University of Tennessee, Knoxville

na LINIVERSITY o

TENNESSEE TRACE: Tennessee Research and Creative
E Exchange
Chancellor's Honors Program Projects Supervised Undergraduate Student Research

and Creative Work

Spring 5-2007

ZigBee Event System (ZES): A Multimedia Application

Bradford Andrew Russell
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj

Recommended Citation

Russell, Bradford Andrew, "ZigBee Event System (ZES): A Multimedia Application" (2007). Chancellor’s
Honors Program Projects.

https://trace.tennessee.edu/utk_chanhonoproj/1108

This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative
Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s
Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange.
For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_chanhonoproj
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

ZigBee Event System Team Ragnar
Final Design Review 1

Bradford Andrew Russell

Bachelor of Science in Computer Engineering

ZigBee Event System (ZES)

A Multimedia Application

Final Report

Team Ragnar

Chris Niedzwiedz
Rick Weber
Derek Rose
Brian Sharp

Brad Russell
Justin Ellison

ZigBee Event System Team Ragnar
Final Design Review 2

I) Overview

ZigBee Event System Team Ragnar
Final Design Review 3

Introduction

Mission Statement

The goal of our system is to be capable of controlling wireless devices throughthe ZigBee
wireless protocol using commands and signals from ancther applications or processes. These
devices must ad in synchronization with a given media file with the intent of providing an interactive
media experience forthe user.

This system could be used in trade show environments with he intent of showcasing the
new products or services that a compny provides interactively to the consumer. Such a consumer
would only have to approach an automated kiosk and the system would begin explaining through
audio, video, and other sensory methods about the particular product. This system could also be
used in stores and markets to atract potential customers to a particular product or highlight the
specials of the day. Further, this system could be tied to a database and present personalized
advertisments or information to a person based on their previous purchases or current items in their
basket (requiring tie in with RFI(D).

Having this interaction with the consumer could increase sales of a particular product, or
promote awareness aboutdifferent things in publicareas. The public are more likely to buy into
products that have been target to their needs and find it less irritating than being exposed to
countless advertisements about products they have no interest in. This sytem, tied with a
database, could allow for such targeting. Futher, instead of having ¢ static movie play on a loop all
day is less effective than targeting such information to specific demographics.

The solution to this problem is the ZigBee Event System (ZES) Framework. Intended to
coordinate data transmission and synchronized events in a wirdess environment, the Framework
provides an interface with which to establish, manage, and communicate with a ZigBee or
Embernet based wireless network. It is able to send commands to and receive data from wireless
devices with which it has been preconfigured to communicate. Further, the frameworkis
responsible for abstracting the environment from the user in such a way that they are only
concerned with creation of the media file and actual hardware setup themselves.

Running on top of this framework is five separate applications, each with a unique task.

The ZESEditor is a post production media editor that reads in a QuickTime Media File and allows

ZigBee Event System Team Ragnar
Final Design Review 4

the user to insert device commands into the media timeline. Our custom ZESPlayer then readsin
these tracks during playback and sends data to the ZESController, which runs in the background
and is ultimately in charge of relaying the data to and from the wireless devices. The Pluginator
creates plugins to be used by the ZES Frameworkto provide a general way to add new
functionality and new devices to the system without having to wrie any new code. The
Configuratoris run during network setup to map active wireless connectionsto the groups defined
in the ZESEditor application. This is intended to allow for easier setup and allows for easier
changing of devices from one setup to another.

Figure I-1 outlines the overall data flow in the application suite. Starting with the
Pluginator, a plugin is created for any devices needing to be usedin the final setup. It is left up to
the devices developerto supply the plugin since they will be most familiar with the commands the
device is capable of receiving. The pluginis then usedin the ZESEditor to create a ZigBee
enabled ZES Media Fik. This file is then read in by the ZESPlayer, and in conjunction with the
ZESController, commands the wireless devices. These devigs are associated with their ZES

Track/Group before the Player and Controller are started using the Configuratortool.

Technologies

The project heavily involves Apple specific technologies, mostly Cocoa. Cocoais the
interface into Apple's operating system and its primary language: Objective C. This system was
used for all the applications except the network controller, which was a C++ daemonwhich then
took on Cocoa components to support AppleScript. Objective C applicdions were able to use built
in frameworks to manipluate the XML data contained in much of the project's external files. The

Controller turned to Xerces. References for these technologies are included at the end of this

paper.

ZigBee Event System Team Ragnar
Final Design Review 5

[z | ‘
Applications and Data Flow

3b) The Controller accepts Setup and
Admin Pkls from the Player. sends back
&ni mput pkls and manages data flow over
the ZigBee network

2) The Conhgurator utility is used on
site to assign Zigbee enahled devices | .
to the groups in the target media file It .] e r__ o |
reads in the Group/Plugin listing and Configurator |__ — L o Controller

exports a Conlroller Configuration file

1) The Editor reads in a raw media - Y
file and exports the ZES Media file ! ;.
and Device Group Plugin Listing ' !

NS S RS v] Piugmator
Ednor -
| e B
Pl |
T ! 0) Creates plugins to each
' e ZigBee enabled device for
i ‘ . : use in applications o
| ;
3
s t -
R L e ‘«»u—»——-wJ Player . -
: : ¥) -
} | | —_—
form fc i ST

3a) The Player reads in the ZES Media file and
Dewvice Group/Plugin Listing. it sends Setup
and Admin Pkls to the Controller to trigger
ZigBee events hroughaut the duration of the
media file

Figure I-1: Applications and Data Flow

ZigBee Wireless
ZigBee Wireless technology is based on IEEE Standard 802.15.4. It is designed to provide

low power, low bandwidth wireless communication for control and sensor networks. It runs on
Industrial, Commercial, and Medical bands at 868 MHz, 915 MHz, and 2.4 GHz.

The technology employs three different device types: coordinator, router, and end device.
The coordinator is the head a ZigBee wireless network. The router passes data from node to node,
and the end device is the least expensive and complex of the three. Intended mostly for wireless
control and sensor networks, ZigBee devices are low bandwidth and low power, able to last on one
battery for a duration on the order of years.

Apple QuickTime

QuickTime is Apple’s media type which is capable of reading many media types such as

MPEG, MP3, JPG, AVI etc. While the first iteration of the ZES Media System writes to a separate

ZigBee Event System Team Ragnar
Final Design Review 6

XML file, QuickTime supports the creation of custom data tracks. While no longer in the design, the
QuickTime file format was initially chosen because of its support of custom data tracks in a media
file. This would permit the ZESEditor to simply add a new track with encoded information to the file
and have it wrapped in one package. This is would be a requirementfor a commercial application,
certainly. However, it was not implementedin this design.

The QuickTime API, on the other hand, was used extensively in the Edtor and Player
applications since it provided an easy and straightforward interface into the media files and media

playback.

ZES Framework

The ZES Framework initially consisted of three libraries which provide all the functionality
to interact with ZigBee enabled devices. While originally all three of these libraries were referenced
to complete the framework, the Plugins Library was left out of the final development due to a
potential conflict that would have resulted with existing command standards that still need research.
Plugins are currently implemented through a reader that is shared between many of the
applications requiring its use. The remaining libraries have beenrefined over development to more

specific tasks than were originally irtended.

ZESLib

Provides functionality that permits applications to communicate with the Network Controller
process. This is done through the use of the ZESManager class. It also provides data types for
sending information and control signals to and from the two applications in the form of
SetupPacket and AdminPacket data types respectively. Thislibrary is best described as
providing a mediator between the application needing to control devices and the applicaion running

any network management.

ZigBeel ib

This library is what enables inieraction with the actual ZigBee network. It contains Node

and Group classes for logical grouping of devices. The NetworkManager class communicates

ZigBee Event System Team Ragnar
Final Design Review 7

with the network and the NetworkStatusManager tracks network status such as pinging
devices. Whik the class definition exists, the NetworkStatusManager is notimplementedin
the framework. Insufficientinformation was available to try to run network maintenance. For
instance, the Embernet lght ballasts from Phillips only had limited documentation and only a single
command was available for use. Before release into a commercial environment, this piece would

need to be implemented as completely as possible to ensure a reliable environment.

ZigBee Event System Team Ragnar
Final Design Review 8

Il) Applications

ZigBee Event System Team Ragnar
Final Design Review 9

ZESEditor
Motivation

The editor in the ZES Multimedia system, codenamed the ZESEditor, allows for the
creation of scripts to control multimedia devices in synchronization with a movie. Using a graphical
user interface (GUI)and a multimedia timeline, users can place events (key frames)on the timeline,
which will be sent to their respective devices. Tracks give a convenient groupingof devices to the
user that allows for convenient visualization of how sequences of events affect ZigBee enabled
multimedia outputs. Using tracks andkey frames, a user can rapidly and intuitively develop
multimedia scripts (ZESMovie) for use with the ZESPlayer.
QuickTime

The ZES Multimedia sysem extensively uses Apple’'s QuickTime application programming
interface (API) for Cocoa, as it allows for rapid development, many file formats, and a stable
intuitive API. Thus, the ZESEditor heavily relies on a QuickTime framework.In doing so, many
different file formats can be used with the ZESEditor, including: .avi, .mov, .mp3, .3gp, and others.
In addition, since QuickTime supports a wide variety of compressors/decompressors (CODECs),
the ZESEditor also supports many formats including MPEG1,2,4, H.262, H.264, Cinepak, and
many more. Furthermore, the container formats and CODECs supported can be extended by the
user with QuickTime components; doing so is seamless to the ZESEditor and requires no additional
work than that of getting them to work with QuickTime. Through components, the ZESEditor can
notably support Windows Media Player 9 and DivX. The user associates a movie to the current
project, which can theoretically be of any of the aforementionedtypes, butis currently limited
exclusively to .mov and any CODECs the container supports (nearly al of them) to simplify the
design for development. The ZESEditor then adds a script that is read by the ZESPlayer that adds
ZigBee functionality to tre QuickTime movie.
Design

Users who have used iMovie, Final Cut Pro, or some other timeline video editor should be
very familiar to the concepts of tracks and key frames. Tracks are an abstradion mechanism that
allow the user to group devices. A user creates a track and associates it to a specific device type.

All events that occur on that track will be sent to a single or group of devices of the selected type at

ZigBee Event System Team Ragnar
Final Design Review 10

the logical time it occurs on the timeline. For example, a user who has two separate light-boxes and
a scent generator can make three different tracks that contain events for each device. Thus, the
user will be able to control each device independently. A user can also creae additional tracks that
represent combinations of devices previously associated. For instance, if a user has two light
boxes, A and B, the user can create one track for A, one for B, and another that controls both A and
B. There is no hard limit to the number of allowed tracks in a ZESMovie, which are represented by
blue rectangles that appear on the timeline.

The other essential mechanism users utilize in ZESMovie creation is the key frame. The
key frame represents a ‘significant time” in a movie file. At these key frames, users assign
command outputs to be sent to ZigBee multimedia devices. Forexample, if a light box needs to be
dimmed at 30 seconds into the movie file, the user would select the track that corresponds to that
light box and add a key frame. The user would then assign the values corresponding to the
command to be interpreted by the ZESPlayer during playback. Each track has its own set of key
frames, meaning that the user can send events to different devices independently. If, for instance,
the user wants to fade ight box A to 50% at 15 seconds, light box B will be unaffected unlessthe
user adds a keyframe to its track at the same time. Key frames are represented by green boxes,
the currently selected key frame being yellow instead of green. The attributes associated with the
currently selected key frame appear in the list view at the top right of the editor’s user interface (Ul).

When the user has finished placing tracks and key frames that represent the multimedia
output events associated with the movie file, the user exports the track to a .zes file. These fies are
machine generated XML files that can be read by the ZESPlayer to recreate the track and event
structure. This file also contains the full path filename ofthe movie file associated with the
ZESMovie script. In its current implementation, any file format that QuickTime is capable of playing

can be associated with a ZESMovie. An example ZESMovie is given below:

ZigBee Event System Team Ragnar
Final Design Review 11

<ZESMovie movie="/yakkos world-26-09-05.mov">
<ZESTrack name="trackl”>
<ZESKeyframe time="71813">
<property propertyName="fadeToLevel"
propertyValue0="0" propertyValuel="2">
</property>
</ZESKeyframe>
<ZESKeyframe time="96099">
<property propertyName="fadeToLevel”
propertyValue0="0" propertyValuel="3">
</property>
</ZESKeyframe>
<ZESKeyframe time="54839">
<property propertyName="fadeToLevel"
propzrtyvValue0="0" propertyValuel="1">
</property>
</ZESKeyframe>
</ZESTrack>
<ZESTrack name="track2”>
<ZESKeyframe time="71813">
<property propertyName="fadeToLevel"”
propertyValue(="5" propertyValuel="4">
</property>
</ZESKeyframe>
</ZESTrack>
</ZESMovie>

The ZESMovie XML tag represents a ZESMovie script file, where its movie parameter is the
actual QuickTime movie file associated with the script. ZESTrack tags represent tracks the user
laid out in the editor’s Ul. The name property is currently arbitrary and sequentially generated,
though this should be user definable incommercial applications. The name allows the userto more
conveniently associae devices to a track in the Configurator. ZESKeyframe tags represent an
event that occurs on the timeline. The time property is a Long long C type used internally by the
QuickTime APl in referencing temporal location of the events, and is used by the ZESPlayer to
trigger events. Finally, property tags represent the actual commands and values associated with an
events time. A single event can have multiple properties associated with it.

The interface for creating tracks and key framesis highly intuttive and should be familiar to
anyone who has previously used a timeline movie editor. To create a new ZES file in the edtor that
is associated with a movie, select “New” from the File menu. If a project is already loaded, any
unsaved changes will be lost. To add a track, the userclicks add track and selects from a

dropdown menu the type of device associated with that track. Clicking “+KF” adds a key frame to

ZigBee Event System Team Ragnar
Final Design Review 12

the currently selected track at the currenttime. ~ 7" v GOICTI_medrun. mov
The properties of the currently selected key
Keyframe editor

frame appear in the keyframe editor panel in

the top right ofthe Ul. Tracks not currently

selected and their keyframes are dimmed v

“kE MG frack

When the movie is properly edited, the user Y R S—

selects “Save As..." to create the ZES track. Play/Pause movic Timeline

Add Track Current time

To load an existing .zes file for editing, select A Koyt

editing. This will discard any unsaved changes

in the current project.

The types of devices a track can be associated with vary depending on which plugins are
installed. Plugins are created with the Pluginator and define what parameters and how many
arguments are associated with a given device type. This provides a flexible and expandable
platform for generating scripts to controlmultimedia devices. Plgins are loaded from the directory
/LibraryEATON/ZESPIugins upon the ZESEditor’s launch from the Finder and must be restarted
upon adding new plugins. A list of available plugins appears when the user adds a track.

Currently, the ZESEditor allows for script generation and is fully functional for creating
scripts. Features have been removed since the preliminarydesign, notably zeoming and keyframe
jumping. These features are not necessary for creating .ZES scripts and effort was placed
elsewhere. Also, drawing routines have been updated integrated with data storage of tracks and
keyframes to more easily track bugs and use less memory. In addition, this fixes memory leaks that

could occur.

ZigBee Event System Team Ragnar
Final Design Review 13

ZESPlayer
Motivation

In the suite of ZES applications, a necessary program to play user-creded content is the
ZES Media Phayer. This Media Plyer is the main tool that the user will employ to display his/her
ZES Media to ther audience, whoeverthey may be. In addition to this main role, the ZES Media
Player will also serve as go-between for the information listed in the ZES Media File and the
Controller process which sends data over the ZigBee network. It is the Player’s job to read the data
in the .zes mediafile, interpret it, format it, and send it to the Controller process in such a way that
will allow the Controller to easily send commands to ZigBee devices. Also, future work hopes to
bring the ability for the Controller process to send information back to the Player about network
conditions. With this ability, the Controller could inform the Player about network latency, and the
Player could issue commands earlier to make up for that circumstan-e.
QuickTime

The Player application is built using Apple's XCode integrated development environment.
It is written in Objective C, anextremely object-oriented language. This language, particularly when
used with XCode’s intuitive interface, has a shortlearning curve and allows for rapid development.
In addition, there was some experience in the dewlopment group with this language and its
framework.

Within this framework, Apple has made open source much of its work with the QuickTime
API. The first version of QuickTime was released in late 1991 as an addition to some already
existing software. Over the years it has been through many revisions and has become very stable.
A QuickTime enabled mediaplayer, such as the ZES Media Player, is capable of playing a wide
range of audio and video formats including but not limited to: AIFF, CDDA, MIDI, mp3, m4a, m4b,
mdp, QCELP, ULAW, ALAW, WAV, 3GPP, 3GPP2, AVI, BMP, DV, G3IF, animated GIFs, H.261,
H.263, H.264, JPG, Photo JPEG, JPEG-2000, MPEG-1, MPEG-2, MPEG-4, .gtz, .mov, PNG,
TIFF, TGA, QTCH.

User Experience

The goal of the ZES Media Player is to be as simple and straightforward to the user as

possible. Upon startup, the user selects which ZES Media File he/she would like to open using a

ZigBee Event System Team Ragnar
Final Design Review 14

standard Apple OS X OpenPanel. After doing so, the media plays in full screen with the cursor
hidden, so that the only thing on the user’s monitor will be the media. Most likely, the user will want
to connect their computer to another display such as a projector or TV to allow a larger audience to

view the media. A screenshotof the Player in action is show in Figure 1.

Figure 1: Movie playing in full screen with progress bar shown. This is a screenshot of everything onthe monitor.

At certain points during the movie, as indicated in the ZES Media File, the Player will cause
ZigBee devices to perform whatever operation that they are supposed to do at the point. This may
be turn on or off a lightbox, or start dispersing some scent throughout the room. If the user wishes
to see at what pointin the movie he/sheis, or to skip the movie to a particular point, they can push
CTRL+ENTER to display the progress bar and make the cursor reappear. Repeating this
command will remove them both. The user also has the abiity to step through the movie frame-by-
frame, stop, pause, load a new movie, or to skip to a certain point in the movie. This last action is
executed by showing the progress bar and then clicking on the pointin the movie he/she wishes to

skip to. A diagram displaying userl/O is given in Figure 2.

Team Ragnar

ZigBee Event System
15

Final Design Review

ZES End Devices

GUIl Commands:
Load, Play. Pause.

Stop, Skip to, ZES Media Player

Frame by Frame
] N
o
Keyboard Commands: —rﬁ——]—'
Show Controller / Cursor R—
(Alt + Enter) ; I

Figure 2: Overall user interaction with ZES Media Player.

Program Level I/O
While to the user the ZES Media Phyer might seem simple, what is actually going on

behind the scenes is quite abit more complicated. First of all, the Player mustread in the .zes

media file whichis actually in XML format. This file contains a reference to the movie which the

player then opens and displays in full screen. An example .zes media file is shownin Figure 3.

.............

Figure 3: Sample .zes media file. Note thatthe movie “/yakkos_world-26-09-05.mov"” is given as the root of the XML

tree and would be the movie file that the Player displays.

Each trackname references a particular type of device and the player opens the corresponding
plugin .plg file whichis also in XML format. The plugin file is used to translate generic command

names given in the .zes file to the appropriate string that will be sent to the controllerprocess and

ZigBee Event System Team Ragnar
Final Design Review 16

eventually on to the ZigBee end device. For example, the Phillips Equos Fluorescent Lamp
Ballasts contain a long prefix and suffix to the actual values that govern how the light will display.
This suffix and prefix information is listed in the .plg file. So when the Player parses the .zes media
file and finds a track called Phillips Equos Fluorescent Lamp Ballasts it looks in the associated .plg
file for the actual hex command that should be sent to the controller process.

Figure 4 shows an example .plg plugin file.

«vl nams="Fade to Level” rvp=="std":=
=0x7B1217010E < =t

Emeter nams ="Value" type="const" =
..fal 12 0XFFFF < s3lus =

its =16 hite

wparametsr name="Group" type="range":
<min=0x0000 < =
ma=0xXFFFF < mas s
btz =16« hits

SODAHEN St

cparametsr nams="Value2" *:.'pe ="const”
3= =0x8C00000003 = :

=40 s

<OLArameters

I

SOATANTE L mm»::"Desired Light Level” typ=="range":
< 20X 00 =

[T FC RN

DArameters
ameter name="Time to Move" tv=="range":

SRR ~0X0000‘IHH‘

R OXFFFF m3

~.vO)(CC(Z(ZO‘I?D < suffion
WAt s

Figure 4: Portion of .plg file that gives details about the command “fadeToLevel” for Phillips Equos Fluorescent

Lamp Ballasts. Note the prefix and suffix fielas.

The .zes media file also contains triggers that are commands for devices and that are time stamped
relative to the movie to allow for synchronization.

Along with reading and using the .zes file created by ZES Editor, the Player also interacts
with the Controller process through the use of sockets. Afterselecting the .zes file, the Player
reads in all the triggers throughout the movie and informs the Controller of all the ZigBee events

that will happen throughout the movie. When the controller has taken this informationin, it lets the

ZigBee Event System Team Ragnar
Final Design Review 17

Player know that it can begin playing media. Whenever it gets close to atrigger in the movie, it
sends out a packet that tells the Controller which event is supposed to occur and in how many
milliseconds it is supposed to happen. In a sense, the Player tells the Controller “execute
command #7 in 2 seconds”. Upon further development, it is planned that the Controller will be able
to respond to network conditions by letting the Player know about round trip times. The Player
could then react by changing the above example command to “execute command #7 in 5 seconds”.

A diagram showing Player-Controller communication is given in Figure 5.

Plaver Controller
™
| (Prefetch Events | |SeapPh T
& Alert Controller ——
. ””“Ip Process & Bufferj

AdvunPke
}, Begin Media File }4——{ Send Ready ’

; v

Play & Send AdnunPkr e e
Triggers g *(Wait 1

v ()
(4
? N
| W
Transmit to E,_,: - SN
Zigbee Nodes { b\ 7 /

AdnuePl Network Latency A No ”P'/ Done.
; Debug Packet ﬁ\lnc/« —

Figure 4: Player-Controller communication.

Internal Data Structure

XML was chosen as the format of choice for input/output files between ZES processesdue
not only to its flexibility, but also to the fad that Apple has an excellent XML Parser library at the
developér’s disposal. The event driven XML parser, when invoked, essentially has a callback each
time that a particular string is encountered. For example, the .zes media file in Figure 3 activates a

callback function when the “ZESMovie” tag is encountered. At that time, the Player copies the

ZigBee Event System Team Ragnar
Final Design Review 18

string in the tag and loads the movie that is indicated by the following string, inthis case
“/yakkos_world-26-09-05.mov".

By far the mostinteresting internal data structure in the Player application is the way in
which the triggers are organized. First of all, it should be pointed out that there is a useful
NSDictionary structure that when queried with a key, returns an object. Both object and key are
generics. Relating this back to real worlddictionaries, if you want to find a given definition (a
particular object), then you look up the word (key) in the dictionary. At the top of the data hierarchy
is the Device Dictionary which is keyed on trackname(a string) and its objects are NSDictionarys
themselves. Each of these NSDictionarys is keyed on timeValue. a longlong int, and its objects
are triggers which contain information about the event that some ZigBee device should be doing at
that given timeValue. Figure 5 displays the data structure more clearly.

Device Dictionary
Key (String) Object (Dictionary)

Device1 De\nce1 chtlonary .
Device2 i Device# Dictionary
Device3 Key (long long) Object (Tngger)
Device4 Device4 ; timeValue1 ltrlggerT
Device5 DevxceSchtlonary timeValue2

timeValue3

timeValue4

timeValueb

timeValue6 trigger6 .
timeValue7 »‘t[igg‘eﬂ «
timeVeiue8 trigger8

Figure 5: Diagram of how Triggers are organized. The Device Dictionary is top level. When queried with a
trackName, it returns a Dictionary. This dictionary is keyed on the time in the movie the trigger is supposed to fire

and its object is a trigger object.

The long long int called timeValue now requires some explanation. QuickTime keeps up
with times using a class called QTTime. This class has two members:a long long int called
timeValue and an int called timeBase. The timeBase is a number that represents how many
frames occur in one second for a particular movie. This varies from movie to movie. Some HD

movies play at a timeBase as high as 600 fps while others play as slow as 10. The timeValue

ZigBee Event System Team Ragnar
Final Design Review 19

represents the current frame number. So for instance, with a timeBase of 600, if the current
timeValue is 900, then 1.5seconds have elapsed at this point during the movie. The defaul setting
for the timeOffset for events is two seconds. This means that the Player will send out a command
to the Controllertwo seconds before it's actually supposed to occur in the movie. The time that this
packet is supposed to be sent out is then:
timeValueWheanTriggerShouldBeSent = triggerTime — 2/timeBase

However, it is impossible to catch every time that a frame passes in a movie. So it would
be impossible to catch the exact timeValue when the trigger should be sent out. To solve this
problem a timer was setup that fires every 0.1 seconds. Although it is not guaranteed to fire at
exactly this rate consistently, it is close enough for this application. When the timer fires, a routine
is called that gets the current time from the movie. It then checks every trigger in all the dictionaries
to see if there is 2 seconds or less before that trigger needs to be sent out. If so, it continuously
tries to send the trigger until the Controller receives it.
Remaining Work

At the current development point, only a few things gill need to be fleshed out. Right now,
some data involving the plugins is hardcoded into the Player. Once the plugin XML parser is
completed, the Player will utilize this class to read inthe appropriate data from the .plg files that are
referenced in the .zes fie. Also, it would be favorable if some other process, probably AppleScript
was able to activate the Player. If this was worked out, then input from an external device such as
a motion detector would be able to gart the Player, play the desired movie, and send out triggers
as desired. Further enhancements mayenable the Player to play one movie and send triggers until
some external event occurs at which time it would reset and begin to play another movie with its
associated triggers. All of these goals are realizable in a short amount with the right backgrourd

information.

ZigBee Event System Team Ragnar
Final Design Review 20

Network Controller
Overview

The Network Controlleris responsble for managing the wireless ZigBee network and is
implemented in a modular fashion. Its main functionsare to maintain the network, send packets
from the Player to the ZigBee nodes, and receive inputs from nodes and relay the message to the
Player. The three interfaces of the Controller are communication with the player, sending packets
to output nodes to cause a remote event, and receiving an input based on a remote event. The
application is multi-threaded and uses the ZigBeeLib heavily.

The wireless basis for this project is the ZigBee wireless standard, which is based on IEEE
standard 802.15.4 and is governed, at least in part, by the ZigBee Alliance. ZigBee is aimed at
short-distance communication for low-power embedded systems. It is capable of operating on
three frequencies and has a lower data rate, so it is not meant for large packets or streaming data.
ZigBee features acknowledgment packds to ensure reliable data transfer and has secure network
capabilities. One of the mostimportant features is the ability to avoid other wireless networks,
including Wi-Fi, allowing a layered approach to the wireless domain. Unfortunately, the Philips

ballasts used do not provide these features and other devices were unavalable.

Fayer Coonnrodey

Prefetch Events [sewp?a
. & Alert Controller 7 .

“# Process & Buffer .

oy

Send Ready J ‘

Begin Media File

PIay(& Send A ek e -
4_ Triggers Tl Wait J
__+ S ,
v
Transmit to = T
Zigbee Nodes < " > .
— | - N -
Z
Aain?: ‘ I Network Latency se o7

Debug Packet

ZigBee Event System Team Ragnar
Final Design Review 21

Communication between the Controller and the Player begins with setup packets sent from
the Player. These packets are sent before the video begins playing to allow all outgoing packets to
be queued. The packets include everything necessary to set up the ZigBee packet and also
include a buffer identification number, as issued by the Player, which will trigger the send of that
packet in the queue. Once all the packets are queued up, the Controller relays back to the Player
that it is ready and the media fie may now be started. As the file plays, trigger packets are sent to
the Controller containing the buffer ID of the packet to be sent and the offset time to wait before
sending that packet. To handle this offset, another queue of packets which have been triggered
and are waiting the offset time is created. This is necessary because the offset is handledthrough
an alarm.

When the first trigger is received, an alarm is set for the indicated offset. As more triggers
are received, they are added to the priority queue with the buffer 1D and the actual time the
packets should be sent. As the priority queue is sorted, if the top packet in the queue changes, the
timer is reset to the remaining time beforethat packets transmission. This is always done by
comparing the time the packet should actually be sent to the currenttime. The offset time value is
lost after the initial setup, and triggers all become relative to the actual time of day. The
sendpacket () functionis called when an alarm is raised and it immediately sends the packet in
the bufferQueue. It then checks the nexipacket and sends all packets that are overdue in order
to keep up when many packets must be sent rapidly. If the network is lagging more than half a
second, it is flagged and a statement is printed with how far behind the program is. After all
necessary packets are sent, the timer alarm is set for the next packet to be sent.

The media file specifies how many packets to initially queue and maintain thereafter. The
Player must wait for all packets to be queued before initiating media playback, as describedabove.
Should the Controller not be able to keep up with the requests ofthe Player, a Network Latency
Packet has been defined but notimplemented. It could be used for some adjustmentin the
playback or offset times, but this was beyond the scope of this project.

The motionbetect () functionis the only implementation of ZigBee input used in the
project. It uses a motion detector that has been made into a ZigBee node by Eaton Electrical. Tl

ZigBee development boards are used on the receiving end to interface with the Controller

ZigBee Event System Team Ragnar
Final Design Review 22

application. The group had no control over the operation of the motion detector so some
adjustments had to be implemented. Sometimes whenmotion is deiccted, the device will send
three separate packets that motion was detected, each a few seconds apart. This prompted the
addition of a temporary disable to keep these repeat packets from being incomectly interpreted.
The time for this value can be adjusted and fifteen seconds yielded the best results over an
extended period. Threads had to be used to accomplish this, as the alarm is already in use
elsewhere in the Controller. In addition, another disable exists to allow the player to turn motion
detection on or off at will.

Some problems were experienced in relaying detected motion to the Controller. The
development board correctly showswhen the packet is received, but the message read by the
application does not conform to the standards set in the development board’s documentation.
Moreover, the data read is seemingly random and differs from computer to computer. The problem
is believed to be either in the USB to Serial conversion cable or in the development board itself. To
work around this, whenever data is read from the motion detector, it s interpreted as motion. The
only thing that requires consideration is that the development board must be turned on before the
Controller application is run.

The output nodes currently being used are light ballasts made by Phillips which operate on
Embernet. The Controller sends packets of node-dependent information when specified. For the
light ballasts, the information includes values forfade-to-value and fade-over-ime. A fade value of
zero causes an instantaneous change and there is a relatively significant delay to turn the lights on,
especially when they are cold,or not currently in an ‘on’ state. To lessen network traffic, nodes are
assigned in groups. A group may consist of only a single node or a large number of nodes and
each node may be a memberof multiple groups. The addGroup () function is used to create a
new group, and these groups are referenced by a name, which is a string. addNode () is used to
create new nodes and addToGroup () is used to add these nodes to groups. This setup allows
one node to be added to multiple groupsand also for each group to have multiple nodes. The
advantage of multiple nodesin a group is the capability of artificial grouping. In a real environment,
the device necessary to reprogram and group ballasts may not be available. The Controller allows

a new group to be created with all the different nodes available and when a packet is meant for

ZigBee Event System Team Ragnar
Final Design Review 23

such a group, traversal of the group is done and the packet is sent to each node individually. This
is a convenience, but it should not be abused, as it creates more network traffic. Nodes and groups
can also be removed, but there isn’t currently a known need for this. The ability to send to a single
node directly is also implemented, but this also does not have a currently-definedpurpose.

Originally, the status of the network was to be maintined by the Controller. This is still a
worthwhile endeavor, but was unable to be conpleted in this project. The return packets from the
light ballasts are unknown and time was not available to attempt to reverse engineer them. Even
still, the only error found outside of the light ballasts being off has been a buffer overflow, and
network status does not currently have a way of dealing with this. For the motion detector, even a
heartbeat request to the developmentboard just to see if the serial cannectionis active yields no
response, even when data can be read when motion is detected. This section of the project ended
up not being feasible but should be one of the areas of emphasis should the project go forward.

The shortcomings of the Controller ended up being more related to hardware limitations
than anything eke. The lack of a significant number of ZigBee nodes available made development
with flexibility hard. Only the light ballasts on Embernet are currently supported and it would take a
fair amount of work to handle the adjustmentsnecessary to be cross-conpatible. Hopefully the
ZigBee Alliance will result in a more defined path for the handling of such things. The inputworks
'very well inside of what it is designed to do, but it is extremely inflexible and has minimal
functionality.

Future improvements should be completed in several areas. The core of the Controlleris
graceful and efficient in the way packets are queued, sorted, and triggered. The setup of groups
and nodes is much the same. Additions to the interface with the player should be made sothe
Controller receives more information about how to send a packet to a type of node, rather than
having it hard coded for Embernet as it is now. As additional input nodes become available, they
should be implemented and tested to achieve more robust functionality. The network status is a big
consideration going forward ard should be looked at extensively. Some internal error checking
could also be done to proactively adjustsituations that could cause buffer overflows in the light

ballasts or other performance degradation.

ZigBee Event System Team Ragnar
Final Design Review 24

The difficulties experienced were not whatwere expeded to take the most time. The
motion detection was very time consuming in the beginning just to get the three devices to
communicate at all. After that it was not much of a problem. The assumptionhad been made
going in that it would be easy to handle a lot of packets with varying offset times, andnot much
thought had been given as to how that would work. The implementation of this was not trivial and it
was difficult to trace the cause of results that differed from what was expected since errors
appeared only when the internal timer reflected a specific number of milliseconds. Seemingly
spontaneous errors resulted during this phase of programming. The slow responsetime of the
ballasts required careful choosing of time offsets and end results to see if things actually were
working.

The Controller handles the most unpredictable part ofthe project. Developers of the
Player, Editor, and Pluginator can demand the requirementsto use their products, but the ZigBee
side is opento all future developments of the technology and thus will require adjustment as new
devices are created in order to remain compatible. As an overview, the Controller must maintain
the ZigBee network, send packets with node-dependentinformation to the output nodes, receive
input packets from the remote event-triggered nodes, and communicate with the Player to assure

on-time and reliable exchange of information between all of the above.

ZigBee Event System Team Ragnar
Final Design Review 25

Pluginator

Motivation and Design

The Pluginator's goal is to allow the end-users of our program suite to quickly and easily
add new devices to the system by providing a simple interface for plugin creation. A primary target
audience for the Zigbee Event System is in advertising, and if someone working on a trade show
setup wants to add a new and unique device to their exhibit, such as a scent generator, they
shouldn't need an in-depth integral knowledge of how our particular tools work internally.

We decided the easiest way to make the ZES extensible was to use a pluginbased
system. Device details are fed to the Editor, Player, and Configurator through a standalone
container. The Editor uses this information to allow the user to add commands in the form of key
frames to tracks within the media fike. The Player uses the plugin to format the commands that it
sends to the Controller in the setup packets, and the Configurator uses the setup information
embedded in the plugin to trigger devices to activate for detection. Plugins are therefore modular
and provide a standard communication framework for the components in our system.

To make the plugin files easy to read and well structured, we chose to use XML tags to
describe a particular device and its commands. The Pluginator is an end-userapplication which
provides a graphical interface to create these XML plugins, where the primary design goal has
been a quick learning curve. The plugin structure is reflected in the design of the GUI. Each plugin
has device properties, a command list, and a parameter list for each command.

The command list should be able to store an unlimited amount of commands, though each
plugin should have an associded setupOn and setupOff command. These commands are to be
used by the Configurator to switch devices On and Off for the detection phase. For every
command, both prefixes and suffixes can optionally be defined for the case when an introductory or
trailing bitstring needs to be defined in a packet. Parameters are tied to commands and provide the
structure for Zigbee (or Embernet) packet formatting. Parameters can either be constant values,
which are set when the plugin is created and inserted into the packet by their respective position
within the parameter listing, or range values, where the plugin creator sets up a minimum and
maximum acceptable value. This range gives flexibility to users when creating their timeline within

the Editor by providing keyframes with modifiable attributes.

ZigBee Event System Team Ragnar
Final Design Review 26

Prefix and suffix values are used in combination with the parameter values to format the
packet that the controller will eventually send. While the player reads the timeline, it takes the key
frames added by the Editor and formats a packet with the information from the plugin. it then
encapsulates this payloadin the setup packet that is sent to the controller to initiate a command

sequence.

: > :
Pluginator ::>- —> Configurator

Player

!

Controller

Piugin Interaction with System Components

Implementation

Xcode paired with Cocoa and Objective-C was used to build the Pluginator project. The
GUI consists of three main sedions: device properties, command list, and associated parameters.
An NSTableView object was chosento display the commards, as it supports scrolling natively
and would be ideal for listing a large number of commands. We subclassed the object to make a
child object which retained the same properties and allowed us to add functionality to the tble.
Commands can be added with a button and deleted simply by selecting the unwanted commands
and removing them. When the program is started, the bare essentials for a plugin are added to the
forms in the table and parameter list.

In Cocoa, the radio buttons are actually NSBut tonCell objects and the traditional

exclusive selection seen in radio buttons but must be implemented insoftware. When the user

ZigBee Event System Team Ragnar
Final Design Review 27

clicks on the command, the respective parameter list is pulled up in the drop-down combo box
below the list. There are also fields for each parameter, including the const or range type selection,
the min and max values (max is unselectable when the const type is chosen), and the number of
bits to allocate for each parameter. The number of bits indicates the padding that the player should
use when constructing the data payload to send to the controller.

Both the NSTableView and (optionally) NSComboBox use informal protocols for
populating their forms with data. These DataSource protocols are simply a set of methods that an
object acting as a data storage center should provide. The objectis set by the NSTableView and
NSComboBox objects upon their waking in “awakeFromNib”. The functionsinside the DataSource
object provide the references to the objectstrings that are used to fill the command and parameter
lists. For the table, the data request occurs at program start and any time an additional rowis
added. For the combo box, the data source needs to be signaled when the table selection changes
so it can provide the appropriate data when the user clicks the dropdown arrow to expand the list.
This type of signaling will be discussed more later and is derived from the action event that occurs
in every NSControl object. Because the data in the table and combo box is so entwined, we
chose to use the same data source for each object and implemented the appropriate methods for
each.

inside the DataSource object, several NSMutableArrays are used to store the
command name strings, prefixand suffix values, and setup status. There is also an array of
NSMutableArrays which holds the parameters and their fields for each command. The setupOn
and setupOff properties are stored simply through a set of integer values which are the indices of
the command list items currently tagged as setup.

Cocoa works with forms on the windows through wirings, data sources, delegates, and
action/target combinations. Wiring to the text fields describe their outlet in the main object which
coordinates and houses the individual form objects within the windows. This provides one way data
passing to fields themselwes, as the NSTextField object inherits the “setStringValue” method

from one of its parent classes, NSControl. The data source provides data to the forms inside the

list and combo box in a similar way, except these are triggered autoinatically by the NSTableView

ZigBee Event System Team Ragnar
Final Design Review 28

object itself. Delegates provide a way for objects to pass messages back to handling objects which
tell them how to act when an event occurs, such as the user clicking on a new row in the table. In
this particular case, the DataSource object acts as the delegate message receiver to alter the
parameters sent to the combo box. Another delegate method is called when the text within the
parameter NSComboBox is edited, allowing the Pluginator to check the parameter strings for
duplicates before they are updated within the storage object. Delegate methods are optional, so the
receiving object can choose which messages to respondto. The figure below diagrams the

delegate to object interaction within the Pluginator.

b —_— >

‘Window.

Format and Con’r

Form Data

Delegate

Data and Event Passing in the Pluginator

Events notifying whena change occurs for the NSTextField's are handled by the
target/action combination, where an adion method is called in the target object when the text box
loses focus. These methods are also inherited from the NSControl class, and in the Pluginator
they are set up in the main object which uses mutators tied to the DataSource object. As the user
updates the forms, the appropriate changes are made insidethe DataSource. Moderate error
checking is perfomed on input values with the strtol function, which returns 0 on an error and
sets the errno global error flag. This flag must also be checked as 0 is a valid input. Internally, the
values are still stored as strings to allow for any length field but they are parsed as if they are longs.

A screenshot of the Pluginator set up with the light ballast plugin is shown below:

ZigBee Event System Team Ragnar
29

Final Design Review

r ¥

Device Information
Mancutactucer: Phillips

Maodel Number: 0O

Dev.ce: Eouves Maorescent Lamp B2 lasts

Current Commands T
Conrmare Name Commarcs Pretix Commang Suftx Setup Or Setup OH
Setup {On) Ox781217010L 0x04 /D . .

Setup {Off) Ox7B121/010L Ox047D
Fade to Level 0Ox/B1217010k Ox047D

L3

Parameters
Value | i: Up Down @ +
_ Range * Constant
Min OxFFrf Max. 4 Bits: 16

- Create Plugi n

When the user requests to sawe the plugin, this data is molded into an XML tree object
with references to leaf nodes stemming from the root node. A file location is chosen from a save

dialog box created with the NSSavePanel object. This dialog prompts users to select a file with the

plugin extension, *.plg.

A portion of the plugin for the light ballasts is shown below to clarify the XML layout:

<device name="Equos Fluorescent Lamp Ballasts"”
manufacturer="Phillips" model="0">
<ccommand name="Setup (On)" type="setupOn">
<prefix>0x7B1217010E</prefix>
<parameter name="Value" type="const">
<value>0xFFFF</value>
<bits>16</bits>
</parameter>
<parameter name="Group" type="range">

ZigBee Event System Team Ragnar
Final Design Review 30

<min>0x0000</min>
We were unable to develop auto detection of devices. They cumently have to be manually

coded into a file and then read into the program It may also be advantageous to allow the user to
select multiple groups simultaneously. The user may also like to see a breakdown of the
configuration thus far, not in the form printed to the configuration file, but in a form appropriate to a
graphical interface.

<max>0xFFFF</max>
<bits>16</bits>

</parameter>

<parameter name="Value2" type="const">
<value>0x8C00000003</value>
<bits>40</bits>

</parameter>

<parameter name="Desired Light Level" type="const">
<value>0xFF</value>
<bits>8</bits>

</parameter>

<parameter name="Time to Move" type="const">
<value>0x0000</value>
<bits>1l6</bits>

</parameter>

<parameter name="CRC" type="range">
<min>0x0000</min>
<max>0xFFFF</max>
<bits>1l6</bits>

</parameter>

<suffix>0x047D</suffix>

</command>

“setupOn” and “std” are additional vaid types for commands. These plugin files can be reopened
inside the Pluginator through the use of the PluginReader object. A NSOpenPanel dialog box
prompts the user for the input file with extension .plg to open. The PluginReader object was created
to allow any program within the project to import these the header and implementaton files and
have complete access to the plugin. It defines a class called P1gReader that has one simple
function: parsePlgFile. This functiontakes a reference to anNSString object that is the full
path to the pluginto be parsed. For parsing the plugin, the P1gReader uses the NSXMLParser to
handle most of the dirty work. parseP1gFile returns a reference to a farly complex
NSMutableDictionary with all the necessary information neatly organized. The format of this
dictionary is best described by the diagram below; the actual data type of each element is listed to

the right of the object's name.

ZigBee Event System Team Ragnar
Final Design Review 31

$Plugins (NSMutableDicticnary)
- name (NSString)
- manufacturer (NSString)

- model (NSString)

@commands (NSMutableArray of NSMutableDictiocanry)
- name (NSString)
- type (NSString)
- prefix (NSString)
- suffix (NSString)
- @parameters (NSMutableArray of NSMutableDicticnary)
- name (NSString)
~ type (NSString)
- min (NSString)
- max (NSString)
- bits (NSString)

- value (NSString)

As it is written, none of the elements listed above are requiredfor the plugin parser to work
properly. This is just an exhaustive list of what the parse is capable of recognizing; if the dement is

not a member of the plugin, then that part of the structure will simply be NULL.

Shortcomings, Limitations, and Future Considerations
The Pluginator walks the line between requiring the user to have a detailed knowledge of

the device they are creating the plugin for and restraining the user when possible by providing error
checking. Extensive error checking is impossible,as there are cases when only the user knows
which parameters should be constant vdues and which should be ranges. For instance, setup

commands should be filled with mostly constant parameters, though ranges must be still allowed

ZigBee Event System Team Ragnar
Final Design Review 32

for parameters like group. Whether such inputs should be aliowed is a decision that cannot be
made by the Pluginator.

At this time, it is also up to the userto set the correct number of bits for a given parameter
value string. This could be fixed in the future by counting the number of digits within the value string
and determining the base of the number. Decimal, octal, and hex are currently supported for input
values, but due to a limtation in the strtol function used, additional characters outside ofthe
base set (ie: 'G' in hex) are ignored when appendedto the end of a value string passedto the
function. One way around this would be to use the long return value from strtol and forma
proper hex or octal string from this value, however this would limit the length of incoming strings.
Complete error checking could be done by breaking the input string into multiple sections, checking
the format for each of those, then concatenating them back together.

The Pluginator is limited in that it cannot create new plugins after the window panel is
closed, which goes against the traditional Apple OS X style of creating new documents. Future
work would include reinitalizing the GUI to bring up the window again. Another nice feature would
be to include a library with frameworks for multiple plugin types (ie: light ballasts, motion sensors,
scent generators, etc) such that the user could add a set of common parameters to their own plugin
and modify them as appropriate.

Potential improvements for the PluginReader would include specialized functions that
return a certain criteria of data instead of the entire structure since most occurrences are not
interested in the entire plugin but merely a small part. For instance, the Configurator needs to read
all plugin files available on a system but is really only interested in the “setup” commands for that
plugin/device. So, the P1gReader could have a function that would return only the “setup
command” for that plugin. Although special attention has been given to memory managemert of
the data returned, we are not 100% satisfied that all memory precautions have been taken. With
more time, a better look at the expectations of memory management by Cocoa would be taken into
account to ensure that all memory was properly handled. Memory usage analysis should also be
performed for the data storage object within the Pluginator as well, though its usage is generally
limited to creating a plugin and quitting the program, so memory leaks will most likely be handled

well by OS X.

ZigBee Event System Team Ragnar
Final Design Review 33

Configurator
Motivation

The motivation for this part of the project was to allow end users to more easily “configure”
a ZES Multimedia setup to work properly with their physical envirorment. As ZES multimedia
presentations grow, the task of matching physicaladdresses to a groupor a set of groups within
the ZigBee Event System wil become more daunting. With the creation of the Configurator, the
end user is presented with a streamlined graphical interface that allows this process to be
completed in a fraction of the time. In fact, with the Configurator's auto-detection capabilties, the
end user never needs to deal with a raw MAC address. Instead, the device is simply “turned on”
allowing immediate visual identification.
Design

The design of the Configuratorrevolves around a single purpose: to map the embernet
address to a group. As with any other graphical program, the first design skp is determining the
necessary components of its interface; thus, the interface shown below was created.
As you can see, there are just three pieces of information shown: the current file, the list of groups,
and the device currently being configured Upon opening a ZES media file, the Configurator lists
all the available groups in the pull-down menu. It then starts to configure the first detected device.

This is accomplished by sending the “setup” command to that device; since the plugin associated

o e e

SEONS Window

Current ZLS File: -
ZES Group rack O vl
Apply © Next Device

Current MACL Address

with the current device is unknown, all the known “setup” commands are sent in sequence until the
device receives one and turns on. With a visual cue now available, the end user can choose which

group or groups the device should be a member of. The user selects a group and hits 2pply.

ZigBee Event System Team Ragnar
Final Design Review 34

Once the device is finished being configured, the user can hit Next Device to configure the next
device. Once all the known devices have been configured, the Configurator displays a message as
such. At this pointthe user can either save the current configuration or start the process over again
adding to previous configurations. Upon saving the configuration,a configuration file is generated.
An example of this format is shown below.

This file enables the Network Controllerto send commands to the proper device during the

<root>

<Group Name="LightBoxl" Plugin="PhillipsLightBox"
NetworkType="Embernet" IOType="Output">

<Node EmbernetID="1"/>
<Node EmbernetIbL="2"/>
</Group>

<Group Name="MSensorl" Plugin="GenericMotionSensor"
NetworkType="ZigBee" IOType="Input">

<Node ZigBeelID="8"/>
</Group>

</root>

presentation. It contains al the necessary information not only for icentifying the device within the

multimedia presentdion but also the capabilities of the device itself.

Implementation

The Configurator was created using XCode and Interface Builder that are a part of the Mac
OSX standard development tools. There are four custom classes responsible for the heart of the
Configurators implementation: the ConfiguratorController, the DeviceManager, the
PlgReader, and the ZESReader. The simplified model of the Configuratoris shown below with
these devices highlighted in red. This shows how the different components interact to create

interface seen by the user.

ZigBee Event System Team Ragnar
Final Design Review 35

ZES Media Files

User Irterface Flugin Files

Metwork Cortroller

Y

ZigBes Metw ark

At the heart of the programis the ConfiguratorController. ltis basically responsible for
program flow and controlling the other objects. It is also responsible for updating the user interface
as its information changes. When the users chooseto open a ZES file, the
ConfiguratorController passes off control of the program to the ZESReader. Inreturn, the
ZESReader allows the user to specify which ZES file they wish to open and then proceeds to
process the file accordingly. When the ZESReader has finished parsing the ZES file, it returns an
NSMutableArray of NSStrings that correspond to the available groups within that particular
ZESfile. The ConfiguratorController then checks to see if the plugins have been loaded. If
they have not, it passes off control to the P1gReader. The PlgReader uses a hard coded
directory and reads all the plugin files within this directory. When it has finished parsing all the
plugins, the P1gReader returns an NSMutableArray of NSMutableDictionarys that contains
the “setup” commands for each device. TheConfiguratorController then tells the
DeviceManager to send “setup” commands to its first device. If the DeviceManager has no
devices loaded, it loads the list of known devices (the details of this process are still being
finalized). Otherwise it uses elements from ZigBeelib and sends the necessary commands. As
the user selects a group to be associated with a device, the ConfiguratorController adds
the name of that group to an NSMutableArray contained within a larger

NSMutableDictionary keyed on the device's unique ID.

ZigBee Event System Team Ragnar
Final Design Review 36

Future Work

Before release as a commercial applicaton, the Configurator will need to be able to
perform automated network discovery. This is limited now, and unfortunately is a manual process
still due to a lack of disclosure on the part of Philips, the manufacturer of our only current wireless
output devices. Building this into the application will raise the utility and usefulness of the

Configurator utility since right now, manual setup is still required.

ZigBee Event System Team Ragnar
Final Design Review 37

lll) Testing

ZigBee Event System Team Ragnar
Final Design Review 38

Unit Testing

At the conclusion of each function and class, unit testing is performed to make surethe
component works properly and is able to handle bad data. This phase of testing is concernedwith
ensuring that the function or class does what it needs to do and does so with a reasonable
tolerance for errors. The function or class should not accept invalid data.

Milestone Testing

At the completion of each major part of the project, such as the Editor or Player, the
application is tested to make sureit runs and properly exports the files it needs to export. Each
individual application must have the correct output. They need to catch common errors in any input
files they read. The communication between the Controller and the Player needs to function
smoothly and efficiently.

Milestone testing done on the ZESEditor showed that there were several errorsin the
handling of multiple projects, resulting in rewriting some of the code. Milestone testing on the
Controller and Player showed a small bufferingerror in the communication between them, but the
situation was resolved.

Final Testing

Once all the applications and the framework has been completed, the entire suite of
applications is tested together to ensure proper communication and process flow. The final testing
included a basis for the demo to ensure that each piece of the system is functional. The final test
came in several phases, each exposing different weaknesses that were subsequently corrected.
Firstly, the ZESController was tested to allow interaction with AppleScript. Next, it was tested to
ensure reliable communication with the Emberner ballasts. After this and the AppleScript were
confirmed to be working, ZigBee input was tested, revealing that our motion detector was very
unreliable. The board that reads the detector signals tends to crash.

After this was cleared up, testing with the ZESPlayer commenced, with the Player being
controlled by a custom AppleScript. The player was reading infiles form the Editor, but expected a
different file format. This small detail was shortly revised. The result of this series of tests, was a
skeleton demonstration which provided the framework, both for the ZES files and for the

AppleScript, on which we based our final presentation.

ZigBee Event System Team Ragnar
Final Design Review 39

References

AppleScript

Apple's Developer Page
http://developer.apple.om/documentation/Cocoa/Conceptual/ScriptubleCocoaApplications/SApps
intro/chapter_1_section_1.html

Cocoa

Apple's Developer Page

http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaF undamentals/Introduction/cha
pter_1_section_1.htm]|

Xerces XML

Xerces-C++ Documentaton Page

http://xml.apache.ag/xerces-c/apiDocs/indexhtmi

	ZigBee Event System (ZES): A Multimedia Application
	Recommended Citation

	tmp.1282751643.pdf.FTHdW

