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A six-dimensional H2–H2 potential energy surface for bound state
spectroscopy

Robert J. Hindea�

Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, USA

�Received 22 August 2007; accepted 27 November 2007; published online 16 April 2008�

We present a six-dimensional potential energy surface for the �H2�2 dimer based on coupled-cluster
electronic structure calculations employing large atom-centered Gaussian basis sets and a small set
of midbond functions at the dimer’s center of mass. The surface is intended to describe accurately
the bound and quasibound states of the dimers �H2�2, �D2�2, and H2–D2 that correlate with H2 or D2

monomers in the rovibrational levels �v , j�= �0,0�, �0,2�, �1,0�, and �1,2�. We employ a
close-coupled approach to compute the energies of these bound and quasibound dimer states using
our potential energy surface, and compare the computed energies for infrared and Raman transitions
involving these states with experimentally measured transition energies. We use four of the
experimentally measured dimer transition energies to make two empirical adjustments to the
ab initio potential energy surface; the adjusted surface gives computed transition energies for 56
experimentally observed transitions that agree with experiment to within 0.036 cm−1. For 26 of the
56 transitions, the agreement between the computed and measured transition energies is within the
quoted experimental uncertainty. Finally, we use our potential energy surface to predict the energies
of another 34 not-yet-observed infrared and Raman transitions for the three dimers. © 2008
American Institute of Physics. �DOI: 10.1063/1.2826340�

I. INTRODUCTION

The �H2�2 dimer has long been viewed as a prototypical
bimolecular van der Waals dimer. Because the �H2�2 dimer is
electronically simple, it has been the focus of a number of
ab initio studies;1–16 however, because the H2–H2 van der
Waals interaction is quite weak,17 ab initio calculations with
accuracy much higher than the oft-quoted “chemical accu-
racy” of 1 kcal /mol must be employed to provide useful
information about the H2–H2 potential energy surface. Two
recent advances in ab initio methods have made it possible to
compute the H2–H2 interaction with the required level of
accuracy: �1� The development of hierarchical sequences of
one-electron Gaussian basis sets for approximating molecu-
lar electronic wave functions,18 sequences which systemati-
cally approach the complete one-electron basis-set limit, and
�2� the development of efficient methods for accounting for
electron correlation effects in these wave functions by sys-
tematically approaching the many-electron basis-set
limit.19,20

Diep and Johnson14 took advantage of these two ad-
vances in ab initio methods to compute an accurate four-
dimensional rigid-rotor potential energy surface for the �H2�2

dimer; the Diep-Johnson surface gives low-temperature sec-
ond virial coefficients and integral elastic scattering cross
sections in reasonably good agreement with experiment.
However, this potential energy surface does not depend ex-
plicitly on the covalent bond lengths of the two H2 mono-
mers, and thus is only able to describe the interaction be-
tween two H2 molecules in their v=0 vibrational ground
states.

More recently, Boothroyd et al.16 have compiled a large
database of energies for the H4 system, based largely on
multireference configuration interaction ab initio calcula-
tions, and have fit a global six-dimensional H4 potential en-
ergy surface to these energies. However, in this database,
�H2�2 dimer configurations representative of the
van der Waals well are assigned energies that come not from
ab initio calculations but rather from an empirically modified
rigid-rotor potential energy surface. Recent theoretical stud-
ies of low-energy inelastic H2–H2 collisions that use this
potential energy surface21–23 yield computed energy transfer
rate coefficients in rather poor agreement with experiment.

The �H2�2 dimer has also been the focus of several ex-
perimental investigations, beginning with the pioneering
work of Watanabe and Welsh24 that demonstrated the dimer’s
existence through observation of its infrared �IR� absorption
spectrum in the H2 v=1←0 vibrational fundamental band.
Later experimental studies25,26 recorded at high resolution
the IR absorption spectra of the �H2�2 dimer �and several of
its isotopomers� in the v=1←0 fundamental band and v
=2←0 first overtone band of the corresponding monomers.
The high-resolution IR absorption spectra of �H2�2 in the H2

fundamental and overtone regions, and the analogous isoto-
pomer spectra, provide information about the vibrational de-
pendence of the H2–H2 interaction. Complementary
studies27 of the far-IR absorption spectrum of the dimer pro-
vide information about the anisotropy of the potential energy
surface in the region of the van der Waals well.

Recently, the Raman spectrum of the �H2�2 dimer in the
H2 fundamental region has also been observed.28 This spec-
trum provides information about the vibrational dependence
of the H2–H2 interaction that is complementary to that pro-a�Electronic mail: rhinde@utk.edu.
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vided by the high-resolution IR studies. Specifically, the vi-
brationally excited state of �H2�2 that is probed by the IR
studies is one in which the vibrational excitation is delocal-
ized across the two H2 monomers in an antisymmetric fash-
ion, while in the Raman studies, the excited �H2�2 state is one
in which the vibrational excitation is delocalized symmetri-
cally across the two monomers. A comparison of the IR and
Raman spectra thus provides insight into the coupling be-
tween the two H2 vibrational modes in the �H2�2 complex
and into the dependence of the H2–H2 potential energy sur-
face on the two monomers’ bond lengths.

Equipped with this new information, we attempt here the
construction of a six-dimensional H2–H2 potential energy
surface that accurately describes the dimer’s van der Waals
well. We begin by computing ab initio H2–H2 interaction
energies that are nearly converged with respect to both the
one-electron and many-electron basis sets, and then construct
a smooth potential energy surface from these computed in-
teraction energies. We then make two small empirical adjust-
ments to the surface; these adjustments soften slightly the
surface’s short-range repulsive wall, and increase slightly the
strength of the surface’s anisotropic term that couples the
rotational degrees of freedom of the two monomers. The
empirically adjusted surface gives IR and Raman transition
energies for the �para-H2�2, �ortho-D2�2, and
para-H2–ortho-D2 dimers in good agreement with available
experimental data.25,27,28

II. AB INITIO COMPUTATIONS

A. Functional form of the H2–H2 interaction

We consider a space-fixed coordinate system �x ,y ,z� in
which one H2 molecule �denoted molecule 1� has its center
of mass at the origin and the other H2 molecule �denoted
molecule 2� has its center of mass on the positive z axis. The
orientation of molecule i is specified by its spherical polar
and azimuthal angles ��i ,�i�. We let R represent the distance
between the molecules’ centers of mass, and let ri represent
the bond length of molecule i. The H2–H2 potential energy
surface can then be expanded in terms of coupled spherical
harmonics:29

V = �
l1,l2,L

Al1,l2,L�R,r1,r2�Gl1,l2,L��1,�2,�� , �1�

where �=�2−�1, the summation indices l1, l2, and L are
non-negative integers that must satisfy

l1 + l2 + L = even integer, �2�

and the homonuclear symmetry of the two H2 monomers
dictates that l1 and l2 are also both even. The angular func-
tions Gl1,l2,L have the form

Gl1,l2,L =�2L + 1

4�
�
m

C�l1,m,l2,− m;L,0�

�Yl1,m��1,�1�Yl2,−m��1,�2� , �3�

where C is a Clebsch-Gordan coefficient and Yl,m is a spheri-
cal harmonic normalized so that Yl,m�0,0�
=�m,0��2l+1� /4�. �We use the Condon-Shortley phase con-

vention for Yl,m.� The appearance of the Clebsch-Gordan co-
efficient C in Eq. �3� means that l1, l2, and L must satisfy the
angular momentum triangle rule.

The functions Gl1,l2,L constitute a complete, orthogonal
basis set for functions of the three angular coordinates
��1 ,�2 ,��. For fixed R, r1, and r2, the coefficient
Al1,l2,L�R ,r1 ,r2� can therefore be computed as

Al1,l2,L�R,r1,r2�

=
1

2L + 1
� � Gl1,l2,L��1,�2,��V�R,r1,r2,�1,�2,��dS1dS2,

�4�

where dSi=sin �id�id�i.
Earlier studies of the four-dimensional rigid-rotor

H2–H2 potential energy surface14,17 show that the surface is
dominated by four terms, with �l1 , l2 ,L�= �0,0 ,0�, �0,2,2�,
�2,0,2�, and �2,2,4�. In this work, we use numerical quadra-
ture to compute the right-hand side of Eq. �4� for these four
�l1 , l2 ,L� triples. Specifically, at fixed values of R, r1, and r2,
we use the 18-point spherical quadrature rule numbered
25.4.64 in Ref. 30 to evaluate the integrals over both dS1 and
dS2 in Eq. �4�. This requires us to compute the H2–H2 inter-
action energy V�R ,r1 ,r2 ,�1 ,�2 ,��, using ab initio quantum
chemical methods that we describe below, at 12 sets of
angles ��1 ,�2 ,�� when r1=r2 and at 19 sets of angles when
r1�r2. Symmetry relationships allow the rest of the 182

=324 interaction energies at fixed �R ,r1 ,r2� to be determined
from these ab initio calculations.

The accuracy of the Al1,l2,L coefficients computed in this
fashion is limited by the fact that the quadrature rule we use
fails to reproduce the orthogonality conditions

� � Gl1,l2,L��1,�2,��Gl1�,l2�,L���1,�2,��dS1dS2

= �l1,l1�
�l2,l2�

�L,L��2L + 1� �5�

when l1+ l1��6 or l2+ l2��6. This means that the value of
A0,0,0 obtained via quadrature also includes some contamina-
tion from A6,0,6 and A0,6,6 �if these coefficients are nonzero in
the ab initio potential energy surface�, while A2,2,4 is con-
taminated by �among other terms� A2,4,6 and A4,2,6, which
describe the long-range electrostatic quadrupole–hexa-
decapole �QH� interaction between the two H2 molecules.

To assess the magnitude of these erroneous contributions
to the four Al1,l2,L coefficients of interest, we used the more
accurate 24-point spherical quadrature rule of Ref. 30 to cal-
culate the coefficients at �R ,r1 ,r2�= �4.5a0 ,1.4a0 ,1.7a0�, a
repulsive �H2�2 configuration where we expect the angular
anisotropy of the potential energy surface to be relatively
high, and where this contamination should thus be relatively
severe. Table I compares the coefficients obtained using the
two quadrature rules �based on ab initio interaction energies
computed using the protocol outlined in Sec. II B�; the errors
introduced at this �R ,r1 ,r2� configuration by using 18-point
quadrature appear to be quite small for the four terms that we
include in our final potential energy surface. This table also
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gives the values for two additional coefficients in the coupled
spherical harmonic expansion, A2,2,0 and A2,2,2, at this �H2�2

configuration, and shows that they are one to two orders of
magnitude smaller than any of the four terms we retain in
Eq. �1�. This is in accord with previous studies14,17 of the
four-dimensional rigid-rotor H2–H2 potential energy surface.

B. CCSD„T… ab initio calculations

We use GAUSSIAN 03 �Ref. 31� to compute the H2–H2

interaction energy, employing a coupled-cluster19,20 treat-
ment of electron correlation that includes single and double
excitations and a perturbative treatment of triple
excitations,32 abbreviated CCSD�T�. The CCSD�T� calcula-
tions are based on a restricted Hartree-Fock reference wave
function; we have verified that such a reference does not
exhibit a restricted → unrestricted instability for the H2 bond
lengths considered here. We use the aug-cc-pVQZ basis
set18,33 for the four hydrogen atoms, supplement this atom-

centered basis set with a set of �3s3p2d� bond functions
positioned at the dimer’s center of mass, and employ the
standard counterpoise correction.34 The bond function expo-
nents are taken from Ref. 35.

We carry out these calculations at r1 and r2 values of 1.1,
1.4, and 1.7a0, and at 19 R values ranging from R=4.25a0 to
12.0a0, for a total of 1653 unique �R ,r1 ,r2 ,�1 ,�2 ,�� �H2�2

configurations. We turn off automatic checking of the one-
electron overlap matrix for near linear dependence and retain
all 206 one-electron basis functions at every configuration;
this eliminates possible discontinuities in the potential en-
ergy surface that could arise when some of these functions
are dropped from the one-electron basis set. The GAUSSIAN 03

H2–H2 total CCSD�T� energies for these configurations are
available from the EPAPS depository.36 We have checked a
small subset of these energies against calculations using the
DALTON ab initio code;37 the dimer total energies computed
using the two codes agree to within 2�10−8 hartree or bet-
ter.

To assess the error introduced by truncating the one-
electron basis set at the aug-cc-pVQZ+ �3s3p2d� level, we
performed some calculations at selected configurations using
a smaller aug-cc-pVTZ atom-centered basis set and the same
�3s3p2d� bond function set. The coefficients Al1,l2,L obtained
from these two sets of ab initio interaction energies are listed
in Table II. The two sets of coefficients generally differ by no
more than 1%–2%, suggesting that the aug-cc-pVQZ
+ �3s3p2d� basis set is nearly saturated. Truncating the one-
electron basis set seems to have the largest effect on the
isotropic coefficient A0,0,0 computed at small values of R,
where the potential energy surface is strongly repulsive.

TABLE I. Comparison of angular expansion coefficients Al1,l2,L �in cm−1�
computed using two spherical quadrature rules at �R ,r1 ,r2�
= �4.5a0 ,1.4a0 ,1.7a0�. These coefficients do not include the full-triples cor-
rection.

�l1 , l2 ,L� 18 point 24 point

�0, 0, 0� 674.559 674.629
�0, 2, 2� 32.984 33.577
�2, 0, 2� 20.195 20.465
�2, 2, 4� 19.017 19.174
�2, 2, 0� −0.599 1.413
�2, 2, 2� 0.465 −0.292

TABLE II. Angular expansion coefficients Al1,l2,L�R ,r1 ,r2�, in cm−1, computed from aug-cc-pVTZ and aug-cc-
pVQZ ab initio energies. A �3s3p2d� set of bond functions is used in all calculations. The coefficients are
grouped into pairs of rows corresponding to fixed �R ,r1 ,r2�; the upper row in each pair lists the aug-cc-pVQZ
coefficients, while the lower row in each pair lists the aug-cc-pVTZ coefficients. These coefficients do not
include the full-triples correction.

R �a0� �r1 ,r2� �a0� A0,0,0 A2,0,2 A0,2,2 A2,2,4

4.5 �1.1, 1.1� 378.145 10.026 10.026 6.360
382.457 10.094 10.094 6.320

4.5 �1.4, 1.4� 570.418 19.989 19.989 14.277
576.072 20.116 20.116 14.197

4.5 �1.7, 1.7� 776.340 31.141 31.141 24.607
783.772 31.379 31.379 24.478

4.5 �1.1, 1.7� 573.576 11.959 33.199 13.032
579.204 11.878 33.480 13.044

5.0 �1.1, 1.1� 101.523 3.023 3.023 3.607
103.343 3.046 3.046 3.585

5.0 �1.4, 1.4� 174.837 6.794 6.794 8.119
177.554 6.879 6.879 8.070

5.0 �1.7, 1.7� 262.487 11.883 11.883 14.347
266.336 12.043 12.043 14.254

5.0 �1.1, 1.7� 178.370 3.853 12.040 7.370
181.142 3.883 12.179 7.325

6.5 �1.4, 1.4� −22.530 −0.543 −0.543 2.070
−22.239 −0.528 −0.528 2.054
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C. CCSDT ab initio calculations

Our earlier study of the vibrational dependence of the
H2–H2 interaction38 indicates that incompleteness in the
many-electron basis set could materially affect the shape of
the potential energy surface in the van der Waals well. Simi-
lar effects have been observed in other weakly bound dimers
of two-valence-electron systems.39,40 To reduce the error as-
sociated with truncation of the many-electron basis set at the
CCSD�T� level of theory, we employ a coupled-cluster treat-
ment that includes a fully iterative treatment of single,
double, and triple excitations,41,42 abbreviated CCSDT, to
compute the H2–H2 interaction energy at selected high-
symmetry geometries �those in which �1, �2, and � take
values of 0 or � /2�. These calculations are performed using
the tensor contraction engine43 incorporated into Version 4.7
of the electronic structure code NWCHEM.44,45

Unfortunately, the CCSDT calculations are prohibitively
expensive if we employ the aug-cc-pVQZ+ �3s3p2d� one-
electron basis set used in the CCSD�T� calculations. We,
therefore, perform the CCSDT calculations using a smaller
one-electron basis set consisting of only atom-centered aug-
cc-pVTZ functions. We also use NWCHEM to perform
CCSD�T� calculations at these high-symmetry geometries
using the atom-centered aug-cc-pVTZ basis set. We then take
the difference between the CCSDT and CCSD�T�
counterpoise-corrected interaction energies as an additive
correction to the aug-cc-pVQZ+ �3s3p2d� CCSD�T� poten-
tial energy surface. For the sake of brevity, we will call this
the “full-triples” correction. We found that to ensure conver-
gence of the CCSDT iterations at some geometries, it was
necessary to increase the cutoff for computational linear de-
pendence in the one-electron basis set to 10−6. For consis-
tency, we therefore used this cutoff in all of the CCSDT and
CCSD�T� calculations performed with NWCHEM.

Because we compute the full-triples correction at a small
number of H2–H2 orientations ��1 ,�2 ,��, we cannot use the
quadrature scheme described in the the previous subsection
to extract corresponding full-triples corrections to the Al1,l2,L

coefficients computed at the CCSD�T� aug-cc-pVQZ
+ �3s3p2d� level of theory. Instead, we use least-squares
techniques to fit the full-triples correction to the function

�A0,0,0�R,r1,r2�G0,0,0��1,�2,��

+ �A0,2,2�R,r1,r2�G0,2,2��1,�2,��

+ �A2,0,2�R,r1,r2�G2,0,2��1,�2,��

+ �A2,2,4�R,r1,r2�G2,2,4��1,�2,�� . �6�

We then add the corrections �Al1,l2,L to the corresponding
coefficients Al1,l2,L obtained from four-dimensional quadra-
ture over the CCSD�T� aug-cc-pVQZ+ �3s3p2d� interaction
energies. The CCSDT and CCSD�T� energies used to com-
pute the full-triples correction are available through
EPAPS.36 For the sake of brevity, we henceforth use the term
“coefficients” to mean the sum of the CCSD�T� coefficients
and the full-triples corrections.

D. Construction of a smooth potential energy surface

We now construct a smooth potential energy surface
from the ab initio coefficients Al1,l2,L�R ,r1 ,r2�. For each pair
of H2 bond lengths �r1 ,r2�, we create four cubic splines, one
for each of the coefficients Al1,l2,L, that interpolate the 19
coefficient values between R=4.25a0 and R=12.0a0. We ex-
trapolate the splines to R values below 4.25a0 and above
12.0a0 using functions described in the next two paragraphs.
At R=4.25a0, the slope of each cubic spline is constrained to
match the slope of the corresponding small-R extrapolating
function.

We extend each cubic spline to R values below 4.25a0

using a simple two-parameter exponential extrapolation of
the form U exp�−cR� that fits the coefficients obtained at R
=4.25a0 and 4.5a0. We should stress that this extrapolation is
not expected to give highly accurate interaction energies for
small R; we use it simply to define the slope for the cubic
spline at R=4.25a0. The dimer bound state wave functions
we compute using our potential energy surface are not sen-
sitive to the highly repulsive small-R region of the potential
energy surface.

Beyond R=12.0a0, we extrapolate each spline using an
inverse-power expansion of the form �nCn /Rn, including
terms with n=5 and 6 in the extrapolations for A2,2,4, terms
with n=6, 8, and 10 for A0,0,0, and terms with n=6 and 8 in
the extrapolations for A0,2,2 and A2,0,2. All Cn coefficients are
determined as functions of r1 and r2. The C5 coefficient for
A2,2,4 is computed from the H2 quadrupole moments listed in
Ref. 46. The C6 coefficients are obtained from the isotropic
and anisotropic R−6 dispersion energy coefficients given in
Ref. 47 and the expressions given in Ref. 48. The C8 and C10

dispersion energy coefficients are obtained from Ref. 49.
To reduce the discontinuities in the higher-order deriva-

tives of the coefficients at R=12.0a0, where the cubic spline
meets the long-range inverse-power extrapolating function,
we use the long-range function to compute values of the
Al1,l2,L coefficients at six evenly spaced “phantom” points
ranging from R=13.0a0 to R=18.0a0, and force the spline to
intercept these phantom points as well as the points com-
puted at the 19 R values cited above. At R=18.0a0, we also
constrain the slope of the spline to match that of the inverse-
power expansion. However, we only use the spline to evalu-
ate the coefficients between R=4.25a0 and R=12.0a0; be-
yond R=12.0a0, we use the inverse-power expansion to
compute the coefficients Al1,l2,L.

Using these extrapolated cubic splines, we can compute
the coefficients Al1,l2,L�R ,r1 ,r2� at any R for the discrete pairs
of H2 bond lengths �r1 ,r2� at which we performed the ab
initio calculations described above. As the last step in defin-
ing a smooth potential energy surface, we fit these interpo-
lated �or extrapolated� coefficients to the expression

�
k=0

2

�
n=0

2

ck,n�r1 − req�k�r2 − req�n, �7�

where req=1.4a0.
Figure 1 shows how the isotropic coefficient

A0,0,0�R ,r1 ,r2�, vibrationally averaged over the ground-state
vibrational wave functions of the two H2 monomers, depends
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on R both in the small-R, repulsive region of the potential
energy surface and in the shallow H2–H2 well. We compare
the vibrationally averaged A0,0,0 coefficient computed in this
work with a modified ab initio potential energy surface17 that
gives accurate predictions for the low-temperature second
virial coefficient of H2 gas, with the extrapolated CCSD�T�
ab initio calculations of Diep and Johnson,14 and with an
empirical isotropic potential energy curve50 obtained from an
analysis of the total scattering cross section of moderate en-
ergy H2–D2 collisions.

In the shallow well, our vibrationally averaged A0,0,0 co-
efficient agrees fairly well with the extrapolated CCSD�T�
results,14 which were computed within the rigid-rotor ap-
proximation using the v=0 vibrationally averaged bond
length for both H2 monomers. The repulsive wall of our
isotropic potential energy curve is slightly softer than that of
the extrapolated CCSD�T� curve; our repulsive wall closely
tracks the shape of the modified ab initio potential energy

surface17 that gives accurate second virial coefficients, ex-
cept that our repulsive wall is shifted to slightly larger R
values. It is interesting to note that in the small-R repulsive
region, the empirical isotropic potential energy curve50 de-
rived from scattering data is considerably softer than any of
the three curves derived from ab initio computations.

III. COMPUTATION OF DIMER BOUND STATE
ENERGIES

We assess the quality of our potential energy surface by
using it to compute the energies of several bound �and long-
lived quasibound� states of the �H2�2, H2–D2, and �D2�2

dimers. In this section, we summarize the methods used to
compute these energies; the energies themselves are pre-
sented in later sections. We employ a standard close-coupled
approach29 in which the nine-dimensional dimer wave func-
tion is written as

��R,r1,r2�

= R−1�
	

F	�R�IJ,M,
�R̂, r̂1, r̂2��v1,j1
�r1��v2,j2

�r2� . �8�

Here ri is the vector separating the two nuclei of H2 mol-
ecule i, R is the vector separating the two molecules’ centers

of mass, and r̂i and R̂ are the corresponding unit vectors. The
quantum numbers J and M represent, respectively, the total
angular momentum of the dimer �excluding nuclear spin an-
gular momentum� and its projection on a space-fixed z axis.
The angular basis functions IJ,M,
, which are defined as

IJ,M,
�R̂, r̂1, r̂2�

= �
m1,m2,M12,N

C�j1,m1, j2,m2;J12,M12�

�C�J12,M12,L,N;J,M�Y j1,m1
�r̂1�

�Y j2,m2
�r̂2�YL,N�R̂� , �9�

couple the rotational angular momenta �j1 , j2� of the two H2

molecules with the orbital angular momentum L of the dimer
to create functions of definite J and M; we use 
 to represent
the collection of angular momentum quantum numbers
�j1 , j2 ,J12,L�, where J12 is the quantum number correspond-
ing to the �vector� sum of the rotational angular momenta of
the two H2 molecules. The summation index 	 represents a
collection of eight quantum numbers: The four quantum
numbers listed in 
, the total angular momentum quantum
numbers J and M, and the vibrational quantum numbers v1

and v2 of the two monomers. The functions �v,j�r� are H2

monomer radial wave functions, defined so that

�
0

�

�v,j
* �r��v�,j��r�dr = �v,v�� j,j� �10�

and obtained from a Numerov-Cooley51 analysis of the
Kołos-Wolniewicz52 H2 potential energy curve.

The dimer radial functions F	�R� are solutions to a set of
coupled second-order differential equations; the R-dependent
terms that couple the radial functions F	�R� and F	��R� are
obtained by integrating the six-dimensional H2–H2 potential

FIG. 1. �Color online� Comparison of the vibrationally averaged isotropic
H2–H2 potential energy curve A0,0,0�R� obtained in this work �solid line�
with the isotropic rigid-rotor potential energy curves obtained by other re-
searchers. Boxes represent the extrapolated CCSD�T� potential energy sur-
face of Ref. 14; circles represent the adjusted ab initio potential of Ref. 17;
the dashed line represents the empirical potential of Ref. 50. The solid line
shown here is computed from the unmodified �s ,q�= �0,0� potential energy
surface. Panel �a� shows the repulsive wall at small-R values; panel �b�
shows the van der Waals well.
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energy surface over the eight coordinates �r1 ,r2 , R̂�, and are
defined by replacing the rigid-rotor potential coefficients
Al1,l2,L�R� in Eq. �9� of Ref. 29 with the corresponding vibra-
tionally averaged coefficients

�v1, j1;v2, j2	Al1,l2,L�R,r1,r2�	v1�, j1�;v2�, j2�


= �
0

� �
0

�

�v1,j1
* �r1��v2,j2

* �r2�Al1,l2,L�R,r1,r2�

��v1�,j1�
�r1��v2�,j2�

�r2�dr1dr2. �11�

We use the ABVN program53 to evaluate the angular momen-
tum coupling coefficients that appear in Eq. �9� of Ref. 29.

We convert the set of coupled second-order differential
equations to a matrix eigenproblem by discretizing the equa-
tions on a grid in R, ranging from Rmin=3.0a0 to Rmax

=48.0a0 in steps of 0.2a0, and replacing the dimer radial
kinetic energy operator with a five-point central difference
approximation evaluated on the grid. �Convergence tests
show that using a smaller step size or a larger value of Rmax

does not change significantly the energies of the dimer states
considered here.� We then solve the matrix eigenproblem us-
ing the ARPACK code54 driven by the SYMMLQ linear alge-
bra routine.55 We truncate the wave function expansion given
in Eq. �8� by limiting j1 and j2 to the values 0, 2, and 4, with
the additional restriction that j1+ j2�6, and by limiting v1

and v2 to the values 0 and 1. We also assume that the three
vibrational manifolds defined by vt=v1+v2=0, 1, or 2 are
effectively decoupled from one another, which further re-
duces the size of the matrix eigenproblem. The energies of
the �v , j� rovibrational states of the H2 and D2 monomers and
the dimer reduced masses, which appear in the close-coupled
equations for the radial functions F	�R�, are computed from
the parameters listed in Table III.

Because we consider only even values of j1 and j2 here,
the parity of the angular basis function IJ,M,
 is controlled by
the dimer orbital angular momentum quantum number L;
when L is even, IJ,M,
 has even parity. Angular basis func-
tions with different parities are not coupled together by Eq.
�8�. In addition, for a dimer of two identical monomers, the
overall spatial wave function �exclusive of spin� must be
either symmetric or antisymmetric under exchange of the
two monomers, and the overall spin wave function must also
be symmetric or antisymmetric under monomer exchange.
The total wave function, which is the product of the spatial
and spin wave functions, must be symmetric or antisymmet-
ric under monomer exchange for bosonic and fermionic
monomers, respectively.

The para-H2 molecule is a spin-zero composite boson.
For a dimer of such bosons, no exchange-antisymmetric spin
wave function can be constructed, and therefore only states

whose spatial wave functions are symmetric under monomer
exchange are physically admissible. These exchange-
symmetric spatial wave functions are the only �H2�2 wave
functions considered here. On the other hand, ortho-D2 mol-
ecules may have a total nuclear spin quantum number of
either zero or 2, and it is possible to construct �ortho-D2�2

dimers that have either an exchange-symmetric or an
exchange-antisymmetric spin wave function. Consequently
the spatial wave function for �ortho-D2�2 may also be either
symmetric or antisymmetric under monomer exchange, pro-
vided that the total �spin times spatial� �ortho-D2�2 wave
function is symmetric under monomer exchange.56

To check that our matrix-based implementation of the
close-coupled formalism is correct, we have used the BOUND

code57 to compute the energies of the �H2�2, H2–D2, and
�D2�2 bound states that correlate with the monomers’ �v , j�
= �0,0� ground rovibrational states, and compare these ener-
gies with those obtained from our matrix-based code. �Be-
cause the BOUND code employs the rigid-rotor approxima-
tion, for this comparison we ignore the j dependence of the
monomer radial wave functions �v,j�r� that appear in Eq. �8�
and replace these radial wave functions with those for the
monomers’ ground rovibrational states. This is equivalent to
neglecting centrifugal distortion effects on the monomer ra-
dial wave functions.� The good agreement between these two
calculations confirms the validity of our matrix-based close-
coupled approach.

Some of the dimer states discussed below are long-lived
quasibound states that can decay via rotational predissocia-
tion. The energies reported for these states are those obtained
following the “infinite wall” procedure outlined by Graben-
stetter and Le Roy,58 in which the energy of the quasibound
state is monitored as Rmax is decreased in 0.2a0 steps. We
estimate that using a finite step size of 0.2a0 in this procedure
introduces an uncertainty in the quasibound state energies of
no more than 0.003 cm−1.

IV. EMPIRICAL ADJUSTMENTS TO THE POTENTIAL
ENERGY SURFACE

In this section, we show that if we make two small em-
pirical modifications to our ab initio potential energy surface,
it gives rotational and rovibrational transition energies for
�H2�2, H2–D2, and �D2�2 dimers in good agreement with
those obtained experimentally. The two modifications in-
volve a small inward shift of the repulsive wall of the poten-
tial energy surface, which we quantify using an adjustable
parameter s, and a slight increase in the magnitude of the
surface’s A2,2,4 term, which we quantify using an adjustable
parameter q. The unmodified, purely ab initio potential en-
ergy surface is defined by �s ,q�= �0,0�.

We focus first on H2–D2 and �D2�2 dimer states that
correlate with rotationally cold �j=0� monomers as R→�.
Because the wave functions of these states are overwhelm-
ingly dominated by angular basis functions IJ,M,
 with j1

= j2=0 in Eq. �8�, the states’ energies are insensitive to the
anisotropic terms �A0,2,2, A2,0,2, and A2,2,4� of the potential
energy surface; however, the states’ energies are very sensi-
tive to the location of the surface’s repulsive wall. We there-

TABLE III. Monomer spectroscopic constants �in cm−1� and total masses
employed in the dimer bound state calculations.

Species �E �v=1←0� B �v=0� B �v=1� Mass �me�

H2 4161.169 59.0622 56.1117 3674.3
D2 2993.614 29.8445 28.7908 7342.9
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fore find the optimal value for s by adjusting s to bring the
computed energies for transitions involving these states into
good agreement with experimentally measured transition en-
ergies.

Next, we consider IR-active transitions of the H2–D2

dimer which involve either �1� a pure vibrational transition
v=1←0 in the H2 monomer and a pure rotational transition
j=2←0 in the D2 monomer or �2� a rovibrational transition
�v , j�= �1,2�← �0,0� in the H2 monomer and no excitation of
the D2 monomer. These transitions involve final states whose
energies are sensitive to the A0,2,2 and A2,0,2 anisotropic terms
of the dimer potential energy surface. We find that, once the
repulsive wall of the potential energy surface has been
shifted inward slightly, the energies computed for these tran-
sitions are in good agreement with experimental measure-
ments. This suggests that the A0,2,2 and A2,0,2 terms of the
shifted potential energy surface are accurate, at least in the
range of R values probed by the H2–D2 dimer wave func-
tions.

Finally, we examine �H2�2 and �D2�2 dimer states which
correlate with R→� limits involving one j=0 and one j
=2 molecule. Some of these states have energies that are
very sensitive to the strength of the A2,2,4 term of the poten-
tial energy surface. By examining how the computed ener-
gies for transitions involving these states change with q, we
find the value for q that gives the best overall agreement with
experimental measurements.

A. Combination differences from the H2–D2 and „D2…2
dimer Q1„0… infrared spectra

We begin by computing the J=2←0 spacings for the
H2–D2 and �D2�2 dimers that correlate with rotationally cold
�j=0� monomers; we perform these computations both for
the dimers’ vt=0 ground vibrational manifolds and for the
vt=1 manifold accessed by IR excitation of the H2 monomer
in the H2–D2 dimer. Accurate experimental values for these
J=2←0 spacings have been obtained from a combination-
differences analysis of high-resolution H2–D2 and �D2�2 IR
absorption spectra.25 Because of the large energy mismatch
between the v=1 levels of H2 and D2, in our calculations we
assume that the H2–D2 dimer states correlating with H2�v
=1�+D2�v=0� are decoupled from those correlating with
H2�v=0�+D2�v=1�. �Strictly speaking, the vt=1 dimer
states accessed in the IR absorption experiment are quasi-
bound, and can decay through vibrational predissociation.
Our assumption that these states are decoupled from the vt

=0 states, however, closes off this decay channel. Because
the lifetimes of the vt=1 dimer states are known to be ex-
tremely long,25 this should not materially affect our results.�

Table IV shows that the computed J=2←0 spacings are
0.015–0.025 cm−1 lower than the experimental ones. If the
dimers were rigid rotors, the J=2←0 spacings would be
equal to six times the dimers’ respective rotational constants.
Because the dimers undergo large-amplitude zero-point mo-
tion along the R direction, a rigid-rotor model for the dimers’
overall end-over-end rotation is not really appropriate. None-
theless, this simple-minded picture suggests that the dimer
states supported by the computed potential energy surface

have average intermolecular distances that are slightly too
large, by about 0.02a0 for the �D2�2 dimer and 0.03a0 for the
H2–D2 dimer.

As we noted in our discussion of Fig. 1, a small inward
shift of the repulsive wall of our potential energy surface
would bring it into closer agreement with a surface17 that
gives accurate second virial coefficients for low-temperature
H2 gas; such a shift would also reduce slightly the average
intermolecular distances of the H2–D2 and �D2�2 dimers,
possibly bringing the computed J=2←0 spacings into better
agreement with experiment. �We note here that the potential
energy surface presented in Ref. 17 was itself obtained by a
similar inward shift of the repulsive wall of an ab initio
computed potential energy surface.� We therefore modify our
ab initio H2–H2 potential energy surface as follows. For R
values below 6.5a0, we shift our computed ab initio interac-
tion energies to new, smaller, R values defined by

Rnew = Rold − s�6.5a0 − Rold� , �12�

and then construct a smooth s-dependent H2–H2 potential
energy surface �as described above in Sec. II D� using the
shifted points. Because we have not yet changed the strength
of the A2,2,4 term, we are at present implicitly holding q fixed
at q=0.

Figure 2 shows how the errors in the J=2←0 spacings
computed for the H2–D2 and �D2�2 dimers change as s in-
creases from s=0 to s=0.025. Choosing s=0.0175 brings all
three of these computed spacings into agreement with ex-

TABLE IV. Observed and computed spacings �in cm−1� between the J=0
and J=2 states of H2–D2 and D2–D2 dimers that correlate with j=0 states
of the constituent monomers. These bound state computations employ the
unmodified �s ,q�= �0,0� potential energy surface.

Dimer Observed Computed

H2�v=0�+D2�v=0� 3.848 3.816
H2�v=1�+D2�v=0� 3.889 3.862
D2�v=0�+D2�v=0� 3.001 2.986

FIG. 2. �Color online� Dependence on s of the errors �computed minus
experiment� in the J=2←0 spacings of the H2–D2 and �D2�2 dimers. Solid
lines are for the vibrationally cold �vt=0� dimers; the dashed line is for the
H2 �v=1�+D2 �v=0� dimer. The parameter q is held fixed at q=0.
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periment. Fixing s at this value amounts to an inward shift of
the crossing point R0, where the vibrationally averaged
H2–H2 isotropic coefficient A0,0,0�R�=0, from R0=5.775a0

for the original ab initio potential energy surface �with s=0�
to R0=5.762a0 for the empirically modified surface. The cor-
responding shift for the H2–D2 dimer is from R0=5.773a0 to
R0=5.760a0; for the �D2�2 dimer, the shift is from R0

=5.769a0 to R0=5.756a0.

B. Q1„0…+S0„0… and S1„0… infrared spectra
of the H2–D2 dimer

Next, we consider transitions of the H2–D2 dimer in
which either �1� the H2 monomer undergoes a pure v=1
←0 vibrational transition and the D2 monomer simulta-
neously makes a pure j=2←0 rotational transition or �2� the
H2 monomer undergoes the rovibrational transition �v , j�
= �1,2�← �0,0� while the D2 monomer remains in its rovi-
brational ground state. The former transitions belong to the
dimer’s Q1�0� �H2�+S0�0� �D2� band, and the latter transi-
tions to the dimer’s S1�0� �H2� band; for brevity, in this sub-
section we henceforth drop the molecular labels in square
brackets and simply refer either Q1�0�+S0�0� or S1�0� tran-
sitions.

Because of the large energy mismatch between the j=2
states of the H2 and D2 molecules, the upper states involved
in these transitions are ones in which the j=2 excitation re-
mains localized on one of the monomers, and thus have en-
ergies that are insensitive to the A2,2,4 term of the potential
energy surface. The computed energies for these transitions
consequently provide insight into the quality of the surface’s
A0,0,0, A0,2,2, and A2,0,2 terms.

Four relatively sharp Q1�0�+S0�0� transitions and two
relatively sharp S1�0� transitions have been observed in the
IR absorption spectrum of the H2–D2 dimer.25 As Table V
shows, the potential energy surface with s=0.0175 gives
transition energies for these six transitions in very good
agreement with the experiment; this suggests that the sur-
face’s A0,2,2 and A2,0,2 terms are fairly accurate, at least over
the range of R values for which the H2–D2 dimer has sub-
stantial probability density.

C. S0„0… infrared spectra of the „H2…2 and „D2…2 dimers

Finally we consider IR-active transitions of the �H2�2

and �D2�2 dimers that correlate with the S0�0� j=2←0 pure
rotational transitions of the H2 and D2 monomers. The upper
states involved in these transitions are ones in which the j
=2 excitation is shared by the two monomers; the energies of
these states are therefore sensitive to the A2,2,4 term of the
dimer potential energy surface, which couples together angu-
lar functions in Eq. �8� with �j1 , j2�= �0,2� and �j1 , j2�
= �2,0�.

Because of the low reduced mass of the �H2�2 dimer and
the restrictions imposed by nuclear spin statistics, there is
just one sharp S0�0� IR-active transition for this dimer; it is a
�J ,L�= �1,1�← �0,0� transition and appears in the �H2�2

far-IR absorption spectrum at 355.425 cm−1.27 The transition
energy computed for this absorption feature using the �s ,q�
= �0.0175,0� potential energy surface is 355.438 cm−1, or
0.013 cm−1 too high.

The dimer wave function �Eq. �8�� for the upper state of
this transition contains significant contributions from only
four channels: Those with �j1 , j2 ,J12,L� angular momentum
quantum numbers of �0,2,2,1�, �0,2,2,3�, �2,0,2,1�, and
�2,0,2,3�. Furthermore, only two of these channels give inde-
pendent contributions to the wave function; for the �H2�2

dimer, exchange symmetry constraints force the channels
with �j1 , j2 ,J12,L�= �a ,b ,J12,L� and �j1 , j2 ,J12,L�
= �b ,a ,J12,L� to, when L is odd, have radial functions F	�R�
that are equal in magnitude but opposite in sign. Figure 3
shows the F	�R� radial functions for the two independent
channels �j1 , j2 ,J12,L�= �0,2 ,2 ,1� and �0,2,2,3� that define
the upper state of the �J ,L�= �1,1�← �0,0� transition; about
97% of the upper state’s probability density is associated
with the two L=1 channels.

If we compute the expectation value of the dimer’s po-
tential energy using the upper-state wave function,

TABLE V. Observed transition energies and deviations between observed
and computed transition energies �computed minus experiment�, in cm−1, for
selected IR-active transitions of the H2–D2 dimer involving v=1←0 exci-
tation of the H2 monomer. The D2 monomer remains in its v=0 vibrational
level during the transition. The initial and final states are identified by the
angular momentum quantum numbers associated with the dominant term in
the dimer wave function �Eq. �8��; j1 and j2 are the angular momenta of the
H2 and D2 molecules, respectively. The computed transition energies are
obtained using the �s ,q�= �0.0175,0� potential energy surface.

�J ,L , j1 , j2��← �J ,L , j1 , j2�� Observed Deviation

�1,1 ,0 ,2�← �2,2 ,0 ,0� 4337.046 +0.007
�2,1 ,0 ,2�← �2,2 ,0 ,0� 4337.609 +0.006
�0,2 ,0 ,2�← �1,1 ,0 ,0� 4342.004 +0.011
�1,2 ,0 ,2�← �1,1 ,0 ,0� 4342.208 +0.006
�1,1 ,2 ,0�← �2,2 ,0 ,0� 4494.719 +0.001
�2,1 ,2 ,0�← �2,2 ,0 ,0� 4495.20 +0.015

FIG. 3. �Color online� The two dominant F	�R� radial functions for the
�J ,L�= �1,1� upper state accessed in the �H2�2 dimer’s S0�0� IR transition.
These functions are computed using the �s ,q�= �0.0175,0� potential energy
surface.

154308-8 Robert J. Hinde J. Chem. Phys. 128, 154308 �2008�

Downloaded 11 Feb 2010 to 160.36.192.127. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



�V
 =� � � 	��R,r1,r2�	2V�R,r1,r2�dRdr1dr2, �13�

we find that it includes substantial contributions from the
isotropic A0,0,0 term of the potential surface and the aniso-
tropic A0,2,2 and A2,0,2 terms, along with a small contribution
from the A2,2,4 term; this last contribution is proportional to
the integral

�
0

�

F	�R�F	��R�dR , �14�

where F	 and F	� are the two radial functions shown in Fig.
3. As we explained previously, the lower state for this tran-
sition has a wave function dominated by the �j1 , j2�= �0,0�
channel, and its potential energy expectation value is there-
fore, sensitive to only the isotropic A0,0,0 term.

This analysis suggests that a small perturbation of the
A2,2,4 term will change the energy of the upper state, but not
that of the lower state, and could thus bring the computed
transition energy for this far-IR absorption feature into better
agreement with experiment. Furthermore, because the transi-
tions considered in the preceding two subsections involve
states whose energies are insensitive to A2,2,4, such a pertur-
bation would preserve the good agreement with experiment
observed for those transitions. �Naturally, we could also
change the computed transition energy for this particular
far-IR absorption feature by adjusting the A0,2,2 and A2,0,2

terms in the potential energy surface; however, such an ad-
justment would have the undesirable side effect of changing
the transition energies computed in the immediately preced-
ing subsection.� Here we adopt a very simple adjustment of
the A2,2,4 term, which helps compensate for the fact that the
A2,2,4 coefficients computed in Sec. II A include unwanted
contributions from the electrostatic QH interaction: We mul-
tiply the A2,2,4 coefficients computed at each of the 19 R
values by the quantity �1+q�, where q is an adjustable pa-
rameter, and then reconstruct the entire potential energy sur-
face as described in Sec. II D.

Figure 4 shows how q changes the computed position of

the �H2�2 dimer’s �J ,L�= �1,1�← �0,0� S0�0� far-IR absorp-
tion feature. At q=0.02, the computed transition energy co-
incides with the experimental value of 355.425 cm−1. �How-
ever, the uncertainty of 
0.005 cm−1 in this experimental
transition energy means that a wide range of q values would
be compatible with the experimental observations.� This sug-
gests that a simple rescaling of our A2,2,4 coefficients re-
moves much of the QH interaction’s erroneous contribution
to these coefficients, even though the QH interaction has a
different power-law dependence on R than does the
quadrupole-quadrupole interaction that dominates the A2,2,4

term.
To place tighter constraints on q, we turn to the �D2�2

dimer, which, because it is heavier than �H2�2 and has less
severe restrictions arising from nuclear spin statistics, exhib-
its many more absorption features in its far-IR S0�0� band.27

Twelve of these features are relatively sharp, suggesting that
they involve bound or long-lived quasibound states, and also
have firmly assigned initial- and final-state angular momen-
tum quantum numbers. �We discuss later a 13th sharp tran-
sition whose initial- and final-state assignments are more ten-
tative.� Figure 5 and Table VI show how the errors in the

FIG. 4. Dependence on q of the error �computed minus experiment� in the
transition energy computed for the �H2�2 dimer’s far-IR S0�0� absorption
feature. The parameter s is held fixed at s=0.0175.

FIG. 5. �Color online� Dependence on q of the errors �computed minus
experiment� in the transition energies computed for 12 features in the �D2�2

dimer’s far-IR S0�0� absorption band. Panel �b� is a magnification of the
small box in panel �a�. The labels affixed to each line refer to Table VI. The
parameter s is held fixed at s=0.0175.
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energies computed for these 12 transitions depend on q. For
the q=0 potential energy surface, the deviations between
computed and measured transition energies range from
−0.027 cm−1 �transition i� to +0.064 cm−1 �transition h�; at
q=0.0235, however, the computed energies for 8 of the 12
transitions �those labeled e– l� agree with the experiment to
within 
0.007 cm−1. Only one of these eight transitions has
a computed transition energy that differs from the experi-
mental value by more than 0.005 cm−1, which is the experi-
mental uncertainty quoted for these transitions in Ref. 27.
Furthermore, the value q=0.0235 minimizes the mean abso-
lute deviation between the predicted and observed transition
energies for these eight transitions.

The four transitions labeled a–d in Table VI exhibit
poorer agreement with the experiment; furthermore, the er-
rors in the computed energies for these four transitions at q
=0.0235 are equal to or larger in magnitude than the errors at
q=0. Transition c corresponds to a very weak far-IR absorp-
tion feature; inspection of Fig. 3 in Ref. 27 shows that its
intensity is comparable to the level of background noise in
the �D2�2 absorption spectrum, and it is possible that the true
position of this feature differs slightly from that reported in
Ref. 27. Transitions a, b, and d, however, correspond to rela-
tively strong absorption features; furthermore, while transi-
tion a is a shoulder on the low-energy side of a very intense
feature �transition l�, transitions b and d are well isolated
from other spectral features, and transitions a and b are
linked by the J=3←1 combination difference of the dimer’s
j1= j2=0 manifold. It seems unlikely that the quoted experi-
mental uncertainties for these three transitions could be
badly underestimated. It therefore appears that our potential
energy surface slightly underpredicts the energies of the
�J ,L�= �2,2� and �3,3� excited-state levels accessed via these
three IR transitions.

The experimental �D2�2 S0�0� IR absorption spectrum
exhibits a 13th sharp feature, corresponding to the transition
energy 176.627 cm−1, which might be either the �J ,L�
= �3,1�← �2,2� transition or the �J ,L�= �3,2�← �3,3�

transition.27 Our potential energy surface predicts transition
energies of 176.645 and 176.598 cm−1, respectively, for
these transitions.

Finally, we note that the computed transition energies
listed in Table V change by only 0.001–0.002 cm−1 when
the �s ,q�= �0.0175,0.0235� potential energy surface is used.
This validates our decision to hold q fixed at q=0 while we
find the optimal value for s, and then hold s fixed at this
value while we find the optimal value for q.

V. OTHER COMPARISONS WITH EXPERIMENT

In the previous section, we showed that the quality of the
four Al1,l2,L terms of our potential energy surface could be
assessed individually by considering transitions between
pairs of states that have energies sensitive to specific subsets
of these terms. We found that with two small adjustments to
the potential energy surface, we could generate a surface that
gives computed transition energies in fairly good agreement
with a number of high-resolution experimental measure-
ments.

Although some of the transitions considered in the pre-
vious section involve vibrational excitation of the H2 mono-
mer in the H2–D2 dimer, we have not yet considered vibra-
tionally excited states of the �H2�2 or �D2�2 dimers. In these
dimers’ vt=1 vibrationally excited states, the vibrational ex-
citation is delocalized across the pair of monomers; transi-
tions to these excited states therefore probe the simultaneous
dependence of the potential energy surface on r1 and r2.

In this section, we show that our modified potential en-
ergy surface predicts energies for these transitions that are in
good agreement with the experiment, indicating that the sur-
face accurately describes the vibrational coupling between
the two monomers in the �H2�2 and �D2�2 dimers. We also
consider IR-active double vibrational transitions of the �D2�2

dimer, in which each monomer undergoes a v=1←0 excita-
tion; the good agreement we obtain with the experiment pro-

TABLE VII. Binding energies �in cm−1� of selected �H2�2 dimer states that
correlate with j=0 states of the constituent monomers. These bound state
computations employ the �s ,q�= �0.0175,0.0235� potential energy surface.

vt J Binding energy

0 0 2.895
1 0 3.300
1 1 1.559

TABLE VIII. Binding energies �in cm−1� of selected H2–D2 dimer states
that correlate with j=0 states of the constituent monomers. These bound
state computations employ the �s ,q�= �0.0175,0.0235� potential energy sur-
face.

J

Vibrational state

vt=0 v=1 �H2� v=1 �D2�

0 4.417 4.792 4.644
1 3.074 3.442 3.299
2 0.574 0.905 0.779

TABLE VI. Observed transition energies and deviations between observed
and computed transition energies �computed minus experiment�, in cm−1, for
IR-active �D2�2 transitions in the D2 S0�0� band. The computed transition
energies are obtained using either the �s ,q�= �0.0175,0� or the �s ,q�
= �0.0175,0.0235� potential energy surface.

Label �J ,L��← �J ,L�� Observed
Deviation

q=0
Deviation
q=0.0235

a �2,2�← �3,3� 175.507 +0.010 −0.012
b �2,2�← �1,1� 180.322 +0.005 −0.016
c �2,1�← �2,2� 177.359 −0.022 −0.026
d �3,3�← �2,2� 181.287 −0.010 −0.029

e �1,2�← �1,1� 182.328 −0.025 +0.007
f �1,3�← �0,0� 184.536 −0.006 +0.005
g �2,0�← �3,3� 172.776 +0.024 +0.004
h �0,2�← �1,1� 177.996 +0.064 +0.000
i �2,3�← �2,2� 182.797 −0.027 −0.005
j �2,0�← �1,1� 177.592 +0.018 −0.001
k �1,1�← �0,0� 178.747 +0.043 +0.002
l �1,1�← �2,2� 175.744 +0.045 +0.004
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vides further evidence that our modified potential energy sur-
face has the correct �r1 ,r2� dependence.

A. Q1„0… spectra of the „H2…2, H2–D2, and „D2…2 dimers

Tables VII–IX list the energies of several �H2�2, H2–D2,
and �D2�2 bound states that correlate with j=0 monomer
states, computed using the final �s ,q�= �0.0175,0.0235� po-
tential energy surface. Using these bound state energies and
the monomer Q1�0� transition energies from Table III, we
can obtain theoretical positions for the P and R lines in the
dimers’ Q1�0� IR absorption spectra. In Table X, we list the
computed positions for the 11 P and R lines that have been
observed experimentally,25 and compare the computed posi-
tions with the observed ones.

The computed transition energies for �H2�2 and H2–D2

are in good agreement with experiment, with the H2–D2 re-
sults deviating from the observed energies by amounts
smaller than the estimated experimental uncertainties. The
transition energies for �D2�2, however, deviate systematically
from the experimental measurements by about −0.01 cm−1,
or about twice the estimated uncertainty in the measured
transition energies.

To investigate this discrepancy further, we have com-
puted the transition energies of the �D2�2 dimer’s P�2�, P�1�,
R�0�, and R�1� lines using a set of potential energy surfaces
with different s values, keeping q fixed at q=0.0235. �The P
and R lines involving J=3 states have been omitted from this
analysis simply because computing these states’ energies at
several values of s is very time consuming.� In Fig. 6 we
show how the deviations between the computed and ob-

served transition energies change with s. Only for s values
near 0.0175 do the computed transition energies deviate sys-
tematically from the experiment; in addition, the s=0.0175
energies listed in Table IX give J=2←0 and 3←1 spacings
for both the vt=0 and IR-active vt=1 manifolds within
0.002 cm−1 of the experimentally derived values.25 These ob-
servations suggest that the systematic deviations observed
for �D2�2 in Table X are not related to a poor choice for s.

These discrepancies could indicate a small error in the
isotropic A0,0,0 term’s simultaneous dependence on r1 and r2;
the vibrationally excited �D2�2 states involved in the transi-
tions listed in Table X are antisymmetric linear combinations
of �v1 ,v2�= �0,1� and �1,0� states and are therefore, sensitive
to this �r1 ,r2� coupling. The same coupling term, however, is
also active in the IR-active vibrationally excited �H2�2 state,
and in the Raman-active �H2�2 excited state discussed in the
next paragraph, and the agreement with experiment is excel-
lent for transitions involving these states of the �H2�2 dimer.
More work is needed to understand the systematic deviations
in the final column of Table IX.

The �H2�2, H2–D2, and �D2�2 dimers should all have
Raman-active transitions in the vicinity of the monomers’
Q1�0� Raman transitions; thus far, however, only the �H2�2

dimer’s Raman spectrum has been observed

TABLE IX. Binding energies �in cm−1� of selected �D2�2 dimer states that
correlate with j=0 states of the constituent monomers. The letters S and A
indicate that the state is, respectively, symmetric or antisymmetric under
monomer exchange. These bound state computations employ the �s ,q�
= �0.0175,0.0235� potential energy surface.

J

Vibrational state

vt=0 vt=1 �S� vt=1 �A�

0 6.712 �S� 7.118 6.939
1 5.696 �A� 5.925 6.101
2 3.711 �S� 4.111 3.941
3 0.885 �A� 1.109 1.263

TABLE X. Computed transition energies �in cm−1� and deviations from experiment �computed minus experi-
ment� of the P and R lines in the Q1�0� IR bands of the �H2�2, H2–D2, and �D2�2 dimers. For the H2–D2 dimer,
the vibrationally excited state correlates with v=1 H2+v=0 D2; for the �H2�2 and �D2�2 dimers, the vibrational
excitation is delocalized antisymmetrically across the two monomers. The computed transition energies are
obtained using the �s ,q�= �0.0175,0.0235� potential energy surface.

J�←J�

�H2�2 H2–D2 �D2�2

Computed Deviation Computed Deviation Computed Deviation

2←3 ¯ ¯ ¯ ¯ 2990.558 −0.007
1←2 ¯ ¯ 4158.301 +0.002 2991.400 −0.012
0←1 ¯ ¯ 4159.451 −0.001 2992.371 −0.011
1←0 4162.505 −0.008 4162.144 −0.003 2994.401 −0.011
2←1 ¯ ¯ 4163.338 −0.003 2995.368 −0.011
3←2 ¯ ¯ ¯ ¯ 2996.216 −0.013

FIG. 6. Dependence on s of the errors �computed minus experiment� in the
transition energies computed for four lines in the �D2�2 dimer’s Q1�0� IR
absorption band. The parameter q is held fixed at q=0.0235.
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experimentally.28 It consists of a single narrow line corre-
sponding to a transition energy of 4160.78
0.02 cm−1. The
theoretical Q1�0� Raman transition energy for �H2�2 derived
from the first two lines of Table VII is 4160.764 cm−1; the
difference between the computed and experimental Raman
transition energies is only slightly smaller than the estimated
experimental uncertainty. However, the reported value for
the experimental Raman transition energy is based on a value
of 4161.18 cm−1 for the Q1�0� transition of an isolated H2

molecule. The difference between this value and the value
used here �4161.169 cm−1� accounts for more than half the
difference between the computed and observed dimer Raman
transition energies. If we, instead, compare the observed and
computed dimerization-induced redshift of the H2 Q1�0� Ra-
man transition, we find that our computed redshift of
0.405 cm−1 is in excellent agreement with the reported
value28 of 0.400
0.02 cm−1.

B. S1„0… and Q1„0…+S1„0… infrared spectra of the „H2…2
and „D2…2 dimers

We finally use our modified potential energy surface to
compute transition energies for features in the S1�0� IR ab-
sorption bands of the �H2�2 and �D2�2 dimers, and for fea-
tures in the Q1�0�+S1�0� IR absorption band of the �D2�2

dimer. The �D2�2 transitions involve upper states whose en-
ergies are sensitive to the �r1 ,r2� dependence of the potential
energy surface.

The S1�0� IR absorption spectrum of �H2�2 contains just
one narrow line25 at 4498.734
0.004 cm−1. This feature is
associated with a transition from the dimer’s ground state
�the first line of Table V� to a state with J=L=1 that is a
linear combination of �v1 , j1 ;v2 , j2�= �1,2 ;0 ,0� and
�0,0;1,2�; the final state’s energy is listed in the first line of
Table XI. The �s ,q�= �0.0175,0.0235� potential energy sur-
face gives a computed S1�0� dimer transition energy of
4498.726 cm−1, in good agreement with the observed value.

The angular basis functions IJ,M,
 in Eq. �8� that corre-
spond to �J ,L , j1 , j2�= �1,1 ,0 ,2� and �1,1,2,0�, which domi-
nate the final-state wave function for this S1�0� dimer transi-
tion, are not directly coupled together by any of the four
terms Al1,l2,L that appear in our potential energy surface; con-
sequently, this �H2�2 transition, like the H2–D2 transitions
considered in Sec. IV B, probes primarily the monomer vi-
brational dependence of the surface’s A0,0,0, A0,2,2, and A2,0,2

terms. In contrast to the H2–D2 transitions discussed in Sec.
IV B, however, the �H2�2 S1�0� transition is sensitive to the
A2,2,0 and A2,2,2 terms of the potential energy surface, which

we have ignored; the fact that we obtain good agreement
with experiment without explicitly including these terms in
our surface is further evidence that these terms are of minor
importance for the dimer bound states considered in this
work.

The S1�0� IR absorption band for �D2�2 is much richer
than that for �H2�2, and is described in Ref. 26 as “possibly
�the� most informative of all the hydrogen dimer spectra”
presented there. It contains six pairs of narrow lines sepa-
rated by the �D2�2 vt=0 ground-state J=2←0 or 3←1 spac-
ings �3.001 and 4.814 cm−1, respectively� and nine additional
narrow lines.

The six pairs of lines are associated with transitions from
two different rotational levels of the vt=0 ground state to a
common vt=1 upper-state level with a firm angular momen-
tum quantum number assignment. The upper part of Table
XII compares the computed and experimental transition en-
ergies for the higher-frequency transition of each of these
pairs. �No additional information about the quality of our
potential energy surface is carried by the other transition of
each pair.� The agreement between computed and measured
transition energies is quite satisfactory; the largest deviation
is 0.022 cm−1 for the �J ,L�= �2,4�← �1,1� transition.

In Ref. 25, initial- and final-state quantum number labels
were proposed for the nine other narrow lines that appear in
the �D2�2 dimer’s S1�0� IR absorption band; these assign-
ments were described as “less certain” than the assignments
for the pairs of lines linked by ground-state combination dif-
ferences. Eight of these lines are listed in the lower part of
Table XII, which shows that using these transition assign-
ments, we again observe very good agreement between com-
puted and measured transition energies. �The one line omit-
ted from Table XII involves a transition to a J=4 state whose
energy we have not attempted to compute.� Table XII thus
confirms the transition assignments proposed in Ref. 25.

TABLE XI. Energies �in cm−1� for �H2�2 states with J12=2, vt=0 or 1, and
L�1. The energies are obtained using the �s ,q�= �0.0175,0.0235� potential
energy surface, and are given relative to the S0�0� and S1�0� H2 monomer
energies for vt=0 and 1, respectively.

�J ,L�
Energy
vt=0

Energy
vt=1

�1, 1� −1.845 −2.008
�2, 0� −3.022 −3.319
�2, 1� −1.200 −1.470

TABLE XII. Observed transition energies and deviations between observed
and computed transition energies �computed minus experiment�, in cm−1, for
IR-active �D2�2 transitions in the D2 S1�0� band. The computed transition
energies are obtained using the �s ,q�= �0.0175,0.0235� potential energy sur-
face. The column labeled F indicates the fraction of upper-state probability
associated with functions in Eq. �8� in which the v=1 and j=2 molecular
excitations reside on the same monomer.

�J ,L��← �J ,L�� Observed Deviation F

�2,0�← �1,1� 3164.705 −0.005 0.984
�1,1�← �0,0� 3166.195 −0.005 0.959
�2,2�← �1,1� 3167.890 −0.004 0.966
�1,3�← �0,0� 3169.919 −0.020 0.666
�2,0�← �1,1� 3170.429 −0.020 0.196
�2,4�← �1,1� 3173.702 −0.022 0.467

�3,2�← �3,3� 3163.378 −0.009 0.993
�3,1�← �2,2� 3163.707 −0.003 0.989
�2,1�← �2,2� 3164.281 −0.011 0.992
�0,2�← �1,1� 3166.340 −0.004 0.871
�1,2�← �1,1� 3167.392 −0.030 0.942
�2,3�← �2,2� 3168.343 −0.028 0.860
�3,3�← �2,2� 3168.737 −0.004 0.891
�2,1�← �2,2� 3170.931 +0.003 0.298
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The upper-state wave functions for the transitions listed
in Table XII are linear combinations of radial functions in
Eq. �8� with angular momentum quantum numbers
�J ,L , j1 , j2�= �J ,L ,0 ,2� and �J ,L ,2 ,0�. For L�2, these pairs
of radial functions are coupled together by the A2,2,4 term of
the potential energy surface. In addition, some of the upper
states accessed via these transitions are mixtures of S1�0�
states, in which the rotational and vibrational excitation re-
side on the same D2 monomer, and Q1�0�+S0�0� states, in
which one monomer is vibrationally excited while the other
is rotationally excited; the quantity F listed in Table XII mea-
sures the degree of mixing in the upper-state wave functions.
The good agreement between computed and observed tran-
sition energies in Table XII, especially for transitions to up-
per states with L�2 or with F values below 0.9, indicates
that the �r1 ,r2� dependence of our potential energy surface,
and of the A2,2,4 term in particular, is reasonably accurate.

Further evidence that the �r1 ,r2� dependence of our po-
tential energy surface is accurate comes from Table XIII,
where we compare the computed and observed transition en-
ergies for several �D2�2 transitions in the dimer’s Q1�0�
+S1�0� overtone IR absorption band. The agreement between
computed and observed transition energies is fairly good,
although it appears that the potential energy surface gener-
ally underestimates slightly the energies of the upper states
of these transitions.

VI. PREDICTIONS FOR NOT-YET-OBSERVED
TRANSITIONS

In this section, we use our final �s ,q�= �0.0175,0.0235�
potential energy surface to predict the energies of some not-

yet-observed IR transitions of the H2–D2 dimer and some
not-yet-observed Raman transitions of the �H2�2 and �D2�2

dimers. Experimental studies designed to search for these
transitions would help test the accuracy of the potential en-
ergy surface presented here.

The region of the H2–D2 dimer’s IR absorption spec-
trum associated with Q1�0� excitation of the H2 monomer
has already been studied experimentally, and as Table X
shows, our potential energy surface gives accurate transition
energies for the four P and R lines in this portion of the
dimer’s IR spectrum. The dimer should have four additional
IR-active P and R lines associated with Q1�0� excitation of
the D2 monomer. We have computed the transition energies
for these four lines based on the dimer binding energies
listed in Table VIII; Table XIV lists the predicted transition
energies for these four absorption features.

As we noted earlier, the single Raman-active transition
in the �H2�2 dimer’s Q1�0� band was recently observed. This
dimer should also have Raman-active transitions in the
monomer S0�0� and S1�0� bands. The energies for these two
transitions can be computed from the dimer’s ground-state
binding energy of 2.895 cm−1 and the binding energies of the
�J ,L�= �2,0� states listed in the second line of Table XI. We
therefore predict that the �H2�2 dimer should exhibit S0�0�
and S1�0� Raman transitions at 354.246 and 4497.415 cm−1,
respectively. Unfortunately, these transitions are fairly close
to the corresponding Raman-active transitions of the free H2

monomer, which are located at transition energies of 354.373
and 4497.839 cm−1, so a high-resolution experiment will
likely be required to observe the dimer transitions.

Because the �D2�2 dimer has four bound states, its Ra-
man spectrum will be much richer than that of �H2�2. In
Tables XV and XVI we give predictions for Raman-active
transitions of the �D2�2 dimer in the monomer Q1�0�, S0�0�,
and S1�0� bands; these predictions are based on the energy
levels listed in Tables IX and XVII. There will be additional
Raman features in the dimer’s S0�0� and S1�0� bands, asso-
ciated with transitions to final dimer states with J=3, which
we have omitted from Table XVI because we have not com-
puted the energies of these final dimer states.

VII. SUMMARY AND DISCUSSION

We have presented a six-dimensional H2–H2 potential
energy surface that accurately describes several bound �and

TABLE XIV. Predicted transition energies �in cm−1� of the P and R lines in
the Q1�0� IR band of the H2–D2 dimer for vibrationally excited states cor-
relating with v=0 H2+v=1 D2. The predictions are obtained using the
�s ,q�= �0.0175,0.0235� potential energy surface.

J�←J� Energy

1←2 2990.889
0←1 2992.044
1←0 2994.732
2←1 2995.909

TABLE XV. Predicted transition energies �in cm−1� for Raman-active tran-
sitions in the Q1�0� band of the �D2�2 dimer. The predictions are obtained
using the �s ,q�= �0.0175,0.0235� potential energy surface.

�J ,L��← �J ,L�� Energy

�1,1�← �3,3� 2988.398
�0,0�← �2,2� 2990.207
�0,0�← �0,0� 2993.208
�1,1�← �1,1� 2993.209
�2,2�← �2,2� 2993.214
�3,3�← �3,3� 2993.236
�2,2�← �0,0� 2996.215
�3,3�← �1,1� 2998.047

TABLE XIII. Observed transition energies and deviations between observed
and computed transition energies �computed minus experiment�, in cm−1, for
IR-active �D2�2 transitions in the D2 Q1�0�+S1�0� band. The computed tran-
sition energies are obtained using the �s ,q�= �0.0175,0.0235� potential en-
ergy surface.

�J ,L��← �J ,L�� Observed Deviation

�2,0�← �3,3� 6152.870 −0.018
�1,1�← �2,2� 6155.672 −0.020
�2,2�← �3,3� 6155.672 −0.021
�3,1�← �2,2� 6156.767 −0.015
�0,2�← �1,1� 6157.770 −0.003
�1,1�← �0,0� 6158.669 −0.016
�3,3�← �2,2� 6161.471 −0.036
�1,2�← �1,1� 6162.773 −0.002
�2,3�← �2,2� 6163.261 −0.015
�1,3�← �0,0� 6164.872 −0.005

154308-13 H2–H2 potential energy surface J. Chem. Phys. 128, 154308 �2008�

Downloaded 11 Feb 2010 to 160.36.192.127. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



long-lived quasibound� states of the �H2�2, �D2�2, and H2–D2

dimers that correlate with H2 and D2 monomers in their
�v , j�= �0,0�, �0,2�, �1,0�, and �1,2� rovibrational states. The
surface is based on a set of ab initio H2–H2 interaction en-
ergies that appear to be nearly converged with respect to the
one-electron and many-electron basis sets, and which cover
fairly densely the region of configuration space associated
with the dimer’s van der Waals well. The surface incorpo-
rates two empirical adjustments: One softens slightly the sur-
face’s repulsive wall at small H2–H2 distances, and one in-
creases slightly the magnitude of the surface’s A2,2,4 term
that couples the rotational degrees of freedom of the two
monomers. The latter adjustment appears to compensate for
the fact that our original A2,2,4 coefficients include small con-
tributions from the electrostatic quadrupole-hexadecapole in-
teraction between the two molecules. A FORTRAN subroutine
that evaluates the �s ,q�= �0.0175,0.0235� potential energy
surface is available through EPAPS.36

An empirical softening of the ab initio H2–H2 interac-

tion energy at small intermolecular distances is not unprec-
edented. For instance, Schaefer and Kohler17 found that by
softening the short-range repulsive wall of an ab initio
H2–H2 potential energy surface, they could bring properties
computed using the surface �in this case, the second virial
coefficient of H2 gas� into better agreement with the experi-
ment. The surface of Diep and Johnson14 is based on a series
of ab initio calculations that have been extrapolated to the
estimated complete one-electron basis-set limit; this extrapo-
lation technique yields a surface whose repulsive wall is
slightly softer than that of the largest basis-set surface explic-
itly calculated, and thus has the same effect as an empirical
softening of the repulsive wall. It would be interesting to
compute the H2–H2 interaction energy using explicitly cor-
related electronic structure methods59 to see whether linger-
ing basis set incompleteness in the present ab initio calcula-
tions is what necessitates the softening of the short-range
repulsive wall of the surface.

We have used our potential energy surface to predict the
energies of 34 not-yet-observed IR and Raman transitions for
�H2�2, �D2�2, and H2–D2 dimers involving even-j states of
the H2 and D2 monomers. Observations of these transitions
could help verify the accuracy of the present potential energy
surface, or point out areas where the surface could be further
improved. Calculations of the energy levels of dimers con-
taining one j=1 molecule, such as ortho-H2–para-H2, could
also be useful in this regard; these calculations are in
progress and will be reported in due course.
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TABLE XVI. Predicted transition energies �in cm−1� for Raman-active tran-
sitions in the S0�0� and S1�0� bands of the �D2�2 dimer. The predictions are
obtained using the �s ,q�= �0.0175,0.0235� potential energy surface.

�J ,L��← �J ,L�� S0�0� energy S1�0� energy

�0,2�← �0,0� 183.837 3167.595
�2,0�← �0,0� 178.713 3165.725
�2,2�← �0,0� 182.694 3168.981
�1,1�← �1,1� 178.108 3165.208
�1,3�← �1,1� 184.564 3168.916
�0,2�← �2,2� 180.836 3164.594
�2,0�← �2,2� 175.712 3162.724
�2,2�← �2,2� 179.693 3165.980
�1,1�← �3,3� 173.298 3160.397
�1,3�← �3,3� 179.754 3164.105

TABLE XVII. Energies �in cm−1� for �D2�2 states with J12=2, vt=0 or 1,
and J�2. The energies are obtained using the �s ,q�= �0.0175,0.0235� po-
tential energy surface, and are given relative to the S0�0� and S1�0� D2

monomer energies for vt=0 and 1, respectively.

�J ,L�
Exchange
symmetry

Energy
vt=0

Energy
vt=1

�0, 2� S −1.942 −5.476
�1, 1� S −7.030 −6.881
�1, 2� S −5.620 −4.850
�1, 3� S −1.238 −3.172
�2, 0� S −7.066 −7.347
�2, 1� S −5.445 −5.800
�2, 2� S −3.085 −4.090
�2, 3� S +0.014 −1.754

�0, 2� A −6.767 −5.719
�1, 1� A −6.654 −6.846
�1, 2� A −2.427 −4.692
�1, 3� A −0.199 −3.138
�2, 0� A −7.172 −7.356
�2, 1� A −5.752 −5.821
�2, 2� A −4.457 −4.169
�2, 3� A −1.813 −1.844
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