in this
example, then flow of control branches to the sequence of statements after the arrow in the
when others part.

5.5 ·Ada Statements 5-45

There are certain rules that must be followed when using a case statement. The first is that the
alternatives (the ranges or values after the when) must be mutually exclusive and exhaustive.
Mutually exclusive means that there can be no overlap in any of the when parts, or more
properly the case alternatives. This is necessary so that the evaluation of the selector
expression determines exactly one case alternative to which control will branch. Exhaustive
means that every possible value for the selector expression must be contained in the case
alternatives. Thus, if the selector is an INTEGER object, then every possible value for the type
INTEGER must be covered in the case alternatives. This is necessary so that the selector
expression never is evaluated to a value that is not provided for in the case alternatives; if so,
then what might happen would be unpredictable. Therefore, the rules of Ada require that
every possible choice must be considered for each selector expression.

In some selector expressions, providing a case alternative for each possible value is not a
difficult chore. However, for some selector expressions there many be a very large set of
possible choices. In these situations, it is usually the situation that only a small subset of the
possible choices are of particular interest; the rest are either not important or have the same
sequence of statements that should be executed. In such circumstances, the choices that are of
concern can be specifically mentioned, then the when others choice can be used.

When the when others choice is used, it must be the last choice in the case alternatives. Only
one when others choice is allowed per case statement. The when others choice is chosen when
the selector expression evaluates to anything that is not specifically mentioned in the case
alternative list. For example, consider the following case statement,

case The_Speed is -- The_Speed is an object of type INTEGER
when 0 .. 5 => TEXT_IO.Put (Item=> •You are walking.•);
when 6 .. 65 => TEXT_IO.Put (Item=> •You are driving.•);
when 66 .. 80 => TEXT_IO.Put (Item=> •speeding!•);
when 81 .. 150 => TEXT_IO.Put (Item=> •You are flying.•);
when others => TEXT_IO.Put (Item=> •Too fast for me.•);

end case;

All of the possible values for The_Speed up to 150 are included specifically and so evaluation
of the value of The_Speed to a value between zero and 150, inclusive, will cause the flow of
control to branch to one of the sequences of statements in the corresponding case alternative. If
The_Speed is above 150, then flow of control will branch to the when others part because no
case alternative has been explicitly provided for a value in these ranges. However, the
software engineer has perhaps forgotten that since The_Speed is of type INTEGER, there are
an equal number of negative values possible. 1hese also would branch control to the when others
part since they are not specifically provided with a case alternative.

As another example, consider the following case statement about university administrators
that makes use of the following enumerated type definition and object declaration,

Declarations:
type Work_Times_Type is (EARLY_AM, MID_AM, NOON,

EARLY_AFTERNOON, MID_AFTERNOON, LATE_AFTERNOON);

Work_Day : Work_Times_Type;

5-46 Chapter 5 - Sequential Ada II

Statement:

EARLY_AFTERNOON => TEXT_IO.Put("Drink Coffee");
case Work_Day is

when EARLY_AM I
when MID_AM => TEXT_IO.Put("Prepare For Lunch");
when NOON => TEXT_IO.Put("Eat Lunch");

=> TEXT_IO.Put("Stay Awake"); when MID_AFTERNOON
when LATE_AFTERNOON => TEXT_IO.Put("Prepare To Go Home");

end case;

This is an example of the same sequence of statements serving for two different possible choices
of the selector expression using the I symbol to mean EARLY_AM or EARLY_AFTERNOON. Also, no
when others part is needed since every possible value for the selector expression has been
considered and a case alternative has been provided for each. It would not have been an error to
have put a when others case alternative in this statement; it would simply always be ignored.
Therefore, as a stylist point, consider putting a when others case alternative in all of your case
statements as a good defensive programming practice.

The case statement is very useful when there are many possible actions depending upon the
value of some choice mechanism in an algorithm. The most important thing to remember is that
the choices in a case statement must be mutually exclusive and exhaustive.

5.5.3 For Loop Statements Revisited

In previous discussions of for loops, we have always used a numeric value to represent the upper
and lower bounds of the loop. This is not a requirement in Ada. Any discrete type can be used as
the bounds to a for loop.ln this section we will demonstrate some of the uses of this capability.

The range specified may be any discrete range of any discrete type. For example, consider the
for loop below that makes use of the declarations given next,

type Colors is (RED, YELLOW, ORANGE);

Loop_By_Colors:
for This_Color in Colors loop

TEXT_IO.Put (Item=> "Another pretty color.");
end loop Loop_By_Colors;

In this example, the identifier This_Color is initially given the value RED, the first value in
the type colors. After one iteration of the loop, the successor to RED is assigned to
This_Color, which in this example is YELLOW. Since this is not the last value in the type
another iteration of the loop is executed. Now This_Color is given the value of the successor
to YELLOW, namely ORANGE and another iteration of the loop is executed. Finally, there being
no successor to the value ORANGE in the type Colors, the loop is terminated normally. Thus,
the loop identifier does not need to be an integer, but any discrete type is allowed.

Now that we have explained enumerated types, their use in for loops as indices should be
apparent This is a very useful feature of Ada that you should use in your solutions to
programming problems.

5.5 ·Ada Statements 5-47

5.5.4 Exercises

1. Rewrite the following code segment so that it has a single if statement but performs the
same logical operation:

if Letter in 'T' .. 'Z' then
First_Range := First_Range + 1;

else
if Letter in 'A' .. 'L' then

Second_Range := Second_Range + 1;
else

--the only possibility left is the range 'M' .. 'S'
-- assuming that Letter contains an uppercase letter
Third_Range := Third_Range + 1;

end if;
end if;

2. Rewrite the following code segment using a more appropriate mechanism as the loop
controller:

Color_Counter:
for This_Color in Color'FIRST .. Color'LAST loop

TEXT_IO.Put ("There is another color.");
end loop Color_Counter;

3. Rewrite the code segment in Exercise 1 using a case statement.

4. Write a for loop that iterates over the following enumeration values in the opposite order
in which they are declared.

type Animals is (DOG, CAT, PIG, HORSE, COW, FISH, BIRD);

5. Write a code segment that gets an INTEGER value from the user using a prompt, then uses a
case statement to write a message as to whether the value entered is negative, positive, or
zero.

6. Rewrite the code segment in Exercise 5 to use an if statement. Which of the two alternatives
is more appropriate in this case? Justify your answer.

5.6 Block Statements And Exceptions

Ada introduces some new notions in programming that make it especially suited for software
engineering. One of these concepts is localization, which states that things that are logically
related should also be physically related. In other words, things that belong together should
be physically located together for ease of maintenance and understandability. Ada supports
this concept with block statements. In addition, a program in execution should not be allowed to
fail simply because something exceptional has occurred. In other words, if the program
attempts to divide by zero in a numerical calculation, the program should not be allowed to
"crash." This allows the programmer to decide what sho.uld happen when an exceptional
situation occurs. This capability in Ada is called exception handling. In this section we will
discuss both of these features to see how they might be useful to us. Before we can understand
these new features, there is one more thing we need to understand, namely the meaning of scope
and visibility.

5-48 Chapter 5 - Sequential Ada II

&.6.1 Scope and Visibility

There are two related terms that are often used in the discussion of programs that need to be
explained before we go any further. These terms are scope and visibility. Scope refers to the
region of a program where an identifier is accessible, i.e., the region where the meaning of this
identifier is known. It is also the region of potential visibility.

Visibility is the region of a program where an identifier is directly accessible. It is the same as
the scope of the variable except for places where more local declarations may hide the outer
location. Thus, scope is potential visibility and visibility is the region where an identifier may
be directly accessed.

Given the following program,

with TEXT_IO;
procedure Scope_Demo
is

My_Value : INTEGER;
begin

My_Value := 10;
declare

My_Value : CHARACTER;
begin

My_Value .- 'A';
end;

end Scope_Derno;

Scope of My_Value as an INTEGER
<---------------------------------------

<----
Scope and Visibility of My_Value
as a CHARACTER

<---
<---------------------------------------

the scope of My_ Value as an INTEGER is from the declaration of the identifier until the end of
the program. The visibility of this same identifier is NOT the same region; it excludes the
portion from the declaration of My_ Va 1 ue as a CHARACTER inside the declare block until the
end of the declare block. The scope and visibility ofMy_Value as a CHARACTER extends from
the declaration of this identifier in the declare block until the end of the declare block; in this
case both the scope and the visibility of this identifier are the same.

In general, it is not a good engineering practice to redefine an identifier within its own scope.
Thus, usually the scope and visibility of an identifier are the same. However, there are cases

. where the reuse of an identifier makes good engineering sense and in these instances scope and
visibility considerations are important.

There are times when it is convenient to get some information from the user and then use that
information in the declaration of new types and objects. The problem that arises is that you
must be in the executable portion of the program to interact with the user, while you must be in
the declarative part of the program to make declarations. Furthermore, the declarative part
must come first. Thus, there seems to be no way to interact with the user and use this
information in declaring objects.

5.6.2 Introduction to Block Statements

To avoid this problem, Ada has a feature· called a block statement, sometimes also called a
declare block for reasons that will be obvious later. Essentially, this statement opens up a new
level of scope, allowing the declaration of new types and objects in the midst of the executable
portion of the program. The declarations made in this block are created in the declare block and
disappear when the declare block is exited.

5.5 - Block Statements and Exceptions 5-49

The formal syntax of a block statement in Ada is given in the 9 syntax productions in Syntax
Definition 5.9.

block_statement ::= [block_simple_name s]
[declare declarative_part]
begin sequence_of_statements
[exception exception_handler {exception_handler}]
end [block_simple_name] 1

declarative_part ::=
{basic_declarative_item} {later_declarative_item}

basic_declarative_item ::= basic_declaration I use_clause

use_clause ::= uae package_name {, package_name} 1

basic_declaration ::= object_declaration I number_declaration
type_declaration I subtype_declaration

number_declaration ::= identifier_list s constant s•
static_expression 1

later_declarative_item

body ::= proper_body

body I subprogr~declaration
package_declaration I use_clause

proper_body ::= package_body I subprogram_body

exception_handler ::=when exception_choice {I exception_choice} •>
sequence_of_statements

exception_choice exception_name I other•

Block Statement
Syntax Definition 5.9

This syntax can also be expressed in graphical form as indicated in Syntax Chart 5.9.

5-50 Chapter 5 - Sequential Ada II

block_statement

block_simple_name

declarative_part

sequence_of_statements

exception_handler

block_simple_name

declarative_part

basic_declarative_item

later_declarative_item

basic_declarative_item

.. J
l

basic_declaration I _
I

'---~""l use_clause lt------'

5.5 - Block Statements and Exceptions 5-51

--- --------- -------- ------

use_clause

package_name

basic_declaration

object_declaration

number_declaration

type_declaration

subtype_declaration

number_declaration

identifier_list ~ conatant

static_expression

later_declarative_item

body

subprogram_declaration

package_declaration

use_clause

body

proper_body

5-52 Chapter 5 - Sequential Ada II

proper_body

package_body ~----~~~

subprogram_body

exception_handler

sequence_of_statements

exception_choice

-.,.-~ ... -~ exception_name :f--.--.. _
'I'

'---~ 1 o t h • r • ~1-----l \.___ __ _
Block Statement
Syntax Chart 5.9

An example ·may serve to demonstrate these ideas. Consider the following program,

with TEXT_IO;
procedure Declare_Demo
is

Length : POSITIVE;
package Int_IO is new TEXT_IO.INTEGER_IO (POSITIVE);

begin
Text_IO.Put(Item => •Length of String? •);
Int_IO.Get (Item=> Length);
declare

Demo : STRING (1 .. Length);
begin

Text_IO.Get (Item=> Demo);
end; -- declare block

end Declare_Demo;

In this example, the number of characters· in the index of the array was unknown. The program
asked the user for the value of the last index and then entered a declare block. The declare
block opened up a new level of scope and thus allowed for the declaration of a new array type
using as an upper bound the value read in from the user. This would not have been possible
without the declare block.

5.5 • Block Statements and Exceptions 5 ·53

==

~ -
Later we will return to this idea and see that the declare block can be used for other more useful
purposes whenever a new level of scoping is needed. This will be particularly useful in
exception handling. In certain circumstances, even the word declare can be left out, yielding just
the begin and end pair as the entire declare block.

5.6.3 Introduction to Exceptions

It would be an ideal world if you could anticipate all of the uses that would be made of your
program. Similarly, it would be nice if you could anticipate all of the possible input that your
program might have to accept. Unfortunately, this is rarely the case. Consequently, your
program may fail for a variety of reasons, not all of which can be anticipated by you. In many
languages, such a situation causes the computer to "crash." This is a term used by computer
professionals to indicate that the program has terminated abnormally. Usually the operating
system can be counted upon to trap these errors and simply stop executing your program,
indicating the error if it can. Other times, your entire system may "lock-up" and need to be
manually reset. Until now, this was just an accepted part of programming.

However, in Ada we have a built-in mechanism to detect and potentially correct errors while
the program is still executing. Depending on what the software engineer wants to do, it is
possible that such faults as would normally cause the program to "crash" can be detected,
handled, and the program can continue in any manner that is desired. This facility in Ada is
called an exception handler and the exceptional situation that caused a fault is called an
exception.

5.6.3.1 The Use of Exceptions

Exceptions are both predefined and user-defined. Early in this text we will use the predefined
exceptions as a convenience. Later, we will use both the predefined exceptions and the user
defined exceptions that we will define that are unique and specific to our problem domain.

A complete definition and explanation of exceptions will be deferred until later. For now, we
will introduce a simple example of an exception handler. This mechanism should be a part of
all of your programs from this point forward. Later we will see how to tailor this generalized
exception handler to fit the specific problem that we are solving with our programming system.

with TEXT_IO;
procedure Demonstrate_Exception
is

Value : POSITIVE;
package Int_IO is new TEXT_IO.INTEGER_IO (POSITIVE);

begin
TEXT_IO.Put (Item=> •Enter a value=> •);
Int_IO.Get (Item=> Value);

exception
when others=> TEXT_IO.Put(Item =>"Oops- an error!");

end Demonstrate_Exception;

In this example, the part between the reserved words be~P.:n and exception are the normal
program's statements that will be executed as we have seen before. The part between the
reserved words exception and end is called the exception handler part. In this example, there is
a single exception handler, designated by the when others. When others is a shortcut means for
saying that all exceptions are to handled by this exception handler.

5-54 Chapter 5 - Sequential Ada II

When something goes wrong and an exception occurs, we say that it has been raised. Execution of
the normal sequence of statements ceases and control passes to the exception handler, if there is
one, otherwise, the exception is propagated through the calling chain until either an exception
handler is found or the exception reaches the outer level. If that occurs, then the program will
"crash" as in any other programming language .. If there is an exception handler part and the
proper exception is handled in that exception handler, or if there is a when others, the
exception is said to be lowered and the statements following the arrow (•>) are executed. There
are no limitations on what statements may be in an exception handler. When these statements
have been executed, control returns to the calling procedure (if there is one) normally, i.e., as if
there had been no exception. The calling program is not able to determine that an exception has
ever been raised.

There are five predefined exceptions that you should know about. These include
CONSTRAINT_ERROR,NUMERIC_ERROR,PROGRAM_ERROR,STORAGE_ERROR,and
TASKING_ERROR. The last exception is not likely to be seen by you until later in this course, so
we will ignore that one until later. The rest of the exceptions are predefined and raised
automatically by the runtime system. The explanation of each of these exceptions and the
circumstances that result in their being raised are as follows:

CONSTRAINT_ERROR This is one of the most frequently seen exceptions. It is raised whenever
a range constraint or an index constraint is violated. There are some
other special cases when this exception is raised, but we will not study
them until later.

NUMERIC_ERROR This exception is relatively rare. It is raised whenever the execution of
a predefined numeric operation cannot deliver a correct result. In the
future this exception will probably be subsumed by the
CONSTRAINT _ERROR exception.

PROGRAM_ERROR This exception can be raised automatically in a variety of ways. If you
attempt to use a program unit that has not yet been elaborated, this
exception will be raised. Note that we will describe elaboration in
more detail later. There are several other ways for this exception to be
raised, but a full discussion of them will be deferred until we have seen
more of the features of the language.

STORAGE_ERROR This exception is raised whenever there is insufficient storage (usually
memory) to perform the operation requested. We will see more about
this exception later when we study access types.

5.6.3.2 Predefined Input/Output Exceptions

In order for you to plan for the potential exceptions that may be raised in your programs, it is
essential that you understand the predefined exceptions defined in the previous section. In
addition, it is useful to understand the predefined exceptions that are raised during
input/output operations. These include STATUS_ERROR, MODE_ERROR, NAME_ERROR,
USE_ERROR, DEVICE_ERROR, END_ERROR, DATA_ERROR, and LAYOUT_ERROR. These exceptions
are defined for all of the predefined input/ output packages, such as the one that we have been
using, TEXT_IO. The definitions and causes of the input/output exceptions, paraphrasing
heavily from the Reference Manual for the Programming Language Ada [LRM], are as follows:

5.5 ·Block Statements and Exceptions 5-55

STATUS_ERROR

MODE_ERROR

NAME_ERROR

USE_ERROR

DEVICE_ERROR

END_ERROR

DATA_ERROR

LAYOUT_ERROR

5-56

This exception is raised when you attempt to operate on a file that is
not open or when you attempt to open a file that is already open. We
will explain more about files later in this book and the meaning of this
exception will become more clear at that time.

This exception is raised when you attempt to read from, or test for the
end of, a file that has a current mode on OUT_FILE. It can also be raised
by an attempt to write to a file that has a current mode of IN_FILE. It
can also be raised by specifying a file with an improper mode to any of
the procedures in TEXT_IO that depend upon a mode for a given file,
such as calling the procedure SET_ OUTPUT with a parameter of a file
type whose mode is IN_FILE.

This exception is raised by a call of the procedure CREATE or OPEN if
the string given for the parameter NAME does not allow the
identification of an external file. Thus, if the OPEN procedure is called
with a string given for the NAME parameter that does not match any of
the external files.

This exception is raised if the user requests an operation that cannot be
performed on the external file due to its physical or logical
characteristics.

This exception is raised if the requested operation cannot be performed
because of a malfunction of the underlying system.

This exception is raised when the user attempts to read beyond the end
of a file.

This exception may be raised when a Get is unable to interpret the input
sequence as belonging to the type of the object for which a value is being
sought. For example, if the procedure Get is attempting to read an
INTEGER value and it finds the character ' z' in the input sequence.

This exception is raised when the user attempts to set a column beyond
the maximum allowed for that line, or when a line number is attempted
to be set beyond the maximum number of lines in a page. It also is raised
if the user attempts to put a string with more characters than the
maximum line length.

Chapter 5 - Sequential Ada II

5.6.4 Exercises

1. Define and differentiate between the terms scope and visibility.

2. What is the purpose of the block statement in the following code segment?

with TEXT_IO;
procedure Mystery_Segment is

Mystery_Value : POSITIVE;
package Int_IO is new TEXT_IO.INTEGER_IO (POSITIVE);

begin
Int_IO.Get (Item=> Mystery_Value);
declare

Demo: STRING (1 .. Mystery_Value);
begin

TEXT_IO.Put (Demo);
end; -- declare block

end Declare_Demo;

3. What is the purpose of the exception mechanism in Ada?

4. Given the following code segment

begin
-- some statements

exception
when CONSTRAINT_ERROR =>

TEXT_IO.Put(Item => •constraint Problem.");
when others=> TEXT_IO.Put("Something else is wrong.");

end;

What will happen if a PROGRAM_ERROR is raised? Explain your answer.

5. Explain the sequence of steps that occurs when an exception is raised. Include details up
until the· time that the exception is lowered. You may assume that an appropriate
exception handler is in place.

6. Explain the sequence of steps that occurs when an exception is raised. Include details up
until the time that the exception is lowered. You may not assume that an appropriate
exception handler is in place.

7. Is it possible to get a LAYOUT_ERROR when doing input operations only? Explain.

8. Is it a good idea to have a system in a language that allows the user to control what
happens when errors occur? Defend your answer.

5.5- Block Statements and Exceptions 5-57

Chapter 6

Program Verification

Chapter 5 has introduced some additional Ada constructs, extensions to types and objects, and
statements. We next look at these constructs for the behavior they add to Ada programs. In
each case, they permit new means of expression, more efficient ways of computation. Then,
beyond these extensions in Ada, we broaden our horizon to defining what programs should do
called specifications, and evaluating whether the programs meet such specifications by both
analytic and experimental evidence.

Given a program specification (a relation of input and output files, which is possibly a function)
and a program (whose behavior is ordinarily a function but possibly a relation), the program is
said to be correct if it terminates from every input file in the domain of the specification and
produces an output file which is paired with that input file in the specification.

Programs are correct when they meet their specifications. Another question is whether the
specifications are right. Deciding what software should be is a deep and broad question which
will be addressed later. Defining good specifications needs effective analyses based on
understandings of user needs as well as computer capabilities.

In summary, three major tasks in producing software are specification, development,
verification.

The first task is to specify the software that will best fulfil the mission that has been assigned
to the software. At this stage the software is represented by a behavior, namely a
mathematical function or relation, that defines what the software is to do in order to fulfil its
assigned mission. The behavior is documented in the software specification.

The second task is to develop· the program that will satisfy the entire domain of the
specification. The software engineer must find a behavior rule that correctly implements the
entire domain of the behavior defined by the specification that will execute properly in the
target operating environment. The rule is documented in the program.

The third task is to verify that the program as developed does indeed satisfy the specification
correctly. Interactively with the design for the program, namely the rule for the behavior
required, the program should be verified as meeting the specification step by step as it is being
developed. The verifications should be reviewed by peer engineers.

This Chapter 6 deals with two of these three tasks, namely with specification and
verification. The remainder of the book will deal with the development, especially the
design, of software. In this Chapter, the first section deals with how to analyze the new Ada
constructs introduced in Chapter 5. The second section introduces specification as a formal
activity. The third section introduces verification, using the ideas of program behavior of the
preceding chapters and its comparison with a required specification. The fourth and fifth
sections deal with verification using trace tables.

Chapter 6- Program Verification 6-1

~-

6.1 New Ada Rules for Behavior

6.1.1 Ada Rules for Declarations

6.1.1.1 Enumeration Types and Objects

Enumeration types and objects have meanings that are very straight forward, but as discussed in
Chapter 5, distinct types and subtypes can be compatible and used together. The declaration of
any type, subtype, or object expands the the state of a program on the spot. For example, a
program declaration starting with type WEEK, as defined in Chapter 5

with TEXT_IO;
procedure Check_Weekday
is

type Week is (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY);

will augment the program state from

(Input, OUtput)

to

(Input, Output, Week)

or, more formally, no matter where it appears,

[type Week is (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY);]
= {« ...), (... , Week» I type Week is days of week beginning with

MONDAY, then TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY,
SUNDAY}

The extension of the declaration to an object Today of type Week will further augment the
program state as shown next.

with TEXT_IO;
procedure Check_Weekday
is

type Week is (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY);

Today: Week;

will further augment the program state from

(Input, Output, Week)

to

(Input, Output, Week, Today)

6 ~2 Chapter 6 - Program Verification

or, more formally,

[Today: Week;]
= {((... }, (... , Today}) I Today is any day of Week}

In this case, since Today is not initialized, there are exactly seven distinct states possible.

6.1.1.2 Array Types and Objects

Array types and objects permit storing collections of single data types in a single vector, or Ada
array. The objects can be GIARACTERS, BOOLEANS, INTEGERS. When declared as either- ·
types or objects, they expand the data known to a program. For example, building on the partial
program above, we add an array type and an array object of that type next.

with TEXT_IO;
procedure Check_Weekday
is

type Week is (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY);

Today: Week;
type Grade_Vector is array (1 .. 100) of INTEGER;
Grade: Grade_Vector := (others=> 100);

will further augment the program state from

(Input, Output, Week, Today)

to

(Input, Output, Week, Today, Grade_Vector, Grade)

or, more formally,

[type Grade_Vector is array (1 .. 100) of INTEGER;
Grade: Grade_Vector := (others=> 100);]

= {((...), (.. . , Grade_ Vector, Grade)) I Grade_ Vector is type array
of dimension 1 to 100 with INTEGER components, Grade is of type
Grade_Vector with each component initially 100}

In this case, Grade was initialized for each component to its maximum possible value.

6.1.1.3 STRING Types and Objects

STRINGS are special kinds of arrays which are unconstrained arrays of CHARACTERS,
indexed by INTEGERS. As above, we expand the declarations to include a STRING object.

with TEXT_IO;
procedure Check_Weekday
is

type Week is (MONDAY, TUESDAY,, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY);

Today: Week;

6.1 - New Ada Rules for Behavior 6 - 3

;;

type Grade_Vector is array (1 .. 100) of INTEGER;
Grade: Grade_Vector;
Fu1l_Name: STRING (1 .. 10);

will further augment the program state from

(Input, Output, Week, Today, Grade_Vector, Grade)

to

(Input, Output, Week, Today, Grade_Vector, Grade, Full_Name)

or, more formally

[Ful1_Name :STRING (1 .. 10);]
= {((• • •), (••• , Full_Name)) I Full_Name is 10 CHARACTER STRING}

In this case, Full_Name could have value "Mike" & "Smith".

6.1.2 Rules for Ada Statements

6.1.2.1 If Statements

The full definition for if statements which permits elsif parts defines new meanings. The
Syntax Definition 5.8 of the form

if condition
then

sequence of statements
{el•if condition
then

sequence of statements}
[el•e

sequence of statements]
end if;

allows any number of elsif parts, and the if condition and elsif conditions are checked in order
during execution. The first such condition that is TRUE, if any, turns execution control over to
the sequence of statements for it, otherwise the else part, if it exists, is executed, and finally, if
no condition is TRUE and no else part exists, the if statement behaves as a null statement. One
item to be careful about is that the elsif conditions must be checked in order. It is not enough
simply for an elsif condition to be TRUE unless all previous conditions, including the if condition
are FALSE.

For example, consider the if statement shown in Chapter 5, assuming Curnulati ve_Average is
INTEGER in region 0 .. 100,

if Curnulative_Average >= 90
then

Grade : = • A' ;
elsif Curnulative_Average >= 80
then

Grade := 'B';

6-4 Chapter 6 - Program Verification

elsif Cumulative_Average >= 70
then

Grade : = 'C ' ;
elsif Cumulative_Average >= 60
then

Grade .- 'D'
else

Grade .- 'F';
end if;

Its part behavior is the disjoint behavior union of the if then part for the if condition TRUE,
each successive elsif then part for all prior conditions FALSE and this elsif condition TRUE,
and the else part if all prior conditions FALSE. This can be expressed as follows.

if 100 >= Cumu1ative_Average >= 90 -> Grade <- I A' i

if 90 > Cumulative_Average >= 80 -> Grade <- I B' i
if 80 > Cumulative_Average >= 70 -> Grade <- I c I j

if 70 > Cumulative_Average >= 60 -> Grade <- 'D';
if 60 > Cumulative_Average >= 0 -> Grade <- • F';

This part behavior might be better expressed as follows.

if 90 <= Cumulative_Average <= 100 -> Grade <- 'A';
if 80 <= Cumulative_Average <= 89 -> Grade <- I B' i

if 70 <= Cumulative_Average <= 79 -> Grade <- . c. i
if 60 <= Cumulative_Average <= 69 -> Grade <- I D' i

if 0 <= Cumulative_Average <= 59 -> Grade <- IF' i

The part behavior of this if statement has the following five subparts

if 90 <= Cumulative~Average <= 100

if 80 <;;:; Cumulative_Average <;;:; 89

if 70 <= Curnulative_Average <= 79

if 60 <= Curnulative_Average <= 69

if 0 <= Curnulative_Average <= 59

In summary, this can be put together as follows.

[if Curnulative_Average >= 90
then

Grade : = 1 A 1
;

elsif Cumulative_Average >= 80
then

Grade := 1 8 1
;

elsif Curnulative_Average >= 70
then

Grade : = 1 C ' ;
elsif Curnulative_Average >= 60
then

Grade .- 1 D1

else
Grade .- 1 F 1

;

end if;]

6.1 - New Ada Rules for Behavior

-> [Grade <- I A. i],

-> [Grade <- I B I i] I

-> [Grade <- I C I j],

-> [Grade <- I Dl i],

-> [Grade <- IF I ;]

6-5

= {((Input, Output, Cumulative_Average, Grade),
(Input}, Output, Cumulative_Average, Gradel)) I
if Cumulative_Average in 90 .. 100 ->Gradel<- 'A' and
if Cumulative_Average in 80 .. 89 -> Grade1 <- 'B' and
if Cumulative_Average in 70 .. 79 -> Grade1 <- 'C' and
if Cumulative_Average in 60 .. 69 -> Grade1 <- '0' and
if Cumulative_Average in 0 .. 59 -> Grade1 <- IF'}

6.1.2.2 Case Statements

Case statements are another form of alternation control that give another alternative to if
statements. An alternative to the if statement just above converting Cumulati ve_Average
into Grade was given in Chapter 5 as follows.

case Cumulative_Average
is

when 90 .. 100 => Grade := 'A';
when 80 .. 89 => Grade := • B':
when 70 .. 79 => Grade ·- I c t;
when 60 .. 69 => Grade ·- '0';
when others => Grade ·- IF I;

end case;

The part behavior of this case statement has the following five subparts as identified in the
preceding if statement

if 90 <= Cumulative_Average <= 100 -> [Grade <- I A';],

if 80 <= Cumulative_Average <= 89 -> [Grade <- I B I;],

if 70 <= Cumulative_Average <= 79 -> [Grade <- I C I;],

if 60 <= Cumulative_Average <= 69 -> [Grade <- 'D';],

if 0 <= CUmulative_Average <= 59 -> [Grade <- IF I ;]

In this case the when parts must be distinct, with no common conditions between them (unlike
the elsif parts which can have overlapping conditions). The case part function is quite direct,
except for dealing with when others which needs to be described explicitly. For example, the
part function for the if statement above is a satisfactory form for this case statement, namely

[case Cumulative_Average
is

when 90 .. 100 => Grade ·- I A';
when 80 .. 89 => Grade ·- I B I;

when 70 .. 79 => Grade ·- I c I;
when 60 .. 69 => Grade ·- • D';
when others => Grade ·- IF I;

end case;]

6-6 Chapter 6 - Program Verification

= {((Input, Output, Cumulative_Average, Grade),
(Input), output, Cumulative_Average, Grade1}) I

when Cumulative_Average is in the range 90 100 -> Gradel <- 'A',
when Cumulative_Average is in the range 80 89 -> Gradel <- 'B',

when Cumulative_Average is in the range 70 79 -> Gradel <- 'C',
when Cumulative_Average is in the range 60 69 -> Grade1 <- '0',

when Cumulative_Average is in the range 0 59 -> Grade1 <- IF I}

which is precisely that of the meaning for the if statement above. Note that when others is
explicitly described in this form.

6.1.2.3 Bloc.k Statements

Block statements introduced in Chapter 5 permit the grouping of both declarations and
statements, just as can be done in procedures and functions. Since the meanings of both
declarations and statements have already been treated, block statements have no new
meanings, just putting them together. But we have already seen declarations and statements put
together in procedures and functions, so block statements simply follow the way of procedures
except for their naming and calling conventions.

For example, the block illustrated in Chapter 5 was

with TEXT_IO;
procedure Declare_Demo
is

Length : POSITIVE;
package INT_IO is new TEXT_IO.INTEGER_IO (POSITIVE);

begin
Text_IO.Put (Item=> "Length of String? ");
INT_IO.Get (Item=> Length);
Check_Data:
declare

Demo: STRING (1 .. Length);
begin

TEXT_IO.Put ("My name is • & Demo);
end Check_Data; -- declare block

snd Declare_Demo;

The block, itself is the third and final statement in the procedure begin block, following the one
line statements of Put and Get. This block statement will make use of declared data Demo, a
STRING, but on completion De.:mo will disappear (just as a for index will disappear). That is,
the part function for block Check_Data will possibly transform Input, Output, Length, using
Demo in the process, but not returning Demo. The result is

[Check_Data:
declare

Demo: STRING (1 .. Length);
begin

-- do something
end Check_Data; -- declare block]
= {((Input, OUtput, Length), (Inputl, Outputl, Length1)) I

Output1 = Output & "My name is • & Demo}

6.1 - New Ada Rules for Behavior 6-7

6.1.2.4 For Statements

The use of general discrete types as ranges in for statements provides more descriptive power
with little extra logical effort. For example, the for statement illustrated in Chapter 5 is

type Colors is (RED, YELLOW, ORANGE);

Loop_By_Colors:
for This_Color in Colors
loop

TEXT_IO.Put (Item=> • Another Pretty Color.•);
end loop Loop_By_Colors;

which executes sequentially for This_Color taking all values of Colors, but This_Color
disappears on the exit from the for loop. In this case, the part function is as follows.

[Loop_By_Colors:
for This_Color in Colors
loop

TEXT_IO.Put (Item=> • Another Pretty Color.•);
end loop Loop_By_Colors;]
= [TEXT_IO.Put (Item=> • Another Pretty Color.");

TEXT_IO.Put (Item=> • Another Pretty Color.•);
TEXT_IO.Put (Item=> • Another Pretty Color.•);]

= {((Input, Output, ..•), (Input, Output1, .•.)) I Outputl = Output &

• Another Pretty Color.• & • Another Pretty Color.• &
• Another Pretty Color."}

In this case the output did not depend on the value of This_ Color in detail, but it did depend
on the cardinality of Colors for the count of simple messages. Another version of the for
statement with different responses for each iteration is

[Loop_By_Colors:
for This_Color in Colors
loop

TEXT_IO.Put (Item=> This_Color);
TEXT_IO.Put (Item=> • is another Pretty Color.");

end loop Loop_By_Colors;]
~ [TEXT_IO.Put (Item=> • RED is another Pretty Color.");

TEXT_IO.Put (Item=> • YELLOW is another Pretty Color.");
TEXT_IO.Put (Item=> • ORANGE IS another Pretty Color.•);]

= {((Input, Output, ••.), (Input, OUtputl, .•.)) I Outputl = OUtput &

• RED is another Pretty Color.• & • YELLOW is another Pretty
Color. • &
• ORANGE is another Pretty Color."}

6.1.3 Ada Exceptions

Ada exceptions move execution out of the current sequence of statements for a procedure into
another sequence of statements, followed by termination unless more exceptions arise to move
execution to even other sequences of statements. Within each such sequence, the meaning of the
statements are identical. The format for exceptions is a~ follows

6-8 Chapter 6 - Program VerHication

with <packages>
procedure <name of procedure>
is

<declarations>
begin

<sequence_of_statements>
exception

<sequence_of_statements>
end <name of procedure>;

For example, Mystery _Program_5b illustrated in Chapter 4 is of the form

with TEXT_IO;
procedure Mystery_Program_5b
is

Choice: CHARACTER:= ' ';
Tries: INTEGER range 0 .. 5 .- 0;

begin
Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10
loop

TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;
if 'A' <= Choice and Choice <= 'Z'
then

TEXT_IO.Put (Item=> •welcome Aboard • & Choice);
else

if 'a' <=Choice and Choice<= 'z'
then

TEXT_IO.Put (Item=> "Lower Case Data Input • & Choice);
else

TEXT_IO.Put (Item=> "Try Again");
end if;

end if;
exception

when others =>
TEXT_IO.Put ("Execution Halted, too many Tries.");

end Mystery_Program_5b;

In this case, even though the while condition permits Tries to have values up to 10, Tries is
declared only in the range 0 .. 5, so if it is attempted to move Tries beyond 5, exception takes
over with a single statement before the program terminates.

The exception introduces a new method for transferring control beyond the ordinary sequences,
alternatives, and looping. It is a transfer based on the data in the program to a new part of the
program. There is no return to the statements exited. In effect, a new program is entered, but
everything else is completely natural. In Mystery _Prograt~L5b, the single statement

Tries := Tries + 1;

has two possible exits, not just the ordinary one. The first exit simply remains in the program, in
this case returning to the while condition as long as o <= Tries <= 5, and the second exit is
to the exception through when others when Tries < o or Tries > 5, which in effect enters a
new program, quite short in this case, but not necessarily so. As a result of an exception, the
program behavior is expanded by augmenting the main program behavior with additional

6.1 - New Ada Rules for Behavior 6-9

,....,... -

behavior defined by the exception section. For example, in this example, if the exception
section is removed, the program fails unless an upper case letter is entered into Input in the
first five tries. That is, the program does not terminate in a predictable way. But with the
exception section, the program terminates whether or not an upper case letter is entered, with
the message in the exception section. In illustration, the behavior of this program can be stated
rather simply as follows.

[with TEXT_IO;
procedure Mystery_Program_5b
is

Choice: CHARACTER:= ' ';
Tries: INTEGER range 0 .. 5 := 0;

begin
Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10
loop

TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Upper_case_Letter;
if 'A' <= Choice and Choice <= 'Z'
then

TEXT_IO.Put (Item=> •welcome Aboard • & Choice);
else

if 'a' <= Choice and Choice <= 'z'
then

TEXT_IO.Put (Item=> •Lower Case Data Input • & Choice);
else

TEXT_IO.Put (Item=> "Try Again•);
end if;

end if;
exception

when others =>
TEXT_IO.Put ("Execution Halted, too many Tries.");

end Mystery_Program_5b;]
= {((Input, Output), (Inputl, Outputl)) I

Inputl is of length 1 to 5 and last component is upper case
letter and
Output1 =Output & •welcome Aboard • & h(reverse (Inputl)) or
Input1 is of length 5 and no component is upper case letter and
Outputl =Output & "Execution Halted, too many Tries."}

Note that, calling Mystery _Program_5b with exception removed the program
Mystery_Program_5r, that its behavior is only the first part of the behavior above.

[Mystery_Program_Sr]
= {((Input, Output), (Inputl, Outputl)) I

Input1 is of length 1 to 5 and last component is upper case
letter and
Outputl =Output & "Welcome Aboard • & n(reverse (Input1))}

Its domain is limited to cases in which an upper case tetter is received in the first five tries.

6-10 Chapter 6 - Program Verification

6.1.4 Exercises

1. Can enumeration data types be declared as a mixture of character_literals and identifiers?
What about the single letter A, is that a character_literal, an identifier, or both?

2. Declare an array object called Pass of 50 BOOLEAN values and initialize them all to
FAlSE. How would you handle a need to have odd values FAlSE and even values TRUE?

3. Declare a STRING object called Text of POSITIVE number Length which is to contain the
text of a book. What special characters might be used as symbols to organize the content of
Text into lines, blank lines, centered text within lines, pages?

4. Define an if statement to deal with checking a Roman Digit, called Next, for correct
position in a Roman Numeral, given that the last Roman Digit, Last, is known. Can elsif
parts help?

5. Define a case statement to deal with checking a Roman Digit, called Next, for correct
position in a Roman Numeral, given that the last Roman Digit, Last, is known.

6. Block statements allow local data declarations, unlike for loop statements. But for loop
statements allow an implicit declaration of a loop variable. Show how block statements
can simulate for loop statements using an initialized while loop. For example, consider

Output_List:
for Alpha in 1 .. 25
loop

TEXT_IO.Put (Item=> Text(Alpha);
TEXT_IO.New_Line;

end loop Output_List;

and define an equivalent block statement.

6.2 Program Specifications

6.2.1 Program Specifications as Mathematical Relations

A program specification defines what a program is required to do in all possible circumstances,
namely its expected behavior. Suppose such a program is headed by a

with TEXT_IO;

statement, or a similar statement. Then the program has standard Input and Output files
which are empty at the start, before declarations and execution, say Input o and output o.
Next, during execution data may be entered as Input, say Input1. The result of execution can
bring data to Output, say output1. As a result of program execution, the empty files Inputo
and outputo are transformed into Input1 and Output1, so that during the entire execution of
the program, generalized assignments are made in the forms

Inputo <- Input1
outputo <- Output!

6.1 - New Ada Rules for Behavior 6 ·11

Continuing, a program part specification defines what a program part is required to do in all
possible circumstances, namely its expected behavior. Then the program part of a program
headed by a

with TEXT_IO;

statement possibly has some data stored in Inputo and outputo at the start of the
declarations and execution of the program part. And during execution additional data may be
entered into Input1. The result of execution can bring additional data into output1. As a
result of program part execution, Inputo and Outputo are expanded by Input 1 and Output1,
again in the form of generalized assignments

Input0 <- Inputo & Input 1
output0 <- Outputo & Output1

If what is required is not unique for every possible initial state and input, the specification is a
mathematical relation, a set of ordered pairs such that each initial state and input defines a
final output. If what is required is unique for every possible initial state and input, the
specification is a mathematical function, which is also a relation.

For example, let s be a program specification, say of the form

s = {((Inputo, Outputo), (Input1, Output1)) I •. • }

where the ... signifies whatever conditions that relate Ada Text_IO files Inputo, outputo,
Input 1 to output 1 in this specification. Specification s can be quite arbitrary in its domain,
possibly not defined for all values of Inputo, Outputo, Input1. In illustration, a specification
involving arithmetic division will not be defined for an argument in which a divisor may
become zero.

As noted, in the case of a full Ada program, the standard Input and Output files, Inputo and
outputo, will always be empty strings. So it is possible in full Ada programs for the
specification S to be written as

S = ((((), ()), (Input1, Output1)) I ... }

We will ordinarily use the first form, with Inputo, outputo visible in form, even though
known to be empty for a full Ada program. But as also noted above, in Ada program parts the
initial files Inputo and Outputo need not be empty. And more broadly, even full programs in
other programming languages may be defined for Inputo and outputo not empty. In addition,
other files than Input and Output in Ada will be introduced later, and such files need not be
empty initially.

In illustration, a specification to list the characters of Input1 in output1, with no
requirement on their order, will be a relation, say List, with the form

List = (((Input 0 , Outputo), (Inputl, 0Utput1)) I
Output1 is any permutation of Inputl}

For example, to list the characters of Input 1 with string <c, a, b>, any of six strings,

<a, b, c>, <b, c, a>, <c, a, b>, <b, a, c>, <a, c, b>, <c, b, a>

6 - 12 Chapter 6 - Program Verification

would be correct for Output 1. With identical characters, say <cl b1 c>, only three distinct
strings,

<b 1 C 1 C> 1 <C 1 b 1 C> 1 <C 1 C 1 b>

would be correct for 0Utput1.

But a specification to list the characters of Input 1 in sorted order, say in increasing values,
will be a function, say Sort, with the forrn

Sort = { ((Inputo I Outputo) 1 (Input 11 OUtput 1}) I
Output1 is the sorted list of Inputl}

To list the members of <c I a I b> in sorted order, only the string <a I b 1 c> would be correct
for output 1. If identical characters appear, they will be duplicated. But it may be desired to
only list sorted distinct characters depending on the uses of the specification, say in function
Dsort with the forrn

Dsort = {((Input01 Outputo)~ (Input11 OUtputl}) I
Output1 is the sorted list of distinct components of Inputl}

With identical characters, say <c, b1 c>1 only the string <b, c> would be correct for
Outputl.

Still another specification might be to list the components of Input 1 string, say <c 1 a 1 b>, in
reverse order which will also be a function, with only the string <b I a I c> correct for
Output 1, given as

Reverse = {((Inputo, OUtputo)~ (Input11 Outputl)) I
Outputl is the reverse list of Input 1 }

Program specifications can be large and complex, and often must be stated in large part in
natural language. But a specification will still be a relation or function, whether expressed in
mathematical notation or natural language. In either case good logical discipline should be
used. There are many ways to describe sets, relations, or functions, depending on the context of
the description. Specifications need to be understood by potential users of programs as well as
by the people who will create the programs.

6.2.2 A Specification for Program_1

For example, a specification called Specify_l implies the required behavior of Program_l of
Chapter 3, as follows, where Input 0, output 0 are empty character strings to begin with.

Specify_l = (((Inputo~ Outputo), (Input11 output1}) I
Input1 contains a single character called Char and
Output 1 contains a request for Char followed by either
the message "Welcome Aboard • followed by Char if Char
received is a capital letter or the message
"Not a capital letter! •} ··

6.2 - Program Specifications 6-13

The dynamics of generating Input1 and output1 interactively needs to be spelled out when
not obvious, as it may be here. In this case, the time sequence of interaction between output and
Input will be in the order

Output1.l
Input1.l
Output1.2

request for Char
input of Char
message either •welcome Aboard • & Char or

"Not a capital letter!"

In this case the "request for Char" is undefined in detail, just required in some form.
In Program_!, this request for Char has the detailed form of "Enter a capital letter
=> " which appears to be a reasonable way to make the request. The name "Char" in the
specification is not strictly necessary, but can be expressed in terms of Input v namely as the
element n(reverse (Input 1)) , or since Input1 is oflength 1, even~(Inputl). Yet such a
shorter and generic name "Char" may be useful in communicating with users. In any case, there
is a difference between the one character string making up Input 1 and the character in the
string.

The final form of both Input 1 and output 1 can be very different in different situations with
more complex interaction in data generation, although quite simple here. In particular, in this
program there is only one sequence of interaction between OUtput and Input, but in general
many different sequences may be possible that require much more thought in their description.

A more detailed form of Specify_! that defines "request for Char" more specifically, say
Specify_ld, is

Specify_ld = <«Inputo, Outputo), (Inputl, 0Utput1» I
Input1 contains a single character called Char and
Output1 contains a message "Enter a capital letter => •
followed either by the message "Welcome Aboard •
followed by Char if Char received is a capital letter
or by the message "Not a capital letter!"}

This is exactly the specification for Program_l, with no freedom for changing messages.

A more general form of Specify _1 that gives freedom for defining the message of failure, say
Specify_lg, is

Specify_lg = <«Inputo, Outputo). (Inputl, 0Utput1» I
Input1 contains a single character called Char and
Outputl contains a request for Char followed either by
the message •welcome Aboard • followed by Char if Char
received is a capital letter or by a message of
failure}

In these three examples, Specify_ld gives a complete specification with no choice in its
response, Specify _1 gives some choice in making the request for Char, and Specify _lg gives
choice in both the request for Char and a failed input message. An even more general
specification can be given in making the message for a.successful input arbitrary in actual text
returned. Which level of detail is best depends on the situation, in particular on the user
situation. Even the most general form still requires a program design that is correct up to the
actual messages served up. Those messages can well be parameters to be filled in depending on
the expected usage.

6-14 Chapter 6 - Program Verification

These specifications are intended to be understandable by users, who may be software engineers.
They need to be precise, but also need to be readable as well. As in the case of Program_l, there
are many choices in the actual form to be used. For example, another alternative is of the form
given next.

Specify_l = A U B

where A = {((Inputo, Outputo), (Inputl, Outputl)) I
Input1 contains a single character Char which is a capital
letter and Output1 contains a request for Char followed by
the message "Welcome Aboard • followed by Char}

and B = {((Input0 , Outputo), (Inputl, Outputl)) I
Input1 contains a single character Char which is not a
capital letter and Output1 contains a request for Char
followed by the message "Not a capital letter!"}

and "request for Char" found in both A and Bare identical in meaning. Although the
specification seems different in form, it defines the same specification as shown above. In real
practice it may be an important point to verio/ they are the same, even though written
differently.

An even simpler form from the standpoint of the user might be

Specify_l = Request input character, if input is capital letter
return "Welcome Aboard • followed by the input, otherwise
return"Not a capital letter!"

It is easy for the software engineer to convert this into a more formal form as given above if the
user is more comfortable and agrees with this less formal form.

In any case, the users need to participate and understand specifications in order to establish
correct technical objectives for software engineering.

6.2.3 A Specification In Roman Numeral Arithmetic

Checking roman numerals is more complex and interesting than checking roman digits. A roman
numeral must not only be composed of roman digits, the roman digits must be in correct order and
not too many. As already noted, early roman numerals can be defined in context-free syntax, as
strings of letters with rules about their possible order and values in a single syntax production.

Carrying out arithmetic among roman numerals is more complex and interesting than just
checking their legality. Suppose a program is required for handling roman numeral arithmetic.
The problem statement is given in general text form below, followed by a specification. In what
follows assume only the knowledge of the ancient romans about numbers and arithmetic. In
particular they did not know place notation for numbers or methods such as long division.

6.2.3.1 Roman Numeral Syntax and Semantics

A roman numeral is a nonempty sequence, call it RN, of roman digits which each appear, if at
all, in the order and maximum repetitions given next, and whose value is the sum of the roman
digit values appearing:

6.2 - Program Specifications 6-15

M : one thousand (any number)
0 : five hundred (at most one)
c : one hundred (at most four)
L : fifty (at most one)
X : ten(atmostfour)
v : five (at most one)
I : one (at most four)

For example, MDCLXVI, CCCLXXXVlli, X, II are roman numerals but COM, IX, R are not roman
numerals. IX might be considered a roman numeral in another definition, but not here.

A program is required to accept problems in roman numeral arithmetic of the following types:

V: Validate that a sequence of characters is a roman numeral.

c: Compare two roman numerals in magnitude.

A: Add one roman numeral to another.

s: subtract one roman numeral from another.

M: Multiply one roman numeral by another.

o: Divide one roman numeral by another.

It is recognized that any of the problems may be illegal and the alleged roman numerals must be
checked. Since there are no negative roman numerals a larger roman numeral cannot be
subtracted from a smaller one. Also, since there is no zero in roman numerals, equal roman
numerals cannot be subtrac~ nor a smaller roman numeral divided by a larger one.

6.2.3.2 Roman Numeral Arithmetic Commands and Responses

For each type of problem, a specific syntax for a command is given followed by separator : and
the possible responses. The form (A I B) means that either A or B must be chosen. For example,
the phrase (is I is not) means that either "is'' or "is not'' must be chosen.

V RN : RN (is I is not) a valid roman numeral
Examples

VMD
MD is a valid roman numeral

V OM
OM is not a valid roman numeral

C RNl, RN2 : Larger of RNl, RN2 is (RN3 I undefined)
Examples

6-16

C MDXXXXIIII, MDL
Larger of MDXXXXIIII, MDL is MDL

C MD, OM
Larger of MD, DM is undefined

Chapter 6 - Program Verification

A RNl, RN2 : RNl plus RN2 is (RN3 I undefined)
Examples

A MD, MDV
MD plus MDV is MMV

A XXVII, IIVXX
XXVII plus IIVXX is undefined

5 RNl, RN2: RNlless RN2 is (RN3 I undefined)
Examples

S L, XXVII
L less XXVII is XXIII

S XXVII, L
XXVII less L is undefined

M RNl, RN2 : RNl times RN2 is (RN3 I undefined)
Examples

M L, XXVII
L times XXVII is MCCCL

M L, XXL
L times XXL is undefined

D RNl, RN2 : RNl divided by RN2 is (RN3 with (remainder RN4 I no remainder) I
undefined)
Examples

D CCC, XXX
CCC divided by XXX is X with no remainder

D CCC, XXXX
CCC divided by XXXX is VII with remainder XX

D XXX, CCC
XXX divided by CCC is undefined

None of the above Commands : illegal command
Examples

+ XXV, L
Illegal command

I XXV by L
Illegal command

In this case the specification for roman numeral arithmetic is a function. Every response is
uniquely determined.

6.2.3.3 Roman Numeral Arithmetic Specification

The roman numeral arithmetic specification will be defined in terms of the syntax in Input and
subsequent responses in output. Input can hold several problems, separated by commas, and
output will hold answers for each problem separated by line ends. The syntax is given next,
with literals shown in boldface

input_file problem {problem}

output_file response {line~end response}

6.2 - Program Specifications 6-17

problem

roman_numeral

response

V roman_numeral 1

C roman_numeral 1 roman_numeral 1

A roman_numeral 1 roman_numeral 1

S roman_numeral 1 roman_numeral 1

X roman_numeral 1 roman_numeral 1

D roman_numeral 1 roman_numeral 1

{character}

roman_numeral
numeral.

(ia I i• not) a valid roman

Larger of roman_numerall roman_numeral i•
(valid_roman_numeral • I undefined.)

roman_numeral plua roman_numeral i•
(valid_roman_numeral • I undefined.)

roman_numeral lea• roman_numeral ia
(valid_roman_numeral • I undefined.)

roman_numeral time• roman_numeral ia
(valid_roman_numeral • I undefined.)

roman_numeral divided D,y roman_numeral ia
(valid_roman_numeral with remainder
valid_roman_numeral •

valid_roman_numeral with no remainder. I
undefined.)

Illegal command.

valid_roman_numeral ::= {X} [L]{C:4}[D] {X:4}[V] {I:4}

The term character is described no further, so roman_numeral may be a valid roman numeral
or not. With each operation, only valid roman_numeral operands can create a
val id_roman_numeral, and the response is undefined otherwise. In addition to correct
syntax, the arithmetic operations must provide correct answers when they are legal. For
example, as noted above, both Subtract and Divide require certain comparisons to hold between
valid roman numeral operands. The subtractor must be strictly less than the subtrahend, and
the divisor must be less than or equal to the dividend.

6.2.4 Exercises

1. Create specifications for ARRAYS of INTEGERS that correspond to List, Sort, Dsort,
Reverse for CHARACTER STRINGS, called List_Array, Sort_Array, Dsort_Array,
Reverse_Array. Are there degrees of freedom for. ARRAYS of INTEGERS not present in
CHARACTER STRINGS?

2. Create a specification, called Repeats, to list all characters repeated (adjacent characters
are identical) entered in Input 1 until digit '0' is entered.

6 ·18 Chapter 6 • Program Verification

3. Create a specification, called Squares, to sum the squares of digits in entered in Input 1
until 'O' is entered.

4. Create a specification, called Trend, that Trend_Program, Exercise 8, Section 5.1, would
satisfy.

5. Create a specification, called More, that Program_6, Exercise 7, Section 3.2, would satisfy.

6. Create a specification, called Sides, that program Triangles, Exercise 3, Section 4.1,
would satisfy.

7. Create a specification, called No_Mystery, that program Mystery_Again, Exercise 6,
Section 5.2, would satisfy.

8. Expand the specification for Roman Numerals to modern forms that permit preceding
certain digits with lower level digits, such as IV as a possible alternative for mi. First,
identify all correct additions to the forms, second identify the numerical values of each,
third define an algorithm for identifying all such modem forms.

6.3 Program Verification

6.3.1 Program Correctness

Given a specification relation (which is possibly a function) and a behavior of a program
(which is possibly a function or a relation), the program is said to be correct if it terminates
from every argument in the domain of the specification and produces a value which is paired
with that argument in the specification. As before, let s be a specification, say of the form

s = {((Input0 , Output 0), (Input1 , output1))1 ... }

and also let P be a program, so [P] is the program behavior of P of the form

[P] = {((Inputo, Outputo), (Input2, Output2)) I ... }

In either case, either every value of Input1 or Input2 can be associated with a unique value of
output1 or 0Utput2 (S or [P] is a function) or some values of Input 1 or Input2 maybe
associated with a set of two or more output 1 or output2 values (s or [P 1 is a relation).

As noted, specification s can be quite arbitrary, possibly not defined for all arguments of
Input 1. In this case the domain of s will be of the form

domain (S) = {Input1l Output1 is defined}

For an Ada program P, program behavior [P] can accept some values of Input2 and create a
value of output 2. But, for example, values for output 2 will not be defined for potential
arguments of Input2 which lead to infinite looping in executing program P and no termination.
Another example is attempts to divide by zero with no exception handing. So the domain of
specification s will be as defined, and the domain of program behavior [P] will be defined by
program P termination, even termination by exception. Again, the domain of [P] will be of the
form

domain ([P]) = {Input2l Output2 is defined}

6.2 - Program Specifications 6-19

For P to be correct, it must first terminate from every member of the domain of s. That is, the
domain of [P 1 must include the domain of s, namely

domain (S) C dornain([P)),

and, second, for any argument in domain of s, every value from program behavior [Pl must agree
with some value paired with that argument in the relations, namely

if Inputl e domain (S)
then (Inputl, [P) (Inputl)) e S

That is, if [P] is a function, there will only be one value paired with each argument to be found
in the relation of s. But if [P] is a relation, then every value paired with each argument must
be found in the relation of s.

Once understood, there is a simpler way to combine these two conditions into a single condition.
The second condition identifies pairs

(Inputl, [P] (Inputl))

that must be members of s, and these pairs are also clearly members of [PJ. That is, these pairs
are members of

{P] n S,

while the first condition requires that every member in the domain of s be a first component
Input1 in a pair

(Inputl, [P] (Inputl))

of both [P J and s. Putting this together, the condition of correctness for program P with
specification s is that

domain ([P) n S) =domain (S)

At first glance, this seems to be a very simple condition. But it just the condition that is needed.

When specification s is a function, it is clear that [P] must be a function as well. Otherwise
different values of [P] could not equal a single value from s. In this case, this condition of
correctness can be stated more simply as

S C [P)

because in this case

[P) n S = S

and

dornain([P] n S) =domain (S)

directly.

6-20 Chapter 6 - Program Verification

6.3.2 Program Correctneu Example

As an example of program correctness, suppose a specification named Welcome is of the
following form.

Welcome = {Request up to ten input characters, by messages
"Try input. • until a capital letter is returned, if ever.
If capital letter is returned, respond "Welcome Aboard •
followed by the capital letter; if no capital letter is
returned respond with rejection message.}

Specification Welcome can be reformulated more formally as follows, assuming Input0,
output 0 are empty strings.

Welcome = ({(Inputo, Outputo), (Inputl, Output2)) I
length (Inputl) <= 10 and if UCL is first and only upper
case letter in Input1 then Output2 = c * "Try input. •
(1 <= c <= 10) & "Welcome Aboard • & UCL else
length (Inputl) = 10 and no upper case letter in Input1
and Output2 = 10 * "Try input. • & rejection message}

where c * "Try input. • (1 <= c <= 10) means a number c of •Try input. • messages
where c is an integer between 1 and 10.

From Chapter 4, Mystery _Prograrn_S is a candidate to meet the specification Welcome. In
the interest of better communications with the user, weaugmentMystery_Prograrn_S with an
additional Put statement in the loop to make the search for a character more specific, calling
it Search_Prograrn.

with TEXT_IO;
procedure Search_Prograrn
is

Choice: CHARACTER.- ' ';
Tries: INTEGER := 1;

begin
Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10
loop

TEXT_IO.Put (Item=> "Try input. ");
TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;
if 'A' <= Choice and Choice <= 'Z'
then

TEXT_IO.Put (Item=> "Welcome Aboard • & Choice);
else

if 'a' <= Choice and Choice <= 'z'
then

TEXT_IO.Put (Item=> "Lower Case Data Input • & Choice);
else

TEXT_IO.Put (Item=> "Try Again•);
end if;

end if;
end Search_Prograrn;

6.3 - Program Verification 6- 21

::---

with program behavior is

tsearch_Prograrn] =
{((Input0 , output0), (Input 1, Output2))}

where

if ~(reverse (Input1)) in 'A' .• 'Z')
length (Input1) <= 10,
no preceding component of Input1 in 'A' .. 'Z'

Output2 = c * ("Try input. ") (1 <= c <= 10) & "Welcome Aboard • &
~(reverse (!nput1>>

if ~(reverse (Input1)) in 'a' .. 'z'
length (Input1) = 10
no component of Input1 in 'A' .. 'Z',

Output2 = 10 * ("Try input. ") & "Lower Case Data Input • &
~(reverse (Input1>>

if ~(reverse (Input1)) not in •a• .. 'Z I

length (Input1) = 10
no component of Input1 in 'A' .. ·z·,

output2 = 10 * ("Try input. .) & "Try Again"

More formally, the domains of [Search_Program] and Welcome are identical, namely all
sets Input lt and every member of [Search_Program], namely

((Inputo, output0), (Input1, output2))

is also a member of Welcome, first if an upper case letter is in Inputv and second if not, in
which Welcome combines the other two cases in [Search_Program]. Thus, in particular,

domain (Welcome* [Search_Program]) =domain (Welcome),

as was needed to be shown.

6.3.3 A Simpler Program

It is dear that Search_Program could be simplified and still satisfy Welcome, calling it
Simple_Program,as

with TEXT_IO;
procedure Simple_Program
is

Choice: CHARACTER •
Tries: INTEGER := 1;

... ,
begin

Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10

6-22

loop
TEXT_IO.Put (Item=> "Try input. ");
TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

Chapter 6 - Program Verification

end loop Search_For_Upper_Case_Letter;
if 'A' <= Choice and Choice <= 'Z'
then

TEXT_IO.Put (Item=> "Welcome Aboard • & Choice);
-- else

-- if 'a' <=Choice and Choice<= 'z'
-- then

-- TEXT_IO.Put (Item=> "Lower Case Data Input • & Choice);
else

TEXT_IO.Put (Item=> "Try Again");
-- end if;
end if;

end Simple_Program;

or, removing the comments showing the statements removed

with TEXT_IO;
procedure Simple_Program
is

Choice: CHARACTER . - ' ';
Tries: INTEGER := 1;

begin
Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10
loop

TEXT_IO.Put (Item=> "Try input. ");
TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;
if 'A' <= Choice and Choice <= 'Z'
then

TEXT_IO.Put (Item=> •welcome Aboard • & Choice);
else

TEXT_IO.Put (Item=> "Try Again");
end if;

end Simple_Program;

In this case, the program behavior of Simple_Program is

[Simple_Program] = {((Inputo, Outputo), (Input1, Output3)))

where

if ~(reverse (Input1)) in 'A' .. 'Z')
length (Input1) <= 10,
no preceding component of Input1 in 'A' 'Z'

Output3 = c * ("Try input. ") & •welcome Aboard • &
~(reverse (Input!))

length (Input!) = 10
no component of Input1 in 'A' 'Z', ,

Output3 = 10 * ("Try input. ") & "Try Again"

6.3 - Program Verification 6 - 23

More formally, the domains of [Simple_Program] and Welcome are identical, namely all
sets Input 3 and every member of [Simple_Program]

((Inputo, Outputo), (Inputl, Output3))}

is also a member of Welcome and vice versa. Thus, in particular.

domain (Welcome~ [Simple_Program]) =domain (Welcome)

as was needed to be shown.

6.3.4 A Top Level Program for Roman Numeral Arithmetic

Given the specification for Roman Numeral Arithmetic, a top level program can be designed to
recognize problems and call the proper procedures to solve them. In this case, these procedures
will be provided in a package called Roman_Numeral_Operators that must be included in
the opening with clause of the program. The specifications for these next level procedures
become an integral part of the top level program solution.

with TEXT_IO;
with Roman_Nurneral_Operators;
procedure Roman_Nurneral_Arithrnetic
is

Terminate : BOOLEAN := FALSE;
Problem : CHARACTER;

begin
Roman_Nurneral_Problems:
while Terminate = FALSE
loop

TEXT_IO.Put (Item => •Next Problem? •
TEXT_IO.Get (Item=> Problem);
case Problem
is

when 'V' =>
Validate;

when •c• =>
Compare;

when 'A' =>
Add;

when •s• =>
Subtract;

when 'M' =>
Multiply;

when 'D' =>
Divide;

when 'T' =>
Terminate := TRUE;

when others =>
Error;

end case;
end loop Rornan_Nurneral_Problems;

end Roman_Nurneral_Arithrnetic;

The package Roman_Nurneral_Operators in the with clause contains the procedures called
for in the case statement. The specifications for the procedures in Rornan_Nurneral_Operators
are given next.

6-24 Chapter 6 - Program Verification

Validate: Validate that the next sequence of characters up to a comma in Input, called
roman_numeral, is a valid roman numeral or not. Put to Output the proper message with
the syntax

roman_numeral (is I is not) a valid roman numeral.

Compare : Compare the next two sequences of characters separated by a comma and ended
by a comma, called roman_numeral_l, roman_numeral_2, as roman numerals in
magnitude. Put to output the proper message with the syntax

Larger of roman_numeral_l, roman_numeral_2 i•
(roman_numeral_3 • I undefined.)

Add : Add the next two sequences of characters separated by a comma and ended by a
comma, called roman_numeral_l, roman_numeral_2, as roman numerals. Put to output
the proper message with the syntax

roman_numeral_l plu• roman_numeral_2 i•
(roman_numeral_3 • I undefined.)

Subtract: Subtract the second from the first of the next two sequences of characters
separated by a comma and ended by a comma, called roman_numeral_l,
roman_numeral_2, as roman numerals. Put to Output the proper message with the syntax

roman_numeral_l le•• roman_numeral_2 1•
(roman_numeral_3 • I undefined.)

Multiply: Multiply the next two sequences of characters separated by a comma and
ended by a comma, called roman_numeral_l, roman_numeral_2, as roman numerals. Put
to Output the proper message with the syntax

roman_numeral_l time• roman_numeral_2 i•
(roman_numeral • I undefined.)

Divide: Divide the first by the second of the next two sequences of characters separated
by a comma and ended by a comma, called roman_numeral_l, roman_numeral_2, as
. roman numerals. Put to output the proper message with the syntax

roman_numeral_l divided by roman_numeral_2 i•
(roman_numeral_3 with remainder roman_numeral_4 •
I roman_numeral with no remainder.
I undefined.)

Terminate: Terminate computation

Terminate := TRUE;

Error: Put to Output the message

Illegal command.

The procedures specified must be designed and coded in Ada. Some of these procedures will be
useful to others. For example, procedure Validate will be useful for all the other procedures, to
check if their input character strings are indeed roman numerals. Every other procedure can
report a problem as undefined if the strings are not roman numerals. The procedure Compare

6.3 - Program Verification 6-25

will be useful for both Subtract and Divide procedures. Once over the hurdle of legal roman
numerals, Subtract and Divide both must determine if the problem is legal by comparing the
sizes of the two roman numerals. Procedure Compare might also be useful for the Add and
Multiply procedures for optimization purposes. There may be an advantage to knowing which
of the two roman numerals are smallest.

The design of these procedures will be taken up later, beginning with Chapter 7. The data
structure of STRING will be very useful in designs for these procedures. It will also be useful to
think through how these procedures can pass data in STRING form rather than file forms as
defined by the top level program.

6.3.5 Exercises

1. Is it possible for a program P that does not initialize declared objects before their use be
correct with respect to a specification s? What if [P] is a relation, not a function?

2. Given a specifications which is a function and a program P such that [P] is a relation, not
a function, can program P be correct with respect to s?

3. In writing down Search_Program for execution, a small mistake was made, interchanging
the while loop and the if statement Call the resulting program Search_Program_2 and
determine its behavior.

4. If simp 1 e_Program is found defident because of lack of final communication if no upper
case letter is found, how could it be fixed with a single message that ignores lower case
letters?

5. Consider the specification

Check = {Check up to five input characters, by request messages
until a digit is returned, if ever. If a digit is
returned, respond with positive message, otherwise
respond with negative message.}

Convert this specification to a more formal form, then modify Simple_Program with
program name Input_Digit.

6.4 Program Part Verification

6.4.1 Program Verification In Hierarchical Structures

As already noted, Ada programs have hierarchical control structures which can be used in
organizing their verifications. Each sequence, if, or loop statement in the hierarchy can be
verified, based on its specification and the specifications of its component parts. Each of those
parts can, in turn, be verified against its specification using the specifications of its components
in tum. These verifications can be carried out at various levels of formality. The more formal
the verification, the less fallibility can be expected, but the more time it takes. The question is
not whether to verify programs or not, but what level of formality to use in verification. There
is not a simple or single answer to this question. Some programs are more critical than others
and different levels of effort will be put into them. Programs to be used only once or twice for
noncritical purposes may not be worth the effort of those used many times with human life
dependent on correct programs. The same person or team can encounter both situations in their
work simultaneously.

6-26 Chapter 6 - Program Verification

At the top level of the hierarchy the specifications will be in the context of the application
area. But as these specifications are decomposed by the structure of the program, the
specifications of lower level parts become more program oriented, and specifically, become more
like conditional or concurrent assignment specifications. Such conditional or concurrent forms
may be relations by providing freedom in assignments in explicit ways. For example, the
concurrent form

xl, y2, z3 <- arbitrary, z3, y2;

is a relation that places no requirement on xl while interchanging y2 and z3. In illustration,
either of the following sequences will accomplish this interchange.

xl ·- y2;
y2 ·- z3;
z3 ·- xl; ** xl ends with value of initial y2

xl ·- z3;
z3 ·- y2;
y2 ·- xl; ** xl ends with value of initial z3

But, for example, another sequence will do, such as

xl ·- y2;
y2 ·- z3;
z3 ·- xl;
xl ·- 0;

which initializes xl, possibly for another use.

Even at the top level, the conditional and concurrent forms are always possible, and provide an
effective discipline for specifications in application contexts. As such, they are useful in
creating structured specifications in forms that are understandable by both users and designers.

6.4.2 Hierarchical Structure of Search_Program

Recall that the predecessor of Search_Program was analyzed in its hierarchical structure in
Chapter 4, where part behaviors were discovered and combined into larger part behaviors from
the ix>ttom up until the program behavior was discovered.

6.4.2.1 Low Level If Statement

Search_Program has a low level if statement

ifl =
if 'a' <=Choice and Choice<= 'z'
then

TEXT_IO.Put (Item=> "Lower Case Data Input • & Choice);
else

TEXT_IO.Put (Item=> "Try Again");
end if;

with part behavior

[ifl] = {((Input0 , Output0 , Choice, ...),
(Inputl, Outputl, Choice, ...))}

6.4- Program Part Verification 6-27

where

if 'a' <=Choice and Choice<= 'z',
Output1 = "Lower Case Data Input • & Choice

if not ('a' <=Choice and Choice<= 'z'),
Output1 = "Try Again"

This very assertion that if 1 has part behavior [if 1] is a matter for proof. In this case it is
quite straightforward, but mistakes are possible and independent inspections can reduce
mistakes significantly. It is dear by inspection that the only object being changed is Output v
and that "Lower Case Data Input" & Choice or "Try Again" will be added to Output1
depending on the value of Choice. In particular, Choice will be used but not altered altered in
this if statement.

Note one important thing about output. It is whatever is in Output at the moment, not the
Output mentioned at the start of the whole program. As noted above, unlike full programs
whose initial values for Inputo and Outputo are always empty strings, program parts, such as
this if statement may start with values for Input 0 and outputo which are not empty strings.
In particular, in this full program, the while statement preceding the nested if statement will
have generated data that will be in Input 0 and output 0 now. That previous data is not part
ofoutput1.

An inspection of if 1 shows that the additions are made correctly.

6.4.2.2 Next Level If Statement

Next, ifl is part of the larger if statement if2, where

if2 =
if 'A' <= Choice and Choice <= 'Z'
then

TEXT_IO.Put (Item => •welcome Aboard • & Choice);
else

ifl
end if;

whose part behavior is

[if2] = {((Inputo, Outputo, Choice, ...),
(Inputl, Output2, Choice, ...))}

where bringing the results of ifl above forward and calling the new Output file output2 for
convenience at the moment

if 'A' <= Choice and Choice <= 'Z'
Output2 = "Welcome Aboard • & Choice

if not ('A' <=Choice and Choice.<= 'Z'} and
'a' <=Choice and Choice<= 'z'

Output2 = "Lower Case Data Input • & Choice

6-28 Chapter 6 - Program Verification

---------~~~~~~~~~~~~-------

if not ('A' <=Choice and Choice<= 'Z') and
not ('a' <=Choice and Choice<= 'z')

Output2 = •Try Again•

Again, the assertion that if 2 has part behavior (if 2] needs proof. In this case again, the only
object being changed is output2, either by the then part with the TEXT_Io. Put statement or
the else part if1, already examined and verified. As before, an inspection indicates the correct
additions are made to Output for the conditions.

6.4.2.3 Initialized While Loop Statement

Continuing, the initialized while loop statement just before the outer if statement if 2 is

wh1 =
Choice := ' '; --from declaration
Tries := 1; -- from declaration
Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice>= 'Z') and

Tries <= 10
loop

TEXT_IO.Put (Item=> •Try input. •);
TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;

with part behavior as follows

[wh1] = {({Inputo, Outputo, Choice, Tries),
(Input1, Output1, Choice1, Tries1))}

where

Input 1 will be a string of 1 to 10 characters, only the last, if any, an upper case letter.

output 1 will be a string of messages ''Try input " of same number as Input 1 components.

Choice1 will be last value of the Input1 string, Ji(reverse (Input1)) .

Tries1 will be an integer between 2 and 11, one more than the length of Input1.

This behavior can be determined directly from wh1 by direct analysis. First, Choice and Tries
have been initialized when declared, and the while statement is the first statement executed.
Next, the first entry into the while loop will be successful in passing the while test because of
how the variables Choice and Tries have been initialized. In this first loop a message ''Try
input." is sent to Outputl, then a value for Choice1 is returned to Inputv and Tries1 is
incremented to 2. If Choice1 is now an upper case letter, the loop is terminated next with just
those values for the data. If Choice1 is not an upper case letter, the loop is continued with new
values added to the Input1 and output1 strings, and new values created for Choice and
Tries. The loop continues until either Choice contains an upper case letter or Tries exceeds
10. Since Tries is incremented each time through the loop, termination is guaranteed, but the
appearance of an upper case letter can terminate the loop before that

6.4 - Program Part Verification 6-29

... _. __ _ .

This analysis for the initialized while statement is simplified considerably because of where
it appears as the opening statement in the program. If not initialized as found here, the while
statement must be prepared for any possible values for Choice and Tries, and the analysis is
much more complex, as will be seen later.

6.4.2.4 Entire Executable Part

Next, the entire executable part of the program is the sequence seq where

and

seq =
wh1
if2

(seq] = ((Inputo, Outputo, Choice, Tries),
(Input1, Output2, Choice1, Tries1))

which is determined by the two steps of the sequence. As above, we suppose values Input 1,
Output1, Choicev Tries1 result from the first step whl. The first step repeated from just
above determines values for the data as follows.

Input 1 will be a string of 1 to 10 characters, only the last, if any, an upper case letter.

Output1 will be a string of messages ''Try input" of same number as Input1 components.

Choice1 will belastvalueofthe Input1 string, n(reverse (Input1)).

Tries1 will be an integer between 2 and 11, one more than the length of Input1.

The second step uses these values to create a final Output 2 from the intermediate values of
Inputv outputv Choice1, as follows.

if 'A' <= Choice1 and Choice1 <= 'Z'
Output2 = output1 & "Welcome Aboard • & Choice1

if not ('A' <= Choice1 and Choice1 <= 'Z') and
'a' <= Choice1 and Choice1 <= 'z'

Output2 = Output1 & "Lower Case Data Input • & Choicel

if not ('A' <= Choicel and Choice1 <= 'Z') and
not ('a' <= Choicel and Choice1 <= 'Z')

Output2 = Outputl & "Try Again"

where output1 is given as above, namely

Output 1 will be a string of messages ''Try input " of same number as Input 1 components.

Substituting the results of whl into if2, we need to formulate the conditions of wh1 above into
the three conditions of if 2 which account for the history of conditions in whl that are unknown
in if 2. For example, in if 2 any upper case letter in Input 1 will be printed, whether last or
not, no limit exists for the length of Input1, and so on. Going back to wh1 and putting its results

6-30 Chapter 6 - Program Verification

in terms needed for the sequence with if 2, we get the following expansion in the if 2 step just
above in terms of Input1 at the termination of seq.

if length (Input1) <= 10 and
not ('A' <= x <= 'Z' and x in (t(reverse (Input1))) and
'A' <= n(reverse (Input1)) <= 'Z'

Choice!= n(reverse (Input1)),
Tries1 = length (Input1) + 1,
Output2 = length (Input1) * "Try input. • & "Welcome Aboard • &

n(reverse (Input1))

if length (Input1) = 10 and
not ('A' <= x <= 'Z' and x in Input1) and
'a' <= n(reverse (Inputl)) <= 'Z'

Choice1 = n(reverse (Input1)),
Tries1 = 11,
Output2 = 10 * "Try input. • & "Lower Case Data Input • &

n(reverse (Input1))

if length (Inputl) = 10 and
not ('A' <= x <= 'Z' and x in Input1) and
not ('a' <= n(reverse (Input1)) <= 'Z')

Choice1 = n(reverse (Input1)),
Tries1 = 11,
Output2 = 10 * "Try input. • & "Try Again"

6.4.2.5 Entire Program

And finally, the entire program is

with TEXT_IO;
procedure Search_Prograrn
is

Choice
Tries

begin
seq

CHARACTER := I ';

INTEGER := 1;

end Search_Prograrn;

with the program behavior

(Search_Prograrn] = {((Inputo, Outputo), (Inputl, Output2))}

where

if length (Inputl) <= 10 and
not ('A' <= x <= 'Z' and x in (t(reverse (Input1))) and
'A' <= /i(reverse (Input1)) <= 'Z'

Output2 = length (Input1) * "Try input. • & "Welcome Aboard • &
n(reverse (Input1))

6.4 - Program Part Verification 6-31

if length (Input1) = 10 and
not ('A' <= x <= 'Z' and x in Input1) and
'a' <=~(reverse (Input1)) <= 'z'

Output2 = 10 * "Try input. • & "Lower Case Data Input • &
~(reverse (Input1))

if length (Input1) = 10 and
not ('A' <= x <= 'Z' and x in Input1) and
not ('a' <=~(reverse (Input1)) <= 'z')

Output2 = 10 * "Try input. • & "Try Again•

To show this, first, the statement with TEXT_IO; makes the standard 10 package available
for this program.

Second, the procedure of the program is named Search_Program.

Third, Ada reserved word is is followed by Choice: CHARACTER : = 1
'; Tries: INTEGER

: = 1; that declares the object named Choice to be of type CHARACTER with initial value
1 'and object named Tries of type INTEGER with initial value 1.

Fourth, begin will set the executable part named seq into action, with the result given above,
which uses the availability of TEXT_IO and objects named Choice and Tries just declared
and initialized.

Fifth, after the line end Search_Program;, all declared data is eliminated. That is, the
program behavior of the entire program, including the with clause and declaration, both used
implicitly in the derivation of the executable part behavior, is as shown above.

This program has been verifi~ part by part in its hierarchical structure. At each step a
working hypothesis equates the part with its asserted part behavior, and the proof involves an
analysis that depends on the kind of part it is, whether a sequence, an if statement, a whilt:
loop statement, a declaration, or the entire program.

6.4.2.6 Summary of Search_Program

In summary, Search_Program can be analyzed step by step to determine its behavior with
respect to a specification. The program provides more response than the specification requires,
but is correct. It is given all filled in next, with comments that identify the names of program
parts used above.

with TEXT_IO;
procedure Search_Program
is
-- begin seq

Choice: CHARACTER ·
Tries: INTEGER := 1;

begin

I I o
I

-- begin wh1
Search_For_Upper_case_Letter:
while not ('A' <= Choice and Choice <= 'Z') and

Tries <= 10

6 - 32 Chapter 6 - Program Verification

loop
TEXT_IO.Put (Item=> "Try input. ");
TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;
end whl

-- begin if2
if 'A' <= Choice and Choice <= 'Z'
then

TEXT_IO.Put (Item=> "Welcome Aboard • & Choice);
else

-- begin ifl
if 'a' <=Choice and Choice <= 'z'
then

TEXT_IO.Put (Item=> "Lower Case Data Input • & Choice);
else

TEXT_IO.Put (Item=> "Try Again");
end if;
-- end ifl

end if;
-- end if2

-- end seq
end Search_Program;

As noted above, program parts called ifl, if2, whl, seq, Search_Program are identified and
related in building a hierarchical analysis of program behavior.

6.4.3 Exercises

1. Given a specification Trend for Exerdse 4, Section 6.2, namely

Trend = {((Inputo, Outputo), (Inputl, Outputl)) I beginning with
Outputl empty and getting the first nine characters from
Inputl, compare the first and ninth characters and if the
ninth is greater than the first put to Outputl the
message "Trend is upward with full history • followed by
the nine characters, otherwise put to Outputl this
message with "upward" replaced by "downward"}

Create a hierarchical structure of the parts of Trend_Program, Exercise 8, Section 5.1, for
a verification that Trend_Program would satisfy Trend.

2. Carry out the verifications of the program parts of the previous Exerdse 1.

3. What if the simple exchange discussed above which initializes xl, possibly for another
use, is not found together, but spread out among other text as follows?

xl := y2;
if z3 > 0
then

y2 := xl;
end if;
y2 : = z3;

6.4 - Program Part Verification 6-33

if y2 < 0
then

z3 := y2
end if;
z3 := xl;
if y2 < z3
then

xl := z3;
end if;
xl : = 0;

First, does the interchange still work? Second, can that be proven?

4. Given a specification More for Exercise 5, Section 6.2, namely

More = {((Inputo, Outputo), (Inputl, Output1)) I if first character
of Input1 is upper case letter and second character is
lower case letter, Outputl = "Valid Input Data"}

create a hierarchical structure of the parts of Program_6, Exercise 7, Section 3.2, for a
verification that Program_6 would satisfy More.

5. Given a specification Sides for Exercise 6, Section 6.2, namely

Sides = {({Inputo, Outputo), {Input1 , Output1)) I for each triple
of integers in Inputl, put "Sides • followed by the three
integers, followed by the proper message about these
integers from • do not make up a triangle.•,
• make up a right triangle.•,
• make up an acute triangle.•,
• make up an obtuse triangle.• to Outputl}

create a hierarchical structure of the parts of Triangles, Exercise 3, Section 4.1, for a
verification that program Triangles would satisfy Sides.

6. Given a specification No_Mys tery for Exercise 7, Section 6.2, namely

No_Mystery = {((Inputl, Output c), (Inputl, OUtput!)) I
Outputl will contain the number of characters in
Input1}

create a hierarchical structure of the parts of program Mystery _Again, Exercise 6, Section
5.2, for a verification that program Mystery _Again would satisfy No_Mys tery.

6.5 Program Part Verification with Behavior Tables

6.5.1 Verifying Opening Sequence Parts

Sequence parts are simple in form, although their component parts may be complex and
extensive to describe. In any case, the sequence part and its components can be described as
conditional or concurrent forms from input states to output states. The forms may involve many
objects, but they are no more than generalized conditional or concurrent assignments. The level

6-34 Chapter 6 - Program Verification

of formality required depends on the stakes in designing the program. The number of conditions
in the sequence depends on the conditional forms found in its components, and is the product of
the number of conditional forms in each component

For example, the entire executable part of Search_Program analyzed above is defined
between the two comments -- beg in seq and -- end seq which can be abstracted as

-- begin seq
Choice : = ' ' ;
Tries .- 1;
whl
if2

-- end seq

This verification of seq can be carried out more systematically in trace tables, as shown next.
The notation for entries in the trace tables will be simplified to a macro level, referencing new
values for variables, not simply new lines of the tables.

From the analysis already carried out, it is dear that three different conditions on Input 1
will lead to three different execution patterns and can be handled in three separate trace
tables. In this case we will deal with statements in general position. As shown above, the three
different conditions and consequences are as follows.

if length (Inputl) <= 10 and
not ('A' <= x <= 'Z' and x in (t(reverse (Input1))) and
'A' <= n(reverse (Input1)) <= 'Z'

Choicel = n(reverse (Inputl)),
Tries1 = length (Input1) + 1,
Output2 = length (Input1) * "Try input. • &

"Welcome Aboard • & n(reverse (Input1))

if length (Inputl) = 10 and
not ('A~<= x <= 'Z' and x in Input1) and
'a' <= n(reverse (Inputl)) <= 'z'

Choice1 = n(reverse (Input1)},
Triesl = 11,
Output2 = 10 * "Try input. • & "Lower Case Data Input • &

n(reverse (Input1))

if length (Input1) = 10 and
not ('A' <= x <= 'Z' and x in Input 1) and
not ('a' <= n(reverse (Input1)) <= 'z')

Choice1 = n(reverse (Input1)),
Tries1 = 11,
Output2 = 10 * "Try input. • & "Try Again•

The trace tables that deal with these three cases are as follows.

6.5 - Program Part Verification with Behavior Tables 6-35

Trace Table 6.1

if length (Inputl) <= 10 and
not ('A' <= x <= 'Z' and x in (t(reverse (Input1))) and
'A' <= n(reverse (Input1)) <= 'Z'

Choice1 = n(reverse (Inputl)),
Triesl = length (Inputl) + 1,
Output2 = length (Inputl) * "Try input. • &

•welcome Aboard • & n(reverse (Inputl))

statements Condition Inout Out out Choice
Choice := ' I • I I

I

Tries := 1;
wh1 I A I <=li ••• I1 n*"'I'Iy .•. • /i(r(I1 ...))

and Tries<=10
if2 'A'<=Ii .•. n*"'I'Iy •.• "&

"Welcome ... •

where

'A'<=~ ... ='A' <=~{reverse (Inputl)) <= 'Z'
I1 = Input1 = n characters, only last is upper case letter
'Try ... • = •Try input. •
"Welcome ... • = •welcome Aboard • & n(reverse (Inputl))
n(r(Il···>> =~(reverse (Inputl))

Trace Table 8.2

if length (Inputl) = 10 and
not ('A' <= x <= 'Z' and x in Input1) and
'a' <= n(reverse (Inputl)) <= 'Z'

Choice1 =~(reverse (Input1)),
Tries1· = 11,

Tries

1
length
(I1)+1

Output2 = 10 * •Try input. • & "Lower Case Data Input • &
h(reverse (Input1))

statements Condition Input OUtput Choice Tries
Choice := I I • ' ' I

Tries := 1; 1
wh1 'A'<=Ii .•. I1 10*"'I'Iy /i(r(I1)) 11

and Tries<=10
if2 not ('A' <=li . •.)

'a' <=li ... 10*"Try ... "&

"Lower ... •

where, in addition to those above,

'a'<= ... = 'a' <=~(reverse (Input1)) <= 'z'
"Lower ... • ="Lower Case Data Input • & h(reverse (Inputl))

-

6-36 Chapter 6 • Program Verification

Trace Table 6.3

if length (Input1) = 10 and
not ('A ' <= x <= 'Z' and x in Input1) and
not ('a' <= n(reverse (Input1)) <= 'Z')

Choice1 = n(reverse (Input1)),
Tries1 = 11,
Output2 = 10 * "Try input. • & "Try Again"

statements Condition Input Output
Choice I I • ·- ,
Tries ·- 1;
wh1 'A'<=n ... I1 10*"Try ... •

and Tries<=10
if2 not (I A I <=n . .•) 10* "Try .•• "&

not ('a' <=n . ..) "Try Again"

Choice IT' • ... r~es._
I I

1
n(r(I1)) 11

These three trace tables confirm the results obtained more informally above. The three
conditions on Input 1 and the outcomes of each trace table provide the conditional concurrent
assignment for [seq] given above, in alternate form, namely

[seq] =
(length (Input1} = n <= 10 and

'A' <= n(reverse (Input1)} <= 'Z' and
no preceding character in Input1 in 'A' .. 'Z' ->

Input1, Output2, Choice, Tries
<- n * Char,

n * "Try input. • & "Welcome Aboard • &
n(reverse (Input1}},

n(reverse (Input1)},
length (Input 1 } + 1;

length (Input1) = 10 and
'a' <= n(reverse (Input1)) <= 'Z'

no preceding character in Input1 in 'A' .. 'Z' ->

Input1, Output2, Choice, Tries
<- 10 * Char,

10 * "Try input. • & "Lower Case Data Input • &
n(reverse (Input1)),

n(reverse (Input1)),
11;

length (Input1) = 10 and
not ('a' <= n(reverse (Input!)) <= ' Z')

no character in Input! in 'A' .. 'Z' ->

Input1, Output2, Choice, Tries
<- 10 * Char,

10 * "Try input. • & "Try Again ",
n(reverse (Input!)),
11;)

6.5 • Program Part Verification with Behavior Tables 6-37

6.5.2 Verifying General Sequence Parts

Consider now a subsequence of seq, namely the sequence given by

seq1 = wh1
if2

that might appear any place in a program, not just start it out. In particular, Choice and Tries
are not initialized to special values as above. Then wh1 may never execute its loop if Choice is
an upper case letter or Tries is greater than 10. And wh1 may execute its loop a large number of
times if Tries is a negative number of large absolute value and no upper case letters are found,
When wh1 terminates, if2 will execute normally. The main idea in looking at seq1 is to
reexamine the looping condition, in terms of initial values of Choice and Tries. H Choice is
an upper case letter initially, the loop will not be executed at all, and nothing really prevents
this case in the conditions as expressed. However, the loop conditions on Tries, expressed in
terms of Input 1 before, are better expressed directly in Tries. These conditions need to allow
for the possibility that Tries initially exceeds 10, and since the loop will not execute, will not
be changed. The second recognizes that Tries may have an arbitrary value less than 10, rather
that initial value 1 as before. The trace tables for this case are organized in two groups of three
each, by whether the loop is executed or not, and become as follows. If the loop is executed, the
model already used above is very useful. The first three trace tables deal with the loop not
executing at all, namely

('A' <=Choice and Choice<= 'Z') or
not (Tries <= 10)

In this case, Choice and Tries are simply inherited from the foregoing declarations and
statements leading to this point. Choice will then be examined by the if2 statement following
whl.

if 'A' <= Choice <= 'Z'
Choice1 = Choice,
Tries1 = Tries,
Input1 = (),

Trace Table 6.4

Output2 = •welcome Aboard • & Choice

statements Condition Input Output
whl 'A'<= ...
if2 I A I<= ... •welcome ... •

where

'A'<= .. . = 'A' <=Choice<= 'Z'

if Tries > 10 and
'a' <= Choice <= 'z'

Choice1 = Choice,
Tries1 = Tries,
Input1 = (),

Trace Table 6.5

Output2 = "Lower Case Data Input • & Choice

Choice Tries

6·38 Chapter 6 • Program Verification

statements Condition Input Output
whl Tries>lO
if2 'a'<= ... "Lower ... •

where

'a'<= = 'a' <=Choice <= 'z'

Trace Table 6.6

if Tries > 10 and
not ('A' <=Choice<= 'Z') and
not ('a' <=Choice<= 'z')

Choice1 = Choice,
Tries1 = Tries,
Input1 = (),
Output2 = "Try Again•

statements Condition Input
wh1 Tries>10
if2 not ('A'<= ...)

not (' a ' <= ...)

Output

"Try Again•

Choice Tries

Choice Tries

With the three cases of immediate termination of the loop completed, we now look at the cases
when the loop is entered.

Trace Table 6. 7

if not (Tries > 10) and
not ('A' <=Choice<= 'Z') and
Tries <= 10 and ** note Input1 will not be empty
not ('A' <= x <= 'Z' and x in (t(reverse (Input1))) and
'A' <= n(reverse (Input1)) <= 'Z'

Choice1 = n(reverse (Input1)),
Tries1 = length (Input1) + Tries,
output2 = length (Input1) * "Try input. • &

"Welcome Aboard • & n(reverse (Input1))

statements Condition Input Oltput Choice
whl 'A'<=n ... Il n* "Try ... • li(r(I1 ...))

and Tries<=lO
if2 'A '<=li ... n*"Try ... "&

"Welcome ... •

where

'A'<=n ... = 'A' <= n(reverse (Input1)) <= 'Z'

Tries
length
(Il-I)+T

I1 = Input1 = n characters, only last is upper case letter
"Try ... • ="Try input. •
"Welcome ... • ="Welcome Aboard • & n(reverse (Input1))
n(r(I1···)) = n(reverse (Input1))
length(I1-I)+T = length (Input1) +Tries

6.5- Program Part Verification with Behavior Tables 6-39

Trace Table 6.8

if not (Tries > 10) and
not ('A' <=Choice<= 'Z') and
Tries <= 10 and ** note Input1 will not be empty
not ('A' <= x <= 'Z' and x in Input1) and
'a' <= ~(reverse·(Inputl)) <= 'z'

Choice1 = n(reverse (Input!)),
Tries1 =max (11, Tries),
Output2 = n * •Try input. • & "Lower Case Data Input • &

n(reverse (Input1))

statements Condition Input Output Choice

whl 'A'<=n ... Il n* "Try .•. • n(r(I1))

and Tries<=lO
if2 not (I A I <=n . ..)

'a'<=n n*-Try .•. "&
•Lower ... •

where, in addition to those above,

'a'<=··· = ·~· ~= n{rgyg.§g flnpYti)) ~= 'Z'
•Lower ... • ="Lower Case Data Input • & n(reverse (Input1))

Trace Table 6.9

if not (Tries > 10) and
not ('A' <=Choice<= 'Z') and
Tries <= 10 and ** note Input1 will not be empty
not ('A' <= x <= 'Z' and x in Input1) and
not ('a' <= n(reverse (Input1)) <= 'z')

Choice1 = n(reverse (Input1)),
Tries1 =max (11, Tries),
Output2 = n * •Try input. • & •Try Again•

statements Condition Input Output
whl 'A'<=Ii. ... Il n* •Try ... •

and Tries<=10
if2 not (• A • <=n . ••)

not (• a' <=fl . •.) n*•Try ... •&

Choice
/i.(r(Il))

Tries
max(ll,
Tries)

Tries
max(ll,
Tries)

"T!Y__Mtain~ __ _ _ _ _ ______

The method of trace tables is readily generalized to conditional and concurrent forms in
relations rather than functions. In place of unique behavior from row to row, the behavior may
become a range of possibilities. For example, consider the sequence of specification parts in the
trace table shown next.

6-40 Chapter 6 - Program Verification

Trace Table 6.10

statement X y z
xl, y2, z3 <- y2 or z3, z3, y2; y2 0 or z30 z3 0 Y2o
xl, y2 <- y2 or z3, xl; z3 0 or y2o y2 0 or z3 0

y2, z3 <- xl, y2; z3 0 or Y2o y2 0 or z30

which leads to the final concurrent form

xl, y2, z3 <- z3 or y2, z3 or y2, y2 or z3;

which defines a relation, not a function.

6.5.3 Verifying If Statements

While if statements are directly described in conditional forms that connect their then parts
and else parts, their specifications may not make use of the same conditionals as in the if
statements. In a simple case, the specification assignment

xl := max(y2, z3);

has no visible condition whereas a design such as

if y2 > z3
then

xl .- y2;
else

xl . - z3;
end if;

defines a conditional assignment

(y2 > z3 -> xl <- y2; y2 <= z3 -> xl <- z3;)

which must still be shown to be equivalent to the specification.

For example, the if2 statement of Search_Program analyzed above is

-- begin if2
if 'A' <= Choice and Choice <= 'Z'
then

TEXT_IO.Put (Item=> "Welcome Aboard • & Choice);
else

-- begin ifl
if 'a' <=Choice and Choice<= 'z'
then

TEXT_IO.Put (Item=> "Lower Case Data Input • & Choice);
else

TEXT_IO.Put (Item=> "Try Again");
end if;
-- end ifl

end if;
-- end if2

6.5 - Program Part Verification with Behavior Tables 6-41

and was verified infonnally above. This verification of the sequence can be carried out more
systematically in conditional trace tables, as shown next.

Trace Table 6.11

if 'A' <= Choice <= 'Z'
output2 = •welcome Aboard • & Choice

statements Condition
if2 'A'<= ... •welcome ... •

where

'A'<=··· = 'A' <=Choice<= 'Z'
•welcome ... • = •welcome Aboard • & Choice

Trace Table 6.12

if 'a' <= Choice <= 'z'
output2 = "Lower Case Data Input • & Choice

statements Condition Input OUt 'OUt
if2 not ('A' <= ...)
j__f_l_ 'a'<= ... "Lower ... •

where, in addition to those above,

'a'<=··· = 'a' <=Choice<= 'z'
"Lower ... • ="Lower Case Data Input • & Choice

Trace Table 6.13

if not ('A' <= n(reverse (Inputl)) <= 'Z') and
not ('a' <= n(reverse (Inputl)) <= 'Z')

Output2 = "Try Again•

statements Condition Input Output
if2 not ('A'<= ...)
ifl n_o t: . {_' a_'_..:_=__. _.__._) ... "Try Again•

Choice Tries

choice Tries

Choice Tries

These three trace tables confirm the results obtained more informally above. The three
conditions on Choice and the outcomes of each trace table provide a conditional concurrent
assignment for [if 2] given above, in alternate form, namely

[if2] =

6-42

('A' <=Choice<= 'Z' ->
Output <- "Welcome Aboard • & Choice;

'a' <= Choice <= •z• ->
Output <- "Lower Case Data Input • & Choice;

not ('A' <=Choice<= 'Z') and
not ('a' <=Choice<= 'z') ->
Output<- "Try Again";)

Chapter 6 - Program Verification

6.5.4 Verifying While Loops

As already noted in determining program and program statement behavior, loop statements are
more complex than sequence or if statements, and require more analysis for verification. If by
some direct way the loop statement behavior can be determined directly, then that behavior
can be compared with the specification relation for correctness.

For example, the initialized while loop statement wh1 in Search_Program is

-- begin seq
Choice: CHARACTER ·
Tries: INTEGER . - 1;

I I 0 ,

begin
-- begin wh1
Search_For_Upper_Case_Letter:
while not ('A' <=Choice and Choice<= 'Z') and

Tries <= 10
loop

TEXT_IO.Put (Item=> "Try input. ");
TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Upper_Case_Letter;
-- end whl

and it was found that part behavior was as follows

[wh1] = {((Input0 , Output 0 , Choice, Tries),
(Inputl, Output1, Choice1, Triesl))}

where

Input 1 will be a string of 1 to 10 characters, only the last, if any, an upper case letter.

Output1 will be a string of messages "Try input. "of same number as Input1
components.

':hoice1 will be last value of the Input 1 string, li (reverse (Input 1)) .

Tries1 will be an integer between 2 and 11, one more than the length of Input 1.

As noted above, this behavior can be determined directly from whl by direct analysis. Choice
and Tries have been initialized when declared, and the while statement is the first
statement executed. The first entry into the while loop will be successful in passing the while
test. A message "Try input. "is sent to Output1, then a value for Choice1 is returned to
Inputv and Tries1 is incremented to 2.1f Choice1 is now an upper case letter, the loop is
terminated next with just those values for the data. If Choice1 is not an upper case letter, the
loop is continued with new values added to the outputx and Inputx strings, and new values
created for Choice1 and Tries1. The loop continues until either Choicel contains an upper
case letter or Tries1 exceeds 10. Since Tries is incremented each time through the loop,
termination is guaranteed, but the appearance of an upper case letter in Choice can terminate
the loop before that. Within the loop we will identify current values for Input and Output
with separate numbers called x, and the next value supplied Inputx called nextx.

6.5 - Program Part Verification with Behavior Tables 6-43

Trace Table 6.14

if 0 <= X <= 10
and length (Inputx) <= 10
and not 'A' <= n(reverse (Inputx)l <= 'Z'

Inputx+l = Inputx & nextx+l
Choice1 = n(reverse (Inputx)),
Tries1 = length (Inputx) + 1,
Outputx+l = Outputx & "Try input. •

statements Condition Input OJtput
Choice := ' '. ,
Tries := 1;
wh1 not 1 A' <=li • .. I1=<) "Try ...•

and Tries<=10 &next1
wh1 not 'A' <=li . .. I2=Il 2* "Try ••••

and Tries<=10 &next2 ...
wh1 not 'A' <=li . .. In=In-1 n*"Try . • . •

--
~Ci__'!'~i~s;=_3. CJ_ ___ &Il_eJ(tn

where

'A'<=n •.• = 'A' <= n(reverse (Inputl)) <= 'Z'

Choice
' I

li(r(I1 ...))

/i(r(I2 ...))

/i(r(In···ll

In = Inputn = n characters, only last is upper case letter
'Try ... • ="Try input. •
n(r(Ix···ll = n(reverse (Inputxll

-Tries

1
2

3

length
(In)+l

In this case the execution can terminate at each whl if the condition is not satisfied. It is certain
to terminate on the final whl with either an upper case letter or a count of 10 Tries.

This analysis for the initialized while statement is simplified considerably because of where
it appears as the opening statement in the program. If not initialized as found here, the while
statement must be prepared for any possible values for Choice and Tries, and the analysis is
much more complex, as seen next in two trace tables, one for immediate termination

if length (Input) > 10
or 'A' <= Choice <= 'Z'

Input1 = Inputl,
Choicel = Choicel,
Tries1 = Tries,
Outputl = Output1

statements Condition
whl • A'<=n •..

Trace Table 6.15

or Tries<=lO -------- -

or, the other for later termination

6 - 44

Choice Tries

Chapter 6 - Program Verification

Trace Table 6.16

if X <= 10
and length (Input!) <= 10
and not 'A' <= n(reverse (Input!)} <= 'Z'

Input2 = Input1 & next1
Choice2 = n(reverse (Inputl}},
Tries2 = Tries1 + 1,
Output2 = Output! & "Try input. •

statements Condition Input Output
whl not 'A'<=n ... I1=IO "Try ... •

and Tries<=lO &next1
whl not 'A'<=n ... I2=Il 2*"Try ... •

and Tries<=lO &next2
...

whl not 'A'<=n ... In=In-1 n* "Try ... •
and Tries=lO &nextn

6.5.5 Exercises

Choice
n(r(Il···>l

n(r(I2···>l

n(r (In ...))

1. Create trace tables for Input_Digi t defined above in Exercise 5, Section 6.35.

Tries
2

3

length
(In)+l

2. Create subprogram behavior and trace tables for the statement part of Input_Digi t,
which might appear any place in a program, not just at the beginning and initialized as
above. It is

Search_For_Digit:
while not ('0' <=Choice and Choice<= '9') and

Tries <= 5
loop

TEXT_IO.Put (Item=> "Next digit? ");
TEXT~IO.Get (Item => Choice);
Tries : = Tries + 1;

end loop Search_For_Digit ;
if '0' <=Choice and Choice<= '9'
then

TEXT_IO.Put (Item=> "Digit is • & Choice);
else

TEXT_IO.Put (Item=> "Why no digit?");
end if;

6.5 - Program Part Verification with Behavior Tables 6-45

3. If the while loop and if statement of Input_Digit are reversed as follows

if •o• <=Choice and Choice <= '9'
then

TEXT_.IO.Put (Item => •oigit is • & Choice);
else

TEXT_IO.Put (Item=> •Why no digit? ");
end if;
Search_For_Digit:
while not ('0' <=Choice and Choice<= '9') and

Tries <= 5
loop

TEXT_IO.Put (Item=> •Next digit? •);
TEXT_IO.Get (Item=> Choice);
Tries := Tries + 1;

end loop Search_For_Digit;

what does the sequence do as behavior? Could it ever be useful?

6-46 Chapter 6 - Program Verification

Chapter 7

Software Design and Certification

As already noted, Ada programs are made up of declarations and statements. Both declarations
and statements require the best of thinking. Inappropriate declarations may be good enough to
allow a solution to be defined in the statements. But the statement part of the solution may be
unnecessarily complex, require more time and/or space for computation than is really required.
Even with well conceived declarations, the statements may be poorly designed for computation
in time and/or space requirements, or so poorly explained and documented that the entire
solution is overly complex and difficult to understand.

In this Chapter 7, we begin the process of program design, dealing with declarations and
statements of a single subprogram or package. In Chapters 8 and 9, we will expand the process of
program design to how subprograms and packages can be put together into program solutions for
complex problems. The fact is, of course, that subprograms and packages are put together by
nothing more than declarations and statements, either poorly or well for meeting functional and
performance requirements.

The second main topic of this Chapter 7 is program testing and certification. If program tests
are invented by programmers, the tests are ad hoc executions from which no scientific
conclusions can be made. The program tests may be well intended, but still allow no general
conclusions. And self invented tests may skip unlikely events that can still happen and need to
be tested. Instead, if program tests are generated by statistical methods that are based on the
expected usage of the program to meet all of specifications, sound scientific conclusions of the
correctness program behavior can be certified.

Programs are correct when they meet their specifications, shown by both verification and
certification. Another question is whether the specifications are right. Deciding what
programs should be is a deep and broad question which needs be addressed always. Defining
good specifications needs effective analyses based on understandings of user needs as well as
computer capabilities.

A critical task is to certify that the program as developed does indeed satisfy the specification
correctly. It must be shown that representative inputs are executed with correct outputs in all
tests. If failures arise, the program must be returned to the developers for fixing and retested by
the certifiers until no more failures are found or the program is rejected if failures continue to
appear.

7.1 Designing Programs to Meet Specifications

Using effective program design principles is at the center of software engineering. We will
address four topics in these principles. First, we consider the good use of specification principles
to provide the direction required for the program design. Second, we consider the good use of
trace tables to confirm the correctness of the design in meeting its specifications as it unfolds.
Third, we recognize the need for finding good algorithms for software which not only meet
functional and performance requirements, but also verification and documentation needs as well.
Fourth, we recognize the need for organizing software designs into manageable parts for
intellectual and engineering control during its development and subsequently during its use.

Chapter 7 - Software Design and Certification 7-1

7 .1.1 Good Use of Specification Principles

As pointed out in Chapter 3, we can write software with good intentions and then wonder if
they are right, but it is better engineering practice to design software from the start to meet
well defined specifications. This means spending enough time up front to get and understand the
specifications that need to be satisfied, then subjecting the design, as it unfolds, to sufficient
analysis to ensure that it will indeed satisfy the specifications.

Whatever the representation, any specification is a mathematical relation, possibly a
function, between inputs and outputs. A critical first step in design is to ensure that the
specification is truly a relation, and that its representation is defined is as effectively as
possible. When users first define specifications they may not be complete, describe what is
required in common situations, but neglect uncommon situations. Specifications should describe
satisfactory behavior in all possible situations. There may be cases in which a specification is
completed during the design process, but that situation should be understood and the incomplete
specification parts should be recognized and no design pursued for those parts until the
specification parts are completed.

In defining a specification it is important to distinguish between the specification and its good
use. The specification itself needs to describe exactly what the programmed computer is to
output for each input, no more, no less. For example, with an interactive system. each input
during an interactive session will describe the next response as an output, which will be a very
small step in the entire session. But the good use of the interactive system may involve critical
decisions on what inputs to enter in each step, and in what order. That is another topic which
should be treated separately from the specification itself. It is an important topic but not part
of the specification itself. The specification only describes the outputs for whatever inputs are
provided.

Once software is specified, the simplest solution is to discover existing software that already
meets the specification, not only meets the functional requirements, but also meets the -
performance requirements. It goes without saying that the software should be correct, without
unexpected failures in use. Software may already exist to meet a functional specification, but
the performance is inadequate, either in time or space requirements. In such a case there may be
lessons of interest in such software, but the software itself is insufficient. It may be perfectly
good software for some other situation, but too slow or too big for the current need. There will be
many implementation circumstances for software that goes beyond its specification. What kind
of computer is being used? How much storage is available? How much time is available? What
programming language is available? The software needs for a small space computer may be
very different than for a large general purpose computer.

If no solution to a specification exists in existing programs, there may be many parts to a
solution in existing programs. Again, the program parts to be used must be satisfactory in both
function and performance. When program parts can be used they may be imported just as they
are to carry out certain subfunctions required, or they may be used as models from which
modifications are needed to meet functional and performance requirements. Existing program
parts may exist in a different programming language than is available. Of course, it goes
without saying that the software must be correct.

Another creative solution may be to recognize _that software already exists that does not
exactly meet the specification, but can be used to solve the underlying problem addressed by the
specification. Specifications should be created and defined to meet problems that can be solved
with computer programs. It may be wise to alter specifications during the design process, either
to make use of existing software or to make software more feasible to create. For example,
specifications may define responses that are more accurate than are really required. Less

7-2 Chapter 7 - Software Design and Certification

accurate responses may pennit entirely different declarations and computations and much
simpler software. In illustration, numerical solutions to two decimal places may be sufficient,
but a program exists to find solutions to ten decimal places that takes the ratio five squared
times as long, and is too expensive.

Computers do elementary operations remarkably fast, compared to humans. For example in
simple arithmetic or character operations, computers typically operate at microsecond levels,
humans at second levels. But more intelligent operations that require computer software may
take more and more time for computers-more time than might be expected at first thought. For
example, finding pictures of critical objects in a two dimensional framework will be very
difficult for computers, but very easy for humans. As surprising as it might seem, humans will
do many intelligent operations faster than computers. Humans can approximate data processing
steps, such as picture recognition, possibly with some level of errors, whereas computers can
only do exactly as told, perhaps with large time or space requirements. So, as programs are
designed to carry out more intelligent operations, it becomes critical to analyze the performance
possible by computers, in both space and time. In various applications, either space or time may
become critical. For example, in a spacecraft the amount of computer storage may be limited, so
space is especially critical. In an automobile, the processor power may be limited, so time may
be critical.

While computers do elementary operations remarkably fast, it is easy for programs to ask for
more processing than is practical. For example, let's print out all the natural numbers described
in a 32 bit word. Such a program would not be hard to write. In fact it shouldn't take more than
a dozen lines or so of Ada. Declare a variable, say NATURAL_NUMBER, initialize it to zero,
execute a loop to print and increment NATURAL_NUMBER in its binary form until it reaches
2·~2 - 1. How long would an execution of this short and simple program take? Just long enough
to print the natural numbers from 0 to 2"32- 1, a little more than a billion numbers. In
illustration, suppose it takes a microsecond to print one number, then it will take more than a
million seconds, which is

1,000,000/(60*60*24) days= 11.57 •.. days.

That's not very practical. A printer ten times as fast will still take over a day. And who will
ever look at all those numbers, anyway? That is, a short and simple program can take
extremely long for execution and produce more data than is useful for people, anyway.

So not all programs, even simple ones, are practical. In addition, many problems that have
programs that are practical also have other programs that are not practical. Programs that
solve the same problem may take very different amounts of space or time in execution. For
example, given a file of a thousand data items to sort into ascending order, a bubble sort will
require a thousand squared comparisons to carry out, while a merge file will require a thousand
times the logarithm of a thousand comparisons, a total of some ten thousand comparisons. If
comparisons take a microsecond, the bubblesort will take a million seconds, which is 11.57 ...
days, whereas the merge sort will take only some ten seconds. So the bubblesort might be judged
impractical and the mergesort practical for the same problem.

7 .1.2 Good Use of Trace Tables

Trace tables are straightforward to set up, except for iteration, and even then are not so
difficult with some analysis of the program parts. It is primarily taking the time and effort to
lay out the computation in general form. The alternative of guessing at the computation may
seem to save some time and effort at the outset, but risks much more time and effort to get the
program parts debugged later on.

7.1 - Designing Programs to Meet Specifications 7-3

Sequence parts, including declarations as well as statements, go directly into trace tables, with
a column for each variable, a row for each declaration or statement. Such variables only come
into being by declarations, and disappear when the range of the declaration is exceeded. So the
trace table columns have limitations in the range of rows in which each variable is defined. For
many analyses within executable statements, all variables exist in all rows, but that is not
necessary. For an input file, two columns for subfiles, of items 1) already read and 2) yet to be
read, need to be defined.

The values of the variables in the trace table are defined by function or relation composition
defined by the declarations and statements going down the trace table. The trace table may be
of large size for large parts, so it may need considerable paper. Even better, anything possible
on paper can be organized in word processing form in computers for serious work that is to be
documented and stored.

Note that for loop statements are actually sequence parts with a convenient notation. Such for
loop statements may in fact define very long sequences, though very regular, and additional
specific analyses of the semantics of the for loops may be in order. While the iteration by
iteration analysis may be in order for short for loops, an additional generic analysis may be in
order for longer for loops. The rationale behind the for loop should provide such analysis or the
for loop may be a piece of guesswork and likely wrong.

Alternative parts, such as if statements and case statements, require a separate part and its
trace table for each alternative, with the condition (if, elsif, else, or case) literally a prefix for
the part in each separate table. That is, the then part of if statement <if p then g else h
end if;> is not simply <g>, but is <p -> g> which is undefined if pis not TRUE. The trace
table has an additional column with the conditions that must hold as reached in execution.
Each separate part and trace table defines a behavior (function or relation) with a specific
domain, and the behavior of the entire alternative part is the set union of these separate parts.

A while or exit loop statement defines a trace table, but a possible exit for each possible
computation sequence of its internal statements. For example, with the while loop, there will
be sequences of 0, 1, 2, ... repetitions of the internal statements, and a possible exit preceding
each sequence. The condition column will require the while (or exit) condition to be TRUE (or
FALSE) to continue, FALSE (TRUE) to terminate. Each separate set of internal statements of
the trace table defines a behavior (function or relation) with a specific domain, and the
behavior of the entire loop statement is the set union of the behaviors of these separate parts.

Such a set of trace tables for a loop statement can be embedded in a single generalized trace
table with the possibility of an exit at each exit condition (while or exit condition). All trace
tables for sequence or alternation parts discussed above execute through every row, top to
bottom. This loop trace table permits exits at intermediate rows, depending on the value of the
exit condition with the current variable values. The initial data defines which (if any) exit
will terminate the execution of the loop statement. In this case the initial data partitions the
domain of the part behavior by the exits taken (which condition after how many iterations).
Each exit from this single trace table is reached by a sequence of the internal statements and
the value of each condition in the loop statement to reach this exit. Again as in the case of the
for loop statements, general loop statements may require generic analyses to deal with longer
loops.

Internal declaration statements expand trace tables in the variable columns direction. Each new
call of a subprogram with declarations will create a new set of variables (parameters), hiding
the previous variables. That adds this set of new realizations of the variables in new columns

7-4 Chapter 7 - Software Design and Certification

across the trace table, just as for any declaration of variables. As each such call is completed,
its set of added variables disappears below that point in the trace table, just as when
declarations terminate. As for iteration, internal declarations may call for generic analysis to
carry out the necessary reasoning for the operations.

Although trace tables may seem directed to software engineers, and are, other people can use
them as well. Although program users may not know or care about the internal form of
programs, they may well be interested in how best to use programs, particularly interactive
programs, so the external use of interactive programs can be described in trace tables, as well.
People using interactive programs define a people computer system that can be described and
studied in trace tables. People exercise systems in sequential, alternative, iteration forms and
instructions for people look like programs under different names.

7.1.3 Finding Good Algorithms for Software

As noted for sort programs, there will typically be many ways to carry out sort software design.
And some or many of these ways may be better than others, some impractical. In another
illustration, before computers, tables of trigonometric values were used extensively by humans
to support geometric analysis and manual computation. While these tables can be stored in
computers and entries looked up as needed, that method of use is seldom the best way in the
computer. Instead, methods for computing individual entries can be programmed, and such
entries calculated as needed rather than looked up. The methods for calculating trigonometric
values from scratch go fast in computers, slow for humans, while table look ups are much faster
for humans, but take more space for computers. The same principles apply to other tables for
hand computation, such as logarithms, powers and roots, interest rates, etc. These values will
also be calculated as needed rather than stored up ahead of time.

As mentioned before, arithmetic in place notation and algorithms for long division were not
known to ancient Romans. We hardly think of these as algorithms, but they are and are so
fundamental in today's business, scientific and engineering world. But computers now bring a
new dimension to arithmetic because of their finiteness. Strictly speaking, computers can not do
general arithmetic, but only arithmetic in limited domains. For example, two INTEGERs
selected at random from the finite set of a given computer, can be added or subtracted only half
the time, the other half leading to an overflow. Two INTEGERs, say Xl and X2 selected
randomly from the range 1 .. 1_000_000 will have a sum Xl + X2 that exceeds upper bound
1_000_000 half the time. That may be a surprise at first glance, but true.

The same two INTEGERs can only be multiplied correctly much less often, based on the actual
bounds. For example, suppose Xl and X2 are selected randomly from the range 1 .. 1_000_000. If
Xl = 1, Xl • X2 = X2, alright always, but Xl = 1 only one time in a million. If Xl = 2, Xl • X2 is
alright only if X2 <= 500_000, half the time for X2. If Xl = 10, Xl • X2 is alright only if X2 <=
100_000, a tenth of the time for X2. These values for Xl are possible in a random distribution but
unlikely-one in a million for each case. More likely, if Xl <= 100, X2 must be 10_000 or below,
so Xl <= 100 only one time in 10_000 and X2 <= 10_000 only one time in 100. Even more likely, if
Xl <= 1_000, X2 must be 1_000 or below, so Xl <= 1_000 only one time in 1_000 and X2 <= 1_000
only one time in 1_000.

So even arithmetic which seems so simple and straight forward with pencil and paper, with
unlimited memory, is not so simple and straight forward in computers with finite memory. As a
result, declarations of INTEGER data with arithmetic operations, especially multiplication,
requires much more range than might appear offhand.

7. 1 - Designing Programs to Meet Specifications 7-5

For example, if Xl and X2 are both always in the range 1 .. 1_000 but are declared in the range 1
.. 1_000_000, additions and multiplications will always go through. That condition itself can
be explicitly stated and checked during arithmetic. That will take longer, but it may be worth
it if the alternative is worse. For example, the simple multiplication

X3 := Xl * X2;

might be rewritten as

if (Xl in 1 .• 1_000) and (X2 in 1 •. 1_000)
then

X3 := Xl * X2;
else

-- recovery goes here
end if;

7.1.4 Organizing Software Designs Into Manageable Parts

In dealing with software designs, one must proceed with both top down and bottom up
considerations simultaneously. Only top down, with no bottom up, considerations to start with
can lead to dead ends at the bottom, unintentionally pushing unsolvable problems deeper and
deeper until the design effort founders for lack of solutions. Only bottom up, with no top down,
considerations can lead to no solution at all. Even though the bottom parts all work just fine,
they do not work together for one reason or another.

It may be hard to believe that large groups of good programmers, say fifty or a hundred, have
worked several years and never got a software project completed. The first IBM PL/1 optimizing
compiler was worked on in the mid sixties by over fifty good programmers for over two years,
and was finally abandoned without producing any compiler at all. Lots of good code was
written, but it did not work together as a compiler. There are also many examples of pure top
down efforts that failed because unsolvable problems were pushed deeper and deeper without
recognizing or solving them. So both top down and bottom up efforts are needed to manage and
complete software projects.

On the other hand, major software projects under good intellectual control can come together
very well. For example, the software for the NASA Space Shuttle was created in the '80s by
IBM with many deliveries, and never missed a schedule or budget Space shuttle software has
been recognized by the U. S. government as some of the very best created. On the first attempted
shuttle flight, a failure was found in synchronizing five computers. But since then, with
intelligent use by the astronauts, no failures occurred in flight. It is possible to build large
complex software under intellectual and effective control. But it takes good engineering
discipline and technical management to do so.

One of the easiest ways to lose control in a software project is to begin design without a
specification. It may seem simple enough to just start writing the code when it seems clear what
the ,software should do, especially in the details. "Why bother with specifications? Isn't that
just a waste of time? Who needs them anyway?" Computers and software are so young as human
activities, it has taken some time to understand the need for mathematical rigor and
engineering discipline in software development. As noted before, when civil engineering was
this age, the right triangle was not known. When acco\lnting was this age, the double entry
bookkeeping idea was not known. Specifications are indeed needed in real software projects.
The specifications may not be completely defined. But they should be sufficient to define what

7-6 Chapter 7 - Software Design and Certification

software will be created first to the specifications known. In a real sense, as software needs
change, their specifications will change as well. So changing specifications may be required,
followed by changing software to meet the new specifications.

Another way to lose control in a software project is to design and write code for execution
without serious verification. Again, it may seem simple to just write the code and discover by
testing what little mistakes may be left behind. But that has been another false premise of a
new human activity. The problem is not in finding the little mistakes-it is in the new and
deeper mistakes entered while debugging the little mistakes found. Even with the best of
intentions, fifteen per cent or more of these debugging fixes produce deeper failures. At first
hearing, fifteen per cent seems very high, but that is really the case. The perspective in
debugging is narrower than in original design, and the local problem may well be fixed, but a
new problem on a broader basis may be introduced unintentionally.

For example, the software supporting ffiM's main line of computers has been built and
maintained with extensive debugging and fixing using traditional methods. It has been studied
extensively for its failures and fixes. They have been fixed many times with an estimated
fifteen per cent of the fixes adding new failures. At this point it is believed that practically all
the failures are due to previous fixes and not the original code. This study has changed the way
management permits fixes to be made. A failure reported only once will not be fixed for fear of
creating another more potent set of failures. The failure rates found run from under two years to
three thousand years. No one imagined the failure rates would vary so much. Fixing a three
thousand year rate failure may create a new failure with rate under two years, a very bad case
to avoid. So failures must appear frequently enough to justify the danger of a failure with
higher rate from a fix.

This fundamental difficulty in heuristic programming and debugging in creating failure free
software is only recently recognized. The new concept of functional verification is not an
alternative to debugging. It is a new human capability only beginning to be understood. People
do make mistakes in verification. But the failures of well verified programs are of a very
different kind than failures of heuristically invented programs. When well verified programs
are tested, a few failures of very simple kinds may be found and fixed right away, and no more
failures introduced. For example, the 1980 U. S. census used a program created by Paul Friday of
about 25,000 lines of Pascal. He used functional verification. After coding the program, and
testing and fixing failures due to mistakes in functional verification, the program ran the entire
census operation with no failures ever found during its use. Mr. Friday received the highest
award of the Commerce Department for the programming achievement of zero defect software.

Functional verification allows software engineers to review each other's programs in
systematic ways, without insulting their personal pride. A long term precedent is in arithmetic,
using place notation and long division. Long division permits perfect arithmetic, but humans can
still make mistakes in local steps, for example multiplying 7 times 3 and getting 28. That
mistake may be found by the divider by multiplying out the answers to check against the
original problem. But even then it might not be found. For important divisions, colleagues can
check long divisions step by step and find such mistakes as well. There is no harm to human
pride, only thanks for catching such mistakes. In the same way, functional verifications can be
checked by fellow software engineers. For example, the IBM software for advanced typewriters
with some 65,000 lines of code for three microcomputers created by a dozen programmers was
functional verified before going into test. It has been used by millions of people with no failures
ever found. So zero defect software is really possible if it is important for its use.

7.1 - Designing Programs to Meet Specifications 7-7

I~

7 .1.5 Exercises

1. Given the need for an interactive program for spell checking English text as part of a word
processing system, what might its specification be? Distinguish between data stored and
obtained from the system and data received from and returned to the user.

2. Given a two dimensional pattern of blanks and dots, 1_000 by 1_000, and the need to
recognize all lines, horizontal, vertical, diagonal of five dots or more, assume dots appear
independently of each other one time in ten at each spot and estimate how many lines
might appear. What effort would be required to find these lines by automatic computation?
If the pattern was increased in size to 1_000_000 by 1_000_000, how would the required
effort be increased?

3. Can trace tables be used in checking specifications for their correctness in meeting external
requirements?

4. Can trace tables be used in user documentation of specifications of interactive systems? Can
sequence, alternation, and iteration be expanded to the usage of the system?

5. It was noted above that trigonometric tables were not needed in computers, but that
individual entries could be calculated as needed. What is different about spelling tables?
Can correct spelling of words be calculated as needed or are words necessarily stored in
tables for reference?

6. The multiplication alternative described above

if (X1 in 1 • • 1_000) and (X2 in 1 • • 1_000)
then

X3 := X1 * X2;
else

-- recovery goes here
end if;

can be improved on, by somehow requiring only that the product X1 • X2 be no more than
1_000_000, not that each X1 and X2 be no more than 1_000. How might that be done?

7. Given a program or program part that "does the right thing," but has no explicit
specification, how might a specification be defined?

8. Arithmetic with place notation, long addition, long subtraction, long multiplication, long
division, square root, etc. was important a hundred years ago before computers or preceding
hand calculators. How might such operations be defined to maximize human capabilities
for both efficiency and correctness? How might possible human mistakes enter into such
definitions?

7.2 Designing Data Types, Subtypes, and Objects

Creating good data types, subtypes and objects is central to good software design. As we have
already seen, Ada has a rich set of data types, subtypes and objects for solving software
problems. We have also seen that objects can be initialized at declaration. Data can be
designed in scalar and array types. Scalar data can be of enumerated and INTEGER types,
enumerated types including CHARACfER and BOOLEAN as special cases. Array types allow

7-8 Chapter 7 - Software Design and Certification

lists of identical objects, including the STRING type with CHARACfER data, and constrained
arrays and unconstrained arrays with enumerated data and INTEGERs. The ranges of
constrained arrays are defined at compile time, ranges of unconstrained arrays are defined at
execution time.

Good data types, subtypes, and objects come from the problem being solved, as defined by the
specification. They certainly anticipate the uses of types, subtypes, and objects in statements.
But they must be well defined first in order to create the statements. Often, the solution to a
problem falls naturally from the choice of data representation. One part of data design is the
types selected themselves. Scalar types may be Oi.ARACTER or BOOLEAN, which are small
types that may well fit an occasion. But enumerated types (of identifiers and/or character
literals) and INTEGER types have more power in storing data, and INTEGER types have more
operations available for their objects. Similarly, array types have different powers. STRING
types are one dimensional unconstrained arrays that may only have Oi.ARACfER elements
indexed by POSITIVE INTEGERs. Constrained arrays may have any elements (all the same
type) in one or more dimensions, each indexed by any scalar type. General unconstrained arrays
may also have any elements in one or more dimensions indexed by any scalar types.

As already noted, Ada is a strong programming language in data definition with two levels of
description. The first level is in data types and subtypes, to describe classes of data that may be
used in subprogram, package, and block designs. The next level is in the data objects themselves
to be used from these data types and subtypes. It takes as much thinking to design the data as to
use it in good program design. Good data can make programs much easier to read and verify, and
thereby much easier to design the programs. Data types and subtypes provide the first level of
design in meeting data requirements and opportunities. What kind of data and how it is to be
used needs good analysis and anticipation of the specifications and statements that will be
needed. The data types and subtypes anticipate the data objects needed at the second level.
The data objects also depend on strategies for meeting specifications with statements.

For example, a subtype of Oi.ARACTER, say CAPITAL_LETTER, and an object This_Letter
might be declared, then This_Letter initialized at the start of execution as

subtype CAPITAL_LETTER is CHARACTER range 'A' .. 'Z';
This_Letter CAPITAL_LETTER;

oegin
This_Letter := 'A';

but it is better to initialize This_Let ter at declaration, such as

subtype CAPITAL_LETTER is CHARACTER range 'A' .. 'Z';
This_Letter : CAPITAL_LETTER := 'A';

There are some advantages to providing the initial value at the point of the declaration as
shown in this second example, but there are also disadvantages. Perhaps the most glaring is
that an exception raised as a result of this ininalization cannot be handled by this block and
would instead be raised at the point of the call to this block. The details of the debate are
beyond the scope of this textbook, however, suffice tit to say that for now, it is recommended
that you always initialize objects when you declare them.

7.2 - Designing Data Types, Subtypes, and Objects 7-9

If the problem being solved makes use of both capital letters and small letters, it may be useful
to start with SMALL_LE II ER as another subtype as well, such as

subtype CAPITAL_LETTER is CHARACTER range 'A' .. 'Z';
subtype SMALL_LETTER is CHARACTER range 'a' .• 'z';
This_Letter : CAPITAL_LETTER := 'A';
That_Letter : SMALL_LETTER := 'a';

noting that CAPITAL_LETTER and SMALL_LETTER are distinct subtypes with no common
characters and are not adjacent in CHARACI'ER.

Still further, a declaration hierarchy may be useful, defining a subtype LETTER within which
to fit CAPITAL_LETTER and SMALL_LETTER, as follows,

subtype LETTER is CHARACTER;
subtype CAPITAL_LETTER is LETTER range 'A' .. 'Z';
subtype SMALL_LETTER is LETTER range 'a' .• 'Z';
This_Letter : CAPITAL_LETTER := 'A';
That_Letter : SMALL_LETTER := 'a';

so that both 'a' and 'A' are of base type LETTER, for example. Note that comparisons are
possible between This_Let ter and That_Let ter, but assignments are not. For example, an if
statement beginning with

if This_Letter < That_Letter
then

else

end if;

is legitimate (always with the same result), but an assignment

~his_Letter := That_Letter;

will always fail.

This is true since these are both subtypes of the base type OiARACI'ER, making them
compatible types. When types are compatible, it means that operations are permitted on them
such as comparison, the test for equality, de. However, since the ranges of these subtypes are
disjoint, i.e., they do not overlap, objects of these two types may never be assigned to each
other. There would not be a problem in the type matching. since they are subtypes of the same
base type, but since the ranges are different CONSTRAINT_ERROR would be raised at every
attempted assignment.

The Ada data types and subtypes that we have seen so far can be divided into three general
classes. The first class is scalar data types and· subtypes, divided further into character data
and INTEGER data. Character data are rich in formats, with CHARACI'ER and BOOLEAN
special classes. INTEGER data are rich in operations of arithmetic. The second class is the
general one dimensional arrays, including the special STRING type and two kinds of one

7-10 Chapter 7 - Software Design and Certification

dimensional arrays, one with dimensions defined at compile time, the other defined at
execution time. The third class is the multidimensional arrays of the two kinds. These three
classes are treated next. The creation of data objects in these classes permit effective
engineering design of data for programs.

7 .2.1 Designing Scalar Data Types, Subtypes and Objects

Unlike earlier programming languages with more limited definitions of data, Ada provides a
wide variety of data definitions, which can be designed to meet problems being addressed. As
noted, in scalar data types and subtypes, the major distinction is between character data and
INTEGER data. INTEGER data permit the operations of arithmetic when that is necessary.
But character data can be tied directly to the meaning of nonarithmetic needs and made very
readable. As already noted, INTEGER data is only capable of arithmetic in a limited range. If
arithmetic operations are attempted that cause overflow, the operations are invalid, so it is up
to the software engineer to be sure that such overflows do not take place.

All scalar data types and subtypes define data with an order. Such order is to be expected for
INTEGER data, but it holds as well for all character data as well. OiARACTER and
BOOLEAN data has order by definition, as described in Table 2.5 in Chapter 2. They are not
necessarily what you might think at first glance, but part of the Ada definition using ASCII.
For example, it may seem clear that 'A'< 'B', but is 'A'< 'a' or 'A'> 'a', or even 'A'= 'a'? Is '0'
<'A' or '0' >'A'? Is'&'< 'A' or'&'> 'A', etc.? These relations are defined by ASCII, so the
ASCII definition must be used. For character data defined by type or subtype declarations, the
order is exactly as declared. For example,

type Decimal_Digit is (• 0. , 'l', '2', '3', • 4., • 5., • 6., '7 I I '8',
type Octal_Digit_l is (I 0 I I I 1' I . 2', '3 I I '4', I 5 I I '6', '7 I) :
type Vowel is ('A', 'E', I I I I '0', 'U', I y I):
type Octal_ Chars is ('7', • 6', I 5 I I '4', '3 I I '2' 1

Ill 1 t 0 I) :

In this case the contents of octal_Digit are character literals that could be redeclared as a
subtype as follows:

subtype Octal_Digit_2 is CHARACTER range •o• •• '7':

But neither of the other two types can be redeclared as subtypes of CHARACTER. Vowel has
values in order from CHARACTER, but they are not in sequence in CHARACTER.
Octal_Chars has values from CHARACTER, but they are in inverse order.

Character data can also be identifiers, defined in type and subtype declarations. For example

type Decimal_Term is (Zero, One, Two, Three, Four, Five, Six, Seven,
Eight, Nine);

subtype Octal_Term is Decimal_Term range Zero .. Seven;

are distinct types with the same logical content as Decimal_Digit and Octal_Digi t above.
But if a need arises to recognize their possible treatment as one place INTEGERs, that would be
more difficult (but not impossible). Even though both convey numeric information, they are
character literals/identifiers and could not be used in numeric computation without
manipulation.

Notice again that data types and subtypes do not hold string literals. For example,

I 9 I) ;

7.2- Designing Data Types, Subtypes, and Objects 7- 11

are not character literals, but are string literals. They do not make up data types or subtypes as
CHARACTERs and identifiers do.

The choice of character and INTEGER dat :1 for program design starts with the problem being
solved. As noted, BOOLEAN types and s·,. otypes are natural for dealing with logic in a
problem. The BOOLEAN values FALSE and TRUE are identifiers with obvious meaning. To
what extent a computation can depend on BOOLEAN values, they are worth identifying early.
Likewise, CHARACTER types and subtypes provide another level of data definition that are
worth identifying. But as problems become more complex and need more widespread
understanding in both creating programs and using them, richer character type data can become
very useful. Data types and subtypes can be invented with identifiers appropriate to the
problem in Ada that permit real thought in maldng programs understandable in terms of the
external needs.

When data needs arithmetic applied to it, it is clear that it should be INTEGER based. There
are many uses of arithmetic, and some or all arithmetic operations become needed. The main
choice in arithmetic is the range of data to be declared. For some uses, negative INTEGERs are
not needed. For example, the number of coins of a specific kind in a candy machine will never be
negative. For other uses some arithmetic operations are not needed. For example, calendar
dates may be subtracted to determine time spans, but will never be added or multiplied. But a
time span may be added to or subtracted from a calendar date to get a new calendar date. So the
use of INTEGER types or subtypes may need all or only part of the arithmetic operations.
Again, the good definition and declaration of the data will stem from the external problem
being ·solved.

In illustration, calendar dates and time spans in day units Be and AD might be declared in terms
of INTEGER types, then objects as follows.

type CALENDAR_DATE is range -s_ooo_ooo
type TIME_SPAN is range -7_000_000
This_Date : CALENDAR_DATE := 0;
This_Span : TIME_SPAN := 0;

2_000_000;
7_000_000;

In this case, the range of TIME_SPAN covers the possible spans of CALENDAR_DATE but the
ranges are unique and distinct. These types could also be declared as subtypes to allow for
compatibility between objects of these types, as follows.

subtype CALENDAR_DATE_l is INTEGER range -s_ooo_ooo
subtype TIME_SPAN_l is INTEGER range -7_000_000
This_Date : CALENDAR_DATE_l := 0;
This_Span : TIME_SPAN_l := 0;

2_000_000;
7_000_000;

With these declarations, the different meanings of CALENDAR_DATE_l and TIME_SPAN_l are
clear even though they are each subtypes of INTEGER. Because of the ranges involved in these
declarations, CALENDAR_DATE_l could be declared as a subtype of TIME_SPAN_l, itself a
subtype of INTEGER, but because of their different meanings that would seem wrong.

These initial values may not seem very realistic, and a real problem may suggest other initial
values, but it does not hurt anything for objects to be declared with specific initial values. In
particular, this reduces one kind of needless variability in execution and testing with possible

7-12 Chapter 7 - Software Design and Certification

different behavior with identical input data. If there is an unintentional failure from lack of
initialization or incorrect initialization, it will be easier to find.

As already noted CALENDAR_DATE_l and TIME_SPAN_l, while both INTEGER subtypes, will
be used in specific ways. For example, one might expect an assignment such as

This_Span := This~Date_l - This_Date_2;

or

This_Date_l .- This_Date_2 + This_Span;

or

This_Date_l := This_Date_2 - This_Span;

to make sense, but assignments such as

This_Span := This_Date_l + This_Date_2;

or

This_Date_l := This_Span - This_Date_2;

would not make sense from the intended meaning of the data, even though they are logically
possible.

7.2.2 Designing One Dimensional Array Data Types, Subtypes and Objects

One dimensional array data types and subtypes offer an additional way to structure and access
similar data within a single dimension. All the items of the array have the same name as an
identifier, with an additional scalar object being used to identify which one of the array
elements is being referenced. Some operations can be defined for the entire array, for example,
the array can be initialized at declaration so that all elements begin with the same value. As
noted in Chapter 5, the special case of type STRING is a one dimensional unconstrained array of
CHARACTERs, defined by two declarations

subtype POSITIVE in INTEGER range 1 .. INTEGER'LAST;

type STRING is array (POSITIVE range <>) of CHARACTER;

From this basis, subtypes of STRING with finite ranges may be very useful. For example

subtype Line is STRING (1 .. 80);
subtype Pass_Word is STRING (1 .. 8);

are subtypes of STRING with finite arguments. With these declarations of types and subtypes,
specific STRING objects can be declared, such as

Line_Contents Line;
Last_Line_Contents : Line;
My_Pass_Word : Pass_Word;

More general one dimensional <trl'ilys permit broader forms of both the elements than
CHARACTERs and the indices than substrings of POSITIVE. In particular, the indices may be

7.2 - Designing Data Types, Subtypes, and Objects 7-13

defined as any enumerated or INTEGER forms. As already noted, enumerated forms have their
data ordered, and may be useful and descriptive in describing how arrays are accessed. For
example, the declarations

type Color_Type is (Red, Yellow, Blue, Green, Purple);
Color : Color_Type;
type Color_Frequency
type Color_Value
type Color_Presence

is array {Color_Type) of INTEGER;
is array {Color_Type) of CHARACTER;
is array (Color_Type) of BOOLEAN;

deal with three distinct properties, one an INTEGER, one a CHARACTER, one a BOOLEAN in
three arrays indexed by Color_Type. For example a sequence of assignments to these arrays
might be as follows.

Color_Presence {Yellow) := FALSE;
Color_Frequency (Green) := 1_500;
Color_Presence (Blue) := TRUE;
Color_ Value (Purple) ·- I C I;

Color_Presence (Yellow) := TRUE;

In some cases, arrays are obvious ways of describing data, for example when geometric pictures
show data along a line and an array can hold the values along the line. Such insights from
geometry may provide a unique relation between the array and the data. For example, the air
pressure measured at various altitudes will define an array directly. But in other cases the
relation between array and data may be more arbitrary. In the Color_ Type example above,
the colors themselves were listed in a certain sequence not so explainable as altitudes. In this
case the colors were just listed without further explanation. There may be a reason, but it will
usually be debatable and discussable in arriving at the sequence of array data. In the case of
altitudes for air pressure data, the relation between successive altitudes is very clear and very
useful beyond their appearance in the array. In fact, an array for air pressure could be listed in
other sequences than increasing altitudes, but would simply make understanding and use more
difficult. So the natural ordering of array data is very useful when it exists. But even when no
natural ordering exists, array data can be useful as well, when the ordering used is documented.

One useful capability with arrays is to show data in two dimensional form, indices in one
dimension, array values in the other. In the case of air pressure, the two dimensional form will
be v:P.ry regular, with air pressure reducing as altitude increases. In this case the two
dimensional form shows a fundamental physical law, with air pressure reducing by half about
every 18,000 feet of altitude.

7-14

Air
Pressure
(lbs/ in'") 20

15

10

5

OK 5K 10K 15K 20K

Air Pressure versus Altitude
Figure 7.1

25K 30K
Altitude (feet)

Chapter 7 - Software Design and Certification

More precisely, air pressure versus altitude is given in the following table.

Altitude Air Pressure
(Feet above Sea Level) (Pounds/Sgyare InchJ

0,000 14.7 ...
5,000 12.2 ...
10,000 10 .1. ..
15,000 8. 3 .••
20,000 6.8 ...
25,000 5.4 ...
30 000 4. 4 ...

Table 7.1
Variation of Air Pressure with Altitude

With Color_Frequency as given above, the two dimensional form is not quite so regular as
given, but Color_Frequency does relate to elements of Color_Type in a specific way. With
more study, the type Color_Type might be redefined to make Color_Frequency more
regular. In this case, a new and carefully defined Color_Type could be related to
Color_Frequency just as regularly as air pressure relates to altitude. But in any case, a two
dimensional form can be displayed to relate the indices with the array values which may be
very useful in understanding the data. Curiously, when no physical law is known for the array
data, its display may be very much more useful than a display for a known law.

7.2.3 Designing Multidimensional Array Data Types, Subtypes and Objects

Multidimensional array data types and subtypes offer even more ways to structure and access
similar data over several dimensions. All the items of the array have the same name as an
identifier, with several scalar objects being used to identify which one of the array elements is
being referenced. Some operations can be defined for the entire array, for example, the array
can be initialized at declaration so that all elements begin with the same value.

The various dimensions of an array can be entirely different to suit what is being defined. In
three dimensional space, all dimensions may be the same type of INTEGER. For example,

Distance : array (INTEGER, INTEGER, INTEGER) of INTEGER;

which uses an anonymous array type. A better way to introduce an explicit type name is as
follows.

type Distance_Type is array (INTEGER, INTEGER, INTEGER) of INTEGER;
Distance : Distance_Type;

But in four dimensional space and time, the time dimension may be a different form of INTEGER
than the space dimensions.

In an economic problem. various kinds of dimensions may be appropriate. For example, if
Expense_ Type refers to the expense of a picture frame, which depends on Color_Type,
Shape_Type, and Size_ Type, its declaration might look as follows.

type Color_Type
type Shape_Type
type Size_Type
type Cos t_Type

is (Red, Yellow,- Blue, Green, Purple);
is (Square, Rectangular, Circular, Oval);
is range 10 .. SO;
is range 100 •. 1_000;

7.2- Designing Data Types, Subtypes, and Objects 7-15

type Expense_Type is array (Color_Type, Shape_Type, Size_Type) of
Cost_Type;

Then, the use of these types in declaring objects for computation could be something like

Color
Frame_Shape
Frame_Size
Frame_ Cost
Frame_Expense

Color_Type;
Shape_Type;
Size_Type;
Cost_Type;
Expense_Type;

Multidimensional arrays are very powerful objects for storage and computation of closely
related data. It is useful to identify how objects may depend on several indices in planning for
multidimensional array design. As already noted, but worth reinforcing, multidimensional
arrays are important capabilities for practical and large scale software design. Designing them
well begins during and before the declaration of types, subtypes and objects, which precedes the
design of executable statements.

Just as for one dimensional arrays, multidimensional arrays can be used when obvious in
geometric situations but also in cases when data depends on indices in no geometric ways, but
does depend on them. Defining array data needs study in the application, and thinking how
data might be put together for the software development Two dimensional arrays can be
diagrammed in three dimensions, one for each indice, one for the array value, for better
visualization. These diagrams can be imagined in more dimensions, depending on the types and
meanings of the indices and array values.

7 .2.4 Exercises

1. If objects are required to be initialized at declaration, but seem to have no reason to be, can
you provide any arguments that they should be initialized for higher reasons of
intellectual control in documentation?

2. Why are data types and subtypes an important part of software design in Ada, and what
opportunities are there to simplify subsequent object declarations and statement
definitions?

3. For scalar data types and subtypes which require arithmetic comparison but no other
arithmetic operations, should they be declared INTEGER or not? Are there other
considerations to be considered?

4. Given a three dimensional logic based on "false, maybe, true" how might its data be
defined and what would its operations be?

5. Can a STRING be used to handle a set of digits accessed by bank accounts that might be
negative?

6. In the example dealing with arrays Color_Frequency, Color_Frequency, Color_Presence,
their declarations are implicit. How might explicit declarations be given?

7. How might a two dimensional space be deelared as.a subtype and two object declared in it
both initialized to the origin?

8. How might a cost array be declared that deals with three forms of interactive activities in
producing fruit juices, namely picking, canning, and delivering?

7-16 Chapter 7 - Software Design and Certification

7.3 Hierarchical Design with Subprograms

Correct sequence, branching, looping steps are central to subprogram design. Every subprogram
execution part is a sequence of one or more statements. Each statement may itself be a sequence,
branching, or looping statement. And each of those may be expanded again into one of the three
kinds of steps. Sometimes a given statement may be designed as any one of a sequence, a
branching, or a looping statement, but usually, one of the three will be most natural for what is
needed. However, within each kind, there will be further choices. For example, a sequence may
be defined as a sequence_of_statements or as a for_statement. A branching statement
may be an if statement or a case statement. Even then, there will be further choices of the
internals, such as whether elsif parts are appropriate in an if statement, or how parts will be
defined for a case statement.

In each case, a specification is needed to state the objectives of the statement being designed.
The specification must not only describe what is needed under normal circumstances, but also
what is needed in abnormal circumstances. Once the design is defined, a verification that it
meets the specification needs to be carried out. For complex statements trace tables may be
called for in their verification. The performance as well as the functional requirements for the
specification must be satisfied. The performance requirements may be implicit, but may be
explicit if the subprogram must execute in real time or fit and execute in constrained space.

As noted before, both top down and bottom up thinldng must go into design. But the design must
be carried out top down. There may well be studies on what lower level designs will look like,
as part of bottom up thinking. Even so, the final assembly of design must go top down, step by
step. For example, consider an initialized while loop under development with specification
called initialized_loop_spec-say of the form

initial_step;
loop_spec:
while

loop_ test
loop

loop_body;
end loop loop_spec;

The most interesting and creative part may well be loop_body, and this may motivate its
creation and verification first. This is the wrong thing to do. As noted, there may be bottom up
analysis preceding the plan for the loop_body, to ensure the design is possible and efficient
enough. But once the technical ideas are worked out, the design should proceed top down.

Let's go back and examine the design process required for this section of program. The
specification ini t iali zed_loop_spec will be satisfied by a sequence of ini t ial_step
followed by the entire loop called loop_spec. Following that, loop_spec will be satisfied
by a while loop with test called loop_ test and body called loop_body. Then, finally,
loop_body will be satisfied with its actual Ada statements. So as described here there are
five separate designs and verifications needed, namely for

initialized_loop_spec
initial_step
loop_spec
loop_ test
loop_body

7.3 - Hierarchical Design with Subprograms 7-17

and in terms of logic all verifications are needed in any order. But in terms of software
engineering they are better carried out in the order shown. The specification
initialized_loop_spec is known first about what is needed, and is all that is known. At
that point, specifications for initial_step and loop_spec can be designed jointly to satisfy
initial i zed_loop_s tep. And finally, specifications for loop_ test and loop_body can be
designed jointly to satisfy loop_spec.

7.3.1 Sequence Statement Design

As noted above, sequence statement designs are not only among simple assignment statements or
procedure statements, but may contain possibly complex branching or looping statements, as
well. It is the relation of sequential behavior among the statements that is referenced, not their
simplicity. The example of an initialized while loop just above is typical. Another example is
initialized branching steps, either if statements or case statements. Other examples include
branching statements before or after looping statements, and sequences of more than two
statements, for example before and after loop statements. Frequently, a sequence of several
assignment statements are required to complete a logical process. Practically any form of
sequence statements are useful in one situation or another.

The trace tables for sequence statements on the surface may look to be single forms. But the
number of trace tables and their logical forms may be quite complex. 1he number of trace tables
required and where they apply depend on how many trace tables each member of the sequence
define. The total number of trace tables for the sequence will be the product of the number of
each member.ln some cases some such trace tables are vacuous. For example with component
trace tables dependent on values of the same variables, a variable can not be both positive and
negative in different trace tables at the same time unless it has been altered. So the worst case
in possible number of trace tables that apply is known, but the actual number may be somewhat
smaller.

The design of a sequence of statements begins with its specification, as noted above. From the
standpoint of logic, the specifications of each of the statements of the sequence can be invented
before or after the specification for the entire sequence. But from the human engineering
standpoint, it is better to understand the overall specification first and not lose sight of it in
designing the sequence of statements. Then, the sequence of specifications and their statements
should be created and verified a step at a time, from front or back, but not from inside out.
Inventing an inside specification and statement first gives nothing to hang onto in its
verification. But inventing an outside specification and statement, say front, breaks the
sequence into two parts, the front and the remainder to be designed, call it the rest. Now, when
a specification for the front is designed, it must first fit the start of the specification for the
sequence, and the rest must take the execution to the end of the specification for the sequence.
That is, a specification for the rest is implied and needed to argue for the correctness of the
front. If the rest is still a sequence of more than one statement, this process is repeated. If rest is
a single statement, it is a final step to verify. Once understood, these new definitions and
arguments may go very fast in simple cases, but can be surely carried out in complex cases.

For example, consider a specification to exchange CHARACTER variables Won, Lost, using
CHARACTER variable Referee, and leaving Referee equal to the minimum of the final
values of Won, Lost. This design could begin as above to exchange Won, Lost, followed by
setting Referee accordingly, as follows.

7-18 Chapter 7 - Software Design and CertHication

Referee
Won
Lost
if Won
then

.- Won;

.- Lost:

.- Referee;
< Lost

Referee := Won;
end if;

This is a sequence of four statements, the first three assignments as seen before {with different
variables), the last an if statement. Check that Referee received the right value.

A major design decision among statements will be the decision to break design among
subprograms or packages. We will get into Ada subprograms and packages in Chapter 8. For the
moment we realize that subprogram calls may be the best way to organize design. We also
realize that many designs can make use of part or all of existing programs or program parts.

7 .3.2 Branching Statement Design

Branching statement design, either if statements or case statements, are required to deal with
different logic situations that may arise. In an if statement the test condition identifies the
central breakout of the situation into if -· then, elsif -· then, else sequences of statements. In a
case statement the case test expression identifies when which case alternative sequence of
statements is to be selected. The two branching statements are equivalent in capability, the
selection of sequences of statements at the next level based on conditions in if statements and on
expressions in case statements. But they provide different descriptions of branching statement
designs and one may be simpler than the other in specific situations. For example, if statements
may be simpler when only a few-say two or three-alternatives are possible. And case
statements may be simpler when many alternatives-say ten or a hundred-are possible. But as
noted, both have the same logical power of statement description.

Branching statements identify multiple trace tables to account for the various sequences of
statements that are possible. As a result, the executions occur over the several trace tables, each
with a subdomain of the branching statement. The branching statement itself may have a
limited domain due to previous branching or looping in the program hierarchy. As before, the
specification of the branching statement must be understood before defining the specifications
for the sequences of statements it contains. While there is no logical reason for this priority in
specifications, there is human engineering reason in keeping the intellectual and inventive
process under good control. Just as in long division, the process can be verified a step at a time,
and each step corrected if necessary before going on. That needs using the specifications from the
top down, and creating lower level specifications to match the one above.

For example, as above consider a specification to exchange CHARACTER variables Won, Lost,
using CHARACTER variable Referee, and leaving Referee equal to the minimum of the
final values of Won, Lost. It was solved above as a sequence of statements. But it can also be
solved as an if statement, as follows.

if Won < Lost
then

Referee .- Lost;
Lost .- Won;
Won .- Referee;

7.3- Hierarchical Design with Subprograms 7-19

~

else
Referee .~ Won;

.- Lost; Won
Lost

end if;
:= Referee;

Check that Referee is left with the right value.

7 .3.3 Looping Statement Design

Looping statement design adds another level of complexity to design, but also another level of
computing power. One concern of looping is whether the statement terminates. With good
design that concern can be limited. But with poor design looping termination can be real
problem. So first order is to ensure termination as required. Another concern of looping is the
actual behavior with a variable number of iterations, different numbers for different initial
data. As already seen, looping behavior can be studied and understood, but takes well defined
analyses that account for all possibilities during execution. Good design must also make the
determination of looping behavior as reasonable as possible. It is not sufficient to create loops
too hard to verify with high hopes they will operate correctly anyway. So the design of
looping statements involves not only creating correct statements, but also creating statements
that can be shown to be correct.

As for other statements, designing correct looping statements begins with specifications. They
must be complete over all the domain required, but needn't deal with initial data outside the
domain. For example, many looping statements are initialized before their execution. They
needn't handle conditions not possible in the initialization. In illustration, consider the
initialized while statement Square_Root_Sum with INTEGER variables Total and Number,
shown next

Total, Number INTEGER; -- declaration

Total := 0;
Number := 1;
Square_Roo~_Sum:

while Number <= 10
loop

Total :=Total+ Sqrt (Number);
Number := Number + 1;

end loop Square_Root_Sum;

where Sqrt is an Ada function that returns the INTEGER closest to the square root of the
argument (e. g., Sqrt (3) = 2). Note that this entire part is a sequence with a while statement at
the end. But this while statement will not have to deal with sqrt of a negative INTEGER, as
otherwise might be required.

But having worked out a while loop for this problem, it is easy to see that a for loop will also
work, and is preferred for simplicity, shown next.

Total : INTEGER; -- declaration

Total : = 0;
Square_Root_Sum_1:
for Number in 1 .. 10
loop

Total := Total + Sqrt (Number);
end loop Square_Root_Sum_1;

7-20 Chapter 7 - Software Design and Certification

In this case, Square_Root_Sum_l is two statements shorter than Square_Root_Sum and
simpler to understand. The loop body is exercised ten times so a for loop is satisfactory and
preferred. Variable Number does not exist outside the for loop. If Number were needed for some
other reason, it would have to be declared.

However, if the foregoing loop were used in a more flexible way, so that the number of square
roots determined was a variable number, the for loop would not work. For example, if the range
for Number was defined on each use by a lower bound, Low, and an upper bound, High, a while
loop would be preferred, as follows.

Total, Low, High, Number

Total := 0;
Number := Low;
Square_Root_Sum_2:
while Number <= High
loop

INTEGER; -- declaration

Total :=Total+ Sqrt (Number);
Number := Number + 1;

end loop Square_Root_Sum_2;

However, it is now important to implement some discipline on variables Low and High coming
into the loop, so that square roots of negative numbers is not required. One way to implement
such discipline would be to embed to loop into an if statement, such as follows.

Total, Low, High, Number : INTEGER; -- declaration

Total .- 0;
if Low >= 0 and High >= 0
then

Number := Low;
Square_Root_Sum_3:
while Number <= High
loop

Total
Number

end loop
-alse

null;
end if;

:=Total+ Sqrt (Number);
:= Number + 1;
Square_Root_Sum_3;

think up what to do now

Another way to implement such discipline would be to declare Low, High, Number as
nonnegative INTEGERs as follows.

Total : INTEGER; -- declaration
Low, High, Number : INTEGER range 0 .. max; --declaration

Total := 0;
Number := Low;
Square_Root_Sum_4:
while Number <= High
loop

Total :=Total+ Sqrt (Number);
Number := Number + 1;

end loop Square_Root_Surn_4;

7.3 - Hierarchical Design with Subprograms 7-21

~

In this case, if previous text attempted to give Low and/or High negative values, the execution
would be halted right there before getting to this loop. In summary, there are many ways to
recognize wrong data during execution. Which is best depends on circumstances.

7 .3.4 Exercises

1. Let a specification be reqUired to bring a set of student grades up to date with a list of scores
achieved on the last test. The student grades are maintained in alphabetical student name
order of those who are enrolled in the class, but the list of test scores include only those who
took the test Students who did not take the test will be given a zero score. The student
grades must be initialized to zero at the beginning of the course. But even before that, the ·
student names in the course must be identified, say as the members of a character data type,
in alphabetical order. For example, consider

type Student_Names is {Allen_John, Criswell_Sue, Hancock_Sally,
Kron_Tom, Miller_Amy, Polk_Sam, Rabin_Bob, Williams_Henry);

and suggest how to complete the ' ,:.-cification.

2. A design for a specification called bracketed_if_spec seems on early assessment to be of the
form

initial_step;
if_test
then

then_body;
else

else_body;
end if;
final_step;

Identify a set of subspecifications to complete it and a top down sequence of designs and
verification required.

3. Give a sequence design to rotate a sequence of values declared

Xl, X2, X3, X4, XT : INTEGER;

to meet specification

Xl, X2, X3, X4 <- X2, X3, X4, Xl;

and give its verification.

4. Give a for statement design to rotate a sequence of values declared

Xl, X2, X3, X4 : INTEGER;

to meet specification

Xl, X2, X3, X4 <- X2, X3, X4, Xl;

and give its verification.

7-22 Chapter 7 • Software Design and Certification

5. Give an if statement design to reverse a sequence of values declared

Xl, X2, X3 : CHARACTER;

unless Xl is max of set {Xl, X2, X3} and give its verification.

6. Give a while statemenfdesign to rotate a sequence of values declared

Xl, X2, X3, X4 : INTEGER;

so that the rotated sequence begins with the largest value and give its verification.

7.4 Program Usage Specifications

7.4.1 Program Usage

Programs are typically developed for use by others than the developers. Users are frequently
not programmers themselves, and seldom see the actual source code or design documentation of
the programs. Instead, they will be familiar with usen guides that describe the externals on
what to provide as input and what to expect as output. Such users guides need to be readable
and understandable by the users, while being precise and accurate about the programs behavior,
namely the program behaviors.

Programs may well be used in quite different ways by different users. In widely used programs,
it may be reasonable to have several users guides about the same programs, to match several
underlying knowledge bases.- For example, a set of programs to maintain inventory control with
item additions and deletions, daily reports, and special reports for abnormal events, can be used
in many situations, say in managing a wholesale warehouse, or in maintaining a financial
clearing house, or in tracking a complex engineering operation. Since each group of users is
familiar with different methods of operation and communication, it may make sense to provide
each with a distinct users guide that describes the same set of programs. In fact, without such a
distinct users guide, such a group may refuse to use the set of programs in its area.

Prior to such program usage, in specification and development, how a program or set of programs
will be used will be critical in arriving at the specification and carrying out the development.
If no users will ever be found, the specification and development simply goes to waste. So
anticipating program usage is a critical part of deciding on the specification and development.
It is not only important that specifications define useful programs for a set of users, but that
development creates programs that operate correctly and efficiently enough. As will be seen in
sorting, the same specification can be implemented in ways that computer time required differs
by orders of magnitude. And it is critical that programs operate as expected without failures
that impact its users.

As part of the specification and development, how users will make use of the programs is
needed. That is, how often are what programs, commands, and data will be called up, and in
what kind of order will such calls be made. For example, in an inventory control system, how
often are new items added or deleted from the system, as well as how much addition and
deletion goes in within each item from day to day or month to month. Such information will go
into design and choices of basic strategy in dealing with performance in computer execution and
data storage. And such information is also critical in testing the programs to better ensure they
work properly and timely as needed by the users.

7.3 - Hierarchical Design with Subprograms 7-23

=

Thus, in addition to the behavioral and performance specifications already discussed, program
usage specification is Critical in confirming that good design and development has met the
behavioral and performance specifications. In program usage specification for testing, the
precise statistical expectation of use is developed. Such precise statistics will provide a basis
for completely objective statistical testing and the certification of the programs before actual
use.

The program usage specifications divide programs into two major classes in their usage, first,
programs whose each use is independent of any data of previous uses, and second, programs
whose uses depend on data of previous uses. An example of the first class is a sort program,
which is provided new data with each use, unrelated to any previous data. The inventory
control system mentioned above is an example of the second class, which maintains data
between uses for reference to data of previous uses. These two classes of programs will be treated
separately, the first in the next section, the second later when external Ada storage files have
been introduced. In each case, enough probability theory is introduced before dealing directly
with each class of programs.

7 .4.2 Probability Distributions

A probability distribution over a set of possible events is a function whose domain is the set of
possible events, and whose range is a set of real numbers (probabilities) such that each is
nonnegative (>=0) and their sum is 1. That seems simple enough, and it is just that simple. For a
program of the first class, a probability distribution over the domain of its program behavior is
its program usage specification. Such a probability distribution may be quite complex to
discover and describe, but the theory is quite simple. For a program of the second class, a
Markov process which identifies interactive stepping points with a domain of program
behavior from each stepping point is its program usage specification. In this case, each step
moves from one point to another interactively. Thus from each stepping point a separate
probability distribution holds for the next input data.

7 .4.2.1 Uniform Probability Distributions

The simplest class of probability distributions is uniform distributions. For example, a fair
flipped coin has uniform distribution of both head and tail give;· probability 112. A fair thrown
die of six sides, 1 ... 6, has uniform distribution of each side give <trobability 1/6. A special case
of the uniform distribution is for a domain of a single event witL• tJrobability 1.

A closely related set of probability distributions to the uniform distribution comes by observing
repeated events from the same distribution and accumulating the results. For example, flipping
a coin twice (or flipping two coins), four events are possible, namely

head, head
head, tail
tail, head
tail, tail

which is, itself, another uniform distribution, each event (of two previous events) with
probability 1;4, However, if these four events are mapped into the number of heads, tails in the
two flips, these events

two heads
one head, one tail
two tails

7-24 Chapter 7 - Software Design and Certification

are not events of a uniform distribution, because two heads occur with probability 1; 4, one head,
one tail with probability 112 (can occur in either order), two tails with probability 1; 4.

Continuing, with three coin flips, if the sequence of events is counted, there are eight events
each with probability 1/e, namely

head, head, head
head, head, tail
head, tail, head
head, tail, tail
tail, head, head
tail, head, tail
tail, tail, head
tail, tail, tail

but if these events are mapped into the number of heads, tails in the three flips, these events

three heads
two heads, one tail
one head, two tails
three tails

are not events of a uniform distribution, because three heads occur with probability 1/e, two
heads, one tail with probability 3/e, one head, two tails with probability 3/e, three tails with
probability 11e.

In general, the probabilities of repeating the events of a two possible event uniform distribution
n times are

n heads
n-1 heads, 1 tail
n-2 heads, 2 tails
n-3 heads, 3 tails

1/2**n
n;2un
n*(n-ll;2**n
n*(n-l)*(n-2)/2**n

in which the numerators are the coefficients found in the repeated powers of binomial terms.

This process of repeating and counting simple events as part of larger events generalizes
directly to uniform distributions of more than two possible events, such as throwing two dice
and adding the two numbers as a new kind of event. In this case, the probabilities are easily
seen in a table with rows from one die, columns from the other, and their totals in the table

1 2
1 2 3
2 3 4
3 4 5
4 5 6
5 6 7
6 7 8

3 4
4 5
5 6
6 7
7 8
8 9
9 10

Die Possibilities
Table 7.2

5 6
6 7
7 8
8 9
9 10
10 11
11 12

In this case, the domain of the new distribution is 2 .. 12, with probabilities easily determined
by counting the number of entries (up the diagonals of the table) to find

7.4 - Program Usage Specifications 7-25

...

2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36
10 3/36
11 2/36
12 1/36

More generally, repeating any distribution, uniform or not, and counting events, can be treated
by combining the events with coefficients of powers of the probabilities.

In another direction, consider the probability of reaching a particular new event from repeated
simple events. For example, consider a uniform distribution of two events with probabilities x
and (1 - x), where 0 <= x <= 1. Then the probability of reaching the first event in trials taken
over and over is as follows

1 X
2 x•(l- x)
3 x•(1 - x)••2
4 x•(l - x)••J

The number of these new events is infinite, and if x > 0 the sum of their probabilities is

!llm x•(1 - x) .. (i - 1) = 'YX = 1
i=1 ...

7 .4.2.2 Nonuniform Probability Distributions

Many probability distributions are nonuniform. arising from existing activities. We discuss two
examples of nonuniform probabilities that may not seem to be probabilities, but are. They are
from word processing and Ada programs. It is not obvious what these probabilities are at first
glance, nor why they might be useful. In each case, the probabilities are complex, but samples
are observable all the time, if only they are recognized as such. With some thought, underlying
definitions can be developed, but why bother? Such definitions permit statistical testing and
correctness demonstrations of software, in contrast with ad hoc testing that permits hopeful
conclusions that may or may not be valid.

For example, in word processing the distribution of characters in memoranda, reports, books, are
far from uniform. It is easy to notice the characters such as 'e', 't', will occur in ordinary text
much more often than '.Z:, 'q'. But the space character'' (the blank), will happen even more
often, and characters period and comma'.' and',' will happen quite often, too. In ordinary
English text, with words averaging five characters, each word not ending a sentence will be
followed by a blank, so about one character in six will be a blank. Words are organized into
sentences, each ended in periods or other suitable characters such as '!' or '?'. If sentences
average ten words in length, about one character in sixty will be an end of sentence symbol,
mostly periods.

7-26 Chapter 7 - Software Design and Certification

But there is another aspect of the distribution of characters in English text, namely, how
characters appear in the context of other nearby characters. Words are made up of letters that
fit together in making up possible words. Actually a very small fraction of letter strings do
make up words. Most strings of five letters, such a "evrst" or "maaeq" are not words. And as
noted above, in strings that are words, different letters appear different fractions of the time.
So vowels such as 'e', 'a', 'o' appear relatively frequently, as do constants 't', 's', 'r', while other
constants such as 'z', 'q', 'f appear much less frequently. In fact, in English text, it is the words
that appear, which happen to be made up of letters. However, there are so many words that
for some purposes it may be more useful to examine the letters, assuming they assemble into
words for the moment

At the next level in English text, words do not fit together into sentences arbitrarily any more
than characters assemble into words. Just as a small fraction of letter strings make up words, a
small fraction of word strings (separated by blanks) make up valid sentences. It is an even
greater step to assemble words into sentences. We do have dictionaries that identify words,
dictionaries of various sizes and completeness for different uses. But we do not have dictionaries
that identify all possible sentences or anything close to that. Even so, there is a general theory
on how sentences are formed from words, and sentence structures. With such a theory, specific
sentences can be analyzed for the words they contain and how the words fit together into
sentences. Word processing systems today do just these kinds of operations. They require
software much as you have already seen in dealing with text in word and sentence forms.

In illustration, the 95 characters of Ada introduced in Chapter 2 include 26 upper and 26 lower
case letters, the ten digits, the space character, 19 "spedal characters" (including".", "," ...)
and 13 "other spedal characters" (including "!", "?", ...). Typical text will not only contain
characters, words, and sentences, but also paragraphs, tables, figures, etc. Even lines holding
words and sentences are frequently padded with blanks because the text does not exactly fit. For
example if text is right justified, extra blanks will be distributed between words. So these
blanks are characters we hardly need to notice, but which the computer must. Between
paragraphs may be lines of blanks as well. And tables, say of numbers, are filled with blanks
where the numbers aren't. So the estimate above of one blank for five nonblanks is typically too
small-more like one blank for two to three nonblanks would be more realistic.

The treatment of text as probability based is not always recognized. Why isn't each new
problem just another specific example of text, with no underlying background? That is certainly
a point of view people can and do have. But creating specific text is indeed a probability act in
a broader sense. It is that the methods used in creating specific text are general, and good
methods recognize and profit from the probability class of text that must be handled. For
example, current text processors uniformly recognize the need to deal with blanks in effective
ways, because blanks are so widespread. As a result, any paragraph can be ended any place in a
line and the line will be filled out with blanks automatically. Likewise, a line of blanks
requires only a single step for its first character, not the entire line.

As already noted, the specific generation of probabilities of characters in text processing is not
easy, but not intellectually difficult either. The analysis of typical past text examples can
create a probability model, and samples of such examples used in testing directly.

Another example of nonuniform statistical distribution is Ada programs and program parts
themselves. As noted above for English text, Ada text will be composed of the equivalent of
"words" at the lowest level. Such "words" may be Ada lexical units of six basic types, namely

7.4 - Program Usage Specifications 7-27

identifiers
numeric literals
character literals
string literals
delimiters
amunents

Then, these basic types are used to create declarations and statements at the next levels, and at
high levels, procedures, functions, and packages will be defined in terms of the declarations
and statements. These Ada programs and program parts are designed to address data processing
problems. As discussed before, sound Ada text can be organized in various ways into lines. Good
practices will make the Ada material as easy to read as possible. Just as good English text, good
Ada programs meet their objectives, namely their specifications. But such Ada programs are
also a very small fraction of the text possible. That is, given a random piece of text, it will be
Ada text with very small probability. First, the syntax of Ada text is very special, for example
as an assignment statement

Alpha := Beta;

or an if statement

if Cost > Profit
then

Post_Loss;
else

Post_Profit;
end if;

which are legal Ada statements. But in the larger sense, while legal statements they may or
may not be legal in a larger program part or program. The variables in these statements must be
defined for use previously. For example, if Alpha has not been declared the assignment
statement is not legal.

7.4.3 Statistical Program Usage

In creating behavioral and performance specifications for a program or set of programs, how
users will make use of the programs must be anticipated. The purpose of the program usage
specifications is to formt: bte this possibly qualitative anticipated usage into a precise
quantitative probability G.i~lribution over the input domains of the behavioral specifications.
This may require a deeper analysis of the way the programs may be used, possibly including
interrogations of potential users to better understand their problems and how the programs will
help them address their problems.

As for any statistical statement about a class of people, it is important to remember that
individual use may differ from the collective statistical use. For example, there are statistics
about the death rates of people by ages. But very few people die at their average age of death,
most hoping to live longer and about half doing so. In the same way, an individual user may use
the programs for a particular set of problems that others do not have, and use different data. Of
course, correct programs will handle all data provided them properly, and statistical testing
will confirm that the programs are correct over all data they are required to handle.

7-28 Chapter 7 - Software Design and Certification

In some circumstances, uniform distributions may be good bases for developing reasonable usage
specifications. But as noted above, finding the right bases may take some thought and analysis.
In illustration, consider a sort program, and what usage statistics might be appropriate. For
convenience, let the sort program expect in the input file an INTEGER Array with length in
range 1 .. 1_000 and components in range 0 .. 1_000_000. That is, the input file contains first an
INTEGER length, followed by the INTEGER length of INTEGER components. One basis of
statistics might be to consider length to be uniformly distributed over 1 .. 1_000 and each
component uniformly distributed over 0 .. 1_000_000.

However, in discussions with potential users of the sort program, they may bring up different
ideas on the statistics they expect in use. For example, on the matter of the length of the Array,
they may expect the distribution more heavily weighed to the longer side, for example the
probability of length is proportional to length itself, so a length of 1_000 is 10 times as often as
a length of 100, 100 times as often as a length of 10, and 1_000 times as often as a length of 1.

On the matter of the Array to be sorted, they may expect a different kind of distribution of the
components than independently uniform. For example, they may expect the Arrays to be nearly
sorted already, which may suggest some sort algorithms might be more efficient than others.
But what does "nearly sorted" mean? One measure of "unsortedness" is to count the number of
adjacent component inversions in the array, that is to examine each pair of adjacent components,
counting how many pairs are already in sorted order, how many not in sorted order. If the
length is n, there will ben -1 comparisons divided between sorted pairs, says of them, unsorted
pairs, say u of them, so s + u = n- 1. In a sorted Array, s = n- 1, u = 0, and in a totally inverted
Array, s = 0, u = n- 1. A possible distribution could weight Arrays by the values s + 1 (values s ·
would mean no totally inverted Arrays), from n down to 1. It would take some more design of
such a distribution to complete it. For example, unsorted pairs should be uniformly distributed
in the Array, as well.

On the other hand, users may have quite different suggestions about distributions. For example
some characteristics of usage can be derived by understanding the specific application. An
illustration would be the use of roman numerals. In section 3.1.2 and 7.2.3 the concept of
recognizing and performing arithmetic on roman numerals was presented. If, a particular user
intended to have these numerals represent years up to the present date, inferences can be made
about the expected distribution of digits. In this distribution at most one M, L, D, and V will
occur, but up to four C, X, and I may occur. If the application another user intended was to
represent the date a motion picture was produced, additional information about the
distribution would be known because it could only be in the range of 1920 to the present. This
distribution would always contain one M, one L and four C. By knowing what the expected usage
will be, an appropriate distribution can be created.

Knowing what input data will likely be encountered is only part of specifying the program
behavior. The correct estimate of the distribution of input data can also provide insight into
the relative frequency with which the various components of the program will be executed. In
the roman numeral example the procedure valid_roman_numeral should be used to test each
operand that is input before any of the arithmetic operators are used. Thus the frequency of
using this procedure would be considerably higher than any of the individual arithmetic
procedures. The concept of verifying that a given input is within the desired range is important
in most applications and thus this portion of the program will likely be exercised frequently. In
Ada, part of this validation can be accomplished thro~gh the use of range constraints that are
placed on objects at the time of declaration.

7.4- Program Usage Specifications 7-29

Users can provide insight into other factors affecting the frequency of execution of program
components by indicating how they intend to use a program. If a specific user intended to use the
roman numeral program in an application to deal with the dates movies were produced,
procedures named Larger and Smaller would likely be used to determine if Back To The Future
IT was, in fact, produced before Back To The Future m and by how many years. On the other
hand, it is not likely that the roman numeral arithmetic operators of Times or Divided_By
would used in such an application.

The frequency with which a particular Ada procedure or function is executed is not intended to
be the only measure of the importance of that component to the overall program. It does,
however, reflect the weight it carries in the probability distribution of the execution of all ·
procedures or functions of a given Ada program. In the case of the movie application of roman
numerals, the validation procedure will be used at least three times as often as the arithmetic
procedures, once to validate each operand and once to validate the result The more that is
known about this distribution the better a set of tests can be constructed to reflect the true usage
profile of the components of a program. The actual distribution component usage could be
empirically determined by monitoring the program execution over multiple sets of input data.
In most cases this would be impractical if not impossible. Instead it may be possible to establish
an estimated distribution of component execution based on insight provided by the user.

7 .4.4 Markov Models In Usage Distributions

A Markov model is an extension of a probability distribution with no correlation between
successive events to a set of distributions that apply in various subsets of the domain of the
distribution. In each subset a specific probability distribution holds, and a specific event will
take the process to another subset (possibly the same) with a given probability. For example,
let a game be defined with a coin and a die. If the coin turns head, coin is the next object to use,
but if tails, the next object is the die. If the die turns up 1, the coin is the next object to use,
otherwise, the die is the next object. In illustration, the sequence

HHT3521T2

is possible, with probability ((112)••3)•((116) .. 4)•(112)•(1/6), but

HH234TH

is not possible. There are two subsets in this case, {H, T} and {1, 2, 3, 4, 5, 6} of a total set {H, T, 1,
2, 3, 4, 5, 6}. For each item of the set, a probability distribution applies, namely as shown in the
table given next.

Item H T
H 1/2 1!2

T 0 0
1 1!2 1/2

2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

7-30

Next Item
1 2 3
0 0 0
1/6 1/6 1/6

0 0 0
1/6 1/6 1/6
1/6 1/6 1/6
1/6 1/6 1/6
1/6 1/6 1/6

1/6 1/6 1/6

Probability Distribution
Table 7.3

4 5 6
0 0 0
1/6 1/6 1/6

0 0 0
1/6 1/6 1/6
1/6 1/6 1/6
1/6 1/6 1/6
1/6 l/6 1/6

1/6 1/6 1/6

Chapter 7 - Software Design and Certification

A Markov model enables us to specify a usage profile that accounts for .the serial correlation of
uses of software. For example, batch programs, such as a square root program or even a compiler,
perform independently of previous uses on each input But an interactive program, such as a
flight control program or a word processor, will be used over and over within a flight or
document preparation with high correlation between the successive inputs. The Markov model
is a general model which can be applied to many interactive software usage situations. The use
of the software may go from state to state, based on previous inputs, and in each state the
probabilities of the next input will be different. But the next specific input that appears will
take the process to another state (possibly the same), and so on until the interactive program
terminates.

7 .4.5 Exercises

1. A common deck of playing cards has four suits, of Spades, Hearts, Diamonds, and Clubs,
each suit with number cards 2 through 10 and face cards of Jack, Queen, King and Ace.

a. What is the probability of drawing a face card from a randomly shuffled deck?

b. What is the probability of drawing two face cards in two consecutive draws, assuming
the first card is replaced in a random fashion?

c. What is the probability of drawing two face cards in two consecutive draws, assuming
the first card is not replaced?

d. What is the probability of drawing three cards of the same suite on three consecutive
draws, assuming each card drawn is replaced in a random fashion?

e. What is the probability of drawing three cards of the same suite on three consecutive
draws, assuming each card drawn is not replaced?

2. What are the possibilities and probabilities for a set of randomly thrown dies in the
following cases.

a. For the sum of three dies?

b. For the maximum of two dies?

c. For the difference of two dies?

d. For the product of two dies?

e. For the maximum of three dies?

3. Make an estimate of the distribution of characters to be found in this Chapter-what
fraction will be blanks? what letters? what digits? what other characters?

4. Make an estimate of the distribution of the six Ada lexical units in Ada programs and
program parts in this chapter.

5. Make an estimate of the distribution of roman numerals required for defining cafeteria meal
bills that run from I toM uniformly.

7.4- Program Usage Specifications 7-31

6. Assume that the Trend_Program (Exercise 8, Section 5.1) and as verified in Exercise 3,
Section 6.2.6 was to be used in analyzing a historical record of temperatures recorded during
a given year. What could be said about the expected distribution of the input data? What
could be said if the input was the variation from the temperature last year and not the
actual temperature this year?

7. The Ada procedure Trat"fic_Signals described in Section 5.2.1 was modified in Exercise 3
of Section 5.2.4 to provide a parameter DURATION that specified how long a light would
stay red and green. Assume that such a traffic regulator worked best if the duration was
lengthened during peak loads. How could a traffic engineer, as the user, supply useful
information regarding the input data that could be used to establish the parameter
DURATION?

8. From your understanding of the various operations that are included in the package
TEXT_IO what information could you provide that would help to estimate usage of Get,
Put, Open_Files, and Close_Files?

7 .s Software Certification

There are two ways to address the question of program correctness, either by program
verification to prove correctness, or by program certification through testing and observation of
output to demonstrate correctness. But both ways are fallible. While proving correctness is
mathematically sound, by comparing the specification relation with the program behavior,
humans are fallible in carrying out the mathematics, especially as specifications and programs
get large and complex. While demonstrating correctness is possible for all tests executed, the
number of possible inputs for all but the simplest programs is astronomical and beyond practical
possibility of complete testing. Even for tests carried out, human fallibility also applies to
determining if outputs are correct Failures may not always be observed when they occur.

While this fact of human fallibility and pragmatics may seem at first to make getting
programs correct impossible, that is not the case. However, it is well to recognize reality to
start with and to then discover that getting programs correct is indeed possible in practical
terms. The practical basis for getting programs correct is to use both program verification and
program testing together, in synergism. They support each other in remarkable ways.

Program testing can be viewed as a form of checking verification. If the program is executed
with inputs from the domain of the specification, the outputs can be checked as correct for those
inputs. And no matter how carefully programs are proven correct they should be tested as well.
Correctness proofs, by individuals or by teams, are subject to human fallibility. In illustration,
in ordinary arithmetic, long division with place notation can be done very accurately, but
human mistakes are still possible. So checking division with reverse multiplication testing is
useful in important arithmetic. In a similar way, a testing is a valuable check for correctness
proving.

But program testing can be a science in its own rights, too. When the programmer makes up tests,
errors may well be found. The main results of just making up tests, no matter how intelligently,
are anecdotal. Different tests may have turned up different errors. And if no errors show up, no
one really knows whether there are no errors, or whether the testing was inadequate. Instead,
testing should be on a scientific, statistical basis. For programs well used by many people, the
very use, the choice of inputs, is a statistical use. Some inputs are more likely than others. And
inputs may be related sequentially, with the statistics of use dependent on recent or past
history of previous use.

7-32 Chapter 7 - Software Design and Certification

When a program is to be seriously used it is not enough to simply know its specification for
testing it. One should know the expected statistics of use. One should also know, of course, the
severity of different kinds of uses. Some failures may be annoying, some life threatening, so
those factors should go into the statistics gathering, as well. That is the statistics of testing
should be stratified, depending on importance of use. A stratus may contain a small subset of
tests of great importance, to be sure those cases are sufficiently addressed. Some cases may be so
important as to make up a stratus by themselves, with one single test in such a stratus. Strictly
speaking, there may seem to be no statistics in a stratus with a single test, but it is indeed a
legitimate status in a total stratified statistics definition.

7 .5.1 Correct Software

Software needs to be correct in two ways.

First the specifications need to be right. Good specifications define software that will fulfil its
assigned mission, to the full satisfaction of everyone that has a stake in the software, if the
software is implemented in accordance with the specifications. This is the deep problem in
creating software, determining what the software should do. It requires knowledge of the
subject matter as well as techniques for writing specifications.

Second the software must meet the specifications. This means determining if the software as
developed is a correct rule for the behavior required by the specifications. If the software
defines a correct rule then by definition a user of the software will never experience a failure
while using the software since the software operates in accordance with its assigned behavior.
Conversely if the software is not a correct rule for the entire domain of the assigned software
then the software will from time to time produce an incorrect result according to the
specification. In this case a failure has occurred. The greater the divergence between the rule
and the behavior the more likely it is that failures will occur.

In some cases the software will produce results that are not to the liking of some user but they
are in accordance with the specification. In this case correct software exists and a faulty
specification may be the difficulty. But it may be that the specification is indeed right and
this particular user is the problem, either in understanding how to use the software or even
whether this software should be used for the problem the user has. The user may hope that
software will solve some problem that it doesn't, but other users understand that the software
does not solve this problem, but another problem.

Software correctness can be observed by examining the results produced by software and finding
consistency between the results expected by the specification and the results produced by the
program. Any inconsistency is called a failure. When this observation takes place in real world
operations and a failure is observed it can sometimes have disastrous consequences. That is why
enlightened software developers want to develop software that has zero probability of ever
performing an operation that results in a failure during use, especially a disastrous failure. The
ideal is to develop correct software, with strong evidence that the software is indeed correct
before it is deployed.

Correct software is software that will never produce a failure, that is for every combination of
stimuli (proper or improper) the program produces the combination of responses required by the
specification. Such a program is a correct rule for the behavior defined by the specification.

7.5 - Software Certification 7-33

7 .5.2 Correctness Evidence

There are two aspects to asserting the correctness of software. One is verification, as discussed
previously, and the other is certification.

Verification evidence consists of arguments that have been made as shown above (and
hopefully recorded) that support the conviction that the rule (program) is correct for the
behavior (specification). If complete (exhaustive) verification arguments have been made that
show the rule is correct for the behavior then there is a reasonable probability that the rule is
correct for the behavior. But since humans make verification arguments and humans are fallible
there is also a chance that the rule is incorrect for the behavior. The better the process that
guided the development of the rule from the specification behavior and the preparation of the
verification arguments the higher the probability that the rule is correct for the behavior. It
has been shown that correct software can be developed using only informal verification
arguments when the engineers know what verification is and carry it out informally. Even then,
engineers may need to elaborate arguments when inspecting engineers do not follow the informal
arguments or have specific doubts about the correctness of the program.

An analogy for the software design and verification process is long division. A long division
problem is decomposed into a logical sequence of simpler problems, each finding the single next
digit for the quotient. Each simple problem is solved in tum. But before proceeding to the
following simple problem the person performing the long division performs a verification to
increase the probability that the next digit solution to the simple problem is indeed correct.
First, this next digit is multiplied by the divisor and the result compared with the local
dividend. If the product is larger than the local dividend, the next digit tried is too large. If
the local dividend minus the product is larger than the divisor, the next digit is too small. If
either error is found the simple next digit problem is solved again. This process continues until
the verification indicates that the solutions to all the simple problems are correct. In this way
it has been found that third and fourth graders have a very high probability of correctly
solving long division problems that Archimedes would have found quite difficult. But there is
still a small chance of a numerical error, even though the process is known, including checking
for mistakes.

Software design problems and verifications are more difficult than long division problems and
verifications but in principle the logic is the same and in the hands of dedicated teams good
software design processes exhibit a high probability of producing correct software.

Therefore, the first evidence of correct software is the process by which the software was
produced. If the process is reproducible and has a track record of producing correct software then
there is some expectation that the process is likely to once again produce correct software. On
the other hand if the process is not repeatable (i.e., it is heuristic, trial and error) and it has a
track record of producing software in which failures are observed then it is likely that the
process will once again produce incorrect software.

A second evidence of software correctness is the verification arguments. If the arguments consist
of anecdotal arguments that indicate recent testing has yielded few or even no failures then the
verification arguments are weak. \f on \he other nand \he verification arguments may consist of
a documented trail of logical arguments that have been presented to a jury of critical peers. If
everyone agrees the verifications show the rule as develo-ped fully defines \he fu\\ domain of
\he speci.ncanon \hen there is a reasonable probability that the software is correct.

Certification evidence beyond verification consists of observations made during software usage
of proper or improper inputs. It is best if the software developers perform no testing of the
software. In this case then the first testing begins with independent usage testing to begin

7-34 Chapter 7 - Software Design and Certification

certifying the claim of software correctness. The best evidence of software correctness is to never
encounter incorrect operation of the software. Extensive usage with no instance of incorrect
operation is not a fool proof proof of program correCtness. But it is strong evidence that the
software has a high probability of performing correctly in the future.

A third form of correctness evidence is the observed failure and correction history of the
software. A software system with a good failure history (that is few failures have been
observed and the observed failures are evidence of mathematical fallibility rather than
programming mistakes) is preferred to one with a poor performance failure history (that is
many failures have been observed and many of the observed failures are evidence of
programming mistakes that have required deep and extensive corrections in the software).

As discussed above, the best way to make certification measurements is with a valid testing
process where the tests are statistical representatives of actual usage. It is necessary that these
tests are selected at random so that statistical inference theory can be utilized to develop valid
projections of future failure performance. All tests should be representative of actual usage.
Therefore, it is important that the tests performed prior to actual use are representative of
actual use.

It turns out that it is possible to use a Markov model to represent all interactive realizations of
software use. As a result the model can be used to construct tests in accordance with the expected
usage profile of the software. In running software tests it is necessary to select the actual tests at
random so the tests provide the basis for the development of statistically valid projects. If tests
are selected in any other manner the only projections possible are the development of anecdotal
arguments which are very unsatisfying and provide only marginal value.

'
Therefore, the last evidence of software correctness except for real use is the execution of
randomly selected tests to usage statistics that perform correctly.

For a high probability of failure free software performance all four forms of correctness
evidence are needed. Using correctness evidence to project the probability of future failure free
software performance is the subject of the next section.

7 .5.3 Certifying The Correctness of Software

As noted, software is either correct or incorrect If incorrect it may operate correctly most of the
time, but there will be conditions in which it operates incorrectly. If software proves to be
incorrect with an observed failure, it may be corrected. When corrected, the software may
become correct, or may remain incorrect It may remain incorrect because other incorrections still
remain undetected and show up later, or because the Correction just made is itself incorrect.

However, correctness is entirely observed through the execution of the software, and is never
knowable absolutely. Even so, software can indeed prove to be correct with extensive correct
behavior.

Certifying the correctness of software means executing the software to statistically generated
usage inputs with no failures occurring, and recording the failure free execution. If a failure
occurs, the software is not correct, but can be corrected. As noted above, subsequent execution may
or may not show additional failures. At first glance, this may seem a weak method of
certifying the correctness of software. In particular, a piece of software with many unobserved
failures can be declared correct until the next failure shows up. But human intelligence has no
trouble identifying such a situation. The truth to recognize is that there is no stronger statement
possible about correctness. If software is indeed correct (unknowable by humans) it will be
failure free in usage (which is observable by humans) and can be certified to the level observed.

7.5 - Software Certification 7-35

Newly developed software may likely have early failures from errors of mathematical
fallibility, which once corrected lead to no more failures. For example, a 5,000 line section (5
KLOC) of an IBM Cobol Structuring Facility (SF) was certified in a sequence of 4 test segments of
30 tests each, 120 tests in total. In the first segment, failures were found in the first test, and
when fixed, the next 29 tests ran failure free. In the second segment, failures were found and
fixed in the first two tests, then 28 tests ran failure free. In the third and fourth segments, the
experience was identical to the first, only the first test revealing failures. No further failures
were ever found in this section of the prototype. This is a very different experience than
expected with trial and error programming and debugging. In each set of 30 tests, failures will
be found in several runs more than one or two, and spread out over all the tests. Then failures
will typically occur now and then after the first 120 tests.

Software with unit debugging often has deeper failures harder to find and fix. Failures do not
show up immediately, as do errors of mathematical fallibility. Large software systems of
today are typically of this category. Hundreds or thousands of failures are found, and failures
continue to occur, no matter how many have been removed. As software matures, few such
failures are due to the original software. They are due to the fixes made, of which some one in
five have produced an additional failure. But software failures of verified programs are fixed
more readily under team scrutiny with very few, if any, subsequent failures.

An important piece of history for any piece of software is all the failures previously discovered
and corrected, with the time to failure in each case. If the software has a small number of tests
with failures, say 5 or so as in the IBM Cobol S/F prototype above, they will show up quickly,
and when corrected one by one, no more failures ever show.

In summary, the correctness of a piece of software is certified by failure free execution to
statistically generated usage inputs, including real use. Many software parts working together
can have different levels of confidence, based on the times executed without failures. But a
software procedure or function with no errors will require time to establish that possibility, and
never will be established failure free except by continued use without failures.

7 .5.4 Statistical Test Generation

Given the program usage specification, namely a probability distribution over the possible
inputs for the program, usage testing generates tests randomly according to the probability
distribution. The correct outcomes of these tests must be determined, for comparison with the
executed outcomes. The correct outcomes are determined by the functional specifications and
may need to be calculated by other programs. For example, if a program is being developed to
replace another program, say to execute more efficiently, or on different computers, the correct
outcomes may be available already. Of course, such outcomes should be checked to make sure
they are indeed correct When a new program disagrees with an old program, either program
may be at fault.

As already noted, some failures may be more drastic that other failures. One failure may
produce a misspelled word in a comment back to the user, and another failure may bring a whole
system down, possibly losing data as well. In order to recognize the varying importance of
correct behavior, testing can be defined in stratified statistics, to better ensure that critical
facilities of the software are sufficiently tested. So a stratus of testing defines a subset of
possible inputs for this testing. Such a stratus can identify a subset of important inputs which
the certifiers want to give especial notice in test strategy. In this sense, stratified statistics
must be designed by the certifiers to better ensure completeness in the testing.

7-36 Chapter 7 - Software Design and Certification

One stratus of testing may be the entire input set of the system with probabilities associated
with each specific input. But some inputs may be more critical for system behavior than others,
so other strata collecting such inputs into subsets will be very important. In the extreme, some
strata may contain only a single input, to be sure it is tested. Large systems may call for
hundreds or thousands of strata to cover all possible circumstances in adequate ways. There are
two choices required in defining stratified testing, namely what the strata are, and what level
of testing is required for each stratus. For strata with only a single input, the level is easy,
namely one test. For strata with small numbers of inputs a small number of tests may be called
for, but the importance of the system behavior on these inputs may call for more tests. The
distribution of tests among the strata is a critical design issue, to address both the statistical
and the importance issues of the system inputs.

In illustration of a software system dealing with nuclear power safety, it is noted that simple
real time test generation hardly does justice to the safety problem. Most of the time, nothing
dangerous is happening. When dangerous things are happening they have been preceded by
certain kinds of observable events. So a strategy of test design is to spend 50% of the time in
testing in normal time, 50% of the time in testing at 4 orders of magnitude faster looking for
dangerous observable events.

In large systems, many critical situations can arise that need to be recognized as critical when
they arise and tested thoroughly. Thus, many strata can be identified to deal with these
situations, some with single inputs, some with small sets of critical inputs, some with larger
and larger sets of inputs. With these strata definitions and a level of testing for each stratus,
there is a basis for statistical testing for the entire system.

When Ada procedures and functions have been developed for broad use in other programs, it
may be desirable to test them explicitly for their correctness. Just as for programs, their usage
specifications by other programs is needed to define a probability distribution of the arguments
they may be called with. In addition, a shell testing program will be needed to get test data
from the input file, call the procedure or function with the arguments provided, and put the
results to the output file.

In view of the foregoing, it is clear that selected testing, that is, testing with inputs directly
selected by a programmer for a program, will provide no statistical evidence of the reliability
of the program. A programmer may feel better psychologically by creating some tests to see
that a program works on them. This will be especially so if intuitive guesses have played a
role in the design and coding of the program. With effective functional verification, there is
much less motivation to try out this or that input on the program.

In addition to testing the functional behavior of a program, it is also possible to create tests
that are sure to execute various parts of a program. In particular, it is possible to devise a set of
tests that execute all parts of a program, or make use of all data declared in a program. Such
testing to cover all of certain aspects of a program or its execution is called coverage testing. At
first glance, coverage testing would seem a comprehensive method of testing, to insure that no
failures remain in execution. Unfortunately, coverage testing does not insure the discovery of all
such points of failure. And, while counter intuitive, coverage testing is not so efficient in finding
the important failures of a program. This will be shown in a later section below.

7.5- Software Certification 7-37

"---

7 .5.5 Measuring Testing Results

When statistical testing has been carried out, the results allow a statement of the correctness of
a program, procedure, or function. The testing has been carried out in a sequence and possibly a
failure in the output has been identified. In this case, the program is dearly incorrect. The
failure should be analyzed and the program corrected for subsequent testing. The symbol ITF
will be used to denote a ''Time To Failure" that has been identified, measured from either the
start of testing or the last previous correction. The ''Time" in ITF may be defined in various
ways, depending on the program or subprogram. For programs that execute quickly with very
similar time of execution for all data, "Time" may mean number of times executed to the failure.
For programs that execute over considerable time periods, possibly quite different execution
times with different data, ''Time" can mean accumulated elapsed time of executions to the
failure.

Also, it is possible than no failures have been identified, either from the start of testing or since
fixing the last failure found. The symbol TWF will be used to denote ''Time Without Failure"
that has been identified. As for ITF, TWF can be measured in appropriate ways, depending on
the nature of the execution.

TI'F's represent the finding of a relatively rare event, a failure, on some execution, and namely
the first such rare event as discussed above. When new programs are first tested, trivial
failures may be found for a time from human and mathematical mistakes. As these trivial
failures are found and fixed, failures may occur less frequently or entirely disappear. That was
the experience in the COBOL/SF prototype mentioned above, namely failures on each first or
second run of program, and no failures ever after.

As already noted, statistical certification of software involves, first, the specification of usage
statistics in addition to behavior and performance specifications. Such usage statistics provide
a basis for assessing the correc~ess of the software being tested under expected use.

As each specified increment is completed by the developers, it is delivered to the certifiers,
combined with preceding increments, for testing based on usage statistics. As noted, the
structured specification must define a sequence of nested increments which are to be executed
exclusively by user commands as they accumulate into the entire system required. Each
subsequence represents a subsystem complete in itself, even though not all the user function may
be provided in it. For each subsystem, a certified correctness is determined from the usage
testing and failures discovered, if any.

It is characteristic that each increment goes through a maturation during the testing, becoming
more reliable from corrections required for failures found, serving thereby as a stable base as
later increments are delivered and added to the developing system. For example, the HH60
flight control program (for an Air Force helicopter) had three very efficient increments of about
12 KLOC of software each. Increment 1 required 27 corrections for failures discovered in its first
appearance in increment 1 testing, but then only 1 correction during increment 1 /2 testing, and 2
corrections during increment 1/2/3 testing. Increment 2 required 20 corrections during its first
appearance in increment 1/2 testing, and 5 corrections during increment 1/2/3 testing. Increment 3
required 21 corrections on its first appearance in increment 1/2/3 testing. In this case 76
corrections were required in a system of some 36 KLOC, some 2.1 corrections per I<LOC for
verified and inspected software, with no previous execution.

7-38 Chapter 7 - Software Design and Certification

The COBOL/SF, version 2, consisted of 80 KLOC, 28 KLOC reused from previous products, 52
KLOC new or changed, designed and tested in a pipeline of five increments, the largest over 19
KLOC. A total of 179 corrections were required during certification, some 2.1 corrections per '
KLOC for all 80 KLOC of software, under 3.5 corrections per KLOC for software with no
previous execution. The productivity of the development was 740 LOC per person month,
including all specification, design, implementation, and management, in meeting a very short
deadline.

7 .5.6 Certification Tasks

In parallel with the development team, the certification team prepares to certify the software
up to and including the increment being developed by the development team. The certification
team uses the usage profile and the portion of the specification that is applicable to the
increments to be verified to prepare test cases including proper outputs to tests.

When the development team has completed an increment, the certification team creates one or
more successive versions of the accumulated system up through this increment. For each version
the certification team compiles the increment, combines it with previous increments, and
certifies the accumulated system through this version. If a failure is encountered in the
certification of a version, it is returned to the development team for analysis and engineering
changes to whatever increments are causing the failure. While a failure is likely to be caused
by the latest increment added, previous increments may be at fault and changed as well, as
noted in HH60 experience. Each redelivery of changed increments defines a new version. If no
failures are encountered in the certification of a version, no additional versions are required.

Within each version of the accumulating system, tests are constructed at random for the
statistical strata in accordance with the specified usage statistics profile and then exercised.
Test results are compared to a standard and either a failure occurs or the result was correct.

7.5.7 Testing Procedures and Functions

When Ada procedures and functions have been developed for broad use in other programs, it
may be desirable to test them separately and explicitly for their reliability. Just as for
programs, their usage specifications by other programs is needed to define a probability
distribution of the arguments they may be called with. In addition, a shell testing program
will be needed to get test data from the input file, call the program or function with the
arguments provided, and put the results to the output file for evaluation.

As Ada programs become large systems it is desirable to test subunits separately and then
together. This involves using shell testing programs to function as those subunits that have not
yet been developed or completed. As each of the subunits is developed it is tested based on the
appropriate probability distribution of input data. Then the subunits can be tested together
again using data derived from the probability distribution that reflects the usage frequency of
each subunit. In the case of the system for roman numeral arithmetic, each arithmetic operation
could be created and tested using data that reflected appropriate probability distribution. All
the operations could then be tested together with the expected usage of verification operation
at least three time that of any other operation. Although this is a simple example, it
illustrates the concept of having the expected usage determine the testing data and sequence.
The larger the system the more complex the development and testing sequence is and the more
control is needed to manage the entire development process.

7.5 - Software Certification 7-39

7 .5.8 Exercises

1. What would be an appropriate probability distribution of test data for the roman numeral
arithmetic system for a specific distribution? Why?

2. What would be an appropriate probability distribution of test data for the temperature
trend program described in Exercise 3 in Section 5.3.5?

3. Why are the results generated by test program be equally suspect if discrepancies occur
with the original system? What would need to be done to resolve this conflict?

4. Given the information provided in answering Exercise 5 of Section 7 .3.5, what would be an
appropriate probability distribution of input over a daily or weekly period?

5. Given the estimate of the usage profile of the various operations included in the TEXT _IO
package, made in Exercise 6 of Section 7.3.5, what would be an appropriate probability
distribution of input?

6. What are sort specifications for arrays of INTEGERs based on their declarations in which
duplicate objects are retained in the final array. Given statistics of specific arrays to be
sorted and the relative importance of all arrays to be sorted correctly, define stratified sets
of tests that would make good use of sort.times in testing.

7. What are distinct sort specifications for arrays of INTEGERs based on their declarations in
which duplicate objects are replaced by a single object in the final array. Given statistics of
specific arrays to be distinctly sorted and the relative importance of all arrays to be sorted
correctly, define stratified sets of tests that would make good use of distinct sort times in
testing.

8. Given a specification to be implemented in a sequence of four sectors of increasing
subspecification until the entire specification is reached, with statistics for the entire
specification, determine what the statistics should be for each of the four accumulated
subspecificatipns.

9. Given a statistical test process for a program with the following possible results of times to
failure, followed by fixing the failure and resuming testing, where • means no failure in the
last time,

a. 1, 1,4,~
b. 250, 1, 1, 4•

discuss what to conclude in the two cases.

10. Given a statistical test process for a program implemented in a sequence of four sectors of
increasing subspecification in the following fonn

v1: 1, 1, 4, 250*
v2: 1, 3, 7(v1), 250*
v3: 1, 4(v2), 6(v1), 250*
v4: 1, 2, 3(v2), 5(v3), 250*

in which failures due to previous sectors are identified, determine what the conclusions are.

7-40 Chapter 7 - Software Design and Certification

Chapter 8

Sequential Ada Ill

In this chapter we will introduce sequences of statements that collectively serve as an
abstraction of a single operation; such sequences of statements will be handled as if they were a
single indivisible operation and will be given a name. Ada calls these abstractions
subprograms. Ada recognizes two distinct classes of subprograms, procedures and functions. A
procedure is a statement in the language and can be used wherever a statement is valid. A
function is an expression and can be used wherever an expression is valid. In addition, we will
examine a very powerful new concept in Ada that allows us to compose software systems from ·
collections of logically related entities. We call these collections of logically related entities
packages. They are architectural tools that allow us to build systems. We will study them in
this chapter and learn how to use them to create software solutions that are more efficient and
maintainable. More powerful features of Ada will be deferred until Chapter 11.

8.1 Ada Packages

When we are designing large systems, it is desirable to be able to handle logically related
items as a "single unit," or module. In Ada, this is accomplished by use of another programming
unit called a package. The package is a programming unit specifically designed to collect
together all logically related items into a single physical location. While there are no
restrictions placed by the language on what may be in a package, it is the responsibility of the
software engineer to provide everything needed for the use of the abstract entity encapsulated
in the package.

8.1.1 Introduction to Packages

We have talked about packages before and you have used them without fully understanding
their purpose. The most important package that you have already seen and used is TEXT_IO.
This package is nothing more than a collection of logically related entities, types, objects,
procedures, and functions. You should refer to the Reference Manual for the Ada Programming
Language [LRM 14.3.10], starting on page 14-26, for a complete listing of this package. For now,
suffice it to say that it is a collection of the entities logically related to input and output
operations. We will look further at this package and at others in this section.

The syntax for a package looks very much like that for a subprogram which we will see
shortly. Packages come in two distinct parts-the specification and the body. The following
syntax charts describe the syntax of Ada package specifications.

package_declaration ::= package_specificationt

package_specification ::=package identifier i•
{basic_declarative_itern} [private {basic_declarative_itern}]
end [package_sirnple_narne]

Chapter 8 • Sequential Ada Ill

Ada Package Specification
Syntax Definition 8.1

8 ·1

package_declaration ::=

package_specification

package_specifcation ::=

package identifier

' • .,.., basic_declarative_item

private

basic_declarative_item I , .,..,

package_simple_name

Ada Package Specification
Syntax Chart 8.1

The following syntax charts describe a package body, an entity that we will explain fully in
this section.

package_body ::=package body package_simple_name i•
[declarative_part] [begin sequence_of_statements
[exception exception_handler {exception_handler}]]
end [package_simple_name]l

8-2

Ada Package Body
Syntax Definition 8.2

Chapter 8 - Sequential Ada Ill

package_body : : =

package package_simple_name

declarative_part

sequence_of_statements

exception_handler

package_simple_name

Ada Package Body
Syntax Chart 8.2

8.1.2 Package Specifications and Bodies

As any other programming unit, packages are composed of two components, a specification and a
body. The specification of the packages serves as an interface for using units. Everything that is
to be made available for external users of this package is listed in the package specification. It
summarizes the things that this package will export. It is, in that sense, a contract with the
user, promising the operations that will be provided by the package and listing any types or
objects that are available to use the operations.

The other part of the package is the body. It is in the body that the actual implementations of
the subprograms are written. The body is where the work of the package is done that was
promised in the specification. Thus, in the body of a package we can expect to see the bodies of
all of the subprograms that had specifications in the package specification. Additionally, the
body can be used to define other subprograms that are used in the body of the package, but that
are not exported for the use of the using programs.

Packages should be thought of as architectural tools. They allow the program designer to
structure the system. All of the items that are logically related can then be physically
associated so as to contain them all in a single logical unit. This facilitates the design of large
software systems and encourages the reusability. Reusability is accomplished because the
packages are logically complete and can be thought of as building blocks that compose large

8.1 - Ada Packages 8-3

systems. As such, they are somewhat like the integrated circuits "chips" that hardware
designers use. A complete package can be reused in a system design in the same manner that an
IC chip is reused in a hardware design.

Another property of packages, shared by all Ada program units, is that the specification and
body are separately compilable. 1bis means that we can compile the specification without
having written the body. This allows the system designer to describe all of the interfaces in the
system under development before a single line of executable code has been written. The compiler
will check the interfaces and guarantee that everything is correct and that no interface
problems will occur. All of this is done without a single line of executable code! Note that the
guarantee is simply that the number, order, and type of the parameters is correct and that all ·
cross-module references are accurate. It does not guarantee that the functionality to be provided
will be the one that the user expects.

Perhaps an example will serve to illustrate these points. Consider the following package:

package Geometric_Figures
is

procedure Circle (Radius : Positive);
procedure Square (Side : Positive);
procedure Rectangle (Side_l, Side_2 : Positive);
procedure Parallelogram (Side_l, Side_2 : Positive;

Angle :Degrees);
end Geometric_Figures;

In this example, we have a package that contains procedures for drawing several different
kinds of geometric shapes. All of these entities are logically related and thus we have
physically related them by packaging them up into a single program unit with the name
Geometric_Figures. Our "contract" with the user promises that we will draw these four
figures, as long as they provide us with the necessary parameters.

Now this package specification could be compiled and placed in the library. A using program
could then make use of this package as follows:

with Geometric_Figures;
procedure Draw_Pictures
is

Geometric_Figures.Circle(S);
Geometric_Figures.Square(lO);

end Draw_Pictures;

In this example, the using program (Draw_Pictures) uses the facilities of the
Geometric_Figures package to draw a circle and a square. Note that this is accomplished by
merely requesting the the compiler import this package from the library (that is the purpose of
the clause with Geometric_Fi gures). Now we merely specify the name of the procedure we
want to execute and provide it with appropriate parameters. When this is compiled, the
compiler will verify that the subprograms that we have used do exist in the visible portion of
the package Geometric_Figures and that the number, order, and type of the parameters is
consistent. In this case, the code segment will meet these requirements, and thus successfully
compile. Note that the compilation is successful even though we have yet to write the body!
This is because we are only concerned now that the interfaces are correct and these are specified
in the specification. We do not need the bodies until we want to link the code together.

8-4 Chapter 8 - Sequential Ada Ill

Thus, we now would write the body of the package Geornetric_Figures. It might look like
this:

package body Geornetric_Figures
is

procedure Circle (Radius : Positive)
is

-- actual code to draw the circle would need to be placed here
null;

end Circle;

procedure Square (Side : Positive)
is

-- actual code to draw the square would need to be placed here
null;

end Square;

procedure Rectangle (Side_1, Side_2 : Positive)
is

-- actual code to draw the rectangle would need to be here
null;

end Rectangle;

procedure Parallelogram (Side_1, Side_2
Angle : Positive)

is

Positive,

-- actual code to draw the parallelogram would need to be here
null;

end Parallelogram;

end Geornetric_Figures;

In this example, the subprogram bodies have not been completed because their contents are
immaterial to this discussion. However, you can see where the body of each subprogram in this
package would be filled out. Note that the package body can be identified by the word body
being included in the first line. The name of the package specification and the package body
must be the same.

The specification and body do not need to be compiled together as indicated above. In addition,
these two portions of the package may be in different external files. When they are compiled,
however, they will be placed in the same library.

In some instances it makes sense to combine in one place all of the logically related constants
that a project may use. In this case, there are no subprograms that need to be implemented.
Consequently, the specification is all that is needed. The body is not needed. For example,

package Project_Constants
is

e : constant := 2.71828;
Pi : constant := 3.14159;
Golden_Ratio : constant := 1.61803;
Radius_of_Earth : constant := 6378.388; -- krn

end Project_Constants;

8.1 - Ada Packages 8-5

This example demonstrates the case where no package body is needed. Everything exported by
this package is completely defined in the package specification and so no package body is
needed.

Another example can be used to demonstrate the case where subprograms are available in the
package body that are not exported by the package specification. For example,

package Robot_Control
is

type Speed is range 0 •. 100;
type Distance is range 0 .. 500;
type Degrees is range 0 .. 359;
procedure Go_Forward (How_Fast : in Speed;

How_Far : in Distance);
procedure Reverse_Direction (How_Fast : in Speed;

How_Far: in Distance);
procedure Turn (How_Much : in Degrees);

end Robot_Control;

This package specification exports the functions necessary to control a small robot. In addition
to some special types defined to represent the limits of the robot's activities, such as Speed,
Distance, and Degrees, there are subprograms that can manipulate the robot. These provide
the operations of Go_Forward, Reverse_Direction, and Turn. This package represents the
interface by which the users of this robot can cause the robot to perform the actions necessary to
solve their problems. We could compile this into our library and make use of it in programs
designed to manipulate the robot. For example, the following program uses the
Robot_Control package to make the robot move in a square:

with Robot_Control; -- Provides access to Robot_Control
procedure Square is
begin ·

Robot_Control.Go_Forward (How_Fast => 100,
How_Far => 20);

Robot_Control.Turn (How_Much => 90);
Robot_Control.Go_Forward (How_Fast => 100,

How_Far => 20);
Robot_Control.Turn (How_Much => 90);
Robot_Control.Go_Forward (How_Fast => 100,

How_Far => 20);
Robot_Control.Turn (How_Much => 90);
Robot_Control.Go_Forward (How_Fast => 100,

How_Far => 20);
Robot_Control.Turn (How_Much => 90);

end Square;

We could compile this program and place it in the library even though the body of the
Robot_control package had not been written. We could not link these programs, however,
until we supply the body that will describe how we will accomplish the actions of
Go_Forward, Reverse_Direct ion, and Turn. Thus, the following body could be the one
created to provide these functions:

8-S Chapter 8 - Sequential Ada Ill

package body Robot_Control is
--local declarations

procedure Reset_System is
begin

--implementation
end Reset_System;

procedure Go_Forward-is_
procedure Reverse_Direction-is
procedure Turn-is-
end Robot_Control;

In this example package body, the details of how each of the subprograms is implemented are
not important and so these are shown with ellipses (...). The point to be made is that they
would need to be implemented in the package body. Note also that in the package body there is
a subprogram, Reset_System, that is implemented, yet it does not appear in the package
specification. This is an example of a subprogram that is needed by the other subprograms in
the body in order to make their implementation easier or more efficient, yet it is not exported
for use by the general user. As you can guess, the author of this package has decided that the
user does not need the capability of resetting the system and thus has chosen not to export it
However, some of the subprograms may need this capability, especially in an error situation
(an exception has been raised) and so the functionality must be provided.

This example serves to illustrate an asymmetry in the relationship between specifications and
bodies of packages. Any and all subprograms listed in the specification of a package MUST be
implemented in the body of the package. However, there may be subprograms implemented in
the body of the package that are not listed in the specification of the package.

8.1.3 Initialization of Packages

It is sometimes necessary to have objects that have known initial values when a system is
started. In older languages this is accomplished by having the first several statements in the
program assign initial values to the objects in the system. However, this practice tends to have
a detrimental effect on maintenance because it clutters up the main portion of the algorithm; it
hides the algorithm being implemented in several extraneous statements serving merely to
initialize the objects that will be manipulated in the algorithm and make up the solution.

We already know one way in Ada to avoid this problem and that is to provide initial values
for all objects at the time that they are declared. Thus, we might have a statement such as

Items_In_Stack : NATURAL := 0;

where we have declared the object Items_In_Stack to be an object with the properties of a
NATURAL number and have initialized it to the value zero. This makes sense because it says
that when we start the system we have no values in the stack initially.

While this approach works for static initial values, it does not work for objects whose initial
values are not known at compile time or are not constants. A possible work-around for this
situation is to get the value that is needed and then enter a declare block, using the value
obtained to provide an initial value. Thus, we might have the following code segment,

8.1 - Ada Packages 8-7

------ -------=::::-~ -- -~~------=::~

TEXT_IO.Put (Item=> •Enter the maximum number of characters=> •);
TEXT_IO.Get (Item=> Max_Characters);
declare

Name : STRING (1 .. Max_Characters);
begin

-- use the string Name

This example shows that we can prompt the user for the value that will be needed to constrain
the length of the sting. We are able to do this by entering a declare block after we had obtained
this information and then using the value that we had already obtained from the user. While
this approach avoids the issue of having to have all known values at compile time, it requires
that we again wait until execution to get these values and thus suffers from the same problems
as previously described for older languages where the initial values are obtained during the
execution of the algorithm. This complicates maintenance.

Thus, we have a dilemma. How can we provide initial values for objects declared in a package ,
but not use time during execution? The answer is that we do it during elaboration. Elaboration is
that process that must occur just prior to execution in which the declarations achieve their
effect. That is to say, when we declare a variable such as the previously described
Items_In_Stack, the runtime system must allocate a space in memory for this variable and
must provide its initial value. This does not actually occur at execution time since we are free to
assume that it has already occurred at that point. It is actually done whenever the block
containing that declaration is entered, just prior to the actual execution of that block. All of the
machine level actions that are required to allocate the memory and return the address, as well
as to set up initial values prior to execution, is called elaboration. Traditional languages do not
mention this process, but rather lump it into the overall process called execution. Ada makes a
distinction because there are things that occur at elaboration that can't occur at execution and
vice versa. All actions in Ada are defined as to their effect at elaboration time and at execution
time. We will return to this subject in detail later. For now, let's see how we can use the
elaboration process to help us initial objects in a package.

Recall that a package is a program unit with both a specification and a body. The body is
where any types and objects needed by the body and not exported to the user are declared. In
addition, all subprograms specified in the package specification just be implemented in the
body, as well as any subprograms not exported to the user but provided for the use of the
subprograms implemented in the body. In addition to all of these things, there is another part
of the package body that we have not yet discussed. It is the initialization portion. This
portion of the package body is physically the last thing in the package body. It starts with the
word begin and ends with the end of the package. This region is called the initialization
portion of the package body. Let's see an example before we describe it further. This,

package body Robot_Control is
--local declarations

procedure Reset_System is
begin

--implementation
end Reset_System;

procedure Go_Forward-is
procedure Reverse_Direction-is
procedure Turn-is-

begin
Reset_System;

end Robot_Control;

8-8 Chapter 8 - Sequential Ada Ill

In this package body we have included as the last thing in the body a begin and a sequence of
statements, in this case only a single statement that happens to be a call to the subprogram
Reset_System. This will cause this package body to execute the procedure Reset_System
whenever the package is elaborated, which is whenever this package is mentioned in a with
clause in some using program unit. Thus, every time a user wants to use this package, the system
will be reset so that its initial state has some known value.

There are no limits on what kinds of statements may be placed in the initialization portion of
the package body. We have already seen that this portion of the package body is completely
optional, in which case the begin is not even provided. This portion of the package body may
contain input/output statements, it may have loops, subprogram calls; in short, anything thatis
legal anywhere else. However, its intended use is to provide initial values for objects needed in
the package without requiring the user to have to call an initialize routine prior to using the
package. In this course, that is how you should use the initialization portion of the package
body.

8.1.4 State Variables In Packages

Objects that are declared in a package body have another property that makes them unique
among objects declared in other program units. This property is that these objects retain their
values between uses. For this reason, we refer to these objects as state variables because they
retain their state, or value, between uses.

An example may serve to dear up any confusion that exists on this point Consider the following
subprogram.

with TEXT_IO;
procedure Demonstrate
is

This_Value : NATURAL;
begin

TEXT_IO.Get (Item => This_Value) ;
end Demonstrate;

This simple procedure gets a new value for This_ Value every time that the procedure is
invoked. Every time that the procedure is called, the object This_ Value is elaborated and
then during execution, provided with a value by the Get procedure.

Consider now this nested set of procedures, making use of a non-local reference,

with TEXT_IO;
procedure More_Demo
is

This_Value : NATURAL;
package Int_IO is new TEXT_IO.INTEGER_IO(NATURAL);

procedure Nested
is

New_Value : NATURAL;
begin

Int_IO.Get (Item=> New_Value);
This_Value := New_Value;

end Nested;

8.1 - Ada Packages 8-9

begin
This_Value := 10;
silly _Loop:
for Count in 1 .. 10
loop

Int_IO.Put(Item => This_Value);
Nested;

end loop Silly_Loop;
end More_Demo;

In this example, the nested procedure called Nested references a non-local object, namely
This_ Value. This_ Value is non-local because itis not declared within the procedure Nested.
It is visible because of the scope and visibility rules that were discussed earlier. This use of the
object This_ Value is considered bad programming style because of the potential for
uncontrolled change of this object. It is often called a global variable or object because it is
visible globally and has the potential to be changed by any executable statement that has
visibility to it, i.e., all executable statements.

Now let's consider a similar situation within a package body. Suppose that we have a stack
package that defines and manipulates a bounded stack, i.e., a stack that has a limited number
of positions in which we may push values. A skeleton for this package body may be as follows,

package body Stack
is

Top_of_Stack : NATURAL := 0;

procedure Push (The_Item : NATURAL;
The_Stack : in out Stack)

is
Top_of_Stack := Top_of_Stack + 1;
The_Stack(Top_of_Stack) := The_Item;

end Push;

procedure Pop (The_Item : out NATURAL;
The_Stack : in out Stack)

is
The_Item := The_Stack(Top_of_Stack)
Top_of_Stack := Top_of_Stack - 1;

end Pop;

-- Other stack manipulation subprograms implemented here

end Stack;

Note that in this example, Top_of_Stack is an object that is non-local to both of the
procedures illustrated. However, it is not considered to be a global variable. This is the case
because this object is not available to the user of the package. This insures that only the
implementor of the package body has access to this object and the degree of control is greater
than it would be if this were a global variable. We also can see from this example that it sis
desirable for the object to retain its value between invocations of these procedures. If it did not,
then the user would need to maintain this information in the using procedure and pass it as an
additional parameter. This would make the abstraction that we are attempting to create less
useful, especially in a reusability context Consequently, it is desirable for this non-local (at
least to the package body) object to retain its value. In a sense, it has retained state
information. For this reason, objects used in this manner in a package body are referred to as
state variables. We will see more state variables later in this course.

8-10 Chapter 8 - Sequential Ada Ill

8.1.5 Exercises

<< To be added.>>

8.2 Ada Procedures

In Ada, there are two program units that serve as abstractions of operations that are performed
on data. Since many of the ideas and concepts in these two program units are so similar, it is
convenient to have a single name by which to reference both. This term is subprogram and it is
used when we want to talk collectively about procedures and functions. In some sense, procedur~
and functions are the building blocks of Ada. At the lowest level, they are the active program
units used in our algorithms to solve users problems. They are often grouped together by logical
function into larger units that will be discussed later. For now, let's examine these very
powerful program units by studying each of them in tum.

8.2.1 Procedure Specifications and Bodies

A procedure is an abstraction of an operation. In Ada, a procedure is one of two kinds of
structures that make up a program unit called a subprogram. Procedures perform an action on
behalf of a calling unit by executing the sequence of statements that make up their body. A
procedure is a statement and can be used anywhere that a statement can be used. Procedures may
also have parameters that allow them to be individualized to perform differently under
different circumstances.

A procedure is a sequence of statements that perform an action. In Ada, a procedure may be the
main program or it may be a subordinate unit called on behalf of another program unit. In fact,
the same procedure may be used in both ways because Ada does not require anything to
distinguish a main program, other than the fact that if it is a procedure than it must be a
parameterless procedure.

The syntax for a procedure, and for all program units, is actually composed of two parts. The
first part is called the procedure specification and contains all of the information needed by
other program uruts in order to make use of the procedure. The specification tells what the
procedure does; it does not say how it does it. The syntax for a procedure specification is given in
Syntax Definition 8.3.

8.2.1.1 Procedure Specifications

subprogram_declaration ::= subprograrn_specificationt

subprograrn_specification .. -
procedure identifier [formal_part]

forrnal_part :: =
(pararneter_specification (I pararneter_specification})

pararneter_specification ::=
identifier_list : mode type_rnark [a• expression]

mode : := [in] I in out · 1 out

8.1 - Ada Packages

Procedure Specification
Syntax Definition 8.3

8-11

This syntax may also be expressed in graphical fonn as given in Syntax Chart 8.3 below.

8-12

subprogram_declaration ::=

subprogram_specification

subprogram_specification ::=

procedure identifier

formal_part

formal_part

I • ~I parameter_specification

parameter_specification ::=

identifier_list

type_rnark ~--------------------------,-~~

mode

expression

Procedure Specification
Syntax Chart 8.3

Chapter 8 - Sequential Ada Ill

For example, the following are three different procedure specifications. The first,

procedure Draw_Circle;

is an example of a procedure without any parameters. This procedure will perform the same
action each time that it is invoked (called) and cannot be tailored or modified by the user.
Parameters, which will be di5cussed more fully in the next section, allow the user to make
certain changes or modifications to the actions to be performed by the procedure, allowing more
flexibility and adaptability.

The second example,

procedure Put (Item: in CHARACTER);

is a specification for the procedure Put in the package TEXT_IO. It contains all of the
information needed by other program units to use this procedure. It specifies the name (Put) and
the parameters to be used, namely one formal parameter that has the name Item and the type
CHARACI'ER. The mode of this formal parameter is specified to be in. A full discussion of the
meaning of the modes for parameters will be deferred until the next section of this chapter.

As another example,

procedure Sum (First_Nurnber, Second_Nurnber : in INTEGER;
Result :out INTEGER);

is a procedure specification for a procedure named Sum. It requires three parameters, all of
which are of type INTEGER. The mode of the first two parameters is in, while the mode of the
third parameter is out. The formal names of the parameters are also provided by the procedure
specification, in this case, Firs t_Nurnber, Second_Nurnber, and Result.

8.2.1.2 Procedure Bodies

Recall that the procedure specification described what the procedure does. By itself, a
specification can perform no actions because the software engineer has not provided the
information about how it does what it does. Therefore, for every procedure specification there
must be a second part called the procedure body that describes how the procedure does what it
does. The syntax for a procedure body is shown in Syntax Definition 8.4. The optional
designator after the end must be the same as the identifier given after the reserved word
procedure in the procedure specification.

subprograrn_body ::= subprograrn_specification
i•

declarative_part .. -

[declarative_part]
begin

sequence_of_statements
end [designator],

{basic_declarative_item} {later_declarative_item}

basic_declarative_part ::= basic_declaration

8.2 - Ada Procedures 8-13

basic_declaration ::= object_declaration I type_declaration I
number_declaration I subtype_declaration I subprograrn_declaration

later_declarative_itern ::=body I subprograrn_declaration

body ::= proper_body I body_stub

body_stub ::= subprograrn_specification i• ••parate1

Procedure Body
Syntax Definition 8.4

This syntax may also be expressed in graphical form as given in Syntax Chart 8.4 below.

subprograrn_body : : =

subprograrn_specification

declarative_part

sequence_of_staternents

designator

declarative_part

basic_declarative_itern

later_declarative_itern

8-14 Chapter 8 - Sequential Ada Ill

8.2 - Ada Procedures

basic_declarative_part ::=

basic_declaration

basic_declaration

object_declaration

number_declaration

type_declaration

subprograrn_declaration

later_declarative_itern

subprograrn_declaration

body

body_stub

body_stub : :=

subprograrn_specification

••parate

Procedure Body
Syntax Chan 8.4

8-15

For example, the procedure body below

procedure Sum {First_Nurnber, Second_Number
Result : out INTEGER)

is
begin

Result := First_Number + Second_Number;
end Sum;

in INTEGER;

provides a body for the specification of the procedure sum whose specification was provided
earlier. It should be clear that the action performed by this procedure is to add the first two
parameters and place the result in the third parameter. Thus, in this case, the name of the
procedure, sum, is an accurate indication of what the procedure does. In general, however, the
name of a procedure is merely an identifier and may not provide much insight into the action
performed by the procedure. Therefore, the function of each procedure will need to be
determined using the methods already seen in Chapters 3 and 4. It is good practice when
creating procedures to name them with a name that is indicative of the action performed by the
procedure, but in general, a user cannot depend upon this since there is no way for the machine to
enforce the proper naming of a procedure.

Another example of a procedure body is,

procedure Traffic_Signals
is

type Color_Type is {RED, YELLOW, GREEN);
Signal : Color_Type := GREEN;
Signal_Light_Activated : BOOLEAN := TRUE;

begin
Traffic_Control_Processing:
while Signal_Light_Activated
loop

Green_Light_Delay:
for I in 1 .. 60
loop

null;
end loop Green_Light_Delay; -- serves to cause a delay
Signal := YELLOW;
Yellow_Light_Delay:
for I in 1 .. 5
loop

null;
end loop Yellow_Light_Delay; -- serves to cause a shorter delay
Signal := RED;
Red_Light_Delay:
for I in 1 .. 60
loop

null;
end loop Red_Light_Delay; -- serves to cause a delay
Signal := GREEN;

end loop Traffic_Control_Processing;
end Traffic_Signals;

which controls the traffic signal at the intersection of two major roads. Note that this
procedure performs an action, namely controlling the traffic signal. Note also that the while
loop in this procedure is an infinite loop, i.e., it runs forever. In some applications having an
infinite main processing loop makes sense for the application. This is an example for which

8-16 Chapter 8 - Sequential Ada Ill

that applies because traffic signals must run continuously until they break down or need to be
adjusted, in which they case they can be restarted when fixed. Another interesting point is the
use of a for loop with an embedded null statement. You may wonder why we would loop-several
times performing a statement that explicitly does nothing. The answer is that we want to cause
the system to pause or delay, with the light of the traffic signal a particular color. This is a
simple way to make a system delay, although in actuality, the number of times to loop to
achieve a useful delay would be much greater than the values illustrated. This need for a
system to delay is so frequent that the designers of Ada provided a separate statement to do it
Although we did not use it here, we could have used the single statement,

delay 60.0; -- seconds

to achieve our purpose. This statement will be discussed in more detail later. For now, we can
say that the delay statement causes the program to be delayed for at least the specified number
of seconds.

The purpose of a procedure as mentioned previously is to abstract an operation. This may
involve many statements, although in general it is inadvisable to have procedures that are
overly long. A procedure should perform a single logical operation. If many logical operations
are to be performed then many procedures should be written, i.e., do not have a procedure that
performs multiple operations.

It should also be mentioned that the procedure specification is an optional part of the
procedure. Since the body of the procedure repeats the specification, no information is lost by
allowing the specification to be optional. The reason that specifications exist will become more
clear later when mutually referential procedures are discussed. Also, in a package specification
only type and object declarations and other program unit specifications may be used. Therefore,
in declaring a package that contains procedures, the procedure specifications will be required.
But in other circumstances the specification for a procedure is optional.

8.2.2 Procedure Calls

The discussion above addresses how to read (and write) procedures and concerns itself with
what their syntax and semantics ought to be. It does not mention how one uses procedures. This
is accomplished by a procedure call. A procedure call is the means by which the action of the
procedure is invoked. It is accomplished by merely naming the procedure within the executable
portion of another procedure and supplying the appropriate parameters, if any. For example, to
invoke the procedure Draw_Circle, a parameterless procedure whose specification appears
earlier in this section, a using procedure might look like

with TEXT_IO, Draw_Figures;
procedure Demo_Program
is

Lines : NATURAL;
begin

TEXT_IO.Get (Item=> Lines);
Center_Circle:
while Lines > 0
loop

TEXT_IO.New_Line;
Lines := Lines - l;

end loop Center_Circle;
Draw_Figures.Draw_Circle;

end Demo_Program;

8.2 - Ada Procedures

-- This is a call to the procedure
-- Draw_Circle

8-17

~ -

The action of the procedure Demo_Program is to get the number of Lines to skip in the output
file, then enter a loop to skip the appropriate number of lines (which could have been done
with a single statement, namely, TEXT_IO. New_Line (Lines)), then call the procedure
Draw_circle. Actually, there are three procedures being used by Demo_Program. The first is
the procedure Get from the package TEXT_IO, the next is the procedure New_Line from the
same package, and finally, the procedure Draw_Circle is called. Thus, using a procedure is a
very simple matter of specifying its name.

The actual sequence of events that occur when a procedure is called will not be detailed here.
Suffice it to say that the effect is as if the lines of code of the called procedure were textually
substituted at the point of the call.

Consider now the procedure Sum declared above. A call to this procedure might be as follows,

with TEXT_IO, Math_Routines;
procedure New_Demo_Program
is

Number_!, Number_2 : INTEGER;
Answer : INTEGER;
package Int_IO is new TEXT_IO.INTEGER_IO (INTEGER);

begin
Number_! := 5;
Number_2 := 7;
Math_Routines.Sum (First_Number => Number_l,

Second_Number => Number_2,
Result =>Answer);

Int_IO.Put (Item=> Answer);
end New_Demo_Program;

This program assigns values to two INTEGERs and then calls the procedure Sum. The call to Sum
must include values for the parameters that are needed by Sum, namely two INTEGERs with
values, and another INTEGER object to hold the computed result. In the call to sum inside of the
procedure New_Demo_Program, the formal parameters that were declared in the specification
(and body) of the. procedure Sum are listed followed by the actual parameter provided by the
calling procedure New_Demo_Program. The association between these two parameters (formal
and actual) is explicitly indicated by the arrow (•>) symbol. Details of parameter passing
will. be explained in the next section.

8.2.3 Exercises

<< To be added.>>

8.3 Ada Functions

As was previously presented, Ada subprograms are of two distinct types, namely procedures and
function. Procedures are statements that perform a single action and were previously described.
A function is also an abstraction of an operation. In Ada, it is a program unit that returns a
value. It is therefore always a part of an expression and may be used wherever expressions are
allowed. It is not a statement and may not appear in places where a statement is needed. In this
section, Ada functions will be introduced and comparisons will be made to procedures. Examples
of functions will be given to assist in presenting many of the concepts that are introduced.

8-18 Chapter 8 - Sequential Ada Ill

An Ada function is a program unit that returns a value. The syntax of a function, like that of a
procedure is composed of two parts. The function speciiication contains all of the information
that a calling program unit needs to make use of the function. It tells what the function does, but
not how it does it.

8.3.1 Function Specifications

The syntax for a function specification is given in Syntax Definition 8.5.

subprograrn_specification ::=
function designator [formal_part] return type_mark

designator ::=identifier I operator_symbol

operator_symbol ::= string_literal

formal_part ::=
(parameter_specification {1 pararneter_specification})

pararneter_specification ::=
identifier_list 1 mode type_mark [a• expression]

mode ::= [in]

Function Specification
Syntax Definition 8.5

This syntax can also be expressed in graphic form as indicated in Syntax Chart 8.5.

subprograrn_specification ::=

function designator

formal_part

return type_mark

designator : : =

operator_symbol

8.3 - Ada t:undions 8-19

operator_symbol ::=

string_literal

formal_part

parameter_specification I • ~I

parameter_specification

identifier_list

type_mark

expression

mode : :=

LG=t~

Function Specification
Syntax Chan 8.5

For example, the following are three different function specifications. The first,

function Clock return Time;

is a parameterless function that is actually declared inside of a predefined package named
CALENDAR. This specification indicates that a call to the function Clock will return a value of
type Time.

The second example,

function Increment (Old_Value : INTEGER) return INTEGER;

is a specification for a function named Increment that takes a single parameter of type
INTEGER and returns a value of type INTEGER. Note that there is no guarantee from the name
of the function that it will perform any particular operation. The name of the function is,
according to Syntax Definition 8.5, merely a designator, which is either an identifier or an

8-20 Chapter 8 - Sequential Ada Ill

operator symbol. Thus, the name of the function does not necessarily by itself provide any
indication of what the function actually does. On the other hand, it is a good engineering
practice to always name subprograms with an identifier that accurately reflects the operation
that they perform.

As another example,

function Dot_Product (Left, Right : in VECTOR) return INTEGER;

is a function specification for the function Dot_Product. It has two parameters, both with
mode in, of type VECI'OR, with formal names Left and Right, and it returns a value of type.
INTEGER.

It can be seen that function specifications convey all of the information that a calling program
unit needs to use the function, i.e., it completely specifies the interface needed to use the
function. However, function specifications do not convey any information as to how they do
what they do; that is the purpose of the function body.

8.3.2 Function Bodies

As was the case with procedures, a function specification requires that a function body be
provided to perform the action "promised" in the function specification. Thus, the second part
of every function is the function body. The syntax for a function body is identical to the syntax
for procedure body, shown in Syntax Definition 8.4. The optional designator after the end must
be the same as the designator given after the reserved word function in the function
specification.

For example, the function body below

function Increment (Old_Value
is

return Old_Value + 1;
end Increment;

INTEGER) return INTEGER

provides the body for the function Increment specified above. The action performed by this
function is add one to the parameter supplied and return the resultant sum.

Another example of a function body is

with TEXT_IO;
function Dot_Product (Left, Right
is

Sum : INTEGER := 0;
Final_Value : INTEGER;

begin

Vector) return INTEGER

if Left'FIRST = Right'FIRST and Left'LAST = Right'LAST
then

Dot_Product_Computation:
for I in Left'RANGE
loop

Sum : = Sum + Left (I) * Right (I) ;.
end loop Dot_Product_Computation;
Final_Value := Sum;

8.3 - Ada Functions 8-21

else
TEXT_IO.Put (Item => •Error - cannot compute Dot • &

•Product.•);
Final_Value := 0;

end if;
return Final_Value;

end Dot_Product;

This function computes the dot product of two vectors, where the type Vector is declared in
some enclosing scope. It checks to see that the vectors are of the same length and have the same
upper and lower bounds, then computes the dot product if the test is true and writes an error
message if it is false. Note that if the test is false and the dot product cannot be computed the
function still provides a value to the calling program unit. There are many other ways to
handle a situation such as this, but for now this solution should suffice.

Functions should perform a single logical operation. The size of a function then is related to the
logical operation that is to be performed. In general, however, functions should be relatively
small and should only perform the logical operation that is required. Any extraneous
operations are likely to be side-effects of the function and should be avoided.

As was the case for procedures, a function specification is optional. All of the requisite interface
information can be obtained from the function body since the first portion of the function body
repeats the function specification. There are certain circumstances that will be discussed later
that require a function specification, but in general they are optional.

8.3.3 Function Calls

All of the discussion of functions so far has been concerned with their definition. Much has been
made of the similarity of function to procedures. Since these are two forms of subprograms, each
has its intended purpose and is suited to different uses. Procedure calls, the means to invoke a
procedure, were discussed in the previous section. A function call is, similarly, the means to
invoke a function. It is accomplished by naming the function in any place where an expression is
permissible in the syntax, including as part of a larger expression. The function's parameters, if
any, are indicated in parenthesis in a manner consistent with that for parameter passing in
procedures. For example, to use the parameterless function Clock whose specification appears
earlier in this section, a using program unit would look like,

with TEXT_IO; with CALENDAR;
procedure Demo_Clock
is

The_Time

The_Day

CALENDAR.TIME; -- the type TIME is declared in
-- the package CALENDAR

CALENDAR.DAY_NUMBER; -- similarly for DAY_NUMBER
begin

The_Time := CALENDAR.Clock;
The_Day := CALENDAR.Day (Date=> The_Time);
TEXT_IO.Put (Item=> •The day of the month is •);
TEXT_IO.Put (Item=> The_Day);

end Demo_Clock;

where the package CALENDAR referenced in the context clause (with CALENDAR;) is a
predefined package in Ada that provides date/time information and operations. You should
look at Chapter 9 of the Reference Manual for the Ada Language [LRM 9.6, paragraph 7, page
9-11], to see the complete specification of this package. The procedure Demo_Clock makes use
of two functions inside of the package CALENDAR, namely Clock and Day. Clock is a function

8-22 Chapter 8 - Sequential Ada Ill

that returns an object of type TIME and Day is a function that takes a parameters of type TIME
and returns an object of subtype DAY_NUMBER, which is defined in package CALENDAR to be a
subtype of INTEGER. Thus, this procedure calls Clock to get an object of type TIME, called
The_ Time in this procedure, then passes that object as a parameter to the function Day to get an
object of type DAY_NUMBER. Since this is just an INTEGER subtype, the TEXT_IO package can
write out the result, which will be the current day of the month in the range 1 .. 31.

Note that the function calls are not statements on a line by themselves, but they are part of an
expression (in this case they are the complete expression) that must be evaluated to determine
the value to assign to the objects on the left side of the assignment statement Compare their use
with that of the procedure TEXT_IO. Put that is called in this same procedure.

The actual sequence of events that occur when a function is called is beyond the scope of this
discussion, but it is sufficient to say that the effect is the same as if the lines of code that make
up the function body were textually substituted at the place of the call.

Consider now the function Increment that was declared above. This function could be used as,

with TEXT_IO;
procedure Demo_Increment
is

A_Value : INTEGER;

function Increment (Old_Value
is

return Old_Value + 1;
end Increment;

begin
TEXT_IO.Get (Item=> A_Value);

INTEGER) return INTEGER

TEXT_IO.Put {Item=> •The original value is •);
TEXT_IO.Put (Item=> A_Value);
A_Value :=Increment (Old_Value => A_Value);
TEXT_IO.Put {Item=> •The new value is •);
TEXT_IO.Put (Item=> A_Value);

end Demo_Increment;

which embeds the function in a procedure. The procedure gets a value and writes it out with an
appropriate message. Then it computes a new value for A_ Value by calling the function
Increment and passing the function as a parameter the old value of A_ Value. The function
increments A_ Value by one and returns the result which can then be assigned as the new value
of A_ Value. Finally, the new value is written out along with an appropriate message.

Another use of Increment might be,

with TEXT_IO;
procedure Demo_Increment_2
is

A_Value : INTEGER := 10;

function Increment (Old_Value .. INTEGER) return INTEGER
is

return Old_Value + 1;
end Increment;

8.3 - Ada Fundions 8-23

begin
TEXT_IO.Put (Item=> •The original value is •);
TEXT_IO.Put (Item=> ~Value);
A_Value := 7 *Increment (Old_Value =>~Value);
TEXT_IO.Put (Item=> •The new value is •);
TEXT_IO.Put (Item=> A_Value);

end Demo_Increment_2;

which is similar to the previous use. The difference is found in the initialization of the object
A_ Value, eliminating the call to the procedure TEXT_IO. Get. The value 10 is written out
along with an appropriate message. Next, the function Increment is called and passed as a
parameter the current value of A_ Value. The function Increment increments this object and
returns the result which is 11. Finally, this result is multiplied by the other operand, 7, and the
final result of 77 is assigned to the object A_ Value. This value is written out along with an
appropriate message. Note that in expressions, functions have a higher precedence than any of
the other operators.

Finally, the function Dot_Product declared above could be used in the following manner,

with TEXT_IO;
procedure Vector_Operations
is

type VECTOR is array (INTEGER range <>) of INTEGER;
Distance, Time :VECTOR (1 .• 50);
Total : INTEGER;

function Dot_Product (Left, Right
is

Sum : INTEGER := 0;
Final_Value : INTEGER;

begin

Vector) return INTEGER

if Left'FIRST = Right'FIRST and Left'LAST = Right'LAST
then

Dot_Product_Computation:
for I in Left'RANGE
loop

Sum:= Sum+ Left(I) *Right(!);
end loop Dot_Product_Computation;
Final_Value := Sum;

else
TEXT_IO.Put (Item => •Error - cannot compute Dot • &

Final_Value := 0;
end if;
return Final_Value;

end Dot_Product;

•Product.•);

begin
Distance := (others=> 25);

.- (others=> 35); Time
Total := Dot_Product (Left => Distance,

TEXT_IO.Put (Item =>
TEXT_IO.Put (Item =>

end Vector_Operations;

8-24

Right=> Time);
•The dot produ~t is •);
Total);

Chapter 8 - Sequential Ada Ill

This example is somewhat contrived to illustrate the use of the function Dot_Product, but it
meets the need. Two vectors, Distance and Time are given initial values, and then passed as
parameters to the function Dot_Product. Dot_Product computes the dot product of the two
vectors and returns the value that is assigned to the object Total. This value is then written out
with an appropriate message.

8.3.4 Return Statements

A return statement consistS of the reserved word return followed by an expression, followed by a
semicolon (;). The return statement has different meanings and rules depending upon whether it
is used in a function subprogram or a procedure subprogram. In this section we will only discuss
the use of the return statement for function subprograms. The syntax of the return statement for
both functions and procedures is given in Syntax Definition 8.6.

return_staternent return [expression];

Return Statement
Syntax Definition 8.6

In graphic form this syntax can be expressed as in Syntax Chart 8.6.

return_staternent

expression

Return Statement
Syntax Chart 8.6

For a function, the purpose of the return statement is to identify what value will be returned as
the result of a function call. There can be as many return statements in a function as desired, but
the first one encountered in the normal flow of control will be the one executed. While this is
true as far as the syntax of the language, it is considered bad engineering practice to have more
thar. a single entry and a single exit for each subprogram. Thus, we should not have more than a
single return statement in any function. The return statement terminates the function normally
by returning the value computed in the expression after the reserved word return. Any other
statements that exist after that point are never executed. Each function must have at least one
return statement. If a function should ever reach the end statement in its body without having
encountered a return statement, then the exception Prograrn_Error is raised.

For example, consider the following function,

function Cornpare_Grades (My_Grade
Your_Grade

is
begin

return My_Grade > Your_Grade;
end Compare_Grades;

CHARACTER;
CHARACTER) return BOOLEAN

8.3 - Ada Fundions 8 - 25

This function takes two parameters and returns a BOOLEAN result indicating whether or not
the first parameter is greater than the second. Note that the return statement itself computes
the expression to be returned.

Now consider a slightly more complex function using the following type declarations which are
contained in an outer scope,

type All_Colors is (RED, YELLOW, ORANGE, UNDEFINED);
subtype Colors is All_Colors range RED .. ORANGE;

function Mix_Colors (First_Color
Second_Color

Colors;
Colors) return All_Colors

is
begin

if First_Color = RED
then

if Second_Color = YELLOW
then

return ORANGE; -- RED and YELLOW make ORANGE
else

if Second_Color = RED
then

return RED; -- RED and RED make RED
else -- Second_Color must be ORANGE

return UNDEFINED; -- not a possible combination
end if;

end if;
else

if First_Color = YELLOW
then

if Second_Color = RED
then

return ORANGE; -- YELLOW and RED make ORANGE
else

if Second_Color = YELLOW
then

return YELLOW; -- YELLOW and YELLOW make YELLOW
else -- Second_Color must be ORANGE

return UNDEFINED; -- not possible
end if;

end if; else -- First_Color must be ORANGE
return UNDEFINED; -- must be RED or YELLOW to mix

end if;
end if;

end Mix_Colors;

This function mixes two primary colors, i.e., RED and YELLOW, to obtain a secondary color,
ORANGE. If either of the parameters are not a primary color, then the mix is undefined. If both
of the parameters are the same primary color, say RED, then the mix will also be RED.
Otherwise, if both parameters are different primary colors, then the resultant mix will be
ORANGE. Note that the function has several return statements embedded in it. This is
permissible since there is no limit on the number of return statements allowed. However, there
will only be one return statement executed and it will be the first one encountered in the normal
flow of control. Thus, a portion of the code above, reproduced and modified below,

8-26 Chapter 8 - Sequential Ada Ill

-
if First_Color = RED
then

if Second_Color = YELLOW
then

return ORANGE; -- RED and YELLOW make ORANGE
return RED; never executed

else ...

would be syntactically correct, but the second return statement, return RED; would never be
executed since the previous statement is a return and that would terminate normally the
execution of the function such that the second return statement would never be in the flow of
control.

Further note that there are multiple return statements in this function. Given that this is bad
engineering practice, how can we rewrite it so that there is but a single exit? Consider the
following version of the subprogram, rewritten so as to contain a single exit,

function Mix_Colors (First_Color
Second_Color

Colors;
Colors) return All_Colors

is
Color_Mix : All_Colors;

begin
if First_Color = RED
then

if Second_Color = YELLOW
then

Color_Mix := ORANGE; RED and YELLOW make ORANGE
else

if Second_Color = RED
then

Color_Mix := RED; RED and RED make RED
else -- Second_Color must be ORANGE

Color_Mix := UNDEFINED; -- not a possible combination
end if;

end if;
else

if First_Color = YELLOW
then

if Second_Color = RED
then

Color_Mix := ORANGE; -- YELLOW and RED make ORANGE
else

if Second_Color = YELLOW
then

Color_Mix := YELLOW; YELLOW and YELLOW make YELLOW
else -- Second_Color must be ORANGE

Color_Mix := UNDEFINED; -- not possible
end if;

end if; else
Color_Mix ·- UNDEFINED;

end if;
end if;
return Color_Mix;

end Mix_Colors;

8.3 - Ada Functions

First_Color must be ORANGE
-- must be RED or YELLOW to mix

8-27

It is imperative that a function have a result to return. Thus, if a function ever reaches the end
of its body without encountering a return statement, something is wrong. Therefore, an
exception, namely Program_Error, is raised. For example, consider the original color mixing
function again, a modified portion of which is given next,

function Mix_Colors {First_Color : Colors;
Second_Color : Colors) return All_Colors

is
begin

if First_Color = RED
then

as before, removed to conserve space
else

if First_Color = YELLOW
then

-- same as before except the else has been removed
end if;

end if;
end Mix_Colors;

Note that in this skeleton of the function the only values against which First_Color is
tested are RED and YELLOW (the else clause of the inner if statement has been removed for this
discussion). Now suppose that the value of First_Color happens to be ORANGE. The flow of
control will be to compare First_Color to RED in the outer if statement, then go into the else
clause because ORANGE is not RED. The else clause of the outer if statement contains another if
statement that compares First_Color to YELLOW. This will also be FALSE since ORANGE is not
YELLOW. But there is no else clause provided for the inner if statement As a consequence, the
flow of control will leave the inner if statement, then leave the outer if statement and come to
the end of the function body without encountering a return statement At this point an error has
obviously occurred and the run time system will raise the exception Program_Error.

Finally, note that there is an expression after each of the return statements. For a function, this
expression is not optional, i.e., one must be provided for each return statement. This is necessary
so that the function has a value to return. Thus, for all return statements in a function there must
be an expression of the type specified to be returned by the function.

In summary, for a function, multiple return statements are permissible but considered bad
engineering practice; in any case, only the first one encountered in the normal flow of control
will be executed. In addition, at least one return statement must be encountered before the end of
the function body or the exception Program_Error will be raised. Also, an expression of the
appropriate type must appear in each return statement.

8.3.5 Exercises

1. What is the result of the call to the function Mystery in the following procedure?

8-28

with TEXT_IO;
procedure Mystery_Procedure
is

Letter CHARACTER;

function Mystery (Old : CHARACTER) return CHARACTER
is

return CHARACTER'SUCC (Old);
end Increment;

Chapter 8 - Sequential Ada Ill

begin
TEXT_IO.Get (Item=> Letter);
TEXT_IO.Put (Item=> "The original value is");
TEXT_IO.Put (Item=> Letter);
Letter :=Increment (Old=> Letter);
TEXT_IO.Put (Item=> "The new value is");
TEXT_IO.Put (Item=> Letter);

end Mystery_Procedure;

2. What is the specification of the following function?

with TEXT_IO;
function Decrement (The_Old_Value
is

return The_Old_Value - 1;
end Decrement;

INTEGER) return INTEGER

3. Why is it permissible to have a function body without providing a function specification,
but it is not permissible to have a function specification without providing a body?

4. What is wrong with the following function specification?

function Reverse_Mode (How_Far : out INTEGER) return INTEGER;

5. What would be the result stored in the object New_ Value be if the function given below
were called by the statement

New_Value := Exercise_S (Old_Value => 7) + 3; ?

function Exercise_S (Old_Value : INTEGER) return INTEGER
is
begin

if Old_Value < 10
then

return Old_Value + 10;
else

return Old_Value - 10;
end if;

end Exercise_S;

6. What would the value of New_ Value be if the following statement was used in a procedure,
referencing the function given in Exercise 5?

New_Value .- Exercise_S (Old_Value => 10) * 5 +
Exercise_S (Old_Value => 11);

7. Suppose the following call were made to the function in Exercise 5. What you be the value,
if any, in New_ Value? If no value can be computed, explain why not.

New_Value := Exercise_S (Old_Value =>
Exercise_S (Old_Value => 2));

8.3 - Ada Fundions 8-29

8. What is the output of the following program?

with TEXT_IO;
procedure Exercise_B
is

The_Value :CHARACTER:= 'C';

function Mystery (Old_Value : CHARACTER) return CHARACTER
is
begin

return CHARACTER'PRED (Old_Value);
end Mystery;

begin
TEXT_IO.Put (Item=> The_Value);
The_Value :=Mystery (Old_Value => The_Value);
TEXT_IO.Put (Item=> The_Value);
The_Value := 'G';
The_Value := Mystery (Old_Value =>

Mystery (Old_Value => The_Value));
TEXT_IO.Put (Item=> The_Value);

end Exercise_B;

8.4 Parameters of Ada Subprograms

Subprograms are abstractions of operations and can perform whatever action the software
engineer decides needs to be done. Some actions are very simple and are always the same. These
procedures would not need to be parameterized. Consider the procedure Draw_Line below.

with TEXT_IO;
procedure Draw_Line
is
begin

Put_Line_Elements:
for Count in 1 .. 80
loop

TEXT_IO.Put (Item=> '-');
end loop Put_Line_Elements;

end Draw_Line;

This procedure has a simple function, namely to draw a line. The line will always be 80
characters long and it will always be a sequence of'-' characters. If that is all that is ever
needed, then this procedure will suffice. Note that a while loop could have been used, but the
for loop is probably more appropriate in this case since we know precisely how many iterations
that we want.

However, it is possible to make this procedure more general. Suppose that it is desired to use a
'-'character to draw the line sometimes, but another character, say'=', to draw the line at
other times. How can the procedure be make more flexible and versatile? The answer is via the
use of a parameter. Thus, observe the changes in the Draw_Line procedure to allow for the
parameter mechanism,

8-30 Chapter 8 - Sequential Ada Ill

with TEXT_IO;
procedure Draw_Line (The_Character
is
begin

Put_Line_Elements:
for Count in 1 .. 80
loop

CHARACTER)

TEXT_IO.Put (Item=> The_Character);
end loop Put_Line_Elements;

end Draw_Line;

Now the procedure Draw_Line has a parameter called The_ Character which is an object of
type CHARACTER. It is not actually an object, but is really placeholder for an object. This
placeholder is called a formal parameter. The procedure Draw_Line may refer to the formal
parameter anywhere, and in any manner, appropriate for an object of type CHARACTER. A
call to the procedure Draw_Line must include an object of the same type as the formal
parameter of Draw_Line, i.e., a call must include a CHARACTER object. This object supplied
with the call is termed an actual parameter. Thus, a call to Draw_Line such as

Draw_Line (The_Character => '+');

would cause the formal parameter The_Character in the procedure Draw_Line to be replaced
(since the formal parameter is just a placeholder) by the value of the actual parameter
supplied as part of the call to Draw_Line. In this case, a '+' character would be, in effect,
substituted for The_Character in Draw_Line; in particular, the statement

TEXT_IO.Put (Item=> The_Character);

would be handled as if it had been written

TEXT_IO.Put (Item=> '+');

for this call to the procedure Draw_Line. Yet a call to the same procedure using the actual
parameter' I' would yield a line of'!' characters, since the actual parameter would cause the
procedure to behave as if it had been written

TEXT_IO.Put (Item=> '/');

substituting the actual parameter'!' for the formal parameter The_Character.

Thus, the increased flexibility of procedures is provided by the parameter mechanism. When
the software engineer designs a procedure, he/she should always look for opportunities to make
the procedure more general and more flexible. This will lead to increased reuse of procedural
abstractions.

Consider once again the procedure Draw_Line. Is there a way to increase its utility by making
it more adaptive to different situations? Consider that the procedure Draw_Line, as revised, is
flexible enough to allow any character to be used to draw the line, but that a line is always 80
characters long. Can the flexibility of this procedure be increased by parameterizing the length
of the line? The new version of Draw_Line is thus,

8.4 - Parameters of Ada Subprograms 8-31

with TEXT_IO;
procedure Draw_Line (The_Character

The_Desired_Length
is
begin

Put_Line_Elernents:
for Count in 1 .. The_Desired_Length
loop

TEXT_IO.Put (Item=> The_Character);
end loop Put_Line_Elernents;

end Draw_Line;

CHARACTER;
NATURAL)

where there are two formal parameters, namely The_Character and The_Desired_Length.
Note that different formal parameters are separated by a semicolon. A call to the procedure
Draw_Line as currently revised would be of the form,

Draw_Line (The_Character => '-',
The_Desired_Length => 80);

which would procedure a line 80 characters long consisting of the character'-'. Note that the
actual parameters are separated by a comma.

8.4.1 Parameter Modes In Ada Procedures

Parameters are means for tailoring a procedure and therefore increase the flexibility and
adaptability of procedures. Examples already discussed have shown how parameters can
provide this additional capability. However, one item relating to parameters needs to be
presented more fully and that is that parameters are directional. This directional nature of
parameters is represented in Ada by a parameters mode. Parameter modes are either in, out, or
in out

The mode of a parameter is an indication of the direction of information flow relative to the
procedure being called. In parameters carry information into the procedure, out parameters
carry information out of the procedure, and in out parameters carry information in both
directions. The parameter mode is specified in the parameter list when a procedure
specification is written. It appears between the colon and the type mark. For example,

procedure Sum (First_Nurnber, Second_Nurnber : in INTEGER;
Result :out INTEGER);

declares the procedure Sum to have two parameters of mode in, namely First_Number and
Second_Nurnber, and one parameter of mode out, namely Result. If a parameter mode is not
specified, it is by default taken to be mode in. The syntax for parameter specifications in which
the mode is indicated is given in Syntax Definition 8.6 and Syntax Chart 8.6. The use of
parameter modes is explained next

Suppose that you call the procedure Draw_Line from the previous section. The call to the
procedure must include the character to be used to draw the line and the length of the line
(number of characters). The procedure cannot do its job without this information. Thus, these
parameters are needed in the procedure and are called in parameters. In parameters act as a
constant within the procedure and can only be referenced or read. n, : value of an in parameter
cannot be changed. As a consequence of this, in parameters can only appear on the right hand
side of assignment statements in the procedure and must not have a use other than one in which
the value of the parameter is inspected or read.

8-32 Chapter 8 - Sequential Ada Ill

Imagine now that the procedure Sum is called. Recall that the spedfication of this procedure
is,

procedure Sum (First_Nurnber, Second_Nurnber
Result :out INTEGER);

and the body is,

procedure Sum (First_Nurnber, Second_Nurnber
Result : out INTEGER)

is
begin

Result := First_Number + Second_Number;
end Sum;

in INTEGER;

in INTEGER;

Note that the first two parameters are of mode in and thus can only provide values that may be
used by the procedure. The last parameter is of mode out and has a different meaning. Out
parameters are objects that are supplied by the calling program unit for the procedure to use to
return values computed by the procedure. Since these parameters are only for the purpose of
providing values back to the calling program unit, they can never be read inside of the
procedure. As a consequence they may only appear on the left hand side of an assignment
statement, or in places where their values are not read. Note that this rule applies even after a
value has been supplied to an out parameter inside of the procedure. Thus, in the sum procedure
above, if another statement were added to this procedure after the assignment to Result that
attempted to read the value in Result, an error would occur. Thus, a statement such as,

if Result < 0
then

Result .- 0;
end if;

after the assignment of a value to Result would not be allowed since an attempt is being made
to inspect the value in Result by the conditional portion of the if statement Result < 0.

Now suppose that you desired to modify the procedure sum to allow for an examination of the
value in Result after the assignment. The revised version of sum would then be,

procedure Revised_Surn (First_Number,

is
begin

Second_Number in INTEGER;
Result : out INTEGER)

Result .- First_Number + Second_Number;
if Result. < 0
then

Result := 0;
end if;

end Sum;

Unfortunately, as discussed above, this procedure will not compile because of the error in the
mode of the parameter Result.

The solution is to modify the specification of the procedure to redefine the mode of the
parameter Resu 1 t from an out parameter to an in out parameter. An in out parameter provides
a bidirectional capability for a parameter, i.e., it provides for information flow between the

8.4 - Parameters of Ada Subprograms 8-33

""'

calling program unit and the called procedure via parameters to be in both directions. The
procedure then receives information in the form of a value provided with the parameter when
the procedure is called and it returns a value when it completes. Thus, the new revised version
of sum becomes,

procedure New_Revised_Sum (First_Number,
Second_Number : in INTEGER;
Result : in out INTEGER)

is
begin

Result := First_Number + Second_Number;
if Result < 0
then

Result := 0;
end if;

end Sum;

The New_Revised_Sum will properly compile and execute the statements indicated.

Since the in out form of parameter mode seems to be the most powerful, why not declare all of
the parameters to be of mode in out? The reason is that the mode of a parameter should match
its intended use. In this manner, the compiler and/ or runtime system can assist in detecting
errors by noting improper use of parameters. In general, it is a bad practice to use in out
parameters unless their intended use requires this parameter mode.

8.4.2 Parameters of Ada Functions

Parameters of functions afford the same benefits as those used for procedures. The additional
flexibility and versatility provided by parameters make them very useful for software
engineers. There is a difference between the parameter modes that were available for
procedures and those that allowed for functions.

Whereas procedures had three possible modes for their parameters, functions may only have
parameters of mode in. This is necessary to try to prevent the creation of functions that have
sid~ffects. Recall that a function is intended to compute a single logical operation and return a
value. In some cases, software engineers using other languages have used functions to not only
return a value, but also to modify the parameters used in the computation of the value to be
returned by the function. This additional effect, changing the value of one or more parameters,
is usually not a good idea. In general, such side-effects make proving functions correct very
difficult. Thus, Ada was designed to prevent the software engineer from changing any of the
parameters, allowing only the computed value to be returned from a function call and leaving
all other aspects of the function and its parameters unaffected. In order to insure this
limitation on the software engineer, all Ada parameters are required to be of mode in.

Recall that parameters of mode in act as constants within the subprogram. Thus, all function
parameters act as if they are nothing more than initialized constants within the function.
Recall also that in the absence of an explicit mode for a parameter, the mode in is assumed, i.e.,
it is the default. Thus, in functions it is not necessary to provide a mode because the default
mode is the only permissible mode.

8-34 Chapter 8 - Sequential Ada Ill

8.4.3 Exercises

1. Why does a procedure have both a specification and a body? What is the purpose of each?

2. What is the specification for the following procedure?

procedure Demo (First_Nurn : in out INTEGER)
is
begin

First_Nurn := First_Nurn I 2;
end Demo;

3. Consider the following revision of the procedure Traffic_Signals described earlier.
What is the purpose of the parameter?

procedure Traffic_Signals (Signal_Length : DURATION)
is

type Color_Type is (RED, YELLOW, GREEN);
Signal : Color_Type := GREEN;
Signal_Light_Activated : BOOLEAN := TRUE;

begin
Traffic_Control_Processing:
while Signal_Light_Activated loop

delay Signal_Length; seconds
Signal := YELLOW;
delay 5.0; -- seconds
Signal := RED;
delay Signal_Length; seconds
Signal := GREEN;

end loop Traffic_Control_Processing;
end Traffic_Signals;

4. What is the mode of the parameter in Exercise 3? Is it appropriate for the use of this
parameter within the procedure?

5. What is wrong with the following procedure?

procedure Another_Mystery (My_Value
New_ Value

is
begin

if New_Value /= 'Z'
then

out CHARACTER;
in CHARACTER)

My_Value .- CHARACTER'SUCC (New_Value);
else

My_Value .- 'A'
end if;
if My_Value = 'Z'
then

New_Value := 'A';
end if;

end Another_Mystery;

8.4- Parameters of Ada Subprograms 8-35

6. What is the purpose of the following procedure?

with TEXT_IO;
procedure Mystery_Again
is

A_Value : CHARACTER;
Count : INTEGER := 0;

begin
Mystery_Loop:
while not TEXT_IO.End_Of_File
loop

TEXT_IO.Get (Item=> A_Value);
Count := Count + 1;

end loop Mystery_Loop;
TEXT_IO.Put (Item=> Count);

end Mystery_Again;

7. According to Syntax Definition 8.6, what is the maximum number of parameters that any
procedure may have?

8. What is wrong with the following procedure? Is the problem that you identified an error in
the syntax or an error in the design?

procedure Error (Name
Number

is
begin

Value

if Name(l) < Value
then

Value : = _Name (1);
Number := 0;

end if;
end Error;

in out STRING;
in out INTEGER;
in out CHARACTER)

8.5 Ada Program Execution Structure

In a·previous chapter we d::'.iCUssed the terms scope and visibility and gave you a preliminary
introduction to what these terms mean. In this section we will expand upon these ideas to
include the new concepts of procedures, functions, and packages. In addition, we will examine
the need for the Ada program library and what kinds of information you should expect to find
there.

8.5.1 Scope and VIsibility

Recall that visibility was the ability of the program to directly access any given identifier. If
the program could access the identifier at that point in the program, then it is said to have
visibility on that identifier at that point. Scope was the area of potential visibility. The scope
of an identifier is that region of the program from the point where the identifier is declared
until the end of the executable region of the declarative part where the identifier was
declared. For example, in the following code segment ·

8-36 Chapter 8 - Sequential Ada Ill

with TEXT_IO;
procedure Outer
is

My_Number : INTEGER .- 10; -- Point A

procedure Inner
is

My_Number :CHARACTER.- 'A'; --Point B
begin

T~XT_IO.Put {My_Number); --Point C
end Inner;

begin
while My_Number > 0
loop

My_Number := My_Number - 1; -- Point D
end loop;

end Outer;

the scope of the identifier My _Number declared at Point A is from Point A until the end of the
procedure outer. However, the visibility of this identifier does not include the same region.
At Point B the identifier My _Number is redeclared to be of type GIARACI'ER and the scope of
that identifier is from Point B until the end of the procedure Inner. During this region, the
meaning of the identifier My _Number is the one with a type of CHARACI'ER. Thus, the outer
identifier My _Number, whose type is INTEGER is hidden by the declaration of the inner
identifier with the same name. In this example, the scope of the inner declaration of
My_Number (of type CHARACI'ER) is the same as its visibility. In the case of the outer
declaration of My _Number (of type INTEGER) the scope is from Point A until the end of
procedure outer, but the visibility is restricted during the scope of the inner My _Number (of
type CHARACI'ER). This is the reason that at Point C the meaning of the identifier is
My _Number is the one whose type is CHARACI'ER, while at Point D meaning of the same
identifier is of type INTEGER. It is the block structure of the language that allows us to
recognize the proper meaning as defined by the software engineer. Thus, the scope and the
visibility of an identifier will be identical except in cases where the same identifier is used in
an inner scope to refer to another declaration, hiding the meaning of the outer declaration. In
actuality, in Ada there is a way to reference identifiers that are within scope, but that are not
directly visible. We can use extended notation to name the scope level where the identifier was
declared, thereby providing visibility where direct visibility is not possible. Details of this
wilfbe deferred until a later discussion.

8.5.2 Scope of Parameters

Now that we have studied the concept of parameters to subprograms, it is reasonable to ask
how these entities are affected by scope and visibility. What is the scope of the parameter of a
subprogram? The answer is simply that the same rules apply. From the point of the declaration
of the parameter until the end of the subprogram we have the scope of the parameter. Its
visibility is determined by whether or not the same identifier is redefined within the
subprogram as illustrated in 8.5.1. Note that the name of the subprogram itself is at a different
scoping level than the parameters and local declarations of the subprogram. This must be case
so that the name of the subprogram is visible to other subprograms in the same scope, allowing
it to be referenced and called. However, the parameters and local declarations are at a
different, inner, scope preventing their being referenced outside the subprogram. For example,
given the following subprogram:

8.5 - Ada Program Execution Structure 8-37

with TEXT_IO;
procedure MugWumps
is

Universe_Size : constant := 9;
subtype Lifeforms is NATURAL range 0 .. 25;
type Habitat is array (Universe_Size, Universe_Size)

of Lifeforms;
The_World : Habitat := (others=> (others=> 0));

initialize the world to be empty

procedure MugWurnp_Display (Universe : Habitat)
is
begin

TEXT_IO.Put (Item=> "MugWump Land looks like this:");
TEXT_IO.New_Line;
Row_Loop:
for Row in Universe_Size
loop

Column_Loop:
for Column in Universe_Size
loop

if Universe(Row, Column) = 0
then

TEXT_IO.Put (Item=> • . ");
else

TEXT_IO.Put (Item=> • M •);
end if;

end loop Column_Loop;
TEXT_IO.New_Line;

end loop Row_Loop;
TEXT_IO.New_Line;

end MugWump_Display;
begin

The_World(2, 4) := 3; -- Put some Mugwumps in the World
The_World(S, 1) := 1;
The_World(5, 6) := 2;
The_World(9, 7) := 7;
The_World(3, 5) := 4;
MugWump_Display (Universe=> The_World);

end MugWumps;

In this example, each identifier is unique and consequently the scope of each identifier is also
its region of visibility. However, to illustrate what is meant by the various scoping levels in
this program, let us analyze the identifier Universe which is a parameter to the procedure
MugWump_Display. Its scope is from its point of declaration until the end of the procedure
MugWump_Display. It may be referenced anywhere in the procedure, but it may not be
referenced outside the procedure. This is true because of the scope and visibility rules. You may
always "see" identifiers that are declared at an outer scope (and that are not hidden by being
redeclared at some inner scope), but you may never "see" identifiers inside a nested scope, i.e., a
scope that is wholly contained within another scope.

The best way to prevent confusion on this point is to learn a little trick that helps to resolve
scope and visibility issues. Simple draw a box around each procedure, including in the box the
parameters to the procedure and all of the procedure except the procedure name. when this is
done, we have something that looks like the following:

8-38 Chapter 8 - Sequential Ada Ill

with TEXT_IO;
procedure MugWumps I
is

Universe_Size : constant .- 9;
subtype Lifeforrns is NATURAL range 0 .. 25;

Scope A

type Habitat is array (Universe_Size, Universe_Size)
of Life forms;

The_World: Habitat ·- (others=> (others=> 0));
-- initialize the world to be empty

procedure MugWump Display! (Universe : Habitat)
is
begin

Scope B

TEXT_IO.Put (Item=> "MugWump Land looks like this:");
TEXT_IO.New_Line;
Row_Loop:
for Row in Universe_Size
loop

Column_Loop:
for Column in ~niverse_Size
loop

if Universe(Row, Column) = 0
then

TEXT_IO.Put (Item=>" . ");
else

TEXT_IO.Put (Item=> • M ");
end if;

end loop Column_Loop;
TEXT_IO.New_Line;

end loop Row_Loop;
TEXT_IO.New_Line;

end MugWump Display;
begin

The_World(2, 4) .- 3; -- Put some Mugwumps in the World
The_Wor1d(8, 1) .- 1;
The_Wor1d(5, 6) .- 2;
The_World(9, 7) .- 7;
The_Wor1d(3, 5) .- 4;
MugWump_Disp1ay (Universe=> The_Wor1d);

end MugWumps;

The boxes provide an easy mechanism to clearly see the scope and visibility of each identifier.
We can see that the identifier Universe belongs to Scope Band is only available within this
scope. On the other hand, The_World is available in Scope A, as well as Scope B, since its
scope includes the nested procedure. Further, it is not hidden by another declaration of the same
identifier within the inner scope, so it is also visible within Scope B. The identifier
MugWump_Display, the name of the nested procedure, is in Scope A, not Scope B. This must be
the case so that this procedure can be called from the body of the outer procedure MugWumps.
However, everything else about the nested procedure is completely within Scope Band is not
visible or available to the outer scope, at least not directly.

8.5 - Ada Program Execution Structure 8-39

8.5.3 Ada Libraries

We have already seen that Ada provides us with a very powerful mechanism to verify the
correctness of the software system statically. It is able to do this because of its ability to allow
separate compilation. Separate compilation refers to the fact that we can compile the
specifications and bodies of all of the program units separately. When we do so, we are
guaranteed that we will have cross-module consistency checking performed at compile time.
Cross-module consistency checking is nothing more than assuring that if one program unit refers
to another one, such as by calling a procedure within a package that was wi thed by the unit
being compiled, the number, order, and type of the parameters to the called procedure are
appropriate. This information will be checked at compile time so as to prevent errors later
when the system is linked or executed.

Separate compilation is very powerful, but it requires that the compiler have information
available to it at compile time that ordinarily would not be needed. For example, in the
illustration previously given, the number, order, and type of the parameters to the called
procedure were checked. How did the compiler know if there were the proper number, order,
and type of parameters? The answer is that it had to find the information somewhere. Ada
places all of this necessary information into a library. Then, by requiring a partial order in the
compilation of the system, it can guarantee that when it needs to check something in another
unit, the information is already available and is stored in the library.

Thus, we can see that the Ada library acts as a repository of information for the compiler.
When a program unit is compiled, all of the information about that unit is placed into the
library. Then, when other program units are compiled, the compiler can check to see that if
they use any of the operations from the first program unit, the operations (subprograms) are
used correctly, as verified by checking the relevant information in the library.

Ada libraries are simple to understand and they are what gives Ada the power to provide
separate compilation to software systems. Later, we will return to the concept of a program
library and see what other things we can learn about how to use the library more effectively.
For now, suffice it to say that the library is a powerful tool that makes it possible to build large
programming systems using separate compilation.

8.5.4 Exercises

1. Show by example that it is not possible to have a region of visibility that is larger than
the scope of an identifier.

2. Draw an arrow to show the scope of the identifier The_Name in the following code segment:

8-40

procedure Exercise_2
is

The_Age : INTEGER := 0;
procedure Write_Answer
is

The_Name : STRING(l .. 15);
begin

null;
end Write_Answer;

begin
null;

end Exercise_2;

Chapter 8 - Sequential Ada Ill

3. Draw an arrow to show the scope of the identifier The_Age in the following code segment.
Use a different color to draw an arrow to show the region of visibility of the same
identifier.

procedure Exercise_3
is

The_Age INTEGER := 0;
procedure Write_Answer
is

The_Age : STRING(l .. 5);
begin

null;
end Write_Answer;

begin
null;

end Exercise_3;

4. Draw boxes to show the scope regions in the following code segment:

with TEXT_IO;
procedure Exercise_4
is

Universe_Size : constant := 9;
subtype Lifefor.ms is NATURAL range 0 .. 25;
type Habitat is array (Universe_Size, Universe_Size)

of Lifefor.ms;
The_World : Habitat .- (others=> (others=> 0));

initialize the world to be empty

procedure MugWurnp_Display (Universe : in Habitat)
is
begin

TEXT_IO.Put (Item=> "MugWump Land looks like this:•);
TEXT_IO.New_Line;
Row_Loop:
for · Row in Universe_Size
loop

Colurnn_Loop:
for Column in Universe_Size
loop

if Universe(Row, Column) = 0
then

TEXT_IO.Put (Item=> ");
else

TEXT_IO.Put (Item=> • M "};
end if;

end loop Colurnn_Loop;
TEXT_IO.New_Line;

end loop Row_Loop;
TEXT_IO.New_Line;

end MugWurnp_Display;

8.5 - Ada Program Execution Structure 8-41

procedure Mate_MugWumps (The_Universe : in out Habitat)
is

-- MugWumps mate ONLY when there are exactly two
-- in a cave at ths beginning of a MugWump turn.

begin
TEXT_IO.Put (Item=> •Initially •);
MugWump_Display (Universe=> The_Universe);
Rows:
for Row in Universe_Size
loop

Columns:
for Column in Universe_Size
loop

if The_Universe(Row, Column) = 2
then

The_Universe (Row, Column) := 3;
end if;

end loop Columns;
end loop Rows;
TEXT_IO.Put (Item=> •After the mating ritual •);
MugWump_Display (Universe=> The_Universe);

end Mate_MugWumps;

begin
The_World(2, 4) := 3; -- Put some Mugwumps in the World
The_World(8, 1) := 1;
The_World(S, 6) := 2;
The_World(9, 7) := 7;
The_World(3, 5) := 4;
The_World(6, 3) := 2;
The_World(2, 9) := 2;
Mate_MugWumps (The_Universe => The_World);

end MugWumps;

5. What kinds of information are likely to be stored in an Ada library and why? State your
answer as explicitly as possible after consulting your compiler vendor's user's guide.

8-42 Chapter 8 - Sequential Ada Ill

I

Chapter 9

Linked Lists

Thus far in our study we have concentrated on program analysis, program correctness, and
program design. In this chapter we will focus on data analysis and data structuring techniques.
We will begin this analysis by introducing two new data types, records and access types. Then
we will investigate methods of combining these types into structures called linked lists.

9.1 Introduction to Records

In Chapter 5 we introduced a composite data type called an array. Array objects are used to
store lists of component values that are all of the same type. For example, a list of quiz grades
for 100 students could easily be handled by an array object. However, arrays are not
appropriate in cases where the data components to be stored are of different types. To handle
these cases, we now introduce the concept of a record.

9.1.1 Records

A record is a list of component values that may be of different types. Records are used to store
different, but related values as a single unit. For example, a student record might consist of an id
number, a major code, and a year level. As another example, consider the date today. This
composite value usually consists of a month name, a day number, and a year number. Thus it
seems natural to define a single object, say Date, with three related components for the month,
day, and year.

The formal syntax for a record data type in Ada is given by the following syntax productions.

record_type_defini~ion

record
cornponent_list

end record

cornponent_list ::= cornponent_declaration {cornponent_declaration}

cornponent_declaration ::=
identifier_list 1 cornponent_subtype_indication [a• expression];

Record Data Type
Syntax Definition 9.1

The syntax can also be expressed in graphic form as indicated in Syntax Chart 9.1

record_type_definition ::=

cornponent_list

9.1 - Introduction to Records 9-1

component_list ::=

component_declarat i _m

component_declaration

identifier_list

component_subtype_definition

expression

Record Data Type
Syntax Chart 9.1

•

Suppose we wish to define a record type with a suitable structure for the student record
mentioned earlier. We will begin by analyzing the component values. For the student id number
we will use values between 0 and 9999. For the major code we will use values of CS, CP, EE, or
MA. Finally, for year level we will use values of 1, 2, 3, or 4. Thus the full record type
definition looks like the following:

type Student_Id_Number is range 0 .. 9999;
type Major_Code is (CS, CP, EE, MA);
type Year_Level is range 1 .. 4;
type Student_Record is
record

Id_Number : Student_Id_Number;
Major : Major_Code;
Year : Year_Level;

end record;

Note that Student_Record now describes a type with three components, Id_Number, Major,
and Year of differing types. Note also that the type of each component must be indicated. Any
data type may be used as the component of a record.

Now that we have described the type Student_Record, we are free to create objects of that
type. For example,

A_Student : Student_Record:

declares an object named A_Student with enough contiguous storage for the three component
values desired. Pictorially we have the following object:

9-2 Chapter 9 - Unked Lists

I

A_Student

Id_Nurnber §
Major

Year

A_Student Object
Figure 9.1

Each component location within the record structure is called a field. We may access the
various fields of a record directly through the use of a "dot notation". For example,

A_Student.Id_Nurnber := 1234;

places the value 1234 into the Id_Nurnber field of the record A_Student. That is, our picture
now looks like this:

Id_Nurnber

Major

Year

·A_Student

Initializing ld_Number
Figure 9.2

To continue with our initialization suppose we perform the following assignments:

A_Student.Major := CS;
A_Student.Year := 1;

Now our picture is~

A_Student

Id_Nurnber E§234
Major cs

Year 1

Initialized A Student ObJect
Figure 9.3

9.1.2 Record Operations

The operations available for records include assignment, membership, component indication,
relational, and explicit conversion.

Aggregate Assignment
Membership
Relational

9.1 - Introduction to Records

in notin
= I=

9-3

Aggregate assignment for records is similar to aggregate assignment for arrays. It provides the
ability to assign values to all fields of a record at the same time. For example, if we define a
record structure and create objects suitable for various dates:

type Month_Narne is (JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC);

type Day_Number is· range 1 .. 31;
type Year_Number is range 1900 .. 2100;
type Date_Record is
record

Month : Month_Narne;
Day : Day_Number;
Year : Year_Number;

end record;

Today : Date_Record;
Birthday, Holiday : Date_Record;

we could assign values to the objects by the following aggregate assignment statements.

Today := (MAR, 30, 1992);
Birthday := (Month=> MAY, Day=> 15, Year=> 1900);
Holiday := (DEC, 25, 1992);

The statement

Today := (MAR, 30, 1992);

is equivalent to the three statements:

Today.Month := MAR;
Today.Day := 30;
Today.Year := 1992;

The statement

/

Birthday := (Month=> MAY, Day=> 15, Year=> 1990);

uses named association of field and value. That is, Month => MAY means for the Month field
use (or assign) the value MAY. Named association permits field values to be given in orders that
may differ from the order specified in the type definition. Thus an equivalent assignment is:

Birthday := (Day=> 15, Year=> 1990, Month=> MAY);

Aggregate assignment may also be used to initialize a record object as it is created. For example,

Today : Date_Record := (MAR, 30, 1992);

creates the object Today and initializes the three fields with the values indicated.

The membership operation allows us to test a record to determine if a particular value exists as
one of the components of the record.

The relational operations of"=" and"/=" allow two record objects to be compared. For example,

9-4 Chapter 9 - Linked Lists

\

if Today = Birthday
then

TEXT_IO.Put (Item=> "Happy Birthday!");
else

TEXT_IO.Put (Item=> •Just another day.•);
end if;

will compare the corresponding fields of the two record objects Today and Birthday. If the
corresponding fields contain identical values, then the message "Happy Birthday!" will be
printed. Otherwise the message "Just another day." will appear.

9.1.3 Default Initial Values

~n.a.d~ition to aggregate assignment and single component assignment, record objects may be
Initialized through th~ .use o~ default. initial values given in the declaration of the record type.
These values are speafied usmg the ' : =" operator in the type definition. Some or all of the
components in a record may be given a default value. For example,

type Gender is (M, F);
type Age_Range is range 0 .. 150;
type Person is
record

Name : STRING (1 .. 5);
Sex : Gender := M;
Age : Age_Range := 20;

end record;

First_Person : Person;
Second_Person : Person := ("Linda•, F, 30);

the record type Person specifies default initial values of M and 2 0 for the fields sex cmd Age

respectively. The declaration of First_Person makes use of these default values while
leaving the Name field uninitialized. On the other hand, the declaration of Second_Person
overrides the default values by placing the string "Linda" in the Name field, Fin the Sex
field, and 3 0 in the Age field.

9.1.4 Record Input and Output

Since a record is a collection of values of differing types, it is not possible to put or get an entire
record in the same manner that a single value is read or written into an object. Instead each
component must be treated as an object of a particular type and the corresponding methods of
input and output employed. See the following example.

with TEXT_IO;
procedure Test_Days
is

type Month_Name is (JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC);

type Day_Number is range 1 .• 31;
type Year_Number is range 1900 •. 2100;
type Date_Record is
record

Month : Month_Name := JAN;
Day : Day_Number := 1;
Year : Year_Number := 1993;

end record;

9.1 - Introduction to Records 9-5

r co-

package Month_IO is new TEXT_IO.ENUMERATION_IO (Month_Name);
package Day_IO is new TEXT_IO.INTEGER_IO (Day_Number);
package Year_IO is new TEXT_IO.INTEGER_IO (Year_Number);

Today : Date_Record := (MAR, 30, 1992);
Birthday, Holiday : Date_Record;

begin
TEXT_IO.Put (Item=> "In what month were you born?");
Month_IO.Get (Item=> Birthday.Month);
TEXT_IO.New_Line;
TEXT_IO.Put (Item=> •on what day?");
Day_IO.Get (Item=> Birthday.Day);
TEXT_IO.New_Line;
TEXT_IO.Put (Item=> "In what year?");
Year_IO.Get (Item=> Birthday.Year);
TEXT_IO.New_Line;
Holiday := (JUL, 4, 1992);
if Today = Birthday
then

TEXT_IO.Put (Item=> "Happy Birthday!");
elsif Today = Holiday
then

TEXT_IO.Put (Item=> "Hurray- a holiday!");
else

TEXT_IO.Put (Item=> "It's just ");
Month_IO.Put (Item=> Today.Month);
Day_IO.Put (Item=> Today.Day);
Year_IO.Put (Item=> Today.Year);

end if;
TEXT_IO.New_Line;

end Test_Days;

9.1.5 Exercises

1. Describe the difference between a record and an array.

2. Define a record type named Person_Record with fields for a person's name, age, height,
and weight.

3. Suppose you had a record object named A_Person of type Person_Record (see Exercise 2).
How can you initialize this object?

4. Write a segment of Ada code to output the values in the object A_Person (see Exercise 3).

5. Consider the record objects Today, Birthday, and Holiday. Describe how the same
information could be stored using parallel arrays.

9.2 Introduction to Access Types

The data objects that we have seen thus far have all been static objects. That is, each object was
created as a result of a declaration, and associated with a unique identifier. Unfortunately this
requires that the number of such objects be known in advance. In situations where this is not the
case, Ada provides a mechanism to dynamically allocate data objects.

9-6 Chapter 9 - Linked Lists

9.2.1 Access Types

Suppose you were moving to a new location and wanted to make sure that your mail followed
you to your new address. More than likely you would go to your post office and fill out a change
of address form. Then when mail arrived your postal service could forward it to you at your new
hmne. Thus they could provide access to you through the address you left behind. This is the
basic idea behind Ada's access type.

Ada provides a method of defining variables capable of containing the address of other data
objects. Such access variables are defined in terms of two other types, the access type and the
type of the object being accessed (also called the designated type). The formal syntax for access
types in Ada is given in the following syntax production. The subtype_indicat ion defines
the type of the object being accessed.

access_type_definition ::= acceaa subtype_indication

Access Type
Syntax Definition 9.2

This syntax can also be expressed in graphic form as indicated in Syntax Chart 9.2

access_type_definition ::=

subtype_indication

Access Type
Syntax Chart 9.2

Let us first consider the concept of accessing objects by studying the following definitions and
declarations.

type Integer_Access is access INTEGER;
type Char_Access is access CHARACTER;
Int : Integer_Access;
Char : Char_Access;

Here we have defined an access type called Integer_Access capable of providing access to
INTEGER objects. Similarly Char_Access defines a type capable of providing access to
CHARACTER objects. The two object declarations, Int and Char, create access variables whose
initial values are both null. That is, Int and Char currently give access (or point) to nothing.
Access variables are the only objects that Ada automatically initializes for you. Thus our
current situation could be viewed as:

Int ~

Char ·~
lnt and Char Initial Values

Figure 9.4

9.2 - Introduction to Access Types 9-7

Note carefully that we have created only two variables and that both variables have the
value null. Note also that Int and Char are not of compatible types since one, namely Int, will
give access to INTEGER objects while the other will give access only to CHARACTER objects.

9.2.2 Dynamic Allocation

Suppose we want to create an INTEGER object and a CHARACI'ER object and make In t and
Char (defined above) our means of accessing these objects. One method of doing this is

Int := new INTEGER;
Char := new CHARACTER;

These statements create objects of the indicated types, return access values (addresses), and
store these access values in the appropriate access variables. As a result, our picture becomes

Int ~

Char ~

Creating INTEGER and CHARACTER Objects
Figure 9.5

Note that the actual INTEGER and CHARACTER objects have no names and can only be
accessed through Int and Char respectively. Note also that the actual INTEGER and
CHARACTER objects were given no values. Let us correct that situation by giving both objects
values.

Int.all := 5;
Char.all := 'C';

It is important to realize that an access variable such as Int contains an access value (address).
Appending .all to an access variable name references the dynamic variable that it is pointing
to. So the statements above place the values 5 and 'c' in the corresponding dynamic variables.
Our picture now is

Int ~ 5

Char I~~
Assigning Dynamic Variables

Figure 9.6

Suppose we want to change the value currently stored in the object designated by Int. All we
must do is to execute the following statement: ·

Int.all := 10;

9-8 Chapter 9 - Unked Usts

\

Then our picture becomes

Int

Char

~hanging the Value of a Dynamic Variable
Figure 9.7

Now suppose we want Char to designate a completely different object To do this we execute the
statement

Char := new CHARACTER;

Each time we use the new designator, we dynamically create a new object of the indicated type
and place the access value in the access variable. Thus our picture changes to

Int

Char

Creating a New Object
Figure 9.8

Note that the CHARACTER object containing 'c' -:.till ~xis\s but that there is oow no way to
access it as Char now points to a different object. (We will talk about how to explicitly free this
inaccessible data object at a later time.)

9.2.3 Access Type Operations

The operations available for access variables include assignment, allocation, membership tests,
explicit conversion, and the literal null.

Assignment .-
Allocator new
Membership in not in

Let us consider a more complete example in which to study the operations available.

with TEXT_IO;
procedure Show_Access
is

type Int_Access is access INTEGER;
type Char_Access is access CHARACTER;
Int_l, Int_2 : Int_Access;
Char_l, Char_2 : Char_Access;

9.2- Introduction to Access Types 9-9

begin
Int_l := new INTEGER;
Int_1.all := 14;
Int_2 := Int_1; -- Int_1 and Int_2 access the same object
Char_1 := new CHARACTER;
Char_1.all := 'C';
Char_2 := new CHARACTER;
Char_2.all := 'C'; -- Char_1 and Char_2 access different objects
if Char_1.all = Char_2.all
then

TEXT_IO.Put (Item=> •same values.•);
end if;
Int_1 := null; -- Int_1 accesses nothing

end Show_Access;

The lines

Int_1 := new INTEGER;
Int_1.all := 14;
Int_2 := Int_1;

create one INTEGER object, place 14 in the object, and place the access value (address) of the
object in both Int_1 and Int_2. There is no restriction on the number of access variables
through which an object can be accessed.

The lines

Char_1 := new CHARACTER;
Char_1.all := 'C';
Char_2 := new CHARACTER;
Char_2.all := 'C'; ·

create two CHARACTER objects, place 'c' in both, and place the access values in the two access
variables Char_1 and Char_2. Thus Char_1 and Char_2 point to different objects that happen
to contain the same value.

What does the following do?

if Char_1.all = Char_2.all
then

TEXT_IO.Put (Item=> •same values.•);
end if;

Finally, the line

Int_1 := null;

forces Int_1 to point at nothing. However, the INTEGER object that Int_1 originally accessed
is still accessible through Int_2.

9.2.4 Designated Types

In Section 9.2.1 we stated that access variables are defined in terms of the access type and the
designated type. You may begin to wonder what types can be used as designated types. The
answer is that any of the types that we have discussed may be used in this capacity. That
means that you can create access variables that provide access to scalar data objects, STRlNG

9-10 Chapter 9 - Linked Usts

data objects, array data objects, and record data objects. All that is required is that the
designated type be defined before being used in an access type definition. For example suppose
we want to create access variables for STRING objects.

type String_Access is acceaa STRING;
My_Name : String_Access :=new STRING (1 .. 5);
Your_Name : String_Access :=new STRING (1 .. 10);

We could then give our STRING objects values through the statements

My_Name.all := "Nancy•;
Your_Name.all := "Frank Able";

A picture of our situation is shown below.

My_Name --+--~)lllo~ I·Nancy•l

Your_Name --+--~)lllo~ !·Frank Able"'

Assigning Values to String Objects
Figure 9.9

As another example, suppose we want to create access variables for an array object. Note that
we must first define the array type before using the array type name in the definition of our
access type.

package Int_IO is new TEXT_IO.INTEGER_IO (INTEGER);
type Grade_Array is array (1 .. 10) of INTEGER;
type Array_Access is acceaa Grade_Array;
My_Grades : Array_Access;

Now that we have our types defined and an access variable declared, we are able to create and
manipulate array objects in the following block of code.

My_Grades := new Grade_Array;
Fill_Array:
for Index in 1 .. 10
loop

TEXT_IO.Put (Item=> "Enter grade=>");
Int_IO.Get (Item=> My_Grades.all(Index));
TEXT_IO.New_Line;

end loop Fill_Array;

The line

My_Grades := new Grade_Array;

creates the dynamic array object and places the address in My _Grades. Within the body of the
for loop My _Grades. all (Index) accesses a specific element in the array object. For example,
when Index has value 1, My _Grades. all (Index) will refer to the first array element in the
array object As Index changes values within the loop, the corresponding array element is
addressed. The loop will fill the array elements with the user input values.

9.2- Introduction to Access Types 9-11

As a final example, let us write a short Ada program that illustrates access to record objects.

with TEXT_IO;
procedure Record_Access
is

type Narne_Record is
record

First :STRING (1 .. 5);
Last : STRING (1 •. 10);

end record;
type Name_Access is ace••• Name_Record;
My_Narne, Your_Name : Name_Access;

begin
My_Name := new Name_Record;
Your_Name := new Name_Record;
My_Name.First := •sally•
My_Narne.Last := •Franklin •;
TEXT_IO.Put (Item=> •What is your first name? •);
TEXT_IO.Get (Item=> Your_Name.First);

.TEXT_IO.New_Line;
TEXT_IO.Put (Item=> •What is your last name? •);
TEXT_IO.Get (Item=> Your_Name.Last);
TEXT_IO.New_Line;
if (My_Name.First = Your_Name.First) and

(My_Name.Last = Your_Name.Last)
then

TEXT_IO.Put (Item=> •we have the same name.•);
else

TEXT_IO.Put (Item=> •I like your name.•);
end if;
TEXT_IO.New_Line;

end Record_Access;

As you analyze the program Record_Access you will discover that we did not use the • all
selector as in other examples. Instead we referred to My_Name. First and Your_Name .Last.
Since the designa-ted objects contain named fields, a shorthand notation such as
My _Name. First can be employed instead of the more cumbersome yet correct notation
My_Narne.all.First

9.2.5 Exercises

1. What is the relationship between access variables and dynamic variables?

2. Define a type called Bool_Access whose designated type is BOOLEAN.

3. Create an access variable called My _Bool of the type defined in Exercise 2.

4. Create a dynamic variable with value TRUE and place its address in My _Bool. (See
Exercise 3.)

9-12 Chapter 9 - Linked Lists

5. Given the following definitions and rode segment

type Int_Access is access INTEGER;
Int_1, Int_2 : Int_Access;

begin
Int_1 := new INTEGER;
Int_l. all : = 10;
Int_2 := Int_1;
Int_2.all := 20;

a. How many dynamic variables have we created?
b. What value is in In t_l?
c. What value is in Int_2?
d. What value is in Int_l.all?
e. What value is in Int_2 .all?

6. Given

package Int_IO is new TEXT_IO.INTEGER_IO (Grade_Range);
type Grade_Array is array (1 .. 50) of Grade_Range;
type Grade_Access is access Grade_Array;

a. How can the fifth array element be accessed?
b. Write a code segment that will initialize each array element to 0.

9.3 Introduction to Linked Lists

In the last section, we saw that Ada has a mechanism for creating dynamic variables. This
means that we can define an access type but defer creating objects of the designated type until
such time as they are needed. This dynamic allocation (and deallocation) allows us to save
space and machine time. In this section we will consider the use of dynamic variables in a
common application problem-list processing.

9.3.1 List Processing

Many problems in software development require the manipulation of a list of data values. The
first step in the design of a solution involving such a list is the choice of an appropriate data
structure in which to store the list. This choice will determine the maximum number (if any) of
list elements permissible, and the speed and complexity of the operations to be applied to the
list elements. To facilitate a discussion of desired list operations, suppose that we have an
ordered list of names of unknown length such as

Adams
Baker
Claus
Davis

Zachs

9.2 - Introduction to Access Types 9-13

What operations are we likely to want to apply to such a list? The most fundamental operation
is; the creation and initialization of the list internally. For this we must consider how to read
and store the data values in a data structure. Once the list has been initialized we will want
the ability to traverse the list. That is, we will want a mechanism whereby we can start at the
beginning of the list and visit each element on our way to the end of the list. Another desired
operation is the ability to insert a name in the proper place in the list. For example, suppose we
want to add the name Blatt to the list given above. Similarly, suppose we want to delete the
name Claus from the list. Although these are the most common list processing operations, we
may be asked to support additional operations in order to satisfy the program specification.

9.3.2 List Processing using Static Structures

We can implement the operations described in Section 9.3.1 by using a static array.
Conceptually we can store the list elements in the following way.

Name_Array I Adams I Baker I Claus{ I Zacks I
(1) (2) (3) (Last)

Storing Elements In a Static Array
Figure 9.10

(Max)

This array will be a static structure, created in a declarative section with a fixed maximum
size-Max. The array index Last will be used to denote the location of the last list element.
Note that we will want to allocate more array locations than we plan to use since we expect our
list size to change during the program. Filling the array data structure with our list values and
traversing the array will be straight forward. However, insertion of new values or deletion of
existing values will be more complicated. Suppose we must insert the name Blatt into the
array. We can readily see that the new name must be placed in the array at position 3 ~hile
the value currently in position 3 must be copied into position 4. The value currently in position 4
must be copied into position 5, and so on. A similar situation exists for deletion. An
implementation of this solution is shown next.

package List_Processing
is

procedure Create_List;
procedure Show_List;
procedure Insert_In_List;
procedure Delete_From_List;

end List_Processing;

with TEXT_IO;
package body List_Processing
is

subtype Index_Type is INTEGER range 1 .. 200;
subtype Names is STRING (1 .. 5);
type List_Array is array (Index_Type) of Names;
Name_Array : List_Array;
Last : INTEGER := 0;

procedure Create_List
is

Count : Index_Type := 1;
More_Names :CHARACTER:= 'y';

9 - 14 Chapter 9 - Linked Lists

begin
TEXT_IO.Put (Item=> "Ready to create your list. ");
TEXT_IO.New_Line;
TEXT_IO.Put (Item=> "Enter each name at the prompt.");
TEXT_IO.New_Line;
Get_Names:
while (More_Names = 'Y') or (More_Names = 'y')
loop

Insert_In_List;
TEXT_IO.Put (Item=> "More names- y or n? ");
TEXT_IO.Get (Item=> More_Names);
TEXT_IO.New_Line;

end loop Get_Names;
end Create_List;

procedure Show_List
is
begin

TEXT_IO.Put (Item=> "Your list contains");
TEXT_IO.New_Line;
if Last > 0
then

Put_Names:
for Count in 1 .. Last
loop

TEXT_IO.Put (Item=> Name_Array (Count));
TEXT_IO.New_Line;

end loop Put_Names;
end if;

end Show_List;

procedure Insert_In_List
is

New_Name : Names;
Count : Index_Type := 1;

begin
TEXT_IO.Put (Item=> "Enter value to be inserted=>");
TEXT_IO.Get (Item=> New_Name);
TEXT_IO.New_Line;
if (Last > 0) and (Last < Index_Type'LAST)
then

Find_Place:
while (Name_Array (Count) < New_Name) and (Count <= Last)
loop

Count := Count + 1;
end loop Find_Place;
Move_Names:
for Index in reverse Count .. Last
loop

Name_Array (Index+ 1) := Name_Array (Index);
end loop Move_Names;
Last := Last + 1;
Name_Array (Count) := New_Name;
TEXT_IO.Put (Item=> •value has ·been inserted.•);
TEXT_IO.New_Line;

9.3 - Introduction to Linked Lists 9-15

elsif Last = 0
then

Name_Array (Count) := New_Name;
Last := Last + 1;

else
TEXT_IO.Put (Item=> •Element can not be added. •);
TEXT_IO.Put (Item=> •Your list is full.•);
TEXT_IO.New_Line;

end if;
end Insert_In_List;

procedure Delete_From_List
is

Count : Index_Type := 1;
Old_Name : Names;

begin
TEXT_IO.Put (Item=> •Enter value to be deleted=> •);
TEXT_IO.Get (Item=> Old_Name);
TEXT_IO.New_Line;
if Last > 0
then

Find_Value:
while (Name_Array (Count) /= Old_Name) and (Count < Last)
loop

Count := Count + 1;
end loop Find_Value;
if Count < Last
then

Move_Names:
for Index in (Count+ 1) .. Last
loop

Name_Array (Index- 1) := Name_Array (Index);
end loop Move_Names;
Last := Last - 1;

elsif Name_Array (Last) = Old_Name
then

Last := Last - 1;
else

TEXT_IO.Put (Item=> •Name not found.•);
TEXT_IO.New_Line;

end if;
else

TEXT_IO.Put (Item=> •Your list is empty.•);
TEXT_IO.New_Line;

end if;
end Delete_From_List;

end List_Processing;

As you read the implementation given above you should note several things. First, the package
specification only describes the four operations that we wish to support. No data structures are
actually mentioned in this specification. lbat is, no types or objects have been defined by this
specification. Users of this package will not be able to create or operate on several lists at the
same time. (We will discuss an alternate approach to the package design in 9.5). Therefore,
since the using program is limited to one list, the list name does not need to be provided to the
various routines in the package. You may begin to wonder where this one list is defined. The
answer is in the package body. The declaration

Name_Array : List_Array;

9-16 Chapter 9 - Linked Lists

creates this one and only list that will be maintained by the routines in the package body. The
advantage of this approach is to hide the actual implementation of the list from the user.
Remember, only those items in the package specification are accessible to a using program. By
placing this list object declaration in the package body we are in effect telling the user that
they do not need to worry about how the list is actually maintained. This also makes the four
procedures easier to call since no parameters are required.

Now, let us look more closely at the procedure Create_List. The purpose of this procedure is
to build a sorted list as the user provides the names that are to reside in the list. Although not
apparent in this procedure, we have chosen to maintain the names in increasing order. As you
read this procedure you should note that it repeatedly calls the procedure Insert_In_List ·
and thus is dependent upon that routine to prompt for and insert the name into the proper
position in the list.

Now look at Show_List. This procedure is intended to print out the contents of the list. What
happens if the list is empty? In this case the object Last will have value 0 (that is, Last will
always contain the length of the list). If Last is 0 only the message ''Your list contains "
will be printed.

Now consider Insert_In_List. This procedure is designed to prompt for the name to be
inserted and insert the name at the appropriate location in the list. If the list is currently
empty, the given name will be inserted into the first array element and Last will be
incremented to 1. If the list currently contains 200 names (our maximum amount) the message
"Element can not be added. Your list is full." will appear. What happens if
the name given already exists in the the list?

Finally, consider Delete_From_List. This procedure prompts for the name to be removed from
the list and removes that name from the list. What happens if the name given is not in the
list? What happens if the name given appears more than once in the list? What happens if the
list is empty?

The package presented above was designed for simplicity to illustrate list handling operations.
In a later section we will discuss the package behavior in more detail. We will also present
another list handling package that illustrates alternate design decisions.

9.3.3 Dynamic Structures

In the preceding section we considered how to implement list processing operations using a static
array data structure. There is another technique for representing a list using dynamic variables
that are created only as they are needed. Using this technique the list elements are logically
next to each other rather than physically next to each other as in our array representation.
Each element must now include instructions on how to find the next element in the list. This may
sound like a lot of additional overhead, however, as we will see in the next section, this
permits our list to grow (or shrink) dynamically as the program executes. We will not need to
guess the maximum size of the list. The only limitation that we must be aware of is the amount
of available memory space. Should we exceed this value, STORAGE_ERROR will be raised.

How many of you have ever participated in a road rally? Road rallies are typically organized
in the following fashion. All participants meet at a predefined starting point where they
receive a set of clues intended to lead them to the next point on the route. Upon reaching the
next point, each team picks up an item that proves they physically visited this point along
with clues leading them to the next point. 'Eventua\\y \he ptocess terminates at a final location
and the first team to successfully complete the route is declared the winner. The complete route
might look something like

9.3 • Introduction to Linked Lists 9-17

Starting Point

Point 1 ~ 1 Final Location

Point 2 ~ 1 , * Point 4

Point 3

Road Rally Route
Figure 9.11

More than likely the points along the route are separated by some distance.

We can implement this type of linked structure using a dynamic data structure commonly called
a linked list. Each element in the linked list is a node. A node is made up of a data component
and an access component

Data I Access
Component Component

Node

Node Element In a Linked List
Figure 9.12

The data component contains the value for that location in the list while the access component
contains the instructions for (address of) the next node in the list. The list itself is accessed
through an access variable that contains the address of the first node in the list. This access
variable is often called the external pointer. Thus the first node in the list is accessed through
the external pointer while every other node is accessed through the access component of the
node before it

Recall the list of names from Section 9.3.1.

Adams
Baker
Claus
Davis

Zachs

As a linked list we would have

Ext_Ptr
.----T""""-,

9-18

Linked List
Figure 9.13

-I Zachs I null I

Chapter 9 - Unked Usts

where our external pointer EXt_Ptr points to the first element in the list, the first element
points to the second, and so on. The access component of the last element contains null since it is
the last element.

Now suppose we want to insert the name Blatt into the list

Ext_Ptr

Node Insertion
Figure 9.14

-I Zachs I null I

All we must do is to create a new node with data component Blatt and access component giving
access to the node for Claus and change the access component of the node for Baker to point to
our new node.

To delete a node we simply change the access component of the preceding node to point to the
successor node. For example, to delete Baker from our original list:

Ext_Ptr

m,..---Adam..........--.s 111.....-1 ·_aker_l -H_clt I + -I Zachs I null!

Node Deletion
Figure 9.15

In the next section we will describe the actual implementation details of linked lists.

9.3.4 Advantages and Disadvantages of Linked Lists

We have talked briefly about two methods to handle list processing- using a static array and
using a dynamic linked list. Which is actually better? In answer let us focus on the operations
that we said we wanted to support

List Creation and Initialization
Inputing values into a linked list is actually slower since a new node must be created and added
to the list for each input value.

List Traversal
Accessing each value sequentially in the list takes approximately the same amount of time
with both structures.

Element Insertion
Inserting an element as the first in the list is faster using a linked list representation. Inserting
an element as the last in the list is faster using an array representation. Otherwise the amount
of time required is approximately the same for the two structures.

9.3- Introduction to Linked Lists 9-19

Element Deletion
Deleting the first element of the list is faster using a linked list representation. Deleting the
last element in the list is faster using an array representation. Otherwise the amount of time
required is approximately the same for the two structures.

Storage Required
One additional point to consider when deciding whether to use an array or a linked list is how
efficiently can you utilize the storage space required? How well can you guess the maximum
number of elements in the list? How much fluctuation will take place? If you know the
maximum size and the number of elements does not vary by much you may want to use an array.
Otherwise use a linked list.

9.3.5 Exercises

1. What distinguishes a linked list from an array?

2. Describe a situation (other than the one illustrated in this section) in which list
manipulation is required.

3. What list operations are necessary in your answer to Exercise 2?

4. Describe the steps necessary to remove the first element of a list that uses an array
structure. Now describe the steps necessary to remove the first element of a list that uses a
linked list structure. Which is easier and why?

5. Describe the steps necessary to remove the last element of a list that uses an array structure.
Now describe the steps necessary to remove the last element of a list that uses a linked list
structure. Which is easier and why?

9.4 Linked List Implementation

In the last section we introduced the idea of a linked list and provided a static array
implementation. This section will investigate the alternative implementation using dynamic
variables.

9.4.1 Incomplete Types

As we begin our investigation of linked lists, we are immediately faced with a dilemma. Recall
that access variables must be defined in terms of two types, the access type and the designated
type. We desire to build a linked list of nodes with a data component part and an access
component part. This access component part must point to the next node (if any) in the list. How
do we define such a situation? Let us consider the list of names from the last section and attempt
to define a suitable node structure.

type Node is
record

Data :STRING (1 .. 5);
Link : Node_Ptr;

end record;

9-20 Chapter 9 - Linked Lists

It should seem reasonable that our node type will be a record with a field capable of storing one
list name and a second field capable of pointing to the next node in the list. Our problem is how
to define the type of that second field. In our definition above, we have used the type name
Node_Ptr. Unfortunately we have not defined the type Node_Ptr and the compiler would
flag this as an error. To correct this oversight, we would need the following type definition.

type Node_Ptr is access Node;

However, since Ada requires that names be defined before their use, we cannot place this type
definition after the type definition of Node since Node references Node_Ptr. On the other
hand, if we place the definition of Node_Ptr before that of Node we have a similar situation.
Ada solves this "chicken and egg" problem by allowing us to use incomplete type definitions.
The solution for our example is as follows:

type Node; -- incomplete type definition
type Node_Ptr is access Node;
type Node is
record

Data : STRING (1 .. 5);
Link : Node_Ptr;

end record;

An incomplete type definition is intended to tell the compiler that a full definition of the type
will soon follow. This enables the compiler to acknowledge definition of the type name without
knowing specific details of the type. Incomplete type definitions should only be used in access
type definitions.

9.4.2 Singly Linked Lists

Now that we have the basic building blocks in place, let us actually create a linked list that
contains the following names in the order shown. We consider a shortened form of the list to
simplify the code segments presented. Full implementation will be discussed in Section 9.5.

Adams
Baker
Claus
Zachs

procedure Build_List
is

type Node; -- incomplete type definition
type Node_Ptr is access Node;
type Node is
record

Data :STRING (1 .. 5);
Link : Node_Ptr;

end record;
External_Ptr, Current_Ptr : Node_Ptr;

begin
-- create and initialize the first node
External_Ptr := new Node;
External_Ptr.Data .- "Adams•;
External_Ptr.Link := new Node;

9.4 - Linked List Implementation 9-21

-- initialize the second node
current_Ptr := External_Ptr.Link;
Current_Ptr.Data := •Baker•;
Current_Ptr.Link := new Node;
-- initialize the third node
Current_Ptr := Current_Ptr.Link;
Current_Ptr.Data := •claus•;
Current_Ptr.Link := new Node;
-- initialize the final node
Current_Ptr := Current_Ptr.Link;
current_Ptr.Data := •zachs•;
Current_Ptr.Link := null;

end Build_List;

Let us analyze small segments of this program to see how the list will actually be built.

-- create and initialize the first node
External_Ptr := new Node;
External_Ptr.Data := •Adams•;
External_Ptr.Link := new Node;

This code segment creates a new node, returns the access value to the node and places this value
in the access variable External_Ptr. It then places the name Adams in the Data field of the
node. Finally, a second node is created and its access value is placed in the Link field of the
first node. As a result we have the following picture.

Ext_Ptr
.....---...,...--,

A Two Node Linked List
Figure 9.16

-- initialize the second node
Current_Ptr := External_Ptr.Link;
Current_Ptr.Data := •Baker•;
Current_Ptr.Link := new Node;

The code segment shown above first sets Current_Ptr to the access value of the second node. It
then places the name Baker in the Data field of this node. Finally, it creates a third node and
places its access value in the Unk field of the second node. Our picture now becomes

Ext_Ptr
...---...,.----.

A Three Node Linked List
Figure 9.17

-- initialize the third node
Current_Ptr := Current_Ptr.Link;
Current_Ptr.Data := •claus•;
Current_Ptr.Link := new Node;

9-22 Chapter 9 - Unked Usts

The next code segment moves Current_Ptr to point at the third node, places the name Claus
in the Data field of the third node, and creates the fourth and final node. Now the picture is

Ext_Ptr

~.---Adam--.----.s I -H Baker I +t Claus 1-H~...-----..L...I n____.Julll

A Four Node Linked List
Figure 9.18

-- initialize the final node
Current_Ptr := Current_Ptr.Link;
Current_Ptr.Data .- •zachs";
Current_Ptr.Link := null;

The final code segment finishes the task by setting Current_Ptr to the access value of the
fourth node, inserting the name "Zachs" and setting the Link field to null. Thus our completed
picture is as desired.

Ext_Ptr

~.--Adam-s ,......--,1 -H Baker I +t Claus I -H Zachs I null!

Initializing the Fourth Node
Figure 9.19

Now suppose that we want to traverse a linked list for the purpose of data extraction. That is,
we want to sequentially visit each node in the structure and write out the contents of the data
component As an illustration we will modify our Build_List procedure to write the list back
out. ·

with TEXT_IO;
procedure Build_and_Traverse_List
is

type Node; -- incomplete type definition
type Node_Ptr is access Node;
type Node is
record

Data : STRING (1 .. 5);
Link : Node_Ptr;

end record;
External_Ptr, Current_Ptr : Node_Ptr;

begin
-- create and initialize the first node
External_Ptr := new Node;
External_Ptr.Data := "Adams•;
External_Ptr.Link := new Node;
-- initialize the second node
Current_Ptr := External_Ptr.Link;
Current_Ptr.Data .- "Baker•;
Current_Ptr.Link := new Node;

9.4- Linked List Implementation 9-23

-- initialize the third node
Current_Ptr := Current_Ptr.Link;
Current_Ptr.Data := "Claus • ;
Current_Ptr.Link := new Node;
-- initialize the final node
Current_Ptr := Current_Ptr.Link;
Current_Ptr. Data· : = • Zachs • ;
Current_Ptr.Link := null;
-- now write out the list
-- initialize the Current_Ptr to the first node
Current_Ptr := External_Ptr;
-- repeat until there are no more nodes
Visit_Nodes:
while Current_Ptr.Link /= null
loop

TEXT_IO.Put (Item=> Current_Ptr.Data);
TEXT_IO.New_Line;
Current_Ptr := Current_Ptr.Link;

end loop Visit_Nodes;
end Build_and_Traverse_List;

9.4.3 Circularly Linked Lists

Although a singly linked list is an efficient storage mechanism, it has one drawback. Given a
pointer to some node in the list, we can access all of the nodes that follow, but none of the nodes
that precede it. We must always have access to the beginning of the list in order to access all of
the nodes in the list. Suppose we modify our list structure slightly be making the last node in
the list point back to the first node in the list. Now we have a circular linked list. The external
pointer can now point to any node in the list and still provide access to the entire list.

Let us revisit our example from the last section and modify it to illustrate a circular linked list.
Pictorially we have

Ext_Ptr

~-Adam----y-----,s I +1 Baker I 3-1 Claus I ~ Zachs ~~~
+ .

Circular Linked List
Figure 9.20

Modification of our example program is straightforward and involves changing only two lines.
First, the Link field of the last node must be to point back to the first node. Second, the while
test must be modified so that we exit the loop when the Current_Ptr once again points to the
first node in the list. The modified program is shown below.

with TEXT_IO;
procedure Build_and_Traverse_Circular_List
is

type Node; -- incomplete type definition
type Node_Ptr is access Node;
type Node is

9 - 24 Chapter 9 - Unked Usts

record
Data :STRING (1 .. 5};
Link : Node_Ptr;

end record;
External_Ptr, Current_Ptr : Node_Ptr;

begin
-- create and initialize the first node
External_Ptr := new Node;
External_Ptr.Data := •Adams•;
External_Ptr.Link := new Node;
-- initialize the second node
Current_Ptr := External_Ptr.Link;
Current_Ptr.Data := •saker•;
Current_Ptr.Link := new Node;
-- initialize the third node
Current_Ptr := Current_Ptr.Link;
Current_Ptr.Data := •claus•;
Current_Ptr.Link := new Node;
-- initialize the final node
Current_Ptr := Current_Ptr.Link;
Current_Ptr.Data := •zachs•;
Current_Ptr.Link := External_Ptr;
-- now write out the list
-- initialize the Current_Ptr to the first node
Current_Ptr := External_Ptr;
-- repeat until we return to the start
Visit_Nodes:
while Current_Ptr.Link /= External_Ptr
loop

TEXT_IO.Put (Item=> Current_Ptr.Data};
TEXT_IO.New_Line;
Current_Ptr := Current_Ptr.Link;

end loop Visit_Nodes;
end Build_and_Traverse_Circular_List;

9.4.4 Doubly Linked Lists

Circularly linked lists enable us to reach any node in the list from any starting point, an obvious
advantage over singly linked lists. However, even circularly linked lists are restrictive.
Consider attempting to traverse a list in reverse. In this case it would be helpful to have direct
access to the node that precedes a given node in the list. We can provide this capability by
including backward links as well as forward ones. This type of list structure is called a doubly
linked list. The nodes in such a list are linked in both directions. Each node in a doubly linked
list contains three components-the data component, the forward access component, and the
backward access component

Let us again modify our example from Section 9.4.2 to illustrate a doubly linked list. Our picture
this time looks like

Ext_Ptr

~r--nul~l~ Ad-ams-r----"11 ~ I Baker I 14 I Claus I ~ I Zachs I null!

9.4 - Linked Ust Implementation

Doubly Linked List
Figure 9.21

9-25

with TEXT_IO;
procedure Build_and_Traverse_Double_List
is

type Node; -- incomplete type definition
type Node_Ptr is access Node;
type Node is
record

Data :STRING (1 .. 5);
Next : Node_Ptr;
Back : Node_Ptr;

end record;
External_Ptr, Current_Ptr, Prior_Ptr : Node_Ptr;

begin
-- create and initialize the first node
External_Ptr := new Node;
External_Ptr.Data := •Adams•;
External_Ptr.Next := new Node;
External_Ptr.Back := null;
Prior_Ptr := External_Ptr;
-- initialize the second node
Current_Ptr := External_Ptr.Next;
Current_Ptr.Data := •saker•;
Current_Ptr.Next := new Node;
Current_Ptr.Back := Prior_Ptr;
-- initialize the third node
Prior_Ptr := Prior_Ptr.Next;
Current_Ptr := Current_Ptr.Next;
Current_Ptr.Data := •claus•;
Current_Ptr.Next := new Node;
Current_Ptr.Back := Prior_Ptr;
-- initialize the final node
Prior_Ptr := Prior_Ptr.Next;
Current_Ptr := Current_Ptr.Next;
Current_Ptr.Data := •zachs•;
Current_Ptr.Next := null;
Current_Ptr.Back := Prior_Ptr;
-- now write out the list in reverse
-- set the Current_Ptr to the last node
Current_Ptr := External_Ptr;
Find_Back:
while Current_Ptr.Next /= null
loop

Current_Ptr := Current_Ptr.Next;
end loop Find_Back;
-- repeat until we return to the start
Visit_Nodes:
while Current_Ptr.Back /= null
loop

TEXT_IO.Put (Item=> Current_Ptr.Data);
TEXT_IO.New_Line;
Current_Ptr := Current_Ptr.Back;

end loop Visit_Nodes;
end Build_and_Traverse_Double_List;

Note that our new program has many more statements. The reason is that there are now more
pointers to take care of. You should work through the example on your own to verify that the
access values are properly set.

9-26 Chapter 9 - Linked Lists

Although we used a simple doubly linked list in our example, a better choice might have been a
circular doubly linked list That is, we might have employed the following structure.

Ext_Ptr

~--r-~ A-darns.,__,, j-4 I Baker I
tl

~ I Claus I i4 I Zachs I I
+I

Circular Doubly Linked List
Figure 9.22

We leave this implementation as an exercise.

9.4.5 Exercises

1. Given the declarations

type Node; incomplete type definition
type Node_Ptr is access Node;
type Node is
record

Data :STRING (1 .. 5);
Next : Node_Ptr;

end record;

Current_Node : Node_Ptr;

identify the type of each of the following expressions

a. Current_Node
b. Current_Node.Data
c. Current_Node.Data(l)
d. Current_Node.Next

2. What is an incomplete type definition?

3. What is the purpose the the variable Current_Ptr in Build_And_Traverse_List?

4. How do you know when you have reached the end of a singly linked list?

5. How does a circularly linked list differ from a singly linked list?

6. How does a doubly linked list differ from a singly linked list?

7. How do you know when you have reached the end of a circularly linked list?

8. Draw a picture of a circular doubly linked list.

9. Modify the procedure Build_And_Traverse_Double_List to use a circular doubly
linked list.

9.4 - Linked List Implementation 9-27

package Singly_Linked_List
is

subtype Element_Type is STRING (1 •. 5);
type Node;
type Node_Access is access Node;
type Node is
record

Data : Element_Type;
Link : Node_Access;

end record;
List_Underflow : exception;
List_overflow : exception;
procedure Create_List (The_List : in out Node_Access);
procedure Insert_In_List (The_List : in out Node_Access;

The_Element : in Element_Type);
procedure Delete_From_List (The_List : in out Node_Access;

The_Element : in Element_Type);
procedure Show_List (The_List : in Node_Access);

end Singly_Linked_List;

You will see that we have encapsulated our types and operations in the package
Singly_Linked_List. Additionally we have defined two user-defined exception names,
List_Underf low and List_Overflow. List_Underflow is provided to alert a using
program of an attempt to remove an element from an empty lisl List_overflow is provided to
alert a using program that the available storage space has been exceeded.

Now that we have our package specification, we can compile it and enter the compilation
information into our Ada library. We now need to construct the package body thereby providing
the implementation of each of our procedures.

Let us begin our implementation analysis by developing suitable algorithms for our procedures.

Create_List (The_List):
set The_List to null

Insert_In_List (The_List, The_Element):
if The_List is empty,
then

make a node containing The_Element
set The_List to point to the new node

else
if The_Element <= the value in the first list node
then

9-30

make a node containing The_Element
change the pointers to make the new node the first

node in the list
else

let Current_Ptr point to the first element
let Previous_Ptr be null
while Current_Ptr.Data < The_Element and

Current_Ptr.Link /= null
loop

advance both Current_Ptr and Previous_Ptr
make a node containing The_Element
change the pointers to insert the new node

Chapter 9 - Linked Lists

Delete_From_List (The_List, The_Element):
if The_List is empty,
then

signal List_Underflow
else

if The_Element is in the first node
then

change The_List to point to the second node
else

let Current_Ptr point to the first element
while Current_Ptr.Data /= The_Element and

Current_Ptr.Link /= null
loop

advance both Current_Ptr and Previous_Ptr
if The_Element has been found
then

change the pointers to delete the node
else

signal node not found

Show_List (The_List):
set Current_Ptr to The_List
while Current_Ptr I= null
loop

write out Current_Ptr.Data
advance Current_Ptr

Since the insertion and deletion algorithms are the most difficult, let us consider their
operation in more detail. For example, the insertion algorithm covers three cases-an empty
list, insertion at the first node, and insertion later in the list. The first case is trivial. We just
make The_List point to our new node as shown below.

Before The_List 8
After The_List ..__ _ _.I •I The_Element I null!

Inserting Into an Empty List
Figure 9.23

The second case is only slightly more complicated. We must make The_List point to the new
node and make the new node point to the rest of the list.

Before The_List [J~---~•-tl value I I)lo -I I null I
After The_List

Inserting at the Beginning of List
Figure 9.24

9.5- Operations on linked lists 9-31

--==

The third case requires that we must traverse the list until we find the proper point at which to
insert We use current_Ptr to point to the node against which we are current testing for
position and Previous_Ptr to point to the node we just visited. The intention is that the new
node will be inserted between Current_Ptr and Previous_Ptr. This situation is illustrated
below.

Before
Blatt I

The_List

-I Zachs I null I

After (adding Blatt)

-I Zachs I null I
Previous_Ptr Current_Ptr

Inserting In the Middle of List
Figure 9.25

However, it is possible that the proper position for The_Element is in a new last node. This
situation will arise when Current_Ptr points to the last node and Current_Ptr. Data <
The_Element. When this occurs, we must make Current_Ptr. Link point to the new node as
shown below.

Before

The_List

After (adding Zaney)

The_List

9-32

Inserting at the End of List
Figure 9.26

Zaney I null I

-I Zachs I null I

Current_Ptr

Chapter 9 - Unked Lists

The deletion algorithm covers four cases-an empty list, deleting the first node, deleting later in
the list, and element not present. The first and last cases are straightforward. Let us look
closely at the other two cases.

Deleting the first element in the list requires that we change The_Li s t to point to the second
element in the list if there is one.

Before

The_List

-I Zachs I null!

After (deleting Adams)

The_~ t I ,....----.---. ..----1--* ---.----. lf . Adams I -H Baker I -H Claus I r -I Zachs I null!

Deleting from the Beginning of List
Figure 9.27

Deleting from later in the list requires that we must traverse the list until we find the desired
node. We use Current_Ptr and Previous_Ptr as before with the intention that
Current_Ptr will stop on the node that we are to delete. We then change pointers to remove
the node indicated by Current_Ptr.

Before

The_List

After (deleting Baker)

The_List

Previous_Ptr Current_Ptr

Deleting from the Middle of List
Figure 9.28

-I Zachs I null!

-I Zachs I null!

However, it is possible that the value that we wish to delete is not in the list In this scenario,
current_Ptr will stop at the last node and Current_Ptr .Data /= The_Element. If this
is the case, we issue a message stating the value was not found.

Now we are ready to proceed with our implementation by presenting the package body.

9.5- Operations on Linked Lists 9-33

with TEXT_IO; -- needed for the list traversal
package body Singly_Linked_List
is

procedure Create_List (The_List
is

in out Node_Access)

9-34

begin
The_List := null;

end Create_List;

procedure Insert_In_List (The_List
The_Element : in Element_Type)

is

in out Node_Access;

Previous_Ptr : Node_Access;
New_Node, Current_Ptr : Node_Access;

begin
-- test for an empty list
if The_List = null
then

-- build the first node
The_List := new Node;
The_List.Data := The_Element;
The_List.Link := null;

-- test against the first element
elsif The_Element <= The_List.Data
then

-- insert the value as the first node
Current_Ptr := new Node;
Current_Ptr.Data := The_Element;
Current_Ptr.Link := The_List;
The_List := Current_Ptr;

else
-- initialize two pointers
Current_Ptr := The_List;
Previous_Ptr := null;
-- search for the proper place
Find_Place:
while (Current_Ptr.Data < The_Elernent) and

(Current_Ptr.Link /= null)
loop

Previous_Ptr := Current_Ptr;
Current_Ptr := Current_Ptr.Link;

end loop Find_Place;
-- insert the new value
New_Node := new Node;
New_Node.Data := The_Elernent;
if Current_Ptr.Data >= The_Elernent
then

New_Node.Link := Current_Ptr;
Previous_Ptr.Link := New_Node;

else
Current_Ptr.Link := New_Node;
New_Node.Link := null;

end if;
end if;

exception
when STORAGE_ERROR => raise List_Overflow;

end Insert_In_List;

Chapter 9 - Unked Lists

procedure Delete_From_List (The_List
The_Element : in Element_Type)

is

in out Node_Access;

Previous_Ptr : Node_Access;
Current_Ptr : Node_Access .- The_List;

begin
-- test for an empty list
if The_List = null
then

raise List_Underflow;
end if;
-- test against the first element
if The_List.Data = The Element
then -

The_List := The_List.Link;
else -- search the list

Find_Element:
while (Current_Ptr.Data /= The_Element) and

(Current_Ptr.Link /= null)
loop

Previous_Ptr := Current_Ptr;
Current_Ptr := Current_Ptr.Link;

end loop Find_Element;
-- remove the value if it was found
if Current_Ptr.Data = The_Element
then

Previous_Ptr.Link ·- Current_Ptr.Link;
else

TEXT_IO.Put (Item=> "Element not found.");
TEXT_IO.New_Line;

end if:
end if;

end Delete_From_List;

procedure Show_List (The_List in Node_Access)
is

Current_Ptr : Node_Access := The_List;
begin

TEXT_IO.Put (Item=> "Here is your list ");
TEXT_IO.New_Line;
Travel_List:
while Current_Ptr /= null
loop

TEXT_IO.Put (Item=> Current_Ptr.Data);
TEXT_IO.New_Line;
Current_Ptr := Current_Ptr.Link;

end loop Travel_List;
end Show_List;

end Singly_Linked_List;

As you read the package body you should compare it to the package specification and to the
various algorithms. Does it provide the functionality that we wanted?

We can now compile the package body and place the compilation information in our Ada
library. In order to test our new package, suppose we construct a sample test program.

9.5- Operations on Linked Lists 9-35

with TEXT_IO, Singly_Linked_List;
procedure Build_List
is

Name : STRING (1 .. 5);
Name_List : Singly_Linked_List.Node_Access;
Choice : CHARACTER := ' ';

begin

9-36

TEXT_IO.Put (Item=> •This program tests singly linked list •);
TEXT_IO.Put (Item=> •package.•);
TEXT_IO.New_Line;
-- first create the list
Singly_Linked_List.Create_List (Name_List);
-- now exercise the options
Test_List:
while Choice I= 'E'
loop

TEXT_IO.Put (Item=> •choose your next action •);
TEXT_IO.New_Line;
TEXT_IO.Put (Item=> •A)dd a name•);
TEXT_IO.New_Line;
TEXT_IO.Put (Item=> •o)elete a name•);

=> •s)how the list•);

=> •E)xit•);

=> •Your choice ? .) ;

TEXT_IO.New_Line;
TEXT_IO.Put (Item
TEXT_IO.New_Line;
TEXT_IO.Put (Item
TEXT_IO.New_Line;
TEXT_IO.Put (Item
TEXT_IO.Get (Item
TEXT_IO.New_Line;
case Choice

=>Choice);

is
when 'A' I 'a' =>

TEXT_IO.Put (Item=> •Next name=> •);
TEXT_IO.Get (Item=> Name);
TEXT_IO.New_Line;
Singly_Linked_List.Insert_In_List (Name_List, Name);

when 'D' I 'd' =>
TEXT_IO.Put (Item=> •Name to delete=> •);
TEXT_IO.Get (Item=> Name);
TEXT_IO.New_Line;
Singly_Linked_List.Delete_From_List (Name_List, Name);

when 'S' I 's' =>
Singly_Linked_List.Show_List (Name_List);

when 'E' I 'e' =>
Choice := 'E';

when others =>
TEXT_IO.Put (Item=> •Try again.•);
TEXT_IO.New_Line;

end case;
end loop Test_List;
TEXT_IO.Put (Item=> •Thank you.•);
TEXT_IO.New_Line;

Chapter 9 - Linked Lists

exception
when Singly_Linked_List.List_Overflow =>

TEXT_IO.Put (Item=> "Not enough memory space.");
TEXT_IO.New_Line;

when Singly_Linked_List.List_Underflow =>
TEXT_IO.Put (Item=> "Your list is empty.");
TEXT_IO.New_Line;

end Build_List;

The procedure shown above is designed to allow us to interactively test our new package by
creating an access variable for a list and then allowing additions or deletions of as many
elements as we desire. We establish visibility to our package through the "with" clause.

with TEXT_IO, Singly_Linked_List;

We then proceed to call the appropriate operations from our package by referring to the
package name "." operation name. For example,

Singly_Linked_List.Insert_In_List (Name_List, Name);

calls the Insert_In_List operation from the package Singly_Linked_List. This is the
same notation that you use in the statement

TEXT_IO.Put (Item=> "Hi there!");

Study the sample program. How could you use it to produce the following list?

adams
baker
claus
zachs

9.5.2 Operations of a Circular Linked List

Recall that a circular linked list differs from a singly linked list in only one access value-that
of the last node in the list. For this node, the access field contains the access value of the first
node in the list. How would we modify our package from the last section to apply to a circular
linked list?

Our data types need not change to accommodate a circular linked list but some of our algorithms
must change slightly. We present the modified algorithms below.

Insert_In_List (The_List, The_Element):
if The_List is empty,
then

make a node containing The_Element
set The_List to point to the new node
set the access field of the new node to point to itself

else
if The_Element <= the value in the first list node
then

make a node containing The_Element
change the pointers to make the new node the first

node in the list
traverse the list until the last node is found
make the last node point to the new first node

;.s -Operations on Linked Lists 9-37

else
let Current_Ptr point to the first element
let Previous_Ptr be null
while Current_Ptr.Data < The_Element and

Current_Ptr.Link /= The_List
loop

advance both Current_Ptr and Previous_Ptr
make a node containing The_Element
change the pointers to insert the new node

Delete_From_List (The_List, The_Element):
if The_List is empty,
then

signal List_Underflow
else

if The_Element is in the first node
then

if this is the only node
then

make The_List null
else

change The_List to point to the second node
make the last node point to the second node

else
let Current_Ptr point to the first element
while Current_Ptr.Data /= The_Element and

Current_Ptr.Link /= The_List
loop

advance both Current_Ptr and Previous_Ptr
if The_Element has been found
then

change the pointers to delete the node
else

signal node not found

Show_List (The_List):
if The_List is not null
then

write out The_List.Data
set Current_Ptr to The_List.Link
while Current_Ptr I= null
loop

write out Current_Ptr.Data
advance Current_Ptr

Our new package specification and body are shown below.

package Circular_Linked_List
is

9-38

subtype Element_Type is STRING (1 .. 5);
type Node;
type Node_Access is access Node;
type Node is
record

Data : Element_Type;
Link : Node_Access;

end record;

Chapter 9 - linked Lists

List_Underflow : exception;
List_Overflow : exception;
procedure Create_List (The_List in out Node_Access);
procedure Insert_In_List (The_List : in out Node_Access;

The_Element : in Element_Type);
procedure Delete_From_List (The_List : in out Node_Access;

The_Element : in Element_Type);
procedure Show_List (The_List : in Node_Access);

end Circular_Linked_List;

with TEXT_IO;
package body Circular_Linked_List
is

procedure Create_List (The_List
is

in out Node_Access)

begin
The_List := null;

end Create_List;

procedure Insert_In_List (The_List
The_Element : in Element_Type)

in out Node_Access;

is
Previous_Ptr, Travel_Ptr : Node_Access;
New_Node, Current_Ptr : Node_Access;

begin ·
-- test for an empty list
if The_List = null
then

The_List := new Node;
The_List.Data := The_Element;
The_List.Link := The_List;

-- test against the first element
elsif The_element <= The_List.Data
then

Current_Ptr := new Node;
Current Ptr.Data := The_Element;
Current_Ptr.Link := The_List;
-- find the last element in the list
Travel_Ptr := The_List;
Find_End:
while Travel_Ptr.Link /= The_List
loop

Travel_Ptr := Travel_Ptr.Link;
end loop Find_End;
-- make the last element point to the new first element
Travel_Ptr.Link := Current_Ptr;
The_List := Current_Ptr;

else
Current_Ptr := The_List;
Previous_Ptr := null;
Find_Place:
while (Current_Ptr.Data < The_Element) and

(Current_Ptr.Link I= The_List)
loop

Previous_Ptr := Current_Ptr;
Current_Ptr := Current_Ptr.Link;

end loop Find_Place;

9.5- Operations on Linked Lists 9-39

9-40

-- insert the new value
New_Node := new Node;
New_Node.Data := The_Element;
if Current_Ptr.Data >= The_Element
then

New_Node.Link := Current_Ptr;
Previous_Ptr.Link := New_Node;

else
Current_Ptr.Link := New_Node;
New_Node.Link := The_List;

end if;
end if;

exception
when STORAGE_ERROR => raise List_Overflow;

end Insert_In_List;

procedure Delete_From_List (The_List
The_Element : in Element_Type)

in out Node_Access;

is
Previous_Ptr, Travel_Ptr : Node_Access;
Current_Ptr : Node_Access := The_List;

begin
-- test for an empty list
if The_List = null
then

raise List_Underflow;
end if;
-- test against the first element
if The_List.Data = The_Element
then
-- test to see if this is the only element
if The_List.Link = The_List
then

The_List := null;
else

-- find the end of the list
Travel_Ptr := The_List;
Find_End:
while Travel_Ptr.Link /= The_List
loop

Travel_Ptr := Travel_Ptr.Link;
end loop Find_End;
-- delete the element
The_List := The_List.Link;
Travel_Ptr.Link := The_List;

end if;
else -- search the list

Find_Element:
while (Current_Ptr.Data /= The_Element) and

(Current_Ptr.Link /= The_List)
loop

Previous_Ptr := Current_Ptr;
Current_Ptr := Current_Ptr.Link;

end loop Find_Element; ·

Chapter 9 - Linked Lists

-- remove the value if it was found
if current_Ptr.Data = The_Element
then

Previous_Ptr.Link ·- Current_Ptr.Link;
TEXT_IO.Put (Item=> "Element removed.");
TEXT_IO.New_Line;

else
TEXT_IO.Put (Item=> "Element not found.");
TEXT_IO.New_Line;

end if;
end if;

end Delete_From_List;

procedure Show_List (The_List
is

Current_Ptr : Node_Access;
begin

in Node_Access)

TEXT_IO.Put (Item=> "Here is your list");
TEXT_IO.New_Line;
if The_List /= null
then

TEXT_IO.Put (Item=> The_List.Data);
TEXT_IO.New_Line;
Current_Ptr := The_List.Link;
Travel_List:
while Current_Ptr /= The_List
loop

TEXT_IO.Put (Item=> Current_Ptr.Data);
TEXT_IO.New_Line;
Current_Ptr := Current_Ptr.Link;

end loop Travel_List;
end if;

end Show_List;
end Circular_Linked_List;

How would you modify our testing program from 9.5.1 to exercise this new package?

9.5.3 Operations on Doubly Linked Lists

We have one more situation to consider, that of a doubly linked list. As you recall from 9.4, a
doubly linked list provides access to both the successor and predecessor nodes of a given node.
Therefore we must augment our type definitions to include the predecessor access field as
follows.

subtype Elernent_Type is STRING (1 .. 5);
type Node;
type Node_Access is access Node;
type Node is
record

Data Elernent_Type;
Last Node_Access; the predecessor
Next Node_Access; the successor

en~ record;

We leave the algorithm analysis as an exercise and present the package specification and body
below.

9.5- Operations on Unked Lists 9-41

package Doubly_Linked_List
is

subtype Element_Type is STRING (1 .. 5);
type Node;
type Node_Access is access Node;
type Node is
record

Data : Element_Type;
Last : Node_Access;
Next : Node_Access;

end record;
List_Underflow : exception;
List_Overflow : exception;
procedure Create_List (The_List : in out Node_Access);
procedure Insert_In_List (The_List : in out Node_Access;

The_Element : in Element_Type);
procedure Delete_From_List (The_List : in out Node_Access;

The_Element : in Element_Type);
procedure Show_List (The_List : in Node_Access);

end Doubly_Linked_List;

with TEXT_IO;
package body Doubly_Linked_List
is

procedure Create_List (The_List
is

in out Node_Access)

9-42

begin
The_List := null;

end Create_List;

procedure Insert_In_List (The_List
The_Element : in Element_Type)

in out Node_Access;

is
New_Node, Current_Ptr : Node_Access;

begin
-- tes-t for an empty list
if The_List = null
then

The_List := new Node;
The_List.Data := The_Element;
The_List.Last := null;
The_List.Next := null;
-- test against the first element

elsif The_Element <= The_List.Data
then

Current_Ptr := new Node;
Current_Ptr.Data := The_Element;
Current_Ptr.Last := null;
Current_Ptr.Next := The_List;
The_List := Current_Ptr;

else
Current_Ptr := The_List;
Find_Place:
while (Current_Ptr.Data < The_Element) and

(Current_Ptr.Next /= null)
loop

Current_Ptr := Current_Ptr.Next;
end loop Find_Place;

Chapter 9 - linked lists

-- insert the new value
New_Node := new Node;
New_Node.Data := The_Element;
if Current_Ptr.Data >= The_Element
then

New_Node.Next := Current_Ptr;
New_Node.Last := Current_Ptr.Last;
Current_Ptr.Last := New_Node;
Current_Ptr := New_Node.Last;
Current_Ptr.Next .- New_Node;

else
Current_Ptr.Next .- New_Node;
New_node.Last .- Current_Ptr;
New_Node.Next .- null;

end if;
end if;

exception
when STORAGE_ERROR => raise .,List_Overflow;

end Insert_In_List;

procedure Delete_From_List (The_List
The_Element : in Element_Type)

in out Node_Access;

is
Previous_Ptr : Node_Access;
Current_Ptr : Node_Access .- The_List;

begin
-- test for an empty list
if The_List = null
then

raise List_Underflow;
end if;
-- test against the first element
if The_List.Data = The_Element
then
~n~_Li~~ \~ ~~~_Liat~Next<

if The_List /= null
then

The_List.Last := null;
end if;

else -- search the list
Previous_Ptr := null;
Find_Element:
while (Current_Ptr.Data /= The_Element) and

(Current_Ptr.Next I= null)
loop

Previous_Ptr := Current_Ptr;
Current_Ptr := Current_Ptr.Next;

end loop Find_Element;
-- remove the value if it was found

if Current_Ptr.Data = The_Element
then

Previous_Ptr.Next := Current_Ptr.Next;
if Current_Ptr.Next /= null
then

Current_Ptr := Current_Ptr.Next;
Current_Ptr.Last := Previous_Ptr;

end if;

9.5 - Operations on Unked Lists 9-43

TEXT_IO.Put (Item=> •Element removed.•);
TEXT_IO.New_Line;

else
TEXT_IO.Put (Item=> •Element not found.•);
TEXT_IO.New_Line;

end if;
end if;

end Delete_From_List;

procedure Show_List (The_List in Node_Access)
is

Current_Ptr : Node_Access := The_List;
begin

TEXT_IO.Put (Item=> •Here is your list •);
TEXT_IO.New_Line;
Travel_List:
while Current_Ptr /= null
loop

TEXT_IO.Put (Item=> Current_Ptr.Data);
TEXT_IO.New_Line;
Current_Ptr := Current_Ptr.Next;

end loop Travel_List;
end Show_List;

end Doubly_Linked_List;

You should take the time to convince yourself that the operations shown are indeed correct.

9.5.4 Exercises

1. Draw a picture that would represent the list

Adams
Baker
Claus
Zachs

as a singly linked list.

2. Modify your picture from Exercise 1 to insert Davis.

3. Draw a picture that would represent the list in Exercise 1 as a circular linked list.

4. Modify your picture from Exercise 3 to delete Zachs.

5. Draw a picture that would represent the list in Exercise 1 as a doubly linked list.

6. Modify your picture from Exercise 5 to delete Adams.

7. Modify the insertion and deletion algorithms for doubly linked lists.

8. Write an Ada procedure called Show_Reverse that could be added to the
Circular_Linked_List package. This procedur-e should print out the elements in a
circularly linked list in reverse.

9. Write an Ada procedure called Size_of that could be added to the linked list package of
your choice. This procedure should return the number of elements in the list.

9-44 Chapter 9 - Linked Lists

Chapter 10

Ada Package Design with Box Structures

We have seen Ada packages used from the very start in Ada programs. Ada packages represent
a new capability not present in other widely used programming languages to combine type and
object definitions with processing. An Ada package is defined in two separate parts, namely the
package specification which describes the external capabilities for users, and the package
body which describes the internal means of meeting those capabilities. The package
specification may contain type and object declarations and external information on subprograms
or other packages. The package body may contain more type and object declarations and the ·
internal completion of all the subprograms and packages referenced in the package
specification. It defines a new program unit in Ada with the potential capability of creating
abstract data types and abstract state machine behavior, beyond the simply functional
behavior as a subprogram procedure or function. The subprograms of a package are connected
with its data between calls on the subprogram procedures and functions.

For example, TEXT_IO is a standard Ada package that creates abstract data types of wide use
in Ada. The files and parameters accessed during any TEXT_IO procedure or function continue to
exist after their execution is completed for access by the next procedure or function, on until the
TEXT_IO package itself is terminated. Section 14.3.10, NSpecification of the Package Text_IO''
of the Ada Programming Language, ANSI/MIL/STD-1815A, defines the Ada package
(specification) TEXT _10.

In the preceding Chapter 9, packages List_Processing, Singly_Linked_List,
Circular_Linked_List, Doubly_Linked_List describe abstract state machine behavior in
dealing with linked lists in various ways.

In this Chapter 10, we go from making good use of packages to creating them as needed as in
Chapter 9. Packages are a critical and necessary part of good program design in Ada. They
allow the combination of stored data with operations on them for various purposes. They
permit the discipline of explicit type and object operations and no other ways to reach the
data. This allows the optimization of the data and processes to meet program needs. Such
optimization may be quite different in different circumstances, depending on what hardware is
being used and what performance is required. In some cases available computer storage space is
limited. For example, storing data in an array which is mostly filled with zeroes may allow
easy descriptions of operations on the data but require a lot of storage space not really required.
In other cases the available throughput over time is limited. For example, storing data in
CHARACTER form may allow easy treatment of 10 operations but require more time to deal
with arithmetic operations than practical. A good solution in one applied situation may be
quite wrong in another.

The good use of Ada packages permits software to be developed and certified correct under
statistical quality control to well formed specifications of user requirements given in
construction increments. This capability requires a sound development methodology to create
well testable software solely by design and verification, in particular with no unit testing by
the developers. Unit testing and fixing is the most error prone activity in software development
today, leading to deeper failures in fifteen per cent or more of the fixes in large programs. Ada
packages are even more difficult to test well than subprogram procedures and functions. Testing
subprograms involves independent executions of the procedures or functions at each step. But

Chapter 1 0 - Ada Package Design 10- 1

testing the subprograms of a package involves dependent executions of the procedures and
functions for each period of existence of the package, possibly with data stored and updated
during that time.

This capability also requires a test design based not only on the behavioral and performance
specifications, but also on usage specifications and how critical each test case is to system
behavior. Such a test design is based on a stratified statistical strategy derived from the
statistics of usage expected for the software. For an important case, a stratus may consist of the
single case (with probability 1), or a small subset of cases, on out to strata containing large
sections of the software. A total test design defines each stratus (possibly hundreds or
thousands) and the number of tests in each strata.

Successful testing of packages without any failures found leads to a certification of correctness
of the software. If failures are later found the certification is negated. If failures are fixed the
certification process can be started again. The probability of failures can be described in terms
of statistics. The Greek letter sigma (o) defines the standard deviation of a measurement, in
this case a failure or not, under the curve of the normal distribution. Certification continues
with software release to users, moving with confidence from typical 3 sigma 1 at release to and
beyond 6 sigma2 with sufficient usage without failures. As noted, if software is entirely correct,
there is no way to be sure of that except by testing and usage without failures. However, the
longer testing and usage goes on without failure, the greater the subjective confidence can be in
that correctness.

10.1 Package Uses In Program Design

A package design consists of two separate parts, first the package specification which is al
ways required, of the form

package <name> is
-- declarations of objects, types, subtypes,

-- subprogram specifications, package specifications
end <name>;

and second the package body which is required for using subprograms and other packages, of the
form

package body <name> is
-- declarations of objects, types, subtypes, subprogram bodies,

-- package bodies
end <name>;

The package specification declares the resources that may be referenced outside the package.
The package is said to export these entities, including objects, types, subtypes, subprograms,
even other packages. In summary, the package specification provides for declarations of all
types, including subprograms and packages, but not for execution bodies of subprograms or
packages.

The package body has a form somewhat similar to the body of a subprogram, with declarations
followed by an optional block of statements for an initialization step when first invoked, and
by an optional exception handler. Subprograms and packages whose external references appear
in the package specification must be completed in the package body. The initialization, if it
appears, is carried out as a continuation of the declaration process, following the elaboration of
the declarations, as an initial execution that is never repeated or reachable thereafter. This

10-2 Chapter 1 0 - Ada Package Design

initialization is optional, need1a:l in some cases, not needed in others. In summary, the package
body completes the definition of a package specification and body pair, giving subprogram
internals and possible initialization and exception handling for the subprograms introduced in
the package specification.

Note here that the term package specification has a specific Ada meaning, namely the
external references and resources associated with the package, and not the complete behavior
of the package. As already introduced, the term specification, more specifically behavior
specification, refers to the entire behavior of the package as defined by the complete code of
the package specification and package body (if defined). In this case, the behavior of a
package is defined by the declarations of the package specification, the initialization section,
the declarations of the package body, and the subprograms and packages possibly named in the
package specification and completed in the package block. The subprograms of packages can be
called just as any other subprograms, but the behavior of package subprograms are dependent In
particular, the package data continues to exist after any specific subprogram execution is
completed, and will be available to any other subprogram executed, as long as the package
continues to exist.

For example, a simple package to return Fibonacci values with an Ada function can be provided
as a package specification and package body as shown below. Recall that Fibonacci values are
integers associated with integers 0, 1, ... which are 1 for integers 0 and 1, and then the sum of
the two preceding Fibonacci values from then on.

package Fibonacci_Package
is

subtype Argument is NATURAL
function Fibonacci (Place

end Fibonacci_Package;

package body Fibonacci_Package
is

range 0 .. 20;
Argument) return POSITIVE;

type Fibonacci_Table is array (Argument) of POSITIVE;
Table : Fibonacci_Table;
function Fibonacci (Place : Argument) return POSITIVE
is
begin

return Table (Place);
end Fibonacci;

begin -- Initialization of array Table
Table (0) : = 1;
Table (1) : = 1;
Define_Fibonacci_Table:
for Next in 2 .. Argurnent'LAST
loop

Table (Next) :=Table (Next- 2) +Table (Next- 1);
end loop Define_Fibonacci_Table;

end Fibonacci_Package;

First, package Fibonacci_Package specification defines the way into the package f~r users,
using the function Fibonacci with Place, a NATURAL Argument. Next, on elabor~tion of the
package specification and package body, the initial section of the package body (begin ... end)
will be executed immediately after the elaborations, setting values for Table as

Table (0) = 1, Table (2) = 1, Table (3) = 2, Table (4) = 3, ···

10.1 - Package Uses in Program Design
10-3

-

This initial section will never be executed again. But now, values for Table from 0 to 20 have
been computed and stored between calls on the function Fibonacci of the package
Fibonacci_Package. From then on, any calls made on function Fibonacci with an integer
argument between 0 and 20, will return the appropriate value from Table. Note that Table is
invisible to the user of this package except through calls on the function Fibonacci.

As can be seen in this example, good packages begin with good and explicit behavior
specifications of behavior required, then continue with appropriate designs, and finally
conclude with verifications and certifications of their correctness. The extension of subprograms
to packages is in some ways very small, in other ways very large. Packages are simply made up
of declarations, subprograms, other packages, with no new ideas besides that in the terms
package (specification) and package body. But the use of packages by other parts of a program
can be very powerful, in combining data and processes. The behavior specifications of packages
can be abstract data types, that recognize operations on a set of data, or abstract state
machines, that recognize the storage of data between uses of a package, and the power of
subprograms and other packages to deal with that data each time the package is called on
through them. The example above is a simple form of an abstract state machine with all data
constant. All stored data is defined when the package is declared and never modified from then
on. After initialization, only one entry to the package will return data, but no other entry can
modify the data. The linked list package examples of Chapter 9 are also abstract state
machines with variable internal data. But, as we see next, packages can also define much
simpler but useful operations than abstract data types and abstract state machines.

1 0.1.1 Booch Package Categories

The definition of packages is clearly motivated to deal with handling data as abstract state
machines. But packages tum out to have many other simpler uses. Mr. Grady Booch3 first
identified four specific kinds of package uses, namely

1) Declaration groups: those defined entirely in package specifications, that export objects
and types only, and export no subprograms or other packages,

2) Subprogram groups: those defined in package specifications and bodies, that export no
objects or types, and export subprograms and other packages only, but do not maintain any
state information,

3) Abstract data types: those defined in package specifications and bodies, that export objects
and types, and export subprograms and other packages, but maintain no state information in
the package body,

4) Abstract state machines: those defined in package specifications and bodies, that export
subprograms and other packages, and maintain state information in the package body.

The first two kinds of packages are straightforward to define and recognize. But the latter two
kinds of packages expand the usual uses, but not the logic, of abstract data types and abstract
state machines in software design and architecture. The major understanding comes from
expanding the usual terms for arguments in data types and state machines. In Ada packages, all
references to their facilities are through their subprograms, both procedures and functions, with
their parameters. The point to recognize is that the names of these procedures and functions are
parameters, just as the data they may call. That is, any call by a using program on a package
will name the subprogram to be invoked as well as giving the data for that particular use. It is
the package that behaves like a data type or a state machine, and it is its procedures and
functions that provide entries to that data type or state machine.

10-4 Chapter 10 - Ada Package Design

There are very good uses for all four kinds of packages. Declaration group packages can be used
to store data declarations for related objects together that can become a part of subprograms or
packages, or even part of larger declaration sections. Subprogram group packages can be used to
store subprograms and other packages together that become parts of larger sections. Abstract
data type packages with both data declarations in package specifications and subprograms and
other packages, provide powerful capabilities to track and operate on data in multiple and
successive calls to subprograms. Finally, abstract state machine packages with both package
body data declarations and subprograms and other packages, provide powerful capabilities to
track and operate on internally stored data in multiple and successive calls to subprograms.

In the most general form, abstract state machine packages provide a basis for storing data
between the uses of subprograms-procedures and functions-and the calling of these subprograms
as required. The individual procedures and functions are literally part of the operation of the
package, not independent procedures and functions. That is, the package itself behaves as an
abstract state machine with entries through the various procedures and functions of the
package. The internal state of the abstract state machine is defined by the data declared in the
package body, which is updated and preserved from call to call on the abstract state machine
through its procedures and functions.

We begin with specific illustrations of all four kinds of these packages, then go into their
behavior specifications, program design, verification and certification as packages in the rest
of the Chapter. In this process we introduce the concept of box structured design of packages. Box
structures consist of three separate descriptions of a package, namely a black box, a state box,
and a cltilr box. The first step of box structured design begins with identifying black box
specifications, that map stimuli histories into the next response with no reference to, or use of,
internal storage. In the next step, the state box design defines the internal data and the
subprogram specifications that map the current stimulus and the state into the response and
next state. Then in the final step, the clear box design expands the state box specification into
the next level design of connected black boxes.

In summary, there are four general kinds of package uses, dealing with the presence or not of
exportable data declarations and of subprograms and other packages. Declaration group
packages can be used to collect declarations of related data, with no executable parts to deal
with that data. In this case, to be of value, such a package must be associated with executable
code that makes use of the declarations. But there are, indeed, many important uses of this form
in complex program design. Subprogram group packages can also be used to collect subprograms
and other packages, with no declarations of data between them. Again, there are many
important uses of this form in complex program design. Abstract data type packages can be used
to both store and process data using data declarations in package specifications and
subprograms and other packages. Abstract data types are especially useful in organizing
programs with applied data types. Finally, abstract state machine packages can be used to
both store and process data using data declarations in package bodies as well as specifications
and subprograms and other packages. Abstract state machines give the full power of packages.

10.1.2 Using Declaration Group Packages

Declaration group packages provide a name and library storage for a set of data declarations
that appear useful to store and make use of together. They can be retrieved either in with
clauses or in package declarations. In illustration, dec~ations for geometric objects such as
circles, squares, equilateral and right triangles, etc. can be p~ovided. fo~ ~ in a single package.
The more declarations assigned to a package name, the eaSier the mdtVldual declarations are
to retrieve, but the larger are the units of retrieval. The same declarations may appear in
different packages, and it may make sense to have several declaration group packages in an
area to give a choice of how large a package is needed for a specific program.

1 0.1 - Package Uses in Program Design 10-5

For example declarations of a set of simple geometric objects can be formed into a package as
follows.

package Geometric_Objects -- simple two dimensional objects
is

Circle : NATURAL := 1;
Equilateral_Triangle : NATURAL := 1;
Square : NATURAL : = 1;
type Ellipse_Type is array (1 .. 2) of NATURAL;
type Triangle_Type is array (1 .. 3) of NATURAL;
type Isosceles_Triangle_Type is array (1 .. 2) of NATURAL;
type Right_Triangle_Type is array (1 .. 2) of NATURAL;
type Rectangle_Type is array (1 .. 2) of NATURAL;
type Parallelograrn_Type is array (1 .. 3) of NATURAL;
type Quadrilateral_TY,Pe is array (1 .. 6) of NATURAL;
Ellipse : Ellipse_Type := (2, 1);
Triangle : Triangle_Type := (3, 4, 5);
Isosceles_Triangle : Isosceles_Triangle_Type := (1, 1);
Right_Triangle : Right_Triangle_Type := (3, 4);
Parallelogram : Parallelograrn_Type := (1, 1, 1);
Quadrilateral : Quadrilateral_Type := (others=> 1);

end Geometric_Objects;

-- no package body required

These objects are not arbitrary as geometric figures. Additional documentation is needed to line
up data with the object described. For example, in Isosceles_Triangle which is the unique
side, which the paired side, in Right_Triangle, which two sides are listed? As an
alternative, the declarations of Circle, Equilateral_Triangle and Square as arrays
might seem strange, but are quite legal, to go along with the other elliptic, triangle and
quadrilateral cases. In this case, the package would become

package Geometric_Objects_l simple two dimensional objects
is

type Circle_Type is array (1 .. 1) of NATURAL;
type Equilateral_Triangle_Type is array (1 .. 1) of NATURAL;
type Square_Type is array (1 .. 1) of NATURAL;
type Ellipse_Type is array (1 .. 2) of NATURAL;
type Triangle_Type is array (1 .. 3) of NATURAL;
type Isosceles_Triangle_Type is array (1 .. 2) of NATURAL;
type Right_Triang1e_Type is array (1 .. 2) of NATURAL;
type Rectangle_Type is array (1 .. 2) of NATURAL;
type Parallelograrn_Type is array (1 .. 3) of NATURAL;
type Quadrilateral_Type is array (1 .. 6) of NATURAL;
Circle : Circle_Type := (1);
Equilateral_Triangle : Equilateral_Triangle_Type := (1);
Square : Square_Type := (1);
Ellipse : Ellipse_Type := (2, 1);
Triangle : Triangle_Type := (3, 4, 5);
Isosceles_Triangle : Isosceles_Triangle_Type := (1, 1);
Right_Triangle : Right_Triangle_Type := (3, 4);
Parallelogram : Parallelograrn_Type := (1, 1, 1);
Quadrilateral : Quadrilateral_Type := (others=> 1);

end Geometric_Objects_l;

-- no package body required

10-6 Chapter 10 - Ada Package Design

Another example of playing card declarations that might be often used is as follows.

package Playing_Cards
is

type Suit_Type is (Clubs, Diamonds, Hearts, Spades);
Jack CONSTANT ·- 11;
Queen CONSTANT .- 12;
King CONSTANT .- 13;
Ace CONSTANT .- 14;
type Card_Type_Set is array (2 .. Ace, Suit_Type) of BOOLEAN;

end Playing_Cards;

-- no package body required

In this case each card is represented first by its level, from 2 to 14, and second by its suit, from
Clubs to Spades. That information is now available in the package Playing_Cards rather
than in all its details.

One more example is in dates, as introduced in Chapter 9, and organized into a package as
follows.

package Calendar_Dates
is

type Month_Name is (JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC);

type Day_Number is range 1 .. 31;
type Year_Number is range 1900 .. 2100;
record

Month : Month_Name;
Day : Day_Number;
Year : Year_Number;

end record; ·
end Calendar_Dates;

no package body required

10.1.3 Using Subprogram Group Packages

Subprogram group packages provide a name and library storage for a set of independent
subprograms that appear useful to store and make use of together. They can be retrieved using
with clauses. In illustration, a set of subprograms permit calculations of geometric properties
such as area, volume, etc. with no storage of results from call to call. The more subprograms
contained in a package, the easier the individual declarations are to retrieve, but the larger
are the units of retrieving. The same declarations may appear in different packages, and it may
make sense to have several subprogram group packages in an area to give a choice of how large
a package is needed for a specific program. On the other hand, better implementations employ
a "smart" linker, causing only those entities needed from a package to be linked. Thus, you may
not need to provide these alternative possibilities.

For example, a package specification and package body to deal with various geometric objects
is as follows.

10.1- Package Uses in Program Design 10-7

package Geometric_Properties
is

type Fraction
is

record
Numerator : INTEGER;
Denominator : INTEGER;

end record;
function Square_Area (Side : in Fraction) return Fraction;
function Rect_Area (Side_l, Side_2 : in Fraction) return Fraction;
function Square_Perimeter (Side : in Fraction) return Fraction;
function Rect_Perimeter (Side_l, Side_2 : in Fraction)

return Fraction;
end Geometric_Properties;

package body Geometric_Properties
is

function Square_Area (Side : in Fraction) return Fraction
is
begin

return (Side.Numerator * Side.Numerator,
Side.Denominator * Side.Denominator);

end Square_Area;

function Rect_Area (Side_l, Side_2
is
begin

in Fraction) return Fraction

return (Sidel.Numerator * Side2.Numerator,
Sidel.Denominator * Side2.Denominator);

end Rect_Area;

function Square_Perimeter (Side
is
begin

in Fraction) return Fraction

return (4 * Side.Numerator, Side.Denominator);
end Square_Perirneter;

function Rect_Perirneter (Side_l, Side_2
Fraction

is
begin

in Fraction) return

return (2 * Sidel.Numerator + Side2.Numerator,
Sidel.Denorninator + Side2.Denorninator);

end Rect_Perirneter;

end Geornetric_Properties;

The four functions of the package are independent of one another, but related in what they
provide. It may be convenient to give them a single name for storage and recall. While correct,
the results may not be in simplest terms, particularly for function Square_Per imeter and
function Rect_Perirneter. So an additional reduction will be called for and shown later.

10-8 Chapter 10 - Ada Package Design

As a second example, consider a package specification dealing with dates.

package Date_Calculation
is

type Month_Narne is (JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC);

type Day_Number is range 1 .. 31;
type Year_Number is range 1900 .. 2100;
type Day_Of_Week is (MON, TUE, WED, THU, FRI, SAT, SUN);
type Date_Form is
record

Month Month_Narne;
Day Day_Number;
Year Year_Number;

end record;
function Which_Day_Of_Week (Date : Date_Form) return Day_Of_Week;

end Date_Calculation;

How might the package body be completed? Should the package specification be modified?
How will actual Date_Form data be discovered and stored? The package body can be started as
follows, but how completed?

package body Date_Calcu1ation
is

function Which_Day_Of_Week (Date
is
begin

end;
end Date_Calculation;

1 0.1.4 Using Abstract Data Type Packages

Date_Form) return Day_Of_Week;

Abstract data type packages provide a name and library storage for a set of package
specification data declarations and subprograms that appear useful to store and make use of
together for abstract data types. They can be retrieved either in with clauses or in package
declarations. For example a set of data declarations and subprograms in dealing with TEXT
input and output, such as TEXT_IO or more special forms provide the capability of an abstract
data type. The more declarations and subroutines assigned to a package name, the easier the
individual declarations are to retrieve, but the larger are the units of retrieving. The same
declarations and subprograms may appear in different packages, and it may make sense to have
several packages in an area to give a choice of how large a package is needed for a specific
program.

For example, there are several 10 packages more special than TEXT_IO, such as INTEGER_IO,
FLOAT_IO, ENUMERATION_IO. Consider TEXT_IO which tracks and operates on data in
external TEXT files. The general form of TEXT_IO begins as follows. Its complete form is in
Section 14.3.10 of the Reference Manual for the Ada Programming Language.

1 0.1 - Package Uses In Program Design 10-9

with IO_EXCEPTIONS;
package TEXT_IO is

type FILE_TYPE is limited private;

type FILE_MODE is (IN_FILE, OUT_FILE);

type COUNT is range 0 .. implementation_defined;
subtype POSITIVE_COUNT is COUNT range 1 .. COUNT'LAST;
UNBOt~10ED : constant COUNT := 0; -- line and page length

subtype FIELD is INTEGER range 0
subtype NUMBER_BASE is INTEGER range 2

implementation_defined;
16;

type TYPE_SET is (LOWER_CASE, UPPER_CASE);

-- File Management

procedure CREATE (FILE : in out FILE_TYPE;
MODE : in FILE_MODE := OUT_FILE;
NAME : in STRING : = • • ;
FORM : in STRING := ••);

procedure OPEN (FILE : in out FILE_TYPE;

procedure CLOSE
procedure DELETE
procedure RESET
procedur>'.! .RESET

MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := ••);

(FILE: in out FILE_TYPE);
(FILE: in out FILE_TYPE);
(FILE : in out FILE_TYPE; MODE :
(FILE : in out FILE_TYPE);

in FILE_MODE););

function HCDE (FILE : in FILE_TYPE) return FILE_MODE;
function NA~ (FILE : in FILE_TYPE) return STRING;
function FOi::M (FILE : in FILE_TYPE) return FILE_MODE;

function IS_OPEN (FILE : in FILE_TYPE) return BOOLEAN;

-- Control of default input and output files

~- Specification of line and page lengths

-- Column, Line, and Page Control

-- Character Input-Output

10-10 Chapter 10 - Ada Package Design

-- Generic package for Input-Output of Integer Types

generic
type NUM is range <>;

package INTEGER_IO is

DEFAULT_WIDTH
DEFAULT_BASE

end INTEGER_IO;

FILED := NUM'WIDTH;
NUMBER_BASE := 10;

-- Generic packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOAT_IO is

DEFAULT_FORE
DEFAULT_AFT
DEFAULT_EXP

end FLOAT_IO;

generic

FIELD . - 2;
FIELD .- NUM'DIGITS-1;
FIELD .- 3;

type NUM is delta <>;
package FIXED_IO is

DEFAULT_FORE
DEFAULT_AFT
DEFAULT_EXP

end FIXED_IO;

FIELD ·- NUM'FORE;
FIELD ·- NUM'AFT;
FIELD .- 0;

-- Generic package for Input-Output of Enumeration Types

generic
type ENUM is (<>);

package ENUMERATION_IO is

DEFAULT_WIDTH
DEFAULT_SETTING

end ENUMERATION_IO;

FIELD := 0;
TYPE_SETTING .- UPPER_CASE;

10.1 - Package Uses in Program Design 10- 11

--~~=---

-- Exceptions

STATUS_ERROR exception renames IO_EXCEPTIONS.STATUS_ERROR;

private
-- implementation-dependent

end TEXT_IO;

As noted, the package body of TEXT_IO will be implementation dependent, depending on the
hardware.

10.1.5 Using Abstract State Machine Packages

Abstract state machine packages provide a name and library storage for a set of package body
data declarations and subprograms that appear useful to store and make use of together as
abstract state machines" They can be retrieved by a with clause. For example a set of data
declarations and subprograms in dealing with the behavior of an airplane or a large company
provide the capability of a abstract state machine. The more declarations and subroutines
contained within a package name, the easier the individual declarations are to retrieve, but
the larger are the units of retrieving.

Abstract state machine packages differ from abstract data type packages in that no data type
is exported, only the operations on a type are exported. For example, in the following package
specification, the data type STACKS is exported, as well as the operations for manipulating an
object of type STACKS.

package STACK_PACKAGE
is

type STACKS is
record

Values :array (1 .. 100) of INTEGER;
Top_Of_Stack : NATURAL;

end record;

procedure PUSH (The_Item: in INTEGER; The_Stack: in out STACKS);
-- places an item onto the stack

procedure POP (The_Item: out INTEGER; The_Stack: in out STACKS);
-- removes an item from the stack

function DEPTH (The_Stack : STACKS) return NATURAL;
-- returns the number of items on the stack

function TOP (The_Stack : STACKS) return INTEGER;
-- returns the top item on the stack

procedure CLEAR (The_Stack: in out STACKS);
-- clears the stack (removes and discards all items)

end STACK_PACKAGE;

This is an abstract data type package. Note that we are exporting the data type, thereby
allowing the user to declare multiple objects of this type. This, in turn, necessitates that each
call to an operation on this type provides the stack object upon which we desire to operate.
Thus, a call to PUSH must provide not only the value to be placed on the stack, but also the
particular stack object onto which we will push it.

10- 12 Chapter 1 0 - Ada Package Design

An abstract state machine l'ackage, on the other hand, merely provides a set of operation on an
object. The state of the objet is maintained exclusively by the package, hidden from the user
except via the operations that are provided. Thus, abstract state machine packages are a
powerful means of implementing information hiding as well as abstraction using Ada. As an
example, consider the following package which exports the o-perations on a stack.

package STACK_PACKAGE
is

procedure PUSH (The_Item in INTEGER);
-- places an item onto the stack

procedure POP (The_Item: out INTEGER);
-- removes an item from the stack

function DEPTH return NATURAL;
-- returns the number of items on the stack

function TOP return INTEGER;
-- returns the top item on the stack

procedure CLEAR;
-- clears the stack (removes and discards all items)

end STACK_PACKAGE;

This is an abstract state machine package. Note that we do not export the data type, merely
the operations that will be performed on the single object that this package will provide. The
declaration of this single stack object will be in the body of the abstract state machine package.
Note that none of the operations require that we specify which stack, because in this case there
is only one stack object, and it is hidden from our inspection except through the subprograms
that we export.

1 0.1.6 Exercises

1. What are the parts of packages that can be stored separately?

2. For any subprogram contained in a package, how are its parts divided between package
specification and package body?

3. What is the distinction between data declarations in package specification and data
declarations in package body?

4. What are the four Booch package categories?

5. Define a package declaration group of use to you.

6. Define a package subprogram group of use to you.

7. Define a package abstract data type of use to you.

8. Define a package abstract state machine of use to you.

10.1 - Package Uses in Program Design 10- 13

10.2 Package Behavior Specifications

Package behavior specifications are another step beyond subprogram behavior specifications,
either in collecting data declaration behavior specifications or subprogram behavior
specifications, or in defining behavior specifications that combine data declarations and
subprograms into abstract data types or abstract state machine behavior. In the first two cases
the ideas of behavior specifications can be simply expanded beyond that understood in
subprograms. But in the latter two cases, the idea of implemented abstract data types or
abstract state machines with data stored between calls on the subprograms of the package
brings a new dimension to the behavior specification process.

10.2.1 The Basis for Behavioral Specification of Packages

As noted, any package is made up of data declarations in the package specification or the
package body, and subprograms declared jointly between the package specification and
package body. Any single subprogram is a rule for behavior, describing the effect of either a
procedure as a statement or an Ada function as an expression. The collection of these package
subprograms makes up the package behavior, as called through procedures and functions. The
sequence in which these procedures and functions are called in any execution is defined by the
host program, itself a procedure or a function.

In well structured Ada subprograms defined in package bodies, the rules are direct in form.
Designers build program rules out of just two behavior building operations, first, behavior
composition which corresponds to sequential execution of program parts, and second, disjoint
behavior union which corresponds to alternative execution of one program part or another, say
in if or case statements. Program iteration, say in while loop statements, uses no more than
these two operations together, and recursion provides a useful view of an iteration process.

As noted, any package part, subprogram part or total program defines a unique, possibly
complex behavior. The behavior is seldom a numerical function in classical terms. Even.so
called numerical programs must deal with finite sets of numbers in which overflow departs
from classical number systems. Any INTEGER variable is subject to overflow if not treated with
care.

Given the text or name of a subprogram or program part in a package, for example a procedure
called Alpha

Alpha =
procedure Beta
is

begin

end Beta;

it has already been established that the procedure behavior is denoted by brackets [,
around the name or text and defines a mathematical function or relation, as

[Alpha] =
procedure Beta
is

begin

end Beta;]

10-14 Chapter 1 0 - Ada Package Design

Since Alpha is part of a package, its specification part will be part of the package
specification, its body part of the package body, as already seen. The procedure behavior will
be detennined by the behavior of the joint specification and body.

ln this case, as before for independent procedures, [Alpha] is a set of ordered pairs

[Alpha] = {<X, Y>l Given initial data X,
Alpha will produce final data Y}

where X and Y are defined by sets of declared objects, possibly different sets. The behavior
[Alpha J is detennined by Ada text, but is independent of the language Ada. The same
behavior can be defined in Pascal text, C text, etc.

The other choice for a package member is an Ada function, which defines an Ada expression
rather than a statement. In this case the expression is evaluated rather than executed.

10.2.2 Behavioral Specification of Package Parts

As already noted, behavioral package specification is a step beyond subprogram specification,
dealing with a collection of declarations and subprograms. A package specification defines the
combined behavior of all declarations and subprograms as called on by a using subprogram. The
behavior of a subprogram is defined by a single execution of the subprogram. But the behavior
of a package is defined by any sequence of calls of the declarations and subprograms of the
package. For the declaration groups and subprogram groups, the specification of packages are
the union of the specifications of their declarations or subprograms. In this case package
specification is an accumulation of specifications of their parts. But in abstract data types and
state machines, the specification connects subprogram behaviors with data stored between
calls. Specification must recognize any possible sequence of calls on the package parts, and
determine the results of each call in the sequence.

It is already known that subprograms have behavior as mathematical functions or relations. In
going to Ada packages, only a single step needs be made to subprograms to program parts. With
packages, any nu_mber of calls can be made, with data stored between calls, so packages have
behavior of mathematical state machines, being initialized at package declaration, accessed
with each call of a subprogram, and terminated when the package declaration is closed out.
Every access to a subprogram behaves exactly as the ordinary subprogram except that package
data may be available from previous package calculations.

We review subprogram part behavior that make up package behavior next. Starting with
simple assignment statements, such as

First := Second;

the package part behavior

[First :=Second;]

takes its initial data state to its final data state. If legal, it will change the value of First in
the final state to the value of Second in the initial state and change no other values of
variables in the initial state. If illegal, the final state may be quite different than the initial
state, possibly with both First and Second disappearing, as well as othe_r variables,~
terminating the entire program execution. So assignment statements have stmple behavtor
parts when legal, but possibly more complex behavior parts when illegal. In summary, the

10.2 - Package Behavior Specifications 10- 15

behavior [First : = Second] is a set of ordered pairs with second members determined by
the first members

[First :=Second;] = {<<First, Second, ... >, <Second, Second, ... >> I
First := Second; is legal}

u {<<First, Second, ... >, <abnormal_state>>
First := Second; is illegal}

where abnormal_state will be determined by other aspects of the initial state. Illegal
situations will be suppressed in what follows for sake of time. In more direct behavior notation,
dealing only with the legal situation,

[First :=Second;] (<First, Second, ... >) =<Second, Second, ... >

in which the behavior [First := Second;] withbehaviorargument<First, second,
•.• > produces the behavior value <Second, Second, ... >.

Next, for example, with a sequence of statements, such as

First := Second; Second := Third; Third := First;

the part behavior

[First := Second; Second :=Third; Third :=First;]

will alter values of First, Second, Third as a composition of the three individual assignment
behaviors

[First := Second;] e [Second :=Third;] e [Third := First;].

That is, beginning with an initial state as argument, the first assignment behavior gives a new
state as value

[First :=Second;] (<First, Second, Third, ... >)
=<Second, Second, Third, ... >,

the second assignment behavior uses this value as an argument

[Second :=Third;] (<Second, Second, Third, ... >)
=<Second, Third, Third, ... >,

and the third assignment behavior uses this last value as argument

[Third:= First;] (<Second, Third, Third, ... >)
=<Second, Third, Second, ... >.

That is, the composition behavior is a nested set of simpler behaviors that evaluate as

10- 16 Chapter 10 - Ada Package Design

([First := Second;)*[Second := Third;]*(Third :=First;))
(<First, Second, Third, ... >)

= [Third :=First;) ([Second :=Third;) ([First :=Second;)
(<First, Second, Third, .>)))

= [Third :=First;) ([Second :=Third;)
(<Second, Second, Third, ... >))

= [Third:= First;] (<Second, Third, Third, ... >)
= <Second, Third, Second, ... >

as worked out just above. In summary, this composition behavior will interchange the values of
Second and Third and leave First with the initial value of Second, not changing any other
data in the initial state.

Finally, for an alternation statement, such as

if First > Second then Second := Third; else First := Third; end if;

the part behavior will execute either the then part or else part, so that

[if First > Second then Second .- Third; else First .- Third;
end if;)

= (First> Second-> [Second .-Third;) I
First<= Second-> [First :=Third;])

= [Second : = Third; I First > Second] u [First . - Third; I
First <= Second]

where the expression [Second : = Third; I First > Second] means the behavior
[second : = Third; J with its domain restricted to the condition First > Second. That is,
the part behavior is a union of disjoint behaviors.

As already noted, the step from subprogram behavior to package behavior is the step from a
single call, each independent of one another, to a sequence of calls while a package is active,
possibly with data stored between calls. For the using subprogram, each call of a package
subprogram is just like a call of such a subprogram except possibly for data stored in the
package.

1 0.2.3 Declaration Group Package Behavior Specifications

Declaration group package behavior specifications are simple extensions of declarations in
subprograms. They include declarations of types, subtypes, and objects that will be useful to
have collected as a package. They contain no executable part, only data declarations.
Therefore, package specifications are sufficient to define declaration group package
specifications, so no package bodies will be formed.

As already noted in subprogram semantics, declarations expand the data space by adding types,
subtypes, and objects to the data space already defined. They also can give objects specific
values at declaration. At the close of a package for execution, these declarations are reversed so
the data definitions no longer exist.

The value of declaration group packages is to summarize and collect groups of declarations that
are useful together, based on the knowledge of the software engineer and the subjects involved.
For example, in geometric problems, ellipses, triangles, quadrilaterals will likely all be used.
But these definitions are not so likely to be used together. There are many groups of
declarations from engineering, science, finance that are useful to know about. Earlier in this
chapter, several examples have been given, and no technical problems exist in expanding them.

10.2 - Package Behavior Specifications 10- 17

-

10.2.4 Subprogram Group Package Behavior Specifications

Subprogram group package behavior specificationS represent another kind of package
containing subprograms of likely common use. The subprograms are independent and could well
be given as individual subprograms, not as part of packages. But the subprograms will often be
used as part of a group, so putting them into a subprogram group package may be very useful and
convenient. It can reduce the amount of work to identify and define the subprograms, but even
more it can help many people to use identical declarations and keep work consistent.

The question of how many subprograms should appear in a subprogram group package doesn't
have a single answer. There may be several groups of different sizes or different focuses that
involve the same set of subprograms.

In illustration, consider a package called Fract ion_Package that deals with various
operations on fractions. This package will deal with the need to reduce fractions to their lowest
terms, as noted in the simple example above on the package called Geometric_Properties.

package Fraction_Package
is

type Fraction_Type
is
record

Numerator : NATURAL;
Denominator : POSITIVE;

end record;

function •+• (Left, Right
function •-• (Left, Right
function ••• (Left, Right
function •;• (Left, Right

: Fraction_Type) return Fraction_Type;
: Fraction_Type) return Fraction_Type;
: Fraction_ Type) return Fraction_Type;
: Fraction_Type) return Fraction_Type;

end Fraction_Package;

package bo~y Fraction_Package
is

function GCD (Numerator : NATURAL; Denominator
return POSITIVE

is
Reduced_Numerator : NATURAL := Numerator;
Reduced Denominator : POSITIVE := Denominator;
Temp : POSITIVE;

begin

POSITIVE)

-- GCD(Reduced_Numerator, Reduced_Denominator) =
-- GCD (Numerator, Denominator)
Common_Reduction:
while Reduced_Numerator > 0
loop

Temp := Reduced Denominator;
Reduced Denominator := Reduced_Numerator;
Reduced_Numerator := Temp mod Reduced_Numerator;

-- GCD(Reduced_Numerator, Reduced_Denominator) =
-- GCD (Numerator, Denominator)

end loop Common_Reduction;
return Reduced Denominator;

end GCD;

10-18 Chapter 1 0 - Ada Package Design

function Reduce (Fraction : in Fraction_Type) return Fraction_Type
is

GCD_Now : POSITIVE := GCD (Fraction.Numerator,
Fraction.Denorninator);

begin
return (Fraction.Numerator I GCD_Now,

Fraction.Denorninator I GCD_Now);
end Reduce;

function •+• (Left, Right
is

Fraction_Type) return Fraction_Type

Result : Fraction_Type;
begin

Result ·- (Left.Numerator * Right.Denorninator +
Right.Numerator * Left.Denorninator,
Left.Denorninator * Right.Denorninator);

return Reduce (Result);
end •+• ;

function •-• (Left, Right
is

Fraction_Type) return Fraction_Type

Result : Fraction_Type;
-- will raise CONSTRAINT_ERROR if Left < Right

begin
Result := (Left.Numerator * Right.Denorninator -

Right.Numerator * Left.Denorninator,
Left.Denorninator * Right.Denorninator);

return Reduce (Result);
end •-• i

function ••• (Left, Right
is

Fraction_Type) return Fraction_Type

Result : Fraction_Type;
begin

Result := (Left.Numerator * Right.Numerator,
Left.Denorninator * Right.Denorninator);

return Reduce (Result);
end ••• i

function •1• (Left, Right
is

Fraction_Type) return Fraction_Type

Result : Fraction_Type;
-- will raise CONSTRAINT_ERROR if Right.Nurnerator = 0

begin
Result := (Left.Nurnerator * Right.Denorninator,

Left.Denorninator * Right.Numerator);
return Reduce (Result);

end •1• ;

end Fraction_Package;

10.2.5 Abstract Data Type Package Behavior Specifications

Abstract data type package groups carry the subprogram group one further step in permitting
and exporting data declarations in the package specification, while permitting but not
exporting them from the package body. As a result, the subprograms of the package are related
by common data declared in the package specification.

10.2 - Package Behavior Specifications 10- 19

Abstract data type packages arise in classical computation structures such as stacks and strings.
For example, a stack specification may take the form of asking for six operations on stacks up to
finite sizes, namely

Clear: Make the stack empty.

Push: If room. add an item to the top of the stack; if not room, destroy the stack.

Pop: If stack not empty remove top item. otherwise leave stack empty.

Is_Ernpty: If stack is empty return TRUE, if not empty return FAlSE.

Top: If stack is not empty, return value of top element, if empty, return zero.

Depth: Return number of elements in the stack, including zero if the stack is empty.

There are other ways to handle stack overflow and underflow, and a direct and simple way is
defined here in illustration. It will be up to the user to store the stack, including its number of
elements between these operations. That is why the behavior is that of an abstract data type.
In response to this specification the following package adds more formality in the design.

package Stack_Package
is

type Stack is
record

Values : array
Top_Of_Stack :

end record;
procedure Clear
procedure Push

(1 •. 100) of INTEGER;

procedure Pop

NATURAL;

(The_Stack
(The_Itern
The_Stack

(The_Item
The_Stack

function Is_Ernpty (The_Stack
function Top (The_Stack
function Depth (The_Stack
Stack_Overflow, Stack_Underflow

in out Stack) ;
in INTEGER;
in out Stack) ;
out INTEGER;
in out Stack);
Stack) return BOOLEAN;
Stack) return INTEGER;
Stack) return NATURAL;
: exception;

end Stack_Package;

package body Stack_Package
is

procedure Clear
is
begin

(The_Stack

The_Stack.Top_Of_Stack := 0;
end Clear;

procedure Push

is
begin

(The_Itern
The_Stack

in out Stack)

in INTEGER;
in out Stack)

The_Stack.Top_Of_Stack := The_Staok.Top_Of_Stack + 1;
The_Stack.Values (The_Stack.Top_Of_Stack) := The_Item;

exception
when CONSTRAINT_ERROR => raise Stack_Overflow;

end Push;

10-20 Chapter 1 0 - Ada Package Design

procedure Pop

is
begin

(The_Item : out INTEGER;
The_Stack: in out Stack);

The_Item := The_Stack.Values (The_Stack.Top_Of_Stack);
The_Stack.Top_Of_Stack := The_Stack.Top_Of_Stack - 1;

exception
when CONSTRAINT_ERROR => raise Stack_Underflow;

end Pop;

function Is_Empty (The_Stack : Stack) return BOOLEAN
is
begin

return The_Stack.Top_Of_Stack = 0;
end Is_Empty;

function Top
is
begin

(The_Stack Stack) return INTEGER

return The_Stack.Values (The_Stack.Top_Of_Stack);
end Top;

function Depth
is
begin

(The_Stack : Stack) return INTEGER

return The_Stack.Top_Of_Stack;
end Depth;

end Stack_Package;

As already noted, it is up to the user to store and provide The_Stack and Pointer, which is
not stored in the package. One advantage is that the package can be used concurrently for many
stacks, the user keeping the data separate and using it as required.

1 0.2.6 Abstract State Machine Package Behavior Specifications

Abstract state machine package groups carry the abstract data type package a final step in
permitting data declarations in the package body as well as package specifications. As a
result, subprograms of the package are now related by common data stored between uses of the
subprograms.

We have already seen several examples of abstract state machines, from the very simple
Fibonacc i_Package up to the list processing examples of Chapter 9. Their specifications
allow data storage between executions. We will look at the specifications of list processing
later in this chapter again in terms of box structures. It will become critical to specify abstract
state machines as so called black boxes which map histories of stimuli to the next response
without reference to stored data. That is taken up in the next section.

10.2.7 Exercises

1. Given an Ada procedure, separate it into its procedure specification and its procedure body.
Identify where these two parts go in using the procedure in an Ada package.

2. Given an Ada function, separate it into its function specification and its function body.
Identify where these two parts go in using the function in an Ada package.

1 0.2 - Package Behavior Specifications 10-21

3. Discuss the difference between the specification of an Ada package and the specifications
of all the data declarations and subprograms in the package.

4. When is initialization required to be specified for an Ada package?

5. Provide a declaration group package specification of use.

6. Provide a subprogram group package specification of use.

7. Provide an abstract data type package specification of use.

8. Provide an abstract state machine package specification of use.

10.3 Box Structured Design with Packages

10.3.1 Background In Cleanroom Software Engineering

Cleanroom Software Engineering provides an engineering discipline to develop and certify
software correct under statistical quality control to well formed specifications of user
requirements given in const1Uction increments.

The well formed specifications provide a set of creatable increments that accumulate into the
complete system required. The increments must be of a size possible to develop without testing
-say two thousand to twenty thousand lines of code-and be accessed entirely by user commands
and data. The partial accumulations of increments are then tested and certified for correctness
to the specifications. If more than five failures per thousand lines of code are discovered in an
increment, that increment should come off and likely be redeveloped.

A sound development methodology is defined to create well testable software by design and
verification, in particular with no unit testing by the developers. That is, in Cleanroom
operations, developers do no testing at all in the development of the software. As already
noted, unit testing and fixing is the most error prone activity in software development today,
leading to deeper failures in fifteen per cent or more of the fixes. The design must be structured
top down with behavioral verification to scale up to entire increments and accumulations
developed. Failures due to lapses in behavioral verification are five times easier to find and
fix than failures due to unit fixes, and are very unlikely to lead to deeper failures.

A sound certification methodology is defined for releasing the software with no known failures,
especially no important failures. It requires a test design based not only on the behavioral and
performance specifications, but also on how critical each test case is to system behavior. Such a
test design is based on a stratified statistical strategy derived from the statistics of usage
expected for the software. For an important case, the stratus may consist of a single case (with
probability 1), or a small subset of cases, on out to strata containing large sections of the
software until the entire system behavior is covered. A test design defines each stratus
(possibly in the hundreds or thousands) and the number of tests in each strata. The power of the
test design is derived from the analysis of failures possible in each stratus after testing.

Testing without any failures found leads to certification of correctness of the software ;(.}the
level tested. If failures are later found the certification is negated. If these failures are fixed
the certification can be started again. Certification continues with software release to users,
with no failures moving with confidence from typical 3 sigma at release (.001 failures per
usage) to and beyond 6 sigma (.000000002 failures per usage) with suffident usage. With any
failures after release, the process is identical in fixing and starting certification again.

10-22 Chapter 10 - Ada Package Design

1 0.3.2 Clean room Engineering Activities

Cleanroom Engineering achieves statistical quality control over software development in an
industrial environment by strictly separating the design process from the testing process in a
pipeline of incremental software development. There are three major engineering activities in
the process:

First, a specification activity creates an incremental specification for development and
certification that defines a pipeline of software increments to accumulate into the final
software product, which specification includes the statistics of its use as well as its
behavior and performance requirements;

Second, a development activity designs and codes increments specified using box structured
design and behavioral verification of each increment, for delivery to certification with no
debugging beforehand, and provides subsequent correction for any failures that may be
uncovered later during certification or usage;

Third, a certification activity uses statistical testing and analysis for the certification of
the software correctness to the usage specification, notification to the development team of
any failures discovered during certification or usage, and subsequent recertification as
failures are corrected.

As noted, there is an explicit feedback process between certification and development on any
failures found in statistical usage testing. This feedback process provides an objective metJSure
of the correctness of the software as it matures in the development pipeline. It does, indeed,
provide a statistical quality control process for software development that has not been
available in this first human generation of trial and error programming.

10.3.2.1 Dealing with H~man Fallibility

Humans are fallible, even in using sound mathematical processes, so software failures are
possible during the certification process. (Indeed, people are fallible in doing long division,
even though the process is perfect) But there is a surprising power and synergism between
behavioral verification and statistical usage testing. It turns out that the mathematical
failures left are much easier to find and fix during testing than failures left behind in
debugging, measured at a factor of five in practice. Mathematical failures usually tum out to be
simple blunders in the software, whereas failures left behind or introduced in debugging are
usually deeper in logic or wider in system scope than those fixed.

In Cleanroom Engineering a major discovery is the ability of well educated and motivated
people to create nearly defect free software before any execution or debugging, well less than
five defects per thousand lines of code. Such code is ready for usage testing and certification
with no unit debugging by the designers. The result of statistical testing is to remove practically
all these defects with no side effects.

In this first human generation of software development it has been counter intuitive to expect
software with so few defects at the outset. Typical heuristic programming creates fifty defects
per thousand lines of code, then reduces that number to five or less by debugging. And it seems
impractical to reduce the number of defects to or near zero no matter how much effort goes into
it. In the final state of the software, defects are put into the software as fast as they are
removed.

10.3 - Box Structured Design with Packages 10-23

10.3.2.2 Software Development Without Testing

In spite of the experiences and assumptions of this first human generation of software
development, programs are strict rules for mathematical behaviors. There is nothing
experimental about program behavior except their inventions by people. As mathematical
objects, programs admit mathematical inspection and verification of whether they meet
mathematical specifications. Of course mathematics does not mean numerical, and most
programs are not strictly numerical. A simple sort program performs a mathematical behavior
in mapping a set of objects into a sorted sequence of those very objects. In this first human
generation, programs are repeatedly drafted, tested, fixed, retested, refixed, ... as
experimental activity. In this process, intellectual control of programs is lost, ending with
objects people hope are right, but which are frequently not quite right.

At first glance, software development without testing seems impossibl~like not looking at the
keys while typing to early typists. But since programs are strict rules for mathematical
behaviors, their correctness can be determined by mathematical inspection and verification
against specifications. On second thought this may still look very difficult because of all the
details involved. Isn't unit testing and debugging still easier and better? Unit debugging and
testing adds deeper failures in fifteen per cent or more of the fixes, failures that are often not
found until actual use of the software. Neither the inherent failures from development testing
nor the possibility of doing without it has been fully understood in this first generation.

Just as place notation and long division made correct operations in arithmetic more practical,
methods now exist in software engineering to make software development without testing a
practical reality. The mathematics is relatively simple, like long division, rather than
nuclear physics. In large programs there is a lot of such simple mathematics to do. But good
program organization into hierarchical structures, both in control and data, make this
mathematics possible and practical by well disciplined software engineers. Box structures of
software design and behavioral verification of programs provide human capability to inspect
and verify software in development rather than testing it and adding deeper failures to it.

1 0.3.3 Clean room Experiences

The mM COBOL Structuring Facility (COBOL/SF), a complex product of some SOK lines of PL/1
source code, was developed in the Oeanroom discipline, with box structured design and
behavioral verification but no debugging before usage testing and certification of its correctness.
A version of the US AF HH60 (helicopter) flight control program of over 30 KLOC was also
developed using Cleanroom. The Coarse/Fine Attitude Determination Subsystems (CFADS) of
the UARS Attitude Ground Support System (AGSS) of some 30 KLOC has been developed with
Cleanroom at NASA.

The mM COBOL/SF converts an unstructured COBOL program into a structured one of identical
behavior. It uses considerable artificial intelligence to transform a flat structured program into
one with a deeper hierarchy that is much easier to understand and modify. The product line
was prototyped with Cleanroom discipline at the outset, then individual products were
generated in Cleanroom extensions. In this development, several challenging schedules were
defined for competitive reasons, but every schedule was met

The COBOL/SF products have high function per line of code. The prototype was estimated at
100 KLOC by an experienced language processing group, but the Cleanroom developed prototype
was 20 KLOC. The software was designed not only in structured programming, but also in
structured data access. No arrays or pointers were used in the design; instead, sets, queues, and

10-24 Chapter 10 - Ada Package Design

stacks were used as primitive data structures. Such data structured programs are more reliably
verified and inspected, and also more readily optimized with respect to size or performance, as
required.

COBOL/SF, Version 2, consisted of 80 KLOC, 28 KLOC reused from previous products, 52 KLOC
new or changed, designed and tested in a pipeline of five increments, the largest over 19 KLOC.
A total of 179 corrections were required during certification, under 3.5 corrections per KLOC for
new code with no developer execution, under 2 corrections per KLOC for all code before testing.
The productivity of the development was 740 LOC per staff month, including all specification,
development, certification, and management, in meeting a very short deadline.

The HH60 flight control program was developed on schedule. Programmers' morale went from
quite low at the outset ("why us?'') to very high on discovering their unexpected capability in
accurate software design without debugging. The twelve programmers involved had all passed
the pass/fail coursework in mathematical (behavioral) verification of the IBM Software
Engineering Institute, but were provided a week's review as a team for the project. The testers
had much more to learn about certification by objective statistics.

The subsystem Coarse/Fine Attitude Determination System (CFADS) of the NASA Attitude
Ground Support System (AGSS) of some 30 KLOC was developed in FORTRAN. 62% of the
subroutines, which averaged 258 source lines each, compiled correctly the first time the testers
tried to compile it, and all but one of the rest compiled correctly on the second attempt.
Compared with well measured related systems, the failure rate was down by a factor of 5
while the productivity was up by 70%.

V. R. 'Baslli and P. 1'. "Baker introduced Oeanroom ideas in an undergraduate software
engineering course at the University of Maryland, assisted by R. W. Selby. As a result, a
controlled experiment in a small software project was carried out over two academic years, using
fifteen teams with both traditional and Cleanroom methods. The result, even on first exposure
to Cleanroom, was positive in the production of reliable software, compared with traditional
results.

Cleanroom projects have been carried out at the University of Tennessee, under the leadership
of J. H. Poore and at the University of Florida under H. D. Mills. At Florida, seven teams of
undergraduates produced uniformly successful systems for a common structured specification of
three increments. It is a surprise for undergraduates to learn about software development as a
serious engineering activity using mathematical verification instead of debugging, since
software development is typically introduced primarily in universities today as a trial and
error activity with no real technical standards.

1 0.3.4 Software Specification by Increments

A user's specification for a substantial software system will identify various classes of user
commands and data for various parts of the system. For example, bringing up an interactive
system at the beginning of the day will require and accept certain kinds of user commands and
data that the ordinary interactive users may not even be aware of. But bringing the system up is
an integral part of the system for a certain class of users concerned with the overall system
operations. During the day, several distinct classes of users may be interacting simultaneously
and independently, such as users adding data to the system, or users making inquiries, or users
monitoring the system use and performance. Within each such class, several or many users may
be interacting simultaneously and independently, as well.

10.3 - Box Structured Design with Packages 10-25

Now, to specify a sequence of increments that accumulate into the system desired takes some
more thinking. The first increment must clearly bring the system up to some extent, even though
the increment does not respond to all the needs of layer users. The next ii> :rement might accept
data for storage, yet not make it available for access. But now the first two increments together
can carry out some actions needed. The third increment might make data available for access, so
the accumulation of the first three increments allows data in and out of the system. Still
another increment may make data inquiries possible. In all these increments, only part of the
actions of a specific kind may be possible, so later increments may help fill out a given type of
action. The specifications of these increments takes much thought, and they will not usually be
simple parts of the overall behavior, more likely interacting pieces of several basic parts.

However, as simultaneously and concurrently as various users seem to interact with the system,
the individual computers in the system each operate strictly sequentially in real time, shifting
from one user to another so rapidly that each user gets almost immediate response, even though
ten, or a thousand, other users may have been serviced between the system's last response and
the user's stimulus. As a rule, users are separated from one another by operating in different,
relatively protected, data spaces that represent the tasks they are doing. But users can
interact, intentionally or not, as their tasks become more intertwined.

For example, in an airline reservation system, a ticket agent may inquire about availability of
seats on a given flight and get the response that seats are available. Then when the seats are
requested a moment later, the response is that no seats are available. Other users have
interacted in picking up the seats in the previous moment. Such system behavior is designed. It
would be conceivable to design an airline reservation system such that seats could be held from
inquiry to request, but it would require entirely different levels of data storage and processing.
In this way, it is clear that user independence is relative, with economic and technical issues
involved with multiple users in systems.

This understanding that signj.ficant software systems have different kinds of uses applies
whether there are single or multiple users. A single user may be using a system in different ways
at different times, even within a single session. The design of the software will typically
reflect such different uses by packaging similar operations in common modules. For example,
various kinds of data searching may be handled in a search module, but data retrievals han
dled in a different retrieval module. It also makes similar sense to identify similar stimuli re
sponse operations in specifications, entirely from the user point of view and state of mind. In
particular, complex specifications need to be designed as carefully as programs to reflect the
natural structure of the problem being solved and to find effective specification structures that
reflect user activities and understandings.

10.3.4.1 Software Usage as a Markov Process

As noted, software specifications deal with functional behavior and performance. Functional
behavior is ordinarily decomposed into various subfunctions in ways understandable by users,
and often obtained from users as requirements. Performance will usually affect design in
fundamental ways. But expected usage of the software will have critical impacts on
performance issues. For example, a data base system, with very much more querying than data
addition or deletion, may call for a design with high performance queries at the expense of
data addition and deletion performance. And such a design can be entirely unsatisfactory with
different usage. Thus expected usage statistics can play a key role in software system design.

10-26 Chapter 10 - Ada Package Design

However there is another critical use for usage statistics as part of software specifications. It is
to permit the certification of software. Software behavior depends not only on how correct the
software is but also on how it is used. For every possible state of internally stored data, any
command and input data is handled either correctly or incorrectly, denoted a failure in the
latter case at some level of seriousness.

Now, with a statistical usage specification for each possible internal state, the probability of
each selection of commands and input data in such a state will be known. Next, the behavioral
specification will define what the new internal state will become, as well as the response to
the user. These two facts define a Markov process, namely the set of all internal data states and
the probability from getting from each member of the set to the next member. Of course, some
members may be terminal when the process terminates.

1 0.3.5 Box Structures

Box structured design is based on a usage hierarchy of packages. Such packages, also known as
abstract data types or abstract state machines, are described by a set of data declarations and
subprograms that may define and access internally defined and stored data. In order to create
and control such designs based on usage hierarchies in practical ways, their box structures
provide standard, finer grained subdescriptions for any package of three forms, namely as black
boxes, as state boxes, and as clear boxes, defined as follows.

Black Box: External view of an Ada package specification and package body, describing its
behavior as a mathematical function in Ada from historical sequences of stimuli through
its subprograms to its next response in values of its data. Subprograms may be either
procedures, which are Ada statements, or functions, which are Ada expressions.

State Box: Intermediate view of an Ada package specification and package body,
describing its behavior in Ada by use of an internal state of declared data and an internal
black box with a mathematical function from historical sequences of stimuli and states
through its data and subprograms to its next response and state in values of its data, and an
initial internal state. Subprograms may be either procedures, which are Ada statements, or
functions, which are Ada expressions. State box subprograms are derived from the black box
subprograms, but are not the same as the black box subprograms.

Clear Box: Internal view of an Ada package specification and package body, describing the
internal black box of its state box in a usage control structure of Ada subprograms from other
packages. Such a control structure may define sequential or concurrent use of the other
packages, right down to individual variables. The new subprograms may be either
procedures, which are Ada statements, or functions, which are Ada expressions. The new
subprograms create together the state box subprograms as required.

Box structures enforce completeness and precision in design of software systems as usage
hierarchies of Ada packages. Such completeness and precision can lead to pleasant surprises in
human capabilities in software engineering and development. The surprises are in capabilities
to move from software specifications to design in programs without the need for unit testing and
debugging before delivery to certification for usage testing. In this first generation of software
development, it has been widely assumed that trial and error programming, unit testing and
debugging were necessary. But well educated~ well motivated software professionals are,
indeed, capable of developing software systems of arbitrary size and complexity without
program debugging before usage testing.

10.3- Box Structured Design with Packages 10-27

------------------------ ----~--------........,;;.-

1 0.3.5.1 Black Box Behavior Specifications

As noted, black box behavior is defined without any state data between calls on the black box.
It is defined in terms of the history of Stimuli Stimulus_Star (written Stimulus• and meaning
the history of Stimuli) to produce the next response Response. This may seem awkward in
many cases when the states seem already defined naturally. But the experience shows the
contrary with some thinking. What seems natural may be customary from past experience.
Looking at the keys while typing seemed natural in the late 19th century, but was just
customary from current experience. Dog paddle and breast stroke were also customary in the late
19th century, from ignorance about free style swi_mming. So data states are eventually necessary
in software design, but initial specifications need to be state free for precise engineering design.
In illustration of simple black box behavior, consider the following examples.

Copy.BB: Return the last stimulus as the next response.

Black box Copy. BB needs no history earlier than the last stimulus, which is returned directly
as the next response. In this case

Response := Stimulus;

each time a stimulus reaches Copy. BB.

Hist.BB: Return the first stimulus as the next response.

Black box Hist. BB needs the entire history of stimuli to have access to the first stimulus. In
this case

Response := Stimulus.1;

each time a stimulus reaches Hist. BB, where Stimulus .1 is the first stimulus receiv~ by
Hist.BB.

Add.BB: Return the first stimulus as the first response, and from
then on return the sum of the last two stimuli as the next response.

Black box Add. BB needs the first stimulus to return as the response and after that the last two
stimuli whose sum is returned as the response. In this case

Response.1 := Stimulus.1;
Response.i := Stimulus.i-1 + Stimulus.i (fori> 1);

each time a stimulus reaches Add. BB, where Stimulus . 1 is the first stimulus received by
Add . BB and thereafter the sum of the last two stimuli received make up the next response.

Sum.BB: Return the first stimulus as the first response, and from
then on return the sum of the first and last stimuli as the next re
sponse.

Black box Sum. BB needs the first stimulus to return as the response and after that the first and
last stimuli whose sum is returned as the response. In this case

Response.1 := Stimulus.1;
Response.i := Stimulus.1 + Stimulus.i (fori> 1);

10-28 Chapter 10 - Ada Package Design

each time a stimulus reaches Sum. BB, where Stimulus . 1 is the first stimulus received by
sum. BB and thereafter the sum of the first and last stimuli received make up the next response.

All.BB: Return the sum of all stimuli as next response.

Black box All . BB needs all stimuli and their sum to return as the response. In this case

Response.i :=Stimulus.!+ ... + Stimulus.i

each time a stimulus reaches All . BB, where ... includes all stimuli between the first
Stimulus .1 and the last Stimulus. i.

10.3.5.2 State Box Design

Once the black box behavior is specified, the state box can be designed in many ways. The state
box design defines what is to be stored from stimulus to stimulus in the state, how the response is
to be calculated from the last stimulus and the state, and how the new state is to be calculated
from the last stimulus and old state. For example, to design states for the simple examples
above, consider the following.

Copy.SB: Return the last stimulus as the next response.

In this case the simplest solution is to take the state as empty, so the black box and state box are
identical.

Hist.SB: Return the first stimulus as the next response.

A direct solution is to give the state a variable with the value of the first stimulus,
Stimulus .1, and never change it afterward, and make the response the value of Stimulus .1.
But how will later stimuli be ignored for value? One design could add and initialize a state
variable called Count to count stimuli, then update the stimulus variable only when Count=
1.

In this case the state has two variables, Count and Stimulus .1, and Count must be
initialized.

Add.SB: Return the first stimulus as the first response, and from
then on return the sum of the last two stimuli as the next response.

One design could add and initialize a state variable called Count to count stimuli, and add a
state variable Stimulus. State to store the last Stimulus detected. Then with each Stimulus,
increase Count; with Count= 1, return the Stimulus to Response and move the value of
Stimulus into Stimulus. State; with Count> 1, return the sum of Stimulus+
Stimulus. State to Response and move the value of Stimulus into Stimulus. State.

In this case the state has two variables, Count and Stimulus. State, and Count must be
initialized.

Sum.SB: Return the first stimulus as the first response, and from
then on return the sum of the first and last stimuli as the next
response.

0.3- Box Structured Design with Packages 10-29

- -~--=-:=:====-----==-- ·-·-----

One design could add and initialize a state variable called Count to count stimuli, and add a
state variable Stimulus. State to store the first Stimulus detected. Then with each Stimulus,
increase count; with Count= 1, return the Stimulus to Response and move the value of
Stimulus into Stimulus. State; with Count> 1, return the sum of Stimulus+
Stimulus .State to Response.

In this case the state has two variables, Count and Stimulus .State, and Count must be
initialized.

All.SB: Return the sum of all stimuli as next response.

State box All . SB needs the sum of all stimuli to return as the response. A design could add and
initialize a state variable called Stimulus. sum, initially set to zero. With each Stimulus
received add to Stimulus. Sum and return the value to Response.

In this case the state has one variable, Stimulus. Sum, which must be initialized.

1 0.3.5.3 Clear Box Design

Once the state box is designed, the clear box can be designed in many ways. The clear box design
defines how to meet the need from stimulus to stimulus in the state, how the response is to be
calculated from the last stimulus and the state, and how the new state is to be calculated from
the last stimulus and old state. For example, to design processes for the simple examples above,
consider the following.

Copy.CB Return the last stimulus as the next response.

Clear box Copy • CB is simply defined by the assignment given in the black box

Response := Stimulus;

Hist.CB Return the first stimulus as the next response.

Clear box Hist .CB needs two state variables, Count and Stimulus .1, Count initialized, and
processed as follows.

Initialize Count := 0;

Count := Count + 1;
if Count = 1
then

Stimulus.! := Stimulus;
end if;
Response := Stimulus.!;

Add.CB: Return the first stimulus as the first response, and from
then on return the sum of the last two stimuli as the next response.

Clear box Add. CB needs two state variables, Count and Stimulus. State, Count initialized,
and processed as follows.

10-30 Chapter 1 0 - Ada Package Design

Initialize Count .- 0;

Count := Count + 1;
if Count = 1
then

Response .- Stimulus;
Stimulus.State := Stimulus;

else
Response := Stimulus.State + Stimulus;
Stimu1us_State .- Stimulus;

end if;

Sum.CB: Return the first stimulus as the first response, and from
then on return the sum of the first and last stimuli as the next
response.

Clear box Sum. CB needs two state variables, Count and Stimulus. First, Count initialized,
and processed as follows.

Initialize Count .- 0;

Count := Count + 1;
if Count = 1
then

Response ·- Stimulus;
Stimulus.First := Stimulus;

else
Response := Stimulus.First + Stimulus;

end if;

All.CB: Return the sum of all stimuli as next response.

Clear box All. CB needs a single state variable, stimulus. sum, initially set to zero.

Initialize Stimulus.Sum := 0;

Stimulus.Sum := Stimulus.Sum + Stimulus;
~esponse := Stimulus.Sum;

In this case the state has one variable, Stimulus. Sum, which must be initialized.

1 0.3.6 Box Structure Examples

10.3.6.1 Maximum and Minimum Analysis

Let a sequence of temperatures in a chemical operation be analyzed for maximum and minimum
values encountered in the past twenty four hours, minute by minute, namely the past 1440
values. If either the maximum and/or minimum value is changed it should be reported in a
message to the user. How might this problem be addressed with box structures in Ada packages?
The package specification will describe the external basis for user communication, and the
package body will give the internal basis for computation.

We begin with the black box, which describes the behavior of the package in terms of stimuli
history mapping into responses. The black box is very straightforward, except for getting
started. For the first 1439 values there are not 1440 past values. With the first value it turns out
to be both the maximum and minimum value so far; a message is due the user. If the second value

10.3 - Box Structured Design with Packages 10-31

differs from the first, one is the maximum and the other is the minimum, and a message is due
the user; otherwise the maximum and minimum continue to be the same value and no message is
needed. And so it continues through the first 24 hours of measurement. From then on the
maximum and minimum values of the past 24 hours are contained in the last 1440 values
received. In a long run chemical operation this initial condition may be soon forgotten, but there
is no other way to get started. Of course, even though the entire stimulus history exists, only a
maximum of the most recent 1441 stimuli need be consulted in deciding what response is needed
for the user. Note that both the maximum and the minimum values can go either up or down.
The last value may push the maximum value up or the minimum value down. And the value
1441 ago being dropped may push the maximum value down or the minimum value up.

More formally, this black box can be described as follows.

At each minute, determine the maximum and minimum values in the past 1440 temperatures or
as many as exist if less than 1440; report any new values in maximum and/or minimum from one
minute ago to the user.

More precisely, the stimulus is the temperature value just received for the last minute, say
INTEGER variable Temperature. The response is one of four messages

•No change in Maximum or Minimum values•
•New Maximum value is •, Maximum
•New Minimum value is •, Minimum
•New Maximum value is •, Maximum, •New Minimum value is •, Minimum

where Maximum, Minimum are INTEGER variables whose values are the maximum, minimum
temperatures of the past 1440 minutes or as many as exist in the first 24 hours of execution. More
specifically, in Ada the package specification for Temperature_Moni tor with a single
procedure Temperature_Check is as follows.

with TEXT_IO;
package Temperature_Monitor
is

procedure Temperature_Check -- Black Box form
(Temperature : in INTEGER; -- from black box
Maximum, Minimum: in out INTEGER); --from black box

With each stimulus Temperature, return one of the four
messages above with Maximum and/or Minimum based on
stimulus history

end Temperature_Monitor;

Next, a state box can be designed directly from the black box. The state can be simply taken to
include the last 1440 or fewer temperature values received, regarded now as part of the state
rather than stimuli history. In fact, the last 1439 values plus the current stimulus are sufficient,
but the calculations can be simplified if 1440 values have been saved. We will store these
values in an array Temperature_Array with index of 1 .. 1440 and INTEGER values. In order
to record the number of values received so far, one new INTEGER variable can be used, say
count, initialized at one and augmented by one on each transaction unti11440 is reached, then
remaining constant from then on. Now with a new stimulus a total of Count + 1 values are
known. If Count = 1440 and 1441 values are known, the oldest value is to be discarded and the
last stimulus is to be saved. However before that oldest value is discarded, it can be checked as
to whether it was the maximum or minimum. In that case some different value from the 1440
will become the maximum or minimum. In a similar way, the last stimulus can be checked as to
whether it is a new maximum or minimum. As a result, any new maximum and/ or minimum is to
be reported to the user. After that analysis, the new stimulus can replace that oldest value. One

10-32 Chapter 10 - Ada Package Design

final analysis is on how. the 1440 values should be stored. One strategy is to store them in array
Temperature_Array m sequence of access, say the most recent in location 1, ... , the oldest in
location 144~. That will certainly work, but will require moving every value back one place in
the array With every new value. A better strategy is to leave values where first placed, but
keep an additional index that points to the last value. In this way the 1440 values would wrap
around the array. We will use that strategy and call the location of the last value an INTEGER
variable Last_Location. At this point we are ready to give a state box design for
Temperature_Check as below.

package body Temperature_Monitor
is

type Index is range 1 .. 1440;
Temperature_Array : array (Index) of INTEGER;
Count, Last_Location : INTEGER := 1;
procedure Temperature_Check -- State Box form

is
begin

(Temperature : in INTEGER;
Maximum, Minimum : in out INTEGER)

from state box
from state box
from state box

from black box
from black box

With each stimulus Temperature maintain Maximum and Minimum in
updated Temperature_Array (1 .. Count) and respond with the
correct one of the messages below:
"No change in Maximum or Minimum values•
"New Maximum value is • Maximum
"New Minimum value is Minimum
"New Maximum value is • Maximum, "New Minimum value is
Minimum
putting last Temperature received at Last_Location

end Temperature_Check;
end Temperature_Monitor;

Finally, the clear box of Temperature_Check can be designed as follows. First, it will be
useful to separate the first case from the rest. For this reason, the executable portion will start
with an if statement. One pair of new working variables, Old_Maximum, Old_Minimum of
obvious meaning will be useful.

package body Temperature_Monitor
is

type Index is 1 .• 1440;
Temperature_Array : array (Index) of INTEGER;
Count, Last_Location : INTEGER := 1;
procedure Temperature_Check -- Clear Box form

(Temperature : in INTEGER;
Maximum, Minimum in out INTEGER);

is

from state box
from state box
from state box

from black box
from black box

Old_Maximum, Old_Minimum INTEGER; from clear box
begin

With each stimulus Temperature maintain Maximum and Minimum in
updated Temperature_Array (1 .. Count) and respond with the
correct one of the messages below:
"No change in Maximum or Minimum values•
"New Maximum value is • Maximum
"New Minimum value is •, MinimUm
•New Maximum value is • Maximum, •New Minimum value is •
Minimum
putting last Temperature received at Last_Location

10.3- Box Structured Design with Packages 10-33

·~----

if Count = 1
then

Temperature_Array {1) := Temperature;
TEXT_IO.Put {Item => "New Maximum value is • &

INTEGER'IMAGE {Temperature));
TEXT_IO.New_Line;
TEXT_IO.Put {Item => "New Minimum value is • &

INTEGER'IMAGE {Temperature));
TEXT_IO.New_Line;
Old_Maximum := Temperature;
Old_Minimum := Temperature;
Count := 2;
Last_Location := 2;

else
Temperature_Array {Last_Location) := Temperature;
Maximum:= Temperature_Array {1);
Minimum:= Temperature_Array {1);
Find_Maximum_And_Minimum:
for Next in 2 .. Counter
loop

if Temperature_Array {Next) > Maximum
then

Maximum:= Temperature_Array {Next);
end if;
if Temperature_Array {Next) < Minimum
then

Minimum:= Temperature_Array {Next);
end if;

end loop Find_Maximum_And_Minimum;
if {Maximum = Old_Maximum) and {Minimum = Old_Minimum)
then

TEXT_IO.Put {Item => "No change in Maximum, Minimum
values.");

TEXT_IO.New_Line;
if Maximum /= Old_Maximum
then

TEXT_IO.Put {Item => "New Maximum value is • &
INTEGER'image {Maximum));

TEXT_IO.New_Line;
Old_Maximum := Maximum;

end if;
if Minimum I= Old_Minimum
then

TEXT_IO.Put {Item => "New Minimum value is • &
INTEGER'image {Minimum));

TEXT_IO.New_Line;
Old_Minimum := Minimum;

end if;
end if;
if Count < 1440
then

Count := Count + 1;
end if;
if Last_Location < 1440
then

Last_Location := Last_Location + 1;

1 0 - 34 Chapter 10 - Ada Package Design

else
Last_Location := 1;

end if;
end Temperature_Check;

end Temperature_Monitor;

This cl~ar .box can be optimized in several ways. For example, if values for Old_Maximum and
Old_M~n~mum are n~t effected by di~arding the oldest temperature nor by the latest
temperature, there will be no change m Maximum or Minimum, so the tor loop calculation is
not necessary. If indices in Temperature_Array for Old_Maximum and Old Minimum are
retained, the calculations can also be shortened. -

10.3.6.2 Historic Change In Inventory Polley

Box structure analyses have changed understandings of behavior in classic situations. One
example is in inventory theory and practice in military organizations in the United States.
From the 1870's up to the middle 1950's, a standard practice in inventory control in the Navy
and Army was called the "I< months of supply policy", meaning that an item of inventory was
kept on hand and on order at the level of I< months of usage, where usage was measured over the
past year and updated each month. This policy applied to all kinds of inventory, from socks to
anchors, and to all levels of storage, from local storage to national entry points of inventory.
The value of I< depended on the item, typically around a year, a little less for socks and a little
more for anchors. In principle, the value of K depended on three main factors, namely 1) time to
order the item from industry, 2) the variation in demand from month to month, and 3) the
criticality of the item being available. A missing anchor might hold up a ship going to sea, but
missing socks could be wotked around.

The I< months of supply policy is defined directly as a clear box, and its properties as a black
box was not known until the 1950's. It~ 'l~'='J ~GlrJa:, 'ou't a'I'll"nrough the years,
Inventory people knew something was wrong in the inventory systems. For example an anchor
made in Ohio would be sent half way across the country to reach its final usage on a ship, or so
it would seem. But the actual experience was that an anchor would be sent one and a half way
across the country on the average. Where ever it was sent would likely be the wrong place, and
it would be needed somewhere else. Also, in going up the inventory hierarchy, it would seem
that the relative variability of demand would go down as lower level fluctuations averaged
out. But the actual experience was that high level inventory points had even larger relative
fluctuations than local storage points.

It was finally discovered, in spite of how sensible the I< months of supply policy seemed, that
it amplified the variability in demand in the orders to the next level, when it was supposed
that demand variability would be reduced. This amplification was not visible in the clear box,
nor even the state box, but became obvious in the black box. Intelligent people had looked hard
at the I< months of supply policy, particularly its clear box form, for 80 years and never
suspected its amplification behavior. This discovery changed the inventory policy not only
across the government but also across industry in the 1950'6 and 1960's.

This story is typical of what box structures allow in analysis. The clear box and state box seem
very sensible in dealing with inventory as a state and how the item should be ordered to.keep
up with the demand. But the derivation of the black box from the state box shows what 1s
wrong. This black box behavior was not discovered until the 19S<Ys. In this case a new inventory
control policy was discovered with surprising and optimal properties, not pursued any further
here.

10.3 - Box Strudured Design with Packages . 10.35

More formally, the clear box for the K months of supply policy can be defined in terms of
demand D (m), inventory I (m), and order o (m) for month m (inventory is measured here at the
beginning of the month and includes both what is on hand and what is on order). Then in each
month a demand D (m) occurs, and inventory is decreased by that amount but also increased by
the order o (m), so

I (m + 1) : = I (m) - D (m) + 0 (m) ;

Next, the order o (m) is determined by the K months of supply policy, namely

O(m) := K * ((D(m -1) + ••• + D(m -12)) I 12)- I(rn);

In this analysis we assume the item has existed more thanK months and that o (rn) has a non
negative value each month. In summary, we have a clear box of the form

O(m) := K * ((D(rn- 1) + ••• + D(rn- 12)) I 12)- I(rn);
I (m + 1) : = I (rn) - D (rn) + 0 (rn) ;

Next, the state box is given by converting this clear box sequence into a single assignment for
o (m) and I (rn + 1), which requires that o (rn) found in I (rn + 1) be replaced by the
expression assigned too (m), so

O(m), I(rn + 1) := K * ((D(rn- 1) + ••• + D(rn- 12)) I 12)- I(rn),
I(m) - D(m) + ((D(rn- 1) + ••• + D(m- 12)) I 12) - I(rn);

which simplifies to

O(m), I(rn + 1) := K * ((D(m- 1) + ••• + D(m- 12)) I 12)- I(rn),
- D(rn) + ((D(m -1) + ••• + D(rn- 12)) I 12);

Finally, the black box is given by converting this state box function into a black box function
that has no inventory I (rn) in its description, so as a first step, consider

0 (rn) : = K * ((D (rn - 1) + • • • + D (rn - 12)) I 12)
+ D(rn- 1_) - K * ((D(rn- 2) + ••• + D(rn- 13)) I 12);

Now, a little rearrangement shows that

O(rn) := D(m- 1) + K * (D(rn- 1) - D(rn- 13)) I 12;

which can also be written as

O(rn) := (1 + K I 12) * D(rn- 1)- (K I 12) * D(rn- 13);

Now I (rn) has been eliminated, but a surprising thing has happened. Order o (rn) depends on
just two previous demands, D (m - 1) and D (rn - 13) , not on all13 demands. Furthermore,
while the coeffidents add to one, one is larger than one, one less than zero. So o (m) will expand
compared to D (rn) , and its variant will be greater than the variant of D (rn - 1) + • • • +
D (rn - 12) I 12, for example as might have been expected.

As a simple illustration, suppose each demand D (rn) is. independent and of values 75, 100, 125
with probabilities 1/4, 1/2, 1/4. Suppose K = 12. Then Table 10.1 shows the calculations of o (rnl

as follows.

10-36 Chapter 10 - Ada Package Design

O(m) = 2 * D(m - 1) - D (m - 13)

D(m - 13
75: 114 100: 112 125: 114

75: 114 75: 1116 50: 118 25: 1116
D(m - 1) 100: 112 125: 118 100: 114 75: 118

125: 114 175: 1116 150: 118 125: 1116

Table 10.1
Values of O(m) for K = 12

In this form it is easy to see that orders o (m) will vary from 25 to 175 while demands vary only
from 75 to 125. These orders have the distribution shown in Table 10.2.

Order
Probabilit

Table 10.2
Distribution of O{m) for K = 12

Suppose K = 18. Then Table 10.3 shows the calculations of o (m) as follows.

O(m) = (5 I 2) * D(m - 1) - (3 I 2) * D(m -

D(m - 13)
75: 114 100: 112 125:

75: 114 75: 1116 37.5: 118 0:
D(m - 1) 100: 112 137.5: 118 100: 114 62.5:

125: 114 200: 1116 162.5: 118 125:

Table 10.3
Values of O(m) for K = 18

13)

114
1116
118
1116

In this form it is easy to see that orders o (m) will vary from 0 to 200 while demands still vary
only from 75 to 125. These orders have the distribution shown in Table 10.4.

Order
Probabilit

Table 10.4
Distribution of O(m) for K = 18

As a final illustration, suppose each demand D (m) is independent and of values 50, 100, 150
with probabilities 1/4, 1/2, 1/4. Suppose K = 12. Then Table 10.5 shows the calculations of 0 (m)

as follows.
O(m) = 2 * D(m - 1) - * D(m - 13)

D(m - 13)
50: 114 100: 112 150: 114

50: 114 50: 1116 0: 118 -50: 1116
D(m - 1) 100: 112 150: 118 100: 114 50: 118

150: 114 250: 1116 200: 118 150: 1116

Table 10.5
Values of O(m) for K = 12

10.3- Box Structured Design with Packages 10-37

First, a negative order appears, which might be handled in several ways. For this example
consider it a return. Now, in this form it is easy to see that orders o (m) will vary from -50 to 250
while demands vary only from 50 to 150. These orders have th~ distribution shown in Table
10.6.

Order
Probabilit

Table 10.6
Distribution of O{m) for K = 12

This result is similar to the first with a change in demand variability. In each case, the
behavior shows internal orders vary more than external demand. The examples here are for
simple demand distributions, but the general results hold as more realistic distributions are
applied.

Once understood, it was easy to change inventory control from this policy to others that did
indeed reduce variation of ordering in the system. But as noted, it took some 80 years of
intelligent concern to get that understanding. Finding the black box and its properties was not
known for either the reason or the reasoning until the 1950's.

10.3.7 Exercises

1. Distinguish between software engineering and program debugging in reaching defect free
software.

2. What is stratified statistical testing and how does it deal with the importance as well as
the statistics of software under test?

3. Identify a software problem requiring specification activity.

4. How is development activity related to specification of software and what can a developer
do with incoJ;l\plete specifications?

5. How is certification activity related to specification of software and what can a certifier
do with incomplete specifications?

6. How are box structures related to Ada packages?

7. State box verification shows that the designed state box defines the same external
behavior as the black box specification. Show this verification is analogous to verifying
solutions to differential equations.

8. Oear box verification shows that the designed clear box defines the same internal
behavior as the state box design. Show this verification is part of software verification to
specifications.

10-38 Chapter 10 - Ada Package Design

10.4 Verification and Certification of Packages

1 0.4.1 Background In Statistical Quality Control

Computer software has existed only little over a human generation old, and software
development as it is practiced today has been worked out in just that short time. Think of
accounting when a human generation old, whenever that may have been. It certainly did not
have double entry bookkeeping, and not even sound arithmetic methods. Ovil engineering did
not have right triangles or methods of calculating areas at that age. Software has many more
people than accounting and civil engineering at that time. But fundamental ideas still take
time to find, even though people in the field are doing with what is available without them,

In another direction, statistical quality control (SQC) came into being about a human generation
ago, with work of Dr. Edward Deming and others in manufacturing in the 1950's. However,
American industry largely ignored the new ideas of SQC for manufacturing in that period,
getting along with however they were dealing (or not) with quality. Statistics seemed odd and
extra effort for work in quality control the industry was already doing. Of course, the rest is
well known with Dr. Deming and others taking SQC to Japan with dramatic successes in
Japanese industry creating products with entirely new levels of quality and productivity both.
Ever since, American industry has worked to catch up with Japanese industry in manufacturing
SQC. In fact, today we recognize the work of Dr. Deming by embracing his ideas under the
umbrella term Total Quality Management (TQM).

It is now beginning to be known how to develop software under statistical quality control as
well. But SQC in software development is almost never practiced in American industry today.
To accomplish SQC it is required to eliminate the private debugging done almost universally by
programmers, replacing it with engineering verification instead. The initial, intuitive
programming practices are still widely used in industry, in large part because so many people
have learned to develop software informally and intuitively. Software users have learned to
expect software failures now and then, and management has learned to put up with the
problems they cause.

There is a lesson in arithmetic and engineering in number systems. Roman numerals were used
two thousand years ago because nothing better was known. Perfect arithmetic is possible in
Roman numerals, but is so difficult that many errors were expected and lived with. The Arabic
numbers and methods were developed a thousand years ago. Arabic arithmetic is so straight
forward people can learn it directly and practically eliminate errors. It goes from an art to
engineering, permitting arithmetic review step by step. Answers are objective, either correct or
not, and not subjective. As a result people are glad to discover any errors in reviews, to get
answers right

1 0.4.1.1 Statistical Quality Control In Manufacturing

There is a considerable difference in SQC between manufacturing and software. But
manufacturing SQC has been very informative and helpful in going to software. In
manufacturing the design is considered correct and the SQC applies to creating physical
products to the design. The design may be wrong for the product, but the job of manufacturing is
to meet the design, right or wrong. That is a difficult discipline to enforce, when manufacturing
people think they see a better design. But in the long run it is better to force the separation of
design and manufacturing for quality.

10.4- Verification and Certification of Packages 10-39

The physical parts manufactured may be slightly incorrect but the product still meet the needs
of the design on a physical basis. For example a wire cannot be cut to a 10 mm length exactly, but
say within .001 mm, and still meet specifications in the product performance. If higher accuracy
to design is necessary the manufacturing process may need radical improvement.

Manufacturing under SQC is very different than under previous controls. For example, in a 1950
assembly line of twenty work stations, each station generating parts and adding to the product
was producing products at a rapid rate, but many of such products were then found defective in
the testing that followed. The attempted answer to such problems was to improve the part
making stations, because if each station was producing perfect parts the product would be
satisfactory. But while some improvements were indeed made, new products ran into similar
problems no matter how hard people tried.

Manufacturing under SQC used ideas that first seemed strange and not useful. In the assembly
line of twenty work stations, first work out what each intermediate assembly should perform
like; in many cases the stations must be redesigned to make this possible. Next provide
statistical measurements for the performances of the intermediate assemblies at each station,
and make them with each partial product coming down the line. Now, shocking as it may seem,
stop the entire assembly line if any partial product fails its performance test. Fix the reason for
the failure in whatever preceding stations needed. All the workers are idle now! What a dumb
thing that seems. In the old assembly line every body worked hard all the time. But forcing all
the parts to be right during assembly created a dramatic improvement in quality and
productivity both. The idle workers were a dear motivation for getting the work stations
working correctly to levels undreamed of before.

So in retrospect, SQC seemed very strange for manufacturing assembly lines in American
industry. Who would think such ideas would be practical? No wonder American industry turned
it down in the SO's. The people could see the extra work, but could not see the extra benefits.
They did not see that the objective is not statistics, it is quality control. The reason for statistics
is that it is the only way to get real quality control. And the improvement in productivity is a
pleasant surprise, as well. But it becomes understandable when the amount of rework becomes
known and now understood as unnecessary under better parts work and good management.

Another simple case of industrial improvement was in touch typing. When typewriters were
first available, everyone looked at the keys while typing; there seemed no other way. When
touch typing was introduced it seemed impractical at first. Key lookers could learn to type in a
single day, just needing to type faster as they went along. Why bother with such a complex
method as touch typing? But it was finally learned that touch typing greatly improved both
quality and productivity, to the point where it brought typewriters into business offices in ways
that would never have happened otherwise. Until touch typing and its benefits, secretaries
didn't use typewriters to any extent.

1 0.4.1.2 Statistical Quality Control In Software

With this background, it is time to move SQC into software development. However it is the
design that must be produced correctly to meet a software specification. Just as American
manufacturing in the SO's, American software in the 90's is created in well intended ways
without SQC. Its performance is low in both quality and productivity compared to what is
possible. In a 1990 European conference in Oslo, a Japanese group stated that Japanese companies
were going into SQC just as described in this book.

But American companies need not bring up the rear this time around in software. Just as in
manufacturing SQC and touch typing, it is not easy for current managers and workers to move
into software SQC. It requires new engineering capabilities, but capabilities potential in

10-40 Chapter 1 0 - Ada Package Design

educated and disciplined people. For example, manufacturing workers discovered they could
create parts that were orders of magnitude more accurate than imagined before. Touch typers
could create written text three times as fast with one tenth as many errors. Right now, software
programmers imagine that software must have a few failures-say 1 to 5 per thousand lines of
code-on release, but cannot image a serious objective of creating software with no failures and
higher productivity. It is not to ask programmers to work faster, but to work smarter with real
engineering discipline under SQC.

Zero failure software is not possible with heuristic methods of programming used in this first
human generation. It is possible with mathematics based engineering discipline made possible
by work of Dijkstra, Parnas, and others. Such a discipline was taught in the eighties in a six ·
course curriculum in Software Engineering across mM with a faculty of over sixty well prepared
teachers and over ten thousand students. Three examples of zero failure software follow.

First, the US 1980 Census was acquired by a nationwide network system of 20 miniprocessors.
The system was controlled by a 25 I<LOC program, which operated its entire ten months in
production with no failure observed. It was developed by Paul Friday, of the US Census Bureau,
using behavioral verification in Pascal. Mr. Friday was given the highest technical award of
the US Department of Commerce for the achievement. Mr. Friday was a student at University
of Maryland and credited computer science courses in rigorous software design and testing for his
achievement.

Second, the mM wheelwriter typewriter products released in 1984 are controlled by three
microprocessors with a 65 KLOC program. It has had millions of users ever since with no
failures ever detected. The mM team creating this software completed the curriculum of six
pass/fail courses and used beha'Cliaral tw:ifjr.tl!.ia», ·•~th. 't-.t\~~m 'res'ring ·m a wen managed
environment to achieve this result.

Third, the US space shuttle software of some 500 KLOC, while not completely zero failure, has
been zero failure in flight It had a well known failure in attempting to synchronize the five
computers for liftoff in the first flight, which of course was corrected. The mM team also used
behavioral verification, and extensive testing to achieve that result. The space shuttle
software is such a large, complex, and visible product that there are real lessons in it. All mM
managers and programmers in the shuttle software were required to complete the basic
curriculum of six pass/fail courses in understanding programs as rules for mathematical
behaviors, and behavioral verification to remain on the team.

10.4.2 Verification of Packages

10.4.2.1 Behavioral Verification of Packages

In describing the activities of the development team, no mention is made of testing or even of
compilation. The Oeanroom development team does not test or even compile. They use
behavioral verification to demonstrate the correctness of packages in the program increments.
Testing and measuring failures by program execution is the responsibility of the certification
team.

The mathematical foundations for behavioral verification come from the deterministic nature
of computers themselves. As noted, a computer. program is no more, no less than a rule for a
mathematical behavior. Such a behavior need not be numerical, of course, and most programs do
not define numerical behaviors. But for every legal input a program directs the computer to
-produce a unique output, wbe\het conect as specified ot not. And the set of all such input, output
pairs is a mathematical behavior.

10.4- Verification and Certification of Packages 10-41

With these mathematical foundations, software development becomes a process of constructing
rules for behavior that meet required specifications, which needs not be a trial and error
programming process. In any package the behaviors of the procedures and Ada functions
combine to make up the semantics of the package. As already noted, the name of the
subprogram is part of the input data on each call. The behavioral semantics of the package
allows repeated calls of various procedures and Ada functions in any sequence.

The behavioral semantics of a structured programming language can be expressed in an algebra
of functions with function operations corresponding to program sequence, alternation, and
iteration. The systematic top down development of programs is mirrored in describing behavior
rules in terms of algebraic operations among simpler behavior, and their rules in terms of still ·
simpler behavior until the rules of the programming language are reached.

10.4.2.2 State Box to Black Box Verification

Black box specifications deal entirely with external behavior of the box structure, describing
the behavior of the software as a mapping from any history of stimuli to the next response. So
the first need in defining a black box behavior is a specification function (or relation). This
behavior may well have other requirements of performance in both space and time to be met.

A state box design to meet this black box spedfication will identify internal states to replace
the stimulus history of the black box. It will also identify the process required, to map any
stimulus and current state to a response and new state. With this process, the initial state is
required, as well. The process required for the state box is another black box itself, which has
both the external stimulus and current state as the joint stimulus and the external response and
new state as the joint response.

Now the verification of the state box is to ensure that the responses of the state box are
identical with the responses of the black box at every step. The internal black box of the state
box is not the same as the black box behavior because it creates a new state as well as an
external response at each step. The two black boxes are related, of course. In fact the internal
black box calculates a response from the current stimulus and current state which must be
identical with the response of the external black box from the history of stimuli. The internal
black box also calculates a new state as well.

10.4.2.3 Clear Box to State Box Verification

State box designs become specifications for clear boxes. The states will be identical and the
clear box will expand the state box internal black box into a design of lower level steps calling
on other black boxes. In this case verification is exactly program verification of procedures and
Ada functions that make up the clear box definitions.

1 0.4.3 Certification of Packages

1 0.4.3.1 Software Certification with Failure Free Testing

Software is either correct or incorrect in design to a well defined specification, in contrast to
hardware which is reliable to a certain level in performing to a design assumed to be correct.
For small and regular software, it may be possible to exhaustively test the software to
determine its correctness. Even then, failures can be overlooked from human fallibility. But
software of any size or complexity can only be tested partially, and typically a very small
fraction of possible inputs actually tested. At first glance, the fractions are so small for systems
of ordinary size that the task of testing looks impossible. But when combined with
mathematical verification, getting correct software is indeed possible.

10-42 Chapter 10 - Ada Package Design

Certifying the correctness of such software requires two conditions, namely 1) statistical testing
with inputs characteristic of actual usage, and 2) no failures in the testing. For interactive
software, the statistical correlation of successive inputs must be treated, as well. If any failures
arise in testing or subsequent usage, the software is incorrect, and the certification is invalid. If
such failures are corrected, the certification process can be restarted, with no use of previous
testing results. Such corrections may lead to additional failures, or may not. So certifying the
correctness of software is an empirical process which is bound to succeed if the software is
indeed correct and may succeed for some time if the software is incorrect

While possibly frustrating at first glance, this is all humans can assert about the correctness of
software. In both verification and testing, human fallibility is present. But on second glance,
the sequential history of certification efforts provides a human basis for assessing the quality
of the software and expectations for achieving future correctness.

10.4.3.2 Certification Process

Certification of software on a scientific basis requires a statistical usage specification as well
as behavioral and performance specifications. The testing must be carried out by statistical
selection of tests from these specifications. Some uses of the software may be much more
important than other uses, and the statistical selections can be given in various levels of
stratified sampling. Thus, not only basic statistical usage is to be defined, but the relative
importa11ce of correctness for each usage. An extreme form of stratified testing is important cases
chosen with probability 1. Tests selected directly do not add statistical inference on the
correctness of the software. But they represent very important cases that need to be tested.
Other important sets can be used to define other strata, and so on until all possible cases are
included in strata.

The balance between a few important cases and general cases takes good engineering design in
the best use of test capabilities that is seldom explicitly addressed today. The number of tests
defined for each stratus is a matter of test design, from which the reliability of software which
passes the test design can be calculated. This is new information which is often not known now
until the software is put to actual use, but should be generated with behavioral and
performance specifications beforehand. Without usage specification, testing can be inadequate
and current software often faces just that problem of a surprising number of failures in use
because the software is used differently than expected.

Next, the actual statistical testing must be carried out when the software is available, as noted
in stratified form for sizable systems. If a failure is found in testing, the software should be
returned to the developers for correction before further testing. When the location of the needed
correction is identified and the correction made, a new start of testing is begun. The Time To
Failure (TTF) is recorded for each failure discovered in the user section of the specification. The
Time Without Failure (TWF) is tracked when no failures have appeared. This TWF can be
tracked after the software is distributed to users as part of the characterization of is
correctness. If failures appear with users, the same rules of correction and restart of TWF should
occur.

1 0.4.3.3 Certification Experience

As already noted, some failures can be expected for software never executed before, even though
verified. Humans are fallible in behavioral verification, even though the methods are
complete and correct In illustration, people can make mistakes doing long division, for example
saying 7 times 4 is 35 instead of 28. But such mistakes can be found by other people without
insulting the dividers, because there is no private subjective value in the common long division
process. In the same way, people can make mistakes creating software to meet explicit

10.4- Verification and Certification of Packages 10-43

specifications using common design methods. Again, such mistakes can be found without
insulting the creators. As noted, under five failures per KLOC can be expected, but discovered
quickly on execution, typically two or three such failures per KLOC. These failures are very
different from failures following unit debugging by the programmers. Verification failures are
simple program errors due to wrong relations in tests, wrong variables in subprogram calls, very
seldom due to wrong control logic. These verification failures tum out to be easily found and
fixed, with very few, if any, follow on failures.

At first glance it seems strange and wasteful to not let the programmers find and correct the
simple failures before sending the software over to full testing and certification. But on second
thought that is precisely what they do now, with the secondary sources of failures created
unintentionally. Redefining software development as an engineering design process, with an
independent engineering test process, changes the entire perspective. As surprising as it turns
out, good software engineers can define software almost correct without testing, in fact correct
enough for separate testing. But software design becomes a precise engineering process rather
than an experimental trial and error process. Many programmers today know no other way than
experimental trial and error to write programs. Some may be able to learn precise engineering,
some not

For example, the COBOL/SF prototype had a 5I< subprogram for generating COBOL test
programs tested in a sequence of four accumulating increments. These accumulations were given
30 tests each, or a total of 120 tests. On the first increment, all failures found occurred in the
first test, and the following 29 tests ran correctly. On the accumulated first and second
increments, all failures occurred in the first two tests, and the following 28 tests ran correctly.
On the final two accumulated increments, all failures occurred in the first test, and the
following 29 tests ran correctly. In subsequent use no failures were ever found in the subprogram.

Those are very different statistical experiences than in unit debugged software. It reflects the
trivialities of the failures due to faulty verification from the execution side. Failures in unit
debugged software would have been sprinkled through the 120 tests, not jammed up in the first
or second tests. And more failures would have likely appeared after the 120 tests. This
experience is typical in Oeanroom testing. All failures are discovered very early in the testing,
and no further failures show up later.

1 0.4.3.4 Difference between Correctness and Reliability

As already noted, there is a profound difference between the correctness of software and the
reliability of hardware. When software has hundreds or thousands of failures, its behavior
may seem to approximate hardware reliability. But when software has very few failures,
possibly none, the statistics of hardware failures are not valid. In this first human generation,
it has seemed impossible to create zero defect software, but it can be, and has been, done as
discussed above. Part of the issue is discovering a new human possibility, with more engineering
education and engineering management. Part of the issue is the economic feasibility. As
surprising as it may seem, it requires less human effort to produce zero defect software with new
methods than failure prone software with older methods. The human effort required is both
engineering verification and statistical testing, and they complement each other in unexpected
ways.

1 0.4.4 Statistical Usage of Packages

The good use of Ada packages requires a test design based not only on the behavioral and
performance specifications, but also on usage specifications and how critical each test case is to
system behavior.

10-44 Chapter 10 - Ada Package Design

Packages will be used in many ways. But the set of usage and their frequencies will define
statistical usage. Unlike procedure or Ada function uses which are single executions, the
procedures and functions of a package can be used many times in many sequences in a single
execution of the package. Determining the statistical usage of a package is a substantial
intellectual challenge, comparable to the design of the package itself. At first glance, the
statistical usage of a package may seem quite arbitrary, and hardly necessary-why not just get
the package programmed and try it out? But on deeper look, there needs to be a basis for testing.
If testing is not statistically based, the package can be deficient in certain ways but not
discovered.

There is still the problem of defining the statistical usage of a package for its testing. Any
given user may not use the package exactly in the way the statistics is defined. But that is not a
problem. The idea of statistical usage defines usage for a class of users. It is conceivable that
more than one set of users might be identified, say using the same package for radically
different purposes. In this case, more than one set of statistics might be defined, associated
with different sets of users.

As already noted, not only statistics needs be considered, but importance of various uses
examined. Certain cases may be so critical that they should be identified and tested either
individually or in small sets.

For this _reason, a Cleanroom test design is based on a stratified statistical strategy derived
from the statistics of usage expected for the software. For an important case, a stratus may
consist of the single case (with probability 1), or a small subset of cases, on out to strata
containing large sections of the software. A total test design defines each stratus (possibly
hundreds or thousands) and the number of tests in each strata.

10.4.4.1 Statistical Testing of Packages

Successful testing of packages without any failures found leads to a certification of correctness
of the software. If failures are later found the certification is negated. If failures are fixed the
certification process can be started again. Certification continues with software release to users,
moving with confidence from typical 3 sigma at release (.001 failures per usage) to and beyond 6
sigma (.000000002 failures per usage) with sufficient usage without failures.

As I'.Oted, if software is entirely correct, there is no way to be sure of that except by testing and
usage without failures. However, the longer testing and usage goes on without failure, the
greater the subjective confidence can be in that correctness.

As noted above, in the case of a package, testing requires use and reuse of the subprograms of the
package in random ways appropriate to the application. These random ways require the
derivation of the statistical usage for testing. Such statistical usage implies time and effort to
develop and design proper and relevant testing plans.

1 0.4.5 Exercises

1. What is statistical quality control?

2. What is statistical quality control in manufacturing?

3. What is statistical quality control in software?

4. Package verification is related how to subprogram verification?

10.4 • Verification and Certification of Packages 10-45

5. How does failure free testing certify software?

6. What is certification process?

7. Why is debugging dangerous to quality?

8. What is difference between correctness and reliability?

10.5 Behaviors of Linked Lists

As introduced in Chapter 9, access types provide a new and powerful way to store data. Arrays
and records provide simpler and more direct ways to store data as well. Arrays and records
define data in fixed ways, but access types define data in flexible ways, using designators, to
dynamically allocate data objects.

Linked lists are general and useful ways to store data, which can be stored in either arrays or
with access types. As noted in Chapter 9, either method of storage can be best, depending on the
usage of the data. Access types take more effort step by step to set up data storage, but arrays
require more effort to add or delete data items with ongoing data.

The verification of linked lists with either arrays or access types to store and transform data is
different, as well. With arrays a standard sequential list is provided that is maintained in
sequential form at all times, perhaps with considerable effort, such as adding or deleting a
element early in the list, so many other elements must be moved one step to the right or left.
With access types, a linked list is defined with pointers from each element to the next, so
adding or deleting a element changes only the pointers to and from the adjacent elements-not
adjacent in storage, but adjacent in value.

10.5.1 Specifying a Package for List Processing

As already noted, to deal with linked lists using arrays, a package called List_Processing
in Chapter 9 was developed which contains four procedures, namely Create_Lis t,
Insert_In_List, Delete_Frorn_List, and Show_List. In order to verify this package, all
the procedures must be verified collectively as called in any sequence by a user. As noted above,
to verify a procedure, it must be shown that it runs correctly on a single call, and that is all. But
to verify the package, it must be shown that its subprograms (in this case all procedures) may
be called in any sequence of any length in any order and return the correct data on each call of
the data stored between calls as well as returned to the user.

In order to verify the package List_Processing, one must first identify its behavior
specification. In this behavior specification one needs to create the black box behavior. To
verify a subprogram one needs a specification to describe what is required from a single call of
the subprogram. But to verify a package, one needs a specification of arbitrary sequential use of
the subprograms, not just a single call. In this case the black box behavior will describe the
results of any and every sequence of calls on the subprograms without any reference to stored
data between calls. This black box behavior will be given by the behavior specification which
maps any sequence of calls on the package of subprograms to the next response.

As already introduced, we want to specify a package List_Process ing which consists of four
procedures, so the package specification will have the form of the package already seen above

10-46 Chapter 10 - Ada Package Design

package List_Processing -- black box, no stored data
is

procedure Create_List;
procedure Show_List;
procedure Insert_In_List;
procedure Delete_From_List;

end List_Processing;

But the behavior specification must describe precisely what this package does in all call
sequences of the procedures as a black box-that is without any reference to stored data. At first
glance this may seem quite artificial and difficult, because it seems so natural to think of the
stored data. But at second glance it becomes obvious that it is not so artificial or difficult. The
stored data will come later in designing the state box and clear box.

The List_Processing black box identifies the entire history of stimuli to the procedures
which generate successive responses in return. The name of each procedure called is part of the
history. The input data is the other part of the history. So the history is a sequence of
interlaced procedure calls and data. For example, following each Create_List will be a
sequence of one or more elements, separated by 'y' items and terminated by a final 'n' item.
Show_List requires no additional data to complete. Insert_In_List is followed by a
New_Name to be inserted, and Delete_From_List is followed by an Old_Name to be deleted.
As noted, the entire history is an arbitrary sequence of just these four kinds of stimuli sequences.
The responses to these stimuli are determined entirely by the entire history.

The term "List" describes the current status of all elements in sorted order still active, which
have been introduced by Create_List, inserted by Insert_In_List, not yet deleted by
Delete_From_List. These current elements are given in the history of stimuli to the black
box. The state box design may define an array and its contents in terms of active elements, but
that is later, literally as part of design. We still need to identify a limited length of active
elements in the black box history, call it Max_Length. The history itself is of unlimited
length, and the number of elements introduced by Crea te_Lis t, inserted by Insert_In_Li s t,
deleted by Delete_From_List are unlimited. Elements introduced or inserted when
Max_Length elements are already stored will be ignored.

In more detail, as noted, the call sequences of the procedures can take any form. In particular,
the procedure Create_List can be called any time, whether a current list exists or not. We
will specify that Create_List will start a new list, wiping out any previous list, although
other solutions are possible, such as ignoring a Create_List command if a non-empty list
already exists. Another specification decision is whether Create_List must be furnished at
least one element or not. We assume at least one element will be required in this specification.
Another question is whether the list of elements supplied must be in sorted form? We will
suppose it need not be in sorted form. What if more active elements are supplied than
Max_Length? In this case we will ignore them, but other decisions are possible as well. So
Create_List raises several questions to be resolved in the specification.

Show_List seems pretty straight forward. We return whatever the list is at the current time.

Insert_In_List has the same problem as Create_List in trying to add a new element when
the list is full already while holding Max_Length active elements. That will be handled as
with Create_List; the element will be ignored. Another question comes up if a new element is
added when there is already one of that value already in the list. Two obvious ways to handle
this is first permit only unique elements, and second permit duplicate elements. We will permit

10.5 - Behavlor Gt Unked L\s\s 10-47

duplicate elements. Still another possibility is to attach a count to each distinct element That
might be an implementation tactic if much duplication is expected, but is not considered for the
moment.

Delete_From_List can find one of two conditions, first the list has the element named to
delete, and second no such element exists in the list In each case a message can be returned.
Delete_From_List will have an open question if the list can have duplicate elements. Does
delete take out one element or all elements of a given value? We will assume a single element is
deleted.

With these considerations, the behavior specification for the package List_Processing
takes the following form.

package List_Processing -- black box, no stored data
is

procedure Create_List;
Except for exceptions discussed below: create a list as

provided by user, one or more elements one name at a time at
a prompt; the list will be supplied in unsorted form;

Exceptions are: no element is provided; if list is already
full with Max_Length elements, ignore element;

procedure Show_List;
Except for exceptions discussed below: print the current list;

-- Exceptions are: no exceptions;

procedure Insert_In_List;
Except for exceptions discussed below: insert element provided

by user in sorted place in list;
Exceptions are: no element is provided; if list is already

full with Max_Length elements, ignore element;

procedure Delete_From_List;
Except for exceptions discussed below: erase one element of

the value given or signify no such value found;
Exceptions are: no element is provided;

end List_Processing;

10.5.2 Designing the Package Llst_Processlng

In Chapter 9, the package List_Processing was given to introduce the use of arrays for list
processing with the four procedures specified above. We recall the package specification and
package body in List_Processing from Chapter 9 as follows.

package List_Processing
is

procedure Create_List;
procedure Show_List;
procedure Insert_In_List;
procedure Delete_From_List;

end List_Processing;

10-48 Chapter 10 - Ada Package Design

with TEXT_IO;
package body List_Processing
is

subtype Index_Type is ItiTEGER range 1 200;
subtype Names is STRING (1 .. 5);
type List_Array is array (Index_Type) of Names;
Name_Array : List_Array;
Last : INTEGER := 0;

procedure Create_List
is

More_Names :CHARACTER:= 'y';
begin

TEXT_IO.Put (Item=> "Ready to create your list. ");
TEXT_IO.New_Line;
TEXT_IO.Put (Item=> "Enter each name at the prompt.");
TEXT_IO.New_Line;
Get_Names:
while (More_Names = 'Y') or (More_Names = 'y')
loop

Insert_In_List;
TEXT_IO.Put (Item=> "More names- y or n? ");
TEXT_IO.Get (Item=> More_Names);
TEXT_IO.New_Line;

end loop Get_Names;
end Create_List;

procedure Show_List
is
begin

TEXT_IO.Put (Item=> "Your list contains");
TEXT_IO.New_Line;
if Last > 0
then

Put_Names:
for Count in 1 .. Last
loop

TEXT_IO.Put (Item=> Name_Array (Count));
TEXT_IO.New_Line;

end loop Put_Names;
end if;

end Show_List;

procedure Insert_In_List
is

New_Name : Names;
Count : Index_Type := 1;

begin
TEXT_IO.Put (Item=> "Enter value to be inserted=>");
TEXT_IO.Get (Item=> New_Name);
TEXT_IO.New_Line;
if (Last > 0) and (Last < Index_Type'LAST)
then

Find_Place:
while (Name_Array (Count) < New_Name) and (Count <= Last)
loop

Count := Count + 1;
end loop Find_Place;

10.5- Behavior of Unked Lists 10-49

~ ~

Move_Names:
for Index in reverse Count .. Last
loop

Name_Array (Index+ 1) := Name_Array (Index);
end loop Move_Names;
Last := Last + 1;
Name_Array (Count) := New_Name;
TEXT_IO.Put (Item=> "Value has been inserted.");
TEXT_IO.New_Line;

elsif Last = 0
then

Name_Array (Count) := New_Name;
Last := Last + 1;
TEXT_IO.Put (Item=> •value is only element.");
TEXT_IO.New_Line;

else
TEXT_IO.Put (Item=> "Element can not be added. ");
TEXT_IO.Put (Item=> "Your list is full.");
TEXT_IO.New_Line;

end if;
end Insert_In_List;'

procedure Delete_From_List
is

Count : Index_TYpe := 1;
Old_Name : Names;

begin
TEXT_IO.Put (Item=> "Enter value to be deleted=>");
TEXT_IO.Get (Item=> Old_Name);
TEXT_IO.New_Line;
if Last > 0
then

Find_Value:
while (Name_Array (Count) /= Old_Name) and (Count < Last)
loop

Count := Count + 1;
end loop Find_Value;
if Count < Last
then

Move_Names:
for Index in (Count+ 1) .. Last
loop

Name_Array (Index- 1) := Name_Array (Index);
end loop Move_Names;
Last := Last - 1;
TEXT_IO.Put (Item=> "Name deleted.");
TEXT_IO.New_Line;

elsif Name_Array (Last) = Old_Name
then

Last := Last - 1;
TEXT_IO.Put (Item=> "Name deleted.");
TEXT_IO.New_Line;

else
TEXT_IO.Put (Item=> "Name not found.");
TEXT_IO.New_Line;

end if;

1 0 - 50 Chapter 1 0 - Ada Package Design

else
TEXT_IO.Put (Item=> "Your list is empty.");
TEXT_IO.New_Line;

end if;
end Delete_From_List;

end List_Processing;

We discuss this package in separate parts below.

In summary of unusual conditions, the following are possible.

In executing Create_List: If no input is provided any time through the loop the execution
is halted, waiting for the input. No further action can be taken.

In executing Create_List: If more elements are supplied thanMax_Length (200),
ignore their values.

In executing Insert_In_List: If no input is provided the execution is halted, waiting for
the input. No further action can be taken.

In executing Insert_In_List: If active elements are ofMax_Length (200), ignore value
of additional element.

In executing Delete_From_List: If no input is provided the execution is halted, waiting
for the input. No further action can be taken.

10.5.3 Verifying the Package Llst_Processlng

Now that we have a design for the specification of List_Processing, we need to verify its
correctness. The discussion just above discusses this design and its verification informally, and
we need to carry it out more formally and completely. The specification discusses user
input/ output relations in the black box form, while the design provides those user input/ output
relations in the clear box form with more specifics, in particular identifying an array solution
not mentioned in the black box. The specification is open on some details of the communication
between the user and the software, specifically the exact messages returned to the user in
various circumstances. This is typical in real life software engineering, and requires intelligent
interpretation for verification.

As noted above, the first concern in the verification is the treatment of a package, rather than a
single subprogram. The behavior of each subprogram in the package is part of the package
behavior, including the subprogram name at each call as well as data that may follow. In
List_Processing there are four procedures defined in the black box specification and
repeated in the clear box design. But in the design are additional Ada types and objects, as well
as filled out Ada procedures that make use of them. Furthermore, each use of a procedure is
started by a user which leads into an interactive process between computer and user, terminated
by the computer. As noted above, if the user fails to respond to a request for data the process is
terminated by the computer and the procedure involved is never completed. But that is
possible.

In what follows we incorporate the black box procedure specifications as comments into the
clear box procedure designs, in order to identify the verification task.

1 0.5 - Behavior of Linked Lists 10-51

Package Body Llst_Processlng

Package body List_Processing consists of a with clause for TEXT_IO, five declarations and
four procedures. The TEXT_IO clause and the five declarations are made available
immediately on execution, whereas the four procedures are called, if ever, during execution.

with TEXT_IO;
package body List_Processing
is

subtype Index_Type is INTEGER range 1 .. 200;
subtype Names is STRING (1 .. 5);
type List_Array is array (Index_Type) of Names;
Name_Array : List_Array;
Last : INTEGER := 0;

-- four procedures

end List_Processing;

The with clause for TEXT_IO makes all the subprograms of TEXT_IO available. Their exact
behavior is given in the Ada Programming Language. The subprograms used will include Put,
Get, and New _Une, all procedures, used in very direct ways.

The first four declarations create an array Name_Array of type List_Array with
Index_Type INTEGER indices and 5 character STRING elements. Nothing is initialized in
Name_Array. The fifth declaration of INTEGER Last gives what will be the final index of the
current Narne_Array, namely the count of how many elements are currently stored in
Name_Array. On initialization that count is zero. This use of Last must be verified in the
procedures.

The four procedures can be called in arbitrary sequence and will be taken up separately, as
they use and updateName_Array and Last .Narne_Array will contain elements entered but not
deleted in sorted order. As noted, elements can be duplicated and appear in that form. Last
takes on values 0 .. Index_ Type 1 LAST (2 0 0), counting the number of elements currently stored
in Name_Array, which may be zero. Elements provided beyond Index_ Type 1 LAST will be
ignored.

Procedure Create_List

The procedure Create_List has the specification as discussed above, namely to

procedure Create_List;
Except for exceptions discussed below: create a list as provided

by user, one or more elements one name at a time at a prompt;
the list will be supplied in unsorted form;

Exceptions are: no element is provided; if list is already full
with Max_Length elements, ignore element;

Procedure create_List declares one object,

More_Names which is CHARACTER and initially 'y',

used as discussed below. The execution begins with two start up messages to the user, namely

10-52 Chapter 1 0 - Ada Package Design

TEXT_IO.Put (Item=> "Ready to create your list. ");
TEXT_IO.New_Line;
TEXT_IO.Put (Item=> "Enter each name at the prompt.•);
TEXT_IO.New_Line;

whose meaning is obvious. The remainder of the procedure is a while loop named Get_Names to
create a list as provided by the user. Now the execution of the loop in the while loop depends
on More_Names being 'y' or 'Y'. More_Names is initialized 'y' in the declaration so the first
loop will be exercised. The first step in the while loop is to call Insert_In_List. Its function
is to add the next element provided by the user, if possible. Recall the specification for
Insert_In_List is as follows.

procedure Insert_In_List;
Except for exceptions discussed below: insert element provided

by user in sorted place in list;
Exceptions are: no element is provided; if list is already full

with Max_Length elements, ignore element;

Its effect will depend on whether the user responds with an element and the value of Last. If
the user fails to respond execution is stalled. If the user returns an element and if Last is less
than 200, the element will be entered in sorted order in Name_Array and Last incremented by
one. If Last is 200, the element will be ignored.

On return from Insert_In_List the loop execution checks on whether more names are
available from the user, in

TEXT_IO.Put (Item=> "More names- y or n? ");
TEXT_IO.Get (Item=> More_Names);
TEXT_IO.New_Line;

The user can respond with 'y' or 'n', or not respond. If the user fails to respond execution is
stalled. If and when the user returns 'n' for More_Names, the loop will terminate. With a
return of 'y' the loop will continue. If and when the loop terminates the procedure terminates as
well.

In summary, let user inputs be a sequence of the form

name-1, y, name-2, y, ... name-k, n

First, if 1 <= k <= 200, Name_Array will be filled from 1 to k with name-1, name-2, ... name-k
in sorted order, and Last set to k.

Second, if k > 200, Name_Array will be filled from 1 to 200 with name-1, name-2, ... name-200 in
sorted order, and Last set to 200.

Finally, let user inputs be a sequence of one of the forms

name-1, y, name-2, y, name-k, y,
name-1, y, name-2, y, name-k, y
name-1, y, name-2, y, name-k
Null

Then Create_List will not terminate.

10.5 - Behavior of Linked Lists 10-53

~

Procedure Show_List

The procedure Show_List has the specification as discussed above, namely to

procedure Show_List;
Except for exceptions discussed below: print the current list;

-- Exceptions are: no exceptions

Procedure Show_List is not iterative, but following the user start up will begin with the
message given in the first two statements

TEXT_IO.Put (Item=> "Your list contains");
TEXT_IO.New_Line;

and will follow that with all elements found (including duplicates) by checking first if Last >
0, and if so defining a for loop called Put_Names from 1 to Last, and returning all Names found
in Name_Array at those locations, namely in

if Last > 0
then

Put_Names:
for Count in 1 .. Last
loop

TEXT_IO.Put (Item=> Name_Array (Count));
TEXT_IO.New_Line;

end loop Put_Names;
end if;

If Last= 0, only the message "Your list contains "will appear for the user.

In summary, Show_List will put the message "Your list contains "followed by a list of
all elements in the list on separate lines.

Procedure lnsert_ln_List

The procedure Insert_In_List has the specification as discussed above, namely to

procedure Insert_In_List;
Except for exceptions discussed below: insert element provided

by user in sorted place in list;
Exceptions are: no element is provided; if list is already full

with Max_Length elements, ignore element;

Procedure·Insert_In_List begins by two declarations of New_Name of type Names, and Count
of type Index_ Type initially 1. It begins with three TEXT_IO operations to get a value to be
inserted called New_Name, as follows.

TEXT_IO.Put (Item=> "Enter value to be inserted=>");
TEXT_IO.Get (Item=> New_Name);
TEXT_IO.New_Line;

If the user does not respond, execution is stalled. Otherwise New_Name will have a value to
enter into Name_Array. The rest of the procedure is a single if statement, starting with

if (Last > 0) and (Last < Index_Type'LAST)

10-54 Chapter 10 - Ada Package Design

so that three conditions will be found, first in the then part, second if Last = 0 in an elsif part,
and third if Last= Index_ Type' LAST in the else part. We carry out these three cases next.

if (Last > 0) and (Last < Index_Type'LAST)
then

Find_Place:
while (Narne_Array (Count) < New_Narne) and (Count <= Last)
loop

Count := Count + 1;
end loop Find_Place;
Move_Names:
for Index in reverse Count .. Last
loop

Narne_Array (Index+ 1) := Name_Array (Index);
end loop Move_Names;
Last := Last + 1;
Narne_Array (Count) := New_Name;
TEXT_IO.Put (Item=> "Value has been inserted.");
TEXT_IO.New_Line;

elsif Last = 0
then

Narne_Array (Count) := New_Name;
Last := Last + 1;
TEXT_IO.Put (Item=> "Value is only element.");
TEXT_IO.New_Line;

else
TEXT_IO.Put (Item=> "Element can not be added. ");
TEXT_IO.Put (Item=> "Your list is full.");
TEXT_IO.New_Line;

end if;

The first part finds a place for the New_Name, then moves the names above it one positipn,
increments Last by one, inserts the New_Name into the right place in Narne_Array, and finally
returns a message of the work to the user. Finding a place caUed Count for New_Name is
straight forward in searching for it in the while condition. Moving the names beyond it must be
done in reverse order from Last down to Count to preserve the data. Now Last must be
incremented, and New_Narne can be inserted at place Count. Finally the message given by

TEXT_IO.Put (Item=> "Value has been inserted.");
TEXT_IO.New_Line;

completes this first part.

The second part deals with the special case Last = 0 so the list is currently empty, so the two
statements, since Count= 1,

Narne_Array (Count) .- New_Narne;
Last := Last + 1;

insert New_Name at the start of Name_Array, and Last is incremented to 1. Finally the
message given by

TEXT_IO.Put (Item=> "Value is only element.");
TEXT_IO.New_Line;

completes this second part.

10.5 - Behavior of Linked Lists 10-55

The third part returns a message to the user

TEXT_IO.Put (Item=> •Element can not be added. •);
TEXT_IO.Put (Item=> •Your list is full.•);
TEXT_IO.New_Line;

to the effect that the element cannot be added to the list.

In summary, the user either returns a name on request or does not. If a name is returned, then

If Last < 200, the name is added to the end of Narne_Array and Last incremented.

If Last= 200, the name is ignored.

If a name is not returned, execution is stalled.

Procedure Delete_From_List

The procedure Delete_From_List has the specification as discussed above, namely to

procedure Delete_From_List;
Except for exceptions discussed below: erase one element of the

value given or signify no such value found;
Exceptions are: no element is provided;

Procedure Delete_From_List begins by two declarations

Count : Index_Type := 1;
Old_Narne : Names;

Execution begins with three TEXT_IO operations to get a value to be deleted called Old_Narne,
as follows.

TEXT_IO.Put (Item=> •Enter value to be deleted=> •);
TEXT_IO.Get (Item=> Old_Narne);
TEXT_IO.New_Line;

If the user does not respond, execution is stalled. Otherwise Old_Narne will have a value to
remove from Name_Array. The rest of the procedure is a single if statement which checks if
Last> 0 so that elements exist in Name_Array, and if so then looks for Old_Name in it, or that
Last= 0 and the list is empty.

if Last > 0
then

Find_Value:
while (Narne_Array (Count) I= Old_Narne) and (Count < Last)
loop

Count := Count + 1;
end loop Find_Value;
if Count < Last
then

Move_Narnes:
for Index in (Count+ 1) .. Last
loop

Narne_Array (Index- 1) := Narne_Array (Index);
end loop Move_Narnes;

1 0 - 56 Chapter 10 - Ada Package Design

Last := Last - 1;
TEXT_IO.Put (Item=> "Name deleted.");
TEXT_IO.New_Line;

elsif Name_Array (Last) = Old_Name
then

Last := Last - 1;
TEXT_IO.Put (Item=> "Name deleted.");
TEXT_IO.New_Line;

else
TEXT_IO.Put (Item=> "Name not found.");
TEXT_IO.New_Line;

end if;
else

TEXT_IO.Put (Item=> "Your list is empty.");
TEXT_IO.New_Line;

end if;

The then part consists of a while loop followed by an if statement. The while loop
Find_ Value will search Name_Array for Old_Name with variable Count. The search will
begin at 1 and go no farther than Last -l.lt will stop if and when Old_Name is found. What
follows is an if statement on condition Count <Last, with a then part, an elsif part, and an
else part. In the then part, if Old_Name is found before Count reaches the current value of Last
then a for loop called Move_Names will move all elements beyond Old_Name one unit up,
overriding Old_Name, and Last is decremented by one with the message

TEXT_IO.Put (Item=> "Name deleted.");
TEXT_IO.New_Line;

In the elsif part if o ld_Name = Name_Array (Last), 0 ld_Name is deleted by decrementing
Last by one with the same message

TEXT_IO.Put (Item=> "Name deleted.");
TEXT_IO.New_Line;

If Name_Array (Last) is not Old_Name the message

TEXT_IO . Put (Item=> "Name not found.");
·rEXT_IO. New_Line;

is reported. Finally, in the outer else it is discovered that Last = 0 with the message

TEXT_IO .Put (Item=> "Your list is empty.");
TEXT_IO.New_Line;

In summary, the procedure either deletes a name on request or does not.

If the name is found, then the name is deleted from Name_Array and Last decremented.

If the name is not found, no change to Name_Array or Last is made.

If a name is not returned, execution is stalled.

10.5 - Behavior of Linked Lists 10-57

~ -

1 0.5.4 Exercises

1. Expand the specification for List_Processihg to completely define the package already
designed, keeping it in user terms rather than Ada.

2. Redesign List_Processing to list repeated elements only once, but record a count with
each existing element. Is any change in specification implied?

· 3. The current specification and design for List_Processing defines Create_List to add to
any list already there. How would the specification and design be changed to start always
new lists with Create_List?

4. The current specification and design for List_Processing alloWs Insert_In_List to
start a list before Create_List has been used. How would the specification and design be
changed to force the use of Create_List to start a list?

5. Identify how this partial specification for List_Processing maps into the design, and
what remains as good engineering judgment in its verification?

Endnotes

1. 3 sigma is a term used to express the quality of an object; it indicates .001 failures per usage.

2. 6 sigma is an expression of greater quality equal to .000000002 failures per usage.

3. G. Booch, Software Engineering with Ada, The Benjamin/Cummings Publishing Co., 1983.

10-58 Chapter 1 0 - Ada Package Design

Chapter 11

Sequential Ada IV

The programming world that.we have created so far is very artificial. In particular, all of the
numeric values that we have encountered are whole counting numbers, i.e. integers. We know
that in the real world not all numeric values can be represented in this manner. For example,
consider a monetary system where only whole dollar amounts are allowed. Further, consider
what happens when we divide two integer values that are not multiples of one another, say 5 and
2. The result of that division is 2.5, yet up to now we have only allowed whole numbers to
represent the results of such a division and thus we would obtain a result of 2. Oearly, this lack
of precision is intolerable if it is your money that is being lost!

Therefore, we now will expand our treabnent of numeric values to include the rational numbers
that are represented in Ada as having fractional parts. Thus, if we divide the integer 5 by the
integer 2, we will still obtain the integer 2 as the quotient. However, when we divide the floating
point value 5.0 by the floating point value 2.0 we will obtain the floating point value 2.5, which is
more in keeping with our real world experiences.

Later in this chapter, we will discuss the parameterization of record types using a discriminant
and the combination of the array and record types to create arrays of records and records with
array components. Next we will investigate a new concept in Ada that will afford us the
capability of enforcing our software engineering principle of information hiding, namely the
private type. Finally, we will explore the use of file formats for input/ output of textual data.

11.1 Real Types

Real values conceptually consist of an unbounded, infinitely long set of numeric values with
unbounded and infinite precision. In other words, these values consist of all possible values of
numeric quantities extending from negative infinity to positive infinity on the number line, with
an infinite level of precision. This data type is called the uni versal_real. Unfortunately, there
are no machines that can represent an infinite range of values nor can they represent even a
portion of these values with anything approaching infinite precision. Therefore, we are forced by
hardware constraints to limit uni versal_real to a subset of these values that are representable
on any given machine. In consequence, each implementation of Ada will provide a machine
dependent type called FLOAT that will consist of the representable values of floating point
numbers with some machine limited precision. The details of how these values are stored are not
important for our purposes, but suffice it to say that these floating point numbers are represented
internally differently than the integer values that we have already discussed.

In addition, Ada provides us with the conceptual ability to specify either a relative bound on the
error of the actual value and its internal representation, or an absolute bound on this error. What
this means and why it is important will be explained in this section.

Chapter 1 - Sequential Ada IV 11 - 1

11.1.1 Floating Point Types and Subtypes

As was previously mentioned, the floating point values in any given implementation of Ada
represent the precision and range limitations of the underlying computer. As in the integer types
that we have already seen, there is a predefined type called FLOAT that is provided for every
Ada implementation. In addition, the user is free to define other floating point types, specifying
the relative precision, and optionally the range, to be used. The formal syntax for a floating point
type and subtype is given next

full_type_declaration ::=type identifier ia type_definition;
type_definition ::= real_type_definition
real_type_definition ::= floating_point_constraint
floating_point_constraint ::= floating_accuracy_definition

[range_constraint]
floating_accuracy_definition ::= digit• static_simple_expression
subtype_declaration ::= aubtype identifier i• subtype_indication;
subtype_indication ::= type_mark [constraint]
type_mark ::= type_name I subtype_name
constraint ::= floating_point_constraint

Floating Point Type and Subtype Declaration
Syntax Definition 11.1

This syntax can also be shown in graphic form as follows.

full_type_declaration ::=

identifier

type_definition

type_definition ::=

real_type_definition

real_type_definition ::=

floating_point_constraint

11 -2 Chapter 11 - Sequential Ada IV

floating_point_constraint

floating_accuracy_definition

range_constraint

floating_accuracy_definition ::=

11. 1 - Real Types

static_simple_expression

subtype_declaration ::=

subtype identifier

subtype_indication

subtype_indication

~ type_mark 1~-.-----------------r~~~
~ constraint~

type_mark

type_name

subtype_name

constraint

--~" floating_point_constraint

Floating Point Type and Subtype Declaration
Syntax Chart 11.1

11 -3

Sample floating point type and subtype declarations are

type Ratio is digits 3 range 2.0 .. 5.3;
type Hand is digits 5;
type Length_Measures is digits 6 range -100.0
subtype Small_Hand is Hand digits 3 range 0.0
subtype New_Ratio is Ratio;
subtype My_Length_Measures is Length_Measures

100.0;
1.2;

range -10.0 .. 10.0;

In these examples, the type Ratio is defined as a floating point type where objects of this type
are represented internally with three digits of precision throughout the range from 2.0 to 5.3. The
type Hand is represented with five digits of precision, and takes the default range of values for
floating point numbers as provided by the implementor of the Ada compiler. The type
Length_Measures defines a floating point type with six digits of precision throughout the
range -100.0 to 100.0. Note that a given Ada implementation is allowed to limit the number of
digits of precision that it supports, according to the underlying hardware. Thus, on one machine
it may be the case that six digits of precision is the maximum that will be allowed, whereas on
another machine you might be able to have up to nine digits of precision. The compiler will tell
you at compile time if it is unable to support the requested level of precision.

The subtype Small_Hand represents a restricted subset of the values in the type Hand, reducing
the required precision to only three digits and introducing a range constraint not present in the
type Hand. Note that the precision specified in a subtype declaration must be no greater than the
precision required in the type. Thus, you can lower the required precision, but you cannot
increase it. The subtype New_Ratio does not restrict the type Ratio in any way, either in range
or in precision. In effect, this is simply an alias for the type Ratio and achieves the same effect as
a renaming of this type. The subtype My _Length_Measures represents a reduction in the
possible range of values from the type Length_Measures without reducing the required
precision.

In addition to user defined types, which are based on an analysis of the requirements of the
problem to be solved, each implementation of Ada provides a predefined type named FLOAT.
This type is used in the same manner as the predefined type INTEGER. The predefined type
FLOAT has a degree of precision that is implementor defined and a range that is also
implementor defined. The values of these limits can be found in the required Appendix F to the
Reference Manual for the Ada Programming Language (LRM) that the vendor must supply with
the compiler.

We could declare objects using these types in the same manner as we have seen previously, such
as

My_Hand : Hand;
The_Distance : My_Length_Measures := 1.7;
Pi : FLOAT := 3.14159;

It might be useful to examine what is meant by the term digits of precision. What does it mean to
specify that there will be five digits of precision? This term is used to refer to the number of
significant digits that an object will require. U we have five significant digits, then the leftmost
five digits in a canonical representation of the number are the only digits that will be meaningful.
This is perhaps easier to see in the illustration given in Figure 11.1.

11 -4 Chapter 11 - Sequential Ada IV

type NUMBERS is digits 3 range 0.0 .. 20_000.0;

o .w~ o .w~ o .w~ ... ~~ ..2..a...2~ ... m. ol m.ol .ill
.l.Q.QO. 0 I ••• lQlO. 0 I ••• .l.Q.QOO. 0 I .lQlOO. 0

Relative Precision
Figure 11.1

Figure 11.1 also shows what is meant by the term relative precision. Note that numbers closer to
zero give greater significance to the number of significant digits. Thus, near zero in this example,
three digits of precision means that the difference between any two values in this type is only
0.001 or one one-thousandth. As we move further from zero, even with the same number of digits
of precision, the significance of those digits lessens. Thus, when we approach 100, we see that
with three significant digits we have 98.1, 98.2, etc., where the distance between two successive
values in the type is now every tenth instead of every one thousandth. As we pass 100 and
approach 1000, we see that 997.0, 998.0, etc. are separated by 1.0 which is three orders of
magnitude less significant than when we were close to zero and the distance between two
successive values was one thousandth! Thus, we say this is relative precision because the number
of significant digits does not change, but the meaningfulness of those digits increases as we
approach zero and decreases as we get further away from zero. Similarly, the number of
significant digits is merely the number of digits that have meaning in a number. Thus, the
number 10_000_000.0 represented by a type that was declared to be digits 3 would mean that
only the leftmost three digits (10000000.0) would have meaning. Adding one to this number
would not change it because we would lose the significance of the one, i.e., 10000000.0 + 1.0 =
10000000.0 because 10000001.0 is not representable due to the limitation of only three significant
digits.

This phenomena can be a very large problem and may materially affect the results obtained in
somewhat innocent looking computations. Thus, you must always be vigilant not to allow this
type of a problem to creep into your algorithms. There is a whole field of study called numerical
analysis which concentrates on solutions to problems of this nature. If you are interested in
learning more about roundoff error, relative precision problems, truncation, and internal
representation of numeric values you should consider taking a course in numerical analysis.

Attributes

For any given floating point type, say F, the attributes available to the user include the following

FIRST Yields the first value of type F, denoted F' FIRST
LAST Yields the last value of type F, denoted F I LAST
DIGITS Yields the number of decimal digits in the decimal mantissa of the model

numbers for this subtype, denoted F 1 DIGITS
MANTISSA Yields the number of binary digits in the binary mantissa of the model numbers

of this subtype, denoted F 1 MANTISSA
EPSILON Yields the absolute value of the difference between the model number 1.0 and the

next model number above for this subtype, denoted F 1 EPSILON

Attributes can be used to query the system at runtime to determine values that may influence the
executing algorithm. They are very useful for achieving portability.

11.1 - Real Types 11 -5

As you can see, there is a whole new world of numeric values possible when we include the
floating point types. Many computations that would not be possible with only the whole
numbers are now available for our use. But there is another kind of real number that we still need
to discuss, the fixed point number.

11.1.2 Fixed Point Types and Subtypes

Fixed point types are somewhat unique in programming languages. If you have ever used
another programming language, then more than likely the real numbers that you have used were
floating point numbers. In Ada, we have the choice between the floating point numbers as
previously described, and fixed point numbers. You will recall that floating point numbers
represented a relative bound on the error of a number's representation. Fixed point numbers, in
contrast, represent an absolute bound on this error.

The formal syntax of a fixed point number is given next.

full_type_declaration ::=type identifier 1• type_definition1
type_definition ::= real_type_definition
real_type_definition ::= fixed_point_constraint
fixed_point_constraint ::= fixed_accuracy_definition

[range_constraint]
fixed_accuracy_definition ::=delta static_simple_expression
subtype_declaration ::= 8ubtype identifier 1• subtype_indication1
subtype_indication ::= type_mark [constraint]
type_mark ::= type_name I subtype_name
constraint ::= fixed_point_constraint

Fixed Point Type and Subtype Declaration
Syntax Deflnhlon 11.2

This syntax can also be shown in graphic form as follows.

full_type_declaration ::=

identifier

type_definition

type_definition ::=

real_type_definition

real_type_definition ::=

fixed_point_constraint

11 -6 Chapter 11 - Sequential Ada IV

fixed_point_constraint ::=

fixed_accuracy_definition

range_constraint

fixed_accuracy_definition ::=

11.1 - Real Types

static_simple_expression

subtype_declaration ::=

aubtype identifier

subtype_indication

subtype_indication

~ type_mark \~~~---------------r~~-.
lj constraint~

type_mark

type_name

subtype_name

constraint : : =

fixed_point_constraint

Fixed Point Type and Subtype Declaration
Syntax Chart 11.2

11 - 7

Note that the range constraint is shown as optional. However, when you are declaring a new
fixed point type the range constraint is required. On the other hand, when you declare a fixed
point subtype the range is optional. Therefore, in the Syntax Definition and Syntax Chart the range
must be shown as optional, even though we now know that for a type declaration it is required.

Sample fixed point type declarations are

type Dollar_Value is delta 0.01 range 0.0 .. 1.0;
type Very_Precise is delta 0.0006 range -10.185 .. 17.893;
subtype Not_So_Precise is Very_Precise delta 0.001;
subtype Even_Less_Precise is Very_Precise delta 0.01

range -1.0 .. 1.0;
subtype My_Dollar is Dollar_Value;

In these examples, the type Dollar_ Value is defined as a fixed point type (note the use of the
reserved word delta to mean fixed point types, while the reserved word digits is used for floating
point types) where successive values of objects of this type are 0.01 apart throughout the entire
range of 0.0 to 1.0. Remember that in floating point types, with relative precision, the closer we
were to zero the more precise was our represented value. In this fixed point type, throughout the
entire range of values, all values will be 0.01 apart1• This is termed an absolute bound on the error,
contrasted with the relative bound provided by floating point types.

For the type Very_Precise, we see that objects of this type will be represented by values
separated by 0.0006 throughout the range -10.185 to 17.893. Recall that for fixed point type
definitions, the range must be provided. The subtype Not_so_Precise represents a restriction
on the type Very_Precise where the delta or difference between successive values has been
reduced to 0.001 from 0.0006. As in floating point types, we can reduce the required precision, but
we may not increase it. Also, this subtype does not have, nor does it require, a range constraint. .
Since one is not provided, it will have the same range constraint as the type Very _Precise. The
subtype Even_Less_Precise is also a restriction on the type Very _Precise, but in this case
we have not only reduced the required precision (delta), we have also reduced the applicable
range.

Finally, for the subtype My _Dollar, we have merely provided an alias or renaming of the type
Dollar_ Value without restricting either the accuracy requirements or the range. Thus, objects
of this type will be identical to those of Dollar_ Value.

All fixed point types in Ada must be declared by the user. In fact, there is only one predefined
fixed point type, Duration, which is used to represent time intervals. In particular, there is no
predefined type FIXED that can be equated to the predefined type FLOAT.

We could declare objects using these types in the same manner as we have seen previously, such
as

The_Dollar : Dollar_Value;
The_Value : Very_Precise := -9.285;

In the last section, we explained what we meant by the term relative precision by showing a
figure that illustrated our points. In this section we will do the same to illustrate the concept of
absolute accuracy. Refer to Figure 11.2.

lThis is not quite true. We have actually specified the largest power of two not greater than the
delta value. However, this is not a course in numerical analysis, so for our purposes we will infer
that the delta represents the actual bound on the error.

11 • 8 Chapter 11 • Sequential Ada IV

type TENTHS_OF_INCH is delta 0.1 range 0.0 .. 1.0;

0.0 0.1 0 .2

I
0 .3 0.4 0 .5 0.6 0.7 0.8

TENTHS_OF_INCH

Absolute Error
Figure 11.2

0.9 1.0

I I

In this figure we illustrate that throughout the entire range of permissible values for this type, the
distance between any two representable values is always the same, 0.1. It does not matter
whether we are close to zero or far away, the distance between any two values will always be the
same. This is what is meant by an absolute bound on the error. Of course, in real life, we must deal
with machines that use binary to represent these values. Therefore, the actual values will not be
exactly as illustrated here. However, for our purposes, this explanation will suffice.

Attributes

For any given fixed point type, say F, the attributes available to the user include the following

FIRST Yields the first value of type F, denoted F' FIRST
LAST Yields the last value of type F, denoted F' LAST
DELTA Yields the value of the delta specified in the fixed accuracy definition for this

subtype, denoted F ' DELTA
MANTISSA Yields the number of binary digits in the binary mantissa of the model numbers

of this subtype, denoted F 'MANTISSA
SMALL Yields the smallest positive (non-zero) model number for this subtype, denoted

F'SMALL
LARGE Yields the largest positive (non-zero) model number for this subtype, denoted

F'LARGE

Thus, we see that fixed point numbers are conceptually very intriguing, but due to limitations in
their implementations, they are not as useful as we might hope. For this reason, we will deal with
floating point values for most of the rest of this course.

11.1.3 Exercises

<<To be added >>

11.2 Composite Types Revisited

We have already seen Ada's composite types, namely the record and the array. We have
discussed some of their more basic features and shown their primitive operations. In this section,
we will examine extensions and combinations of these data types to see what additional
computation power is derived from their use. These basic types are very useful in combination to
represent real-world problems internally in a form that mimics the problem domain. This will be
shown in more detail in the following subsections. ·

11.1 - Real Types 11 -9

11.2.1 Records whh Discriminants

Recall that a record is a data structure that allows us to collect information about an entity into a
single organized structure. We say that we have physically localized information that is logically
related. This supports the software engineering concepts of localization and abstraction. Records
allow us to group together heterogeneous data types that each represent some characteristic of an
entity. Collectively they represent all of the information that we know about an entity.

However, one limitation of this composition of data is that all of the components of the record
must be independent. By this we mean that each component represents data that is complete unto
itself. There is no way to have one component depend upon the value of another component. For
example, it would be very useful if we could create a record as follows

type Buffer is-- ILLEGAL!!!!
record

Size : Positive;
Item: String (1 .. Size);

end record;

where the number of characters in the string called Item is dependent on the value in Size. We
can see immediately what the problem is here. The component Size does not have a value so
how many characters should be allocated for the string Item? Thus, we are not allowed to have
this type of relationship.

However, we know that record components can be given initial values. What if we corrected the
record to appear as follows?

type Buffer is-- STILL ILLEGAL!! !I
record

Size : Positive := 10;
Item: String (1 .. Size);

end record;

While this might have allowed us to determine that the number of characters in Item is ten, it
would not allow us much flexibility if we decided that we wanted another object of this type that
had twenty characters in Item. Thus, we are left with a partial and unsatisfactory solution to our
problem. Is there a better, more flexible means to accomplish what we need?

The answer is a record with a discriminant A discriminant to a record acts as a parameter to
allow us flexibility in declaring varying objects of the given type. It makes the record analogous
to the unconstrained array we studied earlier, where different objects of the same array type
could be of different sizes.

The discriminant part of the record specifies the discriminants for that record. In addition to
acting as a parameter to the record, the discriminant is also considered a component of the
record. The type of the discriminant must be discrete. The syntax for a record with discriminants
is as shown below.

full_type_declaration ::=type identifier [discriminant_part] ia
type_definition;

discriminant_part ::= (discriminant_specification
{; discriminant_specification})

discriminant_specification ::= identifier_list a type_mark
[a• expression]

type_definition ::= record_type_definition

11 - 10 Chapter 11 - Sequential Ada IV

record_type_definition .. -record
component_list

end record
component_list ::= component_declaration { component_declaration)

I null
component_declaration ::= identifier_list a

component_subtype_definition [a• expression];
component_subtype_definition ::= subtype_indication
subtype_indication ::= type_mark [constraint]
type_mark ::= type_name I subtype_name
constraint ::= range_constraint I floating_point_constraint

fixed_point_constraint I index_constraint

Record Type Declaration
Syntax Definition 11.3

This syntax can also be shown in graphic form as follows.

full_type_declaration ::=

identifier

discriminant_part

type_definition

discriminant_part

discriminant_specification

identifier_list type_mark

expression

11.2 - Composite Types Revisited 11 - 11

11 -12

type_definition

record_type_definition

record_type_definition

cornponent_list

cornponent_list

1 , 11-1 cornponent_declaration I 1 1 ~

cornponent_declaration

ident if ier_list

. ·. ·-

cornponent_subtype_definition

expression

cornponent_subtype_definition ::=

subtype_indication

subtype_indication

4 type_rnark I)lor Y constraint~
Chapter 11 - Sequential Ada IV

type_mark

type_narne

subtype_name

constraint

range_constraint

floating_point_constraint

fixed_point_constraint

index_constraint

Record Type Declaration
Syntax Chan 11.3

Returning to our previous example, we can use the discriminant to associate the size Oength) of
the string with the value of the record component size. Thus, we could define the following
record

type Buffer (Size : Positive) is
record

Item: String (1 .. Size);
end record;

where Size is the discriminant for the record and is used to specify the upper bound to the string
component Item. When we declare an object of this type we are required to specify the value for
Size. Thus, we would declare

My_Buffer
Your_Buffer

Buffer (10);
Buffer (20);

where My_Buffer would contain a value of 10 forMy_Buffer .Size and My_Buffer. Item
would be a ten character string. Your_Buffer would contain a value of 20 for
Your _Buffer . Size and Your _Buffer . Item would be a twenty character string.

We see that we have two objects of the same type, but with different size components. This is the
value of a record with discriminants. We can parameterize it to fit variable sized data and we can
associate two or more components of a record to achieve a dependence and a correspondence
between them. ·

Note that we have created a small problem. Suppose that we have a user that attempts to declare
an object of type Buffer in the following manner

11.2 - Composite Types Revisited 11 - 13

;.,--

The_Buffer : Buffer; --ILLEGAL!!!!

This would be illegal because the user did not provide a value for Size, the discriminant.
Consequently, the compiler would not have any idea how long the string Item should be. In the
absence of this data, the compiler must reject this declaration and the user would get a
compilation error.

We can solve this problem by introducing the concept of a default value. A default value is one
that we provide in the record declaration that will be used if the user does not specify a value for
the discriminant. We would change our definition of Buffer to be

type Buffer (Size : Positive := 10) is
record

Item: String (1 .. Size);
end record;

where we have added the default value of ten for Size. Now the user can declare an object of
type Buffer and specify the value of Size which will be the one used to determine the upper
bound on the string in Item. On the other hand, if the user does not specify such a value, the
default value of ten will be used. Returning to our previous object declarations we see that

Buffer (10);
Buffer (20);

My_Buffer
Your_Buffer
The_Buffer Buffer; -- uses the default value of ten

are all now legal object declarations. The first object has a ten character string for
My_Buffer. Item, the second has a twenty character string forYour_Buffer. Item, and the
last object uses the default of ten to obtain a ten character string for The_Buffer. Item.

As was previously mentioned-, the discriminant is a component of the record and can be selected
in the same manner as any other component of the record using the dot notation. It is somewhat
unique, however, in that it may not be changed directly. This should be obvious since there is a
dependence between the discriminant and other components of the record. If we changed the
discriminant, this relationship would be destroyed. For example, suppose we used our previous
type declaration to declareMy_Buffer as above. My_Buffer .Size has a value of tO and
My _Buffer . It em is ten characters long since the string is defined to be the length of
My_Buffer .Size. Suppose that we now decided to change the valueofMy_Buffer .Size, say
as follows

My_Buffer.Size := 20;

What would be the relationship now between My_Buffer. Item and My_Buffer .Size? How
could we have a ten character string (Item) when Size has a value of twenty? In order to avoid
this problem, Ada will not allow you to directly change the yalue of the discriminant.

However, we mentioned that one of the advantages of the discriminant is that it allows us to
parameterize the record object. This would not be very useful if it was a one-time feature that
could only be used when the object was initially declared. Thus, Ada provides a mechanism to
change the discriminant, and consequently, the whole record. This can be done by using an
aggregate assignment, where all of the new values for the record component are consistent,

11 -14 Chapter 11 - Sequential Ada IV

i.e., the dependencies are preserved. For example, we could change My _Buffer to be a twenty
character string by using the following aggregate assignment

My_Buffer := (20, MThis is new stuff!! t•);

which simultaneously changes the value of the discriminant to twenty, and the length of
My _auf fer . I tern to be twenty characters long, preserving the relationship between these two
components.

Thus, to change the value of a discriminant we must do an aggregate assignment Also, in order
to be able to do the aggregate assignment, there must be a default value provided for the
discriminant. If no default value is provided when the type is declared, then this record cannot be
mutated (changed), even with an aggregate assignment.

11.2.2 Arrays of Records

We have previously discussed the composite data structures of the array and the record. The
array is used when all of the components are of the same type, i.e., the components are
homogeneous. The record is used when the components of the entity are of potentially different
types, i.e., the components are heterogeneous. In and of themselves, these composite data
structures are powerful structuring tools for data, helping to model real-world entities inside of
the computer.

As powerful as these data structures are alone, they are even more powerful in combination. It is
sometimes very useful to define an array whose component values are records. This is called an
array of records. Since the values stored in each component of the array are the same, i.e., they are
objects of the record type, this combination makes sense.

Consider the following data type declarations,

type Months is (JAN, FEB, MAR, APR,
JUL, AUG, SEP, OCT,

type Days is (SUN, MON, TUES, WEDS,
type Years is range 1901 .. 2010;
type Periods is range 1 .. 31;
type Dates is
record

The_Day
The_Month
The_Period
The_Year

end record;
Today : Dates;

Days;
Months;
Periods;
Years;

MAY, JUN,
NOV, DEC);
THURS, FRI, SAT);

Given these declarations, we can specify the components of a single day of the year by the
aggregate assignment

Today := (The_Day => FRI, The_Month => APR,
The_Period => 24, The_Year => 1992);

As we have already seen, this will give us a record with the structure shown in Figure 11.3

11.2 - Composite Types Revisited 11 - 15

Today : DATE;
begin

Today.Day_Of_Week
Today.Day_Nurnber
Today.Month_Name
Today.Year_Number

end;

·- FRI;
:= 24;
.= APR;
:= 1992;

Date Picture
Figure 11.3

FRI Day_Of_Week

24 Day_Nurnber

APR Month_Name

1992 Year_Number

Today

in which we could access individual components using the dot notation.

We can now combine this data structure with the array structure to generate the following data
declarations to define a collection of dates,

type Agendas is array (Periods) of Dates;

which results in a collection of thirty one records capable of holding one date each. This would
allow us to define

January : Agendas;

to be an array of thirty one dates. However, when we tried to use this for February, we would
discover that we would also have thirty one dates in February! We could choose to handle this
by ignoring the dates above 28 (or 29 in a leap year). However, we already have seen a better way
to define this type. Suppose we change the definition of Agendas to be

type Agendas is array (Periods range <>) of Dates;

This results in an unconstrained array that requires us to specify the number of days in the period
when we declare an object of this type. Thus, we would declare the arrays for each month as

January
February
March
April

Agendas (31);
Agendas (28);
Agendas (31);
Agendas (30);

in which case each month would have exactly the number of dates that is required. An
assignment of a date to a particular place in the Apr i 1 array would be as follows

April(24) := (The_Day => FRI, The_Month =>APR,
The_Period => 24, The_Year => 1992);

Thus, we see how we can combine the record data structure with the unconstrained array to
produce a powerful synergy.

Now if we examine what we have done so far, we see that there is a relationship between two of
the components of the type Dates. Note that the number of elements in The_Period which
represents the number of days in any given month, is directly related to the month. The current
type declaration allows us to have a valid value for The_Per iod of thirty one even when
The_Month is FEB. We can solve this problem by using a discriminant for the type Dates.
Consider the following declaration

11 -16 Chapter 11 - Sequential Ada IV

type Dates (The_Month Months .- JAN) is
record

The_Day : Days;
The_Year : Years;
case The_Month is

when JAN I ~~ I MAY I JUL I AUG I OCT I DEC =>
Long_Month : Periods;

when APR I JUN I SEP I NOV =>
Normal_Month: Periods range 1 .. 30;

when FEB => Short __ Month : Periods range 1 .. 28;
end case;

end record;

This is an example of a variant record and is presented here only to show you some possibilities.
We will return to this kind of a record later and discuss it in more detail. Note that it allows us to
vary the layout of the record based upon the value of the discriminant

11.2.3 Records with Arrays

In the last section we examined the ways in which we could combine the record composite type
and the array composite type to form arrays of records. In this section we wiU examine the other
possibility, records that contain arrays. Actually we have already seen this idea in the discussion
of records with discriminants. Recall that we had the following type declaration

type Buffer (Size : Positive .- 10) is
record

Item: String (1 .. Size);
end record;

in which the second component of the record type Buffer is an array of characters (string).

Consider a class of students that have grades from several examinations. We might choose to
represent the examination scores as an array, indexed by the examination number in one
dimension and the student number in the other dimension. Collectively this information
represents all of the grade data for a given class. Thus, we might have

subtype Grades is Natural range 0 .. 100;
type Student_Number is range 0 •. 99;
type Exam_Number is range 1 .. 10;
type Examination_Grades is

array (Student_Number, Exam_Number) of Grades;
CS2003 : Examination_Grades;

This is a powerful way to encapsulate a significant amount of information. However, suppose we
wanted to further capture all of the information about examination grades for any given
professor. Suppose we have a professor that teaches CS2003, CS5160, and CS5161. We might
define a record that contains all of her examination data as follows

type Grades is
record

CS2003 Examination_Grades;
CS5160 Examination_Grades;
CS5161 Examination_Grades;

end record;
The_Professor : Grades;

11.2 - Composite Types Revisited 11 - 17

Now we can access and assign a perfect score to the fourth examination grade of the twenty
seventh student in CS5161 of The_Professor by the following

The_Professor.CS5161(27,4) := 10 0 ;

Thus, we can see once again the power of combining these two structuring tools into data
structures that represent the way the data is viewed or understood in the problem domain.

11.2.4 Exercises

<< To be added >>

11.3 Private Types

One of the principles of software engineering that we have discussed previously is the concept of
information hiding. This means that we desire to provide a type or a set of operations on a type to
the user, but we do not want to allow access to, or information about, the way the data type is
constructed. Indeed, we often do not even want the user to know how the data type is
constructed.

On first thought, this seems somewhat extreme. Why not let the user know how something is
implemented? The answer is that the user will either consciously or unconsciously take
advantage of that knowledge. Often the user will consciously adjust their using code to reflect
what they view as an optimal way of using the code provided. This may cause their code to
depend upon the current implementation. For example, let us say that the exported type is a stack.
Suppose the user needs to know the value of the item that is the third element down on the stack.
If the user relies solely upon the abstraction, there is no way to examine the value of the third
element in a stack without first "popping off" the two elements on top of it. This would require
popping the first element and storing it somewhere, then popping the second element and
storing it somewhere, and finally, popping the third element and examining it. Next, in order to
restore the stack to its original condition, the user would need to push these three elements back
onto the stack in their original order.

It should be obvious that this effort is time consuming and fraught with the danger of pushing
the elements back on the stack out of order. In short, there is a lot of work involved and the
potential for error is high, when all we need is the value of the third element in the stack.
Therefore, if the user knows that the stack is actually implemented as an array, it is much easier
to just index into the array at Top-2 to see the value stored there, then it is to go through this
popping and storing action. Naturally, the user is inclined to use the indexing "trick" to avoid the
difficulty with using the abstraction as it is designed.

The problem with this is that now the user's code depends upon the fact that the stack is
implemented as an array. Therefore, if we were to decide to change the implementation of our
abstraction from a bounded stack using an array to an unbounded stack using a linked list, the
user's code will fail. If the user had lived with our abstraction, then no change would have been
necessary for the user's code. However, now we must change not only the way the stack is
implemented, but every using program that took advantage of how it was implemented instead
of following the abstraction. This is a very large problem with huge cost implications.

11 - 18 Chapter 11 - Sequential Ada IV

The solution to this problem is to prevent the user from gaining any knowledge of how the
abstraction is implemented. In fact, we want to force the user to live with our abstraction and
follow the accepted interface activities. In the case of a stack, perhaps that would be simply push
and pop operations. The difficulty, of course, is how are we able to export a stack that is array
based without also exporting this implementation fact to the user? The answer is to use a private
type.

11.3.1 Introduction to Private Types

A private type is a type that allows us to export the data type and its associated operations to the
user so that the user may declare objects of this type and manipulate them using the operations·
that are exported. However, the user cannot use any other operation on these types except for
assignment, the test for equality, and the test for inequality. This limits the dependence of the
user on the implementation details of an abstract data type and forces the user to follow the
abstraction. However, the operations that are implicitly allowed in addition to those explicitly
provided may sometimes cause difficulty. We shall see an example of how this works and how it
helps in preserving the intended abstraction.

First, let us concentrate on the syntactic details of how a private type is declared. Private types
may only be declared in a package specification. In fact, the introduction of the private type
requires us to further define the package specification as having a visible part that is exported to
the user and a private part that is required but which is not exported. Let us examine the syntax
first and then return to our discussions and explanations.

package_specification ::=package identifier ia
{basic_declarative_item}
[private
{basic_declarative_item}]
end [package_simple_name]

basic_declarative_item ::= basic_declaration
basic_declaration ::= type_declaration

1 deferred_constant_declaration
type_declaration ::= private_type_declaration
private_type_declaration ::=type identifier

[discriminant_part] ia
[limited] private;

deferred constant declaration::= identifier_list :
- - constant type_mark;

Private Type Declaration
Syntax Definition 11.4

This syntax can also be shown in graphic form as follows.

11.3 - Private Types 11 - 19

package_specifcation

package identifier

basic_declarative_item

private

basic_declarative_item I , .,..I

package_simple_name

basic_declarative_item

basic_declaration

basic_declaration

type_declaration

deferred_constant_declaration

type_declaration

private_type_declaration

11 -20 Chapter 11 - Sequential Ada IV

private_type_declaration

identifier

discrirninant_part

limited

deferred_constant_declaration

identifier_list

type_rnark

Private Type Declaration
Syntax Chart 11.4

conatant

Perhaps the best way to understand how to use a private type is to see an example of its use.
Consider the local ice cream shop where each customer enters and takes a number from the
Serv _a_Matic machine. Over the head of the server is usually a sign that says Now Serving and
indicates a number. The server increments the Now Serving number every time he or she serves
another customer. The customer waits in line until the number displayed in the Now Serving
device is the same as the number that the customer obtained from the Serv _a_Matic. When that
event occurs, the customer gets served ice cream.

Imagine how we might automate this process and model it in a computer. We could declare a
package called Ice_Crearn_Shop as follows

package Ice_Crearn_Shop
is

type Numbers is range 0 .. 99;
procedure Take (A_Number :out Numbers);
function Now_Serving return Numbers;
procedure Serve (Number : in Numbers);

end Ice_Crearn_Shop;

11.3 - Private Types 11 -21

In this model we have defined a maximum of 100 customers (0 .. 99) that can be served. The
procedure Take models the customer entering the shop and taking a number from the
Serv _a_Matic. The function Now_serving returns the value of the current number customer
being served. The procedure Serve represents the actual preparation of your ice cream. We can
imagine a simplified package body that might look like the following

package body Ice_Cream_Shop
is

Serv_a_Matic : Numbers := 1;

procedure Take (A_Number : out Numbers)
is
begin

A_Number
Serv_a_Matic

end Take;

.- Serv_a_Matic;
:= Serv_a_Matic + 1;

function Now_Serving return Numbers
is separate;

procedure Serve (Number : in Numbers)
is separate;

end Ice_Cream_Shop;

Given this abstraction, it seems obvious that a well behaved user of this package would design a
procedure that takes a number and simply waits until it is time to be served. Then the procedure
lce_Cream_Shop. Serve is called to get the ice cream. Thus, we expect a user to create a
procedure as follows

with Ice_Cream_Shop;
use Ice_Cream_Shop;
procedure Eat_Ice_Cream
is

My_Number : Ice_Cream_Shop.Numbers;
begin

Ice_Cream_Shop.Take(My_Number);
Wait_My_Turn:
loop

if Ice_Cream_Shop.Now_Serving = My_Number
then

Ice_Cream_Shop.Serve;
exit Wait_My_Turn;

end if;
end loop Wait_My_Turn;

end Eat_Ice_Cream;

This user has taken advantage of the infamous use clause to provide direct visibility to the equality
operator needed to compare the function Ice_Cream_Shop. Now_Serving to the value
contained in the object My _Number. We will ignore the reason for this right now, but suffice it to
say that this is a valid use of the use clause. Note though, that the behavior of this user is the one
we described when we created the ice cream shop model. The user gets a number from the
Serv _a_Matic, then patiently waits until the Now_Serving function indicates that it is time to
serve the number the customer holds. When the customer has been served, he or she exits from
the waiting loop.

11 -22 Chapter 11 - Sequential Ada IV

Unfortunately, not all users are so well behaved, nor will they all follow the chosen abstraction.
Either intentionally, or unintentionally, the user of the Ice_Cream_Shop package may defeat
our abstraction in order to optimize their own implementation. For example, consider a not so
well behaved user who might write the following procedure

with Ice_Cream_Shop;
use Ice_Cream_Shop;
procedure Eat_Ice_Cream
is

My_Number : Ice_Cream_Shop.Numbers;
begin

Ice_Crearn_Shop.Take(My_Number);
Wait_My Turn:
loop

if Ice_Crearn_Shop.Now_Serving = My_Number
then

Ice_Crearn_Shop.Serve;
exit Wait_My_Turn;

else
My_Number := My_Number -1;

end if;
end loop Wait_My_Turn;

end Eat_Ice_Crearn;

In this procedure the user has decided that if the value returned by the function Now_Serving is
not the same as his or her number, then they will decrement the number. Thus, every time
through this loop if they are not able to be served they will reduce their number until it gets to the
value returned by Now_Serving. This is equivalent to checking the number, stepping around the
person in front of you in line, checking the number again, etc. until you get to the head of the line.
In the real world, if you were to try this, it would make many people very angry.It is also not
part of our abstraction of the ice cream shop. Why, then, was the user able to violate our
abstraction?

Upon examination we see that the problem occurs because we have exported (by virtue of listing
it in the package specification) the type Numbers. The type Numbers is an integer type. This
means that the user can declare an object of this type and manipulate it using the operations that
we explicitly exported for it such as Take, Now_Serving, and Serve. However, the user may
also use any of the operations appropriate for an integer type! Thus, addition, subtraction, etc. are
all available to this user even though we did not want that to be the case in our abstraction. We
are relying on the use of only the exported operations. We need a means to ensure that the user
can only use our exported operations and not any that are exported as a consequence of the
underlying type being used to represent a portion of our abstraction. We can do this with a
private type.

Consider the following package specification that changes the type Numbers from an integer
type to a private type.

package Ice_Crearn_Shop
is

type Numbers is private;
procedure Take (A_Number : out Numbers);
function Now_Serving return Numbers;
procedure Serve (Number : in Numbers);

private
type Numbers is range 0 .. 99;

end Ice_Crearn_Shop;

11.3 • Private Types 11 • 23

In this new package specification, the visible part of the package is from the word package until
the word private. Thus, we still are exporting all of the operations on the type Numbers, as well
as the type Numbers. The difference is that we have specifically stated that the type Numbers is
private. Consequently, the user may declare objects of this type and may manipulate them using
only the operations that we explicitly export, as well as assignment, the test for equality, and the
test for inequality, the three operations exported automatically with all private types.

The part between the wordpri vate and the end of the package is called the private part. Its sole
purpose is t~ indicate to the compiler how much storage is need to represent objects of this type.
Without the private part, we would lose the ability to separately compile specifications and
bodies when private parts were used. Therefore, it was decided to use the private part to provide
this information to the compiler, but to require that anything after the word private is not
exported. Thus, the user may be able to actually see how the abstraction is implemented, but he
or she cannot take advantage of it. This limitation is enforced by the compiler. To the user, it is as
if the private part did not exist. For this reason, in many manuals and vendor's listings of their
source code you will see an ellipsis after the word private because they do not want you to know
how they implement things, even though you could not use the information anyway. This part of
the package is a compromise between the needs of the compiler vendor and the requirements of
good software engineering abstraction and information hiding.

In the private part is the complete implementation of the types declared in the visible part as
being private. You may not leave the package specification without providing the complete
declaration of any types declared as private. Any constants declared whose type is a private type
must be given their values in the private part. Such a type cannot be given a value in the visible
part for that would give away the implementation. Thus, we must declare the constant to be of
the private type and hold off on providing its initial value until the private part. Such a constant
is called a deferred constant because the value is deferred for the private part.

Now the user cannot use the procedure that he or she wrote last time. Specifically, the subtraction
operation that was previously available when we exported Numbers as an integer type is no
longer available. Thus, the user's code shown above would not compile with this new package
specification.

We can see that private types are an extremely value asset in our implementation of the
abstractions that require information hiding. However, sometimes, the limitations of private
types are still not enough. We will examine this further in the next section.

11.3.2 Introduction to Limited Private Types

As we said in the previous section, the private type helps us to enforce our abstractions by
providing the capability to hide information from the user. With a private type the user is only
able to use the subprograms (operations) that we explicitly export to manipulate the private type,
as well as the operations of assignment, the test for equality, and the test for inequality which are
automatically available for all private types. Sometimes, however, even this is too much freedom.
It allows the user to subvert our abstractions.

To see this, consider the following procedure that a user wrote to use our Ice_Cream_Shop
package as modified.

11-24 Chapter 11 - Sequential Ada IV

with Ice_Cream_Shop;
use Ice_Cream_Shop;
procedure Eat_Ice_Cream
is

My_Number : Ice_Cream_Shop.Numbers;
begin

Ice_Cream_Shop.Take(My_Nurnber);
Wait_My_Turn:
loop

if Ice_Cream_Shop.Now_Serving = My_Nurnber
then

Ice_Cream_Shop.Serve;
exit Wait_My_Turn;

else
My_Number := Ice_Cream_Shop.Now_Serving;

end if;
end loop Wait_My_Turn;

end Eat_Ice_Crearn;

Note that in this case, the user has once again violated our abstraction by not waiting his or her
turn. In this case, the user checks to see if their number is the same as the value returned by the
function Now_Serving.lf it is, then the user gets the ice cream and exits the Joop.lf it is not the
same, the user assigns the value returned by the function Now_Serving to their number. This is
equivalent to going straight to the head of the line. In real life you cannot do this, so why was the
user able to defeat our abstraction and avoid waiting his or her turn? The answer is that the
private type gave the user operations (assignment, equality, and inequality) that we did not
foresee the user having available. The user then used these operations to defeat our abstraction.

We can prevent this by using a limited private type. The limited private type is exactly the same
as the private type except that no operations are exported implicitly. This means that the
available operations are limited to only the operations (subprograms) that we explicitly export in
the visible portion of the package specification where the limited private type is declared. This is
very handy for preventing the user from defeating our abstraction. Consider the following
change to the package specification to restrict the type Numbers to a limited private type.

package Ice_Crearn_Shop
is

type Numbers is limited private;
procedure Take (A_Number :out Numbers);
function Now_Serving return Numbers;
procedure Serve (Number : in Numbers);
function "=" (Left, Right : Numbers) return BOOLEAN;

private
type Numbers is range 0 .. 99;

end Ice_Crearn_Shop;

Note that in this new package specification we have changed Numbers to be a limited private
type. A consequence of doing this is that we no longer export any operations other than those
specifically declared in this package specification. Since we need to allow the user to compare
two objects of type Number as part of the if statement, we will need to explicitly export the test
for equality operation. You can see this in the package specification.

As a result of the foregoing, the user is now prevented from violating our abstraction. We have
forced the user to use the abstraction the way it was designed. Does this defeat our intrepid user?
Consider the following procedure.

11.3 - Private Types 11 -25

with Ice_Cream_Shop;
use Ice_Cream_Shop;
procedure Eat_Ice_Cream
is

My_Number : Ice_Cream_Shop.Numbers;
begin

Ice_Cream_Shop.Take(My_Number);
Wait_My_Turn:
loop

if Ice_Cream_Shop.Now_Serving = My_Nurnber
then

Ice_Cream_Shop . Serve;
exit Wait_My_Turn;

else
goto Cookie_Shop;

end if;
end loop Wait_My_Turn;

end Eat_Ice_Cream;

In this procedure (which is not quite correct Ada), if the user cannot defeat us, he or she will not
stay at the ice cream shop, but will instead move on to the cookie shop!

Together, the addition of private and limited private types is a powerful new capability. Figure
11.4 shows a comparison of the capabilities of these two features.

Private Limited Private
- Declared in Pkg Spec - Declared in Pkg Spec
- Operations: - Operations:

Exported Subprograms Exported Subprograms
Assignment
Equality
Inequality

Comparison of capabilities
Table 11.1

11.3.3 Exercises

<<To be added >>

11.4 Text File Input and Output

We have seen throughout this textbook, that common operations in computing are input and
output. 5o far we have been limited to reading from the keyboard and writing to the terminal
screen. This is convenient and relatively easy in Ada, as long as you limit your 1/0 to characters
and strings. However, it suffers from the drawback that it does not provide a means for non
temporary storage of the results. If we write to the terminal screen, those values disappear as they
scroll off the screen when we write other things. Similarly, if we need to enter data we must
laborious enter the data by hand. What we need is a mechanism whereby we can read from data
that is previously captured and stored extemal.to our program, and whereby we can write to
entities that will exist after our program has terminated.

11 -26 Chapter 11 - Sequential Ada IV

Such a mechanism is the file, and Ada provides for both input from and output to files. Basically,
there are two classes of files, th.ose th.at o:,tot~ th.~ data aco b\!\'M'j \mont\a\\on ~nc.ode<l ?t.l\0.
interpreted as ASCIT text and those that store the binary image as represented internally without
any encoding. The first class of file is called a text file since it contains data that we can read and
interpret as recognizable characters. The second class of file is called a binary file. We will not
discuss binary files in this volume of the textbook. For now, we will concentrate on text files and
the operations that we can perform on them.

11.4.1 Creating and Using Text Files In Ada

It is important to note from the outset that input and output (1/0) of text is not a part of the Ada
language. Instead, it is provided by a predefined, standard package that is required to be
provided by all implementations that have 1/0 capabilities. Thus, some compilers for embedded
processors that do not have text I/0 capabilities may not be required to provide this package.
However, for the vast majority of the implementations that you are likely to see, you can expect
that the predefined package will be available.

This predefined, standard I/0 package for text is called TEXT_IO. The complete specification of
this package, as well as an explanation of all of its provided functionality, is contained in Chapter
14 of the Reference Manual for the Ada Programming Language (LRM). It is strongly suggested
that you have a copy of the LRM at hand as you read this section.

11.4.1.1 Creating a Text File

In the package TEXT_IO, there is a limited private type called FILE_ TYPE that is the type of all
text files. In order to create a text file we m.ust {itst~l..a.t~ .w.~cl &i.e:. n:.L£_'11'!1?£ ~ \N..\ w~
have an internal object that we can operate upon. Next, we must associate the internal file name
that we have just declared with an external entity, i.e., one that is known to the operating system
that will retain the file after the program has terminated. Once we have completed this task, we
need only write information to the file, which can be accomplished by specifying the internal file
name in the Put statement. Finally, in order to guarantee that the file will exist after the
termination of our program, we must Close the file.

We can better understand these actions if we see an example. Consider the following simple
program to write a string literal to a file.

with TEXT_IO;
procedure Demonstrate_File_IO
is

The_File : TEXT_IO.FILE_TYPE; -- internal file name
begin

TEXT_IO.Create (File => The_File,
Mode => TEXT_IO.Out_File,
Name=> "demo.txt•,
Form=>"");

TEXT_IO.Put(Item =>"This is written to the screen.");
TEXT_IO.Put(File => The_File,

Item=> "This is written to the file.");
TEXT_IO.Close (File=> The_File);

end Demonstrate_File_IO;

In this procedure we have declared an object that is a FILE_TYPE and can therefore be used for
representing our internal file name. The first statement in this procedure creates a file that will be
known externally (and therefore after our program has terminated) as demo. txt. We have
associated this external name with our internal name of The_File as a consequence of executing

the Create statement. The Mode parameter in the Create statement specifies whether or not v.-e
want to read from this file or write to it. The mode must be In_File for files that we will read
.from or out_File for files that we will write to. Accordingly, this is an out_File since we will
be creating it and writing to it The Form parameter is used by an implementation to handle
special cases that a given hardware may require. For the most part, and in all of our examples,
you will not see this parameter used. It is given the empty string to signify that we have no actual
parameter to send to it.

The next statement is a Put statement similar to the ones that we have always been using. Note
that the only parameter to this Put statement is Item and that is what will appear, by default, on
the terminal screen. The second Put statement is different from those that we have been using. it
has a second parameter, namely File. This is where we specify the name of the file to which we
want to write the Item. If we do not specify a file name using the File parameter, then by
default it will be written to the terminal screen. If we specify a file, then the data will be written in
the specified file, assuming that the file is open. In naming the file for this parameter, we always
use the internal file name, in this case The_File.

Finally, we see a Close statement. This statement is used to tell the runtime system that we are
finished writing to the file. The runtime system may have been keeping the data that we wrote in
its own internal buffers and so the Close statement may be a cue to the runtime system to flush
its buffers. In any case, this statement severs the association between our internal file name and
the external file. We may no longer write to this file. However, when our program terminates,
any data that we wrote to the file during the execution of our program will be preserved and kept
around in the data file known to the operating system as demo. txt, the name we chose for the
external file name when we created the file.

You should be aware that if you call the Create procedure and a file with the same external
name already exists (demo. txt in our example), then the existing file will be deleted to make it
possible to create the new file. Thus, you should always use care that your program chooses an
external file name that is unique, unless you want to overwrite an existing file.

11.4.1.2 Opening a Text File

The example in the previous subsection demonstrated how we can create new files in Ada. The
procedure to read files that already exist is very similar. Instead of the Create procedure from
TEXT_IO, we use the Open procedure. The parameters and their meanings are exactly the same
as the Create procedure. For example, a program to open the file that we created in the previous
section might be as follows,

with TEXT_IO;
procedure Demonstrate_Open
is

The_File : TEXT_IO.FILE_TYPE; -- internal file name
The_Character : CHARACTER;

begin
TEXT_IO.Open(File => The_File,

Mode => TEXT_IO.In_File,
Name=> "demo.txt•,
Form=>"");

TEXT_IO.Get (File => The_File,
Item=> The_Character);

TEXT_IO.Put ("The first character read is •
& The_Character);

TEXT_IO.Close(File => The_File);
end Demonstrate_Open;

11 -28 Chapter 11 - Sequential Ada IV

In this example, we see that the first statement is the Open statement. Every parameter that
existed in the Create statement is repeated here with the same meaning. Note that the actual
parameter used for the Mode formal parameter is Iri_File for the Open statement because we
will be using the file to read data, i.e .. , the data will be coming in from the file. Recall that in the
Create statement, the Mode parameter was Out_File because we were sending data out to the
file.

In our example, the second statement is the Get statement. Notice that unlike our previous
experience with the Get statement, this version has two parameters, one for the item to be read
and another for the file from which to read it. The file is specified by using the internal file name
we declared, namely The_File, which we associated with an external file name in the Open
statement. The next statement in our example is the Put statement and all this does is write to the
terminal screen the string literal"The first character read is "catenated with the
character read from the file. Finally, as before, we closed the file by calling the procedure close
from TEXT_IO.

We have now seen all that we really need to see to use text files. The Create, Open, and Close
procedures provide the bulk of the functionality that we will require in manipulating text files.

11.4.2 Input and Output Example

In this section we will demonstrate the use of file input and output simultaneously ocaming in a
program. Clearly, since we must specify the mode of a file as either In_File or out_FileJ we
introduce the concept of one way communication with a file. Consequently, it is not possible to
both read and write to/from the same text file simultaneously. Therefore, the following example
shows the case where the program will read data from one 6..1R., lmww;, 'ro t:on'cain exactly ten
~w.~, "tmtrpu'te 'ine avera~e, and then wnte \he ~~::n:eo:. and \be average to another file.

with TEXT_IO;
procedure Demonstrate_File_~O
\.~

Raw_Scores, Results : TEXT_IO . File_Type;
subtype Scores is INTEGER range 0 100;
The_Score : Scores;
The_Sum, The_Average : NATURAL := 0;
Total_Scores : constant := 10;
package Int_IO is new TEXT_IO.Integer_IO (Scores);

-- provide I/0 for values of type Scores
begin

TEXT_IO.Open {File => Raw_Scores,

TEXT_IO.Create

Mode => TEXT_IO.In_File,
Name => • scores . in • ,
Form => ..) ;

(File => Results,
Mode => TEXT_IO.Out_File,
Name => •scores.out•,
Form=>"");

for Count in 1 .. Total_Scores
loop -- the file contains 10 scores

Int_IO.Get (File => Raw_Scores,
Item=> The_Score);

TEXT_IO . Put(File =>Results,
Item=> •score number");

Int_IO.Put (File => Raw_Scores,
Item => Count,
Width => 0);

11.4- Text File Input and Output 11 -29

TEXT_IO.Put(File => Results,
Item=> • is ");

Int_IO.Put (File => Results,
Item => The_Score,
Width=> 0);

TEXT_IO.New_Line (File=> Results);
The_Sum := The_Sum + The_Score;

end loop;
The_Average := The_Sum I Total_Scores;
TEXT_IO.New_Line (File=> Results);
TEXT_IO.Put(File =>Results,

Item=> "The average is");
Int_IO.Put (File => Results,

Item => The_Average,
Width=> 0);

TEXT_IO.Close(File =>Results);
TEXT_IO.Close(File => Raw_Scores);

end Demonstrate_File_IO;

This example shows that we can have multiple files open at the same time, some for reading and
some for writing. We can keep track of which file we are reading from or writing to by examining
the file parameter. This parameter specifies which file we are performing the specified operation
upon. In this example, we read the scores from the file Raw_Scores and wrote them with an
appropriate message to a file called Results. As we read the files, we accumulated the total and
then computed the average. This value, also with an identifying message, w~s then written to the
output file. Finally, both files were closed.

As a final example, let's study a program where we will read character data from a file, echo it to
the screen, and write it to another file. In effect, we will be duplicating the file and echoing the file
on the screen. Take a minute to see if you can think about how to write this program before you
read about our solution.

®STOP-Think!!!

with TEXT_IO;
procedure Demonstrate_File_IO
is

Data_File, Duplicate_File : TEXT_IO.File_Type;
The_Character : CHARACTER;

begin
TEXT_IO . Open

TEXT_IO.Create

Echo_Data:

(File => Data_File,
Mode => TEXT_IO.In_File,
Name => "data. in",
Form => ..) ;

(File => Duplicate_File,
Mode => TEXT_IO.Out_File,
Name => "duplicate.out•,
Form => ..) ;

while not TEXT_IO.End_Of_File(File => Data_File)
loop

11 -30

Echo_Line:
while not TEXT_IO.End_Of_Line(File => Data_File)

TEXT_IO.Get(File => Data_File,
Item=> The_Character);

TEXT_IO.Put(File => Duplicate_File,
Item=> The_Character);

Chapter 11 - Sequential Ada IV

TEXT_IO.Put(Item => The_Character);
end loop Echo_Line;
TEXT_IO.Skip_Line(File => Data_File);
TEXT_IO.New_Line (File=> Duplicate_File);

end loop Echo_Data;
TEXT_IO.Close(File => Duplicate_File);
TEXT_IO.Close(File => Data_File);

end Demonstrate_File_IO;

This simple program works as described above. Note the use of two new features that will be
discussed in the next section, namely the functions End_Of_Line and End_Of_File. If you did
not include these in your solution, but got the rest correct, then you did well. Note that in this
solution, the first Put is specified as going to the file Duplicate_File because of the parameter
for File. The second Put omits this parameter and consequently, the output goes to the default
output file, which is the terminal screen.

The rules for writing to a file are not hard to learn and are always available for reference in
Chapter 14 of the LRM. You should get used to writing your output to a file, since it is more
likely that you will write to files than to the terminal screen in real-world applications. You now
have all of the information that you need to manipulate files, but we will expand this knowledge
to provide you more powerful tools in the next section. For now, let's examine the use of
TEXT_IO to read and write real values, i.e., floating point and fixed point numbers.

11.4.3 Input/Output of Real Values (Fixed and Float)

Recall that when we wanted to read or write numeric values that had integer representations, we
could not do this directly with TEXT_IO. We first had to create an instantiation of Integer_IO, a
subpackage of TEXT_IO. Once this had been accomplished, we were able to manipulate numeric
values of the type specified in the instantiation. This is also the same thing we did for
enumeration values.

For real numbers we have to do the same actions as we did for integer types and enumeration
types. In order to be able to do this, we are provided with two more subpackages of TEXT_IO.
One is called Float_IO and is used to create packages to read and write floating point values.
The other is called Fixed_IO and provides the same capabilities for fixed point values. You
should look in Chapter 14 of the LRM and locate these two subpackages inside of TEXT_IO.

Without spending additional time explaining generic instantiations, let us proceed with showing
the mechanics of how they are accomplished for fixed and floating point values. The syntax for
an instantiation is nearly identical to that for integer input/output, as shown below.

type My_Float is digits 6 range 0.0 .. 100.0;
type My_Fixed is delta 0.1 range 0.0 .. 10.0;
package My_Float_IO is new TEXT_IO.Float_IO (My_Float);
package My_Fixed_IO is new TEXT_IO.Fixed_IO (My_Fixed);

The identifier chosen for this package may be any legal identifier. It is useful to choose a name
that represents the type being manipulated. In this case, we have created two new packages ~
instances of generically defined packages. The first one allows us to perform l/0 on the floating
point type My _F 1 oat and the second allows us to do the same for the fixed point type
My_Fixed.

Once these instantiations are provided in a program, all of the capabili~es of the.gen~ric . . .
packages, as specified in their specifications f~~nd in TEXT_IO, are ~vculabl~. Pnmarily this IS JUSt
Get and Put for these numeric types. In addition, there are conversion routines to allow us to

11.4- Text File Input and Output 11 -31

convert a text string of digits to a floating point value and, conversely, to convert a floating point
value to a text string of digits. You will not have need of these routines often so we will not
discuss them further.

The Get procedure is provided in two forms. One takes a single parameter of the type specified
in the instantiation and obtains a value for this object from the current input file, which is, by
default, the keyboard. The other Put procedure takes two parameters. One is for the file from
which to read the value, the other is for the value to be read. Just as we have previously seen for
characters, we may specify where we want to read the data, from the keyboard or from any given
open file.

The Put procedure in an instantiation of Float_IO or Fixed_IO also is provided in two forms.
The Put statement in the first form does not include a file specification and so the value is written
to the current output file which, by default, is the terminal screen. The second forrn of the Put is
identical except that the first parameter is the file to which we desire to write the value.

An example program may help to understand the use of these subprograms when we are
working with floating point values. Consider the following program.

with TEXT_IO;
procedure Demonstrate_Float_IO
is

Data_File : TEXT_IO.File_Type;
type My_Float is digits 6 range -10.0 .. 125.0;
The_Number : My_F1oat;
package My_Float_IO is new TEXT_IO.F1oat_IO (My_Float);

begin
TEXT_IO.Open(File => Data_File,

Mode => TEXT_IO.In_File,
Name=> "float.dat•,
Form=>"");

My_Float_IO.Get(File => Data_File,
Item=> The_Number);

My_Float_IO.Put(Item => The_Number,
Fore => 2,
Aft => 4,
Exp => 0);

TEXT_IO.Close(File => Data_File);
end Demonstrate_Float_IO;

This simple program opens a data file that contains floating point values of type My _F 1 oat. It
reads a single value using the Get procedure. It then writes this value to the terminal screen and
closes the file.

Note the parameters to the Put statement. The first is the Item to be written. This parameter will
contain the actual value to be written. Next comes the Fore parameter. This parameter specifies
how many digits there are to be printed to the left of the radix point (in base ten this is called the
decimal point). If the number of digits to be written to the left of the radix point is less than the
number specified for this parameter, then leading blank spaces will be written. If the number of
digits to be written is more than the specified value, then all of the digits will be written,
overriding the number of printing positions left of the radix point that this parameter specifies.
Do not forget that the minus sign in a negative number must be counted as a printing position.

11 -32 Chapter 11 - Sequential Ada IV

The next parameter is the Aft parameter. This specifies the number of digits (printing positions)
to be written to the right of the radix point. If the number of digits specified is more than the
value contained in Item for digits right of the radix point, then trailing zeros will be printed. If
this value is less than the number of digits in Item, the digits in Item will be printed up to the
last one specified and this one will be printed with rounding. For example, if we have 32.2394 as
the value in Item and the value for Aft is two, then we would print 32.24 since the second digit
is rounded up because the value of the third digit is greater than five. The rules for rounding are
if the next digit is less than five, then do nothing to the last digit except print it. If the next digit is
greater than five, then round up and print this rounded digit If the next digit is exactly five, then
it is implementation dependent as to whether it is rounded up or left alone.

The final parameter is the Exp parameter. This specifies the number of digits to be printed in the
exponent of the number.lf this value is zero, then no exponent position is printed and the
number appears in "normal" notation without an exponent, i.e., a sting of digits with an
embedded radix point. If the value in Exp is anything other than zero, then scientific notation is
used to write the number and the number of digits in the exponent field will be as specified in
Exp. Note than when counting the position for the exponent, the E (or e) is not counted, but the
sign position is counted. If the number of digits specified is more than what is needed to write the
exponent, then leading zeros are printed. If the number of digits that needs to be printed is
greater than what is specified, then the requested field width is overridden and the actual
number of digits needed will be used.

Note that there is an additional parameter that can be added to specify the file to which the value
in Item is to be written. We have not shown any examples with this parameter because it is
analogous to what has already been demonstrated for TEXT_IO.

These rules may seem difficult to understand without seeing some examples. The following table
lists the Put statement and the result that is printed.

11.4.4 Exercises

<<To be added >>

Put Statement Result
Put(12.3456, 4, 3, 0) M12.346
Put(12.3456, 4, 1, 0) M12.3
Put(12.3456, 0, 3, 0) 12.346
Put(12.3456, 3, 4, 2) M1.2346E+1
Put(-12.3456E99 0 3, 1) -1.235E+100

~ denotes a significant space

Real Number Output
Table 11.2

11.5 Operations on Text Flies

Chapter 14 of the LRM lists the specification of the package TEXT_IO. In that package there are
several useful subprograms that we may use to make o~r programming jobs easier. In this section
we will examine a few of them. For a complete list of the subprograms available, refer to the
package specification for TEXT_IO in Chapter 14 of the LRM.

11.4 - Text File Input and Output 11-33

There are subprograms available to interrogate the system about the values of the parameters that
were used with the Open or Create statements. There are subprograms to redirect the current
output to a file by default, rather than send it to the standard output file which is usually the
terminal screen. Similar, we can change the default input file from the keyboard to another file.
There are subprograms to set the line and page length. There are subprograms to skip a line in
the input or output file. We can even specify a specific column or line in which to start our
output. As we have already seen, there are also functions to tell us when we are at the end of a
line, or a page, or a file. Finally, as we also have already seen, there are subpackages that allow us
to perform input and output on integer, real (float and fixed), and enumeration types.

11.5.1 Reading Strings (Get versus Get_ Line)

Many times programs call for the input and output of string values. In Ada, this is somewhat
frustrating because of the strong typing rules. There are no dynamic or variable length strings
provided in Ada, although it is possible to write your own using the mechanisms in the language.
However, using the predefined type STRING we must insure that if we declare the string object to
be ten characters long (by constraining it at declaration), then we MUST provide a ten character
sting for input. Sometimes, this does not give us the flexibility that we desire.

For example, consider the following object declaration of the predefined type STRING.

The_Narne : STRING(l .. lO);

This declaration creates an object capable of holding strings of characters that are exactly ten
characters long. Therefore, if we tried to execute the following code segment

TEXT_IO.Get(The_Narne);

we would be required to provide a ten character string. This seems simple enough. We are using
the ability of TEXT_IO to read·and write characters and strings to get the value for this string.
However, if we typed a name such as "Chuck" followed by a return (also called enter) nothing
would happen! The cursor on the screen would continue to flash at us without responding.

The reason for this seemingly bizarre behavior is the strong typing in Ada. In a sense, we
promised the runtime that when we provided a value for the sting object The_Narne, it would
have ten characters. When we provided only five characters (the length of the name Chuck), the
runtime system continued to await the other five characters that we told it to expect. Until it has
been able to read ten characters it will not go to the next line of the program. This problem can be
very annoying for most beginners.

The actual root cause of the problem is lack of knowledge of the procedures provided by
TEXT_IO. The Get procedure is provided for those situations where you know exactly the
number of characters that a string object will contain. Trying to use it for interactive input/output
where these guarantees do not occur is using the wrong tool. The procedure that is probably
desired is Get_Line.

The Get_Line procedure actually has two parameters. The first is the Item that will contain the
string that we are reading, and the second is the count of the number of characters actually read.
Optionally, there can be a third parameter specifying the file from which we want to read the
string as discussed previously. ·

Consider the following statement that will read the string object The_Narne as we tried to do
previously.

11 -34 Chapter 11 - Sequential Ada IV

TEXT_IO.Get_Line(Itern => The_Narne,
Last => Length);

This statement will read from the input file all of the characters provided into the string object
The_Narne. There are three possibilities when reading these characters. Either there will be less
characters than the number of character positions in the string object; there will be exactly the
same number of characters; or there will be more characters input than there are character
positions in the string object. Let us examine the behavior of this statement in each of these cases.

In the first case, where there are less characters input than there are character positions in the
sting object, the Get_Line procedure will read the characters input into the string from left to
right (lowest index position to highest) until all of the characters have been read. The remaining
character positions in the string object will contain whatever values they held previously, usually
garbage. The parameter Last will then contain a count of the number of characters read by
Get_Line. For example,

Length : Natural;
The_Narne : String(l .. 80);

begin
TEXT_IO.Get_Line(Itern => The_Narne,

Last => Length);

This code segment shows that the parameter Last is declared to be a Natural object. Suppose
that the user entered the string "Luwana" followed by a return in response to this Get_Line
procedure. The length of the string object is 80 characters (see the declaration). However, the
string entered is only six characters long. Therefore, in positions 1 through six of the string object
The_Narne would be the characters Luwana. The remaining character positions for the string
object, namely 7 through 80 inclusive, would contain garbage. The parameter Length would
contain the value 6, the number of characters actually read. Suppose that we then wanted to write
this same string out to the terminal screen. If we simply called the Put procedure and passed it
the string The_Narne, then all of the string would be written out, i.e .. , the meaningful first six
characters as well as the remaining 74 garbage characters. The problem is, of course, the
undesirability of writing the garbage. Is there a way to only write the meaningful characters? Of
course we can, using the concept of string slices. Thus, to write out the meaningful portion of
The_Narne we would call the Put procedure as follows:

TEXT_IO.Put(Itern => The_Narne(l .. Length));

Note that we have actually passed only a slice of the string The_Narne. Using the Length value
obtained from the call to Get_Line, we pass only the slice of The_Narne that is meaningful. This
technique is very powerful and is used often in situations where the input string may be of
varying length, subject only to the maximum of 80 characters as defined in the constraint on
The_Narne.

In the second case, where the number of characters read from the current input is exactly the
same as the declared length (number of character positions) of the string object, the Get_Line
procedure will read the characters into the string object filling all of the character positions from
lowest index position to highest. It will place the number of characters actually read into the
object Last, all as was done in the first case. However, in this case, the Skip_Line procedure
will not be called and the input cursor will remain on the same line as the original text. This
means that if you want to get the next data from the next input line, then you must manually and
explicitly call the Skip_Line procedure.

11.5 - Operations on Text Files 11 -35

In the third case, where the number of character positions in the string object is less than the
number of characters on a single line of the current input, Get_Line will read the input
characters in order into the string object from lowest to highest index. It will place in the object
Last the number of characters read which will be the same as the length of the string object.
Finally, it will not call Skip_Line, but will instead leave the input cursor on the same line as the
one from which it last read, in preparation to read more of the data.

The problem with this treatment of the Get_Line procedure is that the name of the procedure
implies that you will read all of the data on a line and then go to the next line. Unfortunately, this
is only true in the first case described here. In the other two cases, the input cursor will be left on
the same line as the original text and an attempt to get another character, or even another call to
Get_Line, could produce unexpected results. There are at least two easy solutions to this
potential problem. The first is to always declare the length of the string object to be the size of the
input line length plus one (which always works for terminal input, but may not for file input).
This guarantees that there will always be more character positions in the string object then there
can possibly be in the input line, forcing the situation to always be as described in the first case
above.

The second solution is to check the value of the object Last after the call to Get_Line. If the
current value of Last is the same as the declared length of the string object, then all of its
character positions have been filled, but, as we saw from the second and third cases above, the
Skip_Line procedure was not called. Thus, we could simply explicitly call the Skip_Line
procedure if the value in Last is the same as the declared length of the string object, and not do
so otherwise.

There are also corresponding procedures for writing string and character values. The Put
procedure writes out the value of Item. The Put_Line procedure writes out the value of Item
and sends a carriage return, i.e., it performs a New_Line. Thus, the only difference in the two
statements is the final position of the output cursor, or the place where the next character will be
written. Therefore, two consecutive Put statements would write the output on the same line of
the output file, whereas two Put_Line statements would cause Item for each call to the
procedure to be written on two lines.

For example, the following sequence of statements,

TEXT_IO.Put (Item=> "Hi ");
TEXT_IO.Put (Item => "there. ");

would cause the output file to contain a single line of characters, namely "Hi there. 11 If, on
the other hand, we had the following sequence of statements,

TEXT_IO.Put_Line (Item=> "Hi ");
TEXT_IO.Put_Line (Item=> "there. ");

then we would use two lines in the output file, the first line containing the single word "Hi II and
the second containing the single word "there. II Thus, these two output alternatives give you
some control of the layout in your output.

Another handy layout control procedure is New_Line. This procedure in TEXT_IO causes the
output file to place the next character received on a new line in the output file. This procedure is
much like sending a carriage return and line feed to the output file, although the actual
mechanism used to cause the output to start appearing on the next line is not specified by the
language. There is a corresponding procedure called Skip_Line that causes the input file to skip

11 -36 Chapter 11 - Sequential Ada IV

over any other data that may remain on the current input line and reposition itself immediately
after the next New_Line in the input file. In effect, this causes the input file to get its next data
from the next line of the input. These two procedures are overloaded so as to take a file name or
to not require one. Thus,

TEXT_IO.New_Line (File=> Result_File);
TEXT_IO.New_Line;

causes the new line to occ:Ur in the file Result_File (the first example) or the current output
file, which by default is the terminal screen, in the second example. Additionally, we may include
an optional parameter to specify more than one New_Line is to be written. Thus,

TEXT_IO.New_Line;
TEXT_IO.New_Line;
TEXT_IO.New_Line;
TEXT_IO.New_Line;
TEXT_IO.New_Line;

is identical to writing

TEXT_IO.New_Line (Spacing=> 5);

where the Spacing parameter is optional. By default, the value of Spacing is 1, but we may
change it to be any positive value. We have done this in our example, causing 5 New_Line's to be
placed in the output file.

Skip_Line, which is the inverse of New_Line, in the sense that it applies to the input file, not
the output file, has the same properties, including the optional spacing parameter. The only
difference between these two procedures is the file to which they apply, either the input file for
Skip_Line or the output file for New_Line.

11.5.2 Dynamic File Interrogation

It is often necessary to obtain information about a file while the program is in execution. In order
to be able to do this, TEXT_IO provides a number of subprograms designed to allow for dynamic
file interrogation.

The first among these is a function that we already saw before, briefly, in an example. This
function allows us to determine if we have reached the end of the line in an input file. It is a
boolean function, meaning that it returns either the value TRUE or FALSE of the predefined type
BOOLEAN. The function is often used in a while loop to cause reading of characters to stop when
the end of the line is reached. It is implementation dependent as to the effect of trying to read the
end of line indicator, so we generally try to avoid this. Thus, to read a line from an input file we
usually have a loop like the following,

Get_A_Line:
while not TEXT_IO.End_Of_Line (File => Data_File)
loop

TEXT_IO.Get(File => Data_File,
Item=> The_Character);

-- sequence of additional statements
end loop Get_A_Line;
TEXT_IO.Skip_Line(File => Data_File);

11.5 - Operations on Text Files 11-37

The Skip_Line at the end of this code segment is important. It causes the next character to be
read to come from after the new line indicator used by this implementation. Without this
procedure call, any subsequent Get operation would attempt to read the end of line marking
character and the effect of that is implementation dependent.

Usually an input file consists of more than one line. Therefore, we often need to read multiple
lines which is easy to do by simply iterating over the code segment given to read one line.
However, we have to be careful not to attempt to Get a character when there are no more
characters left. Thus, we want to iterate over this code segment getting a line of text at a time until
there are no lines left in the file. How can we detect when there are no more lines left in the file?
TEXT_IO provides us another BOOLEAN function that detects the end of a file. It is often used in
conjunction with the end of line function to prevent attempting to read beyond the end of a file.
Thus, the previous code segment usually appears as follows,

Get_The_File:
while not TEXT_IO.End_Of_File (File => Data_File)

Get_A_Line:
while not TEXT_IO.End_Of_Line (File => Data_File)
loop

TEXT_IO.Get(File => Data_File,
Item=> The_Character);

-- sequence of additional statements
end loop Get_A_Line;
TEXT_IO.Skip_Line(File => Data_File);

end loop Get_The_File;

These functions are not as critical when reading numeric data since the language defines that the
Get will skip over any blank characters or end of line markers to read a numeric value. However,
for characters and strings, this is not the case. We must check for the end of line marker and
manually skip over it as demonstrated above.

There are also functions that can determine information about a given file. The functions
TEXT_Io. Mode, TEXT_IO. Name, and TEXT_IO. Form return as their values the value provided
when the file was created or opened. Recall that these are the parameters that need to be spedfied
in the Create and Open procedures. The functions listed here merely provide a means to check
that the file was opened or created using the proper values. There is an additional function called
Is_Open that returns a BOOLEAN value as to whether or not the file is open.

There are many other procedures that can be called from TEXT _10 that provide a means for
gaining more information about files that are open or for changing the default characteristics of
files. We will not discuss them in this textbook, but you can obtain more information on these
subprograms by reading the specification for TEXT_IO in Chapter 14.

11.5.3 Exceptions In Text Flies

We have so far discussed only the situations where everything works as it is supposed to work.
Unfortunately for us, this is not always the case. Consequently, there are a number of potential
exceptions that are associated with input and output of text files. Collectively, they are contained
in a package that has only a specification. This package is called IO_Exceptions and is
reproduced in its entirety here.

11 -38 Chapter 11 - Sequential Ada IV

package IO_Exceptions

Status_Error
Mode_Error
Name_Error
Use_Error
Device_Error
End_Error
Data_Error
Layout_Error

exception;
exception;
exception;
exception;
exception;
exception;
exception;
exception;

end IO_Exceptions;

These exceptions represent all of the predefined exceptions associated with input and output.
They are declared in their own package so that they can be renamed inside all of the various
kinds of 1/0 packages, both textual and non-textual 1/0. This allows there to be a single
exception for, say Use_Error, and not multiple possible exceptions that are really the same
problem but associated with different 1/0 packages.

We will examine the meaning of each of the 1/0 errors in this package in light of how they apply
to TEXT_IO. Some of these errors you are likely to see many times in your career; some of these
errors you are not likely to ever see. However, it is important to know where to go to find out
information about any given exception. These exceptions are completely explained in Chapter 14
of the LRM. We will summarize here its discussion of these errors.

Statusa_Error is the exception that is raised if you attempt to operate upon a file that is not
open. For example, if you were to attempt to read from a file that you had not yet opened, then
you would raise Status_Error. Similarly, you would raise Status_Error if you attempted to
open a file that was already open. Of course, you could always include a call to the BOOLEAN
function I s_Open first to insure that you never attempted to open a file that was already open,
but, in practice, this is rarely done.

Mode_Error is raised if you violate the mode for a given file. For example, if you create a file
you will probably.specify that the mode is Out_File since you will be writing data to the file. If,
however, you attempt to read from this file, while it is still in Out_File mode then you will raise
Mode_Error. Also, if you attempt to test for End_Of_File for a file that is in out_File mode,
then you will raise Mode_Error since the end of file function only makes sense when you are
reading data from a file. Further, if you attempt to write to a file that you opened for input, then
Mode_Error will be raised. Lastly, many of the functions provided by TEXT_IO such as
Skip_Line, Set_Input, etc., only make sense in one mode. Attempting to call these
subprograms when the file is in the other mode will raise Mode_Error, such as calling
Skip_Line for a file that is opened in Out_File mode.

The exception Name_Error is raised when you call Create or Open and the parameter that you
provide for Name is not allowable as a name for a file in the operating system under which you
are executing. Thus, specifying a name for a file that has a format unacceptable to your operating
system will raise Name_Error. Also, if you specify a name for a file in an Open statement and
that file does not exist, then you will raise Name_Error. The details of this exception are
provided in more detail in Appendix F of your implementation's LRM.

11.5- Operations on Text Files 11 -39

We can raise Use_Error by attempting to perform an operation that is not possible because of
the characteristics of the external file. For example, if the Form parameter in Create contains
invalid access rights for the file, then Use_Error will be raised. Similarly, we will raise this
exception if we attempt to Create a file and specify in the Form parameter a device that is input
only. The details of this exception are provided in more detail in Appendix F of your
implementation's LRM.

Device_Error is raised by the runtime system automatically if an input-output operation
cannot be completed because the underlying operating system has a malfunction. This is
normally associated with hardware defects of some type or a broken connection. The details of
this exception are provided in more detail in Appendix F of your implementation's LRM. ·

The End_Error exception is raised if your program attempts to read or skip past an end of file
marker. For example, trying to read data using a loop after the end of file is reached will cause
End_Error to be raised. -

Data_Error is raised when the input sequence of characters does not represent a permissible
format. For example, trying to read a floating point value when the input contains characters
other than digits would raise Data_Error. Also, if you attempt to get a value that is outside of
the permissible range of values then you will raise Data_Error. This means that if we have a
subtype of INTEGER with a range constraint of 1 .. 100 and attempt to read a value for an object of
this type, we will raise Data_Error if the input value is 102, or any value outside of the given
range. Likewise, if we have an enumeration type and it lists four values, then an attempt to read a
value for an object of this type that was not one of the values defined in the enumeration
declaration will raise Data_Error.

Finally, Layout_Error can be raised when you attempt to specify a value for the column, line,
or page that is beyond the established limits. We did not discuss these subprograms and so it is
unlikely that you will raise this exception unless you are experimenting with the other TEXT_IO
procedures that we did not discuss.

All of these exceptions provide us with a good indication of the type of problem that was
encountered during the execution of our program. They also allow us to take corrective action
dynamically, because we can specify a different reaction for each exception. You should always
include likely exceptions in the exception handlers for all of your programs. This means that
whenever 1/0 is a part of a program unit, the exceptions for potential problem areas in input
output must be taken into account.

11.5.4 Exercises

<<To be added >>

11-40 Chapter 11 - Sequential Ada IV

Syntax Chapter 11

basic_declaration type_declaration
I deferred_constant_declaration

basic_declarative_item ::= basic_declaration

component_declaration ::= identifier_list :
component_subtype_definition [:• expression];

component_list component_declaration { component_declaration}
I null

component_subtype_definition ::= subtype_indication

constraint floating_point_constraint
fixed_point_constraint
range_constraint I floating_point_constraint
fixed_point_constraint I index_constraint

deferred_constant_declaration identifier_list :
constant type_mark;

discriminant_part (discriminant_specification
{; discriminant_specification}}

discriminant_specification ::= identifier_list : type_mark
[:• expression]

full_type_declaration

fixed_point_constraint

fixed_accuracy_definition

floating_point_constraint

type identifier is type_definition;
type identifier [discriminant_part] is
type_definition;

fixed_accuracy_definition
[range_constraint]

delta static_simple_expression

floating_accuracy_definition
[range_constraint]

floating_accuracy_definition ::=digits static_simple_expression

package_specification ::=package identifier is
{basic_declarative_itern}
[private
{basic_declarative_item}
end (package_simple_name]

private_type_declaration

real_type_definition

type identifier
[discriminant_part] is
[limited] private;

floating_point_constraint
fixed_point_constraint

record_type_definition record
component_list

and record

subtype_declaration ::=subtype identifier is subtype_indication;

subtype_indication ::= type_mark [constraint]

type_declaration ::= private_type_declaration

type_definition real_type_definition
record_type_definition

type_mark type_name I subtype_name

Chapter 12

Software Design for Interactive Use

Our next step is to extend issues of program design and testing to interactive computer
use. Strictly speaking, we have been in interactive computer use from the very start
with Ada. The framework of a computer starting with a message requesting input from
the user, the user responding with the input, then the computer responding with an
answer to that input with output and terminating is interactive of a simple form. But
such a framework can be easily extended by repeating the user input, computer output ·
iteration many times, not simply once. Your experience with word processors
demonstrates such a framework. You may think of the user's work in large chunks, but
the computer treats the work in terms of single inputs, say defined by "enter'' keys. In a
single session, you may enter hundreds or thousands of inputs, getting an output back
each time. Some of the outputs will be on the screen, some on printed paper. So how you
use computers right now is a good model of interactive software.

Theoretically, one can regard each single response as generated by an independent
program part, all such program parts working from a common data base. Aside from
using a common database, the program parts are quite independent When the computer
is to give an output, the current program part will lose control, and the next program
part, if any, to respond to the user input can be identified. However, such a set of
independent program parts can become very large in quantity and repetition. So the
common reuse of various subparts of such program parts is a practical necessity. But the
reuse of subparts must work exactly as a set of independent programs would. That reuse
isn't impossible, but there are enough opportunities for errors in putting such subparts
together that real discipline is called for.

In this Chapter 12, we first review the new ideas in Ada introduced in Chapter 11.
Then, we introduce how to move into interactive use of software in a logical and
disciplined way. It begins with spedfications of interactive software, then designs,
verifications, and certifications to meet those specifications. As noted above, the first
concern is in correctness of designs to their spedfications, then demonstrating that
correctness by the joint verification and certification of the software.

12.1 Ada Capabilities from Chapter 11

In this section, we examine the new Ada capabilities from Chapter 11 in real number
types, parameterized record types, combinations of records and arrays to create more
complex data structures, the private type for information hiding, and TEXT_IO files.
Each of these extensions to Ada give more power for design and permit simpler solutions
to data processing problems.

Chapter 12 - Software Design for Interactive Use 12-1

12.1.1 REAL Number Types

As noted above, REAL number types allow new capabilities in FLOAT and FIXED point
types and subtypes. Recall that REAL numbers are always shown with a decimal point,
whether a floating point number or a fixed point number. Also recall that while REAL
numbers always contain a d~imal point, whether FLOAT or FIXED, INTEGER numbers
never contain a decimal point. All three number types must be kept separate and
straight for their use.

INTEGER arithmetic among numbers will be exactly right unless overflow or underflow
occurs. FLOAT and FIXED arithmetic among numbers will face round off errors in any
case as well as the possibilities of overflow or underflow. In every case, there is a finite
set of sorted values in each type moving from FIRST to LAST. But in each case
arithmetic operations between members of a type can well define a real number outside
the type and the program will terminate abnormally. For addition, about half of
randomly chosen members will define a number outside the type. But for multiplication,
most randomly chosen members will define a number outside the type.

There is one additional question for FLOAT and FIXED numbers in the accuracy of
results. FLOAT and FIXED are approximate in decimal numbers, but their internal
representation and arithmetic operations are actually in binary numbers. We will not
go any further into this issue here, but treatment of roundoff in arithmetic operations
needs to recognize it

12.1.1.1 Floating Point Behavior

As noted, the floating point behavior will be approximate, first depending on the
hardware numbers precision, and second on declared numbers of precision no more than
the hardware precision. Notice also that the successive differences between adjacent
floating point numbers grow larger as their absolute values become larger. The relative
differences between adjacent fixed point numbers are approximately equal as their
absolute values become larger.

As a result, verification of floating point behavior must deal with approximation,
unlike verification of INTEGER behavior which is exact. That is, the result of floating
point arithmetic will approximate real floating point arithmetic which is exact but
cannot be carried out in finite computers. In a given computer the result will always be
the same, but the results can be different between different computers because of
different word sizes. As noted, there will be operations in real floating point
arithmetic, with no approximation. The departure of arithmetic in a given
approximate floating point arithmetic from real floating point arithmetic provides a
basis for analysis and possibly redesign to better meet objectives.

In illustration, consider floating point declarations

type Length_Measures is digits 6 range 0.0 .. 100.0;
Base, Altitude, Perimeter : Length_Measures;

and statement

Perimeter := 2.0 * (Base+ Altitude);

12 - 2 Chapter 12 - Software Design for Interactive Use

Now, what accuracy can be expected for the value of Perimeter computed above?

First, the accuracy of Base and Altitude from initial input will be relative to 6 digits.
Now for Perimeter determine the accuracy of (Base+ Altitude). The true value of
the sum can be anywhere in the set

(Base* (1 +/- 10**-6)) + (Altitude* (1 +/- 10**-6))

So the accuracy error will be no greater than the maximum of Base and Altitude less 1
digit. And the accuracy of 2 . 0 * (Base + Altitude) will continue to be 5 digits.

12.1.1.2 Fixed Point Behavior

As noted, the fixed point behavior will be approximate, first depending on the
hardware numbers precision, and second on declared numbers of precision no more than
the hardware precision. Notice also that the successive differences between adjacent
fixed point numbers are approximately equal as their absolute values become larger.
The relative differences between adjacent fixed point numbers grow smaller as their
absolute values become larger.

As a result, verification of fixed point behavior must deal with approximation, unlike
verification of INTEGER behavior which is exact That is, the result of fixed point
arithmetic will approximate real fixed point arithmetic but cannot be carried out in
finite computers. In a given computer the result will always be the same, but the results
can be different between different computers because of word sizes. As noted, there will
be operations in real fixed point arithmetic, with no approximation. The departure of
arithmetic in a given approximate fixed point arithmetic from real fixed point
arithmetic provides a basis for analysis and possibly redesign to better meet objectives.

In illustration, consider fixed point declarations

type Length_Measures is delta 0.001 range 0.0 .. 100.0;
Base, Altitude, Perimeter : Length_Measures;

and statements

Perimeter := 2.0 * (Base+ Altitude);

Now, what accuracy can be expected for the values of Perimeter and Area computed
above?

First, the accuracy of Base and Altitude from initial input will be fixed to .001. Now
for Perimeter determine the accuracy of (Base + Altitude). The true value of the
sum can be anywhere in the set

Base (+/- .001) + Altitude (+/- .001)

So the accuracy error will be no greater than

(+/- .001) + (+/- .001) = (+/- .002).

Andtheaccuracyof2.0 * (Base+ Altitude) will be(+/- .004).

12.1 - REAL Number Types 12-3

12.1.2 Composite Types of Advanced Designs

In Chapter 11, records with discriminants were introduced to provide more flexibility
in software design. Then it was shown how to use records as components of arrays, and
how to use arrays as components of records. Of course, arrays can use other arrays and
records use other records as well. In this way there is a complete capability to form
compound types in hierarchical structures of arrays and records with or without
discriminants.

12.1.2.1 Records with Discriminant

The record with discriminant of Buffer as follows

type Buffer (Size : Positive := 10) is
record

Item: String (1 •. Size);
end record;

in Chapter 11, which defines sample object declarations of

Buffer (10);
Buffer (20);

My_Buffer
Your_Buffer
The_Buffer Buffer; -- uses the default value of ten

Later,My_Buffer can be changed in size from 10 to 20inanaggregateassignment

My_Buffer := (20, •This is new stuff!!!•);

In this way, designers can define records with discriminants in declarations or modified
in statements as shown just above. The structure of such records are an expansion of
simple records. The verification of programs with discriminants follows their structure
directly.

Discriminants add a dimension to give much more flexibility and power to records. As
any programming language, Ada must be designed explicitly, so its capabilities are not
what its users hope they are from appearances or hopes, but what they have been
defined to be. It takes some time and effort to understand such capabilities, but provides
significant new ability to define useful data.

12.1.2.2 Arrays of Records

As noted in Chapter 11, arrays may have records as components. Since arrays must have
identical types of objects in every location, records may satisfy that condition of the
record components. These records may be defined with discriminants. As noted above,
declarations can be used as below

12-4 Chapter 12 - Software Design for Interactive Use

type Months is {JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC);

type Days is (SUN, MON, TUE, WED, THU, FRI, SAT);
type Years is range 1901 .. 2010;
type Periods is range 1 .. 31;
type Dates is
record

The_Day
The_Month
The_Period
The_ Year

end record;

Days;
Months;
Periods;
Years;

type Agendas is array (Periods range <>) of Dates;

with declares for months as follows

January
February
March
April

Agendas {31);
Agendas (29);
Agendas (31};
Agendas (30};

and so on. However, a variant record could reference both The_ Year and The_Month as
follows.

type Dates (The_Year
is
record

The_Days : Days;
case The_Month is

Years, The~onth Months)

when JAN I MAR I MAY I JUL I AUG I OCT I DEC =>
Long_Month : Periods;

when APR I JUN I SEP I NOV =>
Norma1_Month: Periods range 1 .. 30;

when FEB =>
if The_Year rem 4 = 0
then

Short_Month: Periods range 1 . • 29;
else

Shortest_Month: Periods range 1 .. 28;
end if;

end case;
end record;

12.1.2.3 Records with Arrays

In the reverse direction, records can hold arrays. As described in Chapter 11, a set of
university grades can be a record with arrays in them. As shown,

subtype Grades is Natural range 0 .. 100;
type Student_Number is range 0 .. 99;
type Exam_Number is range 1 •• 10;
type Examination_Grades is

array (Student_Number, Exam_Number} of Grades;
CS2003 : Examination_Grades;

12.1 -REAL Number Types 12-5

This general use of records in arrays and arrays in records in this and the previous
section completes the Ada capability in organizing data. Records and arrays have quite
different properties, of course, so data structures that organize deep hierarchy of access
into data parts permit powerful designs to meet natural issues in applications. For
example, in type Examination_Grades above, type Student_Number might be
generalized from the range 0 .. 99 to a record Student_Record that contains
Student_Number as one part.

12.1 .3 Private Types

As noted in Chapter 11, private types provide the capability for information hiding
about details of operations on data in package design. If users know detailed design
about data and operations in the subprograms of a package, or in other packages or
subprograms called, they may make assumptions on operations that may not be good. As
also noted in Chapter 11, going back to linked list design, it is not needed to know
whether data is stored and addressed in arrays or in access types (or some other way) in
order to use it. So private types provide a basis for separating implementation from
specification of low level packages.

12.1.3.1 Limited Private Types

The set of package designs for Ice_Cream_Shop in Chapter 11 illustrates how the
customers can be defined as values for object My _Number of type Numbers. They also
show how customers could cheat with moving My _Number down if not served. So the
package designer is motivated to make Numbers private to prevent cheating with
My_Number.

However, making Numbers private in the Ice_Crearn_Shop still allows more clever
customers to cheat, so the designer provides a stronger control in limited private, to
really prevent cheating.

Software design must take into account user needs, but also user behavior to get around
the software for one reason or another. As illustrated above, if users can reach
unintended software benefits by changing software parts without permission, active
participation in software systems can be difficult to control. Limited private types
address this iSS\;.f!.

There is another need for strong control of system information in software design. The
computer always understands exactly what is to be done next from the software
provided it. But in large software systems the designers don't always understand or
remember the totality of system behavior. So private and limited private types allow
the technical management of the design to maintain intellectual control part by part.

12.1.4 Text Flies In Ada

As noted, we have only used a small part of the package TEXT_IO of Ada in this book,
namely the treatment of the Input and Output files that are provided by shorthand
notation. Additional files for input and/ or output are available with more information
about their properties. Such files have two identifiers, one internal in Ada and one
external outside Ada. Other than additional references to their outsMe properties, the
operations on these files use the same subprograms, procedures, and functions.

12-6 Chapter 12 - Software Design for Interactive Use

In TEXT_IO, all text files are of limited private type called FILE_ TYPE. So this is
another general use of limited private for better control of software parts. In Chapter
11, The_File was created with

TEXT_IO.Create (File => The_File,
Mode => TEXT_IO . Out_File,
Name=> •demo.txt•,
Form=> ••);

so demo.txt is the external name of the internal file The_File.

12.1.5 Binary Flies In Ada

Binary file input and output is the most efficient way to use files in Ada. But more
design effort is required by the user than for TEXT_IO. The description is in the Ada
Reference Manual, Chapter 14. We do no more than introduce them here. For example,
whereas text files take some 20 pages to describe, binary files take 7 pages to describe
both sequential and direct forms. In place of the fifty subprograms used to access and
modify existing TEXT_IO files, sequential files are accessed and modified by just three
subprograms, namely

procedure READ
ELEMENT_TYPE) ;

(FILE in FILE_TYPE; ITEM out

procedure WRITE (FILE : in FILE_TYPE; ITEM in ELEMENT_TYPE);

function END_OF_FILE (FILE : in FILE_TYPE) return BOOLEAN;

and direct files are accessed and modified by eight subprograms, namely

procedure READ (FILE in FILE_TYPE; ITEM out ELEMENT_TYPE;
FROM POSITIVE_COUNT);

procedure READ (FILE in FILE_ TYPE; ITEM out ELEMENT_ TYPE;

procedure WRITE (FILE in FILE_TYPE; ITEM out ELEMENT_ TYPE;
TO : POSITIVE_COUNT);

procedure WRITE (FILE : in FILE_TYPE; ITEM out ELEMENT_TYPE;

procedure SET INDEX (FILE : in FILE_TYPE; TO : in
POSITIVE_COUNT) ;

function INDEX (FILE in FILE_TYPE) return POSITIVE_COUNT;
function SIZE (FILE in FILE_ TYPE) return COUNT;

function END_OF_FILE (FILE : in FILE_TYPE) return BOOLEAN;

Note, among other changes from TEXT_IO that Get and Put procedures are changed to
READ and WRITE procedures.

12.1 - REAL Number Types 12-7

12.1.6 Exercises

1. For the floating point declarations in 12.1.1.1, consider the statement

if Base > Altitude
then

Maximum := Base;
else

Maximum := Altitude;
end if;

and determine what accuracy can be expected for the value of Maximum.

2. For the fixed point declarations in 12.1.1.2, consider the statements

Base := (Perimeter I Altitude) I 2.0;
Base := Area I Altitude;

and determine what accuracy can be expected for the values of Base.

3. Provide an example of a possible array of records in student data.

4. Provide an example of a possible record with arrays in calendar data.

5. What is the reason to define text files of limited private type? What is being
protected in this case?

12.2 Interactive Software Segments

Interactive software will make a particular point of using and exploiting Ada
capabilities. Early computers and their software were strictly batch operating, from
possibly very complex stimuli prepared beforehand to responses. With more modern
computers and better input, output facilities, the idea of interactive software became
possible. Ada recognizes that interactive need and provides for it from the outset

12.2.1 Interactive Software Is Real Time

Any computer program operates in real time in any computer. There is no other time to
operate in. Many programs operate in the same way in any computer used, so operating
in real time is not a problem. However, many important programs need to operate in
real time in specific ways to meet external requirements in both input and output For
example, an item of input may be available only for a limited duration in real time, so
reading it too early or too late will give incorrect data. This real time behavior will
depend on both the software design and the hardware speed. The hardware .behavior
must be known, and possibly different hardware used. The software design must not only
be right as a sequential or parallel algorithm, but be right in time performance as well.
On the other side, an item of output may be needed in a limited duration in real time, so
sending early or late gives irrelevant data to the user, either human or machine. Again,
both hardware and software must meet the need at hand.

12-8 Chapter 12 - Software Design for Interactive Use

Interactive software is certairu:y ,;:ea\ \\me, ,;:ece\vl.ng input hom one or more users
(possibly thousands concurrently) over and over during execution. For any one user, as
already seen, control alternates between user and computer. When execution halts and
waits for inputs, the users are in control. Typically, users view the interaction on a
macro basis to complete steps dealing with the application. ln this case, each macro
step may require several micro steps of input entry. Occasionally, users will not provide
inputs as expected, or computer or communication breakdowns prevent inputs.
Interactive systems must handle such breakdowns as well.

So interactive software poses no new problems beyond timely relations of input and
output with users. Program micro steps will begin at each TEXT_IO. Get statement and
continue to or beyond the next TEXT_IO. Get statement that is reached, which may be
one of several that is possible. The entire software is mapped into a set of partial
programs, one for each TEXT_IO. Get statement terminating in a set of next
TEXT_ro. Get statements or program termination. These partial programs, of course,
assemble into the complete program and may share program subparts, but it is useful to
disentangle them into separate partial programs for analysis and verification of real
time behavior, even though common subparts are used. Note that TEXT_IO. Put
statements play no role in this decomposition of execution, only TEXT_I o . Get
statements. TEXT_Io. Put statements provide infonnation for users, but program
execution is not affected by them otherwise.

12.2.2 Interactive Software Segments Revisited

In illustration of interactive software segments, suppose a loop contains several
TEXT_IO .Get statements. Then each of these Get statements defines a partial
program. Starting from any one of these Get statements, the execution may reach any of
these as the next Get statement or leave the loop and reach outside Get statements or
program termination: Which Get statement or termination is reached may depend on
data, so for each Get statement there is a specific control chart leading to the internal
Get statements, to external Get statements or terminating execution. The control chart
may involve several loops in reaching the next internal Get statement. These control
charts are independent partial programs even though common parts of the loop are
used. Looking backwards from the loop, there is likely a previous Get statement,
possibly several, that gets into the loop and its Get statements as well as reaching
other Get statements outside the loop.

More concretely, consider procedure Create_List, introduced as part of package
List_Processing in Chapter 9. It has a single Get statement in a while loop, but it
also calls procedure Insert_In_List within this loop, as well, which contains
another Get statement. Relevant parts of these procedures are given next

with TEXT_IO;
procedure Create_List
is

More_Names :CHARACTER.- 'y';
begin

Get_Names:

12.2 - Interactive Software Segments 12-9

while (More_Names = 'Y') or (More_Names = 'y')
loop

Insert_In_List;
TEXT_IO.Put (Item=> "More names- y or n? ");
TEXT_IO.Get (Item=> More_Names);
TEXT_IO.New_Line;

end loop Get_Names;
end Create_List;

procedure Insert_In_List
is

New_Name : Names;
Count : Index_Type := 1;

begin
TEXT_IO.Put (Item=> "Enter value to be inserted=>");
TEXT_IO.Get (Item=> New_Name);
TEXT_IO.New_Line;

end Insert_In_List;

Note that TEXT_Io. Put statements play a key role in alerting users to enter
TEXT_Io. Get statements, but play no part in decomposing the execution between user
and machine.

Now there are three executable program parts with these initial statements

Pl: procedure Create_List

P2: TEXT_IO.Get (Item=> More_Names);

P3: TEXT_IO.Get (Item=> New_Name);

and with the following connections,

Pl to P3

P2 to P3 or Exit

P3 to P2

This is a straightforward set of program parts by careful design. But other designs may
not have such straight forward program parts. In any case such a set of program parts
defines a collection of program paths, starting with Pl and ending with Exit. Any
given program execution will follow one of these program paths, based on input data.

As noted, interactive software segments in Ada execute between user inputs. Each
segment starts execution with a user input and continues until another user input is
required. In the meantime it calculates, creates outputs in both visible screens and print
forms, and possibly other forms. Once the output is created it awaits the next input.

Now, to examine the behavior of software segments in more detail, we put down the
relevant code of Create_List with the program parts identified therein.

12- 10 Chapter 12 - Software Design for Interactive Use

Pl: with TEXT_IO;
procedure Create_List
is

P3:

More_Names :CHARACTER.- 'y';
begin

Get_Narnes:
while (More_Names = 'Y'} or (More_Naroes = 'y')
loop

Insert_In_List;
procedure Insert_In_List
is

New_Name : Names;
Count : Index_Type := 1;

begin
TEXT_IO.Put (Item =>

"Enter value to be inserted=>");
TEXT_IO.Get (Item=> New_Name);

TEXT_IO.New_Line;

end Insert_In_List;
TEXT_IO.Put (Item=> •More names- y or n7 ");

P2: TEXT_IO.Get (Item=> More_Names);
TEXT_IO.New_Line;

end loop Get_Names;
end Create_List;

Exit:

The program parts noted before are fully visible here, going from Pl to P3, then from P3
to P2, and finally from P2 to either P3 or Exit. The while loop from P3 to P2 can
continue indefinitely, and Exit is the only way out of the loop. In this simple example
we have inserted the text of Insert_In_List as Ada commentary just under the call
of the procedure. In more complex examples such text may have to be treated separately
and the reader move from one piece of text to another in a systematic way. But
identifyi~g all Get statements, along with the entry and exits brings the entire
execution behavior into view.

12.2.3 Performance Requirements for Interactive Software

Since humans are frequent users of interactive software, it not only should be correct
functionally, it should be timely as well. In illustration, sort programs can be of
radically different performance in time for given data. If they are being used in
interative software for human use, it will be important to complete their actions in a
few seconds at most. This means the sort algorithm and the sort problems must be
compatible for the interactive requirements.

As a practical experience, the first assembler programs for the mM 360 computers were
designed very nicely from a theoretical viewpoint. But they ran so slowly they had to
be redesigned in much more complex form to run faster-not a little faster, but a hundred
times faster. Intuition about performance can be very misleading. Computers do small
steps so fast, it is hard to imagine just how all those small steps accumulate into a total
job. One example comes in computing trigonometric functions, such as sine, cosine,
tangent. People look up trigonometric values in tables, and such tables could be stored in
computers, as well. But it turns out that it is much more efficient for computers to
calculate such trigonometric values from scratch, every time needed, rather than
keeping them all stored in tables.

12.2 - Interactive Software Segments 12- 11

So realistic performance requirements, and how to achieve them with good design, need
deep analyses, in parallel with function design.

12.2.4 Correctness Requirements for Interactive Software

Correctness of interactive software is especially important. Failures during interaction
can be at different levels. one level is to halt the interaction altogether, terminating
execution. Another is to alter the responses entirely, making the interaction beyond user
understanding. Still another is to return incorrect data, which may be possibly
important data. And still another is to return small errors in syntax.

In this first human generation of creating computer software, intuitive methods of
program development have created interactive software systems with many failures.
Well used systems, such as word processors, have removed most critical failures, but
many failures still remain to work around. The idea of completely correct interactive
software is still imagined as an impossible dream by many involved in building them.
To go to absolutely correct software will require much work in large systems, but is not
impossible.

As noted above, Ada programs execute in real time, because there is no other time to
execute in. Since each step, in declarations or statements, takes some time, some steps
can execute incorrectly in real time in certain circumstances. While those circumstances
are rare, systems with exceptional performance requirements may require analyses at
the performance level as well as the function level to meet their specifications.

12.2.5 Exercises

1. Partial programs begin with the start of a program or with each TEXT_IO .Get of
the program, with all subprogram calls replaced by the subprograms themselves.
Partial programs stop at each TEXT _I o . Get reached or at the end of the program.
That is, partial programs have unique entries, but possibly non-unique exits. Under
what conditions are exits unique?

2. What are the partial programs for Insert_In_List?

3. What are the partial programs for Delete_From_List?

4. What are the partial programs for Show_List?

5. Humans can do all the elementary steps done by computers, only much slower.
Estimate relative speeds for compare, addition, multiplication of 10 place numbers.

6. Failures in interactive software are not self descriptive. What methods might be
used in the software itself to warn users of possible failures?

12.3 Singly Linked Lists Again

In Chapter 9 you were introduced to three methods of dynamic implementation of lists -
singly linked lists, circular linked lists, and doubly linked lists. We will examine
singly linked lists in more depth for defining their specification, design, and
verification.

12- 12 Chapter 12 - Software Design for Interactive Use

12.3.1 Black Box Specification of Singly Linked List

First, we reexamine the specification of singly linked lists as black boxes. The stimuli
and responses for the black box are of four types:

create_List: Start a new stimulus history for the list; this will not erase any
previous history for the black box, but it makes such history irrelevant for the
future;

1.nse-rt._1.n_List:.l\dd an"f valu~ to\\\~ list hlstot'f, d\l\)\\tate. values \\\a)f be
added;

Delete_From_List: Add any value negation to the list history; duplicate value
negations may be added;

Show_List: Sort all values added but not later negated since the last
Create_List and print;

As a black box, only the history of stimuli are known. The specification is quite
straightforward. No data storage is permitted. Singly linked lists are not present in
this black box specification. They will show up in going to the state box where internal
data is introduced. Show_List is the most substantial black box operation, examining
the history from the last Create_List forward, removing any value and value
negation pair where the value in Insert_In_List appears subsequently as a
matching value negation in Delete_From_List, removing all remaining value
negations, then sorting and printing the remaining values. While straightforward, it is
not very efficient.

12.3.2 State Box Design and Verification of Singly Linked List

Next, the state box will require data storage design in place of stimuli history. It will
also require a new subspecification of the process needed to deal with this internal
state. Various alternatives are possible, including the two introduced in Chapter 9,
using both arrays and access types. In this case we will pursue the use of access types,
having verified the array solution in Chapter 10.

The first design decision in moving from the black box to the state box is the state
design. In the black box, data appears in historical form, first in Create_List which
identifies the start of the next relevant stimulus history, then Insert_In_List and
Delete_From_List steps that build and modify the history, and finally in
Show_List which produces sorted printouts of what is currently active in the history
since the last Create_List. In the state box it seems sensible to store what is currently
active in the relevant history in already sorted order. This will add more complexity
to Insert_In_List and Delete_From_List, and make Show_List simpler. We
will also introduce names for both the list and the elements in the list, The_List and
The_Element.

As you recall from Chapter 9, each node in a singly linked list was designed to contain a
field that provides the access value of the next node in the list. The last node in the list
has the value null in the field giving access to the next node. Also recall that such a
list commonly has a special access variable, the external pointer, that points to the
start of the list. As we discuss insertion and deletion in a linked list, we will treat this
external pointer as a special case. First, let us define the Ada types that we use to
support our singly linked list in the state box.

12.3 - Singly Linked Lists Again 12- 13

subtype Element_Type is STRING (1 .. 5};
type Node;
type Node_Access is access Node;
type Node is

record
Data : Element_Type;
Link : Node_Access;

end record;

These types define the state of the state box being designed here. Now let us consider
each of our desired operations in the state box, in contrast to the black box. We have
decided to retain the active elements of a singly linked list in a sorted list. That is any
successor element will be equal or greater in size to the current element. Specifically,
what do we want each operation to do? As noted in Chapter 9:

Create_List should initialize a list to empty.

Insert_In_List should add a given element to a given list at the appropriate
place. This means that both the name of the list into which we are to insert and
the value of the element to be inserted should be provided by the calling
routine. Thus this operation will have two parameters - the list name and the
element value. The place in the list at which the element is to be inserted will
be determined by the choice of ordering that we impose on the list. For our
example, we keep our list in increasing order.

De lete_From_Lis t should delete a given element (if present) from a given list.
Therefore this operation will also have two parameters -the list name and the
element value. If the element is present it should be removed from the list
without disturbing the remaining elements. If the requested element is not in
the list we display a message to that effect.

Show_List will display every node in the list in order.

As found in Chapter 9, let us summarize our set of state box operations in the following
chart.

treate_List (The_List}:
Purpose: Initialize The_List to null
Input: The_List
Output: The_List with value null

Insert_In_List (The_List, The_Element):
Purpose: Adds The_Element to The_List
Input: The_List and The_Element
Output: The_List with The_Element inserted

Delete_From_List (The_List, The_Element}:
Purpose: Deletes The_Element from The_List if present
Input: The_List and The_Element
Output: The_List with The_Element removed or

The_List and an output message

Show_List (The_List}:
Purpose: Prints all the elements in The_List
Input: The_List
Output: The elements of The_List in order

12- 14 Chapter 12 - Software Design for Interactive Use

The state box type definitions and operations described above are all logically related.
That is, they all deal with our linked list. Therefore let us physically relate them by
defining them in a package. The package spedfication is given below.

package Singly_Linked_List
is

subtype Element_Type is STRING (1 .. 5);
type Node;
type Node_Access is access Node;
type Node is

record
Data : Element_Type;
Link : Node_Access;

end record;
List_Underflow : exception;
List_Overflow : exception;
procedure Create_List (The_List in out Node_Access);
procedure Insert_In_List (The_List : in out Node_Access;

The_Element : in Element_Type);
procedure Delete_From_List (The_List : in out Node_Access;

The_Element : in Element_.Type);
procedure Show_List (The_List : in Node_Access);

end Singly_Linked_List;

You will see that we have encapsulated our types and operations in the package
Singly_Linked_List. Additionally we have defined two user defined exception
names, List_Underf low and List_Overflow. List_Underflow is provided to alert
a using program of an attempt to remove an element from an empty list.
Lis t_overflow is provided to alert a using program that the available storage space
has been exceeded.

Now that we have our package specification, we can compile it and enter the
compilation information into our Ada library.

At this point we have seen a black box and a state box definition for the Singly Linked
List. The black box defines a specification for Singly Linked List and the state box
defines a design to meet that specification. It needs to be seen if they are compatible,
that is to verify that the state box does meet the requirements of the black box. The
state box has defined state and operations to meet the black box requirements. Both
state box and black box identify four operations with identical names. The state box
operations have formal arguments, and The_Element. is, indeed, an internal state with
no correspondence in the black box. In this design is stored by the user, not by the state
box. But is a stimulus common to both black box and state box. It is called "value" in the
black box, and might be called there as well.

So a verification that the state box is equivalent with the black box can be done at this
point. It can be done informally as follows. Consider any history of stimuli to the black
box and clear box.

Create_List: In the black box, each Create_List will start a new relevant
history, with all previous stilriuli irrelevant from then on. In the state box,
each Create_List (The_List) will initialize The_List to null. The effect is
equivalent.

12.3 - Singly Linked Lists Again 12- 15

Insert_In_List: In the black box, each Insert_In_List will continue the
stimuli history, recognizing the value given. In the state box, each
Insert_In_List(The_List,The_Element)willenrerThe_Elementinto
The_List in sorted order. In each case the value of The_Element is retained.

Delete_From_List: In the black box, each Delete_From_List will continue the
stimuli history, recognizing the value given negated. In the state box, each
Delete_From_List(The_List,The_Element)willseektoremove
The_Element from The_List if possible. In each case the value of
The_Element is recognized for negation.

Show_List: In the black box, with Show_List the history to the preceding
Create_List is examined and values followed by a negated identical value
removed, then the remainder of values sorted and printed. In the state box,
Show_List (The_List) prints The_List.

Thus, although the data and internal operations are quite different, the final result in
the Show_List operation is identical, and that is the only operation visible to the
users.

12.3.3 Clear Box Design and Verification of Singly Linked List

We now need to construct the package body thereby providing the implementation of
each of our procedures whose specifications were given above. Let us begin our
implementation analysis by developing suitable algorithms for our procedures. As
carried out in Chapter 9, these algorithms were defined and analyzed informally
before carrying them over to Ada. They are repeated here with small elaborations
following their specifications for continued analysis and verification. The specification
from the state box is listed and compared with the design from the dear box.

Specification
Create_List (The_List):

Purpose: Initialize The_List to null
Input: The_List
Output: The_List with value null

~~
Create_List (The_List):

set The_List to null

Verification
The verification is obvious.

Specification
Insert_In_List (The_List, The_Element):

Purpose: Adds The_Element to The_List
Input: The_List and The_Element
Output: The_List with The_Element inserted

12- 16 Chapter 12 - Software Design for Interactive Use

Desi~
Insert_In_List (The_List, The_Element):

if The_List is empty
then

make a node containing The_Element
set The_List to point to the new node

else
if The_Element <= the value in the first list node
then

make a node containing The_Element
change the pointers to make the new node the

first node in the list
else

let Current_Ptr point to the first element
let Previous_Ptr be null
while Current_Ptr.Data < The_Element and

Current_Ptr.Link /= null
loop

Previous_Ptr is set equal to Current_Ptr
advance Current_Ptr

end loop
make a node containing The_Element
change the pointers to insert the new node
end if

end if

Verification
As discussed in Chapter 9 , the insertion algorithm covers four cases-an empty list,
insertion at the first node, insertion later in the list, and insertion at the end of the list.
Before and after diagrams are shown in Chapter 9. The four cases are determined by a
nested pair of if statements with the nested else part containing a while statement.

The first case is defined by the outside if condition TRUE, namely

The_List is empty

and is very simple. We just make The_List point to our new node holding
The_Element as data.

The second case is defined by the outside if condition FALSE and the inside if condition
TRUE, namely

The_List is not empty and
The_Element <= the value of the first list node

and is only slightly more complicated. H The_Element precedes the value in the first
node we must make The_List point to a new node with value The_Element and make
the new node point to the rest of the list.

The third case requires that we must traverse The_List until we find the proper point
within The_List at which to insert. We use Current_Ptr to point to the node against
which we are current testing for position and Previous_Ptr to point to the node we just
visited. The intention is that the new node will be inserted between Current_Ptr and
Previous_Ptr. Its condition is

12.3 - Singly Linked Lists Again 12- 17

The_List is not empty and
The_Element > the value of the first list node and
Current_Ptr.Data >= The_Element

and in this case a new node is required for The_Element to be placed between
Previous_Ptr and Current_Ptr, as specified following the loop statement.

The fourth case arises if the proper position for The_Element is in a new last node.
This situation will arise when Current_Ptr points to the last node and
Current_Ptr. Data < The_Element. Its full condition is

The_List is not empty and
The_Element > the value of the first list node and
Current_Ptr.Data < The_Element and Current_Ptr.Link = null

When this occurs, we must make current_Ptr. Link point to the new node as
specified following the loop statement.

These four cases exhaust the possibilities and complete the proof more explicitly than
in Chapter 9.

Svecification
Delete_From_List (The_List, The_Element):

Purpose: Deletes The_Element from The_List if present
Input: The_List and The_Element
Output: The_List with The_Element removed or

The_List and an output message

Oesifm
Delete_From_List (T~e_List, The_Element):

if The_List is empty
then

signal List_Underflow
else

if The_Element is in the first node
then

change The_List to point to the second node
else

let Current_Ptr point to the first element
while Current_Ptr.Data /= The_Element and

Current_Ptr.Link /= null
loop

advance both Current_Ptr and Previous_Ptr
end loop
if The_Element has been found
then

change the pointers to delete the node
else

signal node not found
end if

end if
end if

12 -18 Chapter 12 - Software Design for Interactive Use

Verification
As discussed in Chapter 9 , the deletion algorithm covers four cases-an empty list,
deleting the first node, deleting later in the list, and The_E 1 emen t not present in the
list. Before and after diagrams are shown in Chapter 9. The four cases are discovered by
a nested pair of if statements with the else part of the inner if statement containing a
while statement and an if statement.

The first case is defined by the outside if condition TRUE, namely

The_List is empty

and is very simple. We just signal List_Underflow to the user.

The second case is defined by the outside if condition FALSE and the inside if condition
TRUE, namely

The_List is not empty and
The_Element is in the first node

and is only slightly more complicated. Deleting the first element in the list requires
that we change The_List to point to the second element in the list if there is one.

The third and fourth cases are defined by the outside if condition FALSE and the inside
if condition FALSE, namely

The_List is not empty and
The_Element is not in the first node

Deleting from later in the list requires that we must traverse the list until we find the
desired node. We use-Current_Ptr and Previous_Ptr as before with the intention
that Current_Ptr will stop on the node that we are to delete. We then change
pointers to remove the node indicated by Current_Ptr. The loop will terminate
whether or not The_Element is found. So the third if statement following determines
that for cases three and four. If The_Element has been found, it will be deleted in case
three. However, it is possible that the value that we wish to delete is not in the list. In
this scenario, Current_Ptr will stop at the last node and Current_Ptr. Data I=
The_Element. If this is the case, we issue a message stating that the value was not
found, to complete case four.

These four cases exhaust the possibilities and complete the proof more explicitly than
in Chapter 9.

Specification
Show_List (The_List):

Purpose: Prints all the elements in The_List
Input: The_List
Output: The elements of The_List

12.3 - Singly Linked Lists Again 12- 19

Design
Show_List (The_List):

set Current_Ptr to The_List
while Current_Ptr /= null
loop

write out Current_Ptr.Data
advance Current_Ptr

end loop

Verification
The verification of Show_List (The_List) is by direct inspection. The task is to print
out the contents of The_List which is straightforward.

12.3.4 Ada Design and Verification of Singly Linked List

Now we are ready to proceed with our implementation by presenting the package body.
The verification needs only address correct implementation of the design above, and
needs not reach back to the original specification which was addressed by the design.
The implementation developed in Chapter 9 is as follows, preceded in each procedure
by its design as commentary.

with TEXT_IO: -- needed for the list traversal
package body Singly_Linked_List
is

procedure Create_List (The_List
set The_List to null

in out Node_Access)

is
begin

The_List := null:
end Create_List:

procedure Insert_In_List (The_List : in out Node_Access:

if The_List is empty
then

The_Element : in Element_Type)

make a node containing The_Element
set The_List to point to the new node

else
if The_Element <= the value in the first list node

then
make a node containing The_Element
change the pointers to make the new node the

first node in the list
else

let Current_Ptr point to the first element
let Previous_Ptr be null
while Current_Ptr.Data < The_Element and

Current_Ptr.Link /= null
loop

advance both Current_Ptr and Previous_Ptr
end loop
make a node containing The_Element
change the pointers to insert the new node

end if
end if

12-20 Chapter 12 - Software Design for Interactive Use

I

is
Previous_Ptr : Node_Access;
New_Node, Current_Ptr : Node_Access;

begin
-- test for an empty list
if The_List = null
then

-- build the first node
The_List := new Node;
The_List.Data := The_Element;
The_List.Link := null;

-- test against the first element
elsif The_Element <= The_List.Data
then

-- insert the value as the first node
Current_Ptr := new Node;
Current_Ptr.Data := The_Element;
Current_Ptr.Link := The_List;
The_List := Current_Ptr;

else
-- initialize two pointers
Current_Ptr := The_List;
Previous_Ptr := null;
-- search for the proper place
Find_Place:
while (Current_Ptr.Data < The_Element) and

(Current_Ptr.Link /= null)
loop

Previous_Ptr := Current_Ptr;
Current_Ptr := Current_Ptr.Link;

end loop Find_Place;
-- insert the new value
New_Node := new Node;
New_Node.Data := The_Element;
if Current_Ptr.Data >= The_Element
then

New_Node.Link := Current_Ptr;
Previous_Ptr.Link := New_Node;

else
Current_Ptr.Link : = New_Node;
New_Node.Link .- null;

end if;
end if;
exception

when STORAGE_ERROR => raise List_Overflow;
end Insert_In_List;

procedure Delete_From_List (The_List : in out Node_Access;
The_Element : in Element_TYPe)

if The_List is empty
then

signal List_Underflow
else

if The_Element is in the first node
then

change The_List to point to the second node

12.3 - Singly Linked Lists Again 12-21

is

else
let Current_Ptr point to the first element
while Current_Ptr.Data /= The_Element and

Current_Ptr.Link /= null
loop

advance both Current_Ptr and Previous_Ptr
end loop ·
if The_Element has been found
then

change the pointers to delete the node
else

signal node not found
end if

end if
end if

Previous_Ptr : Node_Access;
Current_Ptr : Node_Access := The_List;

begin
-- test for an empty list
if The_List = null
then

raise List_Underflow;
end if;
-- test against. the first element
if The_List.Data = The_Element
then

The_List := The_List.Link;
else -- search the list

Find_Element:
while (Current_Ptr.Data /= The_Element) and

(Current_Ptr . Link /= null)
loop

Previous_Ptr := Current_Ptr;
Current_Ptr := Current_Ptr.Link;

end loop Find_Element;
-- remove the value if it was found
if Current_Ptr.Data = The_Element
then

Previous_Ptr.Link := Current_Ptr.Link;
else

TEXT_IO.Put (Item=> "Element not found.");
TEXT_IO.New_Line;

end if;
end if;

end Delete_From_List;

procedure Show_List (The_List : in Node_Access)
set Current_Ptr to The_List
while Current_Ptr /= null
loop

write out Current_Ptr.Data
advance Current_Ptr

end loop
is

Current_Ptr Node_Access := The_List;

12-22 Chapter 12- Software Design for Interactive Use

begin
TEXT_IO.Put (Item=> "Here is your list ");
TEXT_IO.New_Line;
Travel_List:
while Current_Ptr /= null
loop
TEXT~IO.Put (Item => CUrrent_Ptr.Data);
TEXT_IO.New_Line;
Current_Ptr := Current_Ptr.Link;

end loop Travel_List;
end Show_List;

end Singly_Linked_List;

The verification of the Ada code against the design is carried out for each procedure as
follows. It is less formal than previous proofs, which is needed to deal with larger
programs. Where necessary, more formality and detail is possible.

Create_List: The verification is by direct inspection. The single statement of the
procedure carries out the objective of the design.

Insert_In_List: The design and the code have different control structures of if
statements. The design has a pair of nested if statements, while the code has a
single if statement with an additional elsif part However, on close
examination, the design and the code have identical control, the then part of
the inner if statement in design becoming an elsif part and the else part of the
inner if statement in design becoming the else part of the outer if statement in
code. Now these parts can be compared more closely for detailed behavior.

The then parts of the design and code deal with the case The_List = null,
and the code carries out the design in specific Ada terms, definin~a S..W. ~
fn,: 't:l:>R._! ... ·:.:~'t. Wtm"'''ne_Klement as data, just as required.

The elsif part of the code carries out the internal then part of the design in
specific Ada terms, making The_Element the new first item in The_List, just
as required in the design.

The else part of the code clearly corresponds to the nested else part of the
design. The code then carries out the initialized while loop in searching for the
place to put The_Element, either inside The_List or at its end in the final if
statement The verification can be carried out in more detail if any concern
arises.

Finally, the Ada code Insert_In_List deals with the exception of
STORAGE_ERROR not discussed in the design. Actual, finite data conditions
expand on the design in a satisfactory way.

Delete_From_List: The design and the code have different control structures of
if statements. The design has a pair of nested if statements, while the code has
a sequence of if statements, the second with a while statement followed by an if
statement However, on close examination, the design and the code have
identical control, the inner if statement in design becoming an if statement and
the else part of the inner if statement in design becoming the else part of the
second if statement in code. Now these parts can be compared more closely for
detailed behavior.

12.3 - Singly Linked Usts Again 12-23

The first then parts of the design and code deal with the case The_List =
null, and the code carries out the design in specific Ada terms, to raise
List_Underflow when deletion is proposed for an empty list. This is exactly
what is called for in the design.

The then part of the second if statement in code checks if the first element of
The_List is to be removed, which is the same case as the nested if then
statement in the design. They are equivalent.

The else part of the second if statement in code first searches for The_Elernent
in the remainder of the list in the while loop, then checks in the final if
statement whether The_Elernent was found. It then removes The_Elernent if
found or sends a message "E 1 ernen t not found." to the user. This is precisely
what is called for in the design.

Show _List: The code carries out what is called for in the design with an opening
line "Here is your list ",putting each item on a new line.

This completes a verification at a reasonable level. If more importance is assigned the
package, it can be verified in greater detail.

12.3.5 Certifying Slngly_Linked_List

As noted in Chapter 9 we can now compile the package body and place the compilation
information in our Ada library. At that point, in order to test our new package, we
constructed a sample test program called Bui ld_Li s t for interactive testing, step by
step, with the user selecting one of the four procedures of the package, and names when
necessary. This testing gives us a sense of correctness of the package for the cases we
provide it. Of course, any failures will point to errors in the package as well. However,
this sense of correctness is just that. The evidence only addresses the cases we have
provided.

In order to certify the package Singly_Linked_List, we need to define a statistical
basis for testing. At each step we need to define probabilities for each of the four
possibilities, and if names are needed, further probabilities for them. At first glance
this may seem impossible -how will one know what the probabilities should be? But at
second glance a statistical basis for testing is clearly important and a reasonable
hypothesis for the probabilities is really useful. The statistical basis for testing will
allow the package to go into the field and the real statistics will emerge there. We
will need probabilities for each of the four possibilities and also a probability of
termination of input data.

The simplest form of probabilities is constant, say five nonnegative fractions Pl, P2, P3,
P4, PS that sum to one, and uniform random names if needed. If necessary, these
probabilities can vary with the situation, too. For example the probability Pl, for
Create_List might begin quite small after Create_List appears and grow over
time, or grow with the size of the list, etc. The probabilities for Insert_In_List P2
and for Delete_Frorn_List P3 may be in fixed proportion but variable, or may not, etc.
The names may likewise be selected in various ways. One way is to use a telephone
book, ignoring names under 5 characters and deleting characters beyond 5 in the rest. For
example, "smith" would be a popular name, as would "mille" (from "miller''). Finally,
termination probability might vary based on the application, being zero then jumping

12-24 Chapter 12 - Software Design for Interactive Use

to one in cases when applications call for it. We illustrate the simple case of fixed
probabilities below, using two random packages, Random_Choice and Random_Name,
to create inputs until termination.

with TEXT_IO, Singly_Linked_List, Random_Choice, Random_Name;
procedure Build_Random_List
is

Name :STRING (1 .. 5);
Name_List : Singly_Linked_List.Node_Access;
Choice :CHARACTER:= ' ';

begin
TEXT_IO.Put (Item =>

•This program tests singly linked list •);
TEXT_IO.Put (Item =>

•package with random data.•);
TEXT_IO.New_Line;
-- first create the random list
Singly_Linked_List.Create_List (Name_List);
-- now exercise the options
Test_List:
while Choice /= 'E'
loop

Choice := Random_Choice;
TEXT_IO.Put (Item=> Choice);
TEXT_IO.New_Line;
case Choice
is

when 'C' I 'c' =>
Singly_Linked_List.Create_List (Name_List);

when 'A' I 'a' =>
Name := Random_Name;
TEXT_IO.Put (Item=> Name);
TEXT_IO.New_Line;
Singly_Linked_List.Insert_In_List

(Name_List, Name);
when 'D' I 'd' =>

Name := Random_Name;
TEXT_IO.Put (Item=> Name);
TEXT_IO.New_Line;
Singly_Linked_List.Delete_From_List

(Name_List, Name);
when 'S' I 's' =>

Singly_Linked_List.Show_List (Name_List);
when 'E' I 'e' =>

Choice := 'E';
end case;

end loop Test_List;
exception

when Singly_Linked_List.List_Overflow =>
TEXT_IO.Put (Item=> •Not enough memory space.•);
TEXT_IO.New_Line;

when Singly_Linked_List.List_Underflow =>
TEXT_IO.Put (Item=> •Your list is empty.•);
TEXT_IO.New_Line;

end Build_List;

12.3 - Singly Unked Lists Again 12-25

The procedure shown above is designed to allow us to statistically test our new package
by creating an access variable for a list and then allowing additions or deletions of as
many elements as determined statistically. We establish visibility to our package and
two random data generators through the with clause.

with TEXT_IO, Singly_Linked_List, Random_Choice, Random_Name;

As noted in Chapter 9, we then proceed to call the appropriate operations from our
package by referring to the package name .operation name. For example,

Singly_Linked_List.Insert_In_List (Name_List, Name);

calls the Insert_In_List operation from the package Singly_Linked_List.
The random data generators, Random_Choice, Random_Name provide constant
probabilities. If more tailored data generators are required that is directly possible.

This statistical testing permits the certification of Singly_Linked_List for its
correctness.

12.3.6 Exercises

1. Carry out a similar verification and certification for Circular_Linked_List.

2. Carry out a similar verification and certification for Doubly _Linked_List.

3. Identify a more sophisticated test basis for Singly_Linked_List which
recognizes a time shift in the relative frequencies of Insert_In_List and
Delete_From_List, possibly cyclic.

4. Expand the verification of Singly_Linked_List to another level of detail. If
this package is to be widely used in medical systems with human life at stake from
failures, what verification level is appropriate?

12.4 System Level Software Development

We discuss the issues in real software development, which usually involves the reuse of
as much component software as possible. A substantial library of Ada components is
developing. Ada provides programming language capabilities of such breadth and
depth that software development in Ada is reaching new levels of engineering
discipline, not only in developing new Ada programs, but in reusing Ada packages and
subprograms.

In this section, we carry through a small example and examine system development
using both existing components and creating other components. This example and
explanations were carried out in an actual development, and some duplication of
previously discussed ideas are given to keep them in a single package.

12-26 Chapter 12 - Software Design for Interactive Use

12.4.1 The Problem: Develop and Certify a Correct System

Suppose that the system represented in Figure 12.1 is to be developed. The flow chart of
Figure 12.1 is presented in pseudo Ada as shown in Figure 12.2. Let us further suppose
that modules A and D are to be newly written, that B and C will be used from the
repository, and that E will be slightly modified from the repository. We can imagine
that A is new because it is the user front end which, along with the predicate P, will
control whether we use module B or C. Predicate Q will control the while loop using
module C. Imagine further that module D is newly written because it takes the results
from B and C, performs something unique to this system and then passes the data on to
E. Imagine that E presents data in some standard reporting format and we only make a
small modification to E to adapt it for the proposed system. To summarize, our system
requires A, D, P and Q to be written from scratch, modules Band C to be reused without
change, and module E to be reused after a small modification. The repository
information concerning the reuse modules gives us the data presented in Table 12.1.

Figure 12.1
Schematic of an Example System

Let us assume that the statement of work requires the system to exhibit an operational
mean time to failure of 1,000 hours. A correct system will meet this objective, of course.
How do we build the system in order to make the best use of the modules available and
achieve the correctness required by the statement of work?

12.4 - System Level Software Development 12-27

procedure EXAMPLE
is
begin

A;
ifp
then

while Q
loop

C;
end loop;

else
B;

end if;
D;
E;

end EXAMPLE;

Figure 12.2
Example System

---- --------

The first step in addressing correctness of a system built from new and reused components
is to assess the probabilities of making a transition from one module to another. Looking
at Figure 12.1, it is clear that the probability of going A to P is 1; the system always
goes A to P and never goes from A to anything else. Ukewise, the probability of a direct
transition A to E is 0 because execution of the proposed system must go through other
modules. The more interesting direct transitions are, for example, P to Q versus P to B
and Q to C versus Q to D.

Let us suppose that the architect of the new system determines the probabilities as
follows:

From To Probability
A p 1.0
p Q 0.6
p B 0.4
Q c 0.9
Q D 0.1
c Q 1.0
B D 1.0
D E 1.0

-

Table 12.1
System Transfer Probabilities #1

with all other module to module transitions having probability zero.

12-28 Chapter 12 - Software Design for Interactive Use

Module Repository Information
A (none)
B This module has not been verified, nor has it been

statistically tested. No usage record of any kind exists.
c This module has been statistically tested and has

reliability r=0.999 with 98% confidence. The usage profile
of the test conforms to the expected use in this system.

D (none)
E This module has been certified with MTIF=8,000 hours.
p (none)
Q (none)

Table 12.2
Summary of Repository Information

By now objections to this entire effort may be mounting. Objections may be that these
probabilities are not known, that data attributed to modules B, C and E are not
available, we don't know this and we can't do that. The simple truth is that if we are
going to take software development and certification seriously, we must begin to know
such facts about software. What we don't know can be hypothesized. The less we know
and the more we hypothesize the weaker the analysis. The more we know and the less
we hypothesize the stronger the analysis. Even though we may begin with a weak base
of facts, we will learn what is important and why by making conjectures, performing
analyses and collecting field data. Over time the base of facts will improve and the
quality of the analysis will improve. Every engineering discipline that has emerged
over the centuries has gone through this rite of passage and so will software
engineering. ·

Let us assume that the newly written modules A and D will be developed to
reliabilities of 0.95 and that the predicates P and Q will be given reliabilities of 1.0.
The justification might be that our organization has a record of performance to justify
the 0.95 on projects of this type and P and Q are small and will be formally verified.
Finally, let's suppose that B is as good as A and D.

The statistical analysis shows that under these conditions, the system reliability
lower bound will be 0.88, not good enough. It also shows the sensitivities (i.e.,
"weights" of the reliability failure based on the expected number of uses of the module)
as follows:

Module Sensitivity
A 0.93
p 0.89
Q 5.32
B 0.36
c 4.79
D 0.93
E 0.88

Table 12.3
Module Sensitivities

12.4 - System Level Software Development 12-29

The reliability goal of MTIF = 1,000 is equivalent under our methods to a reliability of
0.999. This target will be allocated to the modules in the proportions of the
sensitivities. Modules Q and C carry by far the greatest reliability burdens of any parts
of the system.

Module B is troublesome because no information about the correctness of B is available;
on the other hand, B carries the least burden for total system correctness. It would be
prudent to conduct an experiment with B to empirically estimate its correctness.

One key idea is to schedule the building of the system in a pipeline of executable
product increments. The system proposed in Figure 12.1 might be scheduled as follows:

Increment 1: A
Increment 2: A, P, B
Increment 3: A, P, B, D
Increment 4: A, P, B, D, E
Increment 5: A, P, B, D, E, Q C

Each increment is executable and will be subjected to statistical certification testing.
This is not the only schedule that would build the system. Further study of the system
flow chart, the transition probabilities and sensitivities shows that the Q C loop will
be the most heavily used. Also E has a stronger record than C and represents less risk.
Consider this alternative:

Increment 1: A
Increment 2: A, P, Q C
Increment 3: A, P, Q C, B
Increment 4: A, P, Q C, B, D
Increment 5: A, P, Q C, B, D, E

The architect's work of deciding the schedule is different from the work of doing the
schedule. The schedule will reflect the strategy for keeping the development process
under control and meeting the correctness goal.

Based on the statistical analysis we conclude: (1) we should formally prove the
correctness of predicates P and Q and schedule the Q C work as early as possible,
because these parts of the system need the more extensive testing that accrues to earlier
increments, (2) A P Q C can be built and tested in the first two increments so they get the
most extensive testing, (3) changes toE should be verified because it will get relatively
less testing but it already has a strong performance record.

With this development plan, we must think ahead to certifying the final product and
our expectations for each increment. Specifications will be given to the certification
team who must construct a statistical profile of the intended usage environment. Test
scenarios will be randomly generated based on this profile. When an increment is
completed by the developers it will be submitted for certification testing. When a
failure is observed by the testers, the developers will make an "engineering change,"
creating a new "version" of the increment which corrects the error. Testing continues in
this way until no further failures are found before management decides to stop testing.

12-30 Chapter 12 - Software Design for Interactive Use

Management must have some expectations in mind for the testing results. For example,
the record of the development group may show about three failures per KLOC in each
increment before deciding the increment is correct. Assuming that one team develops the
entire system, the testing experience for the first increment, module A, will be a good
indicator of what to expect on subsequent increments. We can monitor progress relative
to these expectations.

12.4.2 Using Cleanroom In System Level Development

Oeanroom software engineering is a team process for software development under
statistical quality control, with no program debugging or testing prior to independent ·
statistical correctness certification testing. The name of the methodology was taken
from the semiconductor industry, where great care is exercised to prevent defects in
design and impurities in process. Comparably exacting standards in software
development will also lead to greater quality and productivity. We will use the term
"Oeanroom" to reference the entire software development process, from specification to
delivered code.

The Cleanroom methodology strives for zero defect software. Each step of the software
development process is addressed in Oeanroom, beginning with the contractual
statement of what is to be done through delivery of the finished product with
certification. Software development is brought under statistical quality control by this
methodology. Increased productivity is achieved as a by product of quality concerns.
Experience suggests that for skilled practitioners of the Cleanroom methodology, as
compared with other competent professionals, the goals of producing a finished job in
half the time, with one tenth the number of errors delivered, and one third as many
lines of code, are achievable.

Cleanroom characteristics are (1) intellectual aids that scale up from small to large, (2)
a management style that maintains intellectual control of the project, and (3) an intense
team effort to create a correct and excellent design from which to produce zero defect
code.

The steps in Oeanroom development of software are as follows:

1. Establish meaningful management control over the development process.

2. Use the Oeanroom life cycle of executable product increments for specification,
design, development and certification.

3. Use the box structure technique for system analysis and design.

4. Design statistical tests based on the intended usage environment. Allow insight
gained in defining and constructing the tests to question the specification and
influence the design.

5. Use functional verification to determine that the design is ready to code and
certify.

6. Conduct the statistical tests to establish correctness and to demonstrate that
the software meets the contract requirements.

12.4 - System Level Software Development 12-31

Each of these concepts is briefly discussed next.

Meanin~l Mana~ment Cleanroom developments are done by "chief programmer''
Cleanroom teams and the manager is a fully participating member of the team.
Cleanroom teams will vary in size typically from four to eight persons and will
sometimes have specialists in key activities. The manager's role includes interacting
with the customer, comprehensive knowledge of the Cleanroom process, strict
adherence to the process, building teamwork and achieving team consensus. Active
technical management, rather than administrative management, is essential to
Oeanroom, and one would expect the manager to be a senior person with respect to
knowledge and experience in the formal methods employed by Cleanroom.

Life Cycle of Executable Product Increments Cleanroom projects are organized into
sequential segments for development, delivery and field use. Thus, the project feeds
field experience back into the development process from the beginning. Specification of
each segment, its usage environment and the degree of correctness that must be
warranted are required. Stable specifications are the basis for statistical quality
control in software, and the incremental approach permits early stable specifications
without forcing customers to specify beyond their knowledge or understanding.

Box Structure Analysis and Desiim Box Structure analysis and design provides a
hierarchy of black box, state box and clear box descriptions plus a means of moving up
and down the hierarchy for the purpose of clarifying key information for the final
system. The black box focuses on the highest level stimulus, response and transition rule
description of a process and gives a state free, procedure free description. The state box
description introduces stored information in the form of state data and abstracts from
procedure. Oear boxes introduce procedures that are to be invented to complete state
boxes. In the Box Structure process, analysis and design, discovery and invention, are
kept separate and both are enhanced.

Statistical Testin~ While the systems analysis and design activity is underway, the
environment in which the system will operate must be analyzed. Based upon an
understanding of the usage environment, input sequences are drawn randomly from a
probability distribution of user inputs. These samples must be drawn in a way and in
such quantity as to be appropriate for the certification and warranty that has been
agreed upon between the developer and customer. It is furthermore necessary to
establish (either manually or by an automated means) the outputs from the software
under development which will be considered correct for the input sample. Appropriate
files should be constructed to expedite the actual test when the code goes to the
machine.

Functional Verification The box structure process produces POL and Ada for the system
under development. The process of functional verification is a mathematical thought
and argument process which facilitates a detailed examination by the team in a way
that will either convince the team members that the code is correct, or will expose
mistakes. Mistakes are corrected and the code is again verified. Oeanroom developers
do not execute or debug code before certification.

Certification Model Typically, the persons developing the code will not be present or
involved in putting the code on the machine for testing and certification. If the
development team was successful, performance measures will be within the contract

12-32 Chapter 12 - Software Design for Interactive Use

specification and the code will be delivered. If the development team failed, the code
will be pulled off the machl."le and the team will return to the analysis and design
phase. The Certification Model prescribes a calculation based upon the results of
statistical testing which yields a correctness measure. If these calculations show that
the performance of the software equals or exceeds the contractual requirement, the
software is so certifi~. Each software increment, after the first, will contain software
previously certified plus newly written software, and the composite will be tested and
certified. Certifications subsequent to the first will have increasingly broader usage
profiles which will make the certifications themselves more accurate.

12.4.2.1 Cleanroom Software Development Life Cycle

Problem Analysis
and Specification

~
Box Structure

Analysis and Design

~
Functional

Verification of Ada

~
Statistical Testing of
Common Services

~
Statistical Testing

for Certification

Increment 1

C1 B1 B2

~
Increment 1

Release 1

~
Increment 2

~
Increment 3

I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I ' I 1 I
I I I I I

I I I I I
I I I I I
I I I I I

c1:02:B3:B4 B5: B6: B7
I I I I I
I I I I I
I I I I I

I I I
I I I
I I I

I I I
I I I
I I I
I I I

Increment 2 Increment 3

Release 1

Figure 12.3

~

1--

Cleanroom Software Development Life Cycle

Release 2

Increment 4

I
I
I
I
I
I
I

I ,
J

C2 ' 88 I
I
I
I

I
I

' I
I
I
I

Increment 4

Release 2

Figure 12.3 depicts the Oeanroom software development life cycle. Problem analysis
and specification should lead to a structured architecture that defines not only what a
software system is to be when finished, but also a constructive plan to design and certify
the software in a pipeline of increments. The product development plan is cast as a
series of releases to customers, each of which is comprised of cumulatively certifiable
executable product increments. Field experience from release R(i) is feedback into the
management plan to influence R(i+ l), ... ,R(n). Certification tests are performed on each
increment so that experience from increment I(i) is feedback into the management plan
for increments l(i+l) .. .I(m). Whenever an increment fails to meet certification
standards, the team manager can investigate the root causes, correct the software
development process, redesign the increment and again attempt to certify the software
through that increment.

An experienced Cleanroom team might deal with increments of 10,000 lines of code,
which might result from more than 100 modules created in the top down usage
hierarchy for the increment. Figure 12.3 illustrates the relationship of modules to
increments. B1, B2, de., represent boxes in the box structure design. C1 and C2 are also
boxes, but denote common services, modules that are reused. Box structure analysis and
design creates a nested hierarchy of boxes, only one level of which is shown in Figure
12.3.

When the specification is set, or is taken as a working specification, the process of
giving statistical expression to the intended usage environment can begin. Usage
statistics are effectively an addition to the function and performance specifications.
One must decide what constitutes a test case, and then generate a statistically correct
series of test cases reflecting the intended usage environment and adequate to the
correctness and confidence levels sought. Test results are logged for 1(1), 1(1,2), ... ,
1(1,2, ... ,m).

Cleanroom protocol for software certification testing proves to be a powerful component
of Cleanroom software development. Early in the process of characterizing the usage
environment and constructing a sample of test cases, one confronts specification and
design issues that otherwise might not arise until too late. One doesn't want to produce
systems that cannot be tested or that are difficult to test, so when aspects are found to be
difficult to test, one questions the specifications and the design. Typically, both can be
improved upon in a way that is straightforward to test.

12.4.2.2 Formal Methods In Cleanroom

The formal methods in Cleanroom are box structure analysis and design, functional
verification and statistical testing. Success depends critically on the team's ability to
apply formal methods in specification, design, verification and certification.

Box structures have several formal aspects. The top down process separates function,
data structure and procedure at each step in an effort to achieve a sharp focus of
attention on the three critical aspects of each design step. Furthermore, a verification
process is prescribed to confirm that the expansion from black box to state box is correct
and again that the expansion from state box to clear box is correct. The process is one of
taking small creative, inventive steps and then confirming that each step is correct
before going to the next step. Experienced designers may use less formal verification of
some state boxes and clear boxes; fine grain verification may be more or less enforced
depending upon the nature of the work and the prowess of the team.

Box structure analysis includes four principles which assist the team in deriving a good
design from the specification. Transaction closure invites the assurance that all the
information that is needed is available. State migration invites the assurance that
data is available or hidden at the optimal level. Common services are emphasized and
should be identified to support reuse of modules. Referential transparency is sought to
establish independence and limit complexity of modules. Fully structured descriptions
of systems are thus drawn directly from the specifications. Box structures do not
automatically guarantee a good design adhering to these four principles, but the
methodology leads one through a sequence of steps which if performed correctly with
these principles borne in mind will produce a structured design of high quality that
supports the Oeanroom life cycle.

12-34 Chapter 12 - Software Design for Interactive Use

Box structures are used to state or restate the specification, depending upon how the
problem reaches the Cleanroom team. The analysis of new systems begins in the black
box and is followed by invention of state box and clear box through an expansion process.
The analysis of old systems begins in the existing clear box and is followed by discovery
of state box and black box through a derivation process. The result is a structured
specification, each part of which (substructure) is amenable to further work with box
structure methods to derive a design. Each part of the design is amenable to further
work with box structures to derive a procedure. Procedure parts are further developed
until the parts are so direct and simple that transliteration into a target language is
possible. A unified formal method is used to produce a hierarchical continuum of (black
box, state box, clear box) nodes from the highest level specification to code, without ·
discontinuities in intellectual control. Each step of the hierarchy is verified in a
hierarchy of functional composition extending from the problem specification down to
the base of primitives at implementation.

Functional verification is a formal method more akin to ''Naive Set Theory" than to
"Metamathematics". Indeed, the description of functional verification admonishes the
designers to find "the right balance in mathematical proof between formal procedure
and economy of effort." Functional verification is a process whereby team members
argue the correctness of designs. The process is not unlike that of a group of
mathematicians arguing the correctness of theorems. 11\e argument will be less formal
on segments the team finds familiar and "easy". Arguments wiU be more formal for a
segment which some member of the team is not convinced is correctly designed or
verified. The quality of the verification depends upon the intellectual toughness and
integrity of the team.

Functional verification provides a basis for reducing the problem of program correctness
to that of determining the correctness of constituent program structure primes. Since the
design process leads to the use of only sequence, if, while and case statements, the
techniques needed are few.

However, the emphasis in functional verification is on practical application.
Techniques for conducting practical verifications are presented in a way that focuses on
correct reasoning about programs. Trace tables are prescribed for reasoning about
sequences. Disjoint rules are introduced to restate conditional rules in a more convenient
format. Case structure trace tables deal with component rules resulting from
conditionals. Finally, direct assertion is encouraged for segments that are well
understood without detailed verification. The emphasis of functional verification is
the productive employment of a sound theory.

Statistical certification testing requires the analytical mathematics of correctness
theory and applied statistics, also formal methods. For each increment and for the
evolving product one must deal with the correct statistical characterization of the
usage environment, the construction of a statistically correct sample of test cases and
the number of test cases required to state correctness with a certain confidence limit.
Furthermore, as each executable product increment is certification tested, the time
dimension comes into consideration producing MTIF estimates, along with the
confidence in the current failure free system.

12.4 - System Level Software Development 12-35

Certification is a sobering process for all parties to the software phenomenon. First,
there is the realization that one may have any confidence levels in correctness, but that
the greater levels entail higher costs and longer certification testing periods. Second,
there is the realization that other forms of testing, however carefully reasoned, do not
contribute to making a scientific statement about correctness of the software. The
Cleanroom thesis is that functional verification in anticipation of independent
statistical testing will engender intellectual control and greater correctness at less
expense than through other testing and debugging processes.

The life cycle of executable product increments coupled with certification testing
creates the basis for statistical control of the process of software development.
Whenever an increment is judged by certifiers to have a failure, the process is out of
statistical process control. The increment must be returned to the development team, and
get the process back into statistical control.

12.4.2.3 Cleanroom Experience

One large Cleanroom project with rather complete data is the IBM product known as
COBOL/SF, COBOL Structuring Facility. COBOL/SF is comparable in function and
complexity to a modem high level language compiler. By use of proprietary graph
theoretic and function theoretic algorithms, it transforms working old COBOL
programs into hierarchies of structured procedures in modem COBOL. The current
product of some 80,000 lines of code was produced in increments, the last five of which
are reported below. In accordance with the Cleanroom methodology, the code was
taken to the machine at each increment with no testing or debugging, with the
following results.

Increment Lines of Code Failures/KLOC
1 4150 1.4
2 11125 2.2
3 10080 2.3
4 19543 5.7
5 7117 2.1

52015(totall 3. 4 (avg.)

Table 12.4
Test Failures In Cleanroom Project

The cumulative results over the accumulated increments were I(l, 2) = 1.9
failures/KLOC (Increment 1 already tested with 1.4 Failures/KLOC already fixed,
Increment 2 never executed before), 1(1, 2, 3) = 2.1, and 1(1, 2, 3, 4) = 3.6. With these
failures removed, failures in field tests were below 0.1 Failures/KLOC and readily
removed to zero.

The HH60 helicopter flight control program was developed by the mM Federal
Systems Division. Oeanroom was used to develop the system in three increments of
more than 10,000 lines of code each. The code was taken directly from functional
verification to statistical testing with failure rates of 1(1) = 2.7, 1(1, 2) = 1.0, and 1(1, 2,
3) = 0.9 before testing of latest code, going to near zero then.

A Oeanroom project at the University of Tennessee is to design and produce a
Cleanroom tool called the Box Generator. Oeanroom teams typically produce a draft
design in BDL, meet in review and mark up sessions, produce clean copy, and review

12-36 Chapter 12 - Software Design for Interactive Use

-----~~

again. The Box Generator is a single user, keyboard, screen interaction system. The first
increment of the tool is to ease the paperwork burden of Cleanroom and has the
character of a structure editor. Subsequent increments will generate Ada outer syntax,
impose the box structures methodology, adding the flavor of computer assisted
instruction, and install instrumentation to record various metrics.

An early controlled experiment at the University of Maryland compared Oeanroom
with traditional software development on a task that resulted in 800 to 2300 lines of
code. Among the conclusions supported by both data analysis and testimony was that
the Oeanroom teams met requirements more completely, had a higher percentage of
successful tests, had less dense control flow complexity, and had a better record of
meeting schedules. The faculty also found interesting anxieties resulting from
developers being denied execution of their code and dependence on statistically derived
operational tests.

12.4.3 What Does It Mean To Say Software Is Correct?

It is difficult to get agreement across a broad community of software engineers on
colloquial definitions of correct software. In an intuitive sense, software is correct if it
behaves correctly sufficiently often and at a certain special momen~. To behave
correctly means to produce output when output is called for, to produce the correct output
and not to produce unwanted side effects.

This definition begs difficult questions, e.g., who judges whether output is correct? The
standard answer is that the specification and the customer's interpretation of the
specification judge the performance of the software. We know that specifications can be
wrong and that correcting them can be time consuming and expensive. Assuming a correct
specification, how often must the output be correct for the software to be labeled
"correct''? Can the judgment be quantified and standardized?

Correctness is a metric that can be useful both in guiding the software development
process and in assessing a programs fitness for use by conducting experiments to establish
empirical evidence of quality. As a matter of convenience, these dual uses of correctness
are given slightly different definitions. Correctness as a function of time, perhaps the
more traditional definition, addresses the design of software that will operate
according to specification for a period of time. But we can also use a simpler definition
where correctness is the probability that a randomly chosen input will be processed
correctly.

In most instances, we use the definition of correctness as the probability that randomly
chosen inputs will be processed successfully. This definition is well suited to the idea of
conducting experiments to establish empirical evidence of quality. This proves to be a
very conservative notion of correctness, well suited to dealing with reuse of software for
which little may be known about the process of its development but much may be known
about its operational history.

In classical programming the underlying assumption is that the design and
development process was not perfect and that some errors persist and are reflected as
faults in the code. The choice of time as the random variable is based upon the idea
that randomly selected inputs (according to a usage distribution) will cause paths
through the program to be executed randomly and, consequently, as operating time
increases the probability of encountering a fault in the code increases.

12.4 - System Level Software Development 12-37

12.4.3.1 Verification of Software

There are methods that "guarantee" that a program will work properly on all inputs
all of the time. After all, there simply must be at least theoretical ways to establish
that a program is completely correct These include:

1. Verification, by a proof that is done to your complete satisfaction.

2. Exhaustive testing, i.e., test all inputs (though the number may be
astronomical) and confirm that each yields the correct answer (though a
wizard may be needed.)

3. Combinations of the above two methods. For example: Prove that the inputs
divide into k classes and prove that it suffices to test one member of each class,
then test one member of each class.

The strength of such methods is that they show the program to be completely correct. If
you can afford to do any of these 100% methods, do so. Alternatively, if you cannot
afford not to have 100% reliability, do so. Such methods are expensive, time consuming
and hard to believe in spite of everything.

Many argue that formal verification cannot work because the proofs are longer than the
programs and theorem proving is harder and more failure prone than programming. A
proof is just an effort to convince a listener; even precise, mathematical proofs that
have undergone peer review are, occasionally, later discovered to be wrong. Another
example of a possible source of failure is that the verifier may fail to identify "all"
inputs, or incorrectly judge that the program succeeded on a test All formal methods are
subject to these problems.

Exhaustive testing requires fii-st being able to correctly identify all possible inputs,
then being able to judge the performance of the software on all inputs, and finally being
able to plan and conduct the tests correctly. When and if this is done, then it is surely a
"proof by cases."

12.4.3.2 Testing Software

The classical alternative to proof of correctness, although seldom thought of in such
terms, is testing. Testing is an enormous industry and the ingenuity of software testers is
exceeded only by software writers. There are many testing strategies ranging from
commonplace unit testing followed by integration testing to less practiced techniques
such as mutation testing. There is coverage testing of various types, e.g., path coverage,
decision coverage, statement coverage, and feature coverage. However, the numbers
defeat all methods.

Consider path coverage. Each branch and merge in a program doubles the number of
paths. A branch and merge occurs each time an if statement is used. So, in a program or a
system of 5 million lines of code, how many branch and merge events will occur? Pick up
most any program of a few hundred lines of code and count the if statements. Raise 2 to
the power corresponding to the number of if statements and you will quickly see that
path testing is impossible for all but the simplest, most carefully written program. Most
readers will recall that 232 exceeds all 10 digit decimal numbers, but 32 if statements
does not seem like so many. Add loops to the above analysis and the number of paths
confronting path testing becomes even larger.

12-38 Chapter 12 - Software Design for Interactive Use

Any compromise version of coverage testing seems weak in comparison to path testing
and weaker still when input histories are considered.

Most programs react to a history of inputs rather than to a single input. Histories
typically span the Cartesian product of some reasonable size set of individual inputs.
Suppose the input set contains just 2 individuals, but that the unique histories extend to
sequences of 32, and you have the old friend 232 again. In practice, the event set will be
larger and the sequences longer.

Our conclusion is that testing is a bottomless pit. Methodological testing alone can never
establish the degree of confidence that is needed in software being used in critical ·
applications. Our conclusion is that formal methods are the only solution in the long
term.

Cleanroom advocates the use of semi-formal methods, i.e., fully mathematical
methods that have been relaxed a bit to make them easier to practice. One doesn't
have to be listing axioms and rules of inference in an arcane notation in order to be doing
formal methods. Most forms of engineering design and analysis constitute formal
methods, including, for example, control theory, circuit analysis and strength of
materials. Formal proof will never be enough for society. Society will demand
empirical evidence for a very long time to come because of the poor track record of
software, the lack of standards for practitioners and the intangibility of software. This
empirical evidence will come in the form of testing, but it is testing with a very big
difference. Apart from special, critical case testing, the only form of testing that
complements formal verification is statistical testing.

12.4.3.3 Statistical Testing, Without. A Model

Another approach to demonstrating the correctness of software is statistical sampling,
without a model. The.basic idea is as follows. First sample inputs according to the
actual distribution of inputs the user will encounter. The user must supply this usage
distribution as part of the specification for the program's correct behavior. Then test
the program on the sampled cases, and see how many work properly. This may require a
user supplied "oracle" to evaluate output. Finally, make statistical claims based on the
results.

For example, suppose there are 1 million possible inputs, and the user states that each
is equally likely. Suppose the tester selects 2302 inputs at random, and discovers that
the program works correctly on all of them. Then the tester will claim that the
program will work correctly on at least 99.9% of the inputs. That is, the tester will
claim that the program will work correctly on at least 999,000 of the 1 million inputs.
The claim will be made with 90% confidence.

There are two good points about statistical usage testing. First, one can make a
quantitative claim about software correctness. The next section explains how correctness
is quantified under Oeanroom methods.

Second, the errors that would be most likely to appear after the software is placed in
service are precisely the errors most likely to show up in statistical usage testing. Test
resources are devoted to precisely the cases that are most likely to come up in practice.

The drawbacks to statistical testing without a model are as follows. Characterizing
the usage distribution may be very hard. The testing does not allow for semantics of the
program. For example, many different inputs may all yield the same result, in such a

12.4 - System Level Software Development 12-39

-· -

way that testing one successfully guarantees that all the others will work. Statistical
testing without a model might be wasteful in such cases. Finally, a large number of test
cases will be needed and the claim one can make will be pessimistic.

12.4.3.4 Statistical Testing with Models

In the Cleanroom Certification Model, inputs are selected according to the actual usage
distribution. Coverage testing ignores the usage distribution. Thus we see that model
based testing methods can, but need not, make claims based in part on statistical
sampling of inputs. We argue in the next section that statistical sampling of inputs
should be a part of any model based method.

In a method for software systems, we measure the reliability of components of the main
program, and estimate the reliability of the program from those measurements, based
on simplifying assumptions about the interactions of components. The underlying model
specifies those assumptions. In this method, inputs are selected according to the actual
usage distribution.

Model based testing methods have two strengths. First, for models that are sufficiently
explicated, the tester can make a quantitative claim about the correctness of the
software. However, your belief in the results obtained under such models must be
tempered by the degree to which you believe the model is a reasonable approximation
to reality. Second, the claims produced by model based testing can be, in general, much
stronger than those of statistical sampling without a model. This is not unexpected. If
one includes knowledge in the testing method, one expects to be able to make a stronger
claim.

The weakness of model based testing is that the model is never exactly the same as
reality; thus one is dealing with approximations. In general, it is hard to show the
model is a "good enough" approximation. That is, it is hard to make mathematical
claims about the quality of the final correctness estimate provided by the method.
Note, however, that even if the model is poor, the method may work, because of
"averaging" princ.iples. For example, the assumptions of the system method are clearly
far from reality, but the conclusions of his method may well be quite reasonable. This is
because the errors introduced by his assumptions may cancel each other out.

The bottom line is that you want (1) to create correct software, and (2) to "validate"
that the software is correct. That is, you want to have confidence that your methods
have indeed performed as they should.

Cleanroom methods create correct software by the techniques described above. These
techniques include the use of box structure analysis and design, stepwise refinement, and
functional verification.

Cleanroom methods also validate that the software is correct. Validation serves three
purposes:

1. It shows whether the software development process is in or out of control.

2. It provides a quantitative estimate of correctness. This estimate can be used as
part of a contractual agreement with the user.

12-40 Chapter 12 - Software Design for Interactive Use

3. It permits improvements in the software, as failures are found and corrected.
For most software development methods, this is the primary purpose of testing.
For Oeanroom, it is only a by product of testing.

Cleanroom techniques for validation include the following:

1. The released product undergoes statistical testing. This generates a lower bound
on the correctness of the software. This bound will usually be conservative, but
the assumptions on which it is based are relatively believable.

2. The Cleanroom Certification Model provides a further estimate of the
correctness of the released product. This estimate will usually be more realistic
than straight statistical testing, but subject to more sources of error.

There is a growing consensus that neither testing alone nor correctness proving alone can
assure the correctness of programs.

If you have the resources to do verification, exhaustive testing, or a combination of the
two, do so. If you lack such resources, you can do statistical testing without a model. The
results of such testing are based on only a few, relatively believable, assumptions.
Unfortunately, such results are likely to be weak. To get stronger results (that is, to
make claims that the software is very correct), one can adopt a model of some sort.

12.4.4 Principles of Statistical Testing

Statistical testing of software means that the test cases are (1) selected according to a
statistical profile of the intended usage and (2) generated in a quantity adequate to
support a scientific statement about the correctness of the software or its mean time to
failure.

Our interest in statistical testing is for the purpose of certifying the correctness of the
software, i.e., giving empirical evidence that the software is in fact correct. We are not
interested in statistical testing as a means of discovering faults in the code. Fault
discovery is, of course, the traditional purpose of methodical testing. However, path
testing does not give better assurance of program correctness than statistical or random
testing. Indeed, random testing can be much more cost effective than path (partition)
testing. Although we are not interested in debugging, we are vitally interested in fault
removal in a way that extends the mean time to failure as dramatically as possible.

The key ideas in statistical testing are (1) sampling (i.e., developing a set of test cases)
according to the intended usage of the software, (2) judging the correctness of each test
case, and (3) evaluating the experiment.

The best basis for statistical testing is extensive field data that shows in detail the
statistical profile of the usage environment. Extensive field data can take various
forms. A simulator is perhaps the ultimate statistical test. A simulator is capable of
generating test data to suit the simulated conditions, and it isn't really necessary to
know the distribution if it is clear the data are truly representative. Furthermore,
simulators are capable of generating enormous samples and complex histories. Most of
the objections to statistical testing are swept away by simulators.

In many applications data can be recorded and later played into the testing scenario
with effects similar to that of a simulator.

12.4 - System Level Software Development 12-41

Of course, there are the difficult situations in which no usage data are readily
available. One can take the position that an important part of writing the
specification for any system is to know how that system will be used, or at the very
least to have working hypotheses for how the system will be used. Statistical tests can
be designed from the same specification used by the system designers.

In the absence of data, one can make theoretical analyses and stipulations. In the
absence of both data and knowledge (why is this software being written?) one can say
all inputs are equally likely, use the uniform distribution, and in effect reduce the
statistical test to a partial coverage test with uniform random sampling.

Usually, one would expect to do much better than uniform sampling. Many classical
distributions are known to fit certain typical situations. One can establish theoretical
grounds that certain things are normally distributed, others exhibit Poisson arrivals,
behave logarithmically, etc. These classical distributions are extensively studied and
a great deal is known about them and their relationships to each other. So much so that
even when we have extensive data we are happy to notice that the data fits a
familiar, classical distribution. One determines the parameters of the distribution and
generalizes from the real data.

A system might have several usage environments. Customers might be classified by the
way they use the product. Users might be classified from novice to expert. Each can be
given a statistical profile and the software can be certified environment by
environment.

For example, consider a word processing software package. What constitutes a test
case? Intuitively, one would not consider a single key stroke to be a test case. Nor would
one have to type a whole book such as The Count of Monte Cristo in order to have a test
case. Experience with single user keyboard screen interaction software has led to
definitions like the following: A test case is a sequence of major events ending with a
"print" or a "save" event. A major event would be things like keying several
paragraphs of text, moving a paragraph or spell checking the page. In this example,
the sample space becomes a Cartesian power of the event space so that each sample is a
history of events. The length of this history is important in the performance of the
software and in the definition of a test case. One might establish that the histories are
normally distributed with a certain mean and standard distribution.

One important strategy in developing correct software is to limit as much as possible
the buildup of history. By initializing a system strategically one can convert unlimited
histories to very short ones and in so doing convert untestable software into easily
tested software. Statistical usage testing tends to focus one's attention on such matters to
the great improvement of the correctness of the software.

It is important in conducting a statistical test that the correct response for each test case
be determined in advance, based on the specification. To be sure, one can made a mistake
in this determination, but the point is to take all possible steps to assure comparing two
independent interpretations of the specification. We want each test (possibly a lengthy
history of inputs) to be a simple binomial trial: the test either succeeds or fails.

Automated oracles are most desirable. If a new system is replacing an old system, the
old can be the oracle for the new to the extent they overlap in function. If a system is
being ported from one computer to another, the original version can be the oracle for the
new one. Some systems show pictures, make noises, turn valves and do other things that
are easily recognized as correct or incorrect by simple observation.

12-42 Chapter 12 - Software Design for Interactive Use

Sometimes it is necessary to painstakingly work out the details of what should be the
correct response to an input or a history of inputs. There are too many different types of
software to attempt to mention them all. Work is underway on single user keyboard
screen interaction systems to develop guidance on constructing statistical tests. Similar
work has begun to fashion statistical tests in simulators for various usage scenarios.

In looking directly at the program to be certified, we examine the process as versions 0,
1, 2, ... , m of the program are created. We test the preliminary versions and predict the
correctness of the final version from the statistically estimated reliabilities of the
preliminary versions. To make this prediction we need a model of program development
through successive versions.

A distinction must be made between software increments and versions. There may be
several versions within an increment.

12.4.4.1 The Basics of the Certification Model

In the Cleanroom methodology, the Cleanroom team performs a semi-formal
verification of the software. After this, the software undergoes statistical testing. The
testing proceeds as follows.

1. Input is sampled according to the usage distribution. 'The software is tested on
the sample inputs, until a failure or testing is completed. Suppose 500 test cases
are planned. That is, testing continues on inputs chosen randomly (but according
to the usage distribution), until an input is found on which the program does not
provide the correct behavior or test time has been exhausted. Let T 0 denote the
number of test cases tested so far. For example, if the program worked properly
on the first 3 inputs, but failed on the 4th, then T0 is 4. Note that T0 is an
estimate of the MTrF of the software, measured in number of test cases.

2. The team then examines the software to see why their verification failed. In
light of the observed failure, they change the software. Let us call this an
"engineering change" (EC), to emphasize that the team reexamines the
software design, rather than just doing a "bug fix". However, as part of the EC,
the team also corrects the fault that caused the failure. Note that T0 is no
longer a reasonable estimate of the MTrF of the software; the new software is
different (because of the EC), and so should have a new (presumably higher)
MTTF.

3. Testing is resumed on a new collection of random inputs, continuing until a
failure, if ever. Let T1 denote the number of new inputs. Continuing the previous
example, if the program worked properly on the 5th through 85th input, but
failed on the 86th, then T1 is 81. Note that we do not include in T1 the 4 inputs
on which the program was originally tested. T 1 is an estimate of the MTTF of
version 1 of the software, where the original version was called version 0.

4. The team examines the software to find this second fault, and to see how it
escaped their verification process. They perform a second EC, and in doing so,
they also fix this second fault:

12.4- System Level Software Development 12-43

5. The team repeats steps 1 and 2 as needed. Let ECk denote the k th EC, where
EC() is the change made to the original version of the software. Let T 1c denote
the number of tests of version k of the software, that is, the number of tests
between EC~c.1 and ECk. Tk is an estimate of the MTTF of version k of the
software.

6. Eventually the team stops testing, after (say) m EC's and no failure in the last
version. The current version is version m. Now we want to say one of two things.

a. We found too many failures. Redesign the software.

b. We believe no failures remain, and certify the software correct.

Scientific progress generally begins with the explication of a descriptive model of some
real world phenomenon that we wish to understand better. At this stage justification
for the model is based upon theoretical arguments keyed to observation and knowledge
of related or similar phenomena. To make a model more useful we try to make it
predictive as well as descriptive and then attempt to conduct experiments or otherwise
acquire data that will either confirm or refute the model. Adjustments are made to the
model in the face of compelling data and deeper understanding of the phenomenon. In
any case, it is the strong structural aspects of the model that are of importance, not
matters of detail. Progress in making the model genuinely useful depends upon the
ability to recognize the difference between important structure and minutia and being
able to characterize the structure correctly. Without belaboring the point, one might
reflect on such models as epidemic or fluid dynamics for illustrations of this general
principle.

At this juncture the strongest argument for the Certification Model is that it was
derived to work as a matched set with the Cleanroom development process. Confidence
in the model should flow directly from an examination of the assumptions and from
arguments that the assumptions are plausible. Field data will ultimately confirm,
modify or refute the model.

1 2 o 4 o 4 o 2 The Reliability Allocation Model

For example, consider the program depicted by the flow chart in Figure 12.1. Using the
information in Figure 12.1, Figure 12.2, and Table 12.2, we can summarize the data as
follows:

Module Reliability
A ?
p 1
Q 1
B ?
c .999
D ?
E .999

Table 12.5
System Component Rellabllltles

The question marks must be replaced by estimates or stipulations as will be explained
below. The values of 1 for P and Q are there because these are small amounts of code
that will be formally verified.

12-44 Chapter 12 - Software Design for Interactive Use

The following table gives the probability of transfer from one module to another. All
other from to pairs are impossible and therefore have probability zero.

From To Probabi 1 i ty_
A p 1.0
p Q 0.6
p B 0.4
Q c 0.9
Q D 0.1
c Q 1.0
B D 1.0
D E 1.0

Table 12.6
System Transfer Probabilities #2

The assumptions made in the Reliability Allocation model are as follows.

1. For each module X, there is a constant Rx (which you must determine) such that
each time X is executed during program execution, module X behaves properly
with probability Rx.

2. For each pair of modules X and Y, there is a fixed probability CXY that control
passes to module Y, given that control is currently in module X.

3. If any failure occurs at any time in any module, the main program (or system)
fails.

To use the Reliability Allocation model, you must determine the following.

1. The reliabilities of the modules. That is, you must determine, for each module
X, the probability Rx that the module works correctly on a randomly chosen
input. Here "random" means according to whatever usage distribution the
module expects to see when the main program is used with its given usage
distribution. It is possible that the correct usage distribution of the main
program does not use the module in a way that corresponds to the usage
distribution under which the module was certified. This may or may not be a
serious concern.

2. The table of transition probabilities. These should be the probabilities as they
would be if the program is assumed to have no errors.

Is it practical to estimate the transition probabilities accurately? Is it practical to
know the usage distribution of the modules? Is it practical to estimate the reliabilities
of the modules accurately? Today's answers may be negative, but as reliability
measurement becomes a standard aspect of software, the answers will increasingly be in
the affirmative. However, these estimates need not be very precise to serve our needs.
Remember, we are not trying here to provide good estimates of the quality of the
released product. We are only trying to acquire some guidance on issues that must be
faced during the development process. ·

We use the Reliability Allocation model to judge (1) when it is safe to reuse software,
and (2) when to accept an increment. The next two sections describe these two uses.

12.4 - System Level Software Development 12-45

~ - --------------==--=-=-=-==----==~-===-=--===-=-======--
_____ --=::::=-.=-.::::--=-::::::..:...-=-~ ----:::;:-~~.:::::-=-'--=-=-.:::-"""" ~--=-=--=-=--=-===-.;;:_- -=----""- '~~ ==....:::--==·-=-=

12.4.4.3 Judging Whether It Is Safe To Reuse Software

To see whether or not it is safe to reuse a particular set of software modules, proceed as
follows. First, estimate the transition probabilities among modules in the system. This
might be done through experiments with prototypes or by examining the modules and
how they interact In the example system above, we have only to determine the
transitions from predicate P and the loop control predicate Q.

Second, acquire or estimate the reliabilities of the modules whose reuse is under
consideration. Such information might be available from a history of use of a single
copy or a history of use in a fleet. Such histories can be converted to approximate
reliabilities in the sense of zero failures sampling. Reliability information might be
available from previous testing under a usage distribution that is still applicable. We
might use sampling without a model to conduct an experiment (an inexpensive one to
start), the outcome of which might say a module should not be reused under any
circumstance. In the example system, modules B, C and E are candidates for reuse. Let's
assume that 135 randomly selected test cases all ran without failure giving us RB=.95
with a high degree of confidence. Module C might be acceptable without further ado,
and E has good standing, prior to modification.

Third, for reliabilities of modules other than those that might be reused, plug into the
model whatever estimates you have for those yet to be developed. Such expectations
will be based on previous experience with the product being built and previous products
built by the development group. They may also be influenced by reliability goals set
through the Reliability Allocation model, as described below. Again, referring to the
illustration above, we are stipulating that because of formal verification of small
codes, Rp = ~ = 1. Cleanroom teams keep score and know the quality of their work and
the team's ability, so if the newly developed modules are to be done by an experienced
Cleanroom team, data will be available to guide those estimates. Let's assume that to
be the case and stipulate that RA = R0 = .95.

Note that you will make a binary decision in each case: reuse module X or not. Even a
rough estimate for Rx may be sufficient to lead you to the correct decision. We can now
restate the table of reliabilities as follows:

Module Reliabilit
A .95
p 1
Q 1
B .95
c .999
D .95
E .999

Table 12.7
System Transfer Probabilities t3

With this data, one can compute an estimate of the reliability of the system. This
computation involves little more than inverting a matrix. In this example the system
reliability is 0.88.

12-46 Chapter 12 - Software Design for Interactive Use

If the computed reliability is sufficiently large, then all is welL If not, you have three
choices.

1. You can theoretically improve the reliability of any module by redesigning and
reprogramming it.

2. You can improve the reliability estimate of any module by testing it further.
Perhaps the module is adequate, but your estimate of its reliability is
conservative. In this situation, it may be more economical to test it further than
to reprogram the module. (One hopes further testing will increase the estimate
of its reliability, however, it is possible to undermine the original estimate.) ·

3. If a certain module has low reliability but cannot be rewritten, it might be
practical to gain overall system reliability by improving the other modules.
That is, you can improve previously written modules, or raise your requirements
for modules yet to be developed.

In the case when the predicted reliability for the program is not large enough, the
Reliability Allocation model also provides guidance for choosing which module to
improve. A reliability target for the system can be set, and an "allocation" can be
computed for each module. The model shows where to focus attention and can show the
potential consequences of reusing certain modules in certain ways.

You can use conservative (or optimistic) estimates for the module reliabilities to
acquire a conservative (or optimistic) estimate for the program reliability. Thus, one
can acquire a range, not merely a point estimate for the reliability. Of course, even the
range estimate is still based on the modeling assumptions and the accuracy of estimates
for the transition probabilities.

12.4.4.4 Judging When to Accept an Increment

Judging when to accept an increment as fit for use is strictly a management issue. We do
not suggest that the model or the mathematics can usurp that responsibility, but the
model can provide helpful information. Suppose that testing of increments will provide
estimates for the reliabilities of component modules that comprise the final product.

Using the transition probabilities and the reliabilities of the continuing example, we
have the following allocations for a system reliability goal of 0.999:

Module Allocation
A 0.9990
p 0.9990
Q 0.9998
B 0.9975
c 0.9998
D 0.9990
E 0.9990

Table 12.8
System Transfer Probabilities M

Any module which we can establish meets its allocation, or any increment which meets
its allocation should be accepted because the Reliability Allocation model is
conservative in the sense of sampling without a model.

12.4 - System Level Software Development 12-47

;:1': ==-== -== - --=- -- ·-- -----==-::._::::::=..-= =---- -- - ~- -- - ----- -

12.4.5 Construction Plan

The first two issues to coordinate are reuse and incremental development. For most
systems under consideration there will be several competing designs. These competing
designs will entail different degrees of reuse without modification, reuse with
modification and newly written software. In each case, the chief programmer will
have more than one (but only a few) reasonable construction plans for each design. Many
factors will enter into the management decision as to which design and which
construction plan to ultimately select, but demonstrable reliability will be a major
criterion. One should expect large differences in the plans with respect to the
reliability of the final system and the ability to estimate and predict the reliability
of the final system.

The steps in assessing each design and plan (with quick winnowing of the really bad
ones) are as follows.

1. State the reliability certification goal or target for the system. This will be
constant for all designs and all construction plans.

2. Draw the control flow diagram or write the Ada for the top level(s) of the
system showing the transition relationships among the predicates and modules.

3. Determine to the best degree possible the probabilities of passing from one
module to another. Although these can be changed in light of new information,
they are of critical importance to the planning.

4. Enter the target system reliability and calculate a reliability allocation to
each module.

5. Assemble the factual information on the reliability of the proposed reuse
modules.

6. For predicates or modules that are to be written, one can stipulate a reliability
of 1 based on intensive verification of a very small module. For larger modules
that are to be written one can stipulate whatever the track record of the team
will support.

7. Compare the facts and estimates with the allocations. For each module is it
clear that the facts meet the allocation? Where the estimate of the reliability
of an existing module is too low, consider the sampling without a model
experiment that would be necessary to increase the estimated reliability (or
demonstrate that the software is of too low reliability.) Does it appear
plausible that the design can yield the target reliability? If not, reject this
option. If so, then accept the design as a working hypothesis.

8. Work with the data to decide the experiments that are needed to demonstrate
the reliabilities of reuse components. The sensitivity data will tell you where
to work. It might be necessary to change the design if it makes too great use of a
module for which adequate reliability cannot honestly be established. Conduct
the experiments, evaluate the results (putting them in the repository for future
use) and make the final decision on whether the design has a chance of meeting
the target reliability. If not, reject the design and evaluate the next. If so, then
keep this design among the competing alternatives.

12-48 Chapter 12 - Software Design for Interactive Use

9. Evaluate the competing alternatives to select from among all that hold
promise of meeting the reliability target, the ones that are favored on other
grounds.

Proceed to make a construction plan.

10. The construction plan will be the identification of the increments in which the
system will be developed. One increment might be newly written, another
might be a modification of an existing module, and still another might be the
incorporation of a module without change. For the chosen design there will be a
few competing construction plans. At issue with each plan is the time schedule
from increment to increment. Taking the greater risks earlier so that bad news
surfaces early in the entire schedule is a good strategy. Getting more extensive
certification of the components with lower reliability estimates is a
possibility. An orderly and sensible accumulation of the increments into an ever
more complete system is a consideration. The construction plan is mostly a
matter of management judgment, with only a little help from the mathematics.

11. Use box structures to design the rota\ system and all new modules. Use stepwise
refinement and verification. Deliver increments for certification.

12.4.5.1 Certification Management

Application of the Certification Model is far more than simply predicting the mean
time to failure of the final system. This is where the system development process is
brought under statistical quality control. As management reviews the testing data
reported for each increment, decisions must be made as to whether the results are good
enough. If the data from an increment is not satisfactory, then the work goes back to
design. But that isn't ~II that must happen. If work is sent back to design, then the
original schedule may not be possible with the existing plan. It is time for a new
schedule if the original plan is to be kept, or time for a new plan if the original
schedule must be kept.

If an increment is rejected, management must discern the reason and fix the problem. The
result might be a new plan with more increments that are each smaller. The result
might be intensive training on team design and review with the increments unchanged.
Deep problems of team training, experience, poor specification, etc., will surface early
while there is still time to effect a solution. Management doesn't have to wait until all
the money and time are spent to learn that there is trouble. If a team produces several
increments on schedule that produce strong test results, one would expect the
repercussions of a disappointing increment in the middle or latter part of the project to
be less serious.

A construction plan that is executed without a disappointing increment can be depicted
as follows for a system of four increments:

11
11, 11,2

11, 11,2• 11,2,3
11, 11,2• 11,2,3• 11,2,3,4

12.4- System Level Software Development 12-49

.
· - - - - - ~---- -- ·- ·· - ---- -- - --· --- -

But, if trouble is detected along the way the plan might look as follows, where I is the
initial plan, J is a second plan stemming from a disappointing increment l1.2 and K is yet
a third plan.

Il
Il, I1,2 (not acceptable)
Il, I1J1
Il, I1J1, I1J1,2
Il, I1J1, I1J1,2• I1J1,2,3 (not acceptable)
Il, I1J1, I1J1,2• I1J1,2K1
Il, I1J1, I1J1,2• I1J1,2K1,2
Il, I1J1, I1J1,2• I1J1,2K1,2,3
Il, I1J1, I1J1,2• I1J1,2K1,2,3,4
Il, I1J1, I1J1,2• IlJ1,2Kl,2,3,4,5

None of the reliability data and processes used in the planning phase have anything to
do with the reliability of the final system as it will be certified in the process that
follows. This is the primary reason the above sequence of steps in the construction plan
can satisfactorily use estimates and a model whose assumptions are difficult to meet.
Certification of the final system will be based solely on (1) the statistical testing of the
increments as they accumulate into the final product and (2) the underlying
Certification Model.

Certification management steps are as follows:

1. When the system specification is available, the independent test team should
determine the usage distribution. If the specification changes, the usage
distribution should be reviewed for possible change.

2. Determine the definition of a test case if that is relevant to the way time is
being recorded. If time is a simple measure of the cpu clock, clock on the wall, or
calendar time then the definition of a test case might not be necessary.

3. Establish the oracle. Determine in advance what will be considered a successful
test (anything else is a failure) of the software for each test case or each test
stream.

4. Submit each increment to testing:

a. When a failure is reported from testing, note the time (or test number) since
last failure, examine the design, fix the fault and let testing continue on the
new version.

b. Monitor the trend of mean time to failure. Expect to see an exponential
growth.

c. Monitor the number of failures reported for the increment relative to
expectations. If the data are satisfactory, work on new increments can
continue or begin. Testing can continue for the increment in hand.

5. If the data from testing are not good enough, stop testing, make a new plan and
re-deploy the team(s) to the new plan.

12-50 Chapter 12 - Software Design for Interactive Use

6. When the last increment is in certification testing, engineering changes will be
made creating new versions of the program in the usual way. Management will
be receiving estimates of the mean time to failure of the latest version based on
performance of all previous versions in the increment. When the predicted
mean time to failure has reached the target reliability, testing can stop and
the system can be released to customer use.

12.4.5.2 Management Observations

Everything about Oeanroom encourages reuse, discourages modification, and encourages
simple designs in new modules. Early in the use of these concepts, there will be few
components in the repository that are either formally verified or empirically certified.
Chief programmers will be confronted with the not inconsiderable chore of estimating
the reliability of existing modules by conducting experiments or excavating usage
histories that are poorly recorded. This will be a time consuming and expensive, but
necessary, part of building a new system. A formally verified or carefully certified
module will be of such value (time and budget) in building a new system that there will
be every incentive to use it.

There is every incentive to use a certified module without modification, because to
modify is to breach the warranty, so to speak. It will be better to write small pre and
post processors, which might be verified and assigned r = 1 in the planning process.
However, even modification and possible re estimation of reliability will be more
economical than writing from scratch, because of the investment in usage profile, test
definition and related testing paraphernalia that will represent a significant head
start over working from scratch.

Because of the nature of the reliability allocation, the weak initial base of the
repository, and the sensitivity analysis, newly written software will need to meet very
high standards indeed to carry the burden of the total system reliability. This will
reinforce the need for excellent work in specification, design and verification. These are
circumstances under which Ada should be at its zenith relative to other languages.

Finally, a system so developed and certified will enter the repository as a strong
candidate for future reuse. Records will be kept of the use of such a system and all the
modules it reused in a continuing effort to document the correctness of the system.

12.4.6 Exercises

1. Given a module for potential reuse, but which has known failures, how would you
examine its specification, design, and code to better ensure those failures were fixed
without creating new ones?

2. Given a module for potential reuse, which has no known failures, how would you
define continued testing to certify its correctness?

3. How does one "find the right balance in mathematical proof between formal
procedure and economy of effort" in functional verification? How does program
usage criticality enter the question and how might the same program be treated
differently in different uses?

4. How does one "find the right test size" in certification? How does program usage
criticality enter the question and how might the same program be treated
differently in different uses?

12.4 - System Level Software Development 12-51

,_,

5. How are construction plans developed? What partial functions are defined for
feasible increment development? How do construction plans depend on the
experience and abilities of the development teams?

6. Why are unmodified certified modules better to use in assembling programs that
modified uncertified m<>Qules? How can small changes in modules lead to large
changes in behavior?

12.5 Cleanroom Engineering In Retrospect

12.5.1 Reviewing Cleanroom Engineering

In retrospect, it is apparent that Oeanroom engineering provides a set of rigorous
methods for software development under statistical quality control, based on sound
mathematical and statistical principles. While millions of people are involved in
software today, most of them regard software development as an intuitive, heuristic
activity. They do not imagine software engineering as a mathematics based subject
with complete rigor possible. But software engineering should be and can be such a
mathematics based activity and when mathematical rigor is applied both software
quality and engineering productivity increase. Neither do they imagine software
engineering based on statistics since computers are completely deterministic in
behavior. And yet the usage of software is statistical in nature.

Software is a human generation old, while mathematics is many human generations
old. Although not understood early or widely, software has direct mathematics
foundations because of the very deterministic behavior of computers. A computer
program is a rule for a mathematical function, mapping all possible initial states into
final states. Such functions are very complex compared to functions in physical science
and engineering, and traditional mathematical notation is very insufficient. But
sufficient mathematical notation is emerging in computer science and software
engineering for dealing with the syntax and semantics of programs.

Ordinary arithmetic provides an example of deep and useful mathematics. Place
notation and long division moved arithmetic from intuition and heuristics to rigorous
methods a thousand years ago in the western world. As a result, school children today
can out perform Archimedes and Euclid in arithmetic. Similar movement is possible in
software today, in replacing intuition and heuristics by rigorous mathematical methods
for software engineering. It will replace the ordinary programming of this first human
generation by real software engineering in the next generation. It will replace today's
expectation of software with a few failures that can never be completely removed to
software with zero failures in user practice.

Statistics is another subject of longer professional development than software. But only
a hundred years ago, statistics was intuitive and heuristic, even though rigorous
arithmetic was used in creating sums and averages. Yet in this time, statistics has
become a rigorous, mathematics based subject, often finding counter intuitive facts about
statistics in specific topics. The application of statistics makes it possible for software
engineers to predict with confidence the quality level of the software when it is fully
developed quite early in the development life cycle.

Cleanroom engineering not only puts software development under statistical quality
control, but takes debugging out of development before independent testing and
certification, using mathematical reasoning instead. Just as typists looked at the keys

12-52 Chapter 12 - Software Design for Interactive Use

'--
when typewriters first came out, programmers have felt the need to debug programs in
this first human generation of programming. But while counter intuitive at the time,
typists went to touch typing with both higher productivity and fewer errors. In the
same way, well educated software engineers can create software with no execution or
debugging before its testing by independent test and certification engineers. Such
engineered software .will ordinarily have a few failures in early testing, which are
returned for correction by the developers and re-testing. But the entire joint result of
developers and certifiers is software with more productivity and much greater quality.

12.5.1.1 Cleanroom Engineering Processes

Cleanroom Engineering is a set of processes that help software engineers create low or
zero defect software products (i.e., users typically do not experience any failures).
Features of Oeanroom Engineering include:

1. Theoretically Sound Engineering Practices - Achievement of intellectual control
by applying rigorous, mathematically based engineering practices. These
practices include:

a. Development of a rigorous specification, even if it is preliminary,

b. Construction of the software in a pipeline of user executable increments that
accumulate into the system,

c. Design of the software for each increment in three views (a black box for an
implementation free specification, a state box for a data specification and a
clear box for a process specification) with verification of the accuracy of
each design expansion to ensure correctness,

d. Implementation of the software in each increment by the stepwise
refinement of dear boxes into executable code,

e. Verification that the code performs according to its specification using
proof conversations with functional verification arguments,

f. Certification of each accumulated set of increments using usage scenarios
generated at random from a distribution that represents the expected usage
profile of the software,

2. Professional Excellence- Establishment of a "failures are unacceptable"
attitude and a team responsibility for quality.

3. Effective Use of People- Delegation of specification, development and
certification responsibilities to separate teams, which allows:

a. precise specification of a pipeline of software increments that accumulate
into the final software product, which includes the statistics of its use as
well as its function and performance requirements;

b. software development of each increment using box structured design and
functional verification, delivery for certification with no debugging
beforehand, and subsequent correction of any failures that may be uncovered
during certification;

12.5 - Cleanroom Engineering in Retr.ospect 12-53

c. statistical certification of the software reliability for the usage
specification, notification to designers of any failures discovered during
certification, and subsequent recertification as failures are corrected.

The goal of Cleanroom Engineering is development of a higher quality software
product. Specifically, this entails the prevention of defects in the software product,
rather than the appearance and subsequent removal of defects in the software. The
pleasant surprise with Cleanroom is that productivity also increases. This leads to a
win-win situation - improved quality and improved productivity.

12.5.2 Specifications and Construction Planning

Precision in specifications requires formal languages, just as programming does. A
formal specification defines not only legal system inputs, but legal input histories, and
for each legal input history, a set of one or more legal outputs. Any such formal
specification, in any language, is a mathematical relation-a set of ordered pairs whose
first members are input histories and second members are outputs. Then, there is a very
direct and simple mathematical definition for a program meeting a specification. It is
that the program determines a correct output for every input history in the domain of
the specification relation.

In Cleanroom engineering, specifications are extended in two separate ways to create a
structured software development. First, the formal specifications are structured into a
set of nested subspecifications, each a strict subset of the preceding subspecification.
Then, beginning with the smallest subspecification, a pipeline of software increments is
defined with each step going to the next larger subspecification. Second, the usage of
the system specified is defined as a statistical distribution over all possible input
histories. The structured Oeanroom process makes statistical quality control possible in
subsequent incremental software development to the specifications. The usage statistics
provides a statistical basis for testing and certification of the correctness of the
software in meeting its specifications.

A structured software development defines not only what a software system is to be
when finished, but also a construction plan to design and test the software in a pipeline
of subsystems, step by step. The pipeline must define step sizes that the development
team can complete without debugging prior to delivery to the certification team. Well
educated and disciplined development teams may handle step sizes up to ten I<LOC or
more. But the structured design must also determine a satisfactory set of user executable
increments for the pipeline of overlapping development and test operations. Early
increments need not provide complete services for users, but partial services that can be
tested before going on.

The first task of a Cleanroom project is to prepare and publish a specification for the
software. The specification should be in three parts

The External Specification

The Internal Specification

The Expected Usage Profile

12-54 Chapter 12 - Software Design for Interactive Use

The External Specification is a user's reference manual. It defines all the interfaces
with the software and its behavior. The Internal Specification is more mathematical
in nature. We know that a program or a software system is a rule for a mathematical
function or a state machine transition function to meet the External Specification. The
Expected Usage Profile defines how it is anticipated the software will be used. The
primary use of this document is to guide the preparation of usage tests.

12.5.2.1 Construction and Certification

In the specification phase the sequence in which the software will be developed and
certified is determined. This is done by decomposing the specification into executable
increments that will accumulate into the entire software which is to be delivered. An
executable increment is software that can be tested by invoking user commands. The
reason increments need to be defined so they are executable by user commands is to
permit usage testing on a pipeline of increments as they accumulate into the system.
Testing pas two objectives: (1) to find the existence of any failures that would be
observed by a user of the software and (2) to verify the correctness of the software with
any failures found now corrected.

The goal of the software developer is to develop and release sofhvare that is correct
when the software is used by its users. With the decomposition of the specification into
software increments, implementation and testing can begin. Each increment is built and
tested in turn. A development team is responsible for building the increments and a
certification team is responsible for testing accumulations of increments. These two
phases proceed in parallel.

As noted before, in describing the activities of the Software Construction phase, no
mention was made of testing or even of compilation. The Cleanroom development team
does not test or even compile. They use mathematical proof (functional verification) to
demonstrate the correctness of program units that make up increments. Testing and
measuring failures by program execution is the responsibility of the certification team.

Also, as noted before, in parallel with the Cleanroom development team, the
Cleanroom certification team is preparing to certify the software up to and including
the increment being developed by the development team. The certification team uses
the usage profile and the portion of the External Specification that is applicable to the
increments to be verified to generate random test cases including solutions. When the
development team is finished, the certification team compiles the increment, adds the
increment to previous increments, and certifies the software accumulated.

12.5.2.2 The Basis for Box Structured Design

Box structured design is based on a usage hierarchy of packages and subprograms. Such
packages and subprograms, also known as data abstractions or objects, are described by a
set of operations that may define and access internally stored data. In Ada, operations
are defined by the calls of the procedures and functions of the packages, and internal
data declared in the package.

Stacks, queues, and sequential or random access files provide simple examples of such
packages or subprograms. Part of their discipline is that internally stored data cannot
be accessed or altered in any way except tlr.roug!t t!te explicit operations of the package
or subprogram. It is critical in box structured design to recognize that packages may exist
at every level from complete systems to individual program variables. lt is a\so critical

to recognize that a verifiable design must deal with a usa~e hierarchy rather than a

12.5 - Cleanroom Engineering in Retrospect 12-55

parts hierarchy in its structure. A subprogram that stores no data between invocations
can be described in terms of a parts hierarchy of its smaller and smaller parts, because
any use depends only on data supplied it on its call with no dependence on previous
calls. But a specific realization of a package, say a queue, can depend not only on the
present call and data supplied it, but also on previous calls and data supplied then.

The parts hierarchy of a structured program identifies every sequence, alternation, and
iteration at every level. It turns out that the usage hierarchy of a system of packages
(say an object oriented design with all objects identified) also identifies every call (use)
of every operation of every package. The semantics of the structured program is defined
by a mathematical function for each sequence, alternation, and iteration in the parts
hierarchy. That doesn't quite work for the operations of packages because of usage
history dependencies. But there is a simple extension for packages that does work. It is
to model the behavior of a package as a state machine, with its calls of its several
operations as inputs to the common state machine. Then the semantics of such a package
is defined by the transition function of its state machine (with an initial state). When
the operations are defined by structured programs, the semantics of packages becomes a
simple extension of the semantics of structured programs.

While theoretically straightforward, the practical design of systems (object oriented
systems) in usage hierarchies can seem quite complex on first exposure. It seems much
simpler to outline such designs in parts hierarchies and structures, for example in data
flow diagrams, without distinguishing between separate usages of the same module.
While that may seem simpler at the moment, such design outlines are incomplete and
often lead to faulty completions at the detailed programming levels. In spite of their
common use in this first human generation of system design, data flow diagrams should
only be used within rigorous design methods rather than leaving critical requirements
to details with incomplete specifications.

In order to create and control such designs based on usage hierarchies in more practical
ways, their box structures provide standard, finer grained subdescriptions for any
package of three forms, namely as black boxes, as state boxes, and as clear boxes,
defined as follows.

Black Box: External view of a package, describing its behavior as a mathematical
function from historical sequences of stimuli to its next response.

State Box: Intermediate view of a package, describing its behavior by use of an
internal state and internal black box with a mathematical function from historical
sequences of stimuli and states to its next response and state, and an initial internal
state.

Clear Box: Internal view of a package, describing the internal black box of its state
box in a usage control structure of other packages; such a control structure may define
sequential or concurrent use of the other packages.

As noted before, box structures enforce completeness and precision in design of software
systems as usage hierarchies of packages. Such completeness and precision lead to
pleasant surprises in human capabilities in software e~gineering and development The
surprises are in capabilities to move from system specifications to design in programs
without the need for unit/package testing and debugging before delivery to system
usage testing. In this first generation of software development, it has been widely
assumed that trial and error programming, unit testing and debugging were necessary.

12-56 Chapter 12 - Software Design for Interactive Use

But well educated, well motivated software professionals are, indeed, capable of
developing software systems of arbitrary size and complexity without program
debugging before system usage testing. A few failures may be found in testing, but they
can be readily fixed (by the developers) and the systems operate failure free from then
on.

12.5.2.3 Functional Verification of Software

Once the design is complete, the clear box at each level is expanded to code to fully
implement the defined rule for the black box function at that level. Following each
expansion functional verification is used to help structure a proof that the expansion
correctly implements the specification. The nature of the proof revolves around the fact
that a program is a rule for a function and the specification for the program is a relation
or function. What must be shown in the proof is that the rule (the program) correctly
implements the relation or function (the specification) for the full range of the
specification and no more. The proof strategy is subdivided into small parts which
easily accumulate into a proof for a large program. Experience indicates that people are
able to master these ideas and construct proof arguments for very large software
systems.

The development team expands each clear box in the usage hierarchy into the selected
target code using stepwise refinement and functional verification. As the development
team designs and implements the software, it is held collectively responsible for the
quality of the software.

12.5.3 Statistical Certification

Cleanroom statistical certification of software involves, first, the specification of
usage statistics in addition to function and performance specifications. Such usage
statistics provide a basis for assessing the reliability of the software being tested under
expected use.

As each specified increment is completed by the developers, it is delivered to the
certifiers, who combine it with preceding increments, for testing based on usage
statistics. As noted, the Oeanroom structured specification must define a sequence of
nested increments which are to be executed exclusively by user commands as they
accumulate into the entire system required. Each subsequence represents a subsystem
complete in itself, even though not all the user function may be provided in it. For each
subsystem, a certification of correctness is defined from the usage testing and failures
fixed, if any.

As noted before, it is characteristic that each increment goes through a maturation
during the testing, becoming more reliable from corrections required for failures found,
serving thereby as a stable base as later increments are delivered and added to the
developing system. For example, the Cleanroom developed HH60 flight control
program had three increments of about 11 KLOC each. Increment 1 required 27
corrections for failures discovered in its first appearance in increment 1 testing, but then
only 1 correction during increment 1/2 testing, and 2 corrections during increment 1/2/3
testing. Increment 2 required 20 corrections during its first appearance in increment 1/2
testing, and 5 corrections during increment 1/2/3 testing. Increment 3 required 21
corrections on its first appearance in increment 1/2/3 testing. In this case 76 corrections
were required in a system of some 33 KLOC, namely 2.5 corrections per KLOC for
verified and inspected code, with no previous execution.

12.5 - Cleanroom Engineering in Retrospect 12-57

j ------ ---------- - -- --- -- - -- - -

In the certification process, it is not only important to observe failures in execution, but
also the times between such failures in execution of usage representative statistically
generated inputs. Such test data must be developed to represent the sequential usage of
the software by users, which, of course, will account for previous outputs seen by the
users and what needs the users will have in various circumstances. The state of mind of
a user and the current need can be represented by a stochastic process determined by a
state machine whose present state is defined by previous inputs/ outputs and a
statistical model that provides the next input based on that present state.

As noted before, when the development team has completed an increment, the
certification team creates an accumulated system up through this increment. The
certification team compiles the increment, combines it with previous increments, and
certifies the accumulated system through this version. If failures are encountered in the
certification of a version, they are returned to the development team for analysis and
engineering changes to whatever increments are causing the failures. While failures
are likely to be caused by the latest increment added, previous increments may be at
fault and changed as well, as noted in HH60 above. Each redelivery of changed
increments defines a new version. If no failures are encountered in the certification of a
version, no additional versions are required.

Within each version of the accumulating system, tests are constructed at random in
accordance with the specified usage statistics profile and then exercised. Test results
are compared to a standard and either a failure occurs or the result was correct. The
execution time between successive failures, if any, is a sample of the MTTF for that
version.

When common software development methods and skills are used across increments, the
certification model can be used across versions with growing increments. With
significant reuse of software ~ckages and subprograms and independent estimates of
correctness, specific statistical analyses should be employed. What follows assumes
common methods and skills in the software development in illustration. For certain
systems, other measurements than long term MTTF may be desired. For example,
systems with independent start ups for specific missions, may be better estimated on the
basis of fraction of total missions failure free. Such statistics can be developed for what
is needed.

There is a paradox in statistical testing. If software has a large number of failures, the
statistics can become more precise; if software failures are rare, or nevE.r occur, the
statistics is very imprecise. The paradox is that the best software has the worst
statistics. The response to this paradox is that the continued usage of the software is
sampling itself and adds to the precision of the statistics. Even if software is entirely
failure free, that fact cannot be established by statistical testing. But failure free usage
of the software becomes part of the statistics.

It is characteristic that each increment matures during the testing, becoming more
reliable from corrections required for failures found, serving thereby as a stable base as
later increments are delivered and added to the developing system.

12-58 Chapter 12 - Software Design for Interactive Use

12.5.4 History of Cleanroom Engineering

The term Cleanroom is taken from the hardware industry to mean an emphasis on
preventing failures to begin with, rather than removing them later (of course any
failures introduced should be removed). Oeanroom engineering involves rigorous
methods that enable greater control over both product and process. The Oeanroom
process can not only produce correct software of high performance, but can do so with
high productivity and schedule integrity. The intellectual control provided by the
rigorous Oeanroom process allows both technical and management control.

As stated, Cleanroom engineering is a process for software development under
statistical quality control. It recognizes software development as an engineering process
with mathematical foundations rather than as a trial and error programming process.
But it also defines a new basis for statistical quality control in a design process, rather
than the well known idea of statistical quality control in manufacturing to accepted
product designs.

In this first human generation of software development, such mathematical and
statistical foundations have ~n little understood and used, particularly on large
projects in which the very management of all the people required seemed of foremost
difficulty. One generation is a very short time for human society to master a subject as
complex and novel as software development. For example, after a single generation of
civil engineering, the right angle was yet to be discovered. Although many more people
are working in software engineering in its first generation, fundamentals and disciplines
still take time for discovery, confirmation, and general use.

As noted above, in Cleanroom engineering a major discovery is the ability of well
educated and motivated people to create nearly defect free software before any
execution or debugging, less than five defects per thousand lines of code. Such code is
ready for usage testing and certification with no unit debugging by the designers. In this
first human generation of software development it has been counter intuitive to expect
software with so few defects at the outset Typical heuristic programming creates fifty
defects per thousand lines of code, then reduces that number to five or less by debugging.
But program debugging leaves deeper defects behind while doing so at least 15% of the
time. A second major discovery is that defects due to mathematical fallibility in the
Oeanroom process are much easier to find and fix than defects due to debugging
fallibility, with the time and effort reqwed li terally reduced by a factor of five and
deeper defects created much less often.

As noted above, the mathematical foundations for Oeanroom engineering come from
the deterministic nature of oomputers themselves. A computer program is no more and no
less than a rule for a mathematical function. Such a function need not be numerical, of
course, and most programs do not define numerical functions. But for every legal input a
program directs the computer to produce a unique output, whether correct as specified or
not. And the set of all such input output pairs is a mathematical function. A more usual
way to view a program in this first generation is as a set of instructions for specific
executions with specific input data. While correct, this view misses a point of reusing
well known and tested mathematical ideas, regarding computer programming as new
and private art rather than more mature and public engineering.

12.5 - Cleanroom Engineering in Retrospect 12-59

With these mathematical foundations, software development becomes a process of
constructing rules for functions that meet required specifications, which needs not be a
trial and error programming process. The functional semantics of a structured
programming language such as Ada can be expressed in an algebra of functions with
function operations corresponding to program sequence, alternation, and iteration. The
systematic top down development of programs is mirrored in describing function rules in
terms of algebraic operations among simpler functions, and their rules in terms of still
simpler functions until the rules of the programming language are reached. It is a new
mental base for most practitioners to consider the complete functions needed, top down,
rather than computer executions for specific data.

The statistical foundations for Oeanroom engineering come from adding usage statistics
to software specifications, along with function and performance requirements. Such
usage statistics provide a basis for measuring the reliability of the software during its
development, and thereby measuring the quality of the design in meeting functional
and performance requirements. A more usual way to view development in this first
generation is as a difficult to predict art form. Software with no known errors from
coverage testing at delivery frequently experiences many failures in actual usage.

12.5.4.1 Two Sacred Cows of the First Human Generation In Software

Software engineering and computer science are new subjects, only a human generation
old. In this first generation, two major sacred cows have emerged from the heuristic,
error prone software development of this entirely new human activity - namely
program debugging and coverage testing. As noted above, program debugging before
independent usage testing is unnecessary and creates deeper failures in software than
are found and fixed. It is also a surprise to discover that coverage testing is very
ineffident for getting correct software and provides no capability for sdentific
certification of correctness in use.

As a first generation effort, it has only seemed natural to debug programs as they are
written, and even to establish technical and management standards for such debugging.
For example, in the first generation in typing, it only seemed natural to look at the
keys. Touch typing without looking at the keys must have looked very strange to the
first generation of hunt and peck typists. Similarly, software development without
debugging before independent, certification testing of user function looks very strange to
the first generation of trial and error programmers. It is quite usual for human
performance to be surprising in new areas, and software development will prove to be no
exception.

Just as debugging programs has seemed natural, coverage testing has also seemed to be a
natural and powerful process. Although 100% coverage testing is known to still possibly
leave failures behind, coverage testing seems to provide a systematic process for
developing tests and recording results in well managed development. So it comes as a
major surprise to discover that statistical usage testing is more than an order of
magnitude more effective than coverage testing in increasing the time between failures
in use. Coverage testing may, indeed, discover more errors in failure prone software
than usage testing. But it discovers failures of all rates, while usage testing discovers
the high rate failures more critical to users.

2- 2 - So!!:wa;.-e ~

1 2. 5. 4. 2 The Power of Usage Testing over Coverage Testing

The insights and data of Adams1 in the analysis of software testing, and the differences
between software errors and failures, give entirely new understandings in software
testing. Since Adams has discovered an amazingly wide spectrum in failure rates for
software, it is no longer sensible to treat failures as homogeneous objects to find and fix.
Finding and fixing failures with high failure rates produces much more reliable
software than finding and fixing just any failures, which may have average or low
failure rates.

The major surprise in Adams' data is the relative power of finding and fixing failures in
usage testing over coverage testing, a factor of 30 in increasing MTIF. That factor of 30
seems incredible until the facts are worked out from Adams' data. But it explains many
anecdotes about experiences in testing. In one such experience, an operating systems
development group used coverage testing systematically in a major revision and for
weeks found mean time to abends in seconds. It reluctantly allowed user tapes in one
weekend, but on fixing those failures, found the mean time to abends jumped literally
from seconds to minutes.

The Adams data is given in Table 12.10. It describes distributions of failure rates in 9
major IBM products, including the major operating systems, language compilers, data
base systems. The uniformity of the failure rate distributions among these very
different products is truly amazing. But even more amazing is a spread in failure rates
over 4 orders of magnitude, from 19 months to 5000 years (60 K months) calendar time in
MTTF, with about a third of the errors having an MTTF of 5000 years, and 1% having
an MTTF of 19 months.

After considerable study, it has been concluded that practically none of these failures
were due to original programming, but rather were due to attempted fixes. It appears
that 15% of fixes lead to new failures. That information changed the way IBM allowed
fixes to be made. A simple fix of a low rate failure can easily bring out a high rate
failure. So in place of fixing all failures, a rule was installed requiring any single
failure to .be observed several times before fixing it.

MTTF in K months
60 19 6 1.9 .6 .19 .06 .019 Product
1 34.2 28 . 8 17 . 8 10.3 5.0 2.1 1.2 .7
2 34.2 28.0 18.2 9.7 4.5 3.2 1.5 .7
3 33.7 28.5 18.0 8.7 6.5 2.8 1.4 .4
4 34.2 28.5 18.7 11.9 4.4 2.0 .3 .1
5 34.2 28 . 5 18 . 4 9.4 4.4 2.9 1.4 .7
6 32 . 0 28.2 20.1 11.5 5.0 2.1 .8 .3
7 34.0 28.5 18.5 9.9 4.5 2.7 1.4 .6
8 31.9 27.1 18.4 11.1 6.5 2.7 1.4 1.1
9 31.2 27.6 20.4 12.8 5.6 1.9 . 5 . 0

Table 12.10
Distributions Of Errors (In %) Among

Mean Time To Failure (MTTF) Classes

1E. N. Adams, "Optimizing preventive service of software products," IBM Journal of
Research and Development, January 1984

12.5 - Cleanroom Engineering in Retrospect 12- 61

,-. __
·'

With such a range in failure rates, it is easy to see that coverage testing will find the
very low failure rate errors a third of the time with practically no effect on the M1TF
by the fix, whereas usage testing will find many more of the high failure rate errors
with much greater effect. Table 12.11 develops the data, using Table 12.10, that shows
the relative effectiveness of fixes in usage testing and coverage testing, in terms of
increased MTIF. Table 12.1ldevelops the change in failure rates for each MTTF class of
Table 12.10, because it is the failure rates of the MTTF classes that add up to the
failure rate of the product.

Property_
M 60

ED 33.2
ED/M .6

FD .8
FD/M 0

19 6 1.9 . 6 .19 .06
28.2 18.7 10.6 5.2 2.5 1.1
1.5 3.1 5.6 8.7 13.2 18.3
2.0 3.9 7.3 11.1 17.1 23.6
0 1 4 18 90 393

Table 12.11
Error Densities And Failure Densities
In The MTTF Classes Of Table 12.10

.019

.5
26.3
34.2

1800

First, in Table 12.11, line 1, denoted M (MTTF), is repeated directly from Table 12.10,
namely the mean time between failures of the MTTF class. Next, line 2, denoted ED
(Error Density), is the average of the error densities of the 9 products of Table 12.10,
column by column, which represents a typical software product Une 3, denoted ED/M,
is the contribution of each class, on the average, in redudng the failure rate by fixing
the next error found by coverage testing (1 /M is the failure rate of the class, ED the
pmbabili ty a member of this class will be found next in coverage testing, so their
product, ED/M, is the expected reduction in the total failure rate from that class). Now
ED/M is also proportional to the usage failure rate in each class, since failures of that
rate will be distributed by just that amount. Therefore, this line 3 is normalized to add
to 100% in line 4, denoted FD (Failure Density). It is interesting to note that Error
Density (ED) and Failure Density (FD) are almost reverse distributions, Error Density
about a third at the high end of MTTFs and Failure Density about a third at the low
end of MTTFs. Finally, line 5, denoted FD/M, is the contribution of each class, on the
average, in reducing the failure rate by fixing the next error found by usage testing.

The sums of the two lines ED /M and FD /M turn out to be proportional to the decrease in
failure rate from the respective fixes of errors found by coverage testing and usage
testing, respectively. Their sums are 77.3 and 2306, with a ratio of about 30 between
them. That is the basis for the statement of their relative worth in increasing MTTF. It
seems incredible at first glance, but that is the number!

To see that in more detail, consider, first, the relative decreases in failure rate R in the
two cases:

Fix next error from coverage testing
R -> R- (sum of ED/M values)/{errors remaining)
= R- 77.3/E

Fix next error from usage testing
R -> R- (sum of FD/M values)/(errors remaining)
= R - 2306/E

12-62 Chapter 12 - Software Design for Interactive Use

~-~- - -

Next, the increase in MTIF in each case will be

1/(R- 77.3/E) - 1/R = 77.3/(R*(E*R- 77.3))

and

1/(R- 2306/~) - 1/R = 2306/(R*(E*R- 2306))

In these expressions, the numerator values 77.3 and 2306 dominate, and the
denominators are nearly equal when E•R is much larger than 77.3 or 2306 (either
77.3/(PR) or 2306/(E•R) is the fraction of R reduced by the next fix and is supposed to
be small in this analysis). As noted above, the ratio of these numerators is about 30 to 1,
in favor of the fix with usage testing.

12.5.5 Summary

In summary, the Oeanroom engineering process develops software of certified
reliability under statistical quality control in a pipeline of increments that accumulate
into the specified software. In the Oeanroom process there is no program debugging
before independent statistical usage testing of the increments as they accumulate into
the final product. The Oeanroom process requires rigorous methods of software
specification, development, and testing, through which disciplined software
engineering teams are capable of producing zero defect software of arbitrary size and
complexity. Such engineering discipline is not only capable of producing correct
software, but also the certification of the software as specified.

As noted before, in Cleanroom engineering a major discovery is the ability of well
educated and motivated people to create nearly defect free software before any
execution or debugging, less than five defects/KLOC:. In this first human generation of
software development it has been counter intuitive to expect software with so few
defects at the outset. Typical heuristic programming creates fifty defects/KLOC:, then
reduces that number to five or less by debugging. But such program debugging usually
leaves deeper errors behind while doing so.

Software engineering and computer science are new subjects, only a human generation
old. In this first generation, two major sacred cows have emerged from the heuristic,
error prone software development of this entirely new human activity - namely
program debugging and coverage testing. As noted above, program debugging before
independent usage testing is unnecessary and creates deeper errors in software than are
found and fixed. It is also a surprise to discover that coverage testing is very inefficient
for getting reliable software in comparison with statistical usage testing (a factor of 30
in increasing MTTF). In addition, coverage testing provides no capability for scientific
certification of reliability in use.

Of course, humans are fallible, even in using sound mathematical processes in functional
verification, so software failures are possible during the certification process in the
Cleanroom process. But there is a surprising power and synergism between functional
verification and statistical usage testing. First, as already noted, functional
verification can be scaled up for high productivity and still leave no more failures than
heuristic programming often leaves after unit and system testing combined. And second,
it turns out that the mathematics based failures left are much easier to find and fix
during certification testing than failures left behind in debugging, measured at a factor
of five in practice.

12.5 - Cleanroom Engineering in Retrospect 12-63

·-~

12.5.6 Exercises

1. How has mathematics been critical in civil engineering? How would civil
engineering be practiced without Arabic numbers or analytic geometry?

2. How will mathematics be critical in software engineering? How is software
engineering practiced without formal syntax and semantics for programs?

3. What are the three major activities in Cleanroom engineering? How do they fit
together?

4. What is a construction plan in Cleanroom engineering? What are the criteria for
building the plan?

5. What are the three main parts of a specification for software? How do they fit
together and how are they invented?

6. How will Cleanroom engineering be accepted by people who like to debug programs
with lots of failures?

12-64 Chapter 12 - Software Design for Interactive Use

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	9-21-1992

	Introduction to Software Engineering, An
	Harlan D. Mills
	J. R. Newman
	Charles B. Engle, Jr.
	Luwana Clever
	Recommended Citation

	tmp.1317408602.pdf.3CDFP

