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Multi-modal Person-Tracking:
Toward Implicit Communication for Peer-to-Peer Human-Robot Teams in

Shared Workspaces
Scott C. Livingston

Advisor: Prof. Lynne E. Parker

Abstract—I present here a multi-modal system for person
tracking designed for mobile robot platforms equipped with
laser range measurement and color camera sensors. Basic person
tracking is achieved by filtering “leg” circle features extracted
from a laser sensor, considered in combination with the target
position (with respect to a particular image) estimated by a
vision-based tracking algorithm. This work implements and
builds upon previous research successes, and is novel primarily
in its combination of the individual elements. The final project
strives to be easy to use, being documented and based upon
an object-oriented design, and should thus represent a nontrivial
contribution toward a larger research project to develop methods
for peer-to-peer human-robot teams through implicit communi-
cation.

I. INTRODUCTION

Developing methods for cooperative, peer-to-peer human-
robot teams, in which communication is achieved implicitly,
has the potential for transformative impact. Though much
progress has been made in the domain of cooperation and
planning in robot teams, “bridging the gap” to include hu-
mans in a shared workspace as peers to the robots (e.g.,
rather than commanders) remains elusive. A central concern is
communication between the humans and robots. Clearly, the
human could learn a specialized artificial language for issuing
commands to robots on the team, entered using a keyboard and
display for each robot. However, of much greater importance
and utility is intuitive, implicit communication among team
members, whether human or robot. A well-trained human team
functions in such a manner; imagine the fluidity of formation
building and execution of game strategies by a soccer team in
the World Cup.

The overall goal of this research is to develop methods for
peer-to-peer human-robot teams using implicit communication
and acting in shared workspaces. Specifically, the team needs
to interact without any explicit commands or pre-task plan-
ning. The key is for the humans and robots to understand the
intent and capacity of their collaborators and determine how
to optimally interact in a given task. “In shared workspaces,”
means the team acts in the same physical workspace (in
contrast, for example, to tele-operated robotics) and works
cooperatively to achieve common goals.

For my senior project, I joined a work in progress by
Prof. Lynne E. Parker, Mr. John Hoare, and Mr. Sudarshan
Srinivasan to develop new methods within this domain of
human-robot interaction. The task chosen for analyzing and

demonstrating results is cooperative box-pushing, a well-
recognized benchmark for research in robot teams that allows
for many variations and levels of difficulty (e.g., varying the
number and sizes of boxes, the final locations of boxes, etc.).
The goal is to have a human begin to push a box and have
one or more robots in the vicinity recognize her intention and
provide aid without any explicit communication. The purpose
of this simple task is to develop and test models and algorithms
from which teams can be trained, progressively increasing the
difficulty and eventually extending results to other cooperative
team problems.

As achieving the overall aims of this (multi-year) research
project in a single semester is infeasible, my central contribu-
tion is development of a person tracking system. Successful
implementation of a method for tracking a target person
is key to human-robot collaboration. The ambition of my
software is to be easy to use and ultimately integrate into
a human intention and activity recognition system, in addition
to other later software components of this research. Indeed, as
will be described in this report, the final PersonTracker
class completely encapsulates a target person tracking method
into a single object, whose use is as simple as calling an
Update() method and retrieving the estimated target position.
The purpose of this report is to describe my contributions to
the larger research project, beginning with a toolchain and
patch to the robot server Player, followed by various C++
classes that implement and encapsulate feature extraction and
vision-based tracking components (each operating on a single
sensing modality), and finally, ending with a description of the
person-tracking software. The report culminates in a detailed
tracking example.

II. RELATED WORK

The problem of tracking a known target person arises in a
number of domains (e.g., security, personal assistance, and live
sports monitoring). Its solution is, in some sense, a prerequisite
for any sophisticated human-robot interaction (HRI) system.
As expected, methods for person-tracking have been proposed,
and I briefly describe two prior works and their relation to my
system.

The first is a (primarily graduate) student project completed
at the University of New South Wales in 2008, titled “Multi-
sensor human tracking” [1]. Their system relies on two sensor
modalities: laser and color vision. Pairs of leg features are
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extracted from laser scan data based on the observation that
human legs tend to appear in short sequences of local minima
and maxima of distance data (having the appearance of a
brief ripple in the laser scan). This leg detection method was
proposed in a prior paper; see the students’ final report for
references. The vision-based tracking method used in their
project is very similar to my “motion-focused color histogram
correlation-based tracker;” in fact, I based my design largely
on the description given in their report. Their implementation
differs from mine primarily in that they included a global
motion cancellation scheme, to facilitate ignoring changes in
the background due to robot (and hence, camera) motion. I ex-
tended their approach by including several routines for sorting
and pruning candidate image regions. See the corresponding
section of this report for details of my work in this regard.
Finally, these two sensing mechanisms were integrated with
a world model, about which their final report includes little
detail.

Another work toward person tracking with multiple sensors
is by Fritsch et al. [2]. Their primary contributions are twofold.
First, a multi-symbol multi-sensor system for “anchoring”
mixed percepts to a collection of abstract symbols (e.g., per-
sons) is proposed, thus providing a means for organizing time-
varying sensor streams and tracking the presence of known
(abstract) objects. Second, their system is demonstrated on a
robot using a combination of color vision-based face detection
and laser-based leg detection. Leg features are extracted in
a manner similar to that of the previously described project
at UNSW; specifically, small segments of relatively similar
distances are formed from scan data and labeled as “legs” if
several weak attributes are satisfied (e.g., width within some
threshold, mean and variance of distances of each measure-
ment in this segment are within certain bounds, etc.). Vision-
based face detection in their demonstrated tracking system
requires an extended explanation, and thus the reader is instead
referred to their paper [2].

As will become evident in the rest of this report, my person-
tracking system is similar to these previous methods in the
sensing modalities chosen, but differs both in the manner of
laser-based “leg” feature extraction and in the vision-based
object tracking component.

III. VIDEO RECORDING AND PLAYBACK IN
PLAYER/STAGE: VD_DUMP , GENCAMLOG , AND A PLAYER

PATCH

In general, experimental research with robots is difficult and
expensive. Accidents happen, and they can be costly and delay
further research until new parts are shipped, etc. Especially
in the early stages of a project, operating in a simulated
environment is invaluable for quickly testing ideas without fear
of expensive mishaps and without the numerous maintenance-
related time requirements of working with a complex robot
platform.

A powerful and widely used tool for robotics research is the
Player server (see [3] and [4]). In short, Player separates the
hardware specific details of a particular robot platform from
the “high-level”, and more generally and easily applicable,

aspects of robotic sensing and actuation. It operates in a
manner similar to device drivers in a desktop operating system,
which succeed by providing a common, standard interface to
abstract devices (e.g., a keyboard) while hiding the details
of a specific design (e.g., a Logitech Super Cool Wireless
keyboard). Player is a robot “server” in that it serves requests
from clients for read or write access to devices that the
server manages, such as a Sick LMS (laser range-finder) or a
differential drive system.

The primary simulation environment for Player is “Stage.”
In short, Stage provides simulated sensor streams to a Player
server while tracking movement of the (virtual) robot in
a given map. For example, laser range readings may be
generated using raytracing given a binary image, with nonzero
pixels indicating a wall or barrier (off of which the projected
laser can reflect). Further details of Stage are omitted here
as my simulations were achieved by replaying logged sensor
streams; Stage only acted as basis on which Player could run,
despite providing no simulated data.

The existing Player software provides a device for writing to
and reading from sensor logs. Though there is good support for
reading and writing laser range data to plaintext log files, and
while there is even support for recording camera images and
timestamps to a log in Player 2.1, there is currently, at the time
of this writing, no built-in means for reading back a stream
of camera images. “Playing back” a recorded sensor stream
may seem trivial at initial consideration, being (one might
think) naively achieved by stepping through a log file and
sequentially feeding the sensor data to a robot process. How-
ever, such an approach does not accurately simulate the timing
of arrival of the recorded images. Accurate stream replay is
important here because most computer vision algorithms are
computationally heavy, by the very nature of the domain, and
hence we might reasonably expect some frames to be dropped
during otherwise good performance. Allowing the robot to
experience all images, perhaps even “pausing time” within
the simulation is clearly not representative of an experimental
setting.

As a preliminary step to my person-tracking work, I created
a toolchain for recording laser and camera sensor streams,
generating a new log file by inserting timestamped camera
image entries into an existing Player-created logfile, and then
replaying the sensor data through Player (attached to Stage)
such that robot software can be written to use this sensor
stream and, without need for recompilation, can also be used
experimentally on an actual robot through a Player server
running on it. Though this effort is not the centerpiece of
my work, it is sufficiently useful and well documented to
be mentioned here. A formal software patch may be later
submitted to the Player/Stage project.

The toolchain consists of the following:
1) vd_dump is a program that coordinates writing a

stream of laser range-finder distances through the Player
“writelog” device to a log file, while pulling and saving
timestamped images from a camera device using a
Player camera proxy and OpenCV (see [5]).

2) The gencamlog program generates a Player “readlog”
format logfile given an existing logfile (presumably
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generated by a Player “writelog” device; in this case,
it is the laser range data coordinated by vd_dump)
and provided with a sequence of saved camera images
and their corresponding timestamps file. An arbitrary
offset time can be chosen when inserting the camera
data stream. The new resulting logfile is in plain text
and should be bundled with the associated sequence
of image files (usually under some directory, such as
“camera samples”).

3) I extended the Player “readlog” device to handle camera
data entries as generated by gencamlog when reading
a logfile. The patch has been successfully tested with
Player version 2.1.2 and OpenCV 1.0.0. With my ex-
tension, a client can access a camera device in Player
(e.g., using the C++ CameraProxy object) as usual, i.e.,
as if it were attached to an online camera.

As with all software written in this thesis, further details,
usage examples, etc. are provided in a separate archive, likely
called Livingston-thesis-sw.tar.gz.

IV. FEATURE EXTRACTION BY INSCRIBED ANGLE
VARIANCE: THE IAVLASERFEATUREPROXY CLASS

In order to track a person with a laser range finder (called
simply a “laser sensor”), features must be extracted that
are associated with the target in some way. As the laser
sensor is typically positioned about 0.5 meters from the floor
(specifically, 30 cm on the robot used in this project), the
most natural feature to extract is “legs.” The “leg” feature is
a semicircle (convex with respect to the robot) with diameters
bounded by estimated leg widths being thus labeled. The
algorithm used in this project is the inscribed angle variance
(IAV) technique [6]. It was chosen both because of its fast
performance online and the availability of an existing software
implementation.

A. Overview of method

As its name suggests, the inscribed angle variance (IAV)
technique identifies basic geometric features by examining the
variance of angles inscribed in candidate segments of a given
laser sensor snapshot. The approach is described in detail in
[6], but key points are repeated here for completeness.

To understand the IAV technique, consider the sample laser
data shown in Fig. 1. The two features of greatest interest are
the pair of legs near point (1,1) and the edge of a rectangular
box near point (2,0) (perpendicular to the x-axis); note that
for clarity the walls of the hallway, detected as line segments,
are ignored. The basic steps are to

1) Segment the laser scan based on intervals of distances
that are relatively close in value; with respect to our
example, we would consider 3 segments (corresponding
to 2 legs and a side of the box);

2) For a given segment, define an inscribed angle to be the
angle formed by connecting a line from each non-end
point of the segment to each of the end points; hence,
given a segment of n data points, we find n−2 inscribed
angles;

Fig. 1. Sample laser scan from an experimental box-pushing recording,
conducted on April 19, 2009. The large red circle on the left indicates the
position of the laser range sensor, as mounted on a Pioneer robot. Returned
distances are shown in the robot coordinate frame; units are meters. Near (2,0)
is a rectangular box, and near (1,1) is a person. The recording took place in
a hallway that is coaxial with the x-axis.

3) For each segment, calculate the mean and variance of
the inscribed angles;

4) Finally, classify the segment as one of several possi-
ble feature classes (e.g., line, arc of a circle, “leg”)
by comparing variances to experimentally determined
thresholds (cf. [6]); possibly apply a few other tests,
e.g., to determine whether a semicircle opens toward or
away from the robot.

In the example scan of Fig. 1, the IAV approach would
thus yield a line feature for the box edge and two separate
“leg” features (actually, circle features with diameters below
a supposed maximum human leg width).

As is clear in the above outline, the IAV technique has
only linear complexity, with the heaviest computations being
those of the mean and variance for each candidate segment.
This aspect of the method is highly attractive considering the
complexity of the vision-based trackers described later in this
report and the need for online operation of the person tracker.

B. My implementation

As mentioned earlier, the authors who originally proposed
the IAV technique also provided an open source Player driver
implementing it, in addition to a simple leg-based “person”
feature extraction routine; see [7] for the software, main-
tained by João Xavier. Unfortunately, at the time of writing,
documentation on the software is quite limited, making its
use very difficult and time-consuming because it consists of
three separate components all of which must be built and
orchestrated in a unique manner. Further, once successfully
installed, leg features extracted using the software are only
available through an special interface, different from typical
access to Player-served devices, and necessarily including a
3-D viewer (possibly precluding some applications).

Therefore, I stripped the laser feature extraction code from
this collection of software, corrected some minor errors in
the source code, created a Makefile for generating a stand-
alone library of the result, and documented the key aspects of
extracted feature structures. This last item is important because
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all features use a common “fiducial” structure while giving
different meaning to the fields of this structure depending on
the feature type.

Finally, I created a C++ class, called
IAVLaserFeatureProxy, that inherits from the Player
client library class LaserProxy and encapsulates the
IAV-based feature extraction process. Thus, obtaining features
from the current laser scan data is as simple as calling the
Update() method and then accessing individual features by the
GetFeature() method. Documentation as well as an example
program are provided with the software of this project (see
directory IAV-legtrack).

V. KERNEL-BASED OBJECT TRACKING: THE
KERNELOBJTRACKER CLASS

Vision-based object tracking is a well-studied and difficult
problem and could very well have been the sole focus of my
senior project. However, as the task of visually tracking a
person is only a small component (that need not be optimal) of
the larger research project of implicit communication in peer-
to-peer human-robot teams, so I selected two existing vision-
based tracking methods to implement: kernel-based object
tracking (described in this section), and motion-focused color
histogram correlation-based tracking (described in the next
section). The final person-tracking system uses a combination
of the two.

Kernel-based object tracking, proposed and investigated in
[8], is an algorithm for tracking a target object in which a
distance metric (in the precise mathematical sense) is defined
over the image and from which a gradient is derived for
iteratively moving toward local minima that represent probable
locations of the target object.

A. Overview of method

A brief description of the kernel-based object tracking
algorithm is provided here for completeness. For details of the
algorithm, extensive examples and a mathematical derivation
of the distance metric (including proof that it is indeed a metric
over the feature space), see [8].

The algorithm must be initialized with a model of the target.
This is achieved by providing an ellipse enclosing the region
of interest (e.g., a person’s face) in a training image of the
target. We assume features are colors that map to an m-bin
color (i.e., hue) histogram, normalized to sum to 1, hence
a probability density function of quantized pixel color. The
selected ellipse is scaled and translated to be the unit circle,
centered at the origin. Given the set of points inside this circle
{(x1, y1), . . . , (xn, yn)}, a target model is defined to be the
probabilities of features 1, . . . ,m (cf. Eqs. (2)-(3) in [8]) by

q̂u =
∑n

i=1 k
(
x2

i + y2
i

)
δ[b(xi, yi)− u]∑n

i=1 k (x2
i + y2

i )
, ∀u = 1, . . . ,m,

(1)
where δ is the Kronecker delta function (δ(v) = 1 if v = 0;
otherwise, δ(v) = 0), b(·, ·) maps the hue (i.e., color) of a
pixel to the appropriate histogram bin, and k : [0,∞)→ R is

a kernel profile, which in this project is of the form (called
Epanechnikov profile; cf. Eq. (12) in [8])

k(x) =
1
2
c−1
d (d+ 2)(1− x) for 0 ≤ x ≤ 1. (2)

Once the target model is obtained, given a set of target
candidate points scaled using the target model (i.e., the x and
y scale factors required to achieve the unit circle in the target
model) {(x1, y2), . . . , (xl, yl)}, we find the probabilities of
features u = 1, . . . ,m by (cf. Eqs. (4)-(5) in [8])

p̂u(xc, yc) =

∑l
i=1 k

(
(xi−xc)

2+(yi−yc)
2

h2

)
δ[b(xi, yi)− u]∑l

i=1 k
(

(xi−xc)2+(yi−yc)2

h2

) ,

(3)
where (xc, yc) is the center point of this target candidate, and
h is the bandwidth (basically the radius of the target candidate
circle in the scaled image space).

Intuitively, the kernel profile provides smoothing over the
target model and target candidate regions of an image, effec-
tively applying a weight to pixels based on distance to the
center of the ellipse.

Given a target model, the distance metric to a target candi-
date with center (xc, yc) is defined to be (cf. Eqs. (6)-(7) of
[8])

d(xc, yc) =

√√√√1−
m∑

u=1

√
p̂u(xc, yc) · q̂u. (4)

The summation inside the radical is a similarity measure (it
follows from the above definitions that this measure is between
0 and 1, inclusive) between the target model and a target
candidate (e.g., in the most recent camera frame). We may
thus derive a gradient in order to maximize this similarity
(hence, minimize the distance metric) (see [8], in particular,
Sections 4.1 and 4.2), leading to an iterative update rule for
the target candidate center

(x′c, y
′
c) :=

∑l
i=1(xi, yi) · wi∑l

i=1 wi

, (5)

where the weight wi for i = 1, . . . , l is defined by

wi =
m∑

u=1

√
q̂u

p̂u(xc, yc)
δ[b(xi, yi)− u]. (6)

Once the change in target candidate center between updates
is within some small bound (e.g., a single pixel), then the
algorithm declares convergence. It is important to note that
convergence is guaranteed only to a local optimum. The region
of the image in which this convergence is guaranteed depends
on the initial target candidate center and the bandwidth (h in
Eq. (3) above), and is called the “basin of operation.”

B. My implementation

Because no existing, freely available implementation of this
kernel-based object tracking algorithm was known at the time
of writing, I thus implemented and encapsulated the com-
plete method in a C++ class called KernelObjTracker.
The software optionally includes adaptive bandwidth scaling,
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Fig. 2. An example training image used for both vision trackers: the kernel-
based object tracking (in KernelObjTracker) and the motion-focused
color histogram correlation (in ColorHistTracker). The trackers use the
image region bounded by the red rectangle to initialize their target models.
The red dot marks the center of the rectangle. Note that in the kernel-based
method, the target model uses points in an ellipse with axis end-points at the
mid-points of the rectangle sides, as opposed to all pixels in the bounding
rectangle. The rectangle (i.e., the bounding region used for the target model)
has size 162× 212 pixels. The fixed kernel bandwidth h = 0.6.

though in practice I found automated adaptation to be poor
for this application; this may be due to the tracked person
frequently entering and leaving camera view, resulting in poor
local optima.

The KernelObjTracker class assumes a feature space
defined over an m-bin hue (i.e., color) histogram, where the
number of bins m is set to 16 by default (found to yield good
performance through trial-and-error) but can be specified by
the user. Bandwidth h used in target candidate calculations
can be easily adjusted, as well as the initial candidate center
point in a given image. The algorithm is derived for any m-
bin feature histogram, and my software is written such that
extension to other types (e.g., over RGB color space) can be
achieved by straightforward modifications. The kernel profile
used in the class is that of Eq. (2), with cd = d = 1.

For software documentation and an example program, see
the vision-trackers directory in the software bundle of
this project.

C. Example usage

Drawing from the extended example at the end of this
report, Fig. 3 depicts the (locally) optimal target candidate
region bounded by a red rectangle, shown in the last image
obtained from the on-board camera. The target model was
initialized using the training image in Fig. 2, which is simply
passed to a KernelObjTracker object as a method ar-
gument, with coordinates specifying the target ellipse within

Fig. 3. After building a target model with the training image shown in
Fig. 2, shown here is a single frame of kernel-based object tracking from the
experimental recording on April 19, 2009. Note that the bright light in the
upper-left corner of the image sometimes “distracted” the tracker for periods
of several seconds when the target walked under it. The camera frame size is
320× 240 pixels.

the given image. Recall that every completed execution of the
algorithm in a particular image is only guaranteed to find a
local optimum. In this example, the target candidate sometimes
became “stuck,” especially when the target walked out of
view. For this target model, the light fixture in the upper-left
corner of the hallway image (cf. Fig. 3) frequently attracted
the tracked region when the target walked out of sight on the
left.

VI. MOTION-FOCUSED COLOR HISTOGRAM
CORRELATION-BASED TRACKING: THE

COLORHISTTRACKER CLASS

The second vision-based object tracking method imple-
mented in this work is quite simple, lacking the mathematical
sophistication of the kernel-based approach described previ-
ously. Accordingly, it is computationally lighter (hence, faster
online). The basic idea is to find some set of regions of interest
in the current image and to select the one which maximizes
correlation with the color (i.e., hue channel) histogram of a
known target image. My implementation is inspired and driven
primarily by the project described by a team of students at the
University of New South Wales in their 2008 report [1].

A. Overview of method

The tracker is initialized by storing the normalized color
histogram and the (again, normalized) forward difference of
the color histogram of a target training image. The forward
difference is a finite derivative approximation of the color
histogram and was claimed to yield better performance in
previous work (cf. [1]). Given this model of the target and
two images (in practice, the previous and most recent frames
from the camera sensor), the operation of this tracker is

1) Find regions of motion by
a) converting given image pair to grayscale,
b) find the absolute difference between the (now

grayscale) images,
c) apply a 3×3 Gaussian filter to the difference image

to blur it and eliminate some noise,
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Fig. 4. After building a target model with the training image shown in
Fig. 2, shown here is a single frame of kernel-based object tracking from the
experimental recording on April 19, 2009. Correlation is 0.40964 between
candidate color histogram derivative (a forward finite difference) with that of
the target model. The camera frame size is 320× 240 pixels.

d) threshold the result,
e) again apply a 3 × 3 Gaussian filter to smooth the

thresholded image, and finally
f) find bounding regions for nonzero clusters of

points, which suggest “blobs” of motion;
2) For each region thus found, calculate the statistical

correlation of its normalized color (i.e. hue) histogram
and the normalized forward difference of said histogram
with the target model; and

3) Select one or more regions as likely target locations by
sorting candidates based on size, correlation, etc.

In summary, the motion-focused color histogram
correlation-based tracker operates in three steps: find
candidate regions of interest by determining “blobs” of
movement, calculate the correlation of the color histogram
(or its derivative) of each region with that of the target model,
and finally prune the remaining candidates based on some
combination of size and magnitude of correlation.

B. My implementation

This entire process is encapsulated in a C++ class,
ColorHistTracker, which provides a simple means for
initializing a training image, finding regions of interest and
their correlation with the target model given an image, and
various sorting and filtering routines to easily select a “good”
region (depending on the application). Please see documenta-
tion and an example program under the vision-trackers
directory of the software bundle for this project.

C. Example usage

Continuing with the experimental recording briefly intro-
duced earlier (and the center of analysis later in this report), an
example tracking frame returned by a ColorHistTracker
object is shown in Fig. 4. As with the kernel-based object
tracker, it was initialized with the training image shown in
Fig. 2.

The greatest weakness of this vision-based object tracker
is the requirement of motion to select candidate regions. In
the present application, for consistent tracking it requires the

region of the target person on which the target model is
based to be in continual motion. This is clearly an undesirable
property for use as a central tracking mechanism; hence, as
described in the next section, this method plays a supporting
role for the kernel-based algorithm in the final system.

VII. TRACKING PEOPLE: THE PERSONTRACKER CLASS

The previously described components are now combined
into a larger system for tracking a target person, selected a
priori. I first present the method for tracking and then briefly
describe the implementation.

The person tracking system consists of two main sensing
modalities: laser range finding and camera vision. The laser
process is used simply to extract from scan data “leg” features
and short segments that may be a pair of legs (so close
together as to no longer be detected as two separate arcs). The
vision process uses a fusion of results obtained from a kernel-
based object tracker and the motion-focused color histogram
correlation method. Before a person can be tracked, the target
model must be initialized with some training image for the
vision component.

The algorithm for tracking is as follows. Note that the target
person position is maintained in the robot coordinate frame.
We assume a target model has been formed according to the
requirements of each vision-based tracker component. Each
iteration begins with the raw camera image obtained from the
last update, and with the last estimated target person position
(xn−1, yn−1).

1) Receive most recent sensor data: an image from the
camera, and a set {(ri, θi)}i=1,... of laser scan data.

2) Apply IAV-based feature extraction to the laser scan data
to obtain a list of “leg” features (circles of sufficiently
small radius) and “leg pair” features (cluster of points
(not necessarily circular) with width sufficiently small).

3) Apply motion-focused color histogram correlation-based
tracker to current camera image and the image from
previous iteration.

a) As specified in this method, candidate regions are
first found by bounding “blobs” of motion.

b) The correlation found for each candidate region is
between the forward difference (i.e., approximate
derivative) of the color histograms.

c) The set of candidate regions is pruned to only
include regions of area at least 1000 pixels2.

d) Of the remaining regions, only the region of high-
est correlation is kept.

4) If no region was returned by the previous step, then
go to Step 6. Otherwise, compute the 1-norm (i.e.,
Manhatten distance) between the center of the region
returned by the previous step and the target candidate
center found by the kernel-based object tracker in the
previous iteration (i.e., the point with which the target
candidate would have been initialized for the kernel-
based object tracking algorithm applied to the current
image).

5) If 1-norm found is greater than some threshold (1000
pixels is used in this work) and if the correlation of
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the region is above some threshold (0.8 is used in this
work), then initialize the target candidate center of the
kernel-based object tracker to the center of this region.
Otherwise, leave the initial target candidate center unal-
tered (i.e., the center found in the previous iteration).

6) Apply the kernel-based object tracking algorithm to the
current image, and thus obtain an estimate of the target
person location in the current image.

7) Find the shortest (Euclidean) distance between the previ-
ous target person position (i.e., the person position from
the previous iteration) and the “leg” features extracted
from current scan data.

8) If the minimum such distance is below the maximum
distance the person could have moved since the last
update (i.e., max person speed multiplied by elapsed
time, plus a maximum “person diameter”), then update
the target person position to be that of the nearest “leg”
feature and terminate this iteration. Otherwise, continue
to next step.

9) Find the shortest (Euclidean) distance between the pre-
vious target person position (i.e., the person position
from the previous iteration) and the “leg pair” features
extracted from current scan data.

10) If the minimum such distance is below the maximum
distance the person could have moved since the last
update (i.e., max person speed multiplied by elapsed
time, plus a maximum “person diameter”), then update
the target person position to be that of the nearest “leg
pair” feature and terminate this iteration. Otherwise,
continue to next step.

11) Using a pixel-to-radians conversion ratio (experimen-
tally determined): if the current vision-based estimate
of the angle to the target person (i.e., θ in the robot
coordinate frame using polar coordinates) differs from
the angle to the target person found in the previous iter-
ation by less than some mismatch allowance parameter,
then update the target person position to have (in polar
coordinates) the radius found in the previous iteration
and the angle given by the current vision-based estimate,
and terminate this iteration. Otherwise, continue to next
step.

12) As all tracking attempts have failed, declare the person
position to be unknown.

If the target person is lost, then she is (re)located by

1) selecting the laser-based “leg” feature differing least
with the angle found by the current vision-based esti-
mate if this difference is below the permitted mismatch
parameter; or

2) selecting the laser-based “leg pair” feature differing least
with the angle found by the current vision-based esti-
mate if this difference is below the permitted mismatch
parameter.

Otherwise, if no such match between the laser and vision-
based estimates is found; then the target person position
remains unknown.

This algorithm is implemented in a C++ class called
PersonTracker, which encapsulates the entire process. An

Fig. 5. Experimental setup of laser and camera sensor recording conducted
on April 19, 2009. The rectangles labeled 1 and 2 indicate positions of a box
respectively at the first and second half of the recording. The red circles
are labeled with letters and indicate known locations at which the target
person paused briefly during his trajectory (see the text for an explanation).
Coordinates are with respect to the robot frame; units are in meters.

iteration of the person tracking algorithm is performed by
simply calling the Update() method, whence the target person
position and the state of the system (either target location is
“known” or “uninitialized”) are easily retrievable. The class
directly handles all interactions with the camera and laser
devices served by Player, given the robot to which they are
attached at instantiation. For more software documentation and
an example program, see the PersonTrack directory in the
software bundle of this project.

VIII. AN EXAMPLE EXPERIMENT

To support the claim that this person-tracking system will be
useful toward the ends of the larger research project of peer-
to-peer human-robot teams in shared workspaces, an extended
box-pushing experiment was conducted.

The goal of the experiment was to fix the robot (with
camera and laser range finder attached) at a known location
and record a few simple behaviors of a human interacting with
a rectangular box that is tall enough to be detected in laser
scans. In order to compare positions estimated by my person-
tracking system with actual positions of the target person, 7
reference points were marked on the floor (see Fig. 5), and
their coordinates with respect to the robot were measured.
Further, the beginning and final positions of the box were
marked, and the coordinates with respect to the robot were
also measured.

During the recording, the target person walks around the
box in its initial position (labeled “1” in Fig. 5) several times,
then pushes the box (such that the box does not leave contact
with the floor) into its final position (labeled “2” in Fig. 5),
and finally walks around the box again several times. A total
of 3000 camera images were recorded, with a total run time
of 231 seconds. Whenever the person walked over or paused
at one of the floor reference points, the label for that point
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Fig. 6. Plot of all known positions of the target position over the course
of his trajectory (green markers). The outlines of both box locations and the
floor reference points are repeated from Fig. 5 for clarity. Coordinates are
with respect to the robot frame; units are in meters.

was noted. Thus a string sequence of floor reference labels is
formed by the target person’s path (cf. Fig. 5 for locations and
names of references):

1) B, A, B, A, C, D, E, B, E, D, E, B, A, C, D, C, A,
out-of-view

2) A, C, D, C, A, B, out-of-view
3) . . . box is pushed to a new position. . .
4) G, E, B, out-of-view
5) E, D, C, F, G, E, G, F, C, D, E, B, out-of-view
6) B, end-of-recording.
After the sensor streams were recorded, I applied each of

the major system components of this senior project to data
replayed using the Player/Stage software, with my patch to
support playback of the camera image stream. Figs. 6 and
7 show all target person positions found over the course of
his trajectory, with box locations and floor reference points
included for comparison; IAV laser-based “leg” and “leg pair”
features extracted during the recording are also included in
Fig. 7.

Finally, a string of visits, defined to be moments of passing
over or briefly stopping at floor reference points was generated
using the output of the person-tracking system, where a
reference point was declared if the target person was found to
be within 50 cm of the true measured coordinate. The resulting
sequence is

B, E, F, G, A, D, E, B, E, D, E, B, A, D, C, D, C, C, A,
F, D, G, G, E, B, E, D, C, F, C, F, G, E, G, F, C, D, E, B

A. Discussion

The results suggest that the developed person-tracking sys-
tem is most useful in two respects. First, it allows a target
person to be tracked when laser-based leg data ceases to be
available, e.g., when the target walks behind a box. The arcs
of green points behind both box positions with respect to the

Fig. 7. Scatter plot of all single leg and leg pair features extracted during
the experiment (blue and red markers, respectively), and all known positions
of the target position over the course of his trajectory (green markers). The
outlines of both box locations and the floor reference points are repeated from
Fig. 5 for clarity. Coordinates are with respect to the robot frame; units are
in meters.

sensing robot are periods during which the tracker updated the
person’s position using only the vision-based estimate, hence
the constant radius but changing angle, leading to an arc-like
appearance.

Second, the person-tracking system allows a particular leg
or pair of legs, as extracted from laser scan data, to be tracked,
with preference given to the supposedly most reliable feature:
single leg semicircles. With required confirmation from the
vision-based component in order to initially locate the target
person, while still allowing use of the less distinctive “leg pair”
features during active tracking as needed, the overall system
seems to perform well, at least as suggested by this initial test.

IX. CONCLUSION AND FUTURE WORK

In this senior project, a multi-modal person-tracking system
is proposed and demonstrated in a passively sensed box-
pushing experiment. A collection of software has been de-
veloped, each component of which can be used alone, and
which has been combined to form a person-tracking method,
available as a C++ class.

Before practical use in the larger research project of peer-
to-peer human-robot teams, or in many other human-robot
interaction projects, several enhancements should be made to
the proposed person-tracking system. First, the sequence of
estimated target person position should be filtered and more
intelligently predicted, perhaps with some type of Kalman
filter. Second, installation of a PTZ (pan-tilt-zoom) controller
for the camera would effectively extend the vision-based
tracking to a much wider viewing area, making the region of
the coordinate space visible at least commensurate with that
of laser scanning.

Once these extensions are made, many more experimental
trials should be conducted in order to establish the statistical
significance of claims that this person-tracking system per-
forms “well” or “robustly.”
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and M. J. Matarić, “Most valuable player: A robot device server for
distributed control,” Proceedings of the 2001 IEEE/RSJ Int’l Conference
on Intelligent Robots and Systems (IROS), pp. 1226–1231, Oct.-Nov.
2001.

[4] http://playerstage.sourceforge.net/.
[5] http://opencv.willowgarage.com/.
[6] J. Xavier, M. Pacheco, D. Castro, A. Ruano, and U. Nunes, “Fast line,

arc/circle and leg detection from laser scan data in a player driver,” Pro-
ceedings of the 2005 IEEE Int’l Conference on Robotics and Automation
(ICRA), 2005.

[7] http://miarn.cjb.net/.
[8] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25,
no. 5, pp. 564–577, May 2003.


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	Spring 5-2009

	Multi-modal Person Tracking: Toward Implicit Communication for Peer-to-Peer Human-Robot Teams in Shared Workspaces
	Scott Carlton Livingston
	Recommended Citation


	tmp.1282751643.pdf.B3ZXd

