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Bachelor of Science 

A Compilation of Undergraduate Research 

Nicholas S. Boatman 

May 2,2007 

1 Preface 

This work contains research that I have performed during my tenure as an un­
dergraduate at the University of Tennessee. It contains two unrelated projects: 
"'On Collections of Sets of Prescribed Cardinality with Pairwise Intersection of 
Prescribed Cardinality'" and" 'Redheffer's Matrix and the Riemann Hypothe­
sis." 1 The first work, combinatorial in nature, is a presentation of original results 
regarding the maximum size of a collection of n-element subsets of {I, "" k} any 
two of which intersect in exactly j elements. The latter work, produded in the 
Research Experience for Undergraduates programs at Louisiana State University 
in summer 2004, describes an equivalent formulation of the Riemann Hypoth­
esis, which is widely considered one of the most important open problems in 
mathematics. 



On Collections of Sets of Prescribed Cardinality 
with Pairwise Intersections of Prescribed 

Cardinality 

Nicholas S. Boatman 

May 2,2007 

1 Introduction 

For integers 0 :; j < n :; k, we will refer to a collection of sets as a (k, n, j) 
collection if its members are n-element subsets of [k] := {I, ... , k} such that any 
two intersect in exactly j elements. Let N(k, n, j) be the maximum cardinality 
of a (k, n,j) - collection. Although we discuss the relationship between Nand 
the Hadamard conjecture, our purpose is simply to investigate the behavior of 
N. 

2 Bounding N 

Given a sequence H = (HI, ... , Hh) of subsets of [k}, we define the h by k 

. r (H)' ( ) h {I, if j E Hi; 01 1 r' b" . matrIX k .= aij were aij -1, if j (j Hi. ear y, k IS a IjectlOn 

between the set of nonempty sequences of subsets [k] and the set of (1, -1)­
matrices with k columns. 

Now, suppose that we have a (k, n,j) collection. We can then arrange the 
members of the collection into a sequence H. Now, each row of rk(H) contains 
n 1 's and k - n -1 'so Moreover, given two distinct rows, there are j columns 
in which both have a 1, 2(n j) columns in which one has a 1 and the other 
has a -1, and k 2{n - j) j columns in which both have a -1. Hence, the dot 
product of any pair of rows is k 4(n j). 

Lemma 2.1. Suppose that there is an h by k matrix A = with entries ±1 such 
that the dot product of any pair of distinct distinct rows is 0: =I k. Then h ::; k 
or 0: = -1. 

Proof. We note that AAT (aij) where aij = { k, 
0:, 

h 

bij = alj - (1 oI,i)aij and Cij = bij + 01,j I:: biu, 
u=2 

if j i; Now let 
if j =I i. 

Now, (Cij) is an upper 



triangular matrix in which one diagonal entry is k + (h -1)a and h -1 entries are 
k a. Hence, det(AAT) = det(cij) = (k+(h-l)a)(k-a)h-l. Ifdet(AAT) = 0, 
then k -a( h - 1). Since this is an equation in integers, with hand k positive, 
we must have h - 1 :::; k. Hence, h :::; k or a -1. On the other hand, if 
det(AAT ) =1= 0, then the map Rh -> Rh : x ~ AAT X is an isomorphism, and 
hence Rk -> Rh : x ~ Ax is an epimorphism. Thus, h:::; k. 

Proposition 2.2. If k =1= 4m - 1, then N(k, n, n - m) :::; k. 

N(4m l,n,n-m):::; 4m. 

o 

Proof. Suppose we have a (k, n, n - m) collection of cardinality h. We form 
a sequence H of length h whose components are the members of this collection. 
Then fk(H) is an h by k matrix with any pair of distinct rows having dot 
product k - 4m. By Lemma 2.1, h :::; k if k =1= 4m - 1, and h :::; k + 1 if 
k 4m 1. 0 

3 The Hadamard Conjecture 

The Hadamard Conjecture is the assertion that, for every positive integer m, 
there is a 4m by 4m matrix with entries ±1 in which any two rows are orthog­
onaL Such a matrix is called a Hadamard matrix. 

Suppose that there is a 4m by 4m Hadamard matrix H. Then multiplying 
any column by -1 will not change the dot product of any pair of rows. Hence, 
we may assume that H has only l's in its first row. We form a new matrix 
HI by discarding the first row. Now, any row of HI must contain exactly 2m 
1 'so Now, there must be exactly m rows in which any two rows of HI both 
have a 1. Hence, fk1(H') is a (4m, 2m, m) - collection of size 4m 1, and 
N ( 4m, 2m, m) ~ 4m 1. Now, by lemma 2.1, the existence of a 4m by 4m 
Hadamard matrix implies that N(4m, 2m, m) = 4m 1. Conversely, suppose 
N (4m, 2m, m) = 4m -1. Then there is a (4m, 2m, m) - collection of size 4m - 1. 
We arrange the members of this collection into a (4m - I)-tuple H and form 
f 4m(H). We then add a the row (1,1, ... ,1) to this matrix. This yields a 4m by 
4m Hadamard matrix. We have shown the following: 

Remark 3.1. The Hadamard Conjecture is true if and only if 
N(4m, 2m, m) = 4m - 1 for every positive integer m. 

Similarly, we can transform every entry of the first row and first column of 
H to aI, and we see the following: 

Remark 3.2. The Hadamard Conjecture is true if and only if 
N(4m - 1, 2m - 1, m 1) = 4m 1 for every positive integer m. 

2 



4 The Behavior of N 

We begin with a general result that will allow us to evaluate N at certain points. 
First, we introduce a set which is necessary for this result. 

{ 

2[n] 2[k]-[n] } 
Let ~h,n,m:= w c 2 x : n CI + IB n DI m = IAI IBI Y distinct (A, B), (C, D) E W . 

Proposition 4.1. N(k, n, n - m) 1 + max Iwl. 
'ilEnk,n.m 

Proof. Let HI, ... , Hh be the members of a (k, n, n - m) collection. WLOG, 
we may assume that HI = [n]. Since IHil nand IHi n HII = n - m for all 
i > 1, it follows that Hi = ([n]- Pi) u Qi for i > 1 where Pi C [n], Qi C [k] 
and IPil = m = IQil. For i =1= j, we have 
n-m IHinHjl = ![n]-(PiUPj)I+IQiuQjl = n (2m IPinPjj)+IQinQjl, 
so III n Pj ! + IQi n Qj! m. 

Thus, {(Pi, Qd : i E [h] I} E flk,n,m. 

Hence, N(k, n, n m) - 1 ~ max Iwl. 
'ilEnk,n,m 

Conversely, suppose {(ll, Qi) : i E [h]} E flk,n,m' Then 
I[n] n ([n] - Pi)1 = n - m and I([n] - Pd U Qil n. Additionally, for i =1= j, 
we have I(([n]- Pd U Qi) n (([n] Pj ) U Qj)1 = I[n] (Pi U Pj)1 + IQi n Qjl 
n-(2m IPinPjl)+IQinQjl = n-m. Hence, {[n]}U{([n]-ll) U Qi: i E [h]} 
is a (k, n, n m) - collection with h + 1 members. 
Therefore, 1 + max Iwl ~ N(k, n, n - m). 0 

'ilEn"',n.Tn 

{ 
n + 1 il 2k > 2n ;::: k > n; 

Corollary 4.2. N(k, n, n - 1) = k n +' 1, il2n < k. 

Proof. Suppose that W E ~h,n.I contains ({PI}, {qI}), ({P2} , {q2}), and ({P3} , {q3})' 
Now, we must have PI = P2 or ql = q2. Suppose, WLOG that Pl P2' Then 
qi =1= q2· Now, if P3 =1= PI P2, then we must have q3 qi =1= q2 = Q3, which is 
impossible. Hence, given W E flk,n,h then W {({p},{qd): i E [h]} for some 
P E [n] and distinct ql, .. ·,qh E [k]- [n] or W {({Pi} ,{q}): i E [h]} for some 
q E [k] [n] and distinct PI, ... ,Ph E [n]. Hence, Iwl ~ max(n, k n). Now, 
we note that {({I} , {i}), i E [k] - [n]} and {( {i}, {n + I}), i E [n]} are in Ok,n,1 

and contain k nand n members, respectively. Therefore, N(k, n, n - 1) 
1 + max(n, k n). D 

Proposition 4.3. Ilk;::: n+m, then N(k,n,n m) = N(k,k-n,k-n m). 

Proof. Let I : [k] -+ [k] : i 1-4 { k . n + i, ~ff ~ ~ n; Clearly, I is a bijection. 
'/, n, I'/,> n. 

Now, if {(Pi, Qi) : i E [h]} E ~h,n,m then {(f(Qi), I(Pi )) : i E [h]} flk,~;-n,m. 
Likewise, if {(Pi, Qi) : i E [h]} E flk,k-n,ml then {(f-l(Qd, 1-1 (~)) : i [hJ} E 

flk,n,m' 

Therefore, by proposition N(k, n, n - m) = 1 + max Iwl = 
'ilEnk.n.m 

1 + max Iwl 
'ilEnk.k-n,m 

N(k,k-n,k n-m) o 
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Corollary 4.4. N(n + m, n, n - m) 1 + l~J. If k < n + m, then N(k, n, n 
m) = 1. 

Proof. 

1 + l~J. 
proposition 4.3, N(n + m, n, n - m) = N(n + m, m, 0) l ntm J 

If k < n+m, then there is no Q C [k]- [n] with IQI 
and N(k, n, n - m) = 1. 

m. Hence, fh,n,m = 0 
o 

Corollary 4.5. N(k, n, n - m) :::; N(k, 2m, m) + 1. 

Proof· For {(Pt, Qi)} E fh,n,m, we note that {Pi U Qi} is a (k, 2m, m)-collection. 
Hence, I \}I I :::; N{k, 2m, m). 0 

In particular, we can show that there is a 4m by 4m Hadamard matrix by 
showing that N(4m, n, n - m) = 4m for some n. The next two results will 
establish that we can show the existence of infinitely many Hadamard matrices 
in this way. The following result uses a classical construction that Sylvester 
developed for constructing Hadamard matrices. 

Theorem 4.6. N(4ml,nl,nl ml)N(4m2,n2,n2 m2)::; 
N(16mlm2, nln2+(4ml-nt)(4m2 nln2+(4ml-nl)(4m2-n2)-4mlm2). 

Proof. Given a (4ml' nI, nl -md-collection of size 9 and a (4m2, n2, n2 
collection of size h, we arrange the members of the collections to form sequences 
G (GIl'''' Gg ) and H (HI, ... , Hh)' Now, we form the Kronecker product 
ofr4m1 (G) (aij) and r 4m2 (H) = (bij ), i.e. the gh by 16mlm2 matrix 
r 4m1 0 r 4m2 (H) (Cij)i~{~:ml where Cij aijr4m2(H) (Note: Cij is a 
matrix, and we consider the entries of this matrix to be entries of 

o r 4m2 (H); the matrix itself is not to be considered an entry). 
Since each row ofr4m1 (G) contains exactly nl ones and each row of (H) 

contains exactly n2 ones, it follows that each row of r 4ml (G) 0r 4m2 (H) contains 
exactly nln2+(4ml-nl)(4m2-n2) ones. We note that any two rows ofr4m1 (G) 
have dot product 0, and the same holds for pairs of rows of (H). Now, 
given two distinct rows of r 4m1 (G) 0 r 4m2 (H), their dot product is given by 

4ml 4m2 
(ailubjlV)(ai2Ubhv) = (I: ailUai2U)( I: bhvbhv ) = 0 since i l =I i2 or 

u=l v=l 
JI 12· Recall that two vectors with k entries each, n of which are ones and the 
remaining k n are negative ones, must have dot product k 4m, where n m 
is the number of components in which both vectors contain a one. Hence, given 
any pair of rows of r 4m1 (G) 0 r4m2(H) there are nln2 + (4ml - nt)(4m2 
n2) - 4mlm2 columns of r 4m1 (G) 0 r 4m2 (H) in which both contain a one. 
Now, rllmlm2(r4ml(G) 0 r4m2 (H)) is a (16mlm2,nln2 + (4ml - nd(4m2-
n2), nln2 + (4ml - nd(4m2 - n2) - 4mlm2) - collection with gh members. 0 

Corollary 4.7. N(4 k,2. + 2k-1, 4k - 1 + 2k - 1) = 4k and 

N(4k,2. 2k - 1 ,4k - 1 _ 2k - 1) = 4k. 
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Proof. This result is a simple induction. First, we note that N(4, 3, 2) = 4 by 
corollary 4.2. Now, if N( 4k, 2 . 4k - l + 2k - l , 4k - l + 2k - l ) = 4k, then 4k+ l = 
N( 4,3, 2)N( 4k, 2·4k - l +2k - l , 4k - l +2k - l ) ::; (4k+l , 2·4k +2k, 4k +2k) ::; 4k+ l by 
theorem 4.6 and proposition 2.2. Now, N(4k,2·4k-l_2k-l,4k-l_2k-l) = 4k 
by proposition 4.3. D 

Although the preceding result does establish the existence of a 4k by 4k 
Hadamard matrix, it is more interesting that it contains information about 
when N(k, *, *) attains a maximum (especially since Sylvester's construction 
can yeild 2k by 2k Hadamard matrices rather than just 4k by 4k). There are (at 
least) two obvious questions that now present themselves. When does equality 
hold in theorem 4.67 What is N(4k, n, n_4k- l ) for 2·4k - l < n < 2·4k - l +2k - 17 

Theorem 4.8. lip is 1 or a prime, thenN(I+p(p+l),p+l,l) = l+p(p+l). 

Proof. By corollary 4.2, N(3, 2,1) = 3. Now, for p prime, we begin with the sets 
{i + jp: i E [PI}U{1 + p(p + I)} for j = 0, 1, ... ,p, and {1}U{j + ip: i = 1, ... ,p} 
for j = 1, ... , p. Now, we note that each of these sets contains p + 1 elements 
and any pair intersect in exactly 1 element. 

Now, the map from the set of words of length p+ 1 in the characters 1,2, ... , P 
to the set of p + I-element sets which interect {i + jp : i E [PI} in exactly one 
element for j = 0,1, ... ,p given by ¢o(/JI ... CPp 1--7 {ip + ¢i : i = 0, ... ,p} is a bijec­
tion. To see this, we note that a set belonging to the range must have the form 
{jp + i j : j = 0,1, ... , p, with 1 ::; ij ::; p}. Now 
{jp + i j : j = 0,1, ... ,p, with 1 ::; ij ::; p} 1---+ ioil ... ip is the inverse of the afore-
mentioned map, showing that it is indeed bijective. 

Now, we may identify permutations of [P] with words of length p in which 
each character 1, ... ,p appears once via the bijection ¢ 1--7 ¢(I)¢(2) ... ¢(p). The 
set corresponding to the word ¢O¢l ... ¢p intersects {I} U {j + ip : i = 1, ... , p} 
in exactly one element for each j = 1, ... , P if and only if ¢o =/: 1 and ¢l ... ¢p 
corresponds to a permutation of [Pl. 

There is a primitive root "( modulo p, i.e., "( is an integer such that "(U == 
l(modp) if and only if p - llu. Throughout the remainder of this paragraph, 
identify each expression in the definition or evaluation of a permutation at a 
point with the member of {I, ... ,p} to which it is congruent modulo p. Now, 
we consider the permutations 15 := (1 "( "(2 ... "(p-2) and a := (1 2 ... p). We 
note that a i1 c5il (t) = a i2 c5h (t) if and only if ail-hc5il-h fixes t. We note 
that ai c5 j (p) = ai(p) = p + i, so ai c5 j (p) = p <=> i == O(modp). Now, let 
o ::; i ::; p - 1, 0 ::; j ::; p - 2 and note that a i c5 j ("(X) = ,,(j+x + i. But 
"(j +x + i = "(x <=> "(x ("(j -1) = -i. Since the powers of"( generate {I, 2, ... , p - I}, 
it follows that "(x("(j - 1) = -i has a unique solution x E {O, ... ,p - 2} if i =/: 0 
and j =/: 0, while there is not a solution if i = 0 and j =/: 0 or if i =/: 0 and j = o. 
Hence, if 0 ::; iI, i2 ::; P - 1 and 0::; jl,12 ::; p - 2 with (il,jd =/: (i2 ,12), then 
a i1 c5il (t) = ai2 c5h (t) holds for exactly one t E [1 + p(p + 1)] unless i l =/: i2 and 
jl = 12, in which case there is no solution t. 

Thus, the sets {i + jp: i E [PI} U {I + p(p + I)} for j = 0,1, ... ,p, and {I} U 
{j + ip : i = 1, ... , p} for j = 1, ... , p, together with the sets corresponding to the 
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words (j + 2)a i oi (I) ... aioj (p) for i = 0, ... ,p 1 and j 0, ... ,p - 2, form a 
(1 + p(p + 1),p + 1,1) collection with 1 + p(p + 1) members. 

Now, N(1 + p(p+ 1),p+ 1,1) = 1 + p(p+ 1) if 1 +p(p + 1) =1= 4p-1. We 
note that 1 + p(p + 1) = 4p 1 {::} P = 1 or p = 2. But N(3, 2,1) 3 as above, 
and N (7, 3, 1) ::; 7 by the remarks in section 2. 0 

The preceding result gives us a way to construct collections of sets in 
which any pair of sets intersect in exactly one element. Perhaps similar methods 
will work for the construction of a large collection of sets which intersect in 
exactly j > 1 elements. We can also ask how important primality is for the 
construction of large collections of sets that intersect in exactly one element. 

6 



REDHEFFER'S MATRlX AND THE RIEMANN 
HYPOTHESIS 

NICHOLAS S. BOATMAN 

ABSTRACT. In this paper, we "ill show that the determinant of the 
Redheffer Matrix is equal to Mertens' function, M(n). From this, it will 
follow that the Riemann Hypothesis is true if and only if 

llf(n) = O(nt+t). 

1 

First we define several functions and the Redheffer matrix. The Mobius 
function is 

/1(k) = { ~~ l)t, 
if the square of a prime divides k 

if k is square-free with t prime divisors. 

Mertens' function is 
M(x} = Lf'(k) 

The n by n Redheffer lnatrix is 

where 

ai' = {I, ifj=l or i I j 
, 0, otherwise. 

We also find it advantageous to introduce another matrix. Define Rn (k) 
to be the (n - 1) by (n - 1) matrix fonned by deleting column 1 and row k 
of An. Thus: 

where 

{

I, if i I j + 1 and i < k 

rij 1, if i + 1 I j + 1 and i ~ k 

0, otherwise. 

Theorem 1.1. f-l(k) = (_l)k-l. det(Rn(k)) 

The LSU Research Experience for Undergraduates Program is supported by a National 
Science Foundation grant, DMS-0353722 and a Louisiana Board of Regent Enhancement 
grant. LEQSF(2002-2004)-ENH-T-17. 
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Proof. We now form a (k - 1) by (k - 1) sub matrix, Sn{k) using the first 
k - 1 rows and columns of Rn (k ) , noting that R,I (k) is upper triangular 
everywhere else. We will now perfonn row and column operations all Sn(k) 
to make it upper triangular. 

We note that Sn(k) = (sij) where 

{
I, if i I j + 1 

8ij = 0, otherwise. 

Now, for each row i such that Si(k-l) = 0, we use the row operation 

row(rn) - row (i) H row(m) 

for every m I i, m < i. We begin the process with i = k - 2 and end with 
i = 2. 

These row operations yield a new matrix S~ (k) = (s~j) where 

(

1, if i = j + 1 

S~j = 1, if j + 1 I k and i I j + 1 
0, otherwise. 

V'le will use row and column operations on S~ (k) as follows. For each 
proper divisor N #1 of k (in order of decreasing number of prime factors») 
if s'N,k-l = q 1= 0, use the column operation 

column(k - 1) - q. column(N - 1) H COIUIDll(k 1) 

If s~(k - 1) = 0, use the row operation 

row(m) - row{N) t-+ row(m) 

for each proper divisor m of N. 
Now suppose 

t 

k = I1Pa 
0=1 

Let Ni the be the set of factors of k consisting of i prime factors. Now, 
suppose sN.k-1 = qi for each N E Nj, after all column operations involving 
the product of more Ulan i primes have been performed. Each M E Nj 
divides exactly (:=~) members of Ni. So, 

qj 1 - I.: (! = ~) . qi 
i=j+l 3 

Now, we will show inductively that 

{ 
1, if i is odd 

qt-i = 
-1, if i i.., even. 
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We suppose that our claim is true 'Vi = 1,2, ... ,j. Then, 

t-I ( j + 1 ) 
qt-j-I = 1 - ,L, . + 1 _ t + i . qi 

t=t-J J 

~ (j + 1) (i + 1) . = 1- {;r ·qt-j-l+i = 1 + j . (-1) + ... + 1 . (-1)1 

q'-j-l = t (i ~ 1) . (_l)i = (1-1)j+l - (_l)j+l = (-l)j 
i=O t 

Sat for t odd, we have qo = 1 and for t even, qo = -1. After performing 
k - 2 row switches, we obtain an upper triangular lnatrix, and 

Thus, 

det(Rn(k)) = {{-1)k-2, if t is odd 
(_l)k-l, if t is even. 

(_l)k-I . det(Rn(k» = {I, if.t is .even 
-1, If t IS odd. 

In the case where k has t distinct prime factors but is divisible by the 
square of sonIC prime, we consider 8:t (k) and note that 

t 

row(l) = L L (-1)9-1row(v), where v is square-free. 
9=1 ulk with 

9 prime 
factors 

Thus, det(Rn(k» = 0 if k is divisible by the square of a prime. 0 

Corollary 1.2. det(An} = Al(n) 

Proof. We evaluate det(An) using expansion by minors along the first col­
umn, and the result follows immediately from Theorenl 1.1. 0 

Lemma 1.3. Mobius Inversion Theorem: 

II F(n) = L I{d), then f(n) = LJJ(d)F(J) 
~n ~n 

Corollary 1.4. For integers n > 1, 
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Proof. Take the function 

f (d) = {1, if d = 1 
0, otherwise. 

Then we define F(n) 1 so that 

1 = F(n) = Lf{d) 
din 

From the :Nlobius Inversion Theorem, it follows that 

fen) = L J.'(d) = 0 
din 

for n > 1. 

Theorem 1.5. 

_1_ = f: J.'(n) when ~(s) > 1 
«s) n=1 n

8 

Proof. Using Corollary 1.4, we see that 

00 1 
L NS LJ.'(d) = 1 
N=l diN 

Let lV = mn. We have 

o 

~ ~ "JL(d) = ~ ~ IL{n) = (~_1 )(~ .u(n» = «s). ~ /-len) 
L..t Ns ~ L..t ~ (mn)5 L..J m S L....J n 8 ~ n 5 
N=l dIN m=1 n=1 m=1 n=1 11=1 

where ?R(s) > 1. 

Henceforth, all results are given by Titchmarsh in [Til. 

Lemma 1.6. Let 
00 

L aft ) /(8) = - (a > 1 
n 8 

n=l 

where an = O(,p(n)) for non-decreasing ,pen) and 

~ lanl = O( 1 ) 
L....J n 5 (a - 1)0 
n=l 

asO'-tl. 

o 

Then if c > 0, 0'+ c > 1, x is not an integer, and N is the closest integer 
to x, 

an 1 lC+iT x tIJ 
XC ,,- = -2 • !(s+w)-dw+O(T( 1)0)+ ~ n 8 'Tn'T W 0' + c -n<x C-I 
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O( tjJ(2$ )$1-0' log X) + O( t/J(N)x1- a 
) 

T Tlx-NI 
Proof. First~ note that h( w) := ~ (i )tLl has only onc singularity, occurring 
at w = O. In fact, 

00 

hew) = L: (logm+l ;) . wm 

m=-l 

so that Res ( h} 0) = 1. 
By the residue theorem, 

2
1. [ hew) dw 1 
1(1, 1,,( 

where [ is a positively oriented, piecewise smooth closed curve containing 
w = 0 in its interior. In particular, we take "Y to be the rectangle with 
vertices at z - iT, z + iT, c - iT, and c + iT with z < O. 

Now, we note that' ZljT(~)Z±iTI < < 1!1 where n < x. 
Thus, 

li Z-iT hew) dwl ~ iZ~iT Ih(w)! dw ~ iZ~iT _,I, 2T
,z1 

-4 0 as Z -4 -00 

z+iT z+IT z+.T Z 

It follows that 

1 l C

-

i1
' l c

+
iT l-oo

+
iT 

-.( + + )h(w)dw = 1 
21ft -oo-iT c-iT c+iT 

Now, we use integration by parts and see that 

l c+iT [ (£)W ] c+iT 1 jC+iT 1 x 
h(w)dw= n +-- -(-)Wdw 

-oo+iT w log(~) -oo+iT log(~) -ooHT 11]2 n 

But, 

11
c
+

i7
' h(to) dwl < lc+iT I hew) I dtlJ < l C

+
iT 

(:: )9?(w)_l_ dw 
-oo+'T w - -oo+iT W - -oo+iT n Iwl2 

l
c (X)c du (X)ClOO du 

< -00 ~ u2 + y2 < ~ -00 u2 + y2 

It follows that 

l
C

+
ZT 

h(w)dw = 0 ( (:rx) 
-oo+iT T log (n ) 

Likewise for f~;'~iTh(w) dw. 
Therefore, 

(1) 1 l c+t
"1' ( (X)C ) -. h(w)dw=1+0 n x 

211"t c-iT T log (n) 
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When 11. > X, we use 00 in place of -00 and obtain 

(2) 1 l c
+

iT 
( (X)C ) h(w)dw = 0 n x 

c-iT Tlog (r;) 

since h has no singularities in the region in question. 
We multiply both sides of equations (1) and (2) by ~ and sum over all 

n. This yields 

- s+w -dw= -+0-1 l c
+

iT 
XW an (xc 00 Ian I ) 

27ri -'T f( ) tv L 11.5 T L. nU+C Ilog (~)I 
C I n<x n=1 n 

If n < ~ or n > 2x, then Ilog ~ I > log2. So, 

~ lanl _ 0 (~ lanl) _ 0 ( 1 ) 
nZi'or nU+c Ilog ~I - ~ nU+c - (0' + C -l)n 
n>2x 

If N < n ::s: 2x! take 11. = N + T. It follows that 

n N +1' 
log- > log--

x - N+! 
2 

Since r ~ 1, log Zli ~ log (1 + 2.J+l)· 
So, there are A, B > 0 so that log i > t > ~. 
Thus, 

'" lanl < '" x lanl = 0 (t/J(2X)X1-U-C '" ~) 
L.-J nU+C 10 ~ L.-J n U+c Br L.-J r 

N<n$.2x I g n I N<n$.2x l::;r::;x 

= 0 (1jJ{2x)x1- U
-

C log x) 
Likewise, if ~ ~ 11. < N 1 then 

log ~ > log =- = log (1 + x - N) 
n N N 

So, 

lanl _ 0 (,tP(N)x1
-

q
-

C
) 

L nU+C liog ~I - Ix - NI 
i$.n<N n 

Combining these asymptotic formulas for all n, we obtain the desired 
result. 

o 

Now, we shall assume the Riemann Hypothesis to be true. With this 
assumption, the Lindelof Hypothesis follows. 
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Lemma 1.7. (Lindelof Hypothesis) l-Ve have both 

(0" + it) = O(t() 

and 
1 _ O(t() 

«0" + it) -

'V€>O as t~oo 

Theorem 1.8. If the Riemann Hypothesis is true, tlten 

_1_ = fJj(n) 
«8) n=l n

S 

converges lOfO all 0" > ~. 

7 

Proof. We will apply Lemma 1.6 with an = Ji(n}l 1(8) = «~'i)' c = 2, and x 
half an odd integer. It follows that we can take a 1, and 1,b(x) = 1. Since 
we have assumed the Riemann Hypothesis, we note that 

XW 

w·(s+w) 

has only one singularity in " occuring at tv = 0 and its residue is ds>. 
So, we note that 

1 XW d 1 
7 W· «(s + w) w = «8) 

where i is the rectangle with vertices 2-iT, 2+i1\ ... _rT ...... _n __ q 

where 0 < 5 < (j - !. 
So, 

1 12
+

iT 
XW dw + 0 (x2) 

2-iT W· (s + tv T 

where we eliminated two O-terms because they are each snuiller than the 
one included. 

Proceeding, 

=~. (1~-a+o-iT+1!-o+tS+.iT+12+iT .) __ xw__ 1 (x2) 
2 dw+ I"(s) +0 T 

1H 2-i1' t-u+h'-iT j-a+8+iT tv • ';, 

The left and right integral;:; are each 

o (Tf
-

l Z2 XU au) = 0 (T£-lx2) 
it-0'+6 

llsing Lemnla 1. 7. 
The middle integral is 

o (x~-"+<I i: (1 + ItW-1 dt) = 0 (x~-"+6T') 



8 i\'1CHOLAS S. BOATMAN 

So, 

We take T x3, and the O-terms become 0 (x-I), 0 (x3(;-I): and 

o (x!-0'+5+3f). 
Since each exponent is negative for e small, each O-term goes to zero as 

x ---). 00. 

Thus, 

~ Jl(n) = _1_ 'V 1 
~ n S «(8) 0' > 2' 

Since we have assumed that ( has no zeroes for 0' > ~, t.he sum must 
converge. 

o 
Theorem 1.9. 

If f: ft~~) converges 'II a > ~ then the Riemann Hypothesis is true. 
n=! 

Proof. If the sum converges for all a > ~, then it converges uniformly in the 
same region. Thus, it is analytic. Since it is analytic and is ds} for a > 1, 

it must be for a > 4. The Riemann Hypothesis follows immediately. 
o 

Theorem 1.10. If the Riemann Hypothesis is true, then M(x) = 0 (X!+f) 
for all f > O. 

Proof. \Ve take an = Jl(n), 1(8) = «~)' c = 2, and x half an odd integer in 
Lemma 1.6. Now, we take s = 0 and 8 > O. Thus, we have 

M(x) = ~ r2+iT 
XW dw+O (x2) = 0 (x2)+0 (T f x!+5) +0 (x2T 1- f

) 

21r,12-iT w· «w) T T 

by logic that is almost identical to Theorem 1.8. 
Taking T = x 2 , we obtain 

l\1(X) = 0 (xt+6+2£) + a (~). 

Since € and 8 can be any positive numbers, it follows that M(x) = 0 (X~+E) 
for all f > O. 

o 
Theorem 1.11. If M(x) = 0 (X!+E) for all € > 0 then the Riernann 

Hypothesis is tnle. 
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Proof. Since M(x) = 0 (x~+(), there exist real numbers c, k such that 

Ilv/(x)1 ~ c· x!+! V X ~ k. We may write 

~ JJ(n) = "JJ(n) + " JJ{n) . 
L.. nS L.J n8 L-.t n8 
n=l n<k n~k 

Clearly, the finite sum converges, and 

E IJ~~) = 0 (n!+E-U) 
n!::k 

But we may take a = l + 0 for some c5 > O. Then we have 0 (nE
-

6). 

Since this must hold for all positive €, we take f < c5 and the O-terms -1 0 
asn-+oo 0 

Corollary 1.12. Tile Riemann Hypothesis is true iff det(An) = 0 ( n!+t) 
for all € :> O. 
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