
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Chancellor’s Honors Program Projects Supervised Undergraduate Student Research
and Creative Work

Spring 5-2007

ZigBee Event System (ZES): A Multimedia Application ZigBee Event System (ZES): A Multimedia Application

Bradford Andrew Russell
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj

Recommended Citation Recommended Citation
Russell, Bradford Andrew, "ZigBee Event System (ZES): A Multimedia Application" (2007). Chancellor’s
Honors Program Projects.
https://trace.tennessee.edu/utk_chanhonoproj/1108

This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative
Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s
Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange.
For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_chanhonoproj
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

ZigBee Event System
Final Design Review

Team Ragnar
1

Bradford Andrew Russell
Bachelor

Zig8ee Event System (ZES)

A Multimedia Application

Final Report

Team Ragnar

Chris Niedzwiedz
Rick Weber
Derek Rose
Brian Sharp
Brad Russell
Justin Ellison

Zig8ee Event System
Final Design Review

I) Overview

Team Ragnar
2

Zig8ee Event System
Final Design Review

Introduction

Mission Statement

Team Ragnar
3

The goal of our system is to be capable of controlling wireless devices through the Zig8ee

wireless protocol using commands and signals from another applications or processes. These

devices must ad in synchronization with a given media file with the intent of providing an interactive

media experience forthe user.

This system could be used in trade show environments with lhe intent of showcasing tm

new products or services that a compny provides interactively to the consumer. Such a consumer

would only have to approach an automated kiosk and the system would begin explaining through

audio, video, and other sensory methods about the particular product. This system could also be

used in stores and markets to attract potential customers to a particular product or highlight the

specials of the day. Further, this system could be tied to a database and present personalized

advertisments or information to a person based on their previous purchases or current items in their

basket (requiring tie in with RFIO).

Having this interaction with the consume- could increase sales of a particular product, or

promote awareness about different things in publicareas. The public are more likely to buy into

products that have been target to their needs and find it less irritating than being exposed to

countless advertisements about products they have no interest in. This sytem, tied with a

database, could allow for such targeting. Futher, instead of having c::. static movie play 011 a loop all

day is less effective than targeting such information to specific demograp,ics.

The solution to this problem is the Zig8ee Event System (ZES) Framework. Intended to

coordinate data transmission and synchronized events in a wirsess environmfflt, the Framework

provides an interface wtth which to establish, manage, and communicate with a Zig8ee or

Embernet based wireless network. It is able to send commands to and receive data from wireless

devices witll which it has been preconfigured to communicate. Further, the framework is

responsible for abstracting the environment from the user in such a way that they are only

concerned with creation of the media file and actual hardware setup themselves.

Running on top of this framework is five separate applications, each with a unique task.

The ZESEditor is a post production media editor that reads in a QuickTime Media File and allows

Zig8ee Event System
Final Design Review

Team Ragnar
4

the user to insert device commams into the media timeline. Our custom ZESPlayer then reads in

these tracks during playback and sends data to the ZESController, which runs in the background

and is ultimately in charge of relaying the data to and from the wireless devices. The Pluginator

creates plug ins to be used by the ZES Frameworkto provide a general way to add new

functionality and new devices to the system without having to wrie any new code. The

Configurator is run during network setup to map active wireless connections to the groups defined

in the ZESEditor application. This is intended to allow for easier setup and allows for easier

changing of devices from one setup to another.

Figure 1-1 outlines the overall data flow in the application suite. Starting with the

Pluginator, a plugin is created for any devices needing to be used in the final setup. It is left up to

the devices developer to supply the plug in since they will be most familiar with the commands the

device is capable of receiving. The plugin is then used in the ZESEditor to create a Zig8ee

enabled ZES Media Fie. This file is tren read in by the ZESPlayer, and in conjunction with the

ZESController, commands the wireless devices. These devires are associated with their ZES

Track/Group before the Player and Controller are started using the Configuratortool.

Technologies

The project heavily involves Apple specific technologies, mostlyCocoa. Cocoa is the

interface into Apple's operating sysEm and its primary language: Objective C. This system was

used for all the applications except the network controller, which was a C++ daemon which then

took on Cocoa components to support AppleScript. Objective C applicaions were able to use built

in frameworks to manipluate the XML data contained in much of the project's external files. The

Controller turned to Xerces. References for these technologies are included at the end of this

paper.

Zig8ee Event System
Final Design Review

Team Ragnar
5

-'WhielL--________ --------

Applications and Data Flow
3b) The Controller Clccepts Setup ilnd
Admin Pkts from ttle Plilyer sends lJilek
Input pkts uwl lllilniHJes dilta flow ovel
tile ZIu8ee network

L) The Conflgurator utility is used on
'.Ite to assign Zlgbee enabled devices
to tile groups III the target mecliil file It'
r(~ilds in the GrC)up'rJlugin listinG ilnd
e~ports d Contruller Configuration file

I! The Editor reads In il raw media
file and exports the ZES Media file
and Devlc8 Group,Plugln lIstlllg

J. r __ . ~ --. ,

Figure 1-1: Applications and Data Flow

Zig8ee Wireless

, "",

CUl1fl~;ur<ltor C(Jlltroll(~1

J

I -

0) Creates plugins to eilch
Zi~JBee enabled deVice for
use In applications

["Iilyer

3aj The Player reads in the ZES Mediil file and
DeVice GrtJupiPlugin Listing It sends Setup
and Admin Pkts to the Controller to trigger
Zig8ee evellts throughout the duration of the
Inerlia file

Zig8ee Wireless technology is based on IEEE Standard 802.15.4. It is desgned to provide

low power, low bandwidth wireless communication for control and sensor networks. It runs on

Industrial, Commercial, and Medical bandsat 868 MHz, 915 MHz, and 2.4 GHz.

The technology employs three different deviCE types: coordinator, router, and end device.

The coordinator is the head a Zig8ee wireless network. The router passes data from node to node,

and the end device is the least expensive and complex of the three. Intended mostly for wireless

control and sensor networks, Zig8ee devires are low bandwidth and low power, able to last on one

battery for a duration on the order of years.

Apple QuickTime

QuickTime is Apple's media type which is capable of reading many media types such as

MPEG, MP3, ..lPG, AVI etc. While the first iteration of the ZES Media System writes to a separate

Zig Bee Event System
Final Design Review

Team Ragnar
6

XML file, QuickTime sUpPJrts the creation of custom data tracks. While no longer in the design, the

QuickTime file format was initially chosen because of its support of custom data tracks in a media

file. This would permit the ZESEditor to simply add a new track with encoded information to the file

and have it wrapped in one package. This is would be a requirement for a commercial application,

certainly. However, it was not implemented in this desgn.

The QuickTime API, on the other hand, was used extensively in the Edlor and Player

applications since it provided an easy and straightforward interface into the media files and media

playback.

ZES Framework

The ZES Framework initially consisted of three libraries which provide all the functionality

to interact with Zig Bee enabled devices. While originally all three of these libraries were referenced

to complete the framework, the Plugins Library was left out of the final development due to a

potential conflict that would have resulted with existing command standards that still need research.

Plugins are currently implemented through a reader that is shared between many of the

applications requiring its use. The remaining libraries have beenrefined over development to more

specific tasks than were originally irtended.

Provides functionality that permits applications to communicate with the Network Controller

process. This is done through the use of the r class. It also provoes data types for

sending information and control signals to and from the two applications in the form of

SetupPacket and AdminPacket data types respectively. This library is best described as

providing a mediator between the application needing to control devices and the applicaion running

any network management.

ZigBeeLib

This library is what enables interaction with the actual Zig Bee network. It contains Node

and Group classes for logic..-.:ll grouping of devices. The r class communicates

Zig Bee Event System
Final Design Review

Team Ragnar
7

with the network and the NetworkStatusManager tracks network status such as pinging

devices. Whie the class definition exists, the is not implemented in

the framework. Insufficient information was available to try to run network maintenance. For

instance, the Embernet Ight ballasts from Phillips only had limited documentation and only a single

command was available for use. Before release into a commercial environment, this piece would

need to be implemened as completey as possible to ensure a reliable environment.

Zig8ee Event System
Final Design Review

II) Applications

Team Ragnar
8

Zig8ee Event System
Final Design Review

ZESEditor

Motivation

Team Ragnar
9

The editor in the ZES Multimedia sys:em, codenamed the ZESEditor, allows for the

creation of scripts to control multimedia deviCEs in synchronization with a movie. Using a graphical

user interface (GUI) and a multimedia timeline, users can place events (key frames) on the timeline,

which will be sent to their respective devices. Tracks give a convenient groupingof devices to the

user that allows for convenient visualization of how sequences of events affect Zig8ee enabled

multimedia outputs. Using tracks and key frames, a user can rapidly and intuitively develop

multimedia scripts (ZESMovie) for use wrth the ZESPlayer.

QuickTime

The ZES Multimedia sysem extensively uses Apple's QuickTime application programming

interface (API) for Cocoa, as it allows for rapid development, many file formats, and a stable

intuitive API. Thus, the ZESEditor heavily relies on a QuickTime framework. In doing so, many

different file formats can be used wrth the ZESEditor, including: .avi, .mov, .mp3, .3gp, and others.

In addition, since QuickTimesupports a wide variety of compressors/decompressors (CODECs),

the ZESEditor also supports many formats including NlPEG1 ,2,4, H.262, H.264, Cinepak, and

many more. Furthermcre, the container formats and CODECs supported can be extended by the

user with QuickTime corrponents; doing so is seamless to tre ZESEditor and requires no additional

work than that of getting them to work with QuickTime. Through components, the ZESEditor can

notably support Windows Media Player 9 and DivX. The user associates a movie to the current

project, which can theoretically be of any of the aforementioned types, but is currently limited

exclusively to .mov and any CODECs the container supports (nearly all of them) to simplify the

design for development. The ZESEditor then adds a script that is read by the ZESPlayer that adds

Zig8ee functionality to tre QuickTime movie.

Users who have used iMovie, Final Cut Pro, or some other timeline video editor should be

very familiar to the concepts of tracks and key frames. Tracks are an abstrad:ion mechanism that

allow the user to group device~. A user creates a track and associates it to a specific device o/pe.

All events that occur on that track will be sent to a single or group of devices of the selected type at

ZigBee Event System
Final Design Review

Team Ragnar
10

the logical time it occurs on the timeline. For example, a user who has two separate light-boxes and

a scent generator can make three different tracks Hat contain events for each device. Thus, the

user will be able to control each device independently. A user can also crecte additional tracks that

represent combinations of devices previously associated. For instance, if a user has two light

boxes, A and B, the user can create one track for A, one for B, and another that controls both A and

B. There is no hard limit to the number of allowed tracks in a ZESMovie, which are represented by

blue rectangles that appear on the timeline.

The other essential mechanism users utilize in ZESMovie creation is the key frame. The

key frame represents a "significant time" in a movie file. At trese key frames, users assign

command outputs to be sent to ZigBee multimedia devices. Forexample, if a light box needs to be

dimmed at 30 seconds into the movie file, the user would select the track that corresponds to that

light box and add a key frame. The user would then assign the values corresponding to the

command to be interpreted by the ZESPlayer during playback. Each track has is own set of key

frames, meaning that the user can send events to different devices independently. If, for instance,

the user wants to fade ight box A to 50% at 15 seconds, light box B will be unaffected unlessthe

user adds a keyframe to its track at the same time. Key frames are represented by green boxes,

the currently selected key frame being yellow instead of green. The attributes associated with the

currently selected key frame appear in the list view at the top right of the editor's user interface (UI).

When the user has finished placing tracks and key frames that represent the multimedia

output events associated with the movie file, the user exports the track to a .zes file. These mas are

machine generated XML files that can be read by the ZESPlayer to recreate the track and event

structure. This file also contains the full path filename ofthe movie file associated with the

ZESMovie script. In its current implementation, any file format that QuickTime is capable of playing

can be associated with a ZESMovie. An example ZESMovie is gh.en below:

Zig8ee Event System
Final Design Review

<ZESMovie movi world-26-09 OS.mov">
-

<ZESTrack name=Utrack1 U>
time="71813 11 >

<property IIfadeToLevel"
prope ueO="O"

</property>

/property>
/ f1.ame>

<ZESKeyframe time=IIS4

prop:;rtyValueO=IIO"
</property>

/ZESKeyframe>
</ZESTrack>
<ZESTrack name=Utrack2 U>

time="718
<property

ueO="S"
</property>

/ZESKeyframe>
</ZESTrack>

</ZESMovie>

ue1=1I2">

"fadeToLevel"
lue1="3">

1="1">

1="4">

Team Ragnar
1 1

The ZESMovie XML tag represents a ZESMovie script file, where ITS movie parameter is the

actual OuickTime movie file associated with the script. ZESTrack tags represent tracks tre user

laid out in the editor's UI. The name property is currently arbitrary and sequentially generated,

though this shoukt be user definable in commercial applications. The name allows the userto more

conveniently associae devices to a track in tile Configurator. ZESKeyframe tags represent an

event that occurs on the timeline. The time property is a long long C type used internally by the

OuickTime API in referencing temporal location of the events, and is used by the ZESPlayer to

trigger events. Finally, prcperty tags represent the actual commands and values associated with an

events time. A single event can have multiple prcperties associated with it.

The interface for creating tracks and key frames is highly intulive and should be familiar to

anyone who has previously used a timeline movie editor. To create a new ZES file in the edlor that

is associated with a movie, select "New" from the File menu. If a project is already loaded, any

unsaved changes will be lost. To add a track, the user clicks add track and selects from a

dropdown menu the type of device associated with that track. Clicking u+KF" adds a key frame to

ZigBee Event System
Final Design Review

the currently selected track at the current time.

The properties of the currently selected key

frame appear in the keyframe editor panel in

the top right ofthe UI. Tracks not currently

selected and their keyframes are dimmed

When the movie is properly edited, the user

selects "Save As ... " to create the ZES track.

To load an existing .zes file for editing, select

editing. This will discard any unsaved changes

in the current project.

Pia"

VW.90 IfCTLmtdlum,mov

I

Team Ragnar
12

Keyframe cd itor

Play/Pause moyie Timeline

Add Track Current time

Add Keyframe

The types of devices a track can be associated with vary depending on which plug ins are

installed. Plugins are created with the Pluginator and define what parameters and how many

arguments are associated with a given device type. This provides a flexible and expandable

platform for generating scripls to control multimedia devices. PILgins are loaded from the directory

lLibrary/EATONlZESPlugins upm the ZESEditor's launch from the Finder and must be restarted

upon adding new plugins. A list of available plugins appears when the user adds a track.

Currently, the ZESEditor allows for script generation and is fully functional for creating

scripts. Features have been removed since the preliminarydesign, notably zooming and keyframe

jumping. These features are not necess:uy for creating .ZES scripts and effort was placed

elsewhere. Also, drawing routines have been updated integrated with data storage of tracks and

keyframes to more easily track bugs and use less memory. In addition, this fixes memory leaks that

could occur.

Zig8ee Event System
Final Design Review

ZESPlayer

Motivation

Team Ragnar
13

In the su~e of ZES applications, a necessary program to play user-crected content is tm

ZES Media Payer. This Media Payer is the main tool that the user will employ to display his/her

ZES Media to ther audience, whoeverthey may be. In addition to this main role, the ZES Media

Player will also serve as gO-bEtween for the information listed in the ZES Media File and the

Controller process which send8 data over the Zig8ee network. It is the Player's job to read the data

in the .zes media file, interpret it, format it, and send it to the Controller process in such a way that

will allow the Controllerto easily send commands to Zig8ee devices. Also, future work hopes to

bring the ability for the Controller process to send information back to the Player about netvvork

conditions. With this abil~y, the Controller could inform the Player about network latency, and the

Player could issue commards earlier to make up for that circumstaw'e.

The Player application is built using Apple's XCode integrated development environment.

It is written in Objective C, an extremely object-orieni::d language. This language, particularly when

used with XCode's intuitive interface, has a short learning curve and allows for rapid development.

In addition, there was some experience in the de\elopment group with this language and its

framework.

Within this framework, Apple has made open source much of its work with the QuickTime

API. The first version of QuickTime was released in late 1991 as an addition to some already

existing software. Over the years it has been through many revisions and has become very stable.

A QuickTime enabled media player, such as the ZES Media Player, is capable of playing a wide

range of audio and video formats including but not limited to: AIFF, CODA, MIDI, mp3, m4a, m4b,

m4p, QCELP, ULAW, ALAW, WAV, 3GPP, 3GPP2, AVI, 8MP, DV, GIF, animated GIFs, H.261,

H.263, H.264, JPG, Photo JPEG, JPEG-2000, MPEG-1, MPEG-2, MPEG-4, .qtz, .mov, PNG,

TIFF, TGA, QTCH.

User Experience

The goal of the ZES Media Player is to be as simple and straightforward to the user as

possible. Upon startup, the user selects which ZES Media File he/she would like to open using a

Zig Bee Event System
Final Design Review

Team Ragnar
14

standard Apple OS X OpenPanel. After doing so, the media plays in full screen with the cursor

hidden, so that the only thing on the user's monitor will be the media. Most likely, the user will want

to connect their computer to another display such as a projector or TV to allow a larger audience to

view the media. A screenshotof the Player in action is show in Figure 1.

Figure 1: Movie playing in full screen with progress bar shown. This is a screenshotof everything onthe monitor.

At certain points during the movie, as indicated in the ZES Media File, the Player will cause

Zig Bee devioos to perform whatever operation that they are supposed to do at the point. This may

be turn on or off a lightbox, or start dispersing E',ome scent throughout the room. If the user wishes

to see at what point in the movie he/she is, or to skip the movie to a particular point, they can push

CTRL +ENTER to display tte progress bar and make the cursor reappear. Repeating this

command will remove them both. The user also has the abiity to step through the movie frame-by-

frame, stop, pause, load a new movie, or to skip to a certain point in the movie. This last action is

executed by showing the progress bar and then clicking on the point in the movie he/she wishes to

skip to. A diagram displaying user I/O is given in Figure 2.

Zig8ee Event System
Final Design Review

GUI Commands:
Load, Play. Pause.
Stop, Skip to,
Frame Frame

Keyboard Commands:
Show Controller I Cursor
(Alt + Enter)

ZES End Devices

ZES Media Player

Figure 2: Overall user interaction with ZES Media Player.

Program Level I/O

Team Ragnar
15

While to the user the ZES Media Payer might seem simple, what is actually going on

behind the scenes is quite a bit more complicated. First of all, the Player must read in the .zes

media file which is actually in XML format. This file contains a reference to the movie,which the

player then opens and displays in full screen. An example .zes media file is shown in Figure 3.

Figure 3: Sample .zes media file. Note thatthe movie "/yakkos_world-26-09-05.mov" is given as the root of the XML

tree and would be the movie file that the Player displays.

Each trackname references a particular type of device and the player opens the corresponding

plugin .plg file which is also in XML format. The plug in file is used to translate generic command

names given in the .zes file to too appropriate string that will be sent to the controller process and

Zig Bee Event System
Final Design Review

Team Ragnar
16

eventually on to the Zig Bee end device. For example, the Phillips Equos Fluorescent Lamp

Ballasts contain a long prefix and suffix to the actual values that govern how the light will display.

This suffix and prefix information is listed in the .plg file. So when the Player parses the .zes media

file and finds a track called Phillips Equos Fluorescent Lamp Ballasts it looks in the associated .plg

file for the actual hex commam that should be sent to the controller process.

Figure 4 shows an example _pig plugin file.

="Fade to Lever ="std"
>Ox7B1217010E

'q:,,31-3iYI<':: t""r ="Value"
>OxFFFF<,

>16<,
<' ~-'.3r,3m~ t""r::o

='collst"

<~<:lt-,3i,,'::: t.:::r 1l3rne ="Group" t'/f-:",e ="range" >
<TI-II n >OxOOOO <.' tr!l n

<!YI.,j' >Ox F F F F < rn,,j'

<t'lts>16<
p31-.31-ne t~ I- >

<V:'11-3met..::r ="Value2" t\ ="COllst">
<'.3Iu.,::. >Ox8C00000003 <:
<t'l ts >40 <, t::.::

~'-3r.3n)e tel- :::
<j.:".31-aIYie t~r 1"13tYle ="Desired Light Level" t,~·p~ ="range" >­

<IYIWI>OxOO<n1I1l>

>OxFF· ' >
<bits >8,::.; bits

<: tel'>
·:::j.:':':31--3n-,.:::t~r n,3:-I-I":: ="Time to Move"

:·OxOOOO<.'Il"IWI
<ma, >OxFFFF n-:;:,-

t::.>16<

<suffl, >OxCCCC047D< sutti.-

="range"

Figure 4: Portion of .plg file that gives details about the command "fadeToLevel"for Phillips Equos Fluorescent

Lamp Ballasts. Note the prefix and suffix fielas.

The .zes media file also contains triooers that are commams for devices and that are time stamped

relative to the movie to allow for synchronization.

Along with reading and using the .zes file created by ZES Editor, the Player also interacts

with the Controller process through the use of sockets. After selecting the .zes file, the Player

reads in all the triggers throughout the movie and informs the Controller of all the ZigBee events

that will happen throughout the movie. When the controller has taken this information in, it lets the

Zig8ee Event System
Final Design Review

Team Ragnar
17

Player know that it can begin playing media. Whenever it gets close to a trigger in the movie, it

sends out a packet that tells the Controller which event is supposed to occur and in how many

milliseconds it is supposed to happen. In a sense, the Player tells the Controller "execute

command #7 in 2 seconds". Upon further development, it is planned that the Controller will be able

to respond to network conditions by letting the Player know about round trip times. The Player

could then react by changing the above example command to "execute command #7 in 5 seconds".

A diagram showing Player-Controller communication is given in Figure 5.

Pla'ler Contl'oilee

I I Prefetch Events t S~rupPk!

& Alert Controller ,--------
-.[Process & Buffer J ...-'"

!

,

l---;~~d~ead;--J -

r .-\(h!l:nPkl

Begin Media File
......

-' ..
Play & Send r- A,ilruaPkl

-~-- .--~:~----J ~~ Triggers ----.
(--"\

.j. * I 2)

[""'""
,~---

Transmit to I /.--.....,

Zig bee Nodes J:::'l 2 \
"'" \.._/
~-'\

1\ 2)
,--_./

" :-\,illill:?1:: Network Latency ~~ \
5 Debug Packet Sync '\

Done.)

Figure 4: Player..controller communication.

Internal Data Structure

XML was chosen as the format of choice for input/output files between ZES processes due

not only to its flexibility, but also to the fad that Apple has an excellent XML Parser library at the

developer's disposal. The event driven XML parser, when invoked, essentially has a callback each

time that a particular string is encountered. For example, the .zes media file in Figure 3 activates a

callback function when the "ZESMovie" tag is encountered. At that time, the Player copies the

Zig8ee Event System
Final Design Review

Team Ragnar
18

string in the tag and loads the movie that is indicated by the following string, inthis case

"/yakkos _ world-26-09-05. mov".

8y far the most interesting internal data structure in the Player application is the way in

which the triggers are organized. First of all, it should be pOinted out that there is a useful

NSDictionary structure that when queried with a key, returns an object. 80th object and key are

generics. Relating this back to real world dictionaries, if you want to find a given definition (a

particular object), then you look up the word (key) in the dictionary. At the top of the data hierarchy

is the Device Dictionary which is keyed on trackname(a string) and its objects are NSDictionarys

themselves. Each of these NSDi onaryS is keyed on timeValue. a long long int, and its objects

are triggers which contain information about the event that some Zig8ee device should be doing at

that given timeValue. Figure 5 displays t~ data structure more clearly.

Device Dictionary
Key (String) Object (Dictionary)

De~ce1

Device# Dictionary ---------------~~~~~--~~~

De~ce2

De~ce3 Key (long long) Object (Trigger)
c ,_. __ ,., " ,~

De~ce4 timeValue1 trigger1'\

De~ce5 timeValue2
timeValue3

timeValue4 trigger4

timeValue5

timeValue6 trigger()

Figure 5: Diagram of how Triggers are organized. The Device Dictionary is top level. Wlen queried with a

trackName, it returns a Dictionary. This dictionary is keyed on the time in the movie the trigger is supposed to fire

and its object is a trigger object.

The long long int called timeValue now requires some explanation. QuickTime kEeps up

with times using a class called QTTime. This class has two members:a long int called

timeValue and an int called time8ase. The time8ase is a numbff that represents how many

frames occur in one second fOI' a particular movie. This varies from movie to movie. Some HD

movies play at a time8ase as high as 600 fps while others playas slow as 10. The timeValue

Zig8ee Event System
Final Design Review

Team Ragnar
19

represents the current frame number. So for instance, with a time8ase of 600, if the current

timeValue is 900, then 1.5 seconds have elapsed at this pOint during the movie. The defautt setting

for the timeOffset for events is two seconds. This means that the Player will send out a commard

to the Controllertwo seconds before it's actually supposed to occur in the movie. The time that this

packet is supposed to be sent out is then:

timeValueWhanTriggerShould8eSent = triggerTime 2/time8ase

However, it is impossible to catch every time that a frame passes in a movie. So it would

be impossible to catch the exact timeValue when the trigger should be sent out. To solve this

problem a timer was retup that fires every 0.1 seconds. Although it is not guaranteed to fire at

exactly this rate consistenUy, it is close enough for this application. When the timer fires, a routine

is called that gets the current time from the movie. It then checks eVAry trigger in all the dictionaries

to see if there is 2 seconds or less before that trigger needs to be sent out. If so, it continuously

tries to send the trigger until the Controller receives it.

Remaining Work

At the current development point, only a few things still need to be fleshed out. Right now,

some data involving the plug ins is hardcoded into the Player. Once the plug in XML parser is

completed, the Player will utilize this class to read in the appropriate data from the .plg files that are

referenced in the .zes mao Also, it would be favorable if some other process, probably AppleScript

was able to activate the Player. If this was worked out, then input from an external device such as

a motion detector would be able to start the Player, play the desired movie, and send out triggers

as desired. Further enhancements may enable the Player to play one movie and send triggers until

some external event occurs at which time it would reset and begin to play another movie with its

associated triggers. All of these goals are realizable in a short amount with the right backgrourd

information.

Zig8ee Event System
Final Design Review

Network Controller

Overview

Team Ragnar
20

The Network Controller is responsible for managing the wireless ZigBee network and is

implemented in a modular fashion. Its main functions are to maintain the network, send packets

from the Player to the Zig8ee nodes, and receive inputs from nodes and relay the messa;;Je to the

Player. The three interfaces of the Controller are communication with the player, sending packets

to output nodes to cause a remote e'.ent, and receiving an input based on a remote e\€nt. The

application is multi-threaded and uses the Zig8eeLib heavily.

The wireless basis for this project is the Zig8ee wireless standard, which is based on IEEE

standard 802.15.4 and is governed, at least in part, by the Zig8ee Alliance. Zig8ee is aimed at

short-distance communication for low-power embedded systems. It is capab~ of operating on

three frequencies and has a lower data rate, so it is not meant for large packets or streaming data.

Zig8ee features acknowledgment packets to ensure reliable data transfer and has secure network

capabilities. One of the most important features is the ability to avoid other wireless networks,

including Wi-Fi, allowing a layered approach to the wireless domain. Unfortunately, the Philips

ballasts used do not provide these features and other devices were unavalable.

Begin Media File

Play & Send +. Triggers

.~.;I.::un?;.::

-. Process & Buffer

.~.:l:u:.I::.?l:I

.. _-,...

Send Ready

Wait

Transmit to
Zigaee Nodes

2

Zig8ee Event System
Final Design Review

Team Ragnar
21

Communication between the Controller and the Player begins with setup packets sent from

the Player. These packets are sent before the video begins playing to allow all outgoing packets to

be queued. The packe1s include everything necessary to set up the Zig8ee packet and also

include a buffer identification number, as issued by the Player, which will trigger the send of that

packet in the queue. Once all the packets are queued up, the Controller relays back to tre Player

that it is ready and the media fie may now be started. As the file plays, trigger packets are sent to

the Controller containing the buffer 10 of the packet to be sent and the offset time to ooit before

sending that packet. To handle this offset, another queue of packets which have been triggered

and are waiting the offset time is created. This is necessary because the offset is handled through

an alarm.

When the first trigger is received, an alarm is set for the indicated offset. As more triggers

are received, they are added to the priority queue with the bufferID and the actual time the

packets should be sent. As the priority queue is sorted, if the top packet in the queue changes, the

timer is reset to the remaining time beforethat packets transmission. This is aNlJays done by

comparing the time the packet should actually be sent to the current time. The offset tirre value is

lost after the in~ial setup, and triggers all become relative to the actual time of day. The

() function is called when an alarm is raised and it immediately sends the packet in

the bufferQueue. It then checks the next packet and sends all packets that are overdue in order

to keep up when many packetB must be sent rapidly. If the network is lagging more than half a

second, it is flagged and a statement is printed with how far behind the program is. After all

necessary packets are sent, the timer alarm is set for the next packet to be sent.

The media file specifies how many packets to in~ially queue and maintain thereafter. The

Player must wait for all packets to be queued before initiating media playback, as describedabove.

Should the Controller not be able to keep up with the requests ofthe Player, a Network Latency

Packet has been defined but not implemented. It could be used for some adjustment in the

playback or offset times, but this was beyond the scope of this project.

The motionDetect () function is the only implementation of Zig8ee input used in the

project. It uses a motion detector that has been made into a Zig8ee node by Eaton Electrical. TI

Zig8ee development boards are used on the receiving end to interface with the Controller

Zig Bee Event System
Final Design Review

Team Ragnar
22

application. The group had no control over the operation of the motion detector so some

adjustments had to be implemented. Sometimes when motion is deidcted, the device \/ViII send

three separate packets that motion was detected, each a few seconds apart. This prompted the

addition of a temporary disable to keep these repeat packets from being incorrectly interpreted.

The time for this value aln be adjusted and fifteen seconds yielded the best results over an

extended period. Threads had to be used to accomplish trlis, as the alarm is already in use

elsewhere in the Controller. In addition, another disable exists to allow the player to turn motion

detection on or off at will.

Some problems were experienced in relaying detected motion to the Controller. The

development board correctly shows when the packet is received, but the message read by the

application does not conform to the standards set in the development board's documentation.

Moreover, the data read is seemingly random and differs from computer to computer. The problem

is believed to be either in the USB to Serial conversion cable or in the development board itself. To

work around this, whenever data is read from the motion detector, it :3 interpreted as motion. The

only thing that requires consideration is that the development board must be turned on before the

Controller application is run.

The output nodes currently being used are Ight ballasts made by Phillips which operate on

Embernet. The Controller sends packets of node-dependent information when specified. For the

light ballasts, the information includes values forfade-to-value and fade-over-time. A fade value of

zero causes an inst:mtaneous change and there is a relatively significant delay to turn the lights on,

especially when they are cold,or not currently in an 'on' state. To lessen network traffic, nodes are

assigned in groups. A group may consist of only a single node or a large number of nodes and

each node may be a memberof multiple groups. The () function is used to create a

new group, and these groups are referenced by a name, which is a string. addNode () is used to

create new nodes and () is used to add these nodes to groups. This setup allows

one node to be added to multiple groups and also for each group to have multiple nodes. The

advantage of multiple nodes in a group is the capability of artificial grouping. In a real environment,

the device necessary to reprogram and group ballasts may not be available. The Controller allows

a new group to be created with all the different nodes available and when a packet is meant for

Zig8ee Event System
Final Design Review

Team Ragnar
23

such a group, traversal of the group is done and the packet is sent to each node individually. This

is a convenience, but it should not be abused, as it creates more network traffic. Nodes and groups

can also be removed, but there isn't currently a known need for this. The ability to send to a single

node directly is also implemented, but this also does not have a currently-defined purpose.

Originally, the status of the network was to be mainEined by the Controller. This is still a

worthwhile endeavor, but was unable to be cOlTlJleted in this prqect. The return packets from the

light ballasts are unknown and time was not available to attempt to reverse engineer them. Even

still, the only error found outside of the light ballasts being off has been a buffer overflow, and

network status does not currently have a way of dealing with this. For the motion detector, even a

heartbeat request to the development board just to see if the serial connection is active yields no

response, even when data can be read when motion is detected. This section of the project ended

up not being feasible but should be one of the areas of emphasis should the project go forward.

The shortcomings of the Controller ended up being more related to hardware limiEtions

than anything ese. The lack of a significant nul"T'ber of Zig8ee nodes available made development

with flexibility hard. Only the light ballasts on Embernet are currently supported and it would take a

fair amount of work to handle the adjustments necessary to be cross-corrpatible. Hopefully the

Zig8ee Alliance will result in a more defined path for the handling of such things. The input works

very well inside of what it is designed to do, but it is extremely inflexible and has minimal

functionality.

Future improvements should be completed in several areas. The core of the Controller is

graceful and efficient in the way packets are queued, sorted, and triggered. The setup of groups

and nodes is much the same. Additions to the interface w~h the player should be made so the

Controller receives more information about how to send a packet to a type of node, rather than

having it hard coded for Embernet as it is now. As additional input nodes become available, they

should be implemented and tested to achieve more robust functionality. The network status is a big

consideration going forward and should be looked at extensively. Some internal error checking

could also be done to proactively adjustsituations that could cause buffer overflows in the light

ballasts or other performance degradation.

Zig8ee Event System
Final Design Review

Team Ragnar
24

The difficulties experienced were not whatwere expected to take the most time. The

motion detection was very time consumng in the beginning just to get the three deviCEs to

communicate at all. After that it was not mum of a problem. The assumption had been made

going in that it would be easy to handle a lot of packets with varying offset times, and not much

thought had been given as to how that would work. The implementction of this was not trivial and it

was difficult to trace the cause of results that differed from what was expected since errors

appeared only when the internal timer reflected a specific number of milliseconds. Seemingly

spontaneous errors resu~ed during this phase of programming. The slow responsetime of the

ballasts required careful choosing of time offsets and end results to soo if things actually were

working.

The Controller handles the most unpredictable part of the project. Developers of the

Player, Editor, and Pluginator can demand the requirements to use their products, but the Zig8ee

side is open to all future developments of the technology and thus will require adjustment as new

devices are created in order to remain compatible. As an overview, the Controller must maintain

the Zig8ee network, send packets with node-dependent information to the output nodes, receive

input packets from the remote e\.ent-triggered nodes, and communicate vvith the Player to assure

on-time and reliable exchang; of information between all of the above.

Zig8ee Event System
Final Design Review

Pluginator

Motivation and Design

Team Ragnar
25

The Pluginator's goal is to allow the end-users of our program suite to quickly and easily

add new devires to the system by providing a simple interface for plugin creation. A primary target

audience for the Zig bee Event System is in advertising, and if someone working on a trade show

setup wants to add a new and unique device to their exhibit, such as a scent generator, they

shouldn't need an in-depth integral knowledge of how our particular tools work internally.

We decided the easiest way to make tl-e ZES extensible was to use a plugin based

system. Device details are fed to the Editor, Player, and Configuratorthrough a standalone

container. The Editor uses this information to allow the user to add commands in the form of key

frames to tracks within the media fie. "I"he Player uses the plug in to format the commands that it

sends to the Controller in the setup packets, and the Configurator uses the setup information

embedded in the plugin to trigger devices to adivate for detection. Plug ins are therefore modular

and provide a standard communication framework for the components in our system.

To make the plugin files easy to read and well structured, we chose to use XML tags to

describe a particular device and its commands. The Pluginator is an end-user application which

provides a graphical interface to create these XIVIL plug ins, where the primary design goal has

been a quick learning curve. The plugin structure is reflected in the design of the GUI. Each plugin

has device properties, a corrmand list, and a parameter list for each command.

The command list should be able to store an unlimited amount of commands, though each

plugin should have an associcied setupOn and setupOff command. These commands are to be

used by the Configuratorto switch devices On and Off for the detection phase. For every

command, both prefixes and suffixes can optionally be defined for the case when an introductory or

trailing bitstring needs to be defined in a packet. Parameters are tied to commands and provide the

structure for Zigbee (or Embernet) packet formatting. Parameters can either be constant values,

which are set when the plug in is created and inserted into the packet by their respective position

within the parameter listing, or range values, where the plugin creator sets up a minimum and

maximum acceptable value. This range gives flexibility to users when creating their timeline within

the Editor by providing keyframes with modifiable attributes.

Zig Bee Event System
Final Design Review

Team Ragnar
26

Prefix and suffix values are used in combination with the parameter values to format the

packet that the controller will eventually send. While the player reads the timeline, it takes the key

frames added by the Editor and formats a packet with the information from the plugin. It then

encapsulates this payload in the setup packet that is sent to the controller to initiate a command

sequence.

Pluginator Configurator

Plugin Interaction with System Components

tmplementation

Xcode paired with Cocoa and Objective-C was used to build the Pluginator project. The

GUI consists ofthree main sedions: device properties, command list, and associated parameters.

An NSTab1eView object was chosento display the commards, as il supports scrolling natively

and would be ideal for listing a large number of commands. We subclassed the object to make a

child object which retained the same properties and allowed us to add functionality to the able.

Commands can be added with a button and deleted simply by selecting the unwanbd commands

and removing them. When the program is started, the bare essentials for a plugin are added to the

forms in the table and parameter list.

In Cocoa, the radio buttons are actually NSBu t tonCe 11 objects and the traditional

exclusive selection seen in radio buttons but must be implemented in software. When the user

ZigBee Event System
Final Design Review

Team Ragnar
27

clicks on the commard, the respective parameter list is pulled up in the drop-down combo box

below the list. There are also fields for each parameter, including the const or range type selection,

the min and max values (max is unselectable when the const type is chosen), and the nurri:>er of

bits to allocate for each parameter. The number of bits indicates the padding that the player shout!

use when constructing the data payload to send to the controller.

Both the NSTableView and (optionally) NSComboBox use informal protocols for

populating their forms with data. These DataSource protocols are simply a set of methods that an

object acting as a data storage center should provide. The object is set by the NSTableView and

NSComboBox objects upon their waking in "avvakeFromNib". The functions inside the Da taSource

object provide the references to the objectstrings that are used to fill the command and parameter

lists. For the table, the data request occurs at program start and any time an additional rowis

added. For the combo box, the data source needs to be signaled when the table selection changes

so it can provide the appropriate data when the user clicks the dropdown arrow to expand the list.

This type of signaling will be discussed more later and is derived from the action event that occurs

in every NSControl object. Because the data in the table and combo box is so entwined, we

chose to use the same data source for each object and implementecl the appropriate methods for

each.

Inside the DataSource object, several NSMutableArrays are used to store the

command name strings, prefix and suffix values, and setup status. There is also an array of

which holds the parameters and their fields for each command. The setupOn

and setupOff properties are stored simply through a set of integer values which are the indices of

the commard list items currently tagged as setup.

Cocoa works with forms on the windows through wirings, data sources, delegates, and

action/target combinations. Wiring to the text fields describe their outlet in the main object which

coordinates and houses the individual form objects within the windows. This provides one way data

passing to fields themsel'.es, as the NSTextField object inherits the "setStringValue" method

from one of its parent classes, NSControl. The data source provides data to the forms inside the

list and combo box in a similar way, except these are triggered autolliatically by the NSTableView

Zig8ee Event System
Final Design Review

Team Ragnar
28

object itself. Delegates provide a way for objects to pass messcges back to handling objects which

tell them how to act when an event occurs, such as the user clicking on a new row in the table. In

this particular ca~, the Da taSource object ads as the delegate message receiver to atter the

parameters sent to the combo box. Another delegate method is called when the text within the

parameter NSComboBox is edited, allowing the Pluginator to check the parameter strings for

duplicates before they are updated within the storage object. Delegate methods are optional, so the

receiving object can choose which messages to respond to. The figure below diagrams the

delegate to object interaction within the Pluginator.

Form Data

Delegate

Data and Event Passing in the Pluginator

Events notifying when a change occurs for the NSTextField'S are handled by the

targeUaction combination, where an action method is called in the target object when the text box

loses focus. These methods are also inllerited from the NSControl class, and in the Pluginator

they are set up in the main object which uses mutators tied to the Da taSource object. As the user

updates the forms, the appropriate changes are made insidethe DataSource. Moderate error

checking is perfcrmed on input values wth the strtol function, which returns 0 on an error and

sets the errno global error flag. This flag must also be checked as 0 is a valid input. Internally, the

values are still stored as strings to allow for any length field but they are parsed as if they are longs.

A screenshot of the Pluginator set up with the light ballast plugin is shown below:

Zig8ee Event System
Final Design Review

,.

Device Information

Model \limber: 0

,_" t- .. ' ,-

Team Ragnar
29

Cu ,-rent Command 5 +

SeLJp (On)

Set~JP (Off)

,:'ade to Level

Value

Ox7B~21/010l Ox04/~

Ox/B121/010l Ox04/~
Ox!B121/010E Ox04/~

'_ Range ~ Constant

•

Up Dov,n +

Ii Bits: 16

Create Plu~Jin

When the user requests to sa\e the plug in, this data is molded into an XML tree object

with references to loof nodes stemming from the root node. A file loc.jtion is chosen from a save

dialog box created with the NSSavePanel object. This dialog prompts users to select a file with the

plug in extension, *.plg.

A portion of the plugin for the light ballasts is shown below to clarify the XML layout:

<device name=" Fluorescent Lamp Ballasts"
manufacturer="Phillips" model="O"

<command name="Setup (On)" type=" se tupOn">
<prefix>Ox7B1217010E</prefix>
<parameter name="Value" type="const">

<value>OxFFFF</value
<bits>16</bits>

< rameter>
<parameter name=" type="range">

Zig8ee Event System
Final Design Review

<min>OxOOOO</min>

Team Ragnar
30

We were unable to develop auto detection of devices. They currently have to be manually

coded into a file and then read into the program It may also be advantageous to allow the user to

select multiple groups simultaneously. The user may also like to see a breakdown of the

configuration thus far, not in the form printed to the configuration file, but in a form appropriate to a

graphical interface.

<max>OxFFFF</max>
<bits>16</bits>

r>
<paramete name="Value2" type="const">

<value>Ox8C00000003</value>
<bits>40</bits>

< r>
<parameter name="Des red Light Level" type="const">

<value>OxEF</value>
<bits>8</bits

<
<parameter name="Time to Move"

lue>OxOOOO</value>
<bits>16</bits>

r>
<parameter name="CRC" type="range">

<min>OxOOOO</min>
<max>OxFFFF</max>
<bits>1 /bits

<

const">

<suffix>Ox047D</suff x>
</command>

"setupOn" and "std" are additional vaid types for commands. These plug in files can be reopened

inside the Pluginator through the use of the PluginReader object. A NSOpenPanel dialog box

prompts the user for the input file with extension .plg to open. The PluginReader object was created

to allow any program within the project to import these the header and implementation files and

have complete access to the plugin. It defines a cess called that has one simple

function: parse le. This function takes a reference to anNSString object that is the full

path to the plugin to be parsed. For parsing the plugin, the r uses the NSXMLParser to

handle most of the dirty work. parseP 19File returns a reference to a farly complex

NSMutableDict with all the necessary information neatly organized. The format of this

dictionary is best described by the diagram below; the actual data type of each element is listed to

the right of the object's name.

Zig8ee Event System
Final Design Review

%Plugins (NSMutableDictionary)

- name (NSSt

- manufacturer (NSSt

- mode (NSString)

@commands (NSMutab

- name (NSString)

type (NSStr

- prefix (NSString)

- suffix (NSString)

f NSMutableDictioanry)

(NSMutableArray of NSMutableDictionary)

- name (NSString)

type (NSStr.Lng)

- min (NSStr

- max (NSString)

- bits (NSString)

- value (NSString)

Team Ragnar
31

As it is written, none of the elements listed above are required for the plug in parser to work

properly. This is just an exhaustive list of what the parse is capable of recognizing; if the sement is

not a member of the plugin, then that part of the structure will simply be NULL.

Shortcomings, Limitations, and Future Considerations
The Pluginator walks the line between requiring the user to have a detailed knowledge of

the device they are cre3ting the plugin for and restraining tre user when possible by providing error

checking. Extensive error checking is impossible,as there are cases when only the user knows

which parameters should be constant vaues and which should be ranges. For instance, setup

commands should be filled with mostly constart parameters, though ranges must be still allowed

Zig8ee Event System
Final Design Review

Team Ragnar
32

for parameters like group. Whether such inputs should be allowed is a decision that cannot be

made by the Pluginator.

At this time, it is also up to the user to set the correct number of bits for a given parameter

value string. This could be fixed in the future by counting the number of digits within the value string

and determining the base of the number. Decimal, octal, and hex are currently supported for input

values, but due to a limlation in the strtol function used, additional characters outside ofthe

base set (ie: 'G' in hex) are ignored when appended to the end of a value string passed to the

function. One way around this would be to use the long return value from s t rto 1 and form a

proper hex or octal string from this value, however this would limit the length of incoming strings.

Complete error checking could be done by breaking the input string into multiple sections, checking

the format for each of those, then concatenating them back together.

The Pluginator is limited in that it cannot create new plug ins after the window panel is

closed, which goes against the traditional Apple OS X style of creating new documents. Future

work would include reinitializing the GUI to bring up the window again. Another nice feature would

be to include a librarywith frameworks for multiple plug in types (ie: light ballasts, motion sensors,

scent generators, etc) such that the user could add a set of common parameters to their own plug in

and modify them as appropriate.

Potential improvements for the PluginReader would include specialized functions that

return a certain criteria of data instead of the entire structure since most occurrences are not

interested in the entire plugin but merely a small part. For instance, the Configurator needs to read

all plugin files available on a system but is really only interested in the "setup" commands for that

plugin/device. So, the could have a function that would return only the "setup

command" for that plugin. Although special attention has been given to memory management of

the data returned, we are not 100% satisfied that all memory precautions have been taken. With

more time, a better look at the expectations of memory management by Cocoa would be taken into

account to ensure that all mernory was properly handled. Memory usage analysis should also be

performed for the data storage object within the Pluginator as well, though its usage is generally

limited to creating a plugin and quitting the program, so memory leaks will most likely be handled

well byOSX.

Zig8ee Event System
Final Design Review

Configurator

Motivation

Team Ragnar
33

The motivation for this part of the project was to allow end users to more easily "configure"

a ZES Multimedia retup to work properly with their physical environnent. As ZES multimedia

presentations grow, the task of matcrling physical addresses to a groupor a set of groups within

the Zig8ee Event System wil become more daunting. With the creation of the Configurator, the

end user is presented with a streamlined graphical interface that allows this process to be

completed in a fraction of the time. In fact, with the Configurator's auto-detection capabiltties, the

end user never needs to deal wth a raw MAC address. Instead, the device is simply"turned on"

allowing immediate visual identification.

The design of the Configurator revolves around a single purpose: to map the embernet

address to a group. As with any other graphical program, the first design SEP is determining the

necessary components of its interface; thus, the interface shown below was crooted.

As you can see, there are just three pieres of information shown: the current file, the list of groups,

and the devire currently being configured Upon opening a ZES media fie, the Configurator lists

all the available groups in the pull-down menu. It then starts to configure the first detected device.

This is accomplished by sending the "setup" command to that device; since the plugin associated

G r, 0 \",'mdO'.".,

Current llS File:

Z[S Group track 0

Apply Next Device

Current MJ\C J\(jdress

with the current device is unknown, all the known "setup" commands are sent in sequence until the

device rereives one and turns on. With a visual cue now available, the end user can choose which

group or groups the device should be a member of. The user selects a group and hits Appl y.

Zig Bee Event System
Final Design Review

Team Ragnar
34

Once the device is finished being configured, the user can hit Next Oev ice to configure the next

device. Once all the known devices have been configured, the Configuratordisplays a messcge as

such. At this point the user can either save the current configuration or start the process over again

adding to previous configurations. Upon saving the configuration, a configuration file is generated.

An example of this format is shown below.

This file enables the Network Controller to send commands to the proper device during the

<root>

"PhillipsLightBox"
"Output"

<Node EmbernetIO=" "I>

<Node EmbernetIlJ="2"1>

<Node

<

</root>

0="8"1

Plugin="GenericMotionSensor"
"Input">

presentation. It contains al the necessary information not only for idcntifying the device wthin the

multimedia presentction but also the capabilities of the device itself.

Implementation

The Configuratorwas created using XCode and Interface Builderthat are a part of the Mac

OSX standard development tools. There are four custom classes responsible for the heart of the

Configurators implementation: the ratorController, the OeviceManager, the

and the ZESReade r. The simplified model of the Configurator is shown below with

these devices highlghted in red. This shows how the different components interact to create

interface seen by the user.

Zig8ee Event System
Final Design Review

Team Ragnar
35

At the heart of the program is the Con Lol er. It is basically responsible for

program flow and controlling the other objects. It is also responsible for updating the user interface

as its information changes. When the users choose to open a ZES file, the

Conf ratorController passes off control of the program to the ZESReader. In return, the

ZESReader allows the user to specify which ZES file they wish to open and then proceeds to

process the file accordingly. When the ZESReader has finished parsing the ZES file, it returns an

of NSStrings that correspond to the available groups within that particular

ZES file. The ConfiguratorController then checks to see if the plug ins have been loaded. If

they have not, it passes off control to the The r uses a hard coded

directory and reads all the plugin files within this directory. When it has finished parsing all the

plug ins, the r returns an NSMutableArray of NSMutableDi onaryS that contains

the "setup" commands for each device. The ConfiguratorCont er then tells the

r to send "setup" commands to its first device. If the ceManage r has no

devices loaded, it loads the fist of known devices (the details of this process are still being

finalized). Otherwise it uses elements from Zig8eeLib and sends the necessary commands. As

the user selects a group to be associated with a device, the ConfiguratorController adds

the name of that group to an contained within a larger

NSMutableDict onary keyed on the device's unique 10.

ZigBee Event System
Final Design Review

Team Ragnar
36

Before release as a commercial application, the Configuratorwill need to be able to

perform automated network discovery. This is lim~ed now, and unfortunately is a manual process

still due to a lack of disclosure on the part of Philips, the manufacturer of our only current wireless

output devices. Building this into the application will raise the utility and usefulness of the

Configurator utility since right now, manual setup is still required.

Zig8ee Event System Team Ragnar
Final Design Review 37

III) Testing

Zig8ee Event System
Final Design Review

Unit Testing

Team Ragnar
38

At the conclusion of each function and class, unit testing is performed to make sure the

component works properly and is able to handle bad data. This phase of testing is concerned with

ensuring that the function or class does what it needs to do and does so with a reasonable

tolerance for errors. The function or class should not accept invalid data.

Milestone Testing

At the completion of e(-lch major part of the project, such as the Editor or Player, the

application is tested to make sure it runs and properly exports the files it needs to export. Each

individual application must have the correct output. They need to catch common errors in any input

files they read. The communication between the Controller and the Player needs to function

smoothly and efficiently.

Milestone testing done on the ZESEdttor showed that there were several errors in the

handling of multiple prqects, resutting in rewriting some of the code. Milestone testing on the

Controller and Player showed a small buffering error in the communication between them, but the

situation was resolved.

Final Testing

Once all the applications and the framework has been completed, the entire suite of

applications is tested together to ensure proper communication and process flow. The final testing

included a basis for the demo to ensure that each piece of the system is functional. The final test

came in several phases, ecch exposing different weaknesses that were subsequently corrected.

Firstly, the ZESControlierwas tested to allow interaction with AppleScrpt. Next, it was tested to

ensure reliable communication with the Emberner ballasts. After this and the AppleSaipt were

confirmed to be working, Zig8ee input was tested, revealing that our motion detector was very

unreliable. The board that reads the detector Signals tends to crash.

After this was ceared up, testing with the ZESPlayer commenced, with the Player being

controlled by a custom AppleScript. The player was reading infiles form the Editor, but expected a

different file format. This small detail was shortly revised. The resutt of this series of tests, was a

skeleton demonstration which provided the framework, both for the ZES files and for the

AppleScript, on which we based our final presentation.

Zig8ee Event System
Final Design Review

References

8ppleScript

Apple's Developer Page

Team Ragnar
39

http://developer.apple.com/documentation/Cocoa/Conceptual/Scrptc.ibleCocoaApplications/SApps_

intro/chapter_1_ffiction_1.html

Apple's Developer Page

http://developer.apple.com/documentation/Cocoa/ConceptualICocoaFU1damentals/lntra:luction/cha

Xerces-C++ Documentaton Page

http://xml.apache.crg/xerces-c/apiDocs/indexhtml

	ZigBee Event System (ZES): A Multimedia Application
	Recommended Citation

	tmp.1282751643.pdf.FTHdW

