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Background 

A porto systemic shunt is a blood vessel that allows blood to bypass the liver, 

move directly into the inferior vena cava and then into the heart, thus eliminating the 

functionality of the liver. The liver is a vital organ as it functions in digestion, excretion, 

nutrient storage, nutrient conversion, detoxification, and synthesis capabilities. More 

specifically, its constitutive cells act in removal and storage of sugar from the blood as 

well as fat, vitamin, copper and iron storage. In addition, it removes elements such as 

ammonia and converts to a safer chemical form of nitrogen in urea, which is excreted 

from the body via the kidneys. The liver also prevents these toxins from reaching the 

heart and causing sepsis, which is potentially fatal. Furthermore, the liver creates 

necessary homeostatic blood proteins such as albumin, fibrinogen, globulins, and clotting 

factors. 

In a normal functioning body system, the hepatic artery carries oxygen-rich blood 

to the liver to supply it with the necessary oxygen to perform its organ functions. The 

hepatic portal vein carries oxygen-poor blood that contains added materials from the 

digestive tract to the liver. The liver removes these materials from the oxygen-poor 

blood. Then the blood exits the liver through the hepatic veins and continues through the 

circulatory system. 

In mammalian dogs, the ductus venosus is a large porto systemic shunt that 

circumvents the liver while in fetal development. Portosystemic shunts are classified 

based on three categories: method of development, structural integrity, and type of 

bypass. The development of portosystemic shunts is classified as either congenital or 

acquired. Congenital shunts are those that arise during fetal development and that fail to 

3 



degrade naturally. Acquired shunts occur out of a response to liver disease. For 

example, cirrhosis of the liver decreases its functionality and cause angiogenesis to assist 

in diverting blood away from a nonfunctional liver and to protect a damaged liver from 

further deterioration. Congenital shunts occur at a greater frequency and have been noted 

to be genetically linked in breeds including Maltese, Irish wolfhound, and presumably 

Yorkshire terriers. The two main structural classifications are extrahepatic and 

intrahepatic shunts. These classifications are based upon where the branching off the 

shunt occurs relative to the portal vein. If the base of the shunt begins at the main portal 

vein and then flows directly to the inferior vena cava, the shunt is classified as an 

extrahepatic porto systemic shunt (Figure l(b) and Figure 2). Typically, these shunts vary 

in size as great as 1 cm in diameter. If the base begins within the branching of the portal 

vein, and then flows to the inferior vena cava, then it is classified as an intrahepatic 

porto systemic shunt. See Figure 1 (c) for illustrations. The treatment of intrahepatic 

porto systemic shunts is not dealt with in the same way due to their smaller size and 

inaccessibility. The final classification of porto systemic shunts is determined by the 

branching, i.e. whether it is a single or multiple shunt system. For the purposes of this 

research, only the single extrahepatic porto systemic shunts will be dealt with, which are 

the most common type of porto systemic shunts. 

Figure 1. 
(a) Normal Liver 

(b) Extrahepatic 
Porto systemic Shunt 

( c) Intrahepatic 
Portosystemic Shunt 
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Figure 2. Image of an extrahepatic porto systemic shunt. 

To understand the nature of congenital porto systemic shunts, one must first 

understand their formation. Fetal development begins with formation ofthe zygote. 

Pregnancy is divided into three periods: the germinal period, the embryonic period and 

the fetal period. After fertilization, the blastocyst begins separation in to the three main 

layers: endoderm, mesoderm, and ectoderm. The circulatory system develops out of the 

mesoderm layer. During the germinal period, the basic structure of the mesoderm layer 

begins to form. Next, the embryonic period marks the stage of organ development on a 

broad scale. Because the organs are not fully developed, organ systems such as the 

circulatory system are not capable of supporting the other organ systems through their 

own faculty. Thus, the other developing organ systems rely on the mother's circulatory 

system to provide the necessary nutrients and nourishment for growth. During this stage, 

shunts such as the ductus venosus, or the main extrahepatic porto systemic shunt form to 

allow the flow of blood to bypass the developing organs. At this point in the fetal 

development, the organ systems that are within the fetus cannot fully operate, and 

consequently, the fetus is dependent upon the mother's working organs. Shunts provide a 

way of directing blood away from dysfunctional organs. Such is the case in this 

situation. The mother's blood flows through the fetus via the umbilical chord, because at 

this stage in development the heart and liver are not fully functional. Therefore, these 
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shunts are necessary in delivering blood to the fetus that has been filtered by the properly 

working organs of the mother. During the fetal period, the organs more fully develop, 

and the fetus becomes less dependent upon the mother's organs. During the final portion 

of this period, these shunts degrade to allow the fetus to rely upon its own body functions 

independently of the mother. 

In the past, there have been vast improvements in the approaches used to occlude 

these extrahepatic shunts. In the early 1990's, surgical ligation was the recommended 

treatment for congenital porto systemic shunts [19]. However, this simple technique has. 

many setbacks. Mortality rates for this treatment reached percentages as high as 21 % 

[19]. Complications due to this treatment included portal hypertension, anesthetic 

complications, portal vein thrombosis, or status epilepticus [19]. As a result, surgical 

ligation was quickly shown to be a poor treatment for this abnormality, and it was 

suggested that a more gradual approach to occlusion would better benefit the dog by 

allowing more time for the body to adjust to occlusion. For exanlple, a slower and 

gradual occlusion would not have the immediate change in pressure upon the portal vein 

as the shunt, a major flow outlet, is closed. Establishing a slower pressure change is the 

main goal of this type of treatment. 

The most effective treatment to date for gradual occlusion was done using an 

ameroid constrictor. "Ameroid is hygroscopic, compressed casein that expands when 

immersed in fluid. Early, rapid expansion during the first 14 days after implantation is 

followed by 2 months of slow expansion" [19]. The occluder was incased by a stainless 

steel cuff to withhold the stresses related to the expansion, as shown in Figure 3. The 

inner diameter is 5 mm. The shunts may vary in size from 4 mm to 1 cm, however, with 
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this particular procedure, gas sterilized cellophane strips were used as a partial occlusion 

technique initially [17]. Some occlusion is necessary at the onset in order to increase the 

survival chances of the dog. The locking mechanism for the device was a circular peg 

roughly 2 mm in diameter to allow for the insertion of the shunt. An example of the 

ameroid occluder in a surgical operation is shown in Figure 4. The ameroid' s swelling 

capabilities would facilitate a tight fit between the ameroid and the lock. Results from 

experiments using the occluder showed 14 percent of the dogs died in the early 

postoperative period of portal hypertension [19]. In comparison to the surgical ligation 

technique, there was a suitable decrease in mortality. However, portal hypertension is 

still a significant issue with this technique, which is related to the majority of the swelling 

occurring within the first two weeks after implantation. 

STERLING 

Figure 3. The ameroid occluder shown with ruler. 

Figure 4. Ameroid occluder in surgical procedure. 
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Although the previous techniques have shown some promise in helping occlude 

portosystemic shunts, there are still conlplications due to the pressure changes that occur 

relatively quickly after treatment. Therefore, a three-month, linear occlusion technique 

would allow more time to adjust to the pressure changes caused by occlusion and be an 

ideal solution to repairing extrahepatic portosystemic shunts. 

Design Analysis and Alternatives 

In order to improve the design of vessel constrictors, the current design must first 

be studied. The current design incorporates a stainless steel outer ring, with an inner ring 

of ameroid, which is compressed casein. The design has an opening in the ring to allow 

the device to be slipped around the vessel. Once around the vessel, a rod made of casein 

is inserted into the opening. Upon exposure to water, the casein swells to occlude the 

vessel. The locking rod also swells and snugly locks the mechanism into place. 

Currently, the casein takes about one month to swell to completion. Previous studies 

have found that ameroid constrictors "undergo an initial 14 day period of rapid 

expansion, followed by 2 months of more gradual expansion" [1]. Further, the current 

design has been reported to fully occlude the vessel as quickly as 7 to 10 days and as 

slowly as 3 to 9 weeks [21]. Other previous studies have noted that the vessel is only 36% 

occluded after a six-week period [1]. Clearly, there is a discrepancy between different 

studies. Often, the constrictors cause enough occlusion to form a thrombus, and thus 

occlude the remainder of the vessel via thrombus formation. According to one study, 

36% occlusion was not considered enough to result in thrombus formation. 
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The vessels on which the constrictors are used are typically 4mm in diameter. 

The constrictors are designed so that the interior diameter of the constrictor is larger than 

the shunt. According to Dr. Tobias, the Doctor of Veterinary Medicine with whom the 

authors are collaborating, the most common constrictor size used is 5 mm in diameter. 

Less common that this diameter are the 6 mm and 9/10 mm diameter sizes. Finally, the 

use of the device as a permanent implant will make it necessary for the new design of the 

device to be developed accordingly. 

Given the current design and its limitations, improving the design is a necessity in 

order to improve the function of the device so that the device fully occludes the shunt. 

As previously mentioned, the current constrictor occludes too quickly and an 

improvement is needed so that the occlusion rate is linear and the occlusion time is 

approximately three months. The target occlusion time of three months is chosen in 

order to reduce the risk of complications such as hypertension and the angiogenesis of 

new shunts. Another problem is that the opening to slide the constrictor around the 

vessel is sometimes not large enough. If the vessel is large, it must be collapsed in order 

to slide the ring around it. If the vessel is too large, often the surgeons resort to surgical 

ligation of the shunt instead of a constrictor. Last, and most important, the unreliability 

of the current constrictor produces the need for a reliable method for occluding shunts. 

The first step in the design process was to choose a method of occlusion that 

would take about three months to fully occlude the vessel. The possibility of using a 

hydrogel was considered first. After researching the idea, it was decided that this 

approach was not feasible given the time constraints. There are currently no hydrogels 

that are commercially available that have a swelling rate slow enough to accommodate a 
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three-month swelling period. Indeed, such a hydrogel could be synthesized, but finding 

the correct polymers to copolymerize and the correct percentages of each polymer needed 

merits a Ph.D. thesis. 

The next idea to be considered was the improvement of the swelling rate of the 

ameroid. Previous studies were conducted where the ameroid was coated with 

petrolatum in order to try to slow the swelling rate, but the results showed this method 

lacking [1]. The idea was to coat the ameroid with a biocompatible metal or with carbon 

as opposed to petrolatum. The ameroid would be coated in such a way that there would 

be regions of non-coated ameroid between the metal or carbon coating to allow water to 

enter at a slower rate, thus slowing the expansion of the ameroid. The coating material 

would be evaporated and sputtered on the ameroid through a mask, which would allow 

for the non-coated regions. A depiction of this process is below in Figure 5. 

Evaporated 
Material 

~. . 

• • • • 
I' • • • • • 
.. A...,eroid ... -

Surface 
• • • • • • • 

Mask • • • • • 

Figure 5. Depiction of masking the ameroid surface. 

Coated 
Ameroid 
Surface 

The mask, which looks similar to a screen window, would be placed over the ameroid 

surface, and then the evaporated coating would be applied to the ameroid and allowed to 

set. The fineness of the mask, i.e. how much ameroid surface area the mask allows to be 
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coated, would detennine the swelling rate. Masks of different fineness would then be 

tested to detennine the surface area of coating needed to obtain the desired swelling rate 

and thus occlusion time. This idea was abandoned, however, for a couple of reasons. 

The first reason is that the idea lacks significant improvement over the current design. 

While it may indeed swell at a slower rate, there is still the likelihood that most of the 

swelling will occur in the first two weeks instead of a more constant, linear swelling rate. 

Second, problems may have arisen in trying to get the evaporated material to adhere to 

the ameroid. Also, the current inability of the ameroid to fully occlude the vessel is not 

resolved with this method. Finally, we felt that this idea was too similar to the current 

idea, and wanted to come up with a better, more innovative idea. 

The final idea explored for the occlusion method was to create a more 

mechanically-based constrictor. This idea was adopted and, after much debate and 

discussion, a design selected. The chosen design needed to, as aforementioned, 

consistently and completely occlude a vessel at a constant rate for a three-month period. 

In order to mechanically occlude a vessel, the device nlust be able to apply a force that 

increases, with respect to time, and eventually becomes large enough to collapse the 

vessel. In essence, some type of spring-loaded system would be needed to consistently 

apply these sorts of forces. The spring-loaded system was the first design iteration, and 

was abandoned later due to the size of the device. Next, a decision was made to use a 

hydrogel placed in a pressure plate to achieve the spring compressive force needed. A 

biodegradable polymer is used to resist the compressive forces of the hydrogel. As the 

polymer degrades, the hydrogel will slowly occlude the shunt. Thus, the rate and 

linearity of occlusion is dependent on the biodegradable polymer selection. The force 
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provided by the hydrogel will actually remain relatively constant after its initial swelling, 

rather than increasing with time, but will be prevented from quickly occluding the shunt 

by the biodegradable polymers. 

First, the forces needed to occlude the shunt had to be considered. The typical 

venous pressure in hepatic portal shunts in dogs is between 4 and 8 mm Hg. Sometimes 

the pressure will be as high as 10 mm Hg and rarely as high as 12 mm Hg. Thus, the 

hydrogel must be able to overcome these pressures in order to occlude the shunt. In order 

to be certain that the shunt will become fully occluded, the target hydrogel force should 

be a few times larger than the maximum possible venous pressure. Thus, the target 

pressure to be provided by the hydrogel is 15 mm Hg. This is still a very small pressure. 

This pressure can be translated into a force by the equation given below, 

F=PxA 

Equation 1. 

where F is the force, P is the venous blood pressure, and A is the surface area in contact 

with the occluder pressure plate. The actual force needed from the hydrogel will be 

delineated later. 

Then, the exterior design of the occluder was addressed. Several ideas were 

considered including a spherical exterior, a cylindrical exterior, and a ring exterior. In 

the first iteration design, a ring exterior was used because it allows the most contact with 

body fluids. Additionally, the ring exterior requires the least amount of material thus 

reducing the weight of the device. Consideration of the fabrication of the device 

indicated that a ring exterior would be too difficult to machine given the overall size of 

the device. Furthermore, a ring exterior would not have prevented the hydrogel from 
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seeping out of the pressure plate. Thus, the design was modified to make a rectangular 

exterior (See Appendices). 

Next, a decision needed to be made on how to incorporate the biodegradable 

polymer in such a way that would allow the hydrogel to expand and occlude the shunt. 

Simultaneously, the best way to control the degradation rate had to be considered as the 

degradation rate can be affected by the placement of the polymer. Based on the concept 

of the design, the biodegrading polymer should be placed on either side of the vessel in 

order to achieve uniform occlusion. Fortunately, biodegradable polymers are widely 

commercially available and several have degradation rates that are approximately three 

months or much longer than three months. Furthermore, the shape of the biodegrading 

polymer must be considered. The polymer needs to be in a shape in which degradation 

causes a reduction in size in the direction of loading of the vessel. This can be 

challenging when using surface-eroding polymers (which is the type of eroding polymer 

selected as will be discussed in the materials section) because any surface that is in 

contact with another surface on the device will not be exposed to the body fluids and thus 

will not degrade. For example, if a rectangular shape were chosen for the biodegrading 

polymer, the vertical sides of the polymer would degrade to the point where the hyrdogel 

forces would cause the collapse of the polymer and instantaneous occlusion of the shunt 

(See Figure 6). This would defeat the purpose of the design since it seeks to occlude the 

shunt gradually. 
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Force from Hydrogel 

Biodegrading 
Polymer Shunt 

Pressure 
/" Plate 

Initial State of Surface 
Biodegrading Polymer 

Force from Hydrogel 

Polymer after significant 
degradation 

Force from Hydrogel 

Instantaneous 
Occlusion 

Figure 6. Illustration of a poor shape choice for the surface-eroding biodegrading polymer. 

In order to attain degradation in the vertical direction, a cylindrical shape was used. This 

shape will only be in contact in two single points, the top and the bottom of the cylinder. 

Thus, most of the surface of the cylinder will be exposed to the body fluids and it should 

degrade uniformly in the desired direction. Using a cylindrical biodegradable polymer 

has its limitations in that unless secured into place, it could slide out of the device. In the 

first iteration design pegs were placed on the top and bottom of the cylinder that would fit 

into the pressure plate and the casing in order to prevent sliding from occurring. 
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The final aspect of the design is the locking mechanism. A mechanism is 

needed to lock the constrictor into place once it has been placed around the vessel. The 

current design is adequate and works relatively well. The main consideration for 

changing the lock was to use a hinge. This was decided against because a hinge 

introduces too many risks such as pinching and rupturing the vessel or perhaps injuring 

surrounding tissues and organs if shifted after implantation. Furthernlore, our device is 

so small that implementing a hinge into the design would be nearly impossible. Thus, the 

current locking mechanism employed by the ameroid occluders was deemed sufficient, 

but perhaps the shape could be modified to allow more roonl for the vessel to enter and to 

better keep the lock in place until it has had time to swell shut. A counterlocking 

mechanism was considered which would secure the lock into place by a method other 

than swelling. 

After considering all of the above ideas, developing preliminary and first iteration 

designs, a second iteration design was developed that still incorporates a drawer held 

open by a biodegradable polymer. The drawer, or occluder pressure plate, is simply an 

open-lid-box design that is held in contact to the degradable polymer by a compression 

force. Figure 7. and Appendix I-A show illustrations and layouts of the pressure plate. 

The open box would have dimensions 12.5 mm by 5.5 mm by 2 mm, with a thickness of 

0.5 mm around the sides and a thickness of 1.0 mm along the base. The hyrdogel was 

designed to fit into the drawer with the dimensions 11.5 mm by 4.5 mm by Imm. As the 

hydrogel swells due to water absorption, it will cause a compressive force between the 

casing and the drawer. The casing is fitted with holes in the top layer to allow for body 
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fluid contact with the hydrogel. Illustrations of the hydrogel can be found in Figure 8 and 

Appendix B. 

Figure 7. Occluder Pressure Plater. Figure 8. Hydrogel. 

Furthennore, the force needed from the hydrogel was calculated so that appropriate 

considerations for material selection would be available. Since the depth of the pressure 

plate is 1 mm, we can assume that the plate will be in contact with a 1 mm length of the 

vein. The diameter of the vein is 4 mm, thus we can estimate the surface area of vein in 

contact with the plate as a rectangle that is 4 mm in length and 1 mm wide and area 4 

+-- 4mm-. 

Cross Section of 
Vein prior to 
Occlusion 

4mm 

Cross Section of 
Vein after 
Occlusion 

Figure 9. Illustration of surface area estimation used for force calculation. 

i 
1 mm 

! 
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This is an accurate assumption since this will be the approximate surface area in contact 

when the vessel is fully occluded. Thus, the hydrogel must be able to achieve this 

maximum force and maintain it even though the pressure in the shunt may decrease once 

it is fully occluded. The needed force then is (from Equation 1.) 

4 mm 2 x 15 mm Hg x 133.28 (N / m
2

) x 1 m
2 

0.0019992 N = 1.9992 mN 
1 mm Hg (1000 mm)2 

As a surface eroding biodegradable polymer was chosen as the degrading 

polymer, it was essential to ensure that the surface would erode in a uniform manner. As 

aforementioned, structures such as cubes and pyramids were considered until the 

cylindrical shape was finally decided upon for reasons previously discussed. Due to the 

possibility that the polymer structure could slide out from under the plate, there had to be 

some mechanism to hold the polymer in place. Small 1 mm by 1 nml by 4 mm fins were 

considered for the second iteration design, however, we found them to be extremely 

difficult to machine. For this reason, the fins were abandoned (shown in Appendix II-C). 

Instead, a modified version of our original design was reverted to which has pegs that 

extend out of the bottom of the cylinder and fit into holes in the casing to prevent the 

polymer from sliding out of the device and allow for stability during degradation. 

Because the pegs, though made of biodegradable polymer, theoretically should not be 

exposed to the body fluids, they should hold their mechanical properties until the entire 

degradable polynler erodes. An illustration of the biodegradable polymer may be found 

in Figure 10 and Appendix I-C. Because the estimated shunt diameter once partially 

occluded by the cellophane wrapping is 4 mm in diameter, the biodegradable polymer at 

first must also be 4 mm in diameter. For support, the peg inserts were 1 mm in diameter 

-... and extend 1 mm beyond the tangent point of the cylinder. 
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Figure 10. Biodegradable polymer. 

Of all of the structural pieces of the design, the most complex design was the 

casing. Because the casing had to have an entrance way for the vessel, the casing could 

not be one complete piece, but a combination of pieces. In the first rectangular design, 

the design consisted of a two piece system of an outer casing that surrounded the 

occluder plate and was completed with a hexagon lock. Each side of the hexagon was 2 

mm with a 4 mm thickness of the piece. An illustration of this piece may be seen in 

Appendix II-A. However, due to machinability factors, the hexagon was substituted with 

an easier machinable circular piece with sections removed to allow for a flat surface to 

eventually come into contact with the occluder pressure plate. Figure 11 shows the 

image of the cylindrical lock, as well as Appendix 1- D. The diameter, 4.4721 mm, of 

the cylinder was calculated to allow for a 2 mm entrance space for the shunt. In addition, 

between the two flat surfaces there is a 4 mm distance, which is equivalent to the distance 

on the casing. To prevent the lock from spinning or sliding out, a rod is inserted through 

the side of the cylinder as a counterlock to ensure proper placement. The 1 mm diameter 

hole can be seen in Figure 11 also. The rod's dimensions are 0.9 mm in diameter by 10 
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mm in length. The rod needs to fit snugly into the hole to ensure that it does not slip out 

of the casing, and holds the lock in place. Figure 12 and Appendix 1- E display the rod's 

structure. 

Figure 11. Cylindrical Lock. Figure 12. Locking Rod. 

Another complication occurred in the design with the inability to insert the 

pressure plate into the casing after machining. Therefore, another piece was cut out as a 

top to allow for the insertion of the occ1uder plate and the hydrogel. Therefore, the 

casing design changed from the single top as shown in Appendix II -B to the combination 

of the top, two screws and the casing as shown in Appendix 1- F, G, and H respectively. 

The occluder top is 16.5 mm by 2 mm by 3 mm. In addition, the occluder top can also be 

found in Figure 13, which shows the two outer holes spaced 1 mm from the shorter edges 

and 1.5 mm to the longer edges from the center of the 1 mm diameter circle. These holes 

provide an entry for the screws that will hold the top together with the casing. The 

screws, shown in Figure 14., will be able to withstand the pressure exerted by the 

hydrogel. Furthermore, there are three holes, 2 located 5 mm from the shorter side of the 
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top and 1.5 mm from the longer side and 1 in the very center, all 1 mm in diameter. As 

Appendix 1- F will show, these holes extend all the way through the top's 2 mm 

thickness. These three holes allow for body fluid contact with the hydrogel initiating the 

expansion process of the hydrogel. Without these holes, the compressive force of the 

hydrogel would not be nearly as great. 

Figure 13. Occluder Top. 

Finally, the casing is the sum of the leftover space in need of support. 

The overall dimensions of the casing are 16.5 mm by 13.5 mm by 3 mm. Extending from 

the top of the casing is a 14.5 mm by 5.5 mm by 2 mm hole to allow for the pressure 

plate to be inserted. Along the top are two 1 mm diameter holes that are 1.0 mm from the 

shorter side and 1.5 mm from the longer side and 1 mm deep to line up with the occluder 

top. These holes are necessary for the screw insertion. Below the pressure plate space is 

a 14.5 mm by 4 mm by 3 mm space for two biodegradable polymers to be inserted. 2 

mm from either inner wall are 1 mm diameter and 1 mm deep cylindrical cut outs to 

match the pegs protruding from the biodegradable polymer structures. Furthermore, 

there is a space for the cylindrical lock, with a diameter of 4.4721 mm and 3 mm deep. 
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Moreover, there is a 1 mm diameter and 10 mm cylindrical cut out extending through one 

side of the casing. The hole is centered 2 mm up from the bottom on the side 

perpendicular to the face in the Figure 15. Diagrams of the older versions of the casing 

may be found in Appendix II-C, which contain the hexagon lock, complete with top and 

fins to hold the biodegradable polymer in place. 

Figure 14. Countersunk Screw Figure 15. Occluder Casing. 

In conclusion, each piece of the design was selected without regard to the material 

with which it was to be made. The material properties of each material were investigated 

separately to match and enhance the features of the design. After conducting a patent 

search, the above design is was found to be novel and completely original. An image of 

the completely assembled design can be seen in Figure 16 (a) and (b) as well as Appendix 

I-I. 
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Figure 16. (a) Orthogonal view of the complete occluder and (b) front view of complete occluder. 

Materials and Methods 

In an attempt to maintain a fluid paper, we consider each material separately in its 

entirety. 

mtra-High Molecular-Weight Polvethvlene 

Specifications 

The material used for the casing needs to be mechanically sturdy yet light. Since 

the pressure and forces to be exerted are small, the material does not necessarily have to 

have extreme mechanical properties. The chosen material does need to maintain its 

structural integrity throughout the life of the dog despite the aqueous environment in 

which it will be surrounded. The chosen material must also have well-established 

biocompatibility in order to ensure the safety of the dog. Furthermore, the material 

should be resistant to cell adhesion as this might impede the function of the device by 
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blocking the occluder pressure plate or by encapsulating the device. Since this material 

will also be used for the occluder pressure plate, it needs to be smooth enough so as not 

to create enough friction to prevent the device from occluding the shunt. 

Material 

Ultra-high-molecular-weight polyethylene (UHMWPE) was selected as the 

polymer to be used for the casing, lid, occluder pressure plate, circular lock, and rod lock. 

UHMWPE has well-established and well-documented biocompatibility. Furthermore, 

UHMWPE has a Young's Modulus that is approximately 20 MPa, which greatly exceeds 

any of the forces that will be present in the device. UHMWPE is renowned for the 

inability of other materials to adhere to its surface. Thus, UHMWE will be resistant to 

the aforementioned cell adhesion that might occur in vivo. Finally, UHMWPE is much 

lighter than the stainless steel used in the ameroid ring constrictors. 

Method of Machining 

UHMWPE was easily obtained from the materials science department. The 

UHMWPE was then machined into our design in the machine shop in the basement of 

Dougherty. Doug Fielden did all of the machining necessary to create the pieces of the 

device. 

Testing and Results 

The device was not finished until the last week of the semester. Due to this fact, 

and other problems that arose, the device was not able to be tested. Hence there are no 
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results to report. The mechanical properties of UHMWPE were not tested because they 

are well-known and nothing experimental was done to the UHMWPE that would arouse 

suspicion that its properties might have changed. 

Discussion 

As there are no results, there is not much to discuss. UHMWPE is an ideal 

material for a device such as this. UHMWPE has very good mechanical properties, 

biocompatibility, resistance to adhesion, and is one of the more easily machined plastics. 

UHMWPE is also much lighter than the stainless that was used in the previous device. 

Thus, UHMWPE is an excellent choice. 

PVA Hvdrogel 

Specifications 

The material used in the occ1uder pressure plate of the device needs to have four 

main characteristics. First, the material must exert the force needed to overcome the 

venous pressure of the shunt. Second, the material must have a high swell ratio 

compared to its initial size. Third, there must be an instantaneous swell to maintain 

positioning of the other parts of the device. Finally, minimal degradation must take place 

to ensure the integrity of the material. 

The venous pressure of the shunt in an average dog ranges from 4-8 mmHg. If 

the dog is stressed, the venous pressure can increase to 10 mmHg. The material in the 

occluder pressure plate, therefore, must be able to overcome this pressure to occlude the 
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shunt completely. The force applied by the material will induce force onto the occluder 

pressure plate, which will then exert a force onto the shunt itself. 

The occ1uder pressure plate has dimension of 11.5 mm x 4.5 mm x 1 mm and the 

material must initially fill this volume and then swell as the biodegradable polymer below 

the occ1uder pressure plate degrades and the shunt is occluded. The estimated swelling 

ratio needed to close the occ1uder without any opposing pressure is 2.125X, but when the 

vein is present, the swelling ratio will need to be larger to overcome the venous pressure. 

Thus we estimate needing a swelling ratio that is 7 -8X its initial size. This will ensure 

that the hydrogel will overcome the venous pressure. Additionally, if the material 

degrades, the remaining material will have enough swelling to maintain the force needed. 

The swelling of the material must occur instantaneously to hold all parts of the 

device in the proper positions. The biodegradable polymer will be held in by small pegs 

and the shunt by a lock mechanism on the device, but the extra force from the swelling 

will help ensure that these parts maintain their proper position. A range of instantaneous 

to a few hours post-insertion is optimal. 

The force from the occ1uder pressure plate needs to be constant and reach 

equilibrium within the first 24 hours and maintain this force through the duration of the 

occlusion. This force must also be fairly constant throughout the dog's life because the 

device is intended to be permanent. Therefore, the material must have minimal 

degradation to prevent a decrease in water uptake, which in tum will decrease the 

swelling and the amount of force applied. 
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Material 

A polyvinyl alcohol hydrogel (PV A-H) was selected as the hydrogel material. 

Hydrogels are cross-linked polymers that form a scaffold that uptakes water and 

consequently swells. Cellular freeze/thawed PVA-H was chosen over chemically cross­

linked PVA-H due to the greater mechanical strength of the cellular freeze/thawed PVA­

H. Within the PVA-H, crystalline regions operate as physical crosslinks, caused by 

hydrogen bonding, to provide this enhanced mechanical strength. These regions serve to 

better dissipate the mechanical load or stress. In addition, the freeze/thawed PVA-H has 

demonstrated a higher elasticity and can sustain an extension of up to six times its initial 

length. The swelling ratio ofPV A-H has been shown to reach a maximum of 8X its 

initial volume from a dry state and reach an equilibrium swelling at approximately 6X its 

initial volume [5]. PVA-H has also been proven to have excellent biocompatibility and 

durability. In addition, by varying the amount of water content, the viscoelastic 

properties can be controlled [6]. 

Method of Synthesis 

Protocol from previous literature [5] was used as a basis for the synthesis. A ten 

percent weight amount of poly vinyl alcohol was dissolved in deionized water. The 

process to perform this portion was not specified in the previous protocol. The PV A 

(97% hydrolyzed, MW= 50,000 85,000 glmol) was dissolved through refluxing at 90 

degrees Celsius for 6 hours in an oil bath. A stir bar was added to assist in the dissolving 

process. Following the six hour heating, the PV A solution was poured into either a PE or 

a PTFE mold and stored in a glass dessicator filled with Drierite (compared to the 
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previous protocol, which cast the solution onto microscope slides) and frozen at a range 

between -15 and -20 degrees Celsius. Drierite was used to prevent excess absorption of 

water from the atmosphere. The PV A suspension remained in the freezer for 8 hours. 

After which, the PV A was removed from the freezer and allowed to thaw for 4 hours. 

This freeze and thaw cycle was repeated two more times to complete a total of three 

freeze-thaw cycles. 

The synthesis ofPVA-H proved to be more difficult than first expected. The 

initial attempt at synthesis heated the PV A into solution in an oven and then the freeze/ 

thaw process was performed. This synthesis produced an uneven hydrogel that consisted 

of three layers with the bottom layer crystalline hydrogel, the nliddle layer a semi­

crystaline hydrogel, and the top layer a liquid. The entire synthesis was carried out in a 

glass beaker, which was sealed in an airtight bag with Drierite during the freeze/thaw 

process. In the second attempt, a stir bar was added to ensure complete dissolution of the 

PV A into the deionized water. In addition, this synthesis was performed in a hood to 

prevent water from the atmosphere from entering the solution. As a result of being in the 

hood, the boiling point of the water was lowered and the temperature of 90°C caused the 

water to boil off. The third attempt utilized the same method as the second, only it was 

monitored to add water as needed into the solution, but the water boiled off within 

minutes of reaching 90°C. Neither the second nor third attempts were put through the 

freeze/thaw process. The fourth attempt was refluxed using a water bath to heat the 

solution. Water from the water bath boiled off and when this occurred more water was 

added. The addition of water resulted in a drop in temperature of the water bath. Finally, 
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the oil bath was used to prevent boiling off and to maintain a constant temperature at 

Testing and Results 

To verify that the PVA-H was crosslinked, we did a number of tests to measure 

the swelling ratio of the resulting hydrogel. Swelling ratio was determined by the 

equations given below, 

m 
Swelling RatioX = -L 

mo 

m 
Swelling Ratio % = -L x 100 

mo 

Equations 2 and 3. 

where mo is the initial mass, and mjis the final mass or mass calculated at every 

measurement hour. The swelling rate was determined by the following equation, 

SwellingRate = am at 
Equation 4. 

The initial tests were performed in deionized water at a temperature of 25°C. 

Two tests were performed simultaneously. The initial masses were 1.29 grams (sample 

1) and 0.572 grams (sample 2). For the first six hours, mass measurements were taken 

once an hour. At 24, 48 and 72 hours, mass measurements were taken to observe the 

swelling ratio over a period of three days. The swelling ratios hit maxima at 

approximately 24 hours (sample 1) and between 6-24 hours (sample 2). Sample 1 

swelled to 2X its initial size and sample 2 to 2.5X its initial size. Swelling increased until 
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hour 24, then began to decrease slightly in sample 1. Decrease in the rate of swelling 

began at hour 24. 

Hour Mass {grams} Swellins Ratio X Swelling Ratio 0/0 Swellins Rate 

0 1.29 1 100 0 
1 1.79 1.387596899 138.7596899 0.5 
2 1.944 1.506976744 150.6976744 0.154 
3 2.12 1 .643410853 164.3410853 0.176 
4 2.27 1.759689922 175.9689922 0.15 
5 2.39 1.852713178 185.2713178 0.12 
6 2.45 1.899224806 189.9224806 0.06 

24 2.688 2.08372093 208.372093 0.013222222 
48 2.5044 1 .941395349 194.1395349 -0.00765 
72 2.343 1.81627907 181.627907 -0.006725 

Table 1. PVA-H Test 1 in Deionized Water at 25°C-Sample 1. 

Hour Mass israms! Swelling Ratio X Swellins Ratio ok Swelling Rate 

0 0.572 1 100 
1 0.868 1.517482517 151.7482517 0.296 
2 1.056 1.846153846 184.6153846 0.188 
3 1.23 2.15034965 215.034965 0.174 
4 1.32 2.307692308 230.7692308 0.09 
5 1.385 2.421328671 242.1328671 0.065 
6 1.45 2.534965035 253.4965035 0.065 

24 1.4215 2.48513986 248.513986 -0.001583333 
48 1.33 2.325174825 232.5174825 -0.0038125 
72 1.273 2.225524476 222.5524476 -0.002375 

Table 2. PVA-H Test 1 in Deionized Water at 25°C-Sample 2. 
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Figure 17. Swelling Ratio ofPVA-H Versus Time in Deionized Water at 25°C. 
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Figure 18. Swelling Rate ofPVA-H Versus Time in Deionized Water at 25°C. 

30 



The second tests were perfonned in deionized water at a temperature of 37°C 

similar to those previously perfonned [5]. Three samples were tested simultaneously. 

The initial masses were 0.1076 grams (sample 3), 0.102 grams (sample 4), and 0.0928 

grams (sample 5). For the first five hours, mass measurements were taken once an hour. 

At 24 hours, a final mass measurement was taken. At the fifth hour, the samples began to 

degrade and further testing became more difficult. Samples 3 and 4 reached maximum 

swelling at hour 4 and sample 5 reached maximum swelling at hour 5. Sample 3 swelled 

to over 2.8X, sample 4 over 2.3X, and sample 5 over 2.1X their initial sizes. Decrease of 

swell rate began at the fourth hour for sample 3 and the fifth hour for sample 4. Sample 5 

experienced a decrease at the third hour, but increased again at the fourth hour. 

Decreased swell rate occurred again at hour 24. 

Hour Mass (grams) Swelling Ratio X Swelling Ratio 0/0 Swelling Rate 

0 0.1076 1 100 
1 0.234 2.17472119 217.472119 0.1264 
2 0.2845 2.644052045 264.4052045 0.0505 
3 0.3046 2.830855019 283.0855019 0.0201 
4 0.3032 2.817843866 281.7843866 -0.0014 
5 0.2895 2.690520446 269.0520446 -0.0137 

24 0.2098 1.949814126 194.9814126 -0.004194737 

Table 3. PVA-H Test 2 in Deionized Water at 37°C-Sample 3. 

Hour Mass (grams} Swelling Ratio X Swelling Ratio 0/0 Swelling Rate 

0 0.102 1 100 
1 0.1988 1.949019608 194.9019608 0.0968 
2 0.2269 2.224509804 222.4509804 0.0281 
3 0.2326 2.280392157 228.0392157 0.0057 
4 0.242 2.37254902 237.254902 0.0094 
5 0.2292 2.247058824 224.7058824 -0.0128 

24 0.208 2.039215686 203.9215686 -0.001115789 

Table 4. PVA-H Test 2 in Deionized Water at 37°C-Sample 4. 
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Hour Mass {srams} Swelling Ratio X Swellins Ratio oAt Swelling Rate 

0 0.0928 1 100 
1 0.1867 2.011853448 201 .1853448 0.0939 
2 0.2016 2.172413793 217.2413793 0.0149 
3 0.1905 2.052801724 205.2801724 -0.0111 
4 0.1926 2.075431034 207.5431034 0.0021 
5 0.1968 2.120689655 212.0689655 0.0042 

24 0.1879 2.024784483 202.4784483 -0.00047 

Table 5. PVA-H Test 2 in Deionized Water at 37°C-Sample 5. 
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Figure 20. Swelling Rate ofPVA-H Versus Time in Deionized Water at 37°C. 

The third set of tests were perfonned in simulated body fluid at a temperature of 

37°C. The simulated body fluid was made using the method described in Tas [15] 

outlined below. 

Order Reagent [Amount (gIL) 
1 NaCl (Sodium Chloride 6.547 
2 NaHC03 (Sodium Bicarbonate 2.268 
3 KCI (Potassium Chloride 0.373 
4 Na2HP04*2H20 (Sodium Phosphate 0.178 

Dibasic dehydrate) 
5 MgCh *6H20 (Magnesium Chloride 0.305 

Hexahydrate) 
6 CaCh*2H20 (Calcium Chloride 0.368 

Dihydrate) 
7 Na2S04 (Sodium Sulfate) 0.071 
8 (CH20H)3CHN2 6.057 

(Tris(hydroxymethyl )aminomethane) 
Table 6. Reagents used for Simulated Body FlUId SynthesIs. 
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The first five of the above reagents were added to 700 mL of deionized water while 

stirring with a magnetic stir rod. Then 15 mL of 1 M HCI was added. Next, reagents six 

through eight were added to the mixture while stirring. Then the solution was placed ijn 

a water bath at 37°C and allowed to reach that temperature. Then the solution was 

titrated with 1 M HCI to a pH of 7.4 while adding deionized water to bring the solution 

near 1 L. Then the solution was brought to exactly 1 L [15]. 

Three samples were tested simultaneously in the simulated body fluid. The initial 

masses were 0.4508 grams (sample 6),0.4548 grams (sample 7), and 0.4596 grams 

(sample 8). Mass measurements were taken once an hour for the first five hours and then 

again at 24 hours. Measurements of sample 8 became impossible to measure after the 

third hour due to high degradation. Sample 6 swelled to 1.5X the initial mass at the fifth 

hour. Sample 7 reached a maximum swelling of over 1.6X the initial mass at the fifth 

hour. The decrease in swelling rate for samples 6 and 7 occurred at hour 24, whereas the 

decline of sample eight began in the third hour. 

Hour Mass {grams} Swelling Ratio X Swelling Ratio 0/0 Swelling Rate 

0 0.4508 1 100 
1 0.6646 1.474267968 147.4267968 0.2138 
2 0.6692 1.48447205 148.447205 0.0046 
3 0.682 1.512866016 151.2866016 0.0128 
4 0.6924 1.535936114 153.5936114 0.0104 
5 0.7023 1.557897072 155.7897072 0.0099 

24 0.6229 1.38176575 138.176575 -0.0042 

Table 7. PVA-H Test 3 in Simulated Body Fluid at 37°C-Sample 6. 

34 



Hour Mass {&rams} Swellin& Ratio X Swellin& Ratio % Swelling Rate 

0 0.4548 1 100 
1 0.6581 1 .447009675 144.7009675 0.2033 
2 0.6954 1.529023747 152.9023747 0.0373 
3 0.7094 1 .559806508 155.9806508 0.014 
4 0.7499 1.64885664 164.885664 0.0405 
5 0.7526 1.654 793316 165.4 793316 0.0027 

24 0.6481 1.425021988 142.5021988 -0.0055 

Table 8. PVA-H Test 3 in Simulated Body Fluid at 37°C-Sample 7. 

Hour Mass (&rams) Swelling Ratio X Swelling Ratio Of. Swelling Rate 

o 
1 
2 
3 
4 

0.4596 
0.5473 
0.598 

0.5636 

1 
1.190818103 
1.301131419 
1.226283725 

100 
119.0818103 
130.1131419 
122.6283725 

threw out because sample was too damaged 

0.0877 
0.0507 
-0.0344 

Table 9. PVA-H Test 3 in Simulated Body Fluid at 37°C-Sample 8. 
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Figure 21. Swelling Ratio ofPVA-H Versus Time in Simulated Body Fluid at 37°C. 
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Figure 22. Swelling Rate ofPVA-H Versus Time in Simulated Body Fluid at 37°C. 

The final test used plasma as the swelling medium for the PYA-H. The PVA-H 

sample 9 was placed in plasma at 25°C that was obtained from the veterinary school. In 

order to prevent over-handling of the sample, an initial mass was taken and then a mass 

was taken every 24 hours afterwards. In 24 hours sample 9 had reached a swelling ratio 

of nearly 4X its initial size. The sample was measured again at 48 hours and the mass 

had decreased, but was still about 3.5X the initial size. Since measurements were not 

made every hour for the first few hours, the data correlating to swelling rate is not very 

useful. Clearly there was a significant amount of swelling that occurred in the first 24 

hours. This trend may have continued after 24 hours, but by 48 hours the swelling had 

decreased. This test should really be rerun taking measurements couple of hours for the 

first 24 to 36 hours. 
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Mass Swelling Ratio Swelling Ratio 
Hour (grams) X % Swelling Rate 

0 0.0434 1 100 0 
24 0.1702 3.921658986 392.1658986 0.005283333 
48 0.1543 3.555299539 355.5299539 -0.0006625 

Table 10. PVA-H Test 3 in Plasma at 25°C-Sample 9. 
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Figure 23. Swelling Ratio ofPVA-H Versus Time in plasma at 25°C. 
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Figure 24. Swelling Rate ofPVA-H Versus Time in Plasma at 25°C. 

Note that volume measurements were not taken for a couple of reasons. First, our 

samples were very small and we did not have access to a graduated cylinder that would 

provide enough resolution to accurately measure the volume of the sample. Furthermore, 

an attempt at measuring the volume of the samples was made, but submerging the 

samples in an organic non-solvent increased the amount of handling and caused a more 

rapid degradation of the PVA-H which skewed the swelling ratio tests entirely. Thus, 

only mass measurements were used for the remainder of the tests and the test in which we 

attempted volume measurements was discarded. 

Discussion 

Testing of the PVA-H was used to measure how much water uptake would occur. 

In the first test, the water was at room temperature to give an approximation of the 

amount of swelling that would occur. Next, the temperature was raised to that of body 
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temperature, 37°C, which was hypothesized to increase the amount of swelling that 

occurred. The simulated body fluid utilized in the third test appeared to degrade the 

PV A -H at a quicker rate and caused the PV A -H to become more slippery and harder to 

handle. The eighth sample (the third sample of the third test) tore at the third hour during 

the mass measurement process. The breakdown of the PVA-H occurred more than was 

approximated from previous studies [6] and the durability proved to be less than 

predicted. 

Cellular freeze/thaw PVA-H was selected for its good mechanical properties, 

excellent biocompatibility, high swelling rate, and high durability. The data from our 

tests proved that two of the four properties were not exhibited, these properties being 

high swelling rate and high durability. The biocompatibility was not tested directly, but 

many previous articles have proved this property to be more than adequate [6]. The 

biocompatibility would have been tested upon conlpletion of the entire device by 

implantation in vivo in rabbits. 

The swell ratio for the PVA-H was previously tested to be 7-8X its initial size, but 

our tests showed only a 1.S-2X its initial size in deionized water and simulated body 

fluid, and 4X its initial size in plasma. The increased temperature tests showed an 

increase in swelling in the deionized water tests. The simulated body fluid test was 

shown to have a swell rate similar to the test done in deionized water at 2SoC. In 

previous articles outlining testing procedures [S], every hour the volume swelling ratio 

was measured, S mL of the deionized water was removed (for further testing of the 

degradation rate of the PYA-H) and SO mL of fresh deionized water was added. The 

degradation rate ofPVA-H exceeded the uptake of water after about the fifth or sixth 
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hour and caused a decrease in mass of the PYA-H. Consequently, a decrease in the PV A­

H swell ratio was observed. Testing the PVA-H at body temperature expedited the 

degradation ofPVA-H and gave worse results that the tests at room temperature. The 

simulated body fluid also caused an increased rate ofPVA-H degradation. This is 

perhaps due to the amount of solutes in the fluid that could interact with and break the 

hydrogen bonds that formed physical crosslink:s holding the PVA-H together. 

Surprisingly, the test ofPVA-H in plasma gave the best results. The swell ratio was 

about 4X after a 24 hour period. The swelling did start to decrease sometime before 48 

hours. The reason for increase swelling ratio in plasma as compared to the other tests is 

not known. This was a surprising result since the PVA-H exhibited limited swelling in 

the other testing media. Perhaps the plasma provides a more homeostatic environment 

for the PV A-H, thus reducing the amount of degradation and allowing the PV A-H to 

maintain its integrity. IfPV A-H can maintain its structural integrity, it would then be 

able to uptake more water and thus have a higher swelling ratio. 

The rate of swelling for each of the three tests varied. The first test (deionized 

water at 25°C) saw a high initial swelling rate, then a sharp decline in swelling rate the 

first 6 hours. Following the initial six hours, a more gradual decline in swelling rate 

occurred. The second test (deionized water at 37°C) showed a similar sharp decline in 

swelling rate as the first test, but to a negative swelling rate. After six hours, a gradual 

incline was observed. The third test (simulated body fluid at 37°C) followed the same 

initial sharp decline in swelling rate and then gradually declined after that. The final 

mass measurement was taken at 24th hour. At this time, the swell rate was observed to be 

negative. Between the two deionized water tests, the 25°C test sustained a positive swell 
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rate for the first 24 hours, while the 37°C displayed a negative swell rate after four hours. 

At 37°C, the simulated body fluid test saw a higher initial swell rate compared to the 

deionized water test. Also, the simulated body fluid test maintained a positive swell rate 

in the first 24 hours, whereas the deionized water test showed a negative swell rate at 

about hour four. In the 37°C deionized water test and the simulated body fluid test, the 

swell rates of the samples within each test were individually different compared to the 

25°C deionized water test where the samples demonstrated similar swell rates. This 

difference could be due to the temperature change that had to occur to take mass 

measurements. The samples were taken from 37°C and exposed to room temperature 

while the measurements took place. Since the PVA-H tested in plasma was not measured 

for the first few hours, nothing can be concluded about the swelling rate other than it is 

most likely a positive rate for the first 24 hours and becomes a negative rate at some time 

between 24 and 48 hours. The reason sample 9 was not measured every hour is that we 

suspected that over-handling of the PVA-H was contributing to the high degradation 

rates. 

The durability of the PVA-H was indirectly tested by examining it every time the 

mass was measured. In deionized water at 25°C, the PVA-H kept its integrity throughout 

the testing process. In the 37°C deionized water, the PVA-H began to show signs of 

degradation at approximately the fifth hour. The samples became stickier and began to 

fall apart slightly. In the simulated body fluid, the PVA-H began to degrade at the third 

hour. The samples appeared slippery when handled and one sample even degraded to 

such a great extent that mass measurements were no longer able to be taken. The 

durability ofPVA-H in simulated body fluid had not been tested before, but PVA-H has 
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demonstrated good durability in vivo. Therefore, the possibility of the increased handling 

and transitions from a wet state to a dry state could be the cause of the decreased 

durability. The increased handling may have caused the samples to be stretched in ways 

that would not occur in vivo. With each mass measurement taken, the samples were 

blotted dry to ensure the mass measured was just that of the sample and not of excess 

water/fluid. 

The mechanical properties of the PV A-H were not tested but could be measured 

by traditional methods given enough time. The pressure exerted by the PVA-H was also 

not measured due to lack of equipment and time. The proposed method for testing the 

pressure exerted is to take a polyethylene block and carve a hole in it the block in the 

shape of the occluder pressure plate. Next, the PVA-H would be heated and poured into 

the molded polyethylene and then allowed to set. Then a capacitive pressure sensor is 

placed on top of the PYA-H. A porous, mesh-like material that will allow water to reach 

the PVA-H but not allow the PVA-H to seep out of the mold is then used to cover the 

capacitive sensor and PYA-H. The entire contraption is submerged in water and the 

PVA-H swells against the pressure sensor and the pressure data is recorded. 

Biodegrading copolymer ofsebacic acid and 1.6-bis(carboxvphenoxvJhexane 

Specifications 

As discussed in detail within the section devoted to design of the porto systemic 

shunt occluding device, the actual mechanism for occlusion hinges upon a force 

generated through the swelling action of a hydrogel polymer. This swelling attempts to 
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move an occluder pressure plate, which in turn exerts the occluding force on the blood 

vessel. However, the rate at which the vessel is occluded, by this design, is controlled by 

biodegrading polymer cylinders, which constrain the motion of the occluder pressure 

plate and, thus, the swelling of the hydrogel. Consequently, whereas current shunt 

occluding devices such as rings of compressed casein rely on a slow and controlled 

swelling of a polymer, the device of this study attempts to utilize drastic and immediate, 

but constrained, swelling. Therefore, the occlusion rate is to be entirely a function of the 

rate of degradation of the biodegrading polymer. This shift of the rate limiting 

mechanism from the swelling polymer to biodegrading polymer is advantageous, given 

that ample research in biodegradable polymers has shown a great ability to finely control 

degradation rates. 

Since, in the proposed design, occlusion rate is entirely a function of the 

biodegrading polymer pieces that prevent the occluder pressure plate nlechanism from 

compressing the vessel, the choice of the degradable polymer is crucial in the materials 

selection process with many important considerations. 

First, the overall mechanism of degradation must be considered. Since the 

percentage of vessel occlusion is entirely a function of the gradually decreasing diameter 

of the degrading polymer, only surface eroding polymers can be considered. Bulk­

eroding polymers degrade not only from the surface but also throughout the polymer, 

resulting in an inability to control and utilize their unpredictably diminishing diameter to 

constrain the occluder pressure plate. Furthermore, bulk-eroding polymers experience a 

loss of mechanical stability as they degrade and will eventually reach a point at which 

they suddenly crumble, allowing the occluder pressure plate to compress abruptly and 
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drastically. On the other hand, surface-eroding polymers are capable of degrading so that 

mechanical stability remains largely intact as the overall diameter of the piece decreases 

nearly linearly in a highly predictable manner. As a result of surface erosion, the 

occluder pressure plate will gradually compress the vessel as the diameter of the polymer 

cylinders decreases. The rate at which these polymers degrade in vivo has been the 

subject of countless studies, and surface-eroding polymers have been fabricated that 

completely degrade in anywhere from days to years. For this intended application, it is 

desired to choose a surface eroding polymer that will degrade in a near-linear fashion in a 

three to four month period. 

Next, biocompatibility concerns must be considered. Not only must the original 

polymer be safe for in vivo use, but all of its degradation products must also possess 

biocompatibility that allows for safe and effective metabolism and/or removal from the 

body. As mentioned above, biodegradable polymer research is extensive and ongoing, 

but such polymers have been approved and used in implants for many years. Because of 

their highly predictable and controllable degradation rates, they have been employed in a 

variety of drug delivery applications, most notably for cancer treatment, as well as in an 

assortment of load-bearing fracture fixation implants. Consequently, many compositions 

have been fabricated that have been proven safe within the body, and the final selection 

of polymer for this proposal is among many options. 

Mechanical stability is also a minor concern. Since the polymer disks need only 

to withstand minor pressures from the occluder pressure platelhydrogel, the selected 

polymer must remain mechanically intact as it degrades. However, the forces to be 

withstood are small, and the polymer is not load-bearing in the traditional sense. 
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Material 

The selection of a biodegrading polymer for the proposed design must take into 

consideration all of the above concerns. Having already established that surface erosion 

is necessary, the search can be narrowed to biocompatible polymers with this mechanism. 

Since the vessel will be completely occluded before the polymer has entirely degraded 

(when the polymer diameter equals the thickness of the fully compressed shunt), in order 

to fulfill our goal time for total occlusion of three months, the selected polymer must 

have degradation rate slightly longer than three months. Consequently, polyanhydrides 

present the most likely solution to this material issue. Polyanhydrides have been 

extensively studied for their biocompatibility and highly controllable biodegradation. 

They have also been utilized in drug delivery systems [4]. Such polymers are known to 

have predictable surface degradation through hydrolysis within the in vivo aqueous 

environment. 

To fulfill the desired specifications for the biodegradable polymer a surface­

eroding, random copolymer of sebacic acid (SA) and 1 ,6-bis( carboxyphenoxy)hexane 

(CPH) was selected (see Figure 25). Previous studies have shown that PSA degrades 

very quickly (about 54 hours) while PC PH degrades much more slowly (around 1 year) 

[ 4]. Consequently, by varying the compositions of these two monomers, a polyanhydride 

copolymer could be fabricated with a degradation rate anywhere from around a month to 

a year [16]. The exact method by which the ratio of monomers for this application was 

determined is discussed in the synthesis section. 
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PSA 

PCPH 

Figure 25. This figure shows the chemical structure ofpoly(sebacic acid) and poly(1,6-bis 
(carboxyphenoxy)hexane. The proposed copolymer would be a random mixture of these repeat units. 

Furthennore, although extensive proofhas not been established, it seems that 

these copolymers possess adequate biocompatibility for this proposed design. Similar 

polymers (PSA-PCPpropane) have shown minimal inflammatory response when 

implanted subcutaneously in rats for 28 weeks and rabbits for 12 weeks. Loose 

vascularized tissue had grown into the rat implants at 28 weeks, with no evidence of 

fibrous encapsulation [9]. Such promising controlled degradation ability and 

biocompatibility has led to the development and marketing of PSA-poly 1,6-

bis(carboxyphenoxy)propane Gliadel® implants for use in delivering the 

chemotherapeutic drug carmustine within the human brain. Clinical studies of these 

implants, as revealed on the Gliadel® package insert, have shown that carboxyphenoxy 

propane is eliminated by the kidneys, while sebacic acid is metabolized by the liver and 

expired as carbon dioxide in animals. As a result, it is a reasonable assumption that the 

degradation products of the proposed sebacic acid and carboxyphenoxy hexane 

copolymer can be metabolized and excreted safely as well. 
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The selection ofPSA-PCPH to serve as the occlusion rate-limiting, biodegradable 

polymer attempts to meet all of the desired specifications for this application in a safe, 

well-understood manner. Literature supports that such a copolymer is reasonably safe 

and biocompatible for use in implants and degrades in a highly controllable, highly 

predictable surface-eroding manner that will ensure mechanical stability throughout 

degradation. 

Method of Synthesis 

The fabrication of a copolymer of sebacic acid and carboxyphenoxy hexane took 

place in two major steps. First, the monomers must be formed and methacrylated through 

a series of detailed syntheses steps. Then, the methacrylated monomers are polymerized 

together to form a random copolynler. 

Synthesis of Methacrylated Sebacic Anhydride (MSA) monomer 

The protocol selected for synthesizing this monomer has been published in 

literature and provided a fairly detailed account of synthesis [10]. First, 10 grams of 

sebacic acid was refluxed with 2.5 M equivalents (-19 grams) of methacrylic anhydride 

in a dry argon gas environment until the sebacic acid was fully dissolved. The 

established protocol cited a 1 hour reflux time; however, the sebacic acid was only fully 

dissolved after many hours of refluxing in a 200 degree Celsius sand bath. The solution 

was allowed to cool and then vacuum distilled to remove excess methacrylic anhydride. 

The remaining sebacic anhydride was then purified by dissolving in methylene chloride 

and precipitation in petroleum ether. The resulting MSA precipitate was then filtered and 
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dried. The theoretical yield was calculated to be 25.38 g. The actual yield was 7.0241 g. 

Thus, the percent yield was 26.675%. The low yield was most likely a result of 

inexperienced chemists, the difficulty encountered in getting the reaction to reflux, the 

reaction not going to completion, and the possible hydrolysis of the product after 

purification and crystallization since it was not stored under argon at subambient 

temperatures [10]. 

Both proton nuclear magnetic resonance eH-NMR) and Fourier transform 

infrared spectroscopy (FTIR) were utilized to confirm the product identity. IH-NMR 

(Figure 26) imaging compared extremely well with the expected results for MSA found 

through ChemNMR H-l estimation. Two small peaks at 5.8 and 6.2 ppm reveal the 

presence of the hydrogen end groups of the methacryl functional units. Also, the peak 

groups near 1.3, 1.6, 2.0, and 2.4 ppm represent the eight CH2 units in the middle portion 

of the sebacic molecule. An integration of the peaks at 2.4 revealed a value of 14.10, 

whereas integrations of the methacryl peaks at 5.8 and 6.2 gave values of 1.51 and 2.00 

respectively. By determining the ratio of sebacic portions to methacryl end groups (with 

1 sebacic group per 2 methacryl end groups for pure monomers), the degree of 

polymerization of the monomers can be estimated. The nearly (3 sebacic ):(2 methacryl) 

peak ratio reveals that the resulting product was not entirely pure monomer, but rather on 

average 3 unit oligomers. However, for the purposes of synthesizing a random 

copolymer, these oligomers are likely sufficient. Likewise, FTIR (figure 27) provided 

strong evidence that the reflux had yielded the expected MSA monomer/oligomers. 

Principally, the 2 absorbance peaks near 1700-1800 wavenumber (cm- I
) reveal the 

carbonyl stretches that are attributable to anhydrides. Also, the peaks near 3000 cm- l 
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reveal the alkene stretches. Similarly, C-O stretches are also confirmed by the series of 

peaks near 1100 cm- I
. 
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Figure 26. NMR-Hl of methacyrlated sebacic anhydride (above) with ChemNMR Estimation (below) 
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Figure 27. IR spectrum for methacrylated sebacic anhydride product 
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Synthesis of Methacrylated J,6-his(carhoxyphenoxy)hexane monomer (MCPH) 

The synthesis protocol for the fabrication ofMCPH was followed from a 1966 

paper published in Macromolecular Syntheses [3]. This literature source provides the 

protocol for synthesizing methacrylated 1 ,6-bis( carboxyphenoxy)propane; however, the 

similarities between these nlolecules allow the substitution of the hexane form of the 

molecule without any change to the protocol. 

First, in a three necked flask, 13.8 grams ofp-hydroxybenzoic acid was mixed 

with 8 grams of sodiunl hydroxide in 40 mL of water. Then, 10.2 grams of 1,6-

dibromohexane was added from a dropping funnel over the course of an hour while a 

stirring bar assisted in the mixing process. The mixture was refluxed at 100 degrees 

Celsius. After the addition of 1,6-dibromohexane was completed, the solution was 

refluxed for an additional 3.5 hours. Then, 2 grams of solid sodium hydroxide was added 

to the mixture. This mixture was refluxed for an additional 2 hours and at this point left 

overnight. The following day, the precipitate of the disodium salt was isolated through 

filtration and washing with 20 mL of methanol. This wet precipitation was then 

dissolved in 0.10 L of distilled water. The solution was then warmed to 60-70 degrees 

Celsius and acidified with 6 N sulfuric acid. While still warm, the dibasic acid was 

isolated by filtration and dried in a vacuum oven at 80 degrees Celsius. The theoretical 

yield should be 7.9 grams (or 50 percent), and the neutralization equivalent is 157 (calc. 

158). An NMR on dibasic acid was used to verify identity of this intermediate product 

(Figure 28). Aliphatic groups are represented at 1.75 and 1.4 ppm. Most importantly, the 

broad peak between wavenumber three and four denotes the hydroxyl groups that are 
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within the carboxylic functional units. Furthermore, pairs of peaks at 6.8, 7.0, 7.7., and 

7.9 ppm represent the benzene rings within the acid. 

Figure 28. NMR-Hl for the dibasic acid intermediate product within the MCPH synthesis 

Next, in a three necked flask fitted with a stirrer, a condenser, and a gas inlet tube 

for dry argon are placed 1.6 grams of 1,6-bis(p-carboxyphenoxy) hexane (the product 

from the above reaction) and 20 mL of acetic anhydride. The mixture was refluxed for 

about 7 hours until a majority of the 1,6-bis(p-carboxyphenoxy)hexane was dissolved. 

The solution was then allowed to cool. Next, the solution was distilled under vacuum at a 

vapor temperature of27 degrees Celsius to concentrate the solution by a factor of 5. The 

remaining solution was kept and allowed to crystallize. FTIR was run to ensure the 

product identity of this anhydride of 1,6-bis(carboxyphenoxy)hexane (Figure 29). The 

noteworthy peaks in this IR spectrum are the anhydrous peaks around 1800 cm- t and the 

disappearance of the carboxylic peak that would have existed above 3400 cm-1 if the 

reaction had been unsuccessful. 
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Figure 29. FTIR analysis of the anhydride of 1,6-bis(carboxyphenoxy)hexane 

However, it was desired to then methacrylate these 1,6-bis(p-

carboxyphenoxy)hexane monomers (as was done to the MSA) before the 

3400 

copolymerization procedure. Consequently, the crystals were dissolved and refluxed in 

excess methacrylic anhydride. The reaction was carried to completion and then allowed 

to cool. Since amounts used in the initial reactions were relatively small, there were not 

many crystals to dissolve into the solution. Thus after the reflux, the product was not 

vacuum distilled for fear that there would not be enough product left after distillation to 

crystallize. Instead, the product was allowed to crystallize without undergoing 

distillation. After the crystals formed, they were dissolved in methylene chloride and 

precipitated in petroleum ether. The resulting crystals were very impure and their 

molecular structure was not able to be confirmed due to time limitations. The final 

53 



crystals took too long to dry and we were unable to continue the copolymerization. Had 

more starting reagents been used from the beginning, there most likely would have been 

enough methacrylated CPH to allow vacuum distillation and thus enable a greater amount 

of pure crystals to be used in copolymerization. Additionally, a fair amount of each 

monomer is needed for melt condensation of a polymer, and even if the MCPH had been 

pure, there may not have been enough to carry out a polymerization reaction. 

Copolymerization 

Having both monomers methacrylated, the final step to synthesis of the desired 

biodegrading polymer is copolymerization with the proper monomer ratio. As discussed 

previously, the goal of this synthesis is to produce a copolymer of sebacic acid and 1,6-

bis( carboxyphenoxy)hexane that will fully degrade over a period of three months. The 

first step for making a determination of the required monomer ratio is to determine the 

degradation rates for varying compositions of this copolynler. Data has been published 

for the percent mass loss of varying poly(MSA:MCPH) as a function of degradation time 

in phosphate buffered saline solution [10]. The tested ratios consist of 1 :0, 50:50, 40:60, 

25:75, and 0:1 MSA to MCPH respectively. If these curves (Figure 30) are extrapolated 

to 100% mass loss the 50:50 copolymer degrades in -10 days, the 40:60 copolymer in 

-79 days, and the 25:75 copolymer in -195 days. This published data was used in this 

design project for the purpose of determining the composition that could be expected to 

yield a copolymer that would fully degrade in a 3 month period. In order to accomplish 

this goal, the time to 100% mass loss was graphed as a function of the amount ofMSA in 

the molar ratio (Figure 31). It was noted that the region from 0: 1 (MSA:MCPH) to 40:60 
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(MSA:MCPH) was nearly linear, and a linear regression trendline for this portion was 

detennined. The trendline yielded the equation [y = (-172.31)x + 8870.3], where y is the 

time to total degradation (in hours) and x is the amount ofMSA in the molar ratio. Since 

the desire is to obtain total occlusion at three months, which should occur before the 

polymer is fully degraded, a target time of3.5 months (-,2500 hours) until complete mass 

loss was set. By using the trend established above, it was detemlined that a copolymer 

with a 37:63 nlolar ratio ofMSA to MCPH could be expected to yield the desired 

specification of just over 3 months until total degradation. 

Figure 30. Cumulative percent mass loss as a function of degradation time for crosslinked polymers of 
varying composition: poly(MSA) (solid circle), 50:50 poly(MSA:MCPH) (solid square), 40:60 

poly(MSA:MCPH) (solid triangle), 25:75 poly(MSA:MCPH) (hollow square), and poly(MCPH) (hollow 
circle). 
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Figure 31. Time to total degradation as a function of the amount of MSA in the molar ratio of the 
copolymer. Actual data comes from Muggli et al. [10]. 

Unfortunately, the synthesis process for methacrylating and preparing the MSA 

and MCPH monomers was much more difficult and time consuming than expected. 

Furthermore, the MCPH yield was extremely low for this synthesis procedure. 

120 

Consequently, a lack of time and monomer yield prohibited this copolymerization and the 

testing to follow from occurring. 

Blue light in the and a corresponding photo initiators camphorquinone and ethyl-4-

N,N-dimethyl a~inobenzoate were used to copolymerize this polymer in the literature 

[16]. Ultraviolet light has also been used with the photoinitiator 2,2-dimethoxy-2-

phenyl-acetophenone [10]. Blue light is the preferred method of copolymerization since 
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it has better "penetration of the light to larger depths than UV systems due to the .-... 
tendency of camphorquninone to quickly photobleach" [16]. 

The copolymerization would have been accomplished by melt condensation under 

high vacuum at 180°C as described in Piszczek et al [12]. The apparatus would be 

connected to a distillation column in order to distill off the methacrylic anhydride that 

forms as a byproduct of this polymerization. The reaction requires approximately 90 

minutes and the product should be stored under argon in a dessicator under vacuum to 

prevent hydrolysis. Due to very small yields as a result of many steps in the synthesis 

and inadequate starting amounts of reagents, and failure to attain purified MCPH the 

copolymerization was not able to be attempted. 

Testing and Results 

As aforementioned, the amount of time required to perform the sophisticated 

synthesis procedure was significantly underestimated and no time remained to fabricate 

the final copolymer and sufficiently test its characteristics. However, if time permitted a 

variety of tests had been planned to determine how well poly(37MSA:63MCPH) met the 

desired mechanical and degradation specifications. 

First, several mechanical characteristics would have been ascertained. 

Differential scanning calorimetry would have been performed to determine the glass 

transition temperature. Also, compression tests would be performed to determine the 

elastic modulus, tensile strength, deformation characteristics, etc. 

Most importantly, several experiments must be executed in order to document and 

understand the degradation characteristics. The testing fluids would have consisted of 
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separate degradations in deionized water, simulated body fluids, and blood plasma. The 

measurables of such experiments are mass loss as a function of time, diameter as a 

function of time, and a qualitative confirmation of surface degradation rather than bulk­

erosion. Also, it would be noteworthy to perform periodic compression testing 

throughout the degradation process to ensure that the copolymer remains sufficiently 

mechanically stable as it degrades. If needed, these tests could be done more quickly 

using a time-temperature superposition experiment. 

Discussion 

Despite the lack of tangible results from the massive efforts invested in attempting 

to synthesize the poly(MSA:MCPH), much was learned through way of experience 

throughout the process. Much profitable time was spent pouring through published 

literature, which greatly enhanced the amount of previous knowledge the team members 

possessed in the realm of polymers and synthesis chemistry. The synthesis steps 

themselves taught a great deal about the many methods used for polymerization, and the 

laboratory skills of everyone involved have increased immeasurably. Furthennore, 

utilization of proton NMR and FTIR as a method of confirming and characterizing both 

the intermediate and final products yielded a much greater awareness of how to employ 

these powerful tools to gain a better understanding of synthesis. 

Time permitting, the design team was confident that this process could have 

yielded a copolymer with extremely promising characteristics that would have fulfilled 

the specifications for mechanical stability and degradation rates established as part of the 

overall design. All literature and preliminary results strongly suggest that with enough 
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time and resources, the synthesis undertaking would have been fairly successful. 

Furthermore, NMR and FTIR characterizations, as discussed in the synthesis section 

above, prove that the synthesis steps undertaken were successful and resulted in the 

expected intermediates. However, with that said, the process undertaken revealed a few 

flaws as well, which could be amended in future work. Mainly, the false assumption that 

there would be enough time to run through the entire synthesis procedure more than once 

resulted in the decision to run the first trial with a relatively small amount of reagents. 

However, as time to complete the fabrication of the polymer and test its degradation rates 

became shorter, it became apparent that the first synthesis attempt should have been done 

at full scale. Consequently, if the synthesis was successful in one attempt, enough 

copolymer would have been produced to perform all of the necessary characterizations, 

degradation testing, and device fabrication. On the other hand, when the amount of time 

that could be invested in synthesis was exhausted, the results from each step had been 

promising and supported the idea that such a synthesis procedure could be fully 

successful. 

Overall Project Conclusions and Limitations 

The novel design of a porto systemic shunt occ1uder was not fully completed; 

however, given some of the major problems that surfaced during the fabrication and 

testing of certain aspects of the design, the design is likely to have limited success as it 

stands. Modifications could definitely be made to the design to improve its effectiveness 

and perhaps have more success. The design concept is sound, but when considering the 

size of the device, the design is impractical. Likewise, the concepts behind the material 
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selections are reasonable and accurate based on the literature, but once in the 

experimental phase the PVA-H in particular proved to be inadequate. The other material 

selections, however, appeared as though they would have been successful. Definitely 

high-density polyethylene would have provided more than enough mechanical strength 

needed for exerting such minute forces. Additionally, the biodegradable polymer 

selection seemed promising. While the polymer's degradation rate and properties were 

not able to be tested, the synthesis was successful up to the methacrylation of CPH which 

only failed due to extremely small yields. There is no guarantee that if the copolymer 

had been synthesized that it would have functioned as well as stated in the literature, but 

theoretically the degradation rate should have been sufficient. While the percent yield of 

MSA was calculated, the percent yield of the MCPH was not able to be calculated as 

there was not enough pure product obtained to be measured. In retrospect, the percent 

yield should have been calculated at each step in the synthesis, but, due to a lack of 

experience, the intention was to calculate a percent yield of only the MCPH, MSA, and 

the random copolymer had it been synthesized. While the biocompatibility of the 

chosen materials was not directly tested, there is extensive, well-documented literature 

confirming their biocompatible properties. 

This project was indeed quite ambitious for a one-year senior design project. 

Although not much was accomplished when considering a finished, functional device, 

much has been learned in the process that will aid in advancing future designs and 

hopefully eventually develop a solution to the problem of extrahepatic porto systemic 

shunts. After considering all of the problems encountered during the design process, two 

emerged as the most significant. 
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First, the inability to obtain an appropriate swelling ratio from the physically 

crosslinked PV A-H would have rendered the device ineffective. As discussed 

previously, a swelling ratio of at least 7-8X the initial volume ofPVA-H is needed to 

achieve full occlusion, but the PV A-H was only able to achieve a swelling ratio of 4X 

and then only in the plasma media. Granted, the plasma media is the most important test, 

but there was not enough time to rerun the experiment to see if the results were 

repeatable. The physically crosslinked PVA-H degraded much too quickly in the other 

experiments to have been used in a permanent device. The degradation most likely 

occurred so quickly because the physically crosslinked PV A-H relies on hydrogen 

bonding for its crystalline structure, and hydrogen bonds will be broken in an aqueous 

environment given enough time. Perhaps if the PVA-H had been chemically crosslinked, 

it is possible that its durability and swelling ratio properties would have been improved 

thus making it suitable as the hydrogel for the current device. 

The second, and probably the hardest, limitation to overcome is the difficulty in 

machining such a small device with so many mechanical parts. Such a device is 

unrealistic and is not cost effective. The current design has overall dimensions of 16.5 

mm x 13.5 mm x 3mm. Included in this design are four moving parts. Trying to 

fabricate four moving parts in a device of this scale, which must be done mostly by hand, 

is extremely difficult and tedious. Not to mention that being able to set up a 

manufacturing process for such a device, had it been successful in occluding a shunt, 

would most likely be impossible. Furthermore, a device that requires the surgeon to 

adjust too many moving parts is cumbersome and unfavorable. A device that has a 

design considered unfavorable by surgeons will not survive in the market. 
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The above limitations are severe barriers to obtaining a successful and marketable 

device. The information and research obtained from this novel device is invaluable in 

carving the future of extrahepatic porto systemic shunt occluders, but much future work is 

needed. 

Future Work 

Given more time and resources, the desired 37MSA:63MCPH composition 

biodegradable copolymer needs to be synthesized to completion. After synthesis, it 

should be tested for its degradation rate and properties and resynthesized with modified 

composition of MSA:MCPH until the desired degradation rates and mechanical 

properties are obtained. Next, the PVA-H would be chemically crosslinked and retested 

to see if its swelling ratio attains the needed 7-8X. lfPVA-H still does not reach the 

desired swelling ratio, then selection of a new hydrogel should be investigated. 

Furthermore, assuming that chemically crosslinking PVA-H provides the needed swelling 

ratio and that the biodegrading copolymer of MSA:MCPH has the appropriate 

degradation rate and properties, the entire device should be tested in vitro to verify that 

the device will function in the absence of a vein. Then the device should be tested again 

in vitro, but this time with an experimental setup that mimics the in vivo environment as 

closely as possible, perhaps using tubing of some sort to mimic the vein and the venous 

pressure. Once both of these tests have been completed, then the device should be tested 

in vivo in rabbits. lfthe device is successful in rabbits, then it can be prototyped and 

tested in dogs. Before testing in vivo, appropriate sterilization techniques must be 
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determined in order to safely sterilize the device without damaging its integrity, 

materials, or functionality. 

Another avenue of future work involves reducing the number and complexity of 

the moving parts in the design while maintaining the general concept of the design. If the 

design could be modified, or if an entirely new design could be developed, using the 

same concepts, and thus the same or similar materials to those used in this project, so that 

the device could be more easily machined, then the chances of success of such a device 

would be greatly increased. Much of the ground work for developing a second 

generation novel device has already been completed, assuming that the second generation 

device maintains the conceptual design of the first generation. Taking the information 

obtained from the current first-generation design, and investing enough time and thought 

to create a second-generation design would no doubt be rewarding and beneficial in 

solving this problem. 

In addition to the above work, the design alternatives would have been studied. 

Most notably, controlling the swell rate of the current device via the sputtering of the 

current device through a mask would have been tested. This idea would have been rather 

simple to complete and test. After testing, the effectiveness of masking the casein could 

be compared to the novel design. Masking the casein in the current constrictor could 

very likely have been more successful at achieving the needed occlusion rates. If the idea 

had worked, it would have undoubtedly been much more simple and easier to fabricate, 

manufacture, and use than the current design. 
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