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Evaluation of Protein Fractionation Systems Used in Formulating
Rations for Dairy Cattle

C. Lanzas,*1 L. O. Tedeschi,† S. Seo,* and D. G. Fox*
*Department of Animal Science, Cornell University, Ithaca, NY 14853
†Department of Animal Science, Texas A&M University, College Station 77843

ABSTRACT

Production efficiency decreases when diets are not
properly balanced for protein. Sensitivity analyses of
the protein fractionation schemes used by the National
Research Council Nutrient Requirement of Dairy Cat-
tle (NRC) and the Cornell Net Carbohydrate and Pro-
tein System (CNCPS) were conducted to assess the in-
fluence of the uncertainty in feed inputs and the as-
sumptions underlying the CNCPS scheme on
metabolizable protein and amino acid predictions.
Monte Carlo techniques were used. Two lactating dairy
cow diets with low and high protein content were devel-
oped for the analysis. A feed database provided by a
commercial laboratory and published sources were used
to obtain the distributions and correlations of the input
variables. Spreadsheet versions of the models were
used. Both models behaved similarly when variation
in protein fractionation was taken into account. The
maximal impact of variation on metabolizable protein
from rumen-undegradable protein (RUP) was 2.5
(CNCPS) and 3.0 (NRC) kg/d of allowable milk for the
low protein diet, and 3.5 (CNCPS) and 3.9 (NRC) kg/d
of allowable milk for the high protein diet. The RUP
flows were sensitive to ruminal degradation rates of
the B protein fraction in NRC and of the B2 protein
fraction in the CNCPS for protein supplements, energy
concentrates, and forages. Absorbed Met and Lys flows
were also sensitive to intestinal digestibility of RUP,
and the CNCPS model was sensitive to acid detergent
insoluble crude protein and its assumption of complete
unavailability. Neither the intestinal digestibility of the
RUP nor the protein degradation rates are routinely
measured. Approaches need to be developed to account
for their variability. Research is needed to provide bet-
ter methods for measuring pool sizes and ruminal diges-
tion rates for protein fractionation systems.
Key words: modeling, simulation, feed protein frac-
tionation, nutrient supply
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INTRODUCTION

Livestock enterprises are significant contributors to
nonpoint sources of environmental N pollution because
of their contributions to ammonia emissions and nitrate
contamination of surface and ground water (NRC, 1993,
2003). Purchased feed, especially protein supplements,
is a major source of imported nutrients and farm ex-
penses on dairy farms (Klausner et al., 1998). Under
these economic and environmental constraints, improv-
ing the efficiency of N utilization and reducing N ex-
creted are very important to maintain the sustainabil-
ity of dairy farms, and nutrition models have become
an effective farm management tool to accomplish these
tasks (Dinn et al., 1998; Wattiaux and Karg, 2004).

Feedstuffs vary widely in NPN, rate and extent of
ruminal protein degradation, intestinal digestibility,
and essential amino acid (EAA) supply (Broderick et
al., 1989; NRC, 2001). Milk production will be reduced
when protein supplied by the diet is below energy-allow-
able milk production, which is affected by protein degra-
dation rates (Fox et al., 2004). Feed protein fraction-
ation systems have been integrated into nutrition mod-
els to account for differences in protein availability and
utilization. The in situ techniques and schemes based
on solubility in buffers and detergent solutions have
been adopted by the NRC (2001) and the Cornell Net
Carbohydrate and Protein System (CNCPS; Fox et al.,
2004) to measure protein fractions in feeds.

Sensitivity analysis identifies key sources of variabil-
ity and uncertainty and quantifies their contribution
to the variance of model outputs (Saltelli, 2000), helping
to establish research and data collection priorities for
further improvement of nutrition models. Evaluations
of the ability of nutrition models to predict duodenal
flow of N and animal performance have been conducted
(Kohn et al., 1998; Bateman et al., 2001a,b; NRC, 2001;
Fox et al., 2004; Offner and Sauvant, 2004). However,
few evaluations based on sensitivity analysis have been
conducted. Fox et al. (1995) assessed the impact of feed
carbohydrate and protein fractions and microbial com-
position on animal performance predictions. Tylutki
(2002) determined the inputs that routinely need to be
analyzed to reduce risk of use of the CNCPS model in
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field conditions. The impact of feed protein variability
and model assumptions on MP and AA predicted flows
have not been assessed. Reliable predictions of nutrient
supply are critical for mathematical models to predict
the effects of nutrients absorbed on milk composition
and N efficiency, because any intermediary metabolism
model would rely on rumen models for their substrates
(Fox et al., 2004; Offner and Sauvant, 2004). The objec-
tive of this study was to conduct a series of sensitivity
analyses of the protein fractionation schemes of the
NRC (2001) and CNCPS (Fox et al., 2004) models to
assess their impact on variation in MP and absorbed
AA predictions due to feed composition variability. A
second objective was to assess the effect of assumptions
underlying the CNCPS feed protein fractionation
scheme. The overall objective of both analyses was to
establish research priorities for increasing the ro-
bustness of the models.

MATERIALS AND METHODS

Protein Fractionation

The NRC (2001) and the CNCPS (Fox et al., 2004)
differ in the schemes used to predict MP and AA supply
and requirements. The NRC (2001) adopted the in situ
method to partition feed N fractions into RDP and RUP.
The in situ A fraction includes NPN, solubilized protein,
and protein in particles smaller than the porosity of
the nylon bag. The in situ B fraction is potentially de-
gradable in the rumen, depending on the competition
between digestion and passage, and the in situ C frac-
tion is the unavailable protein, which is estimated as
the remaining nitrogen at the end of predetermined
incubation time. Intestinal digestibilities of RUP are
based on the mobile bag technique (Hvelplund et al.,
1992) and in vitro estimates (Calsamiglia and Stern,
1995). A regression approach is used to determine the
EAA composition of duodenal protein.

The CNCPS fractionates N into 5 fractions based on
solubility: the A fraction is NPN, the B fraction is true
protein, and C is unavailable protein (Van Soest et al.,
1981). The B fraction is further subdivided into 3 frac-
tions (B1, B2, and B3) with different digestion rates.
The B1 fraction is soluble in borate phosphate buffer,
and is precipitated by TCA. The B3 fraction is insoluble
in neutral detergent but is soluble in acid detergent.
The C fraction is insoluble in acid detergent solution.
The B2 fraction is calculated by difference. The B frac-
tions are degraded based on the competition between
fractional rates of degradation and passage. The A frac-
tion is assumed to be completely degraded, whereas the
C fraction is assumed completely undegraded. Intesti-
nal digestibility is assumed to be 100% for B1 and B2,
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Table 1. Diets used in the simulations

Feeds kg of DM/d

Feeds in low protein diet
Grass hay 7.0
Corn silage 6.0
Dried shelled corn 4.5
Soybean meal 0.4
Urea1 0.2

Feeds in high protein diet
Corn silage 7.0
High moisture corn grain 5.5
Alfalfa silage 4.0
Soybean meal 2.8
Distillers grains 2.0

1Urea was added when the diet was formulated with the NRC
(2001) to supply the required ruminally degraded protein.

80% for B3, and 0% for C. A factorial approach is used
to estimate EAA supply (O’Connor et al., 1993).

Sensitivity Analyses

Animals and Diets. Two scenarios were chosen to
test the sensitivity of the models. A low CP diet (12 to
14% CP, 43% NDF) with grass hay and corn silage as
forage sources (named the low protein diet) was formu-
lated with each model to meet requirements for 20 kg
of milk/d. A second diet (18% CP, 30% NDF) with alfalfa
and corn silage as forage sources was formulated with
each model to meet requirements for 38 kg of milk/
d (named the high protein diet). Both scenarios were
chosen because they represent situations in which a
lactating dairy cow would likely be responsive to pro-
tein. Feedstuffs commonly used in diets of dairy cows
in North America (Mowrey and Spain, 1999) were used
(Table 1).

Simulation Procedures. Global sensitivity analy-
sis based on Monte Carlo techniques has been used in
modeling simulations (Helton and Davis, 2003). In a
Monte Carlo analysis, model inputs are described as
probability density functions from which samples are
drawn to feed the model and derive the probabilities of
possible solutions for the model (Law and Kelton, 2000).
The Monte Carlo analysis was done with @Risk version
4.5 (Palisade Corp., Newfield, NY) with spreadsheet
versions of the CNCPS model as described by Fox et
al. (2004) and the NRC model (NRC, 2001). Several
sampling techniques that are suitable to Monte Carlo
simulation are available. The sampling technique cho-
sen for drawing the samples from the distributions was
the Latin Hypercube (McKay et al., 1979). The probabil-
ity distribution is stratified in the Latin Hypercube
sampling. This stratification divides the cumulative
curve into intervals of equal probability; from each in-
terval, a sample is randomly taken. Sampling is forced
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to represent values at each interval. Because of the
stratification, the Latin Hypercube is more efficient and
provides a more stable analysis of the model outcomes
than does random sampling (Helton and Davis, 2003).
Ten thousand samplings for simulation were carried
out. Convergence was set to be less than 1.5% of change
in output statistics; it was achieved in all simulations.

Uncertainty and Sensitivity Measures. The model
outputs generated by the simulations are presented as
box plots. In a box plot, the box contains the middle
50% of the data. The middle line in the box represents
the median, the upper edge of the box indicates the
75th percentile, and the lower edge indicates the 25th
percentile. The range between the 75th and the 25th
percentiles is the interquartile range. The vertical lines
extend to a maximum of 1.5 times the interquartile
range; the points outside the ends of the vertical lines
are outliers. For comparative purposes, the inter-
quartile range was expressed as MP or essential EAA
allowable milk, using the efficiency coefficients of MP
and EAA utilization of the CNCPS model (Fox et al.,
2004).

To relate the variation in the model outputs to the
different sources of inputs, a stepwise regression analy-
sis was used. The standard regression coefficients
(SRC) were used to rank the inputs. They provide a
measure of importance based on the effect of moving
each input away from its mean value by a fixed fraction
of its SD while retaining all other inputs at their mean
values (Helton and Davis, 2002).

To assess differences in precision of the models, Bon-
ferroni confidence intervals were computed for the SD
of the simulated outputs (Ott and Longnecker, 2001).

A first series of simulations was conducted to assess
the impact of feed protein and EAA composition vari-
ability on the N flows. For each model and scenario,
the following simulations were conducted: 1) only the
CP values of the feedstuffs were varied; 2) the inputs
necessary to describe protein fractions and their corres-
ponding rates and intestinal digestibilities were varied;
3) both CP and protein fraction inputs were varied; and
4) EAA composition was varied. The following outputs
of the models were assessed: for simulations 1 to 3, MP
from microbial CP (MCP) and RUP, absorbed Lys and
Met flows, and for simulation 4, absorbed EAA flows.

To describe inputs as probability density functions
(Table 2), a database provided by a commercial labora-
tory (Dairy One, Ithaca, NY) was used to obtain the
feed chemical composition measurements [CP, soluble
protein, neutral detergent insoluble CP (NDICP), and
neutral detergent insoluble CP (ADICP)]. Feed compo-
sition data were fit to a normal distribution. When feed
inputs were not statistically normal, the distribution
with the best fit to the data was assigned. The goodness
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of fit was assessed with several statistics (χ2, Kolmo-
gorov-Smirnov, and Anderson-Darling statistical tests)
and graphical methods (distribution function differ-
ences plots and probability plots; Law and Kelton,
2000). Minimum and maximum values in the database
were used to truncate the distributions and a correla-
tion matrix was incorporated to take into account the
correlation among inputs within feed when sampling.
For the CNCPS, a normal distribution with a standard
deviation proportional to the mean of the degradation
rate was used to account for the fact that the variability
in the rates estimates increases as the mean value in-
creases for the degradation rates (Weiss, 1994). A trian-
gular distribution was used for the intestinal digestibil-
ity coefficients for B1, B2, and B3. For the NRC model,
in situ inputs were described as a normal distribution
with mean and standard deviations as reported in the
NRC (2001). Similarly, the NRC (2001) intestinal RUP
digestibilities were also described by triangular distri-
butions.

For the feed EAA composition (Table 3), a normal
distribution with mean and standard deviations as re-
ported in the NRC (2001) was used. For the grass hay
and alfalfa silage, the NRC data were supplemented
with other published sources (Muscato et al., 1983; Ted-
eschi et al., 2001; Givens and Rulquin, 2004; Ross, 2004)
because the NRC database contains single observa-
tions. The CNCPS model uses EAA as a percentage
of buffer insoluble protein. Muscato et al. (1983) and
Tedeschi et al. (2001) concluded that the EAA profile
of the original forage could be used to predict the EAA
profile of the undegraded intake protein instead of using
the buffer insoluble protein profile. Therefore, the EAA
profile from the original feedstuff was also used for
the CNCPS.

A second series of simulations was conducted to test
the sensitivity of the model to the assumptions on N
utilization underlying the solubility based protein frac-
tionation scheme used in the CNCPS as described
above. The following assumptions were tested: 1) the
true soluble protein (B1 fraction) is nearly completely
degraded in the rumen, 2) the buffer insoluble CP is
composed of 2 kinetically distinct fractions [NDICP cor-
rected for ADICP (B3 fraction), which represents a
slowly degradable fraction across feeds, and the B2 frac-
tion that represents an intermediate degradable frac-
tion], and 3) ADICP is assumed to be undegradable in
the rumen and indigestible in the small intestine. For
testing the assumptions, the following modifications
were incorporated into the model spreadsheet and sim-
ulations in which CP and protein composition were var-
ied were carried out:

(1) The degradation rates for B1 fraction were ad-
justed to available published data, and the frac-
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Table 2. Mean, standard deviations (SD), and distributions for the feeds used in the simulations

Grass hay Corn silage

Variable1 Mean SD Distribution2 Mean SD Distribution

CP, % of DM 10.7 3.62 Gamma (5.0, 1.6) 8.5 1.06 Loglogistic (2.1, 6.2, 11.3)
Soluble CP, % of DM 3.0 1.29 Gamma (4.2, 0.6) 4.2 1.05 Weibull (3.8, 4.0)
NPN, % of soluble CP 95.0 3.00 Normal (95.0, 3.0) 95.0 3.00 Normal (95.0, 3.0)
NDICP, % of DM 3.5 1.20 Beta general (7.0, 14.6) 1.4 0.33 Loglogistic (0.3, 1.1, 6.1)
ADICP, % of DM 0.9 0.37 PearsonV (47.8, 117.8) 0.7 0.16 Loglogistic (0.05, 0.61, 7.6)
In situ A, % of CP 28.4 13.9 Normal (28.4, 13.9) 51.3 16.9 Normal (51.3, 16.9)
In situ C, % of CP 18.7 12 Normal (18.7, 12.0) 18.5 5.3 Normal (18.5, 5.3)
Rate of in situ B, /h 5 3.3 Normal (5.0, 3.3) 4.4 1.5 Normal (4.4, 1.5)
RUP digestibility, % 50 — Triangular (40,60) 55 — Triangular (45, 65)
Rate of CNCPS B1, /h 135 20 Normal (135.0, 20.0) 150 20 Normal (150.0, 20.0)
Rate of CNCPS B2, /h 11 4 Normal (11.0, 4.0) 15 4 Normal (15.0, 4.0)
Rate of CNCPS B3, /h 1.2 1 Normal (1.2, 1.0) 0.2 1 Normal (0.2, 1.0)
ID of CNCPS B1, % 100 — Triangular (90, 100) 100 — Triangular (90, 100)
ID of CNCPS B2, % 100 — Triangular (90, 100) 100 — Triangular (90, 100)
ID of CNCPS B3, % 80 — Triangular (70, 90) 80 — Triangular (70, 90)

Alfalfa silage Dried shelled corn

Mean SD Distribution Mean SD Distribution

CP, % of DM 21.0 2.91 Normal (21.0, 2.9) 9.5 1.31 Normal (9.5, 1.3)
Soluble CP, % of DM 12.4 2.75 Logistic (12.4, 1.6) 1.9 0.59 Normal (20.1, 6.2)
NPN, % of soluble CP 67.0 3.00 Normal (67.0, 3.0) 73.0 3.00 Normal (73.0, 3.0)
NDICP, % of DM 3.1 0.95 Loglogistic (−0.05, 3.0, 6.0) 1.0 0.36 Normal (10.1, 3.8)
ADICP, % of DM 1.5 0.55 Loglogistic (0.4, 1.0, 4.9) 0.9 0.20 Normal (9.7, 2.1)
In situ A, % of CP 57.3 10.2 Normal (57.3, 10.2) 23.9 12.5 Normal (23.9, 12.5)
In situ C, % of CP 7.4 2.3 Normal (7.4, 2.3) 3.6 8.3 Normal (3.6, 8.3)
Rate of in situ B, /h 12.2 7.1 Normal (12.2, 7.1) 4.9 2 Normal (4.9, 2.0)
RUP digestibility, % 65 — Triangular (55, 75) 75 — Triangular (75, 95)
Rate of CNCPS B1, /h 150 20 Normal (150, 20) 150 20 Normal (150, 20)
Rate of CNCPS B2, /h 15 4 Normal (15, 4) 6 3 Normal (6.0, 3.0)
Rate of CNCPS B3, /h 1.8 1 Normal (1.8, 1) 0.1 1 Normal (0.1, 1.0)
ID of CNCPS B1, % 100 — Triangular (90, 100) 100 — Triangular (90, 100)
ID of CNCPS B2, % 100 — Triangular (90, 100) 100 — Triangular (90, 100)
ID of CNCPS B3, % 80 — Triangular (90, 100) 80 — Triangular (70, 90)

High moisture corn Solvent soybean meal

Mean SD Distribution Mean SD Distribution

CP, % of DM 9.7 1.03 Pearson (53.5, 387.4) 51.0 3.19 Logistic (51.4, 1.7)
Soluble CP, % of DM 2.8 1.06 Extreme value (2.3, 0.7) 10.1 3.98 Beta general (1.9, 2.6)
NPN, % of soluble CP 95.0 3.00 Normal (95.0, 3.0) 55.0 3.00 Normal (55.0, 3.0)
NDICP, % of DM 0.8 0.19 Logistic (0.8, 0.1) 5.5 3.38 Normal (10.7, 6.6)
ADICP, % of DM 0.4 0.10 Gamma (53.8, 0.01) 1.6 1.34 Normal (3.2, 2.6)
In situ A, % of CP 27.9 2.9 Normal (27.9, 2.9) 15 6.2 Normal (15.0, 6.2)
In situ C, % of CP 0.7 0.9 Normal (0.7, 0.9) 0.6 1.9 Normal (0.6, 1.9)
Rate of in situ B, /h 5.1 2.5 Normal (5.1, 2.5) 4.4 1.5 Normal (4.4, 1.5)
RUP digestibility, % 90 — Triangular (80,100) 80 — Triangular (70, 90)
Rate of CNCPS B1, /h 150 20 Normal (150.0, 20.0) 230 30 Normal (230.0, 30.0)
Rate of CNCPS B2, /h 15 4 Normal (15.0, 4.0) 11 4 Normal (11.0, 4.0)
Rate of CNCPS B3, /h 1.8 1 Normal (1.8, 1.0) 0.2 1 Normal (0.2, 1.0)
ID of CNCPS B1, % 100 — Triangular (90, 100) 100 — Triangular (90, 100)
ID of CNCPS B2, % 100 — Triangular (90, 100) 100 — Triangular (90, 100)
ID of CNCPS B3, % 80 — Triangular (70, 90)

Distillers grains

Mean SD Distribution

CP, % of DM 31.4 2.40 Normal (31.4, 2.4)
Soluble CP, % of DM 14.7 8.76 Loglogistic (−0.4, 4.6, 5.3)
NPN, % of soluble CP 67.0 3.00 Normal (67.0, 3.0)
NDICP, % of DM 31.0 9.46 Normal (31.0, 9.5)
ADICP, % of DM 17.5 5.50 Logistic (5.5, 0.9)
In situ A, % of CP 18.3 7.9 Normal (18.3, 7.9)
In situ C, % of CP 17.1 10.3 Normal (17.1, 10.3)

Continued

Journal of Dairy Science Vol. 90 No. 1, 2007
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Table 2 (Continued). Mean, standard deviations (SD), and distributions for the feeds used in the simulations

Distillers grains

Variable1 Mean SD Distribution

Rate of in situ B, /h 4.7 1.4 Normal (4.7, 1.4)
RUP digestibility, % 85 — Triangular (75, 95)
Rate of CNCPS B1, /h 150 20 Normal (150, 20)
Rate of CNCPS B2, /h 8 3 Normal (8.0, 3.0)
Rate of CNCPS B3, /h 0.5 1 Normal (0.5, 1.0)
ID of CNCPS B1, % 100 — Triangular (90, 100)
ID of CNCPS B2, % 100 — Triangular (90, 100)
ID of CNCPS B3, % 80 — Triangular (70, 90)

1ADICP = Acid detergent insoluble crude protein; ID = intestinal digestibility; NDICP = neutral detergent insoluble crude protein; CNCPS =
Cornell Net Carbohydrate and Protein System.

2The parameters needed to characterize the distribution are indicated in parentheses. An α parameter indicates shape of the distribution,
a β parameter indicates scale (e.g., σ for the normal distribution), and a γ parameter indicates location (e.g., � for the normal distribution).
The distributions are beta general (α1, α2), extreme value (γ, β), gamma (α, β), logistic (α, β), loglogistic (γ, α, β), normal (�, σ), PearsonV
(α, β), and Weibull (α, β). The triangular distribution (a, b) was used in absence of data; a is the minimum value and b is the maximum
value.

tion was linked to the liquid passage rate. Cur-
rent feed library values for the degradation rates
for the B1 fraction exceed most of the published
values for soluble proteins (Mahadevan et al.,
1980; Broderick et al., 1989; Peltekova and Brod-
erick, 1996; Hedqvist and Udén, 2006; Table 4).

(2) The impact of assuming 2 potentially degradable
fractions within the insoluble protein was tested
by collapsing both fractions into a single fraction,
with a weighted average degradation rate (Ta-
ble 4).

(3) The effect of partial intestinal digestibility of AD-
ICP of protein supplements on model predictions
was assessed by assigning partial digestibilities
based on published data (Table 4). For unheated
forages, ADICP coefficients of digestion are as-
sumed to be zero (Goering et al., 1972). However,
additional ADICP produced by heating was par-
tially digested in steamed treated alfalfa (Broder-
ick et al., 1993), distillers grains (Van Soest, 1989;
Nakamura et al., 1994), and plant proteins (Na-

Table 3. Essential amino acids composition of the feeds used in the simulations (mean ± SD)

AA (% of CP)

Feed Arg His Ile Leu Lys Met Phe Thr Val

Alfalfa silage1 4.1 ± 0.21 1.7 ± 0.13 4.2 ± 0.39 6.8 ± 0.69 4.6 ± 0.90 1.2 ± 0.11 4.4 ± 0.25 4.0 ± 0.16 1.9 ± 0.88
Corn silage2 2.0 ± 0.41 1.8 ± 0.30 3.3 ± 0.23 8.6 ± 0.91 2.5 ± 0.35 1.5 ± 0.12 3.8 ± 0.23 3.2 ± 0.30 4.5 ± 0.28
Distillers grains2 4.1 ± 0.28 2.5 ± 0.21 3.7 ± 0.13 9.6 ± 2.80 2.2 ± 0.39 1.8 ± 0.21 4.9 ± 0.37 3.4 ± 0.34 4.7 ± 0.27
Dry corn2 4.5 ± 0.05 3.1 ± 0.05 4.1 ± 0.04 11.2 ± 0.14 2.8 ± 0.03 2.1 ± 0.02 4.6 ± 0.05 3.6 ± 0.03 4.0 ± 0.04
Grass hay3 3.6 ± 0.59 1.4 ± 0.25 3.3 ± 0.63 6.0 ± 1.26 3.6 ± 0.68 1.3 ± 0.46 3.8 ± 0.75 3.5 ± 0.78 4.3 ± 0.92
HMCG2,4 3.9 ± 0.74 2.5 ± 0.22 3.4 ± 0.25 11.6 ± 0.93 2.6 ± 0.41 2.1 ± 0.28 4.6 ± 0.33 3.7 ± 0.30 4.9 ± 0.38
Soybean meal2 7.3 ± 0.36 2.8 ± 0.17 4.6 ± 0.22 7.8 ± 0.24 6.3 ± 0.27 1.4 ± 0.09 5.3 ± 0.21 4.0 ± 0.14 4.6 ± 0.26

1Givens and Rulquin (2004); NRC (2001); and Ross (2004).
2NRC (2001).
3Muscato et al. (1983); NRC (2001); Tedeschi et al. (2001).
4HMCG = High moisture corn grain.
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kamura et al., 1994; Hussein et al., 1995;
Schroeder et al., 1995).

RESULTS AND DISCUSSION

Sensitivity Analysis 1: Influence of Feed
Composition Variation on Model Predictions

Input Variability. The variability represented is
from a broad population of each feedstuff included in
the evaluation because feedstuffs were derived from
extensive databases. The range in values for the CP and
protein inputs (Table 2) were similar to those previously
reported for other databases (Kertz, 1998; Cromwell
et al., 1999). Table 2 shows the distributions used to
describe the feed protein composition. Although the nor-
mal distribution was the first choice and the number
of samples available to fit the distributions for the
chemical protein fractions was in all cases large (100 <
n < 1,300), not all the inputs were normally distributed.
Some feed components (e.g., ADICP of grass hay and
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Table 4. Variations in digestion rates (kd) and intestinal digestibilities (ID) used to evaluate assumptions
underlying the Cornell Net Carbohydrate and Protein System (CNCPS) protein fractionation scheme

kd of CNCPS kd of CNCPS
B1,1 %/h B2+B3,2 %/h ID of CNCPS C3, %

Feed Mean SD Mean SD Mean Minimum Maximum

Alfalfa silage 28 5 10.1 4 — — —
Corn silage 28 5 9.9 3 — — —
Distillers grains 50 7 4.7 2 30 0 60
Dried shelled corn 50 7 5.7 3 — — —
Grass hay 49 6 4.9 2 — — —
High moisture corn 50 7 8.9 3 — — —
Soybean meal 46 6 9.1 3 40 0 80

1B1 rates are based on several published sources (Broderick et al., 1989; Peltekova and Broderick, 1996;
Hedqvist and Udén, 2006).

2B2 and B3 rates were collapsed into a single fraction, by assigning the same rate using a weighted
average of the original degradation rates.

3The intestinal digestibility coefficients (ID) for the C fraction of protein supplements (triangular distribu-
tions) are based on Hussein et al. (1995), Nakamura et al. (1994), Schroeder et al. (1995), and Van Soest
(1989).

high-moisture corn grain) had right-skewed distribu-
tions (e.g., Pearson and gamma). These skewed distri-
butions have zero as a limit of the function and few
observations with high values (Law and Kelton, 2000).
Some other inputs (e.g., CP of soybean meal) were nar-
rower around the mean than the normal distribution;
thus, they were better represented by log and logistic
distributions (Law and Kelton, 2000). This is in
agreement with the findings of Kertz (1998), who re-
ported low coefficients of variation (<2%) for CP in soy-
bean meal. A consequence of the nonnormality of the
feed composition is that the mean and SD are less ap-
propriate as measures of centrality and dispersion of
the population (Law and Kelton, 2000). For skewed
distributions, the mean overestimates the measure of
centrality. Both models are deterministic; in a deter-
ministic model, the solutions of the model represent an
average (Baldwin, 1995). However, when variability is
taken into account, the mean value of the solutions is
not necessary coincident with the deterministic solution
(Matis and Tolley, 1980). As the need for reducing safety
factors for nutrients increases, accounting for feed com-
position variability may become more critical.

MCP Predictions. The impact of the protein inputs
on MP predictions is shown in Figure 1. Although each
diet was formulated for the same MP allowable milk,
the models differed in the amounts and proportions
that MCP and RUP contributed to MP supply (Figure
1). For comparative purposes, the variation in MP and
AA flows was expressed in milk responses using a con-
stant efficiency; it is plausible that this approach over-
predicts responses to protein because marginal conver-
sion decreases as supply approaches the requirements
(Doepel et al., 2004). Predictions for MCP had different
distributions between diets (Figure 1, panels A and
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B). The low protein diet had very heavily left-skewed
distributions for MCP (Figure 1, panel A). For the NRC
predictions, the upper bound corresponded to the maxi-
mum RDP requirement. These skewed distributions for
both models are due to the discontinuity of the equa-
tions used to estimate microbial growth. Both models
apply the concept of the limiting nutrient to the predic-
tion of microbial growth, assigning the minimum value
between the energy and N-allowable microbial growth
(Tedeschi et al., 2000; NRC, 2001). A consequence of
this discontinuity may be an increased risk of use of
the models when safety factors are reduced for RDP
because the accuracy of MCP predictions relies on those
inputs that provide fermentable organic matter when
energy is first limiting and degradable protein when N
is first limiting (Ruiz et al., 2002). Equations that pro-
vide smoother transitions (continuous) from an N- to
energy- limiting (or vice versa) microbial growth would
provide more robustness to these models and be more
biologically appropriate. The estimation of RDP re-
quirements is an area that needs further refinement in
both the NRC and CNCPS models. The inaccuracy in
prediction of RDP requirements is well illustrated by
Schwab et al. (2005); milk protein yields were predicted
better when MP supply was always predicted from
available energy, rather than from both available en-
ergy and nitrogen. Biases in predicting microbial
growth when N is first limiting may result from not
adequately accounting for N supplied by recycling (both
intraruminal and urea recycling), inaccurate predic-
tions of RDP supply, or efficiency of microbial use of
RDP. If RDP requirements are overpredicted, the risk
of overfeeding RDP and increasing N excretion in-
creases. If RDP requirements are underpredicted, the
risk of not maximizing microbial growth increases.
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Figure 1. Box plots for the variability in predicted MP from microbial CP: A) low protein diet; B) high protein diet), and from RUP: C)
low protein diet; and D) high protein diet due to feed protein variation for the following simulations: 1) Cornell Net Carbohydrate and
Protein System (CNCPS), CP; 2) CNCPS, protein fractions; 3) CNCPS, CP and protein fractions; 4) NRC, CP; 5) NRC, protein fractions;
and 6) NRC, CP and protein fractions. The middle line in the box represents the median, and upper and lower areas of the center box
indicate the 75th and 25th percentiles respectively (50% of the values are included; the interquartile range (H) is the difference between
the 2 percentiles). The whiskers on the lines are extreme values, and indicate values that fall within 1.5 H. For comparative purposes, H
is expressed in MP-allowable milk (assuming an efficiency of 0.65). Predictions within a panel with different variance have different letters
(P < 0.05).

For the high protein diet, the impact of protein vari-
ability on MCP predictions of the NRC model was neg-
ligible with no predicted milk responses (Figure 1,
panel B). At high protein levels, the CNCPS microbial
growth predictions were more sensitive to protein (Fig-
ure 1, panel B). This is due to the peptide stimulation
adjustment factor and the indirect effect that varying
protein has on NFC prediction (Fox et al., 2004). Non-
fiber carbohydrates are calculated by difference and
the amount of carbohydrate fermented in the rumen
dictates microbial growth (Fox et al., 2004). The
CNCPS adjusts the yield of the bacteria that ferment
NSC with an empirical function of amino N stimula-
tion that enhances microbial yield up to 18% at any
given carbohydrate fermentation rate. Although in
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vivo responses to amino N have been variable, im-
provements in microbial growth and efficiency greater
than 18% have been reported (Hume, 1970; Chikunya
et al., 1996). Van Kessell and Russell (1996) demon-
strated that peptides and amino acids had little impact
on the yield of carbohydrate-limited, ammonia-excess
cultures, but they improved the growth rate and yield
in excess-energy conditions. Amino-N helps to match
anabolic and catabolic rates, decreasing the waste of
energy in spilling reactions (Russell, 1993; Van Kessel
and Russell, 1996). Therefore, the sensitivity of micro-
bial growth to protein supply may be overpredicted
when the rate of carbohydrate fermentation is low,
but may be underpredicted at high fermentation rates
(Van Kessel and Russell, 1996).
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Figure 2. Standard regression coefficients (SRC; P < 0.05) for the protein inputs ranked as the most influential in predicting MP from
RUP in the Cornell Net Carbohydrate and Protein System (CNCPS) (panels A and C) and NRC (panels B and D) models. ADICP = acid
detergent insoluble crude protein; NDICP = neutral detergent insoluble crude protein; SOL PROT = soluble protein.

MP from RUP. Overall, both models predicted wide
ranges in RUP (Figure 1, panels C and D). The standard
deviation for predicted RUP within the high protein
diet was approximately 200 g/d for both models when
CP and protein fractions varied. Ipharraguerre and
Clark (2005) summarized intestinal flow data from 57
studies. In their database, a variety of protein sources
were represented; DMI ranged from 10.8 to 26.8 kg/d
and dietary CP ranged from 11.3 to 23.1%. Despite their
extensive database, they reported a standard deviation
for the nonammonia, nonmicrobial N intestinal flow of
87.1 g (544 g of CP), which was only 2.7-fold greater
than models predicted for a single diet. Similarly, in
an evaluation of the NRC model, the range in RUP
supply was overestimated (Huhtanen, 2005). The pro-
tein inputs that contributed the most to the MP from
RUP variability are presented in Figure 2. Ruminal
degradation rates were highly ranked among the inputs
in all the simulations (NRC B rate and CNCPS B2 rate).
In the high protein diet, RUP flow was very sensitive
to soybean meal rates. In addition, the models were
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sensitive to protein B fraction degradation rates for
energy concentrates (dried corn and high-moisture corn
grain) and forages (grass hay and alfalfa silage; Figure
2). Grains provide a substantial amount of protein be-
cause their inclusion rate is high in most mixed dairy
rations (Mowrey and Spain, 1999). Protein has been
described as a first-limiting nutrient for alfalfa silage
(Cadorniga and Satter, 1993; Dhiman and Satter,
1993), and grass silage–based rations (Aston et al.,
1994). If heated appropriately, RUP content of forages
can be increased (Broderick, 1995). Heat treatment at
harvest decreased rumen protein degradation and in-
creased the N of dietary origin flowing to the intestines
(Charmley and Veira, 1990). In situ data on protein
degradation for grains are limited and in vivo or in vitro
data are practically nonexistent (Herrera-Saldana et
al., 1990; Lykos and Varga, 1995). The imprecision of
the RUP flows may result from the sensitivity of the
models to the degradation rates used in the models.
With the first-order approach used for both models, the
closer the degradation rate is to the passage rate, the
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larger the changes in the model predictions are, with
small deviations in the rates. Most of the rates for the
in situ B and CNCPS B2 fractions are close to the pas-
sage rate predicted by these models (NRC, 2001; Fox
et al., 2003). However, Reynal and Broderick (2003)
found that the in vivo rates were consistently higher
than in vitro and in situ estimates (e.g., for expeller
soybean meal, the in vivo rate was 17.9%/h whereas
the in vitro rate was 4%/h). Thus, in vivo protein degra-
dation rates may be several-fold greater than the pas-
sage rate, which may make the RUP flows less sensitive
to degradation rates than predicted by the models. An-
other contributing factor to the imprecision of pre-
dicting the RUP flows may be a lack of accuracy of
predicted passage rates. Empirical equations used to
predict passage rates explained at most 40% of the vari-
ability when evaluated against an independent data-
base (Seo et al., 2006). Methodological factors such as
choice of marker and kinetic model may bias the esti-
mates of passage rates. None of the markers are uni-
formly distributed across digesta phases. Ahvenjärvi et
al. (2003) found that N flowing in the omasal canal was
concentrated in small particulate matter. Ytterbium
infused in the rumen had greater affinity for small par-
ticles (Siddons et al., 1985), and thus, the accuracy of
N flows was linked to the accuracy of ytterbium as a
marker (Ahvenjärvi et al., 2003). Reynal and Broderick
(2003) obtained rates of passage with ytterbium infused
in the rumen of the range of 12 to 14%/h, whereas rates
with ytterbium adsorbed in feed particles were of the
range of 2.5 to 6%/h (Hristov and Broderick, 1996; Ellis
et al., 2002).

The low accuracy and repeatability of the methods
used to estimate degradation rates compromise the ro-
bustness of the models. The intrinsic limitation of the
in situ technique results in consistent underestimation
of degradation rates. The loss of particles from the bag
underestimates the rate parameter, because the lost
particles, which have different chemical composition
and surface area than the ones in the bag, generally
have faster rates (Noziere and Michalet-Doreau, 2000).
In addition, the N from microbial origin can make up
60% of the N in the residue (Beckers et al., 1995), and
no procedure completely removes attached microbes
(Noziere and Michalet-Doreau, 2000). Similarly, in
vitro methods tended to underpredict rate (Reynal and
Broderick, 2003). Advances in this area will rely upon
a better understanding of the sources of variation in
the techniques (Broderick et al., 2004), and greater ef-
forts in modeling and understanding in vitro digestion.
Although proteolysis is assumed to be a first-order pro-
cess, in vitro methods deviate from first-order kinetics
for several reasons: 1) substrate-limiting conditions are
difficult to maintain through the incubation, 2) when
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proteolytic enzymes are used, the enzymatic activity
may decline over time, and may be subject to end-prod-
uct inhibition (Broderick and Clayton, 1992; Kohn and
Allen, 1995), and 3) microbial growth in a batch follows
distinct phases; namely, lag, exponential growth, and
stationary phase, that are not observed in vivo.

Along with the problems encountered in estimating
digestion and passage rates, the kinetic models used to
integrate both passage and digestion (Waldo et al.,
1972; Orskov and McDonald, 1979) may be too simplis-
tic to appropriately mimic rumen digestion. Assump-
tions underlying the models are too restrictive, includ-
ing the fact that the rumen is assumed to be a single
compartment in which materials are mixed instantane-
ously and completely.

The RUP flows were also sensitive to in situ A and
soluble protein fractions (Figure 2). They were nega-
tively linked to RUP supply because both are assumed
to be completely degraded in the rumen. High correla-
tions (r = 0.90) have been found for in situ A (soluble
in water) and soluble protein measurement (soluble in
borate phosphate buffer, fractions A and B1 in CNCPS)
because they measure essentially the same protein frac-
tion (Hoffman et al., 1999). For the low protein diet, the
RUP flows were also positively related to grass silage
NDICP (SRC = 0.38) and grass silage in situ C (SRC =
0.32; Figure 2). For the high protein diet, RUP flows
were sensitive to distillers ADICP (SRC = −0.18) and
soybean meal RUP intestinal digestibility (SRC = 0.18).

Absorbed Met and Lys Flows. Lysine and Met are
most frequently the first-limiting EAA for milk produc-
tion in lactating dairy cows fed corn-based rations
(Schwab et al., 1992), and the impact of variability in
protein fractionation on their flows is presented in Fig-
ures 3 and 4. For the low protein diet, the NRC-pre-
dicted flows of Lys and Met were more sensitive to feed
variability than were CNCPS predictions because the
main contributor was the MCP, which had greater vari-
ability for the NRC predictions (Figure 3, panels A and
C). The sensitivity in the low protein diet was distrib-
uted among several similarly ranked inputs (Figure 4,
panels A, B, E, and F). The NRC model was sensitive
to those inputs that increase the amount of RDP. Be-
cause of the regression approach used in the NRC model
to predict AA rumen outflows from feeds, those inputs
that increased the main source of MP, MCP for the low
protein diet, were positively related to AA flows. An
exception was the in situ C fraction for grass hay. The
in situ C fraction was negatively related with AA flows
(SRC = −0.22), but it was positively related with MP
supply (SRC = 0.32), which suggests a disconnection
between the AA and MP predictions. With the factorial
approach used in the CNCPS, AA predictions were sen-
sitive to inputs that increase RUP flow or RDP supply
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Figure 3. Box plots for the variability in absorbed lysine (A = low protein diet, B = silage diet) and methionine (C = low protein diet,
D = silage diet) predictions due to feed protein variation for the following simulations: 1) Cornell Net Carbohydrate and Protein System
(CNCPS), CP; 2) CNCPS, protein fractions; 3) CNCPS, CP and protein fractions; 4) NRC, CP; 5) NRC, protein fractions; and 6) NRC, CP
and protein fractions. The middle line in the box represents the median, and upper and lower areas of the center box indicate the 75th and
25th percentiles respectively (50% of the values are included; the interquartile range (H) is the difference between the 2 percentiles). The
whiskers on the lines are extreme values, and indicate values that fall within 1.5 H. For comparative purposes, H is expressed in Lys or
Met allowable milk (assuming an efficiency of utilization of 0.82 for Lys and 1 for Met). Predictions within panel with different variance
have different letters (P < 0.05).

when the diet was deficient in RDP, depending on the
AA profile of the feeds. For example, the B2 rate for
dried corn was positively related to Lys flows (SRC =
0.30) and negatively related to Met flows (SRC = −0.29).
The NRC predictions were less sensitive to feed varia-
tion with the high protein diet. In the high protein diet
(Figure 4, panels C, D, G, and H), soybean meal B2
rate and in situ B rate were highly ranked for their
influence on Lys flows and NRC Met flows. Otherwise,
several fractions in various feeds had similar effects on
Met and Lys flows. Overall, Met flows were particularly
sensitive to intestinal RUP digestibilities (Figure 4,
panels E, F, and G) because Met content of the feeds
varies considerably (NRC, 2001). The importance of pro-
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tein intestinal digestibility was highlighted by Noftsger
and St-Pierre (2003): when low digestible RUP (<0.60)
was replaced by high digestible RUP sources (>0.90),
DMI increased by 2 kg/d and milk responses as great
as 6 kg/d were reported. When a low protein diet (17%
CP) with a high digestible RUP source was supple-
mented with Met, DMI increased by less than 1 kg/d,
but milk responses greater than 4 kg/d were observed
(Noftsger and St-Pierre, 2003).

AA Supply. The EAA composition of feeds and its
impact on duodenal flows are presented in Tables 3
and 5, respectively. Despite the statistical differences
in their variance, with the exception of the Leu flows
and to some extent Thr, EAA flows had numerically
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Figure 4. Standard regression coefficients (SRC; P < 0.05) for the protein inputs ranked as the most influential in predicting absorbed
Lys and Met in the Cornell Net Carbohydrate and Protein System (CNCPS; panels A, C, E, and G) and the NRC (panels B, D, F, and H)
models for low and high protein diets. ADICP = acid detergent insoluble crude protein; NDICP = neutral detergent insoluble crude protein;
SOL PROT = soluble protein.

similar ranges in EAA-allowable milk, indicating simi-
lar sensitivity (Table 5) across the NRC (2001) and
CNCPS models and diets. The large responses of milk
predicted for some EAA (e.g., Leu) resulted from the
use of a constant efficiency of conversion of EAA to milk
protein assumed in the models. For the absorbed Lys
and Met predictions for both models, the impact of the
variation in Lys and Met content (Table 5) was greater
than the impact of protein fractions in the low protein
diet (Figure 3, panels A and C) and greater than the
impact of the CP variation (Figure 3, panels B and D)
in the high protein diet.

Sensitivity Analysis 2: Impact of Assumptions
Underlying the CNCPS Protein
Fractionation Scheme

Table 6 summarizes the results of the evaluations of
CNCPS protein digestion rates and ADICP digestibil-
ity. The MP supply was rather insensitive to changes in
the assumptions underlying the fractionation scheme.
The changes in predicted allowable milk were less than
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0.5 kg of milk/d. The Met and Lys flows were more
sensitive to changes in the assumptions.

Soluble Protein Degradation. Degradation rates
for the B1 fraction were reduced to reflect available
published data (Table 4) and integrated with liquid
rather than particle passage rate as assumed in the
CNCPS. The MP supply for both diets was insensitive
to these changes, because the B1 fraction represented
a small proportion of the total protein supply (<8% of
the total CP). Although the rates were lowered, they
were still much greater than the liquid passage rates
predicted by the CNCPS passage rate equations (9.8%/
h for the low protein diet and 11.8%/h for the high
protein diet), which resulted only in small changes in
extent of B1 degradation. In vivo studies have shown
similar effects. When Choi et al. (2002) supplemented
a grass silage-based diet with protein concentrates with
high and low in situ A fractions, soluble nonamino N
omasal flow was not significantly different among treat-
ments. However, these modifications resulted in an in-
crease in the Lys and Met flows, especially for the high
protein diet (Table 6), because Lys and Met flows were
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Table 5. Variation in absorbed essential amino acids (EAA) due to variability in EAA composition of the
feeds1,2

Low protein, CNCPS Low protein, NRC High protein, CNCPS High protein, NRC

Mean EAA allowed Mean EAA allowed Mean EAA allowed Mean EAA allowed
AA (g/d) (kg of milk/d) (g/d) (kg of milk/d) (g/d) (kg of milk/d) (g/d) (kg of milk/d)

Arg 106 1.0b 79 0.9c 155 1.2a 115 0.8d

His 44 0.8d 36 1.3c 65 1.6a 54 1.6b

Ile 91 1.3b 86 1.8a 126 1.3c 119 1.3d

Leu 133 2.7d 153 4.1c 200 8.2b 215 8.9a

Lys 122 1.7d 122 2.1c 160 2.3a 154 2.2b

Met 44 1.4c 33 2.0a 60 1.9b 44 1.2d

Phe 85 2.2b 84 1.9c 125 2.3a 125 1.6d

Thr 86 1.8b 86 3.1a 119 1.5d 117 1.7c

Val 97 1.7b 95 1.9a 136 1.9a 134 1.3c

a–dPredictions with different variance within row have different superscripts (P < 0.05).
1Difference between the 75th and 25th percentiles are expressed in EAA-allowable milk.
2CNCPS = Cornell Net Carbohydrate and Protein System; NRC = NRC (2001) model.

more sensitive to the variation in B1 fraction than total
RUP flows (Figure 2, panel C and Figure 4, panels C
and G). Assuming constant efficiencies, the increase in
Lys and Met were predicted to increase milk (Table 6).

Degradation Rates for Insoluble Protein. The col-
lapse of the fractions B2 and B3 had a greater effect
on the RUP flows for the low protein diet, because the
B3 fraction represents a greater proportion of the total
protein. The assigned degradation rates for the B frac-
tion were based on the number of pools and rates identi-
fied by the curve peeling technique described by Jac-
quez (1985), using data from in vitro incubations with
protease from Streptomyces griseus (Pichard, 1977).
The low rates for the protein B3 fraction are not always
supported by the data (Coblentz et al., 1999; Lagunes

Table 6. Impact of varying the assumptions underlying the Cornell Net Carbohydrate and Protein System
(CNCPS) protein fractionation scheme on model predictions1

Collapsed B2 and B3 Partial ID for C
Base Lower2 B1 rates fractions3 fraction4

kg of kg of kg of
Diet Mean (g/d) g/d milk/d g/d milk/d g/d milk/d

Low protein diet
MP from microbial CP 1,194 −4 0 −4 0 — —
MP from RUP 504 11 0.2 −22 −0.4 0 0
Absorbed Lys 111 1 0.4 2 0.8 1 0.4
Absorbed Met 38 1 1.2 1 1.2 1 1.2

High protein diet
MP from microbial CP 1,388 0 0 1 0 — —
MP from RUP 1,127 −2 0 −5 −0.1 0 0
Absorbed Lys 160 4 1.6 2 0.8 2 0.8
Absorbed Met 54 3 3.5 1 1.2 1 1.2

1The change in the model predictions (prediction with the modified assumption – base prediction) are
expressed as g/d and allowable milk.

2The degradation rates for the CNCPS B1 fraction were adjusted to available published data, and the
fraction was linked to the liquid passage rate.

3B2 and B3 fractions were collapsed into a single fraction, with a weighted average degradation rate.
4Partial intestinal digestibility coefficients (ID) for the C fraction of protein supplements were assigned.
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et al., 1999). Because the curve peeling approach causes
the errors to propagate from the slow component into
the faster components (Jacquez, 1985), protein B2 rates
may have also been inaccurately estimated. The parti-
tion of the insoluble protein into 2 distinguishable frac-
tions may not be necessary.

Partial Intestinal Digestibility of ADICP. As-
suming partial intestinal digestibility of the ADICP
fraction in protein supplements (distillers grains and
soybean meal) had a similar impact on Lys and Met
flows to the previously tested assumptions. These re-
sults are consistent with the observation that Lys and
Met flows were very sensitive to intestinal digestibili-
ties. Because no data were available on ruminal fraction
digestion rates of ADICP, the impact of partial ruminal
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digestion of ADICP could not be assessed. However,
Hussein et al. (1995) found that ADICP from roasted
soybean meals were partially digested in both the ru-
men and small intestine. Some of the components recov-
ered in the ADICP fraction may be Maillard products
from the early stages of the reaction that are available.

CONCLUSIONS

Sensitivity analysis can be used to prioritize protein
fraction analysis and to identify research priorities to
improve nutritional models for accurately predicting
MP and AA supply. Despite the differences in the pro-
tein schemes, both NRC and CNCPS predictions of MP
supply were similar in sensitivity to variation in protein
fractions and their degradation rates because of the use
of common principles, such as the competition between
digestion and passage to predict site of digestion and
the first-limiting nutrient to estimate microbial growth.
Metabolizable protein and AA flows were sensitive to
the degradation rates of the B protein fraction in the
NRC and the B2 fraction in the CNCPS and intestinal
digestibilities. Neither the degradation rates nor the
intestinal digestibilities are routinely measured. In ad-
dition, the low accuracy of in vitro and in situ degrada-
tion rates may cause an overprediction of the ranges in
RDP-RUP flows. Both laboratory methods and a better
approach to integrate protein degradation rates are nec-
essary. Although predicted flows for diets with supple-
mented protein were very sensitive to the feed inputs of
the supplements, decreasing the supplemented protein
resulted in an increase of the number of inputs that
needed to be measured. As the protein levels of the diets
decrease, more data are needed on protein fractionation
and their digestion rates for forages and energy supple-
ments, because forages and energy supplements repre-
sent the largest proportion of MP derived from the diet.
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