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Decay Rates of the Energy for Damped Wave
Equations with Critical Potential and

Defocusing Nonlinearity, Part I

Lee troupe, Will Tune, and Elise Weir

May 1, 2009

Abstract

We establish new results on the weighted L2 and Lp+1 estimates for
the nonlinear wave equation with variable damping

utt −∆u + a (x) ut + λ |u|p+1 u = 0 in Rn,

and critical potential a (x) ≥ a1

`
1 + |x|2

´ 1
2 with a1 > 0. The presence of

the critically decaying potential drastically changes the asymptotic profile
of solutions and creates many additional difficulties. We use a modification
of the Todorova-Yordanov techniques to a certain extent. But later on,
more precisely at the region of small p where the Klein-Gordon effects are
really strong, the critical potential does not allow us to rely anymore on
their technique and we derive our own approach. Surprisingly, we show
that the energy of solutions decays at a polynomial rate t−min{a1,n−1},
where n is the space dimension. We derive these results by using a special
version of the multiplier method.

1 Introduction
In this paper, we are concerned with finding an exact energy estimate for the
following nonlinear wave equation with damping:

utt −∆u + a (x)ut + f (u) = 0, (t, x) ∈ (0,∞)× Rn, n ≥ 3 (1.1)

u (0, x) = u0 (x) , ut (0, x) = u1 (x) , x ∈ Rn (1.2)

f (u) = λ |u|p−1 u,λ ≥ 0, 1 ≤ p ≤ n+2
n−2 (1.3)

a (x) ≥ a1

(
1 + |x|2

)− 1
2

, a1 ≥ 0 (1.4)
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We impose several assumptions on the initial data:

(u0, u1) ∈ H1 (Rn)× L2 (Rn) (1.5)
where the initial data are compactly supported, such that u0 (x) = u1 (x) = 0
for |x| > R, where R is some positive constant.

Note also that a (x) is assumed to be a C0-coefficient, and f (u) is assumed
to be a C1 nonlinearity.

It is worth mentioning that the absorption problem in a much simpler setting,
namely with constant potential a (x) = 1 has been treated by many authors
([KNO], [K], [HKN], [EK], [NZ], and [INZ]) from 1985 until 2007. Despite their
effort, the absorption problem with constant potential a (x) = 1 was open until
2007. There was a gap between the regions with different decay rates– the so-
called supercritical and subcritical regions. Namely, there was a region where
the decay rate was unknown.

Currently, Dr. Todorova and Dr. Yordanov in [TY] have given a complete
answer to the absorption problem not only in the above simple case of constant
potential, but in the extremely delicate case of the space-dependent potential
a (x) by using the newly developed approach in [TY1]. In 2007, they solved
the absorption problem with slow decaying potential 0 ≤ a (x) ≤ a1 (1 + |x|)−α,
where a1 > 0 and α ∈ [0, 1), and they found the exact decay of the solutions.
Surprisingly, they observed new effects which do not show up in the case of
constant potential. As a byproduct of their results, the gap between the super-
critical and subcritical regions in the case of a constant coefficient have been
closed for any n. Their method works very successfully up until α < 1. What
we have to deal with is α = 1. To solve this, we use a modification of their
approach.

Ikehata, Todorova, and Yordanov in [ITY] found the exact decay for the
linear wave equation with critical potential. Our equation is nonlinear, which
creates some difficulties. We use their approach, with some modifications, to
find the sharp decay of the solution for large exponent p of the nonlinearity. For
small p, we have to create our own approach, which will be presented in part II
of this paper.

Our results are as follows:

Theorem 1.1. Assume (1.4) and (1.5), again with the restriction that a1 ≥ 1.
Then there exists a global solution to the problem (1.1)-(1.3) with non-weighted
energy satisfying

ˆ

Rn

(
ut (t, x)2 + |∇u (t, x)|2 +

2λ

p + 1
|u (t, x)|p+1

)
dx ≤ Ct−m−1

with C a non-negative constant, and m := min {a1 − 1, n− 2} ≥ 0.

Theorem 1.2. Assume (1.4) and (1.5). Furthermore, suppose that 0 < a1 < 1.
Then there exists a global solution to the problem (1.1)-(1.3) satisfying

ˆ

Rn

(
ut (t, x)2 + |∇u (t, x)|2 +

2λ

p + 1
|u (t, x)|p+1

)
dx ≤ Ct−a1 .
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The rest of this thesis is organized as follows. In section 2, we prove many
useful lemmas and the main theorem, Theorem 1.1. In section 3, we prove more
useful lemmas and Theorem 1.2. In section 4, we list some ideas concerning
future research.

2 Proof of Theorem 1.1
There is a classical result [S3] which confirms local existence and uniqueness
of the nonlinear problem (1.1) with defocusing nonlinearity and any compactly
supported data in the energy space H1 (Rn)×L2 (Rn). Following directly from
this classical local existence result and the continuation principle, this problem
has global existence for any compactly supported data in the energy space.

The main idea in the approach in [TY1] is to find an approximate solution
with convenient properties. Here, in our problem, we do not have an approxi-
mate solution. Instead, we use w (x) := 〈x〉−m as a factor, with

〈x〉 :=
(
1 + |x|2

) 1
2
. Then, we define v := u

w and write (1.1) for v.

Lemma 2.1. Let u be the weak solution to (1.1-1.5). Substitution into (1.1)
yields the following equation on v:

vtt −∆v + AvtB · ∇v + Cv + λD |v|p−1 v = 0 (2.1)

with new coefficients as follows:

A = a1

B = 2mx 〈x〉−2

C = mn 〈x〉−2 −m (m + 2) |x|2 〈x〉−4

D = 〈x〉−m(p−1)

(2.2)

Proof. We first substitute u = wv into (1.1), yielding:

(wv)tt −∆ (wv) + a (x) (wv)t + f (wv) = 0

Since w is not time-dependent, this gives:

wvtt −∆ (wv) + a (x)wvt + f (wv) = 0 (2.3)

We must evaluate the expression ∆ (wv):

∆ (wv) =
n∑

i=1

∂2 (wv)
∂x2

i

∂ (wv)
∂xi

= v
∂w

∂xi
+ w

∂v

∂xi

∂2 (wv)
∂x2

i

= v
∂2w

∂x2
i

+ 2
∂w

∂xi

∂v

∂xi
+ w

∂2v

∂x2
i
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Summing from 1 to n, we obtain ∆ (wv) = v∆w+2∇v ·∇w+w∆v, and note also
that f (wv) = λ |wv|p−1 wv, which, substituted into (2.3), gives the expression:

wvtt − v∆w − 2∇v · ∇w − w∆v + a (x)wvt + λwp |v|p−1 v = 0

Dividing through by w yields:

vtt −∆v + a (x) vt − 2w−1∇w · ∇v − w−1∆wv + λwp−1 |v|p−1 v = 0 (2.4)

Set A := a (x), B := −2w−1∇w, C := −w−1∆w, and D := wp−1 to obtain:

vtt −∆v + Avt + B · ∇v + Cv + λD |v|p−1 v = 0 (2.5)

Now explicit forms for B, C, and D must be found as functions of x. To do so,
w−1, ∇w, and ∆w must be found as functions of x:

w−1 =
(
〈x〉−m

)−1
= 〈x〉m

∂w

∂xi
= −m

2

(
1 + |x|2

)−m
2 −1

· 2xi = −m
(
1 + |x|2

)−m−2
2

xi = −mxi 〈x〉−m−2

∂2w

∂x2
i

= −m
(
1 + |x|2

)−m−2
2

+ m (m + 2) x2
i

(
1 + |x|2

)−m−4
2

∇w =
(

∂w

∂x1
, . . . ,

∂w

∂xn

)
= −mx 〈x〉−m−2

∆w = −mn 〈x〉−m−2 + m (m + 2) |x|2 〈x〉−m−4

Now the explicit forms of the constants may be found:

B = −2w−1∇w = −2 〈x〉m
(
−mx 〈x〉−m−2

)
= 2mx 〈x〉−2

C = −w−1∆w = −mn 〈x〉−2 + m (m + 2) |x|2 〈x〉−4

D = wp−1 =
(
〈x〉−m

)p−1
= 〈x〉−m(p−1)

Now we will use the multiplier method for the modified equation (2.1) with
weights P and Q, defined in terms of x as P (x) := k 〈x〉w = k 〈x〉−m+1 and
Q (x) := w = 〈x〉−m, where k is a positive constant.

Lemma 2.2. Multiplying the modified equation (2.1) by Pvt +Qv and integrat-
ing over Rn yields the following weighted energy identity:
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∂

∂t
Ew (t) + F (vt, v) + G (v) + H (h, vt, v) = 0 (2.6)

where E, F , G, and H are defined as follows, with Ew (t) being the weighted
energy:

Ew (t) := 1
2

´

Rn

[
P

(
v2

t + |∇v|2
)

+ 2Qvtv + (CP + AQ) v2
]
dx

+1
2

´

Rn

[
λk

p+1 〈x〉
−mp+1 |v|p+1

]
dx

F (vt, v) :=
1
2

ˆ

Rn

(2AP − 2Q) v2
t dx+

ˆ

Rn

(∇P + BP ) vt∇vdx+
1
2

ˆ

Rn

2Q |∇v|2 dx

G (v) :=
1
2

ˆ

Rn

(−∆Q−∇ (QB) + 2CQ) v2dx

H (v) :=
ˆ

Rn

λ 〈x〉−mp |v|p−1 v2dx (2.7)

Proof. Multiplying the modified equation (2.1) by Pvt gives the equation:

Pvtvtt − Pvt∆v + PAv2
t + PB · ∇vvt + PCvvt + λwp−1 |v|p−1 vPvt = 0 (2.8)

Note that P , A, B, and C are all time-independent, so:

d

dt

(
1
2
Pv2

t

)
=

1
2
Pvtvtt +

1
2
Pvttvt = Pvtvtt

d

dt

(
1
2
CPv2

)
=

1
2
CPvvt +

1
2
CPvtv = CPvvt

1
2

d

dt

(
P |∇v|2

)
= P∇vt∇v

∇ (Pvt∇v) = ∇P · ∇vvt + P∇vt∇v + Pvt∆v

−Pvt∆v = ∇P · ∇vvt +
1
2

d

dt

(
P |∇v|2

)
−∇ (Pvt∇v)

Substituting these equations into (2.8) gives:

1
2

d

dt

[
Pv2

t + CPv2 + P |∇v|2
]

+ APv2
t + PB · ∇vvt

+∇P · ∇vvt −∇ (Pvt∇v) + λwp−1 |v|p−1 vPvt = 0

Multiplying the original equation (2.5)by Qv gives the equation:

Qvvtt −Qv∆v + AQvvt + QB · ∇vv + QCv2 + λQwp−1 |v|p−1 v2 = 0

Note that Q, A, B, and C are all time-independent, so:

d

dt
(Qvvt) = Qvvtt + Qv2

t =⇒ Qvvtt =
d

dt
(Qvvt)−Qv2

t
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d

dt

(
1
2
AQv2

)
= AQvvt

∇
(
QBv2

)
= ∇ (QB) v2 +2QBv∇v ⇒ QB ·∇vv = −1

2
∇ (QB) v2 +

1
2
∇

(
QBv2

)

∇
(
Qv2

)
= ∇Q · v2 + 2Qv∇v

∆
(
Qv2

)
= ∆Qv2 + 4∇Qv∇v + 2Q |∇v|2 + 2Qv∆v

2∇Qv∇v = ∇ ·
(
∇Qv2

)
−∆Qv2

−Qv∆v = Q |∇v|2 − 1
2
∆Qv2 +∇ ·

(
∇Qv2

)
+ ∆

(
Qv2

)

Substituting these equations in gives:

d

dt
(Qvtv)−Qv2

t + Q |∇v|2 − 1
2
∆Qv2 +∇ ·

(
∇Qv2

)
+ ∆

(
Qv2

)
+

d

dt

(
1
2
AQv2

)
+

1
2
∇

(
QBv2

)
− 1

2
∇ (QB) v2 + QCv2 + λwp |v|p v = 0

We must also deal with combining terms in the nonlinearity:

λwp−1 |v|p−1 v (Pvt + Qv) = λwp−1P |v|p−1 vvt + λwp |v|p−1 v2

d

dt

(
λ

p + 1
Pwp−1 |v|p+1

)
= λwp−1P |v|p−1 vvt

⇒ λwp−1 |v|p−1 v (Pvt + Qv) =
d

dt

(
λk

p + 1
〈x〉−mp+1 |v|p+1

)
+λ 〈x〉−mp |v|p−1 v2

Adding these two equations yields:

1
2

d

dt

[
P

(
v2

t + |v|2
)

+ 2Qvtv + (CP + AQ) v2 +
λk

p + 1
〈x〉−mp+1 |v|p+1

]
+

1
2

(2AP − 2Q) v2
t + (∇P + BP ) vt∇v +

1
2

(2Q) |∇v|2 +

1
2

[−∆Q−∇ (QB) + 2CQ] v2+

λ 〈x〉−mp |v|p−1 v2+

∇ ·
(
∇Qv2

)
+ ∆

(
Qv2

)
+

1
2
∇

(
QBv2

)
−∇ (Pvt∇v) = 0

where the divergences in the last line are all zero when integrated over Rn due
to the finite speed of propagation and compact support. Integrating over Rn

gives us the equation:
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1
2

∂

∂t

ˆ

Rn

[
P

(
v2

t + |v|2
)

+ 2Qvtv + (CP + AQ) v2 +
λk

p + 1
〈x〉−mp+1 |v|p+1

]
dx+

ˆ

Rn

[
1
2

(2AP − 2Q) v2
t + (∇P + BP ) vt∇v +

1
2

(2Q) |∇v|2
]

dx+

ˆ

Rn

1
2

[−∆Q−∇ (QB) + 2CQ] v2dx+
ˆ

Rn

λ 〈x〉−mp |v|p−1 v2dx = 0

Turning back to the weighted energy identity (2.6), we will start to write
sufficient conditions on the weights P and Q, which will guarantee that the
terms F and G in (2.6) are non-negative. From that, we will yield that the
weighted energy is a decreasing function.

The term F is a complicated quadratic form with respect to vt and ∇v. To
ensure non-negativity of F , we use the standard properties of quadratic forms,
namely 4w (a (x)P − w) ≥|∇ P − 2P∇lnw|2. To ensure that G is non-negative,
it is enough to require that ∆w ≤ 0.

Lemma 2.3. The condition that 4w (a (x)P − w) ≥|∇ P − 2P∇lnw|2implies
that F ≥ 0.

Proof. This follows directly from the quadratic form of F , which gives a suf-
ficient condition for F ≥ 0 in terms of the coefficients of the quadratic form:
(2AP − 2Q) (2Q) ≥|∇ P + BP |2. Substituting in Q := w, A := a (x), and
B := −2w−1∇w, we obtain the following equivalent inequality:

(2a (x)P − 2w) (2w) ≥
∣∣∇P − 2w−1∇wP

∣∣2

Pulling constants in front and noting that w−1∇w = ∇lnw, we obtain the
condition required for F to be non-negative:

4w (a (x) P − w) ≥|∇ P − 2P∇lnw|2

Lemma 2.4. The condition that ∆w ≤ 0 implies that G ≥ 0.

Proof. Substituting the values Q := w, B := −2w−1∇w, and C := −w−1∆w
into G (v) =

´

Rn
1
2 [−∆Q−∇ (QB) + 2CQ] v2dx gives the following equation

for G:

G (v) =
1
2

ˆ

Rn

(
−∆w −∇

(
w

(
−2w−1∇w

))
+ 2

(
−w−1∆ww

))
v2dx

7



Cancelling out pairs of w, w−1 and noting that ∇ · (∇2w) = 2∆w gives us a
simplified equation:

G (v) =
1
2

ˆ

Rn

(−∆w + 2∆w − 2∆w) v2dx

Combining the ∆w terms, we obtain a simple expression for G:

G (v) =
1
2

ˆ

Rn

−∆wv2dx

Which is clearly non-negative if ∆w ≤ 0.

In order to proceed, we must find constraints on our multipliers P and Q
that will give us the conditions of Lemmas (2.3) and (2.4). Specifically, we find
sufficient conditions on our constant m to finally be able to drop the terms F
and G out of the equation (2.6) and deal solely with the weighted energy.

Lemma 2.5. The following two constraints on m will give the conditions of
Lemmas 2.3 and 2.4:

1. m ≤ a1 − 1
2. m ≤ n− 2
Thus, the constraint m = min {a1 − 1, n− 2} is sufficient to give F,G ≥ 0.

Proof. If m ≤ a1 − 1, and m and a1 are both non-negative, then with some
simple algebraic manipulations we obtain the following inequality:

42a1 − 4
(
− (1 + m)2

)
(−4) ≥ 0

Given this inequality, the following quadratic form is positive:

− (1 + m)2 k2 + 4a1k − 4 ≥ 0

Further algebraic manipulations and substitution of terms gives us the condition
on F :

4 (a1k − 1) ≥ (1 + m)2 k2

4w2 (a (x) k 〈x〉 − 1) ≥
∣∣∣(1 + m) kx 〈x〉−m−1

∣∣∣
2

4w (aP − w) ≥
∣∣∣k 〈x〉 (−mx) 〈x〉−m−1 + kx 〈x〉−m−1 + 2mkx 〈x〉−m−1

∣∣∣
2

4w (aP − w) ≥
∣∣∣∣k 〈x〉 (−mx) 〈x〉−m−2 +

kx

〈x〉 〈x〉
−m − 2

(
−mx 〈x〉−m−2

)
k 〈x〉

∣∣∣∣
2

4w (aP − w) ≥
∣∣k 〈x〉∇w + k∇xw − 2w−1∇wk 〈x〉w

∣∣2

4w (aP − w) ≥|∇ P − 2P lnw|2

This proof also gives us the condition that m must be non-negative, thus
a1 − 1 must also be non-negative. So for Theorem 1.1, we require that a1 ≥ 1.

8



Expressing ∆w in terms of x, we obtain the following expression:
∆w = −mn 〈x〉−m−2 + m (m + 2) |x|2 〈x〉−m−4 ≥ 0. Multiplying through by
〈x〉m+4

m and adding −n 〈x〉2 to both sides, we get the equivalent inequality
(m + 2) |x|2 ≤ n 〈x〉2. This is satisfied if m ≤ n− 2.

Given the sufficient conditions m ≤ a1 − 1 and m ≤ n − 2, setting m :=
min {a1 − 1, n− 2} will satisfy both conditions.

Now that we have F , G non-negative, we can drop these terms from (2.6),
and start finding properties of Ew (t) that will allow us to arrive at a weighted
energy estimate. Specifically, we need to know that the weighted energy is a
decreasing, non-negative function. This will signify that the energy is decaying.

Lemma 2.6. The condition that m := min {a1 − 1, n− 2} implies that the
weighted energy is bounded above by a constant:

Ew (t) ≤ E (t0) (2.9)

where t0 is the initial time of (1.1)-(1.3).

Proof. Lemmas 2.2, 2.3, and 2.4 yield that F and G are non-negative. Note
also that H =

´

Rn λ 〈x〉−mp |v|p−1 v2dx is clearly non-negative. So we can drop
F , G, and H from (2.6), which gives us the following inequality:

∂

∂t
Ew (t) ≤ 0

Integating from t0 to t, we get the following inequality:

Ew (t) ≤ Ew (t0)

Lemma 2.7. The condition that m := min {a1 − 1, n− 2} implies that the
weighted energy is non-negative.

Proof. Expressing Ew (t) in terms of x by substituting values in for P , Q, A,
B, and C, we obtain the following expression for the weighted energy:

Ew (t) =
´

Rn

[
k 〈x〉1−m

(
v2

t + |∇v|2
)

+ λk
p+1 〈x〉

1−mp |v|p+1
]
dx

+
´

Rn

[
(−k 〈x〉∆w + aw) v2 + 2 〈x〉−m vtv

]
dx

The coefficient of v2 is clearly non-negative, since we have established that
given our conditions on m, ∆w ≤ 0. It then remains to deal with the only
other unsigned term, 2 〈x〉−m vtv. To do this, we use the Cauchy inequality and
establish a bound from below:

2 〈x〉−m vtv ≥ −〈x〉 〈x〉−m v2
t − 〈x〉

−1 〈x〉−m v2

9



Substituting this back into the expression for the weighted energy, we obtain an
inequality on the weighted energy:

Ew (t) ≥
´

Rn

[
(k − 1) 〈x〉1−m

(
v2

t + |∇v|2
)

+ λk
p+1 〈x〉

1−mp |v|p+1
]
dx

+
´

Rn

[
(a1 − 1) 〈x〉−m−1 v2

]
dx

(2.10)
Since all terms in this expression are non-negative, we have that the weighted
energy is non-negative. This completes the proof of the Lemma.

Finally, we arrive at the first major lemma of the paper. Now that we know
the energy is decaying, we can go on to find an estimate for the decay of the
weighted energy. In doing so, we must turn back to an expression in terms of u
instead of the factored variable v.

Lemma 2.8. Assume (1.4) and (1.5). Furthermore, assume that 0 ≤ a1 ≤
1, and define m := min {a1 − 1, n− 2}. Then the solution of (1.1)-(1.3) has
weighted energy satisfying

ˆ

Rn

〈x〉m+1
(
u2

t + |∇u|2 + λ |u|p+1
)

dx ≤ C (2.11)

where C is a non-negative constant.

Proof. We know from Lemma 2.6 that Ew (t) ≤ Ew (t0), where Ew (t0) is a non-
negative constant, since we know from Lemma 2.7 that the weighted energy is
non-negative at all points. Then we can pull the constants in (2.10) in front of
the integral and combine them with the constant Ew (t0) to give us the following
inequality:

ˆ

Rn

[
〈x〉1−m

(
v2

t + |∇v|2
)

+ λ 〈x〉1−mp |v|p+1 + 〈x〉−m−1 v2
]
dx ≤ C

To find the final inequality on the weighted energy, we must substitute v := uw
back into the above inequality. To do so, we need to establish a few identities
to convert v to u:

v2 = u2 〈x〉2m

v2
t = u2

t 〈x〉
2m

|∇v|2 ≥|∇ u|2 〈x〉2m

|v|p+1 = |u|p+1 〈x〉mp+m

Substituting in these expressions give us the following weighted energy inequal-
ity:

ˆ

Rn

〈x〉m+1
(
u2

t + |∇u|2 + λ |u|p+1
)

dx ≤ C

where C is a non-negative constant.

10



The inequality (2.11) also gives us the following norms for u:
ˆ

Rn

(
〈x〉m−1 u2

)
dx ≤ C (2.12)

ˆ

Rn

(
〈x〉m+1 up+1

)
dx ≤ C (2.13)

These inequalities will prove useful later for describing the interactions be-
tween norms on u when p is small.

Now we have an estimate for the weighted energy, with the weights functions
of x, but these weights must be converted to time-dependent functions in order
to arrive at our final energy estimate. The finite speed of propagation of the
problem will not help us here, so we will have to rely on some other method to
convert the weighted energy estimate.

We define the following functions to help us convert the energy estimate
from an estimate with weights in x to an estimate that relies solely on t:

I (t) :=
ˆ T

t

(
ˆ

Rn

〈x〉−1
(
u2

t + |∇u|2 + λ |u|p+1
)

dx

)
ds

Y (t) :=
ˆ

Rn

(
u2

t + |∇u|2 + uutW +
1
2
aWu2 +

2λ

p + 1
|u|p+1

)
dx

where W (x) := a1
2〈x〉 , I (t) is a very complicated space-time norm, and Y (t) is an

auxiliary function that arises naturally from the calculations. The correlations
between E (t), I (t), and Y (t) must be known very well to transfer the weight of
the energy from x to t, so we prove a set of inequalities on these three functions.

Lemma 2.9. The functions E (t), I (t), and Y (t) satisfy the following for
n ≥ 3, where c is a non-negative constant that may vary among inequalities:

1. Y (t) ≥ 0

2. Y (t) ≥ cI (t)

3. Y (t) ≤ cE (t)

4. I (t) ≤ cE (t)

5. E (t) ≤ c (−I ′ (t))
m+1
m+2

6. E (t) ≤ cI
(

t
2

)

Proof of 1. Let ε > 0. By Cauchy’s inequality, we obtain the following expres-
sion on the sole signless term in Y (t):

|uutw| ≤ ε

2
u2

t +
1
2ε

u2W 2 ≤ ε

2
u2

t +
1
2ε

u2Wa (2.14)

11



Setting ε := 3
2 and bounding the signless term from below, we obtain the in-

equality uutw ≥ − 3
4u2

t − 1
3u2Wa. Substituting this inequality into the original

definition for Y (t) and combining like terms, we obtain the following inequality:

Y (t) ≥
ˆ

Rn

(
1
4
u2

t + |∇u|2 +
1
6
aWu2 +

2λ

p + 1
|u|p+1

)
dx

where all terms are positive, so Y (t) ≥ 0.

Proof of 2. For this inequality, we multiply (1.1) by ut + 1
2Wu to obtain helpful

equations for proving the inequality Y (t) ≥ cI (t). First, we multiply by ut to
obtain the following:

ututt − ut∆u + a (x) u2
t + λ |u|p−1 uut = 0 (2.15)

Observe that:

• 1
2

∂
∂t

(
u2

t

)
= ututt

• λ
p+1

∂
∂t

(
|u|p+1

)
= λ |u|p−1 uut

• ut∆u + ∂
∂t

(
|∇u|2

2

)
= ut∆u +∇u · ∇ut +∇ · (∇u · ut)

⇒ −ut∆u = ∂
∂t

(
|∇u|2

2

)
−∇ · (∇u · ut)

After substituting the above equalities into (2.15) and integrating over Rn, we
obtain the following equation:

1
2

∂

∂t

ˆ

Rn

(
u2

t + |∇u|2 +
2λ

p + 1
|u|p+1

)
dx +

ˆ

Rn

a (x)u2
t dx = 0, (2.16)

where the divergence term becomes 0 after integration due to the finite speed
of propagation. Next, we multiply (1.1) by 1

2Wu to obtain the following:

1
2
Wuutt −

1
2
Wu∆u +

1
2
Wa (x) uut +

λ

2
W |u|p−1 u2 = 0 (2.17)

Observe that:

• ∂
∂t

(
1
2Wuut

)
= 1

2Wu2
t + 1

2Wuutt

⇒ 1
2Wuutt = −1

2Wu2
t + ∂

∂t

(
1
2Wuut

)

• ∂
∂t

(
1
4Wa (x)u2

)
= 1

2Wa (x)u2
t

• ∇
(
Wu2

)
= ∇Wu2 + 2Wu∇u

• ∇ ·∇
(
Wu2

)
= ∆Wu2 + 4∇W · ∇u · u + 2W |∇u|2 + 2Wu+u

12



• 4∇ (W∇uu) = 4∇Wu∇u + 4Wu∆u + 4W |∇u|2

⇒ ∇ ·∇
(
Wu2

)
= ∆Wu2 + 4∇ (W∇uu)− 2W |∇u|2 − 2Wu+u

⇒ −1
2Wu+u = 1

4∇ ·∇
(
Wu2

)
− 1

4∆Wu2 −∇ (W∇uu) + 1
2W |∇u|2

After substituting the above equalities into (2.17) and integrating over Rn, we
obtain the following equation:

1
2

∂

∂t

ˆ

Rn

(
uutW +

1
2
Wa (x)u2

)
dx+

1
2

ˆ

Rn

(
−Wu2

t + Wλ |u|p+1 u2 − 1
2
∆Wu2 + W |∇u|2

)
dx = 0 (2.18)

where again, the divergence terms become 0 after integration due to the finite
speed of propagation. Now, we add (2.17) and (2.18) together to obtain the
following equation:

∂

∂t
Y (t) + K (t) = 0 (2.19)

K(t) :=
ˆ

Rn

(
W |∇u|2 −∆W

u2

2
+ (2a (x)−W ) u2

t + Wλ |u|p+1
)

dx

We need to show that K (t) ≥ 0 to proceed. The coefficient in front of u2
t

is easily dealt with, since 2a(x) − W = 2a1
〈x〉 −

a1
2〈x〉 = 3

2
a1
〈x〉 ≥ 0. We will

ensure non-negativity of the coefficient of u2 by showing that ∆W ≤ 0. To
do so, we express W radially. If we define r := |x| =

(
x2

1 + . . . + x2
n

) 1
2 and

z (r) := a1

2(1+r2)
1
2

= a1

2(1+|x|2)
1
2

= W , it will be easier to find derivatives for W .

Then:

• Wxi = z′ (r) ∂r
∂xi

= z′ (r) xi
r

• Wxixi = z′′ (r)
(

xi
r

)2 + z′ (r)
(

r− x2
i

r
r2

)

⇒ ∆W = z′′ (r) + z′ (r)
(

n−1
r

)

• z′ (r) = −a1r
2

(
1 + r2

)− 3
2

• z′′ (r) = −a1
2

(
1 + r2

)− 3
2 + 3a1r2

2 (1 + r)−
5
2

These equations give us the following expression for ∆W :

∆W = − a1
2〈x〉3 + 3a1r2

2〈x〉5 −
a1(n−1)
2〈x〉3 = 3a1r2−a1n〈x〉2

〈x〉5

≤ 3a1r2−a1nr2

〈x〉5 = a1r2(3−n)
〈x〉5

which is non-negative so long as n ≥ 3, a condition already imposed on our
problem. So all terms in K (t) with unknown sign have been shown to be non-
negative, thus K (t) ≥ 0.
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To proceed, we integrate (2.19) with respect to t to obtain

Y (t) = Y (T ) +
ˆ T

t
K(t)

We will further evaluate the expression on the right hand side of this equation
to obtain the desired results. First, we can drop the u2 term since it is positive
and not necessary for our inequality:

Y (T ) +
´ T

t K(t) ≥ Y (T ) +
´ T

t

´

Rn

(
W |∇u|2 + (2a (x)−W ) u2

t + Wλ |u|p+1
)

≥ Y (T ) + c0

´ T
t

´

Rn 〈x〉−1
(
u2

t + |∇u|2 + λ |u|p+1
)

dx

= Y (T ) + +
´ T

t

´

Rn

(
a1|∇u|2

2〈x〉 + c1u2
t

〈x〉 + c2λ|u|p+1

〈x〉

)
dx

≥ Y (T ) + c0

´ T
t

´

Rn 〈x〉−1
(
u2

t + |∇u|2 + λ |u|p+1
)

dx

= Y (T ) + c0I (t)
≥ c0I (t)

Thus, Y (t) ≥ c0I (t).

Proof of 3. We now use the Cauchy inequality in (2.14) with ε = 1 and bound
the unsigned term uutW from above, which gives us

uutW ≤ 1
2
u2

t +
1
2
u2Wa (x)

We can further simplify this term to a desirable form using basic manipulations
and the Hardy inequality:

ˆ

Rn

u2Wa (x) dx ≤
ˆ

Rn

u2 c(
1 + |x|2

)dx ≤ c

ˆ

Rn

u2

|x|2
dx

c

ˆ

Rn

u2

|x|2
dx ≤ c

4
(n− 2)2

ˆ

Rn

|∇u|2 dx

Note that the use of the Hardy inequality requires that n ≥ 3. This is not a
problem, since we have already required this.

Substituting these inequalities into the expression for Y (t), we obtain the
following inequality:

Y (t) ≤
´

Rn

(
u2

t + |∇u|2 + 1
2u2

t + 1
2aWu2 + 1

2aWu2 + 2λ
p+1 |u|p+1

)
dx

≤
´

Rn

(
3
2u2

t + c0 |∇u|2 + + 2λ
p+1 |u|p+1

)
dx

≤ c1

´

Rn

(
u2

t + |∇u|2 + +λ |u|p+1
)

dx

= c1E (t)

Thus, Y (t) ≤ cE (t).
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Proof of 4. This follows immediately from inequalities 2 and 3.

Proof of 5. From Theorem 2.11 we have the following:
ˆ

Rn

〈x〉m+1
(

ut (t, x)2 + |∇u (t, x)|2 +
2λ

p + 1
|u (t, x)|p+1

)
dx ≤ C

We must first manipulate the expression for E (t) so we may split the integral
using the Holder inequality:

E (t) =
´

Rn

(
u2

t + |∇u|2 + 2λ
p+1 |u|p+1

)
dx

=
´

Rn

[
〈x〉

m+1
m+2

(
u2

t + |∇u|2 + 2λ
p+1 |u|p+1

) 1
m+2

]
×

[
〈x〉−

m+1
m+2

(
u2

t + |∇u|2 + 2λ
p+1 |u|p+1

)m+1
m+2

]
dx

We now use the Holder inequality for p = m + 2, q = m+2
m+1 :

E (t) ≤
(
´

Rn 〈x〉m+1
(
u2

t + |∇u|2 + 2λ
p+1 |u|p+1

)
dx

) 1
m+2 ×

(
´

Rn 〈x〉−1
(
u2

t + |∇u|2 + 2λ
p+1 |u|p+1

)
dx

)m+1
m+2

≤ C
1

m+2 (−I ′ (t))
m+1
m+2

Thus, we have that E (t) ≤ (−I ′ (t))
m+1
m+2 .

Proof of 6. Recall that I
(

t
2

)
=
´ 2T

t
2

(
´

Rn 〈x〉−1
(
u2

t + |∇u|2 + λ |u|p+1
)

dx
)

ds.
By finite speed of propagation, |x| ≤ R + T , and for large enough T ≥ R,
|x| ≤ 2T . Outside of this radius, our functions are 0. Note also that E (t) is
a decreasing function, so it achieves its maximal value at the upper limit of
integration. By this reasoning, we can obtain the following inequalities:

I
(

t
2

)
≥
´ 2T

t
2

(
´

|x|≤2T 〈x〉
−1

(
u2

t + |∇u|2 + λ |u|p+1
)

dx
)

ds

≥ E (2T ) 1√
1+4T 2

´ 2T
t
2

ds

≥ c0E (2T ) T√
1+4T 2

≥ cE (t)

Thus, our final inequality is proved.

!

Given these relations between E (t), I (t), and Y (t), we can proceed to
transfer the weight of the energy from x to t and obtain our energy estimate.
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From inequalities 4 and 5, we have that I (t) ≤ c (−I ′ (t))
m+1
m+2 , which is a sim-

ple ordinary differential equation. Solving for I (t), we obtain the inequality
I (t) ≤ ct−m−1. From inequality 6, we have the following:

E (t) ≤ cI (t) ≤ ct−m−1

So our energy estimate for the problem in (1.1)-(1.3) with conditions (1.4)
and (1.5) and a1 ≥ 1 is E (t) ≤ ct−m−1, where m = min {a1 − 1, n− 2}. So we
have the following energy estimates that depend on the value of a1:

E (t) ≤
{

ct−a1 a1 ≤ n− 1
ct−n+1 a1 ≥ n− 1

Using the constraints on m, we obtain the following unweighted norms on u
from the weighted norms in (2.12) and (2.13):

‖u‖22 ≤
{

ct−a1+2 a1 ≤ n− 1
ct−n+3 a1 ≥ n− 1

(2.20)

‖u‖p+1
p+1 ≤

{
ct−a1 a1 ≤ n− 1
ct−n+1 a1 ≥ n− 1

(2.21)

This completes our work on Theorem 1.1.

3 Proof of Theorem 1.2
We first multiply both sides of the equation in (1.1) by f(t)ut + g(t)u, where
f(t) and g(t) are non-negative functions that will be specified later. We then
integrate the equation over Rn, and get the following result.

Lemma 3.1. Let u be the weak solution to (1.1)-(1.3) on [t0, Tmax]. Then it is
true that

d

dt
Ew (t) + F (t) = 0

where

Ew (t) :=
ˆ

Rn

(
f

(
u2

t + |∇u|2 +
2λ

p + 1
|u|p+1

)
+ 2utug + (ga(x)− gt) u2

)
dx

F (t) =
1
2

ˆ

Rn

(
u2

t (2af − 2g − f) + |∇u|2 (2g − ft) + u2 (gtt − gta)
)

dx

+
1
2

ˆ

Rn

λ |u|p+1
(

g − ft

p + 1

)
dx.
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Proof. We simply multiply (1.1) by the weight f (t) ut+g (t)u and then integrate
by parts over Rn, noting that because of finite speed of propagation, any diver-
gences will be 0. Multiplying by fut gives
fututt − fut∆u + afu2

t + λ |u|p−1 uut = 0. Integrate by parts over Rn, not-
ing that: (

1
2
u2

t f

)

t

= ututtf +
1
2
u2

t ft

∇ · (fut∇u) = ∇f · ut∇u + f · (∇ut∇u + ut∆u)

⇒ 0 = 0 +
1
2
f

∂

∂t
|∇u|2 + fut∆u

(
1
2
f |∇u|2

)

t

=
1
2
ft |∇u|2 +

1
2
f

∂

∂t
|∇u|2

⇒ 0 =
1
2

∂

∂t

[
f |∇u|2

]
− 1

2
ft |∇u|2 + fut∆u

(
λ

p + 1
|u|p+1 f

)

t

= λ |u|p−1 uutf +
λ

p + 1
ft |u|p+1

Making the above substitutions, we obtain the following equation:
ˆ

Rn

∂

∂t

[
1
2
u2

t f +
1
2
f |∇u|2 +

λ

p + 1
f |u|p+1

]
dx+

ˆ

Rn

[
−1

2
u2

t ft + afu2
t −

λ

p + 1
ft |u|p+1 − 1

2
ft |∇u|2

]
dx = 0 (3.1)

Multiplying (1.1) by gu gives: guutt − gu∆u + guaut + λg |u|p+1 = 0. We
integrate by parts over Rn, noting that:

(utug)t =
1
2
gt

∂

∂t

(
u2

)
+ guttu + u2

t g

(
1
2
gtu

2

)

t

=
1
2
gttu

2 +
1
2
gt

∂

∂t

(
u2

)

⇒ (utug)t =
(

1
2
gtu

2

)

t

− 1
2
gttu

2 + guttu + u2
t g

∇ · (g∇uu) =∆ g∇uu + g∆uu + g |∇u|2

⇒ 0 = g∆uu + g |∇u|2
(

1
2
gau2

)

t

=
1
2
gtau2 + gauut

Making these substitutions, we get the following equation:
ˆ

Rn

∂

∂t

[
utug − 1

2
gtu

2 +
1
2
gau2

]
dx+

ˆ

Rn

[
1
2
gttu

2 + g |∇u|2 − 1
2
gtau2 + λg |u|p+1 − gu2

t

]
dx = 0 (3.2)

Adding (3.1) and (3.2) together, we get the desired result.
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Lemma 3.2. Assume that the smooth functions f (t), g (t), and h (t) > 0 satisfy
the following conditions for t ≥ t0,

1. 2af − 2g − ft ≥ 0
2. 2g − ft ≥ 0
3. gtt − gta ≥ 0
4. g − ft

p+1 ≥ 0
5. ga− gt − gh−1 ≥ 0.
Then, if u is the weak solution to (1)-(3) on [t0, Tmax], the following is true:

1
2

ˆ

Rn

(f − hg)
(

u2
t + |∇u|2 +

1
p + 1

|u|p+1
)

dx ≤ Ew (t0) . (3.3)

Proof. Applying inequalities 1.-4. to the result of Lemma 3.1, we get that
∂
∂tEw (t) ≤ 0. Integrating with respect to t, from t0 to t, we get
∂
∂t

´ t
t0

Ew(s)ds ≤ 0, which implies that Ew (t) ≤ Ew (t0), where

Ew (t) =
1
2

ˆ

Rn

[
f

(
u2

t + |∇u|2 +
2λ

p + 1
|u|p+1

)
+ 2utug + (2g − gt)u2

]
dx.

We wish to control the terms in Ew that have no definite sign, so we use
Cauchy’s inequality on 2utug, introducing a helper function, h (t) ≥ 0, such that

|2utug| =
∣∣∣2utuh

1
2 h−

1
2 g

1
2 g

1
2

∣∣∣ ≤ hgu2
t +

1
h

gu2.

Taking a lower bound, we get that −hgu2
t − gu2h−1 ≤ 2utug. So:

Ew (t) ≥ 1
2

ˆ

Rn

[
f

(
u2

t + |∇u|2 +
2λ

p + 1
|u|p+1

)]
dx

+
1
2

ˆ

Rn

[
−hgu2

t − hg |∇u|2 − hg
2λ

p + 1
|u|p+1 +

(
2g − gt − gh−1

)
u2

]
dx

Using inequality 5. and combining terms, we get the expression
Ew (t) ≥ 1

2

´

Rn (f − gh)
(
u2

t + |∇u|2 + 2λ
p+1 |u|p+1

)
dx, which will be non-negative

if f − gh ≥ 0.

Choose f (t), g (t), and h (t) as follows:

f (t) := (1 + t)1−δ , g (t) :=
1− δ

2
(1 + t)−δ , h (t) := t + 1 (3.4)

where δ is a positive constant such that 0 < δ< 1 and δ > 1 − a1. Then, one
reaches the following lemma.

Lemma 3.3. Let f , g, and h be defined by (3.4). Then conditions 1-5 of Lemma
3.2 are satisfied for t ≥ t0.
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Proof. First we will calculate the derivatives of f (t) and g (t):

ft = (1− δ) (1 + t)−δ

gt = (−δ)
1− δ

2
(1 + t)−δ−1

gtt = δ (δ + 1)
1− δ

2
(1 + t)−δ−1 .

We note that gt < 0 and gtt > 0.
Proof of 1. From (1.4) and

2af − ft − 2g = 2a (1 + t)1−δ − (1− δ) (1 + t)−δ − (1− δ) (1 + t)−δ

≥ 2 (1 + t)−δ (a (1 + t)− 1 + δ)

≥ 2 (1 + t)−δ
(

a1(1+t)

(1+|x|2)
1
2
− 1 + δ

)

≥ 2 (1 + t)−δ
(

a1(1+t)
1+|x| − 1 + δ

)

≥ 2 (1 + t)−δ
(

a1(1+t)
1+t+R − 1 + δ

)
> 0

Where the last inequality comes from our choice of δ, so that

lim
t→∞

(
a1 (1 + t)
1 + t + R

− 1 + δ

)
= a1 − 1 + δ > 0.

Proof of 2. Notice that because ft (t) = 2g (t), this is trivially true.

Proof of 3. Since gtt (t) > 0 and gt (t) < 0, this is trivial as well.

Proof of 4. Since p > 1, this is trivial, since

g − ft

1+p =
(

1−δ
2

)
(1 + t)−δ − 1

p+1 (1− δ) (1 + t)−δ

= (1− δ) (1 + t)−δ
(

1
2 −

1
p+1

)
> 0

Proof of 5. Similar to 1, one gets the following:

ga− gt − h−1g = 1−δ
2 (1 + t)−δ a + δ 1−δ

2 (1 + t)−δ−1 − 1−δ
2(1+t) (1 + t)−δ

= 1
2 (1− δ) (1 + t)−δ−1 ((1 + t) a + δ − 1) > 0

!

Proof of Theorem 1.2. Now that we have chosen our functions f , g, and h, we
can easily reach our final energy estimate. From Lemma 4.2, we have that the
weighted energy is bounded above by a positive constant. Furthermore, since
the weight on the energy is time dependent, while we are integrating over
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space, we simply move the term to the other side of the inequality, reaching
our decay estimate.
´

Rn

(
u2

t + |∇u|2 + 1
p+1 |u|p+1

)
dx ≤ Ew (t0) (f − gh)−1

≤ Ew (t0)
(
(1 + t)1−δ − 1

2 (1 + t)1−δ
)

= Ew (t0) 1+δ
2 (1 + t)1−δ

From this, we quickly get the estimate stated in Theorem 1.2.

4 Future Areas of Research
While our research has provided a fast rate of decay for problem (1.1)-(1.5), it is
not likely that this will be the optimal decay for the entire range of the exponent
p of the nonlinearity. It is likely that the decay for small p will be much faster
due to the influence of the Klein-Gordon equation. In order to find this decay,
we will use an iterative method based on interactions between the L2 and Lp+1

norms of u. In (2.20) and (2.21), it is noteworthy that the decay of the L2 norm
of u differs from the decay of the Lp+1 norm of u by a power of 2. But for p
close to 1, the Lp+1 norm is approximately the same as the L2 norm. So for
small p, we will use the interactions between these two norms in an attempt to
show that the energy of the problem decays faster than any polynomial. These
interactions will also likely yield a threshold for the decay. Upon completing
this work, we will have completely described the energy of the problem.
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