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Abstract 

W01 and W02 are conformation-specific monoclonal IgMs that bind the fibril state of the amyloid 

Af) peptide (1-40), as well as amyloid fibrils of other disease-related proteins. Significantly, the 

antibodies (Abs) do not bind the soluble, monomeric state of Af) (1-40) or the precursor form of 

other amyloids. The Abs have been sequenced and analyzed to study the role of the unique and 

unusual residues in WO1 and W02. Three-dimensional models of the Fv fragments of WO1 and 

W02 were generated with Web Antibody Modeling. A left-handed, six-rung structural model of 

the Af) amyloid core was evaluated by docking it with the Fv models of WO 1 and W02. The 

results predict binding of WO1 and W02 to Af) via hydrogen bonds and ionic pairing between the 

CDRs and the protofilament face consisting of residues 23-27. W01 and W02 bind the model in 

similar configurations; binding to W02 is predicted to rely less on ion pairing. The results support 

the A~ modeL Binding ofW01 experimentally determined to be sensitive to salt and pH 

conditions, suggesting electrostatic interactions are important for binding; this result supports the 

proposed docking model for WO1. 
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Introduction 

The aggregation of normally soluble proteins into insoluble, unbranched fibrils is the 

underlying pathology of a family of diseases known as the amyloidoses.] The hallmark event in 

amyloidogenesis is a change in the secondary and/or tertiary structure of a normal, soluble protein, 

rendering it prone to self-assembly into highly ordered para-crystalline arrays, or fibrils. More than 

20 proteins have been clinically identified as precursors of amyloid fibrils in vivo. These include 

the anlyloid precursor protein (APP), Islet amyloid polypeptide (lAPP), a-synuclein, transthyretin 

(TTR), immunoglobulin light chain (LC), polyglutamine-repeats, and prion proteins, that are 

associated with diseases such as Alzheimer's,2-4 type II diabetes,5,6 Parkinson's disease,7-9 familial 

polyneuropathy,lO light chain associated (AL) amyloidosis, I 1-13 Huntington's disease,4,14 and the 

spongiform encephalopathies. 15 By understanding the three-dimensional structure of such fibrils, 

we might design novel agents for detection and/or therapeutics. It is notoriously difficult to extract 

structural information directly from amyloid fibrils, which are insoluble and non-crystalline, so a 

great deal of study has gone into fiber diffraction studies,16-18 mutation studies,19 microscopy, 17,20,21 

proteolysis,22,23 ESR,24,25 NMR,24,26 SANS,27 and deuterium exchange28-31 in an ongoing attempt to 

elucidate the molecular structure of the amyloid AP fibrils associated with Alzheimer's disease. 

There is no consensus model for AP structure, but most models incorporate a cross-beta 

secondary structure. The cross-beta structure (in which the fibril axis is perpendicular to the chain 

direction) of AP models is derived from the 4.75 Ameridional reflection in fiber diffraction 

studies. A stacked, parallel beta-sheet arrangement is suggested by Burkoth, Benzinger, and 

others,24,27,32 while a pair of concentric cylinders was proposed by the late M. F. Perutz , et al.33 An 

anti-parallel or stacked-hairpin beta-sheet arrangement is suggested by Callaway and others.34­

3 


37 

http:others.34


One recent model of the A~ protofilament features a trigonal prism of stacked, parallel A~(l5-36) 

polypeptides; the model is visible in Figure 5. This model is consistent with hydrogen-deuterium 

exchange, limited proteolysis, solid-state NMR, EPR, and proline-scanning mutagenesis data.38 The 

model remains stable and gains order during molecular dynamics simulations, supporting the 

viability of the trigonal prism model. The proposed fibril model (of 6 proto fil aments ) that 

accompanies the protofilament model appears to be consistent with electron microscopy. Hence, it 

may serve as a starting model for simulating A~-antibody interactions. 

Each unique monoclonal antibody binds specifically to a particular antigen via an antigen 

binding domain of the Ab, the Fab domain, recognizing a specific antigenic region, the epitope. 

They can thus be used to detect and diagnose certain conditions, such as disease or drug use. They 

are also useful as therapeutic agents with precise targeting and correspondingly reduced side 

effects. The monoclonal antibodies WOl and W02 appear to recognize a common conformational 

epitope shared by several different types of amyloid fibrils, with little dependence on amino acid 

39 sequence. The two bind the same antigen with similar affinities for the A~ fibri1.39 This result 

opens the door to targeting whole classes of amyloid fibrils for detection and therapy.4o The 

success of antibody modeling algorithms at predicting crystal structures of antibody variable 

regions41 encouraged us to use computed models ofWOl and W02 Fvs for docking simulations, 

albeit cautiously. 

The program Autodock predicts the interaction of ligands with macromolecular targets. 

Autodock is flexible enough to accept the hexamer protofilament model as an input. Since WO 1 

and W02 bind to A~ amyloid, we hypothesized that a model of the A~ protofilament would, if 

correct, dock predictably to a model of the variable regions of WO 1 and W02. Here is presented 

the configuration predicted by Autodock3 for the binding of the Fvs of antibodies WOl and W02 
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to a model of AP protofilament. Also are comparisons of the sequences of WO 1 and W02 variable 

regions to each other and to sequences in the database and experimental data that supports the 

predicted model ofW01-AP binding with respect to salt-dependence. 

Methods 

Sequence analysis- The nucleotide sequences of WO 1 and W02 were obtained by 

cloning and confirmed by multiple cloning using high fidelity polymerases, and further confirmed 

by extended N-terminal amino acid sequence from analysis of the protein.42 Initial alignments were 

performed using Molecular Operating Environment (MOETM43), with Ab sequences obtained from 

the Protein Data Bank44,45. An extensive alignment was done using the Kabat sequence database 

testing program46. BLASTP analysis47 was run on the W01 and W02 variable light chains using 

the Non-Redundant Protein Database at the San Diego Supercomputer Center. Canonical classes 

are based on Chothia nomenclature48 and numbering scheme is that of Kabat49. 

Electrostatic Analysis - Electrostatic surfaces were calculated using DelPhi, a part of the 

InsightII® graphical software package. Models were displayed and manipulated with InsightII® 

and all computational work done on a Silicon Graphics computer system. 

Model Generation- Models ofW01 and W02 variable regions (Fv) were generated using 

the Web Antibody Modeling algorithm, W AM.41 W AM is an improvement on the AbM program 

50-53 with greater capability in modeling the highly variable H3 loop through a combination of 

knowledge-based and ab initio methods41 . The WAM algorithm has a record of producing models 

that are 1.0-2.8 A RMSD from observed structures for the (notoriously low homology) heavy chain 

CDR3, and better than that for the canonical loops (typically 1.0-2.5 A RMSD). 

Docking - preparation. With Anna Gardberg in the Dealwis lab, docking simulations were 

performed using Autodock and a Silicon Graphics workstation. Control calculations performed 
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with a protein-peptide complex and a protein-ligand complex of known structure showed that the 

charges assigned from forcefield calculations performed by AutoDockTools yielded less accurate 

results than those assigned by AMBER forcefield calculations54,55 performed by InsightII.56 We 

report here the procedure that we used to assign such charges. A PDB file of the Ap 1-40 

hexameric protofilament model after molecular dynamics simulations ("AP6 model", which models 

residues Gln15 through Va136)38 was kindly provided by Juntao Guo and Ying Xu. The atom 

names were standardized and hydrogen atoms added in riding positions via Refmac5.57,58 After 

capping the termini of each chain with neutral end groups, the InsightII program calculated partial 

charges for each atom (including H's) in the AP6 model via the AMBER force field. Calculating 

the summed formal and partial charges for the AP6 model verified that the model is electrically 

neutral. 

Docking - computation. Autodock-style PDBQ files were prepared files with mol2topdbq 

and mol2topdbqs, awk-based utilities packaged with Autodock3.59 For purposes of solvation 

calculation, we designated the Fab models the proteins and the AP6 model the ligand. Despite the 

thermodynamic importance of side-chain motion,60 neither the Fvs nor the AP6 model were 

permitted any torsional freedom; the Autodock package does not permit the side chains of the 

protein to move, and the Autotors utility for designating rotatable bonds in the ligand allows a 

maximum of 32, not nearly sufficient for a "ligand" the size of the AP6 model, which contains 

2040 atoms. Grid parameter files were generated via mkgpj3 (a script which comes packaged with 

Autodock3) and adjusted to compensate for the large volume required for the interaction of the 

Fab's complementarity determining region (CDR) with the AP6 model. The npts parameter, which 

controls the number of points in the docking grid, was adjusted to "120 120 120", the spacing 

between points was increased to 0.55 A, and the center of the computational volume was moved. 
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The final gridded regions encompassed the CDR of the Fv (as well as all of the heavy chain and 

most of the light chain of the model for WOl, and all save the C-termini for W02) and the starting 

position of the A~6 model, with room for rotation and translation. Grid generation was performed 

with Autogrid3. 

Docking parameter files were prepared with mkdpj3 and adjusted by hand. The qstep 

parameter was changed to 180 for more initial rotational freedom. The initial gayap_size of 10 

was insufficient for meaningful clustering results, so that parameter was changed to 50. 

Contact analysis. Contacts between the Fv models and the A~6 model in the predicted 

docking complexes were analyzed with Tadeusz Skarzynski's program CONTACT. 58 Docking 

clusters and configurations were examined in Pymol,61 with residue charge surfaces visualized. 

Electrostatic surface plots for publication were generated by the DelPhi module of InsightII. 56 

Angles between solutions were computed by calculating the average direction vector along the 

protofilament axis for each solution and taking the inverse cosine of the dot-product of direction 

vectors. 

Salt Effects on Binding WO1. Binding of the WO 1 antibody to A~ fibrils was tested under 

various salt and pH conditions, experiments conducted by Israel Huff and data communicated. A 

buffer concentration of5mM was used throughout: HEPES at pH 7.5 with 1) no salt, 2) 150 luM 

NaCI, 3) 600 mM NaCI, 4) 150 mM KCI, and 5) 75 mM Na2HP04 comprised the salt-effects 

experiments; 150 mM NaCI with 6) citric acid pH 3.0, 7) citric acid pH 5.8, 8) PIPES at pH 5.8, 9) 

PIPES at pH 7.4, 10) Bicine at pH 7.4, 11) Bicine at pH 8.5, 12) CHES at pH 8.5, and 13) CHES at 

pH 10.0 comprised the pH-effects experiments. 

All buffer compounds except citric acid were ordered from Calbiochem. HEPES has low 

ionic strength, so it should not interfere greatly with comparing the different salts. N a2HP04 has 
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roughly double the ionic strength of the other 2 salts so it was used at half the concentration for a 

balanced comparison. The salt-effects experiments were buffered to pH 7.5, near physiological pH 

conditions. The pH effect experiments contained 150 mM NaCI to provide approximate 

physiological ionic strength conditions. Four different salts were tested at comparable ionic 

strengths to determine if the particular salt present in the buffer has a significant impact on antibody 

binding. The four chosen were lxPBS, NaCI, KCI, and NaP04• lxPBS is the standard buffer used 

in the binding experiments. The other three salts were chosen to compare two different anions and 

cations. 

RESULTS 

Sequence analysis. Comparison ofWOl to W02. The WOl and W02 Fv residue sequences 

were initially compared to one another, then compared with sequences fronl the Kabat database to 

search for anomalies, unique features, or homologies to other antibodies. An alignment of the 

CDRs is shown in Figure 1. The light chain variable regions share 66% identity (800/0 similarity) 

and the heavy chain variable regions share 820/0 identity (85% similarity). While both sequences are 

rich in hydrogen bonding residues, WO 1 V L has a greater proportion of Asn and GIn residues 

(10.70/0 WOl vs. 4.90/0 W02) and of (charged) Asp, Glu, Arg, and Lys residues (13.3% vs. 11.5%), 

while the W02light chain is richer in Ser residues (13.2% for WOl VL, 20.3% for W02 VL). Of 

the eleven additional serine residues in W02's light chain variable region, nine are in the CDRs; 

their counterparts in WOl are Gly, Asn (3), His, a deletion, Lys, Asp, and Thr. The number of 

positively and negatively charged residues in the V L region is similar; the number of charged 

residues in the V H is identical. The WO 1 and W02 heavy chain variable regions are more similar in 

overall sequence, but W02 is richer in serine residues (W01: 12.8%, W02: 14.9%). Only one of 

the additional serine residues is at a CDR, and it replaces a (similar) threonine residue. 
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Overall charge composition of the Fv fragments is very similar, with isoelectric points (pIs) 

of the variable regions calculated to be: WOI VH 7.3, VL 8.7, W02 VH 7.2, and VL 8.7. The CDRs 

of the light and heavy chains are rich in hydrogen-bonding residues relative to anti-lysozyme and 

gerrnline antibodies, suggesting that hydrogen bonding plays a role in amyloid-recognition. The 

compositions of CDR I and CDR2 feature a much higher composition of hydroxyl residues in W02 

than in WOI. This disproportion could feature in any antigen binding differences or trends 

between the two Abs. CDR3 of the heavy chain shows high variability, so comparisons are 

difficult, but the three-charge region R98, D99, DIDO in WOI heavy-chain CDR3 is striking, this 

being the only chain with three-charge region. (W02 has RRL here). Figure 1 displays the sequence 

comparison for the CD Rs. 

a) 
VL CDR1 24 25 26 27 28 29 30 31 31a 32 33 34 
W01 R A S G N I B N Y L A 
W02 T A S S S V S S S Y L B 
O:'-Lyso R A S Q N I S,B N N L B,A 
Germ. R,K S,A S Q S,N I nh* nh S nh L nh 
Kappa R,K A,T S Q nh V,I nh S,T nh L nh 

CDR2,3 50 51 52 53 54 55 56 89 90 91 92 93 94 95 96 97 
W01 N A K T L A D Q B F W S T P Y T 
W02 S T S N L A S L Q Y B R S P Y T 
O:'-Lyso Y T T,S Q,T S,L nh D,S Q Q F,Y nh S P R,L T 
Germ nh A,V S,A nh R,L D,E S nh Q nh S nh nh P R T 
Kappa nh A S nh R,L nh S Q Q S,Y nh S,D nh P R,L T 

b) 
VB CDR1 26 27 28 29 30 31 32 33 34 35 
W01 G Y T F T E Y T M B 
W02 G Y S F T G Y T M N 
O:'-Lyso G Y T,S F T T Y W I,V E,S 
Germ G F T F T D Y Y M S,B 
Kappa G F,Y T F T D Y Y I,M B,K 

CDR2 50 51 52 53 54 55 56 57 58 
W01 G I N P N N G T S 
W02 L I N P Y N G T S 
O:'-Lys E I L P G S nh T Y,D 
Germ F I R nh nh nh nh T E,K 
Kappa nh I nh P nh nh G,S T nh 

Figure 1: 
CDR composition of a) V LS and b) V HS compared with those of anti-lysozyme, germ line, and kappa-light-chain 
antibodies. CDR3 for VH not shown as this region has high variability. *nh signifies no homoJogy 
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Light Chain. A preliminary sequence alignment was performed using a database of various 

antibody sequences, including subsets of anti-lysozyme Ab chains and germline Ab chains. The 

results showed a high degree of homology between the chains on the whole, with several residues 

noted as distinctive. (Table I). In WOl 's light chain CDRs, there are charged residues occupy 

positions occupied by hydroxyl residues in W02 and the comparison sequences: Arg24, Lys52, and 

Asp56. Similarly, theW02-unique charged residue Arg93 replaces a hydroxyl residue in WOl and 

the other comparison sequences. In other words, the unique residues of WO 1 are not conserved in 

W02, and vice versa. 

Light Chain 
Residue 
WOl W02 

Equivalents Residue exhibited by chains with non-identity 

Lys42 Ser43 No None charged, only Gly, GIn, Tyr 
Lys52 Ser53 Lys only in W01 No charged, 95% Tyr or Ser 
Asp56 Ser57 Asp in W01 and (AL) 990/0 Pro, (G) have Thr/Ser 
Lys74 Thr75 Lys only inWO] 100% GluiAsp, (G) has Thr 

Table I: Light chain-unique residues and comparison for W01 residues that are less than 10% homologous in the 
initial alignment tests. The alignment was done with specific interest in the anti-lysozyme Abs as well as germline 
Abs, and any residues here are noted if appearing in either chain. The residue is listed with its location, as well as the 
residues that were most commonly shared throughout the other Ab sequences. The equivalent residue from W02 is 
also included for comparison. Codes: antilysozyme (AL), germline (G). 

Light Chain Kabat Alignment. A more extensive alignment was done using the Kabat 

sequence database testing program. The WO 1 V H and V L sequences were compared to the database 

of 2707 light chains and 3471 heavy chains. The chain of interest was displayed against a code of 

typical residues by name or property, indicating what residue or what type (hydrophobic, acidic, 

basic, hydroxyl, etc.) of residue occurs at each position in the majority of the comparison 

sequences. The unique (defined as: occurring in less than 1 % of the chains at a certain position) 

residues Lys42 and Lys74 had no consensus within the database. Lys52, however, was a hydroxyl 

residue in the majority of the 2701 chains. None of the W02-unique charged or hydroxyl residues 

showed any incongruity. 
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Heavy Chain. Through the preliminary alignment including the anti-lysozyme, germline, 

and kappa-light chain sequences, the following were noted as distinctive in the WOllW02 heavy 

chain: 

Heavy Chain 
Residue 
WOl W02 

Equivalents Residue exhibited by chains with non-identity 

Lys63 Lys63 WOIlW02, (G) No other charged residues 
Lys65 Lys65 WOI/W02, (G), (AL) 100% Val, Leu, or Phe 
Lys67 Lys67 WOIlW02, (G), (AL) 100% Gly, Ser, Asp 
Asp73 Asp73 WOIlW02, (G), (AL) Mostly Asp/Glu 
Lys74 Lys74 WOIlW02, (G) 99% Asp/Glu 
Arg84 Leu84 Arg only in WO] Non-consensus, but no other charged 

Table II: Heavy chain unique residues and comparison. The residues displaying less than] 0% homology in 
the initial alignment tests are included here. Any germline or anti-lysozyme Ab commonalities are noted, as well as the 
residues displayed in the chains which are not homologous to the WOI/W02 heavy chains. Codes: anti lysozyme (AL), 
germline (G). 

Similar to the light chain results, the most striking disparities between WOllW02 and comparison 

sequences occur with charged residues, here Lys63, Lys65, Lys67, Lys74, Asp73 (both WOl and 

W02) and Arg84 (WOl only). 

Kabat Alignment. Again, the Kabat alignment was performed to determine uniqueness or 

find other distinct residues. None of the above charged residues were found unique, and the typical 

equivalent had no consensus. The only significant discrepancy was the Asn44 of the W02 heavy 

chain. The Asn residue found at this site is found in only 13 examples, 0.326% of the database. 

Typically, a Ser residue is at this position. 

Electrostatic surface potentials for WOl and W02. WOl and W02 Fvs display regions of 

significant charge density, indicated in the electrostatic potential map in Figure 2. Though the pIs of 

the WOl and W02 Fvs are nearly neutral, they clearly have highly charged regions. The presence 

and distribution of these charged segments indicates a possible role of charge interactions in 

antigen binding. The line of positively charged residues on each of the light-chains suggests a 

template for hydrogen bonding and salt bridges. 
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Figure 2. Electrostatic surfaces for WO 1 (left) and W02 (right) Fv models. The viewer faces the CDRs. In each image, 
the heavy chain fragment is on the left. 

Fv Models. Ofthe W01light chain's unique lysine residues (42, 52, and 74), only Lys52 is 

at the CDR and plays a role in docking. Lys74 and Lys42 are on the framework; Lys42 sits near the 

heavy-light interface. The heavy chain's unique residues (common to W01 and W02), Lys63 , 

Lys65, Lys67, Asp73 , and Lys74, likewise do not occupy the CDR, and play no part in the binding 

predicted by these models. W01light-chain Asp56 (unique to W01 and anti-lysozyme Abs) does 

playa role, however. 

Electrostatic Surface Potentials for AfJ6. The most striking features of the A~6 model are 

the bands of charged residues aligned along the stacking axis, shown in Figure 3. These charged 

bands are a consequence of the in-register parallel-stacking of the model. Labeling the 

protofilament face containing residues 17-22 "A", 23-27 "B", and 28-36 "C" (A~ 1-40 numbering 

basis), we see that faces A and C display exposed hydrophobic residues. 

12 




Figure 3. Electrostatic surfaces for the A, B, and C faces of the AP6 protofilament model. The line ofGlu22 and Asp23 
residues (shown in red) at the corner ofthe A and B faces is particularly striking. 

Proto filament Packing model. Figure 4 shows a more detailed three-dimensional view of the 

6-protofilament packing model suggested by Guo, Wetzel, and Xu.38 Each unique protofilament 

face is exposed twice on the outside of the fibril. 

Figure 4. A more detailed (but still schematic) three-dimensional view of the 6-protofilament packing model suggested 
by Guo, Wetzel, and XU.38 Each unique protofilament face is exposed twice on the outside of the fibril. Color scheme: 
A-face, blue; B-face, red; C-face, green. 

Docking. WOI-AfJ6. AutoDock3 predicted 50 binding configurations for W01- A~6. Both Fvs 

were treated as rigid bodies. For W01- A~6, Autodock3 found 41 distinct conformational clusters 

(using an RMSD-tolerance of 1.0 A), of which 8 contained more than one member. The variation in 
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energy from the best to the worst solution was 7.0 kcal/mol. Although there was one cluster of two 

solutions in the top 7, more intriguing is a collection of related clusters beginning at the 8th-ranked 

solution. In total, 21 solutions have the B face of the A~6 protofilament model at the light-chain 

CDR, with some overlap onto heavy chain CDR. Some are offset by one, two, or three monomers 

(i.e. , the stack of six A~ monomers is shifted along the stacking axis), others by angles less than 

27°. This is the largest supercluster. The particular solution used for the following analysis was the 

lowest-energy member of this supercluster, which is 3.5 kcal/molless favorable than the lowest-

energy solution. 

Figure 5. a. WO 1 and b. W02 Fv docked with A~6 protofilament model in the predicted configuration. The heavy 
chain is on the left, the light chain is on the right, and the CDRs are highlighted. The A~6 model is shown colored 
according to residue: negative, red; positive, blue; polar, pink; hydrophobic, black. c. The two solutions are showed 
overlain. 

Salt Bridges and Ion Pairs. This docking model indicates that the line of Glu22 and Asp23 

residues in the A~6 model binds to the corresponding line of polar and positively charged residues 

ofW01's light-chain CDR through salt bridges and hydrogen bonds. The line of Lys28 residues 

likewise interact with the trail of polar and negatively charged residues of the light and heavy chain 

CDRs. Breaking the pairs down by Szilyagi and Zavodsky classification, there are four bonds at < 

4.0 A, six bonds between 4.0 and 6.0 A, and ten pairs between 6.0 and 8.0 A. 
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Hydrogen Bonding. The 0 and N atoms of the side chains of the line of Asn27 residues on 

the A~6 model make hydrogen bonds with Tyr and Asp residues of WO 1. The carbonyl 0 atoms of 

the line of (inward-pointing) Val24 and Gly25 residues bond to Tyr residues ofWOl. The 

backbone N of inward-pointing Ser26 makes some possible hydrogen-bonds. There are 17 likely H­

bonds at less than 3.5 A(two ofwhich were also counted as close ion pairs), and 56 possible H­

bonds between 3.5 and 5.0 A (five of which were counted as close or mid-range ion pairs). There is 

some overlap with the salt bridges listed above. 

Hydrophobic Interactions. There are no aromatic rings on the B-face of the A~6 model, and 

the hydrophobic Val24 side chain points toward the interior of the A~6 model, so hydrophobic 

interactions between WOl and the A~6 model are not observed in this docking model. 

Docking. W02-AjJ6. AutoDock3 predicted 50 binding configurations for W02- A~6. Both Abs 

were treated as rigid bodies. For WO 1- A~6, Autodock3 found 42 distinct conformational clusters 

(using an RMSD-tolerance of 1.0 A), of which 5 contained more than one member. The variation in 

energy from the best to the worst solution was 9.3 kcal/mol. There was one cluster of two solutions 

in the top 13, but the largest cluster began with the 14th-ranked solution. Within 1.0 A R.M.S.D., 

there are 5 similar solutions. In total, 11 solutions have the B face of the A~6 protofilament model 

at the light-chain CDR, with slight overlap onto heavy chain CDR. One of them is offset by one 

monomer, others by acute angles. This is the largest supercluster. This solution resembles the 

160supercluster solution found in the WO 1 docking, but makes a ~ angle to it. The particular 

solution used for the following analysis was the lowest-energy menlber of this supercluster, which 

is 6.4 kcal/molless favorable than the lowest-energy solution. 
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Salt Bridges and Ion Pairs. The analysis for this docked conformation is very similar to that 

of the WOI-AP6 solution, but there are no salt bridges at less than 4.0 A, only two ion pairs 

between 4.0 and 6.0 A, and five between 6.0 and 8.0 A. 

Hydrogen Bonding. Thirteen likely hydrogen-bonds at less that 3.5 A and 66 possible 

hydrogen-bonds between 3.5 and 5.0 A exist between W02's Fv model and the docked A~6 model. 

Hydrophobic Interactions. No hydrophobic interactions were observed for this docking 

model. 

Binding vs. Salt Concentration. Binding was tested under three different ionic strength 

conditions: 0 mM NaCI, 150 mM NaCI, and 600 mM NaCI (Table 1). Binding was strongest in the 

near physiological ionic strength buffer, 150 mM NaCI, at an affinity of 4 nM (Figure 6). In a low 

ionic strength buffer, 5 mM HEPES only, binding is similar. In a high ionic strength buffer, 600 

mM NaCI, binding dropped sharply. This nlanifested in a reduction of both the magnitude and the 

affinity of binding. 5 mM HEPES only: 4 nM; 150 mM NaCI: 4 nM; 150 mM KCI: 8 nM; 75 mM 

NaP04 : 10 nM; 600 mM NaCI: 20 nM; and lxPBS: 2 nM. The significantly reduced binding in 

high salt suggests that electrostatic interactions are relatively important to binding and hydrophobic 

interactions are relatively unimportant. 
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Salt Effects on WOi Binding 
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Figure 6. Salt effect on WOl binding. Binding under various salt conditions was calculated from sigmoid midpoints: 
5 mM HEPES only was 4 nM, 150 mM NaCl was 4 nM, 150 mM KCl was 8 nM, 75 mM NaP04 was 10 nM, 600 mM 
NaCI was 20 nM, and 1 xPBS was 2 nM. 

W01 binding was tested in a range of pH conditions. Citrate pH 3.0 showed essentially no 

binding, citrate pH 5.8 shows 2 nM binding, PIPES pH 5.8 was> 20 nM, PIPES pH 7.4 was 2 nM, 

Bicine pH 7.4 was 1.5 nM, Bicine pH 8.5 was 16 nM, CHES pH 8.5 was 10 nM, pH 10.0> 50 

nM). The data produced a continuum of binding affinities with the strongest binding at near 

physiological conditions, pH 7.4 (Figure 7). There was, however, a discontinuity at pH 5.8 

between the PIPES and citrate buffers. Even with the gap present, a clear trend arose with binding 

dropping off sharply at higher and lower pH conditions. This indicates that W01 is pH-optimized 

for AP amyloid binding. If hydrophobic interactions were predominant in binding, this would 

likely not be the case. This reinforces the salt effect results suggesting that binding depends at least 

in part on electrostatic interactions. 
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pH effect on W01 binding 
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Figure 7. pH effect on WOl binding. The show binding under various pH conditions. Binding affinities were 
calculated from the sigmoid midpoints: citrate pH 3.0 showed essentially no binding, pH 5.8 was 2 nM, PIPES pH 5.8 
was more than 20 nM, pH 7.4 was 2 nM, Bicine pH 7.4 was 1.5 nM, pH 8.5 was 16 nM, CHES pH 8.5 was 10 nM, pH 
10.0 was very low binding (could not be calculated, but no better than 50 nM). 

DISCUSSION 

Comparison with experimental results. The model of WO1- A~6 docking that we have 

proposed, featuring many H-bonding pairs and salt-bridges, is in agreement with salt-dependence 

binding studies. It suggests that the positive-negative pattern on the "B" face of the A~6 model of 

the amyloid A~ protofilament offers a good recognition template for antibodies. The docking 

model shown in Figure 5(a) is in agreement with the experimental data available on salt effects in 

WOl A~ binding. The bonding ofW02 to the A~6 model has no strong salt bridges, which 

suggests that salt-effects for W02 and A~ will be less than those for WOl and A~, and that 

hydrogen bonds are of paramount importance for W02-A~ binding. 

Assemblies. Strictly speaking, the Fv models presented here are docked only to a 

protofilament, but these docked models are consistent with the hierarchical fibril model for A0 

amyloid proposed by Guo, Wetzel, and Ying. Their model consists of six A06 prisms, packed 

vertically against one another in two rows of three. Our rendering of this model, shown in figure 4, 
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shows that each protofilament face is exposed twice on the outside surface of the fibril model. The 

AP6 model likewise models a single antigen-recognition region for WO lIW02, whereas the 

physiological IgM presents ten recognition sites, resulting in high avidity and increased total 

binding strength. 

Implications. The in-register parallel beta-stacking of the AP6 model requires that each 

residue of the polypeptide line up with its equivalent in the next layer of the prism. Thus, while 

Glu22 is makes peptide bonds to Ala21 and Asp23 , it makes hydrogen bonds to Glu22 on 

neighboring strands. Viewing a face of the prism, then, one would see lines of equivalent residues. 

The line of Glu22 and Asp23 residues (Figure 3) is predicted to bind to the corresponding line of 

positive and polar residues ofW01 's light-chain CDR. The line of Asn27 and Lys28 residues 

likewise interact with the trail of negative and polar residues. 

The lineup of positive and negative charges on the B face with those at the CDR suggests 

another available binding mode. The A face of the AP6 model also has such a lineup of charges 

(Figure 3). The N -terminal residues of the AP6 model occlude part of the A face in this model, 

which was not allowed torsional freedom, so the A face was less accessible for binding than the B 

face. Even so, 2/50 unclustered solutions for W01 and 5150 for W02 (out of fifty) did predict some 

form of docking to the A face. It is worth noting, furthermore, that earlier simulations with an un­

minimized AP6 model (in which the N terminal residues took other orientations) yielded a 

supercluster of docking solutions at the A face of the AP6 model with W01. It is thus likely that a 

more computationally intensive docking simulation, one which allowed rotation around the bonds 

of the AP6 model, would have shown a bimodal distribution of solutions, one at the A face and 

another at the B face. Therefore W01/W02 binding to the A face of AP remains a distinct 

possibili ty. 
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The C face of the AP6 model present mostly hydrophobic residues and positively charged 

residues and would seem to be a poor fit for the WOI and W02 CDRs. Nonetheless, 8/50 

unclustered solutions for WOI and 9/50 for WOI predicted some form of binding to the C face. 

While these solutions are unrelated and unclustered, they may have some relevance, so binding AP 

to the C face cannot be ruled out. 

Conclusions. 

The sequences of two amyloid-recognizing IgMs were compared and analyzed. Structural 

models of their Fvs were created. WO 1 's Fv was found to be unusually rich in charged residues, 

while W02 is rich in Ser residues. Conditions for simulating the docking of AP amyloid 

protofilament to these Fvs were reported. Autodock3 predicted binding between the protofilament 

face consisting of residues 23-27 ("B") and the CDRs of the antibodies. The results for WO 1 agree 

with experimental salt-binding data and support a parallel cross-beta model for amyloid 

protofilament. 
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Appendix 1 

IgM Structure and Optimized WOl-W02 Protelolytic Cleavage 


An IgM is a pentameric antibody molecule, with each of the five subunits having IgG-like 
structure, with two Fab antigen binding sites. A joining, or "J" chain connects the five J.l heavy 
chains. A schematic of this pentameric arrangement is shown below: 

JeHAI 

Due to the large size of the IgM (nearly 900kDa), crystallization of the intact Ab is extremely 
difficult and an IgM structure has not been solved. Thus, efforts have been made to enzymatically 
fragment the IgM into smaller, more crystallizable protein pieces. Considering the aim of the WO 1­
W02 project is to further elucidate amyloid structure, crystallization of the amyloid fibril binding 
Fab fragment is an obvious goal, with the structure of the CDR regions showing motifs for antigen 
recognition as well as confirming the docking models. In order to achieve this, a cleavage protocol 
has been designed an optimized, utilizing the protease papain. A schematic of papain cleavage is 
shown below: 
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Papain cleaves in the hinge region, just above the two disulfide bonds, resulting in two Fab 
domains from every IgG. In the case ofW01 and W02, ten Fab' s would be cleaved from the IgM 
monomer, purified and crystallized. Each IgM is obviously different, so a cleavage protocol should 
be tailored to the Ab through optimization. Our optimization involved varying pH, papain:Ab ratio, 
and time, with the procedure as follows: 

1. 	 Purify WO 1 or W02 from hybridoma culture through size exclusion chromatography 
2. 	 Preactivation of papain in 50mM NaCI, 50mM NaP04, 10mM cysteine, 2mM EDTA, pH 

6,6.5 ,7 30 minutes at 37°C. 
3. 	 Add papain at 1 :40 and 1:8 (five fold change) ratios 

4. 	 Incubate at 37°C for 12 hours, taking timepoint samples at 30min, 1h, 2h, 4h, 8h, 12h. 

5. 	 Run SDS-PAGE gel electrophoresis with Coomassie or silver staining to analyze cleavage 

6. Select best conditions, repeat experiment full scale 

7.. Purify Fab through affinity or size exclusion chromatography, crystallize. 


Our results showed that the pH 7.0, 4hr, 2.5% papain condition shows adequate cleavage with 
relatively little non-specific cleavage side products. This can be seen on the silver stained SDS 
PAGE gel below, with our optimal condition seen on the far left, the band in the middle of the 
Image: 
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Problems in purification stem from the fact that the Fc regions of the IgM might be cleaved from 
the J chain, leaving both the Fc and Fab chains at nearly the same molecular weight (~50kDa). 
Thus size exclusion chromatography may not be efficient, and affinity resins such as Protein L or 
Protein A columns that bind Fc domains can be employed to purify the Fab. 

An image of very small crystals is shown here: 

Once these can be optimized, grown to sufficient size, and found to diffract X-rays, a structure of 
the Fab domains of WO 1 and W02 could be found. This work is ongoing, and a solved structure 
will contribute substantially to the docking motif proposed. . 
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Appendix 2 

WAM generated model images 


For reference, several of the WAM generated WOl and W02 models rendered using InsightII on a 
Silicon Graphics Octane ™ workstation are shown below: 

This is a ribbon view of the model of W02, with heavy chain on left and light chain on the right. 
CDRs are marked by the colored regions: 

pink: Heavy Chain CDR2 orange: Light Chain CDR2 
green: Heavy Chain CDRl purple: Light Chain CDRl 
red: Heavy Chain CDR3 white: Light Chain CDR3 

Below is a ribbon view of the superimposition of the two models, with similar orientation to the 
image above, the viewer facing into the Fab CDR region. Obviously, the two share a high degree of 
structural homology: 
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Appendix 3 

Electrostatic Surface Images 


More detailed images of the DelPhi generated electrostatic surfaces are shown below, viewer 
looking into the CDRs with heavy chain on left and light on right. 

W01 : 

C • I 

4.(,
3. ( 
~.C 
l.C
(".I 
1.(, 
::..C 
3. C 
4.(. 
h,. r 

W02: 


5.0 
4.0 
j C 
~ C 
1. 
U v 

-1. I 

-2 

31 



	Modeling and Docking Studies of Anti-Anyloid Antibodies WOL and WOZ
	Recommended Citation

	tmp.1282751643.pdf.ROzkv

