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ABSTRACT 
 
Recent studies demonstrate that a key advantage of Flexible Matrix Composite (FMC) shaft 

technology is the ability to accommodate misalignments without need for segmenting or flexible 

couplings as required by conventional alloy and graphite/epoxy composite shafts. While this is 

indeed a very promising technology for rotorcraft driveshafts, the high damping loss-factor and 

thermal stiffness and damping sensitivities of the urethane matrix, makes FMC shafting more 

prone to self-heating and whirl instabilities. Furthermore, the relatively low bending stiffness and 

critical speeds of FMC shafts makes imbalance vibration a significant challenge to supercritical 

operation. To address these issues and advance the state-of-the-art, this research explores Active 
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Magnetic Bearing (AMB) technology together with a robust-adaptive hybrid H∞ 

feedback/Synchronous Adaptive Vibration Control law designed to ensure stable supercritical 

operation of a prototype FMC rotorcraft driveline. The effectiveness of the proposed new 

approach is demonstrated through analysis of a helicopter driveline testbed. 

NOMENCLATURE 
Ac, An, AT   = system matrices 
Acl, Ancl, ATcl = closed-loop system matrices 
Acs     = shaft cross-sectional area, m2 

Ap     = AMB pole face area, m2

BBc, BdB , BBp, BuB  = input matrices 
BBdcl, Bucl   = closed-loop input matrices 
C     = damping matrix 
Cc, Cq, Cy, Cz = output matrices 
Cycl, Czcl   = closed-loop output matrices 
CFB(s)   = H∞ feedback controller 
D     = Rayleigh dissipation function, N-m/sec 
d     = disturbance input   
Dc     = control feed-through matrix 
ds     = shaft outer diameter, m 
E, En    = shaft elastic moduli, N/m2

ecc     = shaft eccentricity, m 
El, Et, Glt  = FMC ply moduli, N/m2

fv,  fw    = AMB electromagnetic actuation forces, N 
fmax, frms   = Peak and maximum RMS AMB forces, N 
G     = gyroscopic matrix 
G, Gn    = shaft shear moduli, N/m2

G(s)    = H∞ controlled system 
hback, hgap  = AMB clearances, m 
i     = SAVC control update number  
I     = shaft cross-section moment of area, m4

Ibias, Isat   = AMB bias and saturation currents, Amps 
Iv,  Iw    = AMB control current inputs, Amps 
j     = imaginary number, 1-   
J     = SAVC objective function, m2

JFB, JFBAVC  = shaft vibration metrics, m 
ki     = AMB force-current gain, N/Amp 
kx     = AMB negative levitation stiffness, N/m 
K     = structural stiffness matrix 
KAMB    =  AMB stiffness matrix 
Krd    =  shaft whirl matrix 
LAMBi [i =1-3] =  AMB axial location, m 
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LIMB    = imbalance axial location, m 
Ls     = shaft length, m 
M     = mass matrix 
ms     = shaft mass, kg 
nc, nx    = number of states 
nconv    = convolution window length 
nd, nu, ny, nz  = number of inputs and outputs 
nl     = number of FMC ply layers 
nmode    = number of modes 
Nc , Np   = number of AMB coil turns and poles 
Nv , Nw   = 8-dof 2-node beam shape functions 
p     = uncertainty channel input 
P(s)    = AMB-FMC driveline plant 
q      = uncertainty channel output 
QAMB, QIMB = force input matrices 
R     = SAVC weighting matrix 
t     = time, sec 
T     = shaft temperature, °C 
Tke     = system kinetic energy, N-m 
tl     = FMC ply layer thickness, m 
Tn     = nominal shaft temperature, °C 
ts     = shaft wall thickness, m 
Ts     =  sampling period, sec 
Tu     = SAVC update period, sec 
Tyu     = synchronous transfer matrix 
u, uFB, uSAVC = control inputs, Amp  
U     = SAVC input Fourier vector 
v, w    = shaft lateral deflections, m 
weff    = SAVC weighting, m2/Amp 
x     = axial position coordinate, m 
xc, xp, xcl   = state vectors 
y, z    = system outputs  
Y     = SAVC output Fourier vector 
δWIMB,δWAMB =  Imbalance and AMB force virtual work B

δc,     = FMC shaft damping-temperature sensitivity 
δk, δτ    = FMC shaft stiffness-temperature sensitivities 
δT     = deviation temperature, °C  
δTstab    = stability margin, °C 
δTconv    = convergence margin, °C 
δTmax    = robustness margin, °C 

Δ     = uncertainty block matrix 
ΔT     = deviation temperature bound, °C 

φIMB    = imbalance phase angle, radians 

γ     = H∞ loop gain 
η     = modal coordinate vector 
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ηl ,ηt ,ηtl   = FMC ply loss factors 

μ0     = free-space permeability, N/Amps2

νtl     = FMC ply Poisson’s ratio 

θ1, θ2    = FMC fiber angles, degrees 
ρs     = shaft density, kg/m3

ωi      = natural frequencies, rad/sec 

Ω     = shaft speed, rad/sec 
ξ, ξn    = FMC shaft loss factor 

ζi     = modal damping ratios 
[ ]ρ     = spectral radius 

“ . ”    = derivative with respect to time 
“′ ”    = derivative with respect to x
“ * ”    = complex conjugate 
 

INTRODUCTION 

Recently, a novel approach to the design of helicopter tailrotor driveshafts based on newly 

emerging urethane/graphite Flexible Matrix Composite (FMC) materials has been explored in 

Refs. 1-5. It has been found that shafts constructed of such FMC materials can provide many 

benefits over conventional alloy and graphite/epoxy driveshafts. In particular, Refs. 1 and 2 

found that, through proper tailoring of the FMC ply thickness and fiber orientations, FMC 

driveshaft designs with high torsion stiffness and low bending stiffness can be achieved with 

less-weight than conventional alloy shaft designs. Due to the high strain capability of FMC 

materials (see Ref. 3),  Refs. 1 and 2 showed that a single-piece (non-segmented) FMC shaft can 

safely accommodate tailrotor driveline angular misalignments and eliminate the need for flexible 

couplings, which are a significant source of driveline vibration and maintenance requirements 

(Refs. 6 and 7).  

While FMC driveshaft technology is indeed promising for rotorcraft applications, there are 

still research issues to be addressed before the concept can be fully utilized.  For example, FMC 

shafts have been found to have significantly more structural damping as compared with 

conventional alloy or graphite/epoxy shafts, (Ref. 3). Consequently, as shown in Refs. 1 and 2, 
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FMC shafts are more prone to rotating-frame damping-induced whirl instability when operated 

supercritically. In particular, Ref. 2 conducted a comprehensive FMC tailrotor driveshaft design 

study which considered misalignment capability, whirl stability and imbalance vibration 

response. Here, since large misalignment capability essentially requires lower bending stiffness 

and consequently lower bending natural frequencies (i.e. critical speeds), it was concluded that 

there is a trade-off between misalignment capability and stability. As a result, the FMC driveline 

designs tended to be supercritical, thus, requiring fixed-frame damping to prevent whirl 

instability, see Ref. 8. 

The major cause of vibration in composite driveshaft systems is shaft imbalance which 

produces synchronous vibration at the shaft operating speed harmonic. In particular, Ref. 9 

explored the balancing of composite driveshafts with imbalance produced by density variations 

distributed along the shaft. These density variations, which are attributed to the composite shaft 

manufacturing process, are inherently unknown. As a result of manufacturing tolerances and 

relatively low bending stiffness of FMC shaft designs, Refs. 1 and 2 found that imbalance 

vibration magnitudes tended to be higher as compared with conventional alloy drivelines. Thus, 

imbalance vibration suppression of composite shafts, and FMC shafts in particular, is especially 

challenging. 

To address these issues and advance the state-of-the-art toward reducing driveline vibration 

and maintenance requirements, the objective of this investigation is to explore the use of actively 

controlled magnetic bearing technology in conjunction with recently developed FMC shaft 

designs. By replacing the conventional rolling contact hanger bearings with non-contact Active 

Magnetic Bearings (AMB), and replacing the multi-segment flexible-coupling/shaft arrangement 
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with a single-piece FMC design, this new actively controlled, AMB-FMC driveline 

configuration offers significant vibration reduction and maintenance saving potential. 

Many researchers have investigated the use of AMBs for active feedback controlled vibration 

suppression in various shaft and driveline systems.  In particular, Ref. 10 investigated the size, 

weight, and power requirements of an AMB control system under full-state feedback optimal 

control for a particular helicopter tailrotor driveline. Here, it was concluded that the use of 

AMBs would be feasible in a rotorcraft setting. Furthermore, Refs. 11 and 12 developed a slowly 

adapting Synchronous Adaptive Vibration Control (SAVC) technique for suppressing steady-

state imbalance vibration in AMB/shaft systems. Recently, Ref. 13 developed a Multi-Harmonic 

Adaptive Vibration Control (MHAVC) scheme to address misalignment and load-torque induced 

multi-harmonic vibrations which arise in traditional segmented driveshafts connected by flexible 

couplings. The robustness of such control strategies to various types of uncertainties, such as 

operating condition and shaft stiffness variation, were explored in Refs. 13 and 14.  

In the case of FMC shafts, Ref. 4, demonstrated that the FMC ply elastic moduli and damping 

loss-factors were temperature dependent. To account for this thermal sensitivity and ensure 

closed-loop robustness, this investigation develops a robust-adaptive vibration control strategy 

for the actively controlled AMB-FMC driveline system. This control law, based on a hybrid H∞ 

Feedback/SAVC feed-forward approach, enables the FMC driveline concept by ensuring stable 

levitation and vibration suppression over a wide range of operating speeds, shaft temperature 

deviations, and imbalance uncertainties. 
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TECHNICAL APPROACH 
 
AMB-FMC Driveline System 

Figure 1 depicts the AMB-FMC driveline system investigated in this research. The system 

consists of a single piece FMC shaft, which is driven at constant rotational speed, Ω. The FMC 

shaft, with transverse deflections v(x,t) and w(x,t), is coupled to a fixed input-shaft and fixed 

output-shaft via rigid couplings and is supported by three non-contact, radial AMBs. 

Rigid
Coupling

Ω
FMC Shaft

LAMB1
LAMB2

LAMB3

AMB1 AMB2 AMB3

),( & ),( txwtxv

Shaft Temperature, T

Ls

Rigid
Coupling

Non-Contact
Magnetic
Bearing

 
 

Fig. 1.  AMB-FMC driveline system. 

Furthermore, the shaft is composed of 8-ply layers which are assembled in a symmetric lay-up 

configuration. The ply orientations are described as [+θ1/-θ1/-θ2/+θ2]S, where θ1 and θ2 are the 

fiber-orientation angles relative the shaft rotation axis. See Fig. 2. 

θi
+θ2
 -θ2
 -θ1
+θ1
+θ1
 -θ1
 -θ2
+θ2

ts

 
Fig. 2.  Ply layer stacking sequence. 
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Based on θ1 and θ2 and the temperature dependent FMC ply material properties, the equivalent 

isotropic properties of the assembled FMC shaft are obtained via Equivalent Modulus Beam 

Theory (Ref. 15) and are represented as 

E = E(T),  G = G(T)  and  ξ = ξ(T)                  (1-a) 

Where E and G are shaft elastic and shear moduli, ξ is the equivalent viscous damping parameter 

and T is the shaft temperature. Also, the nominal shaft material properties are defined as 

En = E(Tn),  Gn = G(Tn)  and  ξn = ξ(Tn)              (1-b) 

Where Tn = 30°C is the nominal shaft temperature. Finally, the shaft material property 

temperature dependence is linearly approximated about the nominal values as (Ref. 4) 

( ) ( )
( )  1)()(              

1)(   , 1)(

nncT

nTnkT

ETET
GTGETE

ξδδξ
δδδδ τ

+≈
+≈+≈

          (1-c) 

Where δk, δτ, and δc, are bending stiffness, torsion stiffness and damping temperature 

sensitivities and  δT = T - Tn is the deviation temperature about Tn due to some external ambient 

temperature operating condition. The material properties of the FMC shaft considered in this 

study are summarized in Tables 1 and 2. 

Table 1  FMC Properties and Ply Configuration 

FMC Ply Material Properties a

Longitudinal modulus, El 115 GPa 
Transverse modulus, Et 0.275 GPa 
Shear modulus, Glt 0.250 GPa 
Longitudinal loss-factor, ηl 0.0011 
Transverse loss-factor, ηt 0.080 
Shear loss-factor, ηtl 0.085 
Poisson’s ratio, νtl 0.38 
FMC Shaft Ply Configuration 
Number of ply layers, nl 8 
Ply layer thickness, tl 0.386 mm 
Fiber orientations, θi [+45°/-45°/-90°/+90°]s
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a All values at nominal temperature, Tn = 30°C,  see Ref. 4  
 
 
Table 2 Equivalent Isotropic Properties 

FMC Shaft Equivalent Isotropic Properties 
Density, ρs 1650 kg/m3

Elastic modulus (nominal), En 11.84 GPa 
Shear modulus (nominal), Gn 14.51 GPa 
Equivalent viscous damping a, ξn 5.85 x10-5

Temperature Sensitivity Parameters 
Bending stiffness sensitivity, δk -0.1125  % / °C 
Torsion stiffness sensitivity, δτ -3.6x10-3  % / °C 
Damping sensitivity, δc   0.225 % / °C 
a Viscous damping based on loss-factor at 10 Hz 
 

The system kinetic energy, T , strain energy V, dissipation function, D, and virtual work 

expressions, δW  and δW , due to shaft imbalance and the AMB control forces are  

ke

IMB AMB

 dxwvvwIwvIwvAT sL

cs
s

ke  ])][(2)()([
2 0

22222∫ ′′−′′Ω+Ω+′+′++= &&&&&&
ρ

    (2-a) 

dxwvEIV sL
 ][

2 0

22∫ ′′+′′=             (2-b) 

dxwvvwwvwvEID sL
 )]()(2[

2 0

22222∫ ′′+′′Ω+′′′′−′′′′Ω+′′+′′= &&&&ξ     (2-c) 

[ ]
IMB

)sin()cos( IMBIMB
2

IMB Lxccs wtvtemW =+Ω++ΩΩ= δφδφδ     (2-d) 

[∑
=

=+=
3

1

)()(
AMB AMB

)()(
i

Lx
i

w
i

v i
wtfvtfW δδδ ]          (2-e) 

Where “ . ” and “′ ” indicate differentiation with-respect-to time, t, and x respectively. 

Furthermore, f  and f , are the lateral components of the electromagnetic forces applied to the 

shaft by the AMBs, which are modeled based on linearized force-current-displacement relations 

about a constant bias current level, I  (cf. Ref. 13 or 16 for details).  

v
(i)

w
(i)

bias
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Here, I   and I , are the i  AMB control current inputs which are determined by the active 

control law. Based on Eqs. (2) and (3), the AMB-FMC driveline equations of motion are 

obtained via the Finite Element Method (FEM).  For more details, one can refer to the Appendix.  

Finally, the model order is reduced via a modal transformation retaining the first n =10 

modes. The resulting equations-of-motion in terms of modal coordinates, , are 

v
(i)

w
(i) th

mode

1mode)( ×ℜ∈ ntη

[ ]
[ ]

[ ] )(cossin             

  )()1()1(    
  )()1(

tutt T
cTkT

cT

AMBIMB

AMBrd

QQ

KKK
GCM

+ΩΩ=

+Ω+++
+Ω+++

L

L

&&&

ηδδδδ
ηδδη

        (4) 

Where the matrices M, C, G and K are the nominal mass, structural damping, gyroscopic and 

elastic stiffness matrices, respectively, with M = I (identity matrix). K  is the skew-symmetric 

rotating-frame damping-stiffness matrix (Ref. 7) and K , is the negative AMB stiffness matrix 

for the bias current level I  (Ref. 13). Finally,  describes the shaft imbalance 

excitation and  is the AMB force-current input distribution matrix with control 

current input vector .

rd

AMB

bias
2mode ×ℜ∈ n

IMBQ

unn ×ℜ∈ mode
AMBQ

1 )( ×ℜ∈ untu

In this investigation, the proposed AMB-FMC driveline is sized to replace the conventional 

supercritical segmented tailrotor driveline of the McDonnell-Douglas AH-64 Apache helicopter. 

In particular, the overall driveline length, Ls, and shaft outer diameter, ds, are kept the same as 

the original AH-64 driveline. Furthermore, the FMC shaft wall thickness, ts, is selected such that 

the torsion stiffness of the new FMC driveline matches that of the original AH-64 driveline. The 
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parameters are summarized in Table 3. Finally the conventional hanger bearings and dampers are 

replaced with the AMBs who’s parameters are given in Table 4. 

Table 3 Driveline Parameters 

Shaft Dimensions  
Outer diameter, ds
Wall thickness, ts
Length, Ls 
Shaft mass, ms
Cross-sectional area, Acs 
Moment of area, I 

114.33 mm 
3.089 mm 
6.667 m 
11.88 kg 
1079.63 mm2

1.67x106 mm4

Bearing Locations  
Location of AMB1, LAMB1
Location of AMB2, LAMB2 
Location of AMB3, LAMB3

1.33 m 
3.66 m 
5.34 m 

Operating Conditions  
Operating speed, Ω 
Shaft eccentricity, ecc 

Imbalance phase angle, φIMB 
Imbalance location, LIMB

4815 RPM 
100 μm 
0° 
2.0 m 

 
Table 4  Magnetic Bearing Parameters  

AMB Parameters  
Rotor-stator airgap, hgap
Backup-bearing gap, hback
Bias current, Ibias
Saturation current, Isat
Number poles, Np
Pole face area, Ap
Number of coil turns, Nc
Current stiffness, ki
Position stiffness, kx
Peak force capacity, fmax
RMS force capacity, frms

508 μm 
225 μm 
1.5 Amps 
3.0 Amps 
8 
2.36 cm^2 
168 
211.2 N/Amps 
623.45 N/mm  
445 N 
311 N 

 
To illustrate the effect of the FMC material thermal sensitivity on the driveline dynamic 

characteristics, Fig. 3 shows the first five open-loop bending natural frequencies, ωi, and modal 

damping ratios, ζi, for a range of shaft temperatures. 
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Fig. 3  FMC shaft dynamic characteristics vs temperature;  
(a) natural frequencies, (b) modal damping ratios. 

 
Figure (3-a) demonstrates the high degree of lateral flexibly of the FMC driveline, where it is 

seen that the target operating speed is greater than the first four open-loop shaft natural 

frequencies. 

 
Active Control Architecture 

 To proceed with the development of the active control law, the AMB-FMC driveline system 

in Eq. (4) is first recast into state-space form 
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Also, is the synchronous disturbance input due to imbalance and  is 

the 

Ttttd ]cossin[)( ΩΩ= 1 ×ℜ∈ unu

AMB control input with corresponding input distribution matrices  and  

written as 

dnxn
dB ×ℜ∈ unxn

uB ×ℜ∈

⎥⎦
⎤

⎢⎣
⎡=

IMBQ
0

dB  and             (7) ⎥
⎦

⎤
⎢
⎣

⎡=
AMBQ
0

uB

Additionally  and 1 ×
ℜ∈ yny 1 ×ℜ∈ znz  are measured shaft displacement and performance output 

vectors respectively. Here, each AMB has two control axes and two displacement sensors, thus 

nu = ny = 6. Figure 4 is a block diagram of the closed-loop AMB-FMC driveline system.

Feedback
Controller

+

Feedback Controlled Driveline

AMB-FMC
Driveline

Synchronous Adaptive
Vibration Control

A/DD/A

z

y
u

uFB

d

uSAVC

Ω, Tn & δT

y

  
Fig. 4  Hybrid feedback/SAVC controlled AMB-FMC driveline system. 

 
In this hybrid control strategy, the control input, u, consists of two components given in Eq. (8). 
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),()()( tiututu SAVCFB +=             (8) 

Here, is generated from an output feedback control designed to stabilize the 

supercritical shaft whirl instabilities and to ensure bounded-input bounded-output (BIBO) stable 

levitation of the AMB-FMC driveline system in Eq. (5). Furthermore, the adaptive portion of the 

control, 

1 ×ℜ∈ un
FBu

1 ×ℜ∈ un
SAVCu , is

   )cos(sin),( tjtUtiu iSAVC Ω+Ω=                (9) 

Where 1 ×ℜ∈ un
iU  is the i  updated complex Fourier coefficient control input which is adapted 

slowly relative to system transients to suppress the steady-state synchronous imbalance response.

th

In this investigation, the stabilizing portion of the control is synthesized based on a full-

order dynamic output feedback controller, CFB(s), thus 

                     (10) 
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Where is the controller state and n1 ×ℜ∈ cn
cx c = nx is the controller order. From (5) and (10), the 

feedback controlled driveline system is 
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Assuming the closed-loop feedback controlled AMB-FMC driveline system in Eq. (11) is BIBO 

stable, the Fourier coefficient vector, Yi, of the measured steady-state response after the ith SAVC 

control input, Ui, is 

FBiyui YUTY +=                     (13) 

Where Tyu is the synchronous transfer matrix 

         [ ] uclclyclyu BAIjCT 1−−Ω=                                                    14) 

and  is the steady-state imbalance response of the feedback controlled driveline without 

SAVC input (i.e. for U

FBY

i = 0).  

The SAVC update law is obtained via least-squares minimization of the objective function Ji

iiiii RUUYYJ ** +=   with IwR eff=              (15) 

where “ * ” indicates complex conjugate transpose and weff (m2/Amp), weights the SAVC control 

effort. Based on least-squares minimization of Ji, the SAVC update law is 

][][ *1*
1 iiyuyuyuyui YUTTRTTU −+= −

+               (16) 

Since the actual transfer matrix, Tyu, is a function the temperature uncertainty parameter, δT, the 

nominal transfer matrix at T=Tn

[ ] uclnclyclyuyu BAIjCTT
T

1

0
ˆ −

=
−Ω==

δ
           (17) 

is utilized instead. Thus, the implemented SAVC update law is 

           (18) ]ˆ[ˆ]ˆˆ[ *1*
1 iiyuyuyuyui YUTTRTTU −+= −

+

Since the SAVC input is updated slowly relative to the settling-time of the feedback controlled 

driveline system in Eq. (11), the overall Hybrid feedback/SAVC controlled driveline is stable if 

and only if Eq. (11) is BIBO stable and if the SAVC adaptation process in Eq. (18) converges. 
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As detailed in Refs. 11 and 12, the SAVC input converges if and only if the following condition 

is satisfied. 

[ ] 1]ˆ[ˆ]ˆˆ[ *1* <−+ −
yuyuyuyuyu TTTRTTρ                (19) 

Where [ ]ρ  is the spectral radius with converged input and response,  and , SAVCU FBAVCY

FBSAVCyuFBAVC

FByuyuyuSAVC

YUTY

YTRTTU

+=

+−= ∗−∗ ˆ]ˆ[ 1

                                        (20) 

In this investigation, errors between the actual and the estimated  in the SAVC update law 

arise due to shaft temperature deviations δ

yuT yuT̂

T about Tn. Since, according to (19), these errors could 

cause the SAVC not to converge, the convergence robustness with respect to δT must be 

considered in the control design.  

 
Control Synthesis 

 Conceptually, in the hybrid feedback-SAVC control approach, the function of the feedback 

law in Eq. (10) is to ensure BIBO stable levitation of the AMB-driveline while the SAVC input 

adapts and converges to suppress the steady-state synchronous imbalance response. Since the 

slowly adapted SAVC input does not affect BIBO stability, the feedback controller and SAVC 

convergence designs can be conducted sequentially. 

 Because the control system must be robust with respect to temperature deviations about the 

nominal temperature, δT is considered as a bounded uncertainty parameter in the control design. 

Thus, the feedback/SAVC controlled AMB-FMC driveline system is rewritten as a linear 

fractional transformation (LFT) about the nominal feedback controlled system, G(s), with 

deviation temperature uncertainty block Δ = δTI. 
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Fig. 5. Feedback/SAVC controlled AMB-FMC driveline with temperature uncertainty. 
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and with temperature dependent uncertainty matrix in Eq. (5) written as 

            with qpTT CBA Δ=δ ITδ=Δ                       (22) 

Where BBp and Cq describe the uncertainty structure. 

 To ensure that the feedback controlled closed-loop driveline system in Eq. (11) is robustly 

stable with respect to temperature deviations, δT, the feedback portion of the control, CFB(s), is 

synthesized using a robust H∞ design approach. 

 In particular, CFB(s), is synthesized by minimizing the H∞ norm of the closed-loop transfer 

function from Gqp(s), over the set of stabilizing controllers (Ref. 17). Since Tδ=Δ
∞

, when 
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γ<
∞

)(sGqp , BIBO stability of the feedback controlled driveline system is guaranteed for all 

bounded temperature deviations satisfying 

 γδδ /1stab =≤ TT              (23) 

 where δTstab is the deviation temperature robust stability margin. Here, based on the H∞ analysis, 

there are no restrictions on the time variation δTstab, only on the magnitude.  

 In this investigation, the H∞ feedback controller is computed using the MATLAB® LMI 

Control Toolbox™ software package. For the AMB-FMC driveline system studied in this 

research, a feedback controller, CFB(s), which achieves γ = 0.0034 (δTstab = 163°C) is synthesized. 

Since δTstab = 163°C is well above the expected shaft temperature deviations, this is considered a 

robust design and is utilized for the feedback portion of the hybrid feedback/SAVC law in the 

subsequent analysis. 

 To analyze the convergence robustness of the SAVC portion of the control, the convergence 

criteria in Eq. (19) is iteratively solved using a bisection algorithm to determine the deviation 

temperature robust convergence margin, δTconv, for a range of shaft speeds. Finally, the overall 

deviation temperature robustness margin δTmax for a given shaft speed, Ω, is defined and 

computed as 

  δTmax = min[δTstab , δTconv]            (24) 

To asses the vibration performance, the following worst-case steady-state vibration indices are 

defined for a given deviation temperature bound, ΔT  
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With ΔT ≤ δTmax. Here JFB and JFBAVC measure the RMS imbalance vibration response of the 

driveline under H∞ feedback and hybrid H∞ feedback/SAVC control respectively. 

CLOSED-LOOP PERFORMANCE 

System at Nominal Temperature 
 
In this section, the closed-loop performance of the H∞/SAVC controlled AMB-FMC driveline 

at the nominal temperature, Tn=30°C, is investigated assuming no temperature deviations or 

uncertainty, i.e. δT =0. In particular, Fig. 6 shows the RMS vibration and control currents of the 

AMB-FMC driveline under H∞ and H∞/SAVC control with two amounts of SAVC control effort 

penalty weighting w . Here, the eff H∞/SAVC achieves significant vibration suppression compared 

with the H∞ baseline except near two shaft speeds, ωc1 ≈ 2800 and ωc2 ≈ 5500 RPM. As 

expected, the case with the lowest SAVC penalty weighting, weff, achieves the best vibration 

suppression. Near the operating speeds, ωc1 and ωc2, the SAVC requires excessive currents to 

suppress the vibration and thus, due to AMB current saturation limitations, the imbalance 

vibration cannot effectively be reduced at these speeds. This phenomena is due to transmission 

zeros, introduced into the control path by the H∞ feedback controller CFB(s). These closed-loop 

transmission zeros at ωc1 and ωc2 block the effect of the SAVC input for speeds near ωc1 and ωc2. 
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Fig. 6. RMS vibration and control currents vs. shaft speed for system at Tn=30°C. 

 
However this blocking phenomena is not necessarily a serous issue, since most drivelines, such 

as helicopter drivelines, typically operate at a single, fixed speed, Ω. Thus, unless Ω corresponds 

with one of the transmission-zero speeds, the hybrid H∞/SAVC law can be used to achieve 

effective vibration suppression. Nevertheless, one way to address this issue is through proper 

selection of the AMB locations along the driveline. It is found that the closed-loop transmission 

zeros speeds are very sensitive to the AMB locations, and thus they can be shifted away from a 

given operating speed by proper AMB placement. This sensitivity is demonstrated in Fig. 7, 

which shows the RMS vibration and control currents of the H∞/SAVC controlled AMB-FMC 

driveline for two sets of AMB locations. 
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Fig. 7. Effect of AMB location on transmission-zero critical speeds.

System with Temperature Deviations 
 

 In this section the effect of temperature uncertainty, δT, is considered. Using Eqs. (24) and 

(25), the system robustness and imbalance vibration performance is analyzed over a range of 

shaft speeds, Ω =[0 - 6000] RPM. This speed range includes both sub and supercritical operation. 

Figure 8 shows how δTmax varies with Ω for several values of SAVC control effort penalty 

weighting, weff.  
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Fig. 8.  Deviation temperature robustness margin vs. shaft speed for several values of 

SAVC control effort penalty weighting weff . 
 
With no SAVC effort penalty (i.e. weff = 0), stability and convergence is guaranteed for 

temperature deviations of approximately ±55°C about the nominal temperature, Tn = 30°C, over 

most of the RPM range. However, for operation near the closed-loop transmission-zero speeds 

(ωc1 ≈ 2800 and ωc2 ≈ 5500 RPM), the temperature robustness becomes significantly less. By 

penalizing the SAVC input (i.e. selecting weff > 0) the robustness margin near, ωc1 and ωc2, can 

be increased significantly. In particular, as seen in Fig. 8 if weff is chosen to be weff ≥ weff
* = 

5.5x10-8 m2/Amp, the system can tolerate temperature deviations up to ±55°C and still remain 

stable and converge across the entire operating RPM range. That is, weff
 = weff

* = 5.5x10-8 

m2/Amp guarantees δTmax > 55°C over the range Ω = [0 - 6000] RPM. 

 Considering weff = weff
* = 5.5x10-8 m2/Amp to be the lowest acceptable value for the design, 

the vibration performance for two values of weff ≥ weff
* is examined in Figs. 9 and 10. Here, the 

control system adapts and suppresses vibration without utilizing any knowledge of the shaft 
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imbalance or temperature deviation in the control synthesis. In each plot, the worst-case 

vibration performance indices, JFB and JFBAVC, are shown for both the nominal system and for a 

ΔT = 55°C deviation temperature uncertainty bound. By comparing the two performance indices, 

JFB and JFBAVC, and considering JFB as the baseline performance, the effectiveness of the SAVC 

can be assessed. 
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Fig. 9. JFB and JFBAVC vs. shaft speed for deviation temperature uncertainty bounds; [δT  = 0] 

and [0 ≤ δT  ≤ 55°C], with weff = 6.0x10-8. 
 

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

Shaft Speed, RPM

V
ib

ra
tio

n 
In

di
ce

s, 
μm

δT = 0
[0 ≤ |δT| ≤ 55° C]

JFBAVCJFB

ωc1 ωc2

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

Shaft Speed, RPM

V
ib

ra
tio

n 
In

di
ce

s, 
μm

δT = 0
[0 ≤ |δT| ≤ 55° C]

JFBAVCJFB
δT = 0
[0 ≤ |δT| ≤ 55° C]

JFBAVCJFB

ωc1 ωc2

  
Fig. 10. JFB and JFBAVC vs. shaft speed for deviation temperature uncertainty bounds; [δT  = 

0] and [0 ≤ δT  ≤ 55°C], with weff = 2.6x10-7. 
 
Figure 9 demonstrates that, except for speeds near the closed-loop transmission-zero speeds, ωc1 

and ωc2, the SAVC successfully adapts and converges to achieve significant imbalance vibration 
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suppression even in the presence of temperature uncertainty δT. Thus, except for Ω near ωc1 and 

ωc2, the hybrid H∞/SAVC control law achieves robust performance. However, for speeds near 

ωc1 and ωc2, the SAVC input is less effective, and the presence of the uncertainty, δT, causes the 

SAVC to increase the vibration above the feedback controlled baseline imbalance response, (see 

“a” and “b” in Fig. 9).  

Since δT alters the FMC shaft stiffness and damping, δT also shifts the transmission-zero 

frequencies, ωc1 and ωc2 about their nominal values. This frequency shifting is reflected in the 

plots of the worst-case case performance indices by the presence of the peaks  “a” and “b” about 

ωc1 and “d” and “c” about ωc2 in Fig. 9. The separation bandwidth between “a” and “b” and 

between “c” and “d” increases with the deviation temperature uncertainty δT. 

 Finally, comparing Figs. 9 and 10 demonstrates the effect of increasing weff on the SAVC 

vibration suppression performance and robustness. Increasing weff improves performance 

robustness for shaft speeds near ωc1 and ωc2. However, it also limits the SAVC control input 

magnitudes which, in turn, reduces the maximum achievable vibration suppression. Therefore, 

larger values of weff are only necessary and beneficial for Ω near the closed-loop transmission-

zero speeds, where the system is most sensitive to temperature uncertainty and a tradeoff 

between stability and vibration suppression must be made. 

Time-Domain Response 
 
This section explores the time-domain performance and robustness of the H∞/SAVC 

controlled AMB-FMC driveline system subjected to shaft imbalance and temperature deviation 

δ . In the subsequent simulations, the A/D sampling period is T  = 1x10  seconds, the SAVC 

control update period is T = 1.0 second, and the SAVC control effort weighting is w  = 0. 

T s
-3

u eff
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Furthermore, in each simulation, the system is initially operating under H∞ feedback control until 

the SAVC portion is activated at t = 4.0 seconds. Figures 11 and 12 show the shaft response and 

AMB control current at speeds Ω = 3000 RPM and Ω = 4815 RPM for increasing shaft 

temperature deviation. According to Fig. 8, the deviation temperature robustness margin at these 

Ω corresponds to δ  ≈ 10°C and δ  ≈ 60°C respectively.Tmax Tmax
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Fig. 11. H∞/SAVC controlled AMB-FMC driveline response with Ω = 3000 RPM  
and weff = 0; (a) deviation temperature, (b) shaft vibration, (c) AMB current. 
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Fig. 12. H∞/SAVC controlled AMB-FMC driveline response with Ω = 4815 RPM  
and weff = 0; (a) deviation temperature, (b) shaft vibration, (c) AMB current. 

 
According to Figs. 11 and 12, the system is BIBO stable, and the adaptive control converges and 

effectively suppresses the imbalance vibration until δ  > δ . These results numerically 

confirm the deviation temperature robustness margin predictions in Fig. 8.

T Tmax
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Fig. 13. H∞/SAVC controlled AMB-FMC driveline response with Ω = 4815 RPM 
and weff = 0; (a) deviation temperature, (b) shaft vibration, (c) AMB current. 

Furthermore, Fig. 13 shows the system response for a cyclic deviation in shaft temperature. The 

simulation demonstrate that, for δT < δTmax, the H∞ feedback portion of the control maintains 

stable levitation at supercritical speeds while the SAVC input adapts and converges within a few 

update steps to effectively suppress the shaft vibration. Since this is achieved without utilizing 

any information about the imbalance or temperature deviation in the control algorithm, the 

H∞/SAVC law developed in this research is deemed robust. 

 CONCLUSIONS 

In this investigation, a hybrid H∞ feedback/SAVC control law is developed for a prototype 

AMB-FMC tailrotor driveline system considering uncertainties due to temperature dependent 

FMC material properties, rotating-frame damping, and shaft imbalance.  By proper selection of 
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the SAVC control effort parameter, weff, the hybrid H∞/SAVC control strategy guarantees stable 

levitation and vibration suppression, and is robust with respect to FMC shaft temperature 

deviations and imbalance uncertainty. The resulting controller is effective across a wide range of 

sub- and supercritical operating speeds from Ω = [0 - 6000] RPM except near certain closed-loop 

transmission-zero speeds introduced by the H∞ feedback portion of the control. For shaft 

rotational speeds away from the transmission-zero frequencies, the control system has inherent 

robustness. Consequently, both stability and effective imbalance vibration suppression (~95 % 

reduction) is guaranteed for a wide range of temperature deviations (± 55°C about 30°C 

nominal). For shaft speeds near the closed-loop transmission-zeros, the closed-loop system is 

more sensitive to temperature deviations, however the robustness and vibration suppression near 

these speeds can be greatly improved by increasing the value of weff.  Finally, it is determined 

that the transmission-zero frequencies are sensitive to the AMB locations and thus can be 

effectively shifted by proper AMB positioning to allow low vibration operation at any desired 

design operating speed. Through the combination of single piece, rigidly coupled, FMC 

driveshaft technology and non-contact magnetic bearings, the AMB-FMC driveline concept and 

associated robust adaptive control law developed in this investigation further advances the vision 

of low maintenance, low vibration technologies for rotorcraft drive systems. 

APPENDIX 
 
The FEM elemental matrices for the driveline system in Fig. 1 are 
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