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Abstract 

The preliminary design process of modern aircraft is a very important process for aerospace 
engineers to learn.  To expand on previous assignments, this capstone design project aims to be a 
full and in-depth analysis of the design process. The objective of this project was to design a 
theoretical, full-scale, pusher configuration air racer capable of competing in the Red Bull Air 
Race, specifically on the Budapest track.  
 

The design process began by researching the race requirements and many of the flight 
characteristics of various pusher configuration aircraft.  Using the basic requirements for the race 
and research into previous pusher designs provided a generic model to begin preliminary 
analysis.  With an initial model in place, the aerodynamic profile of the design was the first to be 
examined along with the selection of the power plant.  As the aerodynamic profile of the aircraft 
was being calculated, the track was also being analyzed so that an estimate of the course run time 
could be determined.  Throughout the process various parameters were changed as the 
performance analysis was determined. Using the projected flight envelope, a structural analysis 
of the air racer was performed. The wing structure and material components of the aircraft were 
determined to satisfy the structural integrity needed for the race maneuvers and to properly meet 
the required safety factor.  
 

Through the use of the design process, a theoretical, full-scale pusher aircraft was created in 
hopes of being capable of competing for first place in the Red Bull Air Races.  The aircraft was 
measured to finish the track in 49.2 seconds using a very simple track analysis.  Also during the 
project, a scale model was made using a rapid prototyping stereolithography machine owned and 
operated by the University providing more accurate aerodynamic data.  Using this model, the 
aerodynamic conditions of the aircraft were not validated to a very high degree of accuracy, but 
were proved to be relatively accurate.   
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Nomenclature 

English: 
  a   - lift curve slope of wing (1/rad) 
  at   - lift curve slope of tail (1/rad) 
  ax  - acceleration in x( m/s2) 
  ay  - acceleration in y( m/s2) 
  c   - mean aerodynamic chord (m) 
  Cp   - coefficient of power 
  Cy   -chord distribution 
  D   - propeller diameter (m) 
  g   -gravity(m/s2) 
  GW  - gross weight (N) 
  IReq  - total required moment of inertia (m4) 
  Ist   - stringer design moment of inertia (m4) 
  Ixx   -second mass moment of inertia (m4) 
  J   - advance ratio (1/rev) 
  MD  - design load moment 
  ML  - root moment based on limit load (N/m2) 
  n   -load factor 
  P   - shaft power to propeller (W) 
  R   -turn radius(m) 
  SM  - static margin 

 Swet  -Area of aircraft if completely submerged in water (m2) 
 Sref   -Area of the planform of the wings (m2) 

  V   - airspeed (m/s) 
  VHT  - volume of horizontal tail 
  Wr   - approximation of weight at the root 
  Ww  -wing weight (N) 
  xacwb  - distance from nose to aerodynamic center of wing body (m) 
  xcg  - distance from the nose to the center of gravity (m) 
  xn   - distance from the nose to the neutral point (m) 
 
Greek: 
  ρ   - air density (kg/m3) 
 ε    - angle of the engine effective thrust line with respect to the flight path (deg) 
 λ     - taper ratio 
 Γ   -streamline 
 ω   -turn angle (rad) 
 θ   -flight path angle (rad) 
 σu   -ultimate tensile strength 
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1.     Introduction 

HE scope of this project was to design a pusher convention aircraft capable of achieving a 
competitive runtime in the Red Bull Air-racing league as compared to the general tractor 

convention models such as the MX-S and the Edge 540 (See Figures 1.1 and 1.2) which are most 
commonly flown in these races.  Typically, pusher aircraft are aerodynamically more efficient 
and smaller than their equivalent tractor convention brothers because the tapered aft end of the 
fuselage does not have to extend as far since the aft airflow is all sucked into the propeller stream 
anyway.  The form drag is in turn reduced because the boundary layer of the skin airflow is re-
energized upon entrance into the propeller stream.  Also, for the purpose of maneuverability 
pusher aircraft can be superior since in theory, they are less stable than general tractor 
configuration aircraft.  From the point of view of the pilot, forward and downward line of sight is 
also improved since the engine and propeller are not in the front as an obstruction, which proves 
very useful when flying low to the ground around tight obstacles.  
 
 This design was broken into four main categories for consideration: Aerodynamic, Stability, 
Structural, and Flight Profile Analysis.  A detailed account of these will each be presented, 
following a brief overview of the preliminary considerations that were quantified.    
             

           

Figure 1.1: Edge 540                Figure 1.2: MX-S  

 

2.     Red Bull Acrobatic Aircraft Design Requirements/Restrictions 

The following key rules and regulations were taken from the Red Bull Air Race World 
Championship Regulations 2010 Edition, information on which can be found below.  Due to the 
scope of this project, not all regulations were substantiated since the design did not mature to the 
necessary level of detail to do so.  However, all of the regulations that apply to work 
accomplished were successfully met.  There were two specific regulations that were ignored in 
order to make this configuration of aircraft legal. Regulation 6.1 states that each aircraft must 
have the following general configuration: single engine driving propeller, followed by fixed 
symmetrical wing, followed by horizontal and vertical tail.  In order to accommodate a pusher 
aircraft, this had to be neglected since the aerodynamic configuration is, for lack of a better 
word, reversed.  Regulation 6.4 states that each aircraft must have fixed landing gear on board.  
Since this is usually accomplished in a tail dragger fashion (see Figures 1.1 and 1.2 for 
examples), this regulation also needed to be neglected.  A pusher aircraft is equipped with its 
propeller at the aft end of the plane, and thus in order to have fixed landing gear, there would be 
substantially more aerodynamic drag induced by the wetted area of the landing gear necessary 

T 
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for take-off.  With the propeller at the aft end of the aircraft, longer gear would have to be used 
in the rear to allow for ground clearance, and if small landing gear were used in the front, the 
wings would be at a negative angle of attack thus preventing the aircraft from generating lift.  In 
order to even the playing field concerning aerodynamic drag, a retractable landing gear arm was 
used in the front of the aircraft.  
  
 All other regulations will be discussed in their respective sections including those involving 
aerodynamic, stability, structural considerations, and flight characteristics.  Note that all weights 
were considered as point loads in the Stability section.  Below are the documented rules and 
regulations from the Red Bull Race Committee.   
 
Technical Definitions 
2.1 Mass 

 Race Aircraft Mass – Camera Control and Transmission box, Race Fuel, Pilot, Spare Air 
system, G Race Suit 

 Race Pilot Mass – Pilot excluding Helmet, Parachute, and inflatable life vest 

 Race Aircraft Empty Mass – Race Aircraft totally empty except for 10 quarts engine oil 

Flight Performance 
4.1 Load Distribution Limits 

 Define Center of Gravity (fixed CG only) 

 Static stability analysis 

 Pitch and yaw stability/moments 

 Structural Limits  

4.2 Mass Limits 
 Mass not less than 540 kg/ 1190 lb (If less must carry ballast in safe location) 

 Assume 50 L fuel 

 Telemetry, Cameras and Camera Control Systems 10 kg / 22 lb 

 Spare Air System 6 kg / 12 lb 

4.3 Stalling Speed 
 Shall not exceed 61 knots (70 mph) at max race mass 

4.4 Velocity Never Exceed (VNE) 
 Define this with the flight envelope 

4.5 Take-off Performance 
 Take-off distance shall not exceed 500 m at minimum Race Mass 

4.6 Landing Performance 
 Horizontal distance to come to a stop from 50 feet above landing surface (FAR 23.75) 

 At minimum allowable race mass, cannot exceed 500m 

 Only wheel brakes can be used to stop plane 
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Structure 
5.1 Limit Maneuvering Load Factors 

 Can operate at least +/- 12 g at maximum allowable race mass 

 Safety factor of 1.5 

5.2 Roll-over Structure 
 Located either forward or aft of cockpit  

 Able to withstand point load (applied vertically from the top) of 2 times race takeoff mass 

5.3 Cockpit Structure 
 If manufactured of steel tube, 2 cm of padding around tubes with flame retardant 

materials 

 Avoid Splinter-able materials 

5.4 Pylon Impact Case 
 Load assumptions made for pylon impact on wing, tail, main landing gear 

Design and Construction 
6.1 Configuration 

 Single engine driving propeller, followed by fixed symmetrical wing, followed by 
horizontal and vertical tail (neglected for pusher configuration) 

6.2 Payload 
 Should be designed to carry equipment in 9.7.6 

6.3 Wingspan 
 Between 7 and 8.5 m including wingtips 

6.4 Landing Gear 
 Fixed Landing Gear Only (neglected for equality) 

 Minimum wheel size 5” 

 Minimum tire size 500 x 5.00 w/ 6 ply 

 Heavy duty brake discs minimum thickness 0.250” (no inner wheel brakes) 
o Only approved supplier (Grove and Cleveland) 

 Wheel pants minimum ground clearance of 1” with tire inflated 

6.5 Seat 
 Designed to sit upright, with a recline angle greater than 30 degrees with respect to the 

thrust line 

6.6 Bird Strike Protection 
 Air intake screen of max mesh width of 10 mm  

 An alternate air intake system shall be fitted.  It must supply the engine with air, to run at 
not less than 18 inches of manifold pressure with the main air intake closed.  Alternate air 
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must be taken from an angle not less than 90° to the longitudinal axis of the Race 
Aircraft. 

Power Plant 
7.1 General 

 Piston Engine with 6 cylinders or less with max 10:1 compression ratio 

 540 Cylinder Bore 5.125”, Stroke 4.375”, Displacement 541.5 cu in, Max Bore 0.010” 
Oversize 

 Two Magnetos for ignition only  

 Alternator capable of supplying power to aircraft systems and charge battery 

 6 point fuel injection system with nozzles located in standard Lycoming position (no 
electronic injection) 

 Cooling engine with ambient air only 

 Piston crown thickness less than 0.250” 

 Engine should have 5 hours of operation and data 

7.2 Engine Intake Air 
 Other than sump breather gases, and fuel for use of combustion, no other mixture can be 

sprayed into intake air 

7.3 Starting the Engine 
 Starter motor and battery so pilot can start independently 

 Ground power may be used in ground starting 

7.4 Fuel 
 Aviation Gasoline 100LL according to ASTM D 910 only 

 Minimum of 50 L with no means of dumping 

 No fuel cooling 

 Only ambient air can be used as oxidizer (no turbo or supercharging) 

7.5 Inverted Fuel and Oil System 
 Capable of sustaining inverted flight for minimum of 30 seconds 

 Only inverted oil system approved is Inverted Christen System 

Additional Technical Specifications 
8.1 Propeller 

 Propeller and its governor must comply with the overhaul times listed in Appendix B (6 
yrs or 600 hrs) 

8.2 Smoke System 
 Must produce 2 L/min and must last from smoke on to crossing of finish line 

 Must be based on injecting smoke oil into exhaust stream 

Payload 
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10.1 Camera Control and Transmission Box 
 Height 19 cm, Width 30 cm, Length 45 cm 

 Mass 12.1 kg / 26 lb equipped 

 Mounted on luggage rack directly behind pilot 
 

3.     Layout & Preliminary Analysis  

 The first considerations pertained to the initial geometry of the wing section.  In order to help 
locate the aerodynamic center in a desirable spot behind the center of gravity, an aft swept wing 
body was chosen for this application.  Strakes were also implemented on the wings to store the 
fuel load in an effort to move the center of gravity farther forward and keep it in front of the 
aerodynamic center.  Since most of the aircraft used the Red Bull Races (examples in Figures 1.1 
and 1.2 above) are actually manufactured as acrobatic aircraft, they are equipped with 
symmetric, un-cambered airfoils for the purpose of sustaining inverted flight for certain 
maneuvers.  For the purpose of this design, there was no need for sustained inverted flight longer 
than a second or two, so a cambered airfoil (NACA 2312) was used for the wing cross-section in 
order to allow the aircraft to fly at a zero ε and thus reduce the overall induced drag.  When an 
aircraft has symmetric airfoils for inverted flight, it is forced to fly at a slightly pitched upward 
angle to generate lift, in turn increasing the frontal area of the aircraft.  Table 3.1 below gives the 
resultant dimensions and specifications for the preliminary design of this aircraft.  The wing span 
was required to be between 7 and 8.5 meters wide for safely navigating through the course 
pylons (referenced in the Flight Profile Analysis section) according to regulation 6.3 as 
referenced in the Rules/Regulations section (Red Bull Race Committee).  To clarify, the Root-
Strake Span is the span between the centerline of the aircraft and the end of the strake, while the 
Strake-Tip Span is the distance from the end of the strake to the wingtip.  The Mate Chord refers 
to the chord of the strake if it were extended to the centerline of the aircraft, and the Strake 
Chord is the chord length at the transition from strake to main wing frame defined by the Root 
and Tip Chords.  The following equations were used from external sources in the creation of 
Table 3.1. 
 
   

                   (John D. Anderson 425) [3.1] 

 

  	                  (John D. Anderson 423) [3.2]  

 

  	             (John D. Anderson 428)  [3.3]  

 

  tan 	 tan / 	 	        (Raymer 52)     [3.4] 
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Table 3.1: Wing Parameters 

Wing Geometry 

Wing Span (b) 8.00 m Sweep LE (ΛLE) 26.24 deg 

Root-Strake Span 2.50 m Planform Area (S) 10.00 m2 

Strake-Tip Span 5.50 m Aspect Ratio (AR) 6.40   

Mate Chord (Cmate) 2.25 m Taper Ratio (λ) 0.43   

Root Chord (Cr) 1.75 m Mean Chord (CMAC) 1.32 m 

Strake Chord (Cstr) 1.44 m Airfoil NACA 2312   

Tip Chord (Ct) 0.75 m       
 

 The canard geometry became the next driving factor since, for safe operation of a pusher 
aircraft in this configuration these must stall first in order to retain control of the aircraft.  If the 
canards were allowed to stall first, the aircraft would be forced into an unrecoverable stall where 
the un-stalled canards would hold the nose pitched upward while the plane plunged toward the 
ground.  The associated nose drop effect of the canard stalling before the wing also serves as a 
warning to the pilot that the plane is beginning to stall, and to take action.  The canards were 
located as far forward as possible in order to allow for the maximum moment arm about the 
aerodynamic center of the airplane, and as high as possible to prevent the trailing edge 
streamlines of the airfoil to affect the airflow coming into the leading edge of the wing.   
 There are a couple of ways to go about ensuring the canards stall first.  One of which would 
be to mount them at slightly higher angle of attack with respect to the wings, causing the canards 
to hit their maximum lift coefficient at a given angle of attack before the wings.  This is 
assuming similar or identical airfoil characteristics for both the wings and the canards.  However, 
this would mean that by geometry, the frontal projected area of the canards would be slightly 
higher than necessary (picture a piece of cardboard at zero angle of attack and one at 5 degrees 
and consider the amount of drag increase).  For this reason, an alternate method was chosen.  By 
noting that a more cambered airfoil will generally have a higher lift curve slope, the assumption 
was made that for a given angle of attack, a higher cambered airfoil would stall first.  Thus by 
using an airfoil with a higher camber, the canards were able to be mounted at zero angle of attack 
with the wing, while also ensuring that they will stall first.  For this reason, the canards were 
designed with the NACA 4409 airfoil section.    
 Since this plane is only operating in the subsonic regime and no further center of gravity shift 
was necessary at this time, a taper ratio (λ) of zero was used.  In order to get a feel for the 
relative size that the canards should be relative to the wings for adequate maneuverability, some 
typical ratios were studied for typical home-built and acrobatic aircraft.  The data presented in 
Table 3.2 was taken from (Roskam, Airplane Design Part II: Preliminary Configuration Design 
and Integration of the Propulsion System 191).  Note that this method of approximation was also 
used for the vertical stabilizers, and will be referenced below also.  Beginning with the first 
column and moving to the right, Sh/Sref is the ratio horizontal area of the canards or tail to the 
reference area of the wing planform, Se/Sh is the ration of the elevator area to horizontal tail or 
canard area, xh is the distance between the neutral points of the canards and wings, Vh is derived 
from Equation 3.5, and Ce %Ch is the elevator chord in percent chord of the canard mean 
aerodynamic chord.  By averaging this data, a good ballpark estimate for the size of the canards 
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relative to the wing was determined and used to obtain the dimensions in Table 3.3, which gives 
the specifications for the canard geometry.            
 

 
   /              (Roskam II 191)   [3.5] 
 
 

 Table 3.2: Canard to Wing Ratio Data 

Horizontal Tail Volume and Elevator Data 

TYPE Sh/Sref Se/Sh xh [m] Vh Ce %Ch 

PIK-21 0.1361 0.45 3.08 0.30 0.45 

P-70S 0.1871 0.60 2.95 0.44 0.60 

SA-III Sequoia 0.1473 0.46 3.32 0.36 0.46 

300 Ord-Hume 0.1962 0.43 3.38 0.59 0.43 

AVERAGE 0.1667 0.49 3.18 0.42 0.49 
  
 

      Table 3.3: Canard Parameters 

Canard Geometry 

Wing Span (b) 3.25 m Sweep LE (ΛLE) 0.00 deg 

Tip Chord (Ct) 0.43 m Aspect Ratio (AR) 7.56   

Root Chord (Cr) 0.43 m Taper Ratio (λ) 1.00   

Planform Area (Sh) 1.40 m2 Mean Chord (CMAC) 0.43 m 

Airfoil NACA 4409     
 
 
   The geometry of the vertical stabilizers was determined in a similar manner to that of the 
canards.  In order to ensure that the plane would have adequate maneuverability, the same 
aircraft compared above for horizontal tail and canard data were studied for vertical tail and 
aileron data.  Table 3.4 shows this data comparison and the resulting averages from (Roskam, 
Airplane Design Part II: Preliminary Configuration Design and Integration of the Propulsion 
System 191).  The notation is the same as in Table 3.2 except that the ailerons and vertical tail 
are referenced.  Equation 3.6 was used in the determination of Vv. 
 
 
  /              (Roskam II 191)   [3.6] 
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 Table 3.4: Vertical Stabilizer to Wing Ratio Data 

Vertical Tail Volume, Rudder and Aileron Data 

TYPE Sv/Sref Sr/Sv xv [m] Vv Cr %Cv root 

PIK-21 0.0457 0.33 3.20 0.03 0.24 

P-70S 0.0563 0.67 3.20 0.03 0.59 

SA-III Sequoia 0.0672 0.44 3.23 0.03 0.35 

300 Ord-Hume 0.1269 0.31 4.02 0.06 0.27 

AVERAGE 0.0740 0.44 3.41 0.04 0.36 

  

Cr %Cv tip Sa/Sref 
Ca %Cw 

in Ca %Cw out ya %b/2 in ya %b/2 out 

0.49 0.13 0.13 0.13 0.00 1.00 

0.76 0.08 0.20 0.20 0.52 0.88 

0.68 0.13 0.26 0.26 0.55 1.00 

0.43 0.09 0.29 0.29 0.60 0.95 

0.59 0.11 0.22 0.22 0.42 0.96 
 
 A symmetric airfoil (NACA 0015) was used for the vertical stabilizers since they need only 
generate lift when the plane rudders or begins to veer off of straight flight.  The root chord is the 
same as the tip chord of the main wing for mating purposes, and a general 60 degree sweep was 
used for sportiness and controllability.  Table 3.5 presents all of these specifications for the 
vertical stabilizers.   
 

Table 3.5: Vertical Stabilizer Parameters 

Stabilizer Geometry 

Total Span 2.50 m Sweep .25 (Λ25) 60.00 deg 

Tip Chord (Ct) 0.30 m Aspect Ratio (AR) 4.76   

Root Chord (Cr) 0.75 m Taper Ratio (λ) 0.40   

Planform Area (Sv) 1.31 m2 Mean Chord (CMAC) 0.56 m 

Airfoil NACA 0015     
 
 Figure 3.1 shows the finished wing-strake-stabilizer product with the theoretical wing area 
shown (neglecting the fuselage interference).  The wing strakes were located such that they could 
carry the fuel load and shift the center of gravity forward for stability.  Also, a 5 degree off 
perpendicular orientation was given to the vertical stabilizers to give a more aesthetically 
pleasing and sporty look.    
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Figure 3.1: Completed Wing Model (Solid-Works) 

 The fuselage dimensions were constrained by the average pilot size and the size of the engine 
that was used.  The engine will be discussed in further detail section V with the rest of the power 
plant.  Table 3.6 gives the locations of the canard, landing gear, and wing placement relative to 
the nose of the fuselage, along with the length and width of the fuselage.  The wing and canard 
placement will be discussed in section VII where the stability analysis is presented.  The 
placement of the rear landing gear was determined by the necessary clearance for the rear 
propeller diameter (2.03 meters) in order to keep in from hitting the ground.  The propeller used 
will also be discussed in section V with the power plant.  Figure 3.2 shows the completed model 
of the fuselage.  

Table 3.6: Fuselage Geometry and Mates 

Fuselage Geometry & Mates 

Total Length  5.00 m

Maximum Width  1.25 m

Wing Xac to Nose  3.125 m

Canard Xac to Nose  0.60 m

Rear Landing Gear to Nose  4.00 m
 
 

 

Figure 3.2: Fuselage 
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 The associated stall speeds for the canards and wings in their presented configuration is 
presented in Figure 3.3 as a function of altitude.  It is evident from the plot that the canards will 
stall before the wings at zero angle of attack, and are given a nice gap of roughly 5 m/s.  This 
verifies that the canards will always stall before the wings since they not only have a higher stall 
speed, they will also stall first when the plane is at a high angle of attack, as stated before.    
 

 

Figure 3.3: Stall Speeds vs. Altitude 

Figure 3.3 also shows the compliance with Regulation 4.3, which states that the stall speed shall 
not exceed 70 mph, which equates to about 31 m/s.  The stall speeds were calculated using the 
following equation from Anderson’s Aircraft Performance and Design book using standard 
atmospheric conditions at each respective altitude.   
 

  	
	

              (John D. Anderson 254)  [3.7] 

 
In equation 3.7, ρ∞ is the local atmospheric density, W is the weight of the aircraft, S is the planform of 
the wings, and CL max is the maximum lift coefficient of the wing section corrected from the theoretical 
coefficient for the airfoil.      
 

4.     Power Plant 

 The initial power plant selected for use in the aerobatic pusher aircraft was the Lycoming 
L/TIO-540-J.  This engine has a power output of 350 hp, 261 kW, and weighs 2.4 kN.  The main 
reason for the selection of this engine was foremost its high power output.  However, there were 
several engines with the same power, and from here it was selected for its high power-to-weight 
ratio.  However, after a review of the Red Bull Air Race regulations it was deemed that this 
engine was illegal for use in the competition because it is turbocharged.  Regulation 7.4 states, 
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“Only ambient air can be used as oxidizer.”  This required that a new engine had to be selected.  
The Lycoming AEIO-580-L1B5 was selected as the replacement engine.  Table 4.1 displays a 
list of pertinent engine specifications. 
 

Table 4.1:  Engine specifications for the Lycoming AEIO-580-L1B5 

Compression Ratio 8.90:1       

Power 320 hp 238624 Watts 
RPM 2700 rev/min 45 rev/s 
Height 24.46 in 62.13 cm 
Width 34.25 in 87.00 cm 
Length 40.24 in 102.21 cm 
Weight 449 lbs 203.85 kg 

 
 Although the AEIO-580 engine has the largest power output of the engines available for use 
under the Red Bull Air Race rules, it is possible that another engine with less power would 
perform better.  A smaller engine would weigh less and have a smaller displacement.  During 
design, the fuselage had to be remodeled to accommodate the width associated with this engine 
and the plane is over the minimum allowable weight of 5.3 kN (Regulation 4.2).  The best 
method for determining this would be an iterative approach that encompassed all aspects of the 
flight performance.  This was not done due to time constraints of the project and the need to 
address other portions of the aircraft.  It is sufficient to note that the engine selection would 
affect the power output, propeller efficiency, structural requirements, drag, lift, etc.  Despite the 
many variables, this engine is believed to perform best for the current needs and therefore has 
been integrated into the current design.  
 
 The MTV-9-B/203-206 propeller has been selected for this aircraft.  This is a constant speed, 
three-bladed propeller.  After contacting MT-Propeller and specifying the use, they sent 
information on two MTV-9 series propellers.  Unfortunately, the information provided was in 
German and had to be translated before use.  This resulted in one incorrect calculation for the 
propeller efficiency.  However, after analyzing the data, this error was recognized and corrected.  
The propeller efficiency data was given in terms the coefficient of power and the advance ratio.  
The coefficient of power is defined in terms of power input, surrounding air density, revolutions 
per second, and propeller diameter. 
 

           Cp	 	 P

ρn3D5
       [4.1] 

 
The shaft power to the propeller is assumed to remain constant from the engine and from Table 
4.1, P	 	24,000 Watts.  The air density will change depending on atmospheric conditions, but 
since the flight will occur at relatively low altitude, Budapest is at 102 m, the flight density is 
assumed to remain constant at ρ	 	1.225 kg/m3.  The angular velocity is also constant from the 
engine output where n	  45 rev/s.  Therefore, the coefficient of power is only a function of the 
propeller diameter.  The advance ratio will also vary with propeller diameter, but it is also a 
function of the airspeed. 
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  J 	 V
nD

                           [4.2] 

 
The airspeed will vary throughout the flight and, therefore, is a dependent variable.  The 
propeller diameter is the only variable that can be changed to increase propeller efficiency.  
However, it is difficult to determine the peak propeller efficiency unless the exact operating 
conditions are known.  For this analysis, the MTV-9-B/203-206 is assumed to have a blade 
diameter of 2.03 m and the MTV-9-B/198-25 has propeller diameter of 1.98 m.  The calculated 
propeller efficiencies are shown in Figure 4.1.  Since the propeller diameter is already 
determined, the advance ratio could be replaced by an equivalent airspeed.  This would allow for 
a direct correlation between the airspeed and propeller efficiency, but this is unnecessary and not 
done here.  As can be seen in Figure 4.1, the 203-206 has higher propeller efficiencies than the 
198-25.  For this reason, the MTV-9-B/203-206 was selected as the propeller for this aircraft. 

 
Figure 4.1:  Propeller efficiencies versus advance ratio for two MTV-9 series propellers 
 
 A curve fit has been applied to this efficiency data to use in calculating the power available 
from this engine-propeller coupling.  It is a sixth degree polynomial that was selected for the 
close correlation with the data.  This is a purely empirical equation that is not based on 
underlying physical principles.  This equation is given as: 
 
  ηpr 	‐0.0839J6 0.7521J5‐2.7449J4 5.2849J3‐5.9098J2 3.7305J‐0.174   [4.2] 
 
It is important to note that this equation is valid only from 0.2	 	J	 	1.4.  Outside this range, 
there is no data to correlate with and since no underlying physical principle justifies the 
empirical formula, this equation should not be used. 
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5.     Aerodynamic Analysis 

VLM 
 

The Vortex Lattice Method (VLM) was used during initial aerodynamic analysis to give an 
estimate for the lift generated by the wing.  The VLM is a simple computational method that is 
capable of generating lift data for a wing of finite size, assuming it as a flat plate at a very low 
angle of attack.  The method works by breaking the wing down into grid sections that each 
generates a horseshoe vortex.  These vortices then induce a velocity upon every other grid 
section along the entire length of the wing.  Summing each of the generated streamlines then 
gives a simple algebraic equation for the lift as a function of the angle of attack. 
 

The VLM was performed using a MATLAB code written to take into account any 
adjustments in wing geometry during the design process.  The procedure began by assuming the 
wing dimensions to be input were the wingspan, taper ratio, and quarter chord wing sweep.  The 
file then builds a matrix of control points and boundary points based on the wing dimensions and 
the desired number of grid sections.  Each grid panel has a control point located at the 3 quarter 
chord point and a boundary point at the port and starboard edges of the panel and is input into the 
matrix in terms of the wingspan b. 
 

By taking into account the induced vortices and boundary conditions at each panel, a 
simplified equation for the streamlines produced from one panel to another were simplified into 
equation 5.1. 
 

,

. 1.0 . 1.0

                       [5.1] 

 
The MATLAB code then runs the calculation for each of the panels and builds a matrix where 
each panel is a function of each streamline with a solution based on the wingspan, free stream 
velocity, and angle of attack.  Using a build in Jacobian Method matrix solver in MATLAB the 
streamline functions were then calculated.  The lift generated by each panel is then integrated 
then divided by the dynamic pressure and wing planform area to give a linear equation for the 
coefficient of lift as a function of the angle of attack.   Figure 5.1 shows an example of the Cl vs. 
alpha curve generated by the MATLAB program. 
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Figure 5.1:  Coefficient of lift versus angle of attack calculated using VLM 

 
Also for use in the structural analysis is the need for a lift distribution across the wing.  

Instead of the program only generating a Cl curve, the also plotted the lift generated along the 
length of the wing.  Figure 5.2 is an example of one such lift curve.  In the plot, one may notice 
the dip or notch in the curve.  This dip is due to a part of our wing geometry where the wing is 
broken down into two wing sections with different wing sweeps and taper ratios.   

 
    Figure 5.2:  Wingspan lift distribution 
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The Drag Polar 
 

 With the preliminary design work and power plant considerations completed, it was now time 
to quantify an accurate portrayal of the drag polar of this aircraft.  The true aerodynamics of 
aircraft have puzzled engineers since man first took flight in the days of the Wright brothers, 
leading to the development of many different methods of estimating the drag polar.  Given the 
iterative nature of the design process, it was not possible to dive head first into an intricate 
analysis of the drag buildup on each component of the airplane since, until the very end, the 
airplane was still changing form.  Thus, three different and increasingly difficult methods of 
estimating the drag polar of this aircraft will be discussed and employed in this section.   
 
 The first method used in developing a working representation of the drag polar entailed 
estimation based on other aircraft, and had almost no dependency on the actual geometry of the 
aircraft.  This method employed the basic definition of the drag polar in its simplest form for any 
arbitrary aircraft, and is shown in Equation 5.3 below. 
 
          (John D. Anderson 130)  [5.3] 
 
The zero-lift drag CDo in this equation was first quantified using Figure 2.54 and 2.55 of Aircraft 
Performance and Design on page 128 and 129 (Reference found in Bibliography).  Figure 2.54 
gives the Swet/Sref ratio versus the wing loading W/Sref for several different aircraft that are 
currently or have been in practice.  Figure 2.55 gives the skin friction coefficient Cfe as a function 
of the Reynolds Number for several different aircraft.  The decision was made to use values 
roughly between those of a Cessna Skyplane and an F-104, since that is probably a good estimate 
of where a subsonic racing aricraft would reside.  By employing Equation 5.3 below, the first 
zero-lift drag estimate was obtained.  Note that the Sref factor is in this case the projected area of 
the fuselage if viewed head on.     
  

          (John D. Anderson 128)     [5.3]  

        
In order to quantify the K factor in Equation 5.2, a relation including a parameter called the span 
efficiency factor e and the aspect ratio of the aircraft AR was used, given in Equation 5.4.  The 
span efficiency factor is used to account for the non-elliptical lift distribution along the span of 
the wing.        
 

           (John D. Anderson 129)      [5.4] 

 
By defining a string of values for the lift coefficient and plugging the values from Equations 5.3 
and 5.4 into Equation 5.2, a preliminary depiction of the drag polar was generated and is shown 
at the end of this section in Figure 5.2. 
 
 After some progressive maturing of the design to the point of pre-defined components, a new 
more in depth analytical approach was taken to generate a more accurate depiction of the 
resulting drag polar.  This method has been referred to in many different reference texts as “The 
Component Build-up Method” and basically does just that, build a drag polar representation by 
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analyzing all of the different components individually, and then putting them all together.  
Unfortunately, this is not a direct additive method.  For reasons that are still unexplained, when 
the drag for a wing and a fuselage are analyzed separately and then together, there is always a 
higher amount of drag in the latter case.  For this reason, a number of interference factors will be 
employed throughout this method to correct for this phenomenon.    
 The entire section to follow is related to the component drag on the wings and was all pulled 
from Airplane Design: Part IV in section 4.2.  This reference will be needed to make use of any 
charts referenced in this section.  The wing drag coefficient in its simplest form is given by 
Equation 5.4 below with the total drag coefficient CDw, the zero-lift drag CDow, and the drag due 
to lift CDLw.   
 
              [5.5] 
 
In order to quantify the variables in this equation, several graphical approximations were used 
from this reference.  The wing drag due to lift, as well as all other drag due to lift variables were 
quantified using the same method as before since the design had not matured to the point of 
being able to use this method.  At this point in the design, this was sufficiently accurate.  The 
equation for each variable will be given, followed by a brief explanation of the variables 
involved.   
 

       1 100   [5.6] 

 
Equation 5.6 gives the relationship for the wing zero-lift drag parameter in Equation 5.5.  The 
wing-fuselage interference factor RWF was obtained using Figure 4.1 in the reference text, which 
gives a representation of RWF versus the fuselage Reynolds Number for different flight speeds.  
The lifting surface correction factor RLS was obtained using Figure 4.2 in the reference text, 
which gives a representation of RLS versus cos ⁄  where Λ(t/c)max is the sweep angle at the 
maximum value of airfoil thickness over chord length.  The turbulent flat plate skin-friction 
coefficient of the wing CFW was obtained from Figure 4.3 in the reference text, which gives a 
representation of CFW versus the Reynolds Number calculated using the mean geometric chord of 
the exposed wing surface.  Note, this is not the equivalent trapezoidal wing mean geometric 
chord used in the preliminary design calculations; this is excluding the wing area that would 
theoretically pass through the fuselage.  The airfoil thickness location parameter L’ was obtained 
from Figure 4.4 in the reference text, which gave different values based on where the value of 
(t/c)max is located.  The thickness ratio (t/c) is defined at the mean geometric chord of the 
exposed wing. 
 The entire section to follow is related to the component drag on the fuselage and was all 
pulled from Airplane Design: Part IV in section 4.3.  This reference is needed to make use of any 
charts referenced in this section.  The fuselage drag coefficient in its simplest form is given by 
Equation 5.5 also, where the zero-lift drag CDo and the drag due to lift CDL are substituted with 
the fuselage values.  In order to quantify the variables in this equation, several graphical 
approximations were used from this reference.  The equation for each variable will be given, 
followed by a brief explanation of the variables involved.   
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     1 60
⁄

0.0025    [5.7] 

 
Equation 5.7 gives the relationship for the fuselage zero-lift drag parameter in Equation 5.5.  The 
wing-fuselage interference factor RWF was obtained using Figure 4.1 in the reference text, which 
gives a representation of RWF versus the fuselage Reynolds Number for different flight speeds.  
Since the flow over a fuselage is almost always turbulent (except in special cases where they are 
specifically designed for laminar flow), the turbulent flat plate skin-friction coefficient Cff was 
used from Figure 4.3 referenced above.  The Reynolds Number for this figure was calculated 
using the length of the fuselage.  The maximum length of the fuselage is lf and the maximum 
diameter of the fuselage is df.  The fuselage base drag coefficient CDb is given by Equation 5.8 
below.   
 

      0.029 ⁄   [5.8]          

 
The fuselage base diameter db was obtained from Figure 4.17 in the reference material, which 
defines it as the equivalent diameter of the cross-sectional area of the rear most section of the 
fuselage.  The zero-lift drag coefficient of the fuselage exclusive of the base CDbfus as determined 
from the first term on the right hand side of Equation 5.7. 
     The entire section to follow is related to the component drag on the empennages and was 
all pulled from Airplane Design: Part IV in section 4.4.  This reference is needed to make use of 
any charts referenced in this section.  The empennage drag coefficients in their simplest form are 
given by Equation 5.5 also, where the zero-lift drag CDo and the drag due to lift CDL are 
substituted with the empennage values.  In order to quantify the variables in this equation, 
several graphical approximations were used from this reference.  Each empennage had its own 
version of Equation 5.5.  The zero-lift drag portion of Equation 5.5 was taken from Equation 5.6 
for the wing and replaced with the necessary variables for the empennages.  The empennages 
included the canards and vertical stabilizers.  
 The entire section to follow is related to the component drag on the landing gear and was all 
pulled from Airplane Design: Part IV in section 4.7.  This reference is needed to make use of any 
charts referenced in this section.  The landing gear drag coefficient in its simplest form is given 
by Equation 5.9 below.  In order to quantify the variables in this equation, several graphical 
approximations were used from this reference.   
 

              [5.9] 

 
The zero-lift drag coefficient of the landing gear is based on the reference area of the landing 
gear, or the projected area of one wheel.  This is defined in Figures 4.54-4.60 of the reference 
material from empirical data on different landing gear configurations.  P is a factor that accounts 
for the variation of gear drag with lift.  Figure 4.61 of the reference text gives a method for 
determining this factor by comparison with other configurations of landing gear.  Landing gear 
design is an art in itself, so with the available time for this project it was not a huge 
consideration. 
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 After all predictions had been run and a reasonable estimate for the drag polar had been 
quantified, the use of a new age and cheap modeling technology (Stereolithography) was used to 
generate a solid-body model for use in wind tunnel testing.  Stereolithography is an additive 
manufacturing process using a vat of liquid UV-curable photopolymer "resin" and a UV laser to 
build parts a layer at a time.  Because of the limitations with the structural integrity of this 
material, the model had to be made sufficiently large enough such that the smallest structural 
point of the model was larger than 2 mm, yet still fit in the wind tunnel.  However, in giving the 
model these dimensions, it became too large for the building area of the Stereolithography 
machine.  In order to remedy this problem, the plane had to be sectioned into different tongue 
and slot parts to be assembled after construction.  Figures 5.3, 5.4, and 5.5 show the parts in their 
un-assembled fashion.   
 

 

Figure 5.3: Slotted Fuselage 

 
 
 
 

 

Figure 5.4: Tongue Parts Top View 
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Figure 5.5: Tongue Parts Front View 

 
It can be seen from the figures that the wings, canards, landing gear, and aluminum mount (will 
be discussed below) are all made to fit into their corresponding slots in the fuselage shown in 
Figure 5.3.  In order to adapt the Stereolithography model to the wind tunnel, an aluminum 
mount had to be fabricated from a standard aluminum rod and plug.  The plug was used to 
narrow the inside diameter of the rod down to the close tolerance needed to fit snugly on the tip 
of the probe.  A set screw was tapped into this location to secure the model in place.  Figure 5.6 
shows the configuration and specs of the aluminum mounting rod.  It can be seen from the figure 
the shape of the mounting probe of the wind tunnel described above by the dotted outline of the 
interior of the aluminum mounting rod.      
 

 

Figure 5.6: Aluminum Mounting Rod 
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 After running several wind tunnel tests on the model at 50 mph from an angle of attack of 
plus or minus 15 degrees, the comparisons in Figure 5.7 were generated.  The legend is made of 
acronyms for simplicity that stand for Airplane Performance Method (Method 1), Airplane 
Design Method (Method 2), and the Wind Tunnel Method respectively.  The wind tunnel output 
data in the form of lift and drag forces, so in order to reduce the data to lift and drag coefficients 
for use in the drag polar comparison, Equations 5.10 and 5.11 were used.   
 
               [5.10] 
 
               [5.11] 
 
Unfortunately, while the predictions made from Methods 1 and 2 are very close to one another, 
the data obtained from the wind tunnel testing produced significantly higher drag forces.  This 
could be attributed to the higher amount of skin friction that was caused by surface roughness on 
the model than would be expected of a polished metallic fuselage.  Also, this fuselage was 
designed to have the aft airflow entering into the propeller stream, and thus reducing the form 
drag on the aircraft at that point.  The wind tunnel model did not have a propeller, thus this could 
have also caused a percentage of the higher drag readings.  Overall, the drag data from the wind 
tunnel test was relatively close to the empirical predictions made earlier in this section.   
    
 

 

Figure 5.7: Comparison of the drag polar via different methods discussed 
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6.     Weight Estimation 

 To begin structural and stability analyses, a preliminary weight balance was necessary.  This 
was done by using a class one method for weight estimation described by Dr. Jan Roskam in 
Airplane Design Part V:  Component Weight Estimation.  This was a five step process that began 
by making a list of important weight parameters and making some initial design weight choices 
and estimations as is displayed in Table 6.1.  Most of the values in this table were known already 
or simply estimated such as the crew weight.  It was known that the plane would be a single seat 
aircraft; therefore, an average weight of group members was used.  As this was only an initial 
step, it could become more specific later. 
 

Table 6.1:  Step 1 for determining estimated weight of aircraft and aircraft components 

 
  
 Step 2 in determining the aircraft and aircraft component weights was to identify a category 
and airplanes in that category that could be compared to the airplane being designed.  Initially 
the category was homebuilt propeller driven aircraft, but the only plane in this category was a 
Bede BD5B.  This plane only has a 30 kW engine and therefore is not comparable to our design 
goal.  The next group selected was the single engine propeller driven aircraft.  There were 
several planes in this category.  Only three were selected for comparison however.  These three 
were the Beech J-35, Saab Safir, and Rockwell 112TCA.  They were chosen mostly for engine 
size, but these all had at least two seats and were significantly heavier than our design goal.  The 
main difference however was that they were all tractor pull aircraft.  There was no pusher 
configuration, so this could not be avoided. 
 
 Steps 3 and 4 were to list the significant component weights that applied to the aircraft being 
designed and find what percentage of the gross weight this represented in the aircraft selected for 
comparison.  These were then averaged together.  This process is shown in Table 6.2.  Any 
category that is left blank did not have specific data available.  The most important part of this 
estimation is the structure weight.  The power plant weight is already set and the fixed equipment 
for the plane that was being designed is minimal. 
 

 

 

 

mass (kg) weight (N)

Gross Take‐Off Weight WTO 550 5396

Empty Weight WE 425 4167

Mission Fuel Weight WF 43 424

Payload Weight WPL 18 178

Crew Weight Wcrew 82 804

Trapped Fuel and Oil Weight Wtfo 5 49

Flight Design Gross Weight GW 550 5396
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Table 6.2:  Steps 3 and 4 for estimating aircraft and aircraft component weights 

 
 
 The last step for determining preliminary weight estimations was to multiply the design gross 
weight of our aircraft times the average of the component weights from steps 3 and 4.  This gave 
numbers for a first weight approximation.  These were then adjusted based on reasonable 
assumptions.  For example the wing mass was increased by 10 kg because it would likely need 
more structural stability due to high g-loading and the equipment mass was decreased by 35 kg 
because there is only one seat and not as many fixtures in an airplane designed to compete in the 
Red Bull Air Races.  Table 6.3 shows this step.  As you can see in this table, the final weight 
estimate using a class one method predicts a takeoff gross weight of 5.5 kN.  This is very close to 
the flight design gross weight given in step 1 and was likely to change as more specific analyses 
of the various components were undertaken. 

 

 

Table 6.3:  Step 5 of preliminary weight estimation 

 

Beech J‐35 Saab Safir Rockwell 112Average

I. Structure Weight Wstruct 0.312 0.316 0.366 0.331

Rear Wing Wing Grp/GW 0.131 0.104 0.113 0.116

Canard Empenn. Grp/GW 0.02 0.023 0.033 0.025

Fuselage Fuselage Grp./GW 0.069 0.145 0.121 0.112

Langing Gear Landing Grp/GW 0.021 0.045 0.033

a. Nose Gear

b. Rear Gear

II. Power Plant Weight Wpwr 0.201 0.189 0.195

Engine

Propeller

Fuel System

III. Fixed Equipment Weight Wfeq 0.115 0.151 0.133

Flight Control System

Hydraulic System

Electrical System

Instrumentation

Componet

Wing 62.6 kg 614.5 N 10 kg 72.6 kg 712.6 N

Empennage (including Canard 13.7 kg 134.2 N 5 kg 18.7 kg 183.3 N

Fuselage 60.3 kg 591.5 N 0 kg 60.3 kg 591.5 N

Landing Gear 17.8 kg 174.8 N ‐10 kg 7.8 kg 76.7 N

Power Plant 105.3 kg 1033.0 N 127.4 kg 232.7 kg 2282.9 N

Fixed Equipment 71.8 kg 704.6 N ‐35 kg Less seats/Less Equipment 36.8 kg 361.2 N

Empty Weight 331.6 kg 3252.6 N 429.0 kg 4208.2 N

Payload 6.0 kg 58.9 N 6.0 kg 58.9 N

Crew 82.0 kg 804.4 N 82.0 kg 804.4 N

Fuel 43.3 kg 424.8 N 43.3 kg 424.8 N

Trapped Fuel and Oil 3.0 kg 29.4 N 3.0 kg 29.4 N

Takeoff Gross Weight 465.9 4570.1 N 563.3 kg 5525.7 N

Structural support

Structural support

Final Weight EstimateFirst Weight Estimate  Adjustment Why

Smaller Wheels/not full retract

Known engine weight

Structural support/One Seat Width
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7.     Stability Analysis 

 The stability analysis performed for our model was a simple longitudinal stability analysis.  A 
more detailed approach was started, but this was deemed inappropriate due to the many 
estimations and unknowns that were being used in the model.  This technique is taken from 
Aircraft Performance and Design by John D. Anderson.  The output of the stability analysis is in 
static margin.  This is defined as the distance from the neutral point to the center of gravity over 
the mean aerodynamic chord of the main wing structure. 
 
  	

̅
      (John D. Anderson 444)          [7.1] 

 
For most aerobatic aircraft, the static margin is very low which means that the neutral point and 
the center of gravity are located very close together.  This is generally assumed to be around 5% 
for an aerobatic aircraft.  A positive static margin has the center of gravity located in front 
neutral point for an airplane.  The first step in calculating the static margin is by finding the 
center of gravity of the airplane.  This was done by using the weight estimation made in section 5 
and selecting component locations according to the initial design of our model and geometric 
constraints.  It is necessary that this be variable in the beginning stages to ensure that the plane is 
stable.  The next step is to calculate the neutral point of the aircraft.  This accounts for the lift of 
the main wing body and the tail. 
 
  xn 	xacwb 	VHT

at
a

    (John D. Anderson 444)          [7.2] 

 
For conventional aircraft, the tail volume is positive and will shift the neutral point further back 
along the plane, but for a canard, the neutral point is shifted forward (Stengel). 
 
 After both the neutral point and center of gravity are calculated, the static margin can be 
adjusted by moving the wings and canards fore and aft, adjusting the wing and canard planform 
area, and changing the weight distribution of the aircraft.  It was simple enough to create a 
design that achieved a static margin of about 5%	 ̅; however, this configuration made the canard 
stall speed lower than the main wing stall speed.  This is unacceptable for canard aircraft because 
a stall on the back wing will result in a nose up reaction that will cause a loss of control for the 
aircraft.  If the canard stalls first, the plane will go nose down, increasing the speed and therefore 
recovering from the stall. 
 
 The stability analysis was not performed until late in the design process for this aircraft.  This 
should have been done much earlier to avoid making significant changes to the design.  If only 
the weight distribution is varied, the minimum static margin achievable while maintaining the 
proper stall characteristics is about 69%	 ̅.  This means that the plane will be overly stable and 
sluggish to the controls.  For this case, Table 7.1 displays the pertinent information.  This is the 
aircraft configuration that has been modeled for flight performance.  Changes were not made 
because a wind tunnel model was produced to obtain flight data. 
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Table 7.1:  Stability and stall information for modeled aircraft 

xcg 3.1 m 

xn 4.0 m 

SM 69.0 % 
Vstall,canard 26.9 m/s 

Vstall,wing 26.0 m/s 

 
 By altering the geometry and weight distribution of the aircraft, a static margin of about 12 
%	c is possible with the proper stall characteristics.  However, this does require radical changes 
in the geometry and weight distribution.  Specifically, the wing taper ratio had to be decrease, the 
wing had to be moved slightly forward along the fuselage, the canard was moved forward along 
the fuselage, and the canard chord length was decreased.  In future considerations, the stability of 
the aircraft should be considered sooner, and this should be extended to calculating control 
surface sizing and forces.  

 

8.     Structural Analysis 

 Basic structural analysis is a critical part of the conceptual design process of the Red Bull 
racer, thus the loads that would be sustained during flight of the aircraft would have to be 
determined. The load determination would require a combination of aerodynamics using the 
span-wise lift distribution, structures, and known and estimated weights. A calculation of the 
shear and moment distribution along the wing would be necessary to reach a more specific 
conclusion about material selection and analysis of geometric cross sections that could be used as 
structural components within the wing of the aircraft. The focus of the structural analysis would 
be the main wings of the aircraft due to the high-g loads that must be sustained during the flight 
profile. The wing weight, fuel load, and lift distribution would be the primary concern for the 
shear and bending moments that would be calculated about the wing. An Excel program would 
be created to aid in the structural analysis. 

 
 The first part of the structural design process consisted of setting the limit load factor, n. This 
would be very important for the design scope of the structural analysis of the aircraft due to the 
extreme loads the aerobatic racer would experience during flight. It was initially assumed that 
the load factor should be set at n=6, being the upper limit of general aviation aerobatic aircrafts; 
however, the aircraft was allowed to operate at a maximum of +/- 12 g at allowable race mass 
(Regulation 5.1). A conclusion was reached that the limit load should be set at the highest 
operational limit prescribed by the race regulations at n=+/-12. The positive limit load would be 
the primary emphasis due to the particular maneuvers during the flight profile being that the 
structural analysis would be based on the critical case of the pull-up during the loop when the 
aircraft load factor could be at as high as n=+12. 

 
 The wing structural weight distribution could then be estimated based on the determined load 
factor. One wing was estimated to be 72.6 kg or 712.2 N based on weight approximations 
discussed in the weights section of the report. The length of one wing would be half of the wing 
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span, thus 4m would be the span of one wing. Using the wing geometry defined in the 
aerodynamics section, the wing was non-elliptical, tapering in both chord and thickness. Thus, it 
was reasonable to assume the weight distribution to be parabolic. Equation 8.1 was used to 
describe the wing weight where the weight at the root could be approximated by Equation 8.2. 
The chord distribution could then be derived by Equation 8.3. The wing was not designed to 
have any geometric or aerodynamic twist thus assuming a trapezoidal wing was reasonable. An 
Excel program was created to graphically determine a polynomial curve-fit for the graph of the 
wing weight with respect to the wing length from to root to tip. The wing weight along the wing 
length was multiplied by 12 to determine the distributive load under the critical case of the loop 
maneuver at n=12. (See Figure 8.1)  

 
  Wy=Wr (Cy/Cr)

 2                       [8.1] 
 
  Wr=6*Ww/ (b (1+λ+ λ2)                    [8.2] 
 
  Cy=Cr [1-2y/b (1- λ)]                     [8.3] 
 

 

   Figure 8.1: Wing Weight Distribution at n=12 

  

 The estimation of the fuel load distribution was determined by analysis of the volume of fuel 
that would be carried and how the fuel would be placed within the wing. It was desired to fit the 
amount fuel used within the volume of the stake of the wing. The minimum amount of fuel that 
could be used during the race was 50 liters. (Regulation 4.2.2) This would mean that 25 liters of 
fuel must be carried in each wing.  It was decided that a high octane, general aviation fuel would 
be used, thus 100LL AvGas at 5.64 lb/gal was chosen. An estimation of the volume of the strake 
compared to the volume of fuel desired would be necessary. Based on the geometry of the 
NACA 2312 airfoil, the maximum volume of the strake was calculated by the trapezoid area of 
the section multiplied by the thickness of the smaller chord of the airfoil section to derive a 
minimum volume of the strake. The minimum volume of the strake was calculated to be 
approximately 0.34452 m3. The volume required for the minimum amount of fuel of 25 liters of 
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100LL AvGas for one wing was calculated to be 0.025 m3; thus the strake volume housed 
enough space for the desired amount of fuel. A parabolic load force was desired for the fuel load 
distribution so that the force would vary quadratically along the strake’s length. This would 
allow the fuel load to be zero at both the wing root and the strake’s end with the maximum load 
of the fuel at the middle of the strake. A polynomial curve-fit was created to graphically 
represent a parabolic fuel load within the desired strake distance.(See Figure 2) The chord length 
of the strake began at 1.75m to 1.44m, with the corresponding values of wing span distance 
being from 0m to 1.25m. The maximum weight of the fuel based on the minimum volume of fuel 
of 25 liters per wing was calculated to be 165.49 N. This maximum weight was located at 
0.625m from the wing root at the middle of the strake being the minimum of the parabolic load 
distribution. 

 

 
   Figure 2: Fuel Load determination Curve-fit 

  

 The lift distribution along the wingspan was determined by the Vortex Lattice method. Details 
from the usage of the Vortex Lattice method in the aerodynamic profile section were input into 
the Excel program to graph the spanwise streamline distribution of one wing with respect to the 
wing length from the root to the tip. A polynomial curve-fit was derived from the graphical data. 
(See Figure 8.3) Using Equation 8.4, the streamline profile could be used to find the lift force 
distribution along the wing as a function of the angle of attack, α. It was assumed that the lift 
produced by the aerobatic racer at n=12 must be greater than or equal to the weight of the aircraft 
at 12g during the loop maneuver. Thus, 12 times the estimated weight of the aircraft was used as 
a gauge to ensure that the theoretical lift was great enough to sustain flight at that flight regime. 

y = 833.33x6 - 3124.3x5 + 4063.2x4 - 2023x3 + 611.32x2 -
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For the total lift produced by the aerobatic racer to be in reasonable range, the lift could be 
adjusted as a function of the angle of attack. An angle of attack at 4.902º provided the necessary 
lift to offset the weight of the aerobatic aircraft at an instant when the weight of the entire aircraft 
is 12 times that of normal. The lift produced at each increasing distance away from the root of 
the wing is added to acquire the total contributing lift of one wing at 12g.  

 

 

    Figure 8.3: Streamline distribution along one wing 

 

  L=Γ*Vmax
2*π2*α/45                     [8.4] 

 After the distributed loads of the wing weight, lift distribution, and fuel were determined, the 
shear and bending moments could be constructed. The Excel program was used to graphically 
display the shear diagrams for the loads with respect to the wing length. (See Figure 8.4) The 
shear is given by the sum of the vertical loads along the wingspan by each particular load 
distribution. The bending moments of each load distribution were then found by integrating the 
load diagram to find the moment as a function of span location at a load factor of n=12, all 
moments being equal to zero at the wing root. (See Figure 8.5) Multiplying the bending moment 
of a distributed load by an arbitrary distance away from the root would give the total shear force 
of that distributed load at that point. The landing gear weights and locations could be neglected 
in the shear and moment diagrams due to the fact that the tricycle landing gear would be 
mounted on the fuselage. The consideration of a wing load due to a wing-mounted engine could 
also be neglected due to the fact that the engine would be mounted in a pusher configuration at 
the back of the fuselage. 

 

y = ‐4.2455x6 + 40.976x5 ‐ 138.67x4 + 
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    Figure 4: Load Diagram of Wing weight, Lift Distribution, and Fuel at n=12 

 
    Figure 5: Moment Diagram of Wing weight, Lift Distribution, and Fuel Load at n=12 

 

 After the shear and bending diagrams were created, the moment based on the limit load could 
be derived. The moment at the root of the wing was zero, but as the distance from the root 
increased, the sum of the moments of the wing weight, lift distribution, and fuel load reached a 
maximum magnitude, ML, of 2304.78 N/m at the tip of the wing. This moment would be critical 
in the selection of materials and the analysis of structural components used within the wing. The 
wing strength was required to have a safety factor of 1.5. (Regulation 5.1.2) The design moment, 
MD, based on safety factor would be ML times 1.5, which was calculated to be a magnitude of 
3457.18 N/m. (See Equation 8.5) The design load moment would be the critical factor in the 
selection of the appropriate materials for the structural supports within the wing and the wing 
skin material. 
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  MD=ML*safety factor                     [8.5] 
 
 The selection of the material for the construction of the wing to support the design moment 
was based on materials with high strength-to-weight ratios. The material selection would be 
centered about distinct structural components including: a main and rear wing spar, four 
stringers, and the wing skin. Materials such as aluminum alloys, steel, carbon fiber, and fiber 
glass-epoxy were considered for the internal structures of the wing. Due to the fact that cost was 
not a prominent design parameter, specific aluminum alloys and carbon fiber were decided as the 
primary materials that would be used in for the wing spars, wing skin, and stringers that would 
support the loads of the wing. Aluminum is one of the most widely used aircraft materials, and 
one of the most commonly used aluminum alloys is 2024. 2024 has a density of 2780 kg/m3 and 
an ultimate stress, σu, of 469 MPa; however a less dense aluminum alloy 6061 was chosen for 
the wing spars. 6061 had a lower density of 2700 kg/m3 with an ultimate stress, σu, of 310 MPa. 
This material was thought to be light enough to conserve the weight of the spars within the wing 
while having the strength to support the bending moment. Aluminum alloy 5086 with even a 
lower density of 2660 kg/m3 was chosen as the material for the stringers. 5086 was found to have 
an ultimate stress, σu, of 270 MPa. The stringers within the wing would require the support of a 
much smaller percentage of the design moment, thus the lighter 5086 was chosen. Carbon fiber 
was chosen as the material for the wing skin and the control surfaces of the wing. If the spars and 
stringers using the aluminum alloys were properly designed to support the design moment, the 
skin load is less critical; however, carbon fiber was chosen because it is very low weight with a 
very high tensile strength. The carbon fiber used would have ultimate stress, σu, of 5650 MPa 
and a density of 1750 kg/m3. This would provide more than adequate support for the skin load 
during the flight profile; all while conserving weight without the loss of tensile strength. 
 
 The main and rear wing spar would be the primary concern for the internal structure of the 
wing. These spars would have to endure most of the load from the design moment. The spars 
would be represented as a typical geometric shape of an I-beam. The I-beam shape is a 
symmetrical cross section in which the centroid, C, is located at the intersection of the two axes 
of symmetry, and therefore coincides with the mid-point of the web. Furthermore, the bending 
moment is applied to the beam section in a vertical plane so that the x axis becomes the neutral 
axis of the beam section. (See Figure 8.6) The second moment of inertia, Ixx must be calculated 
about this axis. To determine the second moment of inertia Ixx of the I-beam, the cross section 
was considered a block with two pieces removed; however since the I-beam was symmetrical 
with respect to the x axis, the component of the centroid of the blocks is offset equally above or 
below the x axis. The resulting equation to solve for Ixx of the I-beam was derived as Ixx = 
(BH3/12)-(*bh3/12), where *b=B-b. (See Equation 8.6) 
 
 
 

            tc 
 

       C 

B 

H 
        b 

b*    

h 
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B=width 
H=height 
h=height of central webbing 
b=width of the empty space 
b*=width of central webbing=B-b 
tc=thickness of spar cap=(H-h)/2 
C=centroid of cross section 
 

 Figure 8.6: Schematic I-Beam and dimensions           

        

  Ixx= (BH3/12)-(*bh3/12); *b=B-b                [8.6] 
 
 
 Equation 8.7, IReq= (MD/σu)*(tmax/2), was used to begin the initial steps in the wing spar 
analysis. This equation represented the total required moment of inertia. Tmax was set to the 
maximum thickness of the wing, which would be the maximum thickness of the NACA2312 
airfoil. Tmax would thus be the maximum height, H, of the wing spar plus the wing skin 
thickness. The total required moment IReq was calculated to be 8.1557E-05. The main spar was 
decided to be placed at 30% chord since the maximum thickness of the airfoil would be at this 
location. This would require that moment of the I-beam, Ixx, be equal to 60% of the total required 
moment IReq. The Excel program was used to compute a trial and error analysis based on the 
thickness of the spar caps, the maximum height of the spar, the spar cap width, the height of the 
central webbing, and the width of the central webbing. The thickness of the airfoil skin was set to 
0.003m; thus any arbitrary spar would be constrained by a maximum height between the 
thickness of both the airfoil and the thickness of the NACA 2312 airfoil at 12% of the chord. At 
30% chord, the concluded dimensions of the main spar can be seen in Table 8.1. The same trial 
and error analysis was done for the rear spar, which was designed to support 15% of the total 
required moment at 70% chord. This would require a much smaller spar; however, the spar cap 
width was designed to be the same as that of the main spar to conserve weight. The dimensions 
of the rear spar can be seen in Table 8.2. The values of B and b were used as inputs that would 
affect the different dimensions of the I-beam in order to reach a moment of inertia that met the 
required moment of the system. The thickness of the spar caps, tc, were equal to (H-h)/2. (See 
Figure 8.6) It was noticed that the value of B had more of an impact on the moment of inertia of 
the spar. This may be so due to the fact that the cross-sectional area of the shear web is less 
significant compared to the area of the spar caps, being that the spar caps absorb most of the 
bending force. 
 

Table 8.1: Main Spar Dimensions 

B 0.08976m 

H 0.2438m 

*b 0.03826m 

b 0.0515m 

h 0.2033m 

tc 0.02023m 
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Table 8.2: Rear Spar Dimensions 

 

 

 

 
 
 
 The component design for the stringers was similar; however, the moment of inertia of the 
stringer shape could be neglected, and the stringer area, An and its distance from the bending 
center, hn , could be used to find the moment of inertia needed. It was decided that four stringers 
would be designed to sustain 15% load division of the total required moment. Based on the 
geometry of the wing, the bending center was found to be at half of the wing span where the 
chord was 1.25 m. Equation (8.7) was used in the Excel program in a trial and error analysis to 
calculate the total moment of four stringers with 1ft or 0.3048 m separation between them. In 
order for the total moment required to be equal to the sum of the moment of inertia of the four 
stringers, each stringer had to have a diameter of 10.37 mm.  
 
  IReq= (MD/σu)*(tmax/2)                    [8.7] 
  
 

The last part of the structural analysis consisted of the estimated load division through the 
skin of the wing. 10% of the load division remained to be distributed in the skin load. With the 
spars being designed to endure most of the load distribution, the skin of the aircraft was 
considered a rectangular area, with a length of 4m, a width of 1.25m, and a thickness of 0.003m. 
Using Equation (8.8) to solve for a design moment, MD, based on the moment of inertia of the 
rectangular area, it was found that the carbon fiber material could support a design moment on 
the order of 1000 times more than the design moment derived based on the limit load. It was 
concluded that carbon fiber would be highly sufficient in supporting the skin load as well as 
being used for the control surfaces on the wings. 

 
  Ist= ∑Anhn

2                        [8.8] 
 

9.     Flight Profile Analysis 

In order to get an estimate for the vehicles run time on the track, another MATLAB program 
was written.  The track was broken down into several segments of different types.  The first type 
was the straight sections of the track.  In this section of the track we assumed the aircraft was 
flying through accelerated level flight.  The second section of track was the turns, where we once 
again assumed level flight and also constant turning velocity.  The final section type is the loop 
and is the most complex.  By breaking down track into these 3 types made it easier to write code 
that can be duplicated for each section.  
 

B 0.08976m 

H 0.1169m 

*b 0.01921m 

b 0.07054m 

h 0.1107m 

tc 0.003085m 
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Using the map in Figure 9.1 we began to determine how best to break down the track and 
what methods would be best for gaining an accurate representation analytically.  Through trial 
and error we broke the track down into different sized turns and straightaways.  The main 
objective was to try and maintain a fluid path throughout the track and not introduce any 
unnecessary sharp turns.  Once the track was properly broken down, measurement was needed.  
Because the track layout was found as a simple image, there were no "rulers" to scale the image 
to real life.  Instead, the distance between the pylons was used as a reference to scale the image 
up.  The pylons are approximately 18-20 meters apart from the center of the pylon.   

 

 

  Figure 9.1:  Budapest track layout. 

  
With a scale in place the dimensions of the map could be laid out.  The track was separated in 16 
distinct sections: 10 turns, 3 straightaways, and 3 loops.  The straightaways were simple to 
measure and ranged from 70 meters to 130 meters in length.  The turns though were much harder 
to measure.  A compass was used on each turn to empirically match an arch to each of the turn 
section.  Using the curves drawn on the track image, it was possible to measure the dimensions 
of each turn: the turn radius and the chord length of the turn.  The turn radius of each turn, based 
on a specified load factor, gives the approximate value for the flight speed through the turn and is 
based on equation 9.1 below. 
 

  ∞

√
                          [9.1] 

 
The chord length also gives the turn angle using the law of cosines (equation 9.2).  
 

  arccos 	                      [9.2] 

 
Combining the turning angle with the radius gives the arc length which can then be used with the 
velocity to determine the time of travel along each turn segment. 
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When accounting for accelerated flight along the straight paths of the track functions 
were written take into account the variation in drag based on the variation in lift.  As the racer 
accelerates, the angle of attack varies to reduce the lift as the velocity increases and the lift must 
remain constant during level flight.  To account for the changing aerodynamics at each time 
segment, the coefficients of lift and drag are recalculated and using a force balance as in figure # 
resulting in equation 9.3. 
 

                            [9.3] 

 
From there a Taylor series was expanded to calculate the velocity and the location where the 
velocity is: 
 
  ∙ ∆                        [9.4] 
 
and the position is then  
 

  ∙ ∆ ∙∆
                    [9.5] 

 
Using time steps the position and subsequent velocity along the straight path was then calculated. 
 

 The third and most complex segment of the track is the loop, which is broken down into 
3 sections.  The first section is the actual loop where the vehicle becomes inverted.  To account 
for the change in the coefficient of lift as the ailerons are adjusted, a constant coefficient of lift is 
assumed based on an assumed load factor.  This can be taken as holding the "stick" back at a 
constant position and the ailerons remain fixed throughout the loop.   

Balancing the forces in the perpendicular direction of the loop through equation 9.6 the 
instantaneous turn radius is calculated. 

 

 
∙

∙
                        [9.6] 

 
After determining the turn radius, the program then begins breaking down the changes in 
positions and flight path angle.  The change in the x and y direction simple are functions of 
velocity and flight path angle as shown in equations 9.9 and 9.10.  Also varying is the path angle 
and velocity represented below also.   
 
  ∆ ∆                        [9.7] 
 
  ∆ ∆                        [9.8] 
 

  ∆ ∆                          [9.9] 

 

  ∆ ∆ ∙                  [9.10] 
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When calculating the change in velocity only the forces in the tangential direction were taken 
into account as it is assumed to be an instant time step. 

 The loop program terminates after a specific flight path angle is reached.  In this case the 
program stops at a 5/8ths loop but has been adjusted by small amounts to improve flight time.  
Following the loop, a line is drawn between the end of the loop and the proceeding pylon in the 
course.  This line has a designated length and angle from which the final path will be taken.  This 
descent path is at an angle and takes into account accelerated flight so a force balance in the x 
and y direction was performed.  The results are equations 9.11 and 9.11. 
 
                    [9.11] 
 
                  [9.12] 
 
Dividing the forces by the mass gives the acceleration in each direction and summing the 
accelerations gives the total acceleration along the flight path.  Using another expanded Taylor 
series the path was broken up into several times steps and was set to terminate upon reaching the 
final pylon. 

 

10.     Conclusion 

 In retrospect, this has been an overview of the conceptual and preliminary detailed design of a 
pusher configuration air racer for the purpose of competition in the Red Bull Air Races.  First 
research of the race requirements and many of the flight characteristics of various pusher 
configuration aircraft was performed.  With the use of the basic requirements for the race and 
research into previous pusher designs, a generic model was developed to begin preliminary 
analysis.  With an initial model in place, the aerodynamic profile of the design was the first to be 
examined followed by the selection of the power plant.  With the aerodynamic profile of the 
design base-lined, the drag polar was estimated using progressively more in-depth methods.  As 
the aerodynamic profile of the aircraft was maturing in design, the flight profile of the racetrack 
was also being analyzed so that an estimate of the course run time could be determined.  Using 
the projected flight envelope, a structural analysis of the air racer was performed.  The wing 
structure and material components of the aircraft were determined to satisfy the structural 
integrity needed for the race maneuvers and to properly meet the required safety factor.  
 

Through the use of the design process, a theoretical, full-scale pusher aircraft was created in 
hopes of being capable of competing for first place in the Red Bull Air Races.  The aircraft was 
measured to finish the track in 49.2 seconds using a very simple track analysis.  Also during the 
project, a scale model was made using a rapid prototyping Stereolithography machine owned and 
operated by the University providing more accurate aerodynamic data.  Using this model, the 
aerodynamic conditions of the aircraft were not validated to a very high degree of accuracy, but 
were proved to be relatively accurate.   
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12.     Appendix 

 
Appendix A: Flight Profile 

 
clc 
clear all 

 
%Flight Profile program 
%Senior Design - Spring 2011 
%Andrew Kail, Sydney Fears, Eric Kirchoff, Chad Sutton 
%May 2nd, 2011 

 

 
S=10; %Planform area 
W=5396; %Initial Weight 
rho=1.225; %Density 
g=9.81; %Gravity 
t=0; 
dt=0.1; %time interval 
mass=W/g; 
vstart=100; % starting speed 
Pa=238624; %power available should change with the introduction of prop data 
k=0; 

 

A. Straight 1 - Entry 
s1=160; %meters 
 
v0=vstart; 
xs=0; 
 
while xs < s1 
  q=0.5*rho*v0^2; 
  Cl=W/(q*S); 
  Cd=drag(Cl); %drag function 
  ax=(Pa/v0-Cd*q*S)/mass; %drag is a function of Cl 
  xs=xs+v0*dt+ax*dt^2/2; 
  v0=v0+ax*dt; 
  k=k+1; 
end 
 
t=t+k*dt; 

 

B. Right Turn #1 
r1=180; c1=200; %meters 
bank1=80; %degrees 
loc1=acos((c1^2-2*r1^2)./(-2*r1^2)); 
arc1=loc1*r1; 
bank1=bank1*pi()/180; 
liftt1=W./cos(bank1); 
n=liftt1/W; 
Vbank1=sqrt(r1*g*sqrt(n^2-1)); 
ta1=arc1/Vbank1; 
 
t=t+ta1; 
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C. Left Turn #2 
r2=172.5; c2=215; %meters 
bank2=80; %degrees 
loc2=acos((c2^2-2*r2^2)./(-2*r2^2)); 
arc2=loc2*r2; 
bank2=bank2*pi()/180; 
liftt2=W./cos(bank2); 
n=liftt2/W; 
Vbank2=sqrt(r2*g*sqrt(n^2-1)); 
ta2=arc2/Vbank2; 
 
t=t+ta2; 

 

D. Straight 2 
s2=130; %meters 
 
v0=Vbank2; 
xs=0; k=0; 
 
while xs < s2 
  q=0.5*rho*v0^2; 
  Cl=W/(q*S); 
  Cd=drag(Cl); %drag function 
  ax=(Pa/v0-Cd*q*S)/mass; %drag is a function of Cl 
  xs=xs+v0*dt+ax*dt^2/2; 
  v0=v0+ax*dt; 
  k=k+1; 
end 
 
t=t+k*dt; 

 

E. Loop 1 
ptp1=130; %distance between pylons 
 
dt=0.01; 
q=0.5*rho*v0^2; %use velocity from previous program segment 
n=10; %this is the initial load factor for the loop.  must change eventually 
Lloop=n*W; 
Clloop=Lloop./(q*S); 
Cdloop=drag(Cl); 
 
theta0=0; x=0; y=0; k=0; 
 
while theta0 < (5/8*2*pi()) 
  q=0.5*rho*v0^2; 
  L=q*S*Clloop; 
  D=q*S*Cdloop; 
  T=Pa/v0; 
  n=Lloop/W; 
 
  r=(mass*(v0^2))/(Lloop-W*cos(theta0)); 
  x=x+(v0*cos(theta0))*dt; 
  y=y+v0*sin(theta0)*dt; 
  dv=(dt/mass)*(T-D-W*sin(theta0)); 
  dtheta=(v0/r)*dt; 
  v0=v0+dv; 
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  theta0=theta0+dtheta; 
  k=k+1; 
  flight(k,1:5)=[k*dt x y theta0 v0]; 
end 
 
desx=ptp1+x; desy=y; 
beta=atan(y/x); 
line=sqrt(desx^2+desy^2); l=line; 
 
while l > 0 
    q=0.5*rho*v0^2; 
    Clfall=0.15; 
    L=q*S*Clfall; 
    Cdfall=drag(Clfall); 
    D=q*S*Cdfall; 
    T=Pa/v0; 
    ay=(cos(beta)*L+sin(beta)*(D-T)-W)/mass; 
    ax=(cos(beta)*(T-D)+sin(beta)*L)/mass; 
    v0=v0+sqrt(ax^2+ay^2)*dt; 
    line=line-v0*dt; l=line; 
    k=k+1; 
    flight(k,1:5)=[k*dt x y theta0 v0]; 
end 
 
t=t+k*dt; 

 

F. Straight 3 
s3=70; %meters 
 
v0=vstart; 
xs=0; 
 
while xs < s3 
  q=0.5*rho*v0^2; 
  Cl=W/(q*S); 
  Cd=drag(Cl); %drag function 
  ax=(Pa/v0-Cd*q*S)/mass; %drag is a function of Cl 
  xs=xs+v0*dt+ax*dt^2/2; 
  v0=v0+ax*dt; 
  k=k+1; 
end 
 
t=t+k*dt; 

 

G. Left Turn #3 
r3=150; c3=180; %meters 
bank3=80; %degrees 
loc3=acos((c3^2-2*r3^2)./(-2*r3^2)); 
arc3=loc3*r3; 
bank3=bank3*pi()/180; 
liftt3=W./cos(bank3); 
n=liftt3/W; 
Vbank3=sqrt(r3*g*sqrt(n^2-1)); 
ta3=arc3/Vbank3; 
 
t=t+ta3; 
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H. Right Turn #4 
r4=165; c4=200; %meters 
bank4=80; %degrees 
loc4=acos((c4^2-2*r4^2)./(-2*r4^2)); 
arc4=loc4*r4; 
bank4=bank4*pi()/180; 
liftt4=W./cos(bank4); 
n=liftt4/W; 
Vbank4=sqrt(r4*g*sqrt(n^2-1)); 
ta4=arc4/Vbank4; 
 
t=t+ta4; 

 

I. Loop 2 
ptp2=147.5; %distance between pylons 
 
dt=0.01; 
q=0.5*rho*v0^2; %use velocity from previous program segment 
n=10; %this is the initial load factor for the loop.  must change eventually 
Lloop=n*W; 
Clloop=Lloop./(q*S); 
Cdloop=drag(Cl); 
theta0=0; x=0; y=0; k=0; 
 
while theta0 < (5/8*2*pi()) % Because  the is a 5/8ths loops its goes to far during the pull up manuever.  Insteand, my right a for 
loop to adjust for the loop 
                           % distance because its not working well. 
  q=0.5*rho*v0^2; 
  L=q*S*Clloop; 
  D=q*S*Cdloop; 
  T=Pa/v0; 
  n=Lloop/W; 
 
  r=(mass*(v0^2))/(Lloop-W*cos(theta0)); 
  x=x+(v0*cos(theta0))*dt; 
  y=y+v0*sin(theta0)*dt; 
  dv=(dt/mass)*(T-D-W*sin(theta0)); 
  dtheta=(v0/r)*dt; 
  v0=v0+dv; 
  theta0=theta0+dtheta; 
  k=k+1; 
  flight(k,1:5)=[k*dt x y theta0 v0]; 
end 
 
ptp2=130; 
desx=ptp2+x; desy=y; 
beta=atan(y/x); 
line=sqrt(desx^2+desy^2); l=line; 
 
while l > 0 
    %Drag and lift variables are missing!! 
    q=0.5*rho*v0^2; 
    Clfall=0.15; 
    L=q*S*Clfall; 
    Cdfall=drag(Clfall); 
    D=q*S*Cdfall; 
    T=Pa/v0; 
    ay=(cos(beta)*L+sin(beta)*(D-T)-W)/mass; 
    ax=(cos(beta)*(T-D)+sin(beta)*L)/mass; 
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    v0=v0+sqrt(ax^2+ay^2)*dt; 
    line=line-v0*dt; l=line; 
    k=k+1; 
    flight(k,1:5)=[k*dt x y theta0 v0]; 
end 
 
t=t+k*dt; 

 

J. Left Turn #5 
r5=165; c5=50; 
bank5=80; %degrees 
loc5=acos((c5^2-2*r5^2)./(-2*r5^2)); 
arc5=loc5*r5; 
bank5=bank5*pi()/180; 
liftt5=W./cos(bank5); 
n=liftt5/W; 
Vbank5=sqrt(r5*g*sqrt(n^2-1)); 
ta5=arc5/Vbank5; 
 
t=t+ta5; 

 

K. Right Turn #6 
r6=150; c6=180; %meters 
bank6=80; %degrees 
loc6=acos((c6^2-2*r6^2)./(-2*r6^2)); 
arc6=loc6*r6; 
bank6=bank6*pi()/180; 
liftt6=W./cos(bank6); 
n=liftt6/W; 
Vbank6=sqrt(r6*g*sqrt(n^2-1)); 
ta6=arc6/Vbank6; 
 
t=t+ta6; 

 

L. Straight 4 
s4=70; 
 
v0=vstart; 
xs=0; 
 
while xs < s4 
  q=0.5*rho*v0^2; 
  Cl=W/(q*S); 
  Cd=drag(Cl); %drag function 
  ax=(Pa/v0-Cd*q*S)/mass; %drag is a function of Cl 
  xs=xs+v0*dt+ax*dt^2/2; 
  v0=v0+ax*dt; 
  k=k+1; 
end 
 
t=t+k*dt; 

 

M. Left Turn #7 
r7=237.5; c7=130; 
bank7=80; %degrees 
loc7=acos((c7^2-2*r7^2)./(-2*r7^2)); 
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arc7=loc7*r7; 
bank7=bank7*pi()/180; 
liftt7=W./cos(bank7); 
n=liftt7/W; 
Vbank7=sqrt(r7*g*sqrt(n^2-1)); 
ta7=arc7/Vbank7; 
 
t=t+ta7; 

 

N. Loop 3 
ptp3=130; %distance between pylons 
dt=0.01; 
q=0.5*rho*v0^2; %use velocity from previous program segment 
n=10; %this is the initial load factor for the loop. 
Lloop=n*W; 
Clloop=Lloop./(q*S); 
Cdloop=drag(Cl); 
theta0=0; x=0; y=0; k=0; 
 
while theta0 < (5/8*2*pi()) 
  q=0.5*rho*v0^2; 
  L=q*S*Clloop; 
  D=q*S*Cdloop; 
  T=Pa/v0; 
  n=Lloop/W; 
 
  r=(mass*(v0^2))/(Lloop-W*cos(theta0)); 
  x=x+(v0*cos(theta0))*dt; 
  y=y+v0*sin(theta0)*dt; 
  dv=(dt/mass)*(T-D-W*sin(theta0)); 
  dtheta=(v0/r)*dt; 
  v0=v0+dv; 
  theta0=theta0+dtheta; 
  k=k+1; 
  flight(k,1:5)=[k*dt x y theta0 v0]; 
end 
 
ptp2=130; 
desx=ptp2+x; desy=y; 
beta=atan(y/x); 
line=sqrt(desx^2+desy^2); l=line; 
 
while l > 0 
    q=0.5*rho*v0^2; 
    Clfall=0.15; 
    L=q*S*Clfall; 
    Cdfall=drag(Clfall); 
    D=q*S*Cdfall; 
    T=Pa/v0; 
    ay=(cos(beta)*L+sin(beta)*(D-T)-W)/mass; 
    ax=(cos(beta)*(T-D)+sin(beta)*L)/mass; 
    v0=v0+sqrt(ax^2+ay^2)*dt; 
    line=line-v0*dt; l=line; 
    k=k+1; 
    flight(k,1:5)=[k*dt x y theta0 v0]; 
end 
 
t=t+k*dt; 
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O. Left Turn #8 
r8=150; c8=75; 
bank8=80; %degrees 
loc8=acos((c8^2-2*r8^2)./(-2*r8^2)); 
arc8=loc8*r8; 
bank8=bank8*pi()/180; 
liftt8=W./cos(bank8); 
n=liftt8/W; 
Vbank8=sqrt(r8*g*sqrt(n^2-1)); 
ta8=arc8/Vbank8; 
 
t=t+ta8; 

 

P. Right Turn #9 
r9=215; c9=172.5; 
bank9=80; %degrees 
loc9=acos((c9^2-2*r9^2)./(-2*r9^2)); 
arc9=loc9*r9; 
bank9=bank9*pi()/180; 
liftt9=W./cos(bank9); 
n=liftt9/W; 
Vbank9=sqrt(r9*g*sqrt(n^2-1)); 
ta9=arc9/Vbank9; 
 
t=t+ta9; 

 

Q. Left Turn #10 
r10=180; c10=200; 
bank10=80; %degrees 
loc10=acos((c10^2-2*r10^2)./(-2*r10^2)); 
arc10=loc10*r10; 
bank10=bank10*pi()/180; 
liftt10=W./cos(bank10); 
n=liftt10/W; 
Vbank10=sqrt(r10*g*sqrt(n^2-1)); 
ta10=arc10/Vbank10; 
 
t=t+ta10; 

 

R. Output Run Time 
fprintf('The final runtime is %f seconds',t); 

 
The final runtime is 49.208609 seconds 
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Appendix B: Vortex Lattice Method 
 

clc 
clear all 

 
%Vortex Lattice Method for AE-429 
%Andrew Kail, Sydney Fears, Eric Kirchoff, Chad Sutton 
%May 2nd, 2011 

 
Initial Input: 
 

sweep1=21.3;% (Degrees) 
sweep1r=sweep1*pi()/180; 
b=8; 
cr=1.75; ct=0.75; 
lambda=ct/cr; 
AR1=2*b./(cr+ct); 
S=0.5*b*(cr+ct); 
 
sweep3r=atan(tan(sweep1r)-4./(AR1)*(2/4)*((1-lambda)./(1+lambda))); 
 
%j=input('Number of panels? \n'); 
dy=0.1; % Panel size in terms of b 
j=b/dy; 
dy2=dy/b; 
%Vortex Bounds & control points in terms of b 
bounds=zeros(j,7); 
 
for i=1:1:j; 
    bounds(i,1)=i; 
    %Control points 
    bounds(i,3)=0.5*dy2+(i-1)*dy2; 
    bounds(i,2)=cr/b*3/4+tan(sweep3r)*bounds(i,3); 
   %End points 
    bounds(i,5)=(i-1)*dy2; 
    bounds(i,4)=cr/b*1/4+bounds(i,5)*tan(sweep1r); 
    bounds(i,7)=(i)*dy2; 
    bounds(i,6)=cr/b*1/4+bounds(i,7)*tan(sweep1r); 
end 
 
flow=zeros(j,j); 
 
for k=1:1:j % panels 
    for i=1:1:j % vortex summation at panel k 
 
        s1=(1/((bounds(k,2)-(bounds(i,4)))*(bounds(k,3)-(bounds(i,7)))- (bounds(k,2)-(bounds(i,6)))*(bounds(k,3)-(bounds(i,5))))); 
        s2=((((bounds(i,6)-bounds(i,4))*(bounds(k,2)-bounds(i,4)))+(bounds(i,7)-bounds(i,5))*(bounds(k,3)-bounds(i,5)))  / sqrt( 
(bounds(k,2)-bounds(i,4))^2+ (bounds(k,3)-bounds(i,5))^2)); 
        s3=((((bounds(i,6)-bounds(i,4))*(bounds(k,2)-bounds(i,6)))+(bounds(i,7)-bounds(i,5))*(bounds(k,3)-bounds(i,7)))  / sqrt( 
(bounds(k,2)-bounds(i,6))^2+ (bounds(k,3)-bounds(i,7))^2)); 
        s4=1.0/(bounds(i,5)-bounds(k,3))*(1+ (bounds(k,2)-bounds(i,4))/sqrt( (bounds(k,2)-bounds(i,4))^2+ (bounds(k,3)-
bounds(i,5))^2)); 
        s5=1.0/(bounds(i,7)-bounds(k,3))*(1+ (bounds(k,2)-bounds(i,6))/sqrt( (bounds(k,2)-bounds(i,6))^2+ (bounds(k,3)-
bounds(i,7))^2)); 
 
        starboard=s1*(s2-s3)+s4-s5; 
 
        p1=(1/((bounds(k,2)-(bounds(i,4)))*(bounds(k,3)+(bounds(i,7)))- (bounds(k,2)-(bounds(i,6)))*(bounds(k,3)+(bounds(i,5))))); 
        p2=((((bounds(i,6)-bounds(i,4))*(bounds(k,2)-bounds(i,4)))+(-bounds(i,7)+bounds(i,5))*(bounds(k,3)+bounds(i,5)))  / sqrt( 
(bounds(k,2)-bounds(i,4))^2+ (bounds(k,3)+bounds(i,5))^2)); 
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        p3=((((bounds(i,6)-bounds(i,4))*(bounds(k,2)-bounds(i,6)))+(-bounds(i,7)+bounds(i,5))*(bounds(k,3)+bounds(i,7)))  / sqrt( 
(bounds(k,2)-bounds(i,6))^2+ (bounds(k,3)+bounds(i,7))^2)); 
        p4=1.0/(-bounds(i,5)-bounds(k,3))*(1+ (bounds(k,2)-bounds(i,4))/sqrt( (bounds(k,2)-bounds(i,4))^2+ 
(bounds(k,3)+bounds(i,5))^2)); 
        p5=1.0/(-bounds(i,7)-bounds(k,3))*(1+ (bounds(k,2)-bounds(i,6))/sqrt( (bounds(k,2)-bounds(i,6))^2+ 
(bounds(k,3)+bounds(i,7))^2)); 
 
        port=p1*(p2-p3)+p4-p5; 
 
        w=starboard-port; 
        flow(k,i)=w; 
    end 
end 
 
for i=1:1:j 
    ones(i,1)=-1; 
end 
 
streamlines=flow\ones; 
 
sum=0; 
for i=1:1:j 
    sum=sum+ streamlines(i,1); 
end 
 
Cl=b^2*2*pi()*sum*dy./S; 
 
x=0:0.5:15; 
y=Cl*pi()/180*x; 
subplot(1,2,1) 
plot(x,y) 
xlabel('Angle of Attack (degrees)') 
ylabel('Cl') 

 
 
 

S. Lift distribution 
vmax=110; %m/s 
 
rho=1.225;%density 
j2=2*j; 
for i=1:1:j2 
    if i <= j 
        clift(i)=streamlines(j-i+1); 
 
    else 
        clift(i)=streamlines(i-j); 
    end 
 
end 
 
lift=clift*rho*vmax; 
dx=b/j; 
xlift=-b:dx:b-dx; 
subplot(1,2,2) 
plot(xlift,lift) 
plot(xlift,lift) 
xlabel('Wingspan (meters)') 
ylabel('Lift (newtons)') 
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title('Wing Lift Distribution') 

 

 
 

T. excel export 
xlswrite('vlmdata.xls',lift) 
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