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Abstract 

Consider an ideal homogeneous chain of length 2l, suspended at two pre-chosen points. 

This paper discusses the qualitative behaviors of the shape of the curve drawn by the chain in 

different potentials. We first solve the problem under the constant gravity near the surface of 

the earth, then construct and study a general model with rotationally symmetric gravitational 

fields. Our primary considerations are Newton potentials in n + 2 dimensions, for n > 1. At the 

end, we also extend the discussion to the two-dimensional Newton potential In r. 
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1 Introduction 

During his life time (1564 -1642), Galilei conjectured that the shape of a hanging chain under the 

Earth's gravity was the parabola, ([2], pg. 149). He expressed this idea in his book" Dialogues 

Concerning Two New Sciences" in 1638 and was bolstered among the scientific community. 

Although in 1646, Huygens successfully disproved Galilei's conjecture. it was forty-five years 

later that Huygens himself, Bernoulli and Leibniz, independently became able to provide the 

exact answer, ([3].pg. 236-237). Nowadays, it is well-known under the name the Catenary 

Problem (which originated from" catena" in Latin for chain); and the answer includes variants 

of the graph of the hyperbolic function cosh, and can be obtained through various methods. 

In 1998. the paper" Catenaria Vera - The True Catenary" by Jochen Denzler and Andreas 

M. Hinz once again considered the Catenary problem, but in a different gravitational field -

namely. the rotational symmetric - ~ potential. The problem was then solved explicitly by means 

of the Euler-Lagrange equation, and then further discussed with a number of methods for an 

existence proof. 

Based on the ground of the classical Catenary and inspired by the" True Catenary", this 

paper extends the idea and henceforth studies the following question: "What general qualitative 

behaviors does a hanging chain of prescribed length have in a rotationally symmetric potential?" 

Although the research will not provide a complete answer. it will examine some aspects of it, 

and leave the rest open for further study. 

This paper consists of five major sections, including the Introduction. In section 2, we 

will first consider and solve the classical Catenary with the modern techniques of Calculus of 

Variations, thereby constructing a general model for the problem. Section 3 will derive qualitative 

behaviors of the chains in gravitational fields that satisfy our assumptions. A discussion on the 

chain's behaviors in In r potential is available in section 4. Finally, the last section, Conclusion 

and Outlook, will summarize the result and suggest possible directions for further investigations 

of the Catenary. 
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2 The Catenary 

2.1 The Classical Case of Constant Gravity 

Let two points A and B be given in a vertical plane and a perfectly flexible (and unstretchable) 

chain of prescribed length 2l. If 2l is smaller than the distance between A and B, there cannot 

be a physical solution; if equal, we have the uninterestingly straight line. Hence, without lost 

of generality, we assume that 21 is strictly greater than the distance between A and B. The 

rectifiable curve from A to B created by the chain under the sole influence of gravity is the one 

that minimizes the potential energy of the chain. For any other curve, the exceeding energy 

will be converted to kinetic energy, therefore lead to a deformation of its shape, (see [1]). In 

this section, we will solve the classical problem using the standard techniques from Calculus of 

Variations. 

Since the chain is solely under gravity, we expect that the graph is a smooth curve and can be 

represented by a continously differentiable function. Let x ~ r(x) be the function in cartesian 

coordinates describing the curve, whose graph is in study. Then let p be the density. The two 

points A and B have the coordinations (Xl, rt) and (X2) r2), respectively. Then vi dx2 + dr2 is 

the element of arclength of the curve. The potential energy of an unit length near the surface 

of the earth is given by: 

pgrV dx2 + dr2 pgrVl + f 2dx 

(Here, we use the notion f to mean the derivative of r with respect to x.) Therefore, the 

potential energy of the chain is: 

F[r] = pgrVl + f 2dx l
X2 

Xl 

We have to minimize (1) among all the sufficiently regular functions r : 

r(xI) rl and r(x2) = r2, satisfying the length condition: 

l
X2 

L[r] := VI + f 2dx 
Xl 

2l 

(1) 

00[, 

(2) 

Because this is a variational problem with a constraint, we will use the method of Lagrange 

multipliers. From (1) and (2), we are now interested in optimizing: 

F*[r] l X2 

(pgr + ).)Vl + f 2dx 
Xl 

(3) 
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where A denotes the Lagrange multiplier. 

Let] (pgr + Ah/1 + 1'2; then the Euler-Lagrange equation for this problem will read: 

(4) 

Since] is independent of x, we can also use the" energy integral" of the Euler-Lagrange equation: 

Solve (6) for 1': 

Therefore2 , 

] - l' {)] = CI 
{)1' 

:=;. (pgr + A)V1 + 1'2 - l' ! [(pgr + A)V1 + 1'2] = Cl 

=}(pgr+A)jl+f2-f(~r =Cl 
1 + 1'2 

1 
:=;. (pgr + A) (v"1+f2) = Cl 

1 + 1'2 

l' ± I (pgr + A)2 _ 1 
V CI 

:=;. dx ± 1 dr 
J(P9:;A)2 - 1 

:=;. x = ± J 1 dr 
J(P9~;A)2 -1 

:=;. x ±~ In I pgr + A + ./(pgr + A)2 - 1 I +C2 
pg Cl V Cl 

Cl (pgr + A) I :=;. X = ±- cosh-1 + C2 
pg CI 

Cl h (pg(x C2)) r = cos 
pg CI pg 

The graph of r(x) is called a catenary. 

(5) 

(6) 

(7) 

As it turns out, using the boundary conditions r(xI) rl, r(x2) = r2, and the prescribed 

length 2l, one can certainly determine the constants A, CI and C2. There are exactly two 

lOne can verify this quite straightforwardly: 
r:;-:-: r:;-:-: 1/ + J 1/2 + 1+ 1 

h(l ( 
J:':2;11)) e1n(I/+Y 1/2+1)+e- 1n (I/+Y 1/2+1) I/+Y1l2+1 

cos n y + V y- + J. 2 2 = Y 

2The "±" sign drops out because cosh is an even function. 
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solutions. one of which (CI > 0) is the catenary. The other (cl < 0) gives an upsidedown 

catenary that maximizes the potential energy. 

At this point, let us consider (4) again. 

(4) ¢:} pgy'1 + f2 
d f 

dx [(pgr +,X) ~] 

=} pgy'1 + f2 

1 _ (pgr + 'x)r 
=} pg-r==~ - VI + f2 3 (8) 

Note that a minimizing curve r(x) must be convex, because a point reflection of a graph 

segment would otherwise decrease the potential energy. (see Figure 1). Thus, r is always non­

negative. Since the left hand side of (8) is positive, we deduce that both rand pgr + ,X must 

be greater than O. We shall see later (in Theorem I) that the fact pgr + ,X > 0 means there is 

only one type of solution. 

r B ... ... 

x 

Figure 1: Classical Catenary (left); and Point reflection reduces potential energy (right) 
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2.2 The Case of General Rotationally Symmetric Potential 

We will now consider the model in a general gravitational field, i.e. V : ]0, oo[ -+ JR, centered 

at O. We further assume that V'(r) is strictly greater than O. All assumptions about the chain 

and its position (i.e. suspended at A and B) hold as previously discussed. 

Let <P f---7 r(<p) be the function that describes the chain. Note that r is now a function of the 

angle <P, centered at O. Then a length element of the curve is: J(rd<p)2 + (dr)2 = Jr2 + f 2d<p. 

Accordingly, the potential of a length element is: V(r(<p))Jr2 + f 2d<p 

'10 
\ 
\ 

\ 
\ 

\ 
\ , 

\ 

r(<p) \ 
\ 
\ 

\ I " \ : <P2 " \fI: / 
'\1,,' 

'0 

Figure 2: Length Element (left) and Chain in polar coordinates (right) 

Our ultimate goal is to optimize the potential of the chain. Hence. the problem reads: 

Minimize the functional: 

(9) 

among all the sufficiently regular functions r : [<pI, <P2] ]0, oo[ with r( <PI) rl and r( <P2) r2, 

satisfying the length condition: 

2l (10) 

Using the Lagrange multiplier method as in the previous chapter, the Euler-Lagrange equation 

reads: 
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which, by multiplying with an integrating factor l' and then integrating both sides, leads to the 

Integral Euler-Lagrange Equation: 

(12) 

where A is the Lagrange multiplier, and Q is a constant. Equation (12) is also known as the 

Energy Equation. In calling the constant of integral ~, we have anticipated that this constant 

could not be 0, because A + V(r) cannot vanish. 

From (11), we can also deduce that: 

where 1'1: is the curvature: 

rV'(r) 
Jr2 + 1'2 

I'I:(A + V(r)) 

rr - r2 - 21'2 

Jr2 + 1'23 

(13) 

(14) 

From now on, we will refer to equation (13) as the Curvature Equation. Since the left hand 

side of (13) is strictly positive (remember that we assume V'(r) > 0), it is clear that A + V(r) 

can never vanish, as claimed above. 

Here, we have completed building our general model. 
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3 Behaviors of chains and arches for various potentials 

From the Curvature Equation, it follows that the K, and A+ V(r) have the same sign. The reason 

is that r is positive, and V' (r) is assumed to be strictly positive. From the Energy Equation, it 

is trivial to see that Q and A + V also have the same sign. The sign of Q will therefore determine 

that of the curvature. For instant, if Q is positive, we get a positive K,. We will call solutions 

that correspond to positive Q chains. Accordingly, we will call those with negative curvature 

arches. It will turn out that in the limit where Q goes to 0, the Energy Equation does not 

produce a physical solution because it poses an infinite tension on the chain. 

In the case of chains, the curve must be strictly convex because Q > O. Its maximal domain 

is an interval of length less than 7[, and r(<p) will go to infinity as <p approaches the boundary 

of this interval. Therefore, the function <p f---t r(<p) has exactly one local extremum, which is an 

absolute minimum. 

On the other hand, arches can have a maximum, as well as a minimum, either one or both 

at the same time. If there is only a minimum, we will call the curve a flat arch. If we have 

only a maximum, then it is a steep arch. Later, we will show that an arch can wrap around 

the center many times before diverging to infinity (or converging to the center). Furthermore, if 

the solution r( <p) has neither maximum nor minimum, it will be a spiral arch. Finally, if there 

are both maximum and minimum, we can have either a circular, or an exotic arch. In many 

interesting potentials, exotic arches can be ruled out. We will elaborate more on each case in 

the next sections. 

For convenience, let <Po be the (or: an) angle at which r(<p) reaches its extremum, and 

ro = r(<po) (if an extremum exists at all). It follows that r(<po) 0 

Together with the Energy Equation, we have: 

QrO(A + V(ro)) = 1 (15) 

Now, take the Energy Equation again and solve for r. We obtain: 

(16) 

(The" plus" sign in the above expression corresponds to one side of the chain, and" minus" to 
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the other.) 

(17) 

From here on, we will refer to equation (15) as the Extremum Equation, and equation (17) as 

the Delta Phi Equation. 

We will now state the main theorem. 

Theorem I: 

Consider an ideal homogeneous chain under the sole influence of a potential V. Assume: 

A-I: V is rotationally symmetric around the origin 0 

A-II: V can be described as a continuously differentible function of r, i. e. 

V : r Ho V(r) 

A-III: V'(r) > 0, in particular V(r) is strictly increasing 

A-IV: rV(r) satisfies: lim rV(r) -00 and lim rV(r) = 0 
r-O r-oo 

A-V: V(r) + rV'(r) is strictly decreasing, and never equals to 0 '\Ir 

Then there exist .,\ and a =J 0 in R. such that the Euler Lagrange Equation and the Energy 

Equation hold. Furthermore, 

1. Ifa> 0, then"\ > O. Solutions must be chains. 

2. If a < 0 and 

(a) ..\ ~ 0, then solutions must be 
-~---

arches 

(b) .,\ < 0, then there exists a threshold ao such that: 

i. a < ao, solutions are spiral arches 

ii. a ao, solutions are circular arches 

iii. a > ao, solutions can be steep arches, flat arches, or exotic arches 

Note: The five assumptions we have made above in particular allow the potential in consid-

eration to belong to the family for n > 1. 

We will now consider the problem in -~, -fx potentials, before studying the general case. 
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3.1 The potential -1 r 

The potential - ~ does not satisfy assumptions A-IV and A-V; however it directly relates to 

the - r~ family. In fact, we shall see that the behaviors of the chain under this potential and 

under a general one differ only marginally. 

Take the Energy Equation, and let V(r) = -~, we have: 

~ = (A 
o 

=> Ar 
1 v'r2 + 1'2 

1=----
o r 

Correspondingly, the Delta Phi Equation in this case reads: 

1 
± dr 

rJ0 2(Ar - 1)2 - 1 

And the Extremum Equation reads: 

O(Aro 1) = 1 

1 1 
=> ro = "X (1 + 0 

We will consider different cases of 0 as in the theorem. 

Case 1: The case of chains, or 0 > 0 

(18) 

(19) 

(20) 

(21) 

The right hand side of equation (18) is positive when 0 > O. Hence, A must be strictly 

positive. 

Now, let Ar ~,then A1' . Substitute in (18) to have: 

0(1 s) = sign(A) y's2 + 82 

With some algebraic calculations, i.e. squaring and taking the derivative, then canceling 8 from 

both side, the resulting equation is: 

Solving (22) and expressing the solutions in term of cosh, we then have: 

0(0 cOSh[v'02 - 1(<p - <PO)]) 
s(<p) = --:---~-----"--

0 2 1 

(22) 
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where 'Po is as previously discussed. 

Hence. the solution to the proposed problem is: 

a 2 - 1 
r( 'P) = ---;------------:-

,Xa( a - cosh[y'a2 - 1('P 'PolJ) 
(23) 

The function r( 'P) describes the shape of the catenary, with yet undetermined constants 

A, a, and 'Po. Fortunately, with boundary conditions r('Pl) = rl, r('P2) r2, the length 

constraint and the additional condition f('Po) 0, we can determine [uniquely] the values of 

those mentioned unknowns. For discussion of the existence and uniqueness of the solution, one 

can refer to section 3 of the paper by Denzler and Hinz, (see [1]). 

Q> 1 

r---
-------

0<0<1 

Figure 3: Graph of solutions in ('P, r) plane (left) and as seen in the potential (right) 

Notice that in equation (23), a 2 -1 is under a square root. Thus, we consider two sub-cases: 

o < a < 1 and a > I, which give us respective qualitative pictures (see Figure 3). (The case 

0: = 1 is neglected. but one can study it as a limiting case a ~ 1 of (23).) 
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Case 2: The case of arches, or a < 0 

Case 2.1: A 0 

Substitute A 0 to equation (20), we have a = -1. Now solve for (18), we get r = O. 

Hence, the solution r(<p) depicts a circle, centered at O. 

Case 2.2: A > 0 

We require the quantity under the square root in equation (16) to be non-negative. 

::::} or { r ? * (1 - i) 
0< r ~ *(1 + i) 

We ignore the possibility of the first inequality (r has only a minimum), because *(1- i) does 

not satisfy (21). We are left with the second inequality, which implies that the solution is a 

steep arch. Furthermore, we have: 

1 1 
O<r~~(1+~) 

1 
::::} 1 + > 0 

a 

::::} a <-1 

Thus, in this case of arches, where A > 0, the solution exists only when a < -1. Moreover, 

the solution will be a steep arch. 

Case 2.3: A < 0 

Again, we require the quantity under the square root in equation (16) to be non-negative. 

{ 

r>1(1+1) 
::::}or ->. a 

0< r ~ *(1 i) 
Here, we omit the possibility of the second inequality (r has a minimum), because *(1 i) 

does not satisfy equation (21). We are left with the first inequality: 
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Notice that the right hand side of the equation is positive only when a is between -1 and O. In 

such a case, solutions will be flat arches. On the other hand, when a :S 

condition is essentially ineffective. Hence, solutions are spiral arches. 

Summary of the results in 1. 
r' 

1. If a > 0, solutions are chains. 

2. If a < ° and 

the lower bound 

(a) A 0, solutions are circles, centered at 0, which can also be viewed as steep arches. 

(b) A > 0, solutions are steep arches 

(c) A < 0, then the threshold is ao -1 such that: 

I. a < ao, solutions are spiral arches 

II. ao:S a < 0, solutions are flat arches 

The results match closely with the theorem. 

3.2 The potential - ~ 

Take the Energy Equation and let V(r) 1 . 
T2" 

1 vr2 + 1'2 1 
=> - = Ar --

a r r 

Correspondingly. equation (16) reads: 

Additionally, the Extremum Equation reads: 

1 
a(Aro - 1 

ro 

Let r + = =-'--'''-::?-'-~...;..;. and r_ 

=> ro 

l-~ 
20:'\ 

(24) 

(25) 



3 BEHAVIORS OF CHAINS AND ARCHES FOR VARIOUS POTENTIALS 19 

small ro 

Figure 4: Iso-ro-lines when both a and ,\ are positive 

Case 1: The case of chains, or a > 0 

Because the left hand side of (24) is now positive, we deduce that ,\ must be greater than O. 

Also. since we are in the case of chains, we know that r(!p) will have a minimum and cannot 

have a maximum. From (25). we can therefore deduce that: 

1 + VI + 4a2,\ 
r2------

And the extremum is: ro = r + 

On the other hand, we observe that: 

1 + VI + 4a2,\ 

2a'\ 

1 1 
+­

ar+ 

As a result, in the first quadrant of the (a,'\) plane. we have a iso-ro-line, for every given 

level of r + (see Figure 4). In other words. if we know the minimum of the function r(!p), we 

can conclude that the pair (a,'\) that solves the problem must be on this line. 

-===-:;:.:. The case of arches, or a < 0 

Case 2.1: ,\ = 0 

Take the Energy Equation and substitute in V(r) = -fz. and ,\ = 0, we get: 

1 1 

a vr2 + 1'2 

Squaring both side, solving for 1'2. and then taking the square root again gives: 
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1 
dcp = ± dr 

v'a2 - r2 

=> J dcp ± J 1 dr va2 - r2 

=> cP = ± arcsin( 1:1) + ¢ 

r( cp) = ±a sin( cp - ¢) (26) 

We, thus, have obtained an explicit solution, which depicts a circle through the center O. 

Case 2.2: A > 0 

From (25), we have: 

{

A 1 < 1 or r r-a 

Ar 1 > _1 
r - a 

=> or{ O<r~ 
r>_ 1+~ 

2aA 

Although the second inequality suggests a flat arch, the minimum -..:::...:......'-;::;'-'"~...;...:. does not 

satisfy the Extremum Equation. We, therefore, omit it. 

The first inequality gives us steep arches, which have a maximum at ro = r _. With this 

in mind, we now integrate the Delta Phi Equation from 0 to r _. Since we are in a rotationally 

symmetric potential, we first consider the" plus" sign only, and then multiply by 2 in order to 

get the maximum angle cp. 

!::::.CPmax = 2 (r - 1 dr 
Jo rJ a 2 (Ar - ~)2 - 1 

(27) 

Let s = a('xr ~) > 0, then: 

r 
2aA 

Since a < 0 and r > 0, s vs2 + 4a2 A 
=>r= 

2a'x 
dr r 
ds 

dr ds 
=> -

r v'S2 + 4a2 A 
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Substitute s in (27). Since s goes to 00 as r goes to 0, and at ro, So = 1. we have: 

D"i.pmax 

Let s cosh t: 

11 1 
-2 ~ 

00 V s2 + 40:2 A .JS2=l 

100 1 
D"i.pmax < 2 --h-dt 

o cos t 

=} D"i.pmax < 7T (28) 

As we can see, the integral expressing D"i.pmax converges nicely at the lower limit r O. 

Furthermore, the magnitude of D"i.pmax cannot exceed 7T, which means we have a steep arch 

that converges directly into the center, (see Figure 5). 

,,,,,.-:;: 
" , 

" " " I 
" I , I 

, I 
I I 

I I 
I , 

I I 

" I I I 
I , 

I , 
I \ 

I \ 
I ~ 
I ~ , ~ , .... , .... , ,~ : ~~--, , , 
~ 

... -... ....... , .... 
" ' ... .... ' .... 

~ .. 
\ .... 
\ .. 
\ .. 
1 ~ 

\ ~\ 
I \ , \ 
I \ 
I \ 

I \ 
I 1 

I \ 
I , , , 

" , " , 
" I _~- I 

o : , , , 

Figure 5: Steep Arch 

Before proceeding with our analysis, let us note that if we know beforehand that A is negative, 

then as a result of the Euler Lagrange Equation, 0: will surely be negative. We can immediately 

expect arches as solutions. 

Recall that r + .:!..-..L,;-.:..,..::.:::.....:..:.. Previously, the expressions under 

the square roots were always positive. In this case, however, we need to require A such that 

1 + 40:2 A 2: O. Thus, we have three sub-cases: 
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- If 0: < - 2A' then the Extremum Equation cannot be satisfied. On the other hand, 

0:2(-\r - ~)2 > (-\r - ~)2 = !(--\r2 + -lr2 +!) ~ 1. Equation (25) is always satisfied. 

Therefore, we will have spiral arches. 

- If 0: 2A' then ro ):-X. Both maximum and minimum of solutions equal to roo 

Therefore, we will have circles, centered at O. 

- If - k < 0: < 0, then we will have two cases: flat and steep arches. 
2y 1>'1 

Since -\ is negative, we deduce from (25) that: 

{ 

r ~ r+ 
or 

O<r:S;r_ 
(29) 

The first inequality gives flat arches, whereas the second inequality gives steep arches. 

We then estimate the maximum angle for each case as done previously. -----

, 
,,' 

" 
.... ,-- ...... _------" 

Figure 6: Flat arch (left) - and Steep Arch (right) 

l l:l.<.pmax = 2 fX> J 1 dr 
r+ r0:2(>.r- 1 )2-1 

or r 

I:l. 2 rr- 1 dr 
<.pmax JO J 2(\ 1)2 r 0: .... r-;: -1 

Repeat the substitution for s, and then t, we get the following equation for both cases: 

2 roo 1 dt < 00 

Jo J cosh2 t + 40:2-\ 

I 

I 
I 
f , 

I 
I 

I 
I 

I 
I , , 

(30) 

(31) 

(Note: During the substitution, we have to solve for r in term of s, which results in a choice 

between r = s±~. As r goes to r + (r _, respectively), s goes to 1. Hence, we end up 

with the" plus" sign in the expression of r.) 
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Now, by letting LlIPmax =: 2k7T, we can see that solutions wrap around the center k times; 

and k ca n be made arbitrarily large by rna king 4a2 A close to -1 

In the case of flat arches, each solution lies outside a circle of radius r +; and in the case 

of steep arches, each solution lies inside a circle of radius r _ (see Figure 6). 

Summary of the results in -

spiral arches 

both steep and 
flat arches 

Figure 7: Case Diagram 

1. If a > 0, solutions are chains 

2. If a < ° and 

(a) A 0, solutions are circles, going through the center 0 

(b) A > 0, solutions are steep arches 

(c) A < 0, then the threshold is ao 2A such that: 

I. a < ao. solutions are spiral arches 

ii. a ao, solutions are circles, centered at 0 

III. ao::; a < 0, sol utions are either flat arches or steep arches 

The results, once again, match with the stated theorem. 
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3.3 The general field 

Recall the model we build in section 2.2, and other essential equations that will help analyzing 

the problems. The Energy Equation gives us a necessary condition, which we derived from 

the Euler-Lagrange equation. Equation (14) expresses the curvature of the curve; a positive 

curvature means a chain, while a negative one gives an arch. The Extremum Equation is an 

additional constraint that we have for ro - the extremum of the curve. Finally, the quantity 

under the square root in equation (16) needs to be non-negative: 

=* 0:
2 r2 (A + V (r ) ) 2 2:: 1 

1 
=* IAr + rV(r)1 2:: iII (32) 

On the other hand, d!.(rV(r)) V(r) +rV'(r) never crosses 0 (because of assumption A-V), 

while rV(r) itself approaches -00 and 0 as r goes to 0 and 00, respectively. As a result, 

V(r) + rV'(r) must be positive, and in particular rV(r) is strictly increasing. Furthermore, by 

assumption A-V that V(r) + rV'(r) is strictly decreasing, we deduce that for any constant A, 

if A is greater than or equal 0, A + V(r) + rV'(r) remains positive on [0,00[; and if A is less 

than 0, A + V(r) + rV'(r) has exactly one zero. Hence, Ar + rV(r) is strictly increasing if A is 

non-negative, and has exactly one extremum otherwise. 

Additionally, assumption A-IV ensures that the function Ar + rV(r) approaches -00 as r 

goes to 0, and is asymptotic to Ar as r goes to 00. 

With these observations in mind (which will become very essential in future discussions), let 

us now consider different cases of 0: and A as in the previous section. 

Case 1: The case of chains, or 0: > 0 

Since V(r) is always negative. we deduce from the Energy Equation that A must be positive. 

Therefore, Ar+rV(r) is strictly increasing as discussed above. In the plane (r, Ar+rV(r)), the 

function Ar + rV(r) then has two asymptotes: the vertical axis and the line Ar, (see Figure 8). 

Inequality (32) translates into two inequalities: 

{ 

Ar + rV(r) 2:: ~ 
=* or 

Ar + rV(r) ~ -~ 

By the monotonicity property of Ar + rV(r), the first inequality will give a minimum for r, 

whereas the second will give a maximum (which we ignore because we are in the case of 
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).,r + rV(r) 

1 
Q 

r 

1 
Q ••••••••••••.••.•••••••••••••••••••••••••••••••••••••••••••.••.•••••••••••.•• 

Figure 8: In general potential, )., > 0 

chains). Furthermore, there will be exactly one value of r = r +, which solves the Extremum 

Equation. We have ).,r++r+V(r+) =~. For all r ~ r+, the first inequality is satisfied. ro r+ 

is the extremum of the curve. 

Additionally, )., can be expressed as: 

Consequently in the first quadrant of the (a,).,) plane, we have an iso-ro-line, for every given 

level of r +, (see Figure 4). 

Case 2: The case of arches, or a < 0 

Case 2.1:)" 0 

With a similar discussion as in the previous case, we also obtain a qualitative picture for 

).,r + rVer). However, since)., = 0, we are left with rVer), which is strictly increasing and is 

asym ptotic to both axes. 

Inequality (32) then reads: 

{ 

rV(r)::; 1 
or Q 

rVer) ~ -~ 

Since rV(r) is less than 0, the second inequalities can be omitted immediately. The first 

inequality, by the monotonicity property of rV(r), gives a maximum for r. Moreover, we 
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will expect exactly one solution, r _, for rV(r) = i. Fortunately, r _ satisfies the Extremum 

Equation. Thus, we have a steep arch in this case, with r _ being the maximum. 

Now, consider the Delta Phi Equation: 

The maximum angle c.p is: 

=} ~c.pmax = 2 rr - 1 dr 
Jo rJa2r2V(r)2 - 1 

(33) 

Let s = arV(r), then ~: = a(V(r) + rV'(r)). Because V(r) + rV'(r) is positive and a is 

negative, ~~ < O. Hence, we have monotonicity, and can view r as a function of s, which is 

differentiable by the Implicit Function Theorem. 

Therefore, there exists a function g(s), such that r = g(s). Then, r = aV(~(8))' and 

~: = a(V(r) + rV'(r)) implies dr = a[V(g(8))+:(8)V'(9(8))]ds. Substitute in (33), we get: 

~c.pmax = 2 r1 
V(g(s)) ds 

Joo sv"S2=1 [V(g(s)) + g(s)V'(g(s))] 

Substitute s = cosh t, we finally have: 

~ _ 2 roo - V(g(cosh t)) d 
c.pmax - Jo cosh(t) [V(g(cosh t)) + g(cosh t)V'(g(cosh t))] t 

L 2k -VCr) h 
et =: sup V(r)+rV'(r) ' ten: 

rE[O,oo[ 

100 2k 
~c.pmax ~ 2 h( ) dt o cos t 

=} ~c.pmax ~ 2k1f 

Our steep arch, therefore, will wrap around the center at most k times. The entire curve will 

lie within a circle of radius r _. 

Case 2.2: A > 0 

Once again, we will employ the argument regarding asymptotic behavior of Ar + rV(r). 

Since A > 0, Ar + r V(r) is strictly increasing from 0 to 00, and is asymptotic to the vertical 

axis and the line Ar. Therefore, we have a similar picture as Figure 8. 
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Inequality (32) is now equivalent to: 

Ar + rV(r) ::; ~ 

Ar + rV(r) ~ -~ 

By the monotonicity of Ar + rV(r), the first inequality gives a maximum for r, whereas the 

second gives a minimum. There is only one solution r _ to the Extremum Equation, which also 

is the maximum of r for the first inequality. The second inequality is omitted, for its minimum 

allowable value of r does not satisfy the Extremum Equation. Henceforth, we get a steep arch, 

with r _ being the maximum. 

Repeating the discussion which concerns the maximum angle cp, we will then obtain a similar 

result. Solutions to this case are steep arches, each of which wraps around the center at most 

k times and lies inside a circle of radius r _. 

Case 2.3: A < 0 

Behaviors of Ar+rV(r) are significantly different in this case than all previous cases, because 

A is negative. First of all, the graph of Ar + rV(r) lies entirely in the second quadrant, and is 

bounded by the vertical axis and the downward-sloping line Ar. Ar+rV(r) goes to -00 both as 

r goes to 0 and 00. Secondly, we have insisted earlier that A + V(r) + rV'(r) will have exactly 

one zero, which means the graph of Ar + rV(r) will change its direction (from increasing to 

decreasing) exactly one time. Hence, Ar + rV(r) attains a unique maximum at some r*. 

Let ao be a real, negative number such that ;0 = Ar* + r*V(r*). 

!\Jow, let us consider inequality (32): 

Ar + rV(r) ::; ~ 

Ar + rV(r) ~ -~ 

Since AT + TV(r) is negative for all r in this case, the second inequality can be omitted im­

mediately. We are left with only the first inequality. From now on, we will refer to it as the 

Necessary Inequality. 

- If ao < a < 0, or ...L < 1.., then the Necessary Inequality is satisfied for all r. The 
aD a 

Extremum Equation does not have solution. There is neither a maximum nor a minimum for r. 

Hence, we have spirals. 

- If ao = a, or ...L 
aD 

~, then the Necessary Inequality is satisfied for all r ~ r* and all 
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Ar + rV(r) 
r _ r* r r 

Figure 9: In general potential, A < 0 

r ~ r*. The Extremum Equation is satisfied at r = r*. Consequently, a solution must attain 

both its maximum and minimum at r = r*. Hence, a solution is a circular arch of radius r*. 

- If a < ao, or ~ < do' then we consider the equation Ar + rV(r) = ~ in two separate 

intervals ]0, r*] and [r*, 00[. In the first interval, Ar + rV(r) increases continuously from -00 to 

.l. Thus, there must exist uniquely r _ such that Ar _ + r _ V(r _) = 1, Similarly in the second ao a 

interval where the function decreases continuously from ao to -00, there must exist uniquely 

r + such that Ar + + r + V (r +) = ~. 

The Necessary Inequalities, therefore, becomes equivalent to: 

The first inequality gives steep arches, whereas the second gives flat arches. Both r _ and r + 

satisfy the Extremum Equation, and hence are the maximum and minimum of r, respectively. 

The maximum angle <p (for both cases) is estimated through a similar calculation as it has 

been done when A O. The expressions of ~<Pmax are: 
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After substitutions, we get: 

D.iflmax 
2 roo [,\ + V(g(cosh t))] dt 

Jo cosh(t)['\ + V(g(cosh t)) + g(cosh t)V'(g(cosh t))] 

100 2k 
D.iflmax ::; 2 h( ) dt o cos t 

Our arches, therefore, will wrap around the center at most k times. A flat arch will lie outside 

a circle of radius r +, whereas a steep arch will lie inside a circle or radius r _. 

Overall, the results in different cases of Q give us exactly what Theorem I has stated. We, 

therefore, have completed proving the theorem. 
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4 Exotic Arches 

At the beginning of section 3 where we distinguished between cases according to the signs of a, 

we mentioned the possibility of exotic arches. This type of solutions. however, has not appeared 

in our analysis so far. In this section, we will examine the potential V(r) In r. and see that 

it can produce exotic arches. It is clear that In r does not satisfy assumptions A-IV and A-V; 

the potential however relates closely to the family r~' Indeed, In rand - r~ are both Newton 

potentials (in 2 and n + 2 dimensions, respectively). The analysis can be done similarly. 

The Energy Equation when V(r) = In r is: 

1 r2 
- = (,.\ + In r)--r=;r==~ 
a 

and the Extremum Equation is: 

aro("\ + In ro) 1 

The necessary condition (which comes from equation (16)) is: 

- If a is positive, we have chains. 

1 
Ir("\ + In r)1 ~ 

- If a is negative, we have following inequalities: 

{ 

r("\ + In r) ~ _ 
=> or Q 

r("\ + In r) :::; ~ 

A further study will show that the first inequality gives flat arches. However, we are interested 

in the second inequality at the moment. 

Consider the function r("\ + In r). which equals to 0 at r 0, and which diverges to 00 as 

r 00. Solving for r* (where r("\ + In r) reaches its extremum) we have: 

d 
dr r (,.\ + In r) ,.\ + In r + 1 0 

Therefore, r("\ + In r) has a unique extremum at r* (see Figure 10). 

r*("\ + In r*) = 1 
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rlnr 

r 

Figure 10: In the potential V(r) In r 

Apply the second inequality above, we have: 

- If < a, there is no solution. 

If _eA+1 = a, a solution has both maximum and minimum at r = r*. Hence, solutions 

are circle of radius r*, centered at O. 

- If a < _eA+1, then a solution has a maximum at some r +, and a minimum at some r_. 

Hence, we obtain an exotic arch. 

Consider the last case, when a < _eA+1. The angle that a solution covers when going from 

a minimum to the closest maximum reads: 

(34) 

Before continuing to analyze the above expression, we consider the following lemma. 

Lemma I: 

Consider the problem as described in Theorem 1. If r : cp ~ r( cp) is a solution of the 

problem, corresponding to the pair (a, ).,), then Y k #- 0, there exists a pair (a, ~) such that 

kr(cp) satisfies the Euler-Lagrange Equation (11), as well as the Energy Equation (12). 

Proof: Let a = f and ~ )., -Ink. D 

With Lemma I, it is now without loss of generality that we can assume)., ° in equation (34). 

The equation then reads: 

(35) 



4 EXOTIC ARCHES 32 

The integrand is finite everywhere, except at the limits r _ and r +. Thus, whether or not the 

integral is finite depends solely on the behaviors of the integrand near the two limits. We will 

now prove that the integral always remains finite. 

Let h(r) = 0;2r2In2r -1. The Taylor Series for h(r) around r_ is: 

= 0 + 0;2r _ In r _ (1 + In r _ )( r r _) + 0 ( (r - r _) 2) 

= 0;(1 + Inr_)(r - r_) + O((r r_)2) 

Since r _ < r* and 0; < 0, the coefficient of the first order term is actually positive. So, when 

we get sufficiently close to r _, it will dominate the rest of the expression. Hence, there exists 

€ > 0, such that \:Ir E (r _, r _ + €), we have: 

1 
2"0;(1 + In r _)(r - r _) < h(r) < 20;(1 + In r _)(r - r_) 

< l:~+'--r===============~ar 

On the other hand, 

lr-+E __ ~======~==~:ar 
r-

which is finite. Hence, J:r-+E J 1 2 dr is finite. 
r_ r a 2r 2 1n r-l 

Similarly, we can write down the Taylor Series around r + for h(r) and show that 

is finite. Consequently, t::..<p is always finite, regardless of 0; (and A). 

Furthermore, with the assistance of the software package Mathematica, we have estimated 

equation (35) numerically, with a wide range of 0;, The preliminary result indicates that t::..<p is 

bounded between ~ and 1r. Then: 
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~~.~~ ....................•.. 

..,.,.-;;:'Ji tali ve 
........... picture-

................................. not to scale! 

Figure 11: A ten-petal exotic arch 

- For a value of /::;".r.p that is an irrational multiple of 7r, a solution, which lies outside a circle 

of radius r _ and inside a circle of radius r +, will wrap around the center infinitely many times. 

- Otherwise, let /::;".r.p = ~7r, with (p, q) = 1. Tracing a solution in this case from its minimum 

to the next minimum, we get an angle of 2/::;".r.p, because we are still in a rotationally symmetric 

potential. (When going from minimum to minimum, the solution will draw a shape, which will 

be called a petal.) Now, starting at a minimum and following the solution in one direction, 

either clockwise or counter-clockwise, we then come back to the starting point after covering 

the smallest angle that is a multiple of 27r. Consequently, a solution will go from minimum to 

minimum q times, and create exactly q petals. The angle it covers is then 2p7r, which means it 

wrap around the center p times. An example is /::;".r.p = to7r, which is depicted in Figure 11. 

To sum up, by studying the potential V(r) = In r, we have showed a possible behavior of 

solutions, which we did not see in earlier study. Accordingly, we obtain exotic arches, which 

will be bounded from both above and below. Each solution of this type will lie inside a circle of 

radius r +, and outside a circle of radius r _; furthermore has multiple extremums (as opposed 

to a unique extremum in previous cases). 
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5 Conclusion and Outlook 

In this paper, our main objective was to find qualitative behaviors of a hanging chain in a general 

rotationally symmetric potential. By first discussing the problem in the regular gravity, -~ and 

fz potentials, we have stated and proved Theorem I, which answers our initial question. 

Furthermore, by basing our research on the paper by Denzler and Hinz, we have generalized 

parts of the method by studying qualitative behaviors of solutions to the Euler-Lagrange equa­

tion. The question of uniqueness for the boundary problem with a constrained length, however, 

was done explicitly for the: potential in [1], and the argument there hinged on the explicit 

calculation. A generalization of this uniqueness problem to more general potentials, using quali­

tative methods, inspired the present work. In future research, one can study this question, using 

our paper as a starting base. The understanding of the case diagram should help in looking for 

any kind of monotonicity results that could be used in such a pursuit. 

The assumption A-V of Theorem I, in particular, was designed to give us the monotonicity 

of the expression Ar + rV(r), which then ruled out the possibility of exotic arches. As a 

consequence, the case diagram was simple and clear, and was filled with iso-ro-lines. In the 

absence of assumption A-V, such as when V(r) = In r, chapter 4 shows that exotic arches 

enter. Mixed monotonicity behaviors of Ar + rV(r), as in V(r) In r fz, would make our 

case distinctions much more complicated. 

Now, with a general potential that satisfies all five assumptions of Theorem I, we immediately 

have a case diagram as in Figure 7. By specifying, e.g., the boundary conditions, one can shift 

along any corresponding iso-ro-line and examine the changes in the length of the chain. From 

there, one can hope to derive a conclusion about the uniqueness for the boundary problem. 

We, nonetheless, rest our study at this point. 
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