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Overview 
Challenge: 

Test Track: 

Approach: 

FedEx has three flights about to leave from Memphis. One will 
depart in 3 minutes, one in 4 minutes, and the last in 5 minutes. 
Twelve FedEx packages must be loaded correctly on the three 
planes before they depart. 

The airport ramp area is represented by a sheet of plywood. 
Package-sortingfloading vehicles start from its parking space (a 
square painted in one corner of the ramp) upon a verbal signal 
that begins each round of the competition. 

A package stacking chute consisting of a triangular FedEx 
mailing tube positioned vertically over one corner of the board is 
filled with 12 "packages." Barcodes affixed to each of the 
packages indicate the plane onto which it should be loaded. 

The airplanes are represented by cardboard boxes with open tops . 
They are placed on the ramp in a configuration similar to that 
shown in the ramp layout drawing. 

An autonomous package loading robot will extract packages, one 
at a time, from a stack inside the package chute. As each 
package is removed from the bottom, the next package drops into 
position onto the ramp surface until all packages have been 
selected. The order of the packages coming from the chute is 
unknown to the robot for each round. 

The robot will read the barcode affixed to each package to 
determine the airplane onto which it should be loaded. Each 
plane has four packages assigned to it. It is left to each team's 
design strategy how to optimally get the packages onto the 
correct airplanes. Examples include pre-sorting, loading each 
package in turn on the correct plane, etc. 

Points will be awarded for the timely and accurate loading of 
packages and deducted for errors or damage. 
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Competition Rules 

Ramp: 

1. The board is 3/4" plywood, cut into a 4' x 4'square. 
2. The board's surface is painted black, while all markings on the board are painted 

white. 
3. There is a statting square 8" x 8" in one corner, into which the robot must fit at 

the start and finish of each round. 
4. Rectangles are painted to represent airplane parking spots, slightly smaller (S" 

wide by 11-112") than the size of the airplanes. 
S. Lines lead from the starting square to the package stacking chute and to the 

planes. 
6. There is a "positioning mark" perpendicular to the lines leading past each plane 

which is aligned with the end of the plane. 
7. There is a large unmarked area to the side of the package chute which may be 

used by a team at its discretion for additional working room. 

Planes: 

1. Airplanes are represented by cardboard boxes measuring 6" wide by 12" long by 
3" high, and can be made by cutting a 6" x 6" x 12" box (such as OfficeMax item 
# 172873) in half. 

2. The boxes are left open on top. 
3. Although a plain brown cardboard box is described, the actual boxes used may be 

of any color. 
4. The airplanes are numbered 1, 2, and 3 and will be positioned over their 

corresponding rectangles painted on the ramp. The planes will not be identified in 
any way with their number. 

S. The boxes will not be affixed to the ramp other than by gravity. 
6. Airplane 1 leaves three minutes after the start of the round. Airplane 2 leaves four 

minutes after the start. Airplane 3 leaves five minutes after the start. 
7. At the time of departure for each plane, it will be physically removed from the 

playing field. 
8. Planes must be loaded from the "loading zone" side of the plane. This is the side 

of the plane closest to the starting square side of the board. (This is depicted in the 
drawing showing the board layout but is not painted on the actual ramp.) 
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Packages: 

1. Packages are cut from a length of dimensioned #2 pine lumber nominally 2" x 4" 
(approximately 1-1/2" x 3-1/2") cut into twelve blocks each 2-1/8" long. (Save 
the rest of the board.) Edges may be sanded for smoothness, but will not 
materially change the overall dimensions of each block. 

2. The blocks may be painted any color or left in the natural finish of the wood. 
3. Each package will have a barcode label on the top and on the front (side facing 

the robot) as delivered by the chute. Both labels are oriented parallel to the long 
edges of the package. 

4. Barcode labels will be white with printing in black. 
5. The barcode format is Codabar. Registered teams will receive a sheet of actual 

labels for project development. 
6. There are a total of twelve packages in a round, four of which are designed for 

each plane. 

Robot: 

1. The robot must be a single autonomous device. 
2. It may not separate into multiple units. 
3. The maximum starting and ending size of the robot is 8" wide by 8" long by 12" 

high. 
4. Upon starting, the robot may expand to a maximum size of 14" wide by 14" long 

by 20" high. 
5. Upon completion of the round, the robot must again be no larger than 8" wide by 

8" long by 12" high 

Package stacking chute: 

1. The package stacking chute will consist of a triangular "FedEx Tube" measuring 
nominally 6" on each side and fastened vertically in one comer of the ramp. 

2. Both ends of the tube are open, which requires cutting the flaps off to an even 
edge on all three sides. Cut the tube to half its length. (This is more easily done 
before assembling the tube .) (Be careful when gluing the overlapping sides of the 
tube together so that the finished interior dimension along that side is sufficient 
for the packages to fit snugly, but with enough tolerance to slide down the chute! 
Careless assembly can result in inconsistent overlap, causing binding or slop in 
the completed chute.) 

3. The lower end of the chute is between 1-3/4" and 2" above the ramp surface. (To 
fix the tube in this position, cut the remaining length of 2" x 4" lumber in equal 
lengths and fasten (staples recommended) onto two sides of the tube. The 
fasteners should be from the inside of the tube into the wood. (Do this before you 
glue the tube into its triangular configuration.) Mount the wooden supports to the 
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ramp using four 1-112" x 1-112" corner brackets and sixteen #8 x 3/4" flat-head 
wood screws. 

4. The chute will be loaded with twelve packages for each round. The order of the 
packages will be the same for every robot in a round, but it will be different in 
each round. (The easiest way to load packages into the chute and maintain the 
same orientation is to insert a stick, longer than the chute is high, against the side 
that the robot will approach. Insert each package between this stick and the side, 
pressing down just enough to move the stack of packages a bit farther down the 
chute. Do not let the packages drop to the bottom on their own. By maintaining 
pressure against the stack with the stick, you can hold the entire stack of packages 
in position until the last one is loaded, at which time you ease off the pressure to 
allow the entire stack to slowly drop to the bottom of the chute.) 

Administration: 

1. To qualify for the contest, a robot must extract one package from the loading 
chute, allowing the next package to fall from the shoot onto the ramp. A team will 
be given up to three rounds to qualify, with each round lasting two minutes. 

2. The starting and ending size of the robot will be confirmed for each round by 
placing a box over the robot. Each team will perform the measurement of its own 
robot under the supervision of the Contest Committee. The measuring box must 
touch the board surface on all sides. 

3. All robots competing in a round must be positioned in a holding area prior to the 
beginning of that round. Electric power will be available. While it may be 
powered, charging, or turned off while awaiting its run, a robot may not be 
touched by the team until its allotted start time. It will be returned to the holding 
area until that round is completed by all robots competing in that round. 

4. No programming of the robot will be permitted once the order of the packages has 
been revealed for a round. 

5. An audible signal (the word "GO") will be given by the Contest Committee to 
start 
each round. Simultaneously, the timing will begin. Upon this starting signal, each 
team will manually activate its robot. 

6. The robot will return to the required dimensions and turn on a blue LED to signal 
the completion of its round. 

7. Elapsed time will be recorded from the starting signal until 
a. the robot signals completion or 
b. a time limit of 6 minutes has expired. 

8. If the robot runs off the board, a time of 6 minutes will be recorded. 
9. If a team picks up its robot prior to the completion of its autonomous round, a 

time of 6 minutes will be recorded. 
10. If the robot does not return to the required dimensions at the completion of its 

round (either by signaling or by elapsed time), a time of 6 minutes will be 
recorded. 

11. The order of competition for each round will be randomly determined. 
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Scoring: 

I. Each robot will compete in three rounds. 
2. The maximum number of obtainable points for all three rounds is 300. 
3. Points are awarded as follow: 

a. 8 points for each package placed on the correct plane by its departure time 
b. All packages have the same point value. 

4. Points will be deducted as a penalty for each occurrence of the following: 
a. Bump a plane enough to move it out of position (white rectangle visible) -

minus 12 points 
b. Package loaded on the wrong plane - minus 2 points 

5. Packages must be "on" an airplane at the time of its departure to count. If a 
package once loaded falls out of the plane, it is considered left on the ramp and is 
not scored. 

6. If the robot leaves the board, its round ends. 
7. If a plane is bumped, it will be manually repositioned once the robot leaves the 

vicinity of the plane. 
8. The total time elapsed for each of a robot's three rounds will be used in the event 

of a tie, with the faster robot winning. 
9. If a robot damages a package so that it cannot be re-used, we will be upset. 

However, any robot that can mangle a block of wood is not one we would want to 
have mad at us, so no points will be deducted. 
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Chassis 

In the design of the chassis we had to first determine what material we wanted to 

build our robot with. Many options were available and we researched them through 

various sources including department professors , vendors, and the Internet. Two main 

possibilities had our focus, aluminum sheets and expanded PVC board. Aluminum was a 

viable option because it could be cut and shaped into whatever form we needed it. It was 

strong, somewhat lightweight, durable, and it looks great. On the other hand we 

evaluated expanded PVC board. Expanded PVC board is strong enough for our purposes 

due to its high stiffness, especially the thicker pieces, it is extremely lightweight, and it is 

durable . It is resistant to both moisture and many chemicals. It is also easily shaped and 

Figure 1: Sintra Board 

cut. The board can be shaped much like wood. Bending of 

the board is also possible by boiling the board for 10-15 

seconds. After boiling the material is malleable, and will 

harden when cooled. Probably the biggest advantage of 

expanded PVC board however, is the low price . We were 

able to buy a 12"x12" board for only $4.49. For these 

reasons, we decided upon the expanded PVC board. The particular expanded PVC board 

we purchased is called Sintra board. 

Power System 

Batteries 

One of the primary design considerations of any power system is the means by 

which power is generated. In the case of our robot design, the most obvious source of 
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power IS a battery or combination of batteries. When choosing batteries for an 

application such as our robot design, there are many possible battery types and 

configurations that can be used. One of the most important characteristics of the batteries 

used for our overall design was that they should be rechargeable . To gain more 

understanding of the most common rechargeable battery types, research was done to 

identify them. From this research we were able to evaluate the characteristics associated 

with those battery types and eliminate from design consideration those that were not 

practical for our application. Table 1 lists the most commonly available rechargeable 

battery types along with infonnation that was most important in determining those that 

were most practical for our robot design. 

Rechargeable Battery Comparison Chart 
BaNery Features Disadvantages Applications Nominal Cel Output Rating Charge Time 

Price ($) Type Voltage (V) (A h) (hours) 

most commonty used 
low energy/weight ratio. 

automotive . DC 
Lead-Acid rechargeable. high motors. emergency 2 1·35 8·16 25 

Dower/weiaht rat io 
must be kept upright 

liqhtinq, wheelchairs 
used as replacement 
for alkaline batteries, 

portable electronics , 
high energy/weight more cells requi red than 

Nickel-
ratio, keep near other battery types, hard to 

toys, power tools, 
cadmium 

constant voltage detect when battery power 
wi reless phones, 1.25 3 1·2 50 

(N iCd) 
throughout life, suited is low electric cars, start 

for high-current 
batteries, RC cars 

applications 

lower energy density, not 
Nickel environmentally good for fast discharge rate 
metal friendly , high capacity , applications, cha rg ing must 

hybrid/electric 

hydride good tor high drain be processor controlled, 
vehicles, digital 1.25 1·5 2-4 60 

(NiMH) applications operation sensitive to 
cameras 

temperature 

do not suffer from 
not as durable as other 

memory effect , low self- notebook 
Lithium-Ion discharge rate. ideal for 

types, should be kept coo l 
compute rs, cellular 3.6 (4 .2V 

0.5-3 2-4 100 
low·voltagellow-current 

during operation, can be 
phones charging voltage) 

elect ronics 
dangerous if mistreated 

can be lighter than 
load must be removed if 

Lith ium-Ion other types, high battery falls below 3.0V or it mobile phones, RC 

Polymer energy densi ty, long 
will nol accept charge, aircraft, PDAs, 3.6 05·3 2-4 100 

run times battery specific charge rs laptops 
required 

Table 1: Rechargeable Battery Charactenstics 

Based upon the information found in Table 1, it was determined that the most 

reasonable options available were the lead-ac id, nickel-cadmium (NiCd) , and nickel 
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metal hydride (NiMH). The lithium-ion and lithium-ion polymer batteries were not 

considered primarily because of their price and sensitivity under high power conditions 

such as those our robot would be experiencing. The lead-acid batteries were eliminated 

upon further research due to their size and weight, both of which are crucial in 

minimizing in our design. Nickel metal hydride batteries were ultimately chosen because 

of their ability to discharge large amounts of current when configured as multi-cell 

battery packs and their ease of use. Two such nickel metal hydride battery packs were 

already available, so no expense had to be incurred from obtaining these. Each battery 

pack is a 6-cell rectangular configuration for a nominal 7.2V output. The amp-hour 

rating is approximately 2-3Ah, but the battery packs are capable of producing enough 

continuous current to handle the maximum current draw of our robot at 6.3SA while in 

motion. The battery packs are configured in series for a total voltage of 14.4V, which is 

enough to provide both the 12 V rail needed by all of the DC electromechanical devices as 

well as the SV rail needed for all the digital components in our design. 

Voltage Regulation 

After detennining the battery type to be used in our robot design, a method of 

providing regulated SV and 12V rails had to be determined. To accomplish this task, tbe 

simplest way is to implement linear voltage regulator integrated circuits to step down tbe 

14.4V provided by the NiMH battery packs to SV and 12V. However, this method poses 

some problems with providing a regulated SV rail. A SV linear voltage regulator would 

bave to step down 9.4 V from the supply voltage, creating a large amount of power 

dissipation across the regulator. As a result, special care must be taken to ensure that the 
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IC does not overheat by providing a heat sink. This configuration takes up valuable 

space and also creates heat that can affect other components of our robot system. 

As an alternative to using a linear voltage regulator IC to provide the 5V rail, a 

dc-dc voltage converter can be implemented. For our design, this was determined to be 

the most practical option, and an appropriate 

component was chosen that is used very frequently 

in similar applications. Figure 2 is an image of the 

dc-dc converter chosen for our design. This 

converter is the PW-200-M from mini-box.com. 

This converter requires a 12V input and can provide 

up to 200W of output power (dependent on the 

Figure 2: PW-200-M dc-dc Converter 
input supply) with over 95% efficiency. It requires no (image courtesy of mini-box. com) 

and takes up a small amount of space, which were ideal characteristics considering our 

design. Table 2 provides a detailed list of the available voltage outputs from this device. 

Volts (V) Max Load (A) Peak Load (A) Regulation % 
5V 6A 10A +/- 1.5% 
5VSB 2A 10A +/- 1.5% 
3.3V 6A 10A +/- 1.5% 
-12V O.1A O.2A +/- 5% 
12V 12A 13.5A Switched input 

Table 2: dc-dc Converter Voltage Outputs (information courtesy of mini-box. com) 

Based upon the information about the dc-dc converter listed in Table 2. it was 

determined that it met all the necessary power requirements for the output voltage levels 

of our robot. The 5V and 12V outputs were of most interest, and the available load 

currents that can be drawn from the device are well within the range required of the 

components for our robot. The highest single component current draw for the 5V rail is 
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the PCI I 04 mainboard that draws around 2 .SA of ClllTent, and the highest system current 

draw for the 12Y rail is the drive system containing the stepper motors that draws 

approximately 3.7SA while in motion. Table 3 provides an inventory of power 

requirements for every electrical component in the design. 

System Required CUlTent Required Voltage Priority* 

I Components 
Drive System 

Controller 0.6A 12Y 1 

Stepper Motors 3.2A 12V 2 

Controls 
PCI04 Board 2.SA S.OY 1 

6812 VO Board O.OSA S.OV 1 

Package Extraction 
Claw Servo O.)A S.OY 3 
Claw Motor 1.0A 12.0Y 3 
Small Arm Servo 0 .3 A S.OY 3 

Expanding Bins 
Side Servo 0.3A S.OV 4 
Rear Servo 0.3A S.OY 4 
3 Mini Servos 0.9A S.OY S 
Solenoids 1.0A 12.0Y 6 

Conveyor Belts 
Vertical Servo 0.3A S.OV 7 
Top Servo 0 .3A S.OY 7 

Scanner 
PosX XIIOOO 0.07SA S.OV 7 

Table 3: Robot Design Power Inventory 
*Priority 1 system is operational at all times, all other priority systems run at separate time intervals 

Because the battery packs used in our system provide a nominal 14.4 Y output 

voltage and the PW-200-M dc-dc converter requires a 12V input, it was necessary to 

provide voltage regulation down to 12Y from the 14.4Y supply. There are a number of 

possible options that were possible for accomplishing this, but the most practical for this 

application is the use of a 12Y linear voltage regulator. Because only about 2.4Y must be 

stepped down, very little heat and power diss ipation would be required of an integrated 

circuit to step down the voltage. Because of the high CUITent draw necessary from our 
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robot at its peak current draw condition, it was necessary to find an IC that was capable 

of handling this cunent. A part made by Linear Technology called the LTI083-12CP 

was found to be able to handle the power requirements needed. This device is capable of 

handling a maximum output current of 7.SA at + 12V. This is capable of providing the 

6 .3SA of current necessary by our robot during its peak current draw period. To 

implement this solution, a circuit was designed to take the input voltage from our 

batteries and output the necessary +12V that would then be fed to the PW-200-M. 

Figure 3 shows a detailed schematic of this circuit. The circuit is not very complex, but 

special care had to be taken to ensure that the capacitor selection provided the necessary 

noise and ripple suppression required both at the input and output of the device. 

+ 14.4V Input Voltage t rom Batteries 

0---1,....-- - - - -'3"-1, I~: ,ou' I ' 

I 
Cln [ LTl I)83 12CP 
10ur 

+12V. 7.5A Max Regulated Output Voltage 

1 
I 

o 

Coul ITantalum) 
10uF 

Figure 3: Schematic of +12V Regulation Circuit 

The Drive System 

Motor Controller 

When designing the drive system, there were two main options to be considered. 

One option involved using DC motors with gear housings to provide more torque, and the 

other option involved using stepper motors. Both options were found to be feasible; 

however, based upon the requirements of the competition it was decided that additional 

precision that could be provided by a stepper motor drive system was desired . As a 
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result, research and testing was performed on stepper motors as well as controllers 

available for them. As a start, it was necessary to find a controller that would allow the 

simultaneous controlling and operation of two stepper motors. There was difficulty 

finding available controllers, but one made by Peter Norberg Consulting, Inc. was found 

Figure 4: BiStep2A Stepper 
Motor Controller 

to be perfect for our application. Figure 4 is an image 

of the stepper motor controller board used in our robot 

design. It is the BiStep2A from stepperboard.com. and 

it can provide a maximum current of 2Amps/phase per 

motor. When operated in "double current mode", it can 

provide up to 4Amps/phase to a single stepper motor. 

This controller can accept 2 different voltage supplies. 

one for the stepper motors and one for the control logic. 

The maximum allowable motor supply voltage is 45 volts, while the maximum allowable 

logic supply voltage is l5V. For efficient design it was determined that the best option 

would be to provide the stepper motor supply voltage and logic voltage from the same 

supply, and it would be drawn from the +12V power rail. 

The stepper controller provides full control of the 2 stepper motors used in our 

drive system by accepting commands through an RS232 serial interface related to speed 

of stepping, slew direction, motion based on absolute position, etc. When commands are 

administered by the PC104 board through this interface, control of the motors becomes 

very streamlined. One of the most important commands that is issued for use in our 

application involves modifying the run rate target speed for a selected motor. When 

coupled with the IR sensors beneath the robot, using this particular command is what 
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makes the line-following possible in our design. The BiStep2A controls stepper motors 

through microstepping, and 16 microsteps is equivalent to one full step of the motor. The 

motors used in our design require 200 steps for a complete revolution, so the default 

value of 800 microsteps/second (50 full steps) provides rotation of the motor shaft at 0.25 

revolutions/sec. By simply increasing this default value of 800, it is clear how the speed 

of our robot can be modified to meet the time specifications of the competition. 

Motors 

After deciding on the use of stepper motors in our robot drive system, it was 

necessary to determine the torque required of the system during competition. To gain 

understanding on the operation of the stepper motors and how their torque characteristics 

affect operation, 2 stepper motors that were readily available were tested as a benchmark. 

The motors tested were 8.4 V with 300hms/winding used in a bipolar configuration. 

These motors drew approximately 300mA of cun-ent while in motion; however. their 

maximum holding torque was only rated at 11 oz.-in. This was proven to be very 

insufficient for our design, as the motors would slip when a load of approximately 

1.251bs. was placed upon the prototype drive system as seen in Figure 5. 
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Figure 5: Prototype Drive System 

It was calculated that the stepper motors used in our design would have to provide 

enough torque to move up to 10ibs of components and packages at full load. Two such 

motors, the STP-MTR-23055 motors from automationdirect.com, were available that 

have a holding torque rating of 166 oz.-in of torque, more than enough to handle the 

requirements of our design. There were a couple of problems with the use of these 

motors, however, that had to be considered when integrating them into our design. The 

motors are rated at 2.8A/phase - a value that our stepper controller is not capable of 

supplying without failing. The motors are also NEMA size 23, compared to a prefened 

size of NEMA size 17. Figure 6 provides the dimensions for the motors used in our 

drive system. 

16 



Pin ~ Cobr 
1 REd 
2 Wh1s 
3 Green 
4 ~ack 

[20 . 57,t,0. m1 2.
17M8Xi O.61tD.Q2 ,----r------I---- [55.121 

O .~[1521 

0.59 [14.g81 

----l f--oro [5.00) 

4 }i{3 Unshielded Cable 
(4) ¥20 AYIG CorU.-"", 

2 1 I PhsE19 
A I/If'N From \'tire En1Janc~ 
A 
B 

Ji 
Molex Coon. pi n 43025-Q.4J)O _,'" 

MdexTermlMI ~'n 4303)-(007 

Figure 6: STP-MTR-23055 Motor Dimensions (image courtesy of 
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These stepper motors have a winding resistance of approximately 1.50hms. 

When used in combination with our 12V supply rail, the motors would force pulling their 

rated current. To eliminate this behavior, research was done to determine the practical 

use of a series winding resistance in addition to the inherent winding resistance of the 

motors. By adding power resistors in series with the motor windings (power resistors 

were necessary because the power dissipation is considerably high approaching lOW), a 

current draw of approximately 1.6A1per phase was achieved. This allowed us to provide 

a high amount of current to each motor to obtain necessary torque while also not pushing 

the limits of our stepper motor controller. An advantage to providing a series resistance 

with the motor windings is that the electrical time constant of the system is reduced. The 

following formulas show how this is possible: 
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~Iec = L~ 
/ f, total 

R =R +R total series phase 

where T dec = electrical time constant 

L = phase inductance 

Rseries = cunent limiting series power resistance 

Rphase = winding resistance of motor 

By reducing the electrical time constant, the cunent in the winding rises faster, and a 

faster response from the motors can be seen when issuing commands from our stepper 

motor controller. This reduction of time ultimately increases the accuracy of our line-

following system because there is less of a time delay response from sensor detection to 

motor speed change. The only downside to this configuration is the high power 

dissipation in the series power resistors; however, because the duration of the competition 

does not exceed 6 min. for a given round, this dissipation is not considered to be 

detrimental to the battery life during that time. 

The other disadvantage to using these motors was their large size. Some 

modifications to other components in our system had to be made, most particularly in the 

extraction claw design, but in the end we were able to design for the larger size of the 

STP-MTR-23055 stepper motors. 
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The Claw System 

To grab the packages from the chute we decided to use a claw. Another solution 

would have been to use a system with wheels which, by rotation , pushed the packages out 

of the chute. But we realized that it may have been less precise than a claw. 

Our system had to be able to grab, hold and pull back the package. The structure 

also had to allow the claw to spread and contract entirely in the robot to fit the size 

constraints. We divided it into two different functions. The first one is the claw itself, and 

the second one is the collapsing system. 

The Claw 

There are a lot of claw des igns used in a wide variety of purposes. Tn our case the 

claw had to be enough powerful to hold the first package with the eleven others stacked 

on top of it. However, the claw body had to be as small as possible to leave space for it to 

move back and forth . We decided to use a servo motor to drive the claw. Indeed, the 

servo motors have an excellent precision and a wide range of torque. We used a Futaba 

servo. It has a Skg/cm torque (70 ozfin) which fit our specifications. The claw design can 

be observed in Figure 7. 

Figure 7: Claw Design 
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We positioned the servo motor in order to create more space. The form of the 

claw was made to allow it to go around the lift system. The material we used was plastic; 

however, because the design was pretty thin, a metallic structure was added to increase its 

rigidity. In order to improve the grip soft rubber was fixed on the part that would contact 

the package. 

The Collapse System 

As with the claw, there is a wide range of systems 

which allow linear movement. The one we chose is a 

screw system. It fits two essential specifications of our 

design which are a good rigidity and excellent precision. 

Figure 8 shows how it works. 

Two nuts were included on the claw body. They 

were fixed, so when the screws tum, the claw does not 

tum but moves back and forth along the length of the 

screw. The driving system was made with a 9V DC motor 

and a set of gears. These gears have two purposes . First, Figure 8: Collapse System 
for claw 

they permit the motor to drive both screws simultaneously in the same direction. Second, 

they allow us to modify the speed and torque simply by changing the size of the gears. 

This system has been really useful in finding a good compromise between speed and 

torque (halving the speed gives twice the torque; not counting the loss of power due to 

friction). The custom gear set contains 6 gears and divides the speed by 12. The DC 

motor we use is a 12v motor. It is completely efficient and turns at 19,000 rpm (no load) 

at this voltage. 
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The objective was to load the packages as quickly as possible. We fixed elapsed 

time for a claw to make a round trip with a package at 4sec, which means approximately 

50sec to load all of them. 

We have a screw step of 1.25mm. The movement length is 70mm (i /2
in) which is 

the minimal distance to pull a package out of the chute. A full movement of 70mm 

corresponds to 56 rotations (70/ 1.25). We can presume the motor speed will be around 

lS,OOOrpm burdened with the load. Because the speed is divided by 12, the screws 

rotation speed becomes 1250rpm. 

So the calculation of this traveling time (T) is the following:: 

T= (rotations*60)l1250 = 2.7sec. 

A round trip will last S.4sec . 

This theoretical time is not far from the measure we made on the real system. In 

reality it takes approximately 2.Ssec for a movement, 5sec for a round trip and 60sec for 

the 12 packages. However, we did not account for the time for the claw to grab and drop 

the packages. We can assume it will take no more than 12sec for the group (1 second per 

block). We arrived at a loading time of 72sec which leaves us 108 seconds (lmin 48sec) 

to get to the first plane. 

Modified Servos: 

During the design and construction of the robot, it became clear that there were 

going to be many moving parts that would require continuous rotation drive: the bins, the 

belts, the claw, and the drive system. Besides the drive system, which was decided to use 

a stepper motor, a type of motor had to be chosen for each component. The first option 
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was a regular DC motor. A DC motor operates s imply: a voltage is applied across its 

leads, and it moves either clockwise or counter-clockwise, depending on which way the 

voltage was applied to the leads. The initial concern with using DC motors was that they 

would not have the required torque for whichever component used the motor. However, 

after the research of various types of DC motors, the majority of them had a gear box 

available . A gear box for a DC motor is a gear system that converts the mechanical 

power from the DC motor into some other form of output. This means that it can either 

change the direction of transmission or increase torque at the sacrifice of speed. The 

latter is what made the DC motors an attractive option. 

However, another concern arose in the use of the DC motors. Even though a 

motor with adequate torque could be acquired, it was another matter all together to 

control a motor via some form of microcontroller or on-board computer. The robot's 

autonomous operation was to be controlled by a chosen computer inside the robot. In the 

case of this project, the on-board control system used a PC/104 form-factor motherboard 

for the main task-handling, with a Motorola 68] 2 microcontroller as the analog-to-digital 

converter and data acquisition (110). As such, there needed to be a way to control the 

analog DC motors. A standard microcontroller could not handle the voltages and 

CUlTents to be able to single-handedly control a DC motor using its input and output pins. 

Therefore, H-bridges have to be used for each DC motor. An H-bridge allows a 

microcontroller to send a control signal to the H-bridge, which then, based on the control 

signal, will activate two of four switches. The four switches are initially open and 

connected to the operating voltage of the DC motor. Based on the control signal, two of 

the switches will close and allow the current to flow to the DC motor. The H-bridge 
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allows for directional control of the DC motor and even speed control if the control signal 

is a pulse. The required use of an H-bridge for each DC motor was the main concern 

with using the DC motors. Not only do they not allow for precise operation, but they also 

require a separate power source and take up space. In a project in which space is of 

primary concern, other options besides the DC motor had to be decided upon for the 

separate components. 

The servo motor was the second option for the operation of certain components. 

A standard servo motor is basically a geared DC motor, but with the addition of feedback 

control. As such, there are three leads that require an outside connection to operate a 

servo: voltage in, ground, and control signal. Essentially, a servo motor allows for high 

precision in position and speed. It works by gearing a DC motor up to the main gear 

output shaft. The main gear has a potentiometer mounted underneath it that rotates along 

with the main gear. The logic inside the servo reads the resistance from the 

potentiometer and compares it to the input signal. Based on this, it will rotate until the 

comparison yields the proper difference. Due to this system, there is one drawback to the 

standard servo: it has limited rotation, usually 90° to 180°. However, the servo is usually 

easily modified for continuous rotation. The drawback to a modified servo for 

continuous rotation is that position control is lost. Most importantly, however, is that 

speed control is not. After analyzing the options between the DC motor and modified 

servo, the decision of a modified servo for the operation of various components was used 

since it offered more functionality for less space. Eight servo motors can be operated 

with SV to each servo by a small square-inch servo controller board vs. up 12V to each 

DC motor plus one H-bridge per motor. However, DC motors still had their functions in 
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high-speed operations, such as the retraction/expansion of the front claw, which had to 

have a high-torque and high-speed motor. With those specifications, a DC motor is a 

better candidate. 

The modification of each servo involved two main steps. The first step is to open 

the servo motor and modify the main gear. The main gear contains a small, plastic 

stopper that prevents it from rotating a full 360°. The mechanical modification is to 

remove the stopper with a sharp knife or small sanding tool. This allows the gear to 

rotate without obstruction. The second step involved can be done a variety of ways. 

Essentially, the purpose of the second step is to modify the potentiometer to remain in the 

same position, regardless of where the main gear is turning. This "tricks" the logic chips 

within the servo motor into thinking that the gear is in the incorrect position and will 

constantly try to correct itself, producing continuous rotation. By changing the control 

signal, which would usually cause a change in angle of the servo, it will instead cause a 

change in rotation speed and direction. The modification can either be mechanical or 

electrical. The potentiometer can be glued down to prevent moving and modifying the 

main gear to not move the potentiometer, or the potentiometer can be completely 

removed and replaced with two resisters. Both methods will perform the same function 

in the modification process. 
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Belt Systems 

Package Lift System 

Once the package is extracted from the 

loading chute, it is placed into the front lift 

system, seen in Figure 9 . This system consists 

of two vertical conveyor belt systems. Each is 

constructed using matching pulleys and rubber 

belts from Small Parts©. These are mounted on 

the front of the robot by us ing a 6" by 11" piece 

of expanded Pvc. 
Figure 9: Lift System 

Each individual belt system contains four pulleys, two on each end of the belt 

loop. By using four pulleys, each belt system can contain two belts, giving it a total 

approximate width of 1 Y2" . This width is needed to ensure that the contact surface area 

with the package is adequate to lift it to the top of the robot. 

The rubber belts are each a total length of 23". When stretched around a pulley at 

either end, this gives a pulley to pulley length of 10 Y2", which is exactly what is needed 

for the front lift system. The two belts on each side are connected together with cleats 

made from expanded PVc. These cleats are attached to the rubber belts with Super 

Glue©, and each is notched out so as to not rub on the pulley flanges as they go around. 

When the belt is running, these cleats come under the package and begin to lift it. The 

belts continue to run, and the package is lifted to the top of the belt system. 

The pulleys are mounted on a 1/.1" metal rod. Originally, the pulleys contained set 

screws mounted on their outer edge. In order to save space on the front of the robot, the 
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set screws were removed from the outer edge of the pulley and a hole was drilled through 

the middle of the pulley. The set screw was then installed within this hole. By removing 

the outer portion of plastic that first contained the set screw, we save approximately 14" 

per pulley, or \12" total on the front of the robot, since there are two pulleys side by side. 

Each belt system also consists of a shock in the middle of the pulleys. This 

provides a way to maintain appropriate tension on the rubber belts. Without these 

shocks, the belts would sag and could catch on a block as it is extracted from the loading 

chute and placed into the lift system. However, the longest shocks we could find were 6" 

when fully extended, and the front belts needed to be a total of 10 Yz" fully extended. 

Therefore, flat pieces of metal were used to extend the shock. These pieces connect to 

the ends of the shock, and then extend outward to the appropriate length for the belt 

system. A hole is drilled in the metal pieces for the pulley shaft, and washers are used to 

keep the metal shaft from rubbing on the plastic pulleys. 

The vertical lift system is powered by using a 7.2V geared dc motor. When 

powered at 4.5 volts, this provides adequate power and speed for lifting blocks. The 

same motor powers the two belts in order to synchronize their motions. This is 

accomplished by using plastic gears. By attaching a gear to each pulley shaft and then 

matching gears in between both shafts, the two belts are made to tum in opposite 

directions at the same rate. This synchronous motion is imperative to have the cleats on 

each belt match up when lifting a package. Otherwise, one cleat might reach the package 

before the other, and cause the package to be lifted unevenly or even dropped. 

Finally, when the lift system has lifted the package to the top of the robot, an arm 

swings up and pushes the package from the lift system onto the top conveyor belt. This 
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arm is made by using a servo motor. The motor turns 180 degrees, allowing for the 

appropriate amount of motion needed to transfer the block from the lift system onto the 

top belt. By using some of the expanded PVC, an arm was fashioned and attached to the 

servo. 

Top Belt System 

In order to move the 

packages into their respective bins, 

another conveyor belt system was 

implemented. This horizontal belt, 

Figure 10, that runs along the top 

of the robot carries the packages 

from the front of the robot to the 

back. Figure 10: Top Belt System 

Using 13" belts and matching pulleys from Small Parts ©, the top belt is a total of 

6" long and 3 Y2" wide. The pulleys used are the same as those for the vertical lift system 

except that the set screws have not been moved to the center of the pulley. Since this belt 

system did not need the space savings of moving the set screws, we left them on the outer 

edges of these pulleys. 

For powering this belt system, a modified servo motor was used. This provided 

an easy interface for control as we are using a servo controller card, and also provided 

adequate power and speed for the belt system. The rotational speed of the shaft needed to 

be fast enough to load the packages in a short amount of time, but also slow enough to 
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provide the robot time to sort the packages as they moved. A modified servo motor 

adequately filled all of these specifications. 

The pulleys are mounted on 3 W' long pieces of brass rod . This type of rod 

provided an adequate interfacing capability to the modified servo. By gluing some circle 

collars onto servo rotors, we were able to effectively connect the modified servo motor to 

the rod and turn the belt. 

Two rubber belts are used in parallel for this belt system. They are spaced 3 W' 

apart in order to accommodate the width of the packages. 
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LoadingfUn loading 

Bin Expansion/Retraction: 

A key part of the bin design is 

the expansion and retraction of each 

individual bin. In order to accomplish 

this, the top of each bin had to be made 

in such a way to allow a mechanism to 

push the bins out and pull the bins back 

into the robot. The bottom of each bin is 

a separate mechanism that is independent 
Figure 11: Bin Track System 

of the top. Initially, there were two choices: have a motorized mechanism that transfers 

rotary motion into linear motion or use some sort of pneumatic cylinder or linear solenoid 

that would do the motion in one quick move. The second idea was quickly rejected since 

a linear solenoid with the length of a block, which is the required amount that the bin had 

to expand on the top, was too difficult to find and had large power requirements. A 

pneumatic cylinder would have worked, but would require the use of compressed air to 

operate, which would mean the air supply had to be replenished at a moments notice and 

a solenoid valve would have to be used with each cylinder, yielding a larger, more 

complex system then the motorized solution. Therefore, a motorized solution was 

created. 

The main problem with the motorized solution was coming up with a design that 

would allow the motor to transfer its rotary motion and torque into a linear motion with 

the bins. One method was to attach a mbber wheel on top of the motor, and mount it next 
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to the top of each bin. The top of each bin would be a solid frame made out of a thin 

aluminum. The rubber wheel would be mounted tightly against the frame ends and allow 

it to retract/expand the bins. However, a problem was quickly found in that the rubber 

wheel would not provide enough traction to efficiently move the bins back and forth , so 

an alternate solution had to be found . The alternate solution involved using a gear rack 

and pinion combination. A gear rack is a flat piece of material that has gear teeth 

throughout its length. The pinion is a regular, round gear to match the gear rack. This 

type of system is commonly found on the steering system of cars. As someone turns the 

steering wheel of a car, that motion has to be transferred linearly to tum the wheels. A 

gear rack and pinion system is the exact solution needed to transfer rotary motion to 

linear motion. The pinion gear is mounted on top of the motor, and the motor is mounted 

right next to the gear rack. The gear rack would then be attached to the aluminum frame 

of the top bins . The motor would be mounted to the inside of the robot to prevent it from 

moving, and the pinion gear on the motor would then move the gear rack, which would 

cause the bins to be pushed or pulled away or back into the robot. A modified servo 

would be used for the bins as the motor. The modified servo provided for the easiest way 

to mount the pinion gear, plus offered easy directional control for retracting and 

expanding the bins. 

The actual design used 1/16" thick by 1/2" tall aluminum for the top bin frame . 

The aluminum was bent into a "U" shape; the open end would be on the inside of the 

robot, whereas the closed end would be on the outside. The bins where mounted to the 

robot by cutting holes into the PVC material , one for each "leg" of the "U" shape. This 

allowed the bins a way to move in and out of the robot body freely. A gear rack would 
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then be attached to either of the two legs, which would provide the linear motion of the 

expansion/retraction as described above. A stopper would have to be mounted on the 

inside portion of the bin to prevent them from falling out completely. Originally, this 

design had one gear rack and pinion system per bin. However, because the top of the 

bins did not need to have separate movement, since the blocks were not going to be 

removed from the top, the two bins on the side where glued together and used the same 

gear rack and pinion system to retract/expand. Figure I shows the final design of the side 

bins . 
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Figure 12 - Side Bins 

31 



The back bins had a similar design, except for dimensions and gear rack location. Instead 

of the gear rack being mounted on the inside, it was mounted on the outside to avoid the 

block hitting the gear rack. Figure 2 shows the back bin design. 
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Figure 13 - Back Bin 
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After the initial design was completed in prototype form, there was a major problem with 

the movement. The frame was having too much movement inside of the robot, and it 

would often "derail" from the modified servo motor or expand in an odd angle. The 

solution to the problem involved the use of some form of guides for the legs of the top 

bin frames. Originally, the idea was to use small drawer slides on the legs. Since drawer 

slides usually use ball bearings, these would provide the benefits of a smooth and steady 

expansion/retraction. However, drawer slides that would meet the size constraints were 

difficult to find. Instead of drawer slides, the guides took the form of a modified curtain 
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guide. These are V2" rectangular slides for hanging curtains. Their size fit the aluminum 

legs of the bin frame, and, as such, they served well for guiding the bins in and out of the 

robot. After installing them, the bin frame would smoothly retract/expand. 

Storage Bins 

Since time is a crucial part of 

the competition, we wanted to develop 

a way to cany all 12 of the packages at 

once. The system we developed 

involved 3 storage bins, two on the 

side of the robot, and one on the back . 

These 3 bins corresponded to each of 

the 3 planes. Figure 14: Storage Bins with Spandex 

Due to the size constraints of the robot we determined that we needed to 

expand/retract the storage bins, next we had to decide what material the bins should be 

made of. The first choice was a solid material similar to the aluminum used to make the 

bin frames. After discussing this option, we were too worried about how the blocks 

would land when pushed into the bins. We were afraid that the block would land in a 

vertical position when loaded, taking up 4" of vertical space instead of 1.5". If several 

blocks did this, the bins would run out of room and all 4 of the blocks would not be able 

to fit. Therefore we decided to look for other options for the bin material. 

Our next choice for the bin material was spandex. Since spandex is a stretchy 

material, it allowed us not to wony about how the packages land in the bins when loaded. 
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As the packages were loaded, the material stretched and made room for the other blocks 

to be loaded. The spandex was attached at the bottom of the robot, as a result when the 

bin was expanded the bin was slanted (Figure 14). This helped control how the first 

block landed in the bin. As the last three blocks were loaded, the added weight forced the 

first block to stretch the spandex and the blocks were able to lay flat on top of each other 

as they were loaded. 

All blocks loaded 

Empty Bin After 1 st block 

Figure 15. Loading Sequence 

The spandex was connected to the aluminum bin frame by folding it around the 

bar of the frame and gluing it to itself. This was done so that when the bin was 

contracted the spandex would slide down the frame and crumple onto itself at the front of 

the bin. The edges of the spandex were connected to the robot using Velcro. This 

created the closed bins with only the top and bottom openings. The Velcro also allowed 

us to easily remove the spandex from the robot if the bins needed to be removed 

completely to make adjustments. Small pieces of spandex were connected to pins on top 

of the robot and then to the top of the spandex on the bins. These acted as guides and 

prevented the blocks from landing incorrectly when being loaded into the bins. 
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Solenoids 

Once the package has been loaded onto the horizontal belts running along the top 

of the robot, there needed to be a way to force the package off of the belt and into the 

storage bins on the side of the robot. Due to the current height of the robot (11" -11S') 

and the height constraint of the competition (12"), we had limited options on how we 

were going to move the bins from the top conveyor belt into the bins. We decided our 

best option would be solenoids. The solenoids were mounted onto the top of the robot 

adjacent to the belts. A push solenoid only takes a voltage that causes a pin to punch out 

and is retracted when the voltage is removed. The higher the voltage supplied to the 

solenoid the stronger the push. The length of the arm of the solenoid varies between 

solenoids. Our testing was done with solenoids with pins approximately .75" long. 

However, solenoids with pins closer to 2" long in order to ensure the block is completely 

pushed off the belt system (4" wide) were needed. 

Only 2 solenoids are needed for our loading system, because the third bin is 

located directly behind the belt system. Therefore blocks that are going to plane 3 run off 

the back of the conveyor belt and land in the bin; they do not require a solenoid to push 

them off the belt. For the other two bins, sensors mounted next to the solenoids trigger 

when the block passes the solenoid. When the sensor is activated, if the block is 

supposed to go in that bin, a voltage is sent to that solenoid and the block is pushed into 

the bin, otherwise the block continues across the conveyor belt. 

Ramps were mounted between the horizontal belt and the top of the bins to 

provide a guide for the block to slide down. This was done to accommodate for the 

distance between the top of the bin and the top belt system, which was mounted in the 
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center of the robot in order to be centered on the claw and the front belt system. This 

space between the bins and the top belt was helpful because it provided a little more 

loading space for the blocks. If the blocks do not land in the bins in an ideal 

configuration, this extra space helps prevent the last block of a full bin from getting in the 

way of other blocks moving down the conveyor belt. 

Unloading pins 

We had to develop a way to 

release the bottom of the bins in order 

to unload the blocks into the plane. 

This release system needed: 1) to be 

strong enough to hold the spandex 

closed as the blocks were loaded, 2) to 

be an easy and fast release when 

unloading, and 3) to be small and Figure 16: Storage Bins with Spandex 

easily mounted inside the robot. The release system (Figure 16) we developed involves 

using three servos, one for each bin. For each bin, part of a paper clip was threaded 

through several holes in the bottom of the spandex and then pushed into a slot cut into the 

robot. This paper clip acted as a "hook" for our release system. On the inside of the 

robot, a small "key" was cut out of aluminum and inserted into the loop of the paper clip 

to hold it in place. A hole was drilled into this "key" and wire was tied between this hole 

and a servo mounted near the top of the robot. Three Futaba servos were used for this 

system; these servos were very useful for this release system, because they had a very 

small footprint. The servo was approximately 1" xl" x .5", this was ideal because it was 
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important that the system did not take up much space inside the robot. A voltage and 

control signal could be sent to the servo causing a 180u turn, pulling the key out of the 

paper clip, and as a result releasing the spandex and dropping the blocks into the plane. 

During the design and testing, we noticed that when the blocks are unloaded, they may 

remain in a stack sitting in the plane that causes them to come in contact with the hanging 

spandex as the robot drives away. However, we decided that we could make the robot 

drive away in a direction that allows the spandex to knock the stack of blocks over into 

the plane. 

Processing and Sensors 

Processing is a very critical and important part of the robot design since it 

provides the necessary tools by which the robot will be able to complete the project 

objectives. In the first step of processing design, a processor needed to be chosen. In 

choosing the proper control mechanism for this robot project, a variety of differenl 

controllers and microprocessors were examined. There were two basic types, a simple 

microcontroller specifically designed for robotics, such as the OOPIC, to a high-power 

single board computer (SBC). Factors considered in selecting an option were processing 

power, ability to meet the requirements of the project, power, and complexity of 

implementation. The current design for the robot calls for a fair amount of processing 

power. This complexity can be attributed to the fact that there are a lot of things that are 

happening at any given time, from extracting the blocks from the chute, placing them on 

the top belt, expanding/contracting the bins, navigating the ramp, and being able to 

position itself so as to deposit the blocks in the planes. At the beginning design stages of 
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the robot many different types of processors were considered: The Basic Stamp, the 

OOfPC, Motorola 68HC812, PC/104 board, EPIC, EBX, Handy Board, and the Book Pc. 

The Basic Stamp is a simple microcontroller that was designed for basic Input and 

Output. Due to its simplicity, the basic stamp has become popular in robotic 

communities. The Stamp itself is programmed using a propriety language called 

PBASIC, which was developed by Parallax, Inc. This particular processor has very low 

processing capabilities. The most powerful Basic Stamp only had 2KB of EEPROM. 

This seemed highly restrictive given the amount of instructions we would need to 

complete the project. Due to this fact, we decided against using the Basic Stamp as our 

processor. 

The OOPIC, or Object-Oriented PIC, is very similar to the Basic Stamp, but uses 

object-oriented programming to build objects that can be linked together in a visual 

environment. For more control over robotic devices, the OOPIC offers the ability to 

write custom scripts in C or Java. Even though the programming environment of the 

OOPIC was attractive, it suffered from the same limitations as the Basic Stamp in 

EEPROM. So we also ruled this processor out as well. 

The next processor we looked at was the widely used embedded processor known 

as the Motorola 68HC812. This particular processor has 4k of EEPROM for program 

storage, 8MHz clock, 1 k of RAM for data, 8 channels of lO-bit Analog to Digital ports, 

two channels of SCI, and 90+ pins of Digital Input and Output pins. While this does not 

offer the best in terms of program storage and speed, it has many pins available for use of 

input and output. This processor sol ves the issues of the previous considerations of not 

having enough input and output capability for what we would need; the memory and 
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program storage could be a serious choke point if used solely to run the entire program 

for the robot. As we will discuss later, due to its low-cost, the 6812 was a good choice 

for use in conjunction with our main processor to poll sensors and output to our h-bridge. 

The PCIl04 is a form factor single board computer. This board contains the full 

power of a PC in a small 3.5" x 3.7" board. These can be loaded with an OS of our 

choice, plus there is a large availability of expansion boards that allow any number of 

digital or analog devices to be integrated with the main system. RAM was plentiful and 

ranged from 128 megabytes to 1 gigabyte. The majority of different types of PC/104 

boards contained certain similarities. In specific, they have built-in USB ports, two serial 

ports, on board LAN, IDE port for peripherals such as a hard drive, and a powerful 

processor. Due to the ability of installing an operating system such as Windows XP, one 

can program in any type of language he or she wishes. This means that each one of us 

will be very familiar with the programming environment, which will in tum help us to 

work more efficiently and accurately. Our robot design uses stepper motors and servo 

controllers that use both a serial interface and a USB interface. Using the PCI 104' s 

connection abilities, the integration and operation of these two essential devices would 

allow for precise control and seamless integration. Due to this integration, along with 

other valuable features mentioned above, this was the processor of choice in the design of 

our robot. We purchased the MOPS1cdVE from Kontron due to it having a starter kit that 

included a power supply and a development kit which turned the PC/104 into a fully 

functional motherboard. Information on this product can be found on our website. 

In short, there was primarily one major drawback to the PC/104: the board does 

not come stocked with any digital input and output ports. These ports are crucial to the 
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operation of the devices within the robot. There was however an expansion kit which 

added 48 input and output POlts by interfacing with the PC/104 via the bus. 

Unfortunately, this option was far too expensive and simply not justifiable. We then 

chose to purchase a Motorola 6812 to use as our input and output board which would 

seamlessly integrate with our PC/104 through serial communication. This was a very 

inexpensive way to add all of the necessary input and output ports to our PC/l04. 

After the choice of processor and input and output integration was made, our next 

step was to choose the items that would control our servos and DC motors. We decided 

to use the Pololu USB servo controller. This controller allows 16 servos to be controlled 

through this one board and would COfmect easily via the USB port on our PC/l04. Due to 

its high number of servo connectivity and ease of integration with the PCI 1 04, this 

seemed like a very good choice. We also had an interface to operate the servos through 

the USB servo controller. The code, written in C++, allowed for easy integration into our 

development project. In fact, the other robotics team based their servo control off of the 

same code. By doing some research, we found that a good way to control DC motors is 

by use of an H-Bridge. We then decided to purchase an H-Bridge that can control two 

DC motors. This device accepts a 3-bit bit stream and based on these bit values, turns the 

motors on/off rotating them clockwise or counterclockwise. The values of the bit stream 

will be inputted to the device through interface of our 6812. 

The navigation aspect of our robot's design was one of the key areas to be 

investigated from the very beginnin. Thankfully, the design of the playing board, created 

to the given specifications of the contest rules, very readily lends itself to line following, 

a well-established routine among robot designers . Using line following as our main 
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means of navigation on the playing board was, therefore, an early consideration and 

almost immediately chosen. Not only is line following a fairly easy and approachable 

technique for navigation, but using it also meant that a large number of online resources 

and examples would be available. Of course the team did not discount other sources 

when considering the navigation portion of the design. Sensors serve as the eyes and ears 

of any robot. Without multiple sources of input for the processor, there are many 

limitations on the intelligence of the robot as a whole. Therefore, an ultrasonic ranger 

was used in conjunction with the line following concept as a way to make the design as 

robust as possible. Although the contest rules were fairly detailed, changes seemed 

inevitable over time. Making sure that the robot was robust meant having it handle all 

specifications already set in place as well as potential alterations that might make the task 

more difficult. 

After recognizing these two main forms of navigation, individual sensors had to 

be chosen. For line following, simple photoresistors were investigated first. 

Photoresistors work like regular resistors except their value is variable like a 

potentiometer. The change in the light level that the photoresistor is exposed to is what 

triggers this variance. So, by connecting one in series with a fixed value resistor, a 

variable voltage could be measured and sent to a microcontroller's analog-to-digital 

system. The only remaining piece would be to provide a constant light source on the 

robot, such as from an LED, by which to characterize each individual photoresisror's 

sensitivity levels. Unfo!1unately, testing of the proposed apparatus did not prove reliable 

given the amount of ambient light. So, after a little research of light sensors which were 

implemented on other designs, the QRDl114 reflective lR sensor was chosen. This 
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inexpensive sensor contains both an IR emitter and detector housed together along with 

built-in protection from outside light sources. Also, for the ultrasonic ranger, the SRF05 

was purchased. This sensor was also chosen for its reliable use in other applications as 

well as its inexpensive price point. 

After our hardware was decided upon we then needed to analyze the project 

description and decide on an overall program flow. We designed a program flow chart 

that would entail all the movements of the robot in order to complete all objectives from 

start to finish. Please reference Figure 17 on the next page for the complete program 

flow chart. 
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Figure 17. Flow Chart 
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After the overall program flow was discussed and designed, a programming 

language needed to be decided upon for both of our processors. With the PCIl04 we 

were able to choose any language that we were most familiar with. This language of 

course was C/C++. The 6812, however, does not offer as many alternatives. Many 

example programs for the 6812 are written in straight assembly language, the lowest level 

of coding that provides the most control and optimization. Programming in assembly, 

however, is a long and daunting process so we began to research compilers that would 

compile a higher level language into 6812 assembly. The ability to write in a higher level 

language such as C/C++ and then compile that source code into 6812 assembly would 

greatly increase our efficiency and accuracy during the programming process. 

After doing some research, we came across two options for programming in the 

6812 environment. The first was the use of a compiler called Imagecraft. Imagecraft 

offered the ability to program the 6812 in C/C++ then compile that code down to 6812 

assembly code. This was very appealing to us since we were very familiar with C/C++. 

However, with any device, there are still certain interface commands that one needs to 

know in order to control or access the features within the processor. Another point of 

consideration for the Imagecraft compiler was its rather expensive, $200, price tag. 

While we were doing research on compilers, we came across a language/compiler known 

as SBAS Ie. SBASIC was created by Karl Lunt who wanted to create a language that 

was easy to use and easy to interface with the 681116812. In addition to simple 

commands and interface, SBASIC allows for simple register control, easy trigger pulse 

generation, and has a simplified serial communication interface. These features, along 
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with many resources to programming examples, caused us to choose this 

language/complier over the Imagecraft option. 

Once the programming environment/language was chosen, code writing needed to 

begin. Within programming, we wanted to be as modular as possible. Modularity allows 

for easy troubleshooting and readability of code. We broke the code into two major 

groups: 6812 and PC1l04. We further broke the 6812 code into three main modules, LR 

sensing, ultrasonic sensing, and H-bridge control. The 6812 would contain the code to 

interface with the sensors and H-bridge. The PC/104 would be the bulk of our code. 

This would be the code to process all the information received from the 6812 and also 

interface with the motors and servos. 

Each 6812 module was written completely separate and tested. After individual 

modules were satisfactorily tested, we integrated the modules and tested again. We 

began the 6812 programming by writing the code to interface with the IR sensors . The 

IR sensors would connect to the Analog-to-Digital Input ports of the 6812. The 6812 

would need to grab this data and send it to the PCIl 04 to be processed. The 6812 

communicates with the PCIl 04 by serial communication. Keeping with our modularity 

scheme, we wanted to have the 6812 view the incoming data from the IR sensors and 

send a case based on which IR sensors saw black and which IR sensors saw white to the 

PC/ I 04. The PC/l 04 would then accept this data and process a decision based on that 

case. We originally wanted to use only three sensors: one middle sensor and two side 

sensors . The middle sensor would make sure it was seeing white and the two side 

sensors would make sure they saw black. If the two side sensors saw white, then you 

knew that the robot was at a cross section or needed to adjust its wheels and realign. 
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After some discussion and thought, we decided that we wanted to have two middle 

sensors (left middle and right middle) and two side sensors. The two middle sensors 

would add a higher degree of resolution and would allow us to know if the robot was off 

track more quickly. This allowed smaller and quicker overall adjustments of robot 

direction. This would keep the robot straighter and keep it from swerving side to side. 

The two middle sensors are positioned 0.75 inches from each other. Since the line we are 

following is I inch wide, we only have 0.25 inches of variability in our robots lateral 

movement. Please see Figure 18 for the diagram. 

Figure 18 Sensor Layout 

Next we wanted to write the code that would interface with the Ultrasonic Sensor. 

The Ultrasonic is used to tell us when we have arrived at either the chute or one of the 

three planes. This device requires one input and one output port from the 6812. The 

Ultrasonic sensor sends data based on distance to the 6812. The 6812 accepts this data 

and if the object is closer than a certain threshold, sends a signal to the PC1l04. The 

PC/1 04 then receives this signal and instructs the robot to stop moving. In writing the 

ultrasonic sensor code, we had to become comfortable with the timing mechanisms of the 

6812. We used the 6812's timer module to produce a trigger of 10 microseconds. This 

trigger causes the ultrasonic sensor to send an 8-cycle sonic burst. This sonic burst 

travels at a rate close to 0.9 ft/sec. When this sonic burst is received by the sensor, the 

echo line goes low. The 6812 measures the time from the falling edge of the trigger to 
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the falling edge of the echo line. The time difference can then be used to calculate the 

distance to the impending object. 

After the code was written to interface with our input sensors, we wanted to write 

the last of the 6812 source code, the interface to the H-bridge in order to control the DC 

motors of the claw. As stated before, the H-bridge needs to be connected to 3 digital 

output pins of our processor in order to receive the 3-bit bit stream (Enable bit, A+ bit, A

bit) . This bit stream will be accepted by the H-bridge and based on the values (high or 

low) of the 3-bits, turn the motors onloff and in clockwise or counterclockwise rotation. 

The need for the 3 output pins is the reason that the H-bridge interface code was 

implemented with the 6812 . The implementation of the H-bridge code was fairly simple. 

When we are extracting the claw we send a bit pattern with the enable bit high and A+ 

and A- bits low and high respectively. In order to retract the claw we send the same bit 

patter with A+ and A- bits swapped. The H-bridge code communicates with the PCIl04 

over a serial connection in order to know exactly when to extract and retract the claw. 

Next was the task of writing the source code for the PC/1 04 . The PCIl 04 is used 

to receive the sensor data from the 6812 and, based on that data, send movementicontrol 

commands to the robot. The code for the PCIl04 is broken into three parts: line 

following, servo control, and stepper motor control. The line following code is able to 

recei ve the case sent by the 6812 (based on IR sensor status) and based on that case, send 

ASCII movement commands to the stepper motor controller. These commands are sent 

to the stepper motor controller by serial communication. The PCIl 04 controls the servos 

by interfacing with the servo controller via USB. The servo controller has a number of 

functions available to send commands to the servo motors. In our implementation we 

47 



used the absolute position command. Servos operate based on a pulse signal, typically 

ranging between 1 ms and 2 ms, refreshed at 50 Hz. The servo controller's circuitry 

generates this 50 Hz pulse so that all we have to do is tell the servo controller what 

position we want the servo at. The controller accepts values ranging from 500 to 5500. 

These values are found by mUltiplying the desired pulse width by 2000. Based on the 

specific needs of each servo, we calibrate the motors in order to find the correct pulse 

widths for their respective operations. 

Once each modular piece of code had been written to controllintelface with each 

device, the code needed to be combined and program flow incorporated . The PCI I 04 

controls the overall flow of code and which part of the code needs to be implemented 

when. There are six parts of the code that need to be executed representing the six modes 

the robot needs to be in during the duration of the performance: line following, bin 

extendlretract, bin loading/unloading, extend/retract claw, open/close claw, and flash 

LED. The robot begins by powering on. Once powered up, the robot needs to enter line 

following mode. The PC/104 sends a message to the 6812 telling it that it is ready to 

receive data from the IR sensors for line following. The PCIl04 receives this data and 

sends movements commands to the stepper motor controller. At the same time, the 

PCIl04 sends a servo command to the servo controller to extract the bins. From this 

point on, the hardware timer for the 6812 continues generating trigger pulses to receive a 

distance measurement from the ultrasonic sensor and stop the robot in front of the chute 

when a particular distance is satisfied. This ends the first part of the flowchart's three 

major processing stages. The next stage involves a lot of handshaking between the 6812 

and the PC/104. First, the 6812 sends a command to let the PC/l 04 know that the motors 
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must be stopped. Upon confirmation, the 6812 uses the H-bridge to control the dc motor 

and extend the claw. Once completed, the 6812 sends another command that allows the 

PC/104 to operate the claw servo and grip a block. Finally, the 6812 receives 

confirmation and retracts the claw with the H-bridge and de motor. At this point, the 

PC/104 needs only operate the servo to release the block onto the vertical lift system and 

determine whether or not all twelve packages have been extracted. If all twelve packages 

have not been extracted, then the process continues. Otherwise, the robot goes back into 

line following mode. There is a new input variable in this line following mode, 

destination plane. Decisions on which direction to take at an intersection are based on the 

current destination plane. Once the destination plane is reached , determined by the 

ultrasonic sensor, the PCIl04 instructs the servo release mechanism on the plane's bin to 

open. The packages are released into the plane, and the robot continues back into line 

following mode until all planes are reached. After all planes have been loaded, the 

PC/104 instructs the robot to retract its bins. Once the bins have been retracted , the robot 

flashes a blue LED signaling completion of the round. 

Conclusion 

The robot was constructed and programmed enough to qualify for competition, 

meaning that it can drive forward following a line and extract a block from the package 

chute. Due to hardware problems, we were unable to complete the whole robot. 

However, each individual system performs as expected, and the entire system just needs a 

new processor to be fully functional. 
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Improvements that could be made include speeding up the extraction procedure. 

This could be done by increasing the speed of the claw, the vertical lift system, and the 

horizontal belt system. Another way to improve the design would be to provide more 

sensors for line following. This would provide better precision and less wasted side-to

side movement while the robot follows the line. These improvements would make the 

robot much more competitive in that they would reduce the time it takes to complete the 

course. 

Overall, the design of the robot is solid and will be competitive in competition. 

By changing some programming and speeding up some motors, the speed could be 

greatly increased. By altering some sensors, precision can be gained and gain speed even 

more. With these improvements, the robot could be greatly enhanced. 
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Appendix A: Track Layout 
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