
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative

Exchange

University of Tennessee Honors Thesis Projects University of Tennessee Honors Program

Spring 5-2005

Petrologic Analysis of Basalts from the Hawaii
Scientific Drilling Project
Shelley D. Miller
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj

This is brought to you for free and open access by the University of Tennessee Honors Program at Trace: Tennessee Research and Creative Exchange. It
has been accepted for inclusion in University of Tennessee Honors Thesis Projects by an authorized administrator of Trace: Tennessee Research and
Creative Exchange. For more information, please contact trace@utk.edu.

Recommended Citation
Miller, Shelley D., "Petrologic Analysis of Basalts from the Hawaii Scientific Drilling Project" (2005). University of Tennessee Honors
Thesis Projects.
https://trace.tennessee.edu/utk_chanhonoproj/890

https://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhono?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


, 
• 

Petrographic Analysis of HSDP-2 Basa lts From Hawaii Scientific 
Drilling Project: Magma Source Compositions and Olivine 

Accumulation 
Shelley D. Miller (smillell @utk.edu ) 

Earth and Planetary Sciences, University of Tennessee, KnoxviJIe, 1N 37996-1410 

ABSTRACT 
Phase 2 of Ibe Hawaii Scientific Drilling Project (HSDP-2) collecled approximately 
3098 m of continuous samples that represent the most complete eruptive history of 
the Mauna Kea (MK) hot spot volcano. The goal of Ibe HSDP is to use Ibe temporal 
and geochemical evolution of MK to better understand the spatiaJ geochemical 
structure of the underlying mantle plwne. The purpose of this study is to determine if 
MK basalts from HSDP-2 define an olivine control Line and if the whole-rock 
compositions represent the Uqujd from which the lavas crystallized. 35 tholeiitic and 
alkali basalts from Ibe MK volcano were examined petrographically to quantify 
olivine phenocrysts abundance. Olivine phenocrysts range in size from OA-4.6mrn 
and vary in abundance from 5.3-50.3 vol%. l1SDP-2 samples display a wide range of 
textures; crystals within each sample vary in size, shape, abundance, and degree of 
alteration. When compared to bulk MgO, olivine phenocrysts define an olivine 
control line with and R2 value of 0.85. The magma crystallization model MELTS 
{Ghiorso el al., /995} was used to detenrune whether the composition of the olivine 
measured in selected HSDP-2 samples represents Ibe equilibrium olivine expeeled for 
a given bulk composition (MgO). HSDP-2 samples wilb M~75 and forsteri le (Fo) 
content (measured < modeled) contain accwnulated olivine. Thus, not all HSDP-2 
lavas are representative of mantle compositions; select samples must be corrected for 
accumulated olivine. Samples with Mg#<75 whose olivine composition falls below 
the equilibriwn Fo range probably reflect the lack of measuring the most Fo-rich 
phenocryst. Allbough the compositional data sel for HSDP-2 is limited, this study 
calculated similar accumulated olivine constraints (Mg#95) as a previous study on 
l1SDP-I samples (Mg#96) {Baker ef al .. 1996}. Using MELTS, modal and 
modeled estimates diffe r by less than 8.9 vol. %, giving confidence to our results. 

I. INTRODUCTION 

Before Ibe Hawaii Scientific Drilling Project (l1SDP) broke ground in December of 

1993 near Hilo Bay, Hawaii, the continuous evolution ofa single "hot-spot" volcano had 

nol been sampled directly. Prior to this HSDP pilot hole, Ibe history of an individual 

volcano was a patchwork of surface and ocean dredging samples (Stolper et al. . /996) . 

By 1999, phase 2 of Ibe HSDP dri lled inlO the southwestern flank of Mauna Kea (MK) at 

Hilo Bay to • maximum deplb of 3098 meters below sea level (mbsl). The HSDP-2 core 



" 

represents the most continuous stratigraphic lava sequence of a single hotspot volcano 

available and includes 2853 m of MK and 245 m of overlying Mauna Loa (ML) lavas 

(DePaolo el ai., 2001). These intervals represent approximately 400 kyr and 100 kyr of 

eruptive history, respectively. The HSDP-2 core contains tholeiitic ML lavas, aJkalilpost

shield MK lavas and tholeiitic MK lavas consecutively with depth. Subaerial MK lavas 

extend to approximately 1078 mbsl where they transition into submarine lavas. 

Submarine tholei.itic MK lavas are represented by the following rock types: massive 

units. pillow basa1ts. hyaJoclastites, and intrusives (Rhodes and Vollinger, 2004). 

Hotspot lavas are valuable because they tap into deeper mantle sources than other 

volcanoes. By studying the temporal geochemical evolution of these lavas, we can better 

understand the spatial, geochemical structure of the underlying mantle plume. The HSDP 

assumes that as the volcano travels across the zoned mantle plume, its source components 

and melt production are reflected through changes i.n lava compositions and eruption 

rates. (Rhodes and Vollinger, 2004). 

HSDP lavas are more olivine-rich in comparison to subaeriaJ erupted Hawaiian 

shield lavas. Either the HSDP lavas have a high MgO source or they contain 

accumulated olivine (Garcia, /996). Hawaiian lavas represent the composition of their 

mantle source region only if they have not been modified by addition or removal of 

crystals. A previous study on the HSDP-I samples concluded that lavas with Mg # ~ 76 

contain accumulated olivine (Baker el a/., /996). Therefore, we suspect that the HSDP-2 

lavas may also contain accumulated olivine. This study will attempt to identify the 

HSDP-2 samples which contain accumuJated olivine. Generally speaking, if olivine 

crystaJs remain within the chamber upon eruption, then the residuaJ liquid is increased 
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artificially in magnesium content. The resulting forsterite (Fo) content of the crystals 

would be too low to be in equiJibrium with the host liquid, and thus the liquid is 

recognized to contain accumulated olivine. The compositions of HSDP-2 samples, which 

contain cumulus olivine, must be corrected so as to more accurately represent the mantle 

source compositions from which they come. 

2. METHODS 

1.1 Petrography 

Forty HSDP-2 thin sections were examined using a petrographic microscope. 

Textural observations were noted and modal percentages of phenocrysts were quantified 

using the optical point counting method. Approximately 2000 point counts were taken 

for each thin section, covering an area of 15 x 3 mm. These modal analyses were 

weighted for vesicles and normalized to 100 percent. Phenocrysts were identified as 

"relatively large, conspicuous crystals in a porphyritic rock" (Bales and Jackson, 1987) 

and were measured to a minimum size of 0.1 mm. Strained olivine phenocrysts were not 

distinguished from unstrained phenocrysts in the point count in accordance with the 

findings of Baker el al. ( 1996), which revealed no systematic compositional variations in 

strained and unstrained phenoeryslS for both MK and ML samples. 

2.2 Geochemistry 

HSDP-2 bulk chemistry data from Rhodes and Vollinger (2002) in conjunction with 

phenocryst modal abundance quantified in this study were used to construct an olivine 

control line as well as depth profiles. All depth profiles were fitted with a moving 

average regression line set at two periods. This regression takes a moving average 

between the x-values in each profi le with increasing depth. Post-shield lavas, which did 
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not follow an olivine control line, were excluded from Figure I. Olivine compositional 

data was analyzed in selected samples using the Cameca SX50 electron microprobe 

(beam conditions: 15keV, 30nA, 20sec, IJ.U1l beam size) at the University of Tennessee to 

detennine the highest Fo-content of olivine in each sample. Analyzed crystals were 

chosen semi-randomly and analyzed from rim to core. Compositional data in addition to 

bulk Mg# were used to create Figure 2. An 'equilibrium zone' was created for the 

samples in Figure 2 using a Ko of 0.3±O.03 (Bala!r el aJ. 1996). The magma chamber 

modeling program, MELTS (Ghiorso and Sack, 1995), was used along with bulk 

chemistry to predict both oLivine abundance and maximum Fo-content of the olivine 

phenocrysts within the select samples analyzed for compositional data. All iron was 

input into MELTS as Fe,o, and the ratios of FeO to F",o, for each sample were 

calculated. In order to determine the liquidus temperature for each sample, the./02 was 

set at the QFM buffer and ran at I atm pressure. The sirnuJated magma composition of 

each sample was cooled from the liquidus temperature down (0 - 800°C in increments of 

10°C. Information regarding the liquidus temperature, maximum Fo-content of olivine, 

and modal abundance of olivine was recorded in Table 2 and used to decide which 

samples contained accumuJated oLivine. Predicted modal abundances from the MELTS 

program were compared to the measured modal abundances of this study to assess 

confidence in our modal estimations. 

3. RESULTS 

J. J Petrography 

In general I-ISDP-2 samples are hypidiomorphic-granular and vary in crystallinity 

from bolocryslaliine 10 vitrophyric (Plate I). Vesicularity ranges from 0-24.4 vol% and 
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is nol depth dependent. Most samples are porphyritic and contain phenocrysts of olivine, 

clinopyroxene, andlor plagioclase. Quench and flow textures occur in a minimal number 

of samples (plate 2). Glomerocrysts are displayed in select samples and do nol correlate 

with depth (Plate 3). Olivine phenocrysts range in size from 0.4-4.6 mm and display 

concentric zoning, resorption features. simple twins. and melt inclusions throughout the 

HSDP-2 core (plate 4). A maximum of 57.1% of olivine phenocrysts within a single 

sample alter to serpentine and/or iddingsite (Plate 5). Strained olivine phenocrysts with 

kink-banded extinction were observed in most samples (plate 6). Plagioclase phenocrysts 

range from 0.2-2.9 mm and readily alter to sericite in many samples. They show albite 

twinning and subophitic texture (Plate 3). Radiating laths of skeletal plagioclase can be 

seen in sample SR967 and attest to the presence of quench textures in HSDP-2 samples. 

Phenocryst abundances range from 5.3-50.3 vol% for ol ivine, 0-18.9 vol% for 

plagioclase, and 0-4.1 vol% for clinopyroxene (Table I). Thus the samples range from 

apbyric to highly olivine-phyric basalts. Modal percentages of olivine do not vary 

systematically with depth for ML or MK samples. 

3.2 Geochemistry 

When compared to bulk MgO, olivine phenocryst abundance defines an olivine 

control line with an R2 value = 0.85 (Figure 1). As seen in Figure 2, the compositional 

ranges of olivine for samples SR741. SR531 , SR490, and SR574 do not intersect the Ko 

'equilibrium zone.' AU of these samples have a MELTS modeled Fo-content b..igher than 

the measured Fo-content and correspond to a Mg# ?75. with the exception of SR741 

(Table 2). The maximum difference between the MELTS modeled and measured olivine 

vol % is <8.9%. MELTS modeled FeO and measured FeO differ at most by 1.1 wt.%. 
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CompositionaJ ranges of F088-90 within the MK tholeiitic lavas correspond to a wide 

range of modal olivine (13.5-30.lvol%) (Table 2). The depth profiles of olivine vol %, 

Ni ppm, and Cr ppm, mimic each other (Figure 3). Liquidus temperatures range from 

1423-1497°C and represent the onset of spinel crystallization. Olivine crystallization 

began an average of 92.4°C after spinel crystallization (Table 2). The depth profiles of 

olivine vol% and Mg# resemble one another (Figure 4). Using olivine accumulation 

criteria from Figure 3, nine HSDP-2 samples of variable depth are higbligbted as suspect 

in Figure 5. Figure 6 shows those samples for which olivine accumulation was 

confinned using both compositional and bulk data. 

4. DISCUSSION 

4.1 Petrography 

HSDP-2 samples display a wide range of textures. Crystals within each sample vary 

in size, shape, abundance, and degree of alteration. With a modal range of 5.3-50.3 

vol%, olivine phenocrysts are the most abundant phenocrysts in HSDP-2 samples overall. 

Resorption textures within olivine phenocrysts are physicaJ indications of disequilibrium. 

Because these textures are present in samples other than those which follow the selection 

criteria for olivine accumulation, it can be said that other samples may be in 

disequilibrium. Thus these samples may need to be corrected for alternative 

compositionaJ inconsistencies so as to represent mantle source compositions. Phenocryst 

size ranges and textural descriptions of HSDP-2 samples concur with studies by Garcia 

(J 996) and Baker eI 0/. (/996). 
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4.2 Geochemistry 

Because MgO and olivine abundance follow an olivine control line it can be said that 

the bull< chemistry of HSDP-2 lavas is governed by olivine abundanee. Samples with 

measured Fa-content less than modeled Fo-content (Table 2) and with Mg# ,!75 which do 

not intersect the KD 'equilibrium zone' (Figure 2) contain accumulated olivine. Cumulus 

olivine artificially increases the magnesium content of residual liquids within the magma 

chamber. For this reason. olivine accumulation will be a probable cause of 

misrepresentation of HSDP-2 mantle source compositions. Although the compositional 

data set for HSDP-2 is limited, this study calculated similar accumulated olivine 

constraints (Mg#'!75) as a previous study on HSDP-I samples (Mg#;>:76) (Baker et a/. 

/996). As noted in previous sections, sample SR741 follows one of the selection criteria 

for cumulus olivine. However, because SR741 is surrounded by two other samples 

(SR603 and SR967) which intersect the Ko 'equilibrium zone' and do not contain 

accumulated olivine, it is likely that we failed to measure the most forsteritic olivine in 

this sample (Figure 2). The closeness of fit between measured and modeled FeO and 

olivine modal abundance adds confidence to our modal estimates. Olivine is the primary 

host phase ofNi during crystallization; thus, the jX)sitive correlation between Ni ppm and 

olivine abundance with depth further supports our modal estimates (Figure 3). 

Interestingly enough, Cr ppm also shows a positive correlation with olivine abundance 

with depth (Figure 3). Because chromium is concentrated in a spinel . the positive 

correlation observed between the corresponding depth profiles may suggest co

crystallization and co-accumulation of spinel and olivine. Seeing that the MELTS 

calculated temperatures at which spinel and olivine begin to crystallize vary by less than 
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IOO'C, and that the crystallization of both minerals overlaps for the majority of their 

cooling history, co·crystal lization is probable for HSDp·2 samples. The resemblance 

between the depth profiles of olivine abundance and Mg# (Figure 5) further supports the 

claim that HSDp·2 samples follow an olivine control line. The samples highlighted for 

olivine accumulation in Figure 6 show no systematic variation with depth. This profLle 

shows a slight cyclical pattern most likely related to olivine accumulation and subsequent 

magma recharge. This pattern might be better seen with the add ition of more data points. 

5. SUMMARY 

HSDp·2 samples display a wide range of textures. Crystals within each sample vary 

in size, shape. abundance, and degree of alteration. HSDP-2 samples with Mg#~75 and 

measured Fo-content less than the modeled Fo-conlent, and which do not intersect the Ko 

'equilibrium zone" contain accumulated olivine. Therefore, not all HSDP-2 lavas 

represent mantle compositions. Select samples must be corrected for accumulated 

olivine. Samples with a Mg#<75 whose olivine composition falls below the equilibrium 

Fa range probably reflect the lack of measuring the most Fo-rich phenocryst. Limited 

data sets for HSDP-2 samples yielded similar oHvine accwnulation constraints as 

previous studies (Baker el al .. 1996). Confidence in estimated modal abundances for 

HSDp·2 samples is strengthened by the low variabi lity between measured and MELTS 

modeled estimates and the positive correlation of Ni ppm and olivine (vol%) with depth. 

In closing, samples which contain accumulated olivine have been identified using the 

aforementioned selection criteria. Without corrections for oli vine accwnulation, these 

samples cannot accurately resemble their parent magma source. 
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Table 1: Phenocryst Modal Abundances 

Depth MgO 01 P1ag cpx 
Sample Unit (m) (-) (1101%) (1101%) (vol %) 

SROO08-2.70 2 -9.5 7.64 6.5 2.5 2.7 

SROO36-1 .22 8 -53.4 24.24 50.2 0 0 

SR012!>-5.20 47 -267.5 6.93 5.3 12.2 1.7 

SR0133-8.20 49 -281.4 15.63 28.0 3.4 1.2 

SR0141-7.90 56 -305.8 7.14 6.2 0 1.9 

SR0193-0.00 80 -443.7 10.86 13.5 0 4.1 

SR024D-3.30 98 -563.6 16.77 22.2 0 0 

SR0256-O.95 103 -569.2 7.97 8.9 0 3 

SR0276-7.85 110 -636 21 .57 41 .7 0 0 

SR0300-6.50 119 -695.9 14.08 18.1 0 1.4 

SR034D-l .00 132 -793.7 24.76 38.0 0 1.8 

SR03454-7.75 138 -834 22.31 39.3 0 0.2 

SR0372-2.80 142 -871 .2 8.17 8.4 0.1 0.5 

SR0472-1 .00 185 -1123.2 8.44 11 .9 7.2 1.2 

SR0490-1.50 190 -1229.7 17.96 28.6 0.00 0 

SR0531-4.40 198 -1352.6 17.88 31 .0 0.00 0.8 

SR0545-8.35 198 -1395 18.26 40.0 0.00 1.3 

SR0574-1 .90 202 -1474.8 18.56 39.2 0.2 2.4 

SR0603-8.90 216 -1548.2 13.01 20.9 0.00 1.2 

SR0664-5.10 238 -1705.6 15.90 28.3 0.3 0.2 

SR0694-9.00 253 -1794.9 11 .22 21 .9 1.4 1.1 

SR0723-13.70 270 -1933.9 7.96 7.1 4 0.4 

SR0732-1 .10 274 -1973.9 9.9 18.5 0 1.5 

SR0741 -7.90 278 -2009.8 16.21 30.1 0.7 0.7 

SR0766-11 .20 285 -2157.5 6.76 8.1 13.7 0.7 

SR0776-17.70 266 -2209.6 7.85 6.6 2.5 0.5 

SR065D-5.95 305 -2551 6.44 7.9 11 .6 1.2 

SR0660-8.10 310. -2615 7.77 20.2 20 2.7 

SR0871-13.00 312 -2654.3 16.64 26.5 0.00 2.9 

SR0916-1 .15 330 -2837.7 16.53 30.7 0.00 0.4 

SR093!>-18.10 3358 -2961.2 17.5 31 .3 0.3 3.8 

SR0956-18.35 3430 -3019.2 7.01 13.4 8.2 0.7 

SR0967 -2. 75 341b -3069 15.39 30.1 14.8 1.4 



Liquidus Olivine measured modeled measure modeled 
Sample Temperature Crystallization olivine olivine dFo Fo Bulk Accumulated 

# (OC) Beglno (OC) (vol%) (vol%)· content content Mg# Olivine 

sr490 1497 1397 28 26.7 88.29 90.17 76 yes 

sr531 1491 1411 31 31 .32 89.22 90.58 75 yes 

sr574 1493 1423 39 30.09 90.19 90.92 77 yes 

srfj03 1423 1302 21 13.49 89.52 86.95 70 no 

sr741 1471 1380 30 26.2 87.62 89.64 73 no 

sr967 - 1369 30 21 .39 89.78 89.28 74 no 

Table 2: MELTS data, modal abundance data and Bulk chemistry (Mg#) 
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Plate 1: Vitrophric texture with 
plagioclase mirolites 

Plate 2: Skeletal plagioclase 
quench texture 

Plate 3: Glomercryst with 
subophitic plagioclase 



Plate 4: Olivine resorpition texture 
along concentric zoning 

Plate 5: Alteration of olivine cores to 
iddingsite 

Plate 6: Strained olivine phenocryst 
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0.51 mm 

0.51 mm 

SR121 : Plagioclase Phenocryst with 
sericite alteration 

I SR36: Strained Olivine Phenocryst 
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0.51 mm 

0.51 mm 

SR117: Elongate and Equant Olivine 
Phenocrysts in plane polarized light 

SR117: Elongate and Equant Olivine 
Phenocrysts in crossed polarized light 



0.13 mm 

1.29mm 

SR 121 : Olivine Core Altered to 
Iddingsite 

I SR193: Twinned Olivine Phenocryst 



0.51 mm 

0.51 mm 

SR276: Olivine phenocryst (center) 
vesicle (top) 

SR276: Plagioclase phenocryst albite 
twinning 



0.51 mm 

0.51 mm 

SR276: Olivine Phenocrysts and 
Sericitization of Plagioclase 

SR276: Olivine phenocryst in plane 
polarized light 



0.51 mm 

0.13 mm 

SR300: Fractured Olivine Phenocryst 
with Iddingsite alteration rim 

SR354: Strained Olivine with kink
banding. Iddingsite alteration along 
the bands. 



0.51 mm 

0.51 mm 

SR354: Strained Olivine Phenocrysts 
with Iddingsite Alteration in crossed 
polarized light. 

SR354: Strained Olivine Phenocrysts 
with Iddingsite Alteration in plane 
polarized light. 



1.29 mm 

O.26mm 

SR413: Xenolith within sample; notice 
finer grained oval-shaped section 
(center) 

SR413: Photo of textural differences 
between xenolith (left) and 
groundmass (right) 



?mm 

1.29 mm 

SR472: Olivine Phenocryst with 
concentric zoning and resorption 

SR655: Olivine cluster and bimodal 
distribution of olivine phenocrysts 



1.29 mm 

1.29 mm 

SR545: Olivine Phenocrysts in plane 
polarized light with serpentine 
alteration 

SR545: Olivine Phenocrysts in 
crossed polarized light with 
serpentine alteration 



O.07mm 

O.07mm 

SR603: Concentric Zoned Ol ivine 
Phenocrysts in crossed polarized light 

SR603: Concentric Zoned Olivine 
Phenocrysts in plane polarized light 



0.51 mm 

0.26mm 

SR655: Olivine phenocryst showing 
resorption 

SR655: Olivine phenocryst showing 
resorption at edges 



0.51 mm 

0.26mm 

I SR664: General alteration 

SR664: Alteration and formation of 
amygdule 



0.26mm 

0.51 mm 

SR694: Strained elongate olivine 
phenocryst with resorption 

SR723: Glassy groundmass and 
amygdaloidal texture 



0.51 mm 

0.51 mm 

SR723: Glomerocryst of olivine and 
plagioclase laths 

SR723: Two different colors of glass 
in groundmass; microlites present 



0.13 mm 

0.13 mm 

SR732: Olivine phenocrysts with melt 
inclusions in plane polarized light 

SR732: Olivine phenocrysts with melt 
inclusions in cross polarized light 



0.26mm 

0.13 mm 

SR776: Zoned Equant Olivine 
Phenocryst 

SR776: Zoned Equant Olivine 
Phenocryst 



0.51 mm 

0.13 mm 

I SR967: Radiating Plagiocase Laths 

SR967: Radiating Plagioclase Laths 
and Skeletal Plagioclase. 



.J: 

Photo Gallery of Hawaiian Basalts: A Textural Guide 

Shelley D. Miller 
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