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Development of a Mechanistic Model to Represent the Dynamics
of Liquid Flow Out of the Rumen and to Predict the Rate
of Passage of Liquid in Dairy Cattle

S. Seo,*1 C. Lanzas,* L. O. Tedeschi,† and D. G. Fox*
*Department of Animal Science, Cornell University, Ithaca, NY 14853
†Department of Animal Science, Texas A&M University, College Station 77843

ABSTRACT

A mechanistic and dynamic model was developed to
represent the physiological aspects of liquid dynamics
in the rumen and to quantitatively predict liquid flow
out of the reticulorumen (RR). The model is composed
of 2 inflows (water consumption and salivary secretion),
one outflow (liquid flow through the reticulo-omasal
orifice (ROO), and one in-and-out flow (liquid flux
through the rumen wall). We assumed that liquid flow
through the ROO was coordinated with the primary
reticular contraction, which is characterized by its fre-
quency, duration, and amplitude during eating, rumi-
nating, and resting. A database was developed to pre-
dict each component of the model. A random coefficients
model was used with studies as a random variable to
identify significant variables. Parameters were esti-
mated using the same procedure only if a random study
effect was significant. The input variables for the model
were dry matter intake, body weight, dietary dry mat-
ter, concentrate content in the diet, time spent eating,
and time spent ruminating. Total water consumption
(kg/d) was estimated as 4.893 × dry matter intake (kg/
d), and 20% of the water consumed by drinking was
assumed to bypass the RR. The salivary secretion rate
was estimated to be 210 g/min during chewing. During
ruminating, however, the salivation rate was assumed
to be adjusted for the proportion of liquid in the rumen.
Resting salivation was exponentially related to dry
matter intake. Liquid efflux through the rumen wall
was assumed to be the mean value in the database (4.6
kg/h). The liquid outflow rate (kg/h) was assumed to
be a product of the frequency of the ROO opening, its
duration per opening, and the amount of liquid passed
per opening. Simulations of our model suggest that the
ROO may open longer for each contraction cycle than
had been previously reported (about 3 s) and that it is
affected by dry matter intake, body weight, and total
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digesta in the rumen. When compared with 28 observa-
tions in 7 experiments, the model accounted for 40,
70, and 90% of the variation, with root mean square
prediction errors of 9.25 kg, 1.84 kg/h, and 0.013 h−1

for liquid content in the rumen, liquid outflow rate,
and fractional rate of liquid passage, respectively. A
sensitivity analysis showed that dry matter intake, fol-
lowed by body weight and time spent eating, were the
most important input variables for predicting the dy-
namics of liquid flow from the rumen. We conclude that
this model can be used to understand the factors that
affect the dynamics of liquid flow out of the rumen and
to predict the fractional rate of liquid passage from the
RR in dairy cattle.
Key words: liquid passage rate, reticulo-omasal orifice
opening, ruminal liquid dynamics, modeling

INTRODUCTION

Liquid in the rumen is very important because it acts
as a lubricant and provides a medium for microbes to
access feed particles and buffer. Cattle maintain the
DM content in the rumen in a range of 14 to 18% in
the dorsal area and 6 to 9% in the ventral area, de-
pending on the type of diet and DMI (Yokoyama and
Johnson, 1988). A faster fractional passage rate of the
liquid (Kpl, h−1) was previously associated with more
efficient production of microbial protein per unit of DM
digested (Evans, 1981). Soluble nutrients move out of
the rumen with the liquid. Additionally, ruminal liquid
can serve as a vehicle for digesta transport out of the
rumen (Faichney et al., 1981; Poppi et al., 1981). De-
spite its importance, attempts to predict Kpl have not
been very successful. Current empirical equations that
predict Kpl have failed to explain more than 30% of the
variation in experimental observations (Seo et al.,
2006b).

The forestomach of ruminants is separated by a
sphincter, the reticulo-omasal orifice (ROO), into 2 pri-
mary structures, the reticulorumen (RR) and the oma-
sum (Sellers and Stevens, 1966). The ROO has been
shown to play a significant role in regulating the partic-
ulate and liquid digesta flow out of the rumen (Balch
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et al., 1951; Mathison et al., 1995), and it is controlled
by a complex and coordinated RR contraction. Reticu-
lorumen contractions, characterized by their frequency,
duration, and amplitude, are mostly influenced by the
chewing behavior of the animal (Mathison et al., 1995);
thus, chewing behavior may affect the dynamics of liq-
uid in the rumen. However, no attempt has been re-
ported to quantitatively relate the effect of RR contrac-
tions and chewing behavior to the dynamics of liquid
flow out of the rumen.

Argyle and Baldwin (1988) previously developed a
dynamic model to predict water kinetics in the rumen.
However, their model assumes a constant Kpl, 0.15 h−1,
which does not agree with the summary of experimental
data (Owens and Goetsch, 1988; Seo et al., 2006b). The
objectives of this study were 1) to develop a mechanistic
model that uses the accumulated research knowledge
about the mechanisms affecting liquid flow out of the
rumen through the ROO to predict Kpl, and 2) to de-
velop a mathematical model that can be incorporated
into mechanistic rumen models for predicting liquid
flow out of the rumen.

MATERIALS AND METHODS

General Procedure

A model was developed on the concept that an animal
controls the movement of liquid from the rumen based
on its need for nutrients and on the chemical and physi-
cal characteristics of the diet. The model we developed
assumes a single ruminal liquid compartment, as
shown by Warner and Stacy (1968). It consists of 2
inflows, one in-and-out flow, and one outflow for the
liquid phase in the rumen, which is the same as the
model of Argyle and Baldwin (1988). We expressed the
amount of liquid in kilograms, and the density of the
liquid was assumed to be 1.0 g/mL at 39°C, which
excludes DM.

Input Variables for the Model. Because the final
goal of this study was to develop a model that can be
applicable in the field, variables that could easily be
measured or estimated in the field were selected for
model input variables. The candidate variables were
DMI (kg/d), forage DMI (kg/d), concentrate DMI (kg/d),
BW (kg), DMI as a percentage of BW (% of BW), forage
DMI as a percentage of BW (% of BW), concentrate DMI
as a percentage of BW (% of BW), concentrate content
as a percentage of dietary DM (ConcpDM, % of DM),
forage content in the diet (% of DM), NDF content in
forage (% of DM), forage NDF concentration in the diet
(% of DM), ADF concentration in forage (% of DM),
and forage ADF concentration in the diet (% of DM).
Chewing behaviors, including daily time spent eating
(h), ruminating (h), and resting (h), were also included
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to evaluate their effects on liquid dynamics in the
rumen.

Parameterization of the Variables. To quantify
the relationship between explanatory and response
variables, a database was constructed for each compo-
nent of the model. A random coefficients model, using
the MIXED procedure of SAS (SAS Institute, 2002) with
studies or experiments as a random variable, was used
to parameterize the variables only if the study variable
was significant; otherwise, a multiple regression using
the GLM procedure of SAS (SAS Institute, 2002) with
all fixed effects was used. The detailed method was the
same as that described in Seo et al. (2006b). Because
the parameters were estimated based on the statistical
relationship using a multiple linear regression, their
units were defined by the relationships.

Model Development

Liquid Flow into the Rumen 1: Water Consump-
tion. There were 2 sources of water consumption: free
water consumption (not associated with feed) and water
content in the diet (associated with feed). An equation
to predict the total water consumption was developed
from a database consisting of 30 observations (Cam-
pling and Freer, 1966; Bines and Davey, 1970; Hartnell
and Satter, 1979; Johnson and Combs, 1991; Burgwald-
balstad et al., 1995; Grimaud and Doreau, 1995; Hristov
and Broderick, 1996). Many researchers have indicated
that water consumption is proportional to DMI (Langh-
ans et al., 1995; NRC, 2001). In our analysis, DMI was
the most significant variable for predicting total water
consumption; additional variables were not significant.
The mean value of 4.893 (±0.124) kg of water consump-
tion/kg of DMI was estimated (n = 30, R2 = 0.93), which
is similar to the 5.22 kg/kg reported by Baumont et al.
(1993). Some of the water consumed is passed directly
into the omasum through the esophageal groove. Wood-
ford et al. (1984) estimated that the proportion of drink-
ing water moving this way was 0.18 and 0.05 when
water was withheld for 4.5 and 9 h, respectively, after
feeding. Cafe and Poppi (1994) concluded that about of
free water consumed is bypassed directly to the oma-
sum when access to water is limited. For our model,
we adopted the value of 20% from Cafe and Poppi (1994)
for bypass water, which was applied only to free wa-
ter consumption.

Therefore, water inflow into the rumen via oral con-
sumption was the sum of 0.8 times the free water con-
sumption and water content in the diet, and can be
calculated as follows:

WIC = 0.8 × [4.893 × DMI − (100/DDM − 1) × DMI]

+ [(100/DDM − 1) × DMI].
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With some mathematical modifications,

WIC = [0.8 × 4.893 + 0.2 × (100/DDM − 1)] [1]

× DMI ,

where WIC is water inflow into the rumen via oral
consumption daily (kg/d), DDM is DM content in the
diet (%), and DMI is daily DMI (kg/d).

Liquid Flow into the Rumen 2: Salivary Secre-
tion. The total amount of saliva secreted each day de-
pends on the physical nature and moisture content of
feeds consumed (Church, 1988). Because secretory re-
sponses are associated with chewing movements, the
amount of saliva produced during eating, ruminating,
and resting differs (Bartley, 1976).

There are significant differences in the amount of
saliva secreted per kilogram of DM among feeds be-
cause of their physical and chemical characteristics
(Bailey, 1961; Meyer et al., 1964), but the rate of saliva-
tion during eating (g/min) is relatively constant
(Beauchemin, 1991). In our model, we assumed that
the time spent chewing represents stimulation of saliva
secretion by the physical and chemical characteristics
of the feedstuff and that the rate of salivary secretion
is constant during chewing time. Data were summa-
rized on the rate of salivary secretion during eating.
Mean (±SD) saliva secretion during eating was 210
(±43) g/min of chewing, based on 24 observation means
from 6 studies (Bailey, 1961; Cassida and Stokes, 1986;
Beauchemin, 1991; Maekawa et al., 2002a,b; Bowman
et al., 2003).

SSR_EAT = 12.60 (± 2.58), [2]

where SSR_EAT is the saliva secretion rate during
eating (kg/h).

Because of a lack of data, we assumed that the basal
rate of salivary secretion during ruminating was the
same as that during eating. This assumption has been
adopted previously (Maekawa et al., 2002b; Bowman
et al., 2003). Additionally, we assumed that the rate of
salivary secretion during ruminating was affected by
the proportion of DM in the ruminal digesta. Because
stimulation of tactile and stretch receptors increases
salivary secretion (Bailey and Balch, 1961a), the in-
creased liquid proportion in the ruminal digesta (LPR,
%) would decrease salivary secretion during rumi-
nating.

The analysis of 59 observations from 17 experiments
(Campling and Freer, 1966; Bines and Davey, 1970;
Hartnell and Satter, 1979; Cassida and Stokes, 1986;
Woodford and Murphy, 1988b; Johnson and Combs,
1991, 1992; Okine and Mathison, 1991; Okine et al.,
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1993; Kil and Froetschel, 1994; Burgwaldbalstad et
al., 1995; Grimaud and Doreau, 1995; Hristov and Brod-
erick, 1996; Maekawa et al., 2002b) gave a strong, sig-
nificant correlation between daily DMI and the daily
mean LPR. Thus, we assumed that the LPR is main-
tained according to DMI. A random study effect on the
intercept was significant:

MLPR = 91.688 (± 0.509) − 0.363 (± 0.030) [3]

× DMI (n = 59, R2 = 0.81, RMSPE = 1.11),

where MLPR is the mean liquid proportion in the rumi-
nal digesta daily (% of wet digesta).

During a dynamic simulation, the LPR at an instant
time point, calculated as the liquid content in the rumen
divided by the total ruminal digesta times 100, is com-
pared with the daily mean value estimated by using
equation [3]. The basal rate of salivary secretion during
ruminating is then adjusted for the difference in LPR
as shown in equation [4]. The coefficient for the effect
of the difference in LPR on salivary secretion during
ruminating was arbitrarily assumed to be 2.4 to balance
the sensitivity of the model to the value. The equation
used in this model to predict the rate of salivary secre-
tion during ruminating was as follows:

SSR_RUM = 12.60 + 2.4 × (MLPR − ILPR), [4]

where SSR_RUM is the saliva secretion rate during
rumination (kg/h), MLPR is the predicted daily mean
liquid proportion in the ruminal digesta (%), and ILPR
is the predicted instant liquid proportion in the ruminal
digesta at an actual time point during simulation (%).

Saliva secretion during resting is quite variable
among animals, among sampling times within an ani-
mal, and among intakes and types of diets (Bailey and
Balch, 1961b). A database was constructed to obtain
quantitative relationships with other variables for the
rate of salivary secretion during resting. This database
consisted of 39 observation means from 8 studies (Bai-
ley and Balch, 1961b; Meyer et al., 1964; Putnam et
al., 1965; Putnam et al., 1966; Cassida and Stokes,
1986; Maekawa et al., 2002a,b; Bowman et al., 2003).
The exponential equation with DMI was the best-fit
equation. With this equation, we assumed that basal
saliva secretion during resting, which is the y-intercept
of the equation, was 21.1 g/min and that the rate of
increase in salivation was proportional to the rate of
increase in DMI independent of any other variables:

SSR_RES = 1.266 (± 0.064) × EXP [0.091 [5]

(± 0.004) × DMI] (n = 30, R2 = 0.93, RMSPE = 0.80),
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where SSR_RES is the saliva secretion rate during rest-
ing (kg/h) and DMI is the DM intake (kg/d)

Liquid Fluxes Through the Rumen Wall. A data
set was constructed to quantify the amount of liquid
flux through the rumen wall (Cassida and Stokes, 1986;
Canale et al., 1988; Woodford and Murphy, 1988b;
Okine et al., 1989; Okine and Mathison, 1991; Kil and
Froetschel, 1994; Grimaud and Doreau, 1995; Hristov
and Broderick, 1996; Maekawa et al., 2002b). In the
data set, the liquid content in the rumen (LCR, kg)
was determined by emptying the rumen, and the rate of
liquid passage was estimated using markers, collected
through the ruminal fistula. Net water flux through the
rumen wall was calculated by subtracting the liquid
outflow from the total liquid inflow; thus, a positive
sign represents net liquid absorption through the ru-
men wall. The liquid outflow rate (kg/d) was computed
by multiplying LCR by Kpl (h−1) times 24. The total
liquid inflow is the sum of water intake, water from
feed, and salivation. If water consumption was not re-
ported, it was estimated by equation [1]. Free water
intake was corrected for bypass directly into the oma-
sum. In the data set, only Maekawa et al. (2002b) mea-
sured salivary secretion. Salivation was estimated us-
ing equations [2] and [5]. The rate of salivation during
ruminating was assumed to be the same as that during
eating. If chewing activities were not reported, the
mean chewing (13.17 h/d) and resting times (10.83 h/
d) determined for dairy cows were assumed (Beauche-
min, 1991).

Mean liquid flux out of the rumen through the rumen
wall was estimated to be 112 (±48) kg daily, and the
value calculated from the measured LCR and Kpl
showed that there was net water loss through the ru-
men wall daily. This is consistent with the finding that
overall daily osmotic pressure is lower in the rumen
than in plasma, and as a result, water is absorbed (Lo-
pez et al., 2003). There was no acceptable equation for
predicting liquid flux through the rumen wall with vari-
ables that are commonly measured or calculated in the
field. Therefore, we assumed that liquid is absorbed
through the rumen wall at a rate of 4.6 kg/h:

LFRW = 4.6 (± 2.00), [6]

where LFRW is liquid flux through the rumen wall
(kg/h).

Liquid Outflow. The ROO plays a significant role
in the regulation of particulate and liquid digesta flow
out of the rumen (Balch et al., 1951; Mathison et al.,
1995), and it is controlled by a complex and coordinated
RR contraction. The lack of digesta passage in animals
with a rumen in stasis (Balch and Campling, 1962)
indicated that RR contractions are necessary for the
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passage of digesta from the RR. The amount of water
flow per unit of time can be calculated as follows: liquid
outflow rate (kg/h) = ROO opening frequency (1/min) ×
duration of ROO opening per opening (s) × the amount
of liquid passed per ROO opening second (g/s) × 60 min/
h × 1/1,000 (kg/g).

The opening of the ROO and digesta transfer have
been assumed to occur in accordance with the primary
reticular contraction (PRC; Kelly et al., 1991;
Froetschel et al., 1997; Okine et al., 1998). A database
was constructed to quantify the RR motility and gener-
ate the best prediction models. A total of 74 observa-
tions in 19 experiments that measured the reticular
motility of cattle during eating, ruminating, and resting
separately were obtained from 12 scientific journal arti-
cles (Balch, 1952; Freer et al., 1962; Freer and Cam-
pling, 1965; Campling and Freer, 1966; Bines and Da-
vey, 1970; Dracy et al., 1972; Norgaard, 1989; Okine
and Mathison, 1991; Johnson and Combs, 1992; Miaron
and Christopherson, 1992; Okine et al., 1993; Okine et
al., 1994). Table 1 summarizes the descriptive statistics
in the database.

Frequency of Primary Reticular Contractions.
In normal situations, opening of the ROO is accompa-
nied by PRC (Balch et al., 1951; Stevens et al., 1960;
Kelly et al., 1991). Therefore, the frequency of ROO
opening was assumed to be the same as that of reticular
contractions. Empirical equations were developed to
predict the frequency of PRC during eating, ruminat-
ing, and resting. None of the candidate variables were
significant for estimating the frequency of PRC during
rumination; therefore, a mean value was used:

FRQ_EAT = 1.345 (± 0.045) + 0.035 (± 0.006)

× DMI/T_EAT + 0.003 (± 0.001) [7]

× ConcpDM (n = 60, R2 = 0.37, RMSPE = 0.16),

FRQ_RUM = 1.122 (± 0.036) [8]

(n = 72, RMSPE = 0.20), and

FRQ_RES = 1.494 (± 0.042) − 0.026 [9]

(± 0.004) × T_RES (n = 60, R2 = 0.56, RMSPE = 0.14),

where FRQ_EAT, FRQ_RUM, and FRQ_RES are the
frequency of PRC during eating, ruminating, and rest-
ing, respectively (1/min); DMI is DM intake (kg); T_EAT
is time spent eating (h/d); ConcpDM is the concentrate
content in the diet (% of DM); and T_RES is the time
spent resting (h/d).

Duration of ROO Opening. Only a few studies have
actually measured the duration of ROO opening. By
analyzing the data from Kelly et al. (1991) and
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Table 1. Descriptive statistics for the database used to develop equations to predict primary reticular
motility

Item No. Mean SD CV, %

Reticular motility
Frequency during eating, min−1 74 1.56 0.18 11.3
Duration during eating, s 21 5.48 0.69 12.6
Amplitude during eating, mmHg 21 9.78 3.41 34.8
Frequency during ruminating, min−1 72 1.12 0.20 17.6
Duration during ruminating, s 21 6.37 2.23 35.1
Amplitude during ruminating, mmHg 21 9.31 3.24 34.8
Frequency during resting, min−1 74 1.13 0.20 17.4
Duration during resting, s 21 5.94 0.50 8.4
Amplitude during resting, mmHg 21 11.84 3.62 30.6

Animal and diet
BW, kg 38 576.6 103.1 17.9
DMI, kg 73 10.7 5.6 52.6
Forage DMI, kg 73 8.1 3.8 46.6
Concentrate DMI, kg 73 2.6 4.1 160.0
NDF intake, kg 24 6.8 1.6 23.9
Concentrate content in the diet, g/kg of DM 73 173 283 163.6
Dietary DM, g/kg 40 806 147 18.3
Dietary CP, g/kg of DM 40 135 55 40.5
Dietary NDF, g/kg of DM 24 476 175 36.7
Dietary ADF, g/kg of DM 25 270 109 40.2
Dietary acid-detergent lignin, g/kg of DM 25 47 18 37.8
Forage NDF, g/kg of DM 12 638 114 17.9
Forage ADF, g/kg of DM 12 386 59 15.3
Forage acid-detergent lignin, g/kg of DM 12 61 17 27.3
Ruminal DM, kg 28 9.4 3.7 39.5
Ruminal liquid, kg 25 65.6 11.4 17.4
Total ruminal digesta, kg 28 68.0 26.3 38.7

Chewing activity
Time spent chewing, h 60 9.05 4.04 44.6
Time spent eating, h 60 3.36 1.83 54.5
Time spent ruminating, h 60 5.69 2.76 48.4
Time spent resting, h 60 14.94 4.04 27.1

Froetschel et al. (1997), we found that the ROO was
opened 0.52 (±0.09) of the total duration of the PRC.
Because this value was not significantly different from
0.50, we assumed that the opening of the ROO lasted
for half the duration of the biphasic PRC. Because of a
lack of information, no significant equations could be
derived for predicting the duration of PRC. The varia-
tion in the duration of biphasic PRC was relatively
small (Table 1), which means it may be precisely con-
trolled. Therefore, we decided to use the mean values
in the database. Using the mean values of 21 observa-
tions, we estimated the duration of the ROO opening
per PRC, which is half of duration of biphasic PRC,
as 2.74 (±0.35), 3.18 (±1.12), and 2.97 (±0.25) s during
eating, ruminating, and resting, respectively.

Liquid Flow per ROO Opening. The amount of
liquid flow per unit of time of ROO opening (g/s) can
be estimated as follows (detailed calculations are given
in the Appendix):

LFRO = 5.0 × √AMP [10]
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where LFRO is the liquid flow per second of ROO open-
ing (g/s) and AMP is the amplitude of the second phase
of the primary reticular contraction (mmHg).

As for the duration of PRC, we could not find signifi-
cant equations to predict the amplitude of the second
phase of PRC. Thus, we used the mean values in our
database containing 21 observations. The values were
9.780 (±3.407), 9.305 (±3.235), and 11.837 (±3.616)
mmHg during eating, ruminating, and resting, respec-
tively. Revision based on further research is needed to
predict the liquid flow per ROO opening more accu-
rately.

Adjustment Factor for Opening of the ROO. A
preliminary simulation with the data from a series of
papers by Taylor and Allen (2005a,b,c) showed that
predictions substantially underestimated the observa-
tions. Liquid velocity, ROO openings, or both should
have increased more than 3-fold to achieve the same
liquid outflow rate that was measured. Because the
amplitude of reticular contraction in the database was
measured with fistulated animals, it might be underes-
timated (Ruckebusch, 1988). Holteniu (1971) reported
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Table 2. Descriptive statistics for the database used for developing equations to adjust the opening of the
reticulo-omasal orifice (ROO)

Item N Mean SD Min. Max.

BW, kg 15 703 121 579 886
DMI, kg/d 15 18.2 5.7 11.0 25.5
Concentrates in the diet, g/kg of DM 15 325 242 0 600
Eating time, min 15 4.53 1.17 2.75 6.63
Ruminating time, min 15 7.60 2.10 3.40 10.53
Resting time, min 15 11.87 2.95 7.83 17.67
Ruminal DM, kg 15 11.3 1.7 8.9 15.0
Ruminal liquid, kg 15 66.8 8.7 54.0 80.7
Total ruminal digesta, kg 15 78.1 10.1 63.8 95.6
Proportion of ruminal liquid, g/kg 15 855 12 839 880
Liquid passage rate, 1/h 15 0.129 0.052 0.064 0.206
Liquid flow, kg/h 15 8.56 3.50 4.39 14.42
Estimated ROO opening adjustment factor 15 2.36 0.93 1.20 3.90

that fistulation lowered the amplitude of reticular con-
traction (8 and 25% reduction in the first and second
reticular contraction, respectively), whereas the fre-
quency and duration of contractions were not affected.
However, based on equation [10], the pressure gradient
needed to be about 100 mmHg to increase the liquid
velocity 3.16-fold. Although Dracy et al. (1972) reported
116, 78, and 149 mmHg for the peak amplitudes during
eating, ruminating, and resting, respectively, in intact
animals, underestimated amplitude should not be the
main reason for the difference 1) because fistulated
animals showed digestion and passage kinetics similar
to those of intact animals, and 2) because faster than 15
cm/s of liquid velocity caused by an increased pressure
gradient seemed to be unrealistic, compared with the
speed of reticular displacement during the first contrac-
tion, which was measured by ultrasound (Braun and
Gotz, 1994; 5.4 ± 1.32 cm/s). Because there are some
reports that the ROO opens more frequently than once
per PRC (Mathison et al., 1995), we assumed that the
ROO should be open longer per each PRC to increase
the liquid flow rate.

A database was used to develop a factor to adjust the
duration of the ROO opening per PRC for variation
in the input variables. In the databases, BW, DMI,
concentrate content in the diet, and chewing activities
were measured; the DM and liquid contents in the ru-
men were determined by emptying the rumen; and the
rate of liquid passage was estimated using markers,
collected through the ruminal fistula. The database in-
cluded a total of 15 observations in 4 experiments
(Woodford and Murphy, 1988b; Okine and Mathison,
1991; Fernandez et al., 2004; Taylor and Allen,
2005a,b,c). Table 2 shows descriptive statistics for the
database. The analysis indicated that, on average, the
ROO should have opened 2.36 (± 0.93) times more than
the mean values shown in equations [10], [11], and [12]
in the database. This result implied that the ROO opens
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more frequently than the PRC, longer than the duration
of the second phase of PRC, or both. The equation devel-
oped for predicting the adjustment factor for ROO open-
ing using the GLM procedure of SAS (SAS Institute,
2002) is as follows:

AF = −6.798 (± 1.370) + 0.210 (± 0.022) × DMI

+ 0.003 (± 0.001) × BW + 0.039 [11]

(± 0.007) × TCR (n = 15, R2 = 0.95, RMSPE = 0.27),

where AF is the adjustment factor for opening of the
ROO, DMI is DM intake (kg), BW is the animal’s full
BW (kg), and TCR is total contents in the rumen (kg).
Dry matter intake, BW, and total ruminal digesta were
significantly correlated with the adjustment factor for
opening of the ROO, resulting in more liquid flowing
out of the rumen through the ROO, with variation in
these inputs.

The final equation to predict LOFR through the ROO
is as follows:

LOFR = 0.3 × FRQ × DUR × AF × √AMP [12]

where LOFR is the liquid outflow rate (kg/h), FRQ is
the frequency of the primary reticular contraction (min−

1), DUR is the duration of the ROO opening at the
second phase of primary reticular contractions, AF is
the adjustment factor for opening of the ROO, and AMP
is the amplitude of the second phase of primary reticu-
lar contractions.

Model Simulation and Evaluation

The model was evaluated in 2 phases. In the first
phase, the liquid outflow component of the model was
evaluated. The revised liquid outflow component of the
model with equation [12] incorporated was evaluated,
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Table 3. Data used for the sensitivity analysis of predictions of the liquid outflow rate and fractional liquid
passage rate to variation in the frequency and amplitude of the primary reticular contraction and duration
of reticulo-omasal orifice opening per one cycle of primary reticular contraction

Item Activity Study 11 Study 2 Study 3 Study 4 Study 5

Frequency, min−1 Eating Min.2 1.52 1.47 1.59 1.32 1.45
Max. 1.86 1.79 1.94 1.62 1.77

Ruminating Min. 1.01
Max. 1.23

Resting Min. 1.08 1.08 0.93 0.96 1.11
Max. 1.32 1.32 1.13 1.17 1.36

Duration, s Eating Min. 7.18 7.16 3.54 2.50 5.35
Max. 8.77 8.75 4.33 3.05 6.54

Ruminating Min. 8.35 8.33 4.12 2.91 6.23
Max. 10.21 10.18 5.04 3.55 7.61

Resting Min. 7.78 7.76 3.84 2.71 5.80
Max. 9.51 9.48 4.69 3.31 7.09

Amplitude, mmHg Eating Min. 8.80
Max. 10.76

Ruminating Min. 8.41
Max. 10.27

Resting Min. 10.67
Max. 13.04

1Study 1, treatment 1 in Taylor and Allen (2000a,b,c); study 2, treatment 4 in Yang et al. (2001); study
3, treatment 3 in Woodford and Murphy (1988b); study 4, treatment 1 in Okine and Mathison (1991); study
5, treatment 4 in Maekawa et al. (2002b).

2The minimum and maximum values are −10% and +10%, respectively, of the mean from the mean
estimates for each simulation.

with a total of 17 observations in 4 experiments in an
independent database (Woodford and Murphy, 1988a;
Yang et al., 2001; Maekawa et al., 2002b; Voelker and
Allen, 2003a,b; ). Simulations with a time step of a
day were conducted with a spreadsheet version of the
model. Dry matter, liquid, and total digesta contents
in the rumen were included as input variables in the
simulation.

In the second phase, the final complete model was
simulated and evaluated. Dynamic simulations were
conducted with Vensim professional version 5.0a (Ven-
tana Systems Inc., Harvard, MA). The fractional pas-
sage rate of DM in the rumen was assumed to be DMI/
mean ruminal DM/24. The simulation assumed that
an animal consumed the diet in 12 equal meals. The
duration of each meal was estimated by dividing the
eating time by 12. The first feeding started at 1 h after
the simulation began. Water from the diet was con-
sumed during each meal and free water was drunk
right after the meal for 1.32 min (about 16 min/d; Dado
and Allen, 1995). Rumination (daily ruminating time
divided by 12) started 30 min after each of the 12 meals.
Integration was conducted by the Euler method with a
time step of 1 min, as suggested by Sauvant et al. (1996).
Simulations lasted 120 h to ensure that a stable oscilla-
tion was reached, and it was typically reached in 48 to
72 h. Simulation results from 96 to 120 h, with 0.1-h
intervals, were collected for evaluation. Predictions
from the model were compared with the observations

Journal of Dairy Science Vol. 90 No. 2, 2007

in the combined databases used to develop and evaluate
the liquid outflow component of the model. The data
from Fernandez et al. (2004) were omitted because they
lacked information on the DM content in the diet.

The coefficient of determination (R2) was used to as-
sess the precision of the model. The root mean square
prediction error (RMSPE), calculated by the square
root of the mean of the square of the observed minus
predicted value (Bibby and Toutenburg, 1977), was
used to determine the accuracy of the model.

Residual analyses were also conducted to assess the
biases of the model prediction, as proposed by St-Pierre
(2003). The predicted values were centered around the
mean predicted value before the residuals were re-
gressed on the predicted values.

Sensitivity Analysis

Sensitivity analyses were also conducted in 2 phases.
In the first phase, the sensitivity of model predictions
for liquid outflow rate and Kpl to the frequency, dura-
tion, and amplitude of contraction was analyzed with
a Monte Carlo simulation technique using @Risk ver-
sion 4.5 (Palisade Corporation, Newfield, NY). The dis-
tribution of the input variables was assumed to be uni-
form, with ±10% from the mean as the minimum and
maximum values. The simulations were conducted with
5 observations from 5 experiments in the database
[study 1, treatment 1 in Taylor and Allen (2005a,b,c);
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Table 4. Description and units of the abbreviations used in the final model equations developed to predict the liquid passage rate

Abbreviation Units Description

AF s/s Adjustment factor for opening of the reticulo-omasal orifice
AMP mmHg Amplitude of the second phase of primary reticular contraction
AMP_EAT mmHg Amplitude of the second phase of primary reticular contraction during eating
AMP_RES mmHg Amplitude of the second phase of primary reticular contraction during resting
AMP_RUM mmHg Amplitude of the second phase of primary reticular contraction during ruminating
ConcpDM % of DM Concentrate content as a percentage of dietary DM
DDM % DM content in the diet
DUR s Duration of opening of the reticlo-omasal orifice at the second phase of primary reticular contractions
DUR_EAT s Duration of opening of the reticlo-omasal orifice during eating
DUR_RES s Duration of opening of the reticlo-omasal orifice during resting
DUR_RUM s Duration of opening of the reticlo-omasal orifice during ruminating
FRQ min−1 Frequency of the primary reticular contraction
FRQ_EAT min−1 Frequency of the primary reticular contraction during eating
FRQ_RES min−1 Frequency of the primary reticular contraction during resting
FRQ_RUM min−1 Frequency of the primary reticular contraction during ruminating
ILPR % Instant liquid proportion in the ruminal content at a time point
Kpl h−1 Fractional rate of liquid passage out of the rumen
LCR kg Liquid content in the rumen
LFRO g/s Amount of liquid flow per reticlo-omasal orifice opening
LFRW kg/h Liquid flux through the ruminal wall
LOFR kg/h Liquid outflow rate from the rumen
LPR % Liquid proportion in the ruminal content
MLPR % Mean liquid proportion in the ruminal content daily
SSR_EAT kg/h Saliva secretion rate during eating
SSR_RES kg/h Saliva secretion rate during resting
SSR_RUM kg/h Saliva secretion rate during ruminating
T_EAT h/d Time spent eating daily
T_RES h/d Time spent resting daily
T_RUM h/d Time spent ruminating daily
TCR kg Total content in the rumen
WIC kg/h Water inflow into the rumen via oral consumption daily

study 2, treatment 4 in Yang et al. (2001); study 3,
treatment 3 in Woodford and Murphy (1988b); study
4, treatment 1 in Okine and Mathison (1991); study 5,
treatment 4 in Maekawa et al. (2002b)]. Table 3 shows
the variations in inputs for each simulation.

In the second phase, the sensitivity of the model pre-
dictions for liquid outflow rate and Kpl to input vari-
ables of the model was also conducted with a Monte
Carlo simulation technique using Vensim professional
version 5.0a (Ventana Systems Inc., Harvard, MA). The
data from the control treatment in Taylor and Allen
(2005a,b,c) was used to run the simulations. The input
variables included BW (kg), DMI (kg/d), concentrate
content in the diet (% of DM), DM content in the diet
(% of DM), eating time (h), and ruminating time (h).
The distribution of the input variables was assumed to
be uniform, with ±10% from the mean as the minimum
and maximum values. One variable at a time was sam-
pled from each distribution. Iterations of the simulation
were continued 200 times for a time frame of 0 to 48 h.

RESULTS

All variable names used in the equations for the final
model that predicted the liquid passage rate are de-
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scribed in Table 4, and the equations in the final model
are listed in Table 5.

Model Prediction of Ruminal Liquid Outflow
Through the ROO: The First Phase

Figure 1 shows regression plots of observed on pre-
dicted values for the liquid outflow rate and Kpl through
the ROO when we used the measured liquid content in
the rumen in the database. The R2 of predictions were
0.89 and 0.83, and the RMSPE were 0.80 and 0.012
for the liquid outflow rate and Kpl, respectively. When
residuals (observed minus predicted outflow) were re-
gressed on predicted liquid outflows that were centered
around the mean predicted value, the intercept (0.49 ±
0.15) was different from 0 (P < 0.05), whereas the slope
(−0.10 ± 0.08) was not significantly different from 0 (P
> 0.05). For the liquid passage rate, both the intercept
(0.007 ± 0.002) and the slope (−0.20 ± 0.09) were signifi-
cantly different from 0 (P < 0.05), which meant there
were mean and slope biases.

Despite these small biases in predicting the liquid
passage rate, the model predicted the liquid outflow
rate and fractional liquid passage rate accurately (A
and B, respectively, in Figure 1) when the amount of
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Table 5. Equations used in the model to predict liquid passage from the rumen1

Equation no. Variable Units Equation

[1] WIC kg/d [0.8 × 4.893 + 0.2 × (100/DDM − 1)] × DMI
unitless, kg/kg, unitless, %, unitless

[2] SSR_EAT kg/h 12.60
kg/h

[3] MLPR % 91.688 − 0.363 × DMI
%, %/(kg/d)

[4] SSR_RUM kg/h 12.60 + 40 × (MLPR − ILPR)
kg/h, kg/h

[5] SSR_RES kg/h 1.266 × e(0.091×DMI)

kg/h, 1/(kg/d)
[6] LFRW kg/h 4.6

kg/h
[7] FRQ_EAT min−1 1.345 + 0.035 × DMI/T_EAT + 0.003 × ConcpDM

1/min, (d�h)/(kg�min), 1/min
[8] FRQ_RUM min−1 1.122

1/min
[9] FRQ_RES min−1 1.494 − 0.026 × T_RES

1/min, 1/(min�h)
[10] LFRO g/s 5 × AMP1/2

g/(s�mmHg1/2)
[11] AF s/s −6.798 + 0.210 × DMI + 0.003 × BW + 0.039 × TCR

unitless, d/kg, 1/kg, 1/kg
[12] LOFR kg/h 0.3 × FRQ × DUR2 × AF × AMP1/2 3

unitless
[13] Kpl h−1 LOFR/LCR

1The units of parameters are shown in order under each equation.
2Values for DUR were 2.74, 3.18, and 2.97 s during eating, ruminating, and resting, respectively.
3Values for AMP were 9.780, 9.305, and 11.837 mmHg during eating, ruminating, and resting, respectively.

digesta content in the rumen was known. We concluded
that the ROO opening varied according to the amount
of rumen digesta content, DMI, and BW, which controls
the amount of liquid flow out of the rumen.

Model Prediction of Liquid Dynamics
in the Rumen: The Second Phase

With a total of 28 observations in 7 experiments,
the final, complete model explained 40, 70, and 90% of
variations in the liquid pool in the rumen and in the
liquid outflow rate and Kpl from the rumen, respec-
tively. Figure 2 shows the results of the regression of
observed values on predicted values for each prediction
following dynamic simulations with the final model.
The RMSPE of the predictions were 9.25, 1.84, and
0.013 for the liquid pool in the rumen and the liquid
outflow rate and liquid passage rate from the rumen,
respectively. The residual analysis (Figure 3) indicated
that none of the predictions had a slope bias, but the
mean bias was significant in all the cases.

Model Sensitivity Analysis

Table 6 shows the results from the sensitivity analy-
sis of predictions for liquid outflow to variations in char-
acteristics of the PRC. Although there were numerical
differences, variations from the mean were relatively
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constant in predicting the liquid outflow rate and Kpl
from the rumen. The average coefficient of variation
was 5.6%, with a range between 5.17 and 6.51%. Vari-
ability increased when the resting time was relatively
longer. Results from the sensitivity analysis were simi-
lar in all the simulations. The duration and frequency
of ROO opening during resting were the most important
variables in predicting both the liquid outflow rate and
Kpl of the liquid. In all the simulations except for study
5 (treatment 4 in Maekawa et al., 2002b), the frequency,
duration, and amplitude during eating and amplitude
during ruminating were the least important variables.
Table 7 shows the relative ranking according to the
standardized regression coefficient of inputs from the
simulation with data from the control treatment of Tay-
lor and Allen (2005a,b,c). This seemed to be due to the
relative proportion of the activities. Because the resting
time is normally longer than the eating and ruminating
times, predictions of the model may be the most sensi-
tive to contraction characteristics during the resting
time. The sensitivity analysis clearly showed that the
opening of the ROO in terms of frequency and duration
was more important in controlling liquid outflow from
the rumen than were pressure gradient and even veloc-
ity of the fluid, assuming that the area of ROO opening
does not vary much in mature animals.

The sensitivity analysis of the complete model to in-
put variables showed that the model predictions for the
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Figure 1. Plots of regressions observed on (A) the predicted liquid
outflow rate (kg/h) and (B) the fractional liquid passage rate (h−1)
through the reticulo-omasal orifice. Predicted values were output
from the liquid outflow component of the model when the amount of
digesta content in the rumen was known. The solid and dotted lines
represent y = x and the best-fit linear regression, respectively.

liquid outflow rate and Kpl were the most sensitive to
DMI, followed by BW, and were not sensitive to concen-
trate content in the diet, dietary DM content, and rumi-
nating time. Eating time was also important for pre-
dicting the liquid outflow rate; however, it had less
influence on predicting the Kpl. This might be due to
compensation for the LOFL and liquid pool size in the
rumen by increasing the water inflow into the rumen.
This implies that quantifying chewing behavior is criti-
cal for understanding the liquid dynamics in the rumen,
especially when we assume non-steady-state conditions
in the digestive system of ruminants.

DISCUSSION

The accuracy of predicting Kpl by published models
was low because of its high variability and lack of strong
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Figure 2. Plots of regressions observed on (A) the predicted daily
mean liquid content in the rumen (kg), (B) the liquid outflow rate
(kg/h), and (C) the fractional liquid passage rate (h−1) after dynamic
simulations with the final whole model. The solid and dotted lines
represent y = x and the best-fit linear regression, respectively.

correlation with other variables. Seo et al. (2006b) de-
veloped an empirical equation for predicting Kpl, with
a function of forage DMI as a proportion of BW and
concentrate DMI as a proportion of BW and forage DMI.
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Figure 3. Plots of observed minus predicted vs. model-predicted
for (A) the liquid content in the rumen (kg), (B) the liquid outflow
rate (kg/h), and (C) the fractional passage rate (h−1) after dynamic
simulations with the final whole model. The regression equations
(dotted line) are presented. The predicted values were centered
around the mean predicted values before the residuals (Y) were re-
gressed on the predicted values (X). The numbers in parentheses are
standard errors of the parameter estimates. In all 3 predictions, the
slope (linear bias) was not significantly different from 0 (P > 0.05),
but the Y-intercept (mean bias) was significantly different from 0 (P
< 0.05).
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This equation explained only 25% of variations in an
independent database, even though it was the best
among the published equations tested (Seo et al.,
2006b). This may be not only because they were unable
to account for so many other factors, but also because
Kpl is not linear. The concept of Kpl implies that liquid
outflow is proportional to the amount of liquid in the
rumen, and thus varies linearly with the LOFR while
varying inversely with the amount of liquid in the
rumen:

Kpl =
LOFR
LCR [13]

where Kpl is the fractional liquid passage rate (h−1),
LOFR is the liquid outflow rate (kg/h), and LCR is the
liquid content in the rumen (kg).

Many factors may influence the liquid outflow rate
and liquid content in the rumen at the same time.
Therefore, we developed a model to predict liquid out-
flow rate and liquid content in the rumen separately.
This model assumed there were 2 inflows, one in-and-
out flow, and one outflow in the ruminal liquid system.
The liquid content in the rumen was determined by the
integration of dynamic flows of liquid.

Although outflow of digesta through the ROO has
been known for decades to be closely related to the
frequency and duration of opening of the ROO, which in
turn is associated with primary reticular contractions
(Balch et al., 1951), there was no attempt to incorporate
these physiological findings into a model quantitatively
to predict liquid flow out of the rumen. Sauvant et al.
(1996) calculated the particle outflow rate as a function
of the frequency of reticular contraction and outflow
per contraction. In their model, reticular contraction
varied only during eating time, and outflow per contrac-
tion was determined by the rumen volume. In devel-
oping our model, we attempted to identify and quantify
the most critical physiological events. This resulted in
the finding that the ROO should be opened more fre-
quently than the PRC, longer than half the duration of
the biphasic PRC, or both. The model assumption of a
constant value for the cross-sectional area of the ROO
might not be realistic, and may therefore change the
result. However, there is little evidence to support a
larger cross-sectional area of the ROO. The value on
which our model was based was measured in adult
cattle when the ROO was fully dilated (McBride et al.,
1983). Furthermore, the ROO does not maintain its
maximal opening during opening, and physical enlarge-
ment of the area by feed particles does not seem to be
realistic, considering the DM content of the effluent
digesta from the RR (4 to 6%; Harmeyer and Michalow-
ski, 1991). Therefore, the finding of a longer opening of



NUTRITION, FEEDING, AND CALVES 851

Table 6. Sensitivity of model predictions for liquid outflow through the reticulo-omasal orifice (ROO) to
variation in the frequency and amplitude of the primary reticular contraction and duration of ROO opening
per one cycle of primary reticular contraction1

Item Study 12 Study 2 Study 3 Study 4 Study 5

Liquid flow rate, kg/h
Mean3 10.73 10.69 4.81 3.41 7.99
SD 0.56 0.55 0.31 0.20 0.41
Minimum 9.08 9.09 4.09 2.97 6.80
Maximum 12.44 12.37 5.58 4.05 9.26

Liquid passage rate, h−1

Mean 0.166 0.130 0.089 0.044 0.108
SD 0.009 0.007 0.006 0.003 0.006
Minimum 0.140 0.110 0.076 0.038 0.092
Maximum 0.192 0.150 0.103 0.052 0.125

1A uniform distribution, with ±10% of the mean from the mean estimates for each simulation, was assumed
for the inputs, as shown in Table 3.

2Study 1, treatment 1 in Taylor and Allen (2005a,b,c); study 2, treatment 4 in Yang et al. (2001); study
3, treatment 3 in Woodford and Murphy (1988b); study 4, treatment 1 in Okine and Mathison (1991); study
5, treatment 4 in Maekawa et al. (2002b).

3Statistics of the predicted values from the Monte Carlo simulations until less than 1% of convergence
was achieved.

the ROO within a cycle of PRC, rather than a larger
opening, is still valid. Nonetheless, it is possible that
the adjustment factor embeds the effect of variations
in the cross-sectional area of the ROO.

Several studies support this finding. Balch et al.
(1951) reported that the ROO was normally loosely
opened so that it was opened about 60 to 70% of a
complete contraction cycle. Bueno (1975; see also Des-
wysen, 1987) observed that the ROO opened for 10 to
12 s, starting on the beginning of the second phase of
PRC, and closed progressively over a total period of 15
to 25 s. The findings of this simulation and the fact that
permanent opening of the ROO only doubled the flow
rate (Bueno, 1975) did not support the hypothesis of
some researchers (McBride et al., 1983; Harmeyer and
Michalowski, 1991; Kelly et al., 1991; Froetschel et al.,
1997) that the ROO opens for a short period of time
(about 3 s) during or after the second phasic primary
reticular contractions, or both. Deswysen and Ellis
(1988) assumed that the number of large openings and

Table 7. Relative ranking of the importance of inputs related to
reticular contractions in predicting the liquid flow rate (kg/h) and
liquid passage rate (%/h) based on the standardized regression coeffi-
cients (SRC)

Rank Input SRC

1 Frequency during resting 0.52
2 Duration during resting 0.52
3 Duration during ruminating 0.34
4 Frequency during ruminating 0.34
5 Amplitude during resting 0.26
6 Duration during eating 0.24
7 Frequency during eating 0.23
8 Amplitude during ruminating 0.17
9 Amplitude during eating 0.12
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fluxes of digesta through the ROO is not equal to the
number of primary reticular contractions but to the
number of strong craniodorsal ruminal contractions.

Because this analysis indicated that the ROO should
have opened 2.36 (±0.93) times more than the mean
values, on average, we hypothesized that the movement
of major digesta through the ROO occurs at least twice
within one cycle of primary reticular contraction, and
that one is associated with the second phase of PRC and
the other with a negative pressure gradient between the
omasal canal and the RR. Pressure in the omasal canal
had an oscillating pattern (Ruckebusch, 1988). If lower
pressure in the omasal canal is coordinated with the
secondary, or sequence B, contraction, then we may
expect a large movement of digesta through the ROO.
The secondary contractions involve only the rumen and
are associated with the eructation of gas (Constable et
al., 1990). Because we lack evidence to support this
hypothesis, further research is needed in this area.

This model assumes that DMI of the animal is known
or that good estimates are available for specific produc-
tion situations. Control of the DMI is a complex mecha-
nism (Forbes, 2003). For high-producing dairy cows and
growing cattle fed well-balanced diets, the demand for
nutrients to meet the genetic potential for milk produc-
tion is the primary factor that drives DMI (NRC, 2001).
However, in most production situations worldwide, ru-
minants are fed a wide variety of concentrates and for-
ages, based on the most economical production system.
Under these conditions, the nutrient needs (e.g., size
of the animal, level of production, plane of nutrition or
body composition of the animal, and physiological sta-
tus of the animal) also drive intake, but energy density
of the diet, physical limits of the rumen, adequacy in
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the composition of nutrients in the diet, palatability of
the diet, environmental conditions, and psychological
factors affect the DMI as well. We assumed that the
average daily intake in specific production situations
reflects these effects.

The model predicted the liquid outflow rate and Kpl
in an independent database remarkably well, irrespec-
tive of whether the amount of liquid was known (Figure
1A and 1B) or not (Figure 2B and 2C), which suggests
that the biological basis of the model and its prediction
of the ROO opening were reasonable. Comparison with
a model assuming a constant Kpl may also support this
prediction. When the final model was simulated using
a constant Kpl of 0.15 h−1 and liquid outflow rate as
the product of liquid content in the rumen and Kpl, as
suggested by Argyle and Baldwin (1988), R2 values were
decreased from 0.40 to 0.13 and from 0.70 to 0.46, and
RMSPE values were increased from 9.25 to 13.15 and
from 1.84 to 2.07 for predictions of liquid content in
the rumen and liquid outflow rate, respectively, with
the same 28 observations in the evaluation data set.

However, the prediction of liquid content in the ru-
men was relatively poor because the model explained
only 40% of the variation, compared with 70% of the
liquid outflow rate and 90% of the fractional liquid pas-
sage rate. The residual analysis for model prediction of
ruminal liquid outflow through the ROO (the first
phase) showed a small but significant mean bias in
prediction for both liquid outflow rate and Kpl and a
negative slope bias in Kpl. However, when a single
observation [treatment 1 in Voelker and Allen
(2003a,b,c)] was omitted, the slope bias was not signifi-
cant in predicting Kpl.

In addition, the final, complete model also showed
significant and positive mean biases, which means it
underpredicted the observations. These may be due to
a large variation in liquid flux through the rumen wall.
Among the estimates from data on a total of 34 experi-
ments, the coefficient of variation of liquid flux through
the rumen wall was 43% (4.6 ± 2.0 kg/h). This mean
and standard deviation indicate that the model was
quite sensitive to variation in liquid flux through the
rumen wall. About ±4 kg of variation in the mean liquid
pool size occurred within a 50% confidence interval.
However, Kpl was not affected much by variation in
liquid flux through the rumen wall. This may be because
of the associated variation between liquid content in
the rumen and liquid outflow rate, which could explain
why Kpl was well predicted, even though we did not
account for the variation in ruminal flux in the model.
Liquid flux through the rumen wall is known to depend
on the osmolality in the rumen, and there were close
relationships between osmolality and the VFA concen-
tration in the rumen (Lopez et al., 1994; Zhao et al.,
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1995; Lopez et al., 2003). Argyle and Baldwin (1988)
predicted ruminal flux with osmotic pressure in the
rumen fluid, which was a function of soluble carbohy-
drates, ammonia, VFA, lactate, AA, and soluble ash.
Further research is needed in predicting the production
of end-products from ruminal digestion as well as the
dynamics of ruminal particulate matter to predict liq-
uid dynamics in the rumen more accurately.

The sensitivity analysis showed that DMI was the
most important variable for accurately predicting liquid
dynamics in the rumen, which is consistent with Seo
et al. (2006a,b). This may be because DMI affects the
inflow of water (equations [1], [4], and [5]), liquid con-
tent in the rumen (equation [3]), and outflow of water
in terms of the opening of the ROO (equations [7] and
[11]). Although DMI apparently determines the total
mass balance of liquid in the rumen, it should be noted
that the animal controls the outflow of liquid via regula-
tion of the opening of the ROO. In the current model,
the variables that regulate the opening of the ROO were
parameterized by empirical relationships. Further re-
search on the quantitative representation of the regula-
tion mechanism of opening of the ROO based on cause-
and-effect relationships may be needed, especially
when an animal’s voluntary intake, which is controlled
by rumen fill, is being modeled (Allen, 1996).

Interestingly, the liquid outflow rate was sensitive
to the time spent eating, whereas Kpl was not. The same
explanation can be given for this as for the sensitivity of
the model to liquid flux through the rumen wall. The
lack of sensitivity of Kpl to variations in input variables
makes it desirable for practical use in predicting daily
digestion and passage in the rumen. Although the abso-
lute amount of liquid pool in the rumen and the liquid
outflow rate fluctuate considerably within a day, the
relative proportion is less affected by variations in the
input variables.

Because of the lack of biological information and our
effort to keep the model simple as long as it described
the process adequately at the level of our understand-
ing, the model assumed a simple structure and used
empirical relationships to parameterize some of the
variables. Thus, it may be merely a simple representa-
tion of the system. However, the model developed in this
study demonstrates the potential for using mechanistic
and dynamic modeling to improve our understanding
of the physiological processes in animal nutrition. More-
over, its accurate predictions suggest that a robust
mechanistic model using inputs available in the field,
can predict the escape of nutrients from the rumen more
accurately, which is important in precision feeding to
reduce the nutrients in manure. More research on the
underlying physiological mechanism of liquid dynamics
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in and out of the rumen will improve the comprehensi-
bility and predictability of the model.

Because only data from dairy cattle were used to
parameterize this model, one should be cautious when
applying it to other classes of cattle. However, the struc-
ture of the model can be applied to all classes of cattle,
with modification of coefficients (reparameterization)
as needed based on the data analysis.

REFERENCES

Allen, M. S. 1996. Physical constraints on voluntary intake of forages
by ruminants. J. Anim. Sci. 74:3063–3075.

Argyle, J. L., and R. L. Baldwin. 1988. Modeling of rumen water
kinetics and effects of rumen ph changes. J. Dairy Sci.
71:1178–1188.

Bailey, C. B. 1961. Saliva secretion and its relation to feeding in
cattle. 3. Rate of secretion of mixed saliva in cow during eating,
with an estimate of magnitude of total daily secretion of mixed
saliva. Br. J. Nutr. 15:443–451.

Bailey, C. B., and C. C. Balch. 1961a. Saliva secretion and its relation
to feeding in cattle. 1. Composition and rate of secretion of parotid
saliva in a small steer. Br. J. Nutr. 15:371–382.

Bailey, C. B., and C. C. Balch. 1961b. Saliva secretion and its relation
to feeding in cattle. 2. Composition and rate of secretion of mixed
saliva in cow during rest. Br. J. Nutr. 15:383–402.

Balch, C. C. 1952. Factors affecting the utilization of food by dairy
cows. 6. The rate of contraction of the reticulum. Br. J. Nutr.
6:366–375.

Balch, C. C., and R. C. Campling. 1962. Regulation of voluntary food
intake in ruminants. Nutr. Abstr. Rev. 32:669–686.

Balch, C. C., A. Kelly, and G. Heim. 1951. Factors affecting the
utilization of food by dairy cows. 4. The action of the reticulo-
omasal orifice. Br. J. Nutr. 5:207–216.

Bartley, E. E. 1976. Bovine saliva: Production and function. Pages
61–81 in Buffers in Ruminant Physiology and Metabolism. M.
S. Weinberg and L. S. Sheffner, ed. Church and Dwight, New
York, NY.

Baumont, R., M. Jailer, and J. Jamot. 1993. Estimation of the dynam-
ics of rumen water during the meal in sheep fed lucerne hay ad
libitum. Ann. Zootech. 42(2):157. (Abstr.)

Beauchemin, K. A. 1991. Ingestion and mastication of feed by dairy
cattle. Pages 439–463 in The Veterinary Clinics of North America:
Food Animal Practice. Vol. 7. W. B. Saunders, Philadelphia, PA.

Bibby, J., and H. Toutenburg. 1977. Prediction and improved estima-
tion in linear models. John Wiley and Sons, New York, NY.

Bines, J. A., and A. W. F. Davey. 1970. Voluntary intake, digestion,
rate of passage, amount of material in alimentary tract and behav-
iour in cows receiving complete diets containing straw and concen-
trates in different proportions. Br. J. Nutr. 24:1013–1028.

Bowman, G. R., K. A. Beauchemin, and J. A. Shelford. 2003. Fibrolytic
enzymes and parity effects on feeding behavior, salivation, and
ruminal pH of lactating dairy cows. J. Dairy Sci. 86:565–575.

Braun, U., and M. Gotz. 1994. Ultrasonography of the reticulum in
cows. Am. J. Vet. Res. 55:325–332.

Bueno, L. 1975. Motor and digestive functions of the omasum (in
French, with English abstract). PhD Dissertation, Universite
Paul Sabatier de Toulouse, Toulouse, France.

Burgwaldbalstad, L. A., J. S. Caton, V. I. Burke, and K. C. Olson.
1995. Influence of forage level and naloxone injection of feed-
intake, digestion, and plasma-hormone and metabolite concentra-
tions in dairy heifers. J. Anim. Sci. 73:2677–2686.

Cafe, L. M., and D. P. Poppi. 1994. The fate and behavior of imbibed
water in the rumen of cattle. J. Agric. Sci. 122:139–144.

Campling, R. C., and M. Freer. 1966. Factors affecting voluntary
intake of food by cows. 8. Experiments with ground pelleted rough-
ages. Br. J. Nutr. 20:229–244.

Canale, C. J., S. M. Abrams, L. D. Muller, W. L. Kjelgaard, P. M.
Anderson, and H. W. Harpster. 1988. Alkali-treated forage for

Journal of Dairy Science Vol. 90 No. 2, 2007

early lactation dairy-cows—Effect on lactation performance and
nutrient digestibility. J. Dairy Sci. 71:2166–2174.

Cassida, K. A., and M. R. Stokes. 1986. Eating and resting salivation
in early lactation dairy cows. J. Dairy Sci. 69:1282–1292.

Church, D. C. 1988. Salivary function and production. Pages 117–124
in The Ruminant Animal: Digestive Physiology and Nutrition. D.
C. Church, ed. Prentice-Hall, Englewood Cliffs, NJ.

Constable, P. D., G. F. Hoffsis, and D. M. Rings. 1990. The reticuloru-
men: Normal and abnormal motor function. Part 2. Secondary
contraction cycles, rumination, and esophageal groove closure.
Compend. Contin. Educ. Pract. Vet. 12:1169–1174.

Dado, R. G., and M. S. Allen. 1995. Intake limitations, feeding-behav-
ior, and rumen function of cows challenged with rumen fill from
dietary fiber or inert bulk. J. Dairy Sci. 78:118–133.

Denn, M. M. 1980. Process Fluid Mechanics. Prentice Hall, Upper
Saddle River, NJ.

Deswysen, A. G., and W. C. Ellis. 1988. Site and extent of neutral
detergent fiber digestion, efficiency of ruminal digesta flux and
fecal output as related to variations in voluntary intake and chew-
ing behavior in heifers. J. Anim. Sci. 66:2678–2686.

Dracy, A. E., D. E. Sander, and A. J. Kurtenba. 1972. Pressure pat-
terns in reticulum of cow. J. Dairy Sci. 55:1156–1159.

Evans, E. 1981. An evaluation of the relationships between dietary
parameters and rumen liquid turnover rate. Can. J. Anim. Sci.
61:91–96.

Faichney, G. J., D. E. Beever, and J. L. Black. 1981. Prediction of
the fractional rate of outflow of water from the rumen of sheep.
Agr. Syst. 6:261–268.

Fernandez, I., C. Martin, M. Champion, and B. Michalet-Doreau.
2004. Effect of corn hybrid and chop length of whole-plant corn
silage on digestion and intake by dairy cows. J. Dairy Sci.
87:1298–1309.

Forbes, J. M. 2003. The multifactorial nature of food intake control.
J. Anim. Sci. 81:E139–E144.

Freer, M., C. C. Balch, and R. C. Campling. 1962. Factors affecting
voluntary intake of food by cows. 4. Behaviour and reticular motil-
ity of cows receiving diets of hay, oat straw and oat straw with
urea. Br. J. Nutr. 16:279–295.

Freer, M., and R. C. Campling. 1965. Factors affecting voluntary
intake of food by cows. 7. Behaviour and reticular motility of cows
given diets of hay dried grass concentrates and ground pelleted
hay. Br. J. Nutr. 19:195–207.

Froetschel, M. A., J. K. Courchaine, S. W. Nichols, H. E. Amos, and
A. C. Murry, Jr. 1997. Opioid-mediated responses to dietary pro-
tein on reticular motility and plasma insulin. J. Dairy Sci.
80:511–518.

Grimaud, P., and M. Doreau. 1995. Effect of extended underfeeding
on digestion and nitrogen-balance in nonlactating cows. J. Anim.
Sci. 73:211–219.

Harmeyer, J., and T. Michalowski. 1991. A technique for the collection
of reticular effluent of sheep. J. Vet. Med. A. 38:107–114.

Hartnell, G. F., and L. D. Satter. 1979. Determination of rumen fill,
retention time and ruminal turnover rates of ingesta at different
stages of lactation in dairy-cows. J. Anim. Sci. 48:381–392.

Holteniu, P., S. O. Jacobsso, and G. Jonson. 1971. Recording of reticu-
lar motility in cattle with experimental and spontaneous trau-
matic reticuloperitonitis. Acta Vet. Scand. 12:325–334.

Hooper, A. P., and J. G. Welch. 1985. Change of functional specific-
gravity of forages in various solutions. J. Dairy Sci. 68:1652–1658.

Hristov, A. N., and G. A. Broderick. 1996. Synthesis of microbial
protein in ruminally cannulated cows fed alfalfa silage, alfalfa
hay, or corn silage. J. Dairy Sci. 79:1627–1637.

Johnson, T. R., and D. K. Combs. 1991. Effects of prepartum diet,
inert rumen bulk, and dietary polyethylene-glycol on dry-matter
intake of lactating dairy-cows. J. Dairy Sci. 74:933–944.

Johnson, T. R., and D. K. Combs. 1992. Effects of inert rumen bulk
on dry matter intake in early and midlactation cows fed diets
differing in forage content. J. Dairy Sci. 75:508–519.

Kelly, J. M., M. A. Froetschel, W. J. J. Crom, W. M. J. Hagler, and
B. W. McBride. 1991. Effects of a parasympathomimetic agent
slaframine on reticulo-omasal orifice function. Can. J. Anim. Sci.
71:321–326.



SEO ET AL.854

Kil, S. J., and M. A. Froetschel. 1994. Involvement of opioid peptides
from casein on reticular motility and digesta passage in steers.
J. Dairy Sci. 77:111–123.

Langhans, W., R. Rossi, and E. Scharrer. 1995. Relationship between
feed and water intake in ruminants. Pages 199–216 in Ruminant
Physiology: Digestion, Metabolism, Growth, and Reproduction:
Proc. Eighth Int. Symp. Ruminant Physiol. W. V. Engelhardt, S.
Leonhard-Marek, G. Breves, and D. Giesecke, ed. Enke, Stutt-
gart, Germany.

Lopez, S., F. D. D. Hovell, J. Dijkstra, and J. France. 2003. Effects
of volatile fatty acid supply on their absorption and on water
kinetics in the rumen of sheep sustained by intragastric infusion.
J. Anim. Sci. 81:2609–2616.

Lopez, Y. S., F. D. D. Hovell, and N. A. Macleod. 1994. Osmotic
pressure, water kinetics and volatile fatty acid absorption in the
rumen of sheep sustained by intragastric infusions. Br. J. Nutr.
71:153–168.

Maekawa, M., K. A. Beauchemin, and D. A. Christensen. 2002a.
Chewing activity, saliva production, and ruminal pH of primipa-
rous and multiparous lactating dairy cows. J. Dairy Sci.
85:1176–1182.

Maekawa, M., K. A. Beauchemin, and D. A. Christensen. 2002b.
Effect of concentrate level and feeding management on chewing
activities, saliva production, and ruminal pH of lactating dairy
cows. J. Dairy Sci. 85:1165–1175.

Mathison, G. W., E. K. Okine, A. S. Vaage, M. Kaske, and L. P.
Milligan. 1995. Current understanding of the contribution of the
propulsive activities in the forestomach to the flow of digesta.
Pages 23–41 in Ruminant Physiology: Digestion, Metabolism,
Growth, and Reproduction: Proc. Eighth Int. Symp. Ruminant
Physiol. W. V. Engelhardt, S. Leonhard-Marek, G. Breves, and
D. Giesecke, ed. Enke, Stuttgart, Germany.

McBride, B. W., L. P. Milligan, and B. V. Turner. 1983. Endoscopic
observation of the reticulo-omasal orifice of cattle. J. Agric. Sci.
101:749–750.

Meyer, R. M., E. E. Bartley, J. L. Morrill, and W. E. Stewart. 1964.
Salivation in cattle. I. Feed and animal factors affecting salivation
and its relation to bloat. J. Dairy Sci. 47:1339–1345.

Miaron, J. O. O., and R. J. Christopherson. 1992. Effect of prolonged
thermal exposure on heat-production, reticular motility, rumen-
fluid and rumen-particulate passage-rate constants, and appar-
ent digestibility in steers. Can. J. Anim. Sci. 72:809–819.

Norgaard, P. 1989. The influence of physical form of ration on chewing
activity and rumen motility in lactating cows. Acta Agric. Scand.
39:187–202.

NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Na-
tional Academy Press, Washington, DC.

Okine, E. K., G. R. Khorasani, and J. J. Kennelly. 1994. Effects of
cereal grain silages versus alfalfa silage on chewing activity and
reticular motility in early lactation cows. J. Dairy Sci.
77:1315–1325.

Okine, E. K., and G. W. Mathison. 1991. Reticular contraction attri-
butes and passage of digesta from the ruminoreticulum in cattle
fed roughage diets. J. Anim. Sci. 69:2177–2186.

Okine, E. K., G. W. Mathison, and R. T. Hardin. 1989. Effects of
changes in frequency of reticular contractions on fluid and partic-
ulate passage rates in cattle. J. Anim. Sci. 67:3388–3396.

Okine, E. K., G. W. Mathison, M. Kaske, J. J. Kennelly, and R. J.
Christopherson. 1998. Current understanding of the role of the
reticulum and reticulo-omasal orifice in the control of digesta
passage from the ruminoreticulum of sheep and cattle. Can. J.
Anim. Sci. 78:15–21.

Okine, E. K., A. Tesfaye, and G. W. Mathison. 1993. Relationships
between reticular contractions and digesta passage in steers con-
suming alfalfa hay and barley straw combinations ad libitum. J.
Anim. Sci. 71:3043–3051.

Owens, F. N., and A. L. Goetsch. 1988. Ruminal fermentation. Pages
145–171 in The Ruminant Animal: Digestive Physiology and Nu-
trition. D. C. Church, ed. Prentice-Hall, Englewood Cliffs, NJ.

Poppi, D. P., D. J. Minson, and J. H. Ternouth. 1981. Studies of cattle
and sheep eating leaf and stem fractions of grasses. 2. Factors

Journal of Dairy Science Vol. 90 No. 2, 2007

controlling the retention of feed in the reticulo-rumen. Aust. J.
Agric. Res. 32:109–121.

Putnam, P. A., R. Lehman, and R. E. Davis. 1965. Feed intake and
salivary secretion by steers. J. Anim. Sci. 24:817–820.

Putnam, P. A., D. A. Yarns, and R. E. Davis. 1966. Effect of pelleting
rations and hay–grain ratio on salivary secretion and ruminal
characteristics of steers. J. Anim. Sci. 25:1176–1180.

Ruckebusch, Y. 1988. Motility of the gastro-intestinal tract. Pages
64–107 in The Ruminant Animal: Digestive Physiology and Nutri-
tion. D. C. Church, ed. Prentice-Hall, Englewood Cliffs, NJ.

SAS Institute. 2002. User’s Guide: Statistics. Version 9th ed. SAS
Institute, Inc., Cary, NC

Sauvant, D., R. Baumont, and P. Faverdin. 1996. Development of a
mechanistic model of intake and chewing activities of sheep. J.
Anim. Sci. 74:2785–2802.

Sellers, A. F., and C. E. Stevens. 1966. Motor functions of the rumi-
nant forestomach. Physiol. Rev. 46:634–661.

Seo, S., L. O. Tedeschi, C. G. Schwab, B. D. Garthwaite, and D. G.
Fox. 2006a. Evaluation of the passage rate equations in the dairy
Nrc (2001) model. J. Dairy Sci. 89:2327–2342.

Seo, S., L. O. Tedeschi, C. G. Schwab, C. Lanzas, and D. G. Fox.
2006b. Development and evaluation of empirical equations to
predict feed passage rate in cattle. Anim. Feed Sci. Technol.
128:67–83.

Stevens, C. E., A. F. Sellers, and F. A. Spurrell. 1960. Function of the
bovine omasum in ingesta transfer. Am. J. Physiol. 198:449–455.

St-Pierre, N. R. 2003. Reassessment of biases in predicted nitrogen
flows to the duodenum by NRC 2001. J. Dairy Sci. 86:344–350.

Taylor, C. C., and M. S. Allen. 2005a. Corn grain endosperm type
and brown midrib 3 corn silage: Feeding behavior and milk yield
of lactating cows. J. Dairy Sci. 88:1425–1433.

Taylor, C. C., and M. S. Allen. 2005b. Corn grain endosperm type
and brown midrib 3 corn silage: Ruminal fermentation and N
partitioning in lactating cows. J. Dairy Sci. 88:1434–1442.

Taylor, C. C., and M. S. Allen. 2005c. Corn grain endosperm type
and brown midrib 3 corn silage: Site of digestion and ruminal
digestion kinetics in lactating cows. J. Dairy Sci. 88:1413–1424.

Voelker, J. A., and M. S. Allen. 2003a. Pelleted beef pulp substituted
for high-moisture corn: 1. Effects on feed intake, chewing behav-
ior, and milk production of lactating dairy cows. J. Dairy Sci.
86:3542–3552.

Voelker, J. A., and M. S. Allen. 2003b. Pelleted beef pulp substituted
for high-moisture corn: 2. Effect of digestion and ruminal diges-
tion kinetics in lactating dairy cows. J. Dairy Sci. 86:3553–3561.

Voelker, J. A., and M. S. Allen. 2003c. Pelleted beet pulp substituted
for high-moisture corn: 3. Effects on ruminal fermentation, pH,
and microbial protein efficiency in lactating dairy cows. J. Dairy
Sci. 86:3562–3570.

Warner, A. C. I., and B. D. Stacy. 1968. Fate of water in rumen. 2.
Water balances throughout feeding cycle in sheep. Br. J. Nutr.
22:389.

Woodford, S. T., and M. R. Murphy. 1988a. Dietary alteration of
particle breakdown and passage from the rumen in lactating
dairy-cattle. J. Dairy Sci. 71:687–696.

Woodford, S. T., and M. R. Murphy. 1988b. Effect of forage physical
form on chewing activity, dry-matter intake, and rumen function
of dairy-cows in early lactation. J. Dairy Sci. 71:674–686.

Woodford, S. T., M. R. Murphy, C. L. Davis, and K. R. Holmes. 1984.
Ruminal bypass of drinking-water in lactating cows. J. Dairy Sci.
67:2471–2474.

Yang, W. Z., K. A. Beauchemin, and L. M. Rode. 2001. Barley pro-
cessing, forage: Concentrate, and forage length effects on chewing
and digesta passage in lactating cows. J. Dairy Sci. 84:2709–2720.

Yokoyama, M. T., and K. A. Johnson. 1988. Microbiology of the rumen
and intestine. Pages 125–144 in The Ruminant Animal: Digestive
Physiology and Nutrition. D. C. Church, ed. Prentice-Hall, Engle-
wood Cliffs, NJ.

Zhao, G. Y., M. Duric, N. A. Macleod, E. R. Orskov, F. D. D. Hovell,
and Y. L. Feng. 1995. The use of intragastric nutrition to study
saliva secretion and the relationship between rumen osmotic-
pressure and water transport. Br. J. Nutr. 73:155–161.



NUTRITION, FEEDING, AND CALVES 855

APPENDIX

The amount of liquid passed per unit of time of the
ROO opening can be calculated using 2 principles of
fluid dynamics (Denn, 1980):

Q = A � v (the continuity equation), and [A1]

Δp =
1
2ρ � v2 (the Bernoulli equation), [A2]

where Q is the flow rate (cm3/s), A is the area (cm2), v
is the fluid velocity (cm/s), Δp is the pressure gradient
(mmHg), and ρ is the fluid density (g/cm3). From equa-
tion [A2], we can calculate the fluid velocity based on
the pressure gradient and density of the fluid:

v = √2Δp
ρ

. [A3]

Combining equations [A1] and [A3] yields

Q = A � √2Δp
ρ

. [A4]

The area of ROO was estimated from the observations
by McBride et al. (1983). The shape of the ROO is an
ellipse (4.5 × 1 cm) in a mature Holstein steer (528 kg)
fed 6 kg of long alfalfa hay twice daily. Thus,
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A =
π × long_axis × short_axis

4 =

3.14 × 4.5 × 1
4 = 3.53 cm2.

Assuming that the area is constantly 3.53 cm2, equation
[A4] becomes

Q = A � √2Δp
ρ

= 3.53 � √2Δp
1.0 = 5.0√Δp. [A5]

The amount of liquid flow per unit of time of the
ROO opening (g/s) is equivalent to the flow rate (mL/
s) because the specific gravity of ruminal liquid is close
to 1.0 (Hooper and Welch, 1985). Therefore, we can
substitute Q with LFRO:

LFRO = 5.0√Δp, [A6]

where LFRO is the amount of liquid flow per second of
ROO opening and Δp is the pressure gradient between
the reticulum and omasum (mmHg).

It is not experimentally easy to estimate the pressure
gradient between the reticulum and omasum. Instead,
most data in the literature are measurements of the
increase in reticular pressure associated with contrac-
tions. Stevens et al. (1960) measured a 10-mmHg pres-
sure difference at each end of the orifice, which was
similar to the reported value of the amplitude of PRC.
Therefore, in this model, we assumed that the pressure
gradient between the reticulum and omasum was the
same as the amplitude of the second phasic primary
contraction of the reticulum. Therefore, equation [A6]
becomes equation [10].
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