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SYNOPSIS. Stress involves real or perceived changes within an organism or in 
the environment that activate an organism�s attempts to cope by means of 
evolutionarily ancient neural and endocrine mechanisms. Responses to acute 
stressors involve catecholamines released in varying proportion at different 
sites in the sympathetic and central nervous systems. These responses may 
interact with and be complemented by intrinsic rhythms and responses to 
chronic or intermittent stressors involving the hypothalamic-pituitary-adrenal 
axis. Varying patterns of responses to stressors are also affected by an animal=s 
assessment of their prospects for successful coping. Subsequent central and 
systemic consequences of the stress response include apparent changes in 
affect, motivation, and cognition that can result in an altered relationship to 
environmental and social stimuli. This review will summarize recent 
developments in our understanding of the causes and consequences of stress. 
Special problems that need to be explored involve the manner in which 
ensembles of adaptive responses are assembled, how autonomic and 
neurohormonal reflexes of the stress response come under the influence of 
environmental stimuli, and how some specific aspects of the stress response 
may be integrated into the life history of a species. 

   

                                 

 
INTRODUCTION 

 

Stressors are real or perceived challenges to an organisms=s ability to meet its real or 
perceived needs. In most vertebrates the responses that have evolved to cope with 
such challenges are constrained by a threshold for detection of challenge, for attention 
based on real or perceived relevance, and for capacity to respond at any particular 



level once the challenge is detected. Depending on the intensity and timing of the 
stressor, each of these can vary independently.  

Stressors that challenge homeostasis, often regarded as the most urgent of needs, are 
the best known. When an organism=s competence to maintain homeostasis within a 
specific range is exceeded, responses are evoked that enable the organism to cope by 
either removing the stressor or facilitating coexistence with it (Antelman and 
Caggiula, 1990). While many stressors can evoke dramatic neural and endocrine 
responses, a more modest or �subclinical� response may be exhibited in response to 
milder stimuli. These responses may build on or extend homeostatic mechanisms or 
they may be more or less tightly linked to homeostatic responses in a hierarchical 
manner creating a functional continuum. For example, such a hierarchical system was 
described for thermoregulation in mammals by Satinoff (1978) in which more 
recently evolved regulatory mechanisms are invoked when more conservative ones 
are unable to restore balance. This continuum is expressed in numerous physiological 
responses, often measured as an inverted �U� (Sapolsky, 1997). Although the 
inverted-U physiology of stress hormones such as corticosteroids presents the 
conundrum of opposing actions at different dosages, progress over the last twenty 
years has elucidated some of the physiology involved. For example, both membrane-
bound (Orchinik et al., 1991) and two types of intracellular receptors (Ruel et al., 
1987) help explain how acute glucocorticoid responses may differ from long-term 
responses. Membrane receptors acting by means of G proteins stimulate more rapid 
cellular response than classic receptors that act as transcription factors: type I ( 
mineralocorticoid or MR) and type II (glucocorticoid or GR) receptors. Based on the 
differences in affinity and capacity, type II receptors only become bound during 
circadian or stress-evoked peaks in plasma glucocorticoids. We can now envision how 
a gradual succession from low levels of corticosteroids binding to type I receptors 
turns the corner on the �U� as progressively higher titers bind more effectively to 
type II receptors (Ruel et al., 1987). Basal levels of glucocorticoid (involving type I 
receptors) are �proactively permissive� for defense mechanisms at tonic and 
circadian levels, while �reactively suppressive� actions are invoked at higher, stress-
induced levels of glucocorticoid (involving type II receptors) and help protect the 
organism from a damaging �overcompensation� that elevated levels of hormone 
might induce (Meijer et al 2000). Many if not all of the hormones involved in stress 
responses possess, in addition to their direct effects, pleiotropic or collateral 
consequences that may or may not reinforce the direct or primary effect. It is likely 
that many of these other effects can provide the basis of mechanisms that might serve 
other, unrelated adaptive needs.  

At one level, coping with challenge is what life is all about. Stress is inevitable, and as 
Hans Selye emphasized, a necessary part of life (1976). There is, however, a problem 



defining stress as coping with a challenge. The implication that stress is something to 
be avoided is a legacy from the clinical perspective dominated by the mandate to 
remediate dysfunction, including the stress-evoked �diseases of adaptation.� Selye 
(1976) himself tried to correct this one-sided over-generalization by distinguishing 
�eustress� from �distress,� but the legacy lives on. The perception that stress 
responses, by reallocating resources from growth to coping with a challenge, are �not 
good,� suggests that stress facilitated coping is forced upon organisms by occasional 
unfortunate circumstances. However, organisms exist in continually changing 
environments and their very existence can be construed as an expression of that 
coping. The mechanisms that have evolved to cope with change are organized within 
a nested hierarchy. The most conservative functions deal with homeostasis, the most 
ancient and urgent of needs. But homeostasis is not an organism�s only need, and 
Bruce McEwen�s succinct definition is an excellent beginning to a fuller appreciation 
of that fact: �Stress may be defined as a threat, real or implied, to the psychological 
or physiological integrity of an individual� (McEwen,1999a:1).  

Survival in the changing external environment depends on the flexible stability of an 
organism�s internal environment, which is itself always in flux. The flexibility is 
attributable to the fact that physiological functions can proceed effectively within a 
range of more or less tolerance for deviation from their respective setpoints. The 
necessity for organisms to attain some measure of independence from the vagaries of 
the external environment was described by Claude Bernard in the 19th century. 
Bernard recognized that the stability of the milieu interieur depended on ensembles of 
compensating mechanisms (Bernard, 1878). Fifty years later, Walter Cannon (1929) 
introduced the term �homeostasis� to describe the dynamic, interactive nature of 
these mechanisms in maintaining the stability of the internal environment. He further 
identified the autonomic nervous system (ANS) as an orchestrator of responses when 
an organism is suddenly challenged. The famous �fight or flight� response is one 
such ensemble of responses. Within a decade, Hans Selye shifted attention from the 
ANS to the adrenal glands by identifying a General Adaptation Syndrome (GAS) in 
which the initial sympatho-adrenomedullary system (SAMS) response to an 
emergency was augmented by an hypothalamic-pituitary-adrenal (HPA) response as 
the body mobilized resources to cope with a sustained stressor (Selye, 1936; 1937). 
This was of particular interest to medical science as the coping mechanisms of the 
stress response became seen, over time, as potentially deadly �diseases of 
adaptation.� Here, organs fail as their resources become reallocated to deal with a 
continuing stressor, possibly leading to exhaustion and death (Selye 1946). By the 
early 1970's, stress was no longer viewed mainly as a threat to survival, and Seymour 
Levine (1971) was able to state that the normal expression of adaptive behavior 
depends upon some optimal level of stress.  



Stressors may be acute, sequential, episodic, chronically intermittent, sustained, or 
anticipated (Sapolsky et al. 2000). Alternative strategies may be evoked by the 
organism�s perception or experience of their effectiveness in coping. The clinical 
view of the stress response was that it was largely nonspecific, but it has become clear 
that many stressors evoke specific combinations of physiological and behavioral 
responses depending in part on their respective potentials for effective coping in a 
given context. Stressors perceived as uncontrollable will evoke different ensembles of 
responses than those believed to be controllable (see for example, Cabib and Puglisi-
Allegra 1996, Huether 1996). Stressors also can be additive, creating the appearance 
of a trivial stressor having a disproportionate effect. The endocrine environment may 
also be a significant variable for the action of stress hormones.  

The present understanding of stress and behavior has been nicely summarized in 
several reviews. In the early 1970's, Mason (1971) called attention to the potency of 
psychological stimuli in the stress response. A large literature has emerged since 
Christian=s original insights in the 1950's and 1960's that at high densities, mammals 
manifest enlarged adrenals indicative of increased stress and also showed increased 
mortality and reduced reproduction. These �psychoendocrine� effects reinforced 
perceptions of stress in terms of Selye�s (1946, 1976) �General Adaptation 
Syndrome� (see Christian & Davis 1964, Christian 1980). Lee and McDonald (1985) 
reviewed this and related literature and appealed for additional research and more 
direct evidence for the effects of stress in natural populations. Axelrod and Reisine 
(1984) summarized the multiple regulatory mechanisms and interactions of stress 
hormones, identifying corticotropin (ACTH) as a principal nexus; Goldstein (1987) 
provided a helpful collation of stress-induced actions of the sympathetic nervous 
system; Johnson and colleagues (1992) reviewed mechanisms with an emphasis on 
the dynamic nature of endocrine and behavioral mechanisms. Neural pathways were 
recently reviewed by Van de Kar and Blair (1999) who pointed that prolactin, 
oxytocin, and renin have been neglected as stress-sensitive endocrine systems because 
they are coordinated by slightly different neural pathways. Saavedra (1999) recently 
reviewed evidence of a widespread role for angiotensin in modulating stress and 
cortocotrophic releasing hormone (CRH), which has significant stress response 
coordinating functions aside from its triggering a corticosterone response (e.g. 
Leshner, 1978; Koob, 1991)  

A review of the diversity of glucocorticoid actions in the stress response by Sapolsky, 
Romero, and Munck (2000) provides a valuable synthesis of the seeming 
contradictory functions of glucocorticoids. The permissive actions of glucocorticoids 
that are based on tonic levels associated with homeostasis are seen to be distinct from 
the suppressive and stimulatory actions that result from stress-induced elevation of 
circulating levels. Sapolsky et al. also express an appreciation for the ethological 



perspective in developing what they have termed the �preparative� functions of 
glucocorticoids, and caution laboratory researchers to be sensitive to the organism�s 
perspective of what constitutes a stressor.  

 
TABLE 1 SEE BELOW 

 

Understanding the causes and consequences of stress in nonhumans has taken on an 
urgency of its own as a result of a growing concern for animal welfare as well as a 
search for more robust and relevant animal models. This interest in the role of stress in 
life history has proven a valuable counterbalance to well-intentioned perceptions by 
scientists and citizens who too frequently view stress in a stereotypical way as 
necessarily deleterious. Ignorance of the real needs of the animals (echoing 
Sapolsky�s appeal for appreciation for the unique needs of the subject) is most 
obvious when well cared for animals fail to thrive or reproduce. Further, freedom 
from stress attainable in the laboratory is as serious as inadvertently introduced stress 
in compromising the external validity of findings. Attempts to bring perspective to 
this issue are proliferating (for example, Broom and Johnson 1994, SCAW 2000) 
some of which target nonmammalian vertebrates (e.g., Schaeffer et al., 1992; 
Warwick et al., 1995, Greenberg 1994). Other efforts try to deal with issues of 
definition and clarity. For example, Moberg (1999) has attempted to identify the 
boundary between stress and distress at a point where the cost of coping impairs 
functions critical to well-being.  

 
 

COMPLICATIONS IN DEFINING CAUSE AND CONSEQUENCE:  

LESSONS FROM ETHOLOGY 

 
Stress researchers and physiological ethologists often emphasize that stress is evoked 
by a perceived challenge to the status quo as well as a physical experience. Since we 
now more fully understand that not all change is bad and not all stressors are 
deleterious there is renewed attention to the relationships between stress and emotion. 
The now distant dispute between proponents of the James-Lange theory of emotion 
(that the experience of an emotion was secondary to the physiological events) and WB 
Cannon=s view (that physiological changes were subsequent to an emotional 
experiences) persists because, as Leshner (1978) points out, both positions have some 
validity. Leshner=s review of the problem concluded that at least some hormones may 
have a general effect on arousal which then feeds back to evoke enhanced 



catecholamine and glucocorticoid responses. For example, maternal care-giving is 
positively correlated with cortisol levels in humans (Fleming et al., 1987) but may 
also be accounted for by enhanced attention to stimuli. Therefore, endocrine and 
neuroendocrine events proceed in an interdependent manner to regulate multiple, 
variable stress responses, each unique, but influenced by previous events (Summers, 
2001). Taking this a step further, arousal can evoke an emotion which will be tested 
against experience and cognition and then by means of a positive feedback loop can 
lead to progressively more focused expression.  

The hormonal mechanisms responsible for behavioral changes during mild stress are 
rarely obvious, as many stress hormones have structurally-related and biologically 
active counterparts with multiple receptors and receptor subtypes. For example, 
corticotrophin releasing hormone (CRH) and the structurally related peptide urocortin 
act on multiple receptor types to rapidly inhibit feeding. It has is only recently that 
researchers have been able to identify the respective contribution of each peptide and 
receptor type to stress-induced alterations in feeding (Cone, 2000). In some respects 
the selective facilitation or inhibition of normal behavioral patterns evoked by mild 
stress is analogous to �subclinical� symptoms of a disease.  

Indeed, the expression of many behavioral patterns are stress-sensitive in that their 
expression may be secondary to neurotransmitter or hormone-induced increases in 
non-specific arousal and selective attention (see Mason 1968, Nelson, 2000). The 
actions of stress hormones may also be constrained by the activity of other hormones 
and by environmental circumstances. For example, the rapid behavioral (perch-
hopping) response to corticosterone in white-crowned sparrows is influenced by 
photoperiod. During a long-day (breeding) photoperiod, but not short-day (winter) 
photoperiod, corticosterone will increase activity (Breuner & Wingfield, 2000). 
Testosterone is subject to seasonal variation and social dynamics in many species, and 
its activity appears to facilitate or enhance responsiveness to stressors both directly 
and indirectly. Reduced androgen, such as might be seen in subordinate males, 
appears to ameliorate the normal stress-evoking effects of certain stimuli (e.g., 
Greenberg et al., 1984 in the lizard, Anolis). As a female counterpart to the �fight-or-
flight� responses of males, Taylor (et al. 2000) proposed a �tend-and-befriend� 
response to stress in females where (for example) the effects of oxytocin are 
moderated by the presence of estrogen and endogenous opioids. In this response, 
female mammals under stress will manifest enhances caregiving and attachment 
behavior.  

Stress-sensitive Behavior  

There is a great diversity of adaptive behavioral patterns that appear to have built on 
specific elements of the stress axes (Table 1). No tabulation can be exhaustive but the 



one we have assembled underscores the diversity of effects at different levels of 
specificity. It is a continuing challenge to distinguish primary from secondary 
behaviors: Are the effects of stress on behavior a consequence of hormones acting 
directly on specific neural structures mediating actions? Might they be collateral 
actions on secondary targets? Or might the manifest behavioral pattern be secondary 
to enhanced attention, arousal, cognitive activity, or even sensitivity of sensory 
receptors? Collateral effects are particularly rich sources of alternative behavioral 
patterns. For example, releasing factors such as corticotropic releasing hormone 
(CRH) (Koob et al., 1993) and pituitary hormones frequently have multiple target 
tissues. CRH has many behavioral effects mediated through CNS receptors in addition 
to its central role in simulating pituitary ACTH secretion and indeed, CRH may 
arguably be the principle coordinating regulator of central stress responsiveness, 
influencing central serotonergic (Price et al., 1998; Lowry et al., 2000) and 
catecholaminergic activities (Dunn and Berridge, 1987; Curtis et al., 1997). CRH is 
also believed to have direct effects on behavioral patterns such as locomotion (Lowry 
and Moore, 1991), startle responses (Pelton et al., 1997), and learning (Radulovic et 
al., 1999; Wang et al., 2000). Significant direct central (extra-adrenal) effects of 
ACTH are also well known (Leshner, 1971). Thus, simply administering exogenous 
corticosterone as a way of determining its effects on behavior is complicated by the 
fact that while it may act directly on a target tissue, it may also be acting indirectly by 
means of feedback suppression of CRF or ACTH (Brain, 1972). In addition, as 
mentioned above, the same hormone can have opposite effects when present at 
different absolute amounts or temporal regimens. Opposing actions of adrenal axis 
hormones and central stress peptides stem from an inverted-U dose physiology that is 
a part of a framework of optimal stress response mechanisms (Sapolsky, 1997). Also, 
different receptor types have alternative effects when stimulated by the same hormone 
and different stressors can evoke different patterns of endocrine response. For 
example, the stimuli involved in an aggressive exchange between two males 
competing for social dominance will elicit comparable corticosteroid release in both 
animals, but following such an encounter, the winner will also experience a 
testosterone surge (e.g., Coe et al., 1982 for squirrel monkeys; Greenberg and Crews, 
1990 for lizards). Further, if they continue in a long-term dominant-subordinate 
relationship, the subsequent responsiveness to stress-evoking stimuli will be different 
in the two animals.  

 
 

THE EVOLUTION OF STRESS AND BEHAVIORAL COPING 
MECHANISMS  

 
Autonomic responses are among the richest sources of adaptive behavioral patterns. 
Tightly yoked somatic and autonomic effects involving sympathetic activation and 



occasionally, parasympathetic rebound, have been identified in situations that involve 
frustration or conflict (Morris, 1956). It is reasonable to imagine that in sophisticated 
decision-making organisms such as humans, there is competence to reflect, at least in 
part, on processes that guide the selection of alternative ensembles of adaptive 
pathways such as Afight or flight@ (Cannon, 1929), Aflee or freeze@ (Rand, 1964, for a 
lizard), or �active versus passive coping� (Bandler et al., 2000). Interestingly, in 
humans, there is evidence that at a critical level of acute stress, cognitive mechanisms 
of the prefrontal cortex are suppressed and more rapid, conservative responses are 
invoked (Arnsten 1997, 2000); chronic stress may also work through several other 
long-term mechanisms to impair cognitive function (McEwen and Sapolsky, 1995).  

AIn animals, almost invariably, a change in behavior is the crucial factor initiating 
evolutionary innovation,@ Mayr tells us (1988:408). Also, selection pressures can be 
altered by behavior that modifies the environment in which an animal must survive 
and thrive (see Deacon=s 1997 review of Mark Baldwin). The role of stress in guiding 
the evolution of coping mechanisms cannot be overestimated. It is likely that stress 
responses are a first means of dealing with altered selection pressures caused by the 
inevitable environmental changes organisms are subjected to. A further link is likely 
between the stress-evoked changes in behavior when confronted with novel selection 
pressures and the ultimate changes identifiable as evolutionary innovations which 
seem more abundant in rapidly changing environments (Jablonski & Bottjer 1990, 
Hoffmann & Hercus 2000). As brains change in response to specific selection 
pressures, the larger contexts in which resolutions to act are made involve the systems 
that subsume motivation, affect, and cognition. More conservative coping strategies 
are reasonably mediated by more ancient parts of the brain (Paradiso et al., 1999). 
Candidate mechanisms for the developmental influence of stress on brain and 
behavior, including the effects of corticosteroids impairing the growth of specific 
neural areas (see Thomas and Devenport 1988) and the integrity of the highly plastic 
hippocampus, are now well established (for example, Fuchs & Flugge 1998 and 
McEwen 1999b for recent reviews). Indeed, a major influence of stress on the 
evolution of brain structures that selectively respond to stressful stimuli or are 
activated by stress hormones was suggested by Huether (1996) in his 
conceptualization of a Acentral adaptation syndrome.  

 
 

CONCLUSIONS AND NEED FOR FUTURE STUDY 
 

One of the more striking effects of confronting such a diverse assortment of stress-
sensitive phenomena is vivid sense of the versatility and flexibility of the system. The 
stress response is orchestrated by a deeply embedded, highly conservative sense of 



biological priorities and an impressive economy. By assembling and reassembling a 
relatively small numbere of possible responses into a diversity of new combinations, 
natural selection deals with an almost infinite array of possible challenges. Clearly, 
physiological stress responses need not be manifest as conveniently conspicuous 
behavioral patterns or pathologies to have adaptive significance. As David Goldstein 
(1990) put it, they can be evoked whenever an organism experiences Aexpectations ---
whether genetically programmed, established by prior learning, or deduced from 
circumstances�[that] do not match the current or anticipated perceptions of the 
internal or external environment (p. 243). In addition, the modulation of stress 
responses by perceived control or helplessness (see Cabib and Puglisi_Allegra [1996], 
and see Seligman [1975], Seligman et al., [1975]) allows us to envision how an 
animal�s perception of the prospects for future remediation of a mismatch can 
influence the expression of an appropriate compensating response (Bandler et al., 
2000).  

Stress research is compelling not only as a fascinating puzzle that helps make sense of 
many previously scattered observations, but is also compelling medically and socially. 
Medical researchers (and then the rest of us) began with Selye=s insights about 
diseases of adaptation, the clinical expressions of chronic stress. However, we have 
learned much about developmental neuroplasticity. Early nurturing experiences (Liu 
et al 1997), prenatal stress syndrome, and brief but intense episodes of stress (such as 
childhood abuse), have all been implicated in causing enduring neurological changes. 
In this regard it is significant that a significant number of violent criminals have 
atypical autonomic responses (Raine et al., 2000), often associated with early 
experiences of intense stress. The principal function of stress is protective and many 
elements of the stress response can also be viewed as a kind of cure ��chemotherapy 
without drugs,� in Antelman and Caggiula�s terms-- but sometimes the cure can be 
worse than the disease. This was Walter Cannon=s insight when he wrote that the 
development of pathological functions in a system is quite consistent with its usual 
performance of normal functions.  

The adaptive value of responsiveness to stressors in animals in nature may provide 
invaluable information regarding the dynamics and flexibility of neuroendocrine 
stress responses. Absolute levels of transmitters or hormones may not matter in the 
production of significant and adaptive results. Relative elevation or inhibition 
accruing from previous experience may adjust specific neural centers to produce 
relevant output specifically related to the appropriate environmental context. The 
neural mechanisms for transduction of relevant information are of necessity very 
plastic, with many transmitter, neuromodulator and peripheral hormone systems 
interacting. These systems influence behavioral and physiological stress responses, 
but are also influenced by that output.  



Our goal in this brief review has been more to be provoke than postulate. The 
references selected from the vast literature of overlapping behavioral, neurological, 
and endocrine reports applicable to stress were exemplary, not exhaustive. Many of 
the findings about the reciprocity of behavioral patterns and stress physiology 
underscores the fact that systems usually expressed as an ensemble are often cobbled 
together by multiple selection pressures. A sense of this opens researchers to creative 
hypotheses and the value of the comparative method. By training and disposition, 
researchers apply Occam=s Razor to available evidence no matter how fragmentary, 
but if the prevailing views of mechanisms cannot assimilate or accommodate new 
data, new views must be sought.  

The lesson beyond the obvious one of humility in the face of nature=s imagination, has 
been one of openness to the myriad possibilities for the organization and 
reorganization of the relatively small numbers of ways that hormones, brains, and 
behavior can interact. We have often heard that research has become a more 
collaborative affair. This is the only solution to the problem of the isolation that 
attends explorations of great disciplinary depth. A continuing challenge must be to 
enhance the reciprocal influences of the laboratory and the real world in which traits 
of interest have evolved. This will require renewed efforts at mutual understanding for 
researchers specializing in the unique questions and methodologies of each research 
approach. Efforts must be taken to place the limited validity of highly controlled 
laboratory studies at the service of less exact field research, and to present the insights 
of observers in the real world to bench scientists. In a small way this resembles the 
tension between ideologies of freedom and control that plague all would-be 
collaborative social groups, but the richness of the reward justifies all possible efforts.  
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TABLE 1. REPRESENTATIVE BEHAVIORAL 
RESPONSES TO STRESS 

. 
                                 
     

the original TABLE 1 is below; for an annotated and 
updated document  

(revised as appropriate) click here 

     

                                 

.  

Parameter Response Reference 

AROUSAL/ATTENTION 
 

Epi intensified but does not evoke affect Teichner, 1968 
 

Stress narrows attention onto specific stimuli Teichner, 1968 
 

GC (acute) enhances salience of stimuli  Hayden-Hixson, pers 
comm 

https://notes.utk.edu/bio/greenberg.nsf/63bbb8a8bd4c0eef852563ed0072e463/6cf561b0c64ba7e185256e28005a8eac?OpenDocument�


 

Stress impairs sustained attention Arnsten, 2000 
 

Stress impairs selective attention McEwen et al., 1986 
 

Stress modulates hippocampus and septum to 
effect selective perception (attention) 

Oades, 1979 

 

CRH activates behavior and intensifies response 
to stress independently of HPA axis 

Koob et al., 1993 

 

Excitatory or inhibitory effects of GCs on neurons 
may depend on their state of activation 

Joëls and de Kloot, 1992 

 

AVP associated with "defensive" arousal, 
attention, or vigilance  

Carter and Altemus, 1997 

Sensory 
Thresholds 

CRH facilitates acoustic startle  Koob, 1991 

 

Social defeat diminishes nocioception in mice  Miczek et al., 1982 
 

Handling and species-specific stress-evoking 
odors cause analgesia in rats 

Fanselow and Sigmundi, 
1986 

ACTIVITY 
Locomotor CRH-induced in familiar habitat  Sutton et al., 1982 

 

CRH-inhibited in unfamiliar habitat Britton et al 1982 
 

CRH_induced walking and swimming (newt) Lowry et al., 1996 
 

Feeding and grooming correlated with subsequent 
increase in GC 

Shiraishi et al., 1984 

Dispersal GC/stress involved in seasonal population 
dispersal in birds 

Lee and McDonald, 1985; 
Silverin, 1997; Wingfield 
et al., , 1997 

Exploratory  GC restores exploratory activity eliminated by 
adrenalectomy 

Veldhuis et al., 1982 

Exploratory CRH enhances effects of novelty Koob, 1991 
 

ACTH excitatory with novel stimulus and 
inhibitory with prolonged stimulus 

Oades, 1979 

 

ACTH but not GC impairs habituation to an 
acoustic stimulus and reduces exploration 

File, 1978 

 

Some elements enhanced, others impaired in 
lizards; stress affects ameliorated in castrates 

Greenberg, 1985 

 

GC evokes rapid (nongenomic) locomotor 
response in rats in novel but not familiar cage 

Sandi et al., 1996 

THERMOGREGULATION 
 

Hippocampal GC receptors mediate stress 
responsiveness to novel habitats 

Hiebert et al., 2000 



Diurnal torpor in hummingbird 

COGNITIVE 
Memory and 
learning 

Epi facilitates acquisition Smith, 1973 

 

CRH facilitates acquisition of visual 
discrimination 

Koob, 1991 

 

ACTH facilitates and corticosterone impairs 
imprinting 

Martin, 1978 

 

Melanocortins facilitate habituation (toad) Carpenter and Carr, 1996 
 

Melanocortin enhance learned avoidance and 
approach behavior was contrasted with 
Attenuated learning 

Bohus and de Wied, 1980 

 

Attenuated acquisition and performance of 
learned behavior 

McEwen et al., 1986 

 

Stress facilitates classical conditioning in males 
but not females 

Shors et al., 1992, 2000; 
Wood & Shors, 1998  

 

Stress-facilitated learning depends on stressor 
intensity, duration and context 

Shors and Servatius, 1997 

 

Stress-induced rise in natural benzodiazepine 
levels rise and apparently enhance the inhibitory 
neurotransmitter GABA, preventing retention of 
irrelevant information 

Levine, 1971; Izquierdo 
and Medina, 1991 

SOCIAL DOMINANCE 
 

GC increases submissiveness Leshner and Politch, 1979 
 

Losers of territorial fights become subordinate in 
the lab (lizard) 

Greenberg et al., 1984 

REPRODUCTION 
 

Endorphins block gonadotropin releasing factor 
and CS impairs gonadal responsiveness to 
gonadotropins 

Sapolsky, 1994 

 

CRF inhibits sexual behavior in female rats Sirinathsinghji et al., 1983 
 

ACTH can induce transient increase in 
testosterone while sustained CS suppresses 
testosterone 

Moberg, 1985 

 

Can be facilitated by presumed stress of 
aggressive activity 

Antelman and Caggiula, 
1980 

 

Prenatal stress syndrome: stressed pregnant rats 
deliver feminized male pups  

Ward & Weisz, 1980; 
Greenberg and Wingfield, 



1987 

DYSFUNCTIONAL COMPENSATIONS 
 

Stereotypies: precipitated by stress Broverman et al., 1974, 
Cooper & Nicol, 1991, 
1993, but see Mason 1991 

 

ACTH-induced stretch-yawn syndrome and 
grooming. 

Gispen, 1982 

 

MSH induces grooming behavior in rats  O'Donohue et al., 1981 
 

Subordinate rats increase alcohol consumption Blanchard et al., 1993 
 

Addictions, neuroses and psychoses precipitated 
by stress 

Arnsten, 1997 

 

Atress catalyzes hyperexcitability in fear-
mediating circuits leading to anxiety disorders 

Rosen and Shulkin, 1998 

   

ACTH, adrenocorticotrophic hormone; EPI, epinephrine; GC, glucocorticoid; MSH, melanocyte-
stimulating hormone3)  
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