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Fractal characterization of fracture networks:

An improved box-counting technique

Ankur Roy,1 Edmund Perfect,1 William M. Dunne,1 and Larry D. McKay1

Received 19 June 2006; revised 6 June 2007; accepted 5 September 2007; published 5 December 2007.

[1] Box counting is widely used for characterizing fracture networks as fractals and
estimating their fractal dimensions (D). If this analysis yields a power law distribution
given by N / r�D, where N is the number of boxes containing one or more fractures and r
is the box size, then the network is considered to be fractal. However, researchers are
divided in their opinion about which is the best box-counting algorithm to use, or whether
fracture networks are indeed fractals. A synthetic fractal fracture network with a known D
value was used to develop a new algorithm for the box-counting method that returns
improved estimates of D. The method is based on identifying the lower limit of fractal
behavior (rcutoff) using the condition ds/dr ! 0, where s is the standard deviation from a
linear regression equation fitted to log(N) versus log(r) with data for r < rcutoff
sequentially excluded. A set of 7 nested fracture maps from the Hornelen Basin, Norway
was used to test the improved method and demonstrate its accuracy for natural
patterns. We also reanalyzed a suite of 17 fracture trace maps that had previously been
evaluated for their fractal nature. The improved estimates of D for these maps ranged from
1.56 ± 0.02 to 1.79 ± 0.02, and were much greater than the original estimates. These
higher D values imply a greater degree of fracture connectivity and thus increased
propensity for fracture flow and the transport of miscible or immiscible chemicals.

Citation: Roy, A., E. Perfect, W. M. Dunne, and L. D. McKay (2007), Fractal characterization of fracture networks: An improved

box-counting technique, J. Geophys. Res., 112, B12201, doi:10.1029/2006JB004582.

1. Introduction

[2] Fracture systems have been a focus of research for
decades owing to their importance in contexts such as
hydrocarbon accumulation, contaminant transport, engi-
neering geology and seismogenic faults. Fractures exist
over a wide range of scales, from microns (in thin sections)
to thousands of kilometers (as with plate-bounding faults).
They typically develop more complex patterns in a region as
fracturing events are superimposed through time. This
combination of characteristics potentially makes them in-
teresting targets for fractal analyses.
[3] Fractals are entities that display self-similarity in their

geometry such that any portion of the system is a replica of
the whole as seen at a larger scale. This scaling is quantified
by the fractal dimension. In simplistic terms, the fractal
dimension describes the manner in which a fractal entity
fills up the available Euclidean space. More precisely,
Mandelbrot [1983] defines a fractal as a set for which the
Hausdorff-Besicovitch dimension (D) strictly exceeds the
topological dimension. Every set with a noninteger D value
is a fractal, but it is not necessary that all fractal dimensions
be nonintegers. Since we are dealing with linear fractures in

two dimensions, noninteger fractal dimensions are expected
within the range 1 < D < 2.
[4] Many researchers have reported fractal dimensions

for natural fracture patterns. Details on most of these works,
along with critiques of the methods used, can be found in
the review paper by Bonnet et al. [2001]. A few studies
have related fractal dimensions of fracture networks to
physical properties such as the percolation threshold [Zhang
and Sanderson, 1994] and dynamic processes such as flow
and transport [Doughty and Karasaki, 2002]. Small differ-
ences in D can have a profound impact on these properties
and processes; thus it is vital that methods of estimating D
are both accurate and precise.
[5] The most popular method for determining the fractal

dimension of a fracture pattern is the box-counting algo-
rithm. In its most basic form, this method involves super-
imposing smaller and smaller square grids of normalized
length, r (where r is box length divided the characteristic
length of the mapped area) upon the mapped network. The
number of occupied boxes containing one or more fractures,
Noccupied, is given by

Noccupied ¼ r�Db ð1Þ

where Db is the box-counting fractal dimension.
Equation (1) holds for rmin < r < rmax, where rmax and
rmin are the upper and lower limits of fractal scaling,
respectively. As r is systematically reduced in size within
this range, equation (1) yields an array of points in log-log
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space that can be fitted with a straight line whose negative
slope (Db) is equal to the D value for the fracture pattern.
[6] Numerous variations of this technique exist in the

literature. In order to accommodate a boundary condition
stated by Hausdorff [1919] and incorporated into the
derivation of equation (1), it is required in the box-counting
algorithm to find the minimum number of occupied cells for
each cell size. Numerically, this may be achieved in two
ways [Pruess, 1995]. One approach involves rotating the
grid relative to the data until the minimum number of
occupied cells is attained [Samuel, 1988]. This is called
the box rotate method [Barton, 1995]. Alternatively, if the
scale factor, b > 1, governing the progressive reduction in r
(r = b�j, where j is an integer iteration level) is minimized,
the number of occupied cells for a given size can also be
minimized [Pruess, 1995]. This approach is called the box
flex method [Barton, 1995]. Barton [1995] concluded that
the box flex method provides more accurate results than the
box rotate method.
[7] Two other versions of the box-counting algorithm are

documented by La Pointe [1988]. One involves counting
the number of fractures within each cell of the box-counting
grid. This information is then used to assign a third
dimension to the data set, with the fractal dimension being
determined by the extent to which this surface fills the
available volume. A problem with this method is that the
resulting Db value ends up being greater than two. The other
version counts the number of blocks bounded by fractures
within each cell. Obviously, this algorithm cannot be
employed for very sparse fracture networks (with relatively
low fractal dimensions), since there may be insufficient
intersections to define any blocks.
[8] In spite of the large number of investigations,

researchers are still divided in their opinions as to whether
fracture networks can be characterized as fractals [e.g.,
Gillespie et al., 1993; Walsh and Watterson, 1993]. Also,
since different workers have reported different values of the
fractal dimension for the same map, a technique for eval-
uating the fractal dimension of fracture patterns that has
wide acceptance remains to be developed.
[9] Our research addresses these questions by developing

an improved version of the box-counting method. The
method is validated for a synthetic fracture network with
a known D value and then applied to a natural fracture
pattern mapped at 7 different resolutions [Odling, 1997] and
17 fracture trace maps from a variety of tectonic settings,
lithologies and scales [Barton, 1995]. We show the method
yields improved estimates of D, and the results are briefly
considered in the context of network connectivity.

2. Method Development

2.1. Synthetic Fractal Fracture Patterns

[10] Synthetic fractal fracture patterns were constructed
using a generalized version of Sammis et al.’s [1986] self-
similar cataclasis model. Doughty and Karasaki [2002]
employed essentially the same approach for simulating flow
through hierarchically fractured rocks. Fracture networks
were represented as deterministic Sierpinski lattices com-
posed of self-similar line segments in two dimensions. The
lattices were generated using three parameters: the scale
factor, b, the iteration level, i, and the initial number of

unfractured blocks, n. The initiator (i = 0) consists of a unit
square with b orthogonal fractures dividing the area into b2

blocks of length 1/b (Figure 1a). In the next step (i = 1), n
blocks are left unfractured, while b2 � n are fractured by
copying scaled down versions of the initiator into the
remaining blocks, thus creating the generator (Figure 1b).
The generator is then applied onto itself in successive
iterations creating a sequence of hierarchically fractured
patterns (Figures 1a–1f). The spatial locations of the
fractured and unfractured blocks can be selected determin-
istically (as was done here), or randomized at each iteration
level.
[11] The number-length distribution of the fractures in

this fractal model is given by

Nf ¼ 2 b� 1ð Þ b2 � n
� �i¼ 2 b� 1ð Þl�D ð2Þ

where Nf is the number of fractures of length l = 1/bi and D =
log(b2 � n)/logb. Had we started with an initial length of l
instead of unity, the lengths in equation (2) would scale as
l/bi instead of 1/bi. The term 2(b � 1) in equation (2)
describes the number of elements in the initiator. Since the
embedding Euclidean dimension is two and the initial
subdivision is at 90�, fractures may form in only two
directions. In each direction, the fractures divide the entire
length of the embedding surface into b parts, and hence the
number of fractures formed in each direction is b � 1. The
term (b2 � n)i in equation (2) determines the number of
blocks that are fractured at each scale, thereby giving the
pattern its fractal character. Equation (2) holds for any set of
b and n values. It even works if the fractures are randomly
oriented and their centers distributed at random.
[12] For our particular model, b = 2, n = 1, D = log 3/log

2 = 1.585, and i = 1–6 (Figure 1 shows the initiator and the
resulting fracture patterns for iterations 1 through 5). Since
D is independent of i, all of the patterns have the same
fractal dimension. Using equation (2) it can be shown that
the negative slope of the fracture number versus length plot
on a log-log scale yields the exact theoretical fractal
dimension. In the limit, i ! 1, the negative slope of the
cumulative fracture number versus length plot also yields
the theoretical fractal dimension [Roy, 2006].

2.2. Analytical Box Counting

[13] The box-counting technique for determining the
fractal dimension involves overlaying the pattern under
investigation with a sequence of grids, each with a different
cell size, r, and counting the number of occupied cells, N.
This procedure can be performed both analytically and
numerically. In this section, an analytical expression is
developed for estimating Db that allows for a box-counting
scale factor, b, that is different from the scale factor of the
underlying fractal lattice, b.
[14] We begin by constructing a synthetic fracture pattern

to a given i level, imax, with parameters b and n. We then
overlay smaller and smaller square grids of length r such
that r = b�j, where j is the box-counting iteration level. If
b = b, then j = i and jmax = imax, where jmax is the
maximum number of box-counting iterations. The mini-
mum grid size is then given by rmin = lmin = 1/bimax = 1/
b jmax, where lmin is the smallest fracture length in a
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particular pattern. Note that this length is also the smallest
fractal element in the pattern. However, if b < b (as is
usually the case), then j > i and the limiting box size at
which fractures can no longer be discerned will be larger
than rmin = 1/bimax+1 by an infinitesimally small amount. In
this case, jmax = INT[(imax+1)log(b)/log(b)], where INT is
a function that rounds a real number to the nearest integer.
[15] Equation (1), subject to the limiting values of rmin

discussed above, can be used to evaluate the box counting
fractal dimension of any synthetic fractal fracture pattern
constructed with varying values of b, n and i, using any
value of 1 < b � b. For example, analytically box counting
a fractal fracture pattern of b = 2, n = 1, and i = 5 (see
Figure 1f) using b = 1.1, requires a minimum grid size of
rmin = 1/b jmax = 1/1.136 to confirm that the smallest fracture
length present is lmin = 1/bimax = 1/25. In addition to

correctly identifying lmin, this analytical approach also
yields a Db value of 1.585 which is identical to the
theoretical fractal dimension computed previously for this
pattern.

2.3. Improved Numerical Box-Counting Algorithm

[16] The commercially available Benoit software (http://
www.trusoft-international.com) is widely used for numeri-
cal box counting and enables the user to rotate the boxes
and set b to a very small noninteger value >1 so that a large
number of cell sizes can be generated. Thus it incorporates
both the box rotate and box flex algorithms in finding the
minimum number of occupied boxes for any given cell size.
[17] Within the Benoit platform, one can manually ‘‘turn

off’’ points on the log-log plot so that the regression line is
fitted to a subset of the data at the user’s discretion. For our
purpose, the side length of the largest box was fixed at 1=2

Figure 1. Construction of a deterministic Sierpinski lattice with b = 2 and n = 1, (a) basic template i = 0
with two fractures of length 1, (b) i = 1, addition of fractures of length 1/2, (c) i = 2, addition of fractures
of length 1/4, (d) i = 3, addition of fractures of length 1/8, (e) i = 4, addition of fractures of length 1/16
(f) i = 5, addition of fractures of length 1/32.
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the width or length of the map, whichever was smaller. This
ensured that r < rmax. The scaling factor of the box sizes was
set at the smallest available value (b = 1.1), so that the
number of box sizes (data points) was maximized in each
case, thus generating a robust data set. The grid was rotated
in 1� increments between 0 and 90� so that the algorithm
determined the minimum Noccupied, required by Hausdorff’s
[1919] boundary condition, from a large array of data points
(90�/1� = 90) for each box size.
[18] The six synthetic patterns in section 2.1 were box

counted in the Benoit platform and it was found that none of
these fractal patterns yielded a straight line relationship
when plotted on a log-log scale (e.g., Figure 2). This result
is because no new elements are revealed and counted in the
box counting algorithm when the box size r becomes
smaller than the smallest fractal fracture element present.
As a result, the Noccupied versus r relationship deviates from
its theoretical straight-line behavior on a log-log scale and
becomes curvilinear. Therefore fitting a straight line to the
entire range of data points returns a spurious fractal dimen-
sion and may further give the impression that the pattern
under investigation is not a true fractal. A straight line, the
slope of which gives the true fractal dimension of the
pattern, should only be fitted to those data points for which
r is larger than (or equal to) rmin. As discussed in section 2.2,
when b < b the limiting box size at which boxes appear
unfilled is given by rmin = 1/b jmax. Since both b and jmax
are known, those points for which r < rmin are easily
‘‘turned off’’ in the plot (Figure 2), thereby yielding a better
estimate of the true fractal dimension.
[19] Although rmin is known for the synthetic fractal

fracture networks, it is unknown for natural patterns. There-
fore a method for estimating a proxy value for rmin needs to

be developed. Consider a linear regression equation fitted to
log(Noccupied) versus log(r) data by the method of least
squares. The standard deviation of the slope, s, is estimated
by [Snedecor and Cochran, 1989]

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1

yk � ŷkð Þ2

v� 2ð Þ
Pn
k¼1

x2k

vuuuuut ð3Þ

where yk is observed log(Nobserved), ŷk is predicted
log(Nobserved), xk = log(r), and n is number of observations.
For data points in the range 0 < r < rmin, s decreases
dramatically as r ! rmin. This relationship is because yk !
ŷk in the numerator of equation (3) as r values < rmin are
sequentially eliminated, while the increase in s due to the
small reduction in n (when n 	 2) is minimal. In contrast, s
gradually increases as r ! rmax for data points in the range
rmin < r < rmax. This relationship is because (n � 2) ! 0 in
the denominator of equation (3) as r ! rmax, while there is
minimal change in the overall goodness of fit determined by
the numerator. These two competing relationships result in a
minimum in the s versus r function at rmin that can be
identified by the condition ds/dr ! 0.
[20] For each pattern, s from a linear regression equation

fitted to the log(Noccupied) versus log(r) plot, was noted in a
systematic manner for points ‘‘turned off’’ at increasing r
values. In some cases, because of statistical fluctuations in
the data points, the ds/dr function sometimes jumped back
to a small nonzero value after initially reaching a ‘‘local’’
zero. However, these local zeros never persisted beyond two
consecutive r values. Therefore ds/dr ! 0 was identified by
the ds/dr function remaining at zero for at least three
consecutive r values (Figure 3). This condition defines the
proxy rmin value denoted by rcutoff (Figure 3). All box
counting data points for which r < rcutoff were then excluded
from fitting the regression line in the Benoit software.

3. Application to Synthetic Fractal Fracture
Patterns

[21] The improved box counting algorithm described
above was applied to the six synthetic fractal fracture
patterns generated in section 2.1 (i.e., b = 2, D = 1.585,
i = 1–6) to test how good an estimate it provides of the
analytical parameters, rmin and Db, when rcutoff is used as the
cutoff on the log(Noccupied) versus log(r) plots. The resultant
rcutoff values were regressed against the known rmin values
yielding the equation y = 0.603x + 8.602, with 5 degrees of
freedom and a coefficient of determination, R2, of 0.984.
This analysis demonstrates a very strong positive associa-
tion between the proxy, rcutoff, and known rmin values that
deviates from a strict 1:1 relationship. We shall show that
this deviation had virtually no impact on the resulting
estimates of Db.
[22] The variation of Db values estimated considering the

whole range of data points, and following truncation based
on the rmin and the rcutoff values, with i, for the synthetic
fractal fracture patterns described in section 2.1 is shown in
Figure 4. From Figure 4, it can be seen that Db computed
using the whole range of r values increases systematically

Figure 2. Noccupied (number of occupied boxes) versus r
(box size) for synthetic pattern with b = 2, n = 1, i = 4
including the whole range of data points (s = 0.825) and
those for which r < rmin were ‘‘turned off’’ (s = 0.076).
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with increasing i, while consistently underestimating the
theoretical D value. The associated error bars are relatively
small and are consistent over the whole range of i. This
result is because the same number of data points was used in
the best fits regardless of the iteration level. On the other
hand, the Db obtained by not considering the r values
smaller than rmin and rcutoff, respectively, stabilize at i = 3
and approximate the theoretical D value of 1.585. The error
bars around these Db values become smaller with increasing
i, which happens because the number of points used for
calculating the slope of best fit increases with the iteration
level, i.e., the error associated with the estimates increases
as the rmin and rcutoff values increase.
[23] The Db values determined using the rmin and the

rcutoff truncation points were almost identical for i 
 3
(Figure 4). However, both values resulted in a slight
overestimate of the theoretical D value. While the reason
for this bias is unclear, the magnitudes of the errors it
produced were very small compared to those introduced by
estimating Db over the whole range of r (Figure 4). For i > 3
the modified box counting algorithm yielded estimates of
Db within �2.2% of the known theoretical value.
[24] In general, these results indicate that using rcutoff in

place of rmin does not influence numerical box-counting
estimates of the theoretical D value. Therefore rcutoff may be
used instead of rmin for evaluating the box-counting fractal
dimension in the case of natural fractures, where a value for
the latter is not normally available. Fracture lengths in
natural networks commonly range over 1 or 2 orders of
magnitude [Barton, 1995]. This size range is important
because starting at i = 4, the lengths of our synthetic
fractures were distributed over 2 orders of magnitude
(lmax = 1 and lmin = 1/bi = 1/24 = 0.0625). Thus the
improved box-counting method should also work well in
the case of natural fractures since they have the same
relative length ranges as the synthetic patterns.

4. Application to Natural Fracture Networks

[25] Walsh and Watterson [1993] and Gillespie et al.
[1993] have reported curvilinear box-counting plots for
natural fracture networks similar to Figure 2 for our syn-

thetic fractal fracture pattern. Furthermore, a close exami-
nation of the box-counting plots published by Zhang and
Sanderson [1994] and Barton [1995] shows that they do not
really fall on straight lines. The observed curvature raises
questions about the fractal nature of these fracture patterns,
and invites further investigation of natural networks using
our modified box-counting algorithm. To facilitate this
investigation, we selected 24 natural fracture patterns for
analysis from Odling [1997] and Barton [1995].

4.1. Analysis of Odling’s [1997] Maps

[26] One detailed natural data set is a suite of 7 nested
fracture patterns mapped in the same area of the Hornelen
basin, Norway by Odling [1997]. Each map is a subset of
the larger area [see Bour et al., 2002, Figure 1] and is
mapped from a lower elevation relative to the ground
surface such that it represents a limited scale range of joint
trace lengths controlled by the image resolution. The
original 7 maps, received as encapsulated postscript files
from Dr. Noelle Odling, were converted into bitmap images
at 500dpi resolution using Adobe Illustrator. If the 720 m �
720 m pattern is self-similar, then all of the maps should
have the same fractal dimension because one is essentially a
scaled down version of the other.
[27] The rcutoff and Db parameters were evaluated for this

data set using the modified box-counting algorithm. The
former parameter, which is an estimate of the average
minimum spacing between fractures in a natural pattern,
changed systematically with the resolution (Table 1). It may

Figure 3. Determination of proxy rmin (rcutoff) using ds/dr versus r for a synthetic pattern with b = 2, n =
1, i = 4 (theoretical rmin = 63.23) and a natural fracture pattern (map g from Barton [1995]). The location
of rcutoff is indicated by the vertical line for each case.

Table 1. Fractal Parameters for Odling’s [1997] Mapsa

Map
Map
Name Area Scale rcutoff, m Db Dc

1 horn_ya 18 m � 18 m 1:102 0.35 1.80 ± 0.05 1.80 ± 0.10
2 horn_yb 55 m � 55 m 1:313 0.81 1.82 ± 0.04 1.77 ± 0.08
3 horn_yc 90 m � 90 m 1:511 1.33 1.82 ± 0.05 1.80 ± 0.05
4 horn_sa 90 m � 90 m 1:511 1.33 1.81 ± 0.05 1.80 ± 0.10
5 horn_sb 180 m � 180 m 1:1023 2.4 1.82 ± 0.04 1.82 ± 0.10
6 horn_sc 360 m � 360 m 1:2045 3.62 1.84 ± 0.04 1.85 ± 0.10
7 horn_sd 720 m � 720 m 1:4091 7.25 1.84 ± 0.04 1.88 ± 0.10
aProxy rmin (rcutoff), modified box-counting dimension (Db), and capacity

dimension (Dc) [Bour et al., 2002].
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be noted here that, given the fact that map 4 was photo-
graphed from a higher elevation than map 3, it is expected
that the latter should yield a smaller rcutoff value in meters.
However, since a higher resolution camera was used in the
case of map 4 as compared to map 3, this change compen-
sated for the height effect (N. Odling, personal communi-
cation, 6 March 2006).
[28] Estimates of the box-counting fractal dimension, Db,

varied from 1.80 ± 0.05 at a scale of 1:102 to 1.84 ± 0.04 at
a scale of 1:4091 (Table 1). Since there were no statistical
differences between the different estimates of Db at the 95%
confidence level (i.e., p < 0.05) we can conclude that the
fractal dimension of this network was constant throughout
the different scales. Assuming that all maps come from the
same fractal pattern, their combined box-counting results
should plot as a single power law relation described by the
equation Nmap = crm

�Db, where rm is r expressed in terms of
meters and c is a constant. The Noccupied versus r data from

all 7 maps were converted to meter scaling and plotted on a
single log-log graph (Figure 5). The rm values were com-
puted using the expression rm = rpix � (side length of map
area in m)/3473, where rpix is r in terms of pixels, and 3473
is the length of the entire map in pixels. The Noccupied values
were accordingly adjusted using Nmap = Noccupied � [720/
(side length of map area in m)]1.82, where 720 is the length
of the largest map (in meters) and 1.82 is the fractal
dimension for the pattern computed by averaging the Db

values in Table 1. The points from all the maps encompass a
scale range of more than 3 orders of magnitude. Using this
approach, Figure 5 shows in a very convincing manner that
the Hornelen basin fracture pattern is a fractal over at least 3
orders of magnitude.
[29] Odling’s [1997] nested fracture maps were

previously analyzed for their fractal characteristics by Bour
et al. [2002]. Bour et al. computed the capacity dimension,
Dc (equivalent to Db, but estimated using an alternative

Figure 4. Variation of Db with i for synthetic pattern b = 2, n = 1, Db (±95% confidence intervals)
computed using whole range of box sizes, box sizes larger than the rmin, and box sizes larger than rcutoff.

Figure 5. Nmap versus rm for maps 1–7 from Odling [1997].
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technique) at each scale. Comparing our estimates of Db

with those for Dc from Bour et al. [2002] in Table 1, it can
be seen that Db lies within a narrower range and exhibits
less variation than Dc in terms of the 95% confidence limits.
This increase in precision and accuracy suggests that our
improved box-counting method is better able to identify the
existence of an underlying fractal pattern over multiple
scales than capacity dimension analyses.

4.2. Analysis of Barton’s [1995] Maps

[30] Using the modified box-counting approach, we rean-
alyzed a series of 17 previously published fracture trace
maps from a variety of tectonic settings, lithologies and
scales [Barton, 1995]. All maps were scanned at 500 dpi in
B/W line mode using a standard scanner into Photoshop.
They were subsequently rotated and cropped in the shape of
a rectangle so as to exclude any blank ‘‘unmapped’’ areas
while including all of the mapped fractures. Box-counting
analyses of different digitized versions of these maps have
been reported previously by Barton [1995] and Berkowitz
and Hadad [1997]. In this section, we present our results

and compare them with those of Barton [1995] and
Berkowitz and Hadad [1997].
[31] A plot of the estimated rcutoff values for these maps

versus the smallest fracture lengths (lmin) reported by Barton
shows two important characteristics (Figure 6). First, it
displays the scale range of the maps: from microscopic
(map q) to that of transform faults (map p) covering over
8 orders of length magnitude. Second, it shows that rcutoff
was positively correlated with the lmin parameter (R2 =
0.961), such that the former can be a very good estimate of
the latter. Since the regression equation reported in Figure 6
is based on multiple data sets, has a very high R2 value, and
covers such a wide range of scales, it can be used with
confidence for interpolation purposes. It can also be easily
rearranged and used by researchers to estimate rcutoff, thus
eliminating the need to perform multiple fits for the ds/dr!
0 analysis (see Figure 3) in the case of fracture networks for
which lmin is known or has been measured independently.
[32] The Db values estimated using our modified box-

counting method ranged from 1.56 ± 0.02 to 1.79 ± 0.02
(Table 2). Comparing these values with those of Barton’s
[1995] and Berkowitz and Hadad’s [1997], one can see that

Figure 6. Relationship between lmin and rcutoff for Barton’s [1995] maps.

Table 2. Fractal Parameters for Barton’s [1995] Mapsa

Map Location lmin, m rcutoff, m Db Db Whole Db Barton Db B&H

a Yucca Mountain, Nevada 0.25 0.32 1.64 ± 0.01 1.55 1.52 1.85 ± 0.02
b Yucca Mountain, Nevada 0.5 0.74 1.56 ± 0.02 1.45 1.38 1.74 ± 0.03
c Yucca Mountain, Nevada 0.39 0.36 1.62 ± 0.02 1.54 1.50 1.87 ± 0.02
d Yucca Mountain, Nevada 0.59 1.43 1.71 ± 0.01 1.61 1.61 1.71 ± 0.03
e Yucca Mountain, Nevada 0.23 0.4 1.74 ± 0.02 1.56 1.59 1.91 ± 0.02
f Yucca Mountain, Nevada 0.24 0.47 1.64 ± 0.03 1.54 1.54 1.87 ± 0.02
g Yucca Mountain, Nevada 0.2 0.17 1.77 ± 0.02 1.65 1.70 1.98 ± 0.00
h Cedar City, Utah 1.7 1.56 1.62 ± 0.02 1.55 1.50 1.90 ± 0.02
i Lannon, Wisconsin 0.09 0.2 1.75 ± 0.04 1.63 1.60 1.91 ± 0.02
j Morrison, Colorado 0.12 2.35 1.79 ± 0.02 1.67 1.50 1.89 ± 0.03
k Valley of Fire, Nevada 0.2 0.36 1.78 ± 0.02 1.68 1.58 1.88 ± 0.02
l Mexican Hat, Utah 0.08 0.15 1.66 ± 0.02 1.58 1.52 1.93 ± 0.02
m Yucca Mountain, Nevada 53 306.92 1.75 ± 0.06 1.49 1.49 1.95 ± 0.01
n Juneau, Alaska 0.4 1.28 1.69 ± 0.02 1.50 1.48 1.82 ± 0.02
o Goldhill, Colorado 26 46.16 1.70 ± 0.02 1.61 1.52 1.92 ± 0.01
p South Atlantic seafloor 99000 103000 1.63 ± 0.02 1.47 1.32 1.77 ± 0.04
q Timmins, Ontario 0.0005 0.000412 1.69 ± 0.03 1.47 1.58 1.88 ± 0.01
aReported lmin, proxy rmin (rcutoff) and box counting fractal dimensions evaluated using the modified box-counting technique (Db), using the whole data

range of data points (Db whole), by Barton [1995] (Db Barton), and Berkowitz and Hadad [1997] (Db B&H).
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the former are underestimates while the latter are over-
estimates (Table 2). Table 2 shows that our box-counting
results obtained by not ‘‘turning off’’ the data points for
which r < rcutoff (i.e., considering the whole range of data
points) returned consistently lower estimates of Db, the
magnitudes of which are very similar to those reported by
Barton [1995]. In fact, for maps d, f, and m the values are
exactly the same. This clearly demonstrates that if the data
points for which r < rcutoff are considered for fitting the
straight line in a box-counting analysis, we end up with less
accurate Db values, even though the R2 values may be high.
[33] The question still remains as to the differences

between our results and those of Berkowitz and Hadad
[1997]. Berkowitz and Hadad suggest that cropping (with
some loss of data) was responsible for their high Db values.

However, similar cropping did not have any significant
effect on Db in the case of our modified box-counting
algorithm [Roy, 2006]. Instead, we suggest that the discrep-
ancy may be related to differences in the map resolution
and/or the scaling factor, b, employed in the two studies.
For instance, one of their digitized maps (map b) was only
128 � 128 pixels, whereas ours was 2063 � 1463. The
lower resolution employed by Berkowitz and Hadad may
have yielded inaccurate box counts for the smallest box
sizes. Furthermore, the larger the b value, the fewer the
number of points on the box-counting curve. Their plot for
map b has only 5 data points whereas in our modified box-
counting plot there were 28. This difference is because the
scaling factor of the box sizes was b = 2 in their analyses as
opposed to b = 1.1 in ours. The importance of a robust data
set cannot be overemphasized since the use of a just a few
points to fit a straight line has already met with criticism and
raised doubts about the fractal nature of the fracture network
under investigation [e.g., Bonnet et al., 2001].
[34] The Db estimates from the modified algorithm show

in general that, the greater the complexity of the network,
the greater is the box-counting dimension (Figure 7). This
observation may in turn be related to physical properties of
the fractured media. For example, recent studies based on
percolation theory suggest that the magnitude of the Db

value controls the extent of fracture connectivity in a
network [Bour and Davy, 1997, 1998; Berkowitz et al.,
2000]. Higher Db values imply a greater degree of fracture
connectivity and thus increased propensity for fracture flow
and the transport of miscible or immiscible chemicals
[Acuna and Yortsos, 1995; Doughty and Karasaki, 2002].
In this context, small differences in the magnitude of Db can
have a large impact on fracture connectivity and flow
processes, so it is important that this parameter be estimated
as accurately as possible.

5. Conclusions

[35] Analytical and numerical box-counting analyses of
synthetic fractal fracture patterns facilitated the develop-
ment of a proxy rmin parameter known as rcutoff. If points on
the log(Noccupied) versus log(r) plot for which r < rmin or
rcutoff are ‘‘turned off,’’ then the remaining points can be
fitted by a straight line whose negative slope estimates the
fractal dimension of the pattern. The results from these
analyses demonstrate that our modified box-counting tech-
nique is accurate and precise, and can be used with any
fracture network to check for fractal scaling, and if appro-
priate to evaluate the smallest fracture spacing and fractal
dimension.
[36] Our analyses of Odling’s [1997] maps from the

Hornelen basin in Norway demonstrate that natural fracture
patterns can indeed be fractals and repeat themselves over at
least 3 orders of magnitude. Our analyses of Barton’s
[1995] maps indicate that the rcutoff parameter is also an
excellent predictor of the reported minimum fracture length.
Our estimated Db values were very different from the values
reported both by Barton [1995] and Berkowitz and Hadad
[1997] for the same data sets. For each of the 17 maps
analyzed, our ‘‘improved’’ Db value was consistently
greater than that of Barton’s [1995] and less than that of
Berkowitz and Hadad’s [1997]. The modification in the

Figure 7. Barton’s [1995] maps (top) b and (bottom) j
with lowest and highest Db values respectively, showing
differences in fracture complexity (adapted from Barton and
La Pointe [1995] with kind permission of Springer Science
and Business Media).
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box-counting algorithm employed by us is the reason for the
difference between our results and those of Barton’s [1995].
On the other hand, differences in map resolution and the
box size scaling factor appeared to be the main reasons for
our values being different from those of Berkowitz and
Hadad [1997].
[37] Although many workers have argued over the fractal

nature of fractures, some networks can be truly self-similar
such that their geometries are described by a single fractal
dimension. The magnitude of Db controls the percolation
and connectivity properties of fractured media. However, it
should be noted that fracture networks with the same fractal
dimension often look very different from each other. There-
fore future research is suggested on the application of
additional quantitative parameters, such as lacunarity
[Turcotte, 1997], to the characterization of natural fracture
patterns.

[38] Acknowledgments. We would like to thank Noelle Odling for
kindly providing us with the original encapsulated postscript files of the
Hornelen fracture maps which have been used in our analysis in section 4.1.
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